
A Study of Privacy Preserving Queries with Bloom Filters

Sara Ramezanian

Master of Science Thesis
January 2016

Department of Mathematics and Statistics
University of Turku

The originality of this thesis has been checked in accordance with the Univer-
sity of Turku quality assurance system using the Turnitin OriginalityCheck
service.

University of Turku
Department of Mathematics and Statistics

RAMEZANIAN, SARA: A Study of Privacy Preserving Queries with Bloom
Filters
Master of Science Thesis, 59 p., 16 app. p.
Information Technology - Cryptography and Data Security Track
January 2016

This thesis focuses on the private membership test (PMT) problem and presents
three single-server protocols to resolve this problem. In the presented solutions,
a client can perform an inclusion test for some record x in a server’s database,
without revealing his record. Moreover, after executing the protocols, the contents
of server’s database remain secret.

In each of these solutions, a different cryptographic protocol is utilized to construct a
privacy preserving variant of Bloom filter. The three suggested solutions are slightly
different from each other, from privacy perspective and also from complexity point
of view. Therefore, their use cases are different and it is impossible to choose one
that is clearly the best between all three.

We present the software developments of the three protocols by utilizing various
pseudocodes. The performance of our implementation is measured based on a real
case scenario.

This thesis is a spin-off from the Academy of Finland research project ”Cloud Se-
curity Services”.

Keywords: Private information retrieval, Bloom filter, Private membership test,
Homomorphic encryption, Blind signature, Oblivious pseudorandom functions.

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisors
Valtteri Niemi and Tommi Meskanen for giving me the opportunity to work
in their group and for introducing me to the fascinating world of research.
I am thankful for their kind supervision, patience, immense knowledge, and
all their explanations and helpful comments on my work. It’s been indeed a
special privilege and a pleasure to work with them and learn from them, and
I am looking forward to continuing our work together.

My sincere thanks also goes to Arto Lepistö for code-reviewing of the soft-
ware development in this thesis and his valuable comments on how to write
a professional code. Thanks as well to my dear friend Masoud Naderpour for
providing technical guidance on my implementation and for all the fun we
have had in the last three years.

Last but not least, I owe my gratitudes to my mother and my uncle Nosrat,
for supporting me spiritually throughout my life. I would not be where I am
today, if it wasn’t for them.

List of Figures

1 An example of Bloom filter and counting Bloom filter 8
2 Protocol 1 . 21
3 Protocol 2 . 23
4 Protocol 3 . 25
5 Request-Response between Two Parties in Protocol 1 30
6 A Snapshot from an Ubuntu Terminal to Create B 32
7 A Snapshot from Server that Listens to the Client’s Requests . 33
8 A Snapshot from the Client’s folder 34
9 The Required Time for C to Get Responds from S 37
10 The Required Time for C to Get one Respond from S 39
11 An Example of a VI-CB Represents S = {x, y} and a Query

for z . 48
12 A model of utilizing TH for PIR 51

i

ii

List of Tables

1 Encrypting B in Protocol 1 on Windows 7 36
2 Encrypting B in Protocol 1 on Ubuntu 14.04.3 37
3 Protocol 2 - Insert an Encrypted Database to B in Windows 7 38
4 Protocol 2 - Insert an Encrypted Database to B in Ubuntu

14.04.3 . 38
5 A Query from a Bloom Filter 39
6 Comparison of the security in three protocols 43
7 Comparison of the space complexity in three protocols 44
8 Comparison of the complexities using different protocols . . . 45
9 Comparison of the performance in protocol 1 and 2 46

iii

iv

List of Acronyms

AES Advanced Encryption Standard

B Bloom Filter

CB Counting Bloom Filter

CPA Chosen Plaintext Attack

CPIR Computationally Private Information Retrieval

EB Encrypted Bloom Filter

FP False Positive

OPRF Oblivious Pseudorandom Function

OT Oblivious Transfer

PIR Private Information Retrieval

PKS Private Keyword Search

PMT Private Membership Test

PRF Pseudorandom Function

QNR Quadratic Non-Residue

QR Quadratic Residue

QNRn The Set of all Quadratic Non-Residues Modulo n

QRn The Set of all Quadratic Residues Modulo n

TH Trusted Hardware

TTP Trusted Third Party

VI-CB Variable-Increment Counting Bloom Filter

1-2 OT 1 out of 2 Oblivious Transfer

v

vi

Contents

List of Figures i

List of Tables iii

List of Acronyms v

1 Introduction 1
1.1 Background . 1
1.2 Contributions . 3
1.3 Outline . 5

2 Fundamentals 6
2.1 Notation . 6
2.2 Basic Concepts . 7
2.3 Cryptographic Protocols . 12

3 Private Membership Test with Bloom Filters 16
3.1 Protocol 1, utilizing Goldwasser-Micali homomorphic encryption 17
3.2 Protocol 2, utilizing blind RSA signature 21
3.3 Protocol 3, utilizing oblivious pseudorandom function 23

4 Implementation 26
4.1 Software Development . 26
4.2 Results . 35

5 Comparison 41
5.1 Security . 41
5.2 Efficiency . 43

6 Alternative Approaches to PMT and PIR 47
6.1 Variable-Increment Counting Bloom Filter 47
6.2 Alternative Methods to Utilize Bloom Filters for PMT 48
6.3 An Approach to PIR Utilizing Trusted Hardware 50

7 Conclusion 52
7.1 Summary . 52
7.2 Discussion . 52
7.3 Further Work . 54

Bibliography 56

vii

Appendices 60

A Protocol 1 - Preprocessing 60

B Protocol 1 - Server Part 70

C Protocol 1 - Client Part 72

D Protocol 2 75

viii

1 Introduction

Development of the Internet and constantly improving electronic devices pro-
vide more services for the users. Every day more and more people are utiliz-
ing publicly accessible databases to gain information. However, while users
query search engines, curious service providers can collect their users’ per-
sonal information. By studying these collections, users’ interests, lifestyles
and other confidential information can be inferred. These leakages of per-
sonal data assist advertisement companies to perform better and therefore
obtain more profit [1].

However, further exploitation is possible from the collected information.
Seneviratne et al. have shown that a single snapshot of installed applications
on users’ smart phones can leak a lot of personal information about them
with 90% precision. These information consist of relation status, religion,
spoken languages, countries of interest, and whether the user is a parent
of small children [2]. Another study by Kosinski et al. demonstrates that
digital records of behavior can predict accurately many sensitive personal
attributes such as ethnicity, religious and political views, personality traits
and parental separation [3].

These sort of studies show that it is necessary to protect users’ privacy
on the Internet and motivate many researchers to look for possible solutions
to the issues of privacy. There are plenty of well-known concepts in cryptog-
raphy, which are proposed to preserve the privacy of Internet users such as
Oblivious Transfer [4] and Private Information Retrieval [5].

The aim of this chapter is to present the background of our research and
help the reader to have an overview on our work.

1.1 Background

A protocol to transfer a piece of information from a sender S to a receiver
R is called oblivious transfer (OT) if after executing the protocol, sender
remains unaware which part of information (if any) has been received by
R. In Rabin’s oblivious transfer, R gets S’s secret message with probability
of 1/2 [4]. Another form of OT is 1-out-of-n oblivious transfer. It can be
described as a game between two players: S who owns n secrets x1, x2, ..., xn
and R who holds an index i ∈ {1, 2, ..., n}. At the end of the game, S has no
clue about index i and the only information R receives is xi. While in OT

1

protocols secrecy is required for both parties (database provider and user),
the main purpose of all Private Information Retrieval (PIR) schemes is just
to protect user’s privacy. In this regard, PIR is a weaker version of 1-out-of-n
oblivious transfer.

In general, PIR techniques enable users to query through databases with-
out revealing which piece of information they are interested in. The trivial
approach to PIR problem is to deliver a copy of the database to each user,
therefore one can easily retrieve data privately. However this solution is im-
practical due to the high usage of bandwidth.

Before going any further, with the purpose of making the problem more
concrete, we assume that the database is a string of n bits: x1x2...xn and the
user is interested in ith bit xi where i ∈ {1, 2, ..., n}. With this assumption
the communication complexity (the minimum number of bits exchanged be-
tween database and user) of the above naive solution is O(n).

The first non-trivial PIR scheme was introduced in 1995 by Chor et al.
[6]. In their proposed solution, the database should be replicated k times
(k ≥ 2) and held by different servers which are not allowed to communicate
to each other. The communication complexity of this solution is O(n1/k). Al-
though the scheme of [6] is information theoretically secure (i.e. an adversary
cannot break it even if he has unlimited computing power) it is communica-
tively expensive. Also, the replicated databases increase the security risk.

In 1997, the first single-server computationally-private information re-
trieval (CPIR) is presented by Kushilevitz and Ostrovsky [7]. The commu-
nication complexity of their CPIR scheme is less than O(nε) for any ε > 0.
Afterwards, many models of single-server CPIR are proposed in academia
with different communication complexity [8].

PIR schemes assume that user knows the index i of his element in the
database. This assumption makes PIR protocols sometimes unrealistic. In
many cases an Internet user holds a search-word (for instance, the user is
interested in gathering information about a specific university), instead of
the physical address of the sought item in the database (index i). In this
scenario, the database is a set of n pairs {(k1, v1), ..., (kn, vn)} where ki is a
keyword and vi is a value. A private query through this database is called
Private Keyword Search (PKS) by Chor et al. [9].

Let’s assume that the database is a set of records and the aim of user’s

2

query is to check whether a certain record belongs to this database. Private
Membership Test (PMT) protocol enables to decide about this set inclusion
in a private form. Despite of many efforts that have been done on OT, PIR
and PKS, researchers have been less interested in PMT. To explain the ne-
cessity of PMT protocols in the field of secure computation, consider the
following situation: A security company has a collection of known malware.
One client of this company wants to install an application and he wants to
know whether this application is malicious or not. As mentioned before, if
the client discloses to the database holder which application he is interested
in, then unwanted information about the client may be given away.

1.2 Contributions

In order to preserve client’s privacy in membership tests, we want to design a
single-server protocol which allows the interaction between client and server’s
database in a private manner. As in most scenarios, service providers’ desire
is to keep the total content of their databases secret and thus our protocol
should not reveal information about other members in the database, except
the one item that client is seeking for. For this purpose, one of the funda-
mentals of our work is a semi-honest adversary model. It means we have
the assumption that a participant is following the protocol as expected, but
may attempt to acquire further information than what is intended during
protocol execution time. This model is also known as ’honest but curious’
model.

We introduce three protocols for the PMT problem. The first protocol is
based on Goldwasser-Micali homomorphic encryption and was presented for
the first time in our paper in 2015 [10]. Protocols two and three utilize blind
RSA signature and oblivious pseudorandom function, respectively. The idea
behind the last two protocols is adapted from previous publication by No-
jima and Kadobayashi at 2009 [11]. But the protocols are slightly modified
to be fully functional and more secure.

From privacy perspective, each of these three protocols is slightly dif-
ferent from the others, so that their use cases are different. This makes it
impossible to choose one that is clearly best between all three.

In all three protocols, we assume that the party who hosts the server,
stores its database X in a space-efficient probabilistic data structure which

3

is called Bloom filter 1.

We also assume that in these protocols, there are two parties who engage
in an interactive communication:

• A Server S who possesses a database set X.

• A Client C who wants to test if an element x belongs to X.

The concept of our PMT protocols is summarized below:

Private Membership Test Algorithm

1: Prerequirements: S stores its database X in a Bloom filter (B) with l
independent hash functions Hi where i = 1, 2, ..., l.

2: Prerequirements in some protocols: S picks a cryptosystem and encrypts
the B to get EB.

3: Server part: S sends B or EB, its l hash functions, a hash function H,
and possible other parameters to C.

4: Client part: C queries his x in B or EB (instead of the database X) and
finds the corresponding indexes in the filter.

5: The result: C and S engage in an interactive communication and as a
result; C with the help of S verifies: [B(H1(x)) = 1]∧ ...∧ [B(Hl(x)) = 1]
(Hi(x) is an index in the Bloom filter and B(Hi(x)) is the value of the
bit located in that index.)

• If True then probably x ∈ X.

• If False then surely x /∈ X.

The encrypted Bloom filter itself would not reveal any information about
server’s database to the client or any third party. This guarantees S’s secrecy.
In all three protocols, the amount of information transferred between S and
C is minimal in the sense that the transfered data would not reveal any extra
information above what is intended. Also based on our implementations all
three protocols are reasonably fast.

The three protocols, their implementations and comparison between them
are the main contributions of this thesis.

1The notion of Bloom filter is fully explained in chapter two.

4

1.3 Outline

Chapter 2 familiarizes the reader with the notations and theoretical back-
ground and introduces the cryptographic protocols used in this work. In
Chapter 3, we explain a privacy preserving variant of Bloom filters in the
form of three different protocols. Chapter 4 gives the design ideas behind
software development for the three protocols in details and shows the results
of measurements in our implementations. Then, on Chapter 5, we compare
the security and efficiency of the given solutions for the PMT problem. In
Chapter 6, we describe alternative approaches to solve the PMT and PIR
problems. On Chapter 7, we conclude this thesis with an outlook to further
work.

5

2 Fundamentals

This chapter serves as a brief introduction to fundamental notions used in
this thesis. It describes common notations, definitions and cryptographic
protocols utilized later in the concepts of privacy preserving queries.

2.1 Notation

Let us begin with some basic notations of number theory. The set, consisting
of equivalence classes modulo n, is denoted as Zn = {0, 1, ..., n − 1}. More-
over, Z∗n = {a ∈ Zn | gcd(a, n) = 1}. This implies if n is a prime, then
Z∗n = {1, 2, · · · , n− 1}.

If an integer q 6= 0 is congruent to a square modulo n, that means there
exists an integer x such that: x2 ≡ q (mod n). Such an integer q is called a
quadratic residue (QR) modulo n. If q is not a QR modulo n then it is called
a quadratic non-residue (QNR) modulo n. The set of all quadratic residues
modulo n is denoted by QRn and consequently the set of all QNR modulo n
is denoted by QNRn.

Let a be an integer and p be an odd prime number. Then the Legendre
symbol is a function of a and p, with value of −1, 0 or 1 defined as:

(
a

p

)
=


−1 if a is a quadratic non-residue modulo p,

1 if a is a quadratic residue modulo p and a 6≡ 0 (mod p),

0 if a ≡ 0 (mod p).

The Legendre symbol is homomorphic with respect to multiplication, i.e.(
ab

p

)
=

(
a

p

)(
b

p

)
.

Let a be an integer and n be an odd integer such that n = pk11 p
k2
2 · · · pkmm

where the integers pi are different primes. The Jacobi symbol of a and n is
the generalization of Legendre symbol and defined as:

6

Jacobi(a, n) =

(
a

p1

)k1 (a

p2

)k2
· · ·
(
a

pm

)km
.

In formal language theory, string concatenation is the operation of joining
two strings end-to-end together and is denoted as ||. For instance, if x = 1001
and y = 00 then x||y = 100100.

The encryption of a message m with a key k to generate a ciphertext
c is denoted as c = Enck(m). The corresponding decryption is denoted as
m = Deck(c).

2.2 Basic Concepts

In this work, some basics of cryptography, computation and complexity, like
boolean circuits and asymptotic complexity (denoted asO(n)) are assumed to
be known. The readers who are interested in more details can use Handbook
of Applied Cryptography [12] and Encyclopedia of Cryptography and Security
[13] as the references.

In cryptography, digital signature is used to demonstrate authentication,
integrity and nonrepudiation for digital messages. In other words, it gives a
receiver proof that the message was sent by a particular known sender.

Any efficiently computable function with arbitrary input lengths and fixed
output length is called a hash function. For instance, SHA-1 maps any mes-
sage to a 160-bit hash value. Cryptographically secure hash functions have
also the properties of preimage resistance, 2nd preimage resistance and col-
lision resistance.

Homomorphic Encryption is a form of encryption that allows computa-
tions to be done on ciphertexts, without decrypting them first. For instance,
if (G1, ?) and (G2, ·) are two groups, x1 and x2 belongs to G2, and Enck(x1)
and Enck(x2) are from G1 then

Enck(x1) ? Enck(x2) = Enck(x1 · x2).

7

Bloom Filters are probabilistic space-efficient data structures that are
used to do a membership test. They were introduced by Burton Bloom at
1970 [14]. Bloom filters are suitable to store enormous databases. They have
strong space and time advantages compare to other data structures to rep-
resent a set. More specifically a Bloom filter is an array of m bits which are
initially all set to 0 (figure 1 picture a). There are l different hash functions
defined for the Bloom filter to map set element to array positions randomly
with a uniform distribution. To add an element to the filter, one should feed
the element to l hashes and get l positions, then change those positions to 1
(figure 1 picture b).

Figure 1: An example of Bloom filter and counting Bloom filter

To query an element from a Bloom filter (B), one should calculate all the
hash values of that element to obtain l array positions of the filter. If every
one of those l positions have a value 1, then this query results in positive.

8

But sometimes a query through this filter results in false positive (FP). For
instance, in figure 1(c), we query v and w through a Bloom filter which rep-
resents the set X = {x, y, z}. Despite the fact that v does not belong to this
set, the array positions corresponding to hash values of v, were all set to 1
because of some members of the set X. Because of this possibility a query
from a Bloom filter, returns either ”possibly in the set” or ”definitely not in
the set”.

Let m be the number of bits in the filter and n denote the size of set
which is inserted to B. To compute the probability of the false positive, we
assume that a hash function selects each entry of B with the same probability
of 1/m. Consequently, after applying one hash function to one member of
X, a specific bit of B is not set to one with the probability of 1− 1/m. After
inserting n elements to B, the probability that none of l hash functions set a
certain bit to one is (

1− 1

m

)nl
and therefore a given bit of the Bloom filter is set to one with the probability
of

1−
(

1− 1

m

)nl
.

This helps us to calculate the false positive error rate of the Bloom filter.
If all the l array positions of an element that is not part of the set, are set to
one then FP happens and the probability of this event, with the approximate
equality of (1− 1/m) ≈ e−1/m is(

1−
(

1− 1

m

)nl)l

≈ (1− e−nl/m)l.

The false positive error rate of a Bloom filter, depends on m, n, and l. To
find the minimal false positive rate, (1− e−nl/m)l should be minimized with
respect to l [15]. Let f = (1− e−nl/m)l then

∂f

∂l
= (1− e−nl/m)l

(
ln(1− e−nl/m) +

nl
m
e−nl/m

1− e−nl/m

)
= 0

and it follows that

9

(1− e−nl/m)l = 0 or

(
ln(1− e−nl/m) +

nl
m
e−nl/m

1− e−nl/m

)
= 0

If (1 − e−nl/m)l = 0 then l = 0 and this is not an acceptable solution.
Therefore, (

ln(1− e−nl/m) +
nl
m
e−nl/m

1− e−nl/m

)
= 0

and it follows that

(1− e−nl/m) ln(1− e−nl/m) +
nl

m
e−nl/m = 0·

Let U = e−nl/m. Then ln(U) = −nl/m and

(1− U) ln(1− U) + (ln(
1

U
))U = 0

hence

ln
(
(1− U)(1−U) · U−U

)
= 0

and it follows that

(1− U)(1−U) · (U−U) = 1

hence

(1− U)(1−U) = UU

and one solution of this is U = 1/2·

Finally, the optimal number of l is accomplished which is

lopt =
m

n
ln2 ≈ 9m

13n
·

Once the set has been inserted to the Bloom filter, adding more elements
is possible but deletion is not. It is possible to solve this issue by using a
counting Bloom filter .

In a Counting Bloom Filter (CB) the arrays consist of n-bit counters (see
figure 1 picture d). This data structure performs in a similar manner as a

10

normal Bloom filter; except that CB is able to keep track of the number
of element insertions by increasing the counters. This enables us to delete
elements by decreasing the counters [16].

The analysis from Fan et al. in [17] shows that in typical use cases that
appear in practice, 4 bits per counter in a counting Bloom filter, which uses
the optimal number of hash functions, should be sufficient to prevent coun-
ters overflow. This analysis is described in the following.

Let c(i) be the count corresponding the ith counter. We assume that the
counting Bloom filter has m counters. The probability that the ith counter
is increased j times can be estimated as follows:

P (c(i) = j) =

(
nl

j

)
(

1

m
)j(1− 1

m
)nl−j ≤

(
nl

j

)
(

1

m
)j ≤

(
enl

jm

)j
·

The last step is obtained from the well-known upper bound of the binomial
coefficient: (

n

k

)
≤
(en
k

)k
·

By substituting the optimal number of hash functions (l = m/n ln 2), we
obtain that

P (c(i) = j) ≤
(
e ln 2

j

)j
·

If there are 4 bits per counter, then j = 16 is a critical value for the
overflow. We can now continue our estimations as follows:

P (c(i) ≥ 16) ≤
∞∑
j=16

(
e ln 2

j

)j
≤

∞∑
j=16

(
e ln 2

16

)j
≤

∞∑
j=16

(
1

8

)j

=
1

1− 1
8

·
(

1

8

)16

=
8

7
× 2−48·

Now the probability that any counter is incremented at least j times can be
estimated as:

P (max(c) ≥ j) ≤ 8

7
× 2−48 ×m

which is extremely small for practical values of m.

11

2.3 Cryptographic Protocols

The following protocols are essential in this thesis and therefore briefly ex-
plained.

RSA public key cryptosystem is proposed by Rivest, Shamir, Adleman in
1977 and consists of four steps [18]:

RSA Encryption Algorithm

1: Key Generation : Generate two different large odd prime numbers p and q
and let N = pq. Find positive integer e such that gcd(e, (p−1)(q−1)) = 1
then compute d to be inverse of e modulo (p− 1)(q − 1).

2: Key Distribution : Public key is the pair (N, e) and private key is d.
3: Encryption : To encrypt a message m and obtain a ciphertext c, one

should use public keys and get c ≡ me (mod N).
4: Decryption: To decrypt the ciphertext c, private key should be utilized:
cd ≡ (me)d ≡ m (mod N).

Goldwasser-Micali Homomorphic Encryption is the first probabilistic en-
cryption protocol and has been proposed in 1982 by Goldwasser and Micali.
This encryption scheme is inspired by RSA public key cryptosystem and
Rabin’s scheme [19] and it is detailed below [20]:

Goldwasser-Micali Homomorphic Encryption Scheme

1: Key Generator Algorithm : Generate two different large prime numbers
p and q.

2: Public Key and Private Key : Let N = pq and find y ∈ QNRN in such
a way that Jacobi(y,N) = 1. Now (N, y) is the public key and (p, q) is
the private key.

3: To Encrypt a bit x : Generate a random r ∈ Z∗N , then c = Enc(x) is as
follows:

Enc(x) =

{
r2 (mod N) if x is zero

yr2 (mod N) if x is one

4: To Decrypt a ciphertext c:

Dec(c) =

{
0 if c ∈ QRN

1 if c ∈ QNRN

Note that step 4 can be done efficiently if p and q are known. If that

12

is the case then Dec(c) =
(
c
p

)
and the Legendre symbol can be efficiently

computed. The Goldwasser-Micali scheme is homomorphic because :

Enc(x1) · Enc(x2) = (yx1r2
1) · (yx2r2

2) =

y(x1+x2) · (r1r2)2 = Enc(x1 + x2) (mod N).

Advanced Encryption Standard (AES), originally known as Rijndael, is
a symmetric key encryption scheme based on the substitution-permutation
network. AES is developed by Joan Daemen and Vincent Rijmen, and in
2001 established as a standard by the National Institute of Standards and
Technology. The key length in AES is 128, 192 or 256 and the plaintext and
ciphertext size is 128. AES consists of four steps; 1)key expansions, 2)initial
round, 3)rounds and 4)final round. A reader who is interested in more details
about AES can consult [21].

In 1982 David Chaum proposed a type of digital signature that is called
blind signature. Blind signature is usually used in protocols, in which there
is a third party (other than sender and receiver) to authorize (sign) a mes-
sage without having any knowledge about the content of the message [22].
Chaum’s blind signature protocol is as follows:

Chaum ’s Blind Signature Protocol

1: The signer picks a signing function s′ with the inverse of s.
2: The user, who wants to obtain the signature of his message x, knows a

commuting function c and it’s inverse c′ in a way that c′(s′(c(x))) = s′(x).
3: The signer receives c(x) from the user. He then signs c(x) and sends
s′(c(x)) to the user.

4: The user applies c′ to s′(c(x)) and will obtain the signed message s′(x)
because c′(s′(c(x))) = s′(x).

The signing function s′ is just known for the signer but s is a publicly
known function that doesn’t reveal any information of s′. In step 2, the user
picks the commuting function c in a way that c(x) and s′ doesn’t reveal any
information about x. Anyone can apply s to the signed message s′(x) to see
whether it gives the message x and confirms that s′(x) is indeed formed by
the signer.

In Chaum’s protocol, one can substitute any public key cryptosystem
for the functions s and s′. The blind signature protocol based on RSA is

13

proposed by Bellare et al. [23]. It involves two parties: a signer and a user.
The signer generates keys d, e, N for RSA encryption scheme and sends
the public key (N, e) to the user, who holds a message x. The protocol is
explained below:

Blind Signature Protocol based on RSA

1: User chooses a random number r ∈ Z∗N and blinds her message x′ = re ·x
(mod N). She then sends x′ to the signer.

2: Signer signs x′ and sends x′′ = (x′)d (mod N) to the user.
3: User retrieves signed message xd by

(x′′) · r−1 ≡ (x′)d · r−1 ≡ (re · x)d · r−1 ≡ r(ed−1)xd ≡ xd (mod N).

1 out of 2 Oblivious transfer (1− 2 OT) is a game between a sender who
holds two messages m0 and m1, and a receiver who holds a bit b . At the
end of the game, receiver will just get mb while the sender remains unaware
of b [24]. With utilizing RSA assumption, 1− 2 OT is as follows:

1− 2 OT Protocol based on RSA
1: Sender (S) generates RSA public and private keys; (N, e) and d. She also

generates two random values x0 and x1.
2: S sends x0, x1 and (N, e) to the receiver (R).
3: R chooses xb according to his bit b and generates a random value k to

blind xb as v = (xb + ke) mod N . He sends v to S.
4: S computes k0 = (v − x0)d mod N and k1 = (v − x1)d mod N .
5: S calculates m′0 = m0 + k0 and m′1 = m1 + k1 and sends them to R.
6: R can calculate exactly one of the messages by mb = m′b − k.

Pseudorandom Functions (PRF) are efficiently-computable deterministic
functions that always output a pseudo-random value based on a given key k
and an argument x. We denote this as fk(x). We call a PRF as an Oblivi-
ous Pseudorandom Function (OPRF), if it is computed by a secure protocol
between two parties: Alice who holds a value x and Bob who has a key k.
They aim to evaluate a pseudorandom function fk(x) jointly, without reveal-
ing their inputs to each other. Freedman et al. construct an OPRF protocol
based on 1− 2 OT [25]:

14

OPRF Protocol based on 1− 2 OT
1: Assume that g is a generator of a group G and ord(G) = p.
2: Alice holds an n-bit x = x1x2...xn and Bob has a vector k̄ = (k1, ..., kn).
3: Bob chooses a random vector ā = (a1, ..., an) ∈ (Z∗p)n.
4: Alice and Bob interact in an 1 out of 2 OT for each xi, in such a way that

Alice retrieves only one of the items vixi where vi0 = ai and vi1 = ai · ki.
5: Bob sends ĝ = g1/

∏n
i=1 ai to Alice.

6: Alice computes fk̄(x) = ĝ
∏n

i=1 vixi .

A secure multiparty computation is a protocol in cryptography with the
goal of computing a public function over participants’ private inputs. More
specifically, the protocol consists of n parties p1, p2, · · ·, pn where each have
private data, respectively d1, d2, · · ·, dn. At the end of the protocol, partici-
pants get the value of a function F (d1, d2, · · ·, dn) without revealing their own
inputs to other participants [26].

Yao’s Garbled Circuits is the first two-party protocol for secure multi-
party computation [27]. It takes place between a circuit creator and an
evaluator. The creator picks two secret keys (garbled values) k0 and k1 for
every wire to encrypt its value. For any gate the creator encrypts it in such a
way that given one key for each input wire, it is possible to calculate the key
of the corresponding gate output. Also the encryption makes it impossible
to obtain any further information. The creator also computes a permuted
garbled table of all possible encrypted inputs and with a 1 − 2 OT proto-
col, sends evaluator’s garbled inputs to the evaluator. Finally the evaluator
decrypts all the gates’ garbled outputs repeatedly and gains the circuit’s gar-
bled output.

JustGarble is a compact garbling system (i.e. the whole implementation
is under 800 K byte) for boolean circuits designed by Bellare et al. in 2013
with the goal of optimized garbling [28]. In a boolean circuit the wire values
are 0 and 1. JustGarble system utilizes a fixed-key block cipher, in particular
AES, to optimize the Garble and Evaluate modules of the system. The main
advantage of using AES comes from the fact that recent processors have ex-
clusive instruction set, AES-NI [29], for performing key expansion and doing
the rounds of AES in hardware which is much faster than software imple-
mentation.

15

3 Private Membership Test with Bloom Fil-

ters

Probabilistic techniques such as Bloom filters, are heavily used by many
service providers in numerous distributed systems. The space-efficiency of
Bloom filters make them convenient instruments to store databases by many
servers to reduce networking costs [16]. Utilizing hash functions to construct
this filter makes it secure. In other words, one-wayness of hash functions
makes the filter itself an array of zeros and ones that cannot disclose the
actual database. On the other hand, Bloom filters are suitable data struc-
tures to perform a membership test, especially in the cases that the problems
caused by false positive are small. This motivates us to find possible solu-
tions to create a privacy preserving variant of Bloom filter to fulfill private
membership tests.

We motivate the problem of private membership test in the context of a
realistic scenario; a server hosted by a security company stores its malware
signature database in a Bloom filter and a client of this company wants to
know if a file in his possession is malicious or not. If the test results in
positive, we encourage the client to reveal his file to the security company
to get further help. In this scenario, if a query from Bloom filter returns
false positive, the error happened on the safe side. All malicious files will
be disclosed to the security company together with a few randomly chosen
clean files.

We recall from chapter 1 that if the client simply reveals the actual file
to the server, it may lead to violation of his privacy. Moreover, it may be
already too much to reveal the information that an organization possesses
a particular document. A trivial solution to the PMT problem is that the
server ships all of its database to the clients. But the need of a high band-
width makes this solution infeasible. Also, most probably service providers
do not want to completely reveal their databases. Therefore implementing
a fully functional protocol to address the problem of PMT is an essential task.

In order to design a private membership test, we introduce three protocols
which are detailed in this chapter. All protocols involve two parties: a server
S and a client C. We assume that the server possesses a set of n elements
X = {x1, x2, · · ·, xn} as its database and the client wants to search for x
through X. After executing these protocols, S doesn’t learn anything from
client’s x and C only learns whether x is a member of server’s database. We

16

design the protocols in a way that it would be possible for the server to prove
that he cannot retrieve any information about x unless C directly releases it
to him.

3.1 Protocol 1, utilizing Goldwasser-Micali homomor-
phic encryption

The idea behind our first solution is to generate an encrypted Bloom filter
which can be transferred to the client, without jeopardizing the secrecy of
server’s database. The algorithm to encrypt the Bloom filter is utilizing
Goldwasser-Micali homomorphic encryption scheme as a building block and
is explained bellow:

Encrypting the Bloom Filter in Protocol 1

1: S stores X in a Bloom filter B with l hash functions H1, H2, ..., Hl.
2: S picks p and q as two distinct large prime numbers and computes
N = pq.

3: S chooses another hash function H : {0, 1}∗ → ZN .
4: S finds some y ∈ QNR (mod N) in such a way that Jacobi(y,N) = 1.
5: The public keys are N and y, the private ones are p and q.
6: For every index i ∈ B, with trial-and-error method, S finds the smallest

integer j such that Jacobi(H(j||i), N) = 1.
7: S encrypts each entry i of B (denote as B(i)) and gets EB(i) in such a

way that:

EB(i) =

{
B(i) if H(j||i) is in QRN

1−B(i) if H(j||i) is in QNRN

Now the encrypted Bloom filter (EB) itself would not reveal any informa-
tion about the actual database. In other words, a query from this encrypted
Bloom filter will get some array positions but wouldn’t reveal if the value of
bits on each of these positions is zero or one. Server ships EB, hash functions
Hi, i = 1, 2, · · ·, l, hash function H and public keys (N, y) to the client. It
is now possible for C to calculate Jacobi(H(j||i), N), but he doesn’t know
whether H(j||i) is a quadratic residue modulo N . This is due to the fact
that N in Goldwasser-Micali encryption scheme is chosen to be impossible
to factor in polynomial time.

17

Client C who wants to do a membership test for an element x, queries EB
and finds the corresponding indices EB(Hi(x)) where i ∈ {1, · · ·, l}. He then
encrypts those indexes utilizing Goldwasser-Micali homomorphic encryption
schemes. The algorithm to query EB is as follows:

Querying the Encrypted Bloom Filter in Protocol 1

1: C calculates Hi(x) (i = 1, · · · , l) which are indices in the EB that he
wants to decrypt.

2: For each i, C finds with trial-and-error method the smallest integer j
such that

Jacobi(H(j||Hi(x)), N) = 1.

3: C chooses r2, a random square modulo N , and computes

H(j||Hi(x))r2.

4: C multiplies the result of step 3 by y with the chance of 50% and obtains
z such that

z = H(j||Hi(x))r2ymask

where mask is 0 or 1, each with the probability of 1/2. He then sends
the result z to S.

5: S computes Jacobi(z, p) and Jacobi(z, q) and tells C if z is in QRN or in
QNRN .

6: C decrypts EB(Hi(x)) as follows:
B(Hi(x)) = EB(Hi(x)) if z is in QRN and mask = 0

B(Hi(x)) = 1− EB(Hi(x)) if z is in QNRN and mask = 0

B(Hi(x)) = 1− EB(Hi(x)) if z is in QRN and mask = 1

B(Hi(x)) = EB(Hi(x)) if z is in QNRN and mask = 1

7: If the result of step 6 is B(Hi(x)) = 1 for every hash function Hi, then the
output of this algorithm is positive and this means x probably belongs
to the database X. Otherwise, as soon as the first zero appeared in step
6, algorithm can be stopped. In this case x definitely does not belong to
the database X.

If a client wants to decrypt all the B(Hi(x)), he should repeat the above
algorithm l times.

C blinds Hi(x) for every i in step 3. Because of random square r2, the
server wouldn’t learn client’s actual indices and therefore S cannot guess the

18

value of client’s element x. We highlight that Jacobi(H(j||Hi(x))r2, N) = 1
because the Jacobi symbol of any random square is one. Moreover, in step
4 client masks the quadratic residues characteristic of his l positions of the
filter. The result z that is computed in step 3 and 4 guarantees the secrecy
for the client. At step 6, for each i, client does the following reasoning to
decrypt EB(Hi(x)):

• If z is a quadratic residue modulo N and mask = 0 (C did not multiply
z by y), then z = H(j||Hi(x))r2. We conclude that H(j||Hi(x)) ∈ QRN

because:

z ∈ QRN ⇒
(
z

p

)
=

(
z

q

)
= 1

⇒
(
H(j||Hi(x))

p

)
·
(
r2

p

)
=

(
H(j||Hi(x))

q

)
·
(
r2

q

)
= 1

⇒
(
H(j||Hi(x))

p

)
· (1) =

(
H(j||Hi(x))

q

)
· (1) = 1

⇒
(
H(j||Hi(x))

p

)
=

(
H(j||Hi(x))

q

)
= 1

⇒ H(j||Hi(x)) is a quadratic residue modulo N .

and B(Hi(x)) = EB(Hi(x)).

• If z is a quadratic non-residue modulo N and C did not multiply z by
y, then z = H(j||Hi(x))r2. We conclude that H(j||Hi(x)) ∈ QNRN

because:

z ∈ QNRN ⇒
(
z

p

)
=

(
z

q

)
= −1

⇒
(
H(j||Hi(x))

p

)
·
(
r2

p

)
=

(
H(j||Hi(x))

q

)
·
(
r2

q

)
= −1

⇒
(
H(j||Hi(x))

p

)
· (1) =

(
H(j||Hi(x))

q

)
· (1) = −1

⇒
(
H(j||Hi(x))

p

)
=

(
H(j||Hi(x))

q

)
= −1

⇒ H(j||Hi(x)) is a quadratic non-residue modulo N .

Therefore B(Hi(x)) = 1− EB(Hi(x)).

19

• If z is a quadratic residue modulo N and mask = 1 (C multiplied z by
y) then z = H(j||Hi(x))·r2 ·y. We conclude that H(j||Hi(x)) ∈ QNRN

because:

z ∈ QRN ⇒
(
z

p

)
=

(
z

q

)
= 1

⇒
(
H(j||Hi(x))

p

)
·
(
r2

p

)(
y

p

)
=

(
H(j||Hi(x))

q

)
·
(
r2

q

)(
y

q

)
= 1

⇒
(
H(j||Hi(x))

p

)
· (1)(−1) =

(
H(j||Hi(x))

q

)
· (1)(−1) = 1

⇒
(
H(j||Hi(x))

p

)
=

(
H(j||Hi(x))

q

)
= −1

⇒ H(j||Hi(x)) is a quadratic non residue modulo N .

and B(Hi(x)) = 1− EB(Hi(x)).

• If z is a quadratic non-residue modulo N and C multiplied z by y then
z = H(j||Hi(x)) ·r2 ·y. We conclude that H(j||Hi(x)) ∈ QRN because:

z ∈ QNRN and Jacobi(z,N) = 1⇒
(
z

p

)
=

(
z

q

)
= −1

⇒
(
H(j||Hi(x))

p

)
·
(
r2

p

)(
y

p

)
=

(
H(j||Hi(x))

q

)
·
(
r2

q

)(
y

q

)
= −1

⇒
(
H(j||Hi(x))

p

)
· (1)(−1) =

(
H(j||Hi(x))

q

)
· (1)(−1) = −1

⇒
(
H(j||Hi(x))

p

)
=

(
H(j||Hi(x))

q

)
= 1

⇒ H(j||Hi(x)) is a quadratic residue modulo N .

and B(Hi(x)) = EB(Hi(x)).

If it is needed, S is prepared to show that N is chosen as in Goldwasser-
Micali and indeed y is a quadratic non-residue modulo N . Therefore S can
prove that he does not have the capabilities to guess x by obtaining z. This
first protocol is the novelty of our work and can be also find in [10]. Protocol
1 is summarized in figure 2 [30].

20

Figure 2: Protocol 1

3.2 Protocol 2, utilizing blind RSA signature

The second suggested solution is adopted from the paper by Nojima et al.
[11]. Although the construction of their protocol is based on any blind sig-
nature scheme, we use blind RSA signature as a building block to implement
this protocol [10].

On the first solution, in order to preserve the secrecy of the database we
encrypted the Bloom filter. On the second solution instead of encrypting
the Bloom filter, we generate a Bloom filter for signed record utilizing the
following algorithm:

21

Generating the Bloom Filter for Signed Records

1: S picks e, d,N based on RSA signature protocol. He also picks a hash
function H.

2: S defines Sig(x) = H(x)d to be the signature for a record x. He then
computes one RSA signature for every x ∈ X.

3: S chooses l hash functions H1, H2, ..., Hl for the Bloom filter.
4: For all x ∈ X the server inserts x||Sig(x) to a Bloom filter B.
5: S sends C the Bloom filter B and its hash functions, his public RSA key

(e,N) and the hash function H.

We emphasize that the Bloom filter B is representing the combination
of records in the database, with their RSA signature. It means that a bit
B(h) = 1 iff h = Hi(x||Sig(x)) for some i ∈ {1, · · ·, l} and for some element
x ∈ X. So this filter does not represent the database X directly, and there-
fore the client C can not obtain X from B. Also S is ready to prove that he
chose N as in RSA encryption scheme.

The client C can follow the next algorithm to query the Bloom filter for
his record x.

Querying the Bloom Filter

1: C chooses a random r ∈ ZN and computes y = H(x)re modulo N . He
then sends y to S.

2: S calculates the signature of y and obtains z = yd (mod N). He then
sends z to C.

3: C is now able to compute the signature of x because

z = yd = H(x)dred = H(x)dr1 (mod N)

and Sig(x) = z/r (mod N)

4: C queries the Bloom filter for x||Sig(x).

Client blinds his record x in step 1 by utilizing a random number r. This
guarantees to C that S can not retrieve x from y. In step 4, if for every hash
function Hi the client learns that B(Hi(x||Sig(x))) = 1 then probably x is
in the database X.

Unlike in protocol 1, in the second protocol the client only sends one
query to the server. This solution is summarized in figure 3 [30].

22

Figure 3: Protocol 2

3.3 Protocol 3, utilizing oblivious pseudorandom func-
tion

Our last protocol is partly based on a protocol that is proposed by Nojima
et al. [11]. Our protocol, unlike the protocol in [11], has a function K to
encrypt the Bloom filter and this consequently requires additional steps in
both server and client sides [10]. Similar to the previous two solutions, the
first step in the third protocol is to generate the Bloom filter.

Generating the Bloom Filter

1: S chooses l hash functions H1, H2, ..., Hl for the Bloom filter.
2: S picks an OPRF K with a secret key k′, to generate one bit of output

that can be utilized as one-time pad key.
3: S selects another OPRF F with a secret key k, such that

Fk(H(x)) = (H1(x), H2(x), · · ·, Hl(x)).

4: S inserts the database X in the Bloom filter B.
5: S encrypts B and generates EB in such a way that

EB(i) = B(i)⊕Kk′(i) for every i.

6: S sends the hash function H and the encrypted Bloom filter EB to the
client C.

The oblivious pseudorandom functions that is utilized in step 2 of this

23

algorithm can be evaluated using multi-party computation between S and
C. Its output is a one time pad key to encrypt the Bloom filter. Another
multi-party computation between the server and the client can be utilized to
evaluate Fk(x), the server and client’s secret inputs are respectively k and
x, and the output is Fk(H(x)) = (H1(x), H2(x), · · ·, Hl(x)). The client C is
unaware of OPRF K and its output, therefore he can not retrieve X from
encrypted Bloom filter.

We highlight that unlike in the previous two protocols, in this solution
S does not send hash functions of the Bloom filter to C. Let hi = Hi(x)
for i ∈ {1, · · ·, l}. In order to find the right Bloom filter entries, S and C
together evaluate Fk(H(x)). After this step C only learns (h1, h2, · · ·, hl) and
the value of H(x) will remain secret to S.

By following the next algorithm, the client C can decrypt the entries of
EB which correspond to his record x.

Decrypting the Bloom Filter Entries

1: S and C together calculate Kk′(hi) for every hi, i ∈ {1, · · ·, l} in such a
way that only the client C obtains the value of bits bi = Kk′(hi).

2: C can decrypt l bits of encrypted Bloom filter by computing EB(hi)⊕ bi
for all i ∈ {1, · · ·, l}.

After the first step, the server will not learn the indexes hi and C will not
discover the secret keys k and k′. This fact proves that the third protocol
is also preserving secrecy for both parties. In the second step, if for every i,
EB(hi)⊕ bi = 1 then the client C learns that his record x probably belongs
to the database X.

To simulate the implementation of the third protocol, we substitute obliv-
ious pseudorandom function by garbled circuits. We utilize JustGarble al-
gorithm to evaluate one block of AES [28]. This function of AES with a
fixed key of length 128 bits, is used as a replacement of OPRF. The server is
ready to prove to a trusted third party that he has garbled a correct function.

In order to evaluate Fk(H(x)), the server needs to evaluate AES128 dif-
ferent number of times. For instance, if l ≤ 5 and the number of bits in
the Bloom filter is m ≤ 225, then we can interpret the output of 128 bits
as five hash functions. In this case each hash function has an output of
25 bits. Consequently, if l ≤ 10 then two evaluations of AES128 are suffi-
cient. To compute one bit of OPRF K, only one evaluation of AES128 is

24

required. Protocol 3, based on our implementation is pictured in figure 4 [30].

Figures 2, 3 and 4 are obtained from the poster which was presented at
the CloSe project workshop 2.

Figure 4: Protocol 3

2The CloSe workshop was held on 15th and 16th of April 2015 at Otaniementie 17,
Espoo. Website: https://wiki.aalto.fi/display/CloSeProject/CloSe+Project+Workshop

25

4 Implementation

This chapter presents a detailed insight into the implementation of the three
suggested protocols from the previous chapter. We utilize Python program-
ming language version 2.6 to implement our work. We base our software
developments on certain existing Python packages. To install these packages
in Windows and Linux platforms, use the following command:

python install setup.py <package address>.

To present the software development of this work, we utilize various pseu-
docode. Thus it is easier for readers to follow the idea behind our implemen-
tations. First we explain the Python packages that are utilized in our im-
plementations. We show some of their limitations and then we explain how
to improve them. After that, the required Python codes to create Python
libraries for chapter 3 protocols are explained in details. Finally the perfor-
mance of our implementation is measured based on a real case scenario.

4.1 Software Development

Bloom filter is the fundamental part for all of the three protocols and there-
fore we start our software developing with the task of creating a Bloom filter.
We recall that each Bloom filter has three parameters m, n and l which are
respectively number of bits in the filter, size of the set and number of filter’s
hash functions. The first step to create a Bloom filter is to build a bit array
of m-bits and set all bits to zero. Second, we should define l hash functions
in such a way that these hash functions map each given item to a random
number, chosen uniformly over the range of m. In order to develop such a
hash function, one can use this paper [31] as one ideal solution. To insert n
elements of the set to the Bloom filter B one can utilize the next pseudocode.

Inserting the Set of n Elements to the Bloom Filter B

for i : 1, · · ·, n do
for j : 1, · · ·, l do
b← hj(xi)
if Bb == 0 then
Bb ← 1

end if
end for

end for

26

A query for x from the Bloom filter B, can be done utilizing the following
pseudocode.

Membership Test for an Element x in the Bloom Filter B

result← True
for j : 1, · · ·, l do
b← hj(x)
if Bb == 0 then
result← False

end if
end for
return result

As mentioned before, Bloom filters are popular data structures and there-
fore many libraries are written to construct them, with different programming
languages. To implement the initial Bloom filter we use an open source pack-
age of Python, called pybloom and authored by Jay Baird and Bob Ippolito
[32]. The first step to create a Bloom filter f with this package is to determine
the maximum number of elements that can be inserted to this filter, denoted
as the capacity, before exceeding the FP probability that is defined for f and
denoted as the error rate. The following syntaxes create an empty Bloom
filter f with the capacity of α and the error rate of β:

from pybloom import BloomFi lter

f = BloomFi lter (α , β)

The following snippet of code inserts the set X to the Bloom filter f,
which has been created before:

for element in X:
f . add (element)

In order to perform a membership test for x in the Bloom filter f, one
can use the following syntaxes. If the size of X exceeds the capacity that is
defined for f, then the program throws an error.

print x in f

27

If the above program prints False, it means x does not belong to the X
and if the program prints True it means x probably belongs to the X.

One of the limitations with a normal Bloom filter, and also with this
package, is deletion. In other words, after generating a Bloom filter it is
possible to add more elements to the filter until reaching the capacity, but
deleting an existing record from this filter is not possible. To solve this issue
we also utilize another variant of a Bloom filter: counting Bloom filter. We
recall from the second chapter of this thesis that the counting Bloom filter
has the ability of deletion. Before going any further, let us explain how to
construct a counting Bloom filter. The pseudocode for counting Bloom filter
insertion is as follows.

Inserting the Set of n Elements to the counting Bloom Filter C

for i : 1, · · ·, n do
for j : 1, · · ·, l do
b← hj(xi)
Cb ← Cb + 1

end for
end for

Consequently, to delete an element from a counting filter one should de-
crease the corresponding counters.

Deleting an Element x from the Counting Bloom Filter C

for j : 1, · · ·, l do
b← hj(x)
Cb ← Cb − 1

end for

We modify the pybloom library to create a new class ’BloomFilterEx’,
which stores database records in a counting Bloom filter as well as a nor-
mal Bloom filter. In order to do this improvement, another Python open
source library is used which is called numpy [33]. This package contains an
N-dimensional array object that can be utilized to design a counting Bloom
filter. The modification of pybloom package can be done with the following
snippet of code 3.

3To install this package on Windows platform, one might need to install Visual Studio
program as well.

28

import numpy as np
from pybloom import BloomFi lter
class BloomFilterEx (BloomFi lter) :

d e f i n i t (s e l f , capac i ty , e r r o r r a t e =0.001 ,
pr ime sz =1024):

super (BloomFilterEx , s e l f) . i n i t (capac i ty ,
e r r o r r a t e)

s e l f . da ta = np . z e r o s (s e l f . num bits , dtype=np . i n t)
s e l f . p r i m e s z = pr ime sz
s e l f . p = getPrime (pr ime sz , randfunc=None)
s e l f . q = getPrime (pr ime sz , randfunc=None)

To remove an element from the Bloom filter, one should first delete it
from the counting Bloom filter. If any of the counters corresponding to that
element went to zero, then the value of corresponding bits in B should be
changed to zero. On the other hand if after deletion, the counters are more
than one, then the Bloom filter does not change. The function to remove a
key from the Bloom filter can be defined with Python programming language
as:

def remove (s e l f , key) :
for k in hashes :

j = h k (key)
data [j] − = 1
i f data [j] = = 0 :

b i t a r r a y [j] = not (b i t a r r a y [j])

To construct the cryptographic primitives that are needed in the imple-
mentation of the first protocol, another package of Python called pycrypto
[34] is used. The pkcs1 Python library, which is authored by Benjamin Dau-
vergne, is used to compute the Jacobi symbols [35].

The implementation of encrypted Bloom filter can be done with the fol-
lowing function. The hash function Sha-1 is chosen for the hash function H.
Moreover, p and q are two distinct prime numbers and N = pq. We later
explain why the letter ’x’ is needed to implement the encryption function.

29

Pseudocode to Define an Encryption Function to create EB

DEFINE : encrypt()
for i : 1, · · ·, len (bitarray) do
j ← 0
newindex← (’x’ + string(i))
indexhash← Sha1(string(j)+newindex) (mod N)
while jacobi(indexhash, n) 6= 1 do
j ← j + 1
indexhash← Sha1(string(j)+newindex) (mod N)

end while
if jacobi(indexhash, p) = −1 then

(ebitarray)i ← NOT(bitarray)i
else

(ebitarray)i ← (bitarray)i
end if

end for
return The encrypted bitarray

Figure 5: Request-Response between Two Parties in Protocol 1

30

During the development of an encrypted function for B, we noticed that
concatenating j and i may lead to reveal more than one entry of the Bloom
filter to the client. For instance, combination of j = 10 and i = 111, is
the same as concatenation of j = 101 and i = 11. To address this problem
we combine the English letter ’x’ with i and compute H(j||x||i) instead of
H(j||i). For the sake of clarity, we note that this letter ’x’ has nothing to do
with the client’s item x.

The next important part of this implementation is to define a proper
function for the server, to create the response for the parameter z that is
received from the client. If this result z is valid i.e. Jacobi(z,N) = 1, then
the server determines whether z is a QR or a QNR modulo N .

Pseudocode to Define a Response Function for S

DEFINE : response(z)
if jacobi(z, n) 6= 1 then

return z is not valid!
end if
answer← ” ”
if jacobi(z, p) = 1 and jacobi(z, q) = 1 then

answer← ”QR”
else

answer← ”QNR”
end if
return answer

In the first protocol, lots of communication take place between the server
and the client (see figure 5), therefore the next step of this software devel-
opment is to design a web server. To fulfill this request-response pattern, a
Python web framework called Bottle is used [36].

We define command line tools for the server which enable it to create its
Bloom filter with any capacity and error rate and later insert any set to it.
To build these command-line interfaces, the Python Argparse built-in mod-
ule can be utilized4 as shown below:

import argparse
p = argparse . ArgumentParser ()

4https://docs.python.org/3/library/argparse.html

31

p . add argument (”−−e s t s i z e ” , type=int , r equ i r ed=False)
p . add argument (”−−s e t ” , type=str , r equ i r ed=False)
p . add argument (”−−FPprob” , type=f l o a t , r equ i r ed=False)
p . add argument (”−−f i l t e r n a m e ” , type=str , r equ i r ed=False)

After creating the normal Bloom filter, its encrypted version and the
counting Bloom filter, the server needs to save them for later serializing and
de-serializing. The Python built-in module; Pickle5 converts an object (e.g.
a Bloom filter) into a stream of bytes. Pickle makes it possible to transmit
the object into the memory and recreate it when it is needed. This procedure
is called serialization and the reverse operation is de-serialization (e.g. a byte
stream is converted back into the Bloom filter). The syntaxes below, first
serialize (pickle) a Bloom filter f to a file named server and then de-serialize
(unpickle) it to a new file called Bloom-filter-f.

import p i c k l e
f = B l o o m f i l t e r (capac i ty , e r ro r−r a t e)
f i l ename = open (’ s e r v e r ’ , ’w ’)
p i c k l e . dump(f , f i l ename)
f i l ename . c l o s e ()
f = open (’ s e r v e r ’ , ’ r ’)
Bloom− f i l t e r −f = p i c k l e . load (f)
f . c l o s e ()

Figure 6: A Snapshot from an Ubuntu Terminal to Create B

The final step of this software development is to construct a Python li-
brary that makes it easier for potential users to install and utilize it. There-
fore, creating a setup.py6 file is the last task in implementation of the first
protocol. A simple yet efficient example of setup.py file is as follows.

import sys
from cx Freeze import setup , Executable

5https://docs.python.org/3/library/pickle.html
6cx Freeze package can be retrieved from http://cx-freeze.sourceforge.net/

32

setup (
name = ”package−name” ,
v e r s i on = ”1” ,
d e s c r i p t i o n = ”Python−Library−f o r . . . ” ,
ex e cu tab l e s = [Executable (”package−name . py” ,

base=”Win32GUI”)])

The following commands create a Python virtual environment and install
the required packages defined in requirements.txt.

$ virtualenv ve
$. ./ve/bin/activate
$ pip install -r requirements.txt

Now we have all the prerequirements to run the first protocol. To test
our prototype, we assume that the server S creates a Bloom filter that rep-
resents a set of size 210 containing integer numbers {1, 2, · · ·, 1024} with false
positive error rate of 0.001. S then encrypts the Bloom filter and serializes
this object to a file named Bloom-Server (see figure 6). This way the server
can modify the Bloom filter whenever it is needed. Moreover S generates an
object Bloom-Client that is the encrypted Bloom filter for the client. This
object does not contain p and q, server’s private parameters, and therefore
the client can not decrypt it unless he seeks help from S.

Figure 7: A Snapshot from Server that Listens to the Client’s Requests

A client C who wants to initiate a privacy preserving query, sends a re-
quest to server and asks for the encrypted Bloom filter and the public keys
y and N .

The server responds to the client and C receives two files in his folder
(see figure 8). C sends more requests for his results z and finally he is able

33

to obtain the result of his PMT. The complete Python codes for the first
protocol are available in the appendices A, B and C.

Figure 8: A Snapshot from the Client’s folder

The implementation of the first protocol was presented in the ’Secure
Systems Annual Demo Day’ 7.

To implement the second protocol, Python package pybloom is used to
create a Bloom filter. From Python library pycrypto, we utilize RSA to com-
pute the blind signature of the items in the database. One can create the
public and private keys for the RSA signature, with the following snippet of
code. We assume that the size of modulus N is 2048 bits.

from Crypto . PublicKey import RSA
from Crypto . U t i l . number import getRandomRange
loadedPr ivate = RSA. generate (2048)
loadedPubl i c = loadedPr ivate . pub l i ckey ()

We utilize the hash function md5 for H. After obtaining the signatures
of the records (Sign) in the database X, the server inserts them to its Bloom
filter f. This procedure can be done by the following code.

for r ecord in X:
messageHash = md5 . new(s t r (r ecord)) . d i g e s t ()
Sign = loadedPr ivate . s i gn (messageHash ,

l oadedPr ivate . n) [0]
f . add (Sign)

The client in the second protocol should blind his message by utilizing
the following snippet of code.

7The ’Secure Systems Annual Demo Day was held at Aalto Uni-
versity in Konemiehentie 2, Espoo on first of June 2015. Website:
https://wiki.aalto.fi/display/sesy/Secure+Systems+Annual+Demo+Day

34

import random
def generateBl indFactor (RSAobj) :

return (getRandomRange (1 , RSAobj . key . n−1,
randfunc=RSAobj . randfunc))
g e n e r a t e s r
r = generateBl indFactor (loadedPr ivate)
bl ind−message = loadedPubl i c . b l ind (messagehash , r)

The client sends his blind-message to the server. Then, the server signs
this blind-message by

b l indS igned = loadedPr ivate . s i gn (bl indmessage ,
l oadedPr ivate . n) [0]

Readers can retrieve more information about the software developing of the
second protocol from appendix D.

In the third protocol, it is easier to understand the complexity of imple-
mentation, if we substitute the OPRF with garbled circuits. We simulate
this implementation based on the JustGarble algorithm that is described in
[28].

4.2 Results

We recall from the previous chapter that motivation to implement the pro-
tocols comes from the following scenario: a server S holds a database of
malicious samples and a Client C aims to make sure that certain files are
not malicious. These queries are considered to be leaking information about
the clients who possess some files that are supposed to be private, for exam-
ple, document files. In this section, we assume that there are 221 malicious
samples8 in S’s database and test our solutions to show the results that are
obtained from each of the protocols. Currently document exploits are a sig-
nificant attack vector so we assume that S has a collection of known exploit
documents.

We implement the first two protocols, using an x86-64 Intel Core i5-
2450 processor clocked at 2.5 GHz with a 3MB L3 cache. To measure the
performance of our implementation more accurately, we make experiments
in two popular operating systems; Windows 7 and Ubuntu 14.04.3 LTS. We

8This number is realistic and obtained from the industry.

35

run Ubuntu in Oracle VirtualBox9 which is installed on Windows 7 platform.

Let us start with the first protocol. To protect others from security threats
(e.g. to not spread the malware samples accidentally), S stores the SHA-1
values of its malware signatures in a database X. Moreover, we implement
a Bloom filter B of length 225 with the false positive rate of 0.001 and use 10
hash functions to insert X in B. One can simulate such a database, utilizing
the following syntaxes. Additionally, we pick two prime numbers p and q
with the size of 1024 bits to compute the modulus N in Goldwasser-Micali
encryption scheme.

from Crypto . Hash import SHA as sha1
dummysha1 = open (’ sha1input ’ , ’ a ’)
for x in range (1 , (2ˆ21)+1) :

dummysha1 . wr i t e (sha1 . new(s t r (x)) . hexd ige s t ()+”\n”)
dummysha1 . c l o s e ()

To calculate the required time for the server to generate an encrypted
Bloom filter and also to observe the accuracy of the implementation, we test
it for several databases with different sizes. We use one of the Python built-in
modules, time, for measuring the execution time of a program. More specif-
ically, the Python function time.clock() is utilized to return the execution
time is microseconds. Table 1 gives the time executions for some selective
database sizes.

Size of X Size of the Filter Error Rate Required Time in Seconds

210 214 0.001 13.181999
211 215 0.001 25.449000
212 216 0.001 58.358999
213 217 0.001 100.294999
214 218 0.001 193.168999

Table 1: Encrypting B in Protocol 1 on Windows 7

Table 1 can also be used to estimate the time for generating an encrypted
Bloom filter for a database with any size. In our scenario, it would take 6.7
hours to generate EB for a database with the size of 221. It is much more
efficient for the server to perform the pickling since the preprocessing is a

9https://www.virtualbox.org/

36

very time consuming task and repeating it to apply the new changes to the
filter drastically decreases the efficiency.

Size of X Size of the Filter Error Rate Required Time in Seconds

210 214 0.001 3.975636
211 215 0.001 7.553784
212 216 0.001 15.151596
213 217 0.001 29.917604
214 218 0.001 60.001534

Table 2: Encrypting B in Protocol 1 on Ubuntu 14.04.3

We repeat the same measurements to encrypt B in Linux operating sys-
tem. The results are shown in the table 2.

Extrapolating from the table in Linux, the estimation of the required time
to create the encrypted Bloom filter in our case (size of X is 221, filter size
is 225) is 2 hours.

A client C who wants to perform a PMT for a document x should de-
crypt 10 bits of EB at the worst case, hence he should send at the most 10
requests to the server to acknowledge the quadratic residue characteristics of
his results z. In average, one such a query takes 0.0079 seconds and thus ten
queries demand 0.08 seconds. Figure 9 shows few examples of these queries
in Linux.

Figure 9: The Required Time for C to Get Responds from S

We consider the same scenario as before to evaluate the performance of
the implementations that have been done for the second protocol. Moreover
the modulus N in RSA is 2048 bits long.

37

Size of X Size of the Filter Error Rate Required Time in Seconds

210 214 0.001 50.792000
211 215 0.001 97.828000
212 216 0.001 190.720999
213 217 0.001 380.545000
214 218 0.001 757.915000

Table 3: Protocol 2 - Insert an Encrypted Database to B in Windows 7

We replicate the same procedure to check if it scales well with the in-
creasing of database size. Thus we choose a number of databases that vary
in size to compute the required time for the server to generate an encrypted
database and insert it to the Bloom filter. Table 3 gives an extraction of
results.

According to table 3 and considering our case scenario, the time estima-
tion for generating a Bloom filter for the encrypted database in protocol 2
is 27 hours. Once more, we repeat the same measurements in Linux and the
results are shown in the table 4.

Size of X Size of the Filter Error Rate Required Time in Seconds

210 214 0.001 4.616233
211 215 0.001 8.345523
212 216 0.001 17.149652
213 217 0.001 35.326805
214 218 0.001 68.880740

Table 4: Protocol 2 - Insert an Encrypted Database to B in Ubuntu 14.04.3

Based on the results in table 4, the approximate required preprocessing
time for the server who runs his protocol in Linux is 2.5 hours.

Here, unlike the previous protocol, the client C who desires to accomplish
a PMT for a file x sends only one request to the server. In average one such
a query takes 0.11 seconds, as it is shown in Figure 10.

As explained in the end of chapter 3, we simulate the implementation
of the third protocol by utilizing garbled circuits instead of an OPRF. The
implementation takes place based on JustGarble algorithm using an x86-64

38

Figure 10: The Required Time for C to Get one Respond from S

Intel Core i7-970 processor clocked at 3.201 GHz with a 12MB L3 cache [28].
In this machine, the garbling of one block of AES128 takes 637 µs and its
evaluation takes 264 µs.

For the third protocol, in order to indirectly estimate the speed of one
PMT query in the client side, we assume that K = 0 for all inputs and
therefore the Bloom filter and its encryption are identical. By assuming that
K = 0, we have the advantage of utilizing the results in the paper [37] by
Kreuter et al. They generate and evaluate an AES128 circuit utilizing an
Intel Core i5 processor clocked at 2.53 GHz with a 4GB 1067 MHz DDR3
memory. As we mentioned before, for a Bloom filter with 10 hash functions,
two evaluations of AES128 is required and according to Kreuter et al. this
takes 5.4 seconds.

We finalize this chapter with a discussion about false positive error rate
of the Bloom filters. The different possibilities for a query from a Bloom
filter is summarized in table 5.

Real Positive Real Negative

Observed Positive True Positive False Positive

Observed Negative False Negative = 0 True Negative

Table 5: A Query from a Bloom Filter

We remark that the false positive rate of the Bloom filter, obtained from
(1− e−nl/m)l is equal to

number of false positive results

number of false positive + true negative results

and thus to compute a total of false positive accrues in a real tryout of B,
one should compute

39

number of false positive results

number of true positive + false positive + true negative results
.

In other words, if a bits of a Bloom filter with m bits and l hash functions,
are set to one then the probability of total false positive in practice can be
computed with (

a

l

)
(
m

l

) ·
Measuring from many experiments with a Bloom filter that has reached

full capacity, we notice that roughly 30% of the bits are set one.

Considering the values of parameters in our scenario, the probability of
false positive in a real tryout of B is as follows(

0.3× (225)

10

)
(

225

10

) ≈ 5× 10−6 ·

40

5 Comparison

We devote this part of our work to compare the three suggested protocols
in chapter 3 with each other. In our comparison, we consider security and
efficiency of each one of the protocols for the both parties; the server and the
client.

5.1 Security

In this section we take a closer look at the security of our three protocols. It
is shown that after executing these protocols, the server’s and the client’s pri-
vacy are preserved. Moreover, we show that the protocols are secure against
malicious client and also malicious server. Finally, we present some use cases
for the protocols, based on their security differences.

The first protocol uses Goldwasser-Micali homomorphic encryption to
compute result z = H(j||Hi(x))r2ymask. In order to encrypt H(j||Hi(x)),
there are lots of possibilities (because of the variety to choose r and mask),
but it is shown in [20] that the decryption is always unique. As explained
before, random square r2 and mask respectively hide the index i and its
quadratic residue characteristic. Therefore, at the end of the protocol, the
server doesn’t learn anything about the client’s query and client’s privacy is
preserved.

On the other hand, it is computationally difficult for the malicious server
or an adversary who obtains such z to decode it, because this decryption
is identical to deciding quadratic residuary modulo composite numbers [20].
This means that the first protocol is secure against the malicious server. Of
course, a malicious server could put non-malicious files into its database and
leave malicious ones intentionally out. In this way, the server could fool the
client but this kind of malicious server is beyond the scope of this thesis.

We note that if N = pq where p and q are distinct odd prime numbers,
then half of the numbers in Z∗N are quadratic non-residues modulo N . A
reader who is interested in more details regarding this matter can consult
[38]. We recall from the third chapter of this thesis that in order to encrypt
the Bloom filter in the first protocol, for all index i ∈ B, if H(j||i) is a QNR
modulo N then Bi should be flipped. Thus, distribution of 1 and 0 in the
encrypted Bloom filter are random and the number of bits which are set to
one and zero, are equal. This means EB does not reveal any clue about

41

the size of the server’s database and therefore, after executing protocol 1,
the semi-honest client would only learn whether his item x belongs to the
server’s database and server’s privacy is preserved.

Finally, if the Bloom filter has l hash functions, after each PMT, at the
most l bits of the filter would be revealed to the client. Thus, a malicious
client who is interested to decrypt the filter, can not obtain more than l bits
per query. Considering our scenario in chapter 4, where the Bloom filter has
225 bits and 10 hash functions, then after each query 10 bits of 33.5 million
bits will be decrypted. The server can change H or N , and hence the en-
crypted Bloom filter at any time. Therefore it can guarantee that nobody
has time to learn all the values of B and consequently this protocol is secure
against malicious client.

Let us assume that a client knows beforehand that for some j, Bj = 0
and for some x and some i, Hi(x) = j. Therefore, this client concludes that
x /∈ X without the help of the server. If the client knows the value of u bits
in the encrypted Bloom filter, the probability that at least one of Hi(x) is
among those u bits is:

1−
(

1− u

m

)l
·

If u = 5000, l = 10 and m = 225 then this probability is 0.15% which is very
small in practice.

In the second protocol, the client blinds his record x with a random
r ∈ ZN and sends y = H(x)re modulo N to the server. This guarantees that
the server S can not learn the client’s record x and therefore client’s privacy
is preserved. On the other hand, a malicious server which has a collection of
H(xi) where xi are known records to this server could perform a brute-force
attack to recover the client record x from y = H(x)re. Considering that r
is randomly chosen from ZN , this action is computationally infeasible and
therefore the protocol is secure against malicious server.

After each instance of PMT, the client C learns which l bits of the Bloom
filter are representing his item x. However, for some x′, if C does not know
Sig(x′) then he does not know which bits of B are relevant to x′. Therefore,
protocol 2 is secure against malicious client. Unlike the first protocol, there
is no need for the server to change its Bloom filter after certain number of
queries.

42

The server in the second protocol, encrypts the database to preserve its
secrecy but S does not encrypt the Bloom filter. Therefore, the number of
bits set to one in the filter can be turned to a good estimate of the size of the
server’s database X. This implies that the second protocol might not be a
good choice for a server who wants to keep the size of its database as a secret.

In the third protocol, the Bloom filter is encrypted and its hash functions
remain secret to preserve server’s secrecy. To perform a membership test,
even after several queries from EB, there is always need to seek help from
the server. This means that protocol 3 is secure against malicious client.
Moreover, utilizing an OPRF Fk to find the right Bloom filter entries brings
secrecy for the client because after evaluating this OPRF, the malicious server
can not recover H(x).

Protocol Cryptographic primitive Security issues for the
Server

1 Goldwasser-Micali of [20] Some queries possible with-
out S

2 Blind Signature of [22] Reveals the size of database

3 OPRF of [25]

Table 6: Comparison of the security in three protocols

To sum up, if the size of the server’s database is important to remain
secret, the first and third protocols should be utilized. If the server wants to
prevent the client from independent queries (i.e. without seeking help from
the server), protocols two and three must be used.

5.2 Efficiency

In this section, we compare the efficiency of the three protocols in detail.
First, the amount of memory that is used to run the protocols in the server
side, is presented. Then, we compare the communication and computation
complexity of the protocols. Finally, we compare the result of our measure-
ments, which are obtained in the fourth chapter, to present the situations
that each one of the protocols fits in.

43

In the first and third protocols, the size of the encrypted Bloom filter and
the Bloom filter are equal. In the second protocol, the number of elements
in the encrypted database is equal to the number of items in the server’s
database. Furthermore, as shown in table 7, all the three protocols use the
same space to store the Bloom filter.

The server which utilizes protocol 1 or 3, should store both B and EB for
further updates. On the other hand, if the server uses protocol 2, it should
store both database and database of signed records for later changes. There-
fore, for very big databases, protocol 1 and 3 are recommended.

Protocol Versions of database Versions of Bloom
filter

Size of B

1 X B and EB m

2 X and its signed B m

3 X B and EB m

Table 7: Comparison of the space complexity in three protocols

As mentioned earlier about the distribution of quadratic residue numbers
over Z∗N , if r is a random number then the probability that Jacobi(r,N) = 1
is 50%. Thus, to encrypt the Bloom filter in protocol 1, for each index of B
in average two evaluations of Jacobi symbol is required. The time complex-
ity (i.e. the required time for an algorithm to run) to evaluate one Jacobi
symbol is O(log(N)2).

If the client C wants to query for x, in average, he needs to evaluate 2l
Jacobi symbols. He also requires to perform 2.5l multiplications modulo N .
This is because of the fact that the value of mask in z = H(j||Hi(x))r2ymask

is equal to one, with the chance of 1/2.

S transfers EB (m bits) to C. For each Hi, C transfers one element of
ZN to S, and S responds with one bit. Therefore for each query, C sends l
elements of ZN to S, and S’s response is l bits.

In the second protocol, in order to encrypt the database, the server is
required to produce one RSA signature for every element in X. To perform
a query, the client and the server both need to compute l exponentiations
modulo N .

44

In order to encrypt the Bloom filter in the third protocol, the server
should evaluates one OPRF F for every element in the database X, and m
times OPRF K to generate the encryption key. To perform a query S and C
together must evaluate F one time and the evaluation of K should be done
l times.

To compare the complexities of the three protocols, we consider the val-
ues that are presented in our scenario in chapter four. Therefore the Bloom
filter has 225 bits, 10 hash functions and the size of database is 221. This
comparison is shown in table 8.

Protocol Preprocessing by S Query for S Query for C

1 226 Jacobi symbols 20 Jacobi symbols 20 Jacobi symbols

2 221 signature 1 signature 1 modular exp.

3 221 evaluations
of OPRF F and
225 evaluations of
OPRF K

1 evaluation of
OPRF F and
10 evaluations of
OPRF K

1 evaluation of
OPRF F and
10 evaluations of
OPRF K

Table 8: Comparison of the complexities using different protocols

In order to perform a PMT for the client’s element x, in each protocol
different numbers of communication between C and S are required as follows:

• In protocol 1, at most l times.

• In protocol 2, one time.

• In protocol 3, one time for F and at the most l times for K’s.

We recall that to estimate the performance of protocol 3, the garbled cir-
cuits are used instead of an oblivious pseudorandom function. Therefore, the
client and the server should utilize an oblivious transfer protocol to transfer
the garbling key for x. This makes one query utilizing protocol 3 to be much
slower than protocols 1 and 2. Therefore, in the use cases that the speed of
the communication between S and C is a key factor, protocols 1 and 2 are
more suitable.

45

Protocol Preprocessing time
in Windows

Preprocessing time
in Linux

Time for one query

1 6.7 hours 2 hours 0.08 seconds

2 27 hours 2.5 hours 0.11 seconds

Table 9: Comparison of the performance in protocol 1 and 2

We compare the performance of the protocols 1 and 2 in the table 9.

From the table 8, we can conclude that the preprocessing time can be
reduced in the both protocols 1 and 2, with utilizing Linux operating sys-
tem instead of the Windows platform. Furthermore, the preprocessing time
can be reduced significantly with parallelizing the encryption of the server’s
Bloom filter and database, respectively, in the first protocol and the second
one.

We emphasize that to utilize JustGarble a particular hardware crypto
accelerator is needed [28]. Thus, protocols 1 and 2 are more practical for
general use cases.

If the Bloom filter has 225 bits, then in all the three protocols, the amount
of data that needs to be transfered from S to C is 4 MB. For a frequently
changing database, it might not be feasible solution to transfer the Bloom
filter upon each query.

In protocol 3, if the server picks the function F in such a way that the
client can compute it without S’s help, then the resulting protocol, like pro-
tocol 1, reveals the hash functions of the encrypted Bloom filter. On the
other hand, assume that the server, instead of utilizing an OPRF, picks the
value of function K to be always zero. Then, similar to protocol 2, in this
modified protocol S is only required to decide which entries of the filter are
relevant to x. Summarizing, the third protocol is, in a certain sense, more
general than protocols 1 and 2.

46

6 Alternative Approaches to PMT and PIR

This chapter elaborates a few alternative approaches to solve the problem of
constructing a privacy preserving queries and PIR. First we present a vari-
ant of Bloom filters that is demonstrated to achieve a lower false positive
error rate than a normal Bloom filter. Then we discuss about other possible
methods to utilize the Bloom filters to perform a PMT, than the proposed
protocols in chapter 3. Finally we introduce another approach to PIR with
the support of a trusted hardware.

6.1 Variable-Increment Counting Bloom Filter

While Bloom filters are reportedly used in well-known products, unfortu-
nately the problem of false positive makes them not suitable for the situations
where more accurate results from a membership test are required. Attempts
to generate a more efficient variant of Bloom filter are of interests to many
researchers [16]. A counting Bloom filter, a variant that supports deletion,
is not usable for many networking devices because it needs large amounts
of memory space. Rottenstreich et al. proposed a variant of Bloom filters
called Variable-Increment Counting Bloom Filter (VI-CB) and analytically
show that utilizing the VI-CB in practical systems always achieve a lower
FP rate than CB [39].

Informally, the difference between a CB and a VI-CB is in the way we
update their counters. The counters increment in a VI-CB take place by
variable numbers rather than by one. Therefore to implement a VI-CB one
should first define a set of possible variable increments D. In order to in-
crease an entry of the VI-CB we hash it to an element of D and increment
the counter by its hash value in D. Furthermore, to determine whether an
element belongs to this filter, one should check in each of its counters and
discover if its hashed value in D could be found in that counter as part of
the sum.

Figure 11 illustrates a toy example of a VI-CB with D = {4, 7, 8, 13}.
First we insert the set S = {x, y} in the filter and then we perform a mem-
bership test for an element z. As its shown in this figure, the third hashed
entry of z has the value of 13, while its corresponding counter has the value
of 16. We can conclude that z /∈ S because 16−13 = 3 and 3 /∈ D. Clearly, if
we utilize CB instead of VI-CB in a situation similar to figure 11, the query
results in false positive.

47

Figure 11: An Example of a VI-CB Represents S = {x, y} and a Query for z

In order to implement a VI-CB, one should first define a set of possible
variable increments D. Compare to the three suggested protocols, the server
which utilizes the VI-CB needs to store D as well. On the other hand, the
size of the counters are larger than one bit and consequently VI-CB occu-
pies more space in the memory in comparison with the normal Bloom filter.
Moreover, the counters are not always incrementing by one and therefore
VI-CB occupies more space in the memory than CB. Thus, if the false posi-
tive error is the more important issue than the space complexity, the VI-CB
should be utilized.

6.2 Alternative Methods to Utilize Bloom Filters for
PMT

All the three proposed protocols of chapter 3 require to transfer a version
of server’s Bloom filter to the client. Although all the protocols are feasible
for many use cases, in case of a frequently updating database, it might not
be practical for the server to ship entire filter upon each new query. In this
regard, we try to find alternative methods to perform PMT utilizing Bloom
filters than the three suggested protocols.

One possible solution for the server is to insert the database in a Bloom
filter with l hash functions and send all the hash functions to the client. Thus,
the client can feed his item to those hash functions and get corresponding
indexes of the filter. He then needs to somehow obtain the value of those
array positions of the Bloom filter, if all of them are one, most probably
client’s item belongs to the server’s database. In the following, we discuss

48

about four different methods for the client to retrieve the value of his item’s
corresponding entries in the filter.

• One trivial way for the client is to send all the l indexes to the server.
While one-wayness of hash functions make it impossible for the server to
retrieve client’s item, the server can have a collection of particular items
(in our case, special documents). Therefore, it might be possible for the
server to guess client’s query. Moreover, the server can guess which clients
have common items by analysing the intersection between their queries. In
this solution if the server frequently changes the Bloom filter, then there
would be no collision between two queries of two clients with an identical
item but the other issue remains.

• The client can conceal the l indexes of the filter, which he is interested in,
by hiding them between some other indexes. For instance, the client can
add to the set of his item’s indexes, l more randomly chosen entries. A
potential problem is that the server can guess common items of different
clients by analyzing the intersection of their queries. If dummy indexes
are chosen too close to the real ones, after several queries of same item,
’median’ of intersections would reveal the real indexes. In order to reduce
the probability of collision detection, the client can increase the number of
the dummy indexes. One mathematical solution to find the efficient num-
ber of the dummy indexes is utilizing birthday paradox [40]. If the Bloom
filter has m bits then according to birthday paradox

√
m dummy indexes

are needed to increase the number of collision detections and therefore to
better hide the client’s query.

• The client can choose randomly between his indexes and send some of them
at a time to the server. For instance, if there are ten indexes corresponding
to each item, the client would first choose three of them and ask from the
server whether they are zero or one. If even one of them is zero then query
is done and the client’s item doesn’t belong to the server’s database. In
this case the client will not reveal all the indexes corresponding to his item
and therefore the server is not able to guess the real item. The possibility
of collision detection between queries of different clients is very low, at
least when the selection of the indexes is randomized. In this scenario, if
client’s item belongs to the server’s database, then all the indexes would
be revealed to the server. But this problem is not a concern in our case
because typically the malicious item will be revealed to the server.

• The server can store its database in two Bloom filters simultaneously and
send two sets of hash functions with the size of l, to the client. In this

49

way the client chooses between the sets of hash functions and get the
corresponding indexes of one of the filters. He can then add some dummy
indexes to his query and sends all the entries to the server. This makes
the possibility of collision detection even smaller than before.

In all the mentioned methods, the client would reveal some information
about his item. Although this information can not disclose the client’s item,
they are open for further analyses. For instance, the server or a third party
can search in the client’s set of entries to check for the indexes corresponding
a particular item. If the size of client’s set of dummy indexes is t, then the
probability that given index is in dummy set is t/m. The probability that
all the indexes of a special item are in the dummy set is (t/m)l.

In conclusion, the above suggested methods should not be used if the
secrecy of the client is the main purpose of the PMT.

6.3 An Approach to PIR Utilizing Trusted Hardware

Another approach to solve the problem of private information retrieval and
also private membership test, is utilizing a trusted hardware (TH). The
trusted hardware executes the PIR and PMT protocols honestly, in the sense
that neither any adversary nor the server can tamper its execution.

Wang et al. suggested a hardware-based PIR model to reduce the com-
munication complexity compared to the PIR models that do not utilize any
TH [41]. Their scheme achieved the communication complexity of O(log n)
where n is the size of the server’s database.

Their TH is assumed to be secure under chosen plaintext attack (CPA-
secure). They also consider no trust on the server. Outside attackers and
the server are allowed to monitor all the queries and replies of TH, they are
also able to perform a query to TH.

The proposed PIR model by Wang et al. involves a trusted third party
(TTP) to initiate the system setup. TTP secretly picks a random permuta-
tion10 π0 and permutes the server’s database X to Xπ0 . He then selects a
secret key sk0 and encrypts Xπ0 under this key, and delivers the encrypted
Xπ0 to the server. Finally, TTP sends π0 and sk0 to TH through a secret

10The reader who is interested in random permutation may consult [42] as one reference.

50

channel.

A client’s query for ith element of the database is done as follows. TH
who knows π0, sends a request to the server to get the encrypted item Xπ0 .
Then TH decrypts the retrieved item with sk0 and sends xi to the client.

Figure 12: A model of utilizing TH for PIR

51

7 Conclusion

The contents of this thesis is summarized in this chapter. We discuss the
presented solutions for the problem of PMT and analyze the results that are
obtained from our implementations. We conclude this thesis with an outlook
to possible further work in the field of PIR and PMT.

7.1 Summary

Demand of privacy grows in parallel with development of the Internet and
electronic devices. Many researches are devoted to discover possible solutions
to preserve privacy of the users on the Internet. For instance, in 1981 Michael
O. Rabin introduced a protocol to exchange secrets that is called oblivious
transfer [4]. In 1995, a weaker version of 1 out of n oblivious transfer scheme
was introduced by Chor et al. that is called private information retrieval [6].
The aim of the PIR protocols is to provide methods for the users to query
through databases without reveling which items they are interested in, to the
database holders.

The main focus of this work is to study the problem of private membership
test, in order to protect users from profiling. We attempt to design a protocol
which allows the interaction between the clients and the server in a private
manner. In this regard, we presented three different protocols in chapter 3,
that are utilizing Bloom filters to perform PMT. For each protocol, we have
used a different cryptographic primitive. In order to check the feasibility and
efficiency of the suggested protocols, we have implemented them, as reported
in the fourth chapter.

7.2 Discussion

We considered a realistic scenario to measure the performance of our solu-
tions. In this scenario, a security company which hosts a server S, possesses
a collection of malicious samples (e.g. document exploits) with the size of
221. This company stores the SHA-1 values of its malware signatures in a
database X.

Each hash value that is produced by SHA-1, consists of 160 bits and
therefore, the size of the database X is 221 × 160 ≈ 3.3 × 108 bits (approx-
imately 40 Megabytes). Although the size of the database is not huge, it is

52

more space efficient for S to store X in a Bloom filter made up of 225 bits
(4 Megabytes). We assume that S utilizes 10 hash functions for its Bloom
filter and modulus N in Goldwasser-Micali encryption and RSA signature is
2048 bits.

The server S can use any of the three suggested protocols to perform PMT
with its Bloom filter. Depending on the privacy requirements, the choice of
a protocol can be done. Moreover, each protocol has a different time com-
plexity and based on the efficiency requirements, each can be suitable for a
different use case.

If it is not acceptable for the server to reveal the hash functions of its
Bloom filter to the client, then the third protocol should be used. On the
other hand, protocol 3 needs a fast implementation for OPRF. If such an
implementation is not available, then utilizing the third protocol is a trade
off between security and efficiency.

If it is not acceptable for the server to reveal any information about the
size of its database, then protocol 2 should not be used. On the other hand,
the second protocol requires just one query in the client side to fulfill the
membership test. Therefore, in the situation that the minimal of communi-
cation between the server and the client is required, protocol 2 is the best
choice.

If it is not acceptable for the server that a client who collects many entries
of the filter, perform a membership test independent from S, then the first
protocol is not suitable. However, based on our implementation, protocol 1
is the fastest one.

In all the protocols, the size of the Bloom filter that S sends to the client is
4 Megabytes. Moreover, if there is an update in the database then the server
needs to ship an updated filter to C. Therefore, utilizing either of the three
presented solutions might not be practical for frequently changing databases.

It is possible to send the Bloom filter to each client with a unique identi-
fier. Therefore, the server can keep track of clients’ Bloom filter by utilizing
the unique identifiers, and whenever the Bloom filter is updated, server can
just ship the updated bits to clients. However, for the server who doesn’t
want to transfer the entire filter to the client, we presented four alternative
solutions in chapter 6.

53

In all of these suggested solutions, further exploitation is possible from
the clients queries. More specifically, the server can always guess whether a
certain client possesses an item of special interest. Hence, in the use cases
that the secrecy of the clients is the main goal of PMT, the four alternative
solutions should not be used.

If the server has the advantage of being able to utilize a trusted hardware,
then the membership tests can be done in a private manner, without any of
the suggested cryptographic solutions in this work.

7.3 Further Work

We measured the performance of our implementation in Windows 7 and
Ubuntu 14.04.3 operating systems. The comparison of these two platforms
shows that Ubuntu 14.04.3 is a better choice to execute protocols 1 and 2.
One can run these protocols in the different operating systems than Win-
dows 7 and Ubuntu 14.04.3 (e.g. Mac and Android OS), as one possibility
to extend our work in this thesis.

There is room to improve our implementation by parallelizing the encryp-
tion of server’s Bloom filter or its database. This can significantly reduce the
preprocessing time in the server side.

Seeking for other possible use cases for the three suggested protocols than
an identifier to the clients’ possibly malicious samples, can also be part of
the further work.

One weakness of the counting Bloom filters is deleting a duplicate record.
In other words, if by accident, a record is inserted in this filter more than
once, then the corresponding counters are incremented more than one time.
Therefore, in case of deletion, that record would not be removed from the
filter. Moreover, if mistakenly the deletion occurs for an item that doesn’t
belong to CB, this may lead to get negative values in some counters. Thus,
searching for a variant of the Bloom filters that keeps the track of records, is
another possible extension.

We introduced the variable increment-counting Bloom filter in the sixth
chapter. Although this variant of the Bloom filters can reduce the false posi-
tive error rate, as a result of utilizing bigger counters than a counting Bloom
filter, using them might not be space efficient. The implementation of VI-CB

54

can show the trade off between space complexity and false positive error rate.

Finally, the time complexities of the three protocols can be improved by
finding a faster evaluation for a Jacobi symbol, a modular exponentiation
and an OPRF.

This thesis is a spin-off from the Academy of Finland research project
”Cloud Security Services”.

55

References

[1] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization
techniques for recommender systems. Computer, (8):30–37, 2009.

[2] Suranga Seneviratne, Aruna Seneviratne, Prasant Mohapatra, and Anir-
ban Mahanti. Predicting user traits from a snapshot of apps installed
on a smartphone. ACM SIGMOBILE Mobile Computing and Commu-
nications Review, 18(2):1–8, 2014.

[3] Michal Kosinski, David Stillwell, and Thore Graepel. Private traits
and attributes are predictable from digital records of human behavior.
Proceedings of the National Academy of Sciences, 110(15):5802–5805,
2013.

[4] Michael O Rabin. How to exchange secrets with oblivious transfer. IACR
Cryptology ePrint Archive, 2005:187, 2005.

[5] William Gasarch. A survey on private information retrieval. Bulletin of
the EATCS, 82:72–107, 2004.

[6] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Pri-
vate information retrieval. In 36th IEEE Conference on the Foundations
of Computer Science, pages 41–50, 1995.

[7] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single
database, computationally-private information retrieval. In focs, page
364. IEEE, 1997.

[8] Rafail Ostrovsky and William E Skeith III. A survey of single-database
private information retrieval: Techniques and applications. In Public
Key Cryptography–PKC 2007, pages 393–411. Springer, 2007.

[9] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval
by keywords. Citeseer, 1997.

[10] Tommi Meskanen, Jian Liu, Sara Ramezanian, and Valtteri Niemi. Pri-
vate membership test for bloom filters. In The 14th IEEE International
Conference on Trust, Security and Privacy in Computing and Commu-
nications (IEEE TrustCom-15), August 2015.

[11] Ryo Nojima and Youki Kadobayashi. Cryptographically secure bloom-
filters. Transactions on Data Privacy, 2(2):131–139, 2009.

56

[12] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Hand-
book of applied cryptography. CRC press, 1996.

[13] Henk CA Van Tilborg and Sushil Jajodia. Encyclopedia of cryptography
and security. Springer Science & Business Media, 2011.

[14] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[15] Andrei Broder and Michael Mitzenmacher. Network applications of
bloom filters: A survey. Internet mathematics, 1(4):485–509, 2004.

[16] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz.
Theory and practice of bloom filters for distributed systems. Commu-
nications Surveys & Tutorials, IEEE, 14(1):131–155, 2012.

[17] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary
cache: a scalable wide-area web cache sharing protocol. IEEE/ACM
Transactions on Networking (TON), 8(3):281–293, 2000.

[18] Ronald L Rivest, Adi Shamir, and Len Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the
ACM, 21(2):120–126, 1978.

[19] Michael O Rabin. Digitalized signatures and public-key functions as
intractable as factorization. Technical report, DTIC Document, 1979.

[20] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to
play mental poker keeping secret all partial information. In Proceedings
of the fourteenth annual ACM symposium on Theory of computing, pages
365–377. ACM, 1982.

[21] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the
advanced encryption standard. Springer Science & Business Media, 2013.

[22] David Chaum. Blind signatures for untraceable payments. In Advances
in cryptology, pages 199–203. Springer, 1983.

[23] Mihir Bellare, Chanathip Namprempre, David Pointcheval, Michael Se-
manko, et al. The one-more-rsa-inversion problems and the security of
chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–215,
2003.

57

[24] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized
protocol for signing contracts. Communications of the ACM, 28(6):637–
647, 1985.

[25] Michael J Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold.
Keyword search and oblivious pseudorandom functions. In Theory of
Cryptography, pages 303–324. Springer, 2005.

[26] Oded Goldreich. Secure multi-party computation. Manuscript. Prelim-
inary version, 1998.

[27] Andrew Chi-Chih Yao. Protocols for secure computations. In FOCS,
volume 82, pages 160–164, 1982.

[28] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rog-
away. Efficient garbling from a fixed-key blockcipher. In Security and
Privacy (SP), 2013 IEEE Symposium on, pages 478–492. IEEE, 2013.

[29] Jeffrey Rott. Intel advanced encryption standard instructions (aes-ni).
Technical report, Technical report, Intel, 2010.

[30] Private Membership Test with Bloom Filters. Close project work-
shop: Posters and demos, https://wiki.aalto.fi/ display/CloSeProject/-
CloSe+Project+Workshop+Posters+and+Demos/. Accessed : Novem-
ber 2015.

[31] Anna Ostlin and Rasmus Pagh. Uniform hashing in constant time and
linear space. In Proceedings of the thirty-fifth annual ACM symposium
on Theory of computing, pages 622–628. ACM, 2003.

[32] Jay Baird. ’python-bloomfilter’, https://github.com/jaybaird/python-
bloomfilter/. Accessed : February 2015.

[33] ’numpy’, http://www.numpy.org/. License: BSD , Accessed : February
2015.

[34] ’the python cryptography toolkit’, https://www.dlitz.net/software /py-
crypto/. Accessed : February 2015.

[35] ’python-pkcs1’, https://github.com/ bdauvergne/python-pkcs1/. Ac-
cessed : February 2015.

[36] ’bottle: Python web framework’, http://bottlepy.org/docs/0.12/. Ac-
cessed :April 2015.

58

[37] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure
computation with malicious adversaries. In USENIX Security Sympo-
sium, volume 12, pages 285–300, 2012.

[38] David A Burgess. The distribution of quadratic residues and non-
residues. Mathematika, 4(02):106–112, 1957.

[39] Ori Rottenstreich, Yossi Kanizo, and Isaac Keslassy. The variable-
increment counting bloom filter. IEEE/ACM Transactions on Network-
ing (TON), 22(4):1092–1105, 2014.

[40] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[41] Shuhong Wang, Xuhua Ding, Robert H Deng, and Feng Bao. Private
information retrieval using trusted hardware. In Computer Security–
ESORICS 2006, pages 49–64. Springer, 2006.

[42] Lincoln E Moses. Tables of random permutations. Stanford University
Press, 1978.

59

Appendices

A Protocol 1 - Preprocessing

#!/ usr / b in / python
import random
import numpy as np
from pkcs1 . primes import j a c o b i
from Crypto . Hash import SHA as sha1
from Crypto . U t i l . number import getPrime
from pybloom import BloomFi lter

Server Part
class BloomFilterEx (BloomFi lter) :

def i n i t (s e l f , capac i ty , e r r o r r a t e =0.001 ,
pr ime sz =1024):

super (BloomFilterEx , s e l f) . i n i t (capac i ty ,
e r r o r r a t e)

s e l f . da ta = np . z e r o s (s e l f . num bits , dtype=np . i n t)
s e l f . p r i m e s z = pr ime sz
s e l f . p = getPrime (pr ime sz , randfunc=None)
s e l f . q = getPrime (pr ime sz , randfunc=None)
s e l f . n = s e l f . p ∗ s e l f . q
y=2
while j a c o b i (y , s e l f . q)!= −1 or j a c o b i (y , s e l f . p)!= −1 :

y +=1
s e l f . y = y
s e l f . enc rypted = False
return

def c o n t a i n s (s e l f , key) :
b i t s p e r s l i c e = s e l f . b i t s p e r s l i c e
b i t a r r a y = s e l f . b i t a r r a y
data = s e l f . da ta
i f not i s i n s t a n c e (key , l i s t) :

hashes = s e l f . make hashes (key)
else :

hashes = key
o f f s e t = 0

60

for k in hashes :
j = o f f s e t + k
i f data [j] == 0 :

return False
o f f s e t += b i t s p e r s l i c e

return True

def change pq (s e l f) :
encrypted = s e l f . enc rypted
i f encrypted :

s e l f . d e c ryp t ()
s e l f . p = getPrime (pr ime sz , randfunc=None)
s e l f . q = getPrime (pr ime sz , randfunc=None)
s e l f . n = s e l f . p ∗ s e l f . q
y = 2
while j a c o b i (y , s e l f . q)!=−1 or

j a c o b i (y , s e l f . p)!=−1:
y +=1

s e l f . y = y
i f encrypted :

s e l f . en c ryp t ()

def re sponse (s e l f , z) :
#−−−− Server checks to see whether j a c o b i (z , n)=1
i f j a c o b i (z , s e l f . n) !=1 :

print ”z i s not v a l i d ”
#−−
#−−−s e r v e r c a l c u l a t e s j a c o b i (z , p) and j a c o b i (z , q)
#−−−to see i f i t ’ s a QR or not
answer=””
i f j a c o b i (z , s e l f . p)==1 and j a c o b i (z , s e l f . q)==1:

answer=”QR”
else :

answer=”QNR”
return answer

def encrypt (s e l f) :
i f s e l f . enc rypted :

return
b i t a r r a y = s e l f . b i t a r r a y
n = s e l f . n

61

p = s e l f . p
for i in range (l en (b i t a r r a y)) :

j=0
s t r i = ”x”+s t r (i)
indexhash=i n t ((sha1 . new(s t r (j)+ s t r i) .

hexd ige s t () [: 1 2]) , 1 6) % n
while j a c o b i (indexhash , n)!= 1 :

j+=1
indexhash=i n t ((sha1 . new(s t r (j)+ s t r i) .

hexd ige s t () [: 1 2]) , 1 6) % n
i f j a c o b i (indexhash , p)==−1:

b i t a r r a y [i] = not (b i t a r r a y [i])
s e l f . enc rypted = True
return

def decrypt (s e l f) :
i f s e l f . enc rypted :

b i t a r r a y = s e l f . b i t a r r a y
data = s e l f . da ta
for k in range (l en (b i t a r r a y)) :

b i t a r r a y [k] = (data [k] != 0)
s e l f . enc rypted = False

return

def indexes (s e l f , key) :
b i t s p e r s l i c e = s e l f . b i t s p e r s l i c e
i f not i s i n s t a n c e (key , l i s t) :

hashes = s e l f . make hashes (key)
else :

hashes = key
o f f s e t = 0
indexes = []
for k in hashes :

indexes . append (o f f s e t+k)
o f f s e t += b i t s p e r s l i c e

return indexes

def add (s e l f , key , sk ip check=False) :
b i t s p e r s l i c e = s e l f . b i t s p e r s l i c e
b i t a r r a y = s e l f . b i t a r r a y
data = s e l f . da ta

62

hashes = s e l f . make hashes (key)
i f (not sk ip check) and (hashes in s e l f) :

return True
i f s e l f . count > s e l f . capac i ty :

raise IndexError (”BloomFilterEx−i s−at−capac i ty ”)
o f f s e t = 0
for k in hashes :

j = o f f s e t + k
i f data [j] == 0 :

b i t a r r a y [j] = not (b i t a r r a y [j])
data [j] += 1
o f f s e t += b i t s p e r s l i c e

s e l f . count += 1
return False

def remove (s e l f , key) :
b i t s p e r s l i c e = s e l f . b i t s p e r s l i c e
b i t a r r a y = s e l f . b i t a r r a y
data = s e l f . da ta
hashes = s e l f . make hashes (key)
i f not (hashes in s e l f) :

return True
o f f s e t = 0
changed = False
for k in hashes :

j = o f f s e t + k
data [j] −= 1
i f data [j] == 0 :

b i t a r r a y [j] = not (b i t a r r a y [j])
changed = True

o f f s e t += b i t s p e r s l i c e
i f not changed :

print ” After−de l e t i ng , f i l t e r −didn ’ t−change ! ”
return False

def addnew (s e l f , key , sk ip check=False) :
b i t s p e r s l i c e = s e l f . b i t s p e r s l i c e
b i t a r r a y = s e l f . b i t a r r a y
data = s e l f . da ta
hashes = s e l f . make hashes (key)
i f (not sk ip check) and (hashes in s e l f) :

63

return True
i f s e l f . count > s e l f . capac i ty :

raise IndexError (”BloomFilterEx−i s−at−capac i ty ”)
o f f s e t = 0
for k in hashes :

j = o f f s e t + k
i f data [j] == 0 :

b i t a r r a y [j] = not (b i t a r r a y [j])
data [j] += 1
o f f s e t += b i t s p e r s l i c e

s e l f . count += 1
return False

def copy (s e l f) :
n e w f i l t e r = BloomFilterEx (s e l f . capac i ty ,

s e l f . e r r o r r a t e , s e l f . pr ime sz)
n e w f i l t e r . b i t a r r a y = s e l f . b i t a r r a y . copy ()
n e w f i l t e r . data = s e l f . data . copy ()
n e w f i l t e r . p = s e l f . p
n e w f i l t e r . q = s e l f . q
n e w f i l t e r . n = s e l f . n
n e w f i l t e r . encrypted = s e l f . encrypted
return

def union (s e l f , o ther) :
raise NotImplementedError (”Union−not−implemented ! ”)
return

def o r (s e l f , o ther) :
return s e l f . union (other)

def i n t e r s e c t i o n (s e l f , o ther) :
raise NotImplementedError (” I n t e r s e c t−not−implemented ! ”)
return

def a n d (s e l f , o ther) :
return s e l f . i n t e r s e c t i o n (other)

return

@classmethod

64

def f r o m f i l e (c l s , f , n=−1):
raise NotImplementedError (”not−implemented ! ”)
return

Server o b j e c t
class BloomServer :

def i n i t (s e l f , f i l t e r s z , f i l t e r e r r r a t e ,
pr ime sz) :

f i s an enhanced Bloom f i l t e r (capac i ty ,
error−rate , prime−s i z e)
s e l f . f=BloomFilterEx (f i l t e r s z , f i l t e r e r r r a t e ,

pr ime sz)
return

def encrypt (s e l f) :
s e l f . f . encrypt ()
return

def indexes (s e l f , key) :
return s e l f . f . indexes (key)

def add (s e l f , key) :
return s e l f . f . add (key)

def remove (s e l f , key) :
return s e l f . f . remove (key)

def addnew (s e l f , key) :
return s e l f . f . addnew (key)

@property
def b i t a r r a y (s e l f) :

return s e l f . f . b i t a r r a y

@property
def n(s e l f) :

return s e l f . f . n

@property
def y (s e l f) :

return s e l f . f . y

65

@property
def p(s e l f) :

return s e l f . f . p

@property
def q (s e l f) :

return s e l f . f . q

def re sponse (s e l f , z) :
return s e l f . f . r e sponse (z)

C l i e n t o b j e c t
class BloomClient :

def i n i t (s e l f , s e r v e r) :
s e l f . b i t a r r a y = s e r v e r . b i t a r r a y
s e l f . y = s e r v e r . y
s e l f . n = s e r v e r . n
s e l f . s e r v e r r e s p o n s e = s e r v e r . r e sponse
s e l f . indexes = s e r v e r . indexes
return

C l i e n t e x e c u t i o n par t

def c l i e n t p a r t (c l i e n t , x) :
b i t s = c l i e n t . b i t a r r a y
n = c l i e n t . n
y = c l i e n t . y
indexes = c l i e n t . indexes (x)
f i n a l r e s u l t = []

#−−
for i in indexes :

j=0
s t r i = ”x”+s t r (i)
indexhash=i n t ((sha1 . new(s t r (j)+ s t r i) .

hexd ige s t () [: 1 2]) , 1 6) % n
while j a c o b i (indexhash , n)!= 1 :

j=j+1
indexhash=i n t ((sha1 . new(s t r (j)+ s t r i) .

hexd ige s t () [: 1 2]) , 1 6) % n
r = random . rand int (1 , n)

66

randomsquare = r ∗∗2 % n
mask = random . rand int (0 , 1)
r e s u l t z = (indexhash ∗ (randomsquare) ∗

(y ∗∗ mask)) % n

g e t t i n g response from the s e r v e r
s e r v e r r e s u l t = c l i e n t . s e r v e r r e s p o n s e (r e s u l t z)

#−−−
#−−C l i e n t can decryp t the i ’ th b i t o f Bloom f i l t e r
i f (s e r v e r r e s u l t==”QR”) ˆ (mask==0):

f i n a l r e s u l t . append (not (b i t s [i]))
else :

f i n a l r e s u l t . append (b i t s [i])
return a l l (f i n a l r e s u l t)

def main () :
import p i c k l e
import argparse
par s e r = argparse . ArgumentParser ()
subpar s e r s = par s e r . add subparse r s (he lp=’ Operat iona l
modes . Create , add or remove items . ’ , des t=”subcommand”)
p a r s e r c r e a t e = subpar s e r s . add parse r (’ c r e a t e ’ ,
he lp=’ Create a new f i l t e r . ’)
p a r s e r c r e a t e . add argument (”−−f i l t e r n a m e ” , type=str ,
r equ i r ed=True , he lp=” F i l e name o f the bloom f i l t e r to
operate on . ”)
p a r s e r c r e a t e . add argument (”−−c l i e n t f i l t e r ” , type=str ,
r equ i r ed=True ,
he lp=” F i l e name o f the c l i e n t bloom f i l t e r
to operate on . ”)
p a r s e r c r e a t e . add argument (”−−e s t s i z e ” , type=int ,
r equ i r ed=True ,
he lp=” Estimated s i z e o f the f i l t e r . ”)
p a r s e r c r e a t e . add argument (”−−FPprob” , type=f l o a t ,
r equ i r ed=True ,
he lp=” Pro pab i l i t y o f f i l t e r r e tu rn ing a f a l s e
p o s i t i v e . ”)
p a r s e r c r e a t e . add argument (”−−s e t ” , type=str ,
r equ i r ed=True)
parse r add = subpar se r s . add parse r (’ add ’ ,
he lp=’Add items to an e x i s t i n g f i l t e r . ’)

67

parser add . add argument (”−−f i l t e r n a m e ” , type=str ,
r equ i r ed=True ,
he lp=” F i l e name o f the bloom f i l t e r to operate on . ”)
parse r add . add argument (”−−c l i e n t f i l t e r ” , type=str ,
r equ i r ed=True , he lp=” F i l e name o f the c l i e n t bloom
f i l t e r to operate on . ”)
parse r add . add argument (”−−sha1input ” , type=str ,
r equ i r ed=True)
parser remove = subpar se r s . add parse r (’ remove ’ ,
he lp=’Remove items from an e x i s t i n g f i l t e r . ’)
parser remove . add argument (”−−f i l t e r n a m e ” , type=str ,
r equ i r ed=True ,
he lp=” F i l e name o f the bloom f i l t e r to operate on . ”)
parser remove . add argument (”−−c l i e n t f i l t e r ” , type=str ,
r equ i r ed=True ,
he lp=” F i l e name o f the c l i e n t bloom f i l t e r to
operate on . ”)
parser remove . add argument (”−−sha1input ” , type=str ,
r equ i r ed=True)
arg = vars (par s e r . p a r s e a r g s ())
args = par s e r . p a r s e a r g s ()
i f args . subcommand == ” c r e a t e ” :

b f s e r v e r = BloomServer (arg [’ e s t s i z e ’] ,
arg [’ FPprob ’] , 1024)

with open (arg [’ s e t ’] , ’ r ’) as i n s :
for l i n e in i n s :

b f s e r v e r . add (l i n e)
b f s e r v e r . encrypt ()
f i l t e r n a m e = open (arg [’ f i l t e r n a m e ’] , ’w ’)
p i c k l e . dump(b f s e r v e r , f i l t e r n a m e)
f i l t e r n a m e . c l o s e ()
c l i e n t f i l t e r = open (arg [’ c l i e n t f i l t e r ’] , ’w ’)
a = BloomFi lter (arg [’ e s t s i z e ’] , arg [’ FPprob ’])
a . b i t a r r a y = b f s e r v e r . b i t a r r a y . copy ()
p i c k l e . dump(a , c l i e n t f i l t e r)

p i c k l e . dump(b f s e r v e r . n , c l i e n t f i l t e r)
p i c k l e . dump(b f s e r v e r . y , c l i e n t f i l t e r)
c l i e n t f i l t e r . c l o s e ()
f = open (’ pub l i ckeys ’ , ’w ’)
p i c k l e . dump(b f s e r v e r . n , f)
p i c k l e . dump(b f s e r v e r . y , f)

68

f . c l o s e ()
#p r i n t ’ p i s ’ , b f s e r v e r . p
#p r i n t ’ q i s ’ , b f s e r v e r . q

e l i f args . subcommand == ”add” :
f = open (arg [’ f i l t e r n a m e ’] , ’ r ’)
b f s e r v e r = p i c k l e . load (f)
f . c l o s e ()
with open (arg [’ sha1input ’] , ’ r ’) as i n s :

for l i n e in i n s :
b f s e r v e r . addnew (l i n e)

f = open (arg [’ f i l t e r n a m e ’] , ’w ’)
p i c k l e . dump(b f s e r v e r , f)
f . c l o s e ()
a = open (arg [’ c l i e n t f i l t e r ’] , ’ r ’)
b f c l i e n t = p i c k l e . load (a)
a . c l o s e ()
b f c l i e n t . b i t a r r a y = b f s e r v e r . b i t a r r a y . copy ()
a = open (arg [’ c l i e n t f i l t e r ’] , ’w ’)
p i c k l e . dump(b f c l i e n t , a)
a . c l o s e ()

e l i f args . subcommand == ”remove” :
f = open (arg [’ f i l t e r n a m e ’] , ’ r ’)
b f s e r v e r = p i c k l e . load (f)
f . c l o s e ()
with open (arg [’ sha1input ’] , ’ r ’) as i n s :

for l i n e in i n s :
b f s e r v e r . remove (l i n e)

f = open (arg [’ f i l t e r n a m e ’] , ’w ’)
p i c k l e . dump(b f s e r v e r , f)
f . c l o s e ()
c l i e n t f i l t e r = open (arg [’ c l i e n t f i l t e r ’] , ’w ’)
a = BloomFi lter (arg [’ e s t s i z e ’] , arg [’ FPprob ’])
a . b i t a r r a y = b f s e r v e r . b i t a r r a y . copy ()
p i c k l e . dump(a , c l i e n t f i l t e r)
p i c k l e . dump(b f s e r v e r . n , c l i e n t f i l t e r)
p i c k l e . dump(b f s e r v e r . y , c l i e n t f i l t e r)
c l i e n t f i l t e r . c l o s e ()
else :
print ’ e r r o r : one−of−subcommands−must−be−given ’

i f name == ” main ” :
main ()

69

B Protocol 1 - Server Part

#F i l e : s e r v e r . py
from b o t t l e import Bott le , run , s t a t i c f i l e , r eque s t
import p i c k l e
from appendixA import ∗

s e r v e r = Bott l e ()
s e r v e r . route (’ / pr ivatequery ’)
def h e l l o () :

return ” Please proceed to ’/ pr ivatequery / g e t f i l t e r
/ f i l t e r . dat ’ to get the F i l t e r ”

@server . route (’ / pr ivatequery / g e t f i l t e r / c l i e n t f i l t e r ’)
def g e t F i l t e r () :

f = open (’ c l i e n t f i l t e r ’ , ’ r ’)
c l i e n t f i l t e r = p i c k l e . load (f)
f . c l o s e ()

return s t a t i c f i l e (’ c l i e n t f i l t e r ’ , root=’ . / ’)

@server . route (’ / pr ivatequery / getPubl icKeys ’)
def g e t p u b l i c k e y s () :

f = open (’ pub l i ckey ’ , ’ r ’)
keys = {}
keys [”n”]= p i c k l e . load (f)
keys [”y”]= p i c k l e . load (f)
f . c l o s e ()
return keys

@server . route (’ / pr ivatequery / query ’ , method=’POST ’)
def queryResponce () :

f = open (’ s e r v e r f i l t e r ’ , ’ r ’)
s e r v e r f i l t e r=p i c k l e . load (f)
f . c l o s e ()
q re s = {}
indexes = reque s t . j son
for (key , va lue) in indexes . i tems () :

i f j a c o b i (value , s e r v e r f i l t e r . p)==1 and
j a c o b i (value , s e r v e r f i l t e r . q)==1:

70

qre s [key]= ’QR’
else :

q r e s [key]= ’QNR’
print qre s
return qre s

port = 8080
host = ’ l o c a l h o s t ’
s e r v e r . run (host=host , port=port , debug=True)

71

C Protocol 1 - Client Part

#F i l e : c l i e n t . py
import r e q u e s t s
import j s on
import s h u t i l
import p i c k l e
from pybloom import BloomFi lter
import random
from pkcs1 . primes import j a c o b i
from Crypto . Hash import SHA as sha1
import b i t a r r a y

class pub l i ckeys () :
def i n i t (s e l f) :

s e l f . n = 0
s e l f . y = 0

def g e t F i l t e r F i l e () :
f i l t e r U r l = ’ http :// l o c a l h o s t :8080/ pr ivatequery /
g e t f i l t e r / c l i e n t f i l t e r ’
responce = r e q u e s t s . get (f i l t e r U r l , stream=True)
i f responce . s t a tu s c od e == 200 :

fname = ’ c l i e n t f i l t e r ’
with open (fname , ’w ’) as f :

s h u t i l . c o p y f i l e o b j (responce . raw , f)
return True

def getPubl icKeys () :

c l i e n t k e y s = pub l i ckeys ()
u r l=’ http :// l o c a l h o s t :8080/ pr ivatequery / getPubl icKeys ’
responce = r e q u e s t s . get (u r l)
keys = responce . j son ()
c l i e n t k e y s . n = keys [’n ’]
c l i e n t k e y s . y = keys [’ y ’]
with open (’ c l i e n t k e y s ’ , ’w ’) as f :

p i c k l e . dump(c l i e n t k e y s , f)

return True

72

def query () :

f = open (’ c l i e n t f i l t e r ’ , ’ r ’)
c l i e n t f i l t e r = p i c k l e . load (f)
f . c l o s e ()
x = input (’ wr ite−the−item−you−want−to−
check−in−Bloom−F i l t e r : ’)
checkitem = sha1 . new(s t r (x)) . hexd ige s t ()+”\n”
print ’ Sha1 (x) =’ , checkitem
#−−−− i n d e x e s i s a l i s t which g i v e s the
#r e s u l t o f hash f u n c t i o n s
b i t s p e r s l i c e = c l i e n t f i l t e r . b i t s p e r s l i c e
hashes = c l i e n t f i l t e r . make hashes (checkitem)
with open (’ c l i e n t k e y s ’ , ’ r ’) as f :

c l i e n t k e y s = p i c k l e . load (f)
n = c l i e n t k e y s . n
y = c l i e n t k e y s . y
o f f s e t = 0
indexes = []
for k in hashes :

indexes . append (o f f s e t+k)
o f f s e t += b i t s p e r s l i c e

#−−
stop = raw input (’ ’)
print ’ indexes o f the bloom f i l t e r are : ’ , indexes
c l i e n t e n c r y p t = []
i n d e x e s L i s t = []
for i in indexes :

j=0
s t r i = ”x”+s t r (i)
indexhash=i n t ((sha1 . new(s t r (j)+ s t r i) .
hexd ige s t () [: 1 2]) , 1 6) % n
while j a c o b i (indexhash , n)!= 1 :

j=j+1
indexhash=i n t ((sha1 . new(s t r (j)+ s t r i) .
hexd ige s t () [: 1 2]) , 1 6) % n

r = random . rand int (1 , n)
randomsquare = r ∗∗2 % n
mask = random . rand int (0 , 1)
r e s u l t z = (indexhash ∗ (randomsquare) ∗

73

(y ∗∗ mask)) % n
c l i e n t e n c r y p t . append (mask)
i n d e x e s L i s t . append (r e s u l t z)

jsonData = d i c t (z ip (range (l en (i n d e x e s L i s t)) ,
i n d e x e s L i s t))

stop = raw input (’ ’)
print ’ C l i en t encrypts the indexes : ’ , jsonData
u r l = ’ http :// l o c a l h o s t :8080/ pr ivatequery / query ’
responce = r e q u e s t s . post (ur l , j s on=jsonData)
responce = responce . j son ()
p r i n t ” query ” , i n d e x e s L i s t
p r i n t ” responce ” , responce
f i n a l r e s u l t = []
for i in range (10) :

i f responce [s t r (i)]==”QR” :
i f c l i e n t e n c r y p t [i] == 0 :

f i n a l r e s u l t . append (c l i e n t f i l t e r .
b i t a r r a y [indexes [i]])

else :
f i n a l r e s u l t . append (not (c l i e n t f i l t e r .

b i t a r r a y [indexes [i]]))
else :

i f c l i e n t e n c r y p t [i] == 0 :
f i n a l r e s u l t . append (not (c l i e n t f i l t e r .

b i t a r r a y [indexes [i]]))
else :

f i n a l r e s u l t . append (c l i e n t f i l t e r .
b i t a r r a y [indexes [i]])

#−−
stop = raw input (’ ’)
i f f i n a l r e s u l t . count (Fa l se)==0:

print ” item i s in bloom f i l t e r . ”
else :

print ” item i s not in bloom f i l t e r . ”

i f name == ” main ” :
g e t F i l t e r F i l e ()
getPubl icKeys ()
query ()

74

D Protocol 2

Protoco l2
Server Part
import time
s t a r t = time . time ()
from pybloom import BloomFi lter
f = BloomFi lter (capac i ty , e r r o r ra t e)
from Crypto . Hash import MD5 as md5
from Crypto . PublicKey import RSA
from Crypto . U t i l . number import getRandomRange
loadedPr ivate = RSA. generate (2048)
loadedPubl i c = loadedPr ivate . pub l i ckey ()
for x in range (capac i ty) :

messageHash = md5 . new(s t r (x)) . d i g e s t ()
Sign = loadedPr ivate . s i gn (messageHash ,

l oadedPr ivate . n) [0]
f . add (Sign)

end = time . time ()
print ”Required−time−to−bui ld−EB−i s : ” ,

end − s t a r t , ” Seconds ”
C l i e n t Part
import time
s t a r t = time . time ()
import random
message=random . rand int (1 , capac i ty)
def generateBl indFactor (RSAobj) :

return (getRandomRange (1 , RSAobj . key . n−1,
randfunc=RSAobj . randfunc))

g e n e r a t e s r
r = generateBl indFactor (loadedPr ivate)
messagehash = md5 . new(s t r (message)) . d i g e s t ()
bl indmessage = loadedPubl i c . b l ind (messagehash , r)
b l indS igned = loadedPr ivate . s i gn (bl indmessage ,

l oadedPr ivate . n) [0]
unbl ind = loadedPubl i c . unbl ind (bl indSigned , r)
print unbl ind in f
end = time . time ()
print ”Required−time−f o r−c l i e n t−to−f ind− i f
message−i s−in−BF−or−not−i s : ” , end − s t a r t , ” Seconds ”

75

