UNIVERSITY OF TURKU Faculty of Medicine

SIKSTUS, SYLVIA: AA29504 Modulation of Radioligand Binding to $\alpha\beta\gamma2$ and $\alpha\beta\delta$ GABAA Receptors

Master's thesis, 22 pages Pharmacology, Drug Development and Therapeutics March 2017

In this study, we researched the effects of an allosteric modulator on GABAA receptors. Allosteric modulator is a compound which indirectly modulates the effects of ligands at receptors. The allosteric modulator used in this study was [2-amino-4-(2,4,6-trimethylbenzylamino)-phenyl]-carbamic acid ethyl ester (AA29504) that has been suggested to be selective for δ subunit-containing GABAA receptors. The main focus was to compare the effects of AA29504 on $\gamma 2$ and δ subunit-containing GABAA receptors. δ -containing receptors are located extrasynaptically and therefore modulate tonic inhibition in the brain, while $\gamma 2$ -containing are located in both synaptic and extrasynaptic sites.

We studied the effect of AA29504 using radioligand binding assays. We used forebrains of wild-type (WT) and GABA_A δ subunit knockout (δ KO) mice, and recombinant receptors expressed in human embryonic kidney 293 cell line. We measured the effect of AA29504 on binding of both [3 H]GABA and [3 H]muscimol, and on the association and dissociation of [3 H]muscimol. We also measured the effect of AA29504 on GABA and THIP induced displacement of [3 H]EBOB binding.

AA29504 stimulated [³H]GABA and [³H]muscimol binding and potentiated GABA- and THIP-induced displacement of [³H]EBOB binding to both WT and δ KO mouse forebrain GABAA receptors. However, it had no effect on GABA-agonist binding to recombinant $\alpha\beta\delta$ receptors while strongly stimulating it to $\alpha\beta\gamma2$ receptors. Our results question the hypothesis of AA29504 being a δ subunit-specific allosteric modulator.

Key words: GABA, muscimol, AA29504, GABA_A receptor, EBOB, allosteric modulation