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Deforestation in Amazonia is a high priority issue as it is intimately connected to global 

environmental problems, such as biodiversity loss and climate change. Contemporary 

threat from deforestation is concentrated on deforestation fronts, and protected areas 

(PAs) are the main tool used to combat the threat. PAs are an important investment of 

time and resources, making it important to know how effective they are in achieving 

their purpose. I selected PAs near the deforestation fronts in the state of Acre, Brazil, 

and applied a state-of-the-art matching method to study their effectiveness during 

2011-2016, after Acre had begun the world’s first jurisdictional REDD+ program. I 

calculated estimates of deforestation pressure and effectiveness for each PA 

separately and used these to calculate how much deforestation and CO2 emissions 

each PA had avoided. I found substantial variation in the effectiveness estimates 

between individual PAs, corroborating previous matching studies, but the main 

protection types did not differ from each other in effectiveness in Acre. I found that three 

PAs currently exist in areas of very high pressure. During the study period, the PAs of 

Acre avoided a substantial amount of deforestation and carbon emissions and were 

therefore able to conserve much of the cherished services and functions the rainforests 

of Acre provide.  
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1. Introduction 
 

1.1. Tropical forests and a changing world 

 

Forests not only harbour the majority of terrestrial species (FAO, 2016), but also provide 

indispensable provisioning, regulating, supporting and cultural services for humanity 

(MEA, 2005; WWF, 2016). However, for thousands of years the process of economic 

development has pushed humankind to convert forests to agricultural use (FAO, 2016). 

Until the late 1800’s, forest loss was most prevalent in the northern temperate zone, 

whereas these days most of the forest conversion to other land uses takes place in the 

tropical domain where intact forests still stand, particularly in South America and Africa 

(MacDicken et al., 2015; FAO, 2016). Human influence has lead the global forest cover 

to reduce by 40% during historical times (Mace et al., 2005) and today, forests cover 

around a third of the global land area, a third of which has remained as primary forests 

where ecological processes have not been significantly disturbed by human activities 

(FAO FRA, 2012; MacDicken et al., 2015). Around half of these primary forests are 

located in the tropics, and the largest extent of primary forests can be found in South 

America (MacDicken et al., 2015), although the extent to which these forests are truly 

without human influence has lately been under debate (Levis et al., 2017). Presently, 

humans appropriate a quarter of the earth’s net primary productivity (Krausmann et al., 

2013) and as we continue to appropriate ever more productive land area, habitats of 

other species are lost, presenting the greatest contemporary threat to biodiversity 

globally (MEA, 2005; WWF, 2016).  

 

1.2. Deforestation 

 

The result of the historical and present forest loss on a global scale has been the fact 

that today, the planetary boundary for land-use change – measured by the amount of 

remaining forest cover – has been estimated to be in the zone of uncertainty and not 

inside the safe operating space within which human societies can develop and thrive 

(Steffen et al., 2015). Deforestation, therefore, is an issue of high relevance and priority, 

especially in the tropics. For example, around 17.7 million hectares of the Amazon forest 

cover, roughly equal to the area of Austria and Portugal combined, were deforested 

between 2001-2012, mostly due to forest conversion for cattle ranching and soy 

production in Brazil (WWF, 2015b).  
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Deforestation is defined by the Food and Agriculture Organization of the United Nations 

(FAO) as “the conversion of forest to other land use or the permanent reduction of the 

tree canopy cover below the minimum 10 percent threshold” (FAO FRA, 2012). Similarly, 

the World Wide Fund for Nature (WWF) defines deforestation as “conversion of forest to 

another land use or significant long-term reduction of tree canopy cover. This includes 

conversion of natural forest to tree plantations, agriculture, pasture, water reservoirs and 

urban areas; but excludes logging areas where the forest is managed to regenerate 

naturally or with the aid of silvicultural measures” (WWF, 2015b). To define a “significant 

reduction”, WWF references the 10% threshold set by the FAO. 

When writing about deforestation in his article in 1993, Norman Myers conveyed the 

importance of this issue eloquently: “This represents a largely irreversible loss of unique 

stocks of natural resources that could supply self-renewing goods and services to all 

Humankind in perpetuity. In view of the manifold benefits that are available from the 

forests, their progressive depletion must rank as one of the most impoverishing assaults 

which we humans are imposing upon The Biosphere and our descendants” (Myers, 

1993). 

 

1.2.1. Deforestation has diverse drivers 

 

Though the ultimate antecedent of deforestation globally has been the process of 

economic development, varying underlying and proximate causes for deforestation have 

been identified between the world’s regions. (Geist and Lambin, 2002; FAO, 2016). 

Proximate causes are the immediate and usually intended consequences or human 

actions at the local level that directly impact forest cover, such as the expansion of 

agriculture or infrastructure (Geist and Lambin, 2002). Underlying drivers, such as 

demographic, economic or political factors, represent causes which underpin the 

proximate causes and their influence can stem anywhere from local to global processes 

(Geist and Lambin, 2002). If one factor needed to be selected as the main driver of 

deforestation, it would be systems dynamics, as different combinations and interactions 

of the underlying and proximate causes have been found to determine the decline in the 

tropical forest cover in varying geographical and historical contexts (Geist and Lambin, 

2002). A meta-analysis by Geist and Lambin (2002) on the causes of deforestation found 

that in almost 30% of the case studies the full interplay of economic, institutional, 

technological, cultural, and demographic underlying variables synergistically affected 

deforestation. Geist and Lambin (2002) also identified that economic factors – including 

market growth, commercialization, demand/consumption, market failures, urban-
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industrial growth, foreign exchange, production conditions and price changes – are the 

prominent underlying forces of tropical deforestation, affecting 81% of all cases 

worldwide.  

The drivers of deforestation are different in different regions and countries. In Latin 

America, especially important underlying causes have been the growth of markets, 

formal policies and public attitudes (Geist and Lambin, 2002). As an example, the 

Amazon rainforest extends over multiple countries (Brazil, French Guiana, Suriname, 

Guyana, Venezuela, Colombia, Ecuador, Peru and Bolivia), which vary in the relative 

importance of the causes of deforestation. Cattle ranching is a dominant cause in many 

areas of Amazonia, and expanding small-scale agriculture is a primary threat in Bolivia, 

Colombia, Ecuador, Peru and the Guianas (WWF, 2015b). Today, the primary proximate 

causes of forest loss or severe degradation in the Brazilian Amazon are pastures and 

cattle ranching, mechanized agriculture, damns and roads (WWF, 2015b). Deforestation 

rates in Brazil are strongly related to local human population density and road access to 

regional markets, and agrarian settlements have been shown to consistently accelerate 

rates of deforestation and fires (Schneider and Peres, 2015). Along with cattle ranching, 

another major cause of deforestation in many Amazon regions is large scale soy 

production, largely grown for animal feed (WWF, 2014). In Brazilian and Bolivian 

Amazon, soy production has contributed to deforestation in two ways: through direct 

conversion of forests and through displacing cattle production to the forest frontier 

(WWF, 2014). Along with primary drivers, all regions have important secondary causes 

and usually multiple less important causes of forest loss and degradation (WWF, 2015b). 

 

1.2.2. Deforestation fronts 

 

Contemporary threat from deforestation is highly concentrated. Over 80% of the forest 

loss projected globally by 2030 will be accounted for by only eleven areas which have 

been termed “deforestation fronts” (WWF, 2015b). The concept dates back 25 years to 

an article by Myers (1993), but the term “deforestation front”, as used in this thesis, was 

defined in 2015 by the WWF to specifically indicate areas which are projected to have 

the largest concentrations of forest loss or severe degradation between 2010 and 2030, 

under business-as-usual scenarios and without further interventions to prevent losses 

(WWF, 2015b). The great majority of these fronts are situated in tropical areas around 

the world, with some in sub-tropical areas. These deforestation fronts are at imminent 

risk of large-scale deforestation and comprise some of the world’s most biologically 

diverse areas (WWF, 2015b). The Amazon has the world’s largest deforestation front, 
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often called the “arc of deforestation”, with deforestation mostly concentrated into specific 

sub-fronts extending from Colombia to Peru and Bolivia along the Andes, and from the 

border between Peru and Brazil all the way to the coast of the Atlantic Ocean along the 

southern edge of the Amazon lowlands in Brazil (WWF, 2015b).  

 

1.3. An issue interlinked with global change 

 

Deforestation, particularly in the tropics, contributes in multifaceted ways to multiple 

global environmental issues, such as to the ongoing sixth mass extinction event 

(Ceballos et al., 2015) and to anthropogenic climate change (IPCC, 2014a), and the 

relevance of this issue has been recognized by several intergovernmental bodies which 

exist under the auspices of the United Nations. Both the Aichi Biodiversity Targets 

(included in the UN Strategic Plan for Biodiversity 2011-2020) and Sustainable 

Development Goals (SDG; included in the UN 2030 Agenda for Sustainable 

Development) include targets addressing the protection of forest habitats (CBD, 2014; 

UN, 2015). For example, one component of Aichi target 11 is that “At least 17 per cent 

of terrestrial and inland water areas are conserved”, and the SDG target 15.2 is to “By 

2020, promote the implementation of sustainable management of all types of forests, 

halt deforestation, restore degraded forests and substantially increase afforestation and 

reforestation globally.” Despite these targets, biodiversity remains a challenging subject 

to study empirically, as only a fraction of the number of species estimated to inhabit this 

Earth have been described in the scientific literature (MEA, 2005) and of those, only 5% 

(91,523 species) have had their conservation status estimated by the IUCN (IUCN, 

2017). However, as most terrestrial species are reliant on forest habitats, deforestation 

may be used as a proxy for roughly estimating the threats to biodiversity, especially in 

the tropical areas where the richness of species is unparalleled (Mace et al., 2005). 

Tropical forests are also an important reservoir of sequestered carbon and hence 

protecting forests can help to mitigate both biodiversity loss and climate change (Soares-

Filho et al., 2010).  

The diversity of living organisms and the global climate system represent two core 

planetary boundaries, i.e. proposed Earth system processes with estimated thresholds 

under which humanity can safely operate (Rockström et al., 2009), and deforestation is 

intimately connected to them both. The Earth’s biosphere and climate system have 

coevolved for 4 billion years and provide the overarching planetary-level systems within 

which other earthly processes operate, and either of these systems alone could nudge 

the whole Earth system into a different state from the current geological epoch (Steffen 



5 
 

et al., 2015). Discussing the connections of deforestation to both biodiversity and climate 

change is therefore warranted in the context of this thesis. 

 

1.3.1. Biodiversity under threat 

 

Biodiversity, in the largest sense, means all the variety of life on Earth, and the term can 

be applied at different scales from genes to whole ecosystems to indicate all the “endless 

forms most beautiful and most wonderful [that] have been, and are being, evolved”, to 

borrow the words of Charles Darwin (Darwin, 1859). In the Millennium Ecosystem 

Assessment (MEA 2005) it was evaluated, that humans have increased the recent 

species extinction rates by as much as 1,000 times the typical historical background 

rates (calculated from the fossil record) and projected that the future extinction rate will 

be over 10 times higher than the current rate. In a more recent paper Ceballos et al. 

(2015) conservatively re-analysed the issue using the highest plausible estimates of 

background extinction rates and the lowest estimates of modern extinctions, and their 

findings concurred the exceptionally rapid loss of biodiversity over the last few centuries, 

allowing them to conclude that indeed the sixth mass extinction is already under way.  

According to the Convention on Biological Diversity, 70 percent of the projected loss of 

terrestrial biodiversity globally is due to drivers linked to agriculture (CBD, 2014). The 

most common threats to terrestrial populations are habitat loss and degradation, followed 

by overexploitation, whereas the importance of other threats such as pollution, invasive 

species, disease and climate change, vary according to taxonomic group (WWF, 2016). 

The threats to biodiversity are especially acute in the equatorial tropics, where species 

richness peaks and where the highest richness of families and endemism can also be 

found, even when accounting for area and productivity (Mace et al., 2005). The tropical 

forest species living planet index (LPI), which is based on the trends of 369 populations 

of 220 vertebrate species and describes the average trends of these populations, has 

shown an overall decline of 41% between 1970 and 2009, consistent with the increase 

of tropical deforestation (WWF, 2016). 

 

1.3.2. Carbon bound 

 

In addition to providing habitats for species, tropical forests also have bound in them vast 

amounts of carbon, sequestered from the atmosphere. One climate change related key 

risk, meaning a factor which can have potentially severe impacts for natural and human 
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systems, is the reduction of terrestrial carbon sinks (IPCC, 2014b). According to the 

Intergovernmental Panel for Climate Change (IPCC), around a quarter (~10–12 

GtCO2eq/yr) of the global net anthropogenic greenhouse gas emissions are accounted 

for by the Agriculture, Forestry and Other Land Use (AFOLU) sector, mainly resulting 

from deforestation, agricultural emissions from soil and nutrient management, and 

livestock (IPCC, 2014a). In low-income countries the AFOLU emissions are dominated 

by deforestation and forest degradation, and from 1990 to 2010 the total emissions from 

this source have been increasing (IPCC, 2014a). 

The Amazon rainforest is a large-scale component of the Earth’s climate system and a 

tipping point has been proposed to exist which anthropogenic forcing could exceed, 

resulting in an abrupt change of the region to a drier and less carbon dense system 

(Lenton et al., 2008; IPCC, 2014b). The IPCC report indicated that current knowledge of 

this possible tipping point warrants low confidence, but the long term (2080-2100) risk 

even within the stringent mitigation scenarios is high, if societies do not undertake further 

adaptation efforts to reduce deforestation and fires (IPCC, 2014b). This hypothesized 

tipping point in the global climate system has been termed the “dieback of the Amazon 

rainforest” and, according to Lenton et al. (2008), land-use change alone may have the 

potential to bring the forest cover to a threshold at which a tiny perturbation could alter 

the state or development of the whole system. Understanding the future land cover 

change in the Amazon region in relation to the climate system is therefore important for 

maintaining biosphere integrity globally.  

 

1.4. Protected areas as the main conservation tool 

 

Protected areas (PAs) are the main tool for combatting deforestation worldwide, as they 

are fundamental parts of virtually all national and international conservation strategies 

(Dudley, 2008; UNEP-WCMC and IUCN, 2016). A protected area is defined by the IUCN 

as “a clearly defined geographical space, recognised, dedicated and managed, through 

legal or other effective means, to achieve the long-term conservation of nature with 

associated ecosystem services and cultural values” (Dudley, 2008). The World Database 

on Protected Areas (WDPA) has records of 202,467 terrestrial and inland water PAs, 

covering 14.7% (19.8 million km2) of the world’s extent (excluding Antarctica) (UNEP-

WCMC and IUCN, 2016). Legally established PAs contain 17% of the world’s forests, 

with the largest extent of protected forests being located in South America (MacDicken 

et al., 2015).  
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1.4.1. Protected area types  

 

PAs can be categorized based on the mode of governance (Table 1), or the type of 

management (Table 2). The IUCN provides a global framework for categorizing 

protected area management types which has been recognised by the Convention on 

Biological Diversity and is commonly used in protected area research (Dudley, 2008). 

The management categories presented in Table 2 help to expand the IUCN definition of 

a protected area (Dudley, 2008). These six categories are used together with four 

governance types, which describe who holds authority and responsibility over a given 

PA (Dudley, 2008). The IUCN categorization certainly does not encapsulate all possible 

management types in existence, but the categories are a reasonable approximation and 

a workable guide widely used in practical conservation (Dudley, 2008). To define a 

specific management category for a PA, the category definition should apply to at least 

75 percent of its area, ensuring that the category is attributed based on the primary 

management objective(s) (Dudley, 2008). In several studies, PAs have also been 

categorized more roughly into three main types: strictly protected, sustainable use (or 

multiple use) and indigenous areas (For example: Soares-Filho et al., 2010; Nolte et al., 

2013; Carranza et al., 2014), partly utilizing these IUCN categories. 

 

Table 1. A typology of PA governance types as defined by the IUCN (based on: Dudley, 2008). Governance 
indicates the actors who hold authority over management, are responsible and can be held accountable.  

 

Shared governance Collaborative management (various degrees of influence); 
joint management (pluralist management board); 
transboundary management (various levels across 
international borders). 

 

Private governance By individual owner; by non-profit organisations (NGOs, 
universities, cooperatives); by for-profit organisations 
(individuals or corporate). 

 

Governance by 
government 

Federal or national ministry/agency in charge; sub-national 
ministry/agency in charge; government-delegated 
management (e.g. to NGO). 

  

Governance by 
indigenous peoples and 
local communities 

Indigenous peoples’ conserved areas and territories; 
community conserved areas – declared and run by local 
communities. 
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Table 2. PA management types as defined by the IUCN (based on: Dudley, 2008). The categories classify 
protected areas according to their management objectives.  

IUCN management 
categories 

Definition 

Ia Strict nature reserve Strictly protected for biodiversity and also possibly geological/ 
geomorphological features, where human visitation, use and 
impacts are controlled and limited to ensure protection of the 
conservation values. 

Ib Wilderness area Usually large unmodified or slightly modified areas, retaining 
their natural character and influence, without permanent or 
significant human habitation, protected and managed to 
preserve their natural condition. 

II National park Large natural or near-natural areas protecting large-scale 
ecological processes with characteristic species and ecosystems, 
which also have environmentally and culturally compatible 
spiritual, scientific, educational, recreational and visitor 
opportunities. 

III Natural monument 
or feature 

Areas set aside to protect a specific natural monument, which 
can be a landform, sea mount, marine cavern, geological feature 
such as a cave, or a living feature such as an ancient grove. 

IV Habitat/species 
management area 

Areas to protect particular species or habitats, where 
management reflects this priority. Many will need regular, active 
interventions to meet the needs of particular species or habitats, 
but this is not a requirement of the category. 

V Protected landscape 
or seascape 

Where the interaction of people and nature over time has 
produced a distinct character with significant ecological, 
biological, cultural and scenic value: and where safeguarding the 
integrity of this interaction is vital to protecting and sustaining 
the area and its associated nature conservation and other values. 

VI Protected areas with 
sustainable use of 
natural resources 

Areas which conserve ecosystems, together with associated 
cultural values and traditional natural resource management 
systems. Generally large, mainly in a natural condition, with a 
proportion under sustainable natural resource management and 
where low-level non-industrial natural resource use compatible 
with nature conservation is seen as one of the main aims. 

 

 

1.4.2. Predicaments of protection 

 

Extrapolations have shown, that the Aichi target 11 to conserve 17 percent of terrestrial 

areas by 2020 will be achieved, if existing commitments on designating PAs are 

implemented (CBD, 2014). However, during 2010-2015, the rate of increase in protected 

forest area has slowed globally (MacDicken et al., 2015), and although the Aichi target 

11 has been relatively successful, the status of most Aichi targets do not show such 
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positive trends (CBD, 2014). The status of Aichi target 12 for instance, which by 2020 

seeks to prevent the extinction of known threatened species while improving and 

sustaining the conservation status of those most in decline, was estimated to have had 

no significant overall progress for the first component and moving away from the target 

for the second, meaning the conservation status of the species most in decline has 

further deteriorated (CBD, 2014). In addition, caveats exist to the positive trend of 

protection, as the PA networks remain ecologically unrepresentative and many critical 

sites for biodiversity are poorly conserved (CBD, 2014). Even within the eleventh Aichi 

target, the other sub-targets which are focused on the management, connectedness and 

representativeness of PAs, showed an insufficient rate of progress to meet the target in 

time (CBD, 2014). This makes those PAs that have been established on critical 

biodiversity sites all the more important. PAs that exist today in the deforestation fronts 

of the tropics are, and will continue to be, of paramount importance since they are by 

default protecting the highly diverse and important tropical forest areas.  

Nevertheless, PAs are not impermeable and deforestation sometimes does take place 

within them. For example, Bruner et al. (2001) used a questionnaire to assess 93 PAs 

from 22 tropical countries, and wrote that net clearing was reported in 17% of the PAs. 

Likewise, DeFries et al. (2005) wrote that of the 198 PAs they studied in moist and dry 

tropical and subtropical forests around the world, around a quarter experienced declines 

in forest cover within their administrative boundaries (91% of these had no more than 

5% loss of forest area, however). A further problem of PAs is the fact that they are prone 

to be affected by changes in the political and economic landscape of the administrative 

area within which they are located. PAs can be downgraded, downsized, or even 

degazetted (meaning the complete loss of protection status) (Bernard et al. 2014).  

The alarming rates of decline of the Living Planet Index (WWF, 2016) and in the declining 

conservation status of many threatened species (CBD, 2014; IUCN, 2017) require us to 

question the approaches used for establishing and managing PAs. Literature reveals, 

that there has existed a universal tendency to assign PAs to locations either remote or 

unsuitable for other productive land use (Joppa and Pfaff, 2009). Therefore, PAs have 

experienced lower levels of pressure, and compared to other areas have had low levels 

of deforestation. In other words, these PAs have not done much in terms of protecting 

the species and habitats that have been threatened. Not all PAs are like this of course, 

as some are specifically established on high pressure areas to prevent disproportionate 

damage or to protect specific conservation values (Nolte et al., 2013).  

The future of tropical biodiversity and the complex and far-reaching ecosystem services 

tropical forests provide will depend on the successful management of the deforestation 

threat, particularly in the deforestation fronts. This success in turn depends on the 
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effectiveness of PAs. Not all PAs are equal, and their characteristics need to be 

considered when evaluating their effectiveness, which is something researchers have 

started increasingly to zero in on (see for example: Joppa & Pfaff 2011; Nolte et al. 2013; 

Eklund et al. 2016). Weak PAs, for instance with poor governance or few resources, may 

not withstand the intense deforestation pressures expected in the deforestation fronts.  

 

1.4.3. Estimating PA effectiveness 

 

PAs are an important investment of time and resources, making it important to know how 

effective they are in achieving their purpose. Numerous studies have developed and 

refined methods for estimating PA effectiveness, varying from basic inside-outside 

comparisons to comparisons between PA types, and to more refined approaches which 

account for several confounding factors and create artificial controls to study what would 

have happened without protection (Joppa and Pfaff, 2010; Soares-Filho et al., 2010). 

Simple comparisons, which define buffers inside and outside PAs and calculate how 

these zones differ in the amount of deforestation, are not sufficient, because the buffer 

areas do not necessarily have the same landscape variables and can differ in their 

remoteness, influencing the likelihood of the zones for being deforested (Joppa and Pfaff, 

2010; Soares-Filho et al., 2010). A study by Joppa & Pfaff (2011) found that controlling 

for land characteristics reduced the significant positive impact of protection by 50 percent 

or more. They reported that PAs closer to roads and cities, and those on flatter land, can 

have higher impacts due to a larger deforestation pressure, which results in a larger 

potential for reducing deforestation. Spatial patterns in deforestation pressure were also 

exemplified by a study on tropical forest reserves from Africa, the Americas, and the 

Asia-Pacific region (20 PAs each), which found that for roughly 80 percent of the PAs 

considered, there was a gradual increase in deforestation from 5 km within the PAs to 

10 km outside their borders (Lui and Coomes, 2016). 

PA effectiveness is an estimate of how the existence of a PA, and not the confounding 

landscape variables, has helped to obtain the desired goals, with the goals usually 

represented by retained forest cover and measured by how much deforestation a PA 

prevented within a specified period of time. Contemporary approaches for estimating PA 

effectiveness use matching (Andam et al., 2008; Gaveau et al., 2009) to compare sample 

points within protected areas to similar control points in non-protected areas, with the 

similarity being determined by the values of several controlled variables in the point 

locations, such as elevation, precipitation, distance to markets and distance to forest 

edge. By using these artificial control groups, researchers can calculate how much 
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deforestation would have been expected to happen within PAs, if they had not been 

protected (counterfactual approach). If the counterfactual deforestation pressure equals 

the observed deforestation within a PA, the PA has had no effect. If the observed amount 

deforestation is larger than the estimated amount, the PA in question has had a negative 

effect which has increased deforestation within its boundaries. The less deforestation is 

observed within PAs when compared to control points, the more effective the PAs are in 

reducing deforestation. By using this counterfactual matching method, the effectiveness 

scores of PAs can be estimated and compared, even if the PAs exist in areas with 

different levels of pressure.  

  

1.5. Conservation in the Brazilian Amazon 

 

Brazil has the world’s largest national terrestrial PA network, which accounts for half of 

the protected land in Latin America (UNEP-WCMC and IUCN, 2016). Over 40% of all 

Brazilian forests are covered by this network (MacDicken et al., 2015), and in the 

Brazilian Amazon, the protected areas shield over half of the remaining forests (Soares-

Filho et al., 2010). This extensive designation of protection has been the result of 

decades worth of intense deforestation pressures which have threatened the indigenous 

cultures and natural riches of the forests. Brazil had record breaking increase in 

deforestation through the 1990s, which reached a peak in 2005 (Tollefson, 2012), 

making the administration react by increasing enforcement to cut down on the extremely 

high deforestation rates, while increasing the amount of land under protection (Nepstad 

et al., 2009). There were also federal campaigns which cancelled credit for illegal land 

holdings and imprisoned operators who broke the law, and pressure towards buyers of 

Amazonian products (Nepstad et al., 2009). Along with these policies, there was a 

retraction of cattle and soy industries which also played a part in reducing deforestation 

rates (Soares-Filho et al., 2010). All of these measures resulted in a historical 75% 

decrease of deforestation from 2004 to 2010 in the Brazilian Amazon (INPE, 2018).  

Two studies, for the entire Brazilian Amazon, have estimated the effectiveness PAs had 

in the years prior to 2010 (Soares-Filho et al., 2010; Nolte et al., 2013), and their findings 

suggest that all main protection types (strictly protected, sustainable use and indigenous 

areas) will help prevent forest loss in the high-pressure deforestation front areas of the 

Brazilian Amazon in the coming decade, indigenous and strict areas more than 

sustainable use areas (Soares-Filho et al., 2010; Nolte et al., 2013). Indigenous areas 

are decidedly relevant in the Amazon, where they represent nearly a third of the biome 

and the majority of existing PAs (WWF, 2015b).  
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1.5.1. Challenges for conservation in the current decade  

 

Many changes have taken place in Brazil after 2010, with potential relevance for the 

conservation efforts. The new political climate which used hard command-and-control 

measures to cut down deforestation, generated to a rural backlash of agribusiness and 

small landowners opposing protection (Tollefson, 2011). An organized coalition of rural 

agricultural interests started to support a weakening to the country’s forest code in 2010, 

eventually lobbying the proposal through the nation's House of Representatives and the 

National Congress in 2012, while rises in soy and beef prices increased demand for 

arable land and fuelled the tensions (Tollefson, 2011, 2012). Even at that time the new 

bill raised worry among researchers and was even called a "recipe for Amazon dieback", 

predicting a new wave of deforestation (Tollefson, 2011).  

Since 2012, the rate of deforestation in Brazil has started to increase, raising fears that 

Brazil may be losing decades of progress in forest protection (Tollefson, 2016). Between 

2010-2015, Brazil reported the world’s greatest annual net loss of forest area globally 

(984 thousand ha annually), with a rate of 0.2% (MacDicken et al., 2015). In 2015, Brazil 

had a remaining forest area of 493,538 thousand ha (4.9×106 km2), covering 59% of the 

land area and representing 12% of global forest area (MacDicken et al., 2015). Between 

August 2015 and July 2016 the total deforested area in Brazil was 29% above the 

previous year and 75% above the 2012 level, when deforestation hit a historic low 

(Tollefson, 2016). This may have been reflected in the study by Pack et al. (2016), who 

wrote that the creation of PAs has stagnated in Brazil since 2009, with recent evidence 

suggesting an increasing rate of PADDD (Protected Area Downgrading, Downsizing, and 

Degazettement, see: Bernard et al. 2014). In addition to the changes in the forest code, 

Brazil was also rocked by the largest economic recession in the country’s history 

between 2014 and 2016 (BBC, 2017) and president Dilma Rousseff was impeached 

following a time of great political turmoil in 2016 (Watts, 2016). It is not unreasonable to 

question whether these factors might have had an influence on the effectiveness of the 

Brazilian PA network during the current decade.  

 

1.6. The state of Acre under focus 

 

The state of Acre is particularly interesting when considering the conservation of forest 

habitats and the carbon bound in them, because PAs cover approximately half of the 

state’s area (Figure 1) and in 2010, around the time when the above-mentioned changes 

started to take place in Brazil, Acre launched the world’s first jurisdictional PES-REDD+ 
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program aiming to reduce greenhouse gas emissions from deforestation and forest 

degradation. Acre is situated in the western most part of the Brazilian Amazon, sharing 

border with both Peru and Bolivia (Figure 1). 

 

 

Figure 1. Deforestation fronts and protected areas in the state of Acre, Brazil. The protected areas which 
are included in this thesis are numbered and categorized into three main types. Red pixels indicate 
deforestation during 2011-2016 (based on PRODES data). 

  

The state of Acre has a high total species richness for birds, mammals and amphibians 

relative to the rest of the Brazilian Amazon (Jenkins et al., 2015), but three sub-fronts of 

the Amazon deforestation front threaten both the biodiversity and the forest carbon 

contained within Acre’s PA network (Figure 1). Road building and paving within the state 

has been projected to lead to a large increase in deforestation by 2030 and 2050 

(Soares-Filho et al. 2006). Acre is famous for its conservation history and is no stranger 

to conflicting interests between those incentivized to deforest and those with interests to 

conserve. In 1988, the now famous rubber tapper and rainforest activist Chico Mendes 

was murdered in Acre by ranchers, following his efforts to curb deforestation (Climate 

Focus, 2013), leading to a lasting social and political transformation which has favoured 

forest conservation and sustainable use ever since (Climate Focus, 2013).  
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1.6.1. World’s first jurisdictional REDD+ program 

 

Deforestation accounts for a great fraction of global CO2 emissions and reducing 

deforestation is one of the most cost-effective mitigation options available (IPCC, 2014b). 

Limiting global warming to 2°C, as is the aim of the Paris Agreement (UNFCCC, 2015), 

will require 40-70% reductions in global anthropogenic greenhouse gas emissions by 

2050 compared to 2010, and emissions levels near or below zero in 2100 (IPCC, 2014b). 

To achieve these reductions, the sectoral CO2 emissions from AFOLU need to be near 

zero and substantial net sequestration may be needed (IPCC, 2014b). For these 

reasons, the Parties of the United Nations Framework Convention on Climate Change 

(UNFCCC) developed the REDD+ mechanism for financing forest related emissions 

reductions in developing countries (FAO, 2016). REDD+ name comes from “Reducing 

Emissions from Deforestation and forest Degradation and the role of conservation, 

sustainable management of forests and enhancement of forest carbon stocks”, and 

these programs will be vital for global efforts to combat climate change (FAO, 2016). 

Acre’s State System of Incentives for Environmental Services (SISA in short, from 

Portuguese: “Sistema de Incentivos a Serviços Ambientais”) is recognized as the world’s 

first jurisdictional Payments for Ecosystem Services REDD+ program (PES-REDD+), 

which was created in 2010 through state law (WWF, 2011; Duchelle et al., 2014). The 

REDD+ mechanism creates financial value for the carbon stored in forests by enabling 

developing countries to get result-based payments from other countries in return for 

demonstrated and verified emissions reductions (UN-REDD, 2015). In 2012, Acre was 

the first to receive results-based payments for verified emission reductions from the 

German REDD Early Movers (REM) program, which supports pioneers in forest 

protection (KfW Development Bank, 2017). The REDD+ program of Acre was made 

jurisdictional, instead of only selecting priority areas, to prevent the creation of new areas 

where deforestation would be more lucrative and to promote sustainable practices also 

in low-pressure areas (Sills et al., 2014).  

Acre’s REDD+ program (SISA) includes carbon sequestration, maintenance of water and 

hydrological services, conservation of soils, conservation of biodiversity and valuation of 

traditional knowledge, but, apart from carbon sequestration, most do not yet have 

specific regulations in place (Duchelle et al., 2014). First program to have been 

implemented was the “ISA-Carbono” carbon sequestration program, which is used to 

finance primarily the state’s existing policies and programs to reduce deforestation 

(Duchelle et al., 2014). ISA-Carbono promotes environmental compliance via command-

and-control approaches and improved monitoring, including the utilization of satellite 

images in combination with the Rural Environmental Registry (CAR), to which all rural 
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properties are required to be enrolled by law (Federative Republic of Brazil, 2012; Sills 

et al., 2014). In addition, the program promotes sustainable production practices and 

actions in both forestry and agriculture in Acre (Sills et al., 2014).  

 

1.7. In this thesis 

 

In this thesis I will use a recently developed matching method (Eklund et al., 2016) to 

study the effectiveness of PAs in and near the deforestation fronts of Acre, Brazil. As a 

result of the changes that have taken place in Brazil since 2010, the context in which 

PAs exist has changed, potentially affecting PA management and the incentives of 

deforesters. These changes, together with Acre’s REDD+ program, may therefore have 

had consequences on deforestation pressures and the effectiveness of PAs in Acre. The 

unique situation of Acre, with its rich biodiversity, pioneering REDD+ program and high 

present and projected threats from deforestation, make it an internationally relevant area 

in which to study PA effectiveness. These characteristics also mean, that Acre could 

possibly represent the first of many similar areas to come, where climate change and 

biodiversity loss are held at bay by restraining deforestation with REDD+ incentives.  

I will use the most recent available deforestation data from the past six years (2011-

2016) in order to fill two important knowledge gaps: First, how effective have the 

individual PAs of Acre been since 2010? And, do differences in effectiveness exist 

between the main PA types in Acre? To tie the topic to larger global issues and to the 

ongoing REDD+ program of Acre, I will also estimate how much deforestation and carbon 

emissions each PA avoided during the past six years. A second goal for this thesis is to 

explore and discuss deforestation in the context of two major global environmental 

issues: biodiversity loss and climate change.  
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2. Materials and methods  

 

2.1. Background information about the study area 

 

The state of Acre is home to over 816,000 people (Government of Acre, 2017). Today, 

more than 73% of the population of Acre lives in urban areas and 56% of the population 

is situated within the municipalities of Rio Branco and Cruzeiro do Sul (Government of 

Acre, 2017). The area of Acre is 164,124 km2, and around 46% of the area is protected 

(Government of Acre, 2017). Indigenous areas are counted as one important 

conservation unit type and they cover 2,390,112 ha, or around 14.5% of the land. The 

combined population of the indigenous groups is 19,962 inhabitants, or around 2.5% of 

the population, and they have a total of 209 villages in Acre (Government of Acre, 2017). 

Sustainable use conservation units cover 3,569,818 ha, or roughly 22%, and integral 

protection conservation units (strictly protected areas) 1,563,769 ha which equals to 

around 9.5% of the area of Acre.  

Acre has a humid equatorial climate with high temperatures all year round. Palm trees 

are dominant in over 85% of the rainforest area, whereas bamboos are dominant in 10% 

of the forests, mostly concentrated in the Purus and Juruá regions (Government of Acre, 

2017). In the previous decade the rate of deforestation decreased in the state of Acre, 

very much the same way as in the rest of Brazil (Figure 2). Between 2000 and 2015, the 

amount of deforestation in Acre dropped from 547 km² to 264 km², resulting in a reduction 

of the annual rate from 0.33% to 0.16%. After 2010 the amount of deforestation has 

stayed relatively level, with some fluctuation between years (Figure 2).  
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Figure 2. Deforestation in Acre (A) and the total Brazilian Amazon (B) between 1989 and 2017. Data from 
the Government of Acre (2017) and INPE (2013). 

 

2.2. Datasets required to estimate protected area effectiveness 

 

Before the effectiveness could be estimated for the PAs of Acre, it was necessary to 

download the deforestation front and protected area polygons, along with the 

deforestation data from the years covered by this thesis (2011-2016). In addition, to find 

suitable control areas for the PAs, I needed to get several covariate datasets which I 
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used as control variables to ensure that the PAs were compared to environmentally 

similar areas (Table 3).  

I obtained the protected area polygons and characteristics for Brazil in November of 2017 

from the World Database on Protected Areas (WDPA; UNEP-WCMC and IUCN, 2017), 

and the deforestation datasets (PRODES) for the years 2011-2016 I downloaded from 

the Brazilian Institute for Space Research (Instituto Nacional de Pesquisas Espaciais; 

INPE, 2013). The downloaded PRODES deforestation data was based on 30m 

resolution Landsat imagery, capable of detecting deforestation in small forests patches. 

To account for the areas that did not have forest cover in 2010, such as areas with 

cumulative prior deforestation, I used the 2010 Vegetation Continuous Fields (VCF) 

collection (DiMiceli et al., 2011) as the baseline forest cover dataset. VCF includes 

proportional estimates for tree cover and was derived with the MODIS sensor on board 

NASA's Terra satellite.  

I used several datasets as proxies for agricultural suitability of the land, which can 

influence the ability and incentives of people to deforest. I downloaded the median 

altitude and slope datasets for the year 2012 from the Global Agro-Ecological Zones 

platform (FAO/IIASA, 2010). Floodable areas, along with forest structure and land cover 

type, I controlled for with the 2009 GlobCover dataset provided by the European Space 

Agency (ESA, 2010). I controlled for the amount of precipitation by including the CHELSA 

Bioclim Annual precipitation (Bio12; Karger et al., 2017) data as one covariate.  

As deforestation is carried out by people, the most accessible areas are expected to 

have the greatest likelihood for deforestation. To control for this, I calculated a surface 

layer which had the shortest Euclidian distance to forest edge for each pixel in Acre. I 

used QGIS (v2.18.15) to perform all GIS spatial analyses. I defined forest edge to be 

either a road, a river of a pixel which had a baseline forest cover (VCF) value less than 

45% (defined as non-forest in this thesis, see Figure 3). I downloaded OpenStreetMap 

(OSM) roads and rivers using the QuickOSM plugin (Trimaille, 2018; version 1.4.7), 

compiling the roads layer from the “motorway”, “trunk”, “primary”, “secondary”, “tertiary”, 

“unclassified”, “track” and “road” values and the rivers layer from the “river”, “riverbank” 

and “natural_water” values. Along with distance to forest edge, access to regional 

markets can be an important determinant of the true incentives to deforest, and therefore 

I used a layer of travel time estimates created by Nelson (2008) for the year 2000 as a 

covariate as well.  
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Table 3. Datasets used in this thesis. I used WGS84 projection for all layers. Resolutions are rounded. 

 Variable Description Resolution Source  

 Protected 
areas 

Protected Area polygons for 
Brazil. 

- UNEP-WCMC and IUCN 
(2017), The World Database 
on Protected Areas (WDPA). 

Deforestation 
estimates 

PRODES: Fine-scale dataset 
based on LandSat imagery. 
Years 2011-2016 combined. 

250 m Brazilian Institute for Space 
Research (Instituto Nacional 
de Pesquisas Espaciais; INPE). 

Deforestation 
front 

Polygons of the deforestation 
fronts in the Amazon.  

- WWF (2015a). 

C
o

va
ri

a
te

s 

Baseline 
forest cover 

Percent tree cover. 
Vegetation Continuous Fields 
(VCF) dataset. Year 2010. 

250 m Global Land Cover Facility, 
University of Maryland 
(DiMiceli et al., 2011).  

Slope and 
terrain 

Median altitude and terrain 
slope datasets. Year 2012. 
Covariate for agricultural 
suitability. 

9.3 km International Institute for 
Applied Systems Analysis 
(FAO/IIASA, 2010): Global 
Acro-Ecological Zones (GAEZ). 

Floodable 
areas 

GlobCover dataset. Year 2009. 
Covariate for agricultural 
suitability. 

300 m European Space Agency 
GlobCover Portal (ESA, 2010).  

Precipitation Annual precipitation data. 
Covariate for agricultural 
suitability.  

1 km CHELSA Bioclim Annual 
precipitation (Bio 12) dataset 
(Karger et al., 2017). 

Distance to 
forest edge 

Raster surface with shortest 
Euclidean distances to forest 
edge. Calculated based on 
baseline forest cover (VCF), 
OpenStreetMap (OSM) roads 
and OSM rivers layers. 

250 m Individual datasets from:  
Open Street Map products 
downloaded in Feb 2018 with 
QuickOSM plugin in QGIS. VCF 
as above. 

Travel time 
to cities 

Raster surface with fastest 
travel times to cities with 
50,000 or more people. 
Calculated for the year 2000.  

1 km Travel time to major cities: a 
global map of accessibility. 
Global Environment 
Monitoring Unit, Joint 
Research Centre of the 
European Commission 
(Nelson, 2008). 
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2.2.1. Preparing the map layers 

 

The protected area dataset from the WDPA contained all available information relating 

to protected areas, regardless if the PAs are designated or planned, or if the spatial 

information is available as polygons or points. It was therefore necessary to trim the PA 

layer to make it suitable for analyses. There were no points within Acre, so I excluded 

the point layer. From the polygon layer, I only included PAs with “Designated” status, as 

these areas are recognized or dedicated through legal means, implying a specific and 

binding commitment to long term conservation (UNEP-WCMC, 2017). I excluded PAs 

designated after 2010 to only include PAs which had been in force before the first year 

of the study period.  

As the purpose of this thesis is to study PAs either within or in close proximity to the 

deforestation fronts, I created a 50 km buffer around the WWF deforestation front 

polygon layer and used the buffer area to select those PAs which had any overlap with 

this extended deforestation front area. To enable comparisons with the previous PA 

effectiveness studies done in Brazil (Soares-Filho et al., 2010; Nolte et al., 2013), and to 

see whether the main PA types differed in terms of effectiveness, I grouped the PAs into 

three main categories. First, strictly protected areas, which included state and national 

biological stations, national and state parks, ecological stations and biological reserves. 

Second, sustainable use areas, which included state and national forests, extractive 

reserves, sustainable development reserves and PAs categorized as “forest”. 

Indigenous areas were considered to be the third main PA category. After cleaning and 

categorizing the PA dataset, I used several criteria to select PAs for this study, following 

the approach of Nolte et al. (2013). I excluded environmental protection areas as they 

have been reported to primarily consist of private lands without significant additional 

restrictions from the protected area designation (Nolte et al., 2013), and I excluded areas 

of relevant ecological interest, because they may be either public or private lands and 

are usually small areas which conserve some specific natural features (Unidades de 

Conservação no Brazil, 2018). The state of Acre did not have any of the other types of 

PAs that were excluded in the study by Nolte et al. (2013).  

Next, I applied two further criteria to enhance comparability with the previous study by 

Nolte et al. (2013): Only those PAs which had more than 800 forest parcels, in the 250 

m resolution VCF layer of the year 2010, were included. This limit corresponded to the 

limit used by Nolte et al. (2013), as they used four times coarser resolution (1 km) data 

and a limit of 200 forest parcels. However, I decided to use a different definition for 

forested area in this thesis. Instead of >25% forest cover limit, I decided to use a >= 45% 

limit because for the matching I needed to have a limit which covered the non-forested 
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areas well. I decided to use the 45% value based on visual comparison between Google 

satellite images and the VCF layer (Figure 3). I calculated the number of forest parcels 

for each PA, by first creating a new raster layer with the raster calculator tool, 

transforming all VCF cells with values equal to or above 45 to ones, and the rest to zeros. 

I used the Zonal Statistics tool to calculate the sum of pixels for each PA, and then 

selected those PAs which had a sum greater than 800. Second, I removed rivers, roads 

and nulls from the VCF layer and calculated the mean value from the VCF layer for each 

PA with the Zonal Statistics tool. I used this mean value to make sure all PAs had a mean 

forest cover value higher than 50%, following the criteria used by Nolte et al. (2013).  

 

 

Figure 3. Comparison of different values of the Vegetation Continuous Fields (VCF) layer, to find an 
optimal forest cover edge value. The VCF values indicate forest cover defined as equal to or less than that 
specific value. Forest cover less than 25% was considered too low, as it did not adequately cover the 
deforestation visible in the satellite images. Values larger than 45% had too many erroneous pixels 
outside the cleared areas. A-C visualize the VCF layers individually, and D has all layers stacked. The same 
area is represented in each. 

 

It was necessary for me to choose a new forest cover value, as the non-forested areas 

had to be excluded from the sampled area. This is because when a matching method is 

used to compare the likelihood of a specific sample point to experience deforestation, all 

points in the dataset from which the points of comparison are searched for must have 

been forested at the start of the study period. If they are not, a pixel may be compared 



22 
 

to an area where the occurrence of deforestation was impossible since it had already 

happened prior. Based on visual observations, the 45% forest cover limit seemed to 

closely resemble the true forest edge based on the satellite images, maximizing the 

covered non-forest area and minimizing the number of erroneous forest cover edge 

pixels (Figure 3) which may be caused by individual disturbances within a forest or a 

naturally lower forest density, neither of which should be defined as the edge of the forest 

as they do not influence accessibility to the forest.  

After selecting the PAs no further than 50 km of the deforestation fronts and applying the 

other above-mentioned criteria, a set of 37 PAs remained. Of these, seven relatively 

small PAs were located either mostly or completely within the boundaries of the original 

deforestation front layer (Figure 1), and the rest were located within the reach of the 

buffer area.  

I calculated the distance to forest edge layer by merging the OSM road and river data, 

rasterising the resulting layer and then using the GRASS tool r.series (Clements and 

GRASS Development Team, 2018) to combine it to a copy of the VCF baseline forest 

cover layer, which first had all <45 cells transformed to ones. The resulting binary raster 

layer had cells with value 1 representing forest edge. Then, using the raster analysis tool 

Proximity to calculate distance to closest cell with a value of 1, I created the final raster 

surface which contained, for each pixel, the shortest distance to forest edge. I 

downloaded the yearly PRODES deforestation polygon layers for Brazil from 2011 to 

2016 and combined them into one layer containing all deforestation that had taken place 

during those six years. I rasterized this layer to the same resolution as the VCF layer 

(~250m).  

 

2.3. The matching method 

 

I applied a new matching method developed by Eklund et al. (2016) to estimate the 

effectiveness of the PAs in Acre’s deforestation fronts. Matching methods are a way to 

computationally compare a sample of pixels from within a PA to an artificial control area 

that is similar in all other aspects except for the assigned protection status. By calculating 

the deforestation in the control areas, the expected deforestation pressure and PA 

effectiveness can be counterfactually estimated. Because PAs are large scale tools for 

conservation, studying their effectiveness using satellite-based data means having to 

deal with large datasets, especially when a high spatial resolution is used. The new 

computationally efficient method Eklund et al. (2016) developed allows for larger sample 
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sizes than previously used matching methods and is not limited to the comparison of 

pairs of pixels.  

I have visualized my workflow in Chart 1 to illustrate the different sections of the work 

and the steps I took during those sections. The first part of the analyses was to sample 

pixels from each PA and the non-protected area and intersect these sample points with 

the covariate rasters. In the second part I used a script provided to me by Eklund et al. 

(2016) to compile the artificial controls used in counterfactual matching. I ran the data 

using the Taito supercluster which enabled parallel computation with a multitude of cores 

(computational resources available for research by CSC – IT Center for Science, 

Finland). After the runs, I used the output files to calculate estimates of deforestation 

pressure and two different PA effectiveness measures. Lastly, I used the PA 

effectiveness results to calculate the amount of deforestation and carbon emissions each 

PA had avoided during my study period. 
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Chart 1. Flowchart of the work process, from input data to results. The programs used in each step of the 
work are indicated with colours. I performed the work using QGIS and R Studio, and the actual matching 
part was performed with R using the Taito supercluster which is available for research use by CSC – IT 
Center for Science, Finland. 

  

IV. Finding matches for the focal points of each PA 
 

Uploaded three custom files for each PA: Batch file, data and R script. 
 

1. Parallel computation with 256 cores. 
2. The R scripts were used to perform the analyses for each PA separately: 

I.  Calculating sample sizes 

and preparing covariates 
1. Sample sizes for each PA 

and the non-protected area 
were calculated as 10% of 
the number of VCF pixels in 
each area. 

2. Rivers, roads and non-
forested areas transformed 
to 0 in the VCF layer. 

 

II. Creating the data 

with an algorithm 

1. Random sample of 
each area. 

2. Sample points 
intersected with 
the covariate 
layers.  

i. Scaled the covariates and used them to calculate the closest 500 
pixels to each sampled pixel, forming a “similarity set” for each. 

ii. Calculated the fraction of protected and deforested pixels from the 
similarity sets. 

iii. Created individual output files for each PA.  

V. Calculating effectiveness measures and results from the output files 
1. The quality of the similarity sets was assessed (Figure 4).  
2. From each similarity set, the fraction of deforested pixels out of the protected pixels (PA_multidim) 

and the fraction of deforested pixels out of the whole similarity set (BL_multidim) were calculated. 
These were used to calculate observed deforestation and estimated deforestation pressure for each 
PA. 

3. A baseline deforestation estimate without covariates was calculated from simulated pixel sets 
(BL_no_multidim). 

4. PA_multidim, BL_multidim and BL_no_multidim were used to calculate a mean-based effectiveness 
measure for all PAs, along with the confounding effect (effect of the covariates on the estimated 
fraction of deforestation).  

5. The similarity sets were also used to calculate a second PA effectiveness measure: PS
dep

  

6. Avoided deforestation in hectares and the avoided carbon emissions were calculated.  
7. Statistical tests were performed.  

III. Removing non-forested 

points 
1. VCF zeros to NA. 
2. Omitting NA values removed 

samples from non-forested 
areas, resulting in a ~10% sample 
of the forested area. 

3. Saving individual data for each 
PA. 

Visual check 

of the sample 
(Fig. S1) 

1) Sampling pixels from the PAs and the non-protected area 

3) From outputs to results 

2) Matching 

Legend: 

QGIS 

R 

CSC Taito 

supercluster 

Code from 

Eklund et al. 

(2016) 

* 

* 

* (2-5) 



25 
 

2.3.1. Details of the matching 

 

I performed the matching separately for each PA, which means that I had to take a 

separate sample for each PA. I also took one sample of the non-protected area of Acre 

and combined it to each PA dataset, because the samples from this area were used to 

find non-protected matches for the sampled pixels of each PA. I sampled 10% of the 

pixels in each PA and the non-protected area, which at 250m resolution resulted in total 

to over 300,000 sampled points. In the first step of the sampling, the non-forested areas 

were included to the sample size, and those points were removed later in the process as 

missing values. The final sample for the forested areas, after the missing values were 

removed, was approximately 10% for each PA and the non-protected area (Table S1, 

Figure S1). I performed the random sampling in R (R Studio, version 1.0.153), using the 

sp package (Pebesma and Bivand, 2005). I used the PA types that were excluded from 

this study to limit sampling, by excluding those areas from the non-protected area 

polygon (Figure S1).  

Along with the unique datasets, I prepared unique R scripts and batch files for all PAs. 

The batch file contained commands for executing the runs in the Taito supercluster, such 

as the output file names, maximum duration of the run, a command to use parallel 

computing and a specified number of requested cores and memory. The batch file then 

commanded the use of R environment to run the R script. The run time with the Taito 

supercluster ranged roughly from 3 minutes (smallest sample) to 24 minutes (largest 

sample). The R script for performing the runs in the Taito supercluster was shared to me 

by the main author of Eklund et al. (2016), and I made no modifications to the way this 

script performed the matching (an official R-package for this method is being prepared). 

The matching process is described in detail in the original paper by Eklund et al. (2016). 

To describe it in short, the script scaled the covariates and applied a Mahalanobis 

transformation on them, and then calculated the Euclidean distance between the 

transformed pixels to get Mahalanobis distance. This distance measure was used, as it 

accounts for potential collinearity among the variables. Then, an iterative process was 

used in which the span of each covariate was calculated, restricted, and used to select 

the 500 environmentally most similar pixels to be used in the comparisons. These 500 

pixels form a so called “similarity set” for each focal pixel (pixel included in the sample of 

a PA). In this new matching method, instead of only comparing protected pixels to non-

protected, the environmental similarity is used to create a cloud of points which are used 

for the comparisons. The Rmpi library (Yu, 2002) in R was used for parallelization in the 

CSC Linux environment and the vegan library (Oksanen et al., 2018) to calculate the 

Mahalanobis distances.  
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2.3.2. Quality checks for the matching output files 

 

For visual quality checks of the matching process, I created histograms from the 

matching output files to visualize for each PA how many focal points had how large a 

fraction of the similarity sets either protected or deforested, and how long was the 

maximum environmental distance in each similarity set (Figure 4). The histograms 

confirmed that there were enough non-protected pixels in the similarity sets of the sample 

points for each PA, meaning that the matching found enough comparable pixels from the 

non-protected areas. In fact, nine PAs had a very large number of similarity sets with a 

low fraction of protected pixels compared to non-protected pixels, which turned out to be 

due to their small area and thus a smaller sample size.  

 

 

Figure 4. An example of histograms created for PA 10 from one of the matching output files, to visualize 
the frequencies protected and deforested points in the similarity sets, and the similarity of the points in 
the similarity sets (environmental distance). A high fraction of pixels with a frequency of 1 would mean 
that a high number of similarity sets had a fraction of either deforestation (A) or protection (B) that was 
close to 100%. For the environmental distance (C) a high frequency with a distance of 1 would mean that 
a high number of similarity sets had a maximum environmental distance close to 1, or in other words the 
similarity set of 500 closest pixels was environmentally very similar to the focal pixel. 

 

2.3.3. Calculating the effectiveness measures 

 

The matching created individual outputs for each PA, which I used to calculate the 

deforestation pressure and PA effectiveness estimates with a script provided by Eklund 
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et al. (2016). I modified the script to suit my data, but otherwise no alterations were done 

to it. Only the similarity sets which included at least 10% non-protected control pixels 

were used to calculate the estimates of deforestation pressure for each PA, and 

consequently the mean-based effectiveness measure which was derived from the 

deforestation estimates. I generated a measure of the background deforestation rate 

disregarding protection and the covariates, termed baseline non-multidimensional 

deforestation estimate (BL_no-multidim) by Eklund et al. (2016), by sampling 500 pixels 

100 000 times from the deforestation column of the original input data of each PA. This 

created simulated 500 pixel sets for which the environmental similarity was not 

considered. I visualized these non-aggregated results for each PA as density curves, in 

a similar way that was done by Eklund et al. (2016). The density curves showed the 

fractions of deforestation from all focal point similarity sets for each PA without 

aggregating the results, which is why I examined them to decide whether a mean or 

median measure would describe the deforestation estimates better (Figure 5). 

The original authors of this method (Eklund et al., 2016) used the medians of 

PA_multidim, BL_multidim and BL_no_multidim to calculate a median based 

effectiveness measure for all PAs. This decision was based on the fact that a large 

number of zeros exist in the data of the deforestation measures. However, the authors 

also noted that the large number of zero deforestation similarity sets heavily influenced 

the median measure of effectiveness, which therefore gave divergent results from the 

other effectiveness measure they used (PSdep, see below). Based on this information 

and an investigation of the density plots created for each PA from the multidim datasets, 

a different measure of central tendency, the arithmetic mean, was opted for in this thesis 

(see Figure 5 for four selected plots which display different relationships between the 

mean and median values). If a little over half of the similarity sets have zero deforestation, 

the median will ignore the other half of the similarity sets, no matter how high 

deforestation fractions they have. The mean describes the data better and, unlike the 

median, never ignores the existence of focal point similarity sets with deforestation. 
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Figure 5. Density curves with vertical median and mean lines of the deforestation measures for selected 
PAs. The vertical lines were used to determine whether the mean or the median was better suited for 
aggregating the deforestation fractions in the similarity sets for each PA. Plots were created and 
investigated for all PAs, and these four PAs were selected here because they show different types of 
density curves. The means described the data better as the medians were zero in many cases even 
though deforestation was present in the similarity sets. Based partly on these plots, the mean was 
selected as the optimal measure for aggregating the results. Note the difference in scales. 

 

In this thesis, PA_multidim and BL_multidim means were used to calculate effectiveness 

measures for all PAs. The mean PA effectiveness measure gives the fraction of forested 

area in each PA that would have been expected to be deforested if the area was not 

under protection. The difference between the baseline multidimensional deforestation 

(BL_multidim), which indicates how much deforestation existed on environmentally 

similar areas, and the protected area multidimensional deforestation (PA_multidim) 
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indicating the deforestation present only within the protected areas, gives the measure 

of PA effectiveness (Mean PA effectiveness = Mean BL_multidim minus mean 

PA_multidim). The mean of PA_multidim values over the focal point similarity sets 

reveals if there were similarity sets with deforestation within a PA and how much on 

average the similarity sets of these focal pixels had deforestation. With the mean of 

BL_multidim, the average pressure (expected fraction of deforestation) towards the PA 

is given. If the median of PA_multidim was used, the PA effectiveness could be 

overestimated when the baseline pressure is high, because if deforestation is not present 

in most focal point similarity sets, the median would ignore all deforestation. In addition, 

the median could underestimate PA effectiveness when the baseline pressure is low, 

because it gives zero median values for many BL_multidim estimates, which feeds into 

the effectiveness calculations. 

The effect of including the confounding factors (covariates) in the analyses is calculated 

as the difference between the baseline non-multidimensional deforestation estimate 

(BL_no_multidim) and the baseline multidimensional deforestation. In other words, the 

mean of the deforestation fractions over all focal point similarity sets was subtracted from 

the mean fraction of deforestation in the simulated 100,000 BL_no_multidim pixel sets 

(Confounding effect = Mean BL_no_multidim minus mean BL_multidim). Typically, 

covariates reduce the amount of deforestation that would be estimated for PAs if no 

covariates were used and therefore the result usually is a positive number which tells 

how much the deforestation would have been overestimated without covariates. 

However, if there are enough similarity sets with a high fraction of deforestation in the 

deforestation pressure estimate (BL_multidim), it is also possible to get a negative 

confounding effect using this measure, which would mean that based on the 

environmental characteristics of the pixels, more deforestation was expected than if 

covariates were not included. A positive confounding effect indicates that the mean 

effectiveness measure was reduced, whereas a negative confounding effect indicates 

that the effectiveness estimate was increased by the use of covariates. 

To get a second estimate for PA effectiveness, another measure was also calculated: 

The probability of superiority for dependent groups, termed “PSdep”. It is a non-parametric 

effect size statistic which is based on the number of similarity sets that indicate that PAs 

are more effective than expected (Figure 6). This statistic was calculated as:  

PSdep = (sum.PAm.less.than.BLm + (0.5*sum.PAm.same.as.BLm))/total 

Where PAm is PA_multidim, BLm is BL_multidim, and total is the number of sample 

points which had more than 10% non-protected points in the similarity sets. The result is 

a fraction of times when the PA pixels in each set had less deforestation than would have 
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been expected. For example, a 0.75 PSdep value would mean that in 50% of the similarity 

sets of each focal point, there was less deforestation within the PA than in the control 

areas, and the other half had no difference when compared to baseline rates. In reality, 

variation can exist in these ratios. The same 0.75 value can be produced if 51% of the 

similarity sets showed less deforestation than baseline, 48% showed the same amount 

and 1% showed more deforestation than the baseline.  

 

 

Figure 6. The concept of PSdep. When PSdep is 0.5, deforestation is the same within and outside a 
protected area on average for all focal point similarity sets. Less than 0.5 mean that PAs had more 
deforestation than baseline (BL_multidim) and more than 0.5 values mean that PAs had less 
deforestation than the baseline. The diagonal black line represents the theoretical linear relationship 
between PSdep and the fractions of deforestation. 

 

2.4. Calculating avoided deforestation and carbon emissions 
 

By using the percentage of avoided deforestation from the mean-based effectiveness 

measure to multiply the number of forested pixels in each PA, I was able to calculate the 

number of forested pixels in which deforestation was avoided for each PA. When this 

was multiplied with the exact pixel size of the deforestation layer (231.9267 * 231.9267 

metres, the same resolution as the VCF layer), it was possible obtain the estimate of 
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avoided deforestation in units of area. I calculated the number of forested pixels for each 

PA from the VCF raster, using the >=45% forest cover as the definition for forested area.  

To calculate how much carbon emissions were curbed by the PAs of Acre during the 

study period, I used carbon density data of each PA which was reported in the 

supplementary materials (Dataset S1) of Soares-Filho et al. (2010), who used a carbon 

bookkeeping model to calculate emissions from deforestation by using forest carbon 

biomass estimates of Saatchi et al. (2007) with the assumptions that the carbon content 

of wood biomass was 50% and that deforestation releases 85% of the carbon bound in 

trees to the atmosphere. Soares-Filho et al. (2010) had reported 'mean_C_ton_ha' 

values for each PA in Brazil, meaning the mean amount of carbon per hectare of 

rainforest, which I used to calculate the avoided carbon emissions for each PA together 

with the estimated area of deforestation each PA had avoided, and using the same the 

assumption that deforestation releases 85% of the carbon bound in the forests. PAs 3 

and 29 had to be omitted from the carbon calculations due to a lack of carbon density 

data. The contributions to avoided emissions by these three PAs were therefore not 

included in the totals calculated for Acre.  

 

2.5. Statistical tests 

 

To test if the PAs had overall less deforestation than the matched areas, I used the 

Wilcoxon signed rank test to compare the median deforestation fractions of the PAs, 

calculated from the similarity sets of each PA (mean of PA_multidim values), to the 

corresponding fractions calculated for the matched areas (mean of BL_multidim values). 

The multidim similarity sets are paired (matched) comparisons since the protected pixels 

were included in the estimation of background deforestation rates. To test whether PA 

effectiveness differed between the three PA types, I performed Mann-Whitney U tests 

between strictly protected, indigenous and sustainable use areas, using the Wilcoxon 

rank sum test for the PSdep effectiveness measures. In the Mann-Whitney U tests, 

binomial distribution was accounted for by allowing continuity correction, and the 

comparisons were not performed as paired since the PA types are not dependent or 

repeated measurements.  
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3. Results 

 

3.1. Varying effectiveness of Acre’s protected areas since 2010 

 

My findings showed that between 2011 and 2016, the PAs had overall less deforestation 

than the areas to which they were matched (Table 4), meaning that Acre’s PA network 

successfully prevented additional deforestation from happening. Substantial variation 

existed between the effectiveness of individual PAs, however (Figure 7). The 

effectiveness of the PAs in avoiding forest loss (the mean-based effectiveness measure) 

varied from 0.02 to 1.57 percent, indicating the fraction of forested area that expectedly 

would have been deforested if the PA did not exist (Figure 7). The PSdep effectiveness 

measure varied from 0.53 to 0.98 between the PAs, corresponding respectively to almost 

0% and 100% less deforestation than the baseline (Figure 7). Three out of the 37 PAs 

had a very low PSdep effectiveness, with less than 10% of the similarity sets showing less 

deforestation than the baseline (PAs 23, 3 and 29). Conversely, there were also three 

PAs which had more than 90% of the similarity sets showing less deforestation for the 

protected pixels, which is an indication that those PAs were particularly effective (PAs 5, 

11 and 32). The order of effectiveness for the three most effective PAs was inverse for 

the two effectiveness measures so that PA 5 was the most effective based on PSdep and 

PA 32 with the mean-based effectiveness measure. All three most effective PAs were 

indigenous areas, and they all had prevented between 1.02% and 1.56% of additional 

deforestation relative to their respective areas. PAs 5 and 11 are small indigenous areas 

with rivers running through them and they had only a small amount of deforestation within 

their boundaries, whereas PA 32 had no deforestation during the study period (Figure 

8). Two of the least effective PAs (3 and 29) had low effectiveness as a consequence of 

remoteness, whereas PA 23 had low effectiveness due to deforestation. A river crosses 

the southern part of PA 23 and aligns its eastern edge, which increased its susceptibility 

to deforestation.  

 

Table 4. Wilcoxon signed rank test to test if the fraction of deforestation within the PA network differed 
from the control areas.  

Test Comparison Median 
PAm 

Median 
BLm 

p V Conf. 
low 

Conf. 
high 

(pseudo) 
median 

Wilcoxon 
signed rank 

PAm ~ BLm 0.0002 0.0034 <0.001 0 -0.004 -0.002 -0.003 
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Figure 7. The effectiveness of individual PAs. A: Mean-based effectiveness measure (avoided 
deforestation as a fraction). B: PSdep effectiveness measure, where the dotted line at PSdep value 0.5 
indicates that deforestation was, on average, the same within and outside a protected area for all focal 
point similarity sets. All PAs with bars extending above the 0.5 line had a positive effect. Great variability 
existed between the effectiveness of PAs, with both effectiveness measures. Because the two 
effectiveness measures describe different aspects of effectiveness, there was some differences in the 
results, but overall these two effectiveness measures showed a very similar pattern. Bars are coloured 
according to the three PA types: Indigenous, strictly protected and sustainable use areas. See the PAs on 
a map in Figure 1.  
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Figure 8. Deforestation observed within the PAs (PA_multidim) and the pressures each PA faced 
(BL_multidim). BL_multidim is the fraction of deforestation in the areas to which PA samples were 
compared using the matching method. Those PAs with little or no deforestation despite high pressures 
were assigned a high mean-based effectiveness value (Figure 7). 17 PAs had no deforestation in the ~10% 
sample.  

 

3.2. No differences in effectiveness found between the main PA types 

 

The main protected area types did not differ from each other significantly in Acre during 

the period under study and this result was the same for both measures of effectiveness 

(Figure 9). I used Mann-Whitney U tests to statistically confirm this finding (Table 5). 

Even though the individual PAs had great variation between them in their baseline 

deforestation pressures (Figure 8), and therefore in their potential to avoid deforestation, 

I observed no considerable differences between the PA types in the pressures they faced 

(Figure S2). 
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Figure 9. Boxplots of the PA effectiveness measures by PA type, with PSdep on the left and mean-based 
effectiveness measure on the right. The number of PAs in each group is marked on top of each box. The 
whiskers extend to the largest value no further than 1.5 times the distance between the first and third 
quartiles. Outliers as points. 

 

 

Table 5. I compared the differences in the PSdep effectiveness estimates between PA types with Mann-
Whitney U tests (Wilcoxon rank sum test in R; W statistic is equivalent to the U statistic in this test).  

Test Comparison p W Difference 
in location  

 

Wilcoxon rank 
sum  

Indig. ~  
Strict 

0.56 30 -0.030  

Wilcoxon rank 
sum  

Indig. ~ 
Sus.use 

0.44 124 0.029 

Wilcoxon rank 
sum  

Strict ~ 
Sus.use 

0.63 15 0.051 

 

 PA type PSdep mean PSdep SD n   

Indigenous 0.70 0.13 26   

Strict 0.71 0.11 3 

Sustainable use 0.65 0.10 8 
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3.3. Effectiveness of the seven PAs within the deforestation fronts varied 

 

PAs 4 and 37 were located completely within one of the deforestation fronts (Table 6, 

Figure 10). PA 4 had high effectiveness with both measures, higher with PSdep (0.82) 

than with means (0.0045). It was situated close to an urbanized area, but this indigenous 

area had only three pixels worth of deforestation during the study period, not enough to 

be present in the sample. PA 37 also had high effectiveness with both measures, but 

unlike PA 4, it had a higher estimate based on means (0.0063) than with PSdep (0.75). 

PA 37 is geographically close to PA 4, but on the other side of the BR-364 inter-state 

highway, and it too had experienced some deforestation on the riverbank which defines 

its south-eastern border, but not enough to be present in the sample. Variation existed 

in the effectiveness of indigenous areas that existed mostly (PAs 22, 18, 2, 8 and 9) 

within the deforestation fronts (Table 6, Figure 10).  

 

Table 6. The effectiveness of the seven PAs which were located either completely (PAs 4 & 37) or mostly 
(PAs 22, 18, 2, 8 & 9) inside the deforestation fronts. All of these PAs were indigenous areas. 

PA Effectiveness Notes 

4 High effectiveness with both measures, 
higher with PSdep (0.82) than with 
means (0.0046). 

Situated close to the town of Tarauacá 
and the BR-364 road. Completely 
within a deforestation front.  

37 High effectiveness with both measures, 
higher with means (0.0063) than with 
PSdep (0.75). 

Situated close to the town of Feijó and 
the BR-364 road. Completely within a 
deforestation front. 

22 High effectiveness with both measures, 
higher with means (0.0071) than with 
PSdep (0.76). 

Close to the town of Mâncio Lima, an 
urbanized centre.  

18 Low effectiveness with both measures, 
lower with means (0.0009) than with 
PSdep (0.59). 

The effectiveness was estimated to be 
surprisingly low, as there was large 
scale deforestation right on the edge of 
this indigenous area and none within.  

2 High effectiveness with both measures, 
slightly higher with PSdep (0.76) than 
with means (0.0045). 

The BR-364 road crosses straight 
through this indigenous area, but zero 
deforestation was observed within.  

8 Medium effectiveness with both 
measures, a lot higher with means 
(0.0029) than with PSdep (0.62). 

A river aligns and crosses this PA. 
Effectiveness affected by deforestation 
within the PA.  

9 Medium effectiveness with means 
(0.0035), high effectiveness with PSdep 
(0.79). 

A river aligns and crosses this PA. 
Effectiveness affected by deforestation 
within the PA. 
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Figure 10. Mean-based effectiveness of the PAs considered in this thesis. The effectiveness of the seven 
PAs mostly or completely within the deforestation fronts varied.  

 

 

3.4. Three protected areas had negative confounding effects 

 

Part of the reason why PAs 11 and 32 had high effectiveness was the fact that the 

confounding effects for those PAs, along with PA 19, turned out to be negative (Figure 

11), meaning that more deforestation, instead of less, was expected for these PAs when 

the covariates were used. PAs 11 and 19 had the highest fractions of deforestation within 

them compared to any other PA included in this study (Figure 8), whereas PA 32 had no 

deforestation within its borders. Both the PA effectiveness values and the confounding 

effects were different when calculated using medians, as should be expected. Out of all 

PAs, only PA 11 showed a negative confounding effect when medians were used, 

indicating that the negative confounding effect was clear enough to be seen even with 

that measure, albeit not in as much detail as when the means were used.  
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Figure 11. Mean-based confounding effects and the mean-based PA effectiveness measure for all PAs. 
Three PAs experienced a negative confounding effect indicating high pressures against these PAs. The y-
axis for mean effectiveness is calculated as the fraction of pixels that would have been expected to 
experience deforestation if the PA had not existed. In other words, the avoided deforestation. For the 
confounding effect, the y-axis is the remaining fraction of deforestation that would have been expected 
without the confounding factors or protection. When the confounding effect is negative, more 
deforestation was expected for the PA based on the covariates (BL_multidim) as compared to the overall 
background rate estimated without them (BL_no_multidim).  

 

PA 19 is an extractive reserve and the largest PA in Acre, and it had the largest fraction 

of deforestation out of all PAs within the time period of this study (Figure 8), more than 

two times as much as the PAs with the second and third largest fractions. Yet, this did 

not surpass the estimated baseline deforestation rate and therefore PA 19 was estimated 

to have had a high mean-based effectiveness. According to the PSdep measure, PA 19 

was only intermediately effective as only around 30% of the similarity sets showed less 

deforestation than the baseline. The confounding variables did not reduce the 

effectiveness measure for PA 19 but instead increased it, the same being true for the 

other PAs with negative confounding effects.  

  

3.5. Substantial amount of deforestation and carbon emissions avoided 

 

The PAs included in this study avoided approximately 2,255,000 ha of deforestation in 

Acre during the study period, totalling to 217,394 kilotons (0.22 gigatons) of avoided 
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carbon emissions (Table 7). 23,041 ha of deforestation was not included in the emissions 

calculations, as the carbon density data was not available for two PAs (3 and 28). 

According to the World Development Indicators data by The World Bank (2018a), the 

CO2 emissions in Brazil were 2,729,828 kilotons in total during the latest six years from 

which data are available (between 2009 and 2014). The PAs I included in the carbon 

calculations avoided around 8% of this total during the six-year period considered in this 

thesis. Most deforestation was avoided by PA 19, a sustainable use area, which avoided 

approximately 483,930 ha of deforestation and 47,922 kt of carbon emissions during the 

period under study (Figure 12, Table 7). PA 19 is also the largest PA in Acre, with over 

93,901 hectares more area than the second largest PA 27. The next most effective PAs 

in terms of avoided deforestation were, in order, PA 16 (another sustainable use area), 

20 (strictly protected area), 27 (strictly protected area), 36 (indigenous area) and 32 

(indigenous area). The order of PAs was the same when sorted by most avoided carbon 

emissions.  

 

 

Figure 12. Avoided deforestation by the PAs in hectares. Both the extent and effectiveness of the PAs 
affected these estimates.  

 

  



40 
 

Table 7. The estimated amount of avoided deforestation and carbon emissions for individual PAs. Mean 
Carbon (C) ton/ha values were obtained from Soares-Filho et al. (2010). PAs 3 and 28 had to be omitted 
due to a lack mean C ton/ha data. It should be noted that the values are only approximations and they 
are based on conservative estimates of PA effectiveness. In addition, some PAs had overlap (see in Figure 
12), which is not considered in the totals. 

PA PA type PA area 
(ha) 

Mean C 
(ton/ha) 

Avoided 
def. (pix) 

Avoided 
def. (ha) 

Avoided C (t) Avoided C 
(kt) 

Avoided 
C (GtC) 

1 INDIG. 80618.2 108.8 3452.3 18570.2 1717510.3 1717.5 0.0017 

2 INDIG. 32623.6 138.9 2823.6 15188.3 1793841.1 1793.8 0.0018 

3 INDIG. 28926.1 - 260.0 1398.5 - - - 

4 INDIG. 12317.9 94.1 1027.0 5524.1 441790.6 441.8 0.0004 

5 INDIG. 20764.0 114.4 3763.2 20242.1 1967585.8 1967.6 0.0020 

6 INDIG. 87293.8 100.9 3532.8 19002.9 1630040.6 1630.0 0.0016 

7 SUS. USE 176346.7 116.6 4962.2 26691.6 2646408.4 2646.4 0.0026 

8 INDIG. 60698.7 116.3 3193.1 17175.9 1698444.0 1698.4 0.0017 

9 INDIG. 27533.4 102.6 1643.1 8838.1 771076.2 771.1 0.0008 

10 INDIG. 84364.6 98.4 3982.6 21422.6 1791008.7 1791.0 0.0018 

11 INDIG. 8726.5 99.5 2002.0 10768.9 910905.4 910.9 0.0009 

12 INDIG. 263129.8 114.2 14424.7 77590.6 7533793.2 7533.8 0.0075 

13 SUS. USE 142619.1 103.7 6174.1 33210.5 2736775.5 2736.8 0.0027 

14 STRICT 79092.6 120.5 12820.7 68962.6 7061944.3 7061.9 0.0071 

15 INDIG. 45590.9 104.2 1089.8 5861.9 519267.2 519.3 0.0005 

16 SUS. USE 750917.7 123.0 47775.1 256982.3 26862930.0 26862.9 0.0269 

17 SUS. USE 537983.7 106.8 15449.6 83103.1 7543075.3 7543.1 0.0075 

18 INDIG. 25651.6 125.9 443.6 2386.3 255295.8 255.3 0.0003 

19 SUS. USE 931459.0 116.5 89966.5 483929.6 47922297.3 47922.3 0.0479 

20 STRICT 693974.4 109.5 46750.4 251470.5 23400723.5 23400.7 0.0234 

21 INDIG. 21987.2 105.9 543.2 2921.8 262889.2 262.9 0.0003 

22 INDIG. 24499.1 119.1 3149.3 16940.3 1715131.4 1715.1 0.0017 

23 SUS. USE 150923.2 103.7 3474.7 18690.3 1647687.6 1647.7 0.0016 

24 SUS. USE 21147.7 114.9 1764.2 9489.8 927025.8 927.0 0.0009 

25 SUS. USE 231556.1 101.0 8831.2 47503.1 4077715.4 4077.7 0.0041 

26 INDIG. 87571.7 114.9 1357.7 7303.0 713136.7 713.1 0.0007 

27 STRICT 837557.3 116.1 33145.4 178289.2 17597599.7 17597.6 0.0176 

28 INDIG. 260970.0 - 4023.6 21642.7 - - - 

29 INDIG. 187400.0 114.5 1973.3 10614.6 1033132.6 1033.1 0.0010 

30 SUS. USE 324904.1 120.4 7727.1 41563.9 4252111.3 4252.1 0.0043 

31 INDIG. 127383.6 98.7 4630.9 24909.8 2090043.4 2090.0 0.0021 

32 INDIG. 78512.6 128.4 22871.3 123024.8 13424432.6 13424.4 0.0134 

33 INDIG. 232795.0 99.5 20431.8 109902.7 9290920.8 9290.9 0.0093 

34 INDIG. 87205.4 112.6 3193.6 17178.5 1644170.7 1644.2 0.0016 

35 INDIG. 27263.5 117.9 2545.2 13690.6 1372028.8 1372.0 0.0014 

36 INDIG. 313646.9 117.4 31358.2 168675.8 16838251.9 16838.3 0.0168 

37 INDIG. 23474.0 106.9 2664.5 14332.1 1302607.0 1302.6 0.0013 

Totals: 7222289.7 3899.9 419652.0 2257307.7 217393598.3 217393.6 0.2174 
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4. Discussion 

 

4.1. My results as a part of the larger conservation discourse 

 

My thesis considered a period of time from 2011 to 2016. Despite the economic 

recession and law changes which rocked Brazil during this time, all PAs included in my 

thesis had at least some level of effectiveness. This supports the well-established fact 

that, overall, PAs are effective at curbing deforestation (DeFries et al., 2005; Joppa and 

Pfaff, 2011; Lui and Coomes, 2016). I also found substantial variation in effectiveness 

between the individual PAs in Acre, corroborating previous matching studies which have 

shown similar patterns with different time periods and study areas, such as for the entire 

Brazilian Amazon (Nolte et al., 2013), the Brazilian Cerrado (Carranza et al., 2014), 

Peruvian Amazon (Schleicher et al., 2017) and the tropical protected areas in Africa 

(Bowker et al., 2017). However, I also observed some differences when comparing my 

results to these previously performed studies. Unlike the findings from the entire Brazilian 

Amazon or the Brazilian Cerrado, my findings did not show that the indigenous areas of 

Acre would have experienced more deforestation pressures compared to the other main 

PA types (Figure S2).  

Based on my results, the main PA types cannot confidently be said to differ from each 

other in terms of PA effectiveness in Acre, even though previous research for Amazonian 

PAs has discovered that such differences do exist when the entire Brazilian Amazon is 

considered (Soares-Filho et al., 2010; Nolte et al., 2013). Differences have also been 

found in the Cerrado (Carranza et al., 2014) and the Peruvian Amazon (Schleicher et al., 

2017). The fact that in Acre the PA types differed neither in the pressures they 

experienced nor in their effectiveness during my study period, is likely a consequence of 

the location of the individual PAs belonging to each category. In other words, none of the 

PA categories were predisposed to having higher or lower effectiveness by virtue of how 

the PAs belonging to those groups were located. This finding will likely not change in the 

future even if the pressures continue to increase in the deforestation fronts, unless new 

PAs are established or existing ones are degazetted. It might also well be that some 

relevant differences between the types do exist in their ability to avoid deforestation, but 

they may be too small to detect with the number of PAs Acre has.  
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4.1.1. Augmenting previous PA effectiveness studies in the Amazon 

 

Prior to this thesis, two large studies on PA effectiveness in the Brazilian Amazon have 

been conducted, both using data from before the start of my study period. The first one 

of these was a study by Soares-Filho et al. (2010), who, instead of matching, used an 

adjusted odds ratio method to compare deforestation in 10 km buffers within and outside 

the PAs. The authors used data from all of the 595 PAs in the Brazilian Amazon between 

the years 1997 to 2008, to estimate the effectiveness of PAs in preventing carbon 

emissions.  

Soares-Filho et al. (2010) found that, on average, strictly protected, sustainable use and 

indigenous areas showed an inhibitory effect, the most effective category being the 

indigenous lands. The authors also provided their effectiveness estimates for individual 

PAs, but these could not be reliably compared to my own effectiveness measures for the 

same PAs as there were different number of years of available data for each PA in the 

table provided by the authors, and no year had data for all PAs. When viewing their data, 

I noticed that the effectiveness measures estimated by Soares-Filho et al. (2010) were 

much higher than the estimates I derived for the same PAs. Soared-Filho had compared 

10 km buffer zones immediately within and outside the PA border, comparing the zones 

to each other, without comparing individual pixels to each other. The authors wrote, that 

453 of 571 of their buffer zone pairs turned out to have had significantly different 

distributions of deforestation probability, which may have affected their estimates of PA 

effectiveness, because they were not comparing like with like. The authors 

acknowledged this in their supplementary text, writing that the different distributions 

suggested that the differences should have been compensated for, for example by using 

matched samples. It is likely, that the matching and covariate choices I used in my thesis 

correctly reduced the effectiveness measure for most PAs, resulting in a more realistic 

measure of effectiveness. Some, if not most, of the differences between my estimates of 

PA effectiveness and the estimates calculated by Soares-Filho et al. (2010) were due to 

the differences in the selected methods, but a part of the differences must surely also be 

attributed to the different time-period considered, as deforestation in Acre has dropped 

substantially compared to the levels in the early 2000’s (Figure 2). What fraction of the 

difference was due to the difference in methods and what was due to real changes in PA 

effectiveness between the time periods considered could not, however, be estimated.  

The second major PA effectiveness study in the Brazilian Amazon prior to the start of my 

study period was performed by Nolte et al. (2013), who used a matching method to 

investigate the effectiveness of different PA types for two different time periods, 2000-

2005 and 2006-2010. The findings of Nolte et al. (2013) showed that strictly protected 
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areas avoided more deforestation than sustainable use areas in any given level of 

deforestation pressure, and indigenous lands were particularly effective in high pressure 

areas. In contrast to the results of Nolte et al. (2013), the results I acquired with the PAs 

of Acre did not show significant differences between the PA types in the years after 2010, 

or at least the difference in effectiveness between the three PA types was not so large 

as to be significant with the small sample sizes in Acre.  

The effectiveness of the main PA types seems to be context dependent and largely 

driven by the placement of the different types of PAs. If many PAs of a specific category 

are established on high pressure areas, this will drive up the effectiveness of this PA 

category in the analyses, even if the other types could have been just as effective if 

similarly located. Indeed, Nolte et al. (2013) also reported shifting trends in the location 

of PAs, with strictly protected areas having been more likely to be established in high-

pressure locations during 2000-2005 than sustainable use or indigenous areas. The 

results of Nolte et al. (2013) from the two periods of time they considered pointed to the 

conclusion that increased efforts of the Brazilian government during the second time 

period increased the overall effectiveness of all protection types. However, the writers 

also noted that protection is not guaranteed under any governance regime despite the 

consistent average patterns, as they observed individual cases with high and low 

deforestation rates for all protection types, pressure levels, and time periods (Nolte et 

al., 2013). My results showed how the same continued to be true for the PAs in Acre, 

where the fraction of deforestation varied significantly between the individual PAs. This 

is one reason why it is important to carefully consider the context dependency of 

effectiveness estimates, especially if scientific research is used to inform management 

decisions for individual PAs.  

 

4.1.2. Patterns in pressures and effectiveness 

 

All PAs with the highest effectiveness scores had rivers flowing through them, increasing 

the ease of access and thus predisposing their areas to potential deforestation. This 

reality was reflected by the high baseline deforestation estimates for these PAs, which 

resulted in high estimated effectiveness. In contrast, the lowest effectiveness scores 

were found for PAs in remote locations which experienced low deforestation pressures 

and thus their effectiveness was not challenged. The low effectiveness estimates do not 

necessarily mean that the PAs would remain low in effectiveness if the pressures were 

to change. PA effectiveness is not, and indeed does not need to be, high in areas with 

low pressures. In addition to location, the effectiveness of a PA is partly determined by 
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the period of time considered. This thesis only considered the state of Acre, using the 

latest six years of available data. A key thing to realize when interpreting these findings 

is the fact that the effectiveness measure is not an absolute measure, but instead a 

relative one. 

Effectiveness of the seven PAs inside the deforestation fronts varied from low to high 

effectiveness based on my results. However, the estimate for PA 18, the one PA with 

low effectiveness, was surprisingly low considering that there was a large amount of 

deforestation both on the southern and northern edge outside of this indigenous area. 

Two of the indigenous areas within the deforestation fronts had a lower effectiveness 

measure due to deforestation near the rivers that crossed their areas (PAs 8 and 9). 

Nearly half of all indigenous areas included in my thesis experienced some deforestation. 

This finding reflects the results reported by Nolte et al. (2013), who wrote in their article 

that the indigenous areas in the entire Brazilian Amazon region exhibited slightly higher 

amounts of deforestation in low-pressure areas than other main PA types, suggesting 

that deforestation within indigenous areas might reflect internal pressures rather than 

external market-driven pressures which the covariates mostly control for. The internal 

subsistence-driven resource use of indigenous lands could explain why they have been 

found to be effective in high pressure areas and why they seem to exhibit deforestation 

regardless of the pressure levels.  

I found that three PAs currently exist on areas of very high anthropogenic threat, 

indicated by negative confounding effects (PAs 11, 19 and 32). Such effects are 

expected to be found for PAs in high pressure locations regardless of the study site, but 

so far, I have not seen any study in this field of research reporting negative confounding 

effects for PAs. These negative confounding effects can reflect the fact that those PAs 

either have been established on high pressure areas to defy the deforestation threat, or 

the pressures in those areas have grown and the PAs now face great pressures. For PA 

19, the negative confounding effect was a consequence of the latter (see case study 

below), and the same is likely true for PAs 11 and 32 which were established in 2002 

and 1999, respectively (Table S2).  

 

4.2. True protected area effectiveness is a series of actions  

 

When a PA is faced with deforestation pressures, its level of effectiveness is reliant of 

multiple factors, such as administration, planning, protection activities, monitoring, law 

enforcement, staff training, the security and reliability of funding, the involvement of 

communities and stakeholders, and the support of the external political and civil 
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environment (Leverington et al., 2010). Naturally, since the main PA types differ in their 

approach to conservation, the importance of these factors differ between them. For 

sustainable use areas the series of actions is especially complex, as these areas seek 

to accommodate conservation interests with the varying needs of different stakeholders. 

In order to illustrate this process, I will next examine the ganglion of conservation 

discourse in Acre, the Chico Mendes Extractive Reserve, as a case example.  

 

4.2.1. A closer look at the Chico Mendes Extractive Reserve 

 

Labled as PA 19 in this study, this sustainable use area had avoided the most 

deforestation and carbon emissions during the time period I studied, while also 

experiencing the largest losses of forest cover and carbon out of all considered PAs. The 

negative confounding effect for this PA suggested that the reserve exists in an area with 

very high deforestation pressures, and I estimated the reserve to have had an 

intermediate-to-high effectiveness. The reserve is situated a mere 30 kilometres from 

Rio Branco, the capital of Acre, and the vicinity of the reserve has an extensive road 

network, increasing the accessibility to the reserve. Several roads extend inside the 

reserve (Figure 13). 

 

Figure 13. Map of the Chico Mendes Extractive Reserve (PA 19), with a baseline forest cover layer. 
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The reserve was established in 1990 and named to honour the famous rubber tapper 

and environmentalist Chico Mendes (ARPA, 2014), and it is managed cooperatively by 

the Brazilian Ministry of the Environment and the local communities with their 

representative organizations. Together the administrators form a management council, 

which agrees on a Management Plan, together with a Usage Plan and a Use Concession 

Agreement (IBAMA, 2006; WWF-Brazil, 2015).  The reserve was designated to protect 

the sustainable use of the unit's natural resources by supporting the livelihoods and 

culture of rubber tapper families, and deforestation for the accomplishment of 

complementary activities is only allowed through a license obtained from the Brazilian 

Institute of Environment and Renewable Natural Resources (IBAMA), and is legally 

limited to two hectares per year (IBAMA, 2006; CNUC, 2018).  

The causes of deforestation within the Chico Mendes reserve have been due to an 

increase in the complementary activities, directly linked to the growing of livestock, fires 

and poor planning of agricultural production (IBAMA, 2006). As rubber is more difficult to 

gather, transport and sell than cattle, especially the younger generations today would 

rather choose the easier way, even if it harms the forests (Marcel, 2013). The 

management authorities of the reserve have even planned awareness raising campaigns 

for the youth of the reserve about the importance of restraining from deforestation for the 

sustainability of the unit (IBAMA, 2006). In the official Management Plan for the reserve, 

it is mentioned that the traditional extractive production of latex and Brazil nuts is directly 

associated with the reduction of deforestation rates, contributing to the provision of 

several types of environmental services, and carbon credit markets have been 

envisioned as a possible incentive for providing these services (IBAMA, 2006). Acre's 

new REDD+ program has been used to enable price mark-ups for the rubber products, 

incentivising traditional forest conserving practices in the reserve (KfW Development 

Bank, 2017), which may have increased the effectiveness I estimated for this PA.  

The Chico Mendes Extractive Reserve has a particularly important symbolic relevance 

for conservation in Acre, and the ongoing transition from rubber production to cattle 

ranching has raised some worry (Otavio, 2013). However, local people seem to feel that 

the burden of environmental responsibility has been showed on their shoulders, even 

though they see their own actions as minuscule compared to the actions of the big oil 

and mining industries in the Amazon (Otavio, 2013). In a community forest monitoring 

study focusing on the reserve it was stated that 67% of households today raise cattle, 

with only 21% of households collecting rubber (Sabogal, 2015). Of the 551 people 

interviewed during the monitoring, 67% felt represented by the Management Council and 

63% were aware of the Management Plan, but only 21% of those who were aware of the 

plan said it is working (Sabogal, 2015). This might reflect the growing pressures and 
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changes taking place within the reserve. My results show that during recent years, many 

families have been incentivized, either by market logic or by the necessity to survive, to 

deforest within the reserve, as around 1% of the reserves vast area was estimated to 

have experienced deforestation. The community forest monitoring study also recorded 

172 illegal invasive activities in the reserve, of which 41% were for hunting (Sabogal, 

2015), reflecting the fact that true PA effectiveness is also influenced by factors other 

than forest cover loss, which is not seen when the effectiveness is only evaluated with 

remote sensing methods.  

My results suggest that the management plan of the Chico Mendes Extractive Reserve 

has indeed had intermediate-to-high success in recent years, despite the deforestation 

that is happening in the reserve. This case example thereby exhibits how even in the 

extremely high-pressure environments of the agricultural frontier, sustainable use areas 

can survive and be effective, if a successful plan for management is created and 

implemented which reconciles conservation requirements with the needs of the people. 

Given the high pressures of this deforestation front, it seems likely that without this 

reserve the sustainable management of the forests resources, most of the carbon bound 

in the forests, along with the traditions, culture and way of life of the rubber tappers, might 

all have been lost from this extensive area.  

The fact that rubber tappers have had the opportunity to continue their way of life may 

have produced better results in this area of high deforestation pressure than a strictly 

protected area like a national park would have done. This is because by allowing the 

small-scale deforestation resulting from the extractive activities, the rubber tappers did 

not have to migrate to other areas where the incentive to become cattle farmers might 

have been even higher. This process would have undeniably also created opposition 

towards environmental protection, affecting the larger conservation efforts in the long 

term. However, if the transition from the sustainable rubber tapper practices to cattle 

ranching will continue, the future managers of the park will have less incentives to 

maintain as stringent rules which prevent deforestation today. This might mean that in 

order for this historical reserve to retain its effectiveness in the future, the conservation 

status might eventually have to be fully or partially changed to a stricter protection status, 

possibly by modifying the existing zonation within the reserve.  

 

4.3. Effectiveness beyond deforestation prevention 

 

PAs can differ in the reasons for which they were established, but one common unifying 

factor in rainforest environments is the intention to conserve forest habitats and the 



48 
 

resources and services they provide. Deforestation can indicate the amount of remaining 

habitat, but not necessarily its quality. Studies that rely on measuring PA effectiveness 

via remote sensing methods, like the one I performed, have to depend on features that 

are visible to satellites, which mainly means the loss of forest cover. While the lack or 

presence of deforestation is a clear representation of PA effectiveness, it should not be 

considered as the sole determinant of it, as PAs can be effective along other dimensions 

as well. My findings thus provide one evaluation of effectiveness, but it must be kept in 

mind that PAs are established for varying reasons, and therefore to obtain the most 

policy relevant estimates, the measure of effectiveness should be selected to reflect the 

case specific objectives of each PA in question.  

Besides clearing, the quality of forests may also be affected by degrading the standing 

forests. Forests may be degraded for example by selective logging of chosen species or 

by unsustainable levels of hunting for large-bodied vertebrates which can result in an 

“empty forest” (Redford, 1992). Hunting induced decline in species diversity can have 

reverberations on the ecosystem functions and services the forests provide, affecting 

both the composition of the forests and their carbon density (Lewis, Edwards and 

Galbraith, 2015). Increased hunting pressure is the consequence of a growing 

anthropogenic presence in the rainforests, with people either in search of subsistence or 

seeking to satisfy demand arising from larger towns or international trade (Redford, 

1992). Selective logging and hunting may also occur together, as logging can provide 

road access to hunters. Schleicher et al. (2017) included an assessment of forest 

degradation to their estimations of PA effectiveness, and their findings showed that forest 

degradation affected a much larger extent of forest area than deforestation did, within all 

PA types they considered in the Peruvian Amazon, and the amount of forest degradation 

PAs avoided was also consistently higher than the avoided deforestation. Schleicher et 

al. (2017) assessed, that the main predictor for both forest degradation and deforestation 

was accessibility, in particular the distance to previously deforested areas and the travel 

time to urban centres. Especially PAs which exist near roads or major rivers in Acre may 

therefore have been subject to forest degradation, even if they had high effectiveness in 

preventing deforestation.  

 

4.4. Evaluating the method and possible caveats  

 

I made several assumptions in this thesis which may affect the estimated effectiveness 

results and are therefore necessary to consider when the results are interpreted. The 

original idea for this thesis was to study PA effectiveness in and near the deforestation 
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fronts of the Amazon, which is why the PAs were selected using the 50 km buffer area 

around the deforestation fronts. Only one PA was excluded in Acre by applying this 

criterion, and the other selection criteria that were used only left four additional PAs out 

of the analyses. In retrospect, it would have been more valuable to include all PAs of 

Acre to the analyses and point out the exceptions where necessary.  

One possible caveat of the method used is the fact that when the code searches for 

control pixels for the sampled pixels, the controls can be searched from a distant location, 

which might lead to an underestimation of the effect local conditions can have on 

deforestation, for example through municipality or town specific rules or markets, which 

were not considered in this thesis. However, this effect is likely to be very small, as local 

pixels are expected to be more environmentally similar to the sampled pixels than 

faraway pixels and are therefore also expected to be present in the set of pixels to which 

the comparisons are done. 

I also checked to see if sample size had any effect on the effectiveness measures, as 

PAs differed considerably in sample size, ranging from 158 to 17048 sample points 

(Table S1). I observed no relationship, as should be expected, since the similarity sets 

have a constant size of 500 pixels, regardless of the PA sample size, and the PA sample 

size is relative to forested extent of the PAs in the baseline year 2010 (approximately, 

see Table S1). Small PAs may however end up having larger effectiveness measures a 

consequence of the fact that a small sample size results from a small PA area (less forest 

in smaller PAs), which increases the likelihood that the PA can exist wholly or mostly 

within a high-pressure environment, thereby potentially increasing its measured 

effectiveness.  

Leakage was not considered in this thesis. It means an effect where instead of preventing 

deforestation, a PA simply displaces it to another area. A commonly used approach in 

PA effectiveness studies is to include a buffer around each PA, usually 10 km from the 

PA boundary, to account for potential leakage (Joppa and Pfaff, 2011; Nolte et al., 2013; 

Carranza et al., 2014; Schleicher et al., 2017).  Leakage was not considered in this thesis 

because the matching method I used does not rely on comparing zones inside and 

outside PAs, and previous research has found little to no support for the leakage 

hypothesis (Soares-Filho et al., 2010; Carranza et al., 2014). In fact, instead of leakage 

it seems that PAs may sometimes reduce deforestation in their vicinity (Soares-Filho et 

al., 2010). If this is the case, instead of increasing the estimated effectiveness, not 

including buffers may have even made my effectiveness estimates slightly more 

conservative.  
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The economic recession and political crises that took place in Brazil after 2010 may have 

had an effect on the estimated deforestation pressures and PA effectiveness, but their 

specific effects could not be determined in this thesis. When I visually compared the 

different GDP measures of Brazil (World Bank, 2018) to the PRODES deforestation data, 

there seemed to be no consistent relationship between different measures of GDP and 

deforestation in Brazil between the years 2000-2016. Therefore, it may be that changes 

in laws and policy have affected deforestation more than the economic recession in 

Brazil. PA effectiveness may have been influenced if resources for PA management 

have been scarce, but this could not be evaluated.  

The 2012 Forest Code change in Brazil has been estimated to raise deforestation in non-

protected areas by 10% (Roriz, Yanai and Fearnside, 2017), which means it had the 

potential to increase my baseline deforestation estimates. However, it may take time for 

people to become aware of the new law and change their patterns of behaviour. The 

REDD+ program and the history of forest conservation in Acre may have also helped 

buffer against the possible ramifications for deforestation pressures and PA 

effectiveness during my study period.  

 

4.4.1. Including protected area to estimations of baseline deforestation 

 

One very definitive pragmatic decision done in this thesis was to include the protected 

area into the calculation of the baseline deforestation rates. This decision was done 

following the original method as it has previously been used by Eklund et al. (2016). This 

influenced my results by slightly lowering the estimated deforestation pressure and 

therefore the estimated PA effectiveness, making my estimates of effectiveness and 

pressure slightly more conservative. Because the decision reduced the estimated PA 

effectiveness results, it also reduced the estimates of avoided deforestation and avoided 

carbon emissions calculated for each PA.  

The baseline deforestation rate which disregarded covariates and protection 

(BL_no_multidim) was calculated separately for each PA by taking the area of only that 

PA and the whole non-protected area in Acre and calculating the mean deforestation 

rate from 100,000 simulated 500-pixel sets. The inclusion of the protected area was 

based on the argument that the same area was considered for the estimation, only 

disregarding the protection status. This may not have been the best approach, as 

protection is expected to reduce the deforestation rate within it, meaning that the 

resulting baseline deforestation rate will be estimated to be lower than it actually is if 

pixels are included from within the protected area. In the same way, the baseline 
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effectiveness measure which considered covariates (BL_multidim), calculated from the 

similarity sets, used all of the pixels included in the similarity sets instead of only using 

the non-protected matched pixels. This means that the baseline pressure might actually 

be somewhat higher for the PAs than what was estimated, and therefore the 

effectiveness estimates are estimated to be lower. 

In hindsight, the protected pixels should have been excluded when calculating the 

baseline deforestation rates, as including them influenced the results by making the 

effectiveness estimates conservative, unnecessarily. The magnitude of this decision was 

different for each PA, affected by the fractions of pixels in the similarity sets that were 

selected from within the PA. For most PAs, the size of this effect was small, as the non-

protected area is vastly larger than most of the PAs in Acre, and therefore most similarity 

set pixels or the pixels in the simulated sets were found from the non-protected areas of 

Acre. This was seen from the histograms that were created before the analyses were 

done (Figure 4). However, PAs 7, 13, 14, 20, 28, 34 and 36 had particularly high 

frequencies of similarity sets with a high fraction of protected pixels within them, and 

therefore their effectiveness might have been underestimated. In a similar manner, the 

confounding effects calculated for each PA might have been estimated to be slightly too 

high.  

In the previous study which introduced the method used in this thesis, Eklund et al. 

(2016) included the area under protection in the estimates of baseline deforestation 

pressure because the idea was to evaluate deforestation rates disregarding protection. 

Based on verbal communication with the author, their results did not vary much when 

the PA was not included. However, my study did not estimate PA effectiveness only for 

aggregated groups of PAs, and therefore it would have been better to exclude the 

protected area from the deforestation rate estimations.  

 

4.4.2. Sub-optimal covariate layers 

 

Including the VCF layer as a covariate may have affected the matching in an 

unintentional way, because similar pixels were searched also by comparing the density 

of forest cover. Hypothetically, the forest cover density might reflect the structure of the 

forest, and therefore affect the likelihood for deforestation, but this is not known for 

certain. In addition, the forests of Acre have two major forest types, bamboo forests and 

palm tree forests, which conceivably might have some detectable difference in the 

density of forest cover, and there might also be a difference in the likelihood for 
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deforestation between these forest types. These hypotheticals have not been tested, 

however, and therefore cannot be used to support the inclusion of the VCF layer.  

The median altitude and slope datasets from IIASA and FAO were not optimal choices 

due to their coarse resolution of around 9 km. In hindsight, a much better option would 

have been the SRTM 90 m Digital Elevation maps. These dataset choices reduced the 

ability to detect possibly agriculturally suitable areas in detail and may therefore have 

resulted in a less optimal selection of control points. 

True accessibility may also differ from the one measured by the covariates used in this 

study, as some parts of rivers may be less navigable, or alternatively some tributaries or 

distributaries which were not included in the river layer may in reality have influence on 

the accessibility to forest resources.  

The travel time layer was from the year 2000, a decade before the start of my study 

period, and after that roads have been paved, affecting the true travel times to markets. 

There were some shortcomings in the travel time raster that seemed not to reflect the 

true positions of some roads and rivers, but I decided to use the layer as a covariate 

because it was only one covariate among many, and as travel times have been evaluated 

to be important predictors of deforestation pressures. In addition, no better option was 

available, and time constrained me from calculating my own travel time layer. A new map 

of travel times and global accessibility was published in early 2018 (Weiss et al., 2018), 

but it turned out to have even more errors than the previous layer when the area of Acre 

was concerned.  

 

4.4.3. Impact of overlapping protected areas  

 

Several PAs had some amount of overlap with each other (Figure 1), which may have 

affected the effectiveness of these areas with “double protection”. These overlapping 

areas might have slightly affected the avoided deforestation and carbon emission 

estimates. The overlap was observed to be minor for most PAs, except for PAs 1, 5 and 

25. PA 1 is an indigenous area and almost all of its area overlaps with PA 25. a national 

forest. This dual protection can be expected to have increased the estimated 

effectiveness for PA 25, and possibly also for PA 1, as national forests in Brazil are semi-

open to the public and have management plans. The effectiveness of PAs 1 was 

intermediate, and PA 25 had medium-to-high effectiveness. PA 5, a small indigenous 

area, was one of the PAs for which I estimated a very high effectiveness, and therefore 

it warrants a closer look to evaluate if the effectiveness estimate was correct or not.  
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A river crosses straight through PA 5, predisposing its area to the edge effect. The PA is 

almost completely surrounded by three other PAs, two of which overlap with it, covering 

in total more than half of its area (clearly visible in Figure 10). East from the river bank 

the overlap is with an extractive reserve categorized as a sustainable use area, and the 

northern part is overlapped by a strictly protected national park. In the non-protected 

areas to the north, downstream of the river, and to the east within the extractive reserve, 

a great amount of deforestation had taken place during the study period, but only a little 

had materialized within the borders of PA 5, where 7 pixels worth of forest had been lost. 

No deforestation had taken place within the parts of PA 5 which overlapped with the 

strictly protected area, but four deforested pixels were situated on the area overlapping 

with the extractive reserve near the eastern bank of the river. Overall, the deforestation 

fractions of the similarity sets for PA 5 might have been reduced by the overlap with the 

strictly protected area, but the deforestation in the area overlapped with the extractive 

reserve did not have an effect, since none of the deforested pixels happened to be 

included in the sample for PA 5. It is not possible to say for certain if there would have 

been more or less deforestation without the reserve on the east bank. Satellite images 

and the baseline forest cover layer (VCF) indicated that forests within PA 5 had the 

potential to be lost on the exclusively indigenous territory in the west bank as well. The 

effectiveness of PA 17 (the extractive reserve) was not likely affected much by the 

overlap with PA 5, as it represents only a small corner of the large reserve (Figure 10). 

The histograms from the CSC run output files showed that the similarity sets of PA 5 had 

a low fraction of protected pixels, which indicates that the baseline deforestation rates 

were not affected by the overlapping areas in any serious way.  

The effectiveness estimate for PA 5 was further influenced by the fact that almost 25% 

of the samples in its area were omitted due to a lack of slope data in the edges of Acre, 

on the western part of the PA. Had these samples been included, there would have been 

25% more focal points with zero deforestation, as no deforestation had taken place within 

the omitted area. If the 25% of omitted pixels with no deforestation had been included, 

there would have been deforestation on 0.255% of the sampled pixels, which 

corresponds rather well with the 0.259% mean PA_multidim deforestation result that was 

obtained with the actual data used for the calculations. Based on the above, neither the 

PA_multidim or the BL_multidim would have likely differed much in the end, most likely 

resulting in a similar effectiveness estimate for PA 5 during the period under study. 
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4.4.4. The sampling design  

 

In addition to PA 5, the missing data in the covariate rasters also affected the sample 

size of all other PAs which were located on the edge of Acre (Figure 1), as the samples 

with missing values were omitted from the analyses. No deforestation had taken place 

near Acre’s edge, in the areas which didn’t have the covariate data, meaning that the 

effectiveness estimates might have been slightly lower if the samples from these areas 

had not been omitted.  

Another problem with the sampling turned out to be the way I omitted samples in the 

non-forested areas. I intersected the sample points with the VCF layer and then omitted 

the samples that were on non-forested areas, but the result of this was that most PAs 

the remaining forested areas did not have a perfect 10% sampling effort, depending on 

the amount of non-forested area that each PA had in the VCF layer. The same problem 

was true for the non-protected area. Despite this methodological error, the samples were 

approximately 10% and varied little between the areas (mean over all: 9.80, SD: 0.44; 

Table S1, Figure S1). Some of this variation was due to differences in the amount of 

rivers, roads and non-forested areas within the PAs, but the lack of slope data at the 

edges of Acre was the largest cause for why PAs deviated from the 10% sample. The 

sample sizes of PAs 5, 34, 32, 6 and 28 were most affected, and they were all situated 

near the edge of Acre. Only three PAs had a sample under 9% of the forested pixels 

(PAs 5, 34 and 32), of which the lowest was PA 5 (8.04%). A better option for sampling 

would have been to exclude all non-forested areas from the polygons within which the 

samples were randomly selected in the first place, and not try to omit them later. Due to 

time constraints, I was not able to perform sensitivity analyses to properly estimate to 

what extent the sampling related problems might have affected the results I obtained. 

Future research should take these issues into account. 

 

4.5. My results in relation to global environmental issues 
 

4.5.1. Links to biodiversity loss 

 

The State of Acre contains a large fraction of the species richness of the whole Amazon 

area, as species richness has been estimated to be highest at the south-western parts 

of the rainforest region (Soares-Filho et al., 2006; Ceballos, Ehrlich and Dirzo, 2017). 

While people in the State of Acre are not to blame for the world’s biodiversity crises, they 

hold the power to provide immediate and highly valuable conservation solutions due to 
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the state’s extensive PA network, which my results showed to be effective, and due to 

the high expected deforestation rates in the deforestation fronts. It has been shown that 

a more efficient use of existing agricultural lands could accommodate for the high 

increase in agricultural production which has been projected for Brazil, reducing the need 

to clear additional forests and even allowing for their restoration (Strassburg et al., 2014). 

This means that by developing rural economies, the states in the Brazilian Amazon, 

including Acre, could help reverse both biodiversity loss and climate change. Biodiversity 

loss is a global scale problem and solving it cannot be postponed without majorly 

impoverishing future generations, since no realistic way exists to undo extinctions 

(especially in mass). All regions of the world need to do their part in addressing both the 

proximate and ultimate causes behind biodiversity loss, and one important task is to 

collaboratively end deforestation in the biologically diverse tropical rainforests.  

 

4.5.2. Links to climate change 

 

During the period considered in this thesis, the PAs in Acre avoided a significant amount 

of CO2 emissions, approximately 7.3% of the total CO2 equivalent greenhouse gas 

emissions Brazil had in the year 2012. Both the size and the effectiveness of the PAs 

influenced the CO2 emission reduction estimates. These results for Acre are intimately 

related to Brazil’s national commitment to reduce emissions from the loss of forest 

carbon stocks in accordance with the Paris Agreement, which the government of Brazil 

ratified in late 2016  (Secom, 2016; UNFCCC, 2018). Brazil's Nationally Determined 

Contribution (NDC) pledged to reduce greenhouse gas emissions 37% by 2025 

compared to 2005 levels, with actions on three fronts: Agriculture (mostly restoring 

degraded pastures), energy (mostly increasing the share of biofuels), and forestry 

(mainly preventing deforestation and increasing reforestation) (Federative Republic of 

Brazil, 2015; Secom, 2016). However, without pro-active measures to control for land 

cover change, the low-emission IPCC scenarios are associated with the loss of primary 

forest habitats at very high rates due to a substantial deployment of bioenergy (CBD, 

2014). The fact that Brazil seeks to mitigate climate change by increasing the share of 

biofuels in the Brazilian energy mix, to approximately 18% by 2030 (Federative Republic 

of Brazil, 2015), might create additional pressures for deforestation and forest 

degradation in the Amazon in the coming decades, especially if international demand 

grows simultaneously.  

Huge reductions of greenhouse gas emissions are needed in the coming decades 

globally, and substantial net sequestration may be needed from the AFOLU sector 
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(IPCC, 2014b). That is why the UN created the REDD+ mechanism, and my results for 

the PAs of Acre suggest that substantial sequestration can be achieved in tropical areas 

with this approach. It has been proposed by Nepstad et al. (2009), that it might be 

feasible to bring an end to deforestation in the Brazilian Amazon with a ten year program, 

resulting in 2-5% reduction in global carbon emissions with a cost of $7 to $18 billion 

beyond what Brazil’s budget outlays were at around 2009. The authors wrote that the 

REDD+ mechanism might be able to provide this sum as compensation for the reduced 

emissions, which would also benefit the indigenous groups and traditional forest 

communities who have not been properly compensated for the carbon bound in their 

forests. Nepstad et al. (2009) estimated that the cost to end deforestation in Acre would 

total anywhere from 412 to 813 million USD. Given the increasing need to control forest 

cover loss in Brazil in the coming years, it is important to also consider what other 

approaches might be needed to achieve the conservation objectives. It has been 

suggested that command-and-control approaches for implementing legislation will likely 

not suffice, but instead higher environmental standards for beef, soy and other 

commodities may need to be imposed by international markets (Soares-Filho et al., 

2006). These studies show how climate change mitigation and the conservation of 

biodiversity are global issues that cannot be solved without cooperation and help from 

the citizens of other nations. The state of Acre is a pioneer in building such cooperation, 

with its unique REDD+ program.  

 

4.6. My results in relation to Acre’s PES-REDD+ program 

 

My findings identified which PAs have most effectively retained their forest cover, and 

thus the associated benefits accruing to humans and other species. My findings also 

indicated which PAs had prevented most carbon emission since the beginning of Acre’s 

PES-REDD+ program. During the time period of my study, the financing provided by the 

REDD+ program has mostly supported existing programs and projects of traditional 

forest extractivists, indigenous communities, small-scale farmers and cattle ranchers, 

which seek to prevent deforestation and forest degradation (Sills et al., 2014). This 

suggests that the REDD+ program may have affected the effectiveness results I obtained 

for the period from 2011 to 2016, especially since indigenous communities and 

extractivists may have received additional support in return for protecting the standing 

forests, increasing the estimated effectiveness of these areas. Likewise, the support 

provided for colonist farmers and cattle ranchers may have reduced the estimated 

baseline deforestation pressures, which may have had the antagonistic effect of reducing 
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the effectiveness estimates for all PA types. If strictly protected areas have not received 

additional financing thorough the REDD+ program, their effectiveness estimate during 

my study period might have been reduced. Research on PA effectiveness typically 

covers large areas, and therefore it is more than likely that some local projects and 

programs exist that are practically impossible to control for, because researchers might 

not even be aware of their existence. This might also apply to this thesis, as the 

jurisdictional REDD+ program may not be the only initiative that seeks to prevent 

deforestation and forest degradation in Acre.  

Challenges still face the innovative REDD+ program of Acre, including finding a way to 

conjoin Acre’s subnational REDD+ program to the national level program, securing 

continued funding for the program not only through donations but also by utilizing carbon 

markets, and facilitating the transition of thousands of rural smallholders away from 

deforestation intensive land-use practices, without dispossessing people of their rights 

(Sills et al., 2014). Some opposition has existed against the REDD+ program mainly due 

to the issue of rights (Carbon Trade Watch, 2011; Lang, 2012; The Union of Rural 

Workers of Xapuri, 2012). The right to use and manage forests is especially important to 

forest peoples and indigenous communities, who may view the decision-making process 

of the REDD+ program as top-down and unrepresentative of the various different forest 

communities (The Union of Rural Workers of Xapuri, 2012). The communities can fear 

for their sovereignty, and the concept of environmental or carbon “services” or 

“compensation” can seem to them as promotion of a reductionist and mercantile view of 

the forests, in contrast to the more holistic view traditionally held by indigenous peoples 

in Acre (The Union of Rural Workers of Xapuri, 2012).  

The situation in Acre therefore seems to reflect the global patterns, as it was reported in 

the Global Biodiversity Outlook 4 (CBD, 2014) that the Aichi Target 14 – which seeks to 

ensure the provision of ecosystem services while taking into account the needs of 

women, indigenous people, local communities and the poor and vulnerable – seems to 

be moving away from the target, with the global situation getting worse rather than better. 

Indeed, several NGOs have now proposed principles that could ensure effective and 

culturally sustainable execution of REDD+ programs, which include respecting and 

recognizing the rights of indigenous and local communities by “promoting land tenure, 

self-determination, free, prior and informed consent for any REDD+ projects, and strong 

social safeguards” (WWF, 2011). REDD+ needs to be scaled up quickly to effectively 

preserve forests and fight climate change, but this needs to be reconciled with the need 

to make the decision processes inclusive, and the need to give proper time and respect 

for traditional decision-making processes (WWF, 2011).  
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4.7. Research integrity and ethical considerations  

 

Political decisions influencing nature conservation and human rights can be affected by 

the findings of policy relevant research. When conducting research on topics such as 

protected area effectiveness in curbing deforestation, as I did, researchers need to be 

careful and judicious in the way results are presented, especially with regards to how 

much detail is given. In my view, science is not simply about producing objective 

information which can be utilized by society according to the ethical principles of a given 

time and place. Rather, scientists should have an active role in informing how their 

findings should and should not be interpreted and used. In think that scientists should 

not refrain from publishing any results, so long as they have been accumulated by ethical 

means, but they should carefully consider the possibility for the findings to be 

misinterpreted or misused in ways that could be harmful for people or to the environment. 

If this likelihood is considered high, results should be presented in a way that restricts 

this possibility. If the likelihood is considered low, the results should not be restricted, but 

great care should nonetheless be given to the way results and conclusions are phrased. 

No results should be left unpublished merely because they may have possible real-life 

effects. The more scientific evidence is available for society to use, the better the 

outcome is for everyone. Careful phrasing can buffer against the fears researchers may 

feel if they do not wish to be claimed responsible for how their research is interpreted 

and used.  

Consider the results of this thesis. If the effectiveness of PAs is linked to their locations 

and identity, there may be real life consequences on the people responsible for those 

specific areas, as deforestation is something governments are generally trying to limit. It 

must therefore be stated, that the findings of this thesis, which represent the findings of 

only one scientific study, should not be interpreted as an undeniable truth, but rather as 

an informed study on the effectiveness of the PAs during a specific time and place. 

Because all PAs had some effectiveness and no PA had a negative effect, I am confident 

that these findings, even if presented in the detail and manner which I chose, should not 

result in any repercussions which might be ethically problematic. As the majority of PAs 

in this thesis were indigenous areas, the findings of this thesis have links not only to 

nature conservation but also to human rights and cultural sustainability. However, 

indigenous areas are not established on the condition of avoiding deforestation, so even 

if indigenous areas would have low effectiveness, it would likely not lead to any 

consequences to the indigenous communities.  
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5. Conclusions 

 

My results carry with them a positive message as they show that the PAs of Acre have 

been able to conserve the cherished tropical rainforests to a substantial degree, even in 

areas of high pressure. Despite the methodological limitations, I consider the general 

patterns of my results to be reliable and to fill the important gaps in knowledge I set out 

to fill – mainly showing that PAs in Acre have had varying effectiveness after 2010, and 

that the PA types did not differ significantly from each other in terms of effectiveness. 

Second, my results revealed that a large amount of deforestation was avoided by the 

PAs in Acre, meaning that the PAs have managed to conserve both the habitats of 

species and carbon bound in the forests.  

My study provided a new and independent estimation of effectiveness for a subset of 

Brazilian PAs, with the latest data and a new method, and the results strengthen the 

case for the effectiveness of all main PA categories. In addition to corroborating previous 

findings for the Brazilian Amazon, my study is the first to present effectiveness 

estimations for individual PAs in more detail, and, as far as I am aware, the only matching 

based estimation of avoided forest carbon in Acre after 2010. Further, my study provides 

only the second case example of the new state-of-the-art matching method for estimating 

PA effectiveness, with the previous study having focused on the PAs of Madagascar 

(Eklund et al., 2016). The method used in this thesis is easily scalable and has the 

potential to improve estimates of PA effectiveness if utilized in future matching studies. 

My study also had a specific focus on the deforestation fronts, which will be increasingly 

relevant areas for mitigating biodiversity loss and climate change in the coming decades. 

More empirical research is needed worldwide on these areas of high threat. 

The results of this thesis should not be interpreted as evidence that since PAs work, no 

other conservation efforts are needed. PAs are limited to only avoid deforestation within 

their designated boundaries, while two thirds of projected forest loss in the Amazon is 

expected to happen outside of their reach (Soares-Filho et al., 2006). Solutions to 

conserve rainforests outside the PA boundaries are therefore also very much required 

to conserve species, forest carbon and the multitude of ecosystem services provided by 

the Amazon rainforest.  

Action to prevent deforestation in the tropics will be a key factor as humanity seeks to 

mitigate global climate change and the ongoing loss of biodiversity. Designated protected 

areas have successfully conserved rainforests, but protection alone does not solve the 

underlying economic and social structures which incentivize people to use ecosystems 

unsustainably. While these deeper solutions are discussed, researchers should continue 
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to provide ever improving knowledge about the efforts societies take to conserve nature. 

This will help to ensure, that the world’s forests prevail and thrive while humanity works 

towards more sustainable practices and equilibrium with the planetary boundaries.  
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Appendix 1 

 

Table S1. Sample sizes of each PA, including the percent of forested areas sampled after samples in non-
forested areas had been omitted. Original sample size indicates 10% of all pixels in each area and final 
sample size has had points in non-forested areas omitted. PA 0 indicates the non-protected area. 

PA Original 
sample 
size 

Final 
sample 
size 

Difference 
between original 
and final sample 
size (in points) 

Difference 
between original 
and final sample 
size (in %) 

Forested 
pixels 

Non-forested 
pixels 

Percent of 
forested area 
sampled 

0 176630 142534 34096 19.30 1436099 330205 9.93 

1 1529 1485 44 2.88 14886 401 9.98 

2 633 621 12 1.90 6249 84 9.94 

3 547 547 0 0.00 5470 0 10.00 

4 229 227 2 0.87 2233 58 10.17 

5 392 295 97 24.74 3669 254 8.04 

6 1687 1525 162 9.60 16419 452 9.29 

7 3349 3341 8 0.24 33407 78 10.00 

8 1146 1118 28 2.44 11070 393 10.10 

9 489 471 18 3.68 4698 192 10.03 

10 1554 1519 35 2.25 15224 315 9.98 

11 166 158 8 4.82 1587 71 9.96 

12 4969 4850 119 2.39 48356 1337 10.03 

13 2702 2621 81 3.00 26165 850 10.02 

14 1489 1411 78 5.24 14634 260 9.64 

15 863 842 21 2.43 8397 237 10.03 

16 14337 14236 101 0.70 142378 995 10.00 

17 10195 9768 427 4.19 99212 2735 9.85 

18 485 485 0 0.00 4846 0 10.01 

19 17726 17048 678 3.82 170813 6447 9.98 

20 13170 12702 468 3.55 128419 3282 9.89 

21 415 411 4 0.96 4119 30 9.98 

22 463 438 25 5.40 4467 167 9.81 

23 2858 2793 65 2.27 27944 640 9.99 

24 402 401 1 0.25 4006 16 10.01 

25 4393 4262 131 2.98 42908 1023 9.93 

26 1654 1654 0 0.00 16542 0 10.00 

27 15680 14481 1199 7.65 152356 4446 9.50 

28 4936 4526 410 8.31 48023 1338 9.42 

29 3539 3538 1 0.03 35368 18 10.00 

30 6143 6081 62 1.01 60932 495 9.98 

31 2442 2386 56 2.29 23765 657 10.04 

32 1504 1263 241 16.02 14615 422 8.64 

33 4403 4051 352 7.99 42402 1630 9.55 

34 1629 1338 291 17.86 15593 699 8.58 

35 605 589 16 2.64 5916 137 9.96 

36 5924 5625 299 5.05 57070 2166 9.86 

37 438 428 10 2.28 4252 132 10.07 
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Figure S1. Samples of the forested areas visualized. Approximately 10% of the forested areas (VCF >=45%) 
in each PA were sampled. Excluded PAs were not sampled.  

 

 

Figure S2. I found no significant differences between the protected area types in the pressures they faced 
(based on mean BL_multidim). 



3 
 

Table S2. Additional information on the PAs included in this thesis. FLONA = National forest; RESEX = 
extractive reserve; PARNA = national park; ESEC = Ecological Station; ICMBio = Instituto Chico Mendes de 
Conservação da Biodiversidade (Chico Mendes Institute for Biodiversity Conservation); SEMA = Secretaria 
de Estado de Meio Ambiente do Acre (Secretary of State for the Environment of Acre) 

PA PA name (in Portuguese) Designated Type IUCN 
category 

Management 
authority 

1 Jaminaua/Envira 2003 INDIG - Indigenous 

2 Campinas/Katukina 1999 INDIG - Indigenous 

3 Jaminawa Arara do Rio Bagé 1999 INDIG - Indigenous 

4 Igarapé do Caucho 1998 INDIG - Indigenous 

5 Arara do Rio Amônia 2009 INDIG - Indigenous 

6 Kaxinawá do Rio Jordão 1996 INDIG - Indigenous 

7 FLONA do Macauã 1988 SUS. USE VI ICMBio 

8 Kaxinawá da Praia do Carapanã 2002 INDIG - Indigenous 

9 Kaxinawá Nova Olinda 2002 INDIG - Indigenous 

10 Kulina do Rio Envira 1996 INDIG - Indigenous 

11 Kaxinawá do Baixo Rio Jordão 2002 INDIG - Indigenous 

12 Alto Rio Purus 2002 INDIG - Indigenous 

13 Alto Tarauacá 2009 INDIG - Indigenous 

14 ESEC do Rio Acre 1981 STRICT Ia ICMBio 

15 Kulina Igarapé do Pau 2001 INDIG - Indigenous 

16 RESEX do Cazumbá-Iracema 2002 SUS. USE VI ICMBio 

17 RESEX do Alto Juruá 1990 SUS. USE VI ICMBio 

18 Jaminawa do Igarapé Preto 1999 INDIG - Indigenous 

19 RESEX Chico Mendes 1990 SUS. USE VI ICMBio 

20 Parque Estadual Chandless 2004 STRICT II SEMA 

21 Kampa do Igarapé Primavera 2002 INDIG - Indigenous 

22 Poyanawa 2002 INDIG - Indigenous 

23 RESEX do Alto Tarauacá 2000 SUS. USE VI ICMBio 

24 FLONA de São Francisco 2001 SUS. USE VI ICMBio 

25 FLONA de Santa Rosa do Purus 2001 SUS. USE VI ICMBio 

26 Arara do Igarapé Humaitá 2006 INDIG - Indigenous 

27 PARNA da Serra do Divisor 1989 STRICT II ICMBio 

28 Riozinho do Alto Envira 2007 INDIG - Indigenous 

29 Rio Gregório 2007* INDIG - Indigenous 

30 RESEX Riozinho da Liberdade 2005 SUS. USE VI ICMBio 

31 Kaxinawá do Rio Humaitá 1996 INDIG - Indigenous 

32 Cabeceira do Rio Acre 1999 INDIG - Indigenous 

33 Kampa e Isolados do Rio Envira 1999 INDIG - Indigenous 

34 Kampa do Rio Amonea 1995 INDIG - Indigenous 

35 Nukini 1997 INDIG - Indigenous 

36 Mamoadate 1999 INDIG - Indigenous 

37 Katukina/Kaxinawá 1999 INDIG - Indigenous 

 


