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ABSTRACT

Asta Laiho

Data analysis tools and methods for DN A microarray and high-throughput
sequencing data

The recent rapid development of biotechnological approaches has enabled the
production of large whole genome level biological data sets. In order to handle these
data sets, reliable and efficient automated tools and methods for data processing
and result interpretation are required. Bioinformatics, as the field of studying and
processing biological data, tries to answer this need by combining methods and ap-
proaches across computer science, statistics, mathematics and engineering to study
and process biological data. The need is also increasing for tools that can be used by
the biological researchers themselves who may not have a strong statistical or com-
putational background, which requires creating tools and pipelines with intuitive
user interfaces, robust analysis workflows and strong emphasis on result reporting
and visualization.

Within this thesis, several data analysis tools and methods have been devel-
oped for analyzing high-throughput biological data sets. These approaches, covering
several aspects of high-throughput data analysis, are specifically aimed for gene ex-
pression and genotyping data although in principle they are suitable for analyzing
other data types as well. Coherent handling of the data across the various data anal-
ysis steps is highly important in order to ensure robust and reliable results. Thus,
robust data analysis workflows are also described, putting the developed tools and
methods into a wider context. The choice of the correct analysis method may also
depend on the properties of the specific data set and therefore guidelines for choosing
an optimal method are given.

The data analysis tools, methods and workflows developed within this thesis
have been applied to several research studies, of which two representative examples
are included in the thesis. The first study focuses on spermatogenesis in murine
testis and the second one examines cell lineage specification in mouse embryonic
stem cells.

Keywords: next-generation sequencing, DNA microarrays, data analysis, gene ex-
pression, statistical testing, genotyping, functional analysis, gene-gene interaction
analysis, biclustering






YHTEENVETO (FINNISH SUMMARY)

Asta Laiho

Analyysityokaluja ja-menetelmid DNA-mikrosiru- ja syvisekvensointimittaus-
aineistoille

Viime vuosina nopeasti kehittyneet bioteknologian tekniikat ovat mahdol-
listaneet laajojen koko genomin tason mittausaineistojen tuottamisen. Jotta ndma
mittausaineistot saataisiin késiteltyé ja tulkittua tarvitaan luotettavia ja tehokkaita
automatisoituja menetelmia ja tyokaluohjelmia. Bioinformatiikka on biologis-
ten mittausaineistojen kisittelyyn ja tulkintaan keskittyvé ala, jossa yhdistetddn
lahestymistapoja ja menetelmii tietotekniikan, tilastotieteen, matematiikan ja in-
sindoritieteiden aloilta. Yha useammat bioalojen tutkijat, joilla ei usein ole kovin-
kaan vahvaa tilastotieteen tai tietotekniikan osaamista, tarvitsevat helposti kdytet-
tdavid ja tehokkaita tyokaluja biotekniikan mittausaineistojen analysointiin. Jotta
mahdollisimman monet tutkijat pystyisivdt hyodyntaméan nditd tyokaluja, on
tarkedd varustaa ne graafisella kayttoliittymall ja luotettavilla valmiiksi suun-
nitelluilla analyysiskenaarioilla sekd mahdollistaa havainnollisten tulosraport-
tien ja -kuvien tuottaminen.

Téssd vditoskirjassa on kehitetty ohjelmistotyokaluja, menetelmia ja tyokul-
kuja laajojen biotekniikan mittausaineistojen analysointiin, erityisesti geenieks-
pressio-ja genotyypitysaineistoille. Kehitetyt ldhestymistavat helpottavat eri ana-
lyysivaiheita, ja koska on tdrkedd valita kussakin vaiheessa kokonaisanalyysiin
soveltuvia menetelmid, véitoskirjassa kasitelldadn myos analyysityokulkuja eri tyyp-
pisille mittausaineistoille. Optimaalisen analyysimenetelmdn valinta on usein
hyvd suorittaa tarkastelemalla késiteltdvan aineiston ominaispiireitd. Tyossa onkin
vertailtu eri menetelmid, mink4 perusteella voidaan antaa suosituksia analyysime-
netelmén valintaan.

Viitoskirjassa kehitettyjd ohjelmistotyokaluja, menetelmii ja analyysityokul-
kuja on kdytetty useiden tutkimusaineistojen analysointiin. Kaksi edustavaa es-
imerkkitutkimusta on siséllytetty tahén vaitoskirjaan: ensimmadinen keskittyy hi-
iren kiveskudoksen spermantuotannon tutkimukseen ja toinen hiiren sikion kan-
tasolujen solulinjan mé&raytymisen tutkimukseen.

Asiasanat: syvidsekvensointi, DNA-mikrosiru, data-analyysi, geeniekspressio, ti-
lastollinen testaus, genotyypitys, funktionaalinen analyysi, geenien interaktio-
analyysi, biklusterointi
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1 INTRODUCTION

1.1 Background and motivation

Most living organisms comprise of cells containing DNA (deoxyribonucleic acid)
which carries the hereditary information across generations. Functionally the
genome is divided into genes which are sequences of DNA that can encode RNA
(ribonucleic acid) molecules that are used as templates for producing proteins.
Proteins are needed for performing the functions within living organisms, deter-
mining their phenotypes. In principle, the cells of an organism contain an almost
exact copy of the DNA although they can have very distinct appearances and
functions and respond differently to their environment. This is possible due to the
differences in the produced proteins and their abundances which depend on the
present cell states and current external signals. The protein levels are governed by
the complex regulatory system encoded in the DNA sequence and structure [49].

Since the discovery of DNA structure by James Watson and Francis Crick
in 1953, the field of molecular biology has advanced enormously. The appear-
ance of novel biotechnological approaches such as DNA microarrays at the end
of the 1990’s and more recently the high-throughput (often referred to as next-
generation) sequencing (HTS), has enabled the measurement of biological signals
at a whole genome level in an efficient and accurate manner [60]. These novel
technologies produce vast and ever growing data sets that require reliable and
efficient methods and tools for data processing and analysis on various levels.
This requirement has given a rise to the field of bioinformatics, which combines
methods and approaches across computer science, statistics, mathematics and
engineering to study and process biological data.

Microarray and high-throughput sequencing based technologies in general
allow studying various different aspects of DNA and RNA at a whole genome
level. Possible applications include for example DNA sequence variation analy-
sis, transcriptome analysis (i.e. study of the transcribed elements of the genome
such as genes) and epigenome analysis (i.e. study of traits that are heritable but
not caused by changes in DNA sequence) to study various regulatory mecha-
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nisms. In this thesis, the focus is on the analysis and interpretation of microarray
and HTS data, mainly concerning variant and especially gene expression analy-
sis, although some of the approaches used are more broadly applicable across a
much wider range of different applications.

When proteins are produced, DNA is first transcribed into messenger RNA
molecules (MRNAs) which will then be used as templates for proteins (see Fig.
1). Thus by studying the differences in the abundances of mRNA molecules it
is in principle possible to compare the differences in the levels of proteins pro-
duced between given biological samples. However, due to the complex nature of
gene expression process and limitations of the measurement technologies, mRNA
levels do not perfectly correlate to the observed protein levels [59]. Therefore, ef-
ficient and robust data analysis techniques and data driven method choices are
needed in order to make correct biological interpretations from this kind of noisy
measurement data. In addition, strong experience in data analysis and good
knowledge of various kinds of analysis tools and methods are required from a
data analyst. Typically the main goal of a gene expression study is to identify
genes whose expression levels significantly differ between two or more sample
groups. For example, to understand the effect of a treatment such as exposure to
varying conditions (e.g. extreme heat or coldness), we may ask which genes are
up-regulated (increased in expression) or down-regulated (decreased in expres-
sion) between treatment and control groups. In addition, mapping the altered
genes to biological processes and other higher level biological categorizations is
highly important in order to interpret the results.

Cell

Translation =
Growing ]
Aming Acid chain Amino Acid |

FIGURE1 Central dogma of molecular biology. DNA is first transcribed into messenger
RNA (mRNA) and then translated into amino acid chain forming a protein.
This process is called gene expression. Figure from [69].



11

Numerous different factors and processes determine the gene expression
levels in any given cell at any given time, including the small differences in DNA
sequence between individuals or the different cells. These variations; single nu-
cleotide polymorphisms (SNPs) and small insertions and deletions are dispersed
throughout the 3-billion-base human genome every 100 to 300 bases. They can
occur in both coding and non-coding regions of the genome and many of them
have no effect on cell function while others strongly affect gene expression and
may predispose people to disease or influence their response to a drug or some
other factor. The general aim of the variant analysis typically is to detect differ-
ences that can be linked to certain physical traits or help explain how diseases
are developed or how humans respond to pathogens, chemicals, drugs, vaccines,
and other agents. In genetic epidemiology, the term genome-wide association study
(GWAS) is commonly used when the aim is to detect variants associated with
traits or diseases. In addition to studying individual SNPs, approaches for study-
ing the complex interactions between the variant loci have recently started to
emerge [31].

1.2 Objectives of the thesis

In practice, a number of different data analysis steps is required in order to pro-
duce a comprehensive view of the underlying biology within any data set, broadly
divided in preprocessing and downstream data analysis parts. Currently, many
bioinformatics method developers are focusing on a specific step or a couple of
steps and consider these in almost complete isolation of the rest of the data pro-
cessing flow. However, in the worst case for example the wrong choice of a pre-
processing method can lead to biased or even erroneous results. Thus there is a
strong need for more comprehensive approaches where the different parts of the
data analysis are considered together in order to ensure coherent handling of the
data throughout the analysis. As the number of data sets produced is growing
fast, there is also an increasing need for tools that can be used by the biological
researchers themselves who may not have a strong statistical or computational
background. This requires creating pipelines with intuitive user interfaces, robust
analysis workflows and strong emphasis on result reporting and visualization. In
this thesis, these important aspects have been carefully taken into consideration
in the development of data analysis methods and tools and in designing data
analysis workflows for studying complex biological settings.

Specifically, the objectives of the thesis are as follows:

1. To develop efficient methods, user-friendly tools and robust workflows for
analyzing high-throughput biological data.

2. To apply these tools and methods for biological research questions.
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Publications I-IV of the thesis introduce the details of the novel data analysis tools
and methods specifically aimed at gene expression and genotyping data analy-
sis, while Publication V presents a comparison of the statistical testing tools for
RNA-sequencing data. These methods, tools and approaches have been used
in many research studies with results published in international peer-reviewed
journals, for example [28, 73, 33, 40, 65, 37, 94, 93, 44, 42]. Two representative ex-
amples where the high-throughput data and its analysis plays an important role
have been included in this thesis: 1) a study on spermatogenesis on murine testis
(Publication VI) and 2) a study on cell lineage specification in mouse embryonic
stem cells (Publication VII). Both of these studies illustrate the importance of care-
ful consideration of all the various data processing steps from raw data to result
interpretation and visualization in order to generate deeper biological insight.

1.3 Outline of the thesis

This thesis consists of four parts: the first part (Chapters 1-3) gives a general in-
troduction to the thesis and its research goals and introduces the measurement
technologies used for generating the types of data targeted within the thesis and
gives an overview on the basic data analysis steps typically applied for these data.
The second part (Chapter 4) describes the methods used within the thesis com-
bined with the necessary background information, putting the methods also in
context with the broader data analysis workflow. Third part (Chapters 5-6) sum-
marizes the results of the publications included in the thesis and gives the general
conclusion of this work. The last part (Appendix: included articles) contains the
original publications included in the thesis.
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2 HIGH-THROUGHPUT MEASUREMENT
TECHNOLOGIES FOR MOLECULAR BIOLOGY:
DNA MICROARRAYS AND HIGH-THROUGHPUT
SEQUENCING

2.1 DNA microarrays

DNA microarrays have become a widely used standard tool in molecular biology
during the last decade and they can be used for a number of purposes including
gene expression profiling and alternative splicing analysis, comparative genomic
hybridization analysis (CGH) to discover genetic amplifications and deletions,
chromatin immunopercipitation on chip (ChIP) to detect binding sites of DNA
binding proteins or genotyping by single nucleotide polymorphism (SNP) de-
tection and fusion gene analysis [98]. In this thesis the main focus is on gene
expression and genotyping (SNP) analysis.

DNA microarray technology can be used for measuring the relative abun-
dance of the biological sequences of interest in a given sample. The technology
is based on a use of fluorescent labeled and slide attached interrogation probe
sequences [98, 89]. The technology takes advantage of the ability of the com-
plementary single-stranded sequences of nucleic acids to form double stranded
hybrids. After removing the unattached sequences by washing, a laser is used to
excite the attached fluorescent dyes to produce light which is then detected by a
confocal scanner. The scanner generates a digital image from the excited microar-
ray and the digital image is further processed by specialized software to trans-
form the image of each spot to a numerical reading. These numeric values are
considered as the relative target sequence concentrations which can then be com-
pared between different samples. The DNA microarray principle in the context of
gene expression analysis is further illustrated in Figure 2. In the early days of the
microarrays they were often manufactured by custom spotting complete probe
sequences onto glass slides using a pin-spotting device [89]. However, nowadays
there are many vendors providing commercial high quality catalogue or custom
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microarrays based on advanced technologies such as base by base construction
of probe sequences directly on the slide by photolithography [89]. Microarrays
provided by different vendors, even for the same purpose, vary for example in
their fabrication principle, probe length and design, accuracy, efficiency and cost.

v

I
’ Aminoallyl Reverse CyD cDNA
Al E::ZZI _'_%r{%i'fn Nucleotides , )Transcriplase y,'g)ﬁi
E— Cy5 Cy3 b
cDNA i labelled cDNA
Sample Purification RT Coupling
P —— _—
— B S i
| ;
¢ Filter
laser
Hybridization Scanning Normalization
and washes and analysis

FIGURE 2 Microarray principle. mRNA is first extracted from sample and then re-
verse transcribed to complementary DNA (cDNA). After this the sample
is labelled. Next the labelled sample is applied to a microarray where se-
quences matching an interrogation probe sequence will be hybridized to the
array. Finally signals are scanned and quantitated with a scanner software
after which the data is ready for analysis. Figure adapted from [1].

2.1.1 Gene expression microarrays

Gene expression microarrays are the most widely used type of microarrays and
they are typically used for measuring relative messenger RNA (mRNA) expres-
sion abundances between samples across known genes. The largest manufactur-
ers currently are Affymetrix, Agilent and Illumina [89]. In Affymetrix technology,
25-mer probes are printed to the array base by base in a process that employs a
combination of chemistry and photolitography. Each gene is represented by a
set of probes distributed across the full length of the gene or near the 3" end of
the gene depending on the array type. The probe values are typically summa-
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rized for each gene during the preprocessing of the data. Agilent applies 60-mer
probes that are deposited onto specially prepared glass slides, base by base, using
an inkjet printing process. Most genes are represented by a single probe, some by
a couple of different probes. In Illumina technology, the 50-mer probes are bound
to magnetic beads randomly distributed across the microarray. Specific index
sequences are then used to decode the identity of each bead which allows map-
ping to genes. Most genes are represented by a single probe sequence, some by a
couple of probes for different isoforms of the gene. Each probe appears in 15 to
30 copies within each microarray and these technically replicated measurements
are then combined during the automatic data preprocessing. From all vendors,
custom microarrays are also available that can be designed according to specific
needs of the study in question.

2.1.2 Genotyping microarrays

Genotyping or SNP arrays can be used for detecting known single nucleotide
polymorphisms. There are around 150 million SNPs that have been identified in
the human genome [3]. The basic principles of SNP arrays are the same as for the
gene expression microarrays: DNA hybridization, fluorescence microscopy, and
solid surface DNA capture. For simplicity, manufacturers often arbitrarily label
the two alleles of a SNP as A and B. Therefore, since each individual usually in-
herits one copy of each SNP position from each parent, the individual’s genotype
at a SNP site is typically either AA (homozygous reference), AB (heterozygous)
or BB (homozygous alternate). Genotyping microarrays are then based on in-
terrogation probes designed against these three alternative genotype clusters for
the two alleles. Using the same arrays it is also typically possible to detect small
insertions and deletions or loss of heterozygosity (LOH). LOH occurs when one
allele of a gene is mutated in a deleterious way and the normally-functioning
allele is lost, a phenomena often observed in oncogenesis.

2.2 High-throughput sequencing

During the recent years, high-throughput (or next-generation) sequencing tech-
nologies have rapidly gained popularity by parallelizing the sequencing process
and producing concurrently up to hundreds of millions of sequences. These tech-
nologies are generally used for the same purposes as the DNA microarrays and
for many applications they already provide a cost effective competitive alter-
native. Popular technology platforms for high-throughput sequencing during
the recent years have been Thermo Fisher Scientific’s (earlier Life Technologies)
SOLiD and Ion Torrent, Roche’s 454 and PacBio’s RS in addition to Illumina,
whose MiSeq and HiSeq platforms currently by far remain the most popular plat-
forms in use [100]. As most of the current deep sequencing data is produced using
INlumina platform, this technology is here used as an example in introducing the



16

modern sequencing technologies.

llumina sequencing technology is based on sequencing by synthesis where
the bases of the fragmented sample material are sequentially identified from sig-
nals emitted as each fragment is re-synthesized from a DNA template strand
[100]. The Illumina sequencing principle is further illustrated in Figure 3. The
technology is currently able to produce up to 300 base pair sequence reads. In
contrast to microarray technology, HTS technology can easily be tuned to provide
a variable resolution depending on the needs of each project. This can be done
by adjusting the coverage generated for a particular type of experiment, coverage
generally referring to the average number of sequencing reads that align to each
base within the sample. For example, a whole genome sequenced at 30x cover-
age means that on average each base in the genome is covered by 30 sequencing
reads. Increased coverage thus improves the resolution of the analysis by in-
creasing the sensitivity of the detection of gene expression (especially for lowly
expressed genes) and genetic variants. While microarrays measure continuous
signal intensities, HTS thus quantifies discrete, digital sequencing read counts.

In addition to studying mRNA expression, RNA-sequencing (RNA-seq) can
simultaneously be potentially used for analysing novel transcripts and isoforms,
alternative splice sites, gene fusion and SNPs in a single experiment [64]. While
relatively short reads (50-75bp) and single-end sequencing approach are typically
sufficient for basic gene level analysis, longer read length (>75 bp), higher cov-
erage and paired-end sequencing is usually required for more in-depth analyses
such as the detection of alternative splicing events. With paired-end sequenc-
ing both ends of the sample fragments are sequenced in order to improve the
precision of the read alignment to the reference genome and enhance the sensi-
tivity of the downstream data analysis. Also the number of reads required per
sample varies depending on the goals of the study. For gene expression level
analysis, it is typically sufficient to use mRNA as starting material as the analy-
sis concentrates on the protein coding genes. In order to detect also non-coding
transcripts total RNA can be used as input. In this case, however, the number of
reads required per sample is much higher. Table 1 summarizes Illumina’s latest
recommendations regarding the sequencing specifications for RNA-sequencing.
The effect of sequencing specifications on downstream analysis of RNA-seq has
also been investigated in recent studies [85, 108].

DNA resequencing can be performed for whole genomes (typically in low
resolution) but it is more common to run targeted resequencing of exomes (the
transcribed part of the genome) or other specified regions to produce higher se-
quencing read coverage cost effectively on the most interesting regions [10, 32].
Exonic protein coding regions, although representing less than two percent of
the human genome, yet contain the majority of known disease causing muta-
tions. Resequencing can be used for revealing single-nucleotide variants (SNVs),
small insertions and deletions and large structural variants (such as inversions or
translocations) and copy number variants (CNVs). According to a recent study by
Meynert et al. [63] exome-seq achieves 95% SNP detection sensitivity at a mean
on-target depth of 40 reads, whereas WGS only requires a mean of 14 reads.
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Applications Read type | Read depth/sample
(mRNA /total RNA)
Gene profiling
(gene-level counts) 1 x50 bp >5M/>10M
Discovery (alternative transcripts,
gene fusions, etc.) 2x50-75bp >50M />100 M
Complete transcriptome

annotation 2x75-100bp | > 100M / > 200 M

TABLE1 Sequencing platform manufacturer Illumina’s recommendations for sequenc-
ing specifications for different RNA-sequencing experiment types [39]. Read
type is given as a combination of single end sequencing (1 x) or paired-end
sequencing (2 x) and read length in base pairs (bp). Read depth is given per
million reads (M).

High-throughput sequencing provides several benefits over microarrays and
is rapidly gaining popularity over them [111, 68]. For example, HTS results can be
updated any time new reference sequence information is obtained while microar-
rays are limited to the reference information available during the design of the
array. In principle HTS also enables the discovery of novel sequences, although
typically the data are analyzed against known genomic features. Hybridization
issues seen with microarrays, such as cross-hybridization or non-ideal hybridiza-
tion kinetics are also eliminated in sequencing experiments. HTS can also po-
tentially provide larger dynamic measurement range as the sensitivity of the de-
tection can be increased by sequencing deeper (i.e. producing more reads for a
sample). In general, the number of reads required for the analysis largely varies
depending on the application, the goals of the analysis and the sample material
itself. As a downside, handling of HTS data is more complicated and the analysis
pipelines not as well established yet, as for microarrays.
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Genomic DNA

— Select ~200-300 bp fragments

¢ apply to flowcell
attach adapters to
cluster generation by

create sequencing library /
¢ solid phase PCR

— e (bridge amplification)

sequencing by synthesis with reversible terminators

_)gﬂgﬁ ‘

FIGURE 3 Illumina sequencing principle. The genomic DNA is first sheared to frag-
ments of around 200-300 nucleotides. Sequencing adapters are next ligated
to the sequence fragments which are then applied to a sequencing flowcell.
Next the sequences are amplified in order to produce clusters with a large
number of identical copies of the sequences to be analyzed. During the se-
quencing run the sequences of each cluster are read base by base using flu-
orescent labeled terminator molecules which can be detected by a camera.

[15].
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3 OVERVIEW OF TYPICAL DATA ANALYSIS
PIPELINES

In order to interpret the results of the high-throughput biological experiments,
several consecutive data analysis steps need to be applied for the given data set.
These can be broadly divided into preprocessing and down-stream analysis parts.
Preprocessing is typically needed to evaluate the quality of the data and to cor-
rect for potential technical biases in order to ensure data comparability. Although
some of the approaches used are application specific, many of them can be ap-
plied more broadly to different data types. The data also need to be processed
to a format feasible for statistical analysis typically performed to produce results
whose reliability is indicated by a significance score (typically p-value). Depend-
ing on the experimental setup and data type, various analysis methods can be
applied in order to interpret the biological relevance of the measurements. In
this chapter, the different steps required in a typical high-throughput data anal-
ysis pipeline for gene expression and variant data are introduced. Preprocessing
is described in detail, separately for microarrays and next-generation sequenc-
ing data. For the convenience of the reader, the pipelines are summarized visu-
ally: gene expression data analysis pipeline in Figure 4 and NGS variant analysis
pipeline in Figure 5.
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Microarray data NGS data
Unnormalized Raw sequencing
probe intensities reads

Step 1.N1: Checking raw read
quality: FastQC, PRINSEQ

Step 1.N2: Read trimming and

Step 1.M1: Probe
P d filtering if needed: PRINSEQ,
summarization ani Trimmormatic
normalization:
- Affymetrix: MASS, RMA, Step 1.N3: Alignment of
GCRMA reads to reference genome:
Tophat, STAR, GSNAP

- lllumina & Agilent:
quantile, vsn, rsn

Step 1.N4: Counting tags for
genes: HTSeq, samtools,
easyRMASeq

Step 1.N5: Normalization: TMM,
Upper guartile, DESeq, RPKM

Step 2: Inspection of the sample relationships:
correlation analysis, boxplots, density plots,
hierarchical clustering, PCA
(If outliers are found and removed, renormalize data)

Step 3: Statistical testing

limma, DESeq,
edgeR, baySeq

limma, samr,
siggenes

Step 4: Filtering the most differentially
expressed genes

Step 5: Advanced data mining methods:
e.g. functional enrichment analysis,
biclustering

FIGURE 4 Typical data analysis pipeline for microarray and high-throughput sequenc-
ing gene expression data with common tools and methods.
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3.1 Gene expression microarray data preprocessing

Preprocessing (Figure 4, steps 1-2) can be divided into platform specific and gen-
eral parts which fundamentally differ between microarray and high-throughput
sequencing data. For microarrays the scanner software automatically quantitates
the scanner images into numeric intensity values corresponding to the relative
abundance of the target sequences in the sample [23]. Quantitation includes var-
ious signal processing steps for example for reducing background and handling
outlier measurements. The scanner output file format depends on the platform;
Affymetrix provides binary CEL files while Agilent and Illumina produce delim-
ited text files. Data analysis software tools have specific methods for handling
output from the different platforms.

Many free and commercial software packages are available for data analy-
sis, R/Bioconductor [92, 30] being the most popular free tool among them. In R
there are several packages available for preprocessing data from each microar-
ray platform (Figure 4, step 1.M1). Preprocessing methods for Affymetrix gene
expression data typically contain steps for summarizing probe level signals to
gene level values while for Illumina and Agilent the probe values are not sum-
marized due to the genes being represented with only one or a couple of different
probe sequences. Normalization is also applied in order to remove non-biological
variation and to make the measurement values comparable across the sample
set. With Affymetrix the summarization step is coupled with the normalization,
MASS5 (Microarray suite 5), RMA (Robust multiarray average) and GCRMA (GC
- Robust multiarray average) being the most popular methods [78]. For Agilent
and [llumina the most popular normalization approaches are quantile, vsn (vari-
ance stabilization normalization) and rsn (robust spline normalization) [82]. Nor-
malization for gene expression data is typically based on the general assump-
tion that only a small proportion of the assayed genes are differentially expressed
between the samples and that roughly an equal proportion of the genes are up-
regulated and down-regulated. Thus the signal distribution across samples is
expected to roughly follow the same pattern. Expression intensity values are also
log transformed in order to make the value distribution better suitable for statis-
tical testing methods.

Careful inspection of the data quality is essential for ensuring the reliability
of the analysis results. This covers reports of the sample material quality analysis
performed by the microarray facility that has performed the experiments as well
as platform specific hybridization reports which help in evaluating the technical
quality of the samples and the hybridization process performance. Various data
mining and related visualization techniques can be used for exploring the data
set [23] (Figure 4, step 2). Measurement value distributions for the samples can
be inspected using for example boxplots and density plots. Correlation analy-
sis and various clustering based approaches such as hierarchical clustering and
principal component analysis are typically used for exploring the relationships
between samples. This way it is possible to see how the sample groups and the
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replicates within them relate to each other in a general level and to detect possible
outliers. If outliers are observed, it needs to be considered whether they should
be removed prior to downstream analysis.

3.2 Genotyping microarray data preprocessing and analysis

For Affymetrix genotyping microarrays, Affymetrix Genotyping Console (GTC)
Software [4] is commonly used to preprocess the data and to perform the quality
analysis and SNP calling. Illumina data can be analyzed using the array man-
ufacturer’s GenomeStudio software [38] while Agilent Genomic Workbench [5]
is available for Agilent data. In addition to the array manufacturers’ tools there
are also alternative software packages available for genotyping data analysis (e.g.
crimm [16], RLMM [77] and beadarraySNP [71]). Typically the genotyping anal-
ysis consists of the quality control and genotype calling (e.g. using Birdseed al-
gorithm [4]) steps. Depending on the array type, it may additionally be possible
to perform copy number or loss of heterozygosity analysis from the same data.

3.3 High-throughput gene expression sequencing data preprocess-
ing

For high-throughput sequencing data the initial output from the sequencing in-
strument are the raw read files that also contain the base call quality values. It
is important to check the sequencing read quality information (Figure 4, step
1.N1) using tools like FastQC [9] or PRINSEQ [83] which can provide information
for example on sequence length, base and GC content, quality scores, sequence
duplication levels and overrepresented sequences. Read trimming and filtering
(Figure 4, step 1.N2) may be needed to account for example for reads with low
general quality or dropping quality towards the ends of the reads or reads con-
taining sequencing adapters, and can be performed using for example PRINSEQ
or Trimmomatic [13].

The next step in processing HTS data typically is to align the reads to a
genome reference (Figure 4, step 1.N3). Human, mouse and many model organ-
isms have a good quality reference genome and gene annotation available which
usually allows a good alignment rate even with stringent alignment scheme. Var-
ious different alignment tools are available for this purpose such as Tophat [96],
STAR [22] or GSNAP [109] for transcriptome data and Bowtie [47] and BWA [50]
for variant data. Read alignment is computationally a very intensive process and
it is typically performed using a powerful computer cluster. It is also possible to
analyze HTS data when reference genome is not complete or it is completely miss-
ing although this is currently considered a highly error prone approach. In this
situation full or reference based assembly approaches can be used to construct
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the reference based on the sequencing data prior to the read alignment. Various
different tools are available for transcriptome and genome read assembly [26].
Read alignment reports give useful information on the experiment quality - the
more uniquely aligned reads the better as only these are typically used for the
downstream analysis. Low number of aligned reads or an elevated number of
duplicated reads may suggest technical problems in the sample processing.

In order to carry out gene-level expression analysis, the next step after the
read alignment is to count the reads associated with the annotated genes (Fig-
ure 4, step 1.N4) (using e.g. HTSeq [7], samtools [51] or easyRNASeq [19]). In
this step the number of reads overlapping the exonic gene regions are counted
to produce a total read count for each gene. If the data is analyzed for alterna-
tive splicing, the counts can be summarized on transcript or exon level as well.
Alignment and count calculation are both complex tasks involving several ad-
justable parameters. However, according to our investigation (Publication V),
the default parameters may work reasonably robustly in many settings in the
context of transcriptome analysis. Methods also exist for reference based novel
transcript discovery and abundance estimation (e.g. [97]) although this is still
generally considered a very challenging task.

The choice of the normalization method for RNA-seq data is commonly cou-
pled with the statistical analysis method used (Figure 4, step 1.N5). Count data
normalization methods primarily aim at dealing with the variable sequencing
depths across samples making the read counts generally higher in some samples
compared to others. Various scaling based methods are typically used (see [21]
for a comprehensive review). Count values are also often transformed to RPKM
(reads per kilobase (i.e. thousand bases) per million mapped reads) normalized read
counts which may be helpful in getting a better overview of the expression levels
across genes as they also normalize against the variable gene length. However,
these values are generally not recommended to be used in the context of statistical
testing methods as they depend on the mean expressed transcript length [102].

3.4 Statistical testing for high-throughput gene expression data

The primary goal of a gene expression study typically is to identify genes whose
expression levels differ between two or more sample condition groups. For ex-
ample, to understand the effect of a treatment such as exposure to varying condi-
tions (e.g. extreme heat or coldness), we may ask which genes are up-regulated
(increased in expression) or down-regulated (decreased in expression) between
treatment and control groups. Typically the analysis is carried out against known
genes found in RefSeq [75] or Ensembl [29] databases. Methods also exist for
assembling the gene and transcript models from the sequencing data and calcu-
lating abundance estimates based on these models and analysing differential ex-
pression of isoforms based on exon-level expression signals but these still remain
challenging tasks [8].
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Initially, comparative experiments were done even with few, if any repli-
cates, and statistical criteria were not used for identifying differentially expressed
(DE) genes. Instead, simple criteria were used such as fold-change, with 2-fold
being a popular cut-off. Nowadays the requirement for having replicated mea-
surements for conducting gene expression studies is highly recognized although
the high experimental cost still in many cases limits the number of replicates mea-
sured. Thus, studies with two or three biological replicates per sample group are
still common, which poses challenges for the analysis methods used. Experimen-
tal design and the number of required biological replication has been recently
discussed for example in [108]. Liu et al. [53] also indicated that increasing the
number of biological replicates leads to better sensitivity in detecting differen-
tially expressed genes compared to sequencing fewer samples with increased se-
quencing coverage. Nowadays, technical replicates are rarely measured as the
technical variation within the modern commercial systems is typically insignifi-
cant compared to the between-sample biological variation.

Today, a plethora of different statistical tools and methods are available for
the statistical analysis of both microarray and HTS gene expression profiling data,
many of the most popular packages being based on R/Bioconductor software
for statistical computing [77, 30]. The largest difference between microarray and
next-generation sequencing data is that microarrays produce continuous values
while NGS generates discrete count values and thus different approaches are
needed for handling the two different types of data. Popular packages for mi-
croarray analysis include for example limma based on linear modeling [87], samr
[99] based on the non-parametric SAM algorithm taking advantage of random-
ized permutations and siggenes [84] based on the SAM and EBAM [25] methods.
Commonly used RNA-seq data analysis packages include for example DESeq [6],
edgeR [80] and baySeq [34] based on negative binomial models and limma [79]
based on transformations of read counts for linear modeling.

Differentially expressed genes are typically filtered using cutoffs for both
statistical significance score (typically corrected p-value such as false-discovery
rate [11]) and expression fold-change. P-value correction is needed in order to
account for the multiple testing of thousands of genes, easily resulting in false
positive findings if not controlled for. Although thresholds such as 0.05 for the
p-value and two for the fold-change are often applied by default, there is not a
single correct way or method to determine the thresholds. In fact, it is advisable
to base the choice of the filtering thresholds on the individual characteristics of
the data set in question and the purpose of the filtered gene list [6]. For example,
when the gene list is directly included in a publication it is important to min-
imize the false positive findings and thus apply very strict filtering thresholds.
On the other hand, the filtering criteria can be markedly relaxed when the pro-
duced gene list will be used as input for functional enrichment analysis where
the focus is in general trends rather than individual genes. In this case a longer
gene list may help in detecting more subtle trends as the statistical power is in-
creased, while random false positive genes are not very likely to have a strong
influence on the result of the test. Different visualizations such as hierarchical
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clustering dendrograms, PCA plots, volcano plots and MA-plots are also helpful
for choosing the filtering cutoffs [72]. Varying by the study and the purpose of the
filtering, the length of the list of the DE genes can be anything between a handful
or hundreds of genes; typically the aim in any case is to list a reasonable number
of the strongest influenced genes.

3.5 Variant sequencing data preprocessing and analysis

The typical analysis pipeline for resequencing data is presented in Figure 5. Qual-
ity control and read alignment steps are similar to those for the gene expression
data. After the initial read alignment of the resequencing data, sequence vari-
ants are detected using a variant calling method. Methods also exist for detect-
ing larger structural rearrangements, such as deletions or duplications of whole
chromosomal arms, but in this thesis the focus is on the detection of small in-
sertions, deletions and single nucleotide polymorphisms. For resequencing data
it is possible to detect known as well as novel sequence variants (see [67] for a
comprehensive review on variant analysis). Typical steps in the variant calling
programs include include realignment of reads, removal of duplicated reads and
recalibration of quality scores in order to increase the sensitivity and reduce false
positive call rate. Read filtering is also important as only the highest quality reads
and alignments are considered for variant analysis to avoid problems caused by
single base errors easily occuring with the current sequencing technologies. Pop-
ular tools include for example GATK [61] and samtools [51]. Depending on the
experimental design and the goals of the study the variant calling is then applied
on the samples individually or using a multi-sample procedure. In the latter case
a shallow sequencing of a large number of samples has typically been produced
and the interest is in the general population level differences rather than single
individuals. In this case also other prior information such as allele frequencies
and patterns of linkage disequilibrium are commonly used to enhance the anal-
ysis. In order to interpret the variant calling results, it is important to connect
them with information on the previously known variants and their known ef-
fects, nearest genes and the predicted consequences of the previously unknown
variants. Many free and commercial tools exist for SNP prioritization, such as
ANNOVAR [103] HaploReg [104] and RegulomeDB [14]) and for variant annota-
tion, e.g. SPOT [81] and SNPranker [62].

3.6 Summary

In this chapter the basic steps included in a typical analysis pipeline of high-
throughput gene expression and genotyping data have been introduced, many
of which can also be applied to other types of high-throughput data sets as well.
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FIGURE5 Variant data analysis pipeline (Figure from [67], reprinted by permission
from Macmillan Publishers Ltd: [Nature Reviews Genetics, copyright 2011).
Pre-processing steps are shown in yellow, multi-sample calling in green,
single-sample calling in orange and post-processing in purple. Optional
steps are shown in dashed lines.

For example normalization, quality analysis and statistical testing are needed for
most high-throughput data sets and are a prerequisite for conducting more ad-
vanced analysis. When choosing the method for each step, it is important to
consider the prerequisites for different tools and their compatibility in order to
perform a coherent analysis. Thus it is important to plan the general data analy-
sis flow keeping in mind the limitations and requirements of the chosen methods
at each step. An experienced data analyst is typically needed for conducting
a fully streamlined analysis and thus seizing the full potential of a given data
set. Within this thesis, a carefully considered data processing workflow, covering
many of the above represented analysis steps, was developed for the gene ex-
pression analysis of high-throughput data and applied for two real experimental
setups (Publications VI and VII).
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4 METHODS AND TOOLS FOR
HIGH-THROUGHPUT DATA ANALYSIS

The methods and tools developed in this thesis are presented in this chapter with
further background information on the related topics. Section 4.1 concentrates on
differential gene expression detection for high-throughput sequencing. To date,
many algorithms and software packages have been published for this purpose
but as there is currently no consensus on which methods should be applied un-
der different conditions we conducted a comparison of the existing approaches.
Thus, our aim was to generate useful information to help researchers in selecting
a robust and usable method under various circumstances. Independent of the
method selected, in order to carry out gene-level differential expression analysis
the data are typically summarized across exons prior conducting the statistical
testing. Within this thesis our aim was also to investigate whether the detection
of differential gene expression could be improved by an alternative strategy of
conducting the testing on exon level prior to summarizing the results at gene
level.

Many biotechnical high-troughput measurement technologies generate lists
of genes as the primary result, the length of which can range from a handful to
many hundreds or even thousands. Therefore functional enrichment analysis, de-
scribed in Section 4.2, has become an important tool aiding the interpretation of
such gene lists. In general, functional enrichment analysis refers to analyses tak-
ing the gene functional annotations into account and focusing on co-operational
gene modules rather than individual genes. In order to facilitate an efficient func-
tional enrichment analysis, a new web based tool, GeneFuncster, was developed
within this thesis.

The topic of Section 4.3 is biclustering which is a data mining approach that
can be applied to identify groups of genes following the same expression pattern
across a set of samples (and thus likely belonging to the same functional module).
Biclustering can also be used for sample classification by grouping together the
samples with the most similar expression patterns across genes. Novel Bicluster-
Miner tool is presented as an efficient solution to detecting co-operational gene
modules within gene expression data.
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Section 4.4 introduces the gene-gene interaction analysis (also called epista-
sis analysis) for genome wide association studies based on high-throughput vari-
ant/genotyping data. BiForce Toolbox is also presented, a novel tool developed
within this thesis for epistasis detection.

4.1 Differential gene expression analysis of high-throughput se-
quencing data

Methods for detecting differential expression in high-throughput sequencing data
are currently under rapid development: new packages are frequently published
and the existing algorithms are often revised. Thus it can be challenging for a re-
searcher to choose a method for differential expression analysis of their data set.
To help this choice, comparison studies have been recently published, discussing
the different methods” performance, strengths and weaknesses and applicability
to different kinds of data sets [101, 45, 88]. However, these comparison studies
are based on only simulated data sets or they include very few biological repli-
cates. Thus, in Publication V, we investigated the performance of the different
methods on real data sets with large numbers of replicates. Our aim was specifi-
cally to investigate 1) the number of detections at different numbers of replicates
2) the consistency of the detections within and between pipelines 3) the estimated
proportion of false discoveries and 4) the runtimes. We included eight popular
software packages for our comparison: DESeq [6], edgeR [80] and baySeq [34]
based on negative binomial models, SAMseq [52] and NOISeq [91] based on
non-parametric approaches, limma [79] based on transformations of read counts
for linear modeling and Cuffdiff [95] and EBSeq [48] which are transcript-based
methods also enabling gene level analysis.

Our study showed that the choice of the analysis method can markedly af-
fect the outcome of the data analysis and that no single tool is likely to be optimal
under all circumstances. We also discovered that the number of replicates and
the heterogeneity of the samples should be taken into account when selecting the
pipeline. General usability and the quality of documentation also varied across
methods. As many users in practice prefer a method that is user friendly and
works fast and is robust under a wide range of conditions, we recommend limma
for these users, based on our comparisons.

In order to detect differential gene expression based on RNA-seq data, the
read counts are typically summarized at the gene level prior to carrying out the
statistical testing. In Publication IV, we investigated an alternative strategy in
which statistical testing at the exon level is performed prior to the summary of
the results at the gene level and specifically the effect on the sensitivity and speci-
ficity of the detections. This was motivated by the earlier reported observations
with Affymetrix gene expression microarrays indicating that statistical testing
of probe-level expression signals, rather than gene-level summary values, can
markedly improve the detection of differential gene expression [27].
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The presented exon-based strategy can in principle be used in the context
of any existing or future statistical testing approach. For our examination we
chose to use two popular packages, limma [79] and edgeR [80]. With our ap-
proach, the statistical testing is first performed separately (with limma or edgeR)
for each exon. The gene-level scores are then calculated as the medians of the
exon-level significance p-values while taking the directions of the changes into
account. More formally, the gene-level score is defined as the median over the
signed log-transformed p-values y; = —sgn(x;)logp;,i = 1,...,n, where x; is the
estimated log2 fold change of an exon i, p; the corresponding p-value obtained
from the statistical testing, n the number of exons in the particular gene and sgn
the sign function. The calculated p-values are then corrected using the Benjamini-
Hochberg multiple testing adjustment method [11].

As described in Publication IV, using two publicly available data sets we
were able to show that the suggested exon-based strategy improved the statistical
testing results over the conventional gene-based strategy by increasing sensitivity
and specificity of the detections. The improvement was especially pronounced
for genes with moderate but systemic gene expression changes that were missed
by the gene-based strategy relying on single gene-level summary counts only.
Our results also showed how the gene-based approaches are prone to effects of
single exons, while the exon-based strategy is robust against them.

4.2 Functional enrichment analysis

Genes act in co-operational groups, modules, to carry out coordinated tasks. Tak-
ing this information into account during data analysis may help interpreting the
results from any experiments producing candidate lists of genes. Therefore, it is a
common step during the high-throughput data analysis to apply some technique
for functional analysis, also called gene set enrichment analysis or pathway analy-
sis, to detect enrichment in gene lists towards known gene modules, thus sug-
gesting altered performance of the related functions (see [56] and [36] for recent
reviews). These known gene modules or gene sets can be derived from various
different sources, Gene Ontology (GO) [35] and Kyoto Encyclopaedia of Genes
and Genomes (KEGG) [41] being the most popular of them and also freely avail-
able.

To take advantage of GO, genes are organized into a hierarchy where gene
products with similar functions are placed together under the same GO term. In
this hierarchy, a gene belonging to a category is automatically part of all its parent
classifications as well. Thus the number of genes placed in the nodes decreases
as traversing down the tree, gradually leading to more specific terms. GO is
divided into three main hierarchies, namely biological processes, molecular functions
and cellular components. Genes are mapped to the nodes under each hierarchy at
different confidence levels ranging from manually curated to computationally
predicted.
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KEGG database provides manually curated searchable pathways related to
molecular interaction and reaction networks for metabolism, various cellular pro-
cesses and human diseases. In KEGG, the relationship between the genes belong-
ing to each pathway is defined and it can thus be visualized as a pathway map
(example shown in Figure 6).
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FIGURE 6 Example of a KEGG pathway map for cardiac muscle contraction [2].

In general, there are two distinct commonly used approaches for functional
enrichment analysis; detection of functional enrichment in short filtered gene list
(such as list of differentially expressed genes) and detecting functional enrich-
ment towards the top of a ranked gene list. For example in the context of differ-
ential gene expression analysis the ranked list can be the whole set of microarray
genes sorted according to the decreasing likelihood of the gene being differen-
tially expressed between the sample groups. Figure 7 summarizes the differences
between the two approaches.

In the filtered gene list enrichment analysis the defined gene sets are tested
for over-representation within the input gene list (e.g. the list of differentially ex-
pressed genes) and a statistical significance score (typically p-value) is calculated
for each set. Testing is conducted against a background list of genes which is often
the list of all known genes. Typically sets with too few (<15) or too many (>200)
genes are excluded from the analysis as the results are not likely to be meaningful
or reliable for them. When the gene set is too small, the test can easily become
significant due to a single or a couple of genes only and for the very large sets its
difficult to interpret the results. Statistical testing is commonly based on a hyper-
geometric or binomial model [56] and the results are represented as a table of the
most enriched gene sets in a decreasing order according to the test significance
score. Popular tools for this kind of analysis include David [20] and GOrilla [24].

While analysing the functional enrichment among the filtered genes is very
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FIGURE 7 Difference between the filtered list (on left) and ranked list enrichment anal-
ysis (on the right).

useful, the choice of filtering thresholds can have a significant effect on the anal-
ysis outcome. It is also possible that although many genes associated with a par-
ticular functional module are showing consistent yet subtle expression changes
only a few or none of them are affected strongly enough to be included in the
filtered list of genes. Thus this functional module may be missed in the enrich-
ment analysis based on the short filtered gene list. As a solution, threshold free,
ranking based enrichment analysis approaches can be used to detect these more
subtle changes. Popular tools are typically based on non-parametric tests such as
Kolmogorov-Smirnov test, e.g. GSEA [90] and GAGE [55]. In general, the two
enrichment analysis approaches efficiently complement each other and are thus
ideally applied in parallel to gain a complete view of all the affected functional
gene modules.

The different tools available for short or long ranked gene list enrichment
analysis in general vary for example based on the organisms supported, the se-
lection of different statistical test approaches, the databases available and also
regarding the way the results are reported and visualized. Most freely available
tools only support one or the other enrichment analysis approach and the result
visualization is typically also very limited. Thus in Publication I we developed
a new web tool, GeneFuncster, which combines both analysis approaches, based
on popular algorithms, with versatile result visualization abilities including gene
plots, GO graphs, colored KEGG pathway maps and ranking plots (examples in
Figure 8).
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FIGURE 8 Various visualization plot types provided by GeneFuncster. a) An example
of a gene plot with genes associated with an enriched database term, fold-
change values as the height of the bars and p-value levels marked by aster-
isks on top of each gene. b) Ranking plot for unfiltered list enrichment anal-
ysis where each gene associated with the database query term in question
has been marked with a vertical bar along the ranked list (from left to right).
Enrichment can be observed as a clear bias of vertical lines towards the high
ranking end (left side) of the graph. ¢) GO graph describing the relations be-
tween the most enriched GO terms with stronger colors (scale from white to
yellow, orange and red) signifying stronger enrichment. d) Enriched KEGG
pathway map with upregulated genes marked red and downregulated genes
green.
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4.3 Biclustering

In situations where there is a need to interpret large high-throughput data sets
with a large number of genes (or other similar biological measurement features)
and condition groups or potential sub-groupings within the sample groups, var-
ious clustering techniques become highly beneficial. The data may then be anal-
ysed to detect general patterns, potentially giving further insight on the underly-
ing biological processes.

In general, clustering based techniques are used to analyze data matrices
with the aim of detecting patterns across rows or columns or both simultaneously.
High-throughput gene expression data is typically represented in matrix format
with genes on rows and samples (or sample condition groups) on columns. Clus-
tering techniques can then be used for arranging the genes and samples based on
their general expression value similarity. With traditional clustering techniques
each gene is included in the clustering result exactly once as items can not belong
to multiple clusters or be excluded completely from the clustering result [12], al-
though in practice, genes act in modules to carry out coordinated tasks and each
gene may participate in multiple processes. Traditional clustering also includes
all columns (samples or sample condition groups) in all patterns despite that gene
sets are typically co-expressed only under a subset of samples or sample condi-
tion groups. A natural solution to these problems is provided by a technique
called biclustering (also called co-clustering or two-mode clustering) that is able to
cluster rows and columns simultaneously and does not set a priori constrains on
the organization of the resulting clusters. In other words, it allows any gene to
belong to multiple or none of the biclusters and detects also gene groups with
similar expression patterns over only a subset of the samples or sample condition
groups [57].

Despite the clear theoretical benefits of biclustering, this approach has not so
far gained very wide popularity among the gene expression research community.
As we speculate in Publication II, possible reasons include for example the unre-
alization of the various complementary ways in which biclustering can be applied
to high-throughput gene expression data and the lack of reliable and fast algo-
rithms. To tackle these problems, in Publication Il we have developed an efficient
novel biclustering method, BiclusterMiner, and illustrated various complemen-
tary scenarios for applying biclustering on gene expression data. Depending on
the scenario, normalized expression data, filtered differentially expressed genes
with fold-change values or functional enrichment analysis results across group
comparisons can be used as input for biclustering as depicted in Figure 9. Re-
view through the biclustering literature revealed that the steps for preprocessing
gene expression data prior to biclustering are typically poorly described which
may also have hindered the adoption of biclustering tools for downstream data
analysis. Thus we illustrate in our publication how biclustering in general fits to
the overall gene expression analysis workflow to aid its wider application (also
described in Figure 9.). Hence, our work provides a good reference for the biclus-
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tering method developers aiming to work with gene expression data.

Some biclustering methods are able to work with real-valued data but gen-
erally this is considered a demanding task. The size of the input data also needs
to be decreased by applying heavy prefiltering of data which in turn may lead to
a loss of important information. Typically the number of resulting biclusters also
has to be defined before the biclustering which may lead to unmeaningful results
when a nonoptimal number of biclusters is selected. Thus in practice the most
popular methods rely on data discretization, often binarization [57]. Different
data discretization schemes and their performance in the context of various clus-
tering techniques has recently been discussed in [58]. Discretization is often per-
formed simply by applying certain cutoff values: expression values higher than
the cutoff are marked with 1 and lower with 0. In addition to redocung the com-
putational demand and the need for heavy prefiltering there are also other bene-
fits to data discretization as we discuss in Publication II. For example, when per-
forming meta analysis of data sets derived from different sources, discretization
may help in making the data better comparable across the different data sets as
the normalization issues with the real values are effectively avoided. In addition,
the differential expression status of a gene (up-regulated/down-regulated /not
affected) or a pathway (affected /not affected) can be naturally represented with
a few discrete value categories. Yet, most of the previously published algorithms
work on binarized data which makes them unable to distinguish between the di-
rection of the gene regulation, although this is biologically very important. Igno-
rance of the direction of the regulation leads to the inclusion of erroneous genes
and results in invalid biclusters as gene profiles with uncorrelated patterns are
grouped together.

Various biclustering approaches developed include iterative row and col-
umn clustering combination, divide and conquer, greedy iterative search, exhaus-
tive bicluster enumeration and distribution parameter identification [57]. Some of
the widely used approaches apply a greedy search scheme and are thus unable to
discover all maximal biclusters (i.e. biclusters not entirely contained in any other
bicluster) and important patterns may thus be missed, as described in Publication
II. Different methods and approaches have been recently compared in [70]. The
algorithm of BiclusterMiner is a generalization of the original problem, presented
in [74], where only binary data was used.The algorithm discovers the biclusters
recursively as explained in detail in our publication. To our knowledge, Biclus-
terMiner is the first published method able to work on three discretized value
categories and yet discover all maximal biclusters. The tool is also simple and
fast to use.
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4.4 Gene-gene interaction analysis

Genome-wide association studies (GWAS) focus on the detection of common ge-
netic variants associated with traits like major diseases. Genetic variants impact
gene function mainly by influencing promoter activity directly controlling the
gene expression, stability of messenger RNA molecules and subcellular localiza-
tion of these molecules or the protein produced [86]. The effect and severeness
of a variation depends on whether it causes an amino acid change in the protein
(nonsynonymous change) or not (synonymous change) or whether it occurs in
the noncoding regions controlling the regulation of the gene, as discussed in [31].

Traditionally the focus of GWAS has been in the search of genes that in-
crease (or decrease) disease susceptibility through the examination of individual
single-nucleotide polymorphisms (SNPs). In practice, however, it has turned out
to be difficult to confirm the results across several studies based on these SNP
level results [31]. This is speculated largely to be explained by the overwhelming
number of genetic markers that are typically analyzed in a very limited num-
ber of subjects, making the statistical inference very challenging. In addition, the
general complexity of the mapping between genotype and phenotype, arising
for instance from the nonlinear interactions with the genetic and environmen-
tal factors are likely to complicate the analysis. Especially gene-gene interaction
analysis (i.e. detection of genes with effects that are dependent on other genes)
has lately been considered a promising approach in improving GWAS and has
already been successfully applied for a wide variety of different common human
diseases and clinical endpoints including e.g. bladder cancer, amytrophic lateral
sclerosis, and eczema [31]. For this, several tools for detecting significant pair-
wise SNP combinations have been developed [17] ranging from simple exhaus-
tive search (implemented e.g. in PLINK Tool Set [76]) to various data-mining and
machine learning approaches (e.g. random forests [110]) and bayesian model
selection approaches (e.g. WinBUGS [54]). It has also been demonstrated how
pathway-based approaches may narrow the search space and enhance power of
GWAS studies [106].

The analysis of billions of SNP combinations is computationally a highly
challenging task and it has limited the efficient study of gene-gene interaction in
GWAS. For this reason, many of the previously developed methods are restricted
to the analysis of binary disease or quantitative traits and are often specifically de-
signed for computers equipped with particular graphical processing units, even
further limiting wider application of these methods. Tools have also been miss-
ing for the meta-analysis of multiple GWAS simultaneously which could even
further enhance the power of gene-gene interaction detection. To address these
limitations, BiForce Toolbox was developed in Publication IIL

BiForce Toolbox provides fast screening of pairwise interactions in GWAS
of complex disease and quantitative traits, relying on enhanced computational
power derived from the bitwise computing and multi-threaded parallelization.
The toolbox is implemented as a stand-alone software package in Java to enable



37

its use on all the most commonly used computer systems. This makes the soft-
ware suitable also for local secure analysis that is important when handling sen-
sitive data.

The software includes two consecutive genome scans: single SNP-based
genome-wide association tests and pairwise interaction tests of all SNP combi-
nations. Additionally, marginal-SNPs (SNPs that do not lead to any marginal
correlation between genotype and phenotype when each locus is considered indi-
vidually) are identified in the first scan and then separately tested for interaction.
Association tests are based on linear regression models, where the genotypes of
each SNP (i.e. homozygote of the minor (i.e. least common) allele, homozygote of
the major (i.e. most common) allele and heterozygote) are fitted as fixed factors.
Pairwise SNP interactions are assessed using contingency tables which makes
BiForce Toolbox applicable to both quantitative and binary disease traits. The
details of the algorithms have been earlier published in [46] and [105].

The toolbox can also perform an analysis of pathways enriched within groups
of genes showing interaction signals, potentially giving insight to the biology un-
derlying these signals. The enrichment analysis towards Gene Ontology cate-
gories and KEGG pathways is performed based on the mapping of the SNPs to
nearest genes and then performing a typical gene over-representation analysis.
Special attention has been paid to the general ease and usability of the tool and
informative result report formats and visualizations. The BiForce Toolbox work-
flow with snapshots of the tool are illustrated in Figure 10.
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5 SUMMARY OF THE PUBLICATIONS

Within this thesis new tools and methods for differential gene expression analy-
sis, functional enrichment analysis, biclustering and gene-gene interaction anal-
ysis are introduced with special focus on performance, usability and result vi-
sualization. Comprehensive and robust data analysis workflows and analysis
schemes for various data types are also illustrated. These tools and approaches
have been used in research studies concentrating on both mouse and human, cell
culture and tissue samples.

I GeneFuncster: A Web Tool for Gene Functional Enrichment Anal-
ysis and Visualisation

In Publication I, we developed a tool for gene functional enrichment analysis
and visualization. The project was motivated by the need to have a tool to an-
alyze both short filtered and long unfiltered gene lists for enrichments towards
functional categorizations and pathways available in public databases and to vi-
sualize the results in a comprehensive manner. While there were many free tools
available for these types of analyses, the most useful functionality was scattered
across various tools and especially visualization was poor even with the most
popular software. In order to perform a comprehensive functional enrichment
analysis, both short filtered and long unfiltered gene lists need to be analyzed in
order to provide a complete view of the underlying biology. Although the analy-
sis of filtered lists is efficient in detecting functions with strongly affected genes,
some important functions with consistent but subtle changes maybe missed due
to the application of filtering cutoff values. Thus the two approaches complement
each other and are best applied in parallel, for example for high-throughput gene
expression data. Many of the available tools also simply report the results as a
table ranked according to the statistical enrichment significance and maybe dif-
ficult to interpret, especially when many related categories appear on the results
mainly due to the shared genes between the categories. This is especially true to
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Gene Ontology categories that are hierarchical in nature and contain thousands
of terms with genes annotated to them with varying confidence levels. In this
case it is of utmost importance to inspect the enrichment results by visualizing
the affected categories and their relationships. For KEGG pathways the problem
on the other hand is the relatively low number of genes annotated to each of the
couple of hundred pathways, which causes even the most enriched pathways to
typically contain only a few affected genes. Visual inspection of the affected genes
on the pathway map context may thus significantly aid the interpretation of the
results. In addition, the ability to easily check the significance and fold-change
of the associated genes further enhances the conclusion making based on the en-
richment results. All these features are present in our novel tool, GeneFuncster,
that is available as an online web tool (http:/ /bioinfo.utu.fi/GeneFuncster) pro-
viding an intuitive user interface and fast analysis. The tool is able to analyze
data from human and mouse and various other organisms and can be used for
high-throughput gene expression data or any other biological data type generat-
ing gene lists with potentially enriched functions.

II Biclustering of high-throughput gene expression data with Bi-
clusterMiner

In Publication II, a novel tool for biclustering of high-throughput gene expression
data was developed. In general, biclustering holds the promise to avoid the ma-
jor problems of the traditional clustering based approaches, namely the inclusion
of each gene to resulting clusters exactly once and the consideration of patterns
across all of the conditions without exceptions. As genes are known to act in
modules and each gene may participate in more than one function, biclustering
is an attractive approach for handling gene expression data. It also allows the
simultaneous detection of patterns only across a subset of the samples or sam-
ple condition groups which makes it especially useful when working with large
data sets consisting of a high number of samples and sample condition groups.
Despite the clear theoretical benefits, biclustering has not gained wide popular-
ity within the gene expression research community which may be due to several
different reasons, the lack of usable and efficient methods being one of them. An-
other possible hindrance is the lack of good guidelines for preprocessing the data
for biclustering which we also aimed at correcting by providing a comprehensive
summary in our publication on the important issues to take into account. More-
over, we discuss the various different schemes in which biclustering can be ap-
plied to gene expression, a topic that also has not been comprehensively handled
in the previous literature. Most of the popular biclustering approaches for gene
expression data work on discretized data as handling real valued data is compu-
tationally very demanding and result interpretation is difficult without sufficient
data dimensionality reduction. In practice typically the data is binarized to two
value categories. This however leads to the ignorance of the direction of the gene
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regulation, although this is known to be biologically important. On the other
hand, some methods apply greedy search due to which they may miss important
gene modules and patterns. To our knowledge, our new method, BiclusterMiner,
is the first discrete biclustering method able to work on three value categories
(i.e. take the direction of the gene regulation into account) and yet discover all
maximal biclusters (i.e. those not fully contained by any other bicluster). Finally,
comparison to popular approaches shows the superiority of our method in regard
to the gene expression patterns detected and the running time.

III BiForce Toolbox: powerful high-throughput computational anal-
ysis of gene-gene interactions in genome-wide association studies

In Publication III, we developed a toolbox for gene-gene interaction analysis of
genome-wide association studies (GWAS). GWAS are generally applied to detect
genomic loci, typically single nucleotide polymorphisms (SNPs), related to quan-
titative traits or disease. Traditionally in GWAS, single SNPs have been analyzed
independently but more recently more attention has been paid to the potential
interactions between SNPs. However, the lack of usable and powerful software
has highly limited the study of gene-gene interaction analysis. Interaction anal-
ysis is computationally highly demanding as it requires handling of billions of
pairwise SNP combinations. Earlier methods are also confined to either binary
disease or quantitative traits and many of them are designed specifically for com-
puters equipped with particular graphical processing units. To address these lim-
itations we developed BiForce Toolbox, a stand-alone Java program that allows
efficient gene-gene interaction analysis in quantitative and disease traits across
all commonly used computer systems. The implementation is taking advantage
of the efficient bitwise computing technologies and multi-threaded paralleliza-
tion and the software allows full pairwise genome scans via a graphical user
interface or the command line. The combined search algorithm implemented
in BiForce Toolbox includes two consecutive genome scans: single SNP-based
genome-wide association tests and pairwise epistatic interaction tests of all SNP
combinations. Association tests are based on linear regression models and pair-
wise SNP interactions are assessed using contingency tables. As it has been indi-
cated that pathway-based approaches may narrow the search space and also en-
hance power in GWAS, enrichment analysis towards Gene Ontology and KEGG
databases was also included in the Toolbox. The tool is available for download at
http:/ /bioinfo.utu.fi/biforcetoolbox.
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IV A Note on an Exon-Based Strategy to Identify Differentially Ex-
pressed Genes in RNA-Seq Experiments

In Publication IV, we investigated the effect of the exon-based strategy compared
to the traditional gene-based strategy for the differential gene expression analy-
sis of RNA sequencing data. To detect the differentially expressed genes between
sample groups, read counts are typically summarized on the gene-level prior to
statistical testing. In our publication we present an alternative approach where
the statistical testing is first carried out on the exon level and the results are only
then summarized at the gene level. The work was motivated by the earlier re-
ported observations with Affymetrix gene expression microarrays indicating that
statistical testing of probe-level expression signals, rather than gene-level sum-
mary values, can markedly improve the detection of differential gene expression.
The proposed exon-based strategy can be applied in the context of any statistical
testing package developed for RNA-seq data. Using publicly available data sets
we demonstrate how the proposed strategy can markedly improve the sensitivity
and specificity of the detections especially for genes with moderate but systemic
changes.

V Comparison of software packages for detecting differential ex-
pression in RNA-seq studies

Publication V presents a comparison study of eight widely used software pack-
ages for detecting differential expression in RNA-seq studies. Earlier comparison
studies were based on only simulated data sets or they included very few biolog-
ical replicates and thus the aim of our study was to investigate the performance
of the methods on real data sets with a relatively large number of replicates. In
particular, we investigated the number of detections at different numbers of repli-
cates, their consistency within and between pipelines, the estimated proportion
of false discoveries and the runtimes. Our study shows that the choice of the
analysis method can markedly affect the outcome of the data analysis and that
no single tool is likely to be optimal under all circumstances. We also discovered
that the number of replicates and the heterogeneity of the samples should be
taken into account when selecting the pipeline and thus we also provide general
guidelines for choosing a robust pipeline.
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VI Transcriptome profiling of the murine testis during the first wave
of spermatogenesis

In Publication VI, we designed experiments and analyzed the produced RNA se-
quencing data to study gene expression during sperm development in mouse to
elucidate the stage specificity and complexity of testicular transcription machin-
ery. During the project we developed gene expression data analysis pipelines
and functional enrichment analysis tools, which were applied for the mouse data
and later included in Publications I-IIL. In the study, testis samples were exam-
ined in two replicates at five different time points (post natal days 7, 14, 17, 21
and 28) during the first wave of spermatogenesis in the context of germ cell dif-
ferentiation. The samples were sequenced with the Life Technologies” SOLiD 4
deep sequencing platform at 50 bp read length. The first wave of spermatoge-
nesis in the mouse provides an invaluable tool for the characterization of gene
expression and cellular events during spermatogenesis, which were previously
largely unknown. The RNA-seq data were analyzed for differential expression in
the gene level as well as in the isoform level. Across four chronological compar-
isons between the consecutive time points, altogether 2494 genes were detected
as differentially expressed, which represents approximately 9% of all annotated
genes detected expressed in the mouse testis. Many of the detections were found
to be specific to a certain comparison. Extensive functional enrichment analysis
revealed that the differentially expressed genes were highly enriched in many bi-
ological processes important for correct sperm development and related to sper-
matogenesis, reproduction, meiosis and fertilization. In isoform level analysis
over 160 000 forms were identified of which nearly 40 000 did not have any over-
lap to previously known genes and 57% of all expressed genes were found to
have at least two isoforms. Large differences in the promoter and transcription
start site usage were detected even between the first two time points that did not
show many differences in the gene level, illustrating the complexity of the tran-
scriptional regulation in the testis. The differentially expressed isoforms were
found to be mostly involved in protein domain specific binding, nucleotide bind-
ing and telomeric DNA binding. The data were also analyzed for differential
expression of the long non-coding RNAs, the expression of which was found to
be highly specific to each time point.

VII Tetl and Tet2 regulate 5-hydroxymethylcytocine production and
cell lineage specification in mouse embryonic stem cells

Publication VII presents the results of a study to clarify the functional roles of
Tet proteins during mammalian development. This newly-discovered family of
DNA-modifying enzymes was studied in mouse embryonic stem cells (ESC) and
induced pluripotent stem cells (iPSC). These cells can be maintained in the prolif-
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erative, undifferentiated state in culture, possessing features of self-renewal and
ability to differentiate, characteristic of a pluripotent state, known to require a
high degree of epigenetic plasticity. Tetl and Tet2 are able to alter the methyla-
tion status of DNA, known to influence many biological processes during mam-
malian development and being highly aberrant in cancer. Dynamic changes in
DNA methylation occur during early embryogenesis and both methylation and
Tet expression/activity are tightly regulated during ESC differentiation. For this
study, the whole genome expression analyses of Tetl knock down and control
knock down ES clones from ES or 4-week trophoblast stem (TS) cell culture were
performed using the [llumina mouse WG-6 v2.0 expression beadchip array at the
Finnish Microarray and Sequencing Centre following the array manufacturer’s
standard protocols. At least 3 independent clones were analysed in each group.
This study shows that Tetl and Tet2 are the key enzymes responsible for the pres-
ence of 5-hydroxyme-tylcytocine (6hmC) methylation in mouse ESCs and iPSCs
and that their expression is regulated by Oct4. The data suggest a complex rela-
tion between Tet proteins and DNA methylation and highlight a strong correla-
tion between Tet1 and Tet2 expression and the pluripotent state. Thus Tet proteins
are identified as key regulators of early embryonic differentiation. The data also
indicate that these enzymes do not act alone but, rather, operate in coordination
with developmental signals to regulate lineage determination at decision points
that are critical for early lineage commitment. Taken together, these data suggest
that dysregulation of DNA methylation via TET proteins and hmC may have a
role in ESC pluripotency, oncogenic transformation and neuronal function. The
analysis of the microarray data involved applying and optimizing various meth-
ods and approaches for preprocessing, statistical testing, functional analysis and
result visualization, later to be included in publications I-IIL
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6 DISCUSSION

The completion of the sequencing of the human genome in the beginning of the
last decade and the rapid development of several high-throughput measurement
technologies during the last couple of decades has resulted in an exponential
growth in the amount of biological data produced per year. This has made the ef-
ficient and reliable data analysis and result interpretation a serious bottle neck in
the field — a situation which is well condensed in the nowadays often cited state-
ment: researchers are drowning in data but starving for knowledge. The measurement
technologies also continue to develop very fast which is predisposing consider-
able challenges for the method and software developers. While DNA microarray
technology and the related data analysis methods have started to mature and sta-
bilize, novel deep sequencing technologies and upgrades to currently available
technologies are frequently being introduced. Thus the data analysis tools also
need to be constantly updated to match the technological developments and for-
mat changes.

Consequently, the field of bioinformatics is also evolving fast and a huge
number of novel methods and data analysis tools are published each year. How-
ever, applying these tools for analyzing data sets in real research projects is not
always that straight-forward for many practical reasons. Firstly, many methods
are still published without a working or openly available implementation. Sec-
ondly, the implementation can be based on a specific programming language or
computing environment that the user has to be familiar with in order to use the
method. Some of the methods are also based on commercial software packages,
like Matlab, which further restricts their availability to all interested researchers.
Installation of many methods and tools also requires advanced IT skills beyond
those possessed by most biological researchers. Thirdly, as many freely available
tools are developed by a single researcher or a research group, their general us-
ability and the level and quality of documentation greatly varies and many tools
also lack proper user support and maintenance schemes and thus easily become
obsolete. Thus it is important not just to develop new methods but to provide
them for the research community as user-friendly tools with good support for
the users. Following this observation, we are currently working on creating an R
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package implementation of the exon-based differential expression method, devel-
oped in Publication IV. Finally, as many analysis methods are typically available
for the same purpose, the choice of the method can be a daunting task for an in-
dividual researcher. Some original method publications include a comparison to
other popular methods, typically illustrating their superiority compared to oth-
ers. Unfortunately, these comparisons are typically based on a single or very few
data sets and thus their general reliability often remains relatively low. In the gen-
eral absence of good benchmarking data sets with known ground truth, unbiased
extensive comparison studies, also taking the practical usability of the methods
into account, are extremely valuable, such as the one presented in Publication V.

Regarding the other methods and tools developed within this thesis, Gene-
Funcster (developed in Publication I) remains publicly available online and is
routinely used by many researchers at the Turku Centre for Biotechnology at the
University of Turku, and others. The tool has been expanded to include the Re-
actome pathway database [18] in order to compensate for the discontinued free
content updates to the popular KEGG pathway database, previously used as the
primary source of pathway information within GeneFuncster. Support for ad-
ditional organisms has also been added. Based on the user feedback, in the fu-
ture it would be very interesting to add features for enabling an easy comparison
between several enrichment analysis runs. Biclustering (topic in Publication II)
continues to be an interesting research topic within bioinformatics. Oghabian et
al. [70] recently compared various biclustering methods and concluded that bi-
clustering algorithms in general can discover more relevant genes compared to
one-way clustering methods. Naulaerts et al. [66] also illustrated the applicabil-
ity of biclustering and related frequent itemset mining techniques for different
bioinformatics application domains. BiclusterMiner, developed in Publication II
continues to be available for download online. In the future, it would be interest-
ing to expand the method to work on the real numbers instead of the discretized
input currently supported. BiForce Toolbox for epistasis analysis, developed in
Publication III, has been downloaded 350 times since its publication and is still
actively used. The software was originally developed for bioinformaticians who
have the skill to install and operate software in computer cluster environment. As
it is important to make the developed tools available for those lacking the skills
and high performance computing equipment we are currently working with a
web server based version of the toolbox. The current status of the epistasis analy-
sis has been recently discussed in [107] where the authors concluded that epistasis
detection studies so far have shown that large interaction terms between pairwise
SNPs are unlikely to exist. However, they envision the next step in the epistasis
research is to focus on meta-analyses integrating data over several previously
carried out GWAS and to consider multilocus epistatic variance in addition to
analyzing locus pairs. Such a multilocus approach has been recently introduced
in [43], for example.

The current rapid accumulation of data representing various high-through-
put data types in public repositories presents both a considerable challenge and
a huge opportunity for the bioinformatics research in the future. Moving from
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the analysis of individual data types towards integrative approaches holds the
promise of building increasingly accurate models of the complex biological sys-
tems. This kind of integrative analysis will require novel sophisticated and effi-
cient analysis methods. In order to fully take an advantage of the integration of
these large data sets, the development of user-friendly tools with efficient visu-
alization approaches and easily interpretable result reports will become increas-
ingly important in the future.
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