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Tässä työssä tarkastellaan kahta erilaista 1-ulotteista kvanttimekaanista sys-
teemiä. Näiden systeemien potentiaalit ovat lineaarinen potentiaali äärettömän
syvässä kaivossa ja käännetty harmoninen oskillaattori äärettömän syvässä kaivossa.
Näille molemmille tapauksille etsitään energian ominaisarvot ja -funktiot ratkaise-
malla systeemin Schrödingerin yhtälö. Ratkaisut saadaan käyttämällä reunaehtoja
ja hyödyntämällä numeerisia menetelmiä. Motivaatio näiden ratkaisujen tarpeelle
tulee kokeellisesta taustasta.

Lineaarisen potentiaalin tapauksessa reunaehtoja on kaksi. Ensimmäinen on
niin sanottu normaaliehto, jossa aaltofunktio on nolla laatikon reunoilla. Toisena
on derivaattaehto, jossa taas vuorostaan aaltofunktion derivaatta on nolla laatikon
reunoilla. Aaltofunktion ratkaisut ovat Airyn funktioita. Käännetyn harmonisen
oskillaattorin tapauksessa tarkastellaan normaalia reunaehtoa ja ratkaisut ovat
vuorostaan parabolisia sylinterifunktioita. Molempien yhteydessä tehdään vertailua
hiukkanen laatikossa -ratkaisuun. Tulosten yhteydessä esitellään myös kuvia ja
taulukoita, joista selviää sekä energian ominaisfunktioiden ulkonäkö että yhteydet
hiukkanen laatikossa -problematiikkaan. Kuvien ja laskujen kanssa on käytetty
matemaattisia ohjelmistoja. Lineaarista potentiaalia verrataan myös tapaukseen,
jossa ääretön reuna on vain vasemmalla puolella. Tästä tapauksesta esitellään myös
graafisia todisteita näiden systeemien yhtäläisyyksistä ja eroavaisuuksista.

Näiden lisäksi käännetyn harmonisen oskillaattorin tapauksessa perehdytään
vielä tunnelointiproblematiikkaan. Sen yhteydessä käydään läpi hieman kvanttitun-
neloinnin historiaa, sen kehittäjiä ja lopuksi esitellään Feynmannin polkuintegraali-
teoria. Tämän avulla saadaan instantoniratkaisut, joita voidaan käyttää tunneloin-
tiominaisuuksien tarkastelussa. Tunnelointitapausta vertaillaan kaksoiskuoppapo-
tentiaaliin, joka on systeeminä hyvin vastaavanlainen kuin tarkasteltava potentiaali.
Ratkaisut saadaan myös samanlaisilla menetelmillä, joten vertailu on helppoa.

Kaiken kaikkiaan työssä myös pohditaan ja käydään läpi myös kvanttimekanii-
kan kehitysvaiheita ja erilaisia tapoja tulkita kvanttiteoriaa. Tämän ohessa myös e-
sitellään erikseen ratkaisuissa tarvittavia erikoisfunktioita, niiden ominaisuuksia
ja erilaisia yhteyksiä muihin erikoisfunktioihin. On olennaista huomata, että on
mahdollista käyttää erilaisia matemaattisia formalismeja halutun lopputuloksen
saamiseksi. Kvanttimekaniikka on rakentunut noin sadan vuoden aikana teoriaksi,
jolle löytyy monenlaisia lähestymistapoja. Erilaiset tavat mahdollistavat eri asioiden
tutkimista.

Asiasanat: Schrödingerin yhtälö, kvanttitunnelointi, instantoni, Feynmanin
polkuintegraali, erikoisfunktiot
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In this work we look at two different 1-dimensional quantum systems. The po-
tentials for these systems are a linear potential in an infinite well and an inverted
harmonic oscillator in an infinite well. We will solve the Schrödinger equation for
both of these systems and get the energy eigenvalues and eigenfunctions. The solu-
tions are obtained by using the boundary conditions and numerical methods. The
motivation for our study comes from experimental background.

For the linear potential we have two different boundary conditions. The first
one is the so called normal boundary condition in which the wave function goes
to zero on the edge of the well. The second condition is called derivative boundary
condition in which the derivative of the wave function goes to zero on the edge of the
well. The actual solutions are Airy functions. In the case of the inverted oscillator
the solutions are parabolic cylinder functions and they are solved only using the
normal boundary condition. Both of the potentials are compared with the particle
in a box solutions. We will also present figures and tables from which we can see
how the solutions look like. The similarities and differences with the particle in a
box solution are also shown visually. The figures and calculations are done using
mathematical software. We will also compare the linear potential to a case where
the infinite wall is only on the left side. For this case we will also show graphical
information of the different properties.

With the inverted harmonic oscillator we will take a closer look at the quantum
mechanical tunneling. We present some of the history of the quantum tunneling
theory, its developers and finally we show the Feynman path integral theory. This
theory enables us to get the instanton solutions. The instanton solutions are a way
to look at the tunneling properties of the quantum system. The results are compared
with the solutions of the double-well potential which is very similar to our case as a
quantum system. The solutions are obtained using the same methods which makes
the comparison relatively easy.

All in all we consider and go through some of the stages of the quantum theory.
We also look at the different ways to interpret the theory. We also present the special
functions that are needed in our solutions, and look at the properties and different
relations to other special functions. It is essential to notice that it is possible to use
different mathematical formalisms to get the desired result. The quantum theory
has been built for over one hundred years and it has different approaches. Different
aspects make it possible to look at different things.

Key words: Schrödinger equation, quantum tunneling, instanton, Feynman path
integral, special functions
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1 Introduction

Quantum mechanics became a very relevant field of study in the beginning of the

20th century. The quantum theory is very powerful and has many intriguing prob-

lems. The phenomena are mostly not seen in the macroscopic scale and therefore

they might seem a bit hard to comprehend. The logic of the world observed by

our eyes does not work in the same way when we go into the Planck length scale.

The Planck length is defined by the Planck constant h, the speed of light c and the

gravitational constant G. These are all called fundamental physical constants that

are the same everywhere in our universe. The Planck length itself is denoted by LP

and defined by

LP =

√
~G
c3
≈ 1, 616× 10−35m. (1)

The reduced Planck constant is denoted by ~ and it is related to the Planck constant

h by a simple equation

~ =
h

2π
. (2)

Max Planck was a famous German physist who actually planted the seeds for the

quantum theory, and can be thought of as a father for the quantum theory. He also

played a key role in formulating the theory of statistical mechanics. [1]

The name of the quantum theory comes from the Latin word ’quanta’ which

follows from the observation that some physical quantities, e.g. energy, can change

only in discrete amounts. Two basic tools in the mathematical formalism of the

quantum theory are the wave function, which contains information about the prob-

ability amplitude of particle’s physical properties such as position and momentum,

and the Schrödinger equation, which can be used to formulate the time evolution

of a quantum state and also to calculate the energy eigenvalues and eigenfunctions.

This means that the wave function can be solved using the Schrödinger equation,

which is usually written as [2]

− ~2

2m
∇2Ψ + VΨ = i~

∂Ψ

∂t
, (3)

where ~ is the reduced Planck constant, m is the particle mass, V is the potential,

and Ψ is the wave function for which the whole operator equation operates. The
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right hand side can also be written as [2]

i~
∂Ψ

∂t
= EΨ, (4)

where E stands for the energy of the system. Even though the quantum theory con-

tains very much abstract mathematics it also has lots of different ways to interpret

how the results have gotten their form. What actually happens in the middle where

the measurement results and mathematics tell us nothing?

The mathematical formalism of quantum physics has different forms. The earliest

two are so called matrix mechanics [3] [4], which was formulated by a famous German

physicist and a Nobel Prize winner Werner Heisenberg in 1925, and wave mechanics

[2], which was formulated by an Austrian physicist and also a Nobel Prize winner

Erwin Schrödinger in 1926. Later in 1930 Paul Dirac united these two theories

into one by finding out that they are actually equivalent which was obviously a

relief. Paul Dirac was a British physicist, who was awarded with the Nobel Prize

along with E. Schrödinger. Dirac is also the inventor of the commonly used bra-

ket notation which is a way to represent Hilbert space vectors and functionals that

describe the quantum states. The reduced Planck constant ~ is also called Dirac

constant because the shortened notation was invented by Dirac.[5] [6] The work

of Heisenberg and Schrödinger is the basis of the most commonly used formalism

although the notation has obviously changed and developed a bit when time has

passed. The theory has also expanded a lot since those times and it has many new

properties and applications.

In 1948 Richard Feynman derived an alternative way to describe quantum me-

chanics and this is called the path integral formulation [7]. In path integral theory

the probability amplitude is a sum over all possible histories between the initial and

final states. This relates to the action principle in classical mechanics and it is in

fact a generalization of it. It also includes the solutions where time goes backwards.

In figure 1 we can see three different paths the imaginary particle can choose from.

Feynman derived his formulation by postulating three rules:

1. In the nature the events are probabilistic and the corresponding probability is

P .

2. The probability P for an event is given by the complex square of the probability

amplitude, Q. The quantum probability amplitude Q is the sum of all possible

amplitudes qh over all histories that lead to the event.
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Figure 1: Example of three different paths that a particle can take going from point
A to B.

3. The path is propotional to the classical action S time integral by eiS/~, where

i is the imaginary unit and ~ is the reduced Planck constant.

Feynman’s way of defining path integral approach in quantum theory opened new

doors. It for example eventually enabled a connection to stochastic processes. This

was used to unite the quantum field theory and statistical field theory together.

So by choosing a specific formulation we can look at certain things from another

perspective. This really shows the beauty of mathematics. In a way you could

describe this to be a way of looking into things. But of course when it comes to

matters like the quantum theory, you will have to invent a whole new way of thinking.

After that you have to formulate the theory with the new approach. The quantum

theory has certain postulates that have to be covered by the formalism in order it to

be physically relevant. All in all it is eventually the physical reality that defines what

type of mathematics you will be able to use. They have to describe the quantum

reality. Through history there has been a lot of debate how to actually interpret

these formalisms. We are also lacking the connection between the quantum world

and the relativistic theory of gravity. So we will most certainly see new theories in

the future.[8]

In this work our study first focuses on two potentials which are confined in

an infinite well. First we have a linear potential and then an inverted oscillator

potential. We will solve the energy eigenvalues and eigenfunctions using different

methods. The equations are not solvable by using only analytic methods so we will

present some numerical calculations and approximations as well. The equations of

the linear potential are solved with two different boundary conditions. The first

one is the normal boundary condition where the wave function goes to zero in the

edge of the wall. The second one is a derivative boundary where the derivative of
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Figure 2: The similarity of two potentials. (a) The Flügge case where we have the
linear potential with an infinite wall on the left side. (b) The linear potential with
an infinite wall on both the left and the right side.

the wave function goes to zero in the edge and then we have either a maximum

or minimum on the sides of the well. The inverted oscillator is solved only for the

normal boundary conditions. After we have presented the solutions for these we

study the tunneling properties. The study of the tunneling properties is done via

Feynman’s path integral theory. There we will find the instanton solution for the

inverted oscillator potential in an infinite well.

Our study lays bases on the study of spin waves, especially in the experiments

[9], [10] and [11]. The reason we have selected these potentials thus connects to the

experimental work. The introduction of the derivative boundaries actually gives us

the spin wave solutions. We want to introduce also the normal boundary conditions

so that it is easier to compare them to the more unusual derivative boundaries. In

general literature the derivative boundaries have been mostly left out and by that it

is also an interesting field of study. By introducing both of them it is convinient to

check out their similarities and differences side by side. For the inverted oscillator

case we will look for the instanton solution. Usually the instanton solution is done

for a double-well potential which is relatively similar to the inverted oscillator when

the oscillator is in the infinite well.[8]

We will compare our linear potential results to a case studied in particle physics

which included only the left side wall. The study of S. Flügge and his results are

compared.[12] The comparison of the actual potentials can be seen in Figure 2,

where Figure 2a refers to the potential where we only have one wall on the left side

and Figure 2b refers to the potential where we have two walls on both sides.

The double-well potential consists of one hill and two wells next to it on both
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Figure 3: The similarity of two potentials. (a) The double-well potential. (b) The
inverted oscillator potential in an infinite well.

sides, and it can be seen in Figure 3a. The inverted oscillator confined in a box looks

basically same but the edges are sharp and walls are straight, which is seen in Figure

3b. The similarity of interest rises from the fact that the double-well potential has

been studied a lot in the Bose-Einsten condensation.[13] In the experiments of our

interest [9] and [11], we also see a study of the behaviour of the Bose-Einstein con-

densation. The first one is a case where the potential has a double well structure.

The second one is related to quasiparticles in atomic hydrogen gas. Bose-Einstein

condensation is related to experiments with real particles. Bose-Einstein conden-

sation is low temperature state where a vast number of particles is at the lowest

possible energy level. The particles can be thought of as a macroscopic ensemble

and the ensemble starts to obey the rules of the quantum theory. The particles

have to be bosons and they have to obey the Bose-Einstein statisctics. Boson is an

elementary particle that does not obey the Pauli exclusion principle. So there are

no restrictions on how many boson particles can occupy the same quantum state.

The spin of a boson is an integer. The spin of a fermion, e.g. electron, is a half-

integer. Fermions on the other hand must obey the Pauli exclusion principle. The

condensate was named after the research of S.N. Bose and A. Einstein in the mid

1920’s. [14]

The spin itself is a property of the elementary particles. It does not possess a

counterpart model in the classical mechanics so it really is only a quantum phe-

nomenon. The spin quantum number s is either an integer or half-integer. The spin
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angular momentum S is a quantized property and it is defined as

S = ~
√
s(s+ 1) (5)

where s is the spin quantum number.

The closest analogy to the spin is the angular momentum, i.e. a particle rotating

around its axis. Spin waves in a quasiparticle interpretation are called magnons. In

a crystal lattice it is the electrons’ spin’s collective excitation. So in other words the

magnon represents a quantized electron spin wave. Its real particle counterpart is a

boson which is related to the Bose-Einstein condensation. A quasiparticle is like a

virtual particle. It is not a real particle like e.g. electron. It is more like a disturbance

in a matter which behaves like a particle.[15] It can be thought of like a bubble in

a glass of Coca Cola. It is an independent object inside the liquid eventhough it

is basically only a ball that is formed because of the carbonic acid. It can move,

collide with other bubbles, float on the surface etc. Still it has certain properties

like its form, size, energy and momentum. By doing so they can be thought of as

individual particles with a specific label on them. The same goes for quasiparticles.

Besides magnon, there are also other quasiparticles like phonon, exciton, polaron,

roton, plasmariton and plasmon. But what the spin waves actually are?

The spin wave is a group effect. From de Broglie’s rule we know that particles

can behave like a wave, where the wave length λ is given by

λ =
h

p
, (6)

where h is the Planck constant and p is the momentum of the particle.[16] If you

turn this around, you will end up with a wave that behaves like particle. We

need to look deeper into the theory of electromagnetism but let us still stay away

from the actual mathematical formalism. Like we said the spin can be classicly

thought of as an angular momentum. If an electron rotates, it produces a small

dipolar magnetic field pointing along the rotational axis. Let us assume we have

atoms arranged in a periodical lattice in a crystalline material. The atoms are

arranged so that they possess the electron spin 1/2 and have a magnetic moment.

Now a ferromagnetic substance is a so called permanent magnet which is magnetic

eventhough there is no externally applied magnetic field. If we have a ferromagnet,

the magnetic momenta are parallelly aligned. This requires that the temperature is

below the Curie temperature. If the temperature goes over the Curie temperature,

the ferromagnet will turn into a paramagnet. We will introduce a strong external
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magnetic field and the magnetic moments in our ferromagnetic crystal will now align

parallel to it. Magnetic moments also produce a small magnetic field. Diverting the

equilibrium positions of some of the magnetic moments will have an effect on the

nearest magnetic moments. Again when the nearby magnetic moments are diverted

a bit, they will have an affect on their neighbour magnetic moments. From this we

get a propagated wave produced by the electron spins that moves around the crystal.

This is the spin wave. When the spin is deflected, it does not go straight back to

its equilibrium position. It will start to precess around the external magnetic field

which was applied. The precession frequency is one of the important features of the

spin waves. The precession will not last forever. The precession causes the atoms to

vibrate in the lattice and from this we will see heat. So the spin wave will eventually

turn into heat after time goes by.[15]

The study we have here is related to a dense gas of spin polarized atomic hy-

drogen. It differs from the ferromagnet where the basis is in the strong exchange

interaction of the electrons. Now the weak exchange interraction is the key when it

comes to the quantum gases that have identical atoms. From this we will have the

identical spin rotation effect where the spin wave is actually result of the colliding

identical spin rotations.[11] In atomic hydrogen gas we can encounter the identical

spin rotation (ISR) effect which causes the excitation of spin waves.[20] [21] It is due

to the weak interraction within the gas and it is a short event during collisions. The

ISR effect causes the spin excitations to propagate. After a series of ISR collisions

we will observe the spin waves in the more macroscopic scale. The subject has been

studied also in [17], [18] and [19]. In our case of interest it is the magnetic field that

becomes the quantum potential. We will just quickly show what we are going for

and we do not go into details with this one. The complex diffusion equation for the

spin transport, with spin polarization S+ = Sx + iSy, is

i
∂S+

∂t
= D0

ε

µ
∇2S+ + γδB0S+, (7)

where D0 is the spin diffusion coefficient in the unpolarized gas, ε = 1 for bosons,

ε = −1 for fermions, γ is the gyromagnetic ratio, and δB0 is the magnetic field

deviation from the average value B0. The main magnetic field is of course in z

direction and the spins will precess around it. We define the effective mass of the

particle

m∗ = − ~µ
2D0ε

. (8)
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We get a wave equation that resembles the Schrödinger equation (3) quite a lot

when we rearrange it and multiply it with Dirac constant ~

− ~2

2m∗
∇2S+ + ~γδB0S+ = i~

∂S+

∂t
. (9)

The potential term in here is thus

Vspin = ~γδB0. (10)

The reason for this is that δB0 is inhomogeneous and therefore it is dependent from

the spatial components so that we can view it as a potential well. By different

selections of the parameters of the magnetic field we get our cases - the linear

potential and the inverted oscillator potential in an infinite well. In other words we

can achieve this by adjusting δB0. The adjustments can actually be done during

the experiments. So the parameters are not just some fixed values that happen to

show up with this behaviour. They can be altered and tested with higher or lower

slopes by adjusting the parameters of the external fields. It is also very important

to note that our study is done in a situation which is simplified to a 1-dimensional

case. The actual experiments are 3-dimensional. There we have the resemblance

of a toroid potential corresponding to the inverted oscillator and a linear magnetic

field corresponding to the linear potential.

In the experiments our main magnetic field is in the z-direction and it causes

a toroidal counter magnetic field on the edge of the cylinder. The toroid is in the

xy-plane and a simplified cross section of the toroid is an inverted oscillator. The

resemblance of the toroidal shape comes from the impurities of the surrounding

material. The material inside the cylinder is spin polarized atomic hydrogen. By

using and adjusting inductors it is possible to create a linear magnetic potential in

the z-direction. If the inductors are strong enough, the linear potential dominates.

This is why it is notable to check out the toroid potential and linear potential

separately. It is also possible to do them at the same time. Furthermore, it is

possible to cancel the toroid potential completely using the inductors.

The resemblance between the inverted oscillator in an infinite well and the double

well potential leads us also to the possibility of tunneling. The idea of the quantum

tunneling is an interesting point of view which is also a thing that does not happen in

our macroscopically observed every day life. It is still a fact delivered by the quantum

theory. Historically the tunneling is attached with the double well potential because

the theory of tunneling emerged when F. Hund studied the properties of the double
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well potential in 1927. He noticed that there exists a probability of the electron

penetrating through a classically forbidden barrier inside an atom.[22] Friedrich

Hund was a German physist who specialized in the study of nuclear physics. He

was an assistant to the famous German physicist Max Born. It was also Born that

realized that the quantum tunneling is a ground breaking part of the theory itself,

and was awarded with the Nobel prize in physics in 1954 for his work on quantum

mechanics. One way to interprete the tunneling probability amplitude is the way to

to explore the instanton solution. This is what we want to compare to the results

of the inverted oscillator in an infinite well.

One of the purposes of this work is also to give a short introduction for using

different special functions. A little knowledge on how they are used, what different

forms they have and how do they look like. For this we will show some basic

properties and methods. Special functions are a class of mathematical functions

that usually have a certain name and this is because they have been used in some

field of study. The names have been given mostly for historical reason and are offen

referred to the first person who studied or solved them. The names also differ in

different references. In some they are used by their general name and in some a

specific subgroup may have a name of its own. There is no specific definition for

what counts as a special funtion. It is more of a list of silently agreed functions. Lots

of books and tables have been made about their properties, connections, solutions,

usage etc. One of the most referred book is Handbook of Mathematical Functions

by M. Abramoviz and I.A. Stegun [23], to which we also mainly refer. We will

concentrate on Airy functions and parabolic cylinder functions because they are an

essential part of the given solutions in our problems. We have also added some

interesting historical points of both the physical theory and the people behind it.
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2 Infinite well with a linear potential

2.1 Airy functions

We first examine a 1-dimensional quantum system that is in an infinite well with a

linear potential of the form

V (x) = kx (11)

and solve its energy eigenvalues and eigenfunctions. We will have an adjustable

potential parameter k and boundaries on both sides for the well. The solutions for

this type of differential equations are called Airy functions which are named after the

British astronomer and mathematician George Biddel Airy who investigated these

in the 19th century [24]. G.B. Airy was especially established in the research of

orbiting planets and was close to being the first recognized discoverer of the planet

Neptune. In 1851 he also got the honor of defining that the prime meridian goes

through the location of the Greenwich’s Royal Observatory. Later his definition was

chosen for the definition of the prime meridian worldwide. The actual differential

equations we are investigating here got the attention of G.B. Airy when he was

studying optics.[25] The Airy functions are actually a special case of a larger group

of functions called the Bessel functions. Airy function is a representation of a certain

order Bessel function. It is a 1/3 fractional Bessel function.[23] The Bessel functions

were first introduced by David Bernoulli and also investigated by J.L.L. Lagrange, L.

Euler and S.D. Poisson among others. Later on in 1824 Friedrich Bessel generalized

and rearranged the equations more precisely.[26]

During the investigations of the properties of special functions like the Airy

functions we refer to [23]. There are plenty of relations and properties that give us

the possibility to present these functions in a different form. The Airy functions

come in the form of two, Ai(x) and Bi(x). They are linearly independent solutions

for the differential equation

y′′ − xy = 0 (12)

and the solution is in the form

y(x) = AAi(x) +BBi(x). (13)
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These can also be written

Ai(x) = c1f(x)− c2g(x) (14)

Bi(x) =
√

3(c1f(x) + c2g(x)) (15)

where the functions f(x) and g(x) are

f(x) = 1 +
1

3!
x3 +

1 · 4
6!

x6 +
1 · 4 · 7

9!
x9 + . . .

=
∞∑
i=0

3i
(

1

3

)
i

x3i

(3i)!
(16)

g(x) = x+
2

4!
x4 +

2 · 5
7!

x7 +
2 · 5 · 8

10!
x10 + . . .

=
∞∑
i=0

3i
(

2

3

)
i

x3i+1

(3i+ 1)!
(17)

and (
z +

1

3

)
0

= 1 (18)

3i
(
z +

1

3

)
i

= (3z + 1)(3z + 4) · · · (3z + 3i− 2) (19)

where k = 1, 2, 3, . . .and z is an arbitrary number. The factors c1 and c2 can be

written

c1 = Ai(0) =
Bi(0)√

3
=

3−2/3

Γ(2/3)
(20)

c2 = −Ai′(0) =
Bi′(0)√

3
=

3−1/3

Γ(1/3)
(21)

In (20) and (21) we have the Gamma function Γ(α) where α ∈ C. There are also

certain relations between the Airy functions Ai(x) and Bi(x). Let us have a brief

look at those as well. Two identities to begin with are

Ai(x) + e
2πi
3 Ai(xe

2πi
3 ) + e−

2πi
3 Ai(xe−

2πi
3 ) = 0 (22)

Bi(x) + e
2πi
3 Bi(xe

2πi
3 ) + e−

2πi
3 Bi(xe−

2πi
3 ) = 0. (23)

Let us prove the first one (22) briefly. It is easily calculated when we substitute

(14), (15), (16) and (17) into (22). We also need to use the Euler’s formula which
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states that

eix = cos(x) + i sin(x). (24)

Having all of these we end up calculating the factors and series in the form

Ai(x) + e
2πi
3 Ai(xe

2πi
3 ) + e−

2πi
3 Ai(xe−

2πi
3 ) =

c1

(
1 + 1

3!
x3 + 4

6!
x6 + . . .

)
− c2

(
x+ 2

4!
x4 + 10

7!
x7 + . . .

)
e

2πi
3 c1

(
1 + 1

3!
x3e

2πi
3
·3 + 4

6!
x6e

2πi
3
·6 + . . .

)
−e 2πi

3 c2

(
x+ 2

4!
x4e

2πi
3
·4 + 10

7!
x7e

2πi
3
·7 + . . .

)
e−

2πi
3 c1

(
1 + 1

3!
x3e−

2πi
3
·3 + 4

6!
x6e−

2πi
3
·6 + . . .

)
−e− 2πi

3 c2

(
x+ 2

4!
x4e−

2πi
3
·4 + 10

7!
x7e−

2πi
3
·7 + . . .

)
.

First we notice that e
2πi
3
·n = 1, where n = 3, 6, 9, 12, . . ., which means that the

bracket phrases having a factor c1 are the same. After using Euler’s formula (24)

we get for those that

c1 (. . .) +
(
cos(2π

3
) + i sin(2π

3
)
)
c1 (. . .) +

(
cos(2π

3
)− i sin(2π

3
)
)
c1 (. . .) =

c1 (. . .)− 1
2
c1 (. . .)− 1

2
c1 (. . .) = 0

where we have used that cos(2π
3

) = −1
2
. So now we have got ridden of the terms

that contain the coefficient c1. Now we will rip open the rest. For simplicity we

will leave out the coefficient c2 because it is in front of every term. Focus is in the

first term inside the round brackets which has a coefficient x. The other terms will

behave in a same way. We will also use the following markings cos(2π/3) → c and

sin(2π/3)→ s. We get

−x− [c+ is]x[c+ is]− [c− is]x[c− is] =

−x− x(c2 + 2ics− s2)− x(c2 − 2ics− s2) =

−x− 2x
(
c2 − s2

)
=

−x− 2x

(−1

2

)2

−

(√
3

2

)2
 =

−x− 2x

(
−1

2

)
= 0.



2 INFINITE WELL WITH A LINEAR POTENTIAL 13

In this way we end up to the identity (22). In a similar way it can be proven that

between the solutions Ai(x) and Bi(x) we have a relation

Bi(x) = e
πi
6 Ai(xe

2πi
3 ) + e−

πi
6 Ai(xe−

2πi
3 ). (25)

which might be of use in some situations.

The integral representation for the Airy functions can be written in the form

(3a)−1/3πAi
(
±(3a)−1/3x

)
=

∫ ∞
0

cos(at3 ± xt)dt (26)

(3a)−1/3πBi
(
±(3a)−1/3x

)
=

∫ ∞
0

(
e−at

3±xt + sin(at3 ± xt)
)
dt. (27)

The Airy functions can also be represented in terms of other special functions. Let

us present them in terms of the Bessel functions. First we of course need to tell and

define what the Bessel functions are. The Bessel functions are the solution to the

following differential equation

x2 d
2y

dx2
+
dy

dx
+ (x2 − n2)y = 0. (28)

The Bessel functions also satisfy the recurrence formulas

2n

x
Zn(x) = Zn+1(x) + Zn−1(x) (29)

and for the derivation

−2
dZn(x)

dx
= Zn+1(x) + Zn−1(x). (30)

There are three types of the functions that give solutions to the equation (28).

The Bessel functions of the first kind J±n(x), the second kind Yn(x) and the third

kind H
(2)
n (x), H

(1)
n (x). The second kind Bessel functions are also known as Weber’s

functions, and the third kind Bessel functions are also known as Hankel functions.

We will present the series definition to the first kind of the Bessel functions Jn(x)

because we need only that to our original purpose which was to present the Airy

functions in terms of the Bessel functions

Jn(x) =
(x

2

)n ∞∑
k=0

(−1
4
x2)k

k!Γ(n+ k + 1)
, (31)

where Γ is the Gamma function. The Bessel functions are also in some literature
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referred as cylinder functions. In Chapter 3 we will discuss about parabolic cylinder

functions. The Bessel functions can also be linked to those which we will get back

later.

First for the representation of the Airy function in the terms of the Bessel func-

tion we will define that our variable

ξ =
2

3
x3/2. (32)

For the function Ai(x) we have

Ai(x) =
1

3

√
x
(
I−1/3(ξ)− I1/3(ξ)

)
=

1

π

√
x

3
K1/3(ξ) (33)

and

Ai(−x) =
1

3

√
x
(
J−1/3(ξ) + J1/3(ξ)

)
=

1

2

√
x

3

(
eiπ/6H

(1)
1/3(ξ) + e−iπ/6H

(2)
1/3(ξ)

)
. (34)

For the derivative of the function Ai(x)

Ai′(x) = −1

3

√
x
(
I−2/3(ξ)− I1/3(ξ)

)
= − x

π
√

3
K2/3(ξ) (35)

and

Ai′(−x) = −1

3
x
(
J−2/3(ξ)− J2/3(ξ)

)
=

x

2
√

3

(
e−iπ/6H

(1)
2/3(ξ) + eiπ/6H

(2)
2/3(ξ)

)
. (36)

In a similar way for the other Airy function Bi(x)

Bi(x) =

√
x

3

(
I−1/3(ξ) + I1/3(ξ)

)
(37)



2 INFINITE WELL WITH A LINEAR POTENTIAL 15

-10 -8 -6 -4 -2 2 4
x

-1.0

-0.5

0.5

1.0

(a)

-4 -2 2 4 6 8 10
x

-1.0

-0.5

0.5

1.0

(b)

Figure 4: Airy function Ai(x). (a) The black curve is Ai(x) and the red curve is
Ai′(x). (b) Ai(−x).

and

Bi(−x) =

√
x

3

(
J−1/3(ξ)− J1/3(ξ)

)
=

i

2

√
x

3

(
eiπ/6H

(1)
1/3(ξ)− e−iπ/6H(2)

1/3(ξ)
)
. (38)

For the derivative of the function Bi(x)

Bi′(x) =
x√
3

(
I−2/3(ξ) + I2/3(ξ)

)
(39)

and

Bi′(−x) =
x√
3

(
J−2/3(ξ) + J2/3(ξ)

)
=

ix

2
√

3

(
e−iπ/6H

(1)
2/3(ξ)− eiπ/6H(2)

2/3(ξ)
)
. (40)

It is also to be noted that in some literature you can see the Airy functions named

as Gi(x) and Hi(x). It is just a different formulation and nothing else. The relation

is just a transformation away from our notation of Ai(x) and Bi(x). We do not go

deeper into these matters.

In Figure 4 you can see how the Airy function Ai(x) and its derivative Ai′(x)

behave. If you compare Figures 4a and 4b, you can see that the Airy function

Ai(x) is mirror symmetric. In Figure 5 you can see in a similar way how the Airy

function Bi(x) behaves. The Figures 5a and 5b show that Bi(x) is also mirror

symmetric. The fundamental difference between Ai(x) and Bi(x) is in in the limits
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Figure 5: Airy function Bi(x). (a) The black curve is Bi(x) and the red curve is
Bi′(x). (b) Bi(−x).

when x→∞. We have

lim
x→∞

Ai(x) = 0 (41)

and

lim
x→∞

Bi(x) =∞. (42)

This is an important difference because it can be used to evaluate the solutions that

are needed in certain problems. For example, if the boundary conditions require

that the solution must go to zero at all times when x→∞, then we can rule out the

Bi(x) solution entirely. Then the corresponding wave function would only consist

of the Airy function Ai(x).

2.2 Solutions

2.2.1 Solving the Schrödinger equation

The linear potential has been studied for example in particle physics. [12] The study

has been focused on the system where there is an infinite wall only on the other side.

The potential can for instance be considered to describe the motion of a particle

falling under gravity or an electron in a constant electric field of a capacitor. In

this study we present the solution to the case where the system is bound from both

sides. We also investigate alongside the situation where we have so called derivative

boundaries. In the derivative boundary situation the wave function has either a

minimum or a maximum on the sides of the walls. It does not go to zero like in
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the case of the normal boundaries. The derivative boundaries are of special interest

because their solutions are related to the spin wave solutions. As we discussed in

Chapter 1 that by introducing the unusual boundaries, we can solve the equations

for the propagating spin waves of the system. The potential itself is seen in Figure

2b.

Our motivation is to present both the normal and the derivative boundaries so

that we will be able to compare them. We will plot figures and show tables that tell

their similarities and differences. These are also compared to the traditional text

book example, a particle in a box. We will see certain similarities to the plain box

solution when the potential is small enough. We will refer to [23] with the solutions

to the equations.

The Schrödinger equation for the system is

− ~2

2m
ψ′′(x) + kxψ(x) = Eψ(x), (43)

when x ∈ {−0, L} and zero elsewhere. We have the markings for the Dirac constant

~, mass m, wave function ψ, potential parameter k, position x and the corresponding

energy E. We study this with two different boundary conditions in a box which has

a length L. We will call the first ones as the normal boundary conditions

ψ(0) = ψ(L) = 0. (44)

The second ones are called the derivative boundary conditions

ψ′(0) = ψ′(L) = 0 (45)

where we have either a maximum or minimum on the sides of the well.

The solution for the Schrödinger equation (43) gives us a pair of Airy functions

Ai(x) and Bi(x). If there were only one wall, we would be able to get rid of the

other Airy function with the aid of boundary conditions and behavior of the Airy

functions. In this case we will need both of the functions. We will first adjust

the Schrödinger equation a bit before we present the Airy function solution. By

changing the variable we get closer to what we want. We need a substitution which

is in the form

ξ =

(
2mk

~2

)1/3(
x− E

k

)
. (46)
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By doing this we get the Schrödinger equation in the form

f ′′ − ξf = 0 (47)

which is the equation same as (12). We will show how this transformation is done

and prove that it satisfies the original equation.

Our boundaries will be

ξ0 = −
(

2m

~2k2

)1/3

E (48)

ξL = −
(

2mk

~2

)1/3(
L− E

k

)
. (49)

So we will end up with {
aAi(ξ0) + bBi(ξ0) = 0

aAi(ξL) + bBi(ξL) = 0
(50)

which can also be written in a matrix form(
Ai(ξ0) Bi(ξ0)

Ai(ξL) Bi(ξL)

)(
a

b

)
= 0. (51)

We can continue to modify (50) if we solve a from the upper row. We get that

a = −bBi(ξ0)

Ai(ξ0)
. (52)

Then by inserting this to the second row of (50), we get the equation

Ai(ξ0)Bi(ξL)− Ai(ξL)Bi(ξ0) = 0. (53)

Now we need to find out the different energy values that satisfy the equation (53).

Before we go into this, we will modify our equation to a dimensionless form. It is

just a little trick that makes the calculations easier. To do this we will simply just

define that the mass m = 1/2 and the Dirac constant ~ = 1. So this is assumed

later on in this section and when we refer to the previous equations, we do it with

the above assumption. For solving the energy eigenvalues, we need some numeric

tricks. This is shown in detail in Appendix A. Basically this is done by using the

equation (50) from the boundary conditions.
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We have the Schrödinger equation in the desired form and we can now use the

knowledge from the Airy functions. The solution to our equation is

ψi(x) = ai · Ai
[

1

k−2/3
(kx− Ei)

]
+ bi ·Bi

[
1

k−2/3
(kx− Ei)

]
(54)

where i = 1, 2, 3, . . . and it stands for the index of the eigenvalues. From the

boundary conditions (50) we get the constant of integration bi written in terms of

ai so that

bi = −Ai(ξ0)

Bi(ξ0)
ai. (55)

The other constant of integration ai is accessible via normalization and it needs to

be done separately for every energy eigenvalue. This is also shown in details in

Appendix A. After the normalization is done, we have all the parameters. Now we

are ready to start plotting different solutions and see how they behave.

2.2.2 Analysis

First we will analyze the situation if the Figure 6a where the potential parameter

k = 1 and the box length L = 1. The situation is almost as the particle in the

box in Figure 6a. The lowest energy state value is around E1 ≈ 10 so the potential

does not really have any influence in it anymore. As you can see the wave functions

behave like the trigonometric functions in the particle in the box solution. The first

eigenfunction has one node, second has two, third has three etc. In this case the

energy eigenvalues are closely matching the energy eigenvalues of the particle in a

box. For the figures we have done some scaling in order to make the eigenfunctions

appear more visually. In this case the three plotted eigenfunctions are five times

larger in the sense of amplitude than they are suppose to be.

The derivative boundaries behave basically in the same manner as the normal

boundaries in this case which can be seen in Figure 6b. The energy states are just

much lower than functions of the the normal conditions which is interesting. The

lowest energy state value here is as low as ED
1 ≈ 0.5 as the second state is E2

2 ≈ 10

which was the situation for the first energy state with the normal boundary. The

upper index D refers to the derivative boundary. The derivative boundaries do have

one crucial difference already in the beginning. The first energy eigenstate does not

have a node at all. It just converges towards zero when x → L. From the second

eigenstate onwards the behaviour is more like the one with the normal boundary
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Figure 6: Energy eigenfunctions with the parameters k = 1 and L = 1. (a) Normal
boundary conditions (44). (b) Derivative boundary conditions (45).

condition. The limit of the first eigenstate is seen better in the Figure 7b where

we are looking at the situation when k = 50 and L = 1. In Figure 6b the scaling

multiplier is 3 and especially the property of the first energy eigenstate is not seen

that clearly.

It is noticeable that the first energy eigenstate of the derivate boundary is not

a constant. From Figure 6b it might seem so. This could in a principle happen if

there were no potential. So for the particle in a box it is a solvable case that the

energy eigenstate is a constant. This only applies when we are dealing with the

derivative boundaries. This does not work for the normal conditions regardless of

our potential. The reason it does not work is that the Schrödinger equation will not

carry out its requirements.

The case k = 50 and L = 1 with the normal boundary is in Figure 7a. On

the lowest energy level there exists a possibility that the particle can be in the

classically forbidden area. Then the particle would be on the other side of the

quantum potential. The wave function encounters the potential barrier at x ≈ 0.66.

We can now calculate the probability that the particle can be found on the other

side of the barrier. The probability that the particle will be in a region a ≤ x ≤ b

is the integral of the probability density over this region

Pa≤x≤b =

∫ b

a

|ψ(x)|2dx (56)

assuming that the wave function is a measurable Hilbert space functional, ψ ∈
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L2(<).[12] In this case substituting our values we get

PE1
0.66≤x≤1 = 7.4%

where the upper index refers to the energy state we are dealing with. Just in case

we will check that we get the right result by calculating the counterpart

PE1
0≤x≤0.66 = 92.6%.

These two equal

PE1
0.66≤x≤1 + PE1

0≤x≤0.66 = 100%

as they should according to the probability calculus. But the really interesting part

here is that there is a 7.4% chance that the particle in our system is tunneling

through the barrier in the first energy level. The second energy level is already

above the potential barrier so there is no possibility for going through the barrier

to the classically forbidden area. It is also interesting to notice that the potential

parameter k is already 50 times larger than the box length L, and we only have one

energy state colliding with the potential barrier. Also on the second energy state the

particle is more likely to be on the right side which is also interesting and can be seen

in Figure 7a, where E2 ≈ 115. After that the behavior of the energy eigenfunctions

is more balanced and starts to resemble the case of the particle in a box. We must

also add that due to the free choice of the function sign being positive or negative,

we choose the sign of the 4th eigenstate of the normal boundary conditions to be

negative so that the results would be consistent with the others.

The derivative boundaries in the case k = 50 and L = 1 are shown in the

figure 7b. We have two energy eigenfunctions colliding with the potential barrier.

Although the second state barely touches the barrier end. We can clearly see that

the first energy eigenstate does not have a zero point. There also exists a possibility

that the particle is found in the classically forbidden area. Here the scaling multiplier

is 7.

The next in the line of progress is the case k = 150 and L = 1 which can be

looked upon from Figure 8. We want to show how the wave function evolves when

the potential parameter k is much higher than the length of the box L. By doing

this step by step it is easy to show what happens during the process. As you can

see the situation with the normal boundary conditions in Figure 8a that the energy
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Figure 7: Energy eigenfunctions with the parameters k = 50 and L = 1. (a) Normal
boundary conditions (44). (b) Derivative boundary conditions (45).

eigenvalues are already much higher than in the case of k = 50. Here we have two

of the lowest energy eigenfunctions colliding with the potential barrier. We can

calculate the probabilities for the particle tunneling through the barrier. The first

energy eigenfunction crosses the barrier approximately at x ≈ 0.44. That means

that it has the probability

PE1
0.44≤x≤1 = 12.6%. (57)

For the second energy eigenfunction the crossing is at x ≈ 0.78 and the probability

is calculated in a bit smaller region

PE2
0.78≤x≤1 = 5.3%. (58)

So it can be seen from these that it is an actual and exciting possibility for the

particle to enter our potential barrier. If the particle is on the classically forbidden

area, it is most probable for it to be in the close vicinity of the barrier. For the first

eigenfunction this is easy to compare to (57), if we check only the area 0.44 ≤ x ≤
0.65, the probability is

PE1
0.5≤x≤0.65 = 11.5%. (59)

We can see that the results in (57) and (59) are almost the same as they differ from

each other for about one percentage unit. This means that the particle is likely to

be close to the barrier even though it is on the other side.

Then we start to look at Figure 8b. The derivative boundary situation has
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Figure 8: Energy eigenfunctions with the parameters k = 150 and L = 1. (a)
Normal boundary conditions (44). (b) Derivative boundary conditions (45).

again much smaller energy eigenvalues and already three eigenfunctions are able to

penetrate the potential barrier. Once again we can also see that the lowest energy

only converges towards the energy value. Beginning from the second energy state

we start to see the node behavior similar to the normal boundary. We can compare

the probability results to the normal boundary by calculating the probabilities for

the first two energy states. The first energy state crosses the barrier at x ≈ 0.20

which is at a very early stage as it is expected due to the low energy values. The

probability for the classically forbidden area is

P
ED1
0.20≤x≤1 = 20.8% (60)

where the upper index ED
1 refers to the first energy eigenstate with the derivative

boundary. This is already a quite substantial probability for the particle to be on

the classically forbidden area. If we look at a smaller area like in (59), we get

P
ED1
0.20≤x≤0.5 = 20.4%. (61)

This sends us a very strong message that the particle is to be found next to the

barrier also on the classically forbidden area. The second energy state crosses the

barrier at x ≈ 0.62 and the probability is

P
ED2
0.62≤x≤1 = 12.0% (62)

which is approximately the same as for the first energy state in the normal boundary

(57).
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Figure 9: Energy eigenfunctions with the parameters k = 400 and L = 1. (a)
Normal boundary conditions (44). (b) Derivative boundary conditions (45).

The situation remains quite similar when k = 400 and L = 1 as can be seen from

Figure 9. The amount of the energy eigenfunctions that are able to penetrate the

potential increase which is of course expectable. The behavior is very similar to the

previous cases and again as the energy levels rise, they start to resemble the case of

the particle in a box. From this we are quite assured that the behavior is secured to

be like this for a while. Now we raise the bar and go straight to a violently larger

scale. In our experimental background the barrier slope is much greater than the

box length so let us see through the ultimate difference.

Before we go into the very deep potential we will shortly look at the box at a

different size than L = 1. This is just to be sure that the behavior looks the same as

it did when L = 1. First we have the case where k = 3 and L = 2 which is presented

in Figure 10. The situation looks quite similar to the case of k = 50 and L = 1 which

is seen in Figure 7. In the normal boundary conditions there is the lowest energy

eigenstate that collides with the potential barrier. The energy values are much lower

than in Figure 7. It seems that widening the box lowers the energy values quite a bit.

This makes it possible for the lowest energy eigenfunctions to have the possibility

to be on the classically forbidden area with the potential barrier. In the derivative

boundaries the same asymptotic behavior is seen on the first eigenstate and the rest

behave similarly to the previous.

When the box is made even wider, the energies decrease even more. This is

seen when k = 4 and L = 5 which is the case in Figure 11. In the situation of the

normal boundary conditions we have four lowest energy eigenstates that are able

to penetrate the potential barrier. For the derivative boundary the number of the

penetrating energy states is five.
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Figure 10: Energy eigenfunctions with the parameters k = 3 and L = 2. (a) Normal
boundary conditions (44). (b) Derivative boundary conditions (45).
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Figure 11: Energy eigenfunctions with the parameters k = 4 and L = 5. (a) Normal
boundary conditions (44). (b) Derivative boundary conditions (45).
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One of the things we can see going through all these different cases is that the

wave functions seem to have concentrated more densely in the left side. This is

seen in both the normal and the derivative boundary. The dense concentration

here means that the nodes are more closely together the further to the left side

you look. This can be seen especially well for example in Figure 11a. In terms of

the probabilities this means that the amplitude is larger on the right side. So the

particle position is more probable on the side where the potential barrier is larger.

It is obvious that the nodes are more dense on the left when the potential is present,

but even after the potential influence is passed, the behaviour continues so that the

right side becomes wider. We can check this result also from the probabilities of the

case k = 4 and L = 5. Let us examine a similar area symmetrically for the seventh

energy eigenstate E7. On the left we examine 0 ≤ x ≤ 2 and on the right 3 ≤ x ≤ 5.

This gives us the probability on the left side

PE7
0≤x≤2 = 32.1% (63)

and on the right side

PE7
3≤x≤5 = 44.6%. (64)

The difference is actually quite large. If the functions were normal trigonometric

functions as in the particle in a box, the probabilities would be the same. Let us

see the same results for seventh energy eigenstate of the derivative boundary. On

the left side we have

P
ED7
0≤x≤2 = 30.0% (65)

and on the right side

P
ED7
3≤x≤5 = 48.5%. (66)

Here the difference is even larger than for the normal boundary. This means that

after the potential barrier has been passed the energy eigenstates behave so that the

particle is more probably found on the right side of the box. As for in the beginning

for the lowest energy eigenfunctions the situation is the opposite. They are more

likely to be found on the left side.

Now let us choose a much larger potential curve. We choose k = 10000 and

L = 1. There we can witness that the particle is actually more likely to be in the
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Figure 12: Energy eigenfunctions with the parameters k = 10000 and L = 1. (a)
Energy values from 10 300 to 15 000. The quantum number n ∈ [23, 30]. (b) Energy
values from 4300 to 10 200. The quantum number n ∈ [7, 22]. (c) Energy values
from 0 to 4200. The quantum number n ∈ [1, 6]
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vicinity of the potential curve and being on the classically forbidden area is very

probable compared to the lower potential curve slopes. We have plotted this into a

several figures so that it is easier to see the behaviour more precisely and it is shown

in Figure 12. In the lowest case Figure 12c we have the starting points with the

quantum number n going from 1 to 6. We can see clearly that the wave function

can penetrate the classically forbidden area. It is also notable that the probability

is again higher in the proximity of the potential barrier than the wall barrier on the

left. In Figure 12b and Figure 12a we have continued to plot the wave functions

corresponding to the quantum number n going from 7 all the way to 30. In the

middle Figure 12b we see the behavior when we are facing the potential barrier on

the right side. The figure is in the line with our previous work above. So the left

side is more dense than the right side. In Figure 12a we enter the area outside of

the potential barrier. For the first wave functions we can still see that the right side

is much wider than the left. When the quantum number increases towards n = 30

it seems that the situation is again resembling more and more of the particle in the

box case. But still it is notable that the right side is wider even though n = 30.

The fact that the probability amplitude of the wave function solutions are mostly

concentrated next to the potential barrier is expectable. This phenomenon is called

the turning point effect. It shows up very clearly in the semi-classical WKB-

solutions. This is the point where the particle is to classically change its direction

and turn back so it does not exist in the quantum world. It is therefore the slowest

part of the whole process because the probability amplitude only sees the probabil-

ity and it disregards the actual turning of the particle. There we can get that the

most probable place to be is in the vicinity of the potential barrier which is also

supported by the quantum theory. [27]

2.2.3 Comparison

First we want to compare our findings to the particle in a box. Before that we will

present briefly the well-known solution for the particle in a box. It is not necessary

to go into the actual calculations and we will just present the final result and the

formulas with their proofs can be found in [27]. It is one of the basic calculations and

it is found in almost every book that covers the basis of quantum mechanics. We

just remind that this textbook example is solvable analytically, and usually the way

to the solution is presented with two different approaches having the same outcome.

It is one of the most referred results in all quantum mechanics. We wish to show

that our chosen potentials start to behave like a particle in a box when the potential
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is not present nearby. So either when the chosen potential parameter k is so gradual

that it almost looks entirely like the particle in a box, or in the energy levels that

are much higher than the level where the potential touches the wall.

We will denote the potential of the particle in a box by VB(x) where the subindex

B refers to the box. The potential translated into mathematics is

VB(x) =

{
0, 0 < x < L

∞, x ≤ 0 ∧ x ≥ L
(67)

where L is again the length of the box and x obviously denotes the position of the

particle in the box. The normalized solution for the wave function is a trigonometric

function and it is again important to note that the Schrödinger equation for this

system can be solved analytically

ψB,n =

√
2

L
sin
(nπ
L
x
)
, (68)

where B again denotes the box and n refers to the quantum number of the energy

eigenstate. It is notable that n is a positive integer

n ∈ {1, 2, 3, 4, . . . } . (69)

Now we have solution but there are quite a few properties that can be easily shown

to exist for this system.

If the box length is L, the wavenumber kn is

kn =
nπ

L
(70)

where n is the quantum number. It is important to notice that the wavenumber

kn has nothing to do with our potential parameter k. They both are chosen for

historical purposes and it is important to see that they are completely different

parameters. From these we will get a simple formula for the energy eigenvalues that

we label EB,n according to our previous sub index system

EB,n =
~2k2

n

2m
. (71)

Now that we substitute (70) into (71), we will get the energy eigenvalues for adjusting

the length of the box L. Let us also recall that previously we made the assumption

that the mass m = 1/2 and the Dirac constant ~ = 1. This gives us the energy
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eigenvalues of the box solution in an even more simple form

EB,n =
n2π2

L2
. (72)

From this we will also make a remark that under our assumptions the energy eigen-

value EB,n from (72) is actually the square of the wavenumber kn. One of the

properties of the particle in a box solution is that the energy eigenvalues are tied

to the lowest energy value which can be easily seen from (72). The relations of the

energy values are proportional to the square of the energy state number n as

EB,n
EB,1

= n2. (73)

This is also one of the things we will compare to the energy eigenvalues of the linear

potential in an infinite well.

First we compare the particle in a box with the linear potential with the param-

eters k = 1 and L = 1. The results are in the Table 1. For clarity we have denoted

the energy of the linear potential solution as a function of the potential parameter

En(k). In this way it is easier to show the actual situation of the parameters in the

table. In the table you will find that the energy eigenvalues differ from each other

approximately 0.5 energy units so they are very close and consistent. The energy

proportions are also quite close. The larger the energy, the larger the difference.

This is of course obvious and expected because of the relation being proportional

to the square of the state number n. This case is found to be quite similar to the

situation of the mere particle in a box.

The comparison of the case k = 50, L = 1 is made in Table 2. There we can see

that the lowest energies are completely different. This makes the energy relation to

the lowest energy useless to compare as can be seen in the table. For this reason

we will not present the energy relation comparison again for the higher potential

parameters. When we get close to the 12th energy state, the energies are starting

to look quite similar. So even though the barrier is still quite small and only the

lowest energy state collides with the barrier, the energy eigenvalues differ drastically

from the particle in a box. But when the quantum number n goes high enough,

the energies of the two different potential cases start to once again resemble one

another, as it was expected.

Now we will present a nice illustration of the comparison between the cases. In

Figure 13 we can see the behavior of the ratios of the energy eigenvalues compared to
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n En(k = 1) EB,n En(k = 1)/E1(k = 1) n2

1 10.3685 9.8696 1 1
2 39.9787 39.4784 3.85579 4
3 89.3266 88.8264 8.61519 9
4 158.414 157.914 15.2784 16
5 247.240 246.740 23.8453 25
6 355.806 355.306 34.3160 36
7 484.111 483.611 46.6905 49
8 632.155 631.655 60.9687 64
9 799.938 799.438 77.1507 81
10 987.460 986.960 95.2365 100
11 1194.72 1194.22 115.226 121
12 1421.72 1421.22 137.119 144
13 1668.46 1667.96 160.916 169
14 1934.94 1934.44 186.617 196

Table 1: k = 1, L = 1. En(k = 1) is the energy eigenvalue of the linear potential
case for each n. EB,n refers to the particle in a box.

n En(k = 50) EB,n En(k = 50)/E1(k = 50) n2

1 32.2505 9.8696 1 1
2 65.177 39.4784 2.02096 4
3 114.309 88.8264 3.54442 9
4 183.212 157.914 5.6809 16
5 271.938 246.74 8.43207 25
6 380.446 355.306 11.7966 36
7 508.715 483.611 15.7739 49
8 656.735 631.655 20.3636 64
9 824.502 799.438 25.5656 81
10 1012.01 986.96 31.3797 100
11 1219.27 1194.22 37.8061 121
12 1446.26 1421.22 44.8446 144
13 1692.99 1667.96 52.4951 169
14 1959.47 1934.44 60.7578 196

Table 2: k = 50, L = 1. En(k = 50) is the energy eigenvalue of the linear potential
case for each n. EB,n refers to the particle in a box.
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Figure 13: Comparison with the different solutions of the parameter k to the particle
in a box situation n2.

the lowest energy eigenvalue in both the particle in a box and in the linear potential.

The particle in a box situation is illustrated as the function n2 since it behaves as

the square of the quantum number n. Now as expected the situation when k = 1

behaves very much like the particle in a box. This ratio is plotted with an orange

color. The plots were made with Mathematica by fitting a function to the calculated

ratios by the least-square method. With the Mathematica commands we refer to

[28]. As the potential slope k increases, the results vary more the mere box. This is

of course logical that when more and more potential is present, we will start to lose

the results given by the simple box model. The case k = 10000 is so far from the n2

that there is no point in plotting it into this figure.

The increase of the parameter k causes the ratio to get smaller. This means

that the first energy eigenvalue is experiencing the potential already at such a high

energy rate that it will twist the ratio calculation. This can be seen in the tables we

presented earlier. The really interesting fact in this is that even though the results

go further from the box, the resulting functions are still in the form of n2. The

functions just get some constant a in front of them but the behavior is in the power

of a n2-function. The actual functions in our study are presented in Table 3. There

we can see that the k = 10000 situation is far beyond from the other four when we

are looking at the n2-behavior. The potential there is already so large that it is not

anymore reasonable to compare the ratio. But other than that, we get quite nice

results with the n2-approach. The behavior of the k = 10000 is still so interesting

that we seek to find its corresponding fit. This is why the n3-behavior is also added

to the Table 3. The n3 behavior obviously has nothing to do with the original idea

of the particle in a box but it is interesting to find out that the fit actually resembles

the n3 to a very great taste.
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k a+ cn2 a+ bn+ cn2 + dn3

1 0.048 + 0.952n2 0.048 + 5.758 · 10−5n+ 0.952n2 + 3.054 · 10−7n3

50 0.771 + 0.306n2 0.688 + 0.045n+ 0.300n2 + 2.365 · 10−4n3

150 1.117 + 0.150n2 0.804 + 0.168n+ 0.127n2 + 0.001n3

400 1.508 + 0.079n2 0.684 + 0.428n+ 0.023n2 + 0.002n3

10000 4045 + 12.07n2 461.0 + 749.5n− 24.64n2 + 0.495n3

Table 3: The fitted functions for the values of the k. The first column tells the n2

behavior with two independent parameters a and c. The second column tells the n3

behavior with four independent parameters a, b, c and d.
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Figure 14: The Flügge fitted solution comparison when the parameter k = 10000.
Blue dots are the calculated energy points, the orange line is the x2-function and
the red line is the x3-function.

All in all in Table 3 we first notice that when k = 1, the parameter is close to

zero as it is in the box. The parameter c is close to one. As the k goes larger the a

parameter grows because function is differing from the zero point. At the same time

the c parameter decreases which causes the actual function to spread wider. The

case k = 10000 is inconsistent with these findings because the energy of the first

eigenstate is so different from the box case. Again in comparing to the n3 function

we will see that with the small values of k, we are close to the n2 solution. That

means that the parameters b and d are close to being zero. We have plotted the

k = 10000 situation separately to state that the n2 and n3 fits are very different. In

Figure 14 we have plotted this so that the dots represent the actual measurement

points in the calculation, the orange line is the n2 function and the red line is the

n3 function. We can see that the n2 solution does not give even a close fit, as the

n3 is extremely precise. It is also important to note that the n3 solution needs all

of its four free parameters to get this close result.

The other major comparison we want to address is the study of S. Flügge where
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one of the problems in his book is the free fall of a body over earth’s surface.[12] The

idea in the problem presented is that there is a particle moving in a homogeneous

gravity field over the surface of the earth. Basically the potential is as in our study

expect that the right handed side infinite wall is missing. The potential VF (x),

where the F stands for Flügge, is

VF (x) =

{
mgx x > 0

∞ x ≤ 0
(74)

where m is the particle mass and g is the gravitational acceleration. This will also

end up to solutions that are in the form of the Airy functions. But we do not go

deeper into that solution. Our interest here lies within the energy eigenvalues En.

After some calculations and estimates, we end up having a formula for the energy

eigenvalues. This is valid for only when the quantum number n � 1. All in all in

our study the comparison between the Flügge solution is reasonable in the case of

k = 10000. There we have over twenty wave functions that experience the linear

potential. So especially those that are not close to the ending part of the linear

potential in the right-hand side, are experiencing the potential as there were no

infinite wall on the right side at all. This should look like the Flügge solution. Now

we have the approximated energy from Flügge when n� 1

En,F =
~2

2ml2

(
3π

4

(
2n− 1

2

)) 2
3

. (75)

Here the parameter l stands for the characteristic length of the system. Basically

what we have here is a dependence of the quantum number n and some constant

C. We want to find out that can we find some constant in our solutions especially

regarding the case k = 10000 when n ∈ [1, 23], that is when there is a linear po-

tential present. We are interested about the ratio of our previously defined energies

and their corresponding quantum numbers. If that is a constant, then we have a

resemblance to the Flügge solution, which is expected. Then it gives us satisfaction

that the solutions are similar in a way. We will proceed with dividing our energy

eigenvalues with the factor

(
2n− 1

2

) 2
3

(76)

and see if we end up with a constant. The result for the case k = 10000 is plotted
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Figure 15: Comparison to the Flügge solution when k = 10000. Blue refers to the
linear potential impact area and the red values are n values above that.

in Figure 15. It is shown that the ratio in fact stays a constant even though of the

restriction of n � 1 in (75). We see some variation in the beginning just as can

be expected from the n value restriction. Also when the n closes at the end of the

linear potential, the values start to increase a bit. When the values do increase the

linear potential, the ratio is no longer a constant and it is rising in a fast manner.

The quantum states not colliding with the linear function are plotted with red color.

These are the values n ∈ [22, 30]. This tells us that our solution is in sync with the

Flügge solution.

We also wanted to take the case k = 400 into the comparison just for the idea

of the whole thing. It actually works pretty well for that case too. At least when

the wave functions face the linear potential. This happens when n ∈ [1, 4]. The

ratio calculated by dividing with (76) gives good results for the first four quantum

numbers n. The first one also is a bit distracted but this is due to the restriction

mentioned earlier. This is shown in Figure 16. Again the quantum states colliding

the linear potential are blue and the states above those are red in color. From here

we can also see that the values start to increase immediately when turned to the red

zone. This again reassures us about the similarity of our solution and the Flügge

solution, when we are dealing with the area of the linear potential.

Finally we want to demonstrate the Flügge energy formula (76) in the manner

we did in Table 3. There we were seeking how to fit the calculated energy points to

the energy ratio. We used an n2 model based on the particle in a box solution and

a four parameter n3 model just to find a proper fit to the k = 10000 case. We can

also do the fit using only one parameter and the Flügge energy formula (76). This

is interesting only for the k = 10000 case so we focus only on it. The actual fitted
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Figure 16: Comparison to the Flügge solution when k = 400. Blue refers to the
linear potential impact area and the red values are n values above that.
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Figure 17: Comparison to the Flügge solution when k = 10000. Blue dots are the
calculated energy points and the red line is the fitted function (77).

function is

859.047 ·
(

2n− 1

2

) 2
3

. (77)

In Figure 17 we can see how this fits with the calculated energy points. The result

begins to differ starting from n = 26. From there on the potential is no longer

the linear potential but the infinite wall barrier thus making the Flügge solution

incompatible. The actual energies outside the linear potential start from n = 22 but

the fit is made from all the energy values so it stays on a bit longer.

2.2.4 Summary

Our starting point was that we have a physical experiment which has a 3-dimensional

magnetic field that is our potential. We simplify this situation to a 1-dimensional
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case. Now we have obtained the solution for the linear potential in an infinite well

by using numerical methods. The solution is a sum of two Airy functions and it is

dependent of the potential parameter k and the length of the well L. Two different

solutions are made according to the two different boundary conditions. The normal

boundary conditions (44) and the derivative boundary conditions (45). The analysis

of the solution is done for a handful of different parameter values. The main thing

is to notice that the solutions with the normal boundary behave similarly to the

particle in a box situation, when the potential slope k is small. When the slope is

larger, the energy eigenfunctions above the potential start to resemble the particle

in a box situation. Their behavior is scaled on higher energies due to the impact of

the potential barrier. This was expected beforehand and now we have the results

from our calculations.

The behavior of the derivative boundary case is also quite similar. The most

important notice there is that the first energy eigenfunction does not have zero

points. Starting from the second state we will start to have one zero point, on third

state we have two zero points and so on.

The probabilities of the lowest energy eigenstates are concentrated on the left

on smaller values of k. There also exists a small probability that the particle can

be found from the other side of the barrier, which is the classically forbidden area.

When the parameter k becomes larger and especially with the eigenstates above the

barrier, we will start to see that the probability is larger on right side. This makes

a difference with the particle in a box situation. In box solution the probabilities

are the same on both the left and the right side due to the trigonometric behavior.

The really interesting part comes when we start to compare our results with

the Flügge solutions. In the Flügge situation we have the linear potential with an

infinite wall only on the left side. We obtain that our results resemble the Flügge

solution with very great accuracy when the potential parameter k is large and the

energy eigenstates are colliding with the potential barrier. Especially Figure 15

shows this extraordinary well. The resulting ratio starts to differ from the constant

of the Flügge solution immediately after the energy eigenfunctions are no longer

colliding with the potential barrier.
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3 Infinite well with an inverted oscillator poten-

tial

3.1 Parabolic cylinder functions

In this section we look into one dimensional system in an infinite well with an

inverted oscillator potential

V (x) = −1

2
kx2, (78)

when x ∈ [−L,L]. L is the length of the well. We will solve the energy eigenvalues

and eigenfunctions using an approximation method. The solutions for this type of

differential equation are parabolic cylinder functions. Again we refer to [23] with

the special functions.

Basics about the parabolic cylinder functions lead way back to the 19th century

and the studies of the German physicist Heinrich Friedrich Weber. He is not to

be confused with a contemporary mathematician Heinrich Martin Weber who was

actually born a year before and died a year later than H.F. Weber. H.F. Weber was

actually the first doctoral thesis supervisor for Albert Einstein. They did not get

along very well and eventually Einstein changed to a different supervisor.[29]

The parabolic cylinder functions are actually sometimes even named Weber func-

tions. In some sources the solution is given by some other class of special functions

which are related to the parabolic cylinder functions via specific transformations.

The standard solution is given with the parabolic cylinder function Da(x). The

differential equation in its full form is

y′′(x) + (ax2 + bx+ c)y(x) = 0. (79)

The differential equation has a special property regarding its solutions. If one of

these

y(a, x) y(a,−x) y(−a, ix) y(−a,−ix) (80)

is a solution, they all are solutions. The equation (79) can be divided into two

real equations that are independent. We will first rewrite the equation (79) by
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completing the square and get

y′′(x) +

[
a

(
x+

b

2a

)2

− b2

4a
+ c

]
y(x) = 0. (81)

Now we define a new variable α,

α ≡ x+
b

2a
. (82)

Obviously this also means that dα = dx because a and b are just mere parameters.

We also define a new parameter d,

d ≡ b2

4a
+ c. (83)

By inserting (82) and (83) to (81), we end up having the equation

y′′(α) + (aα2 + d)y(α) = 0. (84)

For this we get two distinct forms

y′′(x)−
(

1

4
x2 + a

)
y(x) = 0 (85)

y′′(x) +

(
1

4
x2 − a

)
y(x) = 0 (86)

which are also called the Weber equations.[30] If you make replacements a → −ia
and x→ xe

1
4
iπ, you will get (86) from (85).

In Figure 18 we can see a few different parabolic cylinder functions so that we

can observe how it behaves. We will now focus on the latter of the two equations

(86) because it is used in this text later. The solution can be given with an even

and odd functions and it can take many different forms.

The solution can be given with power series. This is a very basic technique. We

will have two solutions, for the even and the odd,

y1(x) = 1 + a
x2

2!
+

(
a2 − 1

2

)
x4

4!
(87)

+

(
a3 − 7

2
a

)
x6

6!
+

(
a4 − 11a2 +

15

4

)
x8

8!
+ . . .
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Figure 18: Parabolic cylinder function Dν(x). (a) The red curve is D1(x), the black
curve is D2(x) and the blue curve is D3(x). (b) The red curve is D4(x), the black
curve is D5(x) and the blue curve is D6(x).

and

y2(x) = x+ a
x3

3!
+

(
a2 − 3

2

)
x5

5!
(88)

+

(
a3 − 13

2
a

)
x7

7!
+

(
a4 − 17a2 +

63

4

)
x9

9!
+ . . .

Here we have a connection between an and xn

n!
. It is as follows

an+2 = aan −
1

4
n(n− 1)an−2. (89)

The functions y1 and y2 can also be given with the Kummer function

M(a, b, z) = 1F1(a; b; z) (90)

=
∞∑
n=0

a(n)zn

b(n)n!
, (91)

where the symbol a(n) is

a(0) = 1 (92)

a(n) = a(a+ 1)(a+ 2) · · · (a+ n− 1). (93)

The Kummer functions belongs to the group of the confluent hypergeometric func-

tions. The function is named after Ernst Kummer who was a German mathematician
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in the 19th century.[31] We have for y1 that

y1 = e−
1
4
x2M

(
−1

2
ia+

1

4
,
1

2
,
i

2
x2

)
(94)

= e−
1
4
x2

1F1

(
−1

2
ia+

1

4
;
1

2
;
i

2
x2

)
(95)

and for y2

y2 = xe−
1
4
x2M

(
−1

2
ia+

3

4
,
3

2
,
i

2
x2

)
(96)

= xe−
1
4
x2

1F1

(
−1

2
ia+

3

4
;
3

2
;
i

2
x2

)
. (97)

The equations have complex numbers but the imaginary part identically vanishes

after the sum is done. The standard solution for the equation (86) can also be given

with the function W (a,±x) and it is

W (a,±x) = 2−
3
4

(√
G1

G3

y1 ∓
√

2G3

G1

y2

)
(98)

=
[cosh(πa)]

1
4

2
√
π

(G1y1 ∓
√

2G3y2), (99)

where Gi is a Gamma function

G1 =

∣∣∣∣Γ(1

4
+

1

2
ia

)∣∣∣∣ (100)

G3 =

∣∣∣∣Γ(3

4
+

1

2
ia

)∣∣∣∣ . (101)

As a comparison of the study in Chapter 2, we present the parabolic cylinder

function in terms of the Bessel function. Again we will only concentrate on the

equation (86). With the Airy functions we have that they are Bessel functions of

order 1
3
. The parabolic cylinder functions are Bessel functions of order 1

4
and 3

4

J± 1
4

(
1

4
x2

)
=

2
1
4

√
πx

(W (0,−x)∓W (0, x)) (102)

J± 3
4

(
1

4
x2

)
=

−2
1
4

x
√
πx

(W (0, x)±W (0, x)) . (103)

Even though they seem a bit complicated we can see that the different special
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functions have a lot of connections with each other.

3.2 Solutions

3.2.1 Solving the Schrödinger equation

The harmonic oscillator is one of the most profounding examples of all physics. In

quantum mechanics the harmonic oscillator problem is a well-known textbook exam-

ple like the particle in a box. It too can be solved analytically in an elegant way and

the solution is a Hermite polynomial corresponding a specific energy eigenstate.[27]

Our interest lies when we invert the harmonic behavior and trap it in an infinite

well. Thus we get the inverted harmonic oscillator in an infinite well. This has also

been studied in [32] and [33] to which we also refer in the procedure of this section.

There are also reports with the ordinary harmonic oscillator in an infinite well [34],

[35], [36], [37], [39] and [40].

The inverted harmonic oscillator in an infinite well also resembles the double-well

potential which is quite similar. It too has a potential maximum in the center of

the system and infinite walls on the edges. The double-well is obviously more round

and does not have any discrete changes in the system. In our case we have sharp

edges when going from the inverted oscillator to the walls. It is also notable that

the walls are not straight upwards in the double-well like they are in our system.

The double-well is also studied in an infinite well [41].

The corresponding Schrödinger equation for the inverted oscillator in an infinite

well is

− ~2

2m
ψ′′(x)− 1

2
kx2ψ(x) = Eψ(x), (104)

when x ∈ {−L,L} and zero elsewhere. The parameters and terms represent the

same as in (43), that is the Planck constant ~, mass m, wave function ψ, potential

parameter k, position x and the corresponding energy E. First we substitute the

following to the equation (104)

t = (4km/~2)1/4x (105)

a = − E

~ω
, (106)

where ω =
√

k
m

. The variable t is not to be confused with time. As it can be seen

from (105) that it is just a scaling for the original position variable x. Now we have
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the Schrödinger equation (104) for our system in the form

d2y(t)

dt2
+

(
1

4
t2 − a

)
y(t) = 0, (107)

which is the Weber equation (86) for the parabolic cylinder function. This has a

solution

y(t) = Ay1(t) +By2(t), (108)

where y1(t) is the even and y2(t) the odd function. They can be written as [32]

y1(t) = 1 +
∞∑
n=1

t2n

(2n)!
c2n (109)

y2(t) = t+
∞∑
n=1

t2n+1

(2n+ 1)!
c2n+1, (110)

where we have a recursion
c0 = c1 = 1

c−1 = c−2 = 0

cn = acn−2 − 1
4
(n− 2)(n− 3)cn−4.

(111)

Our boundary conditions from the potential barrier are

ψ(−L) = ψ(L) = 0 (112)

which means that combining this with the substitution from equation (105) we get

that

y

((
4km

~2

)1/4

L

)
= y

(
−
(

4km

~2

)1/4

L

)
= 0. (113)

We label this

L0 =

(
4km

~2

)1/4

L. (114)
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From the function parity we will gain that we must have either{
y1(L0) = 0

B = 0
(115)

or {
y2(L0) = 0

A = 0
(116)

which tells us that our even and odd solutions in (109) and (110) can be treated

and solved separately from each other. It is important to note that now we have the

energy E and the dimensionless energy quantity a, and they have opposite signs. In

the end when we plot the energy eigenfunctions and show the eigenvalues, we will

show them with the sign corresponding to E because it is physically more logical

and by doing that it is easier to notice the actual results from the figures.

The details of the solution are presented in the Appendix B. We solve the equa-

tions (110) and (109) with the boundary conditions by taking a certain fixed number

N of the polynomials. Each root of the equations y1 and y2 gives an energy eigen-

value a. We just simply need to discard the imaginary solutions, and by taking the

real solutions in order we finally get our energy values. From the energy eigenvalues

we can solve our energy eigenfunctions by normalizing the wave function. We have

several figures that demonstrate this and we will next go on to the illustrations of

our solutions.

3.2.2 Analysis

The analysis will start by simply plotting the solutions. We divide this into three

cases that are small, medium and large box. It is to be noted that the box size and

the potential parameter are linked in our substitutions. Unlike in Chapter 2 we only

have one parameter to adjust. That is the width of the well, L. The full width of

the well in this case is of course 2L due to the restriction that x ∈ [−L,L]. Our

substitution (105) takes away the potential parameter k that causes the loss of one

parameter. This is not a problem, on the contrary. Our Schrödinger equation is of

the form

d2y(t)

dt2
+

(
1

4
t2 − a

)
y(t) = 0, (117)
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where we can see that our actual potential is

V (t) =
1

4
t2. (118)

The equation (118) tells us our potential and the box length L specifies how large

the actual potential is. When you make the length L larger, the potential grows

wider at the same time. So only by scaling the box we can adjust the potential. It

is also noticeable that due to our choices we have the values so that the inverted

harmonic oscillator potential is below the energy zero point. This makes it easy to

compare the energies and we can immediately see which energy eigenvalue is in the

impact area of the potential and which are not simply by looking at their sign. The

negative energy eigenvalues E are on the impact area and have the possibility to be

in the classically forbidden area of the potential, the positive energy eigenvalues on

the other hand only face the walls on the sides of the well.

One key factor is also the polynomial factor N . The number N is a fixed number

used for the wave function’s series in (109) and (110). This factor tells us how

accurate our approximation is. In this analysis, when we present the figures, we have

used N = 22. We will do a comparison on different values of N in the following

subsection so that we can see how they behave and how accurate they are. The

larger the box, the more we start to lose our accuracy. It is also worthy of mentioning

that the calculations and especially the function illustrations take a lot of computer

power. The figures presented here take time from several minutes to hours.

Let us begin our analysis with the small box. The length of the small box is

L =
√

2
4

which is chosen by historical reason followed by [32]. The potential in this

case is also very small and the system resembles quite a lot of the particle in a box

solution which we already discussed in the previous chapter. There are no energy

eigenfunctions in the impact area of the potential function. We can see the results

from Figure 19. We have only the potential in Figure (19b). This is below the

energy zero point and we can only see the potential because there are no energy

eigenfunctions there. Figure (19a) shows the system above the energy zero point. It

is actually plotted that the energy E ∈ [−1, 170] so in theory it would be possible to

see the inverted oscillator potential. This again proves how small the potential area

is in this case. The actual energy eigenfunctions behave in a very similar manner

as with the particle in a box case. You can see the expected trigonometric-like

behavior. The blue line is the even function from (109) and the red line is the odd

function from (110). We have the polynomial factor at our lowest and it is N = 19.
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Figure 19: Small box length L =
√

2
4

, the polynomial factor N = 19. The even
energy eigenfunctions are blue, the odd energy eigenfunctions are red. The potential
is black. (a) Energy eigenfunctions above the energy zero point. (b) No energy
eigenfunctions below the energy zero point.
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Figure 20: Medium box length L = 5
√

2
2

, the polynomial factor N = 22. The even
energy eigenfunctions are blue, the odd energy eigenfunctions are red. The potential
is black. (a) The energy eigenfunctions above and below the energy zero point. (b)
A closer zoom to the potential of the medium box. Two energy eigenfunctions below
the energy zero point.

The numerical part is not so heavy with this case so we can use a smaller polynomial

factor and still get good results. The higher we take the factor N , the longer our

computing lasts. Some scaling is also done in this analysis. In the case of the small

box our scaling factor for the functions is 5. This is done only to ensure that the

figures are large enough that we can see the behavior better.

Next we have the case of the medium box. Our box length is L = 5
√

2
2

. The

results are plotted in Figure 20. Again the lower Figure 20b shows us the area

below the energy zero point. In this case we can find two energy eigenfunctions

in the potential impact area. It can clearly be seen that they have the possibility

to be in the classically forbidden area. As it is predictable that they are more

probable to be on the edges than in the center of the potential. Figure (20a) shows

us the eigenfunctions above the energy zero point. There we can see that it starts

to resemble the particle in a box almost immediately. We can calculate probabilities
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for the particle being in the forbidden area for the first energy eigenstate a1

P a1
−0.6≤x≤0.6 = 12.3%. (119)

There exists almost a 1/8-probability for the particle being in the classically forbid-

den area. We will check the probability for the second energy eigenstate a2

P a1
−1.8≤x≤0.8 = 17.2%. (120)

This is even a bit larger than (119). It is important to notice that due to the

scaling the values of t in the probability calculations differ from what can be seen

from Figure 20b. The probabilities have been calculated without the scaling factors

because they are used only to make the images larger. In Figure 20a there is no

scaling but in Figure 20b it is 0.5. The polynomial factor is now N = 22 in order to

have accurate energy eigenvalues and proper images. It is increased by 3 polynomial

parts compared to the small box.

The last case is the large box, where the length is L = 5
√

2. It can be seen

in Figure 21. Here the potential is scaled so that it starts to be so large that it

really affects the system. In the lower Figure 21b we can see that there are already

eight eigenvalues that are in the below energy zero point area. They are again

concentrated on the edges of the system as it should but we can see that there are

areas just next to the inverted potential where the particle can enter the classically

forbidden range. One very interesting part in here is that the even and odd energy

levels are extremely paired. This is also assumable from the double-well potential

studies made in [13] and [41].

In the upper Figure 21a we can see the behavior above the energy zero point with

six energy eigenstates. This should start to resemble the particle in a box system if

we compare it with the previous cases. However the potential in this case is so large

that the particle in a box solution is far from this even above the energy zero point.

The pairing property of the even and odd solution can still be seen. Figures going

far beyond this show that the numerical accuracy is starting to fail us the higher we

go with the energy eigenfunctions. Our mathematical approximation can no longer

sustain the system and the functions start to approach infinities near the wall. In

this case we are already using the polynomial factor N = 32 of the original series.

The approximation does not seem to be powerful enough for larger box lengths of

L. This can also be seen as the computer power required to compute these figures

and calculations. The larger the box, the longer it takes to perform the necessary



3 INFINITE WELL WITH AN INVERTED OSCILLATOR POTENTIAL 49

- 6 - 4 - 2 2 4 6
t

1

2

3

4

5

Energy

(a)

- 6 - 4 - 2 2 4 6
t

-12

-10

- 8

- 6

- 4

- 2

Energy

(b)

Figure 21: Large box length L = 5
√

2, the polynomial factor N = 32. The even
energy eigenfunctions are blue, the odd energy eigenfunctions are red. The potential
is black. (a) The energy eigenfunctions above the energy zero point. (b) The
potential of the large box. Eight energy eigenfunctions below the energy zero point.

calculations and especially to plot the figures.

We can still see that the impact of the inverted harmonic oscillator potential does

not exist anymore in the area above the energy zero point. The energy eigenfunction

is more stable all over the box and there can no more be seen a classically forbidden

area that that would make the energy eigenfunction go towards zero, as it did below

the energy zero point. It is also worth to notice that the most probable place to be

for the particle is still on the center of the system.

The numerical accuracy starts to play a role as we mentioned. The results can

be twisted according the number N . The more we bring the polynomial factors, the

more computer power our calculations need. This can be seen when we make the
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box length wider. If we use the same polynomial factor N in the large box, we will

have a result that the odd function is the first energy eigenstate. This is not coherent

with the quantum theory and does not carry out the required equations. Next we

will present some comparisons. First we will compare the energy eigenvalues from

different polynomial factors N and also from the particle in a box solution.

3.2.3 Comparison

We will compare the results with the well-known particle in a box solution which

has already been introduced in Chapter 2. The basic formulas and equations are in

the previous chapter. The most important thing to remember is the energy ratio

(73). It is the number divided by the first energy eigenvalue and it equals n2.

First of we begin with the small box with the length of L =
√

2
4

and the results

are in Table 4. The first energy column En,N=25 tells us the energy of the inverted

oscillator case with a specific polynomial factor N at every quantum number n. The

small box was so simple that it is only presented with one polynomial factor. The

next energy column means the energy of the particle in a box situation and it is

marked as En,box. Next we have the energy ratio of our system and after that the

energy ratio of the particle in a box. As we look at the number in Table 4 we can

very easily see that they are strikingly similar. Even at the largest quantum numbers

like n = 12 we still have a great resemblance. This was also highly expected and

can be seen from the Figure 19.

The medium box length is L = 5
√

2
2

and the comparison is in the Table 5. Now

we have three different polynomial factors N . They are similar with four digits to

the n = 10. After that especially the N = 19 starts to differ but not that lot.

When n = 14, the difference is the largest. The differences between the N = 22

and N = 25 start to affect when n = 13. That is why we choose to use the N = 22

in Figure 20 because in that analysis we only go to n = 8. Basically the N = 19

would also be sufficient but the N = 22 is a bit more accurate and it is a lot more

economical to plot than N = 25. The energy eigenvalues of our case start from

the negative side and the particle in a box is in the positive side. That is why the

energies start to differ already from the beginning. But they are still quite close to

each others. The energy ratios on the other hand have nothing in common.

The last case is the large box with the length L = 5
√

2 which can be seen in

Table 6. Now the differences between the polynomial factors N = 19, N = 22 and

N = 32 are large starting from the beginning. We can see that the data for N = 19

is something totally different but in a rough sense it is more or less gives results. It
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n En,N=25 En,box En,N=25/E1,N=25 n2

1 19.73512 19.73920 1 1
2 78.94800 78.95684 4.00038 4
3 177.6432 177.6529 9.00137 9
4 315.8173 315.8273 16.0028 16
5 493.4701 493.4802 25.0047 25
6 710.6013 710.6112 36.0069 36
7 967.2109 967.2212 49.0096 49
8 1263.299 1263.309 64.0127 64
9 1598.866 1598.876 81.0162 81
10 1973.910 1973.921 100.020 100
11 2388.503 2388.444 121.028 121
12 2844.947 2842.446 144.157 144

Table 4: Small box length, L =
√

2
4

.

has the pairing of the energy eigenvalues even though there are too many eigenvalues

in the impact area of the potential. Same thing goes with the N = 22 but it is more

subtle. Both of them have ten energy eigenstates below the energy zero point as for

the N = 32 has eight and this makes a major difference. The other real problem

with both the N = 19 and N = 22 is that the first energy state is odd which is not

in line with the properties coming from solving the Schrödinger equation. In the

case N = 32 we can see that the energy levels are extremely paired which explains

why it almost seems that there are too few functions in the Figure 21. The real

notable thing is that the energy levels are paired even after the potential impact

area. This is interesting but it also happens with the double-well potential which

is a case of resemblance in here. The comparison to the particle in a box becomes

quite pointless because of the large amount of negative energies in the beginning.

The ratio especially is absurd compared to the particle in a box.

We still want try to compare the results to the particle in a box. Rescaled

comparisons are the thing we can more truthfully do the comparison. We rescale

our system that our energy zero point starts from where the inverted oscillator hits

the wall. It is obvious that the comparison to the box solution is not working

because there are no negative energies in the box model. So the real comparison is

between the absolute value of the first energy eigenstate and the compared ratio.

If the first energy state is below zero and the latter are above it, the ratio is being

distorted by the scaling. Adjusting the scaling may find us closer to the particle in

a box situation. Even though it is likely of course that due to the inverted oscillator

potential the first energy eigenstate is too different from the box model. This is
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n En,N=19 En,N=22 En,N=25 En,box En,N=25/E1,N=25 n2

1 -0.422041 -0.422041 -0.422041 0.197362 1 1
2 - 0.238321 -0.238321 -0.238320 0.789568 0.564686 4
3 0.898556 0.898556 0.898556 1.776529 2.12907 9
4 2.202110 2.202110 2.202110 3.158273 5.21776 16
5 3.951576 3.951576 3.951576 4.934802 9.36301 25
6 6.106763 6.106763 6.106763 7.106115 14.4696 36
7 8.662547 8.662548 8.662549 9.672212 20.5254 49
8 11.61643 11.61644 11.61643 12.63309 27.5244 64
9 14.96727 14.96715 14.96715 15.98876 35.4637 81
10 18.71890 18.71399 18.71397 19.73921 44.3416 100
11 23.19091 22.85734 22.85647 23.88444 54.1569 121
12 25.85228 27.37060 27.39434 28.42446 64.9091 144
13 30.60393 31.09285 32.32152 33.35926 76.5838 169
14 31.53767 33.33248 37.86686 38.68885 89.7231 196

Table 5: Medium box length, L = 5
√

2
2

.

what happened when we were dealing with the linear potential in an infinite well in

Chapter 2.

The rescaling is unnecessary for the small box case, where L =
√

2
4

. There we have

no negative energy eigenvalues of En and therefore it is fully comparable with the

particle in a box as can be seen in the Table 4. The medium box can be scaled. The

scaling is quite minor but still the negative energy eigenvalues distort the comparison

otherwise. The scaling factor is obtainable with the simple procedure by adding the

factor to the each separate energy eigenvalue from the box length L(
5
√

2
2

)2

4
=

25

8
. (121)

The results for the rescaled medium box are in the Table 7. We only took one

polynomial factor N = 25 just to demonstrate the actual scaling procedure. We

can see that the resemblance starts to be quite good. Especially the ratio is quite

similar after we recalculated the particle in a box ratio using the rescaling.

In Table 8 we have the rescaled large box. We look at the largest polynomial

factor N = 32. The energy values differ quite a lot especially in the beginning and

in the end. In the mid areas they are not that far from each others. The ratio on the

other hand is does not work closely at all. It works in the range for three numbers.

After n = 5 we are starting to be quite far. It does not settle in the end also.
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n En,N=19 En,N=22 En,N=32 En,box En,N=32/E1,N=32 n2

1 -8.997723 -7.552924 -7.41045 0.024674 1 1
2 -8.682850 -7.192064 -7.41027 0.098696 0.999976 4
3 -6.804082 -5.198092 -4.09957 0.222066 0.553215 9
4 -6.258838 -4.775125 -4.09834 0.394784 0.241917 16
5 -4.504370 -3.265979 -1.79271 0.616850 0.240800 25
6 -4.009475 -2.839196 -1.78443 0.888264 0.039246 36
7 -2.518685 -1.577325 -0.29083 1.209026 0.019829 49
8 -2.099986 -1.223216 -0.14694 1.579137 0.092356 64
9 -0.904717 -0.192373 0.68440 1.998595 0.179896 81
10 -0.624822 -0.120588 1.33311 2.467401 0.303663 100
11 0.271474 0.814645 2.25028 2.985555 0.397550 121
12 0.436659 1.130233 2.94603 3.553058 0.533169 144
13 1.531682 2.312187 3.95102 4.169908 0.602028 169
14 1.929939 2.735832 4.46130 4.836106 0.776510 196
15 3.309745 4.179993 5.75429 5.551652 0.837841 225
16 3.790054 4.669515 6.20878 6.316547 1.05559 256
17 5.467365 6.372688 7.82243 7.130789 1.12438 289
18 6.015212 6.920211 8.33216 7.994380 1.36999 324
19 8.008168 8.897799 10.1522 8.907318 1.44526 361
20 8.618252 9.499428 10.7100 9.869604 1.71693 400
21 10.97176 11.78420 12.7232 10.88124 1.79744 441
22 11.64156 12.43789 13.3199 11.94222 2.09761 484
23 14.43401 15.08323 15.5443 13.05255 2.18303 529
24 15.16281 15.78813 16.1773 14.21223 2.51502 576
25 18.53079 18.87925 18.6375 15.42126 2.60527 625
26 19.31949 19.63556 19.3062 16.67963 2.97345 676
27 23.53028 23.31680 22.0346 17.98735 3.06849 729
28 24.38214 24.12598 22.7389 19.34442 3.47892 784
29 30.12877 28.67705 25.7804 20.75084 3.57877 841
30 31.05236 29.54249 26.5203 22.20661 4.04015 900

Table 6: Large box length, L = 5
√

2.
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n En,N=25 En,box En,N=25/E1,N=25 En,box/E1,box

1 2.70296 3.32239 1 1
2 2.88668 3.91457 1.06797 1.17824
3 4.02356 4.90153 1.48857 1.47530
4 5.32711 6.28327 1.97084 1.89119
5 7.07658 8.05980 2.61809 2.42590
6 9.23176 10.2311 3.41543 3.07944
7 11.7875 12.7972 4.36098 3.85181
8 14.7414 15.7581 5.45382 4.74299
9 18.0922 19.1138 6.69346 5.75301
10 21.8390 22.8642 8.07966 6.88185
11 25.9815 27.0094 9.61224 8.12952
12 30.5193 31.5495 11.2911 9.49601
13 35.4465 36.4843 13.1140 10.9813
14 40.9919 41.8138 15.1656 12.5855

Table 7: Rescaled medium box, length L = 5
√

2
2

.

3.2.4 Summary

We have investigated the properties of the inverted oscillator in an infinite well. The

solutions are given by an approximation method that uses a certain long polynomial

from the solutions (109) and (110) which we can decide using the factor N . One

surprising element is that our initial changing of the variable causes that we have

only one parameter. This removes totally the dependency of the potential parameter

k which is very handy. The potential parameter is now tied with the length of the

box L. As it is expected the cases resemble the particle in a box especially when the

box length is small and after the potential does not make that large of an influence

anymore. The large box starts to differ quite a lot from the particle in a box.

The solutions for the double-well potential implicate us that the even and odd

solutions are paired. As expected we see the pairing especially well when the box

size is large. We also see that if we have a strong harmonic potential, the pairing of

energy eigenstates occurs even when we are not in the impact area of the potential.

In the case of the large box we see that the energy levels are paired even though we

go as up to the 30th energy eigenstate.

The numerical method works out quite well. It has its down sides also. It needs

to be checked out that it really is giving the proper results. This can be done

by using a higher polynomial factor N . When plotting the figures, the improper

numerical functionality can be seen especially well. The figures approach infinities

on near the edges of the wall and therefore the figure does not meet the requirements
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of the original boundary conditions (113). These false figures are not shown in this

work. All in all the method is very useful and convinient because it only uses a

certain amount of the polynomial terms from which we get the solutions.
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n En,N=32 En,box En,N=32/E1,N=32 En,box/E1,box

1 5.08955 12.5493 1 1
2 5.08973 12.6974 1.00003 1.0118
3 8.40043 12.9441 1.65053 1.03146
4 8.40166 13.2896 1.65077 1.05898
5 10.7073 13.7337 2.10378 1.09438
6 10.7156 14.2765 2.10541 1.13763
7 12.2092 14.9181 2.39887 1.18875
8 12.3531 15.6583 2.42714 1.24774
9 13.1844 16.4972 2.59049 1.31459
10 13.8331 17.4348 2.71794 1.38930
11 14.7503 18.4711 2.89815 1.47188
12 15.4460 19.6061 3.03485 1.56232
13 16.4510 20.8398 3.23231 1.66063
14 16.9613 22.1722 3.33257 1.76680
15 18.2543 23.6033 3.58662 1.88084
16 18.7088 25.1331 3.67592 2.00274
17 20.3224 26.7616 3.99297 2.13251
18 20.8322 28.4888 4.09312 2.27014
19 22.6522 30.3146 4.45073 2.41563
20 23.2100 32.2392 4.56033 2.56899
21 25.2232 34.2625 4.95589 2.73022
22 25.8199 36.3844 5.07312 2.89931
23 28.0443 38.6051 5.51017 3.07626
24 28.6773 40.9245 5.63454 3.26108
25 31.1375 43.3425 6.11792 3.45377
26 31.8062 45.8593 6.24931 3.65431
27 34.5346 48.4747 6.78540 3.86273
28 35.2389 51.1888 6.92377 4.07900
29 38.2804 54.0017 7.52137 4.30315
30 39.0203 56.9132 7.66674 4.53515

Table 8: Rescaled large box, length L = 5
√

2.
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4 Tunneling

4.1 Introduction

4.1.1 About the history of tunneling theory

One of the major differences between classical and quantum worlds is the concept of

tunneling. Quantum tunneling basically means that a particle can pass a potential

barrier without having the sufficient energy to cross the barrier classically. A simple

example in a classical concept is to consider the situation in Figure 22. If you release

the ball from point A, it cannot get over point B because it does not have enough to

pass it. But in the quantum scale there exists a non-zero probability that a particle

can be found on the other side of the barrier that is in point C. First by solving the

wave function we can get information about the probability for the particle to be in

a specific place. When this is plotted, we see that the wave function ”penetrates”

the potential barrier meaning that there is a non-zero probability. An example of

this can be seen in Figure 23 where one can see four different wave functions with

different energy eigenvalues. Two of these are in the area where the potential barrier

has an impact. You can see that the wave function does not vanish when the linear

potential barrier begins so there is a possibility to find the particle on the other side

when you measure its position. This seems absurd if you have no knowledge of the

quantum theory. How is it possible?

Quantum tunneling was first discovered in 1927 by Friedrich Hund when he was

calculating the solutions for the double-well potential [22]. Later Max Born general-

ized the idea and concept into the whole quantum theory. To give some perspective

one nanometer is 10−9 meters. The barrier thickness for tunneling usually is in the

A B C

Figure 22: Classical example of a ball in a valley.
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Figure 23: Linear potential barrier in a box. The potential is described by the
black line. There are four different wave functions, which are the blue curves, with
different energy eigenvalues. The two lowest ones can go through the barrier. The
x-axis describes the position and the y-axis describes the energy.

range of less than 3 nanometers [42]. The tunneling probability for larger objects is

very small. That is why you have never seen an elephant go through a wall. Tun-

neling is a key part for example in nuclear fission. Fission is the mechanism which

powers our nuclear plants. In practise it means that one atomic nucleus splits into

two smaller atomic nuclei and the reaction releases a vast amount of energy. Other

applications that use the tunneling property include the tunnel diodes [43], which

work very fast compared to normal diodes, and the scanning tunneling microscope

[44], which can make 3-dimensional images of the atom structure of the surface of

a metal. So not only being one the cornerstones in quantum theory, it is related

to advanced study of modern technology and applications. It is therefore interest-

ing to think about what is happening and how, and that question leads us to the

philosophical side.

4.1.2 Different approaches

Because quantum physics is so bizarre, there exists also different philosophical ways

to interpret it. There are many opinions about these and still there is no solution

that would satisfy all physicists. Every interpretation has its own advantages and

problems but of course they all give the same result in the end, even though some of

them might have different amount of pre-assumptions. Since we can basically only

measure the incomes and outcomes, and are not really able to look in a classical way

what is happening during the tunneling, the ultimate conclusion of these different

interpretations will have to wait. Also the mathematical formalism does not tell us
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what is going on in the subatomic level. So we need to raise some metaphysical and

ontological questions. Let us have a quick look into a couple of the most known

theories.

The Copenhagen interpretation was mainly developed by Niels Bohr and Werner

Heisenberg with the assistance of other physicists in 1920s.[45] This is considered

to be the orthodox way to explain quantum mechanics and its phenomena. It is

also the most widely taught theory but there are still different versions of it that

slightly differ from each other. It is a non-deterministic theory which for instance

says that it is irrelevant to ask where has the particle been before. It only matters

after you measure it which gives a very high status for measuring. When you

measure for example the particle’s position, its wave function collapses according

to the Copenhagen interpretation. Collapsing means that when it is measured, the

wave function collapses into one random state of all the possible states. With the

mathematical wave function we can only see the states that are more probable than

others and then measuring ”picks out” one them. The existence of the particle

before measurement is an interesting question. We at least think we know that it

exists but we do not know where. But only after the measurement it becomes certain

and what happened before that does not matter anymore. Applied to the tunneling

it proposes that because of the Heisenberg uncertainty principle there cannot be a

precise position and momentum at the same time. The interpretation wipes out

the problem of penetrating the barrier by stating that if we localize the particle,

the energy momentum becomes irrelevant. So the particle does not anymore have

energy and especially it does not need more energy to pass the barrier.[46] Therefore

the problem is gone.

Hugh Everett formulated the many-worlds interpretation in 1965.[47] This for-

malism denies that the wave function could collapse. In fact it contains every possi-

ble alternative histories and futures which are all real. Every one of those histories

and futures represents its own world and from this comes the name of the interpre-

tation. Basically there is a very large or infinite number of different universes and

we just happen to be in one the universes contained by a multiverse. The theory

also denies access to the parallel universes which is due to quantum decoherence.

It claims also that physical phenomena are always deterministic in the multiverse

but in our universe they seem to be non-deterministic because we can only observe

things happening here. How about the quantum tunneling? Of course it is easy to

say that in some universe the particle can be found on the other side of the barrier

but that does not tell the reason for it nor it does not tell what happens in the
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actual tunneling.

There are also a number of more interpretations which we will not look into

deeper. Some of them contain for instance hidden variables which was a quite

popular theory in its time. It was John Bell who smashed the dreams from those

theories by his inequalities that deny the hidden variables.[48] There exists also

theories and interpretations not made by physicists but it is fairly easy to discard

those because it is no in any way possible to make these kinds of assumptions without

knowing the basic mathematical background.

4.1.3 Discussion

The question about tunneling and its meaning is quite tricky after all. The Copen-

hagen interpretation explains it in a way but it still leaves questions. The inter-

pretation itself has also gotten a lot criticism of not being consistent all the time.

Also the idea of the collapsing wave function is one the things that has been talked

a lot. It is strange that in quantum scale there would be a wave-particle behavior

but when we measure we have a distinct particle. Many-worlds theory on the other

hand is also interesting even though it does not really say anything about tunneling.

The theory also has the major downside that it is hard to show that the theory is

correct by measuring it. It is also said that in tunneling the trace of the particle is

singular and reappears again after the barrier.[49]

One could also always argue that does quantum tunneling really even exist?

Could it just be a way to explain things that we do not really comprehend at

all? Of course there is no way of denying the experiments where the particles have

actually been found on the other side. But can we truly rely that our equations

are correct? For example Newtonian mechanics was considered to be the absolute

truth for hundreds of years until Einstein changed that. We also know for a fact

that our equations in quantum physics and relativity are inadequate because they

do not unite to a single theory in the form they are now. Denying tunneling is still

too harsh because even though the quantum theory is not the theory of everything,

it is still the most accurate physical theory that has been tested. The denial comes

easily towards things you cannot see or understand. Quantum tunneling is just one

of the unique phenomena that occur in our universe. Although some have proposed

also an idea about high-jumping. In that concept the particle can borrow energy

from self-interference so that it can go over the barrier [50].

It is a deep philosophical question to wonder why does the quantum mechanics

work and in this case why does quantum tunneling occur. That is why we have
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these different interpretations and theories because the mathematics itself does not

explain the essence of it. On the other hand when you know the outcome result you

want to have, it is in some sense easy to start to formulate a way to get there. Of

course you will have to have substantial knowledge of the theory and mathematics

to be able to do this. We might have to wait for a bigger theory before we can have

more certainty to the answers. Although then we will probably end up asking new

questions.

4.2 Tunneling time

One very interesting notion is the concept of tunneling time. This is in other words

the time that the particle spends in the classically forbidden region. In 1932 MacColl

discovered that tunneling probability is not the only thing to consider but it also

takes time for the particle to penetrate the barrier.[51] There have been various

attempts to define the right formalism, definition and operators for the tunneling

time but still there is no consensus about the matter.[52] Thomas E. Hartman stated

in 1962 that if the barrier is not too opaque, the tunneling time becomes independent

of the barrier width.[53] This is called the Hartman effect. It also implies that if

the barrier is large, the effective velocity of the particle can become arbitrarily large

and even larger than the speed of light in some cases. These faster-than-light cases

do not actually violate special relativity because this can only happen to virtual

particles, and by that the information transfer velocity is less than the speed of

light. A good question is to think about what is happening to the particle when it

is crossing the barrier.

4.3 Path integrals and instantons

4.3.1 Introduction

The aim of the instanton solution is to present the transition probability that a par-

ticle tunnels through a potential barrier. This has been studied especially for the

double well potential. In an instanton solution we try to find a solution correspond-

ing to the classical system of motion but with a difference that it is done with an

imaginary time. We substitute t = −iτ and consider the semi-classical limit where

~ → 0. In this approach we use the Feynman path integral theory. This theory

does not use operators or the Schrödinger equation which opens a lot of different

possibilities that the canonical theory of quantum mechanics does not have.
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In this section we refer mainly to [8] and [54]. The basic idea of Feynman path

integral is that it gives the amplitude for a particle with an initial state |ψi〉 at time

t = ti to be in a final state |ψf〉 at time t = tf in the following form

〈final, tf | initial, ti〉 =〈final, tf | e
i
~ (tf−ti)Ĥ(X̂,P̂ ) | initial, ti〉

=

∫ final,tf

initial,ti

e
i
~
∫

(pq̇−h(p,q)) dt dpdq
(122)

where X̂ is the position operator, P̂ is the momentum operator, Ĥ(X̂, P̂ ) is the

Hamiltonian of the quantum theory and h(p,q) is the Hamiltonian of the classical

theory. The calculation is done by summing over all the possible classical paths so

that they satisfy also the boundary conditions.

We will first introduce some of the aspects of the basic path integral theory and

then go to the actual tunneling problem. The starting point is the focus with the

time evolution operator

Û(tf , ti) = e−
i
~ (tf−ti)Ĥ(X̂,P̂ ). (123)

This means that in the case of no time dependence in the Hamiltonian Ĥ(X̂, P̂ )

we can calculate the wave function |Ψ(t)〉 at any time tb with the time evolution

operator from any other time ta by operating in the following way

|Ψ(tb)〉 = Û(tb, ta)|Ψ(ta)〉. (124)

The time evolution operator thus satisfies the Schrödinger equation

ĤÛ(t, ta) = i~∂tÛ(t, ta). (125)

It is also a unitary operator

Û(tb, ta) = Û−1(ta, tb) (126)

and it satisfies the composition law for time translations

Û(tb, ta) = Û(tb, t
′)Û(ta, t

′). (127)

The point in here is to get the time evolution amplitudes that are given by the

matrix elements of the time evolution operator in the basis states that are localized.
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With these we get the equation (122) in the form

(ψf tf | ψiti) = 〈ψf | Û(tf , ti) | ψi〉 (128)

where we have obviously assumed that tf > ti. The notation (ψf tf | ψiti) is also

called the propagator of the system. The propagator also satisfies the Schrödinger

equation because of the properties of the time evolution operator

Ĥ(ψt | ψiti) = i~∂t(ψt | ψiti) (129)

and if the Hamiltonian has no time dependence it can be calculated by

(ψf tf | ψiti) = 〈ψf | e−
i
~ (tf−ti)Ĥ | ψi〉. (130)

Here by showing all these we end up having the equation (122) from which we started

the whole thing.

We are especially interested in the case where 1-dimensional quantum tunneling

can occur through a barrier. In classical physics this is of course forbidden because

a particle cannot go to a region which has a larger potential energy than the total

energy of the particle. This would classically require a negative kinetic energy which

is not possible as we know it. We can observe this from the equation for the total

energy E

E = T + V =
1

2
mq̇2 + V (q), (131)

where q is the particle position and the derivative q̇ is the velocity of the particle.

Here it can be seen that if it were that E < V , it would require that T < 0.

Meaning that the velocity to the power of two would be negative which is obviously

impossible when we are dealing with physics and real numbers. So something has

to be done. The imaginary time, which we spoke of earlier, is the key element here.

When the time variable is imaginary, then the momentum becomes real and the

motion becomes imaginary.

If the particle starts from x = xi and ends up in x = xf at the time T , we get the

tunneling probability as a square of the absolute value of the Feynman propagator

DF (xf ;xi, T, 0). It can be formally determined as a sum over the classical paths

DF ∼
∫

[D(x)]e
i
~S(x). (132)
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Figure 24: Example of the potential (133). E0 = 1, k = 1 and L =
√

2.

We have discussed the different approaches to the mathematical formalism of the

quantum theory. The earliest two formalisms are the matrix mechanics of Heisenberg

and later on the wave function theory of Schrödinger. A few years later Paul Dirac

showed these to be equivalent. In this work up until this point we have used in our

calculations the Schrödinger equation. A quite simple calculation will demonstrate

what is the connection between the Schrödinger equation and Feynman theory of

the path integrals in quantum mechanics.[55]

Further reading and a much more mathematical approach to the path integrals

can be found in the reference [56]. It is more focused in the Yang-Mills theory and

by so it goes way deeper into this subject. The instanton solutions are shown in

four dimensions. It deals with how the instantons are a part of different studies

in physics going all the way from supersymmetry to the Higgs fields. Next we will

go to the actual tunneling problem of the inverted oscillator potential in an infinite

well.

4.3.2 Infinite well with an inverted oscillator potential

We will explore the possibilities of the path integral method to investigate the tun-

neling. Our potential is chosen to be the inverted oscillator in an infinite well which

is the potential investigated in Chapter 3. We are especially interested in how this

resembles the normal double-well potential case which is the classic example of this

procedure. We are to find the instanton solution for our chosen potential. The
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explicit potential inside the well is

V (x) = E0 −
1

2
kx2, (133)

where we have taken in the energy coefficient E0 to avoid negative energies which

are natural in this case without the coefficient. E0 is just for scaling and it also tells

us what is the height of the potential barrier in its center position. In the potential

we have two minima at

xmin ≡ ±L (134)

and as you can see these parameters marked in Figure 24 the minima is where the

potential hits the wall on the sides. The parameter L for length is then of course

with the other parameters

L =

√
2E0

k
. (135)

In search of the instanton solution we begin with the equation of motion and at this

point we are still in real time

ẍ(t) = −V ′(x(t)) (136)

where we have marked the derivatives in the following manner

ẍ =
d2x

dt2

V ′(x) =
dV (x)

dx
.

Now we make the replacement and move from real into imaginary time by inserting

τ = −it (137)

We get the equation of motion in imaginary time

x′′(τ) = V ′(x(τ)) (138)
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where the derivatives are

x′′(τ) =
d2x

dτ 2

V ′(x(τ)) =
d2V

dτ
.

This is now the equation of motion for the reverse of the potential (133) which means

that the potential is upside down as can be seen when compared to (136). Let us

start working on this and we keep in mind that the goal is to solve x(τ). First we

multiply (138) by x′ = dx/dτ

Left side: x′(τ)x′′(τ) = 1
2
d
dτ
x′(τ)2

Right side: x′(τ)dV (x(τ))
dx(τ)

= dV
dx

dx
dτ

= dV (x(τ))
dτ

We end up having

1

2

d

dτ
x′(τ)2 − d

dτ
V (x(τ)) = 0. (139)

We will integrate this on both sides with respect to τ . This gives us directly due to

the function being continuous

1

2
x′(τ)2 − V (x(τ)) = C, (140)

where C is the integration constant. To emphasize even more that we are dealing

with the reversed potential we will write (140) in the form

1

2
x′(τ)2 + [−V (x(τ))] = C. (141)

Now that we look at it we actually notice that this is the energy conservation law

if τ is interpreted as the physical time. It is for the motion in the potential −V (x)

and by that we can make the assumption that the constant C is actually the total

energy E. You can compare this to the equation (131) on page 63. We can now in

relief make the replacement

C ≡ E
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to the equation (141) and integrate it once more. With this short calculation

dx

dτ
= ±

√
2(E + V (x))∫ τ

τ0

dτ = ± 1√
2

∫ x(τ)

x(τ0)

dx√
E + V (x)

it yields that

τ − τ0 = ± 1√
2

∫ x(τ)

x(τ0)

dx√
E + V (x)

. (142)

It is good to notice that this is valid for a general potential V (x). So here we need

our actual potential (133). By looking at the potential figure 25 we will see that if

our particle starts at rest and goes along with τ → −∞, we must have E = 0. Now

we see why we inserted the parameter E0 into our potential. Otherwise it would

have given us a negative root. Having these we can integrate (142) from 0 to x. For

−L < x < L we get

τ − τ0 = ± 1√
2

∫ x

0

dz√
E0 − 1

2
kz2

= ± 1

2
√
k

∫ x

0

dz√
2E0

k
− z2

= ± 1

2
√
k

arcsin

(√
k

2E0

x

)
. (143)

Now we have finally reached to the point of having the instanton solution for the

inverted oscillator and it is

x±(τ) = ±
√

2E0

k
sin
[
2
√
k(τ − τ0)

]
, (144)

where we have used the trigonometric formula

sin(±x) = ± sin(x).

The solution (143) can be seen in Figure 26. It shows that the solutions are at zero

when the potential is at the highest and they go to infinity on the edges of the well.

The instanton solution (144) is in Figure 27 which shows a nice symmetry. The

instanton solution is also called the kink and anti-kink solution.
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Figure 25: Example of the reversed potential (133). E0 = 1, k = 1 and L =
√

2.
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Figure 26: The solutions for τ − τ0 in (143). The blue line is the positive solution
and the red line is the negative solution. E0 = 1, k = 1 and L =

√
2.
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Figure 27: The instanton solutions (144). The blue line is the positive solution and
the red line is the negative solution. E0 = 1, k = 1 and L =

√
2.
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We can go further and calculate the Euclidean action A for this system

A =

∫ ∞
−∞

[
x

′2
±

2
+ V (x±(τ))

]
dτ

=

∫ ∞
−∞

(
x

′2
± − E

)
dτ

= −EL+

∫ a

−a

√
2(E + V (x))dx

It comes handy when we insert E = 0, plug in the potential (133) and the condition

(135)

A =

∫ a

−a

√
2E0 − kx2dx

=

∫ √
2E0
k

−
√

2E0
k

√
2E0 − kx2dx

=
E0√
k
π. (145)

When we start comparing these to the solutions of the symmetric double-well

potential, we will see lots of similarities. We will first give the results for the double-

well potential and they are made according to [8]. The potential Vdouble(x) is of the

form

Vdouble(x) =
ω2

8a2
(x− a)2(x+ a)2, (146)

where minimas are located at x = ±a and the coupling constant g is

g =
ω2

2a2
. (147)

Now we can follow the procedure introduced above and by integrating (142) and

setting E = 0 we get for −a < x < a that

τ − τ0 = ± 2

ω
arctanh

(x
a

)
, (148)

which is shown in Figure 28. The instanton solution for the barrier crossing in the
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Figure 28: The solutions for τ − τ0 in (148). The blue line is the positive solution
and the red line is the negative solution. a =

√
2, ω = 2.

symmetric double-well potential is

x±(τ) = ±a tanh

[
2

ω
(τ − τ0)

]
, (149)

which is shown in Figure 29. The Euclidean action for this system is

Adouble =
ω3

3g
. (150)

Now we have the required formula for the double-well system.

We can see that the two cases are basically quite similar. They both have their

solutions at zero when the potential is at its maximum. In the τ − τ0 solution both

have infinities on the edges, and the actual instanton solution also has a resemblance.

4.3.3 Summary

We have represented the basics of the path integral theory and found a way to have

an instanton solution for our quantum system, the inverted harmonic oscillator

in an infinite well. The basic example is the instanton solution for double-well

potential which is also our comparison point. This is interesting also because of the

resemblance of our quantum system and the double-well potential. The two of them

share many same qualities as we have seen before in previous chapters.

The important notion is that we can do our solution similarly with the double-

well potential. The solution is in the form of sin-function as for the double-well

is a tanh-function. These may seem distant but qualitatively they are quite alike.
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Figure 29: The instanton solutions (149). The blue line is the positive solution and
the red line is the negative solution. a =

√
2, ω = 2.

We have to remember that we are not dealing with x ∈ R because of our boundary

conditions. This will isolate the situation so that in our area of research the results

seem to be quite similar. Altogether it is worthy to notice that we have a solution

and it shows up to be consistent with the double-well potential solution.
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Conclusions

We have studied the properties of two quantum potentials, 1-dimensional linear

potential in an infinite well and 1-dimensional inverted oscillator in an infinite well.

The motivation for our study comes from experimental background where we have

a 3-dimensional cylinder with magnetic fields that can be adjusted. The magnetic

fields can be simplified as our potentials if we look at them in a 1-dimensional

situation. For these potentials we have the solutions for energy eigenvalues and

eigenfunctions by using different numerical methods.

The essential part in Chapter 1 is that it deals with the fact that there are

different ways to approach the mathematical formalism of quantum mechanics. All

of them share some similar properties but there are properties that can easily be

gained from a specific formalism. This is why we use the desired formalism based

on the properties that we are currently studying. In Chapters 2 and 3 we are using

the traditional Schrödinger equation because it gives us the solutions for the energy

eigenstates. In Chapter 4 on the other hand we represent the path integral theory

created by Richard Feynman. This gives us access to the instanton solutions which

is used studying the tunneling properties. Our work serves as an example of how to

use different methods for different aspects.

The actual study begins with the linear potential in an infinite well. This is an

enclosed system which gives us boundary conditions. In this particular situation

we want to use and compare two different boundary conditions. First we have the

normal boundary conditions (44) where the wave function goes to zero on the edges

of the well. The derivative boundary conditions (45) make the derivative of the

wave function go to zero on the edges of the well. The motivation for the derivative

conditions comes from the experimental background. The derivative boundary is a

way to get the spin wave situation which is the case in the experiments. So now by

using a numerical method we get the solutions for both of the conditions as a sum

of Airy function that are dependent of the potential parameter k and the length of

the well L. The results are quite as expected. They start to resemble the particle

in a box when the potential parameter is small. In the impact area of the potential

we have the possibility to be in the classically forbidden area. We also compare the

results to the Flügge solution where we have an infinite wall only on the left side. We

have specific approximation formula for the energies in the Flügge situation which

we use to compare our results. When the potential slope is large our results are very

similar to the Flügge solution which is a bit surprising. Figure 15 is a highlight of

the comparison between the two solutions. We see that the results start to differ
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immediately when we are no longer on the impact area of our linear potential.

The inverted oscillator in an infinite well is also equipped with boundary condi-

tions. In this case we only use the normal boundary (113) where the wave function

goes to zero on the edges of the well. The actual oscillator is symmetric and confined

from x ∈ [−L,L] which means that the size of the well is 2L. After we have done

the substitutions (105), (106) for the variables we are free of the potential parameter

k. Our system is now only dependent on the length of the well L. This means that

making the well wider will also make the potential slope grow. It is convenient to

make this substitution because it reduces the burden of the numerical data and even

a bit surprisingly it works. Again with the solutions we see that they resemble the

particle in a box if we have a small potential slope. We have shown three different

situations - small, medium and large. The medium case shows that after the po-

tential impact the resemblance of the particle in a box returns. But the large box

is something different. There the situation reminds us of the double-well potential.

We have a very strong pairing between the even and odd energy eigenstates. It

is notable that the pairing continues even after we are above the actual potential

curve. It would also be interesting to do the solutions for the asymmetric inverted

oscillator. It would make the calculations even longer and it might be a case to

think of a different numerical method.

It is a good time to think what are the equal properties of our the potentials that

we have investigated. The key thing is that they both resemble the solution of the

particle in a box when the potential curve is small enough. This can be seen from

figures and from the energy eigenvalue ratios that have been compared. They both

have the possibilities for the particle being in the classically forbidden area. The

solutions are given by special functions. With the linear potential we have the Airy

functions and with the inverted oscillator we have the parabolic cylinder functions.

The cases use numerical methods that were different. With the linear potential the

numerics did not require that much of computer power. All in all it was quite simple

and handy. The inverted oscillator has more complex functions and the method for

the linear potential did not work. We have used a polynomial solution by cutting the

series to a specific point and solving the zero points for the equations. It took quite

a lot of computer power and we had to adjust the polynomial factor N according to

each case to make the solutions as good as they can be. A key difference is that when

the potential is large the linear potential starts to resemble the Flügge solution until

the potential impact is gone, and the inverted oscillator has the pairing property

which reminds of the double-well potential.
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We have also discussed about the tunneling in quantum mechanics. The first

approaches it has had starting from the beginning of the 20th century and going

from that to a specific way using the path integral theory to examine the tunneling

properties of a quantum system. We have shown that we can solve the instanton

solution for the inverted oscillator in an infinite well. The method to do this is

similar to instanton solution of the double-well potential. When we are dealing with

the confined quantum system, the two cases are qualitatively quite similar in the

region of our perspective.

All in all our goals and achievements have been accomplished. We have all the

solutions we went for and we also gained some important nontrivial results. It is

worthy to notice that our actual quantum potentials might seem trivial but after

all they require quite a lot of work. The most significant things are the accuracy

with the Flügge solution, the strong pairing of the even and odd solutions with the

inverted oscillator, having only one parameter in the solutions with the inverted

oscillator, and finally having the an instanton solution for the inverted oscillator.
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Appendix

In order to give a little more input we present the Mathematica commands and

methods used in section 2. This will also work as a short guide for using Mathematica

for it is a powerful program and gives a diverse range of different tools. We assume

that the basics of Mathematica are familiar. A good reference for further usage

is found in Mathematica Navigator: Mathematics, Statistics and Graphics by H.

Ruskeepää.

In Appendix A we show the case of the linear potential in an infinite well with

the normal boundary conditions. In Appendix B we show the case of the linear

potential in an infinite well.

Appendix A

First of all the boundary conditions 44

ξ0[k ,En ] := -k−2/3*En

ξL[k ,L ,En ] := k−2/3(L*k-En)

Then we have the equation satisfying the boundary conditions. This corresponds

to the equation (53) at page 18

g[k ,L ,En ] := AiryAi[-k−2/3*En]*AiryBi[k−2/3*(L*k - En)]

- AiryAi[k−2/3*(L*k - En)]*AiryBi[-k−2/3*En]

This is the equation (55) that we get from the boundary conditions (50). We will

give it a name B

B[k ,En ] := -AiryAi[ξ0[k,En]]/AiryBi[ξ0[k,En]]

The wave function solution (54) is

Ψn[x ,k ,En ,A ] := A*AiryAi[k−2/3(x*k - En)] +

B[k,En]*A*AiryBi[k−2/3(x*k - En)]

After defining these we start to work with the numerics. First we plot the function

g[k,L,En] with the desired values of the potential parameter k and the box length

L. From the plotted figure we are interested in the values En that give the roots of

the function g[k,L,En]. The actual values are easily accessible with the command

FindRoot. With FindRoot you give an initial value and then the program searches

the nearest root numerically using an algorithm based on Newton methods. If you

give two initial values, the program uses an algorithm based on the secant method.

When we have the energy eigenvalues En, we need the coefficient A. This is

done by normalizing the wave function. We just simply integrate the square of the

absolute value of the wave function and then we can plot it. We will show one
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Figure 30: Function g[k,L,En] where k = 1 and L = 1.

demonstration on how this works in practice with these commands and what is the

output. The same procedure works for the derivative boundary so we will not show

it explicitly.

Example 1. Let k = 1 and L = 1. Now let us solve the corresponding energy

values.

Plot[g[1,1,En],{En,0,400}]
The output for this can be seen in Figure 30. From this we check the points that

we go hunting with FindRoot. We get for the first four values

FindRoot[g[1,1,En], {En, 10}]
En -> 10.3685

FindRoot[g[1,1,En], {En, 40}]
En -> 39.9787

FindRoot[g[1,1,En], {En, 90}]
En -> 89.3266

FindRoot[g[1,1,En], {En, 160}]
En -> 158.414

It is extremely convenient that we can check that these match to Figure 30. Now we

need to normalize the wave function. The integral boundaries come from the choice

of the box and so we get that

Integrate[Abs[Ψn[x,1,10.3685,A]]2,{x,0,1}]
0.203809 (Im[A]2 + Re[A]2)

By the assumption that A ∈ R we get A by taking a square root of the reciprocal

number of the result 0.203809. Now we can plot the first energy eigenfunction.

Plot[Ψn[x,1,10.3685,1/
√

0.203809],{x,0,1}]
We can see the result in Figure 31.



REFERENCES iii

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Yn@x,k,En,AD

Figure 31: The first energy eigenfunction Ψ[x,k,En,A] where k = 1 and L = 1.

Appendix B

First we need to define the recursion (111)

c[a ,n ]:=c[a,n]=a*c[a,n-2]-((n-2)*(n-3)*c[a,n-4])/4

c[a,0]=c[a,1]=1

c[a,-2]=c[a,-1]=0

and then we can set the the wave functions. The even solution (109) is

y1[a ,n ,t ,N ]:=1+Sum[(t2n/(2n)!)*c[a,2n],{n,1,N}]
and the odd solution 110 is

y2[a ,n ,t ,N ]:=t+Sum[(t2n+1/(2n+1)!)*c[a,2n+1],{n,1,N}].

Now we can start to solve the energy eigenvalues for the above functions y1 and y2

using NSolve. For this purpose we need to specify the polynomial factor N we need

to use.The smaller N we use, the less eigenvalues we get. From the output we sort

out the real solutions and discard the imaginary solutions by using Reals. After

this we normalize the wave function and then we are ready to plot it.

We will once again show one example how to do this. It works in the same way

for even and odd solutions.

Example 2. Let L =
√

2
4

. Now let us use the NSolve for the energy eigenvalues. In

this case we choose N = 19.

a /. NSolve[y1[a, n, Sqrt[2]/4, 19] == 0, a, Reals]

a->{-1596.38, -967.211, -493.47, -177.643, -19.7351}
These are our energy eigenvalues. We plot the first eigenfunction after we have

done the normalizing.

Plot[(0.3535735288567412‘)−1/2*y1[a, n, t, 19] /. a ->

-19.73512456489016‘,{t, -(Sqrt[2]/4), Sqrt[2]/4}]
The result is in Figure 32.
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Figure 32: The first energy eigenfunction y1[a,n,t,N] where L =
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