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ABSTRACT 

Sea buckthorn (Hippophaë rhamnoides L., SB) is regarded as a raw material of 
high economic value and a source of many health-related bioactive compounds, 
such as flavonol glycosides (FGs), proanthocyanidins (PAs) and ethyl β-D-
glucopyranoside (EG) in berries and ellagitannins (ETs) in leaves. These 
phenolic compounds are also well known components in various foods inducing 
astringent and bitter sensations. Ethyl β-D-glucopyranoside, an alkylated glucose, 
is among the major chemotaxonomic characteristics in SB berries.  

The aims of the current work were: 1) To qualitatively and quantitatively 
analyze FGs, PAs in SB berries and purees, as well as FGs and ETs in SB leaf 
and leaf tea-type beverages; 2) To determine the effects of genetic background, 
growth sites and processing methods on the contents and compositions of these 
compounds; 3) To investigate the roles of FGs, PAs and EGs in the sensory 
quality of SB purees/juices; 4) To study the antioxidant activities (AAs) in leaf 
tea-type infusions,  the correlations with AAs, FGs and ETs.   

Twenty-six flavonol glycosides with isorhamnetin and quercetin as the major 
aglycones were found in the wild SB (ssp. sinensis) berries from China and 
cultivated berries (ssp. mongolica) from Finland and Canada. The contents of 
FGs varied from 23 to 250 mg/100 g fresh berries, which were significantly 
higher in ssp. sinensis than in ssp. mongolica. The berries of ‘Oranzhevaya’ and 
‘Prevoshodnaya’ had the lowest (23 mg/100 g) and the highest content of FGs 
(80 mg/100 g), respectively. The samples from Kittilä (North Finland) had higher 
levels of most FGs than those from Turku (South Finland) and Québec (Canada). 
Among the ssp. sinensis berries, the berries from Sichuan had the highest 
contents and unique profiles of FGs. Increasing trends were detected in the 
contents of most FGs as the altitude increased and as the latitude decreased.  

The role of ethyl β-D-glucopyranoside was investigated in the sensory profiles 
of SB juices of ‘Terhi’ and ‘Tytti’. The taste threshold of pure EG was estimated 
in water solution as 1.1 ± 1.3 g/L, and the suprathreshold aqueous EG solution 
(5.0 g/L) was perceived mainly as bitter. Addition of EG increased bitterness of 
SB juice, which correlated with the EG content, as well as with the ratios of 
EG/acids and EG/sugars. The roles of FGs and PAs were also investigated in 
purees of six SB cultivars. The sensory profiles of the purees were dominated by 
intense sourness due to abundant malic acid, followed by astringency and 
bitterness. Malic acid and isorhamnetin glycosides related strongly to the 
astringency, whereas PA dimers, PA trimers and quercetin glycosides had less 
influence. Moreover, the acids/phenolic compounds ratios were more important 
predictors of bitterness than the individual variables alone.  
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Composition and contents of flavonol glycosides and ellagitannins as well as 
antioxidant activities were investigated in tea-type infusions processed from sea 
buckthorn leaves using different drying methods. These infusions had high 
content of phenolic substances together with associated strong antioxidant 
activities, were considerably acceptable for consumers. Isorhamnetin-3-O-
glucoside-7-O-rhamnoside, isorhamnetin-3-O-rutinoside and kaempferol-3-O-
hexoside-7-O-rhamnoside were the three major FGs, and stachyurin and 
casuarinin were the most abundant ETs in all the samples. Significant differences 
were found in the contents of most ETs between the infusions of ‘Terhi’ and 
‘Tytti’ (p < 0.05). The ET contents varied significantly among the different 
processing methods, whereas less effect was seen on the FGs contents. Thermal 
processing decreased the antioxidant activities of the infusions. Additionally, 
significant contents of phenolic compounds were left in the leaf residues after 
the hot water extractions. 
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SUOMENKIELINEN ABSTRAKTI 

Tyrni (Hippophaë rhamnoides L.) on taloudellisesti tärkeä elintarvikkeiden 
raaka-aine. Sen marjat ovat monien terveyteen vaikuttavien bioaktiivisten 
yhdisteiden, kuten flavonoliglykosidien (FG), proantosyanidiinien (PA) ja 
etyyli-β-D-glukosidin lähde, ja kasvin lehdissä on runsaasti ellagitanniineja. 
Nämä fenoliset yhdisteet ovat myös tunnettuja astringoivaa suutuntumaa ja 
karvautta aikaansaavina komponentteja monissa elintarvikkeissa. Etyyli-β-D-
glukosidi, alkyloitunut glukoosi, on yksi tyrnin marjojen merkittävimmistä, 
tunnusomaisista kemotaksonomisista yhdisteistä.   

Tämän tutkimuksen tavoitteina oli 1) määrittää laadullisesti ja määrällisesti 
FG:t ja PA:t marjoista ja soseista sekä FG:t ja ET:t lehdistä ja lehdistä 
valmistetuista teenkaltaisista juomista, 2) määrittää perinnöllisen taustan, 
kasvupaikan ja käsittelymenetelmien vaikutukset yhdisteiden määriin ja 
koostumukseen, 3) tarkastella FG:ien, PA:ien ja EG:n merkitystä soseiden ja 
mehujen aistittavalle laadulle ja 4) tutkia lehdistä valmistettujen teenkaltaisten 
juomien antioksidanttiaktiivisuutta (AA) ja yhteyksiä AA:ien ja FG:ien sekä 
ET:ien välillä.   

26 flavonoliglykosidia, joiden pääasialliset aglykonit olivat isoramnetiini tai 
kversetiini, havaittiin luonnonvaraisista kiinalaisista tyrneistä (alalaji sinensis) ja 
viljellyistä suomalaisista ja kanadalaisista tyrneistä (alalaji mongolica). 
Yhdisteiden kokonaispitoisuudet vaihtelivat tuoreissa marjoissa välillä 23 ja 250 
mg/100 g. Pitoisuudet olivat merkitsevästi suuremmat sinensis-alalajin kuin 
mongolica-alalajin marjoissa. ”Oranzhevaya”-lajikkeesta löytyi pienin (23 
mg/100 g) ja ”Prevoshodnaya”-lajikkeesta suurin pitoisuus (80 mg/100 g) 
flavonoliglykosideja. Kittilän (Pohjois-Suomessa) näytteissä useimpien FG:ien 
pitoisuudet olivat korkeampia kuin Turun (Etelä-Suomessa) tai Quebecin 
(Kanada) näytteissä. Sichuanin (Kiina) näytteissä oli suurin FG-pitoisuus ja 
yksilöllisin koostumus yhdisteitä. Useimpien FG-yhdisteiden pitoisuus kasvoi 
altitudin kasvaessa tai leveysasteen pienentyessä.    

EG:n merkitystä aistittavaan laatuun tarkasteltiin ”Terhi”- ja ”Tytti”-
lajikkeista valmistetuissa mehuissa. Puhtaan EG:n makukynnykseksi vedessä 
määritettiin 1,1 ± 1,3 g/L ja kynnystä korkeamman pitoisuuden (5,0 g/L) 
vesiliuos aistittiin pääasiassa karvaana. EG:n lisäys nosti tyrnimehun karvautta, 
mikä korreloi EG:n pitoisuuden sekä EG:n ja happojen ja EG:n ja sokerien 
pitoisuuksien suhteiden kanssa. FG:ien ja PA:ien merkitystä tarkasteltiin 
kuudesta tyrnilajikkeesta valmistetuissa soseissa. Soseiden aistittavan laadun 
profiilia hallitsi voimakas omenahaposta johtuva happamuus sekä seuraavina 
astringoivuus ja karvaus. Omenahappo ja isoramnetiinin glykosidit olivat 
yhteydessä astringoivuuteen kun puolestaan PA:n dimeerit tai trimeerit sekä 
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kversetiinin glykosidit olivat vähemmän merkittäviä. Lisäksi happojen ja 
fenolisten yhdisteiden suhde oli merkittävämpi karvautta ennustava tekijä kuin 
yksittäiset muuttujat yksinään.  

Tyrnin lehdistä erilaisilla kuivausmenetelmillä valmistetuista teentyyppisistä 
haudukkeista tarkasteltiin flavonoliglykosidien ja ellagitanniinien koostumusta 
ja pitoisuuksia sekä antioksidatiivisia vaikutuksia. Kuluttajat kokivat haudukkeet 
hyväksyttäviksi. Niissä oli korkeita pitoisuuksia antioksidatiivisuuteen 
yhdistettyjä yhdisteitä. Isoramnetiini-3-O-glukosidi-7-O-ramnosidi, 
isoramnetiini-3-O-rutinosidi ja kemferoli-3-O-heksosidi-7-O-ramnosidi olivat 
merkittävimmät FG:t ja stakyuriini ja kasuariini olivat merkittävimmät ET:t 
kaikissa näytteissä. Tyrnilajikkeista valmistettujen haudukkeiden välillä oli 
merkitseviä eroja useimpien ET:ien pitoisuuksissa, jotka vaihtelivat 
merkitsevästi eri käsittelymenetelmien välillä, kun taas FG:ien pitoisuuksiin 
menetelmillä oli vähemmän vaikutusta. Lämpökäsittely vähensi haudukkeiden 
antioksidatiivista aktiivisuutta. Lisäksi merkittäviä pitoisuuksia fenolisia 
yhdisteitä jäi lehtien jäännöksiin kuumavesiuuton jälkeen.   
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1 INTRODUCTION 

Sea buckthorn (Hippophaë rhamnoides L.) widely distributed in Asia and 
Europe, is a highly valued plant, due to its nutritional, phyto-therapeutic and 
environmental values (Bal, Meda, Naik & Satya, 2011, Li & Schroeder, 1996). 
Eight subspecies are included in the H. rhamnoides (Sun et al., 2002), among 
which ssp. sinensis and ssp. mongolica are the most abundant and commercially 
interesting. The female cultivars ‘Terhi’ and ‘Tytti’, originating from Finnish 
wild strains of ssp. rhamnoides, were bred and cultivated in 2000. Due to their 
characteristics of winter-hardiness, resistance to disease (e.g. stem canker) and 
moderate growth, ‘Terhi’ and ‘Tytti’ have become the main SB cultivars in 
Finland (Karhu, 2003). The berries and leaves of SB are both rich sources of 
bioactive components, such as flavonol glycosides (FGs), proanthocyanidins 
(PAs), ellagitannins (ETs), phenolic acids, phytosterols and fatty acids (Bal, 
Meda, Naik & Satya, 2011, Hellström, Pihlava, Marnila, Mattila & Kauppinen, 
2013, Pop et al., 2014, Teleszko, Wojdyło, Rudzińska, Oszmiański & Golis, 
2015). These compounds may promote human health mainly through anti-
oxidative (Gao, Ohlander, Jeppsson, Björk & Trajkovski, 2000), anti-
inflammatory (Yang & Kortesniemi, 2015), radioprotective (Chawla et al., 2007), 
tissue repairing (Geetha, Jayamurthy, Pal, Pandey, Kumar & Sawhney, 2008), 
and cardiovascular effects (Suomela, Ahotupa, Yang, Vasankari & Kallio, 2006). 

Flavonols, mainly as glycosides, constitute the main group of flavonoids 
present in SB berries (Teleszko et al., 2015), which also contain notable amounts 
of PAs (Hellström, Törrönen & Mattila, 2009, Yang, Laaksonen, Kallio & Yang, 
2016a). The content of the phenolic compounds in the berry varies according to 
origin, weather condition, growth location, latitude and harvest date 
(Kortesniemi, Sinkkonen, Yang & Kallio, 2017, Kortesniemi, Sinkkonen, Yang 
& Kallio, 2014, Ma et al., 2016, Yang et al., 2009, Yang et al., 2016a, Yang, 
Laaksonen, Kallio & Yang, 2016b, Zheng, Kallio & Yang, 2016). FGs have been 
found to induce an astringent sensation even at very low concentrations in 
sensory evaluations (Hufnagel & Hofmann, 2008a, Scharbert, Holzmann & 
Hofmann, 2004). However, flavonol aglycones (FAs) may be perceived as bitter 
due to activation of taste receptors of bitterness (Roland et al., 2013). PAs have 
an important role in the astringency and bitterness of plant-based foods and 
beverages. Although PAs are found less abundant than FGs in SB berries, they 
may play a significant role in the astringent and bitter sensations due to their 
relatively low threshold values (Hufnagel & Hofmann, 2008a, Laaksonen et al., 
2015, Schwarz & Hofmann, 2007). 

SB berry pulp was found to contain a high content of phenolic acids 
(Arimboor, Kumar & Arumughan, 2008). Salicylic acid was the dominant one 
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in SB berries, accounting up to 74 % of the total phenolic acids in six Europe 
cultivars (Zadernowski, Naczk, Czaplicki, Rubinskiene & Szałkiewicz, 2005a). 

Sea buckthorn berries contain ethyl β-D-glucopyranoside (EG), and its 
content along with other sugars varies significantly with genotype, harvesting 
time, and origin (Tiitinen et al., 2006, Ohkawa et al, 2009, Yang, 2009, Zheng et 
al., 2011 and Zheng et al., 2012). In some berries of ssp. rhamnoides, the content 
of EG is up to 1.9 g/100 ml juice, dominating the sugar fraction (Yang, 2009). 
Moreover, EG has been found in human plasma and urine after a SB meal based 
on an NMR metabolomics study (Lindstedt et al., 2014). Thus, the content of EG 
in berries is among the major chemotaxonomic characteristics in SB.  

Additionally, sea buckthorn berries also contain oil in the seeds, the fruit pulp 
and peel. SB have primarily linoleic (18:2n−6) and α-linolenic (18:3n−3) acids 
with n−6/n−3 ratios close to 1 (Yang et al., 2011). It has been reported that SB 
oil can relieve symptoms of dry eyes (Jarvinen et al., 2011, Larmo et al., 2010). 

Despite the widely shown health-beneficial effects, berries are not commonly 
consumed in the US and Europe. Orosensory properties of food are the most 
important drivers of consumer preferences, choices and acceptance 
(Drewnowski, 1997, Geertsen, Allesen-Holm, Byrne & Giacalone, 2016). 
Therefore, improving the sensory properties is essential to increase intake of 
certain food such as berries and berry products. SB berries have a unique taste, 
which is typically described as sour, astringent and bitter, with a very low degree 
of sweet characteristics. Generally, the contents of sugars and acids, as well as 
the ratio between sugar and acid play a crucial role in determining the flavor and 
consumer acceptance of berries and berry products (Laaksonen et al., 2013, 
Tiitinen, Hakala & Kallio, 2005). The utilization of berries is often limited as 
food and food ingredients due to negative features, such as bitter or astringent 
properties (Laaksonen, Knaapila, Niva, Deegan & Sandell, 2016). Sensory 
properties of SB berries are among the important criteria for cultivation, breeding 
and industrial utilization of sea buckthorn. 

Sea buckthorn leaves are alternate, narrow-lanceolate with a silver-grey color 
on the bottom side. In ancient Greece, the SB leaves have been used to feed horse 
for weight gain and shiny hair. Recently, SB leaf extracts have been scientifically 
investigated and various pharmacological activities have been reported including 
anti-inflammatory, immunomodulatory, radio protective, adaptogenic activity 
(non-specific resistance of the body) and tissue regenerative properties (Ganju et 
al., 2005, Geetha, Singh, Ram, Ilavazhagan, Banerjee & Sawhney, 2005, Gupta, 
Upadhyay, Sawhney & Kumar, 2008, Gupta et al., 2005, Saggu et al., 2007). 
Moreover, the extracts of SB leaves have been used in the treatment of colitis, 
diarrhea and enterocolitis in humans and animals (Guliyev, Gul & Yildirim, 2004, 
Tsybikova et al., 1983). Only small amounts of SB leaves are applied as raw 
materials to produce fodder, beverages and nutraceuticals in some European 
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countries, and the majority of SB leaves has remained as agricultural wastes after 
berry harvesting. 

SB leaves have several natural advantages, such as large production volume, 
easy to collect, length of acquisition cycle, simple procedures for production and 
processing, and easy storage. Hence, increased exploitation of SB leaves will 
help farmers to improve profitability and to promote the sustainable agriculture 
and the rational use of SB resources. SB leaves are rich in isorhamnetin and 
quercetin glycosides (Pop et al., 2013). FGs are of interest because of their 
evident health benefits, such as antioxidative capacity against free radicals, lower 
incidence of type 2 diabetes, and reducing the risk of thrombogenesis and 
coronary heart disease  (Chen & Chen, 2013, Cheng et al., 2003, Jacques, 
Cassidy, Rogers, Peterson, Meigs & Dwyer, 2013). Other groups of well-known 
plant phenolics found in SB leaves are hydrolyzable tannins and more 
specifically ETs. The content of ETs is high in SB leaves, more than 100 mg/g 
DW (Suvanto et al., 2018, Tian et al., 2017). Like other polyphenols, ETs also 
possess a wide range of biological activities, such as antioxidative functions, 
anti-inflammatory activities, and prebiotic effects (Landete, 2011). In order to 
provide a better understanding of potential health benefits, identification and 
quantitative determination of phenolic compounds are of special importance in 
the SB leaves and related products. 

In the first part of this doctoral thesis, a literature review is presented, 
summarizing the recent publications on chemical characteristics, health effects, 
sensory properties and biological activities of phenolic and non-phenolic 
compounds in SB berries and leaves. Furthermore, the review also covers the 
challenges of development and processing of SB products. 

In the experimental part of the doctoral thesis, SB berries of two subspecies 
(ssp. mongolica and ssp. sinensis) were compared based on the content and 
composition of FGs in eleven inconsecutive years. The effects of genetic 
background, growth sites, altitude and latitude on flavonol composition and 
content were studied. Also the taste threshold of EG in water was determined, 
and the roles of EG, FGs and PAs in the sensory quality of SB juices/purees were 
investigated, respectively, especially in the astringent properties and bitterness. 
In the study of ssp. rhamnoides leaves, the compositions and contents of FGs 
and ETs, and AAs were investigated in tea-type infusions. And the influence of 
cultivars (‘Terhi’ and ‘Tytti’) and processing methods on contents and 
compositions of ETs and FGs were studied. Possible association between AAs 
and FGs as well as ETs was explored. In addition, “tea” residues and fresh leaves 
were also studied.  
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2 REVIEW OF THE LITERATURE 

2.1 Compounds of sea buckthorn associated with 
potential health effects 

Improvement in knowledge on the role of foods in human health has increased 
consumer attention on various nutraceuticals and health promoting foods. 
Berries and berry products may be an important part of a healthy diet because of 
the high content of bioactive compounds. Sea buckthorn is a rich source of a 
wide variety of non-nutritive and nutritive components, such as sugars, 
carotenoids, vitamins, minerals, flavonoids, phenolic acids, and tannins. The 
following is a comprehensive review of the main bioactive compounds in sea 
buckthorn, including their structures, absorption, and biological activities and 
potential effect on human health.  

2.1.1 Flavonol glycosides 

Flavonol glycosides are a group of flavonoids, which are widely distributed in 
fruits and vegetables. It has been reported that FGs may have a potential role in 
reducing the risk and managing of chronic diseases such as cancers, diabetes and 
cardiovascular diseases (Andrae-Marobela, Ghislain, Okatch & Majinda, 2013, 
Bal, Meda, Naik & Satya, 2011, Hertog et al., 1995, Jacques, Cassidy, Rogers, 
Peterson, Meigs & Dwyer, 2013). Some studies have shown that increasing 
dietary intake of FGs of SB berries may reduce cardio-vascular mortality (Cheng, 
Kondo, Suzuki, Ikeda, Meng & Umemura, 2003, Clair, Yang, Raija, Heikki, 
Gerald & Minihane, 2002).  

The structure of a flavonol consists of two aromatic rings and one heterocyclic 
pyran ring (C6–C3–C6) (Figure 1) and has a double bond between C2 and C3, 
and a keto group at C4 as well as a hydroxyl group at C3. The antioxidant activity 
of flavonoids depends on the location and number of free hydroxyl groups in 
their skeleton. For instance, in flavonols, the number and pattern of hydroxyl 
groups in the A and B rings are major factors determining the free radical 
scavenging potential of the compounds (Nabavi, Nabavi, Eslami & Moghaddam, 
2012).  

Flavonols such as kaempferol, quercetin, myricetin and isorhamnetin exist in 
plant foods as sugar conjugates (Figure 1).  The aglycones can be glycosylated 
with even up to four or more saccharides. The most common monosaccharides 
present in the sugar moieties of flavonol glycosides are glucose (G), galactose, 
rhamnose (Rh) and xylose, whereas typical disaccharides are sophorose (S) and 
rutinose (R) (Veitch & Grayer, 2008). The preferred site of glycosylation is C3, 
and less frequently the position C7. The presence of various saccharides and 
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complex linkages (e.g. acylated compounds) results in an enormous number of 
diverse FGs in plant foods. 

 

 
 

Figure 1. Structures of flavonol aglycones. 

 
Flavonol glycosides form the biggest class of phenolic compounds in SB 

berries (Teleszko, Wojdyło, Rudzińska, Oszmiański & Golis, 2015). 
Isorhamnetin is the typical and most abundant aglycone in FGs in sea buckthorn, 
and isorhamnetin-3-O-rutinoside and isorhamnetin-3-O-glucoside-7-O-
rhamnoside are the two major FGs in the berries studied (Ma et al., 2016, Zheng, 
Kallio & Yang, 2016). Low quantities of quercetin and kaempferol glycosides 
are also found in the berries (Pop et al., 2013, Rösch, Krumbein, Mügge & Kroh, 
2004). Isorhamnetin is less common in fruits and berries than kaempferol and 
quercetin (Belitz, Grosch & Schieberle, 2004). However, it has been reported 
that isorhamnetin-3-O-rutinoside is the major phenolic compound in copao fruits 
(Eulychnia acida Phil.) in the family Cactaceae (Jiménez-Aspee et al., 2014). 
Cocoa, onions and berries contain quercetin glycosides in abundance, which are 
also found in olive oil, red wine, and tea (Tan et al., 2003). A high concentration 
of kaempferol is found in leafy vegetables, such as spinach, kale, endive and 
fennel. Leaves of SB also contain abundant flavonols. Pop et al. reported that SB 
leaves are rich in FGs with content up to 11.2 mg/g DW. The glycosides of 
isorhamnetin, quercetin and kaempferol are the major FGs in the extract of SB 
leaves (Pop et al., 2013, Tian et al., 2017, Zu, Li, Fu & Zhao, 2006).  

Flavonols are bioactive compounds associated with human health. Quercetin 
is the main flavonol in the human diet (Ahn, Lee, Kim, Park & Ha, 2008). In a 
Finnish cohort, quercetin constituted on average about 95% of the flavonoid 
intake (Knekt, Jarvinen, Reunanen & Maatela, 1996). Quercetin is known as a 
potent natural antioxidant which inhibited oxidative stress under in vitro and in 
vivo conditions (Nabavi, Nabavi, Eslami & Moghaddam, 2012). Free radicals 
and lipid peroxides can be quenched directly by quercetin. Moreover, quercetin 
indirectly enhances the generation of non-enzymatic antioxidants and also 
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increases the activities of antioxidant enzymes in vivo (Nabavi, Nabavi, Eslami 
& Moghaddam, 2012). Recently, circumstantial evidence suggests that quercetin 
is able to ameliorate obesity through some molecular pathways (Nabavi, Russo, 
Daglia & Nabavi, 2015). Yang et al. also found the potential of isorhamnetin in 
protecting hepatocytes against oxidative stress by Nrf2 activation and in 
inducing the expressions of its downstream genes (Yang et al., 2014). It has been 
further shown that kaempferol glycosides have an anti-obesity and anti-diabetic 
potential through reducing the accumulation of adipose tissue resulting in 
improvement of hyperlipidemia as well as diabetes in obese mice (Zang, Zhang, 
Igarashi & Yu, 2015). Despite the wide range of pharmacological activities of 
quercetin, it is important to note that there are some limitations for clinical trials 
(oral administration) on quercetin. Due to its narrow therapeutic dose-range in 
vitro, the risk of neurotoxicity is not negligible (Ossola, Kääriäinen & Männistö, 
2009).  

In foods, glycosides are the main forms of flavonol compounds. The chemical 
structure of the flavonol aglycones and the total number of sugar moieties, have 
an effect on the bioavailability and bioactivity related to the digestion stage 
(Manach, Scalbert, Morand, Remesy & Jimenez, 2004). In the antioxidant assay 
of tea infusions, the quercetin mono-glycosides were more effective than the 
diglycosides and the triglycosides; kaempferol aglycone was about 3–10 times 
more effective than kaempferol glycosides (Plumb, Price & Williamson, 1999). 
Antunes-Ricardo et al. showed glycosylation to have a significant effect on the 
anti-proliferative effect of isorhamnetin (Antunes-Ricardo, Moreno-García, 
Gutiérrez-Uribe, Aráiz-Hernández, Alvarez & Serna-Saldivar, 2014). 
Diglycosides of isorhamnetin were shown to be more cytotoxic than the free 
aglycone or triglycosides when HT-29 cells were tested (Antunes-Ricardo, 
Moreno-García, Gutiérrez-Uribe, Aráiz-Hernández, Alvarez & Serna-Saldivar, 
2014). Aglycones and only some glucosides can be absorbed in the small 
intestine. Those flavonols linked e.g. to a rhamnose moiety must reach the colon 
and be hydrolyzed by rhamnosidases of the microflora before absorption 
(Hollman & Katan, 1997). In the case of quercetin glycosides, the bioavailability 
of quercetin 4′-glucoside is about 5 times higher than that of 4′-rutinoside (rutin) 
in humans. The maximum absorption occurs 0.5–0.7 h after ingestion of 
quercetin 4′-glucoside and 6–9 h after ingestion of the same quantity of rutin. 
(Graefe et al., 2001, Hollman, Bijsman, van Gameren, Cnossen, de Vries & 
Katan, 1999). Similarly, due to the dominance of glucosides, absorption of 
quercetin after ingestion of onions is more rapid and efficient than after ingestion 
of apples containing a variety of glycosides and tea rich in quercetin-3-rutinoside 
(Hollman, van Trijp, Buysman, Mengelers, de Vries & Katan, 1997). 
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2.1.2 Proanthocyanidins 

Tannins comprise both condensed tannins, known as proanthocyanidins (PAs), 
and hydrolysable tannins. PAs are oligomers and polymers consisting of flavan-
3-ol units produced via the biosynthetic pathway of flavonoids. Several reviews 
provide excellent summaries of the agricultural benefits (Aerts, Barry & 
McNabb, 1999), chemistry (Ferreira & Slade, 2002), and biochemistry (Marles, 
Ray & Gruber, 2003) of PAs. In recent years, there has been an increasing 
interest in PAs due to their potentially beneficial effects on human health, and 
the important sensory properties of fresh fruit and derived products (e.g. wine). 
 

 

Figure 2. Structures of flavan-3-ol units. 

 
The flavan-3-ol units have the typical C6–C3–C6 flavonoid skeleton. The 

structure of flavan-3-ols is shown in Figure 2, in which the two benzene rings 
and a heterocyclic dihydropyran ring are distinguished by the letters A, B and C. 
PAs differ structurally according to the hydroxylation pattern and 
stereochemistry of the flavan-3-ol units, as well as the type of linkages between 
monomeric units and the numbers of the monomeric units, also known as the 
degree of polymerization in the molecule. The flavan-3-ol units with a 3′, 5′, -
dihydroxy substitution and a 3′, 5′, 5-trihydroxy substitution are called 
(epi)catechin and (epi)gallocatechin, respectively. PAs consisting of only 
(epi)catechin or (epi)gallocatechin are known as procyanidins (PCs) and 
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prodelphinidins (PDs), respectively. PCs, PDs or mixed PC/PDs are most 
common in food, such as raspberries, strawberries, almonds and some beans. The 
oligomers of the SB pomace consisted mainly of PD subunits whereas PCs were 
present in smaller amounts (Rösch, Mügge, Fogliano & Kroh, 2004). The 
monomeric units of flavan-3-ols are linked by C–C (via C4–C8 and/or C4–C6) 
as in the case of B-type PAs. Occasionally, additional C–O–C (C2–O–C7) bonds 
are present together with C-C linkage between the monomer units, thereby 
forming A-type proanthocyanidins. Most of the common PAs are of B-type, 
whereas A-type PAs are present in a few specific foods only (Deng, Xu, Zhang, 
Li, Gan & Li, 2013). 

Recently, a rapid and sensitive method for profiling of proanthocyanidins of 
SB berries was established by researchers of our lab. PAs with degree of 
polymerization (DP) from 2 to 11 were detected (Kallio, Yang, Liu & Yang, 
2014). Only B-type PAs were found with this method. The contents of dimeric, 
trimeric, and tetrameric were in the range of 1.4−8.9, 1.3−9.5, 1.0−7.1 mg/100 g 
DW, and the content of total PAs varied from 390 to 1940 mg/100 g DW among 
the berries of ssp. rhamnoides, ssp. sinensis and ssp. mongolica (Yang et al., 
2016a). In ssp. rhamnoides, berries grown in north Finland contained higher total 
PAs (2−3 times) than that found in south Finland. However, the cultivars of 
‘Terhi’ and ‘Tytti’ from north Finland contained lower content of oligomeric 
PAs than those in south Finland (Yang et al., 2016b). In north Finland, the 
weather conditions, including the length and radiation sum of the growth season 
as well as the temperature sum, were negatively correlated with the total PAs but 
positively with PA oligomers (Yang et al., 2016b). Arimboor et al. reported that 
SB leaves contained lower content PAs compared with pulp and seeds of SB 
berries (Arimboor & Arumughan, 2011). Due to the polymeric nature of PAs, 
their analysis and estimation in food is a challenging task.  

Many experimental studies have suggested potential health-beneficial effects 
of various crude and purified PA fractions from plant tissues (Table 1). The 
already documented health effects of grapes (wines, juices and grape seed 
extracts) (Bagchi et al., 2000, Katiyar, Pal & Prasad, 2017) and cranberry juice 
(Foo, Lu, Howell & Vorsa, 2000) are further validated. It has even been proposed 
that proanthocyanidins of SB pomace possessed antioxidant capacities that were 
higher or comparable to that of ascorbic acid or Trolox (Rösch, Krumbein & 
Kroh, 2004). The DP did not affect significantly the antioxidant capacities of 
monomeric flavan-3-ols and dimeric PAs in sea buckthorn (Rösch, Krumbein & 
Kroh, 2004). Several clinical trials with human subjects have suggested that 
consumption of grape seed PAs may promote cardiovascular health via 
significant reduction of oxidized low-density lipoproteins (Vinson et al., 2002), 
and indirect reduction of plasma lipid hydroperoxide levels during the 
postprandial phase (Natella, Belelli, Gentili, Ursini & Scaccini, 2002).  
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The bioavailability, antinutrition and potential toxicity of PAs are also an 
important issue. The DP value affects largely the absorption of PAs. After a PA-
rich diet, PA dimers have been detected in human plasma but their absorption is 
less than that of the flavanol monomer. PAs are poorly absorbed in the gut, and 
polymers with DP > 4 are not absorbed at all in the small intestine (Manach, 
Williamson, Morand, Scalbert & Remesy, 2005).  Even though the degree of 
polymerization greatly affects intestinal absorption of PAs, the health effects of 
PAs may not require efficient absorption, and the compounds that are not 
absorbed in the intestine still may have a positive influence on health due to their 
bioactivities in the gut (Teixeira, 2002). PDs may strongly bind proteins in the 
rumen so that the desired dissociation of the tannin–protein complex in the small 
intestine is inhibited (Mueller-Harvey, 2006). Thus, high relative proportions of 
PD may result in an antinutritional effect. Grape seed extracts rich in PAs did 
not show genotoxic activity through toxicity testing in animal or in cell models 
(Yamakoshi, Saito, Kataoka & Kikuchi, 2002). Further, as supplementation to 
feed, long-term consumption of PAs of grape seeds by laboratory animals did 
not result in apparent signs of toxicity (Vaid, Sharma & Katiyar, 2010). 

 
Table 1.  Some potential health-protective effects of proanthocyanidins (PAs). 

 
Effect Source Reference 
Anti-non-melanoma 
skin cancer Grape seeds Katiyar, Pal & Prasad, 

2017 
Inhibition of 
bacterial adhesion to 
urinary tract 

Cranberry Foo, Lu, Howell & 
Vorsa, 2000 

Immunomodulatory Ecdysanthera utilis Lin, Kuo & Chou, 2002 

Antimutagenic Hamamelis virginiana 
bark Dauer et al, 2003 

Reduction of skin 
irritation 

Hamamelis virginiana 
bark Deters et al, 2001 

 

2.1.3 Ellagitannins 

Ellagitannins (ETs), which belong to the hydrolyzable tannins, are water-soluble 
phenolic compounds of high molecular weight. The molecular weights of ETs 
can be up to 4000 Da, and they precipitate proteins and alkaloids (Santos-Buelga 
& Scalbert, 2000). ETs constitute a complex class of polyphenols characterized 
by one or more hexahydroxydiphenoyl (HHDP) group, which is a basic structure 
of the majority of the ET monomers. When exposed to acids or bases, hydrolysis 
of ETs yields hexahydroxydiphenic acid, which spontaneously rearranges into 
the water-insoluble ellagic acid (EA). This reaction has been utilized for 
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detection and quantification of ETs as EA equivalents after acid hydrolysis of 
food samples (Bate-Smith, 1962).  

ETs occur naturally in certain fruits, herbs and seeds. ETs have been reported 
by simple class detection in extracts from various plant species of economic 
importance (Haslam, 1989). However, screening was largely carried out in 
leaves and not in the edible parts of the plants. Finnish sea buckthorn (Hippophaë 
rhamnoides ssp. rhamnoides) leaves are shown to have a high content of ETs, 
more than 100 mg/g DW (Moilanen, Koskinen & Salminen, 2015, Suvanto et al., 
2018). Ten major ETs were identified and quantified in SB leaves, of these 
compounds, hippophaenin C, stachyurin, and casuarinin (Figure 3) were on 
average the most abundant compounds (Suvanto et al., 2018). Ellagitannins 
purified from SB leaves, such as strictinin, isostrictinin, and casuarictin, had been 
used to develop therapeutic agent. These compounds had antiviral activity 
against a wide spectrum of viruses, suppressed the growth of Gram-positive and 
Gram-negative microorganisms, and had interferon-inducing activity (Korekar 
et al., 2011).  Moreover, hippophaenin B showed higher antioxidant activity than 
other ETs in SB leaves (Moilanen & Salminen, 2008). In Western diets, berries 
such as strawberries and raspberries are the major sources of intake of ETs. EAs 
are also identified in walnut and pecan nut (Daniel et al., 1989).  

 

  

Figure 3. Examples of ellagitannins in sea buckthorn leaves. 
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So far, only limited information is available on the absorption and metabolism 
of ETs in humans. ETs undergo hydrolysis by stomach acid and intestinal 
enzymes to yield ellagic acid (EA), part of which is absorbed in the small 
intestine (Mertens-Talcott, Jilma-Stohlawetz, Rios, Hingorani & Derendorf, 
2006). The unabsorbed ETs and remaining EA are further metabolized to 
urolithins by the microbiota in the large intestine. Metabolites of ETs in the 
circulatory system are among the key compounds for elucidating the protective 
effects of natural bioactive compounds on human health (Ludwig et al., 2015). 
EA is proposed to be considered as a future biomarker for human bioavailability 
studies related to consumption of ETs from food sources (Seeram, Lee & Heber, 
2004). Current knowledge with animal studies (rats, mice and Iberian pigs) 
contributes more to shedding light on ET metabolism. These authors found that 
10% of the EA dose given to rats was absorbed, metabolized and excreted as 3,8-
dihydroxy-6H-dibenzo [b, d] pyran-6-one in urine (Doyle & Griffiths, 1980). 
Further studies showed that mice given higher doses had higher absorption rates 
(28%) of ETs (Teel & Martin, 1988). The ellagitannin fraction extracted from 
sea buckthorn revealed concentration-dependent cytotoxicity. In an in vitro cell 
culture study, ellagitannin fractions at concentrations of less than 0.2 mg/mL 
caused an increase in the proliferation of lymphocytes and stimulated the 
cytokine production, whereas in higher concentrations showed a cytotoxic effect 
on lymphocyte (Chernov et al., 2003). 

ETs have shown both anti-herbivoric activities in plants and health-promoting 
activities in humans, the latter including antioxidant, antimicrobial, anticancer, 
and anti-inflammatory activities (Heinonen, 2007, Landete, 2011). Due to the 
high content of punicalagin isomers, pomegranate juice has strong antioxidant 
properties (Gil, Tomás-Barberán, Hess-Pierce, Holcroft & Kader, 2000). 
Sanguiin H-6 is also reported to be a major contributor to the antioxidant capacity 
together with vitamin C and anthocyanins in raspberries (Mullen et al., 2002). 
Furthermore, ETs and EA may play important roles in protection against certain 
chronic diseases according to an epidemiological study (Arts & Hollman, 2005). 
However, ellagitannins can inhibit protease activities at levels which could affect 
protein digestion in the gastrointestinal tract (Mcdougall & Stewart, 2005). 
Sometimes, the results in vitro do not match with the findings of in vivo studies. 
This may be explained by the low bioavailability of the antioxidative ETs and 
EA. Moreover, polyphenols are metabolized to urolithins by microbes in the gut, 
which have been reported as less potent antioxidants compared to the ETs (Cerdá 
et al., 2004). By contrast, urolithins may display health benefits, such as 
estrogenic and/or anti-estrogenic activity. 
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2.1.4 Phenolic acids 

As a major class of phenolic compounds, phenolic acids are widely distributed 
in the human diet, particularly in fruits, vegetables, herbs, spices and beverages 
(coffee, beer, wine, and fruit juices)(Crozier, Jaganath & Clifford, 2009, 
Herrmann & Nagel, 1989). Much attention has been focused on phenolic acids, 
due to their relatively high concentrations in food and beverages, and strong 
antioxidant activity, as well as due to a relatively high rate of intestinal 
absorption. Dietary phenolic acids can be rapidly and extensively metabolized in 
humans (Nardini et al., 2006, Nardini et al., 2009).  

The most commonly occurring phenolic acid is caffeic acid, which is also 
found in esters, such as chlorogenic acid which is esterified with an –OH group 
of quinic acid. Chlorogenic acid is present in many fruits, vegetables and in 
coffee. Other phenolic acid derivatives are hydrolyzable tannins. The phenolic 
acids are either gallic acid in gallotannins (mango fruit) or other phenolic acids 
derived from the oxidation of galloyl residues in ellagitannins (Scalbert & 
Williamson, 2000).  

Free phenolic acids constituted only 1.3–2.3%, and phenolic acid esters up to 
21.2% of the sum of phenolic acids and their derivatives in SB berries 
(Zadernowski, Naczk, Czaplicki, Rubinskiene & Szałkiewicz, 2005a).  In a study 
by Zadernowski et al. (2005b), the total content of phenolic acids ranged from 
3.6 to 4.4 mg/g of SB berries (DW). Phenolic acids in SB berries were found to 
be concentrated in seeds (approximately 70% of total phenolic acids in the whole 
berries), and the total phenolic acid content in seed kernel (5.7 mg/g) was higher 
than that in the seed coat (Arimboor, Kumar & Arumughan, 2008). Phenolic 
acids included gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic 
acid, salicylic acid, p-coumaric acid, cinnamic acid, caffeic acid and ferulic acid 
in sea buckthorn berries and leaves, among which gallic acid was the dominant 
phenolic acid both in free and bound forms (Arimboor, Kumar & Arumughan, 
2008).  

The influences of phenolic acids on both the expression and activity of 
enzymes involved in the production of inflammatory mediators have been 
studied by using cell and animal models (Russell & Duthie, 2011, Russell et al., 
2008). The cyclo-oxygenase 2, one enzyme for phenolic acids in maintaining gut 
health, which is strongly and rapidly induced in response to mediators of 
inflammation, growth factors, cytokines and endotoxins (Russell & Duthie, 
2011). Moreover, phenolic acids exert a direct anti-proliferative action on T47D 
human breast cancer cells, even at low concentrations (Kampa et al., 2004). The 
information related to systemic bioavailability of phenolic acids in vivo is still 
limited. It is difficult to evaluate distinctly the correlation of dietary intake with 
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physiological effects due to the complexity of absorption and microbial 
metabolism.  

2.1.5 Non-phenolic compounds 

2.1.5.1   Lipophilic compounds 

The pulp oil of sea buckthorn has a high content of palmitoleic acid. Since this 
fatty acid is a major constituent of skin fat, the pulp oil is used for cosmetic 
products and for healing purposes. The seed oil contains high amounts of linoleic 
acid and α-linolenic acid (close to 1∶1), which is different from the polyunsaturated 
fatty acid composition of major vegetable oils (Ursin, 2003, Yang & Kallio, 2001). 
The content of carotenoids varied from 6 to 24 mg/100 g FW in SB berries 
(Teleszko et al., 2015) and the range of tocopherols and tocotrienols was 8−32 
mg/100 g in seeds and 6−14 mg/100 g in whole berries (Kallio et al., 2002a). 
Further, the seeds of ssp. mongolica contained more tocopherols and tocotrienols 
than those of ssp. sinensis (Kallio, Yang, Peippo, Tahvonen & Pan, 2002a). An 
increase in total carotenoid concentration was observed during ripening of SB 
berries in three German cultivars ‘Askola’, ‘Hergo’ and ‘Leikora’ (Raffo, Paoletti 
& Antonelli, 2004). Moreover, SB leaf also was reported to contain high contents 
of tocopherols (vitamin E) and carotenoids (including β-carotene, a provitamin A) 
(Hellström, Pihlava, Marnila, Mattila & Kauppinen, 2013).  
    In addition, SB oil from seeds and pulp contain large amounts of phytosterols, 
which included both unsaturated sterols and saturated sterols (Alasalvar & 
Bolling, 2015). The total content of phytosterol varied from 1.2 to 1.8 mg/g in 
the seeds, and from 12 to 23 mg/g in the oil of SB berries from China and Finland. 
Beta-sitosterol was the major sterol found in the seeds, constituting 57–76% of 
the total phytosterols in seeds (Li, Beveridge & Drover, 2007a, Sajfrtová et al., 
2010, Yang et al., 2001).  
     In Russia and China, SB oil has been approved for clinical use in hospitals, 
due to numerous shown health benefits, including anti-atherogenic, cardio-
protective, anti-platelet, antiulcer activities, and anti-depressive properties, 
which have been demonstrated using cell culture, animal models, and clinical 
trials in humans (Basu et al., 2007, Johansson et al., 2000, Olas, 2018, Xing et 
al., 2002). Phytosterols may lower serum cholesterol concentrations and have 
prophylactic properties against hypercholesterolemia-induced cardiovascular 
disorders (Olas, 2018).  

2.1.5.2   Sugars, sugar alcohols and non-phenolic organic acids 

Sugars and non-phenolic organic acids are the main soluble constituents of SB 
berries and have a crucial role in determining the sensory properties, eventually, 
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consumer acceptability of products based on SB berries. Glucose (α- and β-D-
pyranose) and fructose (α- and β-D-furanose and β-D-pyranose) were two major 
sugars in all SB berries investigated, and trace amounts of sucrose also were 
detected (Yang, 2009, Zheng, Yang, Trepanier & Kallio, 2012). Finnish berries 
of ssp. rhamnoides contained relatively lower content of sugars compared to the 
berries of other subspecies from Russia (ssp. mongolica) and China (ssp. sinensis) 
(Tang, Kälviäinen & Tuorila, 2001, Yang, 2009). Berries of both ‘Terhi’ and 
‘Tytti’, two Finnish sea buckthorn cultivars, had a lower content of fructose 
compared to the wild Finnish berries of ssp. rhamnoides (Kortesniemi, 
Sinkkonen, Yang & Kallio, 2014). Within the same ssp. sinensis, the Chinese 
berries from Sichuan had remarkably lower sugar contents compared with wild 
berries from other growth sites in China, and the content of sucrose in the berries 
varied widely between different harvesting years (Zheng, Kallio, Linderborg & 
Yang, 2011, Zheng, Yang, Trepanier & Kallio, 2012). 

The presence of inositols and methyl inositols in SB berries has been reported 
by researchers of our lab (Kallio et al., 2009). L-quebrachitol was the most 
abundant sugar alcohol in ssp. sinensis, methyl-myo-inositol the second most 
abundant, and myo-inositol the least (Zheng, Kallio, Linderborg & Yang, 2011). 
Furthermore, L-quebrachitol was the most distinctive marker for the 
identification of H. rhamnoides ssp. sinensis by its NMR fingerprints (Su et al., 
2014). The contents of methyl inositols in SB berries were higher in ssp. sinensis 
than in ssp. rhamnoides and ssp. mongolica (Yang, 2009). As bioactive 
compounds, inositols can decrease hyperglycemia and hyperlipidemia in 
diabetic rats and rabbits (Nascimento et al., 2006) and play an important role in 
insulin secretion of insulin and generation of mediators in diabetic rats (Fonteles, 
Almeida & Larner, 2000) as well as  increase fasting insulin level in plasma in 
mice (Xue et al., 2015). Further, insulin resistance-related diseases were 
associated with derangements in inositol metabolism (Muscogiuri, Palomba, 
Laganà & Orio, 2016).  

 
Figure 4. Ethyl β-d-glucopyranoside (EG) 

Ethyl β-D-glucopyranoside (EG) is a compound characteristic for sea 
buckthorn but rarely found in other edible berries or fruits (Figure 4). In 2006, 
the presence of EG was reported in SB for the first time (Tiitinen, Yang, 
Haraldsson, Jonsdottir & Kallio, 2006). Presence of a corresponding methyl 
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derivative was also reported in sea buckthorn in 2014 (Lindstedt et al., 2014). 
‘Tytti’ and ‘Terhi’, both cultivars from Kittilä (North Finland) contained very 
little EG. Whereas they had higher and similar levels of O-methyl β-D-
glucopyranoside (methyl glucoside) over EG in the samples studied 
(Kortesniemi, Sinkkonen, Yang & Kallio, 2017). It has been reported that peels 
of yuzu (Citrus junos Sieb) also contained EG (Sawabe & Matsubara, 1999). 

Notable amounts of EG exist in SB berries of H. rhamnoides ssp. rhamnoides. 
However, the content of EG is varied considerably among subspecies and 
cultivars (Kortesniemi, Sinkkonen, Yang & Kallio, 2017, Yang, 2009, Zheng, 
Yang, Trepanier & Kallio, 2012). In some berries of ssp. rhamnoides, the content 
of EG dominated in the sugar fraction, and the content of EG was suggested to 
be among the major chemotaxonomic characteristics in SB berries (Yang, 2009). 
The content of this compound along with other sugars varied greatly with genetic 
background, harvesting time, and origin (Ohkawa et al., 2009, Tiitinen et al., 
2006, Yang, 2009, Zheng et al., 2011, Zheng et al., 2012). H. rhamnoides ssp. 
mongolica and ssp. sinensis typically contained only trace amounts of EG, 
whereas the compound was significantly higher content in the berries of ssp. 
rhamnoides (Yang, 2009). It has been reported that the content of EG in the 
berries of ssp. rhamnoides increases during harvesting period accompanied by a 
decrease in the content of glucose (Yang, 2009). However, in the berries of 
cultivar ‘Russian Orange’ of ssp. mongolica, glucose content increased 
significantly during ripening, whereas the contents of EG, sucrose and fructose 
remained constant (Ohkawa et al., 2009).  

Both ethyl and methyl glucosides have been found in human plasma and urine 
after a SB meal based on an NMR metabolomics study (Lindstedt et al., 2014). 
Little information is available on the absorption and metabolism of EG in 
animals or in humans, although the compound may have some relevance to the 
physiological effects. Matsubara et al. reported that EG showed a blood pressure 
decreasing effect in SHR rats after intravenous injection of the compound 
(Matsubara, Mizuno, Sawabe, Iizuka & Okamoto, 1989).  Some researchers have 
found that EG was transported through the small intestinal wall (Higgins, Miller 
& Denyer, 1996, Storlien, James, Burleigh, Chisholm & Kraegen, 1986), 
indicating that EG ingested orally might be absorbed into blood stream. In a 
recent study, EG was found in its intact form in the urine of rats after oral 
administration of the compound, and that a small amount remained in the rat 
body 24 h after administration (Mishima, Harino, Sugita, Nakahara, Suzuki & 
Hayakawa, 2008). EG exhibited hypotensive effect by examination using stroke-
prone spontaneously hypertensive rats (Sawabe & Matsubara, 1999). 

Non-phenolic organic acids are widely distributed in fruits and vegetables, 
such as citric (A), quinic (B), malic (C) and ascorbic acid (D), the structures of 
which were shown in Figure 5. Malic and quinic acids dominated in SB berries, 
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whereas minor levels of citric acid were reported (Tiitinen, Hakala & Kallio, 
2005, Zheng, Kallio, Linderborg & Yang, 2011). In a study by Su et al. (2014), 
the berries of H. rhamnoides ssp. gyantsensis and H. tibetana were separated 
based on the differences in metabolites between the species by NMR. High 
content of malic acid and abundance of quinic acid were the most distinctive 
fingerprints for H. tibetana and H. rhamnoides ssp. gyantsensis, respectively. SB 
berries of the cultivar ‘Terhi’ and ‘Tytti’ from north Finland had relatively higher 
levels of quinic acid compared with those of the same cultivars grown in Canada 
(Kortesniemi, Sinkkonen, Yang & Kallio, 2017). Fatima et al. reported that 
ascorbic acid was synthesised from guanosine diphosphate (GDP)-d-mannose in 
SB berry, via the L-galactose or the L-glucose pathway (Fatima et al., 2015). The 
content of ascorbic acid in SB leaves is high (Hellström, Pihlava, Marnila, 
Mattila & Kauppinen, 2013). Its content in berry was found to be mainly 
determined by the genotype and time of harvest (Kallio, Yang & Peippo, 2002), 
and differences in content occurred also between cultivars of the same subspecies 
(Hussain, Ali, Awan, Hussain & Hussain, 2014, Kalinina, Panteleyeva & 
Kryukov, 1987).  

 

 

Figure 5. Examples of non-phenolic organic acids in se buckthorn berry: citric 
acid (A), quinic acid (B), malic acid (C) and ascorbic acid (D). 

 
Differing from the pattern of variation of sugars, a marked decline in the 

concentrations of total organic acid and ascorbic acid was observed during 
ripening of SB berries in the ‘Askola’, ‘Hergo’ and ‘Leikora’ of German 
cultivars (Raffo, Paoletti & Antonelli, 2004). Various weather conditions, such 
as temperature, light, water supply and air humidity are important factors 
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affecting the accumulation of sugars and acids in SB (Buchanan, Gruissem & 
Jones, 2000, Kortesniemi, Sinkkonen, Yang & Kallio, 2017, Zheng, Kallio, 
Linderborg & Yang, 2011, Zheng, Yang, Trepanier & Kallio, 2012). For 
example, sea buckthorn berries of ssp. mongolica grown at lower latitude had 
higher levels of total sugar and lower levels of total acids than those grown at 
higher latitude (Zheng, Yang, Trepanier & Kallio, 2012). In wild Chinese sea 
buckthorn (ssp. sinensis), the contents of fructose, glucose, and total sugars 
decreased, whereas the contents of malic acid and ascorbic acid increased, as the 
altitude increased and as the latitude decreased (Zheng et al., 2011). 

2.2 Contribution of various metabolites to sensory 
properties of sea buckthorn 

Sensory characteristics are the most important drivers of consumer preferences 
and choices within each food category (Geertsen et al., 2016). SB berries are 
known to be quite sour, bitter, and astringent, but not very sweet, with a mild but 
characteristic aroma and taste, not comparable to any other berries or fruits. Due 
to these characteristics, SB berries and berry products are not commonly used as 
ingredients in food industry. It is essential to investigate the contribution of 
various compounds to the sensory profile of SB berries. The knowledge is 
needed for breeding and cultivation as well as industrial processing of SB.  

Although volatile compounds will definitely influence the flavor of SB berry 
and berry products, we did not include them in this review, which is focused on 
the role of non-volatile compounds important for sensory and bioactive 
properties of sea buckthorn.  

2.2.1 Sourness and sweetness 

Sourness and sweetness are two of the five basic taste qualities of food. Sourness 
is perceived through specific channels of PKD2L1 located in taste cells, and sour 
taste is mediated by a unique cell type, independent of all other taste qualities 
(Huang et al., 2006). Intense sourness can evoke an innate rejection response in 
adult humans and many other animals, whereas sourness and acidity of low 
levels may be perceived as an attractive flavor in food (Kim, Breslin, Reed & 
Drayna, 2004).  

Organic acids, such as malic and citric acids, are typically main acids 
contributing to the sourness of berries and fruits (Laaksonen, Sandell & Kallio, 
2010, Sandell et al., 2009, Tiitinen, Hakala & Kallio, 2005). Malic acid was the 
major acid contributing to the sourness of SB berries. Quinic and citric acids also 
contributed to sourness; however, the former was also closely associated with 
astringency and bitterness of SB berries (Ma, Laaksonen, Heinonen, Sainio, 
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Kallio & Yang, 2017). The intensity of sourness was positively correlated with 
astringency, negatively, with sweetness of SB juices (Tang, Kälviäinen & 
Tuorila, 2001, Tiitinen, Hakala & Kallio, 2005). The decrease in the acid 
contents also had the evident impact on the flavor mainly via the reduction of 
sourness (Tiitinen, Vahvaselkä, Hakala, Laakso & Kallio, 2006). 

SB berries were perceived with low intensity of sweetness (Tang, Kälviäinen 
& Tuorila, 2001, Tiitinen, Hakala & Kallio, 2005). Glucose and fructose were 
the major sugars, which contributed to the sweetness of the SB berries (Tang, 
Kälviäinen & Tuorila, 2001, Tiitinen, Hakala & Kallio, 2005, Yang, 2009). The 
consumer rating of sweetness intensity was the primary factor contributing to 
overall liking, thus sweetness had strong positive effects on SB juice 
pleasantness (Tang, Kälviäinen & Tuorila, 2001). The contents of sugars and 
acids, especially the sugar/acid ratio, played a key role in determining the flavor 
and consumer acceptability of berries and berry products (Laaksonen et al., 2013, 
Tang, Kälviäinen & Tuorila, 2001, Tiitinen, Hakala & Kallio, 2005) 

2.2.2 Astringency 

The oral sensation of astringency is commonly described as a long-lasting 
trigeminal sensation in the oral cavity. It can be classified into several sub-
qualities, such as velvety, grainy, drying, or puckering (Gawel, Iland & Francis, 
2001). Astringency is an important sensory character of SB berries. Phenolic 
compounds were considered as the major compounds responsible for astringency 
of SB (Ma, Guo, Zhang, Wang, Liu & Li, 2014, Soares, Brandão, Mateus & De 
Freitas, 2017). Sea buckthorn berries are a rich source of FGs (Ma et al., 2016, 
Teleszko, Wojdyło, Rudzińska, Oszmiański & Golis, 2015, Yang, Halttunen, 
Raimo, Price & Kallio, 2009) and they also contain notable amounts of 
proanthocyanidins (PC and PD), up to 250 mg/100 g. (Hellström, Törrönen & 
Mattila, 2009, Rösch, Mügge, Fogliano & Kroh, 2004, Yang, Laaksonen, Kallio 
& Yang, 2016b).  

Flavonol glycosides have been found to induce a silky, mouth-drying, and 
mouth-coating astringent sensation. In comparison to the condensed tannins, 
FGs have been reported to have a more important role in astringency of wine 
(Hufnagel & Hofmann, 2008a).  Quercetin-3-O-rutinoside was reported to be 
one important key compound in astringency of red currant (Ribes rubrum) and 
black tea (Scharbert, Holzmann & Hofmann, 2004, Schwarz & Hofmann, 2007). 
Among the FGs, this compound can elicit astringent properties at the lowest 
concentration, 0.001 μmol/L in bottled water, which was far below those of 
catechins (410 μmol/L) or theaflavins (16 μmol/L) (Scharbert, Holzmann & 
Hofmann, 2004, Schwarz & Hofmann, 2007). Quercetin-3-O-rutinoside was 
found in significant amounts in sea buckthorn berries. In the berries of ssp. 
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sinensis, the content of this compound was on average 10 mg/100 g FW, which 
was much higher than that of ssp. mongolica (3.8 mg/100 g FW) (Ma et al., 2016). 
Based on this it might be predicted that the berries of ssp. sinensis may taste 
more astringent than those of ssp. mongolica. However, quercetin glycosides had 
less impact on the astringency of SB purees of 6 cultivars studied (‘Terhi’, ‘Tytti’, 
‘Hergo’, ‘Leikora’, ‘Trofimovskaya’ and ‘Avgustinka’) (Ma et al., 2017). 
Isorhamnetin was the predominant aglycone moieties of FGs in SB berries. 
Although their sensory thresholds for astringency have been not reported, 
isorhamnetin glycosides, especially isorhamnetin-3-O-sophoroside-7-O-
rhamnoside, were found to be closely associated with the astringent attributes in 
the SB purees (Ma et al., 2017).  

Proanthocyanidins were perceived more puckering and rough than FGs. The 
key astringent compounds in wine have been reported to be various PAs, of 
which oligomers are more astringent than the monomers (Hufnagel & Hofmann, 
2008a). In sea buckthorn berries, the PA dimers and trimers have been detected 
by Kallio et al. (Kallio, Yang, Liu & Yang, 2014). The PA dimers and trimers 
are important components contributing to bitterness and astringency of red wine, 
and molecular size was the major factor influencing the sensory properties of 
bitterness and astringency (Hufnagel & Hofmann, 2008a). However, the known 
astringent compounds, PA oligomers, showed less impact on the astringency 
than FGs in SB purees of cultivars ‘Terhi’, ‘Tytti’, ‘Hergo’, ‘Leikora’, 
‘Trofimovskaya’ and ‘Avgustinka’ (Ma et al., 2017).  

The astringent sensory hresholds of procyanidin B1, B2 and B3 were reported 
to be 240, 190 and 200 μmol/L in water, respectively (Hufnagel & Hofmann, 
2008a). The astringent threshold decreased from the PA monomers (+)-catechin 
and (−)-epicatechin over the dimeric procyanidins B1, B2, and B3, to the trimeric 
procyanidin C1. The content of PAs and the ratio of PC/PD effect on the mouth-
drying and puckering astringent characteristics in black currant juices, higher 
PC/PD ratio being associated with decreased astringency (Laaksonen, Salminen, 
Mäkilä, Kallio & Yang, 2015).  

Procyanidins are perceived as more astringent than ellagitannins (ETs), but 
the latter have lower thresholds for detection of astringency spanning from 0.2 
to 6.3 μmol/L (Chira & Teissedre, 2013, Hofmann, Glabasnia, Schwarz, Wisman, 
Gangwer & Hagerman, 2006). Sea buckthorn leaves contain abundant ETs 
(Moilanen, Koskinen & Salminen, 2015, Suvanto et al., 2018), but the role of 
ETs in the sensory quality in SB leaves products has not been investigated.  

In addition to the phenolic compounds described above, various phenolic acid 
derivatives and organic acids have been reported to elicit astringent sensations 
and have astringent properties (Hufnagel & Hofmann, 2008a, Lawless, Horne & 
Giasi, 1996, Scharbert, Holzmann & Hofmann, 2004). Puckering astringency 
was found to correlate positively with sourness contributed by malic acid, quinic 
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acid, ascorbic acid and the total acid content in SB juices (Ma et al., 2017). The 
level of pH had the major influence on astringency of sensation (Lawless, Horne 
& Giasi, 1996), and an increase in astringency was often associated with a 
decrease in pH (Peleg & Noble, 1999). The acidity of wine can indirectly 
contribute to astringency by affecting the efficacy of bonding of polyphenols to 
salivary proteins (Perez-Maldonado, Norton & Kerven, 1995). Food matrix plays 
an important role in the astringency perceived. For instance, some astringent 
reference substances, such as tannic acid and alum, tasted more astringent in 
water than in wine or orange juice (Valentová, Skrovánková, Panovská & 
Pokorný, 2002).  

2.2.3 Bitterness 

Bitterness is a major sensory property of foods and beverages rich in polyphenol 
compounds. Due to the wide variety of compounds that elicit bitterness and to 
the apparently large number of genes encoding receptors for this taste modality, 
the sensation of bitterness also appears to be the most complex taste quality in 
humans. Bitter tastes are sensed through the binding of the tastants to G-protein-
coupled type 2 receptors (TAS2R), which locate within the papillae of the tongue. 
There are 25 TAS2R receptors involved in bitter perception (Meyerhof et al., 
2010). Beta-D-glucopyranosides have been found to elicit bitterness through the 
binding of TAS2R16 (Bufe, Hofmann, Krautwurst, Raguse, & Meyerhof, 2002; 
Sakurai et al., 2010). It has been reported that bitterness of the SB juices related 
to the EG content as well as the ratios of EG/acids and EG/sugars (Ma et al., 
2017, Yang, 2009). Interestingly, sensory properties of ethyl α-D-
glucopyranoside were also investigated in sake, and a sweet taste with a bitter 
aftertaste was reported (Yabiku et al., 2016). This indicated that ethyl α-D-
glucopyranoside activates not only sweet receptors but also bitter receptors.  

Various phenolic compounds are also related to bitter properties. In a recent 
study, various monomeric flavonoids, including (+)-catechin, (−)-epicatechin, 
and (−)-epigallocatechin, activated the human bitter taste receptors TAS2R14 
and TAS2R39 (Roland et al., 2013). Both bitter and astringent compounds, such 
as (+)-catechin and (−)-epicatechin, can be found in one food (red wine or black 
tea infusions). Generally, most of the phenolic compounds can be perceived as 
astringent at notably low concentrations and as bitter at high concentrations. The 
taste threshold concentration of (+)-catechin for bitterness was 290 mg/L, 
whereas its astringent threshold concentration was 119 mg/L in water by triangle 
test (Hufnagel & Hofmann, 2008a).  

ETs have an impact on bitterness sensation at a higher concentration than 
astringency. For example, castalagin and vescalagin, identified in SB leaves, 
their bitter recognition thresholds were both 1578 mg/L, which was the 1500 
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times higher than astringent threshold (Glabasnia & Hofmann, 2006, Hofmann, 
Glabasnia, Schwarz, Wisman, Gangwer & Hagerman, 2006). Some studies have 
shown that bitterness of polyphenols increases with the molecular weight 
(Arnold, Noble & Singleton, 1980, Hufnagel & Hofmann, 2008b). Hufnagel and 
Hofmann found that procyanidin dimers and trimers were more bitter than (−)-
epicatechin (Hufnagel & Hofmann, 2008b). Additionally, some non-bitter 
phenolic astringent compounds such as quercetin-3-O-rutinoside, may enhance 
the intensity of the perceived bitterness of caffeine (Scharbert & Hofmann, 2005).  

The contents of total PAs and PA oligomer did not contribute to the bitter taste 
in SB purees (Ma, Yang, Laaksonen, Nylander, Kallio & Yang, 2017). However, 
the ratios between acids and various phenolic compounds, such as PAs and FGs, 
were shown to be strongly associated with bitterness in SB (Ma, Yang, 
Laaksonen, Nylander, Kallio & Yang, 2017). These findings also indicate the 
existence of other bitter compounds in SB in addition to PAs. 

Although many phenolic compounds have been shown to activate bitter taste 
receptors, the bitterness perception by humans depends on the taste thresholds of 
the bitter compounds and the food matrix. Sensory thresholds for some 
compounds studied in this thesis have been reported in previous studies. The 
taste threshold concentrations of B-type PAs for bitterness are in the range of 
231−289 mg/L, as determined in water by triangle tests (Hufnagel & Hofmann, 
2008a). ETs were perceived as bitter with threshold concentrations between 87 
and 1578 mg/L in water (Glabasnia & Hofmann, 2006). The taste threshold of 
pure EG was 1.1 ± 1.3 g/L for bitterness, according to an assessment carried out 
with water solution by Duo-Trio tests (Ma, Laaksonen, Heinonen, Sainio, Kallio 
& Yang, 2017). However, there is the existence of extremely complex 
interactions among non-volatile compounds on the in-mouth sensory perception. 
The sensory thresholds vary with different food matrices and among human 
subjects. Additionally, sea buckthorn contains quite many phenolic compounds, 
the thresholds of which have not been reported. Investigations of the taste 
thresholds of these compounds would require lengthy isolation and purification 
process, because many of the compounds are not commercially available as pure 
references.  

2.3 Challenges in sea buckthorn products development 

Sea buckthorn (Hippophaë rhamnoides L.), an ancient plant, has recently 
sparkled significant interest, due to the nutritional and medicinal value (Bal, 
Meda, Naik & Satya, 2011, Rousi, 1971). All parts of SB including berries, 
leaves, seeds, and bark are rich sources of bioactive compounds (Guo, Guo, Li, 
Fu & Liu, 2017, Hellström, Pihlava, Marnila, Mattila & Kauppinen, 2013, Kallio, 
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Yang, Peippo, Tahvonen & Pan, 2002b, Korekar, Stobdan, Singh, Chaurasia & 
Singh, 2011). Human studies as summarized by Christaki suggest that SB may 
have various beneficial effects such as cardio-protective, antioxidant, anti-cancer, 
immunomodulatory, anti-bacterial, antiviral, wound-healing and anti-
inflammatory properties (Christaki, 2012).  Sea buckthorn could also be used to 
improve the nutrition of humans and animals. Therefore, it is worthwhile to 
develop more products based on different parts of this plant and to promote its 
large-scale utilization. The quality of SB products depends on the quality of raw 
materials and processing technologies. Furthermore, special challenges in food 
product development based on sea buckthorn come from the low sweetness and 
strong taste of sourness because of the low sugar content, high acid level, as well 
as astringency and bitterness due to the presence of various phenolic compounds. 

2.3.1 Quality of raw material 

Cultivation practices affect the content of bioactive compounds, such as 
flavonols, phenolic acids, tannins, lipids, and Vitamin C in SB berries and leaves 
(Häkkinen & Törrönen, 2000, Heinäaho, Pusenius & Julkunen-Tiitto, 2006, 
Heinäaho, Hagerman & Julkunen-Tiitto, 2009). The influences of different 
organic cultivation methods on the berry and leaf phenolics of two sea buckthorn 
(ssp. rhamnoides) cultivars, ‘Terhi’ and ‘Tytti’, were investigated in an 
experimental field of Finland. In the study of SB berry, flat land increased the 
amounts of isorhamnetin and quercetin compounds, as well as condensed tannins 
(Heinäaho, Hagerman & Julkunen-Tiitto, 2009). The use of plastic mulch 
decreased the concentrations of ETs and condensed tannins in SB leaves 
compared to the other mulches used (Heinäaho, Pusenius & Julkunen-Tiitto, 
2006). These results indicate that the phenolic accumulation in berries and leaves 
of SB cultivars ‘Terhi’ and ‘Tytti’ seems to be mainly dependent upon soil 
structure. In addition, the material of mulch is also an important factor 
influencing bioactive compounds, especially tannins in the leaves. 

The temperature of storage of SB juice is very important. Storage at room 
temperature (25 °C) may result in a significant degradation of pantothenic acid 
(Gutzeit, Klaubert, Rychlik, Winterhalter & Jerz, 2007a). SB juice turns brown 
after about 6 months of storage at 15–20 °C (Liu & Liu, 1989). Storage also often 
leads to changes in phenolic compounds due to temperature, light and enzymes. 
Flavonol glycosides stayed fairly stable comparing with anthocyanins (Makila et 
al., 2016). Enzymes and sunlight are important initiators of browning (Zhou & 
Chen, 1989). It is not clear if the brown color develops as a result of residual 
enzyme, such as residual polyphenol oxidase, or if the brown color develops 
because of nonenzymatic (Maillard or vitamin C) browning.  
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2.3.2 Processing of sea buckthorn products 

During the past years, SB has gained recognition worldwide. SB berry products 
are becoming increasingly popular as health foods in many countries in Asia, 
Europe, and North America. Sea buckthorn berries are commonly processed into 
various products such as juices, jams, as well as seed oil and pulp oil. Processing 
may induce changes in texture and flavor, thus affect the quality of SB products.  

Processing of juice from SB berries is a complex operation with many 
variables that influence the final product quality. Freshly pressed SB juice 
separates into three phases when left standing for a short period at refrigerating 
temperatures (0−10 C): an upper creamy phase, a central juice portion, and a 
sediment at the bottom (Beveridge, Harrison & Drover, 2002). Separation is 
undesirable in juice products from the consumers’ perspective (Kleinschmidt, 
Siudzinski & Lange, 1996). Appropriate processing technologies and conditions 
need to be applied in order to maintain the stability of the juice as well as the 
nutritional and sensory characteristics. Centrifugation is used to separate the oil 
and to reduce the oil content in the juice to levels of less than 0.1%, which will 
eliminate the problem of having oil layer on the surface of the juices. 
Commercially available hydrolytic enzymes, such as pectinmethylesterase 
(PME), may be used to improve the juice yield, which also affect the viscosity 
and cloud stability of the juice (Espachs-Barroso, Van Loey, Hendrickx & 
Martín-Belloso, 2006). Appropriate soaking of berries before juice pressing was 
shown to reduce soluble solids (°Brix) in juice because of uptake of water 
(Beveridge, Harrison & Drover, 2002).  

Conventional thermal processing is used for assuring safety and extending the 
shelf life of foods. But it often causes undesirable detrimental changes in quality 
indices and sensory characteristics. High-temperature-short-time (HTST) 
processes at 80–90 °C for several seconds are commonly used (Liu & Liu, 1989).  
SB juices are somewhat delicate and will suffer from a loss of flavor and develop 
an off-flavor if heated beyond the conditions indicated. Moreover, during 
industrial juice production, the HTST processing of the SB berries caused a loss 
of about 5% to 11% total ascorbic acid in the juice (Gutzeit, Baleanu, 
Winterhalter & Jerz, 2008). Production of the juice concentrate by thermal-
vacuum evaporation at 80−85 °C, resulted in 50% depletion of ascorbic acid 
(Gutzeit, Baleanu, Winterhalter & Jerz, 2008). Thus, the use of non-thermal 
technologies is gaining popularity. High pressure (HP) processing is a 
mainstream non-thermal process, specifically, the process of high pressure 
(200−600 MPa) cold pasteurization (< 35 °C) can be used for commercial 
production of superior quality SB juices to meet the demand of consumers for 
high quality product (Alexandrakis et al., 2014).  
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The most recognizable SB product is oil pressed or extracted from the pulps, 
especially due to the presence of palmitoleic acid, which is very uncommon in 
the plant kingdom (Fatima et al., 2012, Yang & Kallio, 2002). The efficiency of 
pulp oil recovery varies widely with the design of the process. The usual methods 
for manufacturing oil commercially require countercurrent extraction of the oil 
bearing material, seed or pulp, with an organic solvent, commonly hexane (Li, 
Beveridge & Drover, 2007b). However, solvent extraction is not recommended 
for high value ingredients meant for nutraceutical applications due to the residual 
solvents and the destruction of bioactive phytochemicals during removal of the 
solvent. Recently, supercritical carbon dioxide (SC-CO2) extraction has attracted 
considerable attention for solvent-free oil of superior quality and for extraction 
of aroma compounds (Herrero, Cifuentes & Ibañez, 2006, Šťastová, Jeẑ, 
Bartlova & Sovová, 1996). SC-CO2 has been widely used for extracting oils from 
both seeds and pulp of SB berries (Yakimishen, Cenkowski & Muir, 2005). The 
extraction gives a higher content of phytosterol in seed oil than cold pressing or 
extraction with hexane (Li, Beveridge & Drover, 2007a, Sajfrtová, Ličková, 
Wimmerová, Sovová & Wimmer, 2010). However, the berries are often dried 
before extraction to obtain reasonable efficiency of extraction, which will result 
in a loss of phytonutrients during drying. 

Although the processing methods of sea buckthorn are widely established 
through numerous studies, limited information is available about how these 
bioactive components and their bioactivities are affected by different processing 
methods. The flavonoids varied significantly among the different thermal 
processing (50–100 °C), whereas the processing had less effect on the 
carotenoids and polyphenols in SB extracts (Ursache, Ghinea, Turturică, Aprodu, 
Râpeanu & Stănciuc, 2017). ET concentrations of some products (berries juices 
and wines) increased after processing, whereas some ETs degraded to ellagic 
acids (Bakkalbaşi et al., 2008). During the processing of black currant juice, FGs 
seemed to be more stable than other phenolic compounds (Mäkilä, Laaksonen, 
Kallio & Yang, 2017). Along with changes in phenolic compounds, processing 
conditions have an important effect on antioxidant activity (Bakkalbaşi et al., 
2008, Donlao & Ogawa, 2018, Kyriakopoulou et al., 2013). Freeze-drying 
provided higher radical scavenging ability of SB berries’ extracts, whereas, the 
extract obtained by the microwave extraction of fresh berries exhibited lower 
antioxidant activity compared to the ones of freeze-dried berries (Kyriakopoulou, 
Pappa, Krokida, Detsi & Kefalas, 2013). Additionally, the drying process can 
cause changes in texture, shape, and color of sea buckthorn products. Freeze-
drying had a better appearance of berries’ extracts (Kyriakopoulou et al., 2013). 
For pulp oil of sea buckthorn, air-drying gave a significant higher extraction 
yields compared with freeze-drying (35.9 ± 0.8 vs 17.1 ± 0.6% w/w) (Gutiérrez, 
Ratti & Belkacemi, 2008). 
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In addition to berries, leaves of SB contain a variety of nutrients and bioactive 
substances (Hellström, Pihlava, Marnila, Mattila & Kauppinen, 2013, Pop, 
Weesepoel, Socaciu, Pintea, Vincken & Gruppen, 2014). Compared with berries, 
SB leaves have the advantages of high yield, easy collection, long acquisition 
cycle, simple production and processing, easy storage. Numerous products can 
be made from the dried leaves such as tea-type beverages and tea-type powder 
products. Drying process can cause changes in the texture, shape, and color of 
SB leaves (Kyriakopoulou et al., 2013). Air-drying has resulted in the better 
appearance in the leaf extracts, while freeze-drying has provided more stable 
results than air- or oven-drying in birch (Betula pubescens) leaves, due to the 
lower temperatures at beginning of the drying process (Kyriakopoulou et al., 
2013, Salminen, 2003). Moreover, SB leaves have been reported to retain 
considerable amounts of total phenolics and carotenoids comparable to those of 
commonly consumed vegetables during drying at an elevated temperature (Guan, 
Cenkowski & Hydamaka, 2005). However, drying process of leaves definitely 
resulted in a decrease in the concentrations of phytochemicals. The degree of 
reduction depends on the drying time, temperature, or specific type of 
compounds (Guan, Cenkowski & Hydamaka, 2005). Thus, processing methods 
should be optimized in order to maximally obtain a specific bioactive compound.  

Another potentially large application for SB, are products for animal nutrition. 
The large volume of “waste” material, such as leaves and bark, as well as 
residues from juice and oil extraction, could be developed into value-added 
products, since the “waste” materials still contain valuable nutrients and 
bioactive compounds (Hellström, Pihlava, Marnila, Mattila & Kauppinen, 2013, 
Mäkilä et al., 2014, Puganen, Kallio, Schaich, Suomela & Yang, 2018). 

2.3.3 Food development and consumer acceptance 

Product development is essential for industry to grow and to be competitive in 
the global market. It is increasingly important to be consumer orientated in 
product development. Sensory properties of food are the key factors for food 
acceptance by consumers.  

SB berries are a good choice as healthy foods containing a wide range of 
bioactive compounds, among which are various phenolic compounds. However, 
these phenolics also bring challenges due to a negative impact on perceived 
sensory quality, such as astringency and bitterness (Laaksonen, Knaapila, Niva, 
Deegan & Sandell, 2016). These sensory characteristics can be generally 
considered as negative factors in the acceptance of berry or berry products 
(Lesschaeve & Noble, 2005). Despite of these possible health effects, consumers 
may not be willing to choose healthiness over a good taste (Verbeke, 2006). On 
the other hand, consumers sometimes prefer complex and balanced tastes, and 
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enjoy astringency and bitterness in some specific types of beverages, such as 
coffee, tea, beer and wine (Geertsen, Allesen-Holm, Byrne & Giacalone, 2016). 
Certain degree of complexity in taste may enhance consumer acceptance of fruit 
juices.    

Chemical constituents of berries have a strong influence on the sensory quality 
of the berries thus affecting the consumer acceptance of berry and berry products. 
Besides the phenolic compounds, various organic acids, sugars, EG and the 
ratios of sugar/acid, EG/sugars, EG/acids as well as phenolic compounds/acids 
contribute to the sensory quality of berries and have an important influence on 
the pleasantness (Laaksonen, Knaapila, Niva, Deegan & Sandell, 2016, Ma, 
Yang, Laaksonen, Nylander, Kallio & Yang, 2017, Ma, Laaksonen, Heinonen, 
Sainio, Kallio & Yang, 2017). Additionally, growth sites, harvest time, storage 
or packaging type used for berry and berry products may affect the quality, thus 
influencing the consumer acceptance (Almenar, Samsudin, Auras & Harte, 2010, 
Gutzeit, Klaubert, Rychlik, Winterhalter & Jerz, 2007b, Ma et al., 2016, Ohkawa, 
Kanayama, Chiba, Tiitinen & Kanahama, 2009).  

Berries of SB have a unique aroma and flavor, but perceived as strongly sour 
and astringent mainly due to the high acid content (Tiitinen, Hakala & Kallio, 
2005, Tiitinen, Yang, Haraldsson, Jonsdottir & Kallio, 2006). Hence, pure SB 
juice (average pH 3.13) is characterized by high acidity and astringency. From a 
sensory point of view, oral sensations need to be balanced to reach likeable 
products (Beveridge, Li, Oomah & Smith, 1999, Laaksonen, Knaapila, Niva, 
Deegan & Sandell, 2016). Thus, some sweeter fruits were used to balance the 
sourness and astringency of SB to produce mixed juices in the development of 
SB-based products (Selvamuthukumaran, Khanum & Bawa, 2007). Recently, a 
multi-fruit jelly was developed by blending SB juice with papaya, watermelon 
or grapes in varying proportions. The malolactic fermentation (MLF), 
traditionally used in winemaking, was applied also to reduce the high sourness 
of SB juice (Tiitinen, Vahvaselkä, Hakala, Laakso & Kallio, 2006).  

Besides the sensory quality of food, consumer acceptance of food products is 
also influenced by extrinsic properties, such as health claims, life habit, and price 
of products, appearance of package and the labelling as well as brand. 
Furthermore, social factors, such as expert recommendations, brand familiarity 
and expectations of consumers for the product have the influence on the hedonic 
response (Saba, Moneta, Nardo & Sinesio, 1998).  

2.4 Conclusions and future prospects 

Sea buckthorn is a valuable new field crop currently being a target of interest all 
over the world. The berries and leaves are good sources of valuable compounds 
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with nutritional and therapeutic effects. These beneficial effects make SB 
products increasingly known. Although sea buckthorn industry has yet to be 
developed to a larger scale and the sensory properties limit the consumption of 
fresh berries to some extent, sea buckthorn products may play an important role 
in the food, nutraceutical and cosmetic market in the future.  
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3 AIMS OF THE STUDY 

The research was focused on the investigation of structures and quantities of 
selected sea buckthorn (SB) components and their effects on the quality of SB 
berries and leaves as raw materials of food, beverage and food ingredients.  

The specific aims were: 
1. To study the composition and content of flavonol glycosides (FGs) in 

berries and berry purees, and in tea-type beverages produced from SB 
leaves (papers I, III and IV). 

2. To investigate the effect of genetic background (berries of subspecies 
sinensis, mongolica and rhamnoides；berries and leaves of cultivars), 
altitude and latitude of growth location, and drying process of leaves on 
the content and composition of FGs (papers I and IV).  

3. To study the contribution of FGs, proanthocyanins (PAs) and ethyl β-D-
glucopyranoside (EG) to the sensory qualities of sea buckthorn 
purees/juices (papers II and III). 

4. To investigate the antioxidant activities (AAs) in the tea-type beverages 
prepared from SB leaves, and correlations between FGs, ETs and AAs 
(paper IV). 
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4 MATERIALS AND METHODS 

 

Figure 6. Overall scheme of sample preparations and analyses conducted in this 
thesis. 

4.1 Research material 

4.1.1 Sea buckthorn berries and leaves 

The sea buckthorn berries and leaves used in this work are summarized in Table 
2. Wild and cultivated berries of three subspecies and leaves of two cultivars of 
SB were investigated in the thesis. Berries of H. rhamnoides ssp. mongolica were 
collected from four growth sites in Finland, Canada and Estonia inconsecutively 
during a period of twelve years. Wild berries of H. rhamnoides ssp. sinensis were 
collected from nine natural growth-sites in six provinces in China from 2006 to 
2008. Berries of ‘Terhi’ and ‘Tytti’ of ssp. rhamnoides were harvested in August 
and October in 2014 and 2015 in Turku in southwestern Finland. The berries of 
SB cultivars ‘Hergo’, ‘Leikora’, ‘Trofimovskaya’ and ‘Avgustinka’ were 
collected in Röhu experimental station in Estonia in September 2015. In each 
growth place, the berries were picked randomly from different blocks as 
optimally ripe. All the berries were frozen immediately after picking and stored 
at −18 °C until analysis. Sealed boxes were used to keep the shape and quality 
of berry. In the long storage of samples, it is not excluded that some berries 
would dry or some degradations of the compounds happened in the berries.  

Flavonols of berries from Finland, Canada and China were studied in paper I. 
The role of ethyl β-D-glucopyranoside (EG) in sensory quality of berries from 
two typical Finnish SB cultivars ‘Terhi’ and ‘Tytti’ were investigated in paper 
II and the contribution of flavonols and proanthocyanins (PAs) to the sensory 
qualities of berries from Finland and Estonia were analyzed in paper III. 
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Leaves of two sea buckthorn cultivars, ‘Terhi’ and ‘Tytti’, were harvested in 
August 2015 in Turku, Finland (IV). The leaf samples were picked from random 
sites in 4 ̶ 6 bushes and mixed for each cultivar. The samples were stored at 
−18 °C after picking until analysis. 

4.1.2 Ethyl β-D-glucopyranoside 

Ethyl β-D-glucopyranoside (EG) was provided by the Lappeenranta University 
of Technology in Finland. The purity of EG was verified with HPLC analysis to 
be over 98 %. 



 

Table 2. Sea buckthorn berries and leaves investigated in the thesis. 

Study Subspecies Cultivar Growth site Longitude Latitude Altitude(m) Harvest year 
Sea buckthorn berries      

I 

Ssp. mongolica 

‘Avgustinka’ (AVG) Turku, Finland (TU) 22°09′ E 60°23′ N 1 2003–2006 
Kittilä, Finland (KI) 24°37′ E 68°02′ N 210 2003 

‘Botanicheskaya’ (BOT) Turku, Finland (TU) 22°09′ E 60°23′ N 1 2002–2004; 2006; 2008;  
2011–2012 

Kittilä, Finland (KI) 24°37′ E 68°02′ N 210 2003 

‘Trofimovskaja’ (TRO) Turku, Finland (TU) 22°09′ E 60°23′ N 1 2003; 2004; 2006; 2008;  
2011–2012 

Kittilä, Finland (KI) 24°37′ E 68°02′ N 210 2002–2003 

‘Pertsik’ (PER) Turku, Finland (TU) 22°09′ E 60°23′ N 1 2003–2004; 2006 
Kittilä, Finland (KI) 24°37′ E 68°02′ N 210 2003 

‘Prevoshodnaya’ (PRE) Kittilä, Finland (KI) 24°37′ E 68°02′ N 210 2003 
Québec city, Canada (QU) 71°17′ W 46°47′ N 100 2007– 2010 

‘Prozcharachnaya’ (PRO) 
Turku, Finland (TU) 22°09′ E 60°23′ N 1 2003–2004; 2006;  

2008 
Kittilä, Finland (KI) 24°37′ E 68°02′ N 210 2003 
Québec city, Canada (QU) 71°17′ W 46°47′ N 100 2007–2010 

‘Chuiskaya’ (CHU) Québec city, Canada (QU) 71°17′ W 46°47′ N 100 2007–2010 
‘Oranzhevaya’ (ORA) Québec city, Canada (QU) 71°17′ W 46°47′ N 100 2007–2010 
 ‘Vitaminaya’ (VIT) Québec city, Canada (QU) 71°17′ W 46°47′ N 100 2007–2010 

Ssp. sinensis    Wild 

Heilongjiang, China (HLJ) 127º06′ E 47º14′ N 210 2006–2008 
Hebei, China (HB) 116º34´E 41º17′ N 818 2006–2008 
Qinghai, China (QH) 101º23´E 36º45′ N 3115 2006–2008 
Inner Mongolia, China (IM) 109º48´E 39º47′ N 1480 2006–2008 
Shanxi , China (SX) 113º52´E 37º05′ N 1512; 2182 2006–2008 
Sichuan, China (SC) 106º54´E 31º01′ N 2000; 2500; 3000 2006–2008 

II 

Ssp. rhamnoides 

‘Terhi’ 

Turku, Finland 22°09′ E 60°23′ N   1 

Aug, 2014; Oct, 2014 
Aug, 2015; Oct, 2015 ‘Tytti’ 

III 

‘Terhi’ Aug, 2015 
‘Tytti’ Aug, 2015 
‘Hergo’ 

Röhu, Estonia 

   

Sep, 2015 ‘Leikora’    

Ssp.mongolica ‘Trofimovskaya’    
‘Avgustinka’    

  Sea   buckthorn   leaves      

IV Ssp. rhamnoides ‘Terhi’ Turku, Finland 22°09′ E 60°23′ N   1 Aug, 2015 ‘Tytti’    
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4.2 Sample preparation 

4.2.1 Preparation of sea buckthorn juice and puree 

The juices were cold-pressed using the method described by Tiitinen et al. (2005). 
Briefly, SB berries (about 200 g) were thawed in a microwave oven (Whirlpool MW 
201, Fonthill Industrial estate, Dublin, Ireland) and homogenized in a Bamix blender 
(Bamix, Mettlen TG, Switzerland). An HP 2 H Tincture press (Fischer Hafico, Germany) 
was used to press the mash at a pressure of 19.6 MPa. The juice was stored at 4°C (II). 

SB berries (about 200 g) were half-thawed in a microwave oven, and then the seeds 
were removed manually. The seedless fraction of berries was homogenized to puree 
with the Bamix blender. The puree was divided into two parts; one part was stored at 
4°C overnight for sensory evaluations and the other at −18 °C for chemical analysis 
later (III). 

4.2.2 Processing of sea buckthorn leaves and tea-type infusions (IV) 

Sea buckthorn leaves were processed with five different drying methods (Table 3). For 
each drying method, about 20 g of fresh leaves were used. Prior to infusion, each of the 
processed SB leaf batches was ground into powder, passed through a 14-mesh sieve and 
packed in a commercial tea bag. Duplicate infusions were prepared according to a “one-
cup-serving” strength by infusing 1.0 g of leaves for 5 min with 100 mL of freshly 
boiled, carbon filtered water, without agitation, then filtered through Whatman filter 
paper (Grade 0858, Whatman International, Ltd., Maidstone, U.K.), and cooled to room 
temperature. 
 
Table 3. The processing method of sea buckthorn leaf “tea”.  

 
Processing Method Method Descriptions 

Freeze-drying (FD) lyophilization for two days at 0.288 mbar and  ̶  40 °C in a freeze-
dryer  

Steam+High 
Temperature (S+HT) 

“fixing” by steam at 95−100 °C for 30−40 s and then drying by high 
temperature heating 80−90 °C for 2.5 h 

Steam+Different 
Temperature (S+DT) 

steaming as above and drying in four heating steps at 70−80 °C for 
35−40 min, at 60−70 °C for 30−40 min, at 80−90 °C for 15−20 min, 
and at 60−75 °C for 30−40 min 

Low 
Temperature(LT) drying by low temperature heating 60−70 °C for 3.5 h 

Air-drying (AD) air-drying for three days in the laboratory at ambient temperature of 
25 ± 2 °C and relative humidity of 27% 
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4.2.3 Extraction of flavonol glycosides and ellagitannins 

Extractions of FGs of SB berries (I) and purees (III) were carried out with methanol. 
The berry slurry/puree of about 8 g was weighted accurately and extracted three times 
consecutively with 15 mL of methanol. During each extraction, the extraction mixture 
was thoroughly mixed and centrifuged, and the three clarified extracts were combined, 
methanol removed with a rotary evaporator. The sample was re-dissolved in 3 mL of 
methanol and filtered.  

Extraction of FGs and ETs from SB fresh leaves, from tea-type infusions, and from 
infused residues were carried out in duplicate (IV). For FG analyses, 20 mL sample of 
“tea” infusion was freeze-dried, and the freeze-dried powder was dissolved in 2 mL of 
methanol and filtered. For ET analyses, tea infusions were centrifuged and the 
supernatants were filtered.  

The “tea” residues were extracted three times with 20 mL of 70 % aqueous acetone 
with sonication for 20 min during each extraction, followed by centrifugation. The 
supernatants were combined. For FG analyses, the extracts were dried with a rotary 
evaporator and re-dissolved in methanol. For ET analysis, the extraction was performed 
as described above, the organic solvent was evaporated and the remaining water phase 
was freeze-dried. The dried extract was dissolved in 10 mL of water and filtered. Five 
grams of frozen fresh leaves were milled into a fine powder with liquid nitrogen. An 
aliquot of 1 g of leaf powder was extracted as described above. 

For dry-weight measurement, c.a. 3 g of leaves dried with each processing method 
and fresh leaves of both cultivars were weighed accurately, dried to a constant weight 
at 103−105 °C, cooled in a desiccator and weighed. 

4.2.4 Extraction and purification of proanthocyanidins (III) 

Sea buckthorn purees were accurately weighed, and then extracted three times with 
solvent consisting of acetone, water and acetic acid (80:19.5:0.5, v/v/v) by sonicating 
for 15 min for each extraction. The extracts were centrifuged and the supernatants were 
combined. The acetone was evaporated, then the remaining aqueous extract was 
defatted with petroleum ether and filtered. The activated Sephadex LH-20 column 
chromatography was used to purify further the SB puree samples (Yang, Laaksonen, 
Kallio & Yang, 2016b).  

4.3 Chemical analyses 

Flavonol glycosides and ellagitannins were analyzed by HPLC-DAD and HPLC-DAD-
ESI-MS/MS methods (I, III and IV) according to the method applied previously 
(Moilanen, Sinkkonen & Salminen, 2013, Yang et al., 2009). The quantitative analyses 
and preliminary identifications were carried out with reversed phase HPLC-DAD with 
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the aid of reference compounds and UV spectra. The quantification was carried out by 
using external standards. The corresponding reference compounds were used when 
commercially available. The most abundant/similar references in the corresponding 
phenolic compound class were used for those not commercially available. Further 
identification was conducted by HPLC-DAD-ESI-MS/MS in a mass range of m/z 
100−1000 (I and IV) and m/z 290–2000 (IV) in positive and/or negative ion mode and 
with the help of literature references of previous research. 

The quantitative analysis of PAs was conducted using HPLC-DAD-ESI-MS in 
negative ion mode (m/z 500 to 3000) according to the method applied previously by our 
group (Kallio, Yang, Liu & Yang, 2014) (III). Quantitative analysis of PA oligomers 
(dimers, trimers and tetramers) was carried out using HILIC-ESI-SIR method and 
procyanidin B2 as an external standard. The contents of total PAs were determined by 
BL-DMAC assay as procyanidin B2 equivalent.  

Individual sugars and organic acids, as well as EG in the SB juices were determined 
by gas chromatography (GC) as trimethylsilyl (TMS) derivatives (II and III). Sorbitol 
and tartaric acid were used as internal standards. Compounds in SB berries were 
identified with reference compounds. 

4.4 Antioxidant activity measurements of sea buckthorn leaf 
tea-type infusions (IV) 

The hydroxyl radical scavenging activity, the pro-oxidant activity and the ability to 
chelate iron ions of infusions were measured with the method previously described by 
Moilanen et al. (2016) with minor modifications. The method is based on the 
degradation of 2-deoxyribose (2-DR) caused by hydroxyl (HO ) radicals, which are 
generated in the chain of reactions utilizing Fe3+/ascorbic acid/EDTA/H2O2. Some 
substances can inhibit the degradation of deoxyribose by scavenging HO  (Gutteridge 
& Halliwell, 1988). The pro-oxidant activities of the tea-type infusions were evaluated 
based on their ability to reduce Fe3+ ions by omitting the addition of ascorbic acid from 
the assay. Moreover, the metal chelating abilities of these infusions were determined 
using 2-DR assay, but by omitting EDTA for this purpose. 160 µL of infusions were 
used instead of pure compounds (Moilanen et al., 2016). For the metal chelation ability 
measurement, the infusions were diluted (1:9) with water. A Hidex Sense microplate 
reader (Hidex, Finland) was used to measure the absorbance. 

4.5 Sensory evaluation 

All the sensory analyses were performed in the sensory laboratory in accordance with 
the ISO 8589-1988 standard. 
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The threshold detection of EG in water, and the contribution of EG to sensory profiles 
of SB model juices/juices were studied with an untrained panel of consumers (II, Table 
4). The sensory profile of purees were studied with trained panels (III, Table 4). The 
general guidelines for the selection, training and monitoring of panels (ISO 8586-1, 
1988) were complied. The descriptors were generated following DIS 11035 standards 
during independent training sessions and the panels were familiarized to the usage of 
sensory attributes (Table 5) and the intensity scale (1−7, II; 0−10, III). 

For the EG (II) and SB purees (III), at least sweetness, sourness, bitterness and two 
kinds of astringency were used, and ‘Total intensity of flavor’ and ‘Sharpness’ were 
added in the sensory evaluation of purees. The threshold of EG in water was 
investigated with Duo-Trio tests, and the contribution of EG, sugars and acids to the 
taste profile of the constructed model juices were studied with Project Mapping together 
with Ultra-Flash Profiling (Deegan et al., 2014)(Table 4). In study III, the samples were 
evaluated in randomized orders during three parallel sessions with the help of anchored 
reference compounds (Table 5). The data of threshold and Projective Mapping was 
carried out on paper. The other data was collected by Compusense-five data collection 
software (version 5.6, Compusense, Guelph, Canada). 

Prior to chemical analysis (IV), four kinds of tea-type beverages, which were 
processed by the method of FD, S+HT, S+DT and LT, and the infusion of one 
commercial green tea were prepared and presented to consumers in a preliminary 
sensory evaluation. The panelists were asked to describe color, aroma and taste of these 
samples and compared with the green tea.  



 

Table 4. Samples, methods and panelists in the sensory evaluations. 
 
Paper Sample 

descriptions 
Sensory 
methods Methodologies Number of 

samples 
Number of 
attributes 

Number of 
assessors/training Age 

II EG water 
solutions 

Detection 
threshold 
measurement 
(Duo-Trio test) 

The panelists were forced to identify one of the two coded samples 
differing from the reference (water) in taste. Whenever a panelist 
chose the sample correctly, the same samples were evaluated again 
to verify the difference. Whenever a panelist selected a wrong 
sample, the coded samples of EG of the next higher concentration 
were evaluated. 
 

7 * 29/No 20-52 

II 
Model SB 
juices in 
water 

Projective 
Mapping 

The panel was asked to write notes describing the attributes of the 
samples with their own words, an A3 sized paper was used for 
placing the samples according to the similarities and differences in 
sensory profiles. 
 

8 ** 44/No 20-52 

II 

EG water 
solutions, SB 
juices, SB 
juices+ EG 

Descriptive 
ratings on 
scales 

The panelists were asked to taste seven samples and to rate five 
attributes on a category scale from 1 (not at all) to 7 (very strong). 
Finally, possible similarities were described between the juice 
samples and the first sample (EG solution in water). And the most 
pleasant and unpleasant juice samples were chose. 
 

7 5 45/No 23-52 

III SB purees 
Generic 
Descriptive 
Analysis 

The intensities of the attributes were rated on a continuous 
graphical scale, from 0 (none) to 10 (very strong) with the help of 
anchored reference samples (Table 7). The samples were mixed 
and divided into aliquots of 2 mL in 50 mL transparent plastic 
beakers covered with lids. The samples were evaluated in triplicate 
in separate sessions as blind coded and in randomized order. 
 

6 8 12/Yes 23-38 

IV 
SB leaves 
tea-type 
beverages 

Description of 
samples 

The panel was asked to describe the color, aroma and flavor of the 
SB leaves tea-type infusions and the commercial green tea 
reference. 10 mL of each sample were presented in 50 mL 
transparent glass beakers in randomized order. The panelists were 
instructed to take a sip of sample in mouth, to swirl it around in the 
mouth briefly and to write notes on a blank sheet describing the 
attributes of the samples with their own words. 

5 ** 30/No 22-48 

* No information provided concerning the sensory quality, however, panelists were asked to describe the quality after completing the threshold test 
** Assessors used their own descriptors and attributes 
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Table 5. Sensory attributes and their descriptions with reference samples. 
 

Paper Attribute Verbal Definitions  

II Sweetness Resembles the taste found 
in sugar, candy  

II Sourness Lemon, lime  
II Bitterness Black coffee, cocoa  

II Mouth-drying 
astringency Drying mouth feeling  

II Puckering  
astringency Shrinking mouth feeling  

  Description Reference 

III Sweetness Sweet taste 2.0 %  Glucose (VWR, Belgium) 

III Sourness Sour taste 0.07 % Malic acid (Sigma, St. 
Louis, Mo) 

III Bitterness Bitter taste 0.07 % Caffeine (Alfa Aesar 
GmbH&CoKG, Germany) 

III Puckering 
astringency Puckering mouthfeel 0.10 % AlSO4 (Alfa Aesar 

GmbH&CoKG, Germany) 

III Mouth-drying 
astringency Drying mouthfeel 0.20 % Tannic acid (Sigma, St. 

Louis, Mo) 

III Total intensity   
of flavor 

Perceived first impression   
of flavor in mouth 

− 

III Sharpness Sharp, acidic, and tangy 
mouthfeel 

High-carbonic acid mineral water 
(Olvi Vichy, Finland) 

III Aftertaste Right after swallowing − 

4.6 Statistical analyses 

Statistical analyses and multivariate models were performed using SPSS 22.0 
(SPSS Inc., Chicago, IL) and Unscrambler X, version 10.3 (CAMO Software, 
Oslo, Norway), respectively. A one-way analysis of variance (ANOVA) together 
with suitable post-hoc tests: Tukey’s t-test or Tamhane test (p < 0.05) and 
independent-sample t test were performed to compare the content and 
composition of FGs of SB berries/purees in different subspecies, cultivars, 
growth locations and altitude (I and III). These analyses were also used to 
compare sugars and fruit acids at different cultivars and harvest times (II and 
III), PAs at different cultivars (III), and the ETs of SB leaves “tea” at different 
cultivars and processing methods (IV). Three-way ANOVA was used to analyze 
sensory results with samples as fixed factors and sessions and panelists as 
random factors (III). Cochran’s Q and McNemar’s tests were used for the 
analysis of the frequency data of like/dislike (II). Bivariate (Pearson’s 
Correlation Coefficients) and partial correlation analyses were applied to 
investigate the correlation coefficients among content of FGs in SB berries, 
latitude and altitude of growth sites (I). 



Materials and Methods 

 

38

Unsupervised classification with PCA models was created to further examine 
the variation of chemical variables within the two subspecies of SB berries (I), 
and used to investigate variations in the compositional profiles of SB leaves tea-
type infusions and residues in the study (IV). The PCA models were also applied 
to analyze the description frequency of SB leaf tea-type infusions from different 
drying methods and from two cultivars, and used to investigate the contribution 
of phenolic variables to AAs variables in the tea-type infusions (IV). Supervised 
classification with PLS-DA model was used to explain the difference between 
ssp. sinensis berries and ssp. mongolica berries, according to the composition 
and content of FGs in berries (I). PCR was used to analyze the results of the 
Projective Mapping to determine the interactions between the panelists’ sample 
and frequencies of sensory descriptors (II). PLS regression was used to examine 
the interactions between the compositional variables and the averaged sensory 
attributes and the frequencies of like and dislike in the SB juices (II). It was also 
applied to investigate relationships between the compositional variables, some 
ratios between compounds and the averaged sensory attributes in the SB purees 
(III). 
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5 RESULTS AND DISCUSSION 

5.1 Chemical composition 

5.1.1 Flavonol glycosides  

In total, 26 FGs were identified or tentatively identified in the extracts of SB 
berries (I), and ten major FGs identified were quantified in the extracts of SB 
purees (III). 25 FGs were identified or preliminary identified in the extracts of 
SB leaves (IV) (Table 6). Identification of many phenolic compounds was 
tentative due to the lack of reference compounds or literature references. The 
contents of FGs ranged from 23 to 250 mg/100 g FW in berries. The long storage 
may induce degradation of FGs to the corresponding aglycone. FAs were not 
found in significant quantities in SB berry samples. This may indicate that the 
FGs in the berries of SB are generally stable during storage. Yields of the FGs 
varied between 9.7 mg and 11.7 mg/100 mL in leaf infusions, and the contents 
ranges were 5.8–7.4 and 13.1–14.1 mg/g DW in the infusion residues and fresh 
leaves, respectively. The total content of FGs in SB leaves was much higher than 
reported in the leaves of green tea, oolong tea, and black tea (2.3–5.7 mg/g 
DW)(Jiang et al., 2015). Glycosides of isorhamnetin represented the highest 
percentage as well as the majority of compound diversity. Isorhamnetin-3-O-
rutinoside and isorhamnetin-3-O-glucoside-7-O-rhamnoside were the two major 
FGs in all samples analyzed (I, III and IV). Isorhamnetin and quercetin were the 
predominant aglycones in SB berries and purees. However, the FGs profiles of 
leaves were significantly different compared to berries/purees. For example, 
specific for leaves was the presence of kaempferol derivatives (IV). Free FAs 
were not found in significant quantities in leaf samples analyzed. 

5.1.2 Proanthocyanninds and ellagitannins 

In SB purees (III), no multi-charged molecular ions of PAs were found. Only 
single-charged molecular ions of PAs with DP from 2 to 4: dimers, trimers and 
tetramers were detected. The content of PA dimers, trimers, tetramers was only 
a small proportion (0.30−14.4%) of the total PAs (23.0−47.4 mg/100 g FW), in 
the range of 0.14–3.50, 0.22–1.97 and 0.12–1.71 mg/100 g FW, respectively. All 
the compounds represented the B-type PAs.  

The content of PA dimers, trimers, tetramers and total PAs appeared to be less 
in SB purees compared with those in berries (Yang, Laaksonen, Kallio & Yang, 
2016b). We speculate that the majority of PAs in SB berries, especially those 
with DP > 4, are mainly present in the seeds. It has been shown that the subunit 
composition of PAs is different in the seeds and skin of grapes (Downey, Harvey 
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& Robinson, 2003). This indicates that different fractions of SB may also have 
different profiles of PAs.  

In paper IV, six main ETs e.g. casuarinin, stachyurin, hippophaenin B, 
hippophaenin C, pedunculagin and casuarictin were detected in SB leaf extracts 
(Table 6). The total amounts of ETs were 9.7–21.7 mg/100 mL in “tea” infusions, 
4.0–15.7 mg/g DW in “tea” residues and more than 30 mg/g DW in fresh leaves. 
The total concentrations of ETs may vary widely between individual SB plants 
(Suvanto et al., 2018). Casuarinin and stachyurin were the most abundant 
compounds, whereas hippophaenin B, hippophaenin C and pedunculagin were 
detected in significantly lower contents in all the samples. The level of total ETs 
in residues was about a half of that in fresh leaves. 

 
Table 6. Phenolic compounds detected by HPLC-DAD-ESI-MS/MS from the 
extracts of sea buckthorn berries and leaves.  
 

Com 
pounds 

λ max 
(nm) 

[M+H]+ 
(m/z) 

[M-H]- 
(m/z) 

Other ions in 
MS (m/z) a MS/MSb Tentative 

identificationc 

Compoun
d found 
in studies 

1 254,345 773  303, 465, 627 465, 611, 
773 Qu-S-Rh  I, IV 

2 256, 355 773  303, 465, 611, 
612  Qu-3-S-7-Rh* I, III, IV 

3 257, 346   317, 287, 479, 
579  Is Gly I IV 

4 255, 354 787 785 317, 479, 641 317, 479, 
641, 787 Is-R-G I 

5 254, 351 787  317, 479 479, 641 Is-S-Rh IV 

6 256, 356 787  317, 463, 464, 
625  Is-3-S-7-Rh * I, III, IV 

7 250, 350 449  303, 317 449 Qu-Rh  I, IV 
8 255, 351 611  303, 449 449, 611 Qu-He-Rh I IV 
9 252, 350 611  303, 449, 463 449, 611 Qu- He-Rh II IV 
10 256, 357 611 610 303, 466  Qu-3-R* I, III, IV 
11 255, 345 625  317, 463 463, 625 Is-He-Rh I IV 

12 253, 332 611  303, 449 449, 465, 
611 Qu-He-Rh III IV 

13 255, 355 465 464 303  Qu-3-G* I, III 
14 254, 351 625  317, 463 463, 625 Is-He-Rh II IV 
15 252, 364 595  287, 433 449,595 Ka-3-He-7-Rh IV 
16 254, 352 625  317, 463  Is-3-G-7-Rh * I, III, IV 
17 253, 344 463  317 463 Is-Rh I, IV 
18 252, 330 611  303, 317 , 463 465, 611 Qu-He-Rh IV IV 
19 254, 337 595  317 463, 595 Is-Pe-Rh I, IV 
20 253, 346 625  287, 317, 479 625 Is-R I, III, IV 
21 254, 353 625  317, 479  Is-3-R * I, III, IV 
22 347 449  287 449 Ka-He IV 
23 253, 350 479  317  Is-3-G * I, III, IV 
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24 266, 313   287, 303, 313, 
595, 617 595 ka-p-

coumaroylhe I IV 

25 266, 312   287, 303, 595, 
618  

ka-p-
coumaroylhe 
II 

IV 

26 336   287, 317, 454, 
595, 617 595 Ka Gly I IV 

27 253, 353   317, 287, 611, 
629, 791 629, 791 Is Gly II IV 

 
28   783 391, 481, 301  Pedunculagin IV 
29   935 458, 467  stachyurin IV 

30   1103 520, 529  Hippophaenin 
C IV 

31   935 467  Casuarinin IV 

32   1103 529  Hippophaenin 
B IV 

33   935 467  Casuarictin IV 
a Major fragments in the fragmentation process are underlined. 
b The MS/MS data were obtained by scanning the daughter ion of [M+H]+. 
c Compounds with * in the column were identified with reference compounds; the others were identified 
based on UV and mass spectra.  

5.1.3 Sugars, ethyl β-D-glucopyranoside and fruit acids  

Fructose and glucose were the two major sugars, and malic and quinic acids were 
the major fruit acids in the SB berries/purees studied (II and III). A significant 
increasing trend was found in the contents of EG in ‘Terhi’ and ‘Tytti’ during 
August-October (p < 0.05, II). Results of the present research revealed clear and 
significant differences in the contents of sugars, EG and acids in six cultivars and 
different harvest times (II and III, respectively).   

5.2 Influence of genotype, growth conditions and 
processing 

5.2.1 Comparison of subspecies and cultivars 

In paper I, the total content of FGs, as well as the contents of all individual major 
compounds, were significantly higher in ssp. sinensis than in ssp. mongolica. 
Among the cultivars of ssp. mongolica, the berries of ‘Oranzhevaya’ had the 
lowest content of total FGs (23 mg/100 g FW), whereas the berries of 
‘Prevoshodnaya’ were the richest in total FGs (80 mg/100 g FW). 

In paper III, ‘Leikora’ contained higher contents of isorhamnetin-glucoside-
rhamnoside, isorhamnetin-3-O-glucoside-7-O-rhamnoside, isorhamnetin-3-O-
rutinoside, and total FGs compared with other cultivars (p < 0.05). In contrast, 
‘Avgustinka’ had the lowest content of these compounds (p < 0.05). The content 
of total FGs in ‘Leikora’ was nearly 3-fold of the level in ‘Avgustinka’. ‘Terhi’ 
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contained the highest ratio of Is/Qu, whereas ‘Trofimovskaya’ the lowest (p < 
0.05). 

In paper IV, there were significant differences in the contents of individual 
ETs in the infusion samples between the two cultivars, except for stachyurin (p 
< 0.05).  Casuarinin was detected in significantly lower quantities in ‘Tytti’ than 
in ‘Terhi’. The total content of FGs and the contents of some individual FGs 
were significantly higher in the residue samples of ‘Terhi’ than in those of ‘Tytti’ 
(p < 0.05). The ratio between isorhamnetin and quercetin glycosides in ‘Terhi’ 
was 2.3 and 1.9 in ‘Tytti’, and the same trend was detected in the infusions and 
in the fresh leaves.  

The berries and purees of SB had similar profiles of FGs (Ma et al., 2016, Ma 
et al., 2017), but differed in the leaf samples due to the presence of kaempferol 
derivatives. Results of this study revealed clear differences in the content and 
composition of FGs between the subspecies/cultivars. The profile of FGs in SB 
may be a useful chemotaxonomic feature distinguishing SB of different origins 
(Chen, Zhang, Xiao, Yong & Bai, 2007). 

5.2.2 Effect of growth conditions on flavonol glycosides (I) 

The FGs contents in the berries from Kittilä (North Finland) were significantly 
higher than the contents in the corresponding cultivars (‘Avgustinka’, 
‘Botanicheskaya’, ‘Trofimovskaya’ and ‘Pertsik’) cultivated in Turku (south 
Finland) (77 vs 49 mg/100 g FW, respectively). Among all weather variables 
studied from south to north, the sum of the daily mean temperatures (from the 
start of growth season to harvest) was the most important variable, which 
correlated negatively with the accumulation of FGs in berries (Zheng et al., 
2016). The total FGs content of ‘Prozcharachnaya’ was significantly higher in 
samples from Kittilä than from Québec. Interestingly, FGs with simpler 
structures, especially isorhamnetin-3-O-glucoside, were rich in Québec and 
Turku, whereas the glycosides with complex sugar moieties were more abundant 
in Kittilä. Among the berries of the 6 growth sites of ssp. sinensis, the berries 
from Sichuan were distinguishable with higher content of FGs than berries from 
other locations.  

A positive correlation has been reported between latitude and the content of 
phenolic compounds in Finnish berries (Latti et al., 2009, Lätti et al., 2007). 
Similar trends were observed in most of the berries of ssp. mongolica. However, 
in the berries of ssp. sinensis, a negative association was found between latitude 
and the content of most FGs and the total contents of FGs. This indicates the 
importance of interaction between genetic background and environmental 
factors. The contents of almost all flavonol compounds correlated negatively 
with latitude but positively with altitude (p < 0.01). Altitude influences the 
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quality of radiation, which has been shown to affect the composition and the 
concentration of UV-absorbing compounds in plants (Cockell, north & Herrera, 
2000, Davik, Bakken, Holte & Blomhoff, 2006, Kolb et al., 2003). Despite some 
outliers, increasing trends were seen in the contents of FGs as the altitude 
increased and as the latitude decreased in the Chinese berries (Figure 7). 

 

 
Figure 7. Correlations between altitude and contents of isorhamnetin-3-O-
sophoroside-7-O-rhamnoside (A, Is-3-S-7-Rh), isorhamnetin-3-O-glucoside-7-
O-rhamnoside (B, Is-3-G-7-Rh ), quercetin-3-O-rutinoside (C, Rutin), 
isorhamnetin-3-O-rutinoside (D, Is-3-R), quercetin-glucoside-rhamnoside II (E, 
Qu-G-Rh II) and total flavonol glycosides (F, Total FG). Growth sites and 
latitudes of wild Chinese berries were indicated in parentheses on the plot. 
Reprinted from original publication I, with permission from Elsevier.  

5.2.3 Comparison of drying methods (IV) 

Generally, the contents of ETs varied significantly among the different drying 
methods studied, whereas less effect was seen on the contents of FGs. The 
content of hippophaenin B varied among different drying methods by close to 4-
fold in the infusions of ‘Tytti’. The total concentration of ETs ranged between 
9.7 and 21.7 mg/100 mL, and the processing of S+HT resulted in the highest 
content of total ETs and total phenolics in the infusions. Air-drying led to the 
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highest content of hippophaenin B, hippophaenin C and casuarictin in the 
infusions. Only few individual FGs showed significantly varying contents 
among different drying methods, whereas there were no significant differences 
in the contents of total FGs. This may indicate that the FGs of SB leaves are 
generally stable during different drying process. This is consistent with previous 
reports that FGs are more resistant to heat processing than some other groups of 
phenolics, such as anthocyanins (Mäkilä, Laaksonen, Kallio & Yang, 2017). 

5.3 Sensory properties 

5.3.1 Taste threshold of ethyl β-D-glucopyranoside in water (II) 

The threshold of EG in water was determined resulting in a threshold 1.1 ± 1.3 
g/L (0.005 mol/L), calculated as a mean of BET (Best estimate of individual 
threshold). When compared to the reference (water), 76% of panelists reported 
that the main difference was bitterness. The observed threshold of EG was lower 
than the levels at which this compound is naturally present in SB juices of H. 
rhamnoides ssp. rhamnoides (Yang, 2009). Hence, the naturally present EG may 
be a contributor to the flavor of the berries of SB, at least in this subspecies.  

5.3.2 Sensory profiles of sea buckthorn purees (III) 

Overall, all the puree samples of six SB cultivars were perceived as notably sour, 
bitter and puckering astringent, as well as sharp. ‘Trofimovskaya’ puree was 
described as the least sour, puckering astringent and sharp among the cultivars, 
whereas ‘Hergo’ was perceived as opposite in these attributes. Similarly, the 
purees of ‘Terhi’, ‘Tytti’ and ‘Leikora’, had higher intensities of sourness, 
astringency and total flavor, whereas that of ‘Avgustinka’ contained lower scores 
of sourness and sharpness (p < 0.05). Generally, no significant differences were 
detected in sweetness and bitterness among all cultivars. Whereas the cultivars 
‘Trofimovskaya’ and ‘Avgustinka’ were sweeter and less sour and astringent, 
significantly different from the other cultivars based on the scores of sensory 
attributes. 

5.3.3 Sensory evaluation of tea-type infusions (IV) 

The panelists described mainly the color of the infusions as brown/dark yellow, 
the aroma as stronger berry, fishy and fermented, and the flavor as sweet, mild 
and fishy, while lacking the astringent and bitter flavor of green tea. Use these 
descriptors and the lack of negative descriptors indicated that tea-type infusions 
prepared from the SB leaves might be acceptable to consumers. 
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5.4 Antioxidant activities of tea-type leaf infusions (IV) 

 In general, the tea-type infusions in this study presented intense antioxidant 
activities, and ‘Terhi’ samples showed higher activities than ‘Tytti’. (Figure 8). 
The radical scavenging activities of two non-thermal drying methods (air- and 
freeze-drying) are similar and stable (Figure 8A). The thermal drying methods 
(LT, S+HT and S+DT) present higher pro-oxidant and lower radical scavenging 
activities than the non-thermal ones in the infusions. It seems that harsh drying 
methods increase the pro-oxidative effects of tea-type infusions, and the AAs 
show sensitivity to drying temperatures in tea infusions. Moreover, the leaves 
were treated with steam and thermal processing (S+HT or S+DT in Figure 8C) 
led to the highest pro-oxidative activities and higher deviations in the infusions 
of both cultivars. These changes were suggested to be due to modifications in 
the total phenolic content and profile by phenolic oxidation or polymerization 
caused by thermal processing (Randhir, Kwon, & Shetty, 2008). The deviations 
might be caused by some degradation products produced during heat treatment.  
 

 

 

Figure 8. Radical scavenging activities (A), metal chelating abilities (B) and pro-
oxidant activities (C) of sea buckthorn leaf tea-type infusions. Negative 
inhibition values in C indicate pro-oxidant activity. Adapted from the original 
publication IV.  

5.5 Combining the data 

5.5.1 Compounds contributing to sensory properties 

Principal component regression (PCR) was used to analyse the sensory 
contribution of EG in the eight aqueous mixtures of acids, sugars and/or EG at 
different concentrations (Figure 9, II). PLS regression models were used to 
combine chemical variables or ratios of chemical variables and sensory data in 
papers II−III as well as to investigate correlations between the chemical 
variables and AAs in paper IV.  Only the first two factors of the model are shown 
in the figures. 
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In PCR models (Figure 9), all the samples with acids correlated with ‘very 
sour’, ‘bitter’, ‘astringent’ and ‘pungent’ variables in the loading plot. In contrast, 
the model samples without any acids were described with attributes ‘off-flavour’, 
‘watery’, ‘sweet’ and ‘slightly bitter’.  Only sample S&A_EG_2 was described 
to be somewhat more bitter than sample S&A_2 in the second principal 
component. It might be due to the presence of EG in the sample of S&A_EG_2. 
The contribution of EG to bitterness was not sufficiently significant according to 
results of evaluation by the panel. Due to the high concentration of organic acids, 
the potential bitterness of EG may be suppressed by the higher intensity of 
sourness in the overall profile (Keast & Breslin, 2003).  

 

 

Figure 9. Principal component regression scores and Y-loadings plots of 
coordinates (X, not shown in the figure), descriptors of samples (Y, red font) in 
the eight sugar-acid mixtures (blue font). Reprinted from the original publication 
II, with permission from Elsevier. 

In order to investigate the role of EG in SB juices, sweetness, sourness, 
bitterness and the two astringent properties (mouth drying and puckering) were 
rated in the juices with and without added EG (Figure 10, II). The only 
statistically significant sensory difference was found in the sourness between 
juices without (TeAu15) and with an addition of EG (TeAu15 + EG 2) (p = 0.01). 
It is possible that the bitterness of the added EG suppressed the high intensity of 
the sourness (Keast & Breslin, 2003). A significant increase in bitterness was 
perceived in the juice of ‘Tytti’ after the concentration of EG was increased. This 
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indicated that EG contributed to the bitter taste of the juice. Significant 
differences were found in the sensory profiles between the juices before and after 
the addition of EG. This might be due to the different profiles of sugars and acids 
in the juice of ‘Terhi’ and ‘Tytti’. Moreover, it is important to note that other 
compounds such as phenolic compounds may contribute to the sensory 
properties of these juices perceived astringency and bitterness (Hufnagel & 
Hofmann, 2008a), although they were not detected in this study. After rating the 
attributes, bitterness was perceived mainly in the aqueous EG solution by most 
of the panelists. 

 

 

Figure 10. Sensory attributes and their intensities (scale 1–7) in the juices with 
and without added EG by the sensory panel (n=45). (A) TeAu15 (‘Terhi’ 
collected in August, 2015; EG content 0.6g/L), + EG1 (1.7 g/L) and + EG2 (4.5 
g/L); (B) TyAu15 (‘Tytti’ collected in August, 2015; 1.6 g/L), + EG (3.3 g/L) 
and TyOc15 (‘Tytti’ collected in Octorber, 2015; 19.8 g/L). Statistical 
differences between the samples are marked with different letter (a–b) (p < 0.05). 
Reprinted from the original publication II, with permission from Elsevier.  

As shown in PLS regression model in Figure 11, glucose and fructose were 
the major sugars contributing to the sweetness in SB juices/purees (II and III). 
L-quebrachitol showed only little correlation with any of the sensory attributes. 
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The main contribution of EG was the bitter taste, which was closely correlated 
to the ratios of EG/acid and EG/sugar (II). Malic acid was the major organic acid 
contributing to the sourness (II and III). Due to the intense sourness in the SB 
juices/purees, the ratio of sugars/acids is often considered as a better predictor of 
sourness and/or sweetness of berries and berry products (Tang, Kälviäinen & 
Tuorila, 2001, Tiitinen, Hakala & Kallio, 2005). Malic acid and isorhamnetin 
glycosides, especially isorhamnetin-3-O-sophoroside-7-O-rhamnoside, were 
closely related to the astringent attributes in the different purees, whereas PAs or 
quercetin glycosides had less impact (III). Moreover, comparing individual 
variables alone, the ratios between contents of acids and phenolic compounds 
were more important predictors of bitterness (III). 

 

 

Figure 11. Partial least squares (PLS) regression model showing the interactions 
between chemical variables as X-variables (blue font) or ratios of chemical 
variables as X-variables (blue font) and sensory profiles as Y-variables (red font) 
in six puree samples (green font). Reprinted from the original publication III, 
with permission from American Chemical Society. 
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5.5.2 Sensory-chemical factors contributing to liking and disliking of 
juices (II) 

The most-liked juice was TyAu15 within the 6 juice samples, while TeAu15, 
TeAu15 + EG 2 and TyAu15 + EG were selected as most-disliked juice samples. 
As shown in PLS regression model in Figure 12, the liking of SB juices was 
related positively to citric acid but correlated negatively with EG as well as the 
ratios of EG/sugars and EG/acids. The contents of malic acid, quinic acid, 
ascorbic acid and the total acids were found to correlate positively with sourness 
and puckering astringency, but they correlated only weakly with liking. To some 
extent, the concentration of EG was found to correlate positively with the 
intensity of the bitterness perceived in the juices and disliking of juice to 
consumers. However, sometimes consumers in beverages enjoyed complex and 
balanced tastes, and bitterness may help to balance the flavor profile and add 
complexity and enjoyment of fruit juices (Geertsen et al., 2016). 

 

 

Figure 12. Correlation loadings plot of the partial least squares (PLS) regression 
model showing the interactions between chemical variables (X-variables, n=14; 
blue font) and sensory profiles (Y-variables, n=7; red font) in six juice samples 
(green font). The sample abbreviations refer to Figure 10. Reprinted from the 
original publication II, with permission from Elsevier.  

5.5.3 Correlation between phenolic compounds and antioxidant 
activities (IV) 

Most ellagitannins, such as casuarictin, hippophaenin B, stachyurin, total ETs, 
and total phenolics correlated strongly positively to the metal chelation abilities 
and negatively to the pro-oxidant activities.  Is-R and Is-3-G correlated positively 
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with pro-oxidant activities. Some quercetin glycosides such as Qu-He-Rh III and 
Qu-He-Rh IV were closely associated with radical scavenging activities, 
whereas kaempferol glycosides and part of quercetin glycosides had a weak 
correlation with AAs. Generally, the results suggest that the AAs of ETs are more 
likely due to their capacity for chelating metal ions, and FGs mainly influence 
on radical scavenging activities. Some previous publications also reported strong 
correlations between phenolics and the AAs of plant extracts evaluated by 
different assays (Liaudanskas et al., 2014, Luximon-Ramma et al., 2002). 
However, the AAs of the extracts was affected by many factors, and no clear 
association was found between the AAs of extracts and the relative proportion 
of FGs and ETs despite the fact that these compounds are generally known to be 
potent antioxidants. 
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6 SUMMARY AND CONCLUSION 

Isorhamnetin was the most abundant aglycone and represented a majority of 
compound diversities of flavonol glycosides in SB berries and leaves. The 
content and profile of FGs in SB berries were highly dependent on the subspecies 
and cultivars. Moreover, they were significantly influenced by the altitude and/or 
latitude of the growth sites. Besides FGs, ellagitannins were also investigated in 
SB leaves and leaves products. The contents of ETs varied significantly among 
the different processing methods, whereas less effect was seen on the contents 
of FGs. The knowledge on specific FGs and ETs in SB berries and leaves can 
provide an accurate dietary intake of bioactive compounds in various clinical 
studies and a better estimation of potential health benefits of sea buckthorn. 

The results showed that SB of different genetic backgrounds and harvest times 
had significantly different sensory profiles due to different chemical 
compositions. EG is a bitter compound, which positively correlated with the 
disliking of SB juices. Malic acid and isorhamnetin glycosides were the major 
compounds responsible for the astringency in SB purees. Considering the content 
and contribution of EG, the berries of ssp. rhamnoides are predicted to be bitterer 
than those of ssp. sinensis and ssp. mongolica. SB berries of ssp. sinensis may 
be more astringent than those of ssp. mongolica, due to the higher content of 
isorhamnetin glycosides. Drying process may have less influence on the taste 
properties of tea-type leaf infusions, as the content of astringent FGs may be 
stable during the processing.  

The conclusions on sensory properties of SB in this study were made based 
on only a few cultivars, and only some of the taste-active compounds were 
included. Although volatiles, lipids, polysaccharides and various other 
compounds will influence the flavor of SB berries and berry products, we only 
focused on the role of non-volatile bioactive compounds in the research of this 
thesis.  

Sea buckthorn has gained increasing interest as a health food due to the wide 
range of health benefits. The consumption of SB berries is limited usually 
because of the special sensory profile. Our findings bring new insights into the 
sensory profiles of SB berries, especially astringency and bitterness, as well as 
the major compounds associated with these taste contributes of sea buckthorn. 
By understanding the relationship of chemical factors and these sensory 
attributes, it is possible to improve the sensory properties and consumer 
acceptance of SB products, which is crucial for increasing the utilization of SB 
in the food industry and providing guidance for SB breeding and cultivation. 
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