
Turku Centre for Computer Science

TUCS Dissertations
No 209, March 2016

Charalampos Zinoviadis

Hierarchy and Expansiveness
in Two-Dimensional Subshifts
of Finite Type

Hierarchy and Expansiveness in
Two-Dimensional Subshifts of Finite

Type

Charalampos Zinoviadis

To be presented, with the permission of the Faculty of Mathematics and
Natural Sciences of the University of Turku, for public criticism in
Auditorium I/Tauno Nurmela-sali on March 11, 2016, at 12 noon.

University of Turku
Department of Mathematics and Statistics

FI- 20014 Turku
Finland

2016

Supervisor

Jarkko Kari
Department of Mathematics and Statistics
University of Turku
FI-20014 Turku
Finland

Reviewers

Andrei E. Romashchenko
Laboratoire d’Informatique, de Robotique et de Microélectronique de
Montpellier
University of Montpellier
Université Montpellier 2, LIRMM UMR 5506, CC477, 161 rue Ada,
34095 Montpellier Cedex 5
France

Nicolas Ollinger
Laboratoire d’Informatique Fondamentale d’Orléans
University of Orléans
LIFO 3IA, 6 rue Léonard de Vinci, BP 6759, 45067 Orléans Cedex 2
France

Opponent

Mike Hochman
Einstein Institute of Mathematics
The Hebrew University
Edmond J. Safra Campus (Givat Ram), Jerusalem 91904
Israel

Abstract

Subshifts are sets of configurations over an infinite grid defined by a set of
forbidden patterns. In this thesis, we study two-dimensional subshifts of
finite type (2D SFTs), where the underlying grid is Z2 and the set of for-
bidden patterns is finite. We are mainly interested in the interplay between
the computational power of 2D SFTs and their geometry, examined through
the concept of expansive subdynamics. 2D SFTs with expansive directions
form an interesting and natural class of subshifts that lie between dimen-
sions 1 and 2. An SFT that has only one non-expansive direction is called
extremely expansive. We prove that in many aspects, extremely expansive
2D SFTs display the totality of behaviours of general 2D SFTs.

For example, we construct an aperiodic extremely expansive 2D SFT and
we prove that the emptiness problem is undecidable even when restricted
to the class of extremely expansive 2D SFTs. We also prove that every
Medvedev class contains an extremely expansive 2D SFT and we provide a
characterization of the sets of directions that can be the set of non-expansive
directions of a 2D SFT. Finally, we prove that for every computable sequence
of 2D SFTs with an expansive direction, there exists a universal object
that simulates all of the elements of the sequence. We use the so called
hierarchical, self-simulating or fixed-point method for constructing 2D SFTs
which has been previously used by Gács, Durand, Romashchenko and Shen.

i

ii

Acknowledgements

First of all, I would like to express my gratitude to my supervisor, Professor
Jarkko Kari, for his guidance, support and patience as well as for trusting
in me.

I am grateful to Dr. Andrei Romashchenko and Professor Nicolas Ollinger
for agreeing to review my dissertation and for their constructive comments
that helped me improve the thesis.

I would also like to thank Professor Mike Hochman for agreeing to act
as my opponent. It is both a pleasure and an honour for me, since his
mathematical work has largely influenced the direction of my research.

I am also heavily indebted to Dr. Pierre Guillon. Almost all of the
results included in this thesis have been obtained in close, even if usually
difficult, collaboration with him. We often disagree about everything, but
this has helped me learn and, hopefully, improve the content and form of
my thesis.

I am grateful to the Turku Center for Computer Science (TUCS), the
Finnish Academy of Science and Letters, Professor Jarkko Kari and the De-
partment of Mathematics for providing me with steady funding during the
course of my PhD studies. Thanks to everybody that works in the Depart-
ment of Mathematics, the working environment has always been warm and
supportive, and this has helped very much my stay in Finland.

Finally, I want to thank my friends and family for their love and support.

iii

iv

Contents

1 Historical overview 1

2 Preliminaries 9

2.1 Basic definitions . 9

2.2 Computation . 12

2.2.1 Turing machines . 12

2.2.2 Computability . 13

2.2.3 Degrees . 15

2.3 Symbolic dynamics . 16

2.4 Cellular automata . 17

2.4.1 Expansiveness . 19

3 Simulation 23

3.1 Simulation . 23

3.2 Nested simulations . 27

3.3 Expansiveness and simulation 32

3.4 Explicit simulation . 35

4 The programming language 39

4.1 Definitions and basic permutations 39

4.2 Conventions about defining IPPA 42

5 The universal simulator 45

5.1 Imposing a periodic structure 45

5.2 Simulating TM with IPPA . 47

5.3 Computing the simulated permutation 52

5.4 Shifting . 57

5.5 Simulating any fixed rule . 59

5.5.1 Satisfying the inequalities 61

6 Infinite hierarchies 63

6.1 Son-father checks . 63

6.2 Self-simulation . 65

v

6.2.1 Satisfying the inequalities 68
6.3 Hierarchical simulation . 70

6.3.1 Satisfying the inequalities 72
6.4 Universality . 76

6.4.1 Satisfying the inequalities 78
6.4.2 Domino problem . 79
6.4.3 Intrinsic universality 80

6.5 Synchronizing computation 81
6.5.1 Satisfying the inequalities 83
6.5.2 Realizing computational degrees 83

7 Expansive directions 87
7.1 Directive encoding . 87
7.2 Computing directions . 90
7.3 Realization of sets of non-expansive directions 91

7.3.1 Satisfying the inequalities 94
7.3.2 Realization . 95

vi

Chapter 1

Historical overview

This thesis is about two-dimensional subshifts of finite type (2D SFTs), and
more specifically, the behaviour of 2D SFTs with respect to a dynamical-
geometrical notion called expansive subdynamics.

The mathematical study of 2D SFTs began with the paper of Wang [40].
A Wang tile set consists of a finite number of unit squares with coloured
edges, which are called tiles. A valid tiling is a way to fill the entire plane
with tiles such that the squares are edge-to-edge and such that the colors of
abutting edges are the same. Wang asked the following question about Wang
tile sets, which is called the tiling problem: Does there exist an algorithm
that takes as input an arbitrary Wang tile set and decides whether it admits
a valid tiling? He conjectured that the answer to this question is positive
and proved that the problem is strongly correlated to the problem of the
existence of an aperiodic tile set, that is a tile set that admits some valid
tiling but no periodic valid tiling.

However, Berger [4] proved that this is not the case. In fact, he proved
that the tiling problem is undecidable. In addition, his proof contained an
explicit construction of an aperiodic tile set. Later, several authors have
given alternative constructions of aperiodic tile sets and proofs of the unde-
cidability of the tiling problem [37, 25, 26].

There is an alternative way of looking at and talking about the same
problem. Let A be a finite set, called the alphabet. A (two-dimensional,
or 2D) configuration is a map c : Z2 → A. The set of all configurations
AZ2

is called the full shift. A pattern is a map p : D → A, where D ⊆ Z2

is a finite set. Let F be a set of forbidden patterns. The corresponding
(2D) subshift XF is the set of all configurations that avoid the patterns of
F : for all finite D ⊆ Z2 and c ∈ XF , c|D /∈ F . If X = XF for some finite set
of forbidden patterns, then it is called a 2D subshift of finite type (SFT). In
this thesis, we will only talk about 2D subshifts and SFTs, so that we will
usually omit the dimension, except in statements of theorems.

1

It is not difficult to see that the set of valid tilings of a Wang tile set
is an SFT. In addition, for every SFT, we can construct a Wang tile set
whose set of valid tilings is, in some sense, equivalent to the given SFT.
The tiling problem can thus be rephrased as the emptiness problem for
SFTs: Given a finite set of forbidden patterns, can we algorithmically decide
whether XF 6= ∅? The undecidability of the tiling problem then is then
immediately translated to the undecidability of the emptiness problem of
SFTs.

Wang tiles and forbidden patterns give a geometrical definition of SFTs,
but there also exists an equivalent dynamical definition. First of all, the
full shift can be endowed with the product topology of the discrete topology
on A. This gives rise to a compact, metrizable topological space. The
horizontal and vertical shifts, which consist in moving a configuration
one step to the left and up, respectively, are continuous with respect to this
topology and obviously commute. This defines a Z2 action over the full shift
and we can study it using the usual tools of topological dynamics.

For example, one can prove that subshifts are exactly the closed, shift-
invariant subsets of the full shift, or, equivalently the subsystems of the full
shift. SFTs correspond to the chain-mixing subsystems of the full shift.
More importantly, for the purposes of this thesis, we can study 2D SFTs
from the point of view of their expansive subdynamics. This notion
was defined by Boyle and Lind [6] as a tool for studying multidimensional
dynamical systems by looking at the (lower-dimensional) actions induced by
the subgroups of the original action. Intuitively, this is the same as when we
look at the lower-dimensional projections of a surface in order to understand
some of its properties.

The general definition of expansive subdynamics and the main results of
[6] fall out of the scope of this thesis. However, for 2D subshifts there exists
an equivalent, natural geometrical definition. Let X ⊆ AZ2

be a subshift,
l ∈ P := R t {∞} a slope and l ⊂ R2 the corresponding line that passes
through the origin. We say that l is an expansive direction of X if there
exists a finite shape V ⊂ R2 such that, for all x, y ∈ X,

x|(l+V)∩Z2 = y|(l+V)∩Z2 ⇒ x = y .

In other words, there exists a fixed width b > 0 such that every config-
uration of X is uniquely defined by its restriction to the strip of slope l
and width b that goes through the origin (in fact, by shift invariance, by
any strip). Geometrically, this means that in X the (2D) information of
the configuration is “packed” inside the one-dimensional strip of slope l. In
some sense, even though X is a two-dimensional object, it is determined by
a one-dimensional strip, so that subshifts with directions of expansiveness
are somewhere between dimensions 1 and 2.

2

A direction that is not expansive is called non-expansive. Let N (X) be
the set of non-expansive directions of X. Boyle and Lind proved that N (X)
is closed in the one-point compactification topology of P and that N (X) 6= ∅
if and only if X is infinite. Since finite subshifts are rather trivial, the most
restricted non-trivial case with respect to non-expansive directions is the
case when X has a unique direction of non-expansiveness. We call such a
subshift extremely expansive. Extremely expansive SFTs form the main
object of interest in this thesis. We prove that in many aspects, extremely
expansive SFTs are computationally as powerful as general SFTs.

Before stating the results, we find it useful to talk about another class
of SFTs with many directions of non-expansiveness, namely those that arise
from deterministic tile set. A tile set is called NW-deterministic (the
initials stand for North and West) if every tile is uniquely determined by
the colors of its top and left sides[23]. Similarly, we can define SW, SE and
NE deterministic tile sets (S and E stand for South and East, respectively).
A tile set is called 4-way deterministic if it is SW,NW,SE and NE de-
terministic [22]. One can easily see that for the SFT associated to a 4-way
deterministic tile set and for every direction l that is not the vertical or
the horizontal one (slopes ∞ and 0, respectively), l is an expansive direc-
tion. Guillon, Kari and Zinoviadis recently proved [13] that the vertical and
the horizontal direction must indeed be non-expansive unless the associated
SFT is in some sense trivial, namely vertically or horizontally periodic.

We can now start stating the results of the thesis. The first result con-
cerns the existence of an aperiodic extremely expansive SFT. As mentioned
earlier, for the unrestricted case, there exist various constructions of aperi-
odic SFTs. Kari and Papasoglou [22] have constructed an aperiodic 4-way
deterministic tile set. According to what was said in the previous paragraph,
the SFT associated to this tile set has exactly two non-expansive directions,
the vertical and the horizontal one. We prove that

Theorem 1. There exists an aperiodic extremely expansive 2D SFT.

Of course, our construction does not use a 4-way deterministic tile set.
It might seem that this result is strictly better than the one using 4-way
deterministic tile sets, since we have one non-expansive direction less. How-
ever, there exists a small nuance here: 4-way deterministic tile sets give rise
to SFTs with so-called bounded radii of expansiveness, while our con-
struction does not have this property. In addition, in [13] it is also proved
that every aperiodic SFT with bounded radii of expansiveness must have
at least two non-expansive directions. Therefore, the 4-way deterministic
construction is also optimal, in the class of SFTs with bounded radii of ex-
pansiveness, and it might be more precise to say that the two results are
incomparable.

3

As mentioned already, the existence of an aperiodic tile set was originally
constructed in order to prove that the tiling problem is undecidable. Kari
[23] prove that the tiling problem for NW-deterministic tile sets is undecid-
able. In addition, Lukkarila [31] used the 4-way deterministic tile set of Kari
and Papazoglou in order to prove that the tiling problem is undecidable for
4-way deterministic tile sets as well. As the reader has probably guessed
already, we prove that

Theorem 2. The emptiness problem of extremely expansive 2D SFTs is
undecidable. More precisely, the emptiness problem is undecidable for 2D
SFTs such that the vertical direction is the only non-expansive direction.

One should understand the previous statement in the following sense:
even if one is given an SFT X (as a finite set of forbidden patterns) and
is given the additional information that X is either empty or extremely-
expansive (and in this case N (X) = {∞}), even then it is not possible to
decide whether X = ∅. In other words, it is not possible to algorithmically
separate the sets of forbidden patterns that define empty SFTs from those
that define extremely expansive non-empty SFTs.

The third result can be considered a stronger version of the undecidabil-
ity of the emptiness problem. We prove that there exist extremely expansive
SFT whose configurations are computationally as complicated as possible.

In order to describe this result, we need to introduce some classical
notions of computation theory. For the purposes of this introduction, a
computable function will mean a function f : AN → AN such that there
exists a Turing Machine that outputs f(c) when originally its reading tape
contains c (i.e., it outputs f(c) with oracle c). Using an effective enumeration
of Z2, it is possible to talk about computable functions with domain or range
AZ2

, and in general AM, where M is any effectively enumerable set.
We say that d ∈ AM is reducible to c ∈ AM′ if there exists a computable

function f such that f(c) = d. This means that c is computationally at least
as complicated as d, since it is possible to obtain d using c and a computable
function. A subset Y ⊆ AM is called Medvedev reducible to AM′ if every
point of Y is reducible to some point of X. Intuitively, we can compute any
point of Y with the help of a suitable point of X and a computable function.
The relation of Medvedev reducibility is a pre-order on subsets.

Two sets are called Medvedev equivalent if they are Medvedev reducible
to each other. This is an equivalence relation, whose equivalence classes
are called Medvedev degrees. There exists a partial order on the set of
Medvedev degrees given by the natural lift of the Medvedev reducibility pre-
order. Computable sets are the least element of this order and, in a certain
sense, the higher a set is in this hierarchy, the more difficult it is to compute
a point of this set relative to the sets that lie lower in the hierarchy. The
survey [16] contains a thorough study of Medvedev degrees.

4

A set X ⊆ AM is called effectively closed if its complement is semi-
decidable. Effectively closed sets form the so-called Π1

0 sets and they play a
very important role in computation theory. It is easy to see that SFTs are
effectively closed, even though there exist many effectively closed sets (and
even effectively closed subshifts) that are not SFTs. However, Simpson [38]
proved that every effective Medvedev degree (i.e., the Medvedev degree of
an effectively closed set) contains a 2D SFT. Therefore, in some sense, not
only is the emptiness problem undecidable for 2D SFTs, but their points
can be as difficult to compute as possible. We improve this result to the
extremely expansive case:

Theorem 3. Every effective Medvedev degree contains an extremely expan-
sive 2D SFT. In other words, for every effectively closed set Z ⊆ AM, there
exists an extremely expansive 2D SFT Y that is Medvedev equivalent to Z.

In fact, we prove something stronger, giving a complete characterization
of the so-called Turing degrees of Y relative to those of Z, but it is not
necessary to go into these details here.

The next result is of a dynamical flavour and it does not concern ex-
tremely expansive SFTs, but sequences of SFTs with a common rational
direction of expansiveness. It also uses the notion of simulation, which is of
central importance in the proofs of the previous results and, in general, for
the whole thesis, even though it wasn’t mentioned until now.

We say that subshift X ⊆ AZ2
simulates subshift Y ⊆ BZ2

with param-
eters (S, T) if there exists a B-colouring of the S × T blocks of X with the
following property: Every configuration of X can be partitioned in a unique
way into S×T rectangles such that when we color these rectangles with the
B-colouring we obtain a configuration of Y . Inversely, every configuration
of Y can be obtained in this way.

This is weaker than the notion of simulation that we actually use, but
it follows from it, is enough to describe the result and is much easier to
describe. It corresponds to the definitions in [8].

It was proved in [28] that for every computable sequence of SFTs, there
exists an SFT that simulates all of them. This is a surprising and really
strong result. We prove a version of it in the case where all the SFTs of the
sequence have a common, rational expansive direction (which without loss
of generality we assume to be the horizontal one):

Theorem 4. Let X0, X1, . . . be a computable sequence of 2D SFTs such
that 0 ∈ N (Xi), for all i ∈ N. Then, there exists a 2D SFT X such that X
simulates Xi for all i ∈ N and 0 ∈ N (X).

We note that there cannot exist a 2D SFT with an expansive direc-
tion that simulates all 2D SFTs with the same expansive direction, because

5

this would imply the decidability of the emptiness problem for extremely
expansive SFTs, according to an argument of Hochman [17].

The final result of the thesis answers a natural question which arises
immediately after the construction of an extremely expansive SFT. As stated
already, the unique non-expansive direction of the SFT that we construct
is the vertical one. Which other directions can be the unique direction of
non-expansiveness for 2D SFTs? Obviously, we can achieve any rational
direction with the help of an affine transformation, but can we do more?
More generally, what are the sets of directions that can be the set of non-
expansive directions of a 2D SFT?

Hochman [19] proved that for general 2D subshifts (not necessarily of
finite type, or even effective), any closed set of directions can be the set of
non-expansive directions, while any direction can be the unique direction
of non-expansiveness. Recall that Boyle and Lind proved that the sets of
non-expansive directions must be closed, so it turns out that in the case of
general subshifts this necessary topological condition is also sufficient.

In the case of SFTs, there is an additional necessary condition, namely
that the set of non-expansive directions be effectively closed, which is
equivalent to saying that its complement is the union of an increasing, com-
putable sequence of open intervals. It turns out that this condition is nec-
essary and sufficient for 2D SFTs:

Theorem 5. A set of directions N is the set of non-expansive directions of
a 2D SFT if and only if it is effectively closed. More precisely, a direction
l is the unique direction of non-expansiveness of a 2D SFT if and only if it
is computable.

This answers Question 11.2 in Boyle’s Open Problems for Symbolic Dy-
namics [5].

Using our methods, we could easily prove Theorems 1-3 for SFTs whose
unique direction of non-expansiveness is l, where l is any computable direc-
tion. This is a stronger version of the results, which we do not prove for
lack of space. In any case, once one has mastered our method, it is possible
to prove various new results and variants of already proved ones. Since this
method is as important (if not more) as some of our results, it is probably
worth saying some words about its history, too.

It is the so-called fixed-point tile or self-simulating method for con-
structing 2D SFTs. It was firstly described by Kurdyumov [27] in order to
give a counterexample to the Positive Rates conjecture, even though only a
sketch of a proof was included in this paper. It was Gács [9] who elaborated
Kurdyumov’s idea into a full proof of the positive rates conjecture and for-
malized the notion of a hierarchy of simulating SFTs (he talks about 1D
cellular automata, but this does not make a big difference). Later, he sig-
nificantly improved his construction and the result in a notoriously lengthy

6

and difficult paper [10]. Gray’s reader guide to that paper [12] and the de-
scription therein of self-simulation and the problems one encounters when
trying to construct a self-simulating SFT are also a very useful exposition of
the ideas of Gács and Kurdymov. It was not until the work of Durand, Ro-
mashchenko and Shen [8] that the method became accessible to a broader
mathematical audience. They work in the framework of 2D SFTs, which
allows for a more clear, geometrical description of the basic ideas.

Gács’ construction did not have any direction of expansiveness, because
it was a non-reversible cellular automaton. Nonetheless, it had the horizon-
tal direction as a direction of “semi-expansiveness”. On the other hand, the
construction of Durand, Romashchenko and Shen did not have neither direc-
tions of expansiveness neither directions of “semi-expansiveness”. A large
part of this thesis consists in making their construction expansive in the hor-
izontal direction. We need to introduce some tricks in order to do this, but
once we achieve it, then self-simulation and a previous result of Hochman
immediately give an extremely expansive aperiodic SFT. Something similar
was also done in [14], but the construction of that paper was significantly
easier because we dealt with non-reversible cellular automata, so that we
only needed a direction of “semi-expansiveness”. Our current construction
can be seen as an improvement of the construction of that paper, and using
it we can easily retrieve its main result, which was a characterization of the
numbers that can appear as the topological entropy of a (not necessarily
reversible) CA.

One thing that all the constructions have in common, including ours,
is that they are complicated and rather difficult to explain (for the writer)
and understand (for the reader). This is unavoidable, in some degree, and
the author’s personal opinion is that there does not exist a “perfect” way
to write them. Either the exposition is very formal, covering all details
and defining every little thing, which is the road that we have chosen, or
the construction is informal, in which case it is not clear what exactly the
constructed SFT is, over which alphabet it is defined etc., which is the choice
made by Durand, Romashchenko and Shen. Taking the middle road, as was
more or less done by Gács, does not help very much, either.

Our opinion is that the best thing is to be familiar with all the con-
structions and use them accordingly. On the one hand, the constructions
of Durand, Romashchenko and Shen are convincing for someone already fa-
miliar with the technique and they allow to explain a new idea concisely
and efficiently, as was recently done in [7], while on the other hand our
more formal presentation can be used to acquire mastery with the tech-
nique by dealing with all the unexpected little problems that arise during
the construction and to convince those people who want to understand all
the details.

Let us now describe the structure of the thesis:

7

In Chapter 2, we give the basic definition that we will need throughout
the paper. In Chapter 3, we define the precise notion of simulation that we
will use and give some of its properties. We believe that some of the results
of this chapter are of independent interest. In Chapter 4, we describe a
pseudo-programming language that will be used to describe 2D SFTs in a
concise way. In Chapter 5, we construct a family of SFT (which depend on
the parameters S, T) with 0 as a direction of expansiveness which are, in
some sense, universal: They can simulate every SFT with 0 as a direction
of expansiveness, provided that its alphabet size is small compared to S, T
and it can be computed fast compared to S, T . This family of SFTs is
of great importance for all subsequent constructions. This is the part of
the thesis where we modify the construction of Durand, Romashchenko and
Shen so as to make it reversible. In Chapter 6, we prove Theorems 1 - 4.
The constructions and the proofs all follow the same pattern, but we give as
many details as possible for all of them for reasons of completeness. Finally,
in Chapter 7, we prove Theorem 5. This proof is a modification of the proof
of the result in [19]. We try to explain what are the differences between that
construction and ours and why the changes that we make are necessary.

Finally, let us mention that all of the aforementioned results have been
obtain in collaboration with Pierre Guillon during various visits by him in
Turku as well as of the author in Marseille. Currently, a series of joint
papers is under construction that will contain even more applications of our
method. Theorem 1 has also appeared in [41], even though because of lack
of space, most of the details of the construction do not appear in that paper.

8

Chapter 2

Preliminaries

2.1 Basic definitions

We will denote by Z, N, N1, Q and R the sets of integers, non-negative
integers, positive integers, rational and real numbers, respectively, by Ji, jJ
and Ji, jK the integer intervals {i, . . . , j−1} and {i, . . . , j}, respectively, while
[ε, δ] will denote an interval of real numbers. If f, g : N → N, then we will
use the classical f ∈ O(g) notation to denote that f(n) ≤ cg(n), for some
constant c and all n ∈ N.

If f : X 9 Y is a partial function, then its domain D(f) ⊆ X is the set
of elements of X whose image through f is defined. Two partial functions
are equal when they have the same domain and they agree on their common
domain. If f : X 9 Y and g : Y 9 Z are partial functions, then g ◦ f : X 9
Z is the partial function defined in the usual way (i.e., g(f(w)) does not
exist if either w /∈ D(f) or f(w) /∈ D(g)). A partial permutation is a
bijection over its domain onto its range, i.e., an injective partial map. In
the following, when defining a partial function, it will be implicit that any
non-treated argument has an undefined image, and that saying that two
partial functions are equal means in particular that their domains are the
same. If Z ⊂ X and f : X 9 Y , we may abusively consider f|Z as a partial
map from X to Y whose domain is Z ∩ D(f).

For m ≥ n, T := (Ti)0≤i<m and t := (ti)0≤i<n such that for all i, 0 ≤
ti < Ti, we note t

T
:=
∑

0≤i<n ti
∏

0≤j≤i Tj the numeric value represented
by the adic representation t in base T. In general, Ti and ti can belong
in R, not necessarily in N. By convention, if t has length 0, then t

T
:= 0.

Similarly, for a sequence T := (Ti)i∈N, we note t
T

:= t
TJ0,nJ . For a sequence

t := (ti)i∈N, we note t
T

:= lim tJ0,nJ
TJ0,nJ , when this limit exists.

An alphabet is any finite set, whose elements are often called symbols.
If A is an alphabet, A∗ :=

⋃
n∈NAn denotes the set of finite words over

A, and A∗∗ :=
⋃
m∈N (A∗)m the set of finite tuples of words. (Notice that

9

the notation A∗∗ is a little ambiguous as it could also stand for the set⋃
m∈N (Am)∗. Obviously, the two interpretations are isomorphic, but they

are different objects.) The empty word is denoted by ε ∈ A∗.
If w ∈ An, we write w = w0 · · ·wn−1, and call |w| := n the length of w.

If u ∈ (A∗)m, we write u = (u0, . . . , um−1), and |u| := (|u0| , . . . , |um−1|).
For every i ∈ N, we define the projection πi as a partial function πi : A∗∗ 9
A∗: πi(u) = ui if u ∈ (A∗)m with m ≥ i (and πi(u) is undefined otherwise).
A field is a projection πi together with a label Field, written in type-writer
form. The notion of fields is simply a convenient way of talking about tuples
of words. The names of the fields will be chosen so as to reflect the role that
the field plays in the construction.

We note N∗ :=
⋃
m∈NNm the set of integer tuples of any dimension,

where m is the dimension of the tuple k := (k0, . . . , km−1) ∈ Nm. Let
Ak := Ak0 × . . .×Akm−1 ; any subalphabet of Ak is said to have constant
lengths.

We will mainly use the special alphabets Fn := {0, . . . , n − 1}, for n ∈
{2, 3, 4, 5}. Of course, instead of F5 we could use any alphabet with n letters.
However, since some letters will have a fixed role throughout the thesis, it
is better to fix the notation and get used to these roles.

The non-negative integers can be easily embedded into F∗2 thanks to the
injection n 7→ n which gives the shortest binary representation of n ≥ 1.
‖n‖ := |n| = dlog2 ne + 1 is the length of n. By definition, 0 := ε and
‖ε‖ := 0. Inversely, if u ∈ F∗2, then u is the number represented by u in
the binary representation system: for all u ∈ F∗2, u is the suffix of u that is
obtained after removing the initial 0s. (The “lower bar” is applied before
the “top bar”.)

We will also need to embed some finite sets in F∗2. For instance, we will
say that {−1,+1} is F2 by identifying −1 with 0 and +1 with 1. Finite
alphabets of bigger cardinality can be embedded into Fk2, for some suitable
k.

Now, in the perspective of computing functions with many arguments,
we are going to use symbol 2 to encode tuples into words. If u ∈ (F∗5)m for
some m ∈ N, then χ (u) is defined as the concatenation

χ (u0)χ (u1) χ (um−1) ∈ F∗3,

where χ (v) := 2vF5 , and v 7→ vF5 is some monoid injection (i.e., code)

from F
∗
5 to F∗2. In this paper, we will use the code defined by 0

F5 := 000,

1
F5 := 001, 2

F5 := 010, 3
F5 := 011, 4

F5 := 100. Note that the structure
of the encoding of word tuples depends only on |u|. We can also define
χ (u) := χ (u0)χ (u1) . . . ∈ FN

3 for u ∈ FN
5 .

Let us now prove a basic fact about χ (·). Namely, for every k ∈ N∗,
there exists an easily computable function that gives the positions of the 2s

10

in encodings of Fk
5 and the positions of the encodings of the components of

a letter.

Fact 6. Let M ∈ N and k ∈ NM . For all 0 ≤ i < M , let us define
lk,i := 3

∑i−1
j=0 kj + i. Then, for all u ∈ Fk

5 :

1. ‖χ (u)‖ = lk,M ,

2. χ (u)Jlk,i,lk,i+1J = 2πi(u)
F5

These statements correspond to what Durand, Romashchenko and Shen
refer to as “the TM know the place where such and such information is held
in the encoding”.

Symbol 3 will be used in Subsection 2.2.1 to encode the start and the
end of the tape of a Turing machine.

Symbol 4 will be used in order to construct alphabets with constant
lengths. In the computation, we indeed want words of various lengths to
be able to represent the same objects. For this, we define 〈u〉l := 4l−|u|u,
for every l ∈ N and u ∈ F∗4 with |u| ≤ l (〈u〉l is undefined otherwise). For
instance, 〈n〉‖n‖ = n for any integer n ∈ N, and the encoding 〈ε〉l = 4l of
the empty word is a sequence of 4s. It is clear that the partial function

N×F∗4 9 4∗F∗4
(l, u) 7→ 〈u〉l

is injective (over its domain) and surjective; let us write 〉w〈 ∈ F∗4 for the
longest suffix in F∗4 of a word w ∈ 4∗F∗4, in such a way that 〉〈u〉l〈 = u for
any l ≥ |u| and u ∈ F∗4. These two maps can be adapted to vectors in the
obvious way: 〈u〉k := (〈u0〉k0

, . . . , 〈um−1〉km−1
) for any k ∈ Nm, m ∈ N and

u := (u0, . . . , um−1) ∈ F∗m4 . Note that this is defined if and only if k ≥
|u|. Similarly, 〉w〈 := (〉w0〈, . . . , 〉wm−1〈) for any w := (w0, . . . , wm−1) ∈
(4∗F∗4)m.

If α : F∗∗4 9 F
∗∗
4 is a partial permutation that preserves the number

of fields (i.e., α(F∗4)l ⊆ (F∗4)l for all l ∈ N), we can transform it into an
equivalent permutation that also preserves the lengths:

〈α〉 : (4∗F∗4)∗ 9 (4∗F∗4)∗

w 7→ 〈α(〉w〈)〉|w| .

Remark 7.

• For any k ∈ N∗, 〈α〉 is also a partial permutation.

• The restriction of α to any subalphabet is implemented by that of 〈α〉
to large enough words:

∀u ∈ F∗∗4 , ∀k ≥ max{|u| , |α(u)|}, 〈α〉(〈u〉k) = 〈α(u)〉k .

11

Proof. For the first part, assume that 〈α〉(w) = 〈α〉(w′). This implies
that |w| = |w′|. In addition, α(〉w〈) = 〉〈α〉(w)〈 = 〉〈α〉(w′)〈 = α(〉w′〈).
Since α is a partial permutation, this implies that 〉w〈 = 〉w′〈. Therefore,
w = 〈〉w〈〉|w| = 〈〉w′〈〉|w′| = w′.

For the second part, let u ∈ F∗∗4 and k ≥ max{|u| , |α(u)|}. Then, 〈u〉k
and 〈α(u)〉k exist and |〈u〉k| = |〈α(u〉k)| = |k|. Therefore, 〈α〉(〈u〉k) =
〈α(〉〈u〉k〈)〉k = 〈α(u)〉k.

In the rest of the paper, we will often implicitly use Remark 7 both to
construct partial permutations that preserve the lengths of the fields, as
well as to state and prove things about them. It allows us to describe the
behaviour of a partial permutation α, and then translate this result into
the behaviour of 〈α〉, provided that the lengths of the fields are sufficiently
large, thus omitting the (confusing) 〉·〈 and 〈·〉 symbols.

Let i1, . . . , il be a set of fields, and w ∈ F∗5. Then,

Swi1,...,il := {u ∈ F∗∗5 | 〉πik(u)〈 = w, for k = 1, . . . , l}

is the set of all symbols that have fields i1, . . . , il equal to w (up to the
application of 〉·〈). If n ∈ N, let

Sni1,...,il :=
{

u ∈ F∗∗5
∣∣∣ 〉πik(u)〈 = n, for k = 1, . . . , l

}
be the set of all symbols who have the values n (in binary form) in the fields
i1, . . . , il.

2.2 Computation

2.2.1 Turing machines

The reader is assumed to be familiar with classical concepts in computability
theory. We just fix some terminology and give a variant of a definition
of Turing machines, imposing some additional technical restrictions which,
however, do not restrict the computational power.

A Turing machine (TM) is a partial (“global”) mapM from F
Z
4×Q×Z

into itself, where Q ⊂ F∗2 is a finite set of states containing the initial state
0 and the accepting state ε, and depending on a partial transition map
δM : F4 ×Q \ {ε}9 F4 ×Q× {−1,+1} such that:

M(z, q, j) =

∣∣∣∣∣∣
(z, q, j) if q = ε
(z′, q′, j′) otherwise, where (z′j , q

′, j′ − j) = δM(zj , q)

and z′i = zi, ∀i 6= j ,

12

for any (z, q, j) ∈ FZ
4 × Q × Z, which will sometimes be called a machine

configuration, the first component being the tape content, the second
the (head) internal state, the third the head position.

The model of TM that we use satisfies the following assumptions, which,
as can be easily seen, do not restrict the computational power of TM.

• There is only one tape, from which the TM reads the input and on
which it writes the output.

• The internal states are words of F∗2 (this is just a semantic restriction).

• All machines have the same initial and accepting states 0 and ε, re-
spectively.

• The global map is still defined after having accepted, and is then equal
to the identity.

• There is no precise rejecting state (instead, we use undefined transi-
tions over non-accepting states).

• In every accepting transition, the head (which disappears) moves to the
right. This is a technical assumption which simplifies the construction
of an IPPA that simulates M in Section 5.2.

If Mt(∞3.χ (u) 3∞, 0, 0) = (∞3.χ (u′) 3∞, ε, j), for some t ∈ N, j ∈ Z,
then we say that M halts over (or accepts) input u ∈ F∗∗5 , and outputs
u′ ∈ F∗∗5 , and we define fM(u) := u′ and tM(u) as the minimal t for which
this holds (if this never holds, or if ∞3.χ (u) 3∞ is rejected, then tM(u) is
undefined).

Notice that fM(u) is well-defined, since when the accepting state ε ap-
pears, the machine configuration is no more modified.

We say that M computes the partial map fM : F∗∗5 9 F
∗∗
5 , with time

complexity
tM : N → N

n 7→ max|χ(u)|=n tM(u) ,

where, by definition, the max is taken only over accepted inputs. tM
is well-defined since there are only finitely many accepted inputs of each
length.

2.2.2 Computability

A partial function f : F∗∗5 9 F
∗∗
5 is called computable if there exists

a TM M such that f = fM. Recall that integers (and finite sets) can
be identified to words, hence allowing us to talk about computable maps
between Cartesian products involving N and finite sets. We also say that a

13

set X ⊆ F∗∗4 is computable if its characteristic function ιX : F∗∗4 → F2 is
computable, and that it is computably enumerable if it is the domain of
a computable function. We will say that a partial function f : X 9 F

∗∗
5 ,

with X ⊂ F∗∗5 is computable if both X and the extension of f to F∗∗5 (by
not defining images outside of X) are computable.

A partial function Φ : FN
2 9 F

N
2 is called computable if there exists

a TM M such that x ∈ D(Φ) if and only if for all n ∈ N, there exists
m ∈ N such that fM(xJ0,mJ, n) is defined, in which case it is equal to Φ(x)n.
Finally, by parametrizing Z with N, we can talk about computable functions
Φ : FZ

2 9 F
Z
2 . An equivalent definition is that Φ : FZ

2 9 F
Z
2 is computable

if there exists a TMM such that x ∈ D(Φ) if and only if for all n ∈ N, there
exists m ∈ N′ such that fM(xJ−m,mJ, n) is defined, in which case it is equal
to Φ(x)n.

Since R can be identified with FN
2 , we can also talk about computable

functions of real numbers. A partial function Ψ : R 9 R is computable
if there exists a computable function f : R × N → Q with the following
property: |Ψ(x)− f(x, n)| < 2−n. This is the classical definition of com-
putability for real functions and it says that we can compute better and
better approximations of x.

If M is a TM, let

ZM :=
{
z ∈ FN

2

∣∣∣∀t ∈ N,Mt(3∞.z, 0, 0) exists and is not in FZ
4 × {ε} × Z

}
be the set of one-sided binary sequences over which M runs for an infinite
amount of time. We say that a subset X ⊂ FN

2 is effectively closed (or Π0
1)

if χ (X) = ZM for some TMM, or equivalently if the set of words that do not
prefix any sequence in it is computably enumerable. This can be extended
to sets of sequences that can be encoded with words, in particular over finite
alphabets: a subset X ⊂

∏
t∈NAt, where At is a finite subalphabet of F∗5, is

effectively closed if χ (X) = ZM for some program M (we encode every
finite alphabet with Fk2, for some suitable k which depends on t ∈ N).

M is called polynomial if tM ∈ O(P), for some polynomial P . A par-
tial function f is called polynomially computable if fM = f for some
polynomial TM M. It is easy to see that the class of (polynomially) com-
putable functions with this version of TM corresponds to the classical one.
Analogously, X is a polynomially computable set if its characteristic func-
tion ιX is polynomially computable. We say that a function (or sequence) f
is polynomially checkable if it can be computed in time O(P (log f)), for
some polynomial P . The terminology comes from the fact that even though
f might not be polynomially computable, its graph (i.e., the set of pairs
element-image) is a polynomially computable set. For example f(n) = 22n

is a polynomially checkable sequence even though it is not polynomially
computable.

14

Instead of a universal TM, we use the following essentially equivalent:

Fact 8. There exists an injection that associates to each TMM a program
pM ∈ F∗4 such that if we denote by Qp the state set of the TM corresponding
to program p, then

• The language {pM|M is a TM} ⊆ F∗4 is polynomially decidable.

• The characteristic function (p, q) 7→ ιQp(q) that checks whether q ∈ Qp
is polynomially computable.

• The “universal” transition rule

δU : F4 ×F∗4 ×F∗4 9 F4 ×F∗4 × {−1,+1}
(a, q, pM) 7→ δM(a, q)

is polynomially computable.

• In addition, |Qp| ≤ |p|. (We can assume that p contains a list of the
states of Qp.)

We will use the following notations: If p is the program of a TM that
computes a reversible function f , then p−1 will denote the program of the
inverse function f−1 (it will always be computable in our constructions).
Also, tp and Zp will be used to denote tMp and ZMp , where Mp is the TM
that corresponds to the program p.

The first examples of polynomially computable functions, which will be
most useful in the sequel, are the encodings presented in Subsection 2.1.
Clearly, 〈·〉· and its (right) inverse 〉·〈 are polynomially computable. More-
over, the projections πi : F∗∗5 → F

∗
5, for i ∈ N, are polynomially computable

and so are the functions (k, i)→ lk,i (as defined in Fact 6) and χ (·).

2.2.3 Degrees

In the following, M and M′ can stand for either N or Z.
Two sets X,Y ∈ FM

2 are computably homeomorphic if there exists
a computable bijection between them.

We say that d ∈ FM′
2 is Turing-reducible to c ∈ FM

2 if d = Φ(c),
for some computable function Φ. This yields a preorder over configura-
tions, whose equivalence classes are called Turing degrees. If d is Turing-
reducible to c, then in a computational sense, c is more complicated than d.
A cone over degree d is the set of Turing degrees that are higher than d.

Moreover, we say that subset Y ⊂ F
M′
2 is Medvedev-reducible to

subset X ⊂ F
M
2 if there is a computable partial function Φ : FM

2 9 F
M′
2

such that D(Φ) ⊇ X and Φ(X) ⊆ Y . This also yields a pre-order over sets,
whose equivalence classes are called Medvedev degrees. Finally, we say

15

that subset Y ⊂ F
M′
2 is Mučnik-reducible to subset X ⊂ F

M
2 if every

point of X is Turing-reducible to some point of Y (but not in a uniform
way, as in Medvedev-reducibility). This again yields a pre-order over sets,
whose equivalence classes are called Mučnik degrees.

Medvedev and Mučnik degrees of a set are an attempt to formalize the
notion of how computationally difficult it is to compute a point of the set.
Of course, computable homeomorphism implies having the same Turing de-
grees, which implies Medvedev-equivalence, which in turns implies Mučnik-
equivalence.

We do not get too much into details, but the notion holds in the large
setting of effective topological spaces (see for instance [11]).

2.3 Symbolic dynamics

AZd is the set of d-dimensional configurations, endowed with the product
of the discrete topology, and with the shift dynamical system σ, defined
as the action of Zd by (σi)i∈Zd , where σi(x)k := xi+k for any configuration

x ∈ AZd and any i,k ∈ Zd.
A pattern over a (usually finite) support D ⊂ Zd is a map p ∈ AD.

Two patterns u1 : D1 → A and u2 : D2 → A are called disjoint if D1

and D2 are disjoint shapes of Zd. If u1, u2 are disjoint, let u1 ∨ u2 be the
pattern over shape D1tD2 defined by (u1∨u2)(i) = uj(i), if i ∈ Dj , j = 1, 2.
Inductively, we can define

∨
1≤i≤k ui, when u1, . . . , uk are mutually disjoint

pattens.

Let E,D ⊂ Z2 be two shapes, and u ∈ AD be a 2D pattern. We denote
uE the restriction of u to D ∩ E (this is a pattern with support D ∩ E).

If I ⊆ Z and (ci)i∈I is a family of configurations of AZ, |(ci)i∈I denotes
the (possibly infinite) pattern u : Z × I → A such that uZ×i = ci, for all
i ∈ I. If I = J0, nJ, then |(c0, . . . , cn−1) is the horizontal strip of width
n obtained by putting c0, . . . , cn−1 on top of each other (in this order). If
I = Z, then we obtain a configuration in AZ2

.

Let x ∈ AZd and S := (S0, . . . , Sd−1) ∈ Nd1. The S-bulking (or higher-

power representation) of x is the configuration x[S] ∈ (AS0×...Sd−1)Z
d

such

that for any i = (i0, . . . , id−1) ∈ Zd,

x[S]i
:= xJi0S0,(i0+1)S0J×...×Jid−1Sd−1,(id−1+1)Sd−1J.

A (d-dimensional) subshift is a closed setX ⊂ AZd such that σi(X) = X
for all i ∈ Zd. Equivalently, X is a subshift if and only if there exists a family
of patterns F ⊂

⋃
D⊂finiteZd A

D such that

X =
{
x ∈ AZd

∣∣∣∀i ∈ Zd, ∀D ⊂finite Zd, σi(x)|D /∈ F
}
.

16

If F can be chosen finite, we say that X is a subshift of finite type (SFT).
If F can be chosen computably enumerable, then X is called an effective

subshift.
A map Φ from subshift X to subshift Y is a morphism if Φσ = σΦ.

If it is surjective, then it is a factor map, and Y is a factor of X (this
defines a preorder); if it is bijective, then it is a conjugacy, and X and Y

are conjugate (this defines an equivalence relation). A subshift Y ⊆ AZd

is called sofic if it is a factor of some SFT, which is then called a cover for
Y .

A configuration x ∈ AZd is called periodic with period j 6= 0 ∈ Zd
if σj(x) = x. A subshift X is called aperiodic if it does not contain any
periodic configurations.

Abusing notation, we use the notations Swi1,...,il and Sni1,...,il (where w ∈
F
∗∗
5 and n ∈ N) also for configurations. For example, if c ∈ (F∗∗5)Z, we will

say that c ∈ Swi1,...,il if ci ∈ Swi1,...,il for all i ∈ Z. Finally, for N ∈ N and
n ∈ J0, NJ, let

Pn,Ni1,...,il
:= {c ∈ (F∗∗5)Z : 〉πik(c)j〈 = j + n mod N, for all j ∈ Z, 1 ≤ k ≤ l}

be the set of all configurations such that

πik(c) = .∞(n . . . (N − 1)01 . . . (n− 1))∞, for 1 ≤ k ≤ l.

2.4 Cellular automata

A (1D) partial cellular automaton (PCA) is a partial (“global”) con-
tinuous function F : AZ 9 AZ whose domain is an SFT, and such that
Fσ = σF . Equivalently by some extension of the so-called Curtis-Lyndon-
Hedlund theorem, there exist a neighbourhood V ⊂finite Z and a partial
local rule f : AV 9 A such that for all z ∈ AZ, F (z) is defined if and
only if f(z|i+V) is defined for all i ∈ Z, in which case F (z)i := f(z|i+V). If
V ⊆ J−r, rK, then r is called a radius of the PCA. The radius of a PCA is
not uniquely determined.

A PCA is called reversible (RPCA) if it is injective. In this case,
it is known that there exists another RPCA, denoted by F−1, such that
FF−1 and F−1F are restrictions of the identity, and D(F−1) = F (AZ) (the
argument for this is similar to the one in [15]). In particular, there exist
so-called inverse radius and inverse local rule. If r is both a radius and
an inverse radius for an RPCA F , we call it a bi-radius for F . In the
rest of the paper, we only consider RPCA with bi-radius 1. This is not a
significant restriction, since these PCA and RPCA exhibit the whole range
of computational and dynamical properties of general PCA and RPCA.

For t ∈ N, the tth−order range of F is the (sofic) subshift Ωt
F :=

F t(AZ)∩F−t(AZ) and its limit set is the (effective) subshift ΩF := Ω∞F :=

17

⋂
t∈Z Ωt

F , containing all the configurations that are not ultimately re-
jected (either in the past or the future). There is a canonical way to
associate a 2D SFT OF to an RPCA F : it consists of the infinite space-
time diagrams of the configurations that are not ultimately rejected. For-
mally, OF := {OF (x)|x ∈ ΩF }, where OF (x) := |(F t(x))t∈Z ∈ AZ2

for any
x ∈ ΩF . One can see that OF is conjugate to the Z2-action of (F, σ) over
ΩF . Note nevertheless that the same SFT may correspond to distinct RPCA
(if they have different transient phases).

A pattern w ∈ AD, with D ⊂ Z2, is locally valid for f if for any
(i, t) ∈ D such that C := (i+J−1, 1K)×{t−1} ⊂ D, we have p(i,t) = f(p|C).
Note that, in general, this notion depends on the local rule and not only on
the RPCA. By compactness, if there exist locally valid square patterns of
arbitrarily large height and width, thenOF 6= ∅, i.e., there are configurations
which are never rejected. If x ∈ F−t(AZ), then |(x, F (x), . . . , F t(x)) is a
locally valid horizontal strip of height t + 1. The notion of a locally-
valid horizontal strip depends only on the RPCA and not on the local rule,
i.e., it is a ”global“ notion.

For every m ∈ N, δ = (δ0, . . . , δm−1) ∈ {−1, 0, 1}m, we define the shift
product σδ = σδ0× . . .×σδm−1 . A partial partition (cellular) automaton
(PPA) is a PCA F = σδ ◦α over some alphabet A = A0× . . .×Am−1, where
α is (the parallel synchronous application of) a partial permutation of A.
−δi is called the direction of field i. The (counter-intuitive) “−” is due to
the fact that the normal definition of σ shifts everything to the left, while
we are used to thinking of the positive direction as going to the right. So, if
we want to have a field with speed +1, then we should apply σ−1 to it.

Every PPA is a RPCA with bi-radius 1 and conversely every RPCA is
essentially a PPA (see for instance [24, Proposition 53]). Note, however,
that the inverse of a PPA is not, formally, exactly a PPA: the permutation
is performed after the shifts, in the form α−1 ◦ σ−δ. Nevertheless, it is
conjugate, via α, to the corresponding PPA.

In order to define families of PPA that are somehow uniform, we consider
the corresponding objects acting on infinite alphabets. A partial partition
automaton with infinite alphabet (IPPA) is a partial map F : (F∗m5)Z 9
(F∗m5)Z, where m ∈ N, F = (σδ0 × . . . × σδm−1) ◦ α, the σδj are shifts
over infinite F∗5 (that is σ(y)i = yi+1 for any y ∈ (F∗5)Z and i ∈ Z), and
α : F∗m5 → F

∗m
5 is a partial (infinite) permutation. By restricting the

domain and the co-domain of an IPPA to finite subsets of F∗m5 , we obtain
normal (finite) PPA. In our constructions, the permutation α will always be
length-preserving and the restriction will be taken over an alphabet of the
form F

k
5 .

If F : AZ → AZ and G : BZ → BZ are PCA, then we say that G is
a factor of F if there exists a continuous map H : AZ → BZ such that
GH = HF . If F and G are RPCA and F factors onto G, then it is easy to

18

see that OF factors onto OG through the map that sends Ox to OH(x), for

all x ∈ AZ. However, the notion of factoring for RPCA is stronger, since
it also takes into account the transient times of the RPCA (which are not
relevant in the corresponding 2D SFTs).

Let F0, . . . , Fn−1 be RPCA such that D(Fi) ∩ D(Fj) = ∅, for all i 6=
j. Then,

⊔
i∈J0,nJ Fi denotes the map with domain

⊔
i∈J0,nJD(Fi) and that

agrees with Fi on D(Fi), for all i ∈ J0, nJ.
⊔
i∈J0,nJ Fi is not always an

RPCA, since there might be a configuration that is not in any D(Fi) but
that is locally everywhere in the domains (which are SFTs). However, and
this will always be the case in this paper,

⊔
i∈J0,nJ Fi is also an RPCA if D(Fi)

and D(Fj) are over disjoint alphabets, for i 6= j. In this case, Ω⊔
i∈J0,nJ Fi

=⊔
i∈J0,nJ ΩFi and O⊔

i∈J0,nJ Fi
=
⊔
i∈J0,nJOFi .

2.4.1 Expansiveness

The projective line P := Rt{∞} is seen as the set of slopes to the vertical
direction. Here, quite unconventionally, the horizontal direction is repre-
sented by ∞ and the vertical one by 0. The relevance of this choice will ap-
pear later, but in any case it does not affect any set-theoretical, topological
or computable property because the inversion map over P is a computable
homeomorphism.

The projective line P admits a natural effective topology if seen as the
quotient of the circle by central symmetry: a subset is effectively closed
if the corresponding subset of the circle is effectively closed as a subset of
[0, 1]2. This topology is equivalent to the one-point compactification of the
R and renders P a compact, metric space.

Let X be a 2D subshift, l ∈ P a slope and l ⊂ R2 the corresponding
vectorial line. We say that direction l is expansive for X if there exists a
bounded shape V ⊂ R2 such that, for all x, y ∈ X,

x|(l+V)∩Z2 = y|(l+V)∩Z2 ⇒ x = y .

We denote by N (X) the set of non-expansive directions (i.e., the set of
directions that are not expansive). The terminology comes from the fact
that if l = p/q is rational (or infinite), then l is expansive for X if and
only if the dynamical system (X,σ(p,q)) is expansive, in the classical sense
of expansive dynamical systems.

Expansive directions were first introduced by Boyle and Lind [6] in a
more general setting. The following fact is a particular case of [6, Theo-
rem 3.7].

Proposition 9. Let X be a 2D subshift. Then, N (X) is closed. In addition,
N (X) is empty if and only if X is finite.

19

We say that X is extremely expansive if |N (X)| = 1, which is, ac-
cording to Proposition 9, the most constrained non-trivial case.

In the case of SFTs (actually, of all effective subshifts), we have an
additional restriction on the set of non-expansive directions that comes from
computation theory, as is usually the case, see [18, 20].

A direction l ∈ P can be represented as the pair of coordinates of the
intersection of the line l with the unit circle. This gives two (symmetric
with respect to the origin) representations for each direction which are com-
putably equivalent. Computability questions about expansive directions can
then be transferred to computability questions about pairs of real numbers,
which we already know how to deal with.

It can be noted that effectively closed subsets that do not contain {∞}
are exactly the effectively closed subsets of R. The restriction map from P

(with the above-defined effective topology) onto R is actually computable,
and it can be noted that the pre-image of an effectively closed set by a
computable function is effectively closed.

Lemma 10. Let X be a 2D SFT. Then, N (X) is effectively closed.

In particular, if an SFT X has a unique direction of non-expansiveness,
then this direction must be computable.

Proof. The statement follows from the following two facts: First, it is semi-
decidable whether a direction is expansive, i.e., there exists a TM that
takes as input a (rational direction) and halts if the direction is expansive.
This follows from [6, Lemma 3.2]. Secondly, it is semi-decidable whether
two expansive directions belong in the same expansive component. (The
expansive component of an expansive direction is the largest connected set
that includes the direction and is included in the set of expansive directions.
One can see that it is always an open interval.) This follows from [34], as
described in [5, Appendix C].

Having these two facts in mind, it is not difficult to see that the following
algorithm enumerates a sequence of intervals whose union is the complement
of N (X): For each rational direction, check whether it is expansive. Every
time you find an expansive direction, check whether it is in the same com-
ponent with one of the expansive directions that you have already found.
Every time this is the case, output the whole interval of directions that is
between them.

A subshift Y is called extremely-expansively sofic if there exists an
extremely expansive SFT that factors onto Y . Since expansive directions
are not preserved through block maps, an extremely-expansively sofic sub-
shift need not be extremely expansive itself. In fact, as we will see, there

20

exist extremely-expansively sofic subshifts that do not have any direction of
expansiveness.

Lemma 11. Let X0, X1, . . . be 2D subshifts over the same alphabet A.

• If X0 ⊆ X1, then N (X0) ⊆ N (X1).

• If N (X0) ∩N (X1) = ∅, then X0 ∩X1 is a finite subshift.

• If
⊔
wXw is a closed disjoint (possibly uncountable) union, then

N (
⊔
wXw) =

⋃
wN (Xw).

Proof. The first claim follows immediately from the definitions.
For the proof of the second claim, we have that N (X0 ∩X1) ⊆ N (X0)∩

N (X1) = ∅ according to the first claim. Therefore, N (X0 ∩ X1) = ∅, and
since X0 ∩X1 is a subshift, Proposition 9 gives that it is finite.

Finally, for the last claim, the inclusion N (Xw) ⊆ N (
⊔
wXw) comes

from the first point.
For the other inclusion, assume l ∈ N (

⊔
wXw) Then, there exist x, y ∈⊔

wXw which coincide over an open half-plane Hl ⊆ R2 of slope l and
disagree somewhere outside it. The orbits of x and y under the shift action
have a common limit point z. Then, z is in the intersection Xx ∩Xy of the
subshifts that contain x and y, respectively. By disjointness, we get that
Xx = Xy = Xw′ , for some w′, which means that l ∈ N (Xw′).

If F is an RPCA, then we denote N (F) := N (OF). It is straightforward
that the horizontal direction (which according to our definition is ∞) is
expansive for F . It is not much more complicated to see that, if the bi-radius
is 1, N (F) ⊆ [−1, 1] (directions around the horizontal are expansive).

Conversely, it can be shown that, up to a recoding, every 2D SFT for
which the horizontal direction is expansive is equal to OF , for some RPCA
F .

21

22

Chapter 3

Simulation

3.1 Simulation

If S, T ∈ N1 and Q ∈ Z, we say that RPCA F : AZ 9 AZ (S, T,Q)-
simulates RPCA G : BZ 9 BZ if there is a partial continuous decoding
surjection Φ : AZ 9 BZ such that σΦ = ΦσS , GΦ = ΦσQF T , G−1Φ =
Φσ−QF−T and the simulating subshift D̃(Φ) :=

⊔
0≤t<T
0≤s<S

σsF t(D(Φ)) is a

disjoint union.In other words, 1 step of G is encoded into T steps of F , up
to some shift by Q, and the intermediary steps used are not valid encodings.
We note F �

S,T,Q,Φ
G, or when some parameters are clear from the context

or not so important, F �
S,T,Φ

G, F �
S,T,Q

, F �
S,T

G, or F � G (each time this

symbol will be used, F and G are meant to be RPCA).
We remind the reader that according to our notations, σΦ = ΦσS

and GΦ = ΦσQF T and G−1Φ = Φσ−QF−T imply that the domains of
the two partial functions are identical. This is in fact crucial for under-
standing the notion of simulation and it will be used extensively in the
proofs and constructions to come. For example, this means that the equal-
ity GΦ = ΦσQF T does not immediately imply G−1Φ = Φσ−QF−T , be-
cause the domains of G−1Φ and Φσ−QF−T might be different (if we only
had the equality GΦ = ΦσQF T , it could happen that x ∈ D(G−1Φ) but
G−1Φ(x) /∈ Φ(AZ)).

In fact, one can see that the couple of conditions GΦ = ΦσQF T and
G−1Φ = Φσ−QF−T is equivalent to the triple of conditions GΦ = ΦσQF T ,
D(GΦ) = D(Φσ−QF−T) and D(G−1Φ) = D(ΦF TσQ).

F exactly simulates G if Φ is actually bijective. In other words, there
exists a well-defined encoding function Φ−1 : BZ → D(Φ). F completely
simulates G if, besides, ΩF ⊂ D̃(Φ). In other words, every bi-infinite orbit
of F will eventually encode some orbit of G. Actually, in our constructions
we will even have the stronger D(F t

′
) ⊂ D̃(Φ), for some t′ ∈ Z.

23

Remark 12.

1. D(Φ) = σS(D(Φ)).

2. F �
S,T,DS

G if and only if F �
S,T,0

σDG.

3. For any s ∈ J0, SJ , t ∈ J0, T J, σsF t(D(Φ))[S] is an SFT.

4. Since the union D̃(Φ) is disjoint, there exists a shape U ⊂finite Z such
that for any x ∈ D̃(Φ) , x|U determines the (unique) s ∈ J0, SJ and
t ∈ J0, T J such that x ∈ σsF t(D(Φ)).

Proof. The first two claims follow immediately from the definitions.
For the third claim, notice that since Φ is continuous and σΦ = ΦσS ,

this means that D(F) is the domain of a PCA over AZ
[S], so it is an SFT.

Since σ and F are invertible maps and the property of being an SFT is
preserved under invertible maps, we have that σsF t(D(Φ))[S] is an SFT for
all s ∈ J0, SJ and t ∈ J0, tJ.

The last claim follows easily from the disjointness using a classical com-
pactness argument.

We can prove an analogue of Curtis-Lyndon-Hedlund theorem for de-
coding and encoding functions.

Remark 13. The decoding function Φ admits a neighbourhood V ⊂finite Z
and a partial bulked local rule φ : AV 9 B such that for all x ∈ AZ, Φ(x)
is defined if and only if φ(x|iS+V) is defined for any i ∈ Z, in which case
the latter is equal to Φ(x)i.
If the simulation is exact, the encoding function Φ−1 admits a neighbourhood
V ⊂finite Z and a partial unbulked local rule, abusively noted φ−1 : BV 9
AS such that for all y ∈ BZ, Φ−1(y) is defined if and only if φ−1(y|i+V) is
defined for any i ∈ Z, in which case the latter is equal to Φ−1(y)JiS,(i+1)SJ.

Exact complete vertical (i.e., Q = 0) simulation is stronger than most
notions found in the literature. In particular:

• OF simulates OG in the sense of [8].

• The Z2-action (F, σ) over the limit set ΩF (or the 2D SFT OF) is
conjugate to a suspension of ΩG in the sense of a homeomorphism

Ψ : ΩF → ΩG × J0, SJ× J0, T J
x 7→ (ΦF−tσ−s(x), s, t), where F−tσ−s(x) ∈ D(Φ)

• The Z2-action (G, σ) over the limit set ΩG (or the 2D SFT OG) is
conjugate to the Z2-action (F T , σS) restricted to D(Φ)∩ΩF (see [10]);

24

• G is a sub-automaton of a rescaling of F , so that F simulates G ac-
cording to the definition of simulation given in [35]. While it is not
necessary to formally define this notion of simulation, we can intu-
itively say that rescaling corresponds to the role of parameters S and
T in our definition, while the sub-automaton condition corresponds to
the decoding function Φ. We notice, however, that Ollinger’s defini-
tion is more general than ours, since it does not require D̃(Φ) to be a
disjoint union, while the simulated can also be rescaled.

But the definition above also involves the transient part: every locally
valid horizontal strip of height t + 1 for G gives a locally valid horizontal
strip of height Tt+ 1 for F .

Each kind of simulation is a conjugacy invariant. If F simulates G (resp.
exactly), then it simulates (resp. exactly) any of its subsystems (but clearly,
completeness is not preserved). Complete simulation clearly includes factor;
for instance F × G �

1,1,0
F completely if G does not have empty domain.

Also F × G �
1,1,0

F exactly if G includes a singleton subsystem. The simu-

lation is simultaneously exact and complete if G is a singleton system. The
surjectivity of Φ implies that only systems with empty domain can be simu-
lated by systems with empty domain. We will mainly focus on non-trivial
simulations: S, T > 1 and G does not have empty domain.

Remark 14. If F �
S,T,Q,Φ

G non-trivially, then for all j ∈ J0, T K:

F j(D(GΦ)) = σ−QF−(T−j)(D(G−1Φ) 6= ∅

More specifically, a configuration “in the middle” of the work period,
i.e., when j = bT/2c has at least bT/2c forward and backward images, or,

in other words, it belongs to Ω
bT/2c
F .

The following lemma states that the limit sets correspond, in the case of
complete simulation. It is a more mathematical and detailed version of the
comment that we made earlier, that a valid strip horizontal of height t + 1
in G gives a valid horizontal strip of height Tt+ 1 in F (provided that the
strip is simulated).

Lemma 15. Assume F �
S,T,Q,Φ

G.

1. If j ∈ N t {∞}, then

D̃j(Φ) :=
⊔

0≤t<T
0≤s<S

σsF tΦ−1(Ωj
G)

is a disjoint union and a subshift, included in Ω
(j−1)T+1
F .

In addition, D̃j(Φ) ⊃ D̃j+1(Φ) and D̃∞(Φ) =
⋂
j∈N D̃j(Φ).

25

2. ΩF ⊃ D̃∞(Φ).

3. If the simulation is complete, then ΩF = D̃∞(Φ).

Proof.

1. It is clear that D̃j(Φ) is a disjoint union and a subshift, each subset
in the union being (syntactically) included in one in the expression of
D̃(Φ). Assume that F �

S,T,Q,Φ
G for some Q ∈ Z. Now,

Φ−1(Ωj
G) = D(GjΦ) ∩ D(G−jΦ)

= D(ΦσjQF jT) ∩ D(Φσ−jQF−jT)

⊂ D(F jT) ∩ D(F−jT) = ΩjT
F .

Hence, for any s ∈ J0, SJ and any t ∈ J0, T J, σsF tΦ−1(Ωj
G) ⊂ ΩjT−T+1

F .
The other claims follow from the definitions.

2. It is obvious from the previous point that
⋂
j∈N ΩjT

F ⊃
⋂
j∈N D̃j(Φ) =

D̃∞(Φ).

3. Conversely, assume x ∈ ΩF , so that clearly ∀k ∈ Z, F k(x) ∈ ΩF . By
completeness, there exist y ∈ D(Φ) and s ∈ J0, SJ , t ∈ J0, T J such
that σsF t(y) = x. Disjointness and a direct induction give that for all
k ∈ Z, F k(y) ∈ F k mod TσQbk/T c(D(Φ)). In particular, for all j ∈ Z,
GjΦ(y) = ΦF jTσjQ(y) is defined. This gives that Φ(y) ∈ ΩG, so
x ∈ σ−sF−tΦ−1(ΩG) = σS−sF T−tΦ−1(ΩG).

The following remark links the periodic points of the simulating and
simulated systems. It is essential for proving aperiodicity of the subshifts
that we construct. The same result appears in [8, 36], even though the argu-
ment essentially goes back to the kite-and-dart tile set of Penrose. We give a
slightly more general version of the usual result also takes into consideration
the shift by Q.

Remark 16. If F �
S,T,Q

G completely, then OF admits a configuration with

period (s− lQ, t) if and only if OG admits a configuration with period (k, l),
where s = kS and t = lT .

We will only use the case Q = 0, for which it is intuitively clear to see
that it holds true. When q 6= 0, one has to have in mind that for every T
time steps of a configuration of F , the simulated configuration is shifted Q
steps to the left.

26

3.2 Nested simulations

In the sequel, we will be most interested in infinite sequences of simulations
of the form: F0 � F1 � F2 � This looks like a formidable task, since

every RPCA of the sequence must contain the information about an infinite
number of configurations and update this information within a determined
time, but, as the results of this section will imply, an infinite sequence of
simulations gives RPCA with very useful properties. The construction of
these sequences forms the basic part of our constructions and will be done
in the following chapters.

If S = (Si)0≤i≤n−1 is a sequence of numbers, then 1S is the sequence
whose first element is equal to 1 with the elements of S shifted by one after
it. If S = (Si)0≤i≤n−1 and T = (Ti)0≤i≤n−1 are finite sequences of non-zero
numbers, then 1S/T is the sequence (Si−1/Ti)0≤i≤n−1, where S−1 := 1. A
short calculation shows that

Q
1S/T∏

Ti =
∑

0≤i≤n−1

Qi ∏
0<j<i

Sj
∏

i<j≤n−1

Tj

 .

Lemma 17. Simulation (resp. exact, complete, exact and complete) is a
preorder.
More precisely, if F0 �

S0,T0,Q0,Φ0

F1 �
S1,T1,Q1,Φ1

. . . �
Sn−1,Tn−1,Qn−1,Φn−1

Fn

(resp. exactly, completely) for some n ∈ N, then F0 �
S,T,Q,Φ

Fn (resp. exactly,

completely), where (S, T,Q,Φ) = (
∏
Si,
∏
Ti,Q

1S/T∏
Ti,Φn−1 · · ·Φ0).

The products range from 0 to n − 1. If there were no shifts in the
simulation (i.e., if Qi = 0 for all i) the above statement would be more or
less trivial. Even in the presence of shifts, the proof is essentially a simple
verification.

Proof.

• Clearly F �
1,1,0,id

F .

• Now suppose F �
S,T,Q,Φ

G �
S′,T ′,Q′,Φ′

H. Then it is clear that σΦ′Φ =

Φ′σS
′
Φ = Φ′ΦσS

′S and HΦ′Φ = Φ′σQ
′
GT

′
Φ = Φ′ΦσQT

′+SQ′F T
′T .

27

Moreover:⊔
0≤t<T
0≤s<S

σsF t(D(Φ)) ⊃
⊔

0≤t<T
0≤s<S

σsF tΦ−1(
⊔

0≤t′<T ′
0≤s′<S′

σs
′
Gt
′
(D(Φ′)))

=
⊔

0≤t<T
0≤s<S

⊔
0≤t′<T ′
0≤s′<S′

σsF tΦ−1(σs
′
Gt
′
(D(Φ′)))

=
⊔

0≤t<T
0≤s<S

⊔
0≤t′<T ′
0≤s′<S′

F t+t
′Tσs+s

′S+t′Q(D(Φ′Φ))

=
⊔

0≤t<TT ′
0≤s<SS′

σsF t(D(Φ′Φ)) =: D̃(Φ′Φ) .

This proves that F �
SS′,TT ′,QT ′+SQ′,Φ′Φ

H.

• If Φ and Φ′ are bijections, then Φ′Φ is also a bijection.

• If both simulations are complete, then by Point 3 of Lemma 15,

ΩF =
⊔

0≤t<T
0≤s<S

σsF tΦ−1(ΩG)

⊂
⊔

0≤t<T
0≤s<S

σsF tΦ−1(D̃(Φ′))

= D̃(Φ′Φ).

• A direct induction gives the expected results.

Similarly to simulations, which involve a decomposition of the system
in terms of how much is shifted the grid on which to read the encoding, a
sequence of simulations involves a nested decomposition, which gives a full
skeleton, inside each configuration, as expressed by the following lemma.
Here, and in the following, we use gothic letters to denote sequences, but
the corresponding normal letters to denote the elements of the sequences.
Also, if S is an infinite sequence and n ∈ N, then SJ0,nJ is the finite prefix of
length n of S. Finally, if (Φi)i∈N is a sequence of decoding functions, then
ΦJ0,nJ will be the decoding function Φn−1 · · ·Φ0.

Lemma 18.

28

1. If F0 �
S0,T0,Φ0

F1 �
S1,T1,Φ1

. . . �
Sn−1,Tn−1,Φn−1

Fn �
Sn,Tn,Φn

. . . and j ∈

N t {∞}, then

D̃j(Φ) :=
⋂
n∈N
D̃j(ΦJ0,nJ)

=
⊔

t∈
∏
i∈NJ0,TiJ

s∈
∏
i∈NJ0,SiJ

⋂
n∈N

σsJ0,nJ
S

F
tJ0,nJ

T

0 Φ−1
0 · · ·Φ

−1
n−1(Ωj

Fn
)

is a disjoint union and a subshift.
In addition, D̃j(Φ) ⊃ D̃j+1(Φ) and D̃∞(Φ) =

⋂
j∈N D̃j(Φ).

2. If, besides, all simulations are nontrivial, then D̃2(Φ) = D̃∞(Φ) ⊂ ΩF0

is uncountable.

3. If the simulations (in the hypothesis of Point 1) are complete, then
D̃∞(Φ) = ΩF0.

4. If the sequence (Φn)n∈N is computable, then the map x ∈ D̃∞(Φ) →

(si, ti)i∈N, where x ∈
⋂
n σ

sJ0,nJ
S

F
tJ0,nJ

T

0 D(ΦJ0,nJ) is computable.

Point 2 implies nonemptiness of ΩF0 and OF0 , and of any ΩFn , since all
those statements can be applied to the sequence starting from n. Point 4
states that we can always recover the skeleton from a valid configuration.
In particular the skeleton map is continuous.

Proof.

1. By Lemma 17 and compactness, it is clear that D̃j(Φ) is a subshift.
The equality is rather easily checkable.
We can see that the union is disjoint: if (s, t) 6= (s′, t′), say (sm, tm 6=

s′m, t
′
m), then

⋂
n∈N σ

sJ0,nJ
S

F
tJ0,nJ

T

0 Φ−1
0 · · ·Φ

−1
n−1(Ωj

Fn
) is included in

σsJ0,mJ
S

F
tJ0,mJ

T

0 Φ−1
0 · · ·Φ

−1
m−1(Ωj

Fm
), which is, according to Lemma 17,

disjoint from σ
s′J0,mJ

S

F
t′J0,mJ

T

0 Φ−1
0 · · ·Φ

−1
m−1(Ωj

Fm
) which includes⋂

n∈N σ
s′J0,nJ

S

F
t′J0,nJ

T

0 Φ−1
0 · · ·Φ

−1
n−1(Ωj

Fn
) .

2. Since for any n ∈ N and m ≥ n, Fn �
Sn···Sm−1,Tn···Tm−1,Φm−1···Φn

Fm,

then Point 1 of Lemma 15 says that

Ω
F
Tn···Tm−1+1
n

⊃ D̃2(ΦJn,mJ) .

29

If the simulations are nontrivial, then Tn · · ·Tm−1 →∞ when n is fixed
and m→∞, and

ΩFn ⊃
⋂
m∈N

Ω
F
T0···Tm−1+1
n

⊃
⋂
m∈N
D̃2(ΦJn,mJ) = D̃2(ΦJn,∞J) .

Injecting this inclusion in the definition of D̃∞(ΦJ0,nJ) gives that

D̃∞(Φ) ⊃
⋂
m≥0

D̃2(ΦJ0,mJ) ⊃ D̃2(Φ).

The converse is trivially true, and Point 3 of Lemma 15 already tells
us that D̃∞(Φ) ⊂ ΩF0 .
Moreover, since Fn �

SnSn+1,TnTn+1

Fn+2 with TnTn+1 ≥ 4, then Remark

14 gives that Ω2
Fn

is non-empty. Therefore, each of the uncountably

many subsets in the disjoint union expressing D̃2(Φ) is a closed non-
empty intersection.

3. If n ∈ N is such that F0 �
S0···Sn−1,T0···Tn−1,Φn−1···Φ0

Fn completely, then

by Point 3 of Lemma 15, ΩF0 = D̃∞(ΦJ0,nJ).

4. This follows from repeated application of Remark 5.4 and the fact that
ΦJ0,nJ is a decoding function for all n ∈ N.

The following extends Lemma 18 (which can be recovered by Bi being
singletons). In this case, every RPCA simulates a disjoint union of RPCA,
each one of which simulates a disjoint union of RPCA and so on. In this way,
we obtain an “infinite tree” of simulations. Along any branch of this tree,
Lemma 18 is true, but, more importantly, something similar is true even
when we take all the (possibly uncountable) branches of this tree together.

Lemma 19.

1. Let (Bn)n∈N be a sequence of finite alphabets, such that for any word
u ∈

∏
i<n Bi of length n ∈ N, there exist Su, Tu, Qu ∈ N, a decoding

function Φu and a RPCA Fu such that Fu �
Su,Tu,Φu

⊔
b∈Bn Fub.

Let D̃jz(Φ) :=
⋂
n∈N D̃j(Φz

J0,nJ) for all j ∈ N t {∞}, z ∈
∏
i∈N Bi.

Then, for any j ∈ N t {∞} and any closed Y ⊂
∏
i∈N Bi,

D̃jY (Φ) :=
⊔
z∈Y
D̃jz(Φ)

is a disjoint union and a subshift, and D̃2
Y (Φ) = D̃∞Y (Φ) ⊂ ΩFε.

30

2. Besides, the set Z :=
{
z ∈

∏
i∈N Bi

∣∣∣ D̃∞z (Φ) 6= ∅
}

corresponding to

nested nontrivial, non-empty simulations is closed. If the simulations
are complete, then D̃2

Z(Φ) = D̃∞Z (Φ) = ΩFε.

In the above statement, the notation Φz
J0,nJ stands for the composition

ΦzJ0,nJ · · ·Φz0Φε, which is the decoding function from FzJ0,nJ onto Fε.

Proof.

1. Point 2 of Lemma 18 gives that D̃∞z (Φ) 6= ∅ if FzJ0,nJ � FzJ0,n+1K non

trivially for any n ∈ N, i.e., all these RPCA have non-empty domain.
The converse is obvious.
By the same distributivity of decreasing intersections over unions as
for Point 1 of Lemma 18, it can be easily seen that

D̃jY (Φ) =
⋂
n∈N

⊔
u∈Ln(Y)

⊔
0≤t<

∏
i<n TuJ0,iJ

0≤s<
∏
i<n SuJ0,iJ

σsF tεΦ
−1
ε Φ−1

u0
· · ·Φ−1

u (Ωj
Fu

) ,

which is a decreasing intersection of finite unions of subshifts, and we
have D̃2

z(Φ) = D̃∞z (Φ) ⊂ ΩFε for all z ∈ Y .

2. If Fu �
⊔
a∈Bn Fua completely, then Point 3 of Lemma 15 gives

ΩFu =
⊔

0≤t<Tu
0≤s<Su

F tuσ
sΦ−1

u (
⊔
a∈Bn

ΩFua) .

An immediate induction gives for any n ∈ N,

ΩFε =
⊔

u∈Ln+1(Z)

⊔
0≤t<

∏
i<n TuJ0,iJ

0≤s<
∏
i<n SuJ0,iJ

σsF tεΦ
−1
ε Φ−1

u0
· · ·Φ−1

uJ0,nJ
(ΩFu) .

Being true for any n, this gives the result.

Lemmas 18 and 19 can be seen as extensions of Lemma 15 in the case
of an infinite nested simulation. The following lemma can be seen as such
an extension of Remark 16.

Lemma 20. If F0 �
S0,T0

F1 �
S1,T1

. . . �
Sn−1,Tn−1

Fn �
Sn,Tn

. . . completely, with

Sn, Tn > 1 for any n ∈ N, then OF0 is aperiodic.

In particular, either ΩFn = ∅ (= OFn) for all n ∈ N or, ΩFn (and OFn)
is aperiodic uncountable, for all n ∈ N.

31

Proof. From Lemma 17, F0 �
S0···Sn−1,T0···Tn−1

Fn completely. By Remark 16,

OF0 cannot have any nontrival period less than S0 · · ·Sn−1 horizontally and
less than T0 · · ·Tn−1 vertically. If these two products go to infinity, we get
that there cannot exist any periodic points.

In fact, it follows from the proof that it is enough that one of the products∏
i∈N Si and

∏
i∈N Ti is infinite. It is well known that a non-empty, aperiodic

2D SFT is uncountable. Lemma 18 gives some additional information about
how uncountability occurs in the case of an infinite nested simulation.

3.3 Expansiveness and simulation

The following lemmas highlight the relation between the notions of simu-
lation and expansive directions. This subsection extends slightly Section 5
in [19]. The following lemmas correspond to Lemma 5.1 and Lemma 5.3 in
[19], which examine how the so-called “shape of prediction” evolves. It also
motivates the choice of considering the horizontal direction as∞, which will
make many future expressions clearer.

Lemma 21. Suppose F �
S,T,Q

G exactly. Then N (F) ⊇ 1
T (Q+ SN (G)).

Moreover, if the simulation is complete, then N (F) = 1
T (Q+ SN (G)).

In particular, N (σ−QG) = N (G) +Q and N (GT) = 1
TN (G).

Proof. Let us consider the matrix M :=

[
S Q
0 T

]
as acting over R2. Con-

sider a slope l ∈ P, l ⊂ R2 the corresponding vectorial line, l′ := M l the
vectorial line corresponding to slope S

T l + Q
T . Roughly, l′ for F corresponds

to l for G.

• Consider a finite shape W ′ ⊂ R2, U and f the neighbourhood and
local rule of F , V and φ−1 those of Φ−1, as defined in Remark 13.
Without loss of generality, we can assume that U = J−uS, uSK, for
some u ∈ N.

Let W := M−1W ′ + (T J−u, uK + V + J−Q, 0J)× {0}+ [−1, 2[×[0, 1[.
If l ∈ N (G), then there exist configurations x 6= y ∈ ΩG such that
OG(x)|l+W = OG(y)|l+W .

Then, OF (Φ−1(x)) 6= OF (Φ−1(y)), but we claim that

OF (Φ−1(x))|l′+W ′ = OF (Φ−1(y))|l′+W ′ .

Since W ′ was an arbitrary finite shape, this implies that S
T l + Q

T ∈
N (F), which proves that N (F) ⊇ 1

T (Q+ SN (G)).

32

Let us proceed with the proof of the claim. Let (p1, p2) ∈ l′ + W ′

and write p1 =: mS + r, p2 =: nT + q and n := m′S + r′, where
m, r, n, q,m′, r′ ∈ Z and 0 ≤ r, r′ < S and 0 ≤ q < T . Intuitively, we
can think that (p1, p2) belongs to the encoding of the m’th letter of
σ−m

′QGn(x) and Gn(y).

More precisely, a straightforward computation shows that

M−1(p1, p2) = (m−Qm′ + r/S − r′/S + q/T, n+ q/T),

so that (m − Qm′, n) ∈ M−1(p1, p2) + [−1, 2[×[0, 1[. This, in turn,
implies that (m−Qm′, n)+(T J−u, uK+J−Q, 0J+V)×{0} is included
in l +W , so that

OG(x)|(m−Qm′,n)+(T J−u,uK+J−Q,0J+V)×{0} =

= OG(y)|(m−Qm′,n)+(T J−u,uK+J−Q,0J+V)×{0} .

Using the facts that V is the neighbourhood of φ−1 and that Φ−1

“blows-up” letters into blocks of size S×T with an additional shift of
Q for every vertical time step, we deduce that

OF (Φ−1(x))|(J(m−Qm′)S,(m−Qm′+1)SJ+T J−uS,uSK+J−QS,0J+nQ)×{nT} =

= OF (Φ−1(y))|(J(m−Qm′)S,(m−Qm′+1)SJ+T J−uS,uSK+J−QS,0J+nQ)×{nT} .

Notice that nQ−Qm′S = r′Q. Now, using the fact that T J−uS, uSK
is a neighbourhood for f q and J−QS, 0J for σ−r

′Q, we obtain that

σ−r
′QF q

(
OF (Φ−1(x))

)
|JmS+r′Q,(m+1)S+r′QJ×{nT} =

= σ−r
′QF q

(
OF (Φ−1(y))

)
|JmS+r′Q,(m+1)S+r′QJ×{nT} .

The last equality implies thatOF (Φ−1(x))|(p1,p2) = OF (Φ−1(y))|(p1,p2) ,
because

σ−r
′QF q

(
OF (Φ−1(x))

)
|JmS+r′Q,(m+1)S+r′QJ×{nT}

= OF (Φ−1(x))|JmS,(m+1)SJ×{nT+q}

= OF (Φ−1(x))|JmS,(m+1)SJ×{p2}

and p1 ∈ JmS, (m+ 1)SJ.

33

• Consider a finite shape W ⊂ R2, U the synchronizing shape as defined
in Remark 12, V and φ the neighbourhood and local rule of Φ as
defined in Remark 13, and W ′ := MW+(V ∪U)×{0}−J0, SJ×J0, T J.

If S
T l + Q

T ∈ N (F), then there exist configurations x 6= y ∈ ΩF such
that OF (x)|l′+W ′ = OG(y)|l′+W ′ .

By Remark 12 and completeness of the simulation, there exist com-
mon s ∈ J0, SJ and t ∈ J0, T J such that x′ := σ−sF−t(x) and y′ :=
σ−sF−t(y) are in D(Φ). It follows easily from the definitions that
OF (x′)|l′+MW+V×{0} = OF (y′)|l′+MW+V×{0} .

By injectivity of Φ, OG(Φ(x′)) and OG(Φ(y′)) are also distinct, but
we claim that they coincide in l + W . Since W is an arbitrary fi-
nite shape, this implies that l ∈ N (G), which proves that N (F) ⊆
1
T (Q+ SN (G)).

Let (p1, p2) ∈ l+W . Then, M(p1, p2)+V ×{0} ⊂ l′+MW +V ×{0};
it follows from this that

OF (x′)|(p1S+p2Q+V,p2T) = OF (y′)|(p1S+p2Q+V,p2T) .

In addition, we have that

OG(Φ(x′))(p1,p2) = Gp2Φ(x′)p1

= Φσp2QF p2T (x′)p1

= φ(σp2QF p2T (x′)|p2S+V)

= φ(OF (x′)|(p1S+V+p2Q,p2T))

The same holds for y′, and since, as we have noticed earlier, the final
expression is the same for x′ and y′, we get that OG(Φ(x′))|(p1,p2) =
OG(Φ(y′))|(p1,p2) , as claimed.

Lemmas 17 and 21 can be combined to obtain expansive directions in
nested simulations, which will be used extensively in Section 7.

Lemma 22. If F0 �
S0,T0,D0S0

F1 �
S1,T1,D1S1

. . . �
Sn−1,Tn−1,Dn−1Sn−1

Fn com-

pletely exactly, and all these RPCA have bi-radius 1, then

N (F0) ⊆ SD
1S/T

+

(∏
i<n

Si
Ti

)
[−1, 1] = D

S/T
+

(∏
i<n

Si
Ti

)
[−1, 1] .

34

Proof. We already noted that the radius of a RPCA Fn with bi-radius 1
has N (Fn) ⊆ [−1, 1]. From Lemma 17, we know that F0 �

S,T,Q
Fn exactly

completely, where (S, T,Q) = (
∏
Si,
∏
Ti,SD

1S/T∏
Ti) and from Lemma

21, we deduce that:

N (F0) = SD
1S/T

+

(∏
i<n

Si
Ti

)
N (Fn) ⊆ SD

1S/T
+

(∏
i<n

Si
Ti

)
[−1, 1] .

Also, by definition we have that SD
1S/T

= D
S/T

.

In the limit case of an infinite nested simulation, we obtain the following
proposition, which slightly extends Theorem 5.4 in [19].

Proposition 23. If Fi �
Si,Ti,DiSi

Fi+1 completely exactly, for all i ∈ N, then

N (F0) ⊆ D
S/T

+

(
inf
n∈N

∏
i<n

Si
Ti

)
[−1, 1] .

In particular, if the simulations are non-trivial and
∏
i<n Si/Ti converges to

0, then N (F0) = {DS/T}.

Proof. From Lemma 22, we know that

N (F0) ⊆
⋂
n∈N

(∏
i<n

Si
Ti

)
[−1, 1] + DJ0,nJ

SJ0,nJ/TJ0,nJ ,

which gives the wanted inclusion, when n goes to ∞.
For the second claim, if all the simulations are non-trivial, then from

Lemma 18 we know that OF0 is uncountable, hence by Proposition 9, it has
at least one non-expansive direction. In addition, by the first claim and the

assumption
∏
i<n Si/Ti → 0, we know that N (F0) ⊆ {DS/T}, and we must

actually have equality.

3.4 Explicit simulation

In the previous sections of this chapters, we defined a notion of simulation
and then proved some facts about this notion, which suggest that it is a good
choice. However, we have not given any non-trivial example of simulation
until now, nor have we explained how this could happen. For example, the
decoding function Φ could be anything.

The simulation that we construct all have the same basic “form”. We call
these simulation explcit, because the simulated configuration is explicitly

35

written letter by letter in the simulating configuration. In order to make
this more precise, we need to give some more definitions and notations.

Let us fix a some fields Addr, Addr+1, Clock and Clock+1 (In fact, these
are just distinct numbers that we use to project letters on). These are some-
times called coordinate fields. Let Σs,t,S,T := Ps,SAddr,Addr+1

∩StClock,Clock+1
. In

Σs,t,S,T the values of Addr grow by 1 modulo S from left to right and the
value of Clock is constant and equal to t, while the origin has Addr s. This
is the usual way to break up a configuration into blocks, with one small
difference. Normally, we only need the fields Addr and Clock to do this.
However, since we are using PPA, we need to have some right- (or left-)
moving copies of these fields in order to check the compatibility of these
fields. Having this in mind, we define Σs,t,S,T in the above way, since it will
make notation a little lighter later on. The union

⊔
0≤t<T
0≤s<S

Σs,t,S,T is disjoint.

In addition, let Σs,S := Ps,SAddr,Addr+1
. In Σs,S , we do not care about the

value of Clock (or if it is even constant). Clearly, Σs,t,S,T ⊆ Σs,S . For
c ∈ Σs,S and i ∈ Z, the pattern

Bc
i = cJ−s+iS,−s+(i+1)SJ

is called a colony of c. Clearly, (Bc
i)i∈Z = σ−s(c)[S] and in Bc

i , the value of
Addr (and Addr+1) grows from 0 to S − 1 from left to right.

This is the natural way to break a configuration into colonies of size S.
Now, we are going to use every colony to encode one letter of the simulated
configuration. For this, we have to define the appropriate decoding function.

Let φ̃ : (F∗5)∗ 9 F
∗∗
5 be the following function, which is the basis of all

the decoding functions that we will use: Let w ∈ (F∗5)∗ be a word over the
infinite alphabet F∗5 (we look at w as a finite part of some 1D configuration
over F∗5). If 〉w〈 = χ (u) 3|w|−|χ(u)|, where u ∈ F∗∗5 (we look at u as a tuple
of elements of F∗5), then we define φ̃(w) = u.

Notice that χ (u) ∈ F
∗
3. In other words, w is equal to χ (u) up to

appending some 3s at the end of χ (u) (this gives a word in F∗4) and then
adding some 4s in front of every letter of χ (u) 3|w|−|χ(u)| (which gives a word
in (F∗5)∗). Unless w has this very specific form, φ̃(w) is not defined.

φ̃ is well-defined because χ (·) is an injection and because 3 does not
appear as a letter of χ (u) ∈ F∗3. A necessary condition so that φ̃(w) = u is
that |w| ≥ |χ (u)|.

Let Field be a new field and φ̃Field : (F∗∗5)∗ 9 F
∗∗
5 be defined as φ̃πField.

φ̃Field can read words over letters with many fields by ignoring the other
fields and using φ̃ on Field.

We can extend φ̃ in a natural way to a map Φ̃: (F∗5)Z 9 (F∗∗5)Z as
follows: for all c ∈ (F∗5)Z and i ∈ Z, Φ̃(c)i = φ̃(c|JiS,(i+1)SJ). Similarly,

φ̃Field can be naturally extended to a map Φ̃Field : (F∗∗5)Z 9 (F∗∗5)Z.

36

The idea is that every configuration will be divided into colonies using
the coordinate fields and then φ̃Field will be used on every colonies so as
to obtain a letter. Putting these letters together, we obtain the simulated
configuration.

Formally, a decoding function Φ will be equal to Φ̃Field|Σ , where Σ ⊆
Σ0,S , for some S that is large enough. If bi = φ̃Field(B

c
i), then Φ(c) =

Φ̃Field(c) = (bi)i∈Z. We call bi the simulated letter of the i’th colony and
the letters of c are the simulating letters.

The decoding functions that we will use in our constructions will always
be of the form Φ̃Field|Σ , where Σ ⊆ Σ0,S . For such functions, we immediately
obtain two of the conditions of a decoding function of a simulation:

Remark 24. Let us fix a field list C = [Addr, Addr+1, Clock, Clock+1, Tape],
S ∈ N1 and vectors k,k′ ∈ N∗ such that the following inequalities hold:

kAddr ≥ ‖S‖
kTape ≥ 1

S ≥
∣∣∣χ (Fk′

5

)∣∣∣ ,
Let Σ := (Fk

5)Z∩Σ0,S ∩ Φ̃−1
Tape((F

k′
5)Z). Then Φ := Φ̃Tape|Σ : (Fk

5)Z → (Fk′
5)Z

is surjective and ΦσS = σΦ.
In addition, for every b ∈ (F∗∗5)Z, we are free to chose the values of the

anonymous fields in any way we like in a pre-image.

In the above remark, Σ contains those configurations over Fk
5 that are

well-structured (i.e., divided into colonies with the origin having address 0)
and such that in the i’th colony we have the encoding of a letter of Fk′

5 , for
all i ∈ Z.

37

38

Chapter 4

The programming language

4.1 Definitions and basic permutations

In our constructions, we want to use permutations that are computed fast.
It is not possible to formally state what fast means, but polynomially com-
putable and, more generally, polynomially checkable permutations is fast
enough. This is a common feature of all self-similar and hierarchical con-
structions and the reasons why it is needed are explained very thoroughly
in [12]. For our purposes, it is enough to describe a pseudo-programming
language, with which we will write “programs” that are interpreted as per-
mutations α : F∗∗5 9 F

∗∗
5 .

Let us start describing this programming language: It has four types,
terms (that are denoted t, t′ . . .), valuations (that are denoted v, v′, . . .),
conditions (that are denoted c, c′, . . .) and permutations (that are de-
noted α, α′, . . .). Each type is semantically interpreted as a different kind
of mathematical object. Terms are interpreted as maps t : F∗∗5 9 F

∗
5. They

represent some word information that can be extracted from a tuple. Valua-
tions are interpreted as functions v : F∗∗5 9 N. Valuations represent numeri-
cal information that can be extracted from tuples. Conditions are predicates
over F∗∗5 , or equivalently maps q : F∗∗5 9 {0, 1}. Finally, permutations are,
rather predictably, interpreted as (partial) permutations F∗∗5 9 F

∗∗
5 which

will be used to define IPPA.

Let us describe each type with more details. We are not going to try
to give a formal definition of the programming language, since it is would
be unnecessarily complicated. It would involve a global induction on the
various types, starting from some basic objects and taking a closure under
some inductive operations. Instead, we will simply list the objects that we
are actually going to use in the rest of the thesis. The proofs that they are
polynomially computable are often trivial and will be omitted in most cases.

39

Terms

• Every word w ∈ F∗5 is a term (understood as the constant function);

• for all i ∈ N, the projection πi of the i’th field is a term;

• if t is a term, then χ (t) is also a term (χ (t) (u) = χ (t(u)), for all u
in F∗∗5);

• if v is a valuation and t is a term, then t|v is also a term, where
t|v (u) := t(u)|v(u) . In other words, t|v uses v as a pointer for t and it
gives the letter at the v(u)’th position of t(u).

Valuations

• Every natural n ∈ N is a valuation, understood as a constant function;

• if t is a term, then |t| is a valuation;

• For all vectors k ∈ N∗ and i ∈ N, the function lk,i defined in Fact 6 is
a valuation.

• If S : N → N is a sequence of numbers and v a valuation, then Sv
(where Sv(u) := Sv(u)) is also a valuation. (In general, the complex-
ity of this valuation depends on the complexity of S and it is not
polynomially computable if S is not.)

• Basic arithmetical operations (addition, subtraction, multiplication
etc) of valuations are still valuations.

In fact, we will need the following, more general version of the third
bullet:

• For all valuations v, vector sequences k : N → NM and i ∈ N, lkv ,i
(where lkv ,i(u) := lkv(u),i(u)) is also a valuation. In this version, the
vector whose structure lkv ,i gives depends on the input letter. Of
course, if k is not a polynomially computable sequence, then neither
is lkv ,i.

A vector valuation is a collection v = (vi)0≤i≤M−1 of valuations, for
some M ∈ N. Vector valuations are used to obtain lengths of alphabets in
a polynomially computable way.

40

Conditions

• If v1, v2 are valuations, then v1 ≥ v2 is a condition whose interpretation
is clear;

• if t1, t2 are terms, then t1 = t2 is a condition;

• if t, t1 are terms and (Qw)w∈F∗5 is a sequence of subsets of F∗5, then
t1 ∈ Qt is a condition. (u satisfies t1 ∈ Qt if t1(u) ∈ Qt(u).)

• if t is a term and i1, . . . , in are fields, then Sti1,...,in is a condition (that

is true for u if and only if u ∈ St(u)
i1,...,in

);

• Hvp(t) is a condition, where u satisfies Hvp(t) if and only if the TM
defined by program p does not stop within v(u) steps over term t(u);

• boolean operations of conditions are also conditions.

Permutations

• For every condition q, Check[q] is a permutation. Check[q](u) is equal
to u if and only if u satisfies q (and is undefined otherwise). This is
an involution.

• For every valuation v and field i ∈ N, incr[v, i] is a permutation de-
fined in the following way: Let u ∈ F

∗∗
5 and define u′ in the fol-

lowing way: u′j := uj for all j 6= i, and u′i := 〈γ〉|ui|(ui), where

γ(w) := w + 1 mod v(u) when w < v(u) (undefined otherwise); then
incr[v; i](u) := u′ if v(u) = v(u′) (undefined otherwise).

Essentially incr[v; i] adds 1 modulo v(u) to the i’th field of u. The
additional complications are due to the fact that we want this rule to
always be reversible (which would not necessarily be true if v(u′) is
not equal to v(u)) and length preserving (which is the reason that we
use the strange γ function).

• αU [t; Tape, Head−1, Head+1] is a permutation for every term t and fields
Tape, Head−1, Head+1. We direct the reader to Section 5.2 for the def-
inition of this permutation, since it uses a permutation that is defined
and examined therein.

• Let t be a term and i be a field such that t does not depend on i.
In other words, if u,u′ ∈ F∗∗5 and πj(u) = πj(u

′) for all j 6= i, then
t(u) = t(u′).

Then, Write[t; i] is a permutation defined as follows: Let u ∈ F∗∗5 .
Write[t; i](u) is defined if and only if 〉ui〈 = ε. In this case, all fields
remain the same except for i which becomes equal to 〈t(u)〉|ui|.

41

Essentially, we check that the field i is empty and then write t(u) on
it, while preserving the lengths. The condition that t does not depend
on i is essential to ensure reversibility.

Write[t; i]−1 first checks that the i’th field is equal to t(u) and then
empties it, while preserving the lengths. This is a way to reversibly
erase some information from a letter, namely compare it with some
other place of the letter where the same information is held.

• For all fields i, i′, Swap[i, i′] is a permutation defined as follows: Let
u ∈ F∗∗5 . Swap[i, i′](u) is defined if and only if |ui| = |ui′ |. In this case,
all fields are unchanged except for i and i′ whose values are exchanged.

This is a length-preserving involution.

• For every condition q and permutation α, if q then α is a permutation.
On input u ∈ F∗∗5 , it applies α if condition q(u) is satisfied and q(u) =
q(α(u)). If q(u) is satisfied and q(u) 6= q(α(u)), then it is not defined
on u (this ensures reversibility). Finally, if q(u) is not satisfied, it is
equal to the identity.

• The composition of permutations is also a permutation. In construc-
tions, we will denote the composition α2 ◦ α1 by writing α2 below
α1.

In the definition, we check that the values of the valuations, terms and
conditions that are given as parameters do not change. This is a technical
point that ensures that they are interpreted as reversible functions. In all our
constructions, these conditions will easily be satisfied because the valuations,
terms and conditions will either be constant or depend on fields that are not
modified by the rule at hand.

If we were giving a complete, formal description of a language, then
this would be the point where by a large, tedious induction we would prove
that, given some natural conditions on the parameters, every permutation of
the language is polynomially computable, or, more precisely, polynomially
computable in its parameters (this means that its complexity is a polynomial
of the complexity of its parameters) and that short programs exist for the
permutations. Namely, the size of the program is O(pt,v,...), where t, v etc.
are the parameters of the permutation.

We can also prove that the size of a program of a permutation is approx-
imately the same as the size of the program of its inverse.

4.2 Conventions about defining IPPA

In the first part of this chapter, we gave a short exposition of the program-
ming language that will be used in the rest of the thesis in order to define

42

permutations of F∗∗5 . However, in order to define a PPA, the number of
fields and the directions of the fields also have to be fixed.

Recall that we want to define PPA, i.e., RPCA of the form F = σδ ◦ α,
where δ ∈ {−1, 0,+1}M is the shift vector and α is a partial permutation
of A = A0 × . . .AM−1, for some M ∈ N. In our case, F will always be the
restriction of an IPPA, i.e., A will be equal to Fk

5 , for some k ∈ NM and
α := β|Fk

5
will be the restriction of some (infinite) permutation β defined in

the programming language.

We will use the following conventions when constructing such PPA:

• We first give a list of so-called explicit field labels. Such a list will
often be noted in the form C := [Fielde, . . . , Field

′
e′], where e, e′ ∈

{−1, 0,+1}. The subscripts e, . . . , e′ correspond to the directions of
the fields (if the direction is equal to 0, then it will be omitted). The
field list is a tuple of pairwise different natural projections, that are
used by the permutation, together with their directions, that will be
used by the shift. (The labels of the fields will make the permutations
more understandable than the corresponding indices i, i′, . . .). The
field list is not fixed, so in fact for every field list, we give a different
permutation, even though they only differ in the enumeration of the
fields.

The permutation is assumed to reject any element of F∗∗5 that does
not involve all field numbers in the list, but note that it does not reject
tuples that have more fields; the so-called anonymous fields, that are
not in the list, are not modified by the permutation (but they might be
used by some other PPA with which we compose). This allows us to
define some simple PPA with few fields and then use them as “building
blocks” in order to build more complicated ones in the following sense:
the complicated PPA has more fields than the simple one, but, if it does
not “touch” any of its fields, its behaviour on those fields is described
by the corresponding behaviour of the building block.

If C and C′ are two lists of field labels, then C ∪ C′ is the list that
contains the fields of C and C′. Usually, the lists will be disjoint, so
that we will use the notation C t C′.

• After giving the field list, we describe an (infinite) permutation using
the programming language defined in the first part of this chapter.

• Then, we need to fix M ∈ N and k ∈ NM . If we do not care about the
existence of anonymous fields, then we always assume that M is some
number greater than or equal to the largest natural appearing in the
field list C. In this way, we ensure that the configurations will not be

43

rejected simply because the program tries to access a field that is not
there.

When we do not want anonymous fields to exist (for example, when
we want to achieve exactness of a simulation), then we assume that
the field list C is equal to [0, . . . ,M − 1] and we choose this M for the
number of fields.

In any case, after choosing M , we fix some vector k ∈ NM satisfying
some appropriate conditions (which are case-specific).

• Finally, we need to define the directions of the fields. However this
has already been done in the definition of the field list with the use of
the subscripts e, e′ etc. The directions of the anonymous fields can be
anything. In fact, our statements will be true for all directions of the
anonymous fields, since we will not refer to them.

44

Chapter 5

The universal simulator

In this chapter, our aim is to construct an RPCA (a family of RPCA in
fact, depending on some parameters) that can simulate every other RPCA
that satisfies some conditions. This is done in Lemma 33. This RPCA is
extremely helpful and it will be part of all our subsequent constructions.
Since it is difficult to overstress the importance of this RPCA, we will give a
step-by-step description of its construction with as many details as possible.

In Section 5.1, we will embed a periodic rectangular grid in every con-
figuration. This is a standard procedure in hierarchical constructions and it
will allow us to partition every configuration into colonies and use the de-
coding function Φ̃. In Section 5.2, we will make a slight digression and show
how we can simulate any TM with an RPCA in real-time. This is needed
in order to preserve the expansiveness of the horizontal direction. Then, in
Section 5.3, we construct an RPCA to simulate an RPCA whose direction
vectors are null (all its fields are still). There are some tricks involved in
this phase, mainly having to do with deleting the previous simulated letter
and synchronizing the computations. Then, in Section 5.4, we construct an
RPCA that can simulate any RPCA whose permutation is the identity i.e.,
any shift. Finally, in Section 5.5, we construct the universal IPPA Simulate
that can simulate any RPCA, when it is restricted to the appropriate alpha-
bet.

5.1 Imposing a periodic structure

Let CGrid = [Addr, Addr+1, Clock, Clock+1].

• Clock and Addr are meant to localize the cell in its macrocell, and
they correspond to the projections involved in the definition of explicit
simulation in Section 3.4.

45

• Clock+1 and Addr+1 are used to communicate with the neighbour cells,
so that consistency between the Clock and Addr fields is achieved.

Grid[vMAddr, vMClock]

1: Check[πAddr+1 = πAddr and πClock+1 = πClock] {Check left-neighbour

information coherence.}
2: incr[vMAddr; Addr+1] {Increment Addr+1 so that the right neighbour

can check coherence.}
3: incr[vMClock; Clock] {Update Clock.}
4: incr[vMClock; Clock+1] {Update Clock+1.}

By the discussion of Chapter 4, we know that Grid[vMAddr, vMClock; CGrid]
is polynomially computable with respect to its parameters vMAddr and vMClock.

In practice, the two valuation parameters vMAddr and vMClock will be con-
stant over the alphabet of the PPA, in which case the behaviour will be
described by the following:

Lemma 25. Let us fix a field list CGrid ∈ N4 and integers S, T ∈ N1.
Let F be the IPPA defined by the permutation Grid[S, T ; CGrid] and direc-
tions νGrid given by the label indices, and let k ∈ N∗ be a vector satisfying:{

kAddr, kAddr+1 ≥ ‖S‖
kClock, kClock+1 ≥ ‖T‖ .

Let c ∈ (Fk
5)Z. Then, c ∈ F−2((Fk

5)Z) if and only if there exist s ∈ J0, SJ
and t ∈ J0, T J such that c ∈ Σs,t,S,T . In this case, F (c) ∈ Σs,t+1 mod T,S,T .

In the previous statement, S and T should be understood as the width
and height of the macrocells. Notice, also, that the statement holds for all
vectors k ∈ N∗ that satisfy the inequalities, which means that there can be
other fields in the alphabet. This means that if we use Grid together with
other rules that do not change the values of the fields in CGrid, the statement
of the lemma will still be true.

The restrictions about the lengths of k ensure that fields are large enough
that we can write the binary representation of S and T on them.

Proof. We prove the stronger claim that if F 2(c) exists, then there exist
0 ≤ s < S and 0 ≤ t < T such that for all n ∈ Z, πAddr(cn) = πAddr+1(cn) =

s+ n mod S and πClock(cn) = πClock+1(cn) = t.

Suppose that πAddr(cn) 6= πAddr+1(cn) or πClock(cn) 6= πClock+1(cn), for

some n ∈ Z. Then, line 1 would not be defined at cell n, F (c) would not
exist, which is a contradiction.

46

Suppose, then, that there exists n ∈ Z with πAddr(cn+1) 6= πAddr(cn) +
1 mod S. Line 2 and the fact that Addr+1 is a right-going field imply that
πAddr+1F (c)n+1 = πAddr(cn) + 1 mod S. Then, line 1 is not defined at cell

n + 1 of F (c) since πAddr+1F (c)n+1 = πAddr(cn) + 1 mod S 6= πAddr(cn+1).

Therefore F 2(c) does not exist, which contradicts the hypothesis. Similarly,
we can prove that cn.Clock = cn+1.Clock, for all n ∈ Z. Thus, the stronger
claim we made at the beginning of the proof is true.

If πAddr(c0) = s and πClock(c0) = t, then the previous claim implies that
for all n ∈ Z, πAddr(cn) = s+n mod S and πClock(cn) = t. Furthermore, since
the value of Addr is not changed by F and the value of Clock is increased by
1 mod T every time step by line 3, we have that πAddrF (c)n = s+n mod S
and πClockF (c)n = t+ 1 mod T , for all n ∈ Z.

In general, when using IPPA, we have to use a similar rule every time we
want to impose some horizontal restriction on the configuration. Namely,
we have to use an additional right-moving (or left-moving, it does not make
a difference) field, and then we need 2 steps in order to verify that the field
is constant.

All of the rules we construct will factor onto Grid[S, T ; CGrid], for some
S, T ∈ N1. The following remark will give the disjointness condition in the
definition of simulation.

Remark 26. Assume that F : AZ 9 AZ factors onto Grid[S, T ; CGrid]
through the factor map H and let Σs,t

F := H−1(Σs,t,S,T). Then, the union⊔
0≤t<T
0≤s<S

Σs,t
F is disjoint and F (Σs,t

F) ⊆ Σs,t+1 mod T
F .

Therefore, if Φ: AZ 9 BZ satisfies that D(Φ) ⊆ Σ0,0
F , for some s, t, then

the union
⊔

0≤t<T
0≤s<S

F tσs(D(Φ)) is disjoint.

Σs,t
F implicitly depends on the factor map H. However, in applications,

H will be equal to πCGrid so that no ambiguity arises by omitting it.

5.2 Simulating TM with IPPA

The IPPA Grid allows us to divide every configuration into colonies with
a periodical clock. We want to use this space-time structure in order to
do computations within the work-periods (the “time” between two subse-
quent steps where the clock is 0). We are going to introduce the elements
needed for this one by one, since, hopefully, it will make some of the ideas
more clear. First, let us show how to simulate TMs in real time with PPA.

For all programs p = pM ∈ F∗4, we construct an IPPA that simulatesM
in real-time. This subsection is inspired by [32].

47

Let CU := [Tape, Head−1, Head+1].

The key item to maintaining reversibility, is to keep track of the history
of the computation. Some kind of archive of each past step is shifted in
the direction opposite to the head, in order for the head to always have
space to write the new history. Recall the definition of the function U from
Subsection 2.2.1. Let γU [p] : (F∗4)3 9 (F∗4)3 be defined by the following
transitions: (a, h−1, h+1) is mapped to

• (a′, χ (a, q, δ) , χ (a, q, δ)), if (hδ, h−δ) = (q, ε) (Headδ contains the TM
head) and U(a, q, p) = (a′, ε,+1). If Headδ contains a head and the
transition is an accepting one, then we write an encoding of the last
transition on the Head fields, modify Tape and the TM heads disap-
pear. Here, the assumption that the TM head (which has disappeared)
moves to the right is convenient to ensure injectivity.

• (a′, h′−1, h
′
+1), where (h′δ′ , h

′
−δ′) = (q′, χ (a, q, δ)) if (hδ, h−δ) = (q, ε)

and U(a, q, p) = (a′, ε, δ′). If the transition is not an accepting one,
then Tape is modified, the TM head is written on the appropriate Head
field and on the other Head field we write an encoding of the transition
and of the position of the head before the transition.

• (a, h−1, h+1) if h−1, h+1 /∈ Qp \ {ε}. If none of the Head fields contains
a TM head, then do nothing.

It is not difficult (by a tedious case enumeration) to see that γU [p] is
a partial permutation and polynomially computable, thanks in particular to
the disjointness of Qp ⊂ F∗2 and χ (F4 ×Qp × {−1, 1}) ⊂ 2F∗3. Basically,
γU [p] identifies the accepting state ε with the absence of state (for which it
just performs identity). In other cases, it prevents from having two (non-
accepting) head states at the same cell; then it applies the transition rule
and sends the new state to the correct direction (depending on δ), while
sending an archive of the last performed operation in the opposite direction.
At the moment that the accepting state appears, it just sends two (identical)
archives in opposite directions (there is no new state to send).

We say that c ∈ (F∗∗4)Z represents (z, q, j) ∈ FZ
4 ×Q×Z of the machine

M corresponding to program p if:

• For all i ∈ Z, πTape(ci) = zi;

• (πHead−1(cj), πHead+1(cj)) ∈ {q} × {ε} ∪ {ε} × {q};

• For all i 6= j and δ ∈ {−1,+1}, πHeadδ(ci) /∈ Qp \ {ε}

• For all i 6= j and δ ∈ {−1,+1}, if πHeadδ(ci) 6= ε then δ has the sign of
j − i.

48

Intuitively, this means that in c there is at most one (non-accepting) head
at position j, no head elsewhere, and nothing (represented by ε, like the
accepting state) in Head−1 on its right nor in Head+1 on its left. The possible
archives go away from the head position. We can thus see that the head
will never move into a cell where there is an archive, so that one of the
transitions of γU [p] will always be applicable.

Formally, we have the following lemma about the behaviour of γU [p].

Lemma 27. Let us fix a field list CU ∈ N3 and a program p = pM ∈ F∗4.
Consider the IPPA F defined by permutation 〈γU [p]〉 and directions νU given
by the label indices.
Let k ∈ N∗ be a vector satisfying:{

kHead−1 , kHead+1 ≥ ‖χ (F4 ×Qp × {−1,+1})‖
kTape ≥ 1 .

Let c ∈ (Fk
5)Z and suppose that 〉c〈 represents configuration (z, q, j) ∈ FZ

4 ×
Q× Z of M.
Then, for all t ∈ N,

〉
F t(c)

〈
represents Mt(z, q, j).

As in Lemma 25, the inequalities about the lengths of k simply state
that the fields are long enough. Using Lemma 7, we will omit the 〈·〉 and
〉·〈 from 〈γU [p]〉 and 〉c〈 in the following proof, since they are only used to
make F have constant lengths.

Proof. We will prove the claim for t = 1; the general claim then follows by
induction.

Suppose, first, thatM(z, q, j) does not exist. This means that δM(zj , q)
does not exist, or equivalently, that U(zj , q, p) = U(cj .Tape, q, p) does not
exist. From the definition of γU [p] and the fact that c represents (z, q, j), we
have that γU [p](cj) does not exist, which implies that F (c) does not exist.

Suppose, then, that M(z, q, j) = (z′, q′, j′) exists. This means that
U(zj , q, p) = (z′j , q

′, j′ − j), and z′i = zi for any i 6= j. By assumption,
for any i ∈ Z, (πTape(ci), πHead−1(ci), πHead+1(ci)) = (zi, h−1,i, h+1,i) for some
h−1,i, h+1,i ∈ Qp ∪ χ (F4 ×Qp × {−1,+1}) ∪ {ε}.

Moreover, for any i 6= j, and δ ∈ {−1,+1}, hδ,i /∈ Qp, so the identity
rule is applied. After applying the shifts, it gives that for any i < j − 1,

(πTapeF (ci), πHead−1F (ci), πHead+1F (ci)) = (zi, h−1,i+1, h+1,i−1)

= (z′i, h−1,i+1, ε)

with h−1,i+1 /∈ Qp, and for any i > j + 1,

(πTapeF (ci), πHead−1F (ci), πHead+1F (ci)) = (zi, h−1,i+1, h+1,i−1)

= (z′i, ε, h+1,i−1)

49

with h+1,i−1 /∈ Q.

Now, assume (h−1,i, h+1,i) = (q, ε) and that U(zj , q, p) = (z′j , q
′,−1)

(the other cases can be dealt with in a similar way). Then the transition
(zj , q, ε)→ (z′j , q

′, χ (zj , q,−1)) is applied by γU [p]. After the application of
γU [p] and the shifts, we obtain

(πTapeF (cj), πHead−1F (cj), πHead+1FU [p](cj)) = (z′j , ε, ε),

(πTapeF (cj−1), πHead−1F (cj−1), πHead+1F (cj−1)) = (z′j−1, q
′, ε) and,

(πTapeF (cj+1), πHead−1F (cj+1), πHead+1F (cj+1)) = (z′j+1, ε, χ (zj , q,−1)).

All conditions are hence satisfied for F (c) to represent M(z, q, j).

Note that due to the parallel nature of IPPA, some configurations may
involve several machine heads, and valid simulations may take place in par-
allel, provided that there is enough space between them so that the archive
and the heads do not collide. For this reason, we need to give a “finite
version” of the previous lemma.

Lemma 28. Let us fix a field list CU ∈ N3 and a program p = pM ∈ F∗4.
Consider the IPPA F defined by permutation 〈γU [p]〉 and directions νU given
by the label indices. Let k ∈ N∗ be a vector satisfying:

kHead−1 , kHead+1 ≥ ‖χ (F4 ×Qp × {−1,+1})‖
kTape ≥ 1.

Let c ∈ (Fk
5)Z, c′ = 〉c〈 and assume that there exists n ∈ N such that the

set

J :=
{
j ∈ Z

∣∣ (πHead−1(c′j), πHead+1(c′j)) 6= (ε, ε)
}

satisfies that for any j 6= j′ ∈ J , we have |j′ − j| > 2n, and that for all
j ∈ J , (c′j .Head−1, c

′
j .Head+1) ∈ Qp × {ε} ∪ {ε} × Qp. For j ∈ J , let

qj := c′j .Head−1 if (c′j .Head−1, c
′
j .Head+1) ∈ Qp × {ε} and qj := c′j .Head+1 if

(c′j .Head−1, c
′
j .Head+1) ∈ {ε} ×Qp.

Then, Fn(c) exists if and only if (zj , q′j , j
′) :=Mn(c′.Tape, qj , j) exists,

for all j ∈ J . In addition:

• πTapeFn(c)Jj−n,j+nK = zjJj−n,j+nK, for all j ∈ J ;

• πTapeFn(c)i = ci if i /∈ J + J−n, nK;

• (πHead−1F
n(c)j′ , πHead+1F

n(c)j′) ∈ {(q′j , ε)} ∪ {(ε, q′j}, for all j ∈ J ;

• (πHead−1F
n(c)i, πHead+1F

n(c)i) /∈ Qp×{ε}∪{ε}×Qp, if i /∈ {j′| j ∈ J}

50

Proof. First note that the identity is always applied when the head is absent;
in particular it is applied outside J + J−t, tK at time t ∈ N (because F has
radius 1) and initially the heads are only in the positions in J .

According to the assumptions, for all j ∈ J , the configuration c′j ob-
tained by turning all (ci.Head−1, ci.Head+1) to (ε, ε) except at position j
represents (c′.Tape, qj , j). Thanks to Lemma 27, for all 0 ≤ t ≤ n, F t(c′j)
exists if and only if Mn(c′.Tape, qj , j) exists.

In that case, since c′j coincides with c′ over interval Jj − 2n, j + 2nK and
since the radius is 1, a simple induction can show that F t(c′j) coincides with
F t(c′) over interval Jj − 2n+ t, j + 2n− tK. Lemma 27 hence gives the main
claim.

Conversely, suppose that F t(c′j) is undefined for some j ∈ J with t ≤ n
minimal. Then, F t−1(c′j) exists, and by Lemma 27 involves a unique (non-
accepting) head, in some cell j′ ∈ Jj − t, j + tK. Therefore, γU [p](F t−1(c′j)i
is defined for any i 6= j′. This means that γU [p](F t−1(c′j)j′) is undefined;
we have already noted that this is equal to γU [p](F t−1(c′)j′), which proves
that F t(c′) is undefined.

Lemma 28 will be used in the following way: Every configuration will
be divided into colonies by Grid. Initially (when the clock is equal to 0),
inside every colony there will be exactly one TM head at the leftmost cell of
the colony. These TM will perform some computation for a small amount
of time compared to the the width of the colonies (the S of Lemma 25) so
that the heads will not meet. Lemma 28 will immediately imply that at the
end of the computation, in every colony, Tape contains the output of the
computation. Finally, the output of the computation will be copied onto
some new field and then the computation will be run backwards (remember
that γU [p] is a permutation).

We are now ready to give the details of the definition of the permutation
αU [t; Tape, Head−1, Head+1]: Let u ∈ F∗∗5 and define u′ in the following way:

(u′.Tape, u′.Head−1, u
′.Head+1) = 〈γU [t(u)]〉(u.Tape, u.Head−1, u.Head+1),

and u′j := uj for all j /∈ {Tape, Head−1, Head+1}. Then,

αU [t; Tape, Head−1, Head+1](u) := u′,

if t(u) = t(u′) (and it is undefined otherwise.).

Again, the definition gets a little more complicated due to the need
to preserve the lengths, to have arbitrarily many fields and to ensure re-
versibility. When t = πProg, where Prog is a new field, then the condition
t(u) = t(u′) is always satisfied.

51

5.3 Computing the simulated permutation

Let CCompute = CU t [NTape].

• Head−1, Head+1 are used by to simulate a TM with the rule of Subsec-
tion 5.2.

• The output of this computation is written on NTape and then the
computation is reversed (the Bennett trick, see [3]).

Compute[vAddr, vClock, vAlarm, tProg, tRProg]

1: if vClock = 0 and vAddr = 0 then
2: Write[0; Head−1] {Write the machine initial state in the left head

field.}
3: end if
4: if 0 ≤ vClock < vAlarm then
5:

〈
γU [tProg; Tape, Head−1, Head+1]

〉
{Run the machine in order to

compute the permutation.}
6: else if vClock = vAlarm then
7: Check[πHead−1 , πHead+1 /∈ QtProg \{ε}] {Check that the computation

halted.}
8: Write[Tape; NTape] {Copy the output onto a different tape.}
9: Swap[Head−1, Head+1] {The directions of the fields of FU [p]−1 are

opposite to those of FU [p].}
10: else if vAlarm < vClock ≤ 2vAlarm then
11:

〈
γU [tProg; Tape, Head+1, Head−1]−1

〉
{Unwind the computation in

order to delete the archive.}
12: end if
13: if 2vAlarm ≤ vClock < 3vAlarm then
14:

〈
γU [tRProg; NTape, Head−1, Head+1]

〉
{Compute the inverse of the

permutation, in order to recover Tape.}
15: else if vClock = 3vAlarm then
16: Check[πHead−1 , πHead+1 /∈ QtRProg \ {ε}] {Check that the computa-

tion halted.}
17: Write[Tape; NTape]−1 {Empty NTape.}
18: Swap[Head−1, Head+1] {Reverse the directions again.}
19: else if 3vAlarm < vClock ≤ 4vAlarm then
20:

〈
γU [tRProg; Tape, Head+1, Head−1]−1

〉
{Unwind the second compu-

tation, too.}
21: end if
22: if vClock = 4vAlarm and vAddr = 0 then
23: Write[0; Head−1]−1 {Erase the machine initial state.}

52

24: end if

Compute[vAddr, vClock, vAlarm, vProg, vRProg; CCompute] is polynomially com-
putable with respect to its parameters.

Note that, depending on the value of vAddr, only a small amount of these
permutation are applied.

In applications, the three parameters vAlarm, tProg, tRProg will be constant.
vAlarm contains a natural number that controls how long the computation
lasts. tProg and tRProg are interpreted as the program and the reverse program
(i.e., the program of the inverse IPPA) of the IPPA that we want to simulate.

We are now able to simulate uniformly RPCA with “radius 0” (null
direction vector).

Lemma 29. Let us fix a field list CGrid t CCompute ∈ N8, vectors k,k′ ∈
N∗, integers S, T ∈ N1, t0, U ∈ N and programs p, p−1 ∈ F∗4 of a partial
permutation α : F∗∗5 9 F

∗∗
5 and its inverse α−1, respectively and let G the

IPPA corresponding to permutation α and null direction vector.

Consider the IPPA F with directions νGrid∪Compute, and permutation

Grid[S, T] ◦ Compute[πAddr, πClock − t0, U, p, p−1] ,

and assume that the following inequalities hold:

U ≥ max{tp(Fk′
5), tp−1(Fk′

5)}
S ≥ max{2t0,

∥∥∥χ (Fk′
5

)∥∥∥}
T ≥ 4U + t0
kAddr, kAddr+1 ≥ ‖S‖
kClock, kClock+1 ≥ ‖T‖
kHead−1 , kHead+1 ≥

∣∣χ (F4 × (Qp ∪Qp−1)× {−1,+1}
)∣∣

kTape, kNTape ≥ 1.

Then, F|(Fk
5)Z �

S,T,0,Φ
G|(Fk′

5)Z , where Φ := Φ̃Tape|Σ and

Σ := (Fk
5)Z ∩ Σ0,0,S,T ∩ SεNTape,Head−1,Head+1

∩ Φ̃−1
Tape((F

k′
5)Z).

The number t0 should be understood as a delay before which to apply
this rule, and U as the maximal time that we allow to the (forward and
backward) computation.

Proof. It follows from Remarks 24 and 26 that Φ is surjective, ΦσS = σΦ
and that D(Φ) :=

⊔
0≤t<T
0≤s<S

F tσs(D(Φ)) is a disjoint union.

53

Therefore, in order to prove the simulation we only have to prove that
GΦ = ΦF T . This is equivalent (since we are talking about partial functions)
to the facts that if Φ(c) = b, then F T (c) exists if and only if G(b) exists,
and in that case ΦF T (c) = G(b).

We are actually going to prove the following stronger:

Fact 30. If c ∈ (Fk
5)Z∩Σ0,t0,S,T ∩SεNTape,Head−1,Head+1

∩Φ̃−1
Tape(b), then F 4U (c)

exists if and only if G(b) exists, and in that case F 4U (c) ∈ Σ0,t0+4U,S,T ∩
SεNTape,Head−1,Head+1

∩ Φ̃−1
Tape(G(b)).

Since the only rule applied outside t0 ≤ Clock ≤ t0 +4U is Grid, Fact 30
implies that if Φ(c) = b, then ΦF T (c) = G(b), which concludes the proof of
the lemma.

For the rest of the proof, let c ∈ (Fk
5)Z ∩Σ0,t0,S,T ∩ SεNTape,Head−1,Head+1

∩
Φ̃−1
Tape(b).

Suppose, first, that F 4U (c) exists.

• Clock = t0: Initially, c ∈ SεNTape,Head−1,Head+1
. Line 2 writes the initial

head of the TM on Head−1 of the leftmost cell of every colony.

• t0 ≤ Clock < t0 + U : Only the permutation of line 5 is applied.
Together with the directions of νCompute, this implies that we apply U
steps of the IPPA FU [p] on configuration
(πTape(c), πHead−1(c), πHead+1(c)). This configuration has a starting TM
head at the leftmost cell of every colony, and since c ∈ Φ−1(b), we have
that in the i’th colony the input of the TM is χ (bi).

• t0 = t0 + U : Line 7 checks that in no place of the tape does there
appear a head of the TM defined by p. This means that all the TM
have accepted within the first U steps and since p is the program of
α, we take that α(bi) exists, for all i ∈ Z, or equivalently that G(b)
exists.

Therefore, if F 4U (c) exists, then G(b) exists.

For the other direction, suppose that G(b) exists, or, equivalently, that
α(bi) exists, for all i ∈ N.

• Clock = t0: By assumption, c ∈ SεNTape,Head−1,Head+1
.Line 2 writes the

initial state of the TM on the Head−1 of the leftmost cell of every
colony.

• t0 ≤ Clock < t0 + U : Only the permutation of line 5 is applied.
Together with the directions of νCompute, this implies that at each
step, we apply the IPPA FU [p] on the configuration
(πTape(c), πHead−1(c), πHead+1(c)). There is a TM head at the leftmost

54

position of every colony and the input in the i’th colony is equal to
χ (bi). In other words, φ̃Tape(B

c
i) = bi, for all i ∈ Z.

• Clock = t0 + U Since α(bi) is defined for all i ∈ Z, U ≥ tp(F
k′
5) and

S ≥ 2U , we can see that the conditions of Corollary 28 are satisfied
with n = U . This means that the computation of the TM in every
colony has accepted and that the output of the computation is written

on the Tape of every colony. In other words, φ̃Tape(B
FU (c)
i) = α(bi),

for all i ∈ Z.

The check of line 7 is true, since by assumption all of the TM have
accepted before Clock = U , and when a TM halts its head disappears.
Line 8 copies the contents of Tape on NTape. Therefore, after the

application of line 8, we have that φ̃NTape(B
FU (c)
i) = α(bi), for all

i ∈ Z.

Finally, line 9 swaps the fields Head−1 and Head+1. This can be
thought of as “reversing” the directions of these fields. We do this
because we want to reverse the computation done by FU [p] and in or-
der to achieve this, it is not enough to apply

〈
γU [p]−1

〉
, but we also

need to use directions −νCompute.

• t0 + U + 1 ≤ Clock ≤ t0 + 2U : Only the permutation of line 11 is
applied. Together with the fact that the shift directions have been
reversed and that the fields Head−1, Head+1 have also been exchanged
in the rules of lines 5 and 11, this implies that the IPPA (FU [p])−1 is
applied for U time steps on the configuration
(FU [p])U (πTape(c), πHead−1(c), πHead+1(c)).

Therefore,

(πTapeF
2U (c), πHead−1F

2U (c), πHead+1F
2R(c)) =

= (πTape(c), πHead−1(c), πHead+1(c)).

In other words, the computation has been “run backwards” until the
beginning, but the output of the computation is on NTape. This is the
trick used by Bennet in [3] to simulate arbitrary TM with reversible
ones.

At this point, F 2U (c) ∈ SεHead+1
, Head−1 is empty except at the left-

most cell of every colony, where it contains the initial state 0, and

finally, φTape(B
F 2U (c)
i) = bi and φNTape(B

F 2U (c)
i) = α(bi), for all i ∈ Z.

• t0 +2U ≤ Clock < t0 +3U : Only the permutation of line 14 is applied.
Together with the directions of νCompute, this implies that at each step,
we apply the IPPA FU [p−1] on the configuration

55

(πNTape(c), πHead−1(c), πHead+1(c)). Notice that we use NTape as the TM
tape and we use the program p−1 = tRProg.

• Clock = t0 + 3U : Since α−1(α(bi)) is defined for all i ∈ Z, U >
tp−1(Fk′

5) and S ≥ 2U , the conditions of Corollary 28 are satisfied

with n = U . This implies that φNTape(B
F 3U (c)
i) = bi, for all i ∈ Z.

The check of line 16 is true, since all of the TM have accepted before
Clock = 3U . Line 17 copies the contents of Tape on NTape. Since,
at this point these fields are equal in every cell, this is equivalent to
emptying fields NTape (in a reversible way, though). Therefore, after
applying this permutation, F 3U (c) ∈ SεNTape.
We still have to empty the Head fields, too. For this, we have to run the
computation backwards. Line 18 swaps the fields Head−1 and Head+1,
“reversing” the directions of these fields.

• t0 + 3U + 1 ≤ Clock ≤ t0 + 4U : Only the permutation of line 20 is
applied. Together with the fact that the shift directions have been
reversed and that the head fields inside the rules are also exchanged,
this implies that the IPPA FU [p−1]−1 is applied for U time steps on
the configuration FU [p−1]3U (πTape(c), πHead−1(c), πHead+1(c)).

Therefore,

(πTapeF
4U (c), πHead−1F

4U (c), πHead+1F
4U (c)) =

= (πTapeF
2U (c), πHead−1F

2U (c), πHead+1F
2U (c)).

Notice that now we are using Tape as the tape of the TM, while dur-
ing the forward computation we used NTape. This is not a problem,
though, because the two fields were equal at the end of the forward
computation at step 3U .

At this point, we have that φTape(B
F 4U (c)
i) = α(bi), for all i ∈ Z. Also,

in the Head fields, there exists the initial state 0 of the TM on Head−1

of the leftmost cell of every colony, while the rest of them are empty.

• Finally, line 23 deletes these initial states from all the colonies, and we
get that F 4U (c) ∈ SεNTape,Head−1,Head+1

.

Therefore, we have proved that if G(b) exists, then F 4U (c) exists and
F 4U (c) ∈ (Fk

5)Z ∩Σ0,t0+4U,S,T ∩ SεHead−1,Head+1,NTape ∩ Φ̃−1
Tape(α(b)), which fin-

ishes the proof of the lemma.

In a nutshell, this is how the construction works. First, use the pro-
gram p to compute α. At the end of this phase, Tape contains α(b) (in the

56

colonies). Copy α(b) onto NTape and in the second phase, run the compu-
tation backwards so as to erase all auxiliary information written by the TM
during the computation. At the end of the second phase, Tape contains b
and NTape contains α(b). In the third and fourth phases of the construction,
perform the reverse of what was done in the first two phases, while exchang-
ing the roles of NTape and Tape. First, use p−1 with tape field NTape so
as to compute α−1(α(b)) = b, then copy Tape onto NTape (thus emptying
NTape) and then perform the computation backwards. At the end, NTape is
again empty and Tape contains α(b) and everything was done in a reversible
way.

Notice for all b ∈ (Fk′
5) and all c ∈ Φ−1(b), the values of the fields in

CGrid tCCompute of c are uniquely determined. This implies that if there are
no anonymous fields, or if the values of the anonymous fields were determined
by the fields of CGrid t CCompute, then the simulation is also exact.

5.4 Shifting

Let CMacroShift := [Tape, Tape−1, Tape+1].
Tape+1 and Tape−1 are used to exchange the information of Tape be-

tween colonies.
In the following algorithm, M ∈ N1 has to be thought of as the number of

fields in the simulated alphabet, ν ∈ {−1, 0,+1}M as the vector of directions
of the simulated IPPA, and k′ : F∗∗5 9 NM is a vector valuation that gives
the lengths of the alphabet of the simulated IPPA. k′ represents the field
lengths of the simulated letters, whose information is then “known” to all
the letters of the simulating PPCA.

MacroShift[M,ν,k′, vAddr, vClock, vMAddr]

1: if vClock = 0 or vClock = vMAddr then
2: for 0 ≤ i < M do
3: if lk′,i ≤ vAddr < lk′,i+1 then
4: Swap[Tape, Tapeνi] {Letters are moved to the corresponding

moving fields, and back after vMAddr steps.}
5: end if
6: end for
7: end if

This is polynomially computable in the parameters.

Lemma 31. Let us fix a field list CGrid t CMacroShift ∈ N7, an integer
M ∈ N1, a direction vector ν ∈ {−1, 0,+1}M , a vector k′ ∈ NM , a vector
k ∈ N∗ and integers S, T ∈ N1, t0 ∈ N.

57

Consider the IPPA F defined by directions νGridtCompute, given by the
label indices, and permutation

MacroShift[M,νGridtCompute,k
′, πAddr, πClock − t0, S]

Grid[S, T],

and assume that the following inequalities hold:
S ≥

∥∥∥χ (Fk′
5

)∥∥∥
T ≥ t0 + S
kAddr, kAddr+1 ≥ ‖S‖
kClock, kClock+1 ≥ ‖T‖
kTape, kTape−1

, kTape+1
≥ 1 .

Then F|(Fk
5)Z �

S,T,0,Φ
σ−ν|(Fk′

5)Z
, where Φ := Φ̃|Σ and Σ := (Fk

5)Z∩Σ0,0,S,T ∩

SεTape−1,Tape+1
∩ Φ̃−1((Fk′

5)Z) .

Recall that, by convention, the directions of the fields are the opposite
of the shift that is actually applied.

Proof. Again, by the definition of Φ and Remarks 24 and 26, we know that Φ
is surjective, ΦσS = σΦ and that D(Φ) :=

⊔
0≤t<T
0≤s<S

F tσs(D(Φ)) is a disjoint

union.
Therefore, we only have to show that σ−νΦ = ΦF T , which is equivalent

to showing, since σ−ν(b) is defined for all b ∈ (Fk′
5)Z, that if Φ(c) = b, then

ΦF T (c) = σ−ν(b).
As in the proof of Lemma 29, we are going to prove the following stronger

Fact 32. If c ∈ (Fk
5)Z ∩ Σ0,t0,S,T ∩ SεTape−1,Tape+1

∩ Φ̃−1
Tape(b), then FS(c) ∈

Σ0,t0+S,S,T ∩ SεTape−1=Tape+1
∩ Φ̃−1(σ−ν(b)).

• Clock = t0: By assumption, c ∈ SεTape−1,Tape+1
.

Lines 3 and 4 copy the encodings of the fields of b on the correct Tape,
in the following sense:

Since c ∈ Φ−1(b), πTape(B
c
i)|Jlk′,j ,lk′,j+1J = χ (πj(bi)), for all i ∈ Z

and 0 ≤ j < M . Line 4 moves the letter in Tape to Tapeνj when
lv,j ≤ Addr < lv,j+1, or in other words, moves the encoding of the j’th
field of bj onto Tape+1 if j is a right-moving field and to Tape−1 if j
is a left-moving field.

This means that after the application of line 4, we have that
πTapeνj

(Bc
i)|Jlk′,j ,lk′,j+1J = χ (πj(bi)), while πTape−νj

(Bc
i)|Jlk′,j ,lk′,j+1J =

πTape(B
c
i)|Jlk′,j ,lk′,j+1J = ε, for all i ∈ Z and 0 ≤ j < M .

58

• t0 ≤ Clock < t0 + S: No permutation is applied during these time
steps. Only the Tape fields are shifted to the corresponding direction.

• t0 = t0 + S: Every symbol that was part of the encoding of the
j’th field of b has travelled S steps to the direction indicated by
νj . This means that before the application of line 4, we have that

πTapeνi
(B

FS(c)
i)|Jlk′,j ,lk′,j+1J = χ (πi(bi−νi)), while

πTape−νj
(B

FS(c)
n)|Jlk′,j ,lk′,j+1J = πTape(B

FS(c)
i)|Jlk′,j ,lk′,j+1J = ε, for all

i ∈ Z and 0 ≤ j < M .

Line 4 moves the letter from the Tape fields back to Tape. Therefore,
after the application of line 4, we have that FS(c) ∈ SεTape−1,Tape+1

and

Φ(FS(c)) = σ−ν(b), which concludes the proof of the Lemma.

In this proof, it is of great importance that all the letters of b have the
same lengths, because this implies that the j’th field of every letter of b
is encoded at the same positions inside every colony. In fact, the reason
that we deal only with alphabets of constant lengths is that this shifting
procedure can work so easily.

5.5 Simulating any fixed rule

In this subsection, we will use Lemma 29 and 31 to construct an IPPA that
can simulate non-trivially any PCA, when restricted to an appropriate finite
subalphabet.

Let CSimulate := CCompute ∪ CMacroShift ∈ N6 (CCompute and CMacroShift

share the field Tape).

Simulate[M,ν,k′, vAddr, vClock, vMAddr, vMClock, vAlarm, tProg, tRProg]

1: Compute[vAddr, vClock, vAlarm, tProg, tRProg]
2: MacroShift[M,ν, vAddr, vClock − 4vAlarm, vMAddr,k

′]

This is easily seen to be polynomially computable in the parameters.
Notice thatMacroShift and Compute are used at “different time steps”,

i.e., at different values of vClock. Compute starts being used when vClock = 0
and, by definition of vCompute, is equal to the identity when vClock ≥ 4vAlarm,
while MacroShift starts being used when vClock = 4vAlarm (it has a delay
of 4vAlarm). Formally, this means that for every value of vClock, at most one
of the rules Compute and MacroShift is not equal to the identity.

59

The following lemma is the fruit of all our efforts until now. It provides
an IPPA that can simulate any PCA when restricted to a sufficiently large
alphabet.

Lemma 33. Let us fix a field list CSimulatetCGrid ∈ N10, an integer M ∈ N1,
programs p, p−1 ∈ F∗2 of a partial permutation α : F∗∗5 9 F

∗∗
5 and its inverse

α−1, respectively, a direction vector ν ∈ {−1, 0,+1}M , a vector k′ ∈ NM , a
vector k ∈ N∗ and integers S, T, t0, U ∈ N.

Let G = σ−να and F be the IPPA defined by directions νGridtSimulate,
given by the label indices, and permutation

{
Simulate[M,νSimulate,k

′, πAddr, πClock − t0, S, T, U, p, p−1]
Grid[S, T] ,

and assume that the following inequalities hold:

U ≥ max{tp(Fk′
5), tp−1(Fk′

5)}
S ≥ max{2U,

∥∥∥χ (Fk′
5

)∥∥∥}
T ≥ 4U + S + t0
kAddr, kAddr+1 ≥ ‖S‖
kClock, kClock+1 ≥ ‖T‖
kHead−1 , kHead+1 ≥

∣∣χ (F4 × (Qp ∪Qp−1)× {−1,+1}
)∣∣

kTape, kNTape, kTape−1
, kTape+1

≥ 1.

Then, F|(Fk
5)Z �

S,T,0,Φ
G|(Fk′

5)Z completely, where Φ := Φ̃Tape|Σ and

Σ := (Fk
5)Z ∩ Σ0,t0,S,T ∩ SεHead−1,Head+1,Tape−1,Tape+1,NTape

∩ Φ̃−1
Tape((F

k′
5)Z).

Proof. Notice that line 1 together with Grid make up the permutation whose
behavior is described in Lemma 29, while line 2 and Grid make up the
permutation of Lemma 31. Also, as already noted, for any value of Clock,
at most one permutation of lines 1 and 2 is not equal to the identity.

Like in the proofs of Lemmas 29 and 31, we can easily see that we only
have to show that if Φ(c) = b, then ΦF T (c) = G(b), and that this follows
from the following stronger fact:

Fact 34. If c ∈ (Fk
5)Z∩Σ0,t0,S,T ∩SεNTape,Head−1,Head+1,Tape−1,Tape+1

∩Φ̃−1
Tape(b)

Z,

then F 4U+S(c) exists if and only if G(b) exists, and in that case F 4U+S(c) ∈
Σ0,t0+4U+S,S,T ∩ SεNTape,Head−1,Head+1

∩ Φ̃−1
Tape(G(b)).

Indeed, according to Fact 30, we have that F 4U (c) exists if and only if
α(b) exits, or, equivalently, if and only if G(b) exists, and in this case

F 4U (c) ∈ Σ0,t0+4U,S,T ∩ SεHead−1,Head+1,Tape−1,Tape+1,NTape
∩ Φ̃−1

Tape(α(b)).

60

Similarly, Fact 32 implies that

F 4U+S(c) ∈ Σ0,t0+4U+S,S,T ∩ SεHead−1,Head+1,Tape−1,Tape+1,NTape
∩

∩ Φ̃−1
Tape(σ

−να(b)),

which concludes the proof of the lemma, since G = σ−να(b).

Simulate is a rule (family of rules in fact, since they depend on parame-
ters) that can simulate any PPA. Every IPPA F that we will construct later
will factor onto Simulate. They might have some additional fields for which
we apply a different rule, and this rule might even take into consideration
the fields of CSimulate, but none of these other rules is going to change the
fields of CSimulate. Therefore, by projecting onto CSimulate, we will immedi-
ately obtain that F simulates G, even though the simulation might not be
exact.

However, if k does not have any anonymous fields, then the simulation
is exact, since all the fields of CGrid t CSimulate are uniquely determined by
Φ.

5.5.1 Satisfying the inequalities

Lemma 33 is true only under the assumption that the following set of in-
equalities are satisfied:

U ≥ max{tp(Fk′
5), tp−1(Fk′

5)}
S ≥ max{2U,

∥∥∥χ (Fk′
5

)∥∥∥}
T ≥ 4U + S + t0
kAddr, kAddr+1 ≥ ‖S‖
kClock, kClock+1 ≥ ‖T‖
kHead−1 , kHead+1 ≥

∣∣χ (F4 × (Qp ∪Qp−1)× {−1,+1}
)∣∣

kTape, kNTape, kTape−1
, kTape+1

≥ 1 .

We will denote this set of inequalities by I(k,k′, S, T, U, t0, p, p−1). When
t0 = 0, i.e., when the computation starts at Clock = 0, we will omit it and
write I(k,k′, S, T, U, p), instead. Let us explain again intuitively why each
inequality is needed:

• kAddr, kAddr+1 ≥ ‖S‖: The fields kAddr and kAddr+1 have to be large
enough so that we can write the binary representation of S in them.

• kClock, kClock+1 ≥ ‖T‖: The fields kClock and kClock+1 have to be large
enough so that we can write the binary representation of T in them.

• U ≥ max{tp(Fk′
5), tp−1(Fk′

5)}: We have to run the TM long enough so
that the computation of p onto the encoded letters halts.

61

• S ≥ max{2U,
∥∥∥χ (Fk′

5

)∥∥∥}: The colonies have to be wide enough so

that we can encode the letters of Fk′
5 in them. In addition, they

have to be wide enough so that the heads of the computation do not
“collide”.

• T ≥ 4U + S + t0: T has to be large enough so that the computation
and the shifting are done before the next working period starts.

• kHead−1 , kHead+1 ≥
∣∣χ (F4 × (Qp ∪Qp−1)× {−1,+1}

)∣∣: The head fields
have to be large enough so that states of γU [p] and γU [p−1] can be
written on them.

• kTape, kNTape, kTape−1
, kTape+1

≥ 1. Empty fields are of no use, in general.

Remark 35. If p, p−1 ∈ F∗2,k′ ∈ NM and t0 ∈ N are fixed, then we can
choose k, U, S and T such that the inequalities of Lemma 33 is satisfied.

Proof. Since k′, p and t0 are fixed, given U, S, T we can choose k := kU,S,T
such that all of the inequalities except for the three first are satisfied as
equalities. Then, given S,U we can choose T := TS,U such that the third
inequality is satisfied as an equality. Similarly, given U we can choose S :=
SU such that the second inequality is satisfied. Finally, U can be chosen
independently from the rest of the parameters, since it only depends on p
and k′, which are fixed.

In later constructions, the choice of U will not be so straightforward,
as k′ will depend on k. In this case, we first fix G and then look for the
suitable values of the parameters. The situation becomes trickier when the
simulated RPCA depends on the choice of the parameters, as will be the
case in the following chapters. Then, we have to be careful not to fall into
a circular argument.

62

Chapter 6

Infinite hierarchies

For every PPA G and sufficiently large S, T , Lemma 33 shows that is is
possible to construct a PPA F that (S, T, 0)-simulates G. In addition, the
simulation can be made exact. We also want to make it complete. The
most direct way is to restrict F to Φ̃−1

Tape(DG), which, by definition makes
the simulation complete. However, this is not good because it is a radius-S
SFT condition and, if we wanted to have an infinite nested simulation, we
would have to impose an infinite number of such restrictions, so that the
subshift we would obtain would not be an SFT.

The idea, which is the basic idea behind all hierarchical constructions, is
that if the simulated alphabet is determined in an easy way by the simulating
alphabet, then it is possible to design a simple IPPA that ensures that the
simulating configuration is in Φ̃−1

Tape(DG).

6.1 Son-father checks

The first thing is to check that the simulated letter, which is written in an
encoded form bit by bit in Tape, has the correct structure, i.e., it is the
encoding of a letter with the correct number of fields and lengths.

k′ ∈ F∗∗5 9 NM is a vector valuation, that gives the lengths of the
simulated alphabet as a function of the lengths of the simulating alphabet. In
applications, it will be easily computable from every letter of the simulating
alphabet, or, in other words, the information about the structure of the
simulated letter will be known to all of the letters of the simulating IPPA.

CkAlph[M, vAddr, tTape,k
′]

1: if vAddr ≥ lk′,M then
2: Check(tTape = 3) {On the right side of the encoding, Tape is 3.}
3: end if

63

4: for 0 ≤ i < M do
5: if vAddr = lk′,i then
6: Check[tTape = 2] {Field separators are at the expected posi-

tions.}
7: else if lk′,i < vAddr < lk′,i+1 then
8: Check[tTape ∈ F2] {Proper field encodings are binary.}
9: end if

10: end for

This permutation is polynomially computable in its parameters. (In
every case that we use it, it will be easily checkable that the parameters are
polynomially computable.)

The following lemma follows simply by inspection of the definition of
χ (·) and CkAlph[M,vAddr, tTape,k

′]:

Lemma 36. Let us fix a field list [Addr, Tape] ∈ N2, an integer M ∈ N1, a
vector k′ ∈ NM , S ∈ N1 and a vector k ∈ N∗.

Let F be the IPPA defined by a null direction vector and permutation
CkAlph[M,πAddr, πTape,k

′], and assume that the following inequalities hold:
S ≥

∥∥∥χ (Fk′
5

)∥∥∥
kAddr ≥ ‖S‖
kTape ≥ 1 .

Let c ∈ (Fk
5)Z ∩ Σs,S ∩ Φ̃−1

Tape(b), where s ∈ J0, SJ and b ∈ (F∗∗5)Z. Then,

F (c) exists if and only if b ∈ (Fk′
5)Z and in this case F (c) = c.

In other words, if a configuration is split into colonies using the Addr

field and every colony has the encoding of some letter on its Tape tape, then
CkAlph[M,πAddr, πTape,k

′] ensures that this encoded letter belongs in Fk′
5 .

We can also check that some field i in the simulated letter has a pre-
scribed prefix (given by a term t).

HCheck[M, vAddr, tTape,k
′, i, t]

1: if lk′,i < vAddr ≤ lk′,i + |χ (t)| then
2: Check[tTape = χ (t)|vAddr−lk′,i]
3: end if

Lemma 37. Let us fix a field list [Addr, Tape] ∈ N2, an integer M ∈ N1,
a field i ∈ J0,MJ, a covector k′ ∈ NM , S ∈ N, a term t : F∗∗5 → F

∗
5 and a

vector k ∈ N∗.

64

Let F be the IPPA defined by a null direction vector and permutation
HCheck[M,πAddr, Tape,k

′, i, t], and assume that the following inequalities
hold: 

S ≥
∥∥∥χ (Fk′

5

)∥∥∥
kAddr ≥ ‖S‖
kTape ≥ 1 .

Let c ∈ (Fk
5)Z ∩ Σs,S ∩ φ−1(b), where 0 ≤ s < S and b ∈ (Fk′

5)Z and
assume that t(cn) = t(cn′) := tc for all n, n′ ∈ Z.
Then, F (c) exists if and only if πi(bj)J0,‖tc‖J = tc, for all j ∈ Z and in this

case F (c) = c.

We implicitly assume that if l > ‖w‖, where w ∈ A∗, then wl = ε.

In other words, if all letters of c have the “same idea” about what πi(bj)
should be, then, they can check in one step that this indeed happens. In
practice, t will usually be equal to πField, where Field is a horizontally
constant field, so that the condition t(cn) = t(cn′) will be true. In this case,
we just check that πField(cn) is a prefix of πField(bj), for all j, n ∈ Z.

Lemmas 36 and 37 correspond to what in [8] is achieved by mentioning
that “the TM knows at which place the information of every field is held”.
For many people, this argument is one of the most confusing things in that
construction. This is the reason why we have tried to explain this point as
clearly as possible and show exactly how the cells of the simulating IPPA
can collectively check that some constant information of the simulating al-
phabet is the same in the simulated alphabet. In fact, we use a general term
t in Lemma 37, which essentially allows us to impose any (polynomially
computable) condition on the simulated alphabet.

6.2 Self-simulation

We are now ready to construct a self-simulating RPCA. This is the simplest
and first example of nested simulation. We just check that the simulated let-
ter has the same lengths as the simulating ones and that some “hierarchical”
fields (which contain the values p, p−1, U, S, T that are fixed in Lemma 33)
have the same value in the simulated letter as in the simulating ones (where
their values is already fixed).

Let CSelf := CSimulate t [MAddr, MClock, Alarm, Prog, RProg] ∈ N15.

MAddr and MClock are used to obtain the values of vMAddr and vMClock.
Similarly, Prog, RProg and Alarm are used to obtain the values tProg, tRProg
and vAlarm. All of these fields will be horizontally constant.

65

Self[M,ν]

1: if πClock = 0 then
2: Check[SεHead−1,Head+1,Tape−1,Tape+1,NTape

]

3: CkAlph[M,πAddr, πTape, (|πj |)j<M] {Check that the lengths of the
simulated letter are the same}

4: for i ∈ {MAddr, MClock, Alarm, Prog, RProg} do
5: HCheck[M,πAddr, Tape, (|πj |)j<M , i, πi] {Check that the hierar-

chical fields of the simulated letter are the same}
6: end for
7: end if
8: Simulate[M ,ν,(|πj |)j<M ,πAddr,πClock, πMAddr, πMClock, πAlarm, πProg,
πRProg]{The alphabet is as expected; we can simulate.}

9: Grid[πMAddr, πMClock]

In the next lemma, we do not want to have any anonymous fields, but
only those fields that are used in Self. There are 15 fields in CSelf, so we
take the field list [0, . . . , 14], which means that we assign a number of J0, 15J
to every field in CSelf in some random (but fixed) way. Once we have done
this, the corresponding vector of directions is also well-defined.

Lemma 38. Let us fix the field list CSelf := [0, . . . , 14], the corresponding
direction vector νSelf, integers S, T, U ∈ N1 and vector k ∈ N15. Let F be
the IPPA with directions νSelf and permutation Self[15, νSelf] and p, p−1 be
the programs for this permutation and its inverse, respectively.

Let Fk,S,T,U be the restriction of F to the subalphabet

Ak,S,T,U := F
k
5 ∩ SSMAddr ∩ STMClock ∩ SUAlarm ∩ S

p
Prog ∩ S

p−1

RProg,

and assume that the following inequalities are satisfied:

I(k,k, S, T, U, p, p−1)
kProg ≥ ‖p‖
kRProg ≥

∥∥p−1
∥∥

kMAddr ≥ ‖S‖
kMClock ≥ ‖T‖
kAlarm ≥ ‖U‖ .

Then, Fk,S,T,U �
S,T,0,Φ

Fk,S,T,U completely exactly, where Φ := Φ̃Tape|Σ

and

Σ := AZ
k,S,T,U ∩Σ0,0,S,T ∩ SεHead−1,Head+1,Tape−1,Tape+1,NTape

∩ Φ̃−1
Tape(AZ

k,U,S,T,p).

66

It is important to notice that F is a fixed rule that does not depend on
k, S, T, U . Therefore, its program p is a fixed word which we can “feed”
to itself by restricting the alphabet to SpProg. This is the basic idea of self-
simulation. Notice also that the fields for which we do a hierarchical check
are exactly those that are fixed in the definition of Ak,S,T,U . We need to
ensure that these fields have the correct value in the simulated letter. The
correct way to do this is to check that the value of the simulated letter is in
a good relation with the values in the letters of the simulating IPPA. Here,
the relation is simply equality. Later it will be something more complicated.

We will try to give as many details as possible in the following proof be-
cause it will serve as a prototype for the rest of the hierarchical simulations.

Proof. We have to show three things: First of all, that Fk,S,T,U (S, T, 0)-
simulates Fk,S,T,U with decoding function Φ (simulation), second, that Φ is
injective (exactness) and, finally, that ΩFk,S,T,U,p

⊆ D̃(Φ) (completeness).

For the simulation part, let b ∈ AZ
k,S,T,U and c ∈ AZ

k,S,T,U ∩ Σ0,0,S,T ∩
SεHead−1,Head+1,Tape−1,Tape+1,NTape

∩ Φ̃−1(b). By definition, c is not rejected by
the checks of lines 2,3 and 5.

Indeed, line 2 checks that the fields Head−1, Head+1, Tape−1, Tape+1,
NTape are empty, which is true since

c ∈ Σ0,0,S,T ∩ SεHead−1,Head+1,Tape−1,Tape+1,NTape
.

Line 3 checks that the lengths of the fields of b and c are the same, while
the checks of line 5 check that b and c have the same values in the fields
MAddr, MClock, Prog and RProg, which are true by definition.

Since c is not rejected by these checks and Fk,S,T,U is a subrule of

Grid[S, T] ◦ Simulate15,νSelf [(|πj |)j<M , πAddr, πClock, S, T, U, p, p−1]

and, by assumption, the inequalities of Lemma 33 are satisfied, and p is the
program of Self[15, νSelf], Lemma 33 gives that Fk,S,T,U (S, T, 0)-simulates
Fk,S,T,U with decoding function Φ.

For the exactness part, we have already noted various times that the val-
ues of the fields in CSimulate are uniquely determined for all c ∈ Φ−1(b). For
the hierarchical fields (i.e., MAddr, MClock, Alarm, Prog, RProg) the values
are fixed for all c ∈ AZ

k,S,T,U . In addition, there do not exist any anonymous
fields (since we chose M = 15). Therefore, Φ is injective and the simulation
is exact.

For the completeness part, we will first show that if c ∈ Σ0,0,S,T ∩
F−Tk,S,T,U (AZ

k,S,T,U), then c ∈ Φ−1(AZ
k,S,T,U).

Indeed, line 2 checks that c ∈ Σ0,0,S,T ∩ SεHead−1,Head+1,Tape−1,Tape+1,NTape

(in the sense that if this is not true, then Fk,S,T,U,p would not be defined, so
there would be a contradiction). According to Lemma 36, line 3 checks that

67

for every colony Bc
i , πTape(B

c
i) has the structure of the encoding of a letter in

F
k
5 . (We cannot immediately say that πTape(B

c
i) is the encoding of a letter

in Fk
5 because there are some triplets that are not used by χ (·). So for

example, if the first three letters in the Tape tape are 111, then πTape(B
c
i)

is not the encoding of a letter in Fk
5 , even though the 2’s and 3’s are in

the correct positions.) In addition, since F Tk,S,T,U exists and the inequalities

I(k,k, S, T, U, p, p−1) are satisfied, this means that the computation of p
on input πTape(B

c
i) halts, therefore for all i ∈ Z, φ̃Tape(B

c
i) = bi ∈ F∗∗5 .

Lemma 36 now implies that φ̃Tape(B
c
i) = bi ∈ Fk

5 . Finally, line 5 checks that

φ̃Tape(bi) ∈ SSMAddr ∩ STMClock ∩ SUAlarm ∩ S
p
Prog ∩ S

p−1

RProg by checking that the
hierarchical fields of bi have the same values as the corresponding fields of
the letters of c (notice that the hierarchical fields are constant for the letters
of c, so that Lemma 37 applies). Summarizing, we have that b ∈ AZ

k,S,T,U , so

that c ∈ AZ
k,S,T,U∩Σ0,0,S,T∩SεHead−1,Head+1,Tape−1,Tape+1,NTape

∩Φ̃−1
Tape(AZ

k,S,T,U).

Finally, if c ∈ F−2T
k,S,T,U (AZ

k,S,T,U) then F tσs(c) ∈ Σ0,0,S,T , for some s ∈
J0, SJ and t ∈ J0, T J. Therefore, F tk,S,T,Uσ

s(c) ∈ Σ0,0,S,T ∩F−Tk,S,T,U (AZ
k,S,T,U)

so that F tk,S,T,Uσ
s(c) ∈ Φ−1(AZ

k,S,T,U). This implies that

ΩFk,S,T,U
⊆ F−2T

k,S,T,U (AZ
k,S,T,U) ⊆

⊔
0≤t<T
0≤s<S

F tσs(D(Φ)), which means that the

simulation is also complete.

6.2.1 Satisfying the inequalities

It is not as straightforward to see that the inequalities I(k,k, S, T, U, p, p−1)
can be satisfied as it was for Lemma 33, because in this case k′ is equal to
k, which means that we cannot fix k′ and then choose k, S, T, U sufficiently
big.

Remark 39. We can find k, S, T, U such that the inequalities of Lemma 38
are satisfied. In addition, for all ε > 0, S/T can be made larger than 1− ε.
(Intuitively, the macro-tiles can be made as close to a square as we want.)

68

Proof. We have to satisfy the following inequalities:

U ≥ max{tp(Fk
5), tp−1(Fk

5)}
S ≥ max{2U,

∥∥∥χ (Fk
5

)∥∥∥}
T ≥ 4U + S
kAddr, kAddr+1 ≥ ‖S‖
kClock, kClock+1 ≥ ‖T‖
kHead−1 , kHead+1 ≥

∣∣χ (F4 × (Qp ∪Qp−1)× {−1,+1}
)∣∣

kTape, kNTape, kTape−1
, kTape+1

≥ 1

kProg = ‖p‖
kRProg =

∥∥p−1
∥∥

kMAddr = ‖S‖
kMClock = ‖T‖
kAlarm = ‖U‖ .

For all S, T, U , let us choose k := kS,T,U such that all of the inequalities
except the first three are equalities. Then,

∥∥χ (Fk
5

)∥∥ ≤ P1(logS, log T, logU)
and max{tp(Fk

5), tp−1(Fk
5)} ≤ P2(logS, log T, logU), for some polynomials

P1, P2. These follow by definition of χ (·) and kS,T,U and the fact that the
program p is fixed and has polynomial complexity.

Therefore, it is enough to find S, T, U that satisfy the following inequal-
ities: 

U ≥ P2(logS, log T, logU)
S ≥ max{2U,P1(logS, log T, logU)}
T ≥ 4U + S .

For all S,U , let us choose T := TS,U = S + 4U . Also, for all S, S0, r, let
us choose U := US,S0,r = logr(S+S0). Then, the third inequality is satisfied
and the other two are written as follows:


logr(S + S0) ≥ P2(logS, log(S + 4 logr(S + S0)), log(logr(S + S0))

S ≥ max{2 logr(S + S0),
P1(logS, log(S + 4 logr(S + S0)), log(logr(S + S0)))}.

There exist fixed r, S0 ∈ N such that the first inequality is satisfied for
all S, because P2 is a fixed polynomial (hence its degree is a fixed number).
Let us choose such r, S0. Then, if S is sufficiently large we also have that
the second inequality is also satisfied (since r, S0 are now fixed), because the
right hand side grows only polylogarithmically in S, which finishes the proof
of the claim.

For the second claim, S/T = S
S+logr(S+S0) , which can be made larger

than 1− ε by choosing S sufficiently large.

Corollary 40. There exists an RPCA G such that OG is non-empty, ape-
riodic and N (G) = {0}.

69

Proof. Let G := Fk,S,T,U : AZ
k,U,S,T → AZ

k,U,S,T , for some parameters that

satisfy I(k,k, S, T, U, p, p−1). This is possible, according to Remark 39. By
definition, we have that S < T .

It is not difficult to see that G−1(AZ
k,U,S,T) is nonempty. Then, Lem-

mas 38, 20, 18 and Proposition 23 imply that OG is non-empty, uncountable,
aperiodic and N (G) = {0}.

This finishes the construction of an extremely-expansive, aperiodic 2D
SFT. Once we achieved self-simulation, then extreme expansiveness follows
immediately from Proposition 23.

6.3 Hierarchical simulation

We now want to construct more general nested hierarchical simulations,
where the parameters of the simulation might vary in every simulation level.
This structure is more flexible than a simple self-simulating RPCA, and it
will be more useful in the various applications.

Let us fix the field list CHSimul := CSimulate t [Level, Prog, RProg] and
let νHSimul be the corresponding vector of directions.

• Prog and RProg are used as in the previous section.

• Level is used to obtain the values of vMAddr, vMClock and vAlarm, not
through a direct projection, as in the previous case, but in a polyno-
mially computable way.

In the following, let S,T,U ∈ NN be sequences of integers and and
(k : N → NM)n∈N is a sequence of vectors depending on n (It can give rise
to a vector valuation by using πField as the index of the sequence).

HSimul[M,ν,k,S,T,U]

1: if πClock = 0 then
2: Check[SεHead−1,Head+1,Tape−1,Tape+1,NTape

]

3: CkAlph[M,πAddr, πTape,kπLevel+1] {Check that the lengths of the
simulated letter are correct}

4: HCheck[M,πAddr, πTape,kπLevel+1, Prog, πProg] {Prog of the simu-
lated letter is the same}

5: HCheck[M,πAddr, πTape,kπLevel+1, RProg, πRProg] {RProg is also the
same}

6: HCheck[M,πAddr, πTape,kπLevel+1, Level, πLevel + 1] {Level of the
simulated letter increases by 1}

7: end if

70

8: Simulate[M , ν, kπLevel , πAddr ,πClock, SπLevel , TπLevel , UπLevel , πProg,
πRProg] {Simulate}

9: Grid[SπLevel ,TπLevel]

We will now construct a nested simulation of RPCA where the simulation
parameters are different at every level.

Lemma 41. Let U,S,T be polynomially checkable sequences of integers.
Let us fix the field list CHSimul := [0, . . . , 12], the corresponding fixed di-
rection vector νHSimul and a polynomially checkable sequence of 13-uples
k ∈ (N13)N. Let F be the IPPA with directions νHSimul and permutation
HSimul[13, νHSimul,k,S,T,U; CHSimul] and p, p−1 be the programs for this
permutation and its inverse, respectively.

For all n ∈ N, let Fn be the restriction of F to the subalphabet

An := F
kn
5 ∩ S

n
Level ∩ S

p
Prog ∩ S

p−1

RProg,

and assume that the following inequalities hold for all n ∈ N:
I(kn,kn+1, Sn, Tn, Un, p, p

−1)
kn,Prog ≥ ‖p‖
kn,RProg ≥

∥∥p−1
∥∥

kn,Level ≥ ‖n‖ .

Then, Fn �
Sn,Tn,0,Φn

Fn+1 completely exactly, where Φn := Φ̃Tape|Σn and

Σn := AZ
n ∩ Σ0,0,Sn,Tn ∩ SεHead−1,Head+1,Tape−1,Tape+1,NTape

∩ Φ̃−1(AZ
n+1)

The proof is very similar to the proof of Lemma 38. There exists some
differences, though. For example, we do not have the fields MAddr, MClock
and Alarm. These fields are computed with the aid of field Level, so we
perform a hierarchical check for Level. Apart from that, the proof follows
the same pattern.

Another difference, which will be important when we prove that the in-
equalities can be satisfied is that the program is not fixed once we fix M
and ν, as in the self-similar case, but depends on k,S,T and U. There-
fore, its complexity also depends on these parameters. More precisely,
tp(An) = P (|An| + tk(n) + tS(n) + tT(n) + tU(n)), for some polynomial
P that does not depend on the parameters. This is due to the fact that the
program consists in a bounded number (independent of n) of polynomially
computable functions and a bounded number of calls to the parameters.
Similarly, |p| = O(|pk|+ |pS|+ |pT|+ |pU|). (The same things hold for p−1.)

71

Proof. Let us fix n ∈ N. We have to show three things: that Fn (Sn, Tn, 0)-
simulates Fn+1 with decoding function Φn (simulation), that Φn is injective
(exactness) and that ΩFn ⊆ D(Φn) (completeness).

For the simulation part, let b ∈ AZ
n+1 and c ∈ Φ−1(b) ∈ AZ

n ∩Σ0,0,Sn,Tn ∩
SεHead−1,Head+1,Tape−1,Tape+1,NTape

. By definition, c is not rejected by the checks
of lines 2,3,4, 5 and 6, .

Since c is not rejected by these checks and Fn factors onto

Simulate[13, νSimulate, (|πj |)j<M , πAddr, πClock, Sn, Tn, Un, p, p−1]

Grid[Sn, Tn]

and, by assumption, the inequalities of Lemma 33 are satisfied by kn and
kn+1, and p is the program of HSimul[13, νHSimul,k,S,T,U], Lemma 33
gives that Fn (Sn, Tn, 0)-simulates Fn+1 with decoding function Φn.

For the exactness part, we have already noted various times that the
values of the fields in CSimulate are uniquely determined for all c ∈ Φ−1(b).
For the hierarchical fields (i.e., Level, Prog, RProg) the values are fixed for
all c ∈ AZ

n. In addition, there do not exist any anonymous fields (since we
chose M = 13). Therefore, Φn is injective and the simulation is exact.

For the completeness part, we will only show that if c ∈ Σ0,0,Sn,Tn ∩
F−Tn (AZ

n), then c ∈ Φ−1(AZ
n+1). Having shown this, it is easy to conclude

that the simulation is complete using the same argument as in the proof of
Lemma 38

Indeed, line 2 checks that c ∈ Σ0,0,Sn,Tn∩SεHead−1,Head+1,Tape−1,Tape+1,NTape
.

According to Lemma 36, line 3 checks that for every colony Bc
i , πTape(B

c
i)

has the structure of the encoding of a letter in F
kn+1

5 . In addition, since
F Tnn (c) exists and the equations I(kn,kn+1, Sn, Tn, Un, p, p

−1) are satisfied,
this means that the computation of p on input πTape(B

c
i) halts, therefore for

all i ∈ Z, φ̃Tape(B
c
i) = bi ∈ F∗∗5 . Lemma 36 now implies that φ̃Tape(B

c
i) =

bi ∈ Fkn+1

5 . Finally, lines 6,4 and 5 check that φ̃Tape(bi) ∈ Sn+1
Level ∩ S

p
Prog ∩

Sp
−1

RProg.

Summarizing, we have that b ∈ AZ
n+1, so that c ∈ AZ

n ∩ Σ0,0,Sn,Tn ∩
SεHead−1,Head+1,Tape−1,Tape+1,NTape

∩ Φ̃−1
Tape(AZ

n+1) = Σn, or equivalently that

c ∈ Φ−1(AZ
n+1).

6.3.1 Satisfying the inequalities

Let us now show that the inequalities of Lemma 41 can be satisfied:

Remark 42. We can find k ∈ (N13)N and S,T,U ∈ NN
1 such that the

inequalities of Lemma 41 are satisfied. In addition,
∏
i<n Si/Ti can be made

both 0 and 6= 0.

72

We have to deal with two problems, which were not present in the previ-
ous cases: First, there is an infinite set of inequalities, since there is also an
infinite set of RPCA, and they must all be satisfied simultaneously. Second,
the size of the program and the complexity of the permutations depends on
the choice of the parameters S and T.

Proof. We have to satisfy the following inequalities, for all n ∈ N



Un ≥ max{tp(Fkn+1

5), tp−1(F
kn+1

5)}
Sn ≥ max{2Un,

∥∥∥χ (Fkn+1

5

)∥∥∥}
Tn ≥ 4Un + Sn
kn,Prog ≥ ‖p‖
kn,RProg ≥

∥∥p−1
∥∥

kn,Head−1 , kn,Head+1 ≥
∣∣χ (F4 × (Qp ∪Qp−1)× {−1,+1}

)∣∣
kn,Addr, kn,Addr+1 ≥ ‖Sn‖
kn,Clock, kn,Clock+1 ≥ ‖Tn‖
kn,Tape, kn,NTape, kn,Tape−1

, kn,Tape+1
≥ 1

kn,Level = ‖n‖ .

For all n ∈ N and S,T and U, let us choose kn := kn,S,T,U such that the
last four inequalities are satisfied as equalities. Then, we can see that

∥∥∥χ (Fkn
5

)∥∥∥ ≤ P1(logSn, log Tn, log n, kn,Head−1 , kn,Head+1 , kn,RProg, kn,Prog),

for some polynomial P1.

We claim that |p| ≤ c(|pk|+ |pS|+ |pT|+ |pU|), for some constant c. (The
same holds for p−1 and we can assume that the constant c is the same.) This
is because, as we have already noticed, the program of p uses a fixed number
of polynomial operations and a bounded number of calls to the parameters
|pk|, |pS|, |pT|, |pU|.

For the same reason, we have that

max{tp(Fk
5), tp−1(Fk

5)} ≤ P2(logSn, log Tn, log n, kn,Head−1 ,

kn,Head+1 , kn,RProg, kn,Prog, tk(n), tS(n), , tT(n), tU(n)),

for some fixed polynomial P2 that does not depend on the parameter se-
quences.

Therefore, it is enough to find sequences k,S,T,U that satisfy the fol-

73

lowing inequalities, for all n ∈ N:

kn,Prog, kn,RProg ≥ c(|pk|+ |pS|+ |pT|+ |pU|)
kn,Head−1 , kn,Head+1 ≥

∣∣χ (F4 × (Qp ∪Qp−1)× {−1,+1}
)∣∣

Un ≥ P2(logSn+1, log Tn+1, log(n+ 1),
kn+1,Head−1 , kn+1,Head+1 , kn+1,RProg, kn+1,Prog,
tk(n+ 1), tS(n+ 1), tT(n+ 1), tU(n+ 1))

Sn ≥ max{2Un, P1(logSn+1, log Tn+1, log(n+ 1),
|pk| , |pS| , |pT| , |pU|)}

Tn ≥ 4Un + Sn .

Recall that in the above inequalities, Qp and Qp−1 depend on the choice
of parameter sequences.

We will show two ways to do this. The first one does not give an
extremely-expansive SFT, because

∏
i<n Si/Ti does not converge to 0, while

the second one does.

1. For all sequences S and U, let us choose Tn := Tn,S,U = Sn + 4Un.
Also, for all n0, r and Q ≥ 2, let us choose Un,n0,r := Un = (n+ n0)r,
Sn,n0 := Sn = Qn+n0 , kn,Prog = kn,RProg = n0Qr and kn,Head−1 =
kn,Head+1 = n0 for all n ∈ N.

Then, the last inequality is satisfied by definition. In addition, for
all n0, r,Q, we have that |pS| ≤ ‖c1n0Q‖, |pU| ≤ ‖c2rn0‖ and |pT|,
|pk| ≤ ‖c3rn0Q‖, for some constants c1, c2, c3. This is true because
the sequence (n + n0)r is uniformly (polynomially) computable in
n, n0, r, which means that there exists an algorithm that takes as input
(n, n0, r) and outputs (n + n0)r, for all values of n, n0 and r. If we
use the program for this algorithm together with a description of n0

and r, then we obtain a program of length bounded by ‖c2rn0‖ for the
sequence ((n + n0)r)n∈N. A similar argument holds for the sequence
Qn+n0 .

Since this algorithm works for all choices of n0, Q, r, it means that Qp
and Qp−1 are actually fixed.

In addition, all of the algorithms are polynomially computable, which
means that

tS(n), tT(n), tk(n) ≤ P3(logQn+n0), tU(n) ≤ P4(log(n+ n0)r),

for some fixed polynomials P3, P4.

Therefore, substituting these in the inequalities above and doing some
regrouping of the terms in parentheses (that is omitted), the inequal-
ities that need to be satisfied are written as follows:

74


n0Qr ≥ c′ log(n0Qr)
n0 ≥ c′

(n+ n0)r ≥ P5(logQn+n0+1, log(n+ n0 + 1)r, log(n+ 1))

Qn+n0 ≥ max{2(n+ n0 + 1)r, P6(logQn+n0+1, log(n+ 1))} ,

for some polynomials P5, P6 and constant c′ that do not depend on
r, n0 or Q.

Since c′ is fixed, the first two inequalities are true for all but a finite
number of triples n0, Q, r. Without loss of generality, we assume that it
is always true. We can choose nQ and r such that the second inequality
is true for all n ∈ N and all n0 ≥ nQ, because the right hand of the
inequality is bounded by a fixed polynomial of (n+n0) and r, while the
left-hand side grows like nr. With fixed r, we can also find n′Q such that
the third inequality is satisfied for all n ∈ N and all n0 ≥ n′Q, because
the left-hand side grows exponentially in (n+ n0) and the right hand
only polynomially (since r is fixed). By choosing n0 = max{nQ, n′Q}
we can satisfy both inequalities for all n at the same time.

Note that
∏
i∈N Si/Ti =

∏
i∈N(1 + (n+n0)r/Qn+n0) 6= 0. Therefore, if

we choose the sequences like this, we do not obtain a unique direction
of non-expansiveness, but rather a cone of non-expansive directions.

2. For all n0 ∈ N and Q ≥ 2, let us choose Sn,n0 := Sn = Qn+n0 ,
Tn,n0 := Tn = 2Sn and Un,n0 := Un = Sn

2Q , kn,Prog = kn,RProg = n0Q
and kn,Head−1 = kn,Head+1 = n0 for all n ∈ N. We can use a similar
argumentation as in previous case to show that it is enough to satisfy
the following inequalities:


n0Q ≥ ‖Qn0‖
Qn+n0

4
≥ P3(logQn+n0+1, log(n+ 1))

Qn+n0 ≥ max{Q
n+n0+1

2Q
,P4(logQn+n0+1, log(n+ 1))} ,

for some polynomials P3, P4 and constant c that do not depend on n0

and Q.

Obviously, for all Q these inequalities are satisfied when n0 is suffi-
ciently large.

In this case,
∏
i∈N Si/Ti =

∏
i∈N Si/2Si = 0, therefore the correspond-

ing SFT is extremely expansive.

75

For both cases, we have a lot of freedom in choosing the sequences. In
the previous proof, we just described two of the possible ways which are
enough for the results we want to obtain and help in presenting the basic
ideas of the proof that is needed in any possible case.

6.4 Universality

Let COther = [OTape−1, OTape, OTape+1] and let us fix the field list CUniv =
CHSimul t COther and the corresponding direction vector νUniv.

For any n, consider an RPCA Gn with permutation αn : (Fln5)3 → (Fln5)3

over COther. This is not a strict restriction in itself: all RPCA can be repre-
sented in this way, up to a simple alphabet renaming and use of Remark 7

If the sequence of permutations (αn)n∈N is polynomially computable, we
can build a PPA that simulates Gn, for all n ∈ N.

Univ[M,ν,k,S,T,U, α]

1: αLevel[COther] {Gn on the COther fields.}
2: if πClock = 0 then
3: Check[SεHead−1,Head+1,Tape−1,Tape+1,NTape

]

4: CkAlph[M,πAddr, πTape,kπLevel+1]
5: HCheck[M,πAddr, πTape,kπLevel+1, Prog, πProg]
6: HCheck[M,πAddr, πTape,kπLevel+1, RProg, πRProg]

7: HCheck[M,πAddr, πTape,kπLevel+1, Level, πLevel + 1]
8: end if
9: Simulate[M , ν, kπLevel , πAddr, πClock, SπLevel , TπLevel , UπLevel , πProg,
πRProg] {Simulate}

10: Grid[SπLevel ,TπLevel ; CGrid]

The only difference of this rule with HSimul is that it has 3 additional
fields (which implies that k will be chosen in (N16)N) and that we apply
αLevel onto the field list COther independently from what we do on CHSimul.

Lemma 43. Let U,S,T be polynomially checkable sequences of integers and
α a polynomially computable sequence of permutations. Let us fix the field
list CUniv := [0, . . . , 15], the corresponding fixed direction vector νUniv and a
polynomially checkable sequence of M -uples k ∈ (N15)N. Let F be the IPPA
with directions νUniv and permutation Univ[15, νUniv,k,S,T,U; CUniv] and
p, p−1 be the programs for this permutation and its inverse, respectively.

For all n ∈ N, let Fn be the restriction of F to the subalphabet

An := F
kn
5 ∩ S

n
Level ∩ S

p
Prog ∩ S

p−1

RProg,

76

and assume that the following inequalities hold:
I(kn,kn+1, Sn, Tn, Un, p)
kn,Prog ≥ |p|
kn,RProg ≥

∣∣p−1
∣∣

kn,Level ≥ ‖n‖
kn,OTape = kn,OTape−1

= kn,OTape+1
≥ ln .

If ΩGn 6= ∅, then Fn completely (Sn, Tn, 0)-simulates Fn+1 with decoding
function Φn = Φ̃Tape|Σn , where

Σn := AZ
n ∩ Σ0,0,S,T ∩ SεHead−1,Head+1,Tape−1,Tape+1,NTape

∩ Φ−1(AZ
n+1).

The simulation is exact if and only if ΩGn is a singleton.

In addition, if c ∈ F−1
n (AZ

n), then GnπCOther(c) = πCOtherFn(c).

As mentioned before, the proof is very similar to the proof of Lemma 41.
Therefore, we are going to omit most of the details and only stress those
points where there is a difference.

Proof. Let us fix n ∈ N. For the first claim, we have to show that Fn
(Sn, Tn, 0)-simulates Fn+1 with decoding function Φn (simulation), that Φn

is an injection if and only if ΩGn is a singleton and that ΩFn ⊆ D(Φn)
(completeness).

For the simulation part, let b ∈ AZ
n+1,p. We can find c ∈ AZ

n that simu-

lates b: we choose c ∈ Φ−1(b) ∈ AZ
n∩Σ0,0,S,T∩SεHead−1,Head+1,Tape−1,Tape+1,NTape

such that πCOther(c) ∈ ΩGn (this is possible by the assumption that ΩGn 6= ∅).
Then, it is easy to see that c simulates b, because COther is only “touched”
by αLevel := αn, p is the program of Univ[17, νUniv,k,S,T,U; CUniv] and
GTn (πCOther(c)) exists.

For the exactness part, as usual πCHSimul(c) is uniquely determined by b.
However, πCOther(c) can be chosen independently from b to be any element of
ΩGn , so that the simulation is exact if and only if ΩGn is a singleton.

Finally, for the completeness part, an argument almost identical to the
argument in the proof of Lemma 41 shows that if c ∈ Σ0,0,S,T ∩ F−Tn (AZ

n),
then c ∈ Φ−1(AZ

n+1). As we know, this is enough to show that the simulation
is complete.

The second claim, that if c ∈ F−1
n (AZ

n), then GnπCOther(c) = πCOtherFn(c) is
straightforward from the definition of Fn, since the only rule that “touches”
the fields COther is Gn.

Remark 44. 1. ΩF0 6= ∅ if and only if ΩGn 6= ∅, for all n ∈ N.

2. If ΩF0 6= ∅, then F0 completely simulates Gn for all n ∈ N.

77

Proof. 1. If ΩGn = ∅ for some n ∈ N, then ΩFn = ∅, so that since F0

simulates Fn (by transitivity of simulation), we obtain that ΩF0 = ∅
by Lemma 20.

If, on the other hand, ΩGn 6= ∅ for all n ∈ N, then Lemma 18 gives
that ΩF0 6= ∅.

2. If ΩF0 6= ∅, then the second claim of Lemma 43 implies that Fn factors
onto Gn. Since F0 simulates Fn, for all n ∈ N, we obtain that F0

simulates Gn, for all n ∈ N.

Remark 45. Even if
∏
i∈N Si/Ti = 0, F0 is not necessarily extremely expan-

sive, since we might have non-expansive directions coming from the Gn part.
However, in the special case that ΩGn is a singleton for all n ∈ N, then all
the simulations are exact and it is straightforward to see that N (F0) = {0},
because Proposition 23 applies.

6.4.1 Satisfying the inequalities

Remark 46. We can find k ∈ (N16)N and S,T,U ∈ NN
1 such that the

inequalities of Lemma 43 are satisfied and
∏
i∈N Si/Ti = 0.

We only state the case
∏
i∈N Si/Ti = 0 (even though we can make it 6= 0)

too, because it is what we will need and use in the applications.

Proof. Let us write explicitly the inequalities that we need to satisfy:



Un ≥ max{tp(Fkn+1

5), tp−1(F
kn+1

5)}
Sn ≥ max{2Un,

∣∣∣χ (Fkn+1

5

)∣∣∣}
Tn ≥ 4Un + Sn
kn,Prog ≥ |p|
kn,RProg ≥

∣∣p−1
∣∣

kn,Head−1 , kn,Head+1 ≥
∣∣χ (F4 × (Qp ∪Qp−1)× {−1,+1}

)∣∣
kn,Addr, kn,Addr+1 ≥ ‖Sn‖
kn,Clock, kn,Clock+1 ≥ ‖Tn‖
kn,Tape, kn,NTape, kn,Tape−1

, kn,Tape+1
≥ 1

kn,Level = ‖n‖
kn,OTape = kn,OTape−1

= kn,OTape+1
= ln .

For all S,T and U , let us choose kn := kn,S,T,U such that the last five
inequalities are satisfied as equalities. Then, we have the crucial inequality∥∥∥χ (Fkn

5

)∥∥∥ ≤ P1(logSn, log Tn, log n, ln,

kn,Head−1 , kn,Head+1 , kn,RProg, kn,Prog),

78

where ln is the size of the alphabet of αn.

The other crucial inequality of the proof of Lemma 42 also holds without
any essential changes:

max{tp(Fk
5), tp−1(Fk

5)} ≤ P2(logSn, log Tn, log n, ln, kn,Head−1 ,

kn,Head+1 , kn,RProg, kn,Prog, tk(n), tS(n), , tT(n), tU(n))

for some polynomial P2 that does not depend on the parameters.

This holds because the permutation applied consists in a number of
polynomial operations (recall that α is polynomially computable and fixed
for this specific construction) and a bounded number of calls to S, T,U and
k.

Also, since α is polynomially computable, ln (which is part of the output
of αn) is also bounded by a polynomial of n so that we can “remove” ln from
the right-hand side of the previous inequalities and “incorporate” it in the
polynomials P1, P2. From this point on, the proof is identical to the proof
of Remark 42. (We are free to chose whether

∏
i∈N Si/Ti is equal to 0 or

not.)

6.4.2 Domino problem

Theorem 47. It is undecidable whether an extremely expansive SFT is
empty.

Proof. LetM be an arbitrary TM with program p′. For all n ∈ N, we define
αn as follows:

ln = 1. αn(0, 0, 0) = (0, 0, 0) if Hnp′(0n) is true (i.e., if M does not halt
within n steps). αn is undefined in all other cases.

(αn)n∈N is a polynomially computable sequence of permutations. ΩGn is
a singleton, equal to {∞0∞}, if and only if M does not halt within n steps.
Otherwise ΩGn is empty.

Let us construct the sequence of RPCA (Fn)n∈N as in Lemma 43 corre-
sponding to the α and k,S,T,U that satisfy the inequalities and for which∏
i∈N Si/Ti = 0. Then, Remark 44 implies that ΩF0 (equivalently, OF0) is

non-empty if and only if ΩGn is non-empty for all n, which is equivalent to
that M does not halt over input 0∞.

In addition, Remark 45 implies that if ΩF0 is non-empty, then N (F0) =
{0}.

Therefore, for every TMM, we have constructed a 2D SFT OF0 that is
non-empty if and only ifM does not halt over input 0∞ and if OF0 6= ∅, then
OF0 is extremely expansive. This concludes the proof of the undecidability.

79

It follows from the previous proof that we have actually proved the fol-
lowing: Let A be the family of forbidden patterns that define empty SFT,
and let B be the family that defines non-empty extremely expansive SFT
(with unique direction of non- expansiveness ∞). There does not exists a
recursively enumerable set X that contains B and is disjoint from A. In
other words, if an algorithm correctly recognizes all non- empty extremely-
expansive SFT, then it must also (falsely) recognize an empty SFT.

6.4.3 Intrinsic universality

The second application concerns the universality properties of RPCA.

Theorem 48. For any computably enumerable set of non-empty PPA, there
exists a PPA that completely simulates all of them.

Proof. First of all, we can assume that all the PPA are over the field list
COther with the corresponding directions. This is true because we can encode,
in polynomial time, all the left-moving fields into a unique left-moving field,
and similarly for the other types of fields. Then, saying that a set of PPA is
computably enumerable is equivalent to saying that the corresponding set
of permutations that define these PPA is computable enumerable.

In addition, for every computably enumerable set of PPA X (over the
field list COther), there exists a polynomially computable sequence (Gn)n∈N
of PPA that contains exactly the elements of X. Equivalently, there exists
a polynomially computable sequence of permutations (αn)n∈N that contains
exactly the permutations of the PPA in X.

(Let g be a fixed element of X. The polynomial algorithm of (αn)n∈N
takes as input n, runs the algorithm that enumerates X for n steps and sets
αn equal to the last permutation that was output. If no permutation has
yet been output, then αn is set equal to g.)

If we use this sequence α and sequences k,S,T,U that satisfy the in-
equalities to define the sequence (Fn)n∈N as in Lemma 43, then, since by
assumption ΩGn 6= ∅ for all n ∈ N, Remark 44 implies that F0 completely
simulates Gn, for all n ∈ N.

Theorem 48 applies, up to a conjugacy, to computably enumerable sets
of nonempty RPCA. In some sense, it gives a deterministc version of the re-
sult in [29]. The same result is not true for the non-computably-enumerable
set of all nonempty RPCA, thanks to an argument by Hochman [17] and
Ballier [2]. Nevertheless, the corollary applies to the family of all reversible
(complete) cellular automata, since the family of RCA is computably enu-
merable. Unfortunately, it gives an RPCA (partial CA) that simulates all
RCA (full CA) instead of an RCA. The existence of an RCA that simulates
all RCA seems to be a much more difficult question and is still open, (see
for instance [39].

80

6.5 Synchronizing computation

We now introduce one more trick in our construction: the encoding of an
infinite sequence inside an infinite nested simulation by encoding increasing
finite prefixes of the infinite sequence inside the alphabets of the RPCA of
the nested simulation.

Let CSyncComput := CSimulate t [MHist, MHist+1, Prog, RProg]. In this
simulation, we do not use a field Level in order to store the parameter n.
Instead, it will be obtained as the length of field MHist. p′ is the program of
a TM. It is used to reject some nested simulation sequences, depending on
the infinite sequence that is stored (through its increasing finite prefixes) in
the alphabets of the RPCA.

SyncComput[M,ν,k,S,T,U, p′]

1: Check[πMHist = πMHist+1]
2: if πClock = 0 then

3: Check[H|MHist|p′ (MHist)]
4: Check[SεHead−1,Head+1,Tape−1,Tape+1,NTape

]

5: CkAlph[M,πAddr, πTape,k|MHist|+1] {Check that the lengths of the
simulated letter are correct}

6: HCheck[M,πAddr, πTape,k|MHist|+1, Prog, πProg] {Prog of the simu-
lated letter is the same}

7: HCheck[M,πAddr, πTape,k|MHist|+1, RProg, πRProg] {RProg is also
the same}

8: HCheck[M,πAddr, πTape,k|MHist|+1, MHist, πMHist] {MHist of the
simulating letters is a prefix of MHist of the simulated}

9: end if
10: Simulate[M , ν, k|MHist|, πAddr, πClock, S|MHist|, T|MHist|, U|MHist|,

πProg, πRProg]
11: Grid[S|MHist|,T|MHist|]

Lemma 49. Let S,T,U be polynomially checkable sequences of integers
and p′ be the program of a TM. Let us fix the field list CSyncComput :=
[0, . . . , 13], the corresponding fixed direction vector νSyncComput and a poly-
nomially checkable sequence of 14-uples k ∈ (N14)N. Let F be the IPPA with
directions νSyncComput and permutation

SyncComput[14, νSyncComput,k,S,T,U, πMHist, p
′]

and p, p−1 be the programs for this permutation and its inverse, respectively.
For all w ∈ F∗2, let Sw := S|w|, Tw := T|w|and Fw be the restriction of F

to the subalphabet

81

Aw := F
k|w|
5 ∩ SwMHist,MHist+1

∩ SpProg ∩ S
p−1

RProg,

and assume that the following inequalities hold for all n ∈ N:
I(kn,kn+1, Sn, Tn, Un, p, p

−1)
kn,Prog ≥ |p|
kn,RProg ≥

∣∣p−1
∣∣

kn,Level ≥ ‖n‖ .

Then, Fw �
Sw,Tw,0,Φw

⊔
a∈F2

Fwa completely exactly, where

Σw := AZ
w ∩ Σ0,0,Sw,Tw ∩ SεHead−1,Head+1,Tape−1,Tape+1,NTape

∩ Φ̃−1(
⊔
a∈F2

AZ
wa),

and Φw := Φ̃Tape|Σw .

Proof. Let w ∈ F∗2 and |w| = n. By definition, Sw := Sn, Tw := Tn and
Uw := Un. If p′ halts on input w within n steps, then the check of line 3
will reject every configuration, which means that D(Fw) = ∅. But, in this
case, wa will also be rejected by p′ within n+ 1 steps, for all a ∈ F2, so that
D(
⊔
a∈F2

Fwa) = ∅, too. By definition, the empty PCA strongly, completely
simulates itself for all possible choices of the simulating parameters, so that
the claim is true in this case.

Suppose, then, that p′ does not halt on input w within n steps. Then,
the check of line 3 is always true, so that we can ignore it in the rest of
the proof. As in the previous proofs, we have to show three things: that
Fw (Sn, Tn, 0)-simulates

⊔
a∈F2

Fwa with decoding function Φw (simulation),
that Φw is injective (exactness) and that ΩFw ⊆ D(Φw) (completeness).

For the simulation, it is easy to see that if b ∈ AZ
wa, where a ∈ F2

and c ∈ Φ−1
w (b), then c is not rejected by the checks of lines 1,4,5,6, 7 and

8. Then, simulation follows easily from the choice of the program p and
Lemma 33.

Exactness is also direct. The values of all the fields of c are uniquely
determined by b and the form Φw.

Completeness also follows the general pattern of the previous proofs, but
there is a small difference: we can show that if c ∈ Σ0,0,Sn,Tn ∩ F−2T

w (AZ
w)

(the difference is that we have 2T instead of T in the exponent), then c ∈
Φ−1
w (
⊔
a∈F2

AZ
wa). This is enough to ensure completeness of the simulation.

Indeed, if
c ∈ Σ0,0,Sn,Tn ∩ F−Tw (AZ

w),

then lines 4,6,7 and 8 ensure that

c ∈ AZ
w ∩ Σ0,0,Sn,Tn ∩ SεHead−1,Head+1,Tape−1,Tape+1,NTape

∩ Φ−1((
⊔
a∈F2

Awa)Z).

82

Let b ∈ (
⊔
a∈F2

Awa)Z be such that c ∈ Φ−1(b). The problem is that we
still cannot know that πMHist(b) is the same in all cells, because line 8 only
checks that at every cell i, πMHist(c) = w (which we know that it is constant)
is a prefix of πMHist(bi). However, we could still have that πMHist(bi) = w0
and πMHist(bj) = w1, for some i 6= j. This is why we need to take 2T steps
instead of T steps.

Indeed, since F 2T
w (c) exists, this means that F 2(b) exists, and line 1

ensures that πMHist(bi) = πMHist+1(bi) = πMHist(bj), for all i, j ∈ Z The argu-
ment for this is similar to the argument used in the proof of Lemma 25.There-
fore, b ∈

⊔
a∈F2

AZ
wa and this concludes the proof of the Lemma.

6.5.1 Satisfying the inequalities

Remark 50. We can find k ∈ (N14)N and S,T,U ∈ NN
1 such that the

inequalities of Lemma 49 are satisfied and
∏
i<n Si/Ti = 0.

Proof. The proof is almost identical to the proof of Remark 46 and is omit-
ted. We just make a few comments:

First of all, the inequalities depend on w ∈ F∗2, but in fact, if |w| = |w′|,
then we have exactly the same inequalities for w and w′, so that actually
the inequalities can be translated to a set of inequalities that depend on n.

Second, notice that line 3 is computable in polynomial time, and since
the program p′ is fixed in advance, its contribution to ‖Aw‖, tp and |p| is
constant and does not depend on the choice of parameters.

Finally, we can choose kw,MHist := n, (where n := |w|) which means that
this field only contributes a polynomial of n to the various inequalities, so
that it can be “incorporated” into the polynomials and the problem can be
reduced to the cases that have already been dealt with.

6.5.2 Realizing computational degrees

The statement of Lemma 49 falls exactly into the situation described in
Lemma 19. For all n ∈ N, let Bn = F2. Then, for all w ∈ Fn2 (=

∏
i<n Bi), we

have defined Sw, Tw, Fw and Φw such that Fw exactly, completely (Sw, Tw, 0)-
simulates

⊔
b∈Bn Fub.

The check of line 3 forces that if z ∈
∏
i∈N Bi, then D̃∞z (Φ) 6= ∅ if and

only if H∞p′ (z) is true, or in other words, z ∈ Zp. Indeed, we have that
D(FzJ0,nJ) = ∅ for some n if and only if H∞p′ (z) is not true, or in other words,
if and only if p′ halts over z within n steps.

Therefore, Lemma 19 implies that ΩFε = D̃∞Z (Φ) =
⊔
z∈Zp D̃

∞
z (Φ).

Lemma 51. For any effectively closed subset Z ⊂ FN
2 , there exists an ex-

tremely expansive RPCA F and a computable, left-invertible map from ΩF

onto the Cartesian product Z ×FN
2 .

83

One could even prove that the computable map is two-to-one, and almost
one-to-one for any reasonable (topological or measure-theoretical) notion.
Also, this SFT can be effectively constructed from Z.

Proof. We construct SyncComput[14, νSyncComput, k, S, T, U, πMHist, p
′] for

some sequences that satisfy the inequalities and a program p′ that recognizes
Z. In addition, assume that

∏
i<n Si/Ti = 0.

It follows from Lemma 19 that

ΩFε =
⊔
z∈Zp

D̃∞z (Φ) =
⊔
z∈Zp

t∈
∏
i∈NJ0,TiJ

s∈
∏
i∈NJ0,SiJ

⋂
n∈N

σsJ0,nJ
S
F
tJ0,nJ

T

ε Φ−1
z0 · · ·Φ

−1
zJ0,nJ

(ΩFn).

Consider the map that associates, to each configuration x ∈ ΩFε , the

unique triple (z, s, t) such that x ∈
⋂
n∈N σ

sJ0,nJ
S
F
tJ0,nJ

T

0 Φ−1
z0 · · ·Φ

−1
zJ0,nJ

(ΩFn).
This map is computable, since, for all n ∈ N, Sn is for instance given by
πClockΦ0Φ1 · · ·Φn−1 and zJ0,nJ is given by πMHistΦ0Φ1 · · ·Φn−1.

Conversely, from the tripe (z, s, t), one can build construct a configura-
tion in ΩFε , as explained in [10, Proposition 4.2].

The result follows from the obvious computable homeomorphisms be-
tween ΩF and OF , and between

∏
i∈N J0, SiJ× J0, TiJ and FN2

2 .

Finally, N (Fε) = {0}, because OFε =
⊔
z∈Zp OFD̃∞z (Φ)

and N (OFD̃∞z (Φ)
) =

{0}, due to the exact complete simulation and
∏
i<n Si/Ti = 0.

The following was proven in [38] for general 2D SFT. Here, we can also
restrict the set of non-expansive directions.

Theorem 52. For any effectively closed subset X, there exists a Medvedev-
equivalent extremely expansive 2D SFT whose Turing degrees are the cones
above the Turing degrees of X.

A fortiori, all Medvedev (and Mučnik) degrees contain an extremely
expansive SFT.

Proof. It is enough to notice that ΩF and OF are computably homeomor-
phic.

The second component in the computable homeomorphism cannot easily
be taken out: it is pointed in [21] that all aperiodic subshifts admit a cone
of Turing degrees (that is one degree and all degrees above it).

Let us make some final comments: In this chapter, we are inspired and
draw mainly on the work of Durand, Romashchenko and Shen [8]. Reading
that paper, one has the feeling that the construction of that paper can be
done in a reversible way, except for the exchange of information. Working

84

out the details needed to make that intuition work is (as proven by this chap-
ter) messy and even tedious, sometimes, but we manage to obtain results for
which there is no known alternative proof. We also feel that our construction
can also shed some light on the construction of Durand, Romashchenko and
Shen. More specifically, we always write explicitly the inequalities that need
to be satisfied, and for each one we explain at least once why it is needed.
Also, we construct “once and for all” the rules and then prove that they
have the desired behaviour, instead of using their more informal approach
where some rule is created and then it is modified, resulting in a new rule,
for which it is taken for granted that the previous argumentation still holds.

85

86

Chapter 7

Expansive directions

In Lemma 10, we described a necessary condition for the set of non-expansive
directions of an SFT: if X is an SFT, then N (X) is effectively closed. In
this section, we are going to show that this is in fact a characterization of
sets of non-expansive directions of SFTs.

Theorem 53. If N0 ⊆ P is effectively closed, then there exists an SFT
X ⊆ AZ2

such that N (X) = N0.

This is mentioned as Open Problem 11.1 in Mike Boyle’s Open Problems
for Symbolic Dynamics [5]. We only answer the first part of that problem,
since our constructions do not have any SFT direction. The second part
of the problem, concerning 2D SFT with an SFT direction is much more
difficult to answer, since it is inextricably related to the expansiveness of
RCA.

It is enough to prove this for sets of non-expansive directions that are
included in [−1, 1], or even [0, r], for some 0 < r < 1, because we can
cover the set of directions with a finite number of rotations of [−1, 1] (and
[0, r]). Therefore, even though the fact that we are using PPA might seem
problematic (since N (F) ⊆ [−1, 1] in this case), this is not the case.

The key idea consists in constructing subshifts with a unique direction
of non-expansiveness through a nested simulation of RPCA, so that we can
use Lemma 23. This idea was introduced in [19], in a non-effective way; we
will try to emphasize the obstacle that has to be overcome when trying to
“SFTize” this construction.

7.1 Directive encoding

Proposition 23 states that, if we manage to implement a certain kind of
nested simulation, then we will obtain a subshift with a unique direction

of non-expansiveness, equal to D
S/T

, where S,T ∈ NN
1 and D ∈ ZN. [19,

87

Lemma 5.6] shows that all directions can be written in this form (when
the sequences S,T,D are allowed to be chosen without any constraints).
But the sequences of nested simulations that are possible with our SFT
construction are more constrained: for example, the sequences S and T
must be polynomially checkable.This immediately imposes some restrictions,
since, for example, it implies that Si cannot grow like an exponential tower
of height i. This is not excluded from the construction of Hochman, since he
takes S “sufficiently large”, in order to make some “error term” sufficiently
small. A large part of our construction is to show that we can satisfy these
restrictions at the same time, or, in other words, that the error terms can
be made sufficiently small even if S grows relatively slowly. At the same
time, we have to take care of some technical details.

Let us begin the construction by giving some additional necessary defi-
nitions:

To any vector ε ∈ Rn+ and any directive word d := (Di,Wi)0≤i<n ∈
(N2 \ {(0, 0)})n, where n ∈ N, we associate the direction interval Θε(d) :=

(
∏

0≤i<nRi)[−1, 1]+D
R ⊂ P, where Ri := 1/(Di+Wi+1+εi) ≤ 1/2; recall

that D
R

:=
∑

0≤i<nDi
∏

0≤j≤iRj . It follows immediately by the definition
that Θε(d) = R0(Θε|J1,nJ (d|J1,nJ) +D0) for any d = (Di,Wi)0≤i<n.

We extend these definitions for infinite sequences in the natural way: To
any sequence ε ∈ RN

+ and any directive sequence d := (Dn,Wn)n∈N ∈
(N2 \ {(0, 0)})N we associate the direction θε(d) := D

R ∈ R, the unique
element of

⋂
n∈N Θε|J0,nJ ((Di,Wi)0≤i<n) (uniqueness follows from the fact

that Ri ≤ 1/2, for all i ∈ N).
If F0 �

S0,T0,D0S0

F1 �
S1,T1,D1S1

. . . and for all n ∈ N, Tn = (Dn + Wn +

1 + εn)Sn, then observe that Proposition 23 can be seen as saying that
N (F0) = {θε(D,W)}. This is point of contact between this section and the
rest of the thesis.

[19, Lemma 5.6] can now be reformalized as the following.

Lemma 54. For all x ∈ [0, 1], there exist a sequence ε ∈ RN
+ and a directive

sequence d such that θε(d) = x.

We refine this statement in two ways: first, we will show that the se-
quence ε can be fixed and second, we will restrict the alphabet of acceptable
directive sequences to B := {(0, 1), (1, 1), (1, 0)}. By doing that, we will
“lose” a small part on the right endpoint of the interval [0, 1].

Lemma 55. Let ε ∈ [0,
√

2− 1]N be a sequence. Then,

θε(BN) = [0, 111 . . .
(1/(2+εi)i)].

Though the interval [0, 1[cannot be covered fully with a fixed, non-
trivial sequence, the convergence of the sequence (εn)n∈N to 0 can be sped
up suitably, in order to realise any number arbitrarily close to 1.

88

Proof. Let us prove by induction over n ∈ N that for any such sequence ε,
we have that

θε|J0,nJ (Bn) = [−
∏
i<n

1

2 + εi
, 1 . . . 12

(1/(2+εi))i<n] ⊃ [0,
1√
2

].

The base of the induction follows from ε0 ≤
√

2 − 1. Let us assume
that the inductive hypothesis is true for some n ∈ N, and prove it for

n + 1. Note that 1 . . . 12
(1/(2+εi))i<n+1 = 1

2+ε0

(
1 + 1 . . . 12

(1/(2+εi))1≤i<n+1

)
By the induction hypothesis (which we can apply to the truncated sequence
(εn)n≥1, since it satisfies the assumption, too) and ε0 ≤

√
2 − 1, we have

1 . . . 12
(1/(2+εi))i<n+1 ≥ 1

1+
√

2

(
1 + 1√

2

)
= 1√

2
.

The set θε|J0,n+1J (Bn+1) can be decomposed, in terms of the first directive
letter, into a union of three intervals

1

2 + ε0
θε|J1,nK (Bn) ∪ 1

3 + ε0
(θε|J1,nK (Bn) + 1) ∪ 1

2 + ε0
(θε|J1,nK (Bn) + 1) .

Following the induction hypothesis, the first interval is equal to

1

2 + ε0
[−

∏
1≤i≤n

1

2 + εi
, 1 . . . 12

(1/(2+εi))1≤i≤n] =

= [−
∏

0≤i≤n

1

2 + εi
,

1

2 + ε0
1 . . . 12

(1/(2+εi))1≤i≤n].

The second interval is equal to

1

3 + ε0
(1 + [−

∏
1≤i≤n

1

2 + εi
, 1 . . . 12

(1/(2+εi))1≤i≤n]) =

= [
1

3 + ε0
(1−

∏
1≤i≤n

1

2 + εi
),

1

3 + ε0
1 . . . 12

(1/(2+εi))1≤i≤n].

The third interval is equal to

1

2 + ε0
(1 + [−

∏
1≤i≤n

1

2 + εi
, 1 . . . 12

(1/(2+εi))1≤i≤n]) =

= [
1

2 + ε0
−
∏

0≤i≤n

1

2 + εn
, 1 . . . 12

(1/(2+εi))0≤i≤n].

It is clear that the smallest point of these three intervals is −
∏

0≤i≤n
1

2+εi

(the last two intervals are in R+), and the largest is 1 . . . 12
(1/(2+εi))0≤i≤n

89

(the first interval is obtained through a translation by −1 of the third one,
or through a homothecy by 2+ε0

3+ε0
of the second one).

We proved earlier that 1 . . . 12
(1/(2+εi))i<n+1 ≥ 1

1+
√

2

(
1 + 1√

2

)
= 1√

2
.

It follows from this that the upper bound 1
2+ε0

1 . . . 12
(1/(2+εi))1≤i≤n of the

first interval is larger than 1
(2+ε0)

√
2
, while the smaller bound of the second

interval is lower than 1
3+ε0

, which is less than 1
(2+ε0)

√
2
, as can be easily

verified.In other words, there is no hole between these two intervals.
Using the same arguments, one can easily see that the upper bound of

the second interval is 1
3+ε0

(1 + 1 . . . 12
(1/(2+εi))1≤i≤n+1), which is larger than

1+1/
√

2
3+ε0

while the lower bound of the third interval is smaller than 1
2+ε0

, which

is smaller than 1+1/
√

2
3+ε0

, since
√

2−1+ε0
1√
2
> 0. There is no hole here either,

and globally, we get the full interval
[
−
∏

0≤i≤n
1

2+εi
, 1 . . . 12

(1/(2+εi))0≤i≤n
]
.

The statement is easily derived from the fact that
∏

0≤i<n
1

2+εi
→ 0 and

1 . . . 12
(1/(2+εi)i<n) → 1 . . .

(1/(2+εi)i∈N)
.

7.2 Computing directions

Lemma 10 stated that the set of non-expansive directions of an SFT is ef-
fectively closed, which means that there exists a program which takes as
(infinite) input the description of a direction in P and halts (after having
read finitely many bits of the input) if and only if the direction is expansive.
In Subsection 2.2.2, it was suggested that the good way to represent direc-
tions in order to compute with them was by the two coordinates of some
intersection with the unit circle. Each slope then has two (opposite) valid
representations. When restricting to closed subsets of R ⊆ P (i.e., when
we are not talking about the horizontal direction), the notion of effectively
closed set of direction is the same with the above representation as with
the usual definition of R. This is due to the facts that the functions sin
and cos and their inverses are computable and that the function x→ 1/x is
uniformly continuous away from 0.

The following remark states that directive sequences give another, equiv-
alent representation for directions.

Remark 56. Let ε ∈ RN be computable. Then, θε is a computable function.

The computation is actually uniform in ε, in the sense that it could be
considered as part of the input.

Proof. This follows from the fact that the diameter of Θε|J0,nJ (d) is at most

2−n, since Ri ≤ 1/2, for all i ∈ N and directive sequence d.

90

Remark 56 implies that effectively closed sets of slopes can be equiva-
lently described by an effectively closed set of directive sequences. This is
the computational description of directive sequences that we are going to
use in the next chapter.

7.3 Realization of sets of non-expansive directions

Let CReali = CSimulate t [MHist, MShift, MShift+1, Prog, RProg].

The following permutation will also be parametrized by an effectively
closed set N0 ⊆ [0, 1/2], which is represented by the program p′ of the TM
that recognizes N0 as a set of directive sequences. N0 is the set of non-
expansive directions that we are trying to realize.

We identify the set B := {(0, 1), (1, 1), (1, 0)} with F3 (through any bi-
jection). If a ∈ B, then Da,Wa will denote the projection of a onto the first
and second coordinate, respectively.

In the following algorithm, p′ is the program of a TM that recognizes
some set of non-expansive directions.

Reali[M,ν, p′,k,S,U]

1: Check[πMShift = πMShift+1]
2: if πClock = 0 then

3: Check[H|MHist|p′ (MHist)]
4: Check[SεHead−1,Head+1,Tape−1,Tape+1,NTape

]

5: CkAlph[M,πAddr, πTape,k|MHist|+1]
6: HCheck[M,πAddr, πTape,k|MHist|+1, Prog, πProg]
7: HCheck[M,πAddr, πTape,k|MHist|+1, RProg, πRProg]
8: HCheck[M,πAddr, πTape,k|MHist|+1, MHist, πMHistπMShift]
9: end if

10: if πClock = 0 then
11: Swap[Tape, Tape+1]
12: end if
13: if πClock = DMShiftS|MHist| then
14: Swap[Tape, Tape+1]
15: end if
16: Simulate[M , ν, k|MHist|, πAddr, πClock − DMShiftS|MHist|, S|MHist|,

S|MHist|(DMShift +WMShift + 1) + 4U|MHist| , U|MHist|, πProg, πRProg]
17: Grid[S|MHist|,S|MHist|(DMShift +WMShift + 1) + 4U|MHist|]

This is like the simulation of the computation degrees, only that we keep
a more complicated register in the MHist field and we use the values of

91

MShift to perform a “macro-shift” before the simulation. We also note that
T is not given as a parameter of the construction. Instead, it is determined
by the sequences S,U and the value of field MShift.

Lemma 57. Let S,U be polynomially checkable sequences of integers and
p′ be the program of a TM. Let us fix the field list CReali := [0, . . . , 14], the
corresponding direction vector νReali and a polynomially checkable sequence
of 15-uples k ∈ (N14)N. Let F be the IPPA with directions νReali and per-
mutation

Reali[14, νReali, p
′,k,S,U]

and p, p−1 be the programs for this permutation and its inverse, respectively.
For all w ∈ B∗ and a ∈ B, let kw,a := k|w|, Sw,a := S|w|, Uw,a := U|w|,

Tw,a := Sw,a(Da + Wa + 1) + 4Uw,a and Fw,a be the restriction of F to the
subalphabet

Aw,a := F
k|w|
5 ∩ SwMHist ∩ SaMShift,MShift+1

∩ SpProg ∩ S
p−1

RProg.

Assume that the following inequalities hold, for all w ∈ B∗ and a, a′ ∈ B:

Uw,a ≥ max{tp(F
kwa,a′
5), tp−1(F

kwa,a′
5)}

Sw,a ≥ max{2Uw,a,
∣∣∣χ (Fkwa,a′

5

)∣∣∣}
kw,a,Addr, kw,a,Addr+1 ≥ ‖Sw,a‖
kw,a,Clock, kw,a,Clock+1 ≥ ‖Tw,a‖
kw,a,Head−1 , kw,a,Head+1 ≥ max

∣∣χ (F4 × (Qp ∪Qp−1)× {−1,+1}
)∣∣

kw,a,Tape, kw,a,NTape, kw,a,Tape−1
, kw,a,Tape+1

≥ 1

kw,a,Prog ≥ |p|
kw,a,RProg ≥

∣∣p−1
∣∣

kw,a,MHist ≥ |w|
kw,a,MShift = kw,a,MShift+1

≥ 1 .

Then, Fw,a completely exactly simulates
⊔
a′∈B Fwa,a′ with parameters

(Sw,a, Tw,a, DaSw,a,Φw,a), where Φw,a = Φ̃Tape|Σw,a and

Σw,a := AZ
w,a ∩ Σ0,0,Sw,a,Tw,a ∩ SεHead−1,Head+1,Tape−1,Tape+1,NTape

∩

∩ Φ−1(
⊔
a′∈B

AZ
wa,a′).

The only difference between this proof and the proof of Lemma 49 is
that we shift all the encodings DaSw,a cells (equivalently, Da macro-cells)
to the right before starting the simulation.

Also, it is not difficult to see that the usual inequalities hold: tp(An) =
tp−1(An) = P (|An|+ tk(n)+ tS(n)+ tT(n)+ tU(n)) and |p| ,

∣∣p−1
∣∣ = O(|pk|+

|pS| + |pT| + |pU|). Recall that p′ is fixed in advance so it is a constant in
what matters complexity.

92

Proof. If p′ halts on input w within |w| steps, then the check of line 3 will
reject every configuration, which means that Fw,a = ∅. But, in this case,
wa will also be rejected by p′ within |wa| steps, for all a ∈ B, so that⊔
a′∈B Fwa,a′ = ∅, too. By definition, the empty PCA strongly, completely

simulates itself for all possible choices of the simulating parameters, so that
the claim is true in this case.

Suppose, then, that p′ does not halt on input w within |w| steps. Then,
the check of line 3 is always true, so that we can ignore it in the rest of
the proof. As in the previous proofs, we have to show three things: that
Fw,a (Sw,a, Tw,a) simulates

⊔
a∈F2

Fwa,a′ with decoding function Φw,a (sim-
ulation), that Φw,a is injective (exactness) and that ΩFw,a ⊆ DΦw,a (com-
pleteness).

For the simulation, it is easy to see that if b ∈ AZ
wa,a′ , where a′ ∈ F2 and

c ∈ Φ−1
w,a(b), then c is not rejected by the checks of lines 1,4,5,6, 7 and 8.

Then, line 11 copies all the info bits onto Tape+1. During the next
Sw,aDa steps, no permutation is applied. The only thing happening to
the configuration is that the encodings that are in Tape+1 travel to the
right at the speed of one cell per time step. After Sw,aDa steps, they are
copied back to the Tape tape by line 14. Every letter has travelled exactly
Sw,aDa cells to the right, which corresponds to Da macro-cells. Formally,
Φ(FDaSw,a(c)) = σ−Da(b).

Then, from Fact 34 and since the only rule applied from Clock =
DaSw,a is Grid ◦ Simulate, we obtain that Φ(FDaSw,a+Sw,a+4Uw,a(c)) =
Fwa,a′(σ

−Da(b)). After Clock = DaSw,a+Sw,a+4Uw,a, nothing else changes
in the configuration until Clock becomes 0 again. Line 17 ensures that Clock
goes from 0 to (Da +Wa + 1)Sw,a + 4Uw,a. This concludes the proof of the
simulation part.

Exactness of the simulation is easy to see. The values of all the fields of
c ∈ Φ−1

w,a(b) are uniquely determined by b and Σw,a.

For the completeness, we show that if c ∈ Σ0,0,Sw,a,Tw,a ∩ F−2Tw,a
w,a (AZ

w,a),

then c ∈ Φ−1
w,a(

⊔
a′∈BA

Z
wa,a′).

Indeed, if c ∈ Σ0,0,Sw,a,Tw,a ∩F−Tw,aw,a (AZ
w,a), then lines 4,6,7 and 8 ensure

that

c ∈ AZ
w,a ∩ Σ0,0,Sw,a,Tw,a ∩ SεHead−1,Head+1,Tape−1,Tape+1,NTape

∩

∩ Φ−1((
⊔
a′∈B

Awa,a′)Z).

Let b ∈ (
⊔
a′∈BAwa,a′)

Z be such that c ∈ Φ−1(b). We still cannot know that
πMShift(bi) is the same for all i ∈ Z.

We deal with this problem in a similar way as in Section 6.5, since F 2T
w,a(c)

exists, this means that F 2(b) exists, and line1 ensures that πMShift(bi) =

93

πMShift+1(bi) = πMShift(bj), for all i, j ∈ Z. Therefore, b ∈
⊔
a′∈F2

AZ
wa,a′ and

this concludes the proof.

7.3.1 Satisfying the inequalities

Unlike the previous cases, the set of inequalities that we want to satisfy does
not depend on n, but instead on a word w ∈ B∗ and a, a′ ∈ B. However,
we will now see that the inequalities can be translated to some inequalities
about the polynomially computable sequences S,U.

Remark 58. We can find k ∈ (N15)N and S,U ∈ NN such that the inequal-
ities of Lemma 57 are satisfied.

In addition, we can have εn := 4Un/Sn <
√

2 − 1, for all n ∈ N and
θε(BN) ⊇ [0, 1/2].

Proof. Let w ∈ B∗ and a, a′ ∈ B. Let n := |w| be the length of w. Let us
write again the inequalities:



Uw,a ≥ max{tp(F
kwa,a′
5), tp−1(F

kwa,a′
5)}

Sw,a ≥ max{2Uw,a,
∣∣∣χ (Fkwa,a′

5

)∣∣∣}
kw,a,Prog ≥ |p|
kw,a,RProg ≥

∣∣p−1
∣∣

kw,a,Head−1 , kw,a,Head+1 ≥
∣∣χ (F4 × (Qp ∪Qp−1)× {−1,+1}

)∣∣
kw,a,Addr, kw,a,Addr+1 ≥ ‖Sw,a‖
kw,a,Clock, kw,a,Clock+1 ≥ ‖Tw,a‖
kw,a,Tape, kw,a,NTape, kw,a,Tape−1

, kw,a,Tape+1
≥ 1

kw,a,MHist ≥ |w|
kw,a,MShift = kw,a,MShift+1 ≥ 1 .

According to the definition, kw,a = kn, Sw,a = Sn, Uw,a = Un and
Tw,a = Sn(Da+Wa+1)+4Un: Therefore, we can write the above inequalities
as follows:



Un ≥ max{tp(Fkn+1

5), tp−1(F
kn+1

5)}
Sn ≥ max{2Un,

∣∣∣χ (Fkn+1

5

)∣∣∣}
kn,Prog ≥ |p|
kn,RProg ≥

∣∣p−1
∣∣

kn,Head−1 , kn,Head+1 ≥
∣∣χ (F4 × (Qp ∪Qp−1)× {−1,+1}

)∣∣
kn,Addr, kn,Addr+1 ≥ ‖Sn‖
kn,Clock, kn,Clock+1 ≥ ‖Sn(Da +Wa + 1) + 4Un‖
kn,Tape, kn,NTape, kn,Tape−1

, kn,Tape+1
≥ 1

kn,MHist ≥ n
kn,MShift = kn,MShift+1 ≥ 1 .

94

Unlike the previous proofs, we cannot choose kS,T ∈ NN such that all
of the inequalities except the first two are satisfied as equalities. This is
because the inequalities about Clock and Clock+1 depend on a ∈ B and not
only on n. However, Da+Wa ≤ 2, for all a ∈ B, so that we can replace these
inequalities with kn,Clock, kn,Clock+1 ≥ ‖3Sn + 4Un‖ and show that this new
set of inequalities can be satisfied. (Here, it is essential that B is a finite
set. Bounding Da +Wa from above is one of the reasons that we had to do
a little more work with the directive sequences.)

The rest of the proof follows the usual pattern. We choose Sn = Qn+n0

and Un = (n+ n0)r for some suitable values of n0, r and Q.
For the second claim, let us recall more specifically in which order n0, r

and Q are chosen. In the proof of Remark 42, we showed that there exists
n0 and r that work for every Q. Therefore, by choosing Sn = Qn+n0 and
Un = (n + n0)r, for some sufficiently large Q, we can make ε := 4Un/Sn

smaller than
√

2− 1 and 111 . . .
(1/(2+εi)i) larger than 1/2.

For all w, a, we have Tw,a = (Da + Wa + 1)Sw,a + 4Uw,a = (Da + Wa +
1 + 4Uw,a/Sw,a)Sw,a = (Da + Wa + 1 + εw,a)Sw,a, where εw,a <

√
2 − 1, so

that we are in the situation described in Lemma 55 and θε(BN) ⊇ [0, 1/2].
Since N0 ⊆ [0, 1/2] by assumption, this means that every direction in N0 is
representable as a sequence in θε(BN).

7.3.2 Realization

For all z ∈ Zp′ , we have a sequence of complete, exact simulations given by

FzJ0,nJ,zn �
SzJ0,nJ,zn ,TzJ0,nJ,zn ,DznSzJ0,nJ,zn

FzJ0,n+1J,zn+1 ,

for all n ∈ N.
Therefore, according to a Lemma 19, we have that ΩF =

⊔
z∈Zp′

D̃∞z (Φ),

and OFε =
⊔
z∈Zp′

OFD̃∞z (Φ)
. In addition, we know that N (OFD̃∞z (Φ)

) = θ(z),

by Lemma 22 and that every direction in J0, 1/2K can be represented in
such a way, by Lemma 55. Finally, we know by Lemma 11 that N (OFε) =⊔
z∈Zp′

N (OFD̃∞z (Φ)
) =

⊔
z∈Zp′

θ(z) = Np′ = N0.

Therefore, for every effectively closed set of directions which is included
in [0, 1/2], recognized by a TM with program p′, we have constructed a 2D
SFT with exactly this set as set of non-expansive directions. According to
our previous discussions, this is enough to realize arbitrary effectively closed
sets of directions as the set of non-expansive directions of 2D SFT. This
concludes the proof of Theorem 53.

95

96

Conclusion and Open
Questions

We have provided a general method for constructing extremely-expansive
2D SFT’s of finite type and we have shown that this class of 2D SFT’s
has very rich computational, dynamical and geometrical properties. At the
same time, our method throws some light on the essence of self-similar and
hierarchical constructions and we hope that it might help to better under-
stand previous works with hierarchical constructions, especially [8]. (On
the other hand, the difficulty of [10] only partly comes from the hierarchical
simulation, so our work is certainly not sufficient to explain this construction
better.)

Regarding future work, we believe that the following questions about
extremely-expansive 2D SFTs are very natural: First of all, can (a variant of)
our method produce a minimal extremely-expansive SFT? Is the emptiness
problem undecidable for minimal extremely-expansive SFT’s? Recently,
Durand and Romashchenko [7] described a method for constructing mini-
mal (but not extremely-expansive) SFT’s and answer the second question
positively. It seems that their technique can be readily generalized to our
framework. Second, is it possible to realize all effective subshifts, in the
sense of [18, 8, 1] with 2D extremely-expansive SFT’s? This would be an
improvement with of the result of [8, 1] since it would (in some sense) further
lower the dimension of the realizing subshift by one. Third, is it possible
to construct extremely expansive SFT covers for square substitutions? This
question goes back to the construction of Mozes [33], which constructs SFT
covers for square substitutions without any directions of expansivess. Re-
cently, Ollinger and Legloannec [30] constructed 4-way deterministic covers.
We believe that the answer to this question is also positive. Finally, and
this is certainly the most interesting, but also difficult question, is it possible
to use our method in order to construct reversible, self-simulating CA, i.e.,
is it possible to turn the partial rules, with which we have been working
in this thesis, to complete rules, while at the same time keeping the good
properties of self-simulation? This could find an application to the problem
of the undecidability of expansiveness for reversible CA.

97

98

Bibliography

[1] Nathalie Aubrun and Mathieu Sablik. Simulation of effective subshifts
by two-dimensional subshifts of finite type. Acta Applicandae Mathe-
maticae, 126(1):35–63, 2013.

[2] Alexis Ballier. Universality in symbolic dynamics constrained by
medvedev degrees. CoRR, abs/1304.5418, 2013.

[3] C. H. Bennett. Logical reversibility of computation. IBM Journal of
Research and Development, 17(6):525–532, November 1973.

[4] R. Berger. The Undecidability of the Domino Problem. American Math-
ematical Society memoirs. American Mathematical Society, 1966.

[5] Mike Boyle. Open problems in symbolic dynamics. Contemporary math-
ematics, 469:69–118, 2008.

[6] Mike Boyle and Douglas Lind. Expansive subdynamics. Transactions
of the American Mathematical Society, 349(1):55–102, 1997.

[7] Bruno Durand and Andrei Romashchenko. Quasiperiodicity and non-
computability in tilings. CoRR, abs/1504.06130, 2015.

[8] Bruno Durand, Andrei Romashchenko, and Alexander Shen. Fixed-
point tile sets and their applications. Journal of Computer and System
Sciences, 78(3):731 – 764, 2012.

[9] Peter Gács. Reliable computation with cellular automata. Journal of
Computer and System Sciences, 32(1):15–78, 1986.

[10] Peter Gács. Reliable cellular automata with self-organization. Journal
of Statistical Physics, 102(1–2):45–267, 2001.

[11] Peter Gács, Mathieu Hoyrup, and Cristóbal Rojas. Randomness on
computable probability spaces—a dynamical point of view. Theory of
Computing Systems, 48(3):465–485, 2011.

99

[12] Lawrence Gray. A reader’s guide to Gács’s “Positive Rates” paper.
Journal of Statistical Physics, 103(1–2):1–44, 2001.

[13] Pierre Guillon, Jarkko Kari, and Charalampos Zinoviadis. On deter-
minism in subshifts. Unpublished manuscript, 2015.

[14] Pierre Guillon and Charalampos Zinoviadis. Densities and entropies in
cellular automata. In How the World Computes - Turing Centenary
Conference and 8th Conference on Computability in Europe, CiE 2012,
Cambridge, UK, June 18-23, 2012. Proceedings, pages 253–263, 2012.

[15] G.A. Hedlund. Endomorphisms and automorphisms of the shift dy-
namical system. Mathematical systems theory, 3(4):320–375, 1969.

[16] Peter G. Hinman. A survey of mučnik and medvedev degrees. Bull.
Symbolic Logic, 18(2):161–229, 06 2012.

[17] Michael Hochman. A note on universality in multidimensional symbolic
dynamics. Discrete and Continuous Dynamical Systems - Series S,
2(2):301–314, 2009.

[18] Michael Hochman. On the dynamics and recursive properties of multi-
dimensional symbolic systems. Inventiones Mathematicæ, 176(1):131–
167, April 2009.

[19] Michael Hochman. Expansive directions for Z2 actions. Ergodic Theory
& Dynamical Systems, 31(1):91–112, 2011.

[20] Michael Hochman and Tom Meyerovitch. A characterization of the en-
tropies of multidimensional shifts of finite type. Annals of Mathematics,
171(3):2011–2038, 2010.

[21] Emmanuel Jeandel and Pascal Vanier. Turing degrees of multidimen-
sional SFTs. Theor. Comput. Sci., 505:81–92, 2013.

[22] J. Kari and P. Papasoglu. Deterministic aperiodic tile sets. Geometric
and Functional Analysis GAFA, 9(2):353–369, 1999.

[23] Jarkko Kari. The nilpotency problem of one-dimensional cellular au-
tomata. SIAM Journal on Computing, 21(3):571–586, 1992.

[24] Jarkko Kari. Representation of reversible cellular automata with block
permutations. Mathematical Systems Theory, 29(1):47–61, 1996.

[25] Jarkko Kari. A small aperiodic set of wang tiles. Discrete Mathematics,
160(1-3):259–264, 1996.

100

[26] Jarkko Kari. On the undecidability of the tiling problem. In SOFSEM
2008: Theory and Practice of Computer Science, 34th Conference on
Current Trends in Theory and Practice of Computer Science, Nový
Smokovec, Slovakia, January 19-25, 2008, Proceedings, pages 74–82,
2008.

[27] G. L. Kurdyumov. An example of a non-ergodic one-dimensional homo-
geneous random medium with positive transition probabilities. Soviet
Mathematics Doklady, 19(1), 1978.

[28] Grégory Lafitte and Michael Weiss. Computability of tilings. In IFIP,
volume 273 of International Federation for Information Processing,
pages 187–201, 2008.

[29] Grégory Lafitte and Michael Weiss. Tilings: simulation and univer-
sality. Mathematical Structures in Computer Science, 20(5):813–850,
2010.

[30] Bastien Le Gloannec and Nicolas Ollinger. Substitutions and strongly
deterministic tilesets. In How the World Computes, pages 462–471.
Springer, 2012.

[31] Ville Lukkarila. The 4-way deterministic tiling problem is undecidable.
Theoretical Computer Science, 410(16):1516 – 1533, 2009. Theory and
Applications of Tilings.

[32] Kenichi Morita. Computation-universality of one-dimensional one-way
reversible cellular automata. Information Processing Letters, 42(6):325
– 329, 1992.

[33] Shahar Mozes. Tilings, substitution systems and dynamical systems
generated by them. Journal d’analyse mathématique, 53:139–186, 1988.

[34] Masakazu Nasu. Textile systems and one-sided resolving automor-
phisms and endomorphisms of the shift. Ergodic Theory and Dynamical
Systems, 28:167–209, 2 2008.

[35] Nicolas Ollinger. The intrinsic universality problem of one-dimensional
cellular automata. In Helmut Alt and Michel Habib, editors, STACS
2003, volume 2607 of Lecture Notes in Computer Science, pages 632–
641. Springer Berlin Heidelberg, 2003.

[36] Nicolas Ollinger. Two-by-two substitution systems and the undecidabil-
ity of the domino problem. In Arnold Beckmann, Costas Dimitracopou-
los, and Benedikt Löwe, editors, CiE’2008, volume 5028 of LNCS, pages
476–485, Athens, Greece, June 2008. Springer Berlin / Heidelberg.

101

[37] Raphael M. Robinson. Undecidability and nonperiodicity for tilings of
the plane. Inventiones Mathematicæ, 12(3), 1971.

[38] Stephen G. Simpson. Medvedev degrees of 2-dimensional subshifts of
finite type, 2007.

[39] Guillaume Theyssier. How common can be universality for cellular
automata? In STACS 2005, volume 3404 of Lecture Notes in Computer
Science, pages 121–132. 2005.

[40] Hao Wang. Proving theorems by pattern recognition ii. Bell System
Technical Journal, The, 40(1):1–41, Jan 1961.

[41] Charalampos Zinoviadis. Hierarchy and expansiveness in 2d subshifts
of finite type. In Language and Automata Theory and Applications -
9th International Conference, LATA 2015, Nice, France, March 2-6,
2015, Proceedings, pages 365–377, 2015.

102

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures
192. Toni Ernvall, On Distributed Storage Codes
193. Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems
194. Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing – Analysis and

Applications
195. Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market

Segmentation
196. Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:

Rigorous Design and Efficient Implementation
197. Espen Suenson, How Computer Programmers Work – Understanding Software

Development in Practise
198. Tuomas Poikela, Readout Architectures for Hybrid Pixel Detector Readout Chips
199. Bogdan Iancu, Quantitative Refinement of Reaction-Based Biomodels
200. Ilkka Törmä, Structural and Computational Existence Results for Multidimensional

Subshifts
201. Sebastian Okser, Scalable Feature Selection Applications for Genome-Wide

Association Studies of Complex Diseases
202. Fredrik Abbors, Model-Based Testing of Software Systems: Functionality and

Performance
203. Inna Pereverzeva, Formal Development of Resilient Distributed Systems
204. Mikhail Barash, Defining Contexts in Context-Free Grammars
205. Sepinoud Azimi, Computational Models for and from Biology: Simple Gene

Assembly and Reaction Systems
206. Petter Sandvik, Formal Modelling for Digital Media Distribution

207. Jongyun Moon, Hydrogen Sensor Application of Anodic Titanium Oxide
Nanostructures

208. Simon Holmbacka, Energy Aware Software for Many-Core Systems
209. Charalampos Zinoviadis, Hierarchy and Expansiveness in Two-Dimensional

Subshifts of Finite Type

ISBN 978-952-12-3337-1
ISSN 1239-1883

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Faculty of Science and Engineering
 • Computer Engineering
 • Computer Science
Faculty of Social Sciences, Business and Economics
 • Information Systems

ISBN 978-952-12-3337-1
ISSN 1239-1883

http://www. tucs.fi

tucs@abo.fi

C
haralam

pos Z
inoviadis

H
ierarchy and Expansiveness in Tw

o-D
im

ensional S
ubshifts of Finite Type

	Historical overview
	Preliminaries
	Basic definitions
	Computation
	Turing machines
	Computability
	Degrees

	Symbolic dynamics
	Cellular automata
	Expansiveness

	Simulation
	Simulation
	Nested simulations
	Expansiveness and simulation
	Explicit simulation

	The programming language
	Definitions and basic permutations
	Conventions about defining IPPA

	The universal simulator
	Imposing a periodic structure
	Simulating TM with IPPA
	Computing the simulated permutation
	Shifting
	Simulating any fixed rule
	Satisfying the inequalities

	Infinite hierarchies
	Son-father checks
	Self-simulation
	Satisfying the inequalities

	Hierarchical simulation
	Satisfying the inequalities

	Universality
	Satisfying the inequalities
	Domino problem
	Intrinsic universality

	Synchronizing computation
	Satisfying the inequalities
	Realizing computational degrees

	Expansive directions
	Directive encoding
	Computing directions
	Realization of sets of non-expansive directions
	Satisfying the inequalities
	Realization

