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Abstract

Performance demands of emerging domains such as artificial intelligence, machine
learning and vision, Internet-of-things etc., continue to grow. Meeting such re-
quirements on modern multi/many core systems with higher power densities, fixed
power and energy budgets, and thermal constraints exacerbates the run-time man-
agement challenge. This leaves an open problem on extracting the required per-
formance within the power and energy limits, while also ensuring thermal safety.
Existing architectural solutions including asymmetric and heterogeneous cores and
custom acceleration improve performance-per-watt in specific design time and
static scenarios. However, satisfying applications’ performance requirements un-
der dynamic and unknown workload scenarios subject to varying system dynamics
of power, temperature and energy requires intelligent run-time management.

Adaptive strategies are necessary for maximizing resource efficiency, consid-
ering i) diverse requirements and characteristics of concurrent applications, ii)
dynamic workload variation, iii) core-level heterogeneity and iv) power, thermal
and energy constraints. This dissertation proposes such adaptive techniques for
efficient run-time resource management to maximize performance within fixed
budgets under unknown and dynamic workload scenarios. Resource management
strategies proposed in this dissertation comprehensively consider application and
workload characteristics and variable effect of power actuation on performance for
pro-active and appropriate allocation decisions. Specific contributions include i)
run-time mapping approach to improve power budgets for higher throughput, ii)
thermal aware performance boosting for efficient utilization of power budget and
higher performance, iii) approximation as a run-time knob exploiting accuracy-
performance trade-offs for maximizing performance under power caps at minimal
loss of accuracy and iv) co-ordinated approximation for heterogeneous systems
through joint actuation of dynamic approximation and power knobs for perfor-
mance guarantees with minimal power consumption.

The approaches presented in this dissertation focus on adapting existing map-
ping techniques, performance boosting strategies, software and dynamic approxi-
mations to meet the performance requirements, simultaneously considering system
constraints. The proposed strategies are compared against relevant state-of-the-art
run-time management frameworks to qualitatively evaluate their efficacy.
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Tiivistelmä

Suorituskykyvaatimukset kasvavat jatkuvasti uusilla tietotekniikan aloilla, kuten
tekoäly, koneoppiminen, konenäkö ja esineiden internet. Näiden vaatimusten täyt-
täminen moderneilla moniydinjärjestelmillä, joissa on korkea tehotiheys, rajalliset
teho- ja energiabudjetit ja lämpötilarajoitteita, tekee järjestelmän käytönaikaisen
hallinnan haastavaksi. Ongelmaksi muodostuu, miten saada järjestelmistä tarvit-
tava suorituskyky, huomioiden samalla teho- ja energiarajat sekä turvallisuus läm-
pötilan osalta. Olemassa olevat arkkitehtuuriratkaisut, kuten asymmetriset ja het-
erogeeniset ytimet ja räätälöity kiihdyttäminen, parantavat suorituskykyä wattia
kohden staattisissa skenaarioissa. Sovellusten suorituskykyvaatimusten täyttämi-
nen dynaamisissa ja ennalta tuntemattomissa kuormitustilanteissa, joissa tehon,
lämpötilan ja energian järjestelmädynamiikka vaihtelee, vaatii kuitenkin älykästä
ajoajan hallintaa.

Adaptiiviset strategiat ovat välttämättömiä resurssitehokkuuden maksi-
moimiseksi, huomioiden i) samanaikaisten sovellusten vaihtelevat vaatimukset
ja ominaisuudet, ii) dynaaminen kuormituksen vaihtelevuus, iii) heterogeenisyys
ytimien tasolla ja iv) tehon, lämpötilan ja energian rajoitteet. Tämä väitöskirja esit-
tää nämä seikat huomioivia adaptiivisia tekniikoita järjestelmän käytönaikaiseen
resurssihallintaan dynaamisissa kuormitustilanteissa. Väitöskirjassa esiteltävät
resurssinhallintastrategiat huomioivat kattavasti sovellusten ja kuormitusten omi-
naispiirteet sekä tehoaktuaation vaihtelevat vaikutukset suorituskykyyn. Väitöskir-
jan spesifiset kontribuutiot käsittävät mm. i) ajoajan kartoitusmenettelyn tehobud-
jettien parantamiseksi korkeammalla suoritusteholla, ii) lämpötilan huomioivan
suorituskyvyn tehostamisen korkeamman suorituskyvyn saavuttamiseksi, iii) ap-
proksimaatiolaskennan soveltaminen suorituskyvyn optimoimiseksi ja iv) hetero-
geenisten järjestelmien dynaaminen approksimaatio.

Väitöskirjan esittämät menetelmät keskittyvät olemassa olevien kartoitustekni-
ikoiden, suorituskyvyn parannusstrategioiden, sovellusten ja dynaamisten ap-
proksimaatioiden adaptoimiseen niin, että suorituskykyvaatimukset täytetään
pysyen samalla järjestelmärajoitteiden puitteissa. Ehdotettuja strategioita verrataan
viimeisimpiin ja kehittyneimpiin käytönaikaisiin järjestelmänhallintamenetelmiin
niiden tehokkuuden kvalitatiiviseksi arvioimiseksi.
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Research Summary
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Chapter 1

Overview

Advances in transistor scaling allows the integration of more components on a chip
within the same area. With every generation of technology node scaling, compute
capacity per area and thus performance increases progressively [Moore, 1965].
Such integration capabilities eases the design of multi- and many-core processors
on a single chip. Chip multi-processors (CMP) exploit data and task level paral-
lelism within several applications to offer increased performance gains [Hennessy
and Patterson, 2012]. Reduced transistor sizes allows them to be operated at lower
voltages. As a result, power consumption is reduced dramatically because of its
quadratic dependence on voltage. An important consideration to be made amidst
"transistor scaling for performance" is power density i.e., power consumption per
unit area. Lower power density reflects in the ease of heat dissipation and lower on-
chip temperatures. With transistor scaling, increase in number of components per
area is coupled with reduction in power consumption per component. This theoret-
ically ensures a constant power density over different technology nodes, proposed
by [Dennard et al., 1974], acknowledged as the Dennardian Scaling. In summary,
transistor scaling has enabled high performance, low power and energy efficient
computer systems design - which in turn advanced several computing applications
and domains.

1.1 Power Density Rise and Diminishing Gains

Aggressive technology node scaling is pushing transistor gate lengths to their phys-
ical limits. As such, operating voltages are also approaching their threshold levels.
Such extremely lower operating voltages, closer to the threshold voltage, threatens
unreliable operation and increase in leakage power. Consequently, voltage scaling
has slowed down in comparison with transistor scaling [Semiconductor Industry
Association, 2013]. With every new generation, power densities are no longer con-
stant and are rather increasing [Semiconductor Industry Association, 2013]. Figure
1.1 (a) shows the rate at which voltage and transistor gate lengths have scaled, as
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Figure 1.1: Consequences of technology scaling [Semiconductor Industry
Association, 2013].

(a). Slack voltage scaling and (b). Rise in power density

per ITRS projections [Semiconductor Industry Association, 2013]. Starting from
45nm technology, the gap between voltage and transistor scaling became promi-
nent. The obvious increase in power density as a result of slack voltage scaling is
shown in Figure 1.1 (b). There is a sharp and significant rise in the power density,
as opposed to Dennard’s prediction of a constant power density. Increase in power
densities accumulate on-chip temperatures faster and create hotspots frequently.
This poses the threat of thermal violation [Intel Corporation, 2011], accelerates ag-
ing [Haghbayan et al., 2017c] and reduces the reliability of the chip [Haghbayan
et al., 2017b]. Given the limited cooling solutions, trivial strategy to dissipate heat
is to lower the power consumption - by scaling down resources to reduce activity
within the chip. Consequently, only a fraction of on-chip logic can be simultane-
ously powered up, while the rest remains inactive. The inactive section of the chip
is widely acknowledged as dark silicon [Esmaeilzadeh et al., 2012a]. The amount
of active and dark silicon within a chip for different technology nodes is presented
in Figure 2.3. This shows the extent of reduction in activity, and thus performance
gains, with transistor scaling. As such, computer systems have hit the utilization
wall, from which point the power, performance and energy gains are diminishing
with further aggressive technology node scaling [Zhang et al., 2013].

1.2 Open Research Problem

With emerging application domains such as artificial intelligence (AI), machine
learning (ML), computer graphics and vision (CG, CV), internet-of-things (IoT),
cyber-physical systems (CPS), the demand for performance continues to grow [Ar-
den et al., 2010]. Meeting such performance demands under the constraints of
increased power densities, fixed power budgets and energy budgets becomes chal-
lenging. Further, mobile and embedded devices specifically deal with another facet
of the same problem - since they are battery powered, they have stringent energy
budgets. This leaves an open problem on extracting the required performance
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Figure 1.2: Reduced on-chip activity with technology node scaling and dark
silicon [Semiconductor Industry Association, 2013].

within the power and energy limits, while also ensuring thermal safety.
Architectural solutions including asymmetric and heterogeneous cores

[Venkatesh et al., 2010] [Goulding-Hotta et al., 2011] [Muthukaruppan et al.,
2013b], and custom acceleration [Esmaeilzadeh et al., 2012c] alleviate the dark sil-
icon challenge and improve performance-per-watt [Taylor, 2012]. Although, cus-
tom hardware devices compromise generality, reducing programmers’ productiv-
ity and require extensive system software support to take advantage of underlying
hardware capabilities. Existing performance provisioning techniques address this
issue by considering variation among heterogeneous cores during application-to-
core mapping, to improve performance and energy efficiency [Van Craeynest et al.,
2012] [Sondag and Rajan, 2009] [Tomusk et al., 2016] [Lukefahr et al., 2014].
Apart from architectural solutions, several run-time management techniques opti-
mize power consumption [Haghbayan et al., 2014] [Rahmani et al., 2015a] [Ma
and Wang, 2012], on-chip temperatures [Pagani et al., 2017] [Khdr et al., 2017]
and energy efficiency [Muthukaruppan et al., 2013b] [Yun et al., 2015]. Most of
these strategies focus either on performance or power and thermal optimization,
restricting their efficacy to a i) given workload scenario, ii) specific application
characteristics and iii) fixed system dynamics.

Despite the efforts in hardware level and run-time systems, satisfying applica-
tions’ performance requirements under dynamic and unknown workload scenarios
subject to varying system dynamics of power, temperature and energy needs intel-
ligent resource management systems. Resource management particularly becomes
complex optimization problem with

• unknown and dynamic workload scenarios

• diverse requirements and characteristics of applications

• variable effect of power actuation on performance and core-level heterogene-
ity

5



Dynamic and Unknown Workloads

Resource allocation for a single application with variable phase behavior and/or
concurrent execution of multiple (such) applications requires adaptive decision
making. Power consumption and available power budget changes under dynamic
workload scenarios i.e., with every new application entering/exiting the system
and/or change of a compute phase within an application - effecting per-application
performance and per-chip throughput. Also, there is an increased possibility of po-
tential thermal hotspots, with neighboring active cores (on which concurrent appli-
cations are running) accumulating temperatures faster. Further, unknown sequence
and nature of incoming applications forces reactive power/performance decisions,
which could result in over/under compensating resource allocation decisions.

Application Characteristics and Requirements

Resource allocation decisions are often conflicting with the orthogonality between
power and performance, and diversity among requirements and characteristics of
concurrent applications. Specifically, provisioning for high performance would
increase power consumption, whereas scaling down resources for low power de-
grades performance. Similarly, prioritizing an application and allocating system
resources for it effects the other concurrent applications, while a completely fair
allocation among all the applications might lead to inefficient and under utilization
of resources.

Variable Power-Performance Characteristics

Heterogeneous architectures expose execution options with diverse power-
performance characteristics, which can subjectively provide better performance-
per-watt. However, advantage of heterogeneity comes only with appropriate choice
of cores that are suitable for each application or threads within an application. This
requires identification, expression and translation of applications’ requirements,
which in turn are to be matched with hardware capabilities to exploit the benefits
of heterogeneous hardware. With both application and core diversity, finding the
right application-to-core combination and appropriate scaling of resources upon
the initial allocation becomes a complex optimization problem.

1.3 Research Objectives

A comprehensive resource allocation framework enables prompt servicing of in-
coming applications while honoring system’s power, thermal and energy con-
straints. Concurrent execution of applications with diverse requirements can vary
the overall workload scenarios significantly. This alters the power, performance,
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energy and thermal constraints at run-time. Maximizing performance while mini-
mizing power consumption and ensuring thermal safety under dynamic workloads
requires robust strategies that adapt to such variations. Primary objective of this
thesis is to design and implement techniques that efficiently i) handle varying
workloads, ii) dynamically scale resources, iii) provide performance guarantees,
iv) honor fixed power budgets and thermal constraints - by considering both appli-
cations’ and system constraints simultaneously.

1.3.1 Principles

The exploration, solutions and insights provided throughout the dissertation are
based on the principle of adaptive resource management. As the primary entity
forming the interface between applications and hardware, resource management
layer should adapt to both application and hardware characteristics and require-
ments. Specific themes of adaptive techniques presented in this thesis are described
below.

Adapting to Dynamic Workloads

This dissertation considers resource management techniques to be able to handle
dynamic workloads i.e., an unknown nature, sequence and time of arrival, by de-
fault. This causes significant variation in workload intensity, power, performance
and thermal constraints at run-time. This thesis quantifies the effect of such vari-
ation in workload intensity and spatial alignment of active cores on power bud-
get utilization and on-chip temperature accumulation. This insight is leveraged to
maximize utilizable power budget and minimize the probability of potential hot-
spots through a pro-active application mapping strategy. The surplus power budget
gained and lower on-chip temperatures are used to selectively boost the frequency
levels of applications that require higher performance.

Adapting to Application Characteristics

This thesis considers the error resilient nature of applications from specific domains
and leverages this behavior in the context of resource management. This provides
a wider scope for exploring accuracy trade-offs for both performance and energy
gains, and power management. This dissertation proposes to use approximation
as a dynamic knob to minimize the performance loss incurred in power actuation.
The central idea is to switch the mode of execution of a task/application from
accurate to approximate, subject to power-performance dynamics of the system
and the accuracy-performance dynamics of the application at run-time.
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Adapting to Underlying Hardware

This thesis identifies the power-performance-accuracy Pareto-space of error re-
silient applications on heterogeneous hardware. Specifically, the varied power-
performance characteristics of heterogeneous hardware platforms, combined with
varied error resilience among different applications exposes a wider range of pos-
sible power-performance-accuracy states. Such behavior is embedded into analyt-
ical models for estimating the impact of using different resource actuation knobs
on power-performance-accuracy. These models are used to establish coordination
among power and performance management decisions for maximizing resource
efficiency i.e., to provide performance guarantees within minimal power consump-
tion and accuracy loss.

1.3.2 Contributions

The main research problem addressed in this dissertation is split into multiple sub-
problems. Focusing on each such sub-problems, this dissertations makes the fol-
lowing contributions.

• This dissertation proposes a run-time mapping strategy, dark silicon pattern-
ing, for improving the amount of utilizable power budgets in many-core sys-
tems. It quantifies the effect of application mapping on power budgets and
on-chip temperature accumulation of many-core systems. These insights
form the basis for the mapping strategy, which interleaves cooler dark cores
among hot active cores to reduce temperature accumulation for improved
utilizable power budget.

• This dissertation presents thermal-aware performance boosting strategy to
maximize performance within utilizable power and thermal headrooms. The
proposed approach combines application mapping, power budget allocation
and thermal feedback based controller in a pipelined manner to make perfor-
mance provisioning decisions. This strategy exploits the outcomes of dark
silicon patterning viz., lower on-chip temperatures and/or increased power
budgets to boost the performance of applications, subject to their require-
ments and extent of power and thermal headroom available.

• This dissertation presents the idea of using approximation as a dynamic knob
for addressing performance loss incurred in power actuation. The proposed
approximation knob is triggered through mode switching - a strategy for
disciplined invocation of approximation which is to be used in combina-
tion with traditional power knobs. Actuation of approximation at run-time
considering application characteristics and system dynamics can cover up
for the inevitable performance degradation incurred with using traditional
power knobs alone. Further, this part of the thesis quantifies applications’
sensitivity to error in order to minimize accuracy loss with approximation.
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• This dissertation identifies the need for coordinating performance oriented
run-time approximation with power actuation decisions. These insights
are used to present coordinated approximation for power and performance
management of heterogeneous systems, through joint actuation of approx-
imation with traditional power knobs. The coordinated approach based on
power/performance prediction models avoids over/under compensation of
resource allocation decisions and ensures performance guarantees within
minimal power consumption.

1.4 Organization

This dissertation is a compendium of articles that are originally published in in-
ternational conference proceedings and journal series during the course of this
research. The manuscript is organized into two major parts viz., Part I - Re-
search Summary and Part II - Original Publications. Part I presents a summarized
overview of the research, which is organized into Chapters I-VII. Part II consists
of original publications which are included as attachments.

Part I

Chapter 2 provides preliminary background on resource management, different
power and performance management knobs, existing resource management strate-
gies and highlights the relevant research problems. Significant related work and
state-of-the-art approaches are discussed throughout the manuscript wherever nec-
essary and suitable. Chapter 3 - 6 presents specific research problems and proposed
solutions, which form the core contributions of this dissertation. These chapters
focus on providing the specifics and context of the research problem, necessary
motivations, relevant details of the proposed solutions, approaches, strategies, sig-
nificant results and concluding insights. These chapters are largely presented in an
abstract manner, while detailed elaboration is covered through original publication
attachments in Part II.

Part II

Part II consists of Papers I-V, which are originally published articles in various
conference proceedings and journal series. Each paper attached covers aspects
presented in Part I across different chapters. Specifically, Paper I corresponds to
the contents presented in Chapter 3, Paper II corresponds to the contents presented
in Chapter 4, Papers III and IV jointly cover the contents presented in Chapter 5
and Paper V covers the contents presented in Chapter 6.
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Chapter 2

Run-time Resource Management

Run-time resource management techniques (RTM) are responsible for allocating
system resources for applications, according to their requirements. Concurrent ex-
ecution of applications with diverse requirements can alter workload conditions.
Such scenarios further need dynamic scaling of allocated resources for adjusting
to the workload variation. Further, RTM techniques have to consider system con-
straints on power consumption, energy budget, on-chip temperature and core avail-
ability etc., while making performance provisioning decisions. This chapter pro-
vides relevant background and overview of run-time resource management, exist-
ing strategies for power and performance actuation, their efficiency and limitations.

2.1 Resource Management Layer

Resource allocation decisions have to satisfy system objectives - to function within
fixed power, thermal and energy budgets and application objectives - to guarantee
a certain degree of performance and quality-of-service (QoS) simultaneously. A
hierarchical overview of resource management layer is shown in Figure 2.1. As
depicted here, typical resource management frameworks form an interfacing layer
between applications and the underlying hardware, translating the notion of ap-
plications’ performance requirements into expressive and measurable parameters.
This enables appropriate resource allocation decisions by matching applications’
requirements with hardware capabilities.

RTM techniques typically function in an observe-decide-act (ODA) loop in
order to meet system and application objectives in terms of power and perfor-
mance [Rahmani et al., 2015a]. Figure 2.2 shows the ODA loop structure of generic
RTM strategy. The observe phase monitors instantaneous values of system’s con-
straints (eg., power, temperature and energy budget) and applications’ requirements
(performance, QoS). The decide phase compares the measured values with pre-
defined/expressed requirements to determine resource allocation decisions that sat-
isfy applications’ requirements within system constraints. The act phase enforces
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Figure 2.1: Resource management layer

the decisions made by driving appropriate tunable power/performance knobs. The
resource manager senses both applications requirements and system constraints in
the observe phase, makes resource allocation decisions in the decide phase and
finally enforces those decisions in the act phase by tuning power knobs.

2.2 Resource Allocation Knobs

State-of-the-art resource allocation policies use techniques such as dynamic volt-
age and frequency scaling (DVFS), power gating (PG), clock gating (CG), CPU
Utilization (Util)/time slice sharing/work load stealing, core folding/degree of par-
allelism (DoP), application-to-core mapping/thread-to-core binding and task mi-
gration (TM) etc. Most of these these techniques provide options for tunable knob
settings that can eventually effect resource allocation decisions. Existing tech-
niques using these knobs are summarized in Table 2.1. RTM strategies use one
or more combination of these knobs at run-time to actuate power and/or perfor-
mance. The efficacy of knob actuation on power, performance and energy depends
on platform, objective and allocation strategy [Akram et al., 2017] [Majumdar
et al., 2017] [Rao et al., 2017] [Akram et al., 2016]. The underlying discrepancy
among these knobs is their respective effect on power-performance, which varies
subject to dynamic workload characteristics and scenarios. A brief overview of
major actuation knobs is presented in the following sub-sections.
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CPU Utilization

CPU time slice sharing is a trivial and linearly measurable mechanism for fine
grained compute resource allocation and sharing [Ding et al., 2014]. Several run-
time management frameworks, middleware and operating system schedulers use
the notion of CPU Utilization or time slice sharing to provide dedicated com-
pute resources among different processes on a time-shared basis [Hindman et al.,
2011]. This enables provisioning applications/threads with a an appropriate time
slice within a given window such that their performance requirements are satisfied.
In a similar vein, setting a fraction of the time slice to idle reduces the CPU Utiliza-
tion below the maximum (< 100%). Active power consumption and performance
are reduced - proportional to the length of the idle phase in the specified window,
while static power consumption remains at large [Sozzo et al., 2016].

DVFS

Dynamic voltage and frequency scaling is by far the most widely used actua-
tion knob for power/performance management [Kim et al., 2008]. Scaling volt-
age and frequency levels has a cubic effect on power consumption, following
P = αCV 2F , where P is power consumption, V, F are voltage and frequency
levels, C is the charge capacitance and α is the activity factor within the chip. Fur-
ther, reducing supply voltage also reduces static/leakage power in addition to the
dynamic power. Although the impact of DVFS on power consumption is obvious,
it should be noted that reducing frequency levels also degrades performance [Vega
et al., 2013]. Several run-time management techniques have used DVFS to opti-
mize power/performance actuation [Kim et al., 2008] [Cochran et al., 2011] [Hagh-
bayan et al., 2014] [Vega et al., 2013] [Conoci et al., 2018]. DVFS can be actuated
with both hardware support through on-chip regulators [Kim et al., 2008], sys-
tem software support through operating system governors [Muthukaruppan et al.,
2013b] and middleware support that guides the operating systems’ decisions [Kan-
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duri et al., 2018]. Ease of enabling DVFS decisions and subsequent overheads thus
varies among different platforms used.

Power gating

Power gating switches off the supply voltage to functional units using a sleep tran-
sistor, and thus reduces both active and leakage power [Hu et al., 2004]. Com-
mercial processors have abstracted power gating to a core-level, enabling mecha-
nism to shut down entire core [Rotem, 2012]. Power gating induces energy and
performance overheads in setting core status to idle and then waking up when
needed [Lungu et al., 2009]. Despite the overheads, power gating can comple-
ment chip-wide DVFS at a fine-grained granularity. Efficiency of power gating
can be improved subject to workload characteristics and the window over which
sleep-wake phases are invoked. Different strategies to maximize benefits with
power gating and its combinatorial optimization along with DVFS have been pro-
posed [Arora et al., 2015] [Madan et al., 2011] [Liu et al., 2014] [Kondo et al.,
2014].

Application Mapping

Servicing an incoming application starts with mapping it onto the chip
[de Souza Carvalho et al., 2010]. For a many-core system baseline, mapping re-
quires identifying a suitable location with enough number of free cores that the
application can be mapped onto [Fattah et al., 2012a]. Mapping techniques break
this into two steps viz., first node selection and core binding [Fattah et al., 2013].
The first node selection corresponds to finding a suitable free core around which
the remaining tasks can be mapped. Smart first node selection avoids exhaus-
tive search for free cores repetitively and has an effect on inter-application and
intra-application congestion and interference [Haghbayan et al., 2015]. Mapping
an application in a suitable region can minimize weighted inter-task communica-
tion, avoid interference from other concurrent applications and thus improve per-
formance. Another aspect with efficient mapping strategies for concurrent appli-
cations is in avoiding dispersion and fragmentation of free cores, which otherwise
could be left under utilized.

Degree of Parallelism

Applications with inherent parallelism benefit from multi-threaded execution on
a set of cores. The number of threads to be spawned for maximum performance
gain depends on the applications’ nature of parallelism, amount of serial compu-
tation, the extent of compute versus memory boundedness, and most importantly -
the number of cores that are available to schedule parallel threads [Hennessy and
Patterson, 2012]. Considering these aspects, number of threads to be spawned and
the number of cores on which these threads will be scheduled largely determines
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the performance gains. This also allows resource allocation decisions to provision
more cores (for spawned threads) for applications that require higher performance
while limiting such an allocation to applications that either do not require a higher
performance or do not benefit from the additional compute resources [Cochran
et al., 2011]. Further, an optimal power/performance combination can be found by
increasing/decreasing the degree of parallelism and tweaking the voltage/frequency
levels on top of that [Conoci et al., 2018].

Core Selection and Task Migration

Asymmetric (same ISA) and heterogeneous (different ISA) chip multi-processors
provide diverse compute options with different power-performance characteris-
tics [Big, 2011]. Applications and/or threads within an application exhibit a certain
degree of bias towards a specific type of core among the heterogeneous core op-
tions [Joao et al., 2013]. Selecting the appropriate core(s) types that are suitable
for the applications and scheduling them on the selected cores can improve perfor-
mance, power consumption and energy efficiency [Muthukaruppan et al., 2013b].
Core selection differs from application mapping in the sense that mapping focuses
on availability, spatial alignment and maintenance of regular geometric structure
of available cores, but not necessarily on their characteristics. However, map-
ping and core selection decisions can be combined for joint actuation [Khdr et al.,
2017]. Task migration is a well established strategy to migrate the execution of a
thread/task from specific type of core to other possible/available cores. The moti-
vation behind migration is to handle variation and distinct phases of workload char-
acteristics and performance requirements within a thread/task/application [Sondag
and Rajan, 2009].
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Table 2.1: Resource allocation knobs

Knob Technique

CPU Utilization
[Muthukaruppan et al., 2013b] [Gaspar et al.,

2015] [Hindman et al., 2011] [Lo et al.,
2015] [Petrucci et al., 2015]

DVFS
[Cochran et al., 2011] [Kim et al., 2008] [Vega

et al., 2013] [Haghbayan et al., 2014]

Power gating
[Ma and Wang, 2012] [Arora et al., 2015] [Lungu

et al., 2009] [Kondo et al., 2014]

Application Mapping
[Fattah et al., 2013] [Haghbayan et al.,

2015] [Fattah et al., 2012b] [Fattah et al., 2014]

Degree of parallelism [Conoci et al., 2018] [Kapadia and Pasricha, 2015]

Core Selection and Task
migration

[Tomusk et al., 2016] [Yun et al., 2015] [Sondag
and Rajan, 2009] [Van Craeynest et al., 2012] [Saez

et al., 2012] [Lukefahr et al., 2014]

2.3 Resource Allocation Objectives

Resource allocation decisions have to satisfy application objectives of performance
and/or QoS within available system resources while also honoring system objec-
tives of minimizing power consumption and ensuring thermal safety. Both these
classes of objectives can be met by actuating power/performance knobs that are
presented in the previous sections. A brief account of system and application ob-
jectives is presented in the following.

2.3.1 System Objectives

From a system’s perspective, it is imperative to function within available power
and energy budgets, and utilize the resources within thermal safe limits. Also, pro-
viding reliable operation [Haghbayan et al., 2017a], prolonging the chip’s life time
and slowing down ageing process [Haghbayan et al., 2017b] [Haghbayan et al.,
2017c] are other crucial objectives. Power and temperature are the major first
order system design parameters, since these metrics effect vast majority of afore-
mentioned system objectives. On-chip temperatures accumulate proportional to the
power consumption, and initial and ambient temperatures. Thus, actuation knobs
and strategies for power and thermal management strategies overlap to an extent.
RTM techniques focusing on power actuation have the objective of restricting the
power consumption to a fixed upper limit, known as the thermal design power
(TDP) [Intel Corporation, 2011]. It is analytically determined at design time such
that power consumption beyond TDP would potentially translate into a thermal vio-
lation i.e., on-chip temperatures accumulate towards/reach the critical temperature.
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For a conservative estimation, TDP is determined assuming worst case voltage and
frequency levels and workloads. Analytically, capping the power consumption at
the TDP ensures thermal safety.

Power Capping and Regulation

Power capping techniques aim at restricting the power consumption to the fixed up-
per bound, TDP. Incoming applications in a multi-programmed scenario or phase
behavior within a currently running applications causes workload variation - which
in turn is reflected in power consumption. Power capping techniques monitor in-
stantaneous power consumption over a time window to check whether power con-
sumption is within the limits. Power violation i.e., power consumption exceeding
TDP invokes a capping decision by actuating on available set of power knobs. As
described in Section 2.2, these include DVFS, CPU Utilization, power gating, task
migration and core folding etc. Precise settings of power knob actuation depends
on the extent of power violation. Existing capping techniques have modulated
the difference between power consumption and TDP to determine which power
knob(s) are best suited for the current scenario and the settings for scaling down
those resources. While some of the techniques used linear models [Ma and Wang,
2012] [Cochran et al., 2011] [Vega et al., 2013], others have control theoretic mod-
els [Haghbayan et al., 2014] [Muthukaruppan et al., 2013b]. Acting on power
knobs would scale down system resources reducing the power consumption below
the TDP. However, such an actuation is most likely to degrade the performance to
some extent as a consequence.

Over time, system resources might become available with some of the con-
current applications leaving the system after finishing their execution or an appli-
cation enters a less compute intensive phase. This prompts re-scaling of system
resources to utilize the power budget that becomes available with lighter workload.
Power capping and the consequent effects on performance of a dynamic workload
scenario is shown in Figure 2.4. Two applications blackscholes and bodytrack
from PARSEC [Bhadauria et al., 2009] benchmark suite are run concurrently on
a 16-core processor, setting TDP to 15W. More details on the simulation platform
are described in Section 3.3.1. Initially, blackscholes is run on 8 cores and
bodytrack enters the system at around 5s. This increases the total power con-
sumption to 16.4W, beyond the TDP prompting a power capping decision to be
made. Frequency level is reduced from 3.2 GHz to 2.4 GHz to lower the power con-
sumption, as shown in Figure 2.4 (a). As a consequence, scaled down voltage and
frequency levels degrade the performance of both the applications as shown in Fig-
ure 2.4 (b). At around 11s, blackscholes finishes its execution, freeing up system
resources which can be scaled up to improve the other application’s performance.
Frequency levels are once again set to 3.2 GHz and performance is restored. For
optimal power knob settings, power regulation techniques measure instantaneous
power consumption, compare it with TDP to determine the power headroom that
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Figure 2.4: Power capping in a dynamic workload scenario. (a) Power
consumption (b) Normalized performance. TDP is set to 15W and blackscholes

and bodytrack applications are simulated concurrently.

is available. Similar to scaling down decisions of power capping, regulation tech-
niques scale up the resources to i) utilize available power budget effectively and to
ii) avoid any performance losses that might have incurred in power actuation [Rah-
mani et al., 2017] [Rahmani et al., 2015c]. Despite their efficiency in power cap-
ping and regulation, these strategies have certain restrictions. Among them, two
major limitations are i) reactive decision making - resulting in frequent oscillation
among system states and inefficient resource utilization and ii) inevitable perfor-
mance degradation with power actuation. Given the aforementioned requirements
and restrictions, managing system objectives becomes the priority during resource
allocation.

2.3.2 Application Objectives

From an application’s perspective, resource allocation decisions have to either
maximize the performance or guarantee an acceptable level of performance, and
satisfy the QoS requirements. Application objectives largely depend on the nature
of computation, which determines performance and QoS requirements in terms
of latency, throughput and quality of result (QoR). For example, streaming appli-
cations that iteratively process continuous input data are latency critical, whereas
batch processing applications require throughput. Resource allocation decisions
in case of latency critical applications target delivering a certain degree of perfor-
mance in a given time window. With throughput sensitive applications, allocation
strategies target maximizing the achievable performance. Execution of concurrent
applications that have diverse requirements, for example - a combination of latency
and throughput sensitive applications, further complicates resource allocation de-
cisions. On the other hand, while most of the applications require hard guarantees
on accuracy and quality of result, applications from emerging domains such as
machine learning, computer graphics and vision, internet-of-things (IoT) exhibit
tolerance to inaccurate computations. Performance-bound resource allocation de-
cisions are influenced by such application characteristics and requirements. Partic-

18



ularly, concurrent execution of a heterogeneous combination of applications with
diverse requirements can become resource efficient by understanding and leverag-
ing workload characteristics.

2.4 Meeting Application and System Objectives

Run-time management has to balance between application and system objectives -
to satisfy applications requirements within available system resources while hon-
oring system constraints on power, energy, temperature. The challenging aspect
of run-time management however is to improve resource efficiency while meet-
ing both application and system objectives i.e., to maximize performance within
minimal system resources and honoring power constraints. This leaves a wider de-
sign space for exploring power-performance and accuracy-performance trade-offs
to find optimal resource allocation decisions.

2.4.1 Power-Performance Trade-offs

As discussed in previous sections, power consumption and performance are always
pegged together. The trade-off between power and performance however depends
on the architecture, application characteristics (for eg., memory vs compute inten-
sity) and requirements (for eg., latency critical vs best effort), the choice of actua-
tion knobs and optimality of the power/performance decisions. Power-performance
trade-offs for widely used power/performance knobs viz., (a) CPU utilization, (b)
DVFS, (c) degree of parallelism and (d) task migration are presented in Figure 2.5.
This shows normalized performance versus power consumption for a k-means mi-
cro kernel, executed on 4 ARM A15 cores and 4 ARM A7 cores (only in case of
(d)) . CPU utilization controls the idle and active period of execution, scaling the
performance almost linearly. Power consumption on the other hand is sub linear,
since static power is still drawn. With DVFS, performance scales proportional to
the frequency levels, while power consumption is reduced super-linearly as scaled
voltage and frequency levels have cubic impact on power. Performance and power
scales non-linearly with scaling the degree of parallelism (assuming one thread per
core), with the well known serial sections of code [Cochran et al., 2011] [Conoci
et al., 2018]. Similarly, power and performance scale non-linearly with task migra-
tion since both A15 and A7 are architecturally optimized for high performance and
low power respectively. The power-performance Pareto-space shown in Figure 2.5
is for a single application run in isolation. While the abstract behavior of different
knobs might hold good, the extent of power/performance gain/loss varies for each
application. This variation is further significant when running several concurrent
applications. One of the challenges in making optimal resource allocation deci-
sions is to leverage the insights from power/performance trade-offs - to decide i)
which knobs to employ, ii) precise settings of the chosen knob combination, iii)
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Figure 2.5: Power-performance Pareto-space with different knobs. (a) CPU
Utilization, (b) DVFS, (c) Degree of parallelism, (d) Task migration. Experiments

were run on quad-core ARM A15 for k-means micro kernel.

subsequent impact of provisioning one application on the other applications, and
iv) effects on system constraints of power budget and temperature.

Most of the existing power and thermal management techniques ensure power
capping and thermal safety, at the expense of performance degradation [Hagh-
bayan et al., 2014] [Ma and Wang, 2012] [Vega et al., 2013] [Muthukaruppan
et al., 2013b]. Some of the techniques do consider the potential impact on perfor-
mance, and make allocation decisions to minimize such performance losses [Rah-
mani et al., 2017] [Khdr et al., 2017] [Akram et al., 2017] [Pricopi et al., 2013].
These techniques target fulfilling the objectives of power and performance, making
deliberate compromises mutually either on power/thermal budgets or performance.
Further, they are largely reactive in nature, resulting in oscillating between system
states and phases of over provisioning and under utilization of resources.

2.4.2 Accuracy-Performance Trade-offs

Traditional computer architecture prioritizes performance, power consumption and
robustness as design parameters, under the constraint that all computations are ac-
curate. Power-performance Pareto space has been thoroughly explored to realize
either high performance or ultra low power operation, or an optimal point in the
design space. Tweaking the accuracy metric of a robust computer has significant
impact on both power and performance, resulting in a new dimension in the Pareto-
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Figure 2.6: Performance gains with approximation. (a) Linear regression, (b)
Least squares, (c) k-means, (d) k-nearest neighbors. Workload approximated

corresponds to the percentage of loops skipped.

optimal space [Gupta et al., 2013a]. Similar to power-performance trade-offs, cer-
tain applications provide opportunities for accuracy-performance trade-offs, which
can be exploited for performance and energy gains [Rinard et al., 2004]. Approx-
imate computing has emerged as a paradigm for deliberately trading off accuracy
for the required power/performance/energy efficiency [Esmaeilzadeh et al., 2012c].
The key idea is to exploit the inherent error resilience exhibited by a range of
widely used applications from domains such as multi-media signal processing, ma-
chine learning, artificial intelligence, big data analytics etc [Nair, 2015]. Since not
all computations have to be accurate, workloads get reduced paving the way for
improved performance at lower energy budgets. Figure 2.6 shows the performance
gains with reduced workloads for 4 machine learning micro-kernels. Experimental
setup in this case is the same as the one mentioned in Figure 2.5. It can be noticed
that increasing amount of workload relaxed trivially offers higher performance pro-
gressively. In general, the amount of performance and energy gains are subjective
to the nature of computations and also depend on the degree of inaccuracy induced.
Certain applications are inherently tolerant to inaccurate computation in the sense
that an error prone result would still suffice and do not cause a significant difference
to the eventual output. Particularly, applications with the following characteristics
can tolerate inaccurate computations and error prone results, yet offer an acceptable
output. These include, but not limited to applications that -

• deal with real world data which includes noise component

• process massively parallel data (eg. big data, server, data centers)

• are inherently stochastic computational kernels (eg. numerical methods,
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Monte-Carlo etc.,)

• have human perception has final end result (eg. video, image, graphics, mul-
timedia)

• involve NP-hard and NP-complete algorithmic problems

There might be a certain loss in quality and deterioration in functionality, however
such a loss might not violate the eventual output. For example, embedded con-
trol systems’ software usually requires high performance over continuous supply
of real world sensory data. Since sensory data is analog originating from noisy and
uncertain sources, it presents a chance for approximation [Chaudhuri et al., 2011].
From an implementation perspective, accurately describing the system specifica-
tions in software and then translating into hardware implementation would hypo-
thetically guarantee an accurate result. However, by relaxing the accuracy of sys-
tem implementation at both software and hardware layers of abstraction, we could
gain an acceptable result, at a relatively low energy consumption with high perfor-
mance. The notion of accuracy in conventional architectures is exclusively based
on numerical correctness. This is a strict constraint since a correct architectural
state is expected at every cycle of execution, although restoring the architectural
state at the end of the execution is good enough [Li and Yeung, 2006]. This style
of hard computing requires precision and numerical correctness as opposed to soft
computing which exploits imprecision and uncertainty [Zadeh, 1994]. Relaxing
the constraint of numerical correctness at an architectural level opens more pos-
sibilities for approximation through hardware. The scope of approximation lies
in conjunction of applications and architecture [Misailovic et al., 2014]. Inherent
error resilience of applications combined with controlled relaxation on numeri-
cal correctness of architectures results in high performance and energy efficient
approximate computing systems that offer an acceptable quality. Existing tech-
niques to realize approximation can be classified into programming languages [Ri-
nard et al., 2004] [Sampson et al., 2011] [Baek and Chilimbi, 2010] [Bornholt
et al., 2014], compilers [Ansel et al., 2009] [Samadi et al., 2013] [Samadi et al.,
2014], micro-architectural [Esmaeilzadeh et al., 2012c] [San Miguel and Badr,
2014a] [Venkataramani et al., 2013], custom acceleration [Moreau et al., 2015] [Es-
maeilzadeh et al., 2012b] [Du et al., 2015] and hardware [Tong et al., 2000] [Hegde
and Shanbhag, 1999] [Gupta et al., 2013b] [Ye et al., 2013]. Most of these tech-
niques perform a static analysis of accuracy-performance trade-offs and exploit
these insights during the execution. However, not many techniques have used dy-
namic approximation i.e., invoke approximation only upon the system/application
requirements. Some techniques have used approximation in resource constrained
environment [Tan et al., 2015] [Palomino et al., 2016], but they are confined to a
specific application and isolated workload scenario. In this dissertation, accuracy
trade-offs are exploited opportunistically for meeting applications’ performance
requirements within available system resources.
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2.5 Context

Resource management strategies that will be presented in the following chapters
are targeted at many-core and multi-core systems with the capabilities of running
concurrent applications. The system is assumed to have mechanisms to sense per-
core/per-cluster power consumption, on-chip temperature, network characteristics
and drive resource allocation decisions such as DVFS, power gating, controlling
degree of parallelism, application mapping and power budgeting. Figure 2.7 shows
a hierarchical overview of a generic multi-core/many-core system architecture that
is targeted throughout this dissertation. Sensing and actuation of power and per-
formance can be typically handled through interfaces or middleware that interacts
with any general modern operating systems’ utilities. Applications are assumed to
be multi-threaded and/or task-graph based, with the ability of expressing perfor-
mance requirements or a relative priority metric. For error resilient applications
used in Chapter 5, one or more alternative thread/task representing the function-
ally approximate version are assumed to be provided. In Chapter 6, kernels are
assumed to be configurable for various levels of accuracy using a parse-able con-
trol parameter input. The techniques that are presented in this dissertation can be
implemented as such middleware in user-space and/or as operating system mod-
ules or a combination of both. The following chapters will present the proposed
resource management strategies.
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Figure 2.7: Overview of generic system architecture.
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Chapter 3

Improving Utilizable Power
Budget

As mentioned in Chapter 2, computer systems have to function within fixed power
budgets to ensure thermal safety. Thermal design power (TDP) is widely used as
the fixed upper bound on power consumption during power capping/actuation de-
cisions [Intel Corporation, 2014]. TDP represents the maximum power that can be
safely dissipated, hence recommendable to operate within this limit to ensure ther-
mal safety. However, functioning within a fixed conservative power budget can of-
ten result in resource under-utilization, restricting the performance gains. Further,
alignment of active cores has a significant impact on the amount of utilizable power
budget [Shafique et al., 2014b]. Considering these aspects, a run-time estimate on
power budget as a function of number of active cores and their spatial alignment
(mapping configuration) can enhance the utilizable power budget and thus improve
performance that can be extracted. In this Chapter, we provide insights into quanti-
fying the effect of mapping on power budget and thermal accumulation, and present
adaptive run-time mapping approach to maximize the utilizable power budget.

3.1 Efficient Power Budgeting

TDP is estimated at design time under the assumption that the chip is operating at
worst case voltage and frequency levels, and intensive workloads [Intel Corpora-
tion, 2011]. Such conservative estimation can lead to resource under utilization,
given the variation in workload intensities [Shafique et al., 2014b]. An efficient
alternative to fixed TDP is having a variable upper bound on power, estimated at
run-time with varying workloads. [Pagani et al., 2014] have proposed Thermal Safe
Power (TSP) - a variable power bound calculated as a function of number of active
cores and their spatial alignment. The key insights on power budgeting as pro-
posed by [Pagani et al., 2014] and [Pagani et al., 2017] are that i) fixed power bud-
get for variable workloads might cause resource under utilization, ii) upper bound
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Figure 3.1: Effect of mapping on on-chip temperatures. (a). Dense mapping
configuration, application is mapped contiguously on rows 2 and 3, (b). Sparse

mapping configuration, application is mapped sparsely on every alternative core.
Each tile shows temperature (in ◦C) of the core.

on power should be a run-time estimate, considering the workload intensities and
number of active cores, iii) the upper bound on power should be a function of spa-
tial alignment of active cores, since neighboring (active) cores mutually effect the
temperature. These aspects put together bring relevance to application mapping in
the context of power budgeting, in order to maximize utilizable power budgets and
thus performance.

3.1.1 Effect of Mapping

Existing mapping strategies largely prioritize minimizing inter-core communica-
tion and maintaining a regular geometric structure to avoid dispersion and fragmen-
tation [Fattah et al., 2014]. Such preferences lead to dense mapping configurations
with each application and tasks within an application being tightly packed together.
With dense mapping, each active core effects the temperature of its neighboring
core, reaching critical temperatures faster. This effect is demonstrated through a
simple example as shown in Figure 3.1. Here, we consider a synthetic application
with 8 tasks that are mapped - (a) contiguously and (b) sparsely, onto a 16-core
system. The power budgets were estimated using TSP Calculator [Pagani et al.,
2014] - a light weight library for evaluating upper bound on power as function of
mapping configuration. Figure 3.1 (a) shows the thermal profile of the chip with
the dense mapping, where the active cores reach a critical temperature of 80◦C
after consuming 47.4 W (5.95 W/core) of overall power budget. Thermal profile
of the same application, mapped sparsely is shown in Figure3.1 (b), where active
cores are spread out, interleaving idle cores. This mapping configuration reduces
the mutual heating effect of active cores and results in lower on-chip temperatures.
This allows the active cores to safely utilize relatively higher power budget in com-
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parison with the dense mapping. In this case, critical temperature is reached after
utilizing 54.4W (6.8W/core) - providing a 14% higher power budget. The sur-
plus budget achieved with sparse mapping can be used to: i) activate more cores,
ii) run current tasks much faster, and iii) run more tasks without reaching critical
temperatures.

3.1.2 Rationale

Although [Pagani et al., 2017] [Shafique et al., 2014a] present the effect of map-
ping on power budgets, there are no methodical approaches for sparse mapping
strategies that achieve higher power budgets. With this motivation, this disserta-
tion proposes a pro-active application mapping approach that prefers sparsity over
conventional dense mappings to improve power budgets. The idea is to align hot
active cores alongside cool dark cores to minimize the mutual thermal effect. This
allows active cores to utilize higher power budget before reaching critical temper-
atures, and the surplus power budget is used to either i) activate more cores to ser-
vice more applications or ii) accelerate current applications’ execution. The power
budget utilization decisions however depend on run-time workload scenarios. We
refer to the sparse mapping approach which aligns cool inactive cores among hot
active cores as Dark silicon patterning [Kanduri et al., 2015a]. The work flow of
the proposed approach is presented in the following sections.

3.2 Dark Silicon Patterning

We propose dark silicon patterning in the context of NoC-based many-core sys-
tems, where application mapping becomes a relevant factor influencing power bud-
geting and allocation, temperature accumulation and performance. Our strategy
combines i) run-time mapping technique - to increase utilizable power budgets by
balancing heat distribution evenly across the chip, and ii) efficient power budget es-
timation and utilization - to allocate surplus power budget achieved with patterning
by activating more cores for throughput, subject to the workload scenarios.

3.2.1 System Baseline

Throughout this chapter, a NoC-based many-core system that can concurrently run
multi-programmed workloads is considered as the baseline. The workloads are
modeled as task graphs where each task holds computation and inter-task commu-
nication volume information [TGG, 2017]. Applications are assumed to arrive at
an unknown and random sequence, emulating dynamic workload scenarios. Appli-
cation mapping, in this context, corresponds to binding each task of an incoming
application to a core. Assuming a many-core system with M ×N sized mesh, the
heat dissipated by each core Ci is a 3-tuple (Pi, Tn, Tamb), where Pi is the core’s
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power consumption, Tn is the weighted accumulated temperature of neighbour-
ing cores and Tamb is the ambient temperature. Active cores functioning at full
throttle frequency consume relatively higher power and accumulate temperature
that is proportional to the power consumption. The other aspect contributing to
hot-spots is the neighboring cores’ temperature. As more number of neighboring
cores are simultaneously active, Tn rises - increasing each active cores’ eventual
temperature. Dynamic power/thermal management techniques actuate knobs such
as power gating and DVFS to reduce the activity, power consumption and thus on-
chip temperatures - however these approaches have a performance penalty. Instead,
adapting application mapping strategies towards sparse preferences can evenly dis-
tribute temperatures, leveraging the inevitable dark cores to provide the necessary
cooling effect to active cores. Major distinctions of the proposed sparse mapping
from the existing dense mapping strategies are i) spatial distribution of applications
and ii) sparsity among tasks of each individual application. To achieve sparsity at
both inter-application and intra-application levels, the mapping approach is split
into two phases viz., i) selecting a region that is spatially farther from the current
set of active cores (that are running concurrent applications) and ii) mapping the
tasks of the application sparsely within the selected region such that active and
inactive cores are aligned to minimize temperature accumulation.

3.2.2 Proposed Mapping Approach

The first phase of selecting a suitable region for mapping an application starts
with finding the first node, around which an application can be mapped. [Fattah
et al., 2013] have proposed first node selection based on the number of free cores
that are available within a fixed radius of a given node, without interfering with
other concurrent applications. This criteria thus finds regions that relatively have
higher/enough number of free cores within which the application can be mapped
and avoids intra- and inter- application interference.

Inter-Application Sparsity

The proposed approach has two objectives for first node selection viz., i) selecting
a region with enough number of free cores to map a given application (retained
from the one in [Fattah et al., 2013]) and ii) prioritize nodes (thus regions) that are
spatially farther from active cores as first nodes. To realize the objective of avail-
ability of free cores, we use Vicinity Counter (VC) - a parameter that quantifies the
number of free cores around a given node which do not interfere with other con-
current applications [Haghbayan et al., 2015]. For the second objective, we define
a run-time parameter, distance factor (DF), to represent the extent of fartherness
of a given node from the other other active cores. The effect of heat accumulation
varies exponentially with distance i.e., being far from active cores indicates lower
impact of temperature from neighbors. The Distance Factor, DFij , for a node
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Figure 3.2: Region selection strategy with criteria of: (a) Number of free nodes
around a given first node. Here, 3 different square regions (S) and VCs possible

for the same first node (n) are shown. (b) Distance from other active cores. Here,
applications App1, App2 and App3 being mapped progressively based on

distance is shown.

located at (i,j) is modeled as the weighted sum of impact of distance from all the
other occupied nodes located at (x,y) such that (x, y) ∈ Mesh. Distance factor is
expressed as follows:

DFi,j =
∑

Wni,j × (e−α(dij−xy)) (3.1)

where Wnij is the weight of node nij (= 1 when occupied and = 0 when free),
dij−xy is distance from nodes located at (i,j) and (x,y) and α is the mesh size.
Since temperature accumulation is proportional to the proximity of active cores, a
higher DF represents lower effect of temperature accumulation from cores running
concurrent applications.

Pro-active Selection Strategy

A combination of both DF and VC parameters identifies the suitable first node that
is i) sparse, ii) has enough number of cores around it to map the applications and iii)
has minimal congestion/interference from other concurrently running applications.
Existing mapping strategies [Fattah et al., 2012a] [Fattah et al., 2014] have used
a reactive search for first node finding, while [Fattah et al., 2013] have used an
optimized search using hill climbing algorithm. To improve the turn-around time,
our approach uses a pro-active strategy to identify suitable first nodes for incoming
applications of unknown characteristics. With every applications’ entry/exit, we
keep track of a running count of DF and VC of every free node for different radii
(within the mesh size). Figure 3.2 shows an example demonstrating the strategy
for region selection based on availability of free cores and distance from active
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cores. As shown in Figure 3.2 (a), assuming the node located at (5,4) on the mesh
as the first node, there are an increasing number of free cores with increasing radii
available around the first node. Precisely, the node (5,4) has a V C1 = 9, V C2 =
16, V C3 = 25 for radii at distance 1, 2 and 3 respectively from the first node. Every
node on the mesh has a set of VC values for different radii. This allows a pro-active
and faster selection of suitable first node for an incoming application based on its
size (number of tasks), without requiring an exhaustive across the mesh to find free
cores. The pro-active first node selection used in our approach, MapPro, is detailed
in [Haghbayan et al., 2015]. Figure 3.2 (b) shows 3 applications App1, 2 and 3 that
are consecutively mapped, prioritizing distance from currently active cores running
other applications. For instance, consider App1 being initially mapped and App2
arrives later. At this instance, App2 is mapped at the farther most region from the
currently active set of cores based on the distance factor. A similar approach is
taken also with the consecutive App3, which is then chosen to be farther from both
App1 and App2. In combination, both VC and DF thus identify a suitable sparse
region for mapping.

Sparse Mapping

After selecting the first node, all the free cores within the required radius (square
root of number of tasks in the application) around the first node are listed into a set
P . Within in this set, tasks have to mapped in a sparse way to avoid temperature
effect from neighboring active cores. Sparsity of a node nij should indicate the
number of free cores that are neighboring it in all four cardinal directions (North,
East, West, South). The Sparsity Factor (SFij) for a node nij located at (i, j) is
expressed as:

SFi,j =
4∑

i=1

4∑

j=1

F (i+ i′, j + j′) (3.2)

where i′ = [0, 1, 1, -1], j′ = [-1, 0, 1, 1]. F (i, j) denotes if a node located at (i, j)
is free or not, such that

F (i, j) =

{
1 if ni,j is unoccupied
0 if ni,j is occupied

Each node has a sparsity factor that gets updated upon a neighboring node becom-
ing active/in-active. For an application to be mapped, tasks within the application
are first sorted as per their communication volume. The task with the highest com-
munication volume is chosen to be mapped onto the first node. This allows the
most communicating task to be accessible within fewer hops to all the remaining
tasks. The SF for all the nodes within the set P are updated, after mapping the
task. Sorting the tasks and updating the SF is repeated recursively until all the
other tasks of the application are mapped. Since the most sparse nodes would be
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preferred for mapping, the least sparse nodes within P would eventually be left un-
occupied. These cores intuitively represent the patterned dark cores which provide
the necessary cooling effect to the other active cores aligned around them.

3.2.3 System overview

An abstract view of the system using the proposed approach on mapping and run-
time estimation of power budget is shown in Figure 3.3. The execution request
corresponds to an incoming application which is modeled as a task graph. Appli-
cations are submitted at a random and unknown sequence and are released onto
the system for execution. Power monitoring unit monitors instantaneous power
consumption, while the TSP Calculator estimates a safe upper bound on power
(TSP) using the current mapping configuration. Based on the measured power
consumption and TSP, the amount of power budget available is determined. Each
incoming application has a power profile i.e., an estimate of its power consump-
tion when mapped onto the system, extracted through off-line profiling. When a
new application arrives, the Run-time Mapping Unit (RMU) compares the power
profile of the application and power budget available - to determine whether map-
ping the new application violates the upper bound on power. When enough power
budget is available, RMU maps the application onto the chip using the proposed
patterning strategy. In case of un-availability of power budget, the application’s
execution request is stalled until enough power budget becomes available poten-
tially. This approach is similar to dark silicon aware power management proposed
in [Haghbayan et al., 2014]. Once the application is mapped, TSP Calculator re-
ceives the current mapping configuration of the system as the input and calculates
the new upper bound on power budget (TSP). The power monitoring unit uses the
updated power budget (TSP) to estimate the available surplus budget. This will
determine the number of cores that can be activated further, within the safe thermal
limits. Allocation of surplus power budget may be subject to workload scenar-
ios viz., i) activating more cores to map new applications and ii) activating more
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cores to accelerate currently running applications. When a new application arrives
or an execution request is already waiting, the RMU checks if the available sur-
plus power budget is enough to fit the new/waiting application. In case of power
budget being enough to fit the new application, surplus budget is utilized to map
the new application. If not, currently running application(s) are accelerated, which
would intuitively finish their execution faster and leave the system - creating power
headroom for incoming applications. In the context of this work, we consider ap-
plications that are best effort in nature, such that the surplus power budget utilized
to activate more cores translates into satisfying the performance requirements.

3.3 Evaluation

We evaluate the proposed patterning approach against state-of-the-art mapping
techniques that prefer contiguity and proximity among concurrent applications and
tasks of an applications. The proposed dark silicon patterning approach (referred
to as PAT) is compared against the combination of SHiC [Fattah et al., 2013] and
CoNA [Fattah et al., 2012b] (from here on referred to as SC), for first node selec-
tion and mapping respectively. These two are state-of-the-art strategies for map-
ping which prioritize regions with free nodes and contiguity among applications
and also among cores. Since the proposed approach relaxes contiguity and prefers
sparsity, this comparison would demonstrate the effect of our dark silicon pattern-
ing on power budgets and performance.

3.3.1 Experimental Setup

The system architecture presented in Figure 3.3 is implemented by extending ex-
perimental many-core simulator, Noxim [Fazzino et al., 2008]. Application and
core models that are used for simulation are described in the following sections.
The experimental setup detailed in this section is the baseline also for simulations
and results which are presented in Chapters 4 and 5.

Application Model

For simulation purposes, applications are modeled as task graphs where each
task holds a computation factor and communication volume. Application of dif-
ferent sizes ranging from 4 to 35 tasks are used, generated by Task Graph
Generator [TGG, 2017]. Communication volumes among these tasks follow
random Gaussian distribution.

Core Model

The traffic patterns of the applications generated as mentioned above are simulated
using an in-house cycle-accurate many-core platform implemented in SystemC.
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This is largely an extended version of Noxim NoC simulator [Fazzino et al., 2008].
The specifications of Niagara-2 like in-order cores obtained from McPAT [Li et al.,
2009] are used as the baseline for processing elements. The communication net-
work infrastructure among processing elements is a pruned version of Noxim.
Throughout the simulations, a mesh topology and XY routing were used.

Power Model

Technology node scaling parameters are extracted from Lumos framework [Wang
and Skadron, 2012] - an open source library which quantifies power-performance
characteristics of many-core systems for different technology nodes. Voltage and
frequency levels and power values for different technology nodes are provided
by Lumos. We used TSP library [Pagani et al., 2014] to calculate the Thermal
Safe Power. Thermal simulations (wherever necessary and used) are done using
HotSpot [Huang et al., 2006] in its default configuration.

System Model

The control strategy including power management and mapping are implemented
in C++. This process is pinned to the node n(0,0) of the mesh in the many-core
system. Incoming applications arrive at a random sequence and are buffered into
a FIFO like structure. Each application’s execution request is serviced in a first-
come-first-serve basis - subject to availability of enough power budget and free
cores. With enough power budget, a suitable first node will be found and the appli-
cation will be mapped around it.

3.3.2 Power Budget and Throughput Gains

The workloads were simulated over network sizes of 16 × 16 and 20 × 20. TDP
is set to 177.7W and 277.7W respectively for 16 × 16 and 20 × 20 network sizes
using 22nm technology [Wang and Skadron, 2012]. A varying amount of dark
silicon ranging from 50% darkness through 90% is emulated by adjusting initial
upper bound on power consumption (TDP). This is chosen considering ITRS pro-
jections which predict 50% dark silicon on contemporary processors and up to 90%
dark silicon by year 2020 [Semiconductor Industry Association, 2013]. We limit
the number of applications entering the system to be in accordance with dark areas.

Table 3.1: Surplus Power Budget of PAT over TSPwc

Network Size
50% dark 75% dark 90% dark

Avg. Best Avg. Best Avg. Best
16×16 11.73 13.20 22.02 24.14 32.33 34.92
20×20 12.50 13.33 22.40 27.4 38.70 40.83
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Run-time power budgets were calculated using the TSP library [Pagani et al., 2014]
upon the entry/exit of an application, setting the ambient temperature to 45◦C and
critical temperature to 80◦C. For a fixed number and sequence of incoming ap-
plications, power budgets with the proposed approach (PAT) against conservative
power budgeting is shown in Table 3.1. Conservative power budget values were
calculated using the TSP library [Pagani et al., 2014], which also provides the
power budget with worst case workload scenario for given set of applications and
active cores. Surplus power budget with PAT ranges between 11% to 40% for
different mesh sizes and percentage of darkness. More dark cores allow PAT to
exploit them for patterning alongside active cores, making the power budget gains
significant. Thus, as the amount of dark silicon increases, power budget gains with
the proposed patterning approach increase.

The average (arithmetic mean) and best case power budgets gains (in %) us-
ing the proposed PAT strategy over SC for different network sizes are presented
in Table 3.2. PAT achieves a surplus power budget when compared to SC in all
cases - as the active cores are suitably arranged, balancing heat distribution across
the chip. In contrast, SC tries to map contiguously, leading to tightly packed active
cores which get heated up already within a relatively lower power consumption,
resulting in a lower power budget utilization. With PAT, the chip always oper-
ates under safe peak operating temperature (80◦C), since the budgets are computed
through TSP library which manages the upper bound on power avoiding hazardous
hotspots. It can be observed that the surplus budget achieved in case of PAT in-
creases with increase in amount of dark silicon on the chip. With 90% of the chip
being dark, utilizing the remaining fewer number of cores that can originally be
powered (active) becomes crucial. PAT performs better in such scenarios, given
the wider choice of dark cores that can be patterned, while SC remains dark silicon
agnostic. The gain also increases with increase in network size, once again due to
increase in scope of the chip area that can be patterned.

Table 3.2: Surplus Power Budget (in %) of PAT over SC

Network Size
50% dark 75% dark 90% dark

Avg. Best Avg. Best Avg. Best
16×16 2.19 7.68 4.15 11.3 5.74 13.9
20×20 2.63 4.28 5.06 8.55 6.54 17.17

Gain in throughput for PAT compared to SC for different mesh sizes and dark
regions is presented in Table 3.3. Throughput gain depends largely on surplus bud-
get gained, which in turn can be used to activate more cores. Thus, throughput
achieved using PAT strategy follows a similar trend to that of surplus power budget
achieved. Since a surplus in power budget is gained through PAT, it can be utilized
to power up more number of cores without violating the safe upper bound on power
consumption, which reflects in the overall throughput. The proposed first node se-
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Table 3.3: Throughput gain for PAT over SC

Network Size
50% dark 75% dark 90% dark

Avg. Best Avg. Best Avg. Best
16×16 2.42 8.58 4.59 13.92 7.27 15.64
20×20 2.89 4.54 5.88 10.21 8.5 20.99

lection method chooses different regions for different applications - which has no
impact on application’s latency. However, intra-application sparsity might incur a
per-application latency penalty, due to the compromise on contiguity among tasks
of a patterned application. Precisely, communicating tasks of an application that
are sparsely mapped increases the number of hops and weighted Manhattan dis-
tance, which results in an increased latency. Despite the occasional latency, the
overall throughput of the system using PAT still remains higher compared to that
of SC, as the gain achieved in terms of power budget would (over) compensate for
the latency.

Summary

In this Chapter, we presented a dark silicon aware run-time mapping strategy for
achieving a higher utilizable power budget. The proposed approach is implemented
in two phases viz., first node selection and patterning based mapping, where we
evenly distribute tasks across the chip area to balance heat distribution. This allows
active cores to utilize relatively more power before reaching critical temperatures.
As a result, applications utilize surplus power budgets to gain performance, and
improve resource utilization and throughput, while ensuring thermal safety of the
chip. We evaluated the proposed mapping approach against relevant mappings that
follow contiguity to observe the gain in terms of power budget and throughput with
sparse mappings. The contents presented in this Chapter are based on the original
publication which is attached as Paper I.
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Chapter 4

Thermal Aware Performance
Boosting

Chapter 3 has presented techniques to create surplus power budget through ap-
plication mapping. Utilizing the created surplus budget has largely focused on
activating more cores within the available limits. However, performance boosting
techniques such as computational sprinting [Raghavan et al., 2012] and frequency
over-boosting [Pagani et al., 2015] can provide more opportunities to improve the
efficiency of utilizing the surplus power budget. Further, considering the fact that
temperature accumulates with power not instantaneously, but over a delayed epoch
- lower on-chip temperatures achieved with dark silicon patterning can be exploited
for performance boosting. In this Chapter, we present thermal aware performance
boosting which exploits surplus power budgets and lower on-chip temperatures
created with dark silicon patterning. We design and implement controllers for run-
time power and thermal monitoring, and strategy for efficient utilization of power
and thermal headrooms available.

4.1 Performance Boosting

Boosting techniques are intended to improve responsiveness of an application by
(over-) provisioning resources. Frequency scaling [Rotem, 2012], activating more
cores or increasing degree of parallelism [Raghavan et al., 2012], selectively scal-
ing up resources of an application while down scaling other concurrent appli-
cations [Pagani et al., 2015] are some of the examples for boosting. Boosting
techniques deliberately scale up the resources beyond available power budget but
within thermal safe limits, distinguishing them from conventional performance
management techniques. Intel’s TURBO boost [Rotem, 2012] is an example of
boosting through scaling frequency level beyond the set base frequency. Compu-
tational sprinting is another example, where more cores are activated for higher
performance within thermally safe limits, which otherwise would have been dark
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Figure 4.1: Thermal headroom for boosting with sparse mapping. (a) Dense
mapping, (b) Sparse mapping without boosting, (c) Sparse mapping with thermal

headroom utilized for boosting. Each tile shows the core’s temperature (in ◦C)

to stay within power budget limits [Raghavan et al., 2012]. Scaling up the resources
for performance would result in a sharp increase in power consumption. However,
the subsequent increase in on-chip temperature happens only over a period of time.
Boosting techniques leverage this behavior to throttle resources over shorter inter-
vals that provide a burst of high performance. Nominal operation is resumed once
thermal limits are reached, following the boosting decisions. Such opportunistic
performance provisioning can address performance surges of specific applications.

4.1.1 Creating Thermal Headroom

Boosting techniques exploit the transit time elapsed between a power violation
translating into a thermal violation. Performance benefits from boosting can be
maximized when operating temperatures are lower and available thermal head-
room is higher. As discussed in Section 3.1, sparse mappings operate at relatively
lower temperatures and accumulate heat slower in comparison with dense map-
pings. This gives enough thermal headroom for boosting techniques to i) scale up
resources under thermally safe limits and ii) sustain the burst of high performance
for a relatively longer period. The effect of sparse mappings in creating thermal
headroom is demonstrated through an example application with 8 threads run on
a 16-core system. The experimental setup is the same as described in Section
3.3.1. Figure 4.1 shows thermal profile of the system with both dense and sparse
mappings. With dense mapping, 8 threads are mapped contiguously on 8 cores
and the remaining cores are power gated. After utilizing a power budget of 47.6
W (5.95W per core), this configuration reached the critical temperature of 80 ◦C.
Thermal profile of the same application when mapped sparsely is shown in Fig-
ure 4.1 (b). For the same amount of power budget utilization, the sparse mapping
configuration reached a peak temperature of 75.7 ◦C, well below the critical tem-
perature. As described in Chapter 3, interleaving dark cores appropriately reduces
the mutual thermal effect among active cores - minimizing on-chip temperatures
when compared to dense mappings. The additional thermal headroom of about
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Figure 4.2: Temperature accumulation of dense and sparse mappings

4.3 ◦C available with sparse mappings can be exploited by boosting techniques to
extract higher per-application performance or higher per-chip throughput. Figure
4.1 (c) shows thermal profile of sparse mapping when the thermal headroom cre-
ated is utilized for higher performance. In this case, each core consumes 6.8 W of
power before reaching the critical temperature - yielding a 14.2% improvement in
performance.

4.1.2 Rationale

Dark silicon patterning from the previous Chapter provides the insight that uti-
lizable power budget and performance of applications can be improved through
sparse mapping. On the other hand, sparse mappings also offer relatively lower
on-chip temperatures - providing thermal headroom for accelerating certain appli-
cations by boosting the frequency of active cores. This is demonstrated through
an example in Figure 4.2, which shows the rate at which temperature accumulates
with dense and sparse mappings for a synthetic application with 8 threads mapped
into 8 cores. The experimental setup is the same as described in Section 3.3.1.
Temperature profiles are extracted using HotSpot [Huang et al., 2006] in its default
configuration. For the same initial conditions, the dense mapping reaches a tem-
perature of 76◦C whereas the sparse mapping reaches about 74◦C. Noticeable fact
is that in addition to lower operating temperatures, the rate at which temperature
accumulates is slower with sparse mapping in comparison with dense mappings.
This higher thermal headroom and lower rate of temperature accumulation pro-
vided with dark silicon patterning can be leveraged to boost the frequency over
short bursts of time to improve performance while minimizing the likeliness of
thermal violation. Throughout this chapter, this technique is referred to as boost-
ing, distinguishing from DVFS. While conventional DVFS mechanisms are scaled
subject to power budget available, boosting is largely dependent on thermal feed-
back. Figure 4.3 shows the thermal profile of the same example from Figure 4.2,
when the applications are boosted from 3 GHz to 3.75 GHz. At t=100ms, appli-
cation’s performance requirements are addressed by scaling the frequency beyond
the base frequency of 3 GHz to 3.75 GHz. With dense mapping already operating
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Figure 4.3: Thermal headroom for boosting using sparse mappings

at a relatively higher temperature when boosting is invoked, thermal accumulation
towards critical temperature is faster. This lowers the period of boosting that could
be sustained, effectively reducing the possible performance gains. The dense map-
ping reaches the critical temperature of 80 ◦C at 131 ms, after providing a boosting
period of 31 ms. The frequency is scaled down to 3 GHz at this point, to prevent
potential thermal violation. The application finished execution eventually after
189 ms. The sparse mapping on the other hand is operating at a relatively lower
temperature when boosting is invoked. This allows sustaining a boosting period
of 75ms - about 2x longer than that of the denser mapping. There is a signifi-
cant performance gain during the period of boosting as a result. The application
finishes execution by 175 ms, utilizing boosting to its full potential. The sparse
mapping configuration could sustain 41% longer period of boosting, which yields
about 8% of performance gain in this case, when compared to the dense mapping.
Further, the sparsely mapped application remained well below the critical temper-
ature throughout the execution time. This demonstrates the potential benefits with
higher thermal headroom and ability to sustain longer periods and/or higher levels
of boosting. In summary, mapping applications sparsely to create thermal head-
room and boosting applications on top of it maximizes performance. This can also
avoid frequent oscillation between frequency up and down scaling decisions that
densely mapped applications suffer, with faster temperature accumulation.

4.2 Thermal Aware Boosting

Dark silicon patterning presented in Chapter 3 was used to improve the power bud-
get and utilize the surplus power budget to achieve higher throughput. However,
patterning can be exploited in two ways viz., i) utilize the surplus power budget
to improve overall throughput or ii) utilize the thermal headroom to improve per-
application latency. In this chapter, we present performance boosting as per appli-
cations’ requirements through frequency scaling, which combines both the above
strategies. Lower on-chip temperatures achieved from dark silicon patterning are
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Figure 4.4: Hierarchical view of proposed approach

exploited to make performance boosting decisions, using a thermal feedback. The
proposed approach is designed into three phases - i) run-time mapping that maxi-
mizes utilizable power budget, ii) power controller that allocates the surplus power
budget - for efficient power budget utilization, and iii) boosting controller that in-
creases frequency beyond the base frequency subject to thermal safety - for efficient
thermal headroom utilization. The hierarchical view of the proposed system archi-
tecture is shown in Figure 4.4. We present the work flow of our approach along
with details on individual modules shown in Figure 4.4 in the following sections.

Run-time Mapping and TSP

The run-time mapping unit (RMU) is invoked upon arrival of a new application
and is responsible for mapping incoming applications. The RMU chooses appro-
priate first node as per application requirements, followed by task-to-core binding.
Whenever a new application is mapped or a currently running application leaves the
system, overall mapping configuration of the system changes. The TSP Calculator
receives the updated mapping configuration every time an application enters/exits
the system - to estimate the new safe upper bound on power (thermal safe power,
TSP), as a function of alignment of active cores. This remains the power budget
until the mapping configuration changes subsequently.

Power Controller

The power controller makes power actuation and allocation decisions by monitor-
ing instantaneous power consumption of the chip. It receives the safe upper limit
on power (TSP) from the TSP Calculator and compares the monitored power with
TSP to estimate the available power headroom. A PID controller is used to modu-
late the available power budget to determine DVFS and power gating settings. The
difference between TSP and power consumption is used as the input error metric
for the PID controller’s output. Gain constants of the PID controller are adjusted
after offline MATLAB simulations. PID controller used in our approach is based
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Figure 4.5: State transition of boost controller. ∆T represents the thermal
headroom available.

on the controller presented in [Haghbayan et al., 2014] and [Rahmani et al., 2017].
Choice of DVFS and power gating depends on current workload scenario. For
instance, arrival of a new application requires utilizing the available budget to ac-
tivate more cores, while DVFS scaling decisions are preferred otherwise. In either
cases, power knobs are scaled appropriately to fully utilize the available budget.
Power controller is invoked over every parametric power epoch Epower.

Boost Controller

The boost controller makes performance boosting decisions as per applications’ re-
quirements. In the context of this chapter, we use scaling the frequency beyond the
base frequency as the boosting mechanism. This is similar to Intel TURBO [Naveh
et al., 2011] and selective boosting techniques [Pagani et al., 2015]. The boost
controller monitors applications’ performance requirements and per-core tempera-
ture over every parameterizable epoch Eboost. Upon identifying any applications’
request for higher performance, the boost controller estimates thermal headroom
available based on the on-chip temperature feedback. If enough thermal headroom
is available, frequency is scaled by one level. Each level represents the step size by
which frequency will be scaled. We implemented level as a control parameter that
can be adjusted for platform specific constraints. In case of a thermal violation due
to previous epoch’s boosting decisions, frequency levels are scaled down to reduce
on-chip temperatures. To avoid frequent upscaling and downscaling boosting deci-
sions, we chose a conservative step size of 200 MHz and a boosting epoch of length
2.5ms. Within the considered platform and simulation framework, these values of
frequency step size and boosting epoch are observed to be the minimum levels that
could result in a noticebale increase in temperature. However, both frequency step
size and boosting epoch length are subjective to specific platforms and architec-
tures. Hence, they are used as generic parameters in the proposed design. Figure
4.5 shows a simple state chart on boost controller’s decisions. ∆T represents the
amount of thermal headroom available, which effects the transition between Boost
- upscaling and Down - downscaling modes. The Central Manager shown in Fig-
ure 4.4 arbitrates between the power controller and boost controller decisions, to
avoid any conflicts. At every boosting epoch, the application and corresponding
frequency scaling information is communicated to the central manager. While the
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Figure 4.6: Workflow of proposed approach

power controller decisions are based on power budget available, boost controller’s
decisions are based on thermal headroom available. Boost controller’s decisions
rely on temperature feedback, irrespective of the power headroom. We set Epower
as 4 ×Eboost, such that boosting decisions are made conservatively to avoid ther-
mal violation. This also minimizes the oscillation of voltage and frequency scaling
decisions among power and boost controllers. Both power controller and boost
controller act independently over their respective epochs and communicate their
decisions to the central manager. The central manager enforces voltage and fre-
quency levels and power gating settings as per the decisions made by power con-
troller and the boost controller by arbitrating between them.

Figure 4.6 shows modular work flow of of the proposed approach and different
control units, putting it all together. When an application enters, the application is
mapped using dark silicon patterning [Kanduri et al., 2015a], which was detailed
in Chapter 3. Power budget is estimated using TSP library [Pagani et al., 2017].
The power controller is based on multi-objective controller, presented in [Rahmani
et al., 2015a]. The adaptive boosting control (adBoost), presented in this section is
used as the boosting strategy.

4.3 Evaluation

The experimental setup used for evaluating the proposed approach including the
application model, system model and power model are already described in Sec-
tion 3.3.1 from Chapter 3. Our evaluation is two folds i.e., i) to demonstrate the
effect of dense and sparse mappings on performance through boosting and ii) to
compare the performance gains with conventional DVFS mechanism and adap-
tive boosting. For the dense and sparse mappings, we used contiguous mapping
- CoNA [Fattah et al., 2012b] and dark silicon patterning - PAT [Kanduri et al.,
2015a], respectively. As for controller strategy, we choose two baselines of run-
time management frameworks viz., i) conventional DVFS and power gating and
ii) adaptive boosting along with DVFS and power gating. We used multi-objective
controller, MOC, presented in [Rahmani et al., 2015b] [Rahmani et al., 2017] as
a conventional DVFS based power manager, to evaluate it against the proposed
adBoost controller. We compare the combination of different mapping strategies
with MOC (CoNA and PAT) against the proposed adaptive boost controller, ad-
Boost (CoNA++ and PAT++). We simulated 100 synthetic applications to evalu-
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Figure 4.7: Normalized boosting periods with dense and sparse mappings for
different configurations. CoNA++ and PAT++ represent dense and sparse

mapping configurations with boosting.

ate the performance of these approaches over different configurations of network
sizes - 64 core and 144 core, and amount of dark cores - 25% and 50%. Figure
4.7 shows the normalized period of boosting that could be sustained with each of
the above core and percentage of dark silicon combinations. Normalized boost-
ing period is calculated as the accumulated sum of the number of boosting epochs
elapsed during the overall simulation time. This measure represents the efficacy
of each approach in utilizing the available thermal budget for performance boost-
ing. In Figure 4.7, CoNA++ and PAT++ represent dense versus sparse mappings
when used in combination with the proposed adBoost controller. PAT++ achieves
longer periods of sustained boosting in all configurations (a)-(d), when compared
to CoNA++. This can be attributed to PAT++ strategy which prefers sparsity be-
tween active cores, slowing down temperature accumulation. Boosting active cores
that are already operating at lower temperatures allows the frequency scaling de-
cision to be sustained for longer intervals. Both higher utilizable power budgets
and lower operating temperatures from dark silicon patterning favor PAT++ in sus-
taining longer boosting periods using the adBoost controller. Boosting in case of
CoNA++ could be sustained only for lower periods, given the contiguous nature of
mapping that accumulates temperature faster. Boosting the cores which are already
at higher temperatures would further accelerate on-chip temperatures approaching
towards the critical temperature, limiting the effective boosting period.

Figure 4.8 shows the normalized throughput gain with different mappings
and controller strategies over different network sizes. CoNA and PAT represent
throughputs of dense and sparse mappings using MOC controller (i.e., without
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Figure 4.8: Normalized throughput for different mapping strategies without
boosting (CoNA and PAT) and with boosting (CoNA++ and PAT++) for different

configurations.

boosting) and CoNA++ and PAT++ represent the same with adBoost controller
(i.e., with boosting). For every network size and percentage of dark cores, nor-
malized throughput is increasingly higher in the order of CoNA, PAT, CoNA++
and PAT++. PAT has higher throughput than CoNA, since surplus budget gained
from patterning is utilized to activate more cores. On the other hand, even the
denser mapping, CoNA++, has higher throughput than both CoNA and PAT, ben-
efiting from the performance boosting using the adBoost controller. The PAT++
- sparse mapping along with boosting, has the highest throughput in comparison
with the all the other cases. As mentioned above, the longer boosting periods that
PAT++ could sustain automatically reflects in higher throughput. Detailed eval-
uation of different aspects viz., run-time power and thermal profiles, turn around
times, latency penalties with sparse mappings, percentile boosting period in overall
execution time - for different core and percentage of dark silicon configurations are
presented in the attached Paper II.

Summary

This Chapter presents an adaptive thermal aware performance boosting technique
to improve power budget utilization and meet performance surges of applications.
We exploit dark silicon patterning based mapping to create enough thermal head-
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room for performance boosting. We design a boost controller that uses thermal
feedback to make frequency scaling decisions upon specific performance require-
ments of applications. We evaluated the proposed strategy of sparse mapping and
boosting (adBoost) against dense mapping without boosting, to demonstrate the
performance gains with adBoost. The contents presented in this Chapter are based
on the attached Paper II.
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Chapter 5

Approximation for Maximizing
Performance

The previous have chapters presented techniques for increasing the power budget
limits through mapping and efficiently utilizing the available power budget through
boosting for improving performance. Intensive workload characteristics and/or in-
crease in simultaneous execution requests (from concurrent applications) still cre-
ates performance demands that can result in higher power consumption. Under
such workload scenarios, power capping i.e., restricting the peak power consump-
tion to a fixed limit, becomes a significant aspect of system design to ensure thermal
safety. While power consumption is reduced by lowering system resources, such
an actuation results in performance degradation. Resource management techniques
relying on traditional power knobs make inevitable compromises on performance
loss [Muthukaruppan et al., 2013b] [Khdr et al., 2017]. Leveraging the fact that
some of the workloads are error resilient, relaxing the accuracy can restore the
performance. In this chapter, we present approximation as a dynamic knob for
improving performance under a given power budget. We opportunistically trigger
approximate mode of execution subject to performance requirements and power
constraints.

5.1 Power Capping

Existing power capping techniques largely actuate on conventional knobs such
as DVFS [Vega et al., 2013] [Gaspar et al., 2014] [pac, 2011], Near Thresh-
old Computing (NTC) [Wang and Skadron, 2013] [Schlachter et al., 2015], (Per-
core/cluster) Power Gating (PCPG/PG) [Ma and Wang, 2012], advanced schedul-
ing [Kapadia and Pasricha, 2015], task mapping [Kanduri et al., 2015b] and task
migration [Muthukaruppan et al., 2013b] [Gaspar et al., 2015] for reducing power
consumption.
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5.1.1 Limitations

With the cubic dependence of power consumption on voltage and frequency lev-
els, DVFS is effective in power capping. However, appropriate resource scaling
decisions with DVFS depend on availability of fine-grained frequency levels and
overhead of actuation. At lower technology nodes where supply voltage is already
relatively low and contribution of leakage power to total power consumption is
high, DVFS alone would not suffice for power capping. Near Threshold Com-
puting (NTC) is a variant of DVFS, where supply voltage is aggressively scaled
beyond threshold voltage for ultra low power operation [Schlachter et al., 2015].
Such extreme down scaling of system resources results in dim silicon baseline, as
opposed to dark silicon [Wang and Skadron, 2012]. This scenario features more
number of active cores - however, operating at minimal voltage and frequency
levels. NTC approach targets improving the overall throughput by compromising
on per-core/per-application performance with severely throttled down yet active
cores [Wang and Skadron, 2013]. Power gating (PG) provides significant reduc-
tion in power consumption by shutting down cores (granularity can vary) limiting
both idle and active power. Although, this actuation incurs an overhead in switch-
ing between active and idle states and the overall performance degradation with
only fewer cores being active. As proposed by [Vega et al., 2013] and [Ma and
Wang, 2012], combination of power gating and DVFS can alleviate power capping
challenge to a certain extent.

5.1.2 Performance Implications

Most of the power capping techniques are reactive in nature i.e., they are invoked
upon a power violation. Further, the objective of lowering the instantaneous power
consumption is confined to a short-term. With changing workloads, this can lead
to frequent triggering of power management decisions which up/down scale re-
sources perpetually. Such oscillation between high/low power states contributes to
inefficient (over/under) resource utilization. Some strategies have addressed this
challenge by classifying the system state into multiple levels of power consump-
tion to represent the likeliness of potential power violation, and then manipulat-
ing power actuation knob settings by the extent of power headroom available [Wu
et al., 2016] [Rahmani et al., 2017] [Intel Corporation, 2014]. Despite the effective-
ness in reducing power consumption and pro-active decision making, most of the
power capping strategies result in an inevitable performance degradation. Efficient
power capping approaches have tried to maximize the performance under a given
power cap by exploiting application level characteristics and dynamic workload
variation scenarios [Cochran et al., 2011] [Hoffmann et al., 2012] [Zhan and Reda,
2013] [Tang et al., 2016] [Sha et al., 2018]. All these techniques though still rely
on traditional power knobs of DVFS, power gating, core folding and degree of par-
allelism - which present an orthogonal trade-off between power and performance.
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The extent of performance degradation though depends on power knobs used, cap-
ping/actuation strategy and concurrent workload pressure. In summary, satisfying
the objective of power capping to ensure thermal safety, while maximizing the per-
formance that can be extracted within the set cap is challenging with conventional
power knobs alone. In the following sections, the central idea of exploiting ap-
plications’ error resilience characteristics in the context of power capping will be
presented.

5.2 Approximation for Performance

Applications from certain domains exhibit an algorithmic level tolerance to inac-
curate computations [Li and Yeung, 2007]. This can be largely attributed to their
redundant and noisy input data, iterative nature of computations and the eventual
result being perceptive such as image, video, graphics etc [Esmaeilzadeh, 2015].
Several techniques across the computing stack have exploited such behavior to
deliberately approximate resilient applications for performance and energy gains.
The idea of exploiting accuracy trade-offs and its efficacy have already been intro-
duced in Section 2.2.

5.2.1 Techniques

Existing approximation techniques include programming constructs [Sampson
et al., 2011] [Bornholt et al., 2014] [Ansel et al., 2009] [Misailovic et al., 2014],
compilation [Baek and Chilimbi, 2010] [Samadi et al., 2013] [Samadi et al.,
2014] [Sidiroglou et al., 2011a], architectural innovation [Thwaites et al., 2014]
[San Miguel and Badr, 2014b] [Esmaeilzadeh et al., 2012b] [Esmaeilzadeh et al.,
2012c] [Venkataramani et al., 2013] and hardware optimization [Gupta et al.,
2011] [Kahng and Kang, 2012] [Varatkar and Shanbhag, 2006] [Kedem et al.,
2011] [Kim and Shanbhag, 2014] [Lingamneni et al., 2013]. An abstract classifica-
tion on approximation techniques is to view them as functional approximation and
implementational approximation. Although, there are numerous other classifica-
tions on approximation techniques based on models of computation [Mishra et al.,
2014], application domain and the nature of approximation used [Mittal, 2016].
Functional approximation can be realized purely with algorithmic transformations
and requires no effort from system software or hardware design. For example, loop
perforation - skipping some iterations of nested loops [Sidiroglou et al., 2011a]
and code perforation - skipping less significant tasks within an application [Ri-
nard, 2006] provide approximate kernels as expressed by the programmer. On the
other hand, implementational approximation requires efforts vertically including
programming constructs, compiler passes, instruction set extensions, architectural
blocks and circuitry. In the context of this thesis, functional approximations are
considered as the primary source for exploiting accuracy trade-offs without tweak-
ing the hardware.
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5.2.2 Rationale

Algorithmic level transformations and software approximations such as loop perfo-
ration, task skipping and input data sampling reduce the amount of computation of
an application. With relatively fewer instructions, such functionally approximate
kernels will provide higher performance at the expense of possible inaccuracies.
Most of the existing approximation techniques and frameworks are open-looped
without specific objectives of run-time power/performance management. Some of
the techniques have adapted the implementation for run-time quality monitoring or
maximizing performance within minimal error in the context of a single applica-
tion/domain. An efficient way to exploit accuracy trade-offs is to opportunistically
trigger approximate execution subject to system dynamics such as power consump-
tion and performance requirements. This dissertation proposes approximation as
another knob for power/performance management. The idea is to switch the mode
of execution from accurate to approximate upon performance requirements and/or
power constraints. The approximation knob, when actuated cooperatively with
other power knobs, can lend performance and energy benefits to the effectiveness
of power actuation. Specifically, approximation can be used to cover up the per-
formance loss in the context of power capping. Figure 5.1 shows the hierarchical
view of the proposed approach on using approximation as a knob, in combina-
tion with other power knobs. Our approach integrates approximation in a typical
observe-decide-act structure of resource management platforms, where run-time
power and performance are observed, different knob settings are decided and these
decisions are enforced in the actuation phase. While approximate hardware and
architectural techniques require substantial system design effort and can provide
larger gains, the proposed approach relies specifically on minimal programmer and
architectural support for software approximations - since one of the objectives of
this dissertation is to leverage approximation in the context of run-time resource
management.

Processor Observe

DVFS / NTC

PCPG/ PCCG

Scheduling

Approximation

ActAct

Decide

Power
Performance

Knob settings

Figure 5.1: Approximation as a resource management knob

50



5.3 Approximation as a Dynamic Knob - APPEND

The proposed approach is used in the context of NoC based many-core systems that
support multi-programmed workloads. Using approximation (APPX) along with
other power knobs requires a framework that monitors critical system chip param-
eters viz., power consumption, per-application performance and per-chip through-
put, and network intensity, decides on appropriate knob settings and acts upon
the decisions made. Power consumption, overall workload intensity, resource uti-
lization and network intensity of the chip varies subject to incoming applications’
requests. The proposed framework monitors these metrics over fixed epochs, to
make i) power capping/actuation decisions through power knobs of DVFS and
power gating (PG) and ii) performance management decisions using approxima-
tion (APPX) - as per the requirements. From here on, the proposed approximation
enabled power/performance management framework is referred to as APPEND.

5.3.1 System Architecture

Hierarchical view of the proposed framework is shown in Figure 5.2. Applica-
tions are assumed to arrive at an unknown and random sequence. Workflow of
the proposed approach and components of the framework shown in Figure 5.2 will
be described in the following sections. The core model and task graph based ap-
plication model that are used in our approach were already described in Section
3.3.1.
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Central Manager

Resource allocation decisions are made by the central manager, which consists of
a PID controller - for power knob settings and load analyzer - for performance
(approximation) knob settings. The power controller used in this framework is
the same as presented in Chapter 3.3.1 and elaborated in [Haghbayan et al., 2014]
and [Rahmani et al., 2015a]. The power controller monitors instantaneous power
consumption, compares it against the upper bound on power to estimate power
headroom available. This is used to determine DVFS and PG knob settings that
will be acted upon. Every incoming application’s execution request will be served,
upon availability of power budget and free cores onto which the application can
be mapped. Unavailability of power budget and/or free cores due to applications
that are already running on the chip forces the incoming applications to wait in
the queue longer. This time elapsed between an application’s execution request
and beginning of the actual execution is waiting time (also referred as turn-around
time [Fattah et al., 2012b]). We use moving average of the waiting time of in-
coming applications, Average waiting time (AWT), to quantify workload intensity
and performance requirements. A longer AWT intuitively represents higher work-
load - either with higher number of application requests (application arrival rate)
and/or longer per-application latency of applications that are currently running on
the chip. The load analyzer compares AWT against a pre-determined and param-
eterizable threshold to determine workload intensity and thus APPX knob settings
accordingly. Upon a performance violation i.e., AWT exceeding the threshold,
APPX is invoked, setting the mode of execution to approximate. Enforcing the
mode switching is detailed in the following.

Mode Switching

When the execution mode is accurate, the run-time mapping unit (RMU) maps the
accurate version of the incoming application. We assume approximable applica-
tions to be presented with at least one variable accuracy implementation - to sup-
port switching the mode of execution from accurate to the provided approximate

Original 
Source

Application

Approximated 
Source

Power 
Management 
Framework

Compound 
Task Graph

Figure 5.3: Workflow of proposed approach. Solid filled tasks are approximable.
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version. Such approximable applications are represented using a compound task
graph, where one or more tasks of the application have one or more possible ap-
proximate versions. Formulation of the compound task graphs is shown in Figure
5.3 - the approximate tasks are shown in solid fill. Each applications’ task(s) that
has an alternative approximate version (if any) is embedded within the compound
task graph. For example, in Figure 5.3, there are two approximable tasks - both ac-
curate and their approximate versions are shown together (highlighted). For all in-
coming approximable applications, approximate task(s) are buffered into the Task
Buffer. Depending on the mode of execution/APPX knob setting, RMU chooses
the version of task to be included at the application mapping stage, while the other
versions are buffered. With the invocation of APPX knob, mode of execution is
switched to approximate from accurate. This presents two possible scenarios for
mode switching viz., i) incoming applications - map approximate versions and ii)
currently running applications - switch the mode of execution by task replacement.
For incoming applications, the RMU maps them in their approximate mode, by in-
cluding the approximable tasks instead of accurate tasks, until the mode is switched
back to accurate. For applications that are already running on the chip, RMU iden-
tifies the corresponding approximate task of the specific application from the Task
Buffer and replaces the accurate task with the approximate task.

For evaluation, applications are modeled compromising concurrent tasks that
execute periodically, repeating the task in a loop. Such streaming nature of com-
putation with incoming samples of data per iteration allows to relax certain aspects
of computation when new batch of data arrives every iteration. When mode of
execution is switched to approximate, the RMU waits until the current iteration
of accurate task’s computation is finished. Once the task is completed, the RMU
loads the corresponding approximate task on to the chip, replacing the accurate
task. Figure 5.4 demonstrates a simple use case of task replacement during mode
switching. The example shown has three tasks 1, 2 and 3 out of which task2 is
approximable. Upon invocation of APPX knob triggering approximate mode of
execution, mode switching happens in the following sequence. i) The RMU finds
the approximate version of task2, task2_appx, from the Task Buffer. ii) It waits
until data from task2 (data23) is received at task3. iii) task2_appx is loaded by
fetching the instruction stream into the cache. iv) After the data is received at task3,

task1 task2 task3
data12 data23

repeat

task1 task2_
appx

task3
data12 data23

repeat

Wait until current iteration ends Replace task 2 with task2_appx

Figure 5.4: Example demonstrating mode switching for an application with 3
tasks
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the execution of task2 will now start from new instruction stream of task2_appx.
Algorithmic flow of the control strategy is detailed in Paper III, which is attached
in Part II of the dissertation.

5.4 Evaluation

For evaluation purposes, a mix of approximable and non-approximable applica-
tions were chosen. Multiple instances of k-means, k-nearest neighbors, linear re-
gression and least squares applications were used for simulation. Each application
has two levels of approximation viz., Apx-1 and Apx-2. Applications simulated
are summarized in Table 5.1. These workloads largely rely on iterative computa-
tional methods, such that accuracy of the result converges towards optimal solution
with more number of iterations. Since an accurate solution may not exist and lower
convergence could still offer an acceptable result, they become suitable candidates
for approximation. Levels Apx-1 and Apx-2 for linear regression and least squares
applications are realized through loop perforation [Sidiroglou et al., 2011a], by
skipping 10% and 25% of computations over input data respectively. For k-means
clustering and k-nearest neighbors, we use relaxed convergence (RC). We com-
promise on number of flips for k-means, and coverage of neighbors and training
data sets respectively for k-nearest neighbors. In these two applications, Apx-1 and
Apx-2 correspond to relaxing 1% and 5% of convergence respectively.

The proposed framework which combines power knobs - DVFS and PG with
APPX knob is compared against power management with i) only DVFS, ii) only
PG and iii) combination of DVFS and PG [Rahmani et al., 2015b]. Figure 5.5
shows the average waiting time with each of the above strategies, simulated over
100 applications. All the strategies could service incoming applications within
minimal waiting time when the arrival rate is lower. As the number of incoming ap-
plications increase, AWT increases with DVFS, PG and DVFS+PG. These strate-
gies initially map incoming applications, and subsequently throttle down system

Figure 5.5: Average waiting time with the proposed approach
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Figure 5.6: Normalized throughput with the proposed approach

resources to stay within the power budget. Further, intensive applications running
on the chip with longer latency compounds the AWT. With the proposed approach,
workload intensity and threshold of AWT are monitored - which triggers approx-
imate mode of execution. Invocation of APPX knob replaces accurate tasks with
approximate tasks to reduce computational workload, resulting in higher perfor-
mance of currently running applications. As the applications finish their execution
relatively faster, power budget and free cores become available for incoming appli-
cations. Hence, the AWT with APPEND is minimal, even at a higher application
arrival rate and workload intensity. Consequently, the overall throughput i.e., time
taken to finish the execution of all the applications is also significantly higher using
the APPX knob, compared against other traditional power knob based strategies.
Figure 5.6 shows the normalized throughput of all the aforementioned approaches.
Lower AWT and higher application service rate of APPEND consequently reflects
in higher throughput. Normalized throughput gain for APPEND is about l.5× bet-
ter than that of PG and DVFS knobs alone and about l.2× better than that of MOC
(combination of DVFS and PG), showing a significant performance gain, within
the power budget. APPEND is equally effective in power capping, similar to the
other power knobs. Instantaneous power consumption and effectiveness in power
capping with APPEND are presented in the attached Paper III. It should be noted
that the performance gains with APPX knob comes at the expense of accuracy loss.
The relative mean square error along with the performance gains for each applica-
tion simulated are shown in Table 5.1. Since individual knobs of DVFS, PG and
the MOC (DVFS+PG) are not approximation aware, accuracy is retained in these
cases.

5.5 Exploiting Error Sensitivity

The APPEND framework used two coarse grained levels of approximation to
switch to, upon invocation of APPX knob. Subject to system dynamics and ap-
plication’s characteristics, such a coarse grained invocation of approximation at
times might lead to over/under compensation decisions on accuracy trade-offs.
Further, different applications exhibit different levels of tolerance to errors and per-
formance gains with approximation. Such behavior presents with the opportunity
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Table 5.1: Applications simulated

Application
Norm. Perf

Relative
Error (%)

Apx-1 Apx-2 Apx-1 Apx-2
Lin. Reg 1.1 1.2 6 13
k-means 1.9 5.6 1 5

k-NN 1.1 1.3 3 8
Least Sq. 1.07 1.26 5 12

for selecting the i) appropriate applications as candidates for approximation and ii)
their level of approximation to switch to - in order to maximize performance gains
while minimizing error induced. For instance, approximating a certain application
might have better performance gains than that of the others, while approximating
to a specific level might result in higher performance-per-error. This is quantified
through application’s sensitivity to error, which is defined as:

Sensitivity =
Perfi − Perfi−1
Errori − Errori−1

(5.1)

where Perfi and Errori are the performance and error induced at ith level of
approximation. Sensitivity of an application for any two given levels of accuracy
would be high when the performance gained by lowering accuracy is high or when
the accuracy loss in performance improvement is lower. Sensitivity metric can be
used to identify appropriate applications for mode switching among concurrently
running approximable applications.

APPEND+

The APPEND framework is extended with control decisions on the APPX knob
settings which consider sensitivity metric along with power/performance dynam-
ics. The extended framework, referred to as APPEND+, is elaborated in Paper IV.
The overall control strategy is enhanced with a parameterizable number of fine-
grained approximation levels that can be chosen from. For evaluation, additional
micro kernels of FFT, matrix multiplication, low pass filter, and early warning
score system (EWS) [Azimi et al., 2017] and fall detection [Gia et al., 2018] from
IoT domain were used. Approximation strategies for the machine learning kernels
are already described in Section 5.4. Among the other kernels, we approximate
the computation involving exponential functions with relaxed memoization and
low precision storage of twiddle factors for FFT. We reduce the number of coeffi-
cients by 10% per each level of approximation for low pass filter. We reduce the
number of samples of heart rate sensor and compromise data fusion for EWS. We
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Table 5.2: Application Sensitivity

Application
Sensitivity

Level-1 Level-2 Level-3 Level-4

Machine
Learning

Linear
Regression 10.1 0.09 0.13 0.23

K-means 6.51 0.28 0.44 0.64
K-NN 0.07 0.06 0.06 0.43

Signal
Process-

ing

FFT 0.01 0.01 0.05 0.07
LPF 0.6 5.5 2.9 1.84

Vector Mul-
tiplication 0.24 1.59 0.31 0.83

IoT
EWS 0.95 0.26 0.58 0.3

Fall Detection 1.02 0.86 0.72 0.14

reduce the sampling rate of accelerometer and simplify the logic of magnitude vec-
tor computation for fall detection. These applications and their sensitivity metrics
are summarized in Table 5.2. Since most of these applications operate iteratively
over input vectors of data, loop perforation and task skipping were used to realize
approximate versions. Each application is annexed with 4 levels of approxima-
tions, with increasing levels of accuracy relaxed. They are further elaborated on
software approximation used, normalized performance and relative error induced
in the attached Paper IV.

We simulate the system over a period in which 200 instances of different appli-
cations are serviced. For evaluation, we consider effectiveness in power capping,
AWT and normalized throughput metrics. Instantaneous power consumption and
power capping for TDP and TSP baselines are elaborated in the attached Paper IV.
Figure 5.7 shows the AWT of different strategies using different combinations of
power/performance knobs, including APPEND and APPEND+. APPEND+ has
the best AWT, preceded by APPEND, MOC, PG and DVFS in order. As demon-
strated in Section 5.4, DVFS, PG and MOC actuation have higher AWTs as the ap-
plication request rate starts increasing - largely due to the limitations of traditional
power knobs. APPEND+ on the other hand have a near-zero AWT for as long as
5× more than DVFS and PG knobs alone, and 3× more than that of MOC. Figure
5.8 shows the normalized throughput for different strategies for two baselines - i)
using TDP as the upper bound and ii) using TSP (as described in Chapter 3) as the
variable upper bound. With different levels of approximation to choose from, lower
AWTs and higher application service rates, performance gains with APPEND+ are
higher. Normalized throughput is relatively higher with TSP, in comparison with
using TDP. The significance of efficient power budgeting and utilization described
in Chapters 3 and 4 is reflected here. Furthermore, APPEND+ has the possibility
of aggressively approximating (if any) suitable applications with higher sensitivity
(performance per error), which translates into lower per-application latency, lower
AWT and higher overall throughput.
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Figure 5.7: Normalized throughput with the proposed approach

Figure 5.8: Normalized throughput with the proposed approach

Summary

In this Chapter, we presented the idea of using approximation as a dynamic knob
to address the performance loss incurred in power actuation. We use functional
approximations to dynamically switch between accurate and approximate modes
of executions subject to system dynamics and applications requirements. We eval-
uated the proposed approach against existing state-of-the-art power management
frameworks to establish the performance gains within the power budgets using ap-
proximation, for an acceptable loss of accuracy. Further, we enhanced the proposed
approach considering error sensitivity of each application to minimize the error in-
duced per performance gained. The contents of this chapter are based on original
publications, which are attached as Paper III and IV.

58



Chapter 6

Co-ordinated Approximation

Chapter 5 presented the idea of using approximation to minimize performance loss
incurred in power actuation, by reducing the workload. This approach is mainly
targeted at maximizing the performance within the power cap, fully utilizing the
available power budget. Such strategy for approximation suits throughput appli-
cations running on platforms that can provide required high performance. On the
other hand, another spectrum of latency sensitive applications running on embed-
ded processors demand a certain level of performance, sustained over longer peri-
ods within minimal power consumption [Lo et al., 2014]. Such scenarios require
co-optimization of power and performance, to make appropriate resource alloca-
tion decisions based on system and application constraints. Based on the insights
presented in Chapter 5, approximation can be opportunistically used to i) provide
the required performance and/or ii) minimize power consumption. The idea is to
lower the resources to the reduced (approximated) workloads, which can be used
to i) provide low power operation while guaranteeing the required level of per-
formance or ii) provide high performance with the same amount of resources and
power budgets. In this chapter, we present coordinated approximation to make
power/performance co-optimization decisions to provide performance guarantees
within minimal power consumption.

6.1 Approximation on Heterogeneous Platforms

Heterogeneous multi-processor (HMPs) platforms provide cores with different
power-performance characteristics that can be leveraged for optimizing resource
utilization. In this chapter, we specifically consider heterogeneous multi-core pro-
cessing (HMP) systems, which could typically comprise of cores with different
power-performance characteristics including high-performance and/or power ef-
ficient CPUs, throughput processors (GPUs), customizable logic (FPGAs) and
domain specific accelerators etc [Hardkernel co., 2014] [Lindholm et al., 2008].
While heterogeneous architectures expose different options for execution, run-
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Figure 6.1: Power-performance behavior with different knobs.

time management techniques are required to exploit such behavior to maximize
resource efficiency. Although, different constraints exacerbate the run-time man-
agement challenge, including i) diverse performance requirements of applications
ii) fixed and limited power and energy budgets iii) varying workload character-
istics and iv) core-level heterogeneity. Approximation on heterogeneous systems
opens up both power-performance and accuracy-performance Pareto-spaces, with
the choice of using approximation to i) maintain the required performance within
lower power or to ii) achieve high performance by utilizing available power bud-
get, or iii) a combination of both. The choice among these opportunities depends
simultaneously on applications’ requirements and system constraints, and resource
allocation strategy.

6.1.1 Power-Performance Co-optimization

Existing resource management techniques largely employ knobs such as Dy-
namic Voltage and Frequency Scaling (DVFS) [Cochran et al., 2011], task migra-
tion [Muthukaruppan et al., 2013b], power gating and CPU quota scaling [Rah-
mani et al., 2015a,Rahmani et al., 2016] etc., for power optimization. Performance
requirements of individual applications, dynamic nature of varying workload char-
acteristics and power and energy budgets will drive the choice of suitable combi-
nation of knobs. Both power and performance being effected with any given com-
bination of actuation knobs, a co-optimization strategy becomes more relevant in
this context. Within heterogeneous architectures, actuation of each of these knobs
has a different effect on power and performance. We demonstrate such behavior
using a micro-kernel of least squares curve fitting over 1 million pairs of floating
point data, executed on a heterogeneous combination of ARM A7 (low power) and
A15 (high performance) cores [Hardkernel co., 2014]. Figure 6.1 shows the power-
performance behavior using DVFS and CPU utilization on an A15 core, along with
task migration onto an A7 core. Here, frequency is scaled in steps of 100 MHz and
CPU utilization is scaled in steps of 5% of quota allocated to achieve different
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Figure 6.2: Power-performance behavior with joint actuation of approximation
and power knobs. (a) DVFS and APPX - frequency scaled from 1.8GHz to 1GHz

in steps of 0.2GHz, (b) CPU Utilization and APPX - utilization scaled down in
steps of 10%. In both cases, APPX corresponds to 0%-40% of loops skipped over

1 million pairs of least squares kernel.

power states. This shows a wider range of Pareto-space that can be explored to
achieve different levels of performance within different power budgets.

For maximizing performance within the fixed power budgets, these techniques
propose joint actuation of power knobs [Cochran et al., 2011,Vega et al., 2013,Rah-
mani et al., 2015a, Ma and Wang, 2012, Muthukaruppan et al., 2013b] and ex-
ploitation of application characteristics [Hoffmann et al., 2012, Gaspar et al.,
2016]. These strategies minimize the effect of power actuation on performance,
yet inevitably compromise on performance for thermal safety. This specifically
affects a class of streaming applications from domains such as machine learn-
ing, artificial intelligence, multimedia processing, computer vision and Internet-
of-Things [Jouppi et al., 2017, Schulz et al., 2017]. These applications may i) in-
clude user interaction, ii) serve as intermediate results to other computational ker-
nels (e.g., computer vision in self-driving vehicles), making them latency-sensitive.
Typical power actuation techniques cannot provide real-time performance guaran-
tees required to ensure user satisfaction and responsiveness. At the same time,
such applications are relatively error resilient (i.e., approximable) due to their al-
gorithmic tolerance nature, redundant input data and perceptive end results. As
described in Chapter 5, functionally approximate kernels present a Pareto space of
accuracy-performance trade-offs that can be leveraged at run-time to achieve better
performance within lower power and/or energy resources, for an acceptable loss in
accuracy [Baek et al., 2010, Sidiroglou et al., 2011b]. Figure 6.2 shows the effect
of using approximation (APPX) in combination with power knobs viz., DVFS and
Utilization in sustaining a fixed level of performance, even with lower resources.
The application and experimental setup are the same as described in case of pre-

61



Figure 6.3: Joint actuation of approximation and task migration. apx10-apx40
represents 10%-40% of loops skipped over 1 million pairs of least squares kernel.

vious example, shown in Figure 6.1. Traditional power actuation with DVFS and
CPU utilization alone degrades performance as (V,F) levels and utilization are low-
ered for power actuation. When using them in combination with APPX, resources
are lowered on top of reduced workloads, which avoids the performance degrada-
tion, yet provides low power operation. As shown in Figure 6.2 (a) and (b), with
every progressive lowering of frequency levels and CPU time slices, workloads
are also simultaneously reduced through approximation. As a result, power con-
sumption is reduced while performance is still sustained, as approximation covers
the possible performance loss with scaled down resources. Another alternative is
to use APPX for improving performance within the same power budget, which be-
comes relevant particularly on wimpy cores in a heterogeneous architecture. Figure
6.3 shows the normalized performance with task migration alone, in comparison
with the combination of task migration and APPX. The application and experimen-
tal setup is the same as used in previous example. Upon migrating the application
from high performance cluster (A15) to low power (A7) cluster, both power con-
sumption and performance are reduced significantly. However, joint actuation of
APPX with task migration can provide a relatively higher performance within the
same power budget. As shown in Figure 6.3, different levels of approximation can
further provide more options for minimizing performance degradation, yet restore
the power savings with task migration.

6.1.2 Coordinating APPX with Power Knobs

While joint actuation of approximation with power knobs opens up opportunities
for meeting performance within power budgets, disciplined tuning of these combi-
nations is necessary for maximizing resource efficiency. We demonstrate the effect
of combining approximation (APPX) knob with power actuation through an exam-
ple, using the control strategy presented in [Kanduri et al., 2016]. For simplicity,
we use only DVFS as the power knob, and loop perforation [Sidiroglou et al.,
2011b] based approximation as the APPX knob. As a test case, we use least squares
curve fitting application over 24000 pairs of inputs, and 10% of the loops skipped
to realize the approximate version. Figure 6.4 (a) shows the power consumption
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Figure 6.4: Power-performance actuation combining power knobs with
approximation. (a) Conflicting decisions, (b) Coordinated decisions.

and corresponding performance (measured in heartbeats/s, as described in Sec-
tion 6.2.1) of the application. We assume 2W as the threshold for power actuation,
10 seconds (for presentation ease) as the control period for resource management
decisions, along with a target performance requirement (the red line). At t = 10s,
power exceeds the threshold, triggering DVFS to reduce power, while performance
requirements are satisfied. Subsequently, power consumption is reduced during the
control period, also reducing the performance below the requirement.

At t = 20s, performance requirements are not met - triggering the APPX
knob, while power consumption is below the threshold - triggering DVFS (upscal-
ing). With the uncoordinated actuation decisions performed by [Kanduri et al.,
2016], performance is restored with some accuracy loss, while power consump-
tion again exceeds the threshold during the following control period. At t = 30s,
performance requirements are met, hence the application is switched to accurate
execution; DVFS is triggered again to lower power consumption. A similar os-
cillation between accurate-approximate executions and high-low frequencies will
continue in the subsequent control periods. Although the performance violation at
t = 10s could be recovered with approximation at t = 20s, the lack of coordination
between DVFS and approximation either over-compensates or under-compensates
the knobs’ actuation. This occurs because of the reactive nested loop structure of
such control policies (as in [Kanduri et al., 2016]), where power and performance
actuation happens independently, and is mutually agnostic. Figure 6.4 (b) shows
power and performance for the same scenario, with a coordination among DVFS
and approximation. At t = 10s, DVFS is triggered to address power violation.
At the same time, considering the performance loss with power actuation, approx-

63



imation is triggered pro-actively by predicting the potential loss in performance
due to DVFS (downscaling). As a result, performance requirements are met dur-
ing the subsequent control period despite the voltage/frequency (VF) downscaling.
At t = 30s, VF is upscaled with availability of power headroom and the same is
indicated to the performance manager. This allows the performance manager to
make informed decisions on performance actuation, which in turn restores the ac-
curate mode of execution. As a conclusion, while combination of approximation
and DVFS addresses the performance loss due to power actuation to an extent, tight
coordination between power and performance actuation provides better results in
i) meeting performance requirements often, and ii) minimizing the accuracy loss
due to approximation.

6.1.3 Rationale

In a realistic scenario, the resource management policy has to consider i) a wider
set of power knobs viz., DVFS, CPU quota assignment, task migration and fine-
grained levels of approximation, and ii) variable workload characteristics having
applications entering and leaving the system with an unknown trend, and each
one being characterized by a specific performance requirement. When considering
these aspects, knob actuation for maximizing performance within minimal power
consumption and accuracy loss becomes dramatically complex and challenging. To
address this issue, we propose a novel run-time resource management strategy for
heterogeneous multi-core systems running dynamic and unknown workloads, ex-
ploiting approximation. Our strategy coordinates power knobs with approximation
knob to meet both performance requirements and the power constraints. Subject
to system dynamics and applications’ requirements, we switch application’s mode
of execution from accurate to approximate to meet i) power constraints - by low-
ering resources to approximate kernels, and/or ii) performance requirements - by
opportunistically reducing workloads. In either case, the coordinated usage of ap-
proximation knob complements the traditional power knobs, thereby overcoming
their limitations and conflicting decisions. Design and implementation of the pro-
posed framework and resource management policy, and evaluation are described in
the following sections.

6.2 Dynamic Approximation Framework

We present a run-time resource management framework for heterogeneous sys-
tems that uses approximation dynamically along with other power knobs and co-
ordinates both power and performance allocation decisions simultaneously. This
section will describe design of the framework, strategy for run-time approximation
and the proposed resource management policy.
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Figure 6.5: System architecture.

6.2.1 System Architecture

Overview of the proposed resource management framework, comprising hardware,
software and interfaces, is shown in Figure 6.5. Workflow of the proposed ap-
proach and components of the system architecture will be described in the fol-
lowing. We specifically consider the widely used ARM big.LITTLE asymmet-
ric multi-core model which is composed of a big cluster of high-performance
power-hungry cores, and an alternative LITTLE cluster of power efficient wimpy
cores. The processor is constrained by an upper bound on power consumption
(TDP) [Pagani et al., 2014] specified for the chip’s thermal safety. It should be
noted that in previous chapters, TSP has been used as the dynamic upper bound,
considering a many-core system baseline. Larger number of homogeneous active
cores’ spatial alignment (mapping) effects the utilizable power budget - making
TSP relevant for such architectures, whereas TDP is a practical choice for embed-
ded processors [Muthukaruppan et al., 2013a]. On-board power sensors are used
for power monitoring, while voltage regulators are used to enable a per-cluster
DVFS to support power management. The Operating System (OS) loaded onto
the processor provides different utilities to control resource allocation decisions
including i) task/application mapping (MAP) on a specific core(s) within a clus-
ter(s), ii) task migration (TM) between different clusters, iii) CPU quota assign-
ment (Util) to set the percentage of time/resources the core will exclusively provide
per task/application, iv) DVFS to set frequency levels of a cluster and v) accuracy
configuration.
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Performance Monitoring

Incoming applications are assumed to express their performance requirements,
which will be used to make resource allocation decisions. To enable both expres-
sion and measurement of performance, we use the HeartBeat API [Hoffmann et al.,
2010] - a library for extracting application level performance metrics. We annotate
each application with the hooks provided by HeartBeats API to log the perfor-
mance of a specific block of code, task or the entire application. The region of
interest over which performance is measured may vary among applications. In this
context, we specifically consider applications that are executed iteratively within
a computationally intensive loop, where the main compute kernel is continuously
repeated over batches of new inputs with every iteration. Streaming [Papazoglou
and Georgakopoulos, 2003] and on-line data intensive [Lo et al., 2014] applica-
tions are good examples of such workloads. Performance of annotated applica-
tions is measured in terms number of iterations computed in a unit time i.e., heart
beats per second (hb/s), which is proportional to the amount of data processed
over a time window. The same metric is used for expression of user/application-
level performance requirements, preferably as an acceptable range of throughput
to be guaranteed. Expressing and measuring performance requirements through
annotated applications is shown as a listing in Figure 6.6. Each application is an-
notated with APIs of the designed controller framework and HeartBeats library.
attach_ctrl(perf_req) attaches the controller to the application and ex-
presses perf_req as the level of required performance, while log_heartbeat
measures the performance over the specified code block. Run-time accuracy con-
figuration and controller strategy are described in the following sections.

Run-time Controller and Accuracy Configuration

The run-time controller monitors power consumption and performance re-
quirements to make decisions on appropriate settings of the aforementioned
power/performance knobs. Incoming applications are assumed to be entering and
leaving the system in an unknown sequence, causing a significant workload vari-
ation. The controller accesses system-level power sensors and enforces decisions
on actuation knobs through the OS interfaces. Similarly, application level perfor-
mance measures and accuracy configuration are enforced through the HeartBeats
API. Unlike the traditional power knobs, invoking approximation dynamically re-
quires the application to be configurable for approximation. We assume each appli-
cation’s main compute kernel to be possibly provided with an alternative software
approximated implementation using strategies such as loop perforation [Sidiroglou
et al., 2011b], relaxed convergence [Rinard, 2006] or reduced input data sam-
pling [Sidiroglou et al., 2011c] etc. This allows configuring accuracy level of the
application at run-time by passing a parameter as determined by the controller.
As shown in Figure 6.6, accuracy of the current iteration of the kernel is de-
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main(){

  //init

  ...

  attach_ctrl(perf_req);

  for(i:N){

    log_heartbeat();

    accuracy = read_ctrl();

    kernel_to_run(accuracy);

  } 

  detach_ctrl(); 

}

Application level 
performance requirements 

Attaching the controller 
to the application

Region of interest to 
measure performance

Accuracy level determined 
by the controller

Dynamic accuracy 
configuration

Figure 6.6: Annotated application model for dynamic approximation.

termined by the controller and is read by the application (read_ctrl) before
executing the main compute kernel. The configured accuracy is parsed within the
kernel_to_run to dynamically generate an approximate version with desired
level of accuracy (here, as per the accuracy level determined by the controller).
Our approach thus explores and benefits from fine-grained levels of dynamic ap-
proximation, rather than being confined to fixed levels. Decisions of the run-time
controller are driven by the Policy that governs resource allocation. We design
and implement the policy for coordinated and efficient resource allocation, which
is described in the following sections. The overall structure of this framework is
similar to the ones used in [Muthukaruppan et al., 2013b, Tan et al., 2015, Patha-
nia et al., 2014] - however, the key distinctive aspect of our proposed system is
using the APPX knob set by the controller to determine the accuracy levels of the
applications at run-time. It should be noted that the previous chapters have used
PID controllers, given the fine-grained levels of power actuation in a simulation
environment. In the context of this work though, we use a rule-based controller
- considering coarse grained power actuation decisions that are driven by the op-
erating system. Design and implementation of the resource allocation policy are
described in the following section.

6.2.2 Proposed Policy

The run-time resource management policy has been designed similar to a finite
state machine as shown in Figure 6.7. The policy is invoked over every epoch -
a configurable short-term time interval suitable to make resource allocation deci-
sions. An overview of each individual phase is presented in the following subsec-
tions and the details on the decision strategy are further elaborated.
Idle. This phase corresponds to the unloaded system or to a thoroughly balanced
one, satisfying power and performance requirements, eventually. In this phase,
the controller monitors relevant events causing significant variations in system dy-
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Figure 6.7: Overview of proposed policy.

namics. Such an event typically occurs when a new application enters the system,
requesting system resources, or a currently running application leaves the system,
freeing the resources. In such events resource allocation decisions are to made, by
transitioning into the decide phase.
Decide. In this phase, resource allocation decisions on core selection, DVFS, CPU
quota, task migration and approximation are made. When a new application en-
ters the system, it is conservatively mapped on a LITTLE core; moreover, each
time an application enters/exits, the running workload in each cluster is re-mapped
to make utilization uniform on the various cores. Actuation decisions are based
on power and throughput measurements from the OS-level and application-level
monitoring interfaces. Knob settings are determined to be proportional to applica-
tions’ performance requirement and amount of available power headroom. Failing
to meet an application’s performance requirement or violating the upper bound on
power budget are two key instances when decision making becomes critical. Upon
such events, the decide phase makes the choice between combinations of power
knobs alone (DVFS, CPU quota and/or task migration) or power knobs combined
with approximation, subject to whichever yields better performance within accept-
able power constraints and accuracy loss (the logical flow of this strategy is pre-
sented in a more detailed way in the next subsection). We use estimation models
(detailed in Section 6.2.2) to predict near-optimal knob settings during the decide
phase. They minimize the knob setting space to be pruned, allowing a faster ar-
rival at a near-optimal solution. Further, estimating performance loss/gain over
every power actuation decision allows to establish coordination among conflicting
power-approximation knobs settings. If performance is not met or the power bud-
get is violated, this strategy will also act on approximation. At the end, selected
resource allocation decisions are enforced. If task migration has been performed,
this significantly alters application’s performance thus the decide phase is repeated;
otherwise the subsequent refine phase will take place.
Refine. The refine phase monitors power and performance metrics and fine-tunes
any coarse-gained knob settings enforced during the decide phase. This provides
precise control over resource allocation, primarily using CPU quota and APPX
knobs. Further, any possible aberrations, or over/under compensation decisions
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made during the decide phase, will be converged towards required knob settings
in the subsequent refine phase. We iteratively refine the decisions made in the
decide phase, if necessary, by using the feedback loop provided by the power and
performance measures such that a stable resource allocation is eventually reached.
The refine phase will last as long as needed to ensure the performance target, for all
running applications, is met within the power budget. The policy’s decisions can
be classified into two relevant conditions viz., power violation and power budget
being honored. The decision strategy in either cases are explained as follows.
Power Violation. Recovery actions have to be taken by acting mainly on the
big cluster since it is responsible for significant power consumption. Among the
current workload, application(s) that have a minimal performance penalty (set to
< 10%) upon migrating to the LITTLE cluster are chosen. Each selected appli-
cation is then migrated from the big cluster to the LITTLE one. Approximation
is invoked simultaneously, by setting an accuracy level that is proportional to the
estimated loss in performance with task migration. This ensures that a potential
performance loss with migrating to the low-power LITTLE cluster is pro-actively
addressed with reducing the workload through approximation. If no application
with tolerable performance loss upon task migration is available, DVFS is used
for reducing power consumption.. Target VF levels are determined by the ratio of
current power consumption and budget P/TDP , using the estimation model in
Equation 6.1. For each application, the possible performance loss with lowered
VF levels is estimated with the model in Equation 6.4. Approximation is triggered
over such applications that could suffer performance loss with the new VF levels.
The level of approximation is set proportional to the estimated performance loss.
In this scenario, DVFS and APPX are triggered coordinately such that any possi-
ble performance loss incurred in power actuation is pro-actively and proportionally
covered up through approximation, using the estimation models.
Power Budget Honored. In this scenario, we analyze each cluster separately. We
start on the LITTLE and first identify possible applications that do not meet tar-
get performance at the highest resources. If any, such applications are migrated
on the big cluster and the current decision phase ends and it will be restarted on
the subsequent control period to have an updated measure of the throughput in the
new configuration. After that, on each cluster the application having the highest
assigned CPU quota is chosen as the most demanding. The VF level is then de-
termined such that performance requirements of this selected application are met
at maximum CPU quota. As presented in [Muthukaruppan et al., 2013b, Pathania
et al., 2014], selecting the minimum necessary VF level at maximum CPU quota
minimizes power consumption among all configurations offering the same level of
performance. Performance of other applications is estimated with the newly deter-
mined VF level. The applications which have met the performance requirements
and were approximated in the previous decision phases are recovered back to ac-
curacy, subjective and proportional to the availability of surplus power budget and
current performance levels. Among the other applications, CPU quota of appli-
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cations that have already met the performance requirements (if any) are lowered
proportionally within their performance requirements. For applications that do not
meet the performance requirements with new VF settings, CPU quota is increased
proportional to the target throughput if possible. In case of persistent performance
violation, approximation is invoked, setting the level of approximation proportional
to the loss in performance, as estimated.

Power and Performance Estimates

We have employed performance and power estimation models adapted from liter-
ature (e.g. [Pathania et al., 2014, Rexha et al., 2017, Tan et al., 2015]) and exper-
imentally verified on the considered board, Odroid XU-3 [Hardkernel co., 2014].
We represent power consumption Pj of a cluster j running a set of N applications
Appi as a function of the overall cluster utilization Uj and the related Vj , Fj . In
particular, as shown in [Rexha et al., 2017,Tan et al., 2015,Pathania et al., 2014] for
the considered architecture for each Vj , Fj pair, a fast/almost-accurate estimation
of power can be obtained as a function of Uj :

PVj ,Fj = aVj ,Fj · Uj + bVj ,Fj (6.1)

where aVj ,Fj and bVj ,Fj are empirically derived at each Vj/Fj pair. Utilization Uj
of a cluster j indicates the amount of time in a given control period for which the
included cores are busy:

Uj =
N∑

i=0

Ui (6.2)

where N is the number of cores in the cluster. Moreover, Ui measure is directly
provided by the OS, whereas the assigned CPU quota is directly proportional to
the utilization. Then, power consumption Pt of the system is the sum of values of
the two clusters. As shown in previous works (e.g. [Pathania et al., 2014,Tan et al.,
2015]), performance (Perfi) of an application i has an almost linear relationship
with the CPU quota Q, VF setting of the cluster it is mapped on, expressed as:

Perf(i) = αQ(Appi)Fi (6.3)

where α is a variable parameter that depends on application characteristics and
cluster where the application is running. Thus, we estimate the performance
penalty with actuation of power knobs viz., CPU quota assignment, VF level and
task migration from a configuration old to the new one as:

Penalty(Appi) =
Perfnew
Perfold

=
αnewQnew(Appi)Fnew
αoldQold(Appi)Fold

(6.4)
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6.3 Evaluation

Experimental Setup. For the experimental evaluation, we considered an Odroid
XU3 board running Linux Ubuntu 15.04. The board hosts a Samsung Exynos
5422 device featuring 4 ARM A7 (LITTLE) and 4 ARM A15 (big) with frequen-
cies spanning between 200−1400MHz and 200−2000MHz, respectively. Setting
a specific frequency level though OS drivers automatically scales corresponding
voltage level. TDP was set to 5W , considering a restriction on-chip tempera-
ture to 80◦C. The controller has been implemented in C++ and runs as a user
space process. It uses Linux drivers to access on-board sensors for power mea-
sures and to apply DVFS settings. Application’s execution and allocation of CPU
quota are enabled through CGroups Linux library. Communication between appli-
cations and the controller is established through Linux shared memory mechanism.
An in-house implementation of HeartBeats API uses this shared memory space to
write control signals related to setting approximation level and to read application’s
throughput. This provides a fine-grained control on levels of approximation with a
negligible overhead on switching the mode of execution. Further, the approxima-
tion level is passed only as parameter to the kernel function, dynamically creating
a range of approximate versions without any compilation and memory overhead.
Finally, the epoch for the controller invocation is parameterizable, and in our ex-
periments we set it to 1s to clearly see the effects of knobs actuation on throughput
of selected applications during the immediate subsequent controller’s invocation.
This epoch may be tuned subject to the platform and types of considered applica-
tions. We chose four applications from machine learning domain due to their error
resilient nature of computation. Table 6.1 shows application characteristics and
used types of approximation.
Results. To test our proposed solution, we created a dynamic workload scenario
ranging from 1 to 4 concurrently running applications, emulating unknown work-
loads. We compare it against similar state-of-the-art approaches, namely Apx-
Knob [Kanduri et al., 2016] and HierCtrl [Muthukaruppan et al., 2013b]. These
approaches exploit the uncoordinated usage of the APPX knob with other power
knobs, and the coordinated usage of power knobs without any approximation, re-
spectively. All systems are fed with the same dynamic workload scenarios. Fig-
ure 6.9 shows a comparison of power consumption, and Figure 6.8 reports each
application’s performance against the set requirements over the workloads (with

Table 6.1: Simulated workload.

Application Input Approximation
LeastSq 1 million pairs loop perforation

KNN 25k points and 25 test cases loop perforation and task skipping
kMeans 50k points into 3 clusters relaxed convergence
LinReg 1 million pairs relaxed convergence
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Figure 6.8: Run-time performance of applications (hb/s), in order of their arrival,
with different policies - AppxKnob [Kanduri et al., 2016], HMP [Muthukaruppan

et al., 2013b] and the proposed approach. The shaded grey region shows (an
acceptable range of) performance requirements expressed by applications.

a −1/ + 1hb tolerance band). Table 6.2 lists the average power consumption
and percentage of power violations for each approach. ApxKnob violates power
budget the most, at 35% of the overall execution period, mainly with conflicting
power-performance decisions resulting in constant oscillation between high-low
power-performance states. HierCtrl has a much lower power violation at 3.5%, as
different controllers converge eventually towards stable configurations. Our solu-
tion has a negligible 0.5% power violation with pro-active and coordinated knob
actuation, benefiting from the estimation models. Table 6.2 also reports for every
approach, the performance guarantees in terms of the percentage of execution time
during which the requested performance is achieved for each application. The loss
in accuracy with approximation knob is presented as the weighted sum of execu-
tion time and approximation level set, also shown in Table 6.2. ApxKnob meets
the performance requirements mostly by leveraging approximation, and largely
due to uninhibited power usage. Although the loss in accuracy for performance
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Figure 6.9: Run-time power consumption (W) with different policies viz.,
AppxKnob [Kanduri et al., 2016], HMP [Muthukaruppan et al., 2013b] and the

proposed approach. TDP is set to 5W.

guarantees is acceptable, this approach is limited by frequent thermal violations.
HierCtrl relies on degrading throughput requirements to address power emergen-
cies, resulting in dramatic performance loss, particularly under heavy workloads.
Although HierCtrl achieves the lowest average power consumption and has a lower
power violation rate, performance losses are significant. Our proposed approach,
on the other hand, balances both performance requirements and power constraints,
in particular, it is effective in delivering the requested performance, within min-
imal power consumption and an acceptable loss of accuracy. The effectiveness
of approximation knob in power management although is trivial, requires disci-
plined tuning to achieve performance gains within power limits. Figure 6.9 shows
that ApxKnob over compensates for performance (resulting in power budget viola-
tion), while HierCtrl violates performance requirements (with conservative power
actuation). Our approach tunes approximation effectively to obtain the requested
performance while minimizing the necessary power consumption. This can also
be observed in Figure 6.8, where our approach consistently provides precisely the
required performance, while ApxKnob and HierCtrl often over/under provision,
resulting in their respective power and performance violations.

Table 6.2: Power, performance and approximation behavior.

Technique Avg. Power
Violation (%)

Perf. Violation (%) Approximation (%)
Power (W) LR LeSq KNN kM LR LeSq KNN kM

ApxKnob [Kanduri
et al., 2016]

4.6 35.8 1.6 15.3 3.5 4.5 0 2 5.3 2.6

HPM [Muthukaruppan
et al., 2013b]

2.82 3.5 28.6 89.7 44.2 42.6 0 0 0 0

Our Appr. 3.34 0.58 0.62 3.04 1.85 1.3 0.1 5 6.4 3.9
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Summary

This chapter extends the ideas presented in the previous chapters to utilize ap-
proximation in the context of power/performance management on heterogeneous
systems. We designed and implemented a resource management strategy that co-
ordinates between approximation and other traditional power knobs for guaran-
teeing performance requirements within minimal power consumption. The pro-
posed policy is implemented and evaluated on real hardware testbed, and compared
against state-of-the-art run-time management frameworks to demonstrate the effi-
ciency of coordinated approximation. The contents presented in this chapter are
based on original publication, attached as Paper V.
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Chapter 7

Conclusion

Major motivations for this research, particularly when put together are - i) the in-
crease in performance demands of emerging applications from domains such as
machine learning, artificial intelligence and internet-of-things etc., coupled with ii)
diminishing performance gains from technology node scaling due to increase in
power densities.Architectural solutions could alleviate the challenge of maximiz-
ing performance within fixed power budgets, particularly with heterogeneity and
domain specific acceleration. However, considering dynamic scenarios such as
workload variation, diversity in application requirements and characteristics, run-
time management techniques can maximize the resource efficiency and take bet-
ter advantage of underlying hardware. This dissertation thus focuses on run-time
techniques to manage system resources efficiently in terms of i) ensuring thermal
safety, ii) honoring power budgets, while iii) improving performance and/or guar-
anteeing the required performance and iv) minimizing power consumption and/or
utilize available power budget efficiently.

7.1 Thesis Summary

Chapter 1 introduces the context of the research pursued in this dissertation, moti-
vation, significance and relevance of the problem. This is followed by the mentions
on contributions, research outcomes and the organization of this dissertation.

Chapter 2 provides background on run-time resource management, existing
strategies for power and performance actuation, traditional power knobs, their im-
pacts on performance and the need for balancing application requirements and sys-
tem dynamics simultaneously.

Chapter 3 focuses on power budgeting, discussing aspects of fixed versus vari-
able power budgeting techniques and presents the effect of application mapping on
power budgets in the context of many-core systems. This chapter introduces dark
silicon patterning - aligning inevitable dark cores alongside active cores to mini-
mize temperature accumulation among neighboring cores. As a result, active cores
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reach the critical temperature after utilizing a higher amount of power budget, in
comparison with tightly packed mapping strategies. While application mapping
strategies are already considered to be relevant in run-time management, this part
of the dissertation adapts existing approaches for the dark silicon scenario to im-
prove power budgets.

Chapter 4 targets improving performance within thermally safe limits by effi-
ciently utilizing available power budget and thermal headroom. It extends upon
the insights from dark silicon patterning from Chapter 3, which provides sur-
plus power budgets and/or lower on-chip temperatures. This chapter presents
performance boosting techniques leveraging power and thermal headroom created
through dark silicon patterning, using appropriate power and thermal feedback con-
trollers. While performance boosting techniques such as computational sprinting,
core unfolding and selective frequency scaling do exist, this dissertation adapts
the combination of efficient power budgeting followed by necessary boosting to
maximize performance gains.

Chapter 5 addresses the challenge of maximizing performance under power
cap, considering application’s error resilience characteristics. It introduces the idea
of using accuracy-performance trade-offs dynamically subject to applications’ per-
formance requirements and system constraints of power budget. The proposed
approach uses approximation as a dynamic knob which can be actuated alongside
the traditional power knobs, to cover up for the performance loss that might incur in
power actuation. While there are a range of software and hardware approximation
techniques for performance and energy gains, this strategy emphasizes on adapt-
ing those techniques to make justifiable and opportunistic decisions on accuracy
trade-offs. Further, applications’ sensitivity to error are considered to minimize the
accuracy loss upon triggering approximate mode of execution.

Chapter 6 extends the idea of using approximation to manage both power and
performance simultaneously, specifically on heterogeneous platforms. It highlights
the need for coordination among power and performance allocations, and presents
models for estimating the effect of resource scaling decisions on power and per-
formance mutually. The proposed approach explores both power-performance and
accuracy-performance Pareto-spaces to make decisions that ensures performance
guarantees, while minimizing power consumption and accuracy loss. While most
of the existing approximation techniques rely on static configurations, the tech-
niques presented in this chapter dynamically configure software approximations
to either gain/ensure performance and/or lower resources on top of reduced work-
loads to minimize power consumption - making them particularly relevant in the
context of run-time resource management.
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7.2 Open Directions

This dissertation attempts to address the problem of maximizing performance of
applications while minimizing power consumption and ensuring thermal safety
through run-time management techniques.

One of the main challenges in this approach is understanding and adapting to
dynamic characteristics of applications. Different workload characteristics have
different performance requirements (latency sensitivity vs. throughput), exhibit
diverse phase behaviors (compute intensive vs. memory) and a range of error
resilience. Expressing such application level requirements in a unified manner,
preferably through programming constructs or application level APIs can provide
insights into appropriate application requirements. Such an expression enables
translating the requirements into quantifiable amount of resources, easing the al-
location phases of management policies. One of the open research directions is
to improve the understanding and expression of application level characteristics
and requirements, which could be efficiently used vertically across the computing
stack.

Another challenge lies in comprehending the power-performance-accuracy
trade-offs of a given application on a target hardware platform. Similar to different
applications, heterogeneous hardware provides different power-performance op-
tions for execution. Understanding this behavior and choosing the appropriate type
of execution units is non-trivial. Although several approaches to profile, analyze
and learn application-core bias exist, a formal methodology to match applications
to hardware and determine the amount of resources from the off-set can further im-
prove the resource efficiency. Another open research direction is for a formalized
design methodology for identifying application-core bias and thus enable on-the-
fly match between applications and underlying hardware, and application require-
ments and amount of resources to be allocated.

Considering concurrent workloads and the way each application utilizes avail-
able resources, the subsequent power-performance metrics vary significantly. Un-
derstanding this behavior is increasingly complicated even with thorough off-line
profiling. Yet, analyzing such behavior of resource utilization of any given ap-
plication(s) under concurrent workloads will provide hints on efficacy of run-time
management strategies. On-line prediction and estimation techniques, control the-
oretic and machine learning models for run-time resource management offers lot
of promise in this context. An interesting research direction is to further extend on-
line learning strategies to provide a fully autonomous resource allocation strategy,
highlighting the notion of self-awareness in computer systems.
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Abstract—Limitation on power budget in many-core systems
leaves a fraction of on-chip resources inactive, referred to as dark
silicon. In such systems, an efficient run-time application mapping
approach can considerably enhance resource utilization and
mitigate the dark silicon phenomenon. In this paper, we propose
a dark silicon aware runtime application mapping approach that
patterns active cores alongside the inactive cores in order to
evenly distribute power density across the chip. This approach
leverages dark silicon to balance the temperature of active cores
to provide higher power budget and better resource utilization,
within a safe peak operating temperature. In contrast with
exhaustive search based mapping approach, our agile heuristic
approach has a negligible runtime overhead. Our patterning
strategy yields a surplus power budget of up to 17% along with
an improved throughput of up to 21% in comparison with other
state-of-the-art run-time mapping strategies, while the surplus
budget is as high as 40% compared to worst case scenarios.

Keywords—Dark Silicon; Power Budgeting; Runtime Mapping

I. INTRODUCTION

Power density of many-core systems is alarmingly in-
creasing for every technology node generation, attributed to
slack voltage scaling that is not on par with technology node
scaling and exponential rise in leakage power [1]. Increase
in power density leads to thermal issues [2], forcing the
chip’s functionality to fail. To ensure a safe operation, it is
critical for the chip to perform within a fixed upper bound
on power budget [3]. In order to stay within in this limit, a
certain section of the chip has to remain inactive - a growing
phenomenon termed as Dark Silicon [4]. Compute intensity
of future applications such as deep machine learning, virtual
reality, big data etc., demands further technology node scaling,
subsequently leading to further rise in power density and
dark silicon. ITRS projections have predicted that by 2020,
designers would face up to 90% of dark silicon, meaning
that only 10% of the chip’s hardware resources are useful at
any given time [5]. Increasing dark silicon directly reflects on
performance to a point that multi-core and many-core scaling
provides zero gain [4].

Many-core systems face a new set of challenges at the
verge of dark silicon to continue providing the expected
performance and efficiency [6]. Run-time application mapping
policy is one of the key factors that can influence performance
and energy efficiency of many-core systems [7]. Mapping
is the process of choosing a preferable set of cores on the
chip to run tasks of an application, minimizing congestion

and maximizing performance [8], [9]. With dynamic work-
load characteristics and un-predictable sequence and arrival of
applications, mapping decisions had to be made at run-time
for current and future many-core systems. Thus far, designers
have been using mapping strategies assuming that all the cores
of a chip are active and available. However with dark silicon
scenario, this completely alters as not all the cores can be
active at a given time and the number of cores that can be
active varies depending on activity of other working cores [10].
Existing run-time mapping algorithms are dark silicon agnostic
and will not be able to provide the high performance they used
to, as they do not consider the availability of active cores and
are likely to violate safe power budget. All of these factors
necessitates a dark silicon aware run-time mapping strategy
to continue achieving performance gain and energy efficiency
through technology node scaling.

Thermal Design Power (TDP) is a standard design time
metric that has been used to determine a safer upper bound
on chip’s power consumption. Safer operation of a chip is
guaranteed as long as power consumption stays within TDP
[11]. TDP is single fixed upper bound that is pessimisti-
cally estimated assuming that all the cores are active and
are operating at a worst case voltage and frequency. With
dark silicon phenomenon, a variable number of cores will
be inactive (dark), depending on current set of applications
running, ambient temperature and most importantly, number
of simultaneously active cores. Thus, the safe upper bound on
power budget varies in run-time, as opposed to the conser-
vative upper bound of TDP which leads to under-utilization
of available power budget resulting in dark silicon [10]. A
sensible way to avoid conservative limit of TDP is to use
a variable and realistic upper bound on power consumption,
Thermal Saturation Power (TSP), as proposed by Pagani et
al. [10]. TSP is modeled as a function of simultaneously
active cores, their alignment, effect of temperature of a core
on its neighbors and ambient temperature. At any given time
instance, the amount of power the chip can consume to safely
operate will depend on the alignment of active cores, which
is determined by application mapping. It can be deduced that
for same set of applications and same number of active cores,
a certain mapping can result in a higher power budget over
other mappings, based on appropriate alignment of active and
dark cores. Subsequently, the surplus budget gained through
mapping can be utilized to power up more cores, minimizing
dark silicon and thus offering higher performance. This is
explained through an example presented in Figure 1.

A contiguous mapping of an application with 6 tasks
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Fig. 1: Effect of mapping on Power Budget [10]

is shown in 1 (a). Since all the active cores are tightly
packed, the heat dissipated by every active core affects its
neighbors hazardously. As a result, the cores reach their critical
temperature of (80◦C) after consuming 12.7W of power. This
configuration of mapping can effectively utilize 12.7×6 =
76.2W of power, which would be its power budget. Utilizing
power beyond this budget would heat up the cores beyond their
critical temperature leading to permeant failure. The mapping
shown in Figure 1(b) is sparsely distributed in comparison
with the previous mapping. In this case, as the cores are
separated out, the heating effect of one active core on the
other is minimized. Therefore, the cores can now consume
14.6W with reaching their critical temperature. Effectively, the
chip’s power budget in this case is 14.6×6 = 87.6W, which is
11.2W (14.9%) more than the previous case, establishing the
impact of mapping on providing a better power budget. This
surplus budget can in turn be used to: i) activate more cores, ii)
run current tasks much faster, and iii) run more tasks without
reaching critical temperatures.

Although it has been shown that optimal mapping can
provide higher power budget [12][13], to the best of our
knowledge, no methodical approach exists on how to pattern
the active cores alongside dark cores such that they result
in higher power budget. In this paper, we propose a dark
silicon aware run-time mapping approach which aligns active
cores along with dark cores that can evenly distribute heat
dissipation across the chip. The surplus budget we gain through
mapping rises the upper bound on power consumption which
is used to activate more cores, directly mitigating the dark
silicon phenomenon. This way, we maximize the utilization on
power budget to improve performance and energy efficiency.
To the best of our knowledge, ours is the first work to consider
dark silicon scenario for run-time application mapping and to
pattern the active and dark cores to improve the power budget.
The key contributions of this work are as follows:

• A dark silicon aware runtime application mapping
approach that aligns active cores with dark cores to
offer higher power budget.

• A closed-loop power budgeting platform that keeps the
maximum power consumption under safe operational
power (i.e., TSP) which varies at runtime.

The rest of the paper is organized as follows: In Section
II, related work on dynamic mapping and power budgeting
is presented. Our proposed mapping strategy and overview
of the system are detailed in Section IV. Experimental setup
and results are presented in Section V. Finally, Section VI
concludes the paper and discusses potential future work.

II. RELATED WORK

State-of-the-art dynamic application mapping strategies
have targeted benefits in terms of network performance, min-
imizing congestion, system throughput, power optimization,
etc [14][8][15], without any fixed upper bound on power
consumption. The main focus of mapping strategies so far is
on inter-task communication and their objective is maximizing
performance, forcing them to map contiguously [16][17][18].
Precisely, these algorithms do not consider the issue of dark
silicon. However, power budget (and thus performance) limi-
tations of future many-core systems emphasizes to re-structure
the objective of mapping towards improving power budget
by considering dark silicon. Conventional mapping policies
advocate avoiding dispersion and fragmentation and do not
consider the issue of dark silicon which changes the impact
of dispersion and fragmentation on system performance [19].
A non-contiguity mapping through geometrical partitioning of
the network is presented in [20], which shows that penalties
on performance can be minimized by mapping communicating
tasks on nearby cores and the rest in proximity, but not neces-
sarily contiguous. They have established that non-contiguous
not necessarily affects system performance, although they
do not exploit this fact to attack dark silicon. A patterning
approach to avoid congestion between packets routed from
same row or column is proposed in [21]. They limit the number
of tasks to one per row and one per column and do not consider
any power budget.

A feedback based power management system is proposed
in [3]. They are limited to restricting the violation of TDP
through a PID controller and they use a conventional dynamic
mapping approach [8], which is not dark silicon aware. An
online learning approach is presented in [22] that employs
various power management techniques whenever there are
hot-spots identified in the system with changing workloads.
It is restricted to multi-core systems and does not consider
dark silicon. Thermal aware system analysis and calibration is
presented in [23] at a lower level of abstraction, yet they do
not propose effective task allocation based on their detailed
analysis. Liu et al. [24] present an energy and thermal aware
mapping strategy for NoC-based systems. Their approach is
limited to design time (static mapping) which is based on
heuristic that estimates temperature, resulting into a near
exhaustive search to find optimal nodes. A proactive estimation
of potential hot-spots through temperature sensors is presented
in [25]. They mitigate identified hot-spots through thread
migration and dynamic voltage scaling. This method suffers
from performance degradation by voltage down scaling and
overhead in migration. Bao et al. [26] present a case for
balancing the heat dissipation of the chip evenly through
a temperature aware mapping. Their mapping is based on
voltage down scaling when needed as per critical temperatures
of cores, putting a limit on its performance. Power capping
of the cores through dynamic voltage and frequency scaling
by identifying hot-spots at runtime is presented in [27]. The
authors try to minimize the power consumption of a specific
section of chip and thus to balance heat distribution, however,
no run-time mapping strategy is either presented in their work.
On the whole, thermal aware mappings stay within upper
bound of power budget and avoid hot-spots, but do not utilize
the available budget effectively, neither improve it.

The phenomenon of dark silicon and effects of utilization
wall were identified in pioneering works in [4][28]. Thus far,
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most common practice of ensuring safe chip functionality has
been by estimating TDP [11] in a conservative manner. Recent
upgrades on AMD and Intel Corporations’ CPUs have the
option of a configurable TDP, however they are limited to
a maximum of 3 modes, without any fine grained control
[29][30]. Pagani et al. have proposed an adaptive way of setting
the upper bound on power consumption by expressing it as a
function of simultaneously active cores in [10]. They provide
a light weight C library to estimate TSP for a given mapping
and also the worst case TSP for a given number of active
cores. Despite these, they do not provide any insight on which
mapping would offer a better power budget. The importance of
spatial alignment of dark cores along with active cores and its
effects on power budget have been presented in [12]. It shows
gain of patterning in two perspectives viz., better power budget
and lower operating temperatures. [13] quantitatively showed
that different patterns of dark silicon result in different power
budgets and temperature profiles of the chip. However, both
these works do not propose any method on how to pattern
the dark tiles to get such higher power budgets. Taking all
these things together into perspective, it is necessary for a run-
time mapping algorithm that patterns active and dark cores to
maximize utilization of power budget, considering dark silicon.

III. MOTIVATION

The heat dissipated by a core Ci is a 3-tuple (Pi, Tn,
Tamb), where Pi is the power dissipated by the core, Tn is the
temperature of neighbouring cores and Tamb is the ambient
temperature. When active cores function at full throttle, they
dissipate power and heat that is proportional to the power. If
temperature goes beyond the safer limit, chip’s functionality
would fail permanently. Generally, dynamic thermal manage-
ment techniques such as clock and power gating, voltage and
frequency down scaling, increased fan speed etc., are triggered
to manage any such sudden phases of chip’s overheating. This
would reduce activity inside the chip and let the chip back
to steady state temperature over a period of time. Although
uneven heat distribution can be managed with these, it hampers
the performance by a great deal. A better way for even
distribution of heat is to pattern the dark cores along with
working cores through runtime mapping.

The impact of spatial alignment of active cores on power
budget is explained through a motivational example, presented
in Figure 2. Three applications App1, App2 and App3 with
9, 12 and 7 tasks respectively are assumed to be running
on the system. Conventional mapping approaches offer lower
inter-task communication latency by greedily mapping all the
applications contiguously. Mapping of the 3 applications con-
tiguously on a NoC-based many-core system with 144 cores is
shown in Figure 2(a). The power budget (TSP) of this system
as computed by TSP library is 66W. A non-contiguous and
spread-out mapping of the same applications (as well tasks) is
shown in Figure 2(b). This mapping provides a power budget
(TSP) of 74.6W, as calculated by TSP library. An improvement
of 8.6W in power budget can be observed for the spread-out,
patterned mapping as opposed to tightly packed and contiguous
mapping. Contiguous mapping avoids dispersion, but it leads
to poor thermal profile of the chip due to prorogation of heat
among neighboring applications and tasks and thus resulting
in lower power budget. Contrastingly, spatially distributed
mapping of applications offers higher power budget as effect
of heat among different applications is negligible. Also, active
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Fig. 2: Thermal profiles of contiguous and spatially
distributed mappings
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Fig. 3: Surplus power budget with increasing dark silicon

cores are patterned along with inactive cores such that heat
effects of neighboring cores running the same application
are minimized. Based on the spatial alignment and a minor
compromise on dispersion, we could gain up to 13% of power
budget. It is to be noted that the inactive cores are the inevitable
dark cores - instead of leaving them out naively, we use them
to balance out heat distribution and gain power budget. In the
mapping presented in Figure 2(a), the budget of 66W is used to
power 22 cores, giving a per-core budget of 3W. Assuming a
per-core budget of 3W, the mapping configuration in Figure
2(b) could power 74.6/3 = 24.7 cores. The surplus budget
we could gain via patterning could thus be used to power up
2.7 more cores, reducing dark silicon by 12.2%. This benefit
could be better realized with increased size of the many-core
system, technology node scaling and more dark silicon which
is expected in near future. The average packet latency in each
of the patterned mappings for App1, App2 and App3 is 1%,
3.5% and 3.8% more than that of the contiguous mappings.
Although there is a minor penalty in terms of latency, the gain
in power budget outweighs the odds against it.

Figure 3 shows the surplus power budget that was gained
for different mapping configurations over the worst case TSP
budget. We ran random mappings with fixed amount of inactive
(dark) cores ranging from 25% to 90% of darkness, over mesh
sizes of 8x8, 12x12 and 15x15 with 22nm technology. For the
same number of active cores, we collected the worst case TSP
budgets. The difference between a random configuration and
the worst case budget is presented as percentage gain in power
budget. It is evident that the gain in power budget increases
with increase in amount of dark silicon, to an extent where we
can get a surplus of up to 114% when 90% of core is dark. It is
to be noted that this surplus is purely from a random mapping
generated to represent the power budget gain that can possibly
be achieved, although the realistic gain could be variable.

IV. THE PROPOSED MAPPING AND PATTERNING
APPROACH

A. System Architecture

The top level abstraction of the system we implemented
in our approach is shown in Figure 4. Application Repository

2015 33rd IEEE International Conference on Computer Design (ICCD) 575



�������

�������
����

,��(��!�"	
-�.��$� ��� !�"�#
���$%�&�
'$"���

� �

/����"�
�����

0&�

�����
������

���

���

���

���������

(')

��*%�*���&

)�+�&

������&���

Fig. 4: Architecture Implementing the proposed mapping
strategy

holds the applications modeled as task graphs and are released
onto the system for execution over time. Runtime Mapping
Unit (RMU) monitors the power profile of incoming applica-
tions issued by Application Repository, to ensure that upper
bound on power budget is not violated by mapping a new
application. RMU estimates the power of incoming application
and checks if the chip currently has enough power budget
to run the new application. An example of such estimation
can be found in [3]. The application is forwarded onto the
system if there is available budget. In case of un-availability,
the application waits until the system can allocate enough
budget, perhaps with currently running application(s) leaving
the system after finishing their execution. TSP Calculator
receives current mapping configuration of the system as input
and computes the realistic upper bound on power budget, the
thermal safe power (TSP). The RMU feeds this new budget
value to the chip and updates the maximum power budget of
the chip to the TSP provided by the TSP Calculator.

Application mapping is to find a free region for an appli-
cation on the chip, which is of polynomial time complexity
[31]. However, we have constraints on finding an optimal
region such as power consumption, communication latency,
dispersion, patterning the dark cores etc., making mapping
an NP-hard problem. Surplus budget gained from mapping
in Figure 2(b) can be attributed to the mapping policy. Two
major factors that distinguishes it from contiguous mapping are
spatial distribution of applications and sparsity among tasks of
each individual application. In view of these factors, we split
our mapping approach into two phases viz., selecting a region
that is spatially dispersed from current set of applications
running on chip and mapping tasks of the application sparsely
such that active and inactive cores are patterned in the selected
region.

Finding an optimal region for an application starts with
finding an optimal node, the first node, around which an
application can be mapped. In our approach, we prioritize
nodes (thus regions) that are spatially far from currently active
cores as first nodes. Tightly packed up active cores are the
major reason for hop-spots which eventually lead to under
utilization of power budget. Hence, after region selection, we
map tasks of the application in a sparse pattern that will reduce
the probability of heat accumulating at specific regions that
potentially turn out as hot-spots. Our approach tries to attain
an even distribution of heat at both region selection (through
optimal first node selection) and mapping (through patterning).

B. First Node Selection

In contrast to reactive strategies, we exploit MapPro [9]
which pro-actively calculates an optimal first node for incom-
ing applications of every possible size by assigning the square
that can fit the application. This way, we totally eliminate
the time spent in first node selection, which automatically
reflects in the overall execution time. The choice of a particular
first node and thus a particular square region is based on our
objective to find a region that has: i) free nodes to allocate for
incoming application with minimal internal congestion and ii)
minimal effect in terms of temperature on other regions. To
quantify these objectives, we use Vicinity Counter (VC) de-
fined in [9] which addresses the aforementioned first objective.
We then combine it with a new parameter viz., Distance Factor
(DF) which addresses the second objective.

VC parameter expresses the number of free nodes, which
also represents the number of occupied nodes. Using this
parameter, we consider the affect of occupied nodes in the
region on internal congestion, by quantifying the location of
occupied nodes. For instance, a node that is occupied in the
inner most square close to the first node has more affect on
internal congestion than the ones that are occupied in outer
squares, far from the first node. Therefore, we quantify this by
pegging the weight of an occupied node with its distance from
the central node, by assigning a higher penalty to occupied
nodes closer to central node and relatively lower penalty to
the ones that are far. The VC value represents the availability
and congestion around a chosen node, and makes it easier to
select between nodes with the same VC value, by considering
congestion.

Definition: Distance Factor, DFij , for a node located at
(i,j) is the weighted sum of impact of distance from all the other
occupied nodes located at (x,y) such that (x, y) ∈ Mesh.

DFi,j =
∑

Wni,j × (e−α(dij−xy)) (1)

where Wnij is the weight of node nij , dij−xy is distance from
nodes located at (i,j) and (x,y) and α is the mesh size. Thus the
DF of a node represents the effect of heat from concurrently
running applications on the chip. This helps in selection of a
region that is less probable to generate any potential hotspots.
In addition, the issue of two or more nodes having a same VC
value can be resolved by examining their corresponding DF
values, and the node with the lower (best) DF value is chosen.

When an un-occupied node becomes occupied by a new
task, it starts dissipating power and thus heat. Initially, the
heat is concentrated on the node itself, over time it starts
impacting its neighbors. However, the effect of heat dissipated
by this node on neighboring nodes gradually decreases as we
move towards farther nodes. Inspired by the surface tension
phenomenon [32], where energy distribution of a flat surface
turns into a curved surface with applied surface pressure, we
model the effect of heat transfer in a similar fashion. The
temperature effect of every active core decreases exponentially,
but not linearly, with distance from the active (hot) core. In
other words, greater the distance from an active core, lesser the
effect of heat from it. We illustrate this effect in Figure 5, for
the chip running 3 applications App1, App2 and App3. The
regions where applications are mapped (deeper zones) have a
DF as low as -4, while the regions that are far away (shallow
zones) from them have a DF of 1. Also, as we traverse towards
the far off shallow zones, the DF value improves indicating the
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Fig. 5: Effect of occupied cores on Distance Factor of
un-occupied cores

importance of distributing the application spatially across the
chip. This effect also depends on mesh size such that smaller
mesh results in greater impact, due to more proximity among
hot and its neighboring nodes. In order to minimize this heating
effect from active cores of other applications, we prioritize
nodes that are as far as possible from such active cores.

The algorithmic flow of first node selection is shown in
Algorithm 1 which is inspired by our previous work presented
in [9]. When a new application enters the system, power budget
required for it is estimated. If the system has enough budget
to be allocated for the new application, then the application
request is serviced by finding required first node (lines 1-
3). The node with maximum VC value, maxV C, among all
nodes is chosen as the first node, and thus also selecting the
square centered at maxV C. The chosen first node and the
application are passed to patterning phase (line 4). Mapping
the tasks based on patterning is explained in the following
section in Algorithm 2. The chip’s mapping configuration
changes after mapping one application. As a result, the VC
and DF values for the remaining un-occupied nodes need to be
updated for every newly occupied node. Once the application
is mapped, we calculate the new node with maximum value of
VC maxV C for different radii and also update the DF values
of un-occupied nodes. This way, we pro-actively calculate
the first node for next incoming application and avoid the
overhead caused in first node selection. VC values for square
of different groups are updated (lines 6-23) to determine the
new maxV C node. In case of a conflict when more than
one node has the same maxV C, it is resolved by comparing
their DF values (lines 16-18). Thus the VC and DF values
are pro-actively updated with the intention of servicing the
next incoming application immediately, without any overhead.
Nodes are released from the system when an application leaves
after finishing its execution. The VC and DF values are once
again updated according to the changed mapping configuration
of the chip, with the exit of an application.

C. Dark Silicon Patterning

An optimal region for mapping an incoming application is
chosen via first node selection. The mapping receives the first
node (fn) as an input and builds a polygon P which is the
set of all un-occupied nodes around the selected first node.
We choose nodes among the region P such that the tasks are
run on nodes that are sparsely aligned. Sparsity of a node
nij represents the number of free nodes that are neighboring

Algorithm 1 The mapping algorithm
Inputs: newApp:New application, budget:Available power budget;
Outputs: Q:Mapping;
Constants: M :Size of the mesh, groups : Number of square
groups = [(

√
M−1)/2],maxRadius:Maximum radius of the square

((
√
M − 1)/2), α:Mesh size parameter

√
M ,Pavg: Average power

consumption per node;
Global Variables: V C : Vicinity Count of a node, maxV C : Node
with the maximum VC, firstNode : Selected first node for mapping,
DF : Distance factor;

Body:
1: appPredictedPower ← |newApp| × Pavg;
2: if appPredictedPower ≤ budget then
3: firstNode ← maxV C[(

√
appSize−1)/2]

4: Q ← pattern(firstNode, newApp);
5: //Updating VC and DF values after mapping
6: for each nxy ∈ newApp do
7: for each core nij located in Row i and Column j do
8: r′ = maximum(|i− x|, |j − y|);
9: DFij− = e−αr′ ;

10: for r = 1 to maxRadius do
11: if r − r′ ≥ 0 then
12: V Cr

ij -= r - r′;
13: if V Cr

ij > maxV Cr then
14: maxV Cr ← V Cr

ij ;
15: else
16: if V Cr

ij = maxV Cr and DFij > DFmaxV Cr

then
17: maxV Cr ← V Cr

ij ;

it in all four cardinal directions (North, East, West, South).
The Sparsity Factor (SFij) for a node nij located at (i, j) is
expressed as:

SFi,j =
4∑

i=1

4∑

j=1

F (i+ i′, j + j′) (2)

where i′ = [0, 1, 1, -1], j′ = [-1, 0, 1, 1]. F (i, j) denotes if a
node located at (i, j) is free or not, such that

F (i, j) =

{
1 if ni,j is unoccupied
0 if ni,j is occupied

Based on the Sparsity Factor, we prioritize the nodes that
are more sparse. Sparse nodes ensure that they have less
effect on neighbor’s temperature. As a result, the dense nodes
are assigned least priority and are patterned in a way that
they provide necessary cooling effect needed by their active
neighbors. While mapping, we sort the tasks of the incoming
application as per communication volume. We choose the task
with highest communication volume and map it on to the first
node, the most sparse node. We proceed to the task with next
highest communication expense and map it onto the node with
the highest SF among the nodes in the selected square S. We
continue similarly, in order of communication of tasks and
sparsity of nodes so that tasks with higher communication gets
mapped onto nodes with higher sparsity, until all tasks of the
application are mapped. This way, the less sparse nodes (i.e.,
the dense nodes) which are tightly packed with active cores
as neighbors gets least priority. These denser nodes eventually
remain un-occupied among the other occupied nodes of the
region, minimizing the probability of creating potential hot-

2015 33rd IEEE International Conference on Computer Design (ICCD) 577



. .
.
. /�

.




��

�
�
�
�

� � . .
.
. -

.

. .
.
. -

.

�
. .

. �

. -
.

�
. .

. �

. -
. �

�

�%�

�#�

��� ���

��� �/�

Fig. 6: Example for pattern based mapping

spots.

The patterning is explained through an example presented
in Figure 6. Assuming an application with 4 tasks, as in
Figure 6(a), has arrived, the selected first node fn and the
corresponding square region is shown in Figure 6(b). The
most expensive task of the applications is task 3, which is
mapped on most sparse node, the fn. This automatically
effects the SF values of nodes surrounding it. The next in
order of communication is tasks 1, and the next node with
higher SF is chosen and task 1 is mapped on it. In the similar
fashion, the remaining tasks are mapped subsequently, as in
Figure 6(c)-(f). It is to be observed that after the application
is mapped, one node in the square is left such that it has
SF = 0, which would be of least priority for any incoming
application. On the same lines, there are other nodes with SF
= 1, which also attained a relatively lower priority for getting
mapped. These nodes are the candidates that would potentially
be dark, and provide the cooling effect needed by their active
neighbors. Thus, we pattern the dark cores among active cores
to minimize the probability of heat getting accumulating at
any single point on the chip. Conversely, had all the tasks of
the application been mapped contiguously, they would have
reached their critical temperatures by consuming only lower
amount of power and eventually trigger dark cores else where
on the chip. However, in the case where we patterned the
inevitable dark cores, the cores will reach critical temperatures
only after utilizing available power budget to a better extent,
or offer more budget to activate more cores.

The algorithmic flow of patterning is shown in Algorithm
2. Patterning starts with a selected first node, firstNode
and chooses the square region (SquaresizefirstNode) that can
fit the application (App) (line1). The application is sorted
into tasks (Tasks) as per their communication volume (line
2). The most expensive task is mapped onto the node with
maximum Sparsity Factor, maxSF (lines 5-6). The mapped
task is removed from the list of tasks to be mapped and the
mapped node is removed from the list available nodes in the
square (lines 7-8). This procedure is repeated until all the tasks
of the application are mapped. Intuitively, the SF value for
nodes in selected square changes with every occupied and thus
new maxSF is computed for every unmapped task.

V. EVALUATION

We simulated our proposed mapping strategy over ap-
plications modeled as task graphs of different sizes ranging
from 4 to 35 tasks, generated using [33]. Communication
volumes among these tasks are distributed randomly using
Gaussian elimination. We simulated traffic patterns of these

Algorithm 2 Patterning
Inputs: App : Application,firstNode : Selected First Node.
Global Variables: S Selected square, SF : Sparsity Factor for each
node in a square, maxSF : Node with the maximum SF in a square,
currentNode : Node onto which current task is being mapped;
Global Constants: Tasks : Vector of tasks of the application
App,size: Radius of square close to size of App

Body:
1: S ← SquaresizefirstNode;
2: Tasks = sort(App);
3: while App �= ∅ do
4: for each ti ∈ Tasks do
5: currentNode ← maxSF ;
6: map (ti)→ maxSF ;
7: App− ti ;
8: S − currentNode ;

applications using our in-house cycle-accurate many-core plat-
form implemented in SystemC. The specifications of Niagara-
2 like in-order cores obtained from McPAT [34] are used
as the baseline for processing elements. The communication
network infrastructure between processing elements is pro-
vided by a pruned version of Noxim [35] that uses mesh
topology and XY routing. Parameters related to technology
node scaling are extracted from Lumos framework [36], an
open source framework which quantifies power-performance
characteristics of many-core systems with technology node
scaling. We used TSP library [10] to calculate the Thermal
Safe Power. Proposed dynamic mapping is implemented by
a Central Manager (CM ), which is the node n(0,0) of the
mesh in our many-core platform. In the many-core platform
we implemented, (overview as in Figure4), a random sequence
of applications enter the system and are buffered into a FIFO.
Applications are serviced in a first-come-first-serve policy,
subject to availability of enough power budget. If enough
power budget can be allocated, the application is scheduled by
the Central Manager (CM ). A suitable first node for mapping
the incoming application is chosen by the (CM ), followed by
mapping all the remaining tasks of the application.

We evaluate our dark silicon patterning approach (from
here on referred to as PAT) against the combination of SHiC
[8] and CoNA [19] (from here on referred to as SC), for
first node selection and mapping respectively. These two
approaches are state-of-the-art strategies that prioritize regions
with free nodes and contiguity among nodes selected for map-
ping, with the primary objective of minimizing communication
latency. Since we relaxed the constraint on contiguity among
individual applications, we chose to compare against these
works to quantify the effect of our patterning approach against
contiguity. In view of applications that require a conservative
upper bound on power, we also compare PAT against worst
case power budget that can be offered with a given number of
active cores (TSPwc). Given a fixed number and sequence of
applications, we compare power budgets offered by different
mappings based on different mapping strategies. The entry
sequence of applications is maintained the same for different
mapping approaches for a fair comparison. In case of TSPwc,
we compare the power budget given by [10] for the number
of active cores in the mapping generated by PAT. We run
our simulations over different network sizes of 16 × 16 and
20×20. In addition, we emulate a varying dark silicon behavior
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ranging from 50% darkness through 90% by adjusting initial
upper bound on power consumption (TDP). We set the TDP
to 177.7W and 277.7W respectively for 16× 16 and 20× 20
network sizes using 22nm technology, keeping the power
density constant [36]. ITRS projections present the fact that
by the year 2020, computer systems would face 90% dark
silicon and that many-core platforms would be in upwards of
512 cores to gain maximum peak performance [4]. Hence, we
considered the case of the chip being 90% dark, while also
including contemporary projection of 50% dark area. We limit
the number of applications entering the system to be in ac-
cordance with dark areas. We evaluate the proposed approach
over power budget provided per mapping and corresponding
throughput. The power budget is computed using TSP library
for every mapping, traced with entry of a new application.
The ambient temperature is set to 45◦C and the safe operating
temperature beyond which chip’s functionality fails is set to
80◦C.

The average (arithmetic mean) and best case percentage
gains in power budgets of different mapping configurations
using PAT strategy over SC for different network sizes are
presented in Table I. PAT achieves a surplus power budget
when compared to SC, as the active cores are optimally
arranged, balancing heat distribution across the chip. In con-
trast, SC tries to map contiguously, leading to tightly packed
active cores which get heated up already at lower power
consumption, resulting in a lower power budget. In addition
to a better power budget, the chip always operates under
safe peak operating temperature (80◦C), since the budgets are
computed through TSP library which manages the upper bound
on power avoiding hazardous hotspots. It can be observed that
the surplus budget achieved in case of PAT increases with
increase in amount of dark silicon on the chip. With 90% of the
chip being dark, utilizing the remaining fewer number of cores
that can originally be powered (active) becomes crucial. PAT
performs better in such scenarios, given the wider choice of
dark cores that can be patterned, while SC remains dark silicon
agonistic. The gain also increases with increase in network
size, once again due to increase in scope of the chip area
that can be patterned. Moreover, this is in line with the power
budget gain obtained for randomly distributed tasks compared
to worst case budget generated by TSP library, as in Figure 3.

In view of future applications like big data, artificial intel-
ligence etc., requiring many-core platforms of larger network
sizes, and the issue of dark silicon predicted to grow worse,
patterning becomes quintessential to extract higher perfor-
mance as expected from a many-core system. The potential of
patterning could be further better realized with highly scaled up
networks and subsequent increase in dark silicon. Nevertheless,
the gain in power budget can still be realized at contemporary
many-core platforms of relatively smaller network sizes. We
simulated 12 × 12 network for 90% dark area to observe
significant gain in power budget in case of PAT compared
to SC and TSPwc. The average and best case (BC) gain
in power budget and throughput achieved by PAT over SC
and TSPwc are shown in Figure 7. Some of the low power
and safety critical applications follow a strict and conservative
approach on setting a single upper bound on power budgets.
We account for such applications by comparing our proposed
approach against power budget that could result from a worst
case mapping configuration for a given number of active cores,
generated by [10]. The surplus gained when compared to worst

TABLE I: Surplus Power Budget (in %) of PAT over SC

Network Size 90% dark 75% dark 50% dark
Avg. Best Avg. Best Avg. Best

16×16 5.74 13.9 4.15 11.3 2.19 7.68
20×20 6.54 17.17 5.06 8.55 2.63 4.28

TABLE II: Surplus Power Budget of PAT over TSPwc

Network Size 90% dark 75% dark 50% dark
Avg. Best Avg. Best Avg. Best

16×16 32.33 34.92 22.02 24.14 11.73 13.20
20×20 38.70 40.83 22.40 27.4 12.50 13.33

case power budgets for different network sizes and darker
chip areas is shown in Table II. Understandably, PAT offers
better power budget against worst case values. Although the
comparison is against worst case budgets, it still establishes
the impact of patterning on mitigating dark silicon to a large
extent.

Since a surplus in power budget is gained through PAT, it
can be utilized to power up more number of cores without vio-
lating any safe upper bound on power consumption, which re-
flects in throughput. The proposed first node selection method
chooses diverse regions for different applications which has
no impact on individual application’s latency. However, few
applications using PAT might have a lower individual latency
at times, due to the compromise on contiguity among tasks
of a patterned application. Despite the occasional latency, the
overall throughput of the system using PAT still remains higher
compared to that of SC, as the gain achieved in terms of
power budget would (over) compensate for the latency. Gain in
throughput for PAT compared to SC for different mesh sizes
and dark regions is presented in Table III. Throughput gain
depends largely on surplus budget gained, which in turn can be
used to activate more cores. Thus, throughput achieved using
PAT strategy follows a similar trend to that of surplus power
budget achieved.

TABLE III: Throughput gain for PAT over SC

Network Size 90% dark 75% dark 50% dark
Avg. Best Avg. Best Avg. Best

16×16 7.27 15.64 4.59 13.92 2.42 8.58
20×20 8.5 20.99 5.88 10.21 2.89 4.54

Surplus Power Budget (%)

5

10

15

20

25

4.56

9.99

20.19

26.68

Avg SC BC SC Avg TSP BC TSP

(a) Surplus Power Budget (in %)

Throughput gain (%)

6

8

10

12

5.57

11.51

Avg SC BC SC

(b) Gain in throughput

Fig. 7: Surplus budget and throughput gain of PAT over SC
and TSPwc for 12× 12 mesh
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VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a dark silicon aware run-
time mapping strategy for achieving a better power budget.
We implemented our proposed approach in two phases viz.,
first node selection and patterning based mapping, where we
evenly distribute tasks across the chip area to balance heat
distribution. This lets the active cores to utilize relatively
more power before they reach a maximum limit beyond which
chip’s functionality is harmed due to thermal violation. As
a result, different applications utilize surplus power budgets
better to activate more cores and thus gain in performance.
Noticeably, the surplus power budget reflects in better resource
utilization and throughput, while ensuring thermal safety of the
chip, using a software run-time technique, with no hardware
overhead. We observed that gain in terms of power budget
and throughput increases with increase in network sizes and
amount of dark silicon on the chip, stressing the importance of
dark silicon aware mappings moving into the future workload
characteristics and increase in dark silicon.

We considered our many-core platform to be homogeneous,
although having a heterogenous combination of cores with
different power-performance characteristics could have more
potential. The surplus budget could be better used to activate
even more number of cores at lower frequencies and also
to run heterogeneous workloads on cores that suit them.
Implementing our technique and allocation of surplus budget
for a heterogeneous many-core platform is planned for future
work.
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Abstract—Increasing power densities of many-core systems leaves a fraction of on-chip resources inactive, referred to as dark silicon.

Efficient management of critical interlinked parameters - power, performance and temperature can improve resource utilization and

mitigate dark silicon. In this paper, we present a run-time resource management system for thermal aware performance boosting using

a dark silicon aware run-time application mapping strategy. The mapping policy patterns inactive cores among active cores for

relatively lower and even distribution of operating temperatures. This provides enough thermal headroom for boosting the frequency of

active cores upon performance surges and allows sustained boosting periods, improving the performance further. We design a

controller for thermal aware performance boosting that decides on efficient allocation utilization of power budget and thermal headroom

obtained from patterning. Our strategy yields up to 37 percent better throughput, 29 percent lower waiting time and up to 2 � longer

boosting periods, in comparison with other state-of-the-art run-time mapping policies.

Index Terms—Dark silicon, run-time mapping, dynamic power and thermal management

Ç

1 INTRODUCTION

POWER densities of may-core systems are increasing with
disproportional voltage and technology node scaling,

contributing to higher on-chip temperatures [1], [2]. As a
result, a section of the chip has to remain inactive to function
within safe thermal limits. This inactive circuitry of the chip
is termed as Dark Silicon [3]. Computer systems cap the
power consumption at a fixed upper bound to ensure that the
on-chip temperature due to power dissipation is within a
safe limit. Thermal design power (TDP) is a widely used
design time estimate of the upper bound on power consump-
tion that ensures thermal safety. TDP is a conservative esti-
mate with the assumption that the chip is operating at worst
case voltage and frequency levels, andworkloads [4]. An effi-
cient alternative to TDP is Thermal Safe Power (TSP), a vari-
able run-time estimate of upper bound on power, calculated
dynamically as a function of number of active cores and their
spatial alignment [5]. Considering the mutual thermal effect
of neighboring active and inactive cores, application map-
ping can determine the maximum utilizable power budget.
Using TSP instead of TDP presents a scenario where utilizing
the same power budget can result in different temperatures

for different mappings. State-of-the-art application mapping
policies that handle thread-to-core allocation prefer i) a con-
tiguousmapping scheme tominimize inter-core communica-
tion latency [6] and ii) the set of cores chosen for mapping an
application to be regular geometric structures such that
potential incoming applications do not suffer with a dis-
persed set of available cores and to avoid inter-application
congestion. At lower technology nodes, conventional map-
ping approaches result in denser mappings which accumu-
late temperature faster, limiting the maximum utilizable
power budget within safe thermal limits. In contrast, sparse
mappings that compromise on contiguity can provide higher
utilizable power budget before reaching the critical tempera-
ture. With shrinking transistor sizes and increasing power
densities, mapping policies have to be adapted to maximize
performance through efficient power budget utilization.

1.1 Implications of Mapping on Power Density

We demonstrate the effect of mapping on temperature accu-
mulation through the following example. Consider an
application with 8 threads, run on a 16-core system
arranged in a 4�4 mesh, as shown in Fig. 1a. Each core is
modeled based on Niagara-2 architecture at 22nm technol-
ogy, power and performance metrics are extracted from
Lumos analytical framework [7]. The application is exe-
cuted on our in-house cycle accurate simulator (see Sec-
tion 4). All the 8 threads are mapped in a dense manner on
8 cores and the remaining cores are power gated. Each
thread consumes an average power of 5.95 W, resulting in
total active power of 47.6 W (5.95�8). We assume the critical
temperature of the chip to be 80 �C. The final steady state
temperature of the system after running the application for
100 ms is shown in Fig. 1a. This mapping configuration has
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resulted in the chip reaching its critical temperature after
consuming 47.6 W of power. For the same application and
set up, consider the mapping configuration in Fig. 1b. The
same application is mapped sparsely, such that each active
core has an idle neighbor. With cooler neighboring cores,
temperature accumulation of active cores is slowed down.
For same amount of power consumption, the sparse map-
ping has resulted in almost 4�C lower final steady state tem-
peratures, showing the effect of mapping on temperature.

With critical temperature set to 80�C, available thermal
headroom can be utilized i) to power upmore cores, ii) to run
active cores at a higher frequency i.e., boosting, iii) to lower
overall on-chip temperatures. This allows both per-applica-
tion performance to be improved by boosting, and per-chip
throughput by activating more cores. Consider the final
steady state temperature of the same application with sparse
mapping configuration as discussed earlier in Fig. 1c, which
is boosted within thermally safe limits. With the sparse map-
ping configuration, the chip has reached critical temperature
after each core consuming 6.8 W of power. The total power
that can be consumed with sparse mapping (6.8 �8=54.4 W)
is higher than that of the dense mapping, yielding a 6.8 W of
surplus power budget. The sparse mapping configuration in
Fig. 1b has 5.96 percent lower temperature and the one in
Fig. 1c has 14.2 percent of surplus power budget, over the
dense mapping configuration. Assuming that each thread
consumes 5.95 W of power as in Fig. 1a, the surplus budget
can be used to activate at least one more core on the chip,
increasing the utilization to 12.5 percent, thus mitigating dark
silicon. We establish that the performance and utilization of
applications can be improved by considering sparsity in
application mapping, which provides power headroom for
activating more cores and/or thermal headroom for boosting
the frequency of active cores. We refer to the sparse mapping
approach which aligns cool inactive cores among hot active
cores asDark silicon patterning [8].

1.2 Impact of Dark Silicon Aware Mapping and
Boosting on Performance

The thermal headroom provided with dark silicon patterning
can be leveraged to boost the frequency over short bursts of
time to improve performance while minimizing the likeliness
of thermal violation. We refer to this technique as boosting,
distinguishing from conventional frequency scaling for per-
formance enhancement [9]. We define boosting period as the

time taken for a power violation to translate into a thermal
violation. Boosting period largely depends on available ther-
mal headroom, on-chip temperatures, the rate at which tem-
perature accumulates and frequency to be boosted to. In
addition to these factors, power-performance characteristics
of an application and the combination of other concurrent
applications also effect the boosting period. With hot active
cores neighbored by cool inactive cores, dark silicon aware
mapping is likely to result in higher thermal headroom and
importantly a lower rate at which temperature accumulates
with power. Dark silicon aware mapping thus improves the
performance gains from boosting, which necessitates consid-
eringmapping and boosting together at run-time.Weprovide
insights into the compound effect of dark silicon aware map-
ping on boostingwith the following example.

Motivational Example. Consider a synthetic application of
8 threads, executed on a similar set up mentioned in
Section 1.1 with both dense and sparse mappings. Fig. 2
shows the rate at which transient temperature accumulates
for the application with dense and sparse mappings over 100
ms of execution time. The thermal profile was extracted
using HotSpot 6.0 [10], with its default configuration. In both
cases, the application started execution with same initial
temperature of 70 �C. Temperature accumulates faster with
dense mapping, with each active core’s temperature com-
pounded by neighboring core’s temperature. In contrast,
temperature accumulates relatively slower with sparse map-
ping, due to the interleaved inactive cores minimizing the
effect of temperature among active cores. After 100 ms of
execution, there is about 2 �C of difference between the tem-
peratures of both the mappings. Assume a performance

Fig. 1. Effect of mapping on temperature and power budget for a 16-core system arranged in 4x4 mesh. Each block represents a tile with power con-
sumption (W) in top left corner and final steady state temperature in bottom right corner (a) Dense mapping, (b) Sparse mapping that consumes
same power as dense mapping at lower temperature, (c) Sparse mapping that utilizes more power than dense mapping at same temperature

Fig. 2. Effect of mapping on temperature accumulation.
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surge requirement at 100 ms, which is met by boosting the
frequency of active cores from 3 GHz to 3.75 GHz. The sud-
den increase in frequency causes increase in power and tem-
perature, as shown in Fig. 3. At time t=100 ms, the dense
mapping is operating at about 76 �C, while sparse mapping
is operating at 74 �C. With dense mapping being at a higher
temperaturewhen boosting is invoked, subsequent tempera-
ture accumulation towards critical temperature is faster,
lowering the period of boosting. The dense mapping reaches
the critical temperature of 80 �C at 131 ms, after sustaining a
boosting period of 31 ms. The frequency is reduced back to
3GHz to prevent potential thermal violation. The application
finished execution eventually after 189 ms. On the other
hand, the sparsemapping, which is executing at a lower tem-
perature when boosting is invoked, sustains 75 ms of boost-
ing - about 2x longer than that of the denser mapping. As a
result, there is a significant performance gain during the
period of boosting and the application finishes execution by
175 ms. The sparse mapping configuration could sustain 41
percent longer period of over-boosting which reflects in 8
percent of performance as compared to the dense mapping.
The sparsely mapped application remained well below the
critical temperature, providing thermal headroom for longer
periods and/or higher levels of boosting. Our analysis dem-
onstrates that mapping applications sparsely followed by
boosting maximizes performance. This also avoids frequent
oscillation between frequency up and down scaling that
densely mapped applications suffer with, due to faster tem-
perature accumulation.

1.3 Our Contributions

In our previous work [8], we proposed dark silicon pattern-
ing, a run-time mapping technique to increase utilizable
power budgets by balancing heat distribution evenly across
the chip. We used the surplus power budget to improve
chip throughput by activating more cores. Dark silicon pat-
terning reduces the effect of temperature accumulation
among neighboring active cores, offering thermal headroom
for active cores’ frequency to be boosted before reaching
critical temperatures. In this work, we focus on improving
performance within thermal constraints by utilizing the
thermal headroom from dark silicon patterning to boost the
frequency of active cores upon performance requirements.

We propose adBoost, a thermal aware adaptive boosting
technique that considers both mapping and boosting deci-
sions together for creating enough thermal headroom for
sustainable periods of boosting. We split our approach into
2 steps viz., 1) dark silicon patterning based mapping and
power management - to create power and thermal head-
room, followed by 2) thermal aware adaptive boosting - to
efficiently utilize thermal headroom created. We augment
our previous run-time controller for power management
that supports dynamic application mapping and power
allocation with the proposed boosting controller, adBoost.
The adBoost controller receives feed-back on instantaneous
temperature from the system to make decisions frequency
scaling decisions upon performance requirements for effi-
cient utilization of available thermal headroom obtained
with patterning. Existing works on power budgeting [11],
dark silicon aware power management [12], [13], dark sili-
con aware interconnect designs [14], [15], frequency boost-
ing [16] have considered each of their focus aspects and
scenarios independently, without considering the effect of
each technique on subsequent inter-related aspects. In our
work, we integrate application mapping - to maximize
power budgets and minimize on-chip temperatures, power
allocation - to efficiently utilize the surplus budget provided
with mapping, and boosting - to leverage thermal head-
room offered with sparse mapping for performance
improvement, honoring thermal constraints. Our contribu-
tions are as follows:

� A run-time mapping technique for dark silicon pat-
terning to evenly distribute heat across the chip that
improves power budget.

� Design, analysis and implementation of thermal
aware performance boosting mechanism through
frequency scaling.

� Feedback controllers for efficient allocation of sur-
plus power and thermal headroom to improve per-
chip throughput and/or per-application latency.

� Design and implementation of a system manager
that integrates the run-time mapping unit - for sur-
plus power budget, power management - for power
allocation decisions and boosting mechanism - for
utilizing the thermal headroom available.

Fig. 3. Effect of mapping on boosting and performance. Thermal profile and progress of execution are shown for dense and sparse mappings.
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2 DARK SILICON AWARE MAPPING

We prefer run-time mapping as a pro-active choice for even
distribution of heat and surplus power budget gains, as
opposed to reactive dynamic power management techni-
ques. Our dark silicon aware mapping solution considers
spatial alignment of active and dark cores with the objective
of maximizing utilizable power budget. In the following
sections, we elaborate our mapping strategy.

2.1 Inter-Application Sparsity

While conventional mapping approaches prefer contiguity
and regular geometric structures for performance and
minimal congestion,we propose sparsity for even heat distri-
bution and minimizing hot spots. Two factors that distin-
guishes a sparse mapping from a contiguous mapping are
spatial distribution of applications and sparsity among tasks
of each application. Consider the heat dissipated by a core
Ci, which is a 3-tuple (Pi, Tn, Tamb), where Pi is the power dis-
sipated by the core, Tn is neighbouring cores’ temperature
and Tamb is the ambient temperature. Contiguous mappings
accumulate heat faster with neighboring cores’ temperature
effecting the active cores (higher Tn), where as the sparse
mapping we propose benefits from cooler inactive neighbor-
ing cores (lower Tn).

We demonstrate the effect of inter-application spatial
alignment on temperature and power budget through
another example, presented in Fig. 4. Three applications
App1, App2 and App3 with 12, 8 and 4 tasks respectively
are running on the system. Thermal profiles of these 3 appli-
cations on a 144-core system with a contiguous mapping is
shown in Fig. 4a. The power budget of this mapping config-
uration computed using TSP library [5] is 66W. Thermal
profiles of the same applications running on the same sys-
tem with sparse mapping configuration (at both inter-appli-
cation and intra-application levels) is shown in Fig. 4b. This
mapping configuration provides a power budget of 74.6W,
as calculated by TSP library. An improvement of 8.6W in
power budget can be observed for the spread-out, patterned
mapping compared to tightly packed and contiguous map-
ping. Contiguous mapping results in higher on-chip tem-
peratures and lower utilizable power budget, with
temperature accumulating among neighboring active cores
and applications. Sparse mapping on the other hand has
lower on-chip temperatures and higher utilizable power
budget, with both inter-application and inter-task sparsity.

Assuming that some of the applications require perfor-
mance surges at run-time, boosting them for sustained peri-
ods depends on both neighboring active cores within the
applications as well as other (spatially closer) concurrently
running applications. In view of these factors, we split our
mapping approach into two phases viz., selecting a region
that is spatially dispersed from current set of applications
running on chip and mapping tasks of the application
sparsely such that active and inactive cores are patterned in
the selected region. Latency Vs Performance Gain: The contig-
uous mapping (Fig. 4a) has a per-core budget of 3 W,
powering up 22 cores with 66 W. Assuming this as the base-
line, the sparse mapping (Fig. 4b) could power 74.6/3 =
24.7 cores with the surplus budget gained through pattern-
ing, mitigating dark silicon by 12.2 percent. The average
packet latency in each patterned applications App1, App2
and App3 is 1, 3.5 and 3.8 percent (shown in Fig. 4b) more
than that of the contiguous mappings respectively. Despite
the dispersion and increased inter-task communication
latency, sparse mapping has power budget gain of about
12 percent compared to dense mapping and thermal head-
room for potentially boosting the applications. It is also to
be noted that the inactive cores are the inevitable dark cores
- instead of leaving them out naively, we use them to bal-
ance out heat distribution and gain power budget.

2.2 First Node Preferences

We split our mapping approach into two phases - first node
selection, followed task allocation, as proposed in [6]. First
node selection is to choose a free core on the chip around
which the tasks of an application can subsequently be
mapped to fulfill power, performance and/or latency objec-
tives. Based on our analysis presented in Fig. 4, we prefer
nodes that are far from active cores as suitable candidates
for first node - to minimize the compound effect of tempera-
ture. Our objective is to find a free and sparse first node
which has: i) enough number of free nodes around it to allo-
cate tasks of the incoming application with minimal internal
congestion and ii) minimal effect of temperature due to
neighboring (active) cores.

Free First Node.Wemodify the first node selection strategy
MapPro,MapPro, in order to meet our first objective of finding
a free first node. MapPro uses Vicinity Counter (VC) as a met-
ric to represent number of free cores around a given node
within in a given region. The nodewith a relatively higherVC
value is preferred as the first node such that it can fit all the
tasks of an application within the region around it. It should
be noted that VC of node is relative to the size of the region
i.e., the same node has different VC values over different
regions. For example, a node within a 5�5 (25 cores) sized
region of free cores has 24 free cores around it, whereas the
same node within a 3�3 (9 cores) sized region has 8 free cores
around it. The VC parameter also represents internal conges-
tion around a given node by considering the number of occu-
pied nodes around it - intuitively reflecting the likeliness of
congestion, if mapped around that node. Implementation
details ofMapPro are elaborated in [17].

Sparse First Node. Tomeet our second objective of minimiz-
ingmutual heat effect among active cores of concurrently run-
ning applications, we prefer nodes that are farther from (if
any) currently active cores as candidates for the first node.

Fig. 4. Effect of inter-application mapping on temperature accumulation.
(a) Contiguous mapping of 3 applications, with their individual mapping
configurations. (b) Sparse mapping of 3 applications, with their individual
mapping configurations and percentage of packet latency penalty for
mapping sparsely, normalized against contiguous mappings.
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The temperature effect of every active core on other cores of
the chip decreases exponentially, with distance from the
active (hot) core. In other words, the greater the distance from
an active core, the lesser the effect of heat from it. In order to
minimize this heating effect fromactive cores of other applica-
tions, we prioritize nodes that are as far as possible from such
active cores. Inspired by the surface tension phenomenon
[18], where energy distribution of a flat surface turns into a
curved surface with applied surface pressure, we model the
effect of temperature of an active core on other cores of the
chip in a similar fashion. We define Distance Factor (DF) to
quantify the effect of temperature of an active cores on other
cores on the chip, as follows: Definition: Distance Factor, DFij,
for a node located at (i,j) is the weighted sum of impact of distance
from all the other occupied nodes located at (x,y) such that
ðx; yÞ 2Mesh

DFi;j ¼
X

Wni;j � ðe�aðdij�xyÞÞ; (1)

where Wnij is the weight of node nij, dij�xy is distance from
nodes located at (i,j) and (x,y) and a is the mesh size. We
augment MapPro’s choice of free first node with the sparse
first node to find a suitable candidate for the first node. The
algorithmic flow of first node selection is shown in Algo-
rithm 1 which is inspired by our previous work presented
in [17]. Whenever a new application enters the system, the
average power budget required for its execution is esti-
mated. Subject to the availability of power budget, the
application is serviced by finding a suitable first node based
on VC and DF values (lines 1-3). Number of tasks of the
application determines the region size over which VC val-
ues will be computed. The node with maximum VC value,
maxVC, among all nodes is chosen as the first node, and
thus also selecting the polygon (preferably square) centered
at maxVC. The chosen first node and the application are
passed to patterning phase (line 4). Mapping the tasks based
on patterning is explained in the following section and
Algorithm 2. Mapping a new application alters the VC and
DF values for all the nodes on the chip, which need to be
updated. After mapping an application, we calculate the
new VC and DF values for all the nodes, to be used for
choosing the first node for subsequent applications. VC val-
ues for different sizes of regions are updated (lines 6-23) to
determine the new maxVC node. Pro-active VC and DF cal-
culation eases first node selection for next incoming applica-
tion (based on number of tasks of the application) and
reduces first node selection overhead. Conflict between
nodes having same VC value is resolved by considering cor-
responding DF values (lines 16-18). Status of the nodes run-
ning an application is reset to free, once the application
leaves after finishing its execution. The VC and DF values
are updated as per the altered mapping configuration.

2.3 Dark Silicon Patterning

We prefer mapping tasks of the application in a sparse man-
ner to minimize potential hot-spots. We define the likeliness
of an active core effecting the temperature of its neighbors
through its sparsity. Sparsity of a node nij represents the
number of free nodes that are neighboring it in four cardinal
directions (North, East, West, South). The Sparsity Factor
(SFij) for a node nij located at ði; jÞ is expressed as:

SFi;j ¼
X4

i¼1

X4

j¼1
F ðiþ i0; jþ j0Þ; (2)

where i0 = [0, 1, 1, -1], j0 = [-1, 0, 1, 1]. F ði; jÞ denotes if a
node located at ði; jÞ is free or not, such that

F ði; jÞ ¼ 1 if ni;j is unoccupied

0 if ni;j is occupied:

�

Algorithm 1. The Mapping Algorithm

Inputs: newApp: New application, budget: Avail. power budget;
Outputs: Q: Mapping;
Constants: M: Size of the mesh, groups : Number of square
groups = ½ð ffiffiffiffiffi

M
p � 1Þ=2�;maxRadius: Maximum radius of the

square (ð ffiffiffiffiffi
M
p � 1Þ=2), a:Mesh size parameter

ffiffiffiffiffi
M
p

; Pavg: Aver-
age power consumption per node;
Global Variables: VC : Vicinity Count of a node,maxVC : Node
with the maximum VC, firstNode : Selected first node for map-
ping,DF : Distance factor;

Body:
1: appPredictedPower jnewApp j � Pavg;
2: if appPredictedPower � budget then
3: firstNode maxVC½ð

ffiffiffiffiffiffiffiffiffiffiffiffi
appSize
p

�1Þ=2�
4: Q pattern(firstNode, newApp);
5: //Updating VC and DF values after mapping
6: for each nxy 2 newApp do
7: for each core nij located in Row i and Column j do
8: r0 ¼ maximumð j i� x j ; j j� y j Þ;
9: DFij� ¼ e�ar

0
;

10: for r = 1 tomaxRadius do
11: if r� r0 � 0 then
12: VCr

ij -= r - r0;
13: if VCr

ij > maxVCr then

14: maxVCr  VCr
ij;

15: else
16: if VCr

ij ¼ maxVCr andDFij > DFmaxVCr then
17: maxVCr  VCr

ij;

Algorithm 2. Patterning

Inputs: App: Application, firstNode: Selected First Node.
Global Variables: S Selected square, SF : Sparsity Factor for
each node in a square, maxSF : Node with the maximum SF in
a square, currentNode: Node onto which current task is being
mapped;
Global Constants: Tasks : Vector of tasks of the application
App; size: Radius of square close to size of App

Body:
1: S SquaresizefirstNode;
2: Tasks = sortðAppÞ;
3: while App 6¼ ; do
4: for each ti 2 Tasks do
5: currentNode maxSF ;
6: map (ti)! maxSF ;
7: App� ti ;
8: S � currentNode ;

Following the first node selection, we build a polygon P
(preferably a square), which is a set of all the un-occupied
nodes around the selected first node. Mapping an application
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in this region P would have lesser effect of temperature from
other applications. Within the selected region, we prioritize
the nodes that aremore sparse tomap tasks of the application.
As a result, sparse nodes are occupied first, leaving out the
denser nodes to be patterned in a way that they provide nec-
essary cooling effect needed by their active neighbors. While
mapping, we sort the tasks of the application as per their com-
munication volume.We choose the task with highest commu-
nication volume and map it on to the first node, the most
central and sparse node such that proximity with other inter-
communicating tasks is higher. We proceed to the task with
next highest communication volume by sorting all the
remaining tasks as per their total communication volume and
map it onto the node with the highest SF among the nodes in
the selected region P . We continue in a similar order of tasks -
based on communication volume and similar order of nodes -
based on sparsity, such that tasks with higher communication
gets mapped onto nodes with higher sparsity, until all tasks
of the application are mapped. Mapping tasks with higher
communication volume in the order of sparsity allows corre-
sponding communicating tasks to be in proximity of the high
communication volume tasks,minimizing theweightedMan-
hattan distance for inter-task communication. Throughout the
mapping procedure, dense nodes have least priority, which
would remain un-occupied among the other occupied nodes
of the region. This provides the necessary cooling effect for
improved power budget utilization.

The algorithmic flow of patterning is shown in Algo-
rithm 2. Mapping starts at firstNode, selected from Algo-
rithm 1 by choosing square region (SquaresizefirstNode) such that
application (App) can fit within this region (line1). Tasks
(Tasks) of the application are sorted as per their communi-
cation volume (line 2). The most expensive task as per com-
munication is mapped onto the node with maximum
sparsity factor (SF), maxSF (lines 5-6). The mapped task is
removed from the list of tasks to be mapped and the
mapped node is removed from the list available nodes in
the square (lines 7-8). This procedure is repeated until all
the tasks of the application are mapped. The SF value for
nodes in selected square changes with every occupied and
thus newmaxSF is computed for every unmapped task.

3 SYSTEM DESIGN

Our system design consists of three phases - i) run-time
mapping that maximizes utilizable power budget, ii) power
controller that utilizes surplus power budget to activate
more cores (if possible) and iii) boosting controller that
increases frequency beyond the base frequency subject to
thermal safety. The hierarchical view of the system architec-
ture is shown in Fig. 5. We first present the work flow of the

framework, followed by details on individual modules in
the following sections. Work flow. The run-time mapping
unit (RMU) is invoked upon on arrival of new applications
and is responsible for task-to-core allocation. The RMU
chooses appropriate first node and subsequently finalizes
task-to-core mapping. The TSP Calculator estimates safe
upper limit for power consumption, based on number of
simultaneously active cores using the mapping configura-
tion. Once a new application is mapped and/or a currently
running application exited the system, upper bound on
power is re-evaluated using the TSP calculator. The upper
bound is set until further variation in mapping due subse-
quent entry/exit of an application. The power controller
handles power actuation decisions by monitoring current
power consumption and comparing against safe limit and
communicates the DVFS and power gating settings to the
central manager. Power controller is invoked over the
parametric power epoch Epower. The boost controller makes
boosting decisions upon performance requirements of
applications and sends the corresponding frequency level
and application information to the central manager. The
boost controller is invoked over the boosting epoch Eboost. It
is to be noted that power controller decisions are based on
power headroom available whereas boost controller deci-
sions are based on thermal headroom. DVFS settings from
the power controller are proportional to the surplus power
budget available. Boost controller’s decisions rely on tem-
perature feedback, irrespective of power headroom. We set
Epower as 4� Eboost, such that boosting decisions are made
conservatively to avoid thermal violation. This minimizes
the oscillation of voltage and frequency scaling decisions
among power and boost controllers. Both power controller
and boost controller act independently over their respective
epochs and communicate their decisions to the central man-
ager. The central manager enforces voltage and frequency
levels and power gating settings as per the decisions made
by power controller and the boost controller by arbitrating
between them. Fig. 6 shows modular work flow of different
control units of our approach. Individual modules of the
system are detailed in following sections.

3.1 Run-Time Mapping Unit

Applications arriving dynamically are serviced by the Run-
time Mapping Unit (RMU) by finding active cores around a
suitable first node, followed by task-to-core mapping. The
RMU presented in Fig. 5 uses the pro-active approach, Map-
Pro [17], for first node selection and dark silicon patterning
based mapping (PAT) [8] for application mapping. The
objectives and algorithmic flow of patterning based map-
ping have been elaborated in Section 2.3. Detailed descrip-
tion of on first node selection and dark silicon patterning
are presented in our previous works [17] and [8] respec-
tively. Each task of an incoming application holds computa-
tion and communication factors, indicating their relative
amount of computation and inter-task communication

Fig. 5. System architecture.

Fig. 6. Workflow of proposed framework.
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volumes. RMU estimates the average power consumption
of an incoming application as the accumulated sum of
power consumption of task-per-core, under nominal condi-
tions. RMU receives the available power budget from the
power controller and compares it with the estimated aver-
age power consumption of the incoming application. RMU
decides to map the new application with sufficient power
budget being available, while the application waits in the
queue in case of limited power budget. A possibility of
avoiding longer application waiting time is by scheduling a
sub-set of independent tasks that would fit within available
power budget. This approach requires application level
information on inter-task dependencies, and availability
and choice of appropriate set of independent tasks that
would fit within the limited power budgets.

3.2 Power Controller

The power controller is responsible for power management
and allocation decisions, as shown Fig. 5. The TSP Calcula-
tor (in Fig. 5) receives current mapping configuration to
dynamically calculate the thermal safe power (TSP). TSP is
evaluated whenever there is a change in mapping configu-
ration i.e., upon arrival of new application or exit of a cur-
rently running application. We use the light weight open
source TSP library for power budget estimation [11]. The
power controller estimates available power budget as the
difference between the monitored power consumption and
the safe upper bound determined by TSP Calculator. We
use a PID controller to determine voltage and frequency
level settings of cores, such that they are proportional to the
available power budget. In case of a power violation, i.e.,
power consumption exceeding TSP, the power controller
scales down the (V,F) levels proportionally to reduce the
power consumption to a safe limit. With power constraints
honored i.e., power consumption below TSP, the power
controller allocates the surplus budget in two possible ways,
i.e., either to map new applications (if any), or to throttle
currently running applications. When there is a new appli-
cation waiting in the queue for execution, the surplus bud-
get is used to map the new application, provided that the
available power budget is enough to accommodate the new
application. With no new application arrival or insufficient
amount surplus budget to fit the new application, the avail-
able budget is used to throttle currently running applica-
tions. In this scenario, the power controller scales up the
(V, F) levels of the running application(s), corresponding to
the amount of power budget available. In case of throttling
current applications, the power controller also considers

applications’ priority level and network characteristics to
determine suitable candidates among concurrently applica-
tions to actuate DVFS. In case of up/downscaling, voltage
and frequency levels determined by the power controller
are received by the central manager, which enforces DVFS
settings for power actuation. Algorithmic implementation,
decisions on power allocation and choice of suitable candi-
dates for DVFS are detailed in our previous work [19].

Dark and Dim Silicon Considerations. We present a work-
ing scenario with dynamic entry and exit of applications,
creating a variable workload. This practically leads to both
dark silicon and dim silicon baselines, as shown in Figs. 7a,
7b, 7c, and 7d, with entry of four applications consecutively.
In Fig. 7a, one application (App1) of 7 tasks being mapped
at high (V,F) levels. As another application (App2) of 4 tasks
enters, power budget is estimated and has to be shared
among the two applications. This results in downscaling the
App1 to accommodate both App1 and App2 within the safe
limits. As new applications continue to arrive, the power
budget is allocated accordingly using DVFS. Fig. 7d shows
the scenario where there are 4 concurrent applications run-
ning on the chip. Available power budget has to be shared
among all the applications by throttling down certain appli-
cations as per their priority requirements and network char-
acteristics. With several concurrent applications, the system
execution is inclined towards dim silicon, whereas rela-
tively smaller number of concurrent applications presents
dark silicon scenario. Power budget gains from patterning
the applications is higher with dark silicon, as compared to
a dim silicon baseline.

3.3 adBoost Controller

The boost controller is responsible for boosting the fre-
quency of active cores, subject to application requirements
and thermal safety. The controller is invoked over an epoch
Eboost. Transient and steady state per-core temperature val-
ues are calculated using HotSpot 6.0 with its default config-
uration over every epoch Eboost. Trace file containing per-
core power values is obtained from the power controller. In
every epoch, it monitors on-chip per-core temperatures to
estimate the thermal headroom~T , calculated as the differ-
ence between critical temperature (Tcrit) and maximum tem-
perature (Tmax) among active cores. When an application
requests for performance improvement, the controller eval-
uates ~T to handle boosting process. Fig. 8 shows the con-
trol flow of the boost controller subject to the thermal
headroom available. The algorithmic flow of boosting is
presented in Algorithm 3. ~T > 0 When there is enough

Fig. 7. Varying DVFS levels using the power controller with dynamic workloads. (a)-(d): Mapping and DVFS level of applications, ranging from 1 to 4
concurrent applications of 7, 4, 4 and 4 tasks per application respectively.
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thermal headroom (Tcrit > Tmax), the controller can boost
the frequency upon an application’s request for perfor-
mance. With a specific application’s request boosting, the
controller chooses to increase the frequency of cores run-
ning the application by one level. Frequency of each core
among the set of cores running the application is boosted
within in one epoch (line 9, Algorithm 3). If the performance
requests still persist, frequency of chosen cores is boosted
progressively in steps of one level during the subsequent
epochs, provided that there is thermal headroom. Boosting
stops upon reaching the maximum possible frequency
(Fmax) through successive steps of boosting up to B levels.
When more than one application makes a request for boost-
ing, the application running on cores with relatively lower
temperatures is chosen.

Algorithm 3. Boosting

Inputs: Temp½� : Per-core temperature vector, APPS, APPSboost :
Applications - currently running on the chip and requested for
boosting
Global Variables: Tmax Maximum temperature on the chip, F :
Frequency, ci: Core i
Global Constants: Tcrit: Critical temperature, Eboost: Boosting
epoch, level: Step size of boosting frequency, Fmax, Fmin: Maxi-
mum and minimum operating frequencies

Body:
1: for every Eboost do
2: Temp½�  updateTemperature();
3: Tmax max(Temp½�);
4: ~T  Tcrit - Tmax ;
5: if~T > 0 then
6: for APPSboost do

targetApp minTemp(APPSboost);
7: if targetApp! F 6¼ Fmax then
8: for ci 2 targetApp do
9: Boostðci; levelÞ ;
10: else
11: for APPS do

targetApp maxTemp(APPSboost);
12: if targetApp! F 6¼ Fmin then
13: for ci 2 targetApp do
14: Downðci; levelÞ ;

~T < 0 With no thermal headroom (Tcrit < Tmax), the
controller lowers the frequency of active cores and any
applications’ performance requests cannot be handled. The
controller chooses application running on cores with maxi-
mum temperature to downscale the frequency by one level.
Lowering the frequency continues progressively in steps of
one level over the subsequent epochs, until the temperature
violation is resolved. Similar to the boosting, frequency of
each core among the set of cores running the chosen appli-
cation is scaled down (line 14, Algorithm 3). Once there is

enough thermal headroom, the boosting process resumes
normally as per application requirements.

The critical temperature, epoch of boosting (Eboost), num-
ber of boosting frequency levels (B) and the size of each
level (level) are parameterizable. Increase in frequency with
boosting will increase the temperature subsequently over
time. Fig. 9 shows the rate at which temperature accumu-
lates upon increasing the frequency from 4 GHz to 4.2 GHz.
We observe that temperature accumulation is steeper in the
initial phases and eventually saturates over a period of
5 ms. For fine-grain control over thermal headroom, we set
our boosting epoch length to half of the time period over
which temperature would saturate with a 200 MHz rise in
frequency. To ensure thermal safety, we prioritize applica-
tions running on cooler cores and conservatively boost only
one application by 200 MHz within one epoch. The number
of epochs over which temperature does not reach Tcrit with
boosting represents period of boosting. Intuitively, a dense
mapping with hot neighboring cores would approach the
Tcrit faster, whereas a sparse mapping would offer longer
boosting periods.

4 EVALUATION

The system model and specifications are summarized in
Table 1 and are elaborated as follows. Application Model: We
evaluated the proposed mapping and boosting approach
over applications that are modeled as task graphs, gener-
ated using TGG [20]. Each application is a directed graph of
tasks, where each task holds information on computation
and communication with other tasks, and priority factor to
indicate need for performance surges. Inter-task communi-
cation is considered while mapping a specific task, by sort-
ing all the other tasks as per their communication volume
with it. This avoids mapping tasks with higher communica-
tion volume on farther cores with sparse mappings.

System Model. We simulated application traffic patterns
using our in-house cycle-accurate many-core platform
implemented in SystemC. Specifications of Niagara-2 like in-
order cores obtained from McPAT [21] are used as the base-
line for processing elements. The communication network

Fig. 8. Control flow of boosting. ~T is the thermal headroom. Boost and
drop modes represents up and down scaling of frequency.

Fig. 9. Rate of temperature accumulation.

TABLE 1
Simulation Details

Parameter Specification

Application Model Synthetic task graph, 4-18 tasks [20]
Core Model Niagara-2 like, in-order
Power Model McPAT [21] and Lumos [7], 16nm
Thermal Model HotSpot 6.0 [10]
Network Model Noxim NoC, mesh topology, X-Y routing [22]
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infrastructure between processing elements is provided by a
pruned version of Noxim [22] that uses mesh topology and
XY routing. Technology node scaling parameters are
extracted from Lumos [7], an open source framework that
quantifies power-performance characteristics of many-core
systems with transistor scaling. We used TSP library [5] to
calculate the Thermal Safe Power. In our framework (over-
view as in Fig. 5), a random sequence of applications enter
the system and are buffered into a FIFO. A Central Manager
(CM) assigned to node nð0;0Þ of many-core network imple-
ments the required system resource control and allocation
operations including run-time mapping, power budget cal-
culation, power controller and boost controller functions.
Each of the control routines are implemented as software
modules, requiring no additional specialized hardware. Our
framework is designed to run as a user-space process which
can communicate with the operating system to enforce
resource management decisions. Applications are serviced
in a first-come-first-serve policy, subject to availability of
power budget. A suitable first node for mapping the incom-
ing application is chosen by the (CM), followed by mapping
all the remaining tasks of the application. Assuming a base
frequency of 4 GHz in our evaluation, we set the step size of
each boosting frequency level to 5 percent rise on the base
frequency, resulting in a step size of 200 MHz. Fig. 9 shows
the rate at which temperature accumulates upon boosting
from 4GHz to 4.2GHz. Steep rise followed by a saturation in
temperature is noticeable over a time period of 5 ms. We
sampled this time taken, to avoid sharp rise in temperature
before making a consecutive boosting decision. It should be
noted that the rate of temperature accumulation varies with
initial conditions viz., temperature of chosen cores at the
instance of boosting, simultaneously active cores neighbor-
ing the boosted cores and change in level of frequency. In
our design, we allow the boosting epoch and boosting fre-
quency level as parametric values for adaptability of the pol-
icy. For evaluation purposes, we chose an epoch Eboost of
length 2.5 ms, with 4 levels of boosting such that each level
corresponds to 200MHz, assuming the critical temperature
Tcrit as 80

�C. A dynamic setting of boosting epoch and boost-
ing level would be possible to determine optimal boosting
period. However, this requires fine-grained monitoring and
control of temperature, and exhaustive search over concur-
rent applications, making it NP-hard problem. Within the
scope of our work, we considered a static setting which is a
light weight working solution.

Evaluation Metrics.We evaluate our dark silicon patterning
approach PAT that prefers sparsity againstCoNA, that prefers
contiguity [23]. Since we relaxed contiguity among individual
applications, we chose to compare PAT against CoNA to
quantify the effect of our patterning approach. As a baseline,
we consider the system architecture presented in Section 3
which uses the power controller presented in Section 3.2, [19]
for power actuation using traditional DVFS and power gating
knob. For comparison of dense and sparse mappings, we use
CoNA and PAT mapping policies respectively in the run-
time mapping unit (RMU) module. We also compare the
same mapping strategies from a boosting perspective, simu-
lating them with the boost controller enabled (from here on
referred as PAT++ and CoNA++). In this case, we augmented
the system baseline comprising of power controller using

traditional DVFS and power gating with the adBoost control-
ler as the policy for boosting module. We simulate the system
over a period in which 100 applications enter and leave the
system. The entry sequence of applications is kept the same
for different mapping approaches for a fair comparison. We
evaluate both themapping strategies with andwithout boost-
ing, over different sizes of the network (64-core and 144-core)
and different number of simultaneously active cores. We use
a combination of higher and lower number of applications
arriving for execution, resulting in variable number concur-
rent applications and thus active cores and dark cores. This
leads to two scenarios of increasing dark silicon, precisely
emulating 25 and 50 percent dark cores, for evaluation.
Throughout the evaluation, we refer to these combinations of
sizes and active cores - (a) 64 cores, 25 percent inactive,
(b) 144-cores, 25 percent inactive, (c) 64-cores, 50 percent inac-
tive, (d) 144-cores, 50 percent inactive. Given the fixednumber
and sequence of applications, we compare power budgets,
average waiting time (AWT), thermal profiles and through-
put offered by CoNA and PAT. With the boosting controller
enabled, we also compare average period of boosting for
CoNA++ and PAT++. In every case, we simulated the plat-
form at 16 nm technology and a critical temperature of 80 �C.

4.1 Power Budgets and Performance

Fig. 10 shows the power budgets offered by CoNA and PAT
for 64-core and 144-core systems over different number of
active cores. The power budgets are calculated using the TSP
library [5] upon entry of a new application. Figs. 10a and 10b
have 25 percent inactive cores while Figs. 10c and 10d have
50 percent inactive cores during execution. Power budgets
offered by PAT are higher than that of CoNA due to the spar-
sity of patterned mapping. At lower network sizes and with
higher number of active cores, power budget gains from PAT
are relatively lower due to limited number of dark cores that
can be patterned across higher number of active cores. The
amount of power budget gain with PAT is higher with lower
number of active cores i.e., with higher percentage of dark sili-
con. For instance, gains for both 64-cores and 144-core systems
with 50 percent inactive cores is significantwhen compared to
that of 64-cores and 144-cores systems with 25 percent inac-
tive cores. This indicates that as the amount of dark silicon
increases with technology node scaling, PAT provides higher
power budgets. The surplus gain obtained at every instance
of an application’s entry in turn would be utilized to accom-
modate incoming applications if possible, which reflects in
higher performance and better power budget utilization.
Power budget gains continue to increase with increase in the
number of active cores. The relative power budget gain
among different mappings however depends on number of
dark cores among total cores that can be patterned for power
budget gains.

Applications that entered the system when there is not
enough power budget are forced to wait in the queue until
sufficient power budget becomes available. We refer to this
time elapsed between application entering the system and
starting its execution as the average waiting time (AWT).
With CoNA offering lower power budgets compared to PAT,
the system often does not have enough budget to service
incoming applications, increasing the AWT. PAT offers
higher power budgets which can be utilized to accommodate
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incoming applicationsmore frequently. Thus, PATminimizes
the time spent by the applicationswaiting in the queue,which
eventually reflects in higher performance. Fig. 11 shows the
normalized AWT of CoNA, PAT, CoNA++ and PAT++. The
gain in AWT for PAT over CoNA is evident across different
sizes of network and active cores due to the higher power
budget. CoNA++ has a better AWT than PAT, with high per-
formance from frequency boostingwhich results in accommo-
dating incoming applications. PAT++ has better AWT

compared to all the other strategies with both higher power
budget gain and longer periods of boosting due to patterned
mapping. Lower AWT implies applications’ request for exe-
cution being serviced quicker, reflecting a lower overall exe-
cution time. Fig. 12 shows normalized throughput gains for
CoNA and PAT - with and without boosting. Throughput is
calculated as the time taken for 100 applications to enter and
leave the system. PAT and PAT++ have higher throughput
compared to CoNA and CoNA++, as expected due to the

Fig. 10. Power budgets of CoNA and PAT with varying number of active cores. (a) 64-cores, with 25 percent inactive. (b) 144-cores, with 25 percent
inactive. (c) 64-cores with 50 percent inactive. (d) 144-cores with 50 percent inactive. Power budget is calculated using TSP calculator upon arrival/
exit of an application, over 100 applications that enter and leave the system.

Fig. 11. Average waiting times (AWT) of CoNA and PAT with varying number of active cores. (a) 64-cores with 25 percent inactive. (b) 144-cores with
25 percent inactive. (c) 64-cores with 50 percent inactive. (d) 144-cores with 50 percent inactive. AWT is calculated as the average time spent by
each application in the queue before it starts execution, over 100 applications that enter and leave the system.

Fig. 12. Throughput gain of PAT over CoNAwith varying number of active cores. Normalized throughput is calculated as time taken for 100 applications
to enter and leave the system. (a) 64-core systemwith 25 percent inactive cores. (b) 144-core systemwith 25 percent inactive cores. (c) 64-core system
with 50 percent inactive cores. (d) 144-core systemwith 50 percent inactive cores.
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surplus power budgets. Similar to the power budget gains,
throughput gains also are significantwith increase in dark sili-
con. Throughput gain of PAT over CoNA can be attributed to
two factors - i) higher power budget offered for a given appli-
cation, which improves per-application performance and
ii) higher power budget allocation for the chip over several
concurrent applications, which improves per-chip through-
put. The surplus power budget gained with entry of a
sequence of applications is accumulated and utilized when-
ever possible to accommodate new applications waiting in
the queue. Within the same amount of time, PAT would be
able to execute more applications than CoNA and/or execute
the same number of applications as CoNA within a lesser
time. It should be noted that for same sequence of incoming
applications, AWT decreases with increase in number of
active cores, as there are higher amount of resources available.
However, increase in number of active cores can be a result of
either larger mesh sizes or relatively fewer dark cores. The
gains for PAT over CoNA and PAT++ over CoNA++ also
follows the trend of AWT in respective cases, reflecting the
effect of AWT on throughput. In addition to these factors,
throughput gain with PAT++ over CoNA++ can be attrib-
uted to more frequent thermal violations of CoNA++ with
boosting. Every time the temperature approaches 80�C, fre-
quency of active cores has to be lowered for thermal safety,
which in turn reduces some performance. With PAT++,
thermal constraints are honored, retaining a higher period
of boosting and performance.

4.2 Thermal Profile and Boosting

Fig. 13 shows thermal profiles of CoNA++ and PAT++ for
different mesh sizes and active cores, showing the maxi-
mum per-core temperature observed on the chip. PAT++ is
relatively cooler when compared to CoNA++ due to the
sparsity of active cores. CoNA++ on the other hand is more
susceptible to accumulate temperature and form hot-spots
with tightly packed active cores. Since the surplus power
budget from PAT++ is utilized either to map new incoming
applications or to boost the frequency (or both), the differ-
ence between temperatures is relatively small. Operating
the chip exclusively at lower temperatures with the same
power budget instead of utilizing the surplus budget to
increase performance could a designer’s choice.

Fig. 14 shows periods of boosting for CoNA++ and PAT++
over different mesh sizes and active cores. Boosting period
is calculated as the accumulated sum of the number of
boosting epochs (Eboost) elapsed during the overall simula-
tion time. PAT++ has a relatively longer period of boosting
compared to CoNA++ in all the cases. PAT++ follows
sparse mapping of an application and also disperses con-
current applications which result in lower temperatures.
Boosting active cores that are already operating lower tem-
peratures allows the increase in frequency to be sustained
for longer intervals, before the temperature eventually
might approach critical temperature. Both higher power
budgets and lower operating temperatures from dark sili-
con patterning favor PAT++ in sustaining longer boosting

Fig. 13. Temperature profiles of CoNA++ and PAT++ for simulation time of 100 applications entering and leaving the system. (a) 64-cores with
25 percent inactive. (b) 144-cores with 25 percent inactive. (c) 64-cores with 50 percent inactive. (d) 144-cores with 50 percent inactive.

Fig. 14. Boosting period gains for PAT++ over CoNA++. Boosting period is calculated as time the simulation ran in boosting mode per overall execu-
tion time for 100 applications to enter and leave the system. (a) 64-cores with 25 percent inactive. (b) 144-cores with 25 percent inactive. (c) 64-cores
with 50 percent inactive. (d) 144-cores with 50 percent inactive.
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periods. Additional performance extracted from the longer
boosting periods reflect in throughput gains from PAT++
over CoNA++. Boosting in case of CoNA++ results in a lower
gain, given the contiguous nature of mapping that accumu-
lates temperature, resulting in active cores that are relatively
hot. Boosting the cores which are already at higher tempera-
tures would further contribute to approach the critical tem-
perature faster. As on-chip temperatures approach critical
temperature, frequency of boosted cores has to be scaled
down towards normal mode of execution, limiting the effec-
tive boosting period and thus performance gains. Another
consideration to be made for power budget utilization is the
benefits obtained from boosting. Fig. 15 shows the normal-
ized period of boosting per overall execution time. It is to be
noted that higher period of boosting might not necessarily
translate into equivalent higher performance. For instance,
the period of boosting is higher in case of (b) 144-cores,
25 percent inactive - with higher number of active cores, and
lower in case of (c) 64-cores, 50 percent inactive - with lower
number of active cores. With higher number of active cores,
the incidence of thermal violation is more frequent. The con-
troller thus rolls between normal and boost modes of execu-
tion. There are several phases of - boosting followed by
frequency downscaling, increasing the period of boosting. In
contrast, with fewer active cores, the temperature barely
approaches critical temperature. This gives an uninhibited
boosting scenario, such that maximum operating frequency
is reached sooner. Despite not having a longer boosting
period, gain in performance is achieved through effective uti-
lization of boosting.

4.3 Overhead with Sparse Mapping and Controllers

The total number of hops traversed by all packets sent and
received by tasks of an application, referred as Weighted
Manhattan Distance (WMD) represents the penalty levied

by inter-core communication. Although sparse mapping
provides high power budget and low operating tempera-
tures, dispersed tasks of an application increases the WMD,
compared to contiguous mappings such as CoNA. Fig. 16
shows the average weighted Manhattan distance (AWMD)
of PAT over CoNA for different mesh sizes and active cores.
The normalized AWMD is higher for PAT when compared
to CoNA, indicating a higher latency. Despite the latency,
PAT still offers better performance over CoNA, with higher
power budgets that compensate for the additional packet
latency. Our timing model includes additional packet
latency induced with sparse mappings for fair comparison.
With the same sequence of workloads, patterned mapping
configurations per each application remain similar in each
of the cases in Figs. 16a, 16b, 16c, and 16d, although the loca-
tion of first node might vary subject to concurrently running
applications. This results in a similar amount of additional
hops traversed and thus similar AWMD values with sparse
mappings. The additional NoC energy overhead incurred
in inter-task communication due to additional hops with
sparse mappings is 14, 16, 14 and 16 percent respectively,
which is also proportional to the performance overhead
(AWMD). The proactive first node finding uses a look up
table to find appropriate first node for any possible sized
incoming application by continuously keeping track of den-
sity factors of each node. Updating the density factors is of
Oðn�M � ffiffiffiffiffi

M
p Þ complexity, where n is the number of tasks

of an application (or application size) and M is the mesh
size. The patterning algorithm has complexity of O(n2),
where n is the size of the application. The complexity of
power controller and boost controllers are OðMÞ and OðnÞ
respectively, where M is the mesh size and n is number of
tasks within an application. The run-time overhead induced
with the controller includes latency elapsed in transmitting
the frequency settings from the central manager to the

Fig. 15. Boosting period for CoNA++ and PAT++. Normalized execution time is split into normal execution (in blue) and boosted execution (in red) for
(a) 64-cores with 25 percent inactive. (b) 144-cores with 25 percent inactive. (c) 64-cores with 50 percent inactive. (d) 144-cores with 50 percent
inactive.

Fig. 16. Average weighted manhattan distance (AWMD) of PAT over CoNA. (a) 64-core system with 25 percent inactive cores. (b) 144-core system
with 25 percent inactive cores. (c) 64-core system with 50 percent inactive cores. (d) 144-core system with 50 percent inactive cores.

KANDURI ET AL.: ADBOOST: THERMAL AWARE PERFORMANCE BOOSTING THROUGH DARK SILICON PATTERNING 1073



respective cores. This depends on the Manhattan distance
between the central manager and the active core, such that
the worst case latency is equal to

ffiffiffi
2
p �M � hopLatency,

where M is the size of the network and hopLatency is the
per-hop latency of a packet. The overhead of finding first
node, mapping, power management and boosting decisions
and enforcement of voltage and frequency settings are
included in the execution timing model.

4.4 Gains with other Workloads

We also evaluate our proposed approach on real workloads,
apart from the synthetic task graphs. We chose 4 applica-
tions from PARSEC benchmark suite viz., blackscholes,
bodytrack, ferret and streamcluster and native
sim-small input data. We extracted execution traces of the
applications using Intel Pin tool and power traces using
McPAT. Technology node specifications are obtained from
Lumos [24], validated against Niagara-2 in-order cores at
16 nm technology node. The applications are concurrently
run on a 64-core system over the same in-house platform
platform used for evaluating the synthetic workloads,
described earlier. Power budgets achieved at run-time with
entry of each new application using CoNA and PAT are
shown in Fig. 17. With sparse mapping providing necessary
cooling effect among active cores, PAT offers upto 17 per-
cent more power budget, compared to CoNA. Thermal pro-
files of the same set of applications using the adBoost
controller over CoNA++ and PAT++ are shown in Fig. 18. It
can be observed that PAT++ maintains a lower temperature
profile with patterned mapping, which subsequently pro-
vides more thermal headroom for PAT++ compared to
CoNA++, which has a limited scope for boosting. The sub-
sequent performance gains with PAT++ over CoNA++
along with PAT over CoNA are shown in Fig. 19. The

additional power budget and relatively lower temperatures
offered by sparse mapping allows PAT++ to be boosted for
upto 18 percent longer compared against CoNA++.

5 RELATED WORK

Application Mapping. State-of-the-art dynamic application
mapping strategies have focused on performance aspects
through minimizing congestion and spatial alignment [6],
[25], [26], without considering power budgets. The empha-
sis of mapping techniques is constrained to inter-task com-
munication and contiguous mapping with performance
objectives alone [27], [28], [29]. These algorithms do not con-
sider maximizing performance within given power budgets.
The limitations on future many-core systems with dark sili-
con challenge requires re-structuring of mapping objectives
towards improving power budgets by considering dark sili-
con, and thus performance. Contiguous mapping avoiding
dispersion and fragmentation for better performance was
proposed in [23]. However, power budget limitation with
dark silicon changes the implications of dispersion and frag-
mentation on system performance. A non-contiguous map-
ping through geometrical partitioning of the network is
presented in [30], minimizing performance penalties by
mapping communicating tasks on nearby cores and the rest
in proximity. This establishes that non-contiguous map-
pings not necessarily affects system performance, which
can be exploited to attack dark silicon. Patterning inevitable
dark cores around active neighbors for improving power
budget utilization was presented in our previous work [8].
In the similar vein, maximizing performance through adap-
tive mapping within a given power budget, by exploiting
process variations, reliability and thermal considerations
were presented in [15], [31], [32], [33], [34], [35]. This empha-
sizes the significance of application mapping on maximiz-
ing performance within fixed power budgets.

Dark Silicon and Power Budgeting. Dark silicon phenome-
non and its implications on performance are well estab-
lished in [3], [36]. Precisely, power densities of computer
systems are rising with technology scaling, which leads to
thermal violations. Common practise of ensuring thermal
safety is to cap the power consumption at a fixed upper
bound - thermal design power (TDP) [4]. A slightly flexible
option for power budgeting were AMD and Intel Corpo-
rations’ CPUs with configurable TDP options, however
without any fine grained control [37], [38]. Selectively

Fig. 17. Power budgets with CoNA and PAT mappings. Applications
concurrently run: streamcluster, ferret, bodytrack and blackscholes

Fig. 18. Thermal profiles with CoNA++ and PAT++. Applications concur-
rently run: streamcluster, ferret, bodytrack and blackscholes.

Fig. 19. Normalized performance for different mappings. CoNA and
PAT represent performance using power controller alone, CoNA++ and
PAT++ represent performance also using boost controller. Applications
concurrently run: streamcluster, ferret, bodytrack and blackscholes.
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mapping applications to restrict power consumption to a
fixed limit was proposed in [13], using a feedback control-
ler. There are other reactive strategies that trigger dynamic
power and thermal management techniques to honor TDP
[12], [15], [19], [39], [40], [41], [42]. Pagani et al. have pro-
posed more realistic and dynamic estimate of power bud-
get by expressing it as a function of simultaneously active
cores i.e., mapping configuration [5]. They provide a light
weight C library to estimate thermal safe power (TSP) for a
given mapping configuration along with the possible worst
case TSP for a given number of active cores. The effect of
application mapping on power budget, by aligning dark
cores among active cores have been presented in [43]. It
shows a two fold gain from patterning - better power bud-
get utilization and lower operating temperatures. [44]
quantified the advantages dark silicon patterning which
results in higher power budgets and lower temperature
profiles of the chip. However, principles for dark silicon
patterning based mapping, utilizing surplus power budget
from patterning, allocation of the same for boosting perfor-
mance have remained unexplored. To summarize, most of
the strategies mentioned above were reactive to power/
thermal violations but do not directly address the perfor-
mance penalties or maximizing performance within given
power budgets.

Boosting. The initial idea of throttling an application’s fre-
quency to maximize performance per watt was proposed by
Murali et al. [45]. The goal is to choose appropriate pareto-
optimal space among instructions per second and power per
instructions, depending on amount of parallelism in an
application. This feature was later implemented in Intel’s
architecture as the TurboBoost feature which increases the
frequency of active cores beyond the base frequency in short
bursts of time for performance gains [46]. Raghavan et al.
have proposed the concept of computational sprinting -
exceeding the power limitations of a chip over short bursts
of time by activating cores which are otherwise dark [47].
They focus on accelerating particularly the parallel sections
in applications which can have performance gains with
sprinting. Further, they also use frequency sprinting on top
of parallel sprinting, relying on heat dissipation during a
cool down period that follows the boosting period. Selec-
tively boosting an application while scaling down the fre-
quency of other concurrent applications is proposed in [16].
Most of these works emphasize on boosting the frequency,
while having enough thermal headroom and power budget
remain the key requirements to facilitate boosting. In our
work, we first address the issue of creating surplus power
budget through dark silicon patterning, followed by efficient
allocation of the available thermal headroom to then boost
the frequency of active cores.

6 CONCLUSION

We have presented adBoost controller for thermal aware per-
formance boosting in many-core systems. adBoost benefits
from dark silicon patterning (PAT), a mapping strategy to
evenly distribute temperature across the chip in order to
improve utilizable power budget. PAT maps tasks and
applications in a sparse manner by patterning inevitable
cooler dark cores around hotter active cores, allowing them

to utilize power efficiently before reaching critical tempera-
ture. Our power controller efficiently allocates the surplus
power budget from patterning to map new applications or
throttle current applications while adBoost controller scales
the frequency upon performance requirements. Lower on-
chip temperatures with PAT provides sustainable periods
of boosting, improving both per-application latency and
per-chip throughput. In comparison with the state-of-the-
art contiguous mapping strategies, the combination of
adBoost and PAT offers higher power budget, lower tem-
peratures and sustain longer periods of boosting. These
put together reflect in better throughput and efficient utili-
zation of power budget. Our strategy can also be extended
for heterogeneous architectures, provided the prior knowl-
edge on performance-per-watt of every application/task.
This allows the choice of more suitable set of heteroge-
neous cores at the mapping phase, which reflects on lower
on-chip temperatures using power efficient cores. This can
be leveraged to boost the frequency of low-power cores for
improved performance and/or use the thermal headroom
created with the low-power cores to boost the performance
of other power hungry cores.
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Abstract— Power capping techniques based on dynamic voltage
and frequency scaling (DVFS) and power gating (PG) are
oriented toward power actuation, compromising on performance
and energy. Inherent error resilience of emerging application
domains, such as Internet-of-Things (IoT) and machine learn-
ing, provides opportunities for energy and performance gains.
Leveraging accuracy-performance tradeoffs in such applications,
we propose approximation (APPX) as another knob for close-
looped power management, to complement power knobs with
performance and energy gains. We design a power management
framework, APPEND+, that can switch between accurate and
approximate modes of execution subject to system throughput
requirements. APPEND+ considers the sensitivity of the appli-
cation to error to make disciplined alteration between levels
of APPX such that performance is maximized while error is
minimized. We implement a power management scheme that uses
APPX, DVFS, and PG knobs hierarchically. We evaluated our
proposed approach over machine learning and signal processing
applications along with two case studies on IoT—early warning
score system and fall detection. APPEND+ yields 1.9× higher
throughput, improved latency up to five times, better perfor-
mance per energy, and dark silicon mitigation compared with
the state-of-the-art power management techniques over a set of
applications ranging from high to no error resilience.

Index Terms— Approximate computing, dark silicon, Internet-
of-Things (IoT), power management, runtime mapping.

I. INTRODUCTION

EMERGING application domains, such as Internet-
of-Things (IoT), cyber–physical systems (CPSs), big

data analytics, and so on, are compute intensive and power
hungry [1]. Transistor scaling supported building denser chips
that provide higher compute intensity to meet performance
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requirements of these applications, while keeping the power
density constant. With transistor scaling reaching its physical
limit, operating voltage approaches its threshold and cannot
be further scaled down gracefully with transistor scaling [2].
This leads to rise in power density and subsequently thermal
violation. Performance surges of emerging application
domains, smaller chip areas, and limited cooling solutions
contribute to high power densities and frequent thermal viola-
tions, potentially damaging the chip’s functionality. To avoid
thermal violations, the chip has to function within dissipatble
(safe) limits of power. This forces a section of chip to be
powered off temporally—this inactive portion is termed as
dark silicon [3]. Dark silicon phenomena reduce performance,
energy efficiency, and utilization of on-chip resources [2].

Power capping techniques are used to restrict power con-
sumption of the chip to a fixed and safer limit, typically
a design time estimate called thermal design power (TDP),
beyond which thermal violations may occur [4]. Dynamic
power capping and management techniques typically function
in an observe-decide-act loop, observe instantaneous power
consumption and temperature accumulation, decide on power
actuation, and act on the decisions through power knobs [5].
Dynamic voltage and frequency scaling (DVFS), power gat-
ing (PG) [6], near threshold computing [7], and adaptive
scheduling [8] are widely used knobs for power management.
Combinatorial actuation of different power knobs can honor
thermal and power constraints, although performance and/or
energy gains can be minimal [9]. DVFS knob would be
limited as the voltage approaches its threshold and cannot
be scaled down any further and also suffers with increase in
leakage power. PG knob addresses the issue of static power
and is not limited as DVFS. However, the reduction in static
power comes at the expense of performance, since only fewer
cores are simultaneously powered up. Both DVFS and PG
are triggered as a reaction to power violations, which might
work for instantaneous power reduction in short term. Despite
power capping benefits, they do not offer any substantial gains
on performance or energy efficiency.

Approximate computing is emerging as an alternative for
dark silicon mitigation, by trading off accuracy for perfor-
mance and energy gains. Applications from several domains
are inherently error resilient, based on their nature of com-
putation and/or input data. For example, algorithms used in
multimedia signal processing, machine learning, numerical
methods, and so on can be iterative or NP-hard, making them

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2750 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 10, OCTOBER 2017

Fig. 1. Power management knobs.

Fig. 2. Approximation knob.

tolerant to inaccurate computations. Similarly, IoT systems
deal with continuous sensory data originating from analog or
noisy sources, where relaxing certain computations has less
effect on eventual result. Approximation (APPX) leverages
inherent error resilience of such applications to reduce com-
putational workload and increase energy efficiency.

Alongside soft computing applications, several IoT
applications rely on a smart gateway for edge and/or cloud-
based processing [10]. With several sensor nodes mapped
to a single edge or cloud processor, performance and power
challenges continue to effect IoT applications indirectly.
Traditional power knobs alone would not suffice to ensure
power capping while maintaining higher performance and
energy efficiency. To fill the performance and energy gap of
power knobs, we propose APPX as another knob for power
capping and management. We couple the short-term reactive
power knobs, DVFS and PG, with the long-term proactive
energy and performance knob, APPX, in a hierarchical manner
for power capping, while ensuring performance and energy
gains, at the expense of accuracy. Fig. 1 shows power knobs
classified in the order of their temporal effect and overhead.

In this paper, which is a major extension of our recent work
published in [11], we propose an APPX-enabled power man-
agement framework APPEND+ that uses DVFS and PG knobs
primarily for power capping and APPX knob for performance.
Fig. 2 shows the top-level view of APPX as another knob for
power management along with conventional power knobs. We
design a power manager that makes decisions on the actuation
of DVFS and PG knobs in case of power violation and APPX
knob in case of throughput violation. The key idea of this
paper is to switch the mode of execution of an application from
accurate to approximate upon performance requirements with
APPX knob invocation. In our previous work, we switch from
accurate to approximate mode of execution among approx-
imable applications, subject to system requirements [11].
At times, this strategy either over compensates for
performance surges by approximating beyond the requirement,

or falls short of meeting the performance requirement. We fill
this gap using sensitivity metric for each application at each
level of APPX that is used to make mode switching decisions.
We use a set of variable accuracy implementations of an
approximable task, with each approximate task identified by
its sensitivity metric, which is represented as the performance
gained per error induced. To enable selection of suitable
candidates for mode switching, we prune this set to choose
a candidate task for replacing the accurate task that offers
maximal performance gain within minimal error. We present a
run-time mapping and mode switching algorithm for replacing
accurate tasks with approximate tasks from the set of variable
accuracy implementations. Our contributions based on our
prior work [11] are as follows:

1) APPX knob for closed loop power and performance
management;

2) a classification algorithm for identifying approximable
tasks that maximizes performance by pruning applica-
tion space based on sensitivity metric;

3) a run-time mapping and mode switching technique for
replacing accurate tasks with approximate tasks;

4) a power management framework APPEND+ that uses
DVFS, PG, and APPX hierarchically for power capping
and throughput improvement;

5) a case study of IoT applications, fall detection and early
warning score (EWS), to evaluate APPEND+.

II. RELATED WORK

A. Power Capping

Power capping techniques monitor the power consumption
and actuate power knobs in a closed loop, in case of power
consumption exceeding TDP. A PID controller-based power
capping is presented in [12], where knob settings are actuated
as per normalized gain of PID. Vega et al. [13] propose a
power capping algorithm using DVFS, per-core PG (PCPG),
and core folding, with all power knobs tightly coupled.
They suggest that combinatorial usage of different power
knobs is effective for system level power capping decisions.
Cochran et al. [14] have used thread packing, i.e., allocation
of threads per core as a power knob along with adaptive
DVFS. PGCapping was presented in [6] that uses PCPG and
DVFS in a hierarchical way for power capping and life time
balancing. Kapadia and Pasricha [8] have used degree-of-
parallelism as a knob for power management and to improve
system reliability. Application mapping, i.e., spatial alignment
of active cores for improving power budget and thus power
capping limit, is proposed in [15] and [16]. A multiobjective
power capping approach is presented in [15] and [16], which
uses the combination of DVFS and PCPG based on network
and workload characteristics. Chen et al. [18] have proposed
using resource allocation at data center level as another knob
for power actuation. They use history-based prediction for
potential workload to determine CPU resource allocation.
While all the above-mentioned techniques use TDP as upper
bound, Pagani et al. [4] have proposed an adaptive way of
setting the upper bound on power consumption, thermal safe
power (TSP), as a function of spatial alignment of active
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components. All these techniques focus exclusively on power
capping and combinatorial usage of power knobs, but do not
consider their implications on performance.

B. Approximation

Ansel et al. [19] have used variable accuracy implemen-
tations of the same algorithm, with language and compiler
support to choose one among different implementations for
exploring energy-accuracy tradeoffs. Baek and Chilimbi [20]
have proposed APPX at software level with a choice between
accurate and approximate versions of blocks of code using
Green compiler. Hoffmann et al. [21] have proposed using
energy-accuracy tradeoffs in context of power capping by
translating static parameters of an application into dynamic
knobs such as convergence for drop in accuracy. However,
other APPXs at algorithmic level, such as logic simplifi-
cation, cannot be translated into dynamic knobs. Escaping
infinite loops and skipping iterations of bottleneck loops
that consume longer execution time were proposed by
Sidiroglou-Douskos et al. [22] as loop perforation. All these
techniques explore ways to compute approximately for energy
and performance gains, within acceptable quality. However,
they do not use APPX for closed-loop power actuation.

C. IoT

In the context of IoT applications, the need for computa-
tional capacity at a sensor node level would not suffice. To
meet real-time performance requirements, data collected over
sensory nodes are processed at a smart gateway [10]. The
gateway acts as an intermediate edge layer between the sensor
front end and the cloud server back end [23]. Typical gateway
can be a multicore platform, which still faces with power
and energy consumption challenges [24]. Some of the IoT
applications are concerned with actuation mechanism based
on sensory data analysis, such as identifying sudden changes
in input data. Such applications present with an opportunity to
relax the accuracy of computation, which in turn can be used
to conserve energy and accelerate the performance.

III. APPROXIMATION KNOB

Approximate execution of an application provides variable
performance and energy gains with the amount of error
induced. We present the Pareto space of accuracy-performance
tradeoffs with two example applications viz., sparse matrix
multiplication and k-means clustering. We considered two
10 000 × 10 000 sparse matrices that are multiplied approxi-
mately by skipping inner most loop that performs multiplied
accumulation. Fig. 3(a) shows normalized performance and
energy gains with the number of inner most loops that are
skipped (workload reduced) to reduce the number of computa-
tions. With 50% of workload reduced, performance and energy
efficiency doubles. For k-means clustering, we use 10 000 ran-
dom input data points to be classified into 50 clusters. We used
relaxed convergence as the APPX, by early termination of
the clustering algorithm with nonzero flips. Fig. 3(b) shows
the gain in performance and energy for error induced by

Fig. 3. Performance and energy gains with APPX. (a) Workload-performance
tradeoffs for matrix multiplication. (b) Accuracy-performance tradeoffs for
k-means clustering.

Fig. 4. Performance gains of different knobs for k-means clustering
simulated on 16-core system. (a) Application service time for different knobs.
(b) Application service time for different levels of APPX knob.

relaxing the convergence from 5%–10%. Relative performance
gains increase as the error induced increases. Both these
examples establish performance and energy gains with APPX.
Specifically, they provide an insight on performance gains per
error induced, which can be exploited while implementing the
APPX knob.

We demonstrate the impact of different power knobs on the
performance of many-core systems with applications dynami-
cally entering and leaving the system using k-means clustering
as an example. The performance of the system is determined
by service time of an application, which is the sum of wait
time, the time elapsed between application request and starting
of the execution, and runtime, the time consumed in executing
the application on chip [8]. Dynamic workload characteristics
contribute to power violations, forcing actuation of power
knobs. We simulate the application for four different power
knobs viz., DVFS, PG, DVFS + PG (referred as MOC) [5],
and DVFS + PCPG + APPX, using the experimental platform,
detailed in Section VII. The APPX knob has k levels of APPX,
where k is a parametrizable entity. In this case, we chose four
levels of APPX.

The average service time for different knob combinations
is shown in Fig. 4(a). In case of using DVFS and PG
knobs [12], per-application runtime increases forcing incoming
applications to wait longer, resulting in high service time. The
combination of DVFS and PG has relatively better service time
using the power management algorithm, as in [5] and [17].
With the APPX knob in combination with DVFS and PG, the
service time is the lowest, indicating high performance and
energy gain within the given power budget. The APPX knob
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loads applications with relaxed accuracy that have lower work-
loads and thus low runtime. Consequently, more resources
are available for incoming applications, improving the wait
time and the overall service time. Fig. 4(b) shows application
service time of APPX knob over different levels of APPX. The
gain in performance with increasing level of APPX is trivial.
Despite effective power capping and possibility of increasing
the number of simultaneously active cores, performance still
suffers with DVFS and PG when compared with that of APPX.
Hence, we propose a hierarchical management for effective
combination of these knobs to complement each other.

IV. ACCURACY-PERFORMANCE TRADEOFFS:
A CASE FOR IoT

IoT applications deal with real world sensor data that are
analog and involve noisy components. Performance require-
ments for IoT systems are usually high while energy budget is
limited [1]. Collection and classification of raw data into mean-
ingful clusters, filtering, computation for actuation decisions,
and communicating external world are major functionalities
of an IoT system. Every stage in this process has a variable
tolerance to inaccurate computations, presenting opportunities
for APPX. Leveraging this fine-grained error resilience, APPX
can provide better performance-per-energy in IoT systems.
We explore the possibilities of accuracy-performance tradeoffs
in IoT domain using two case studies on health monitoring
applications viz., EWS system and fall detection.

A. EWS System

An EWS system is used in health care for monitoring
vital signs of a patient to proactively alert medical support.
A method for EWS is proposed in [25] that uses three types of
sensors—medical, environmental, and activity. Data collected
from the sensors are preprocessed by using a Butterworth
filter to remove noise components and false alarms. Sensory
data from different sources are fused to extract useful details.
Every physiological data sensed are allocated a score based
on the range the sample belongs to and its implication on
patient’s health deterioration. The final score is calculated as
a combination of scores of all the individual sensor nodes’
data. When the final EWS exceeds a fixed threshold, a warning
signal is transmitted seeking for medical attention. This system
deals with heterogeneous data generated by different sensors
and involves computations on unclassified, redundant, and
noisy data. To extract meaningful insights, the EWS uses
data acquisition, filtering, fusion, classification, and analysis,
followed by computation and transmission. Although this
system is mission critical, there are several intermediary stages
where inaccurate computations can be tolerated. For example,
heart rate measured is classified into one of the several ranges
of heart rate data and a score is assigned according to the
range it belongs to, but the exact value of heart rate is not
used. Medical sensors trace several samples of data per second
on an average, while a median of these data is good enough to
represent all the samples. Relaxing such computations and data
points that do not affect final EWS can enhance performance
of the system within a lower energy budget.

Fig. 5. Fall detection.

B. Fall Detection

Another example of IoT application that is data and compute
intensive is fall detection [26]. Fall detection mechanism
identifies whether a person using the wearable detector falls
hazardously on the ground. Specifically, fall detection is used
in the context of patient and elderly people monitoring, to
bring attention and support upon a fall. Typical fall detection
employs camera and gyroscopic or accelerometer sensors for
identifying a fall with respect to inertial position. We use fall
detection based on a accelerometer, as proposed in [26]. The
accelerometer data in three dimensions are used to calculate
signal magnitude vector as the square root of the sum of
the squares of signal component in each axis. This is fed to
a low pass filter to generate discrete signal of positioning.
Unusual spikes in the filtered data when compared with a
fixed threshold represent the possibility of a fall, which is
then transmitted to support system infrastructure for further
assistance. The fall detection mechanism is shown in Fig. 5.
A major conundrum in fall detection is in identifying the
abnormal spikes in positioning signal—whether to analyze the
accelerometer data tightly coupled to the sensor or to transmit
the data to a cloud computer. Analyzing the data in a simpler
microcontroller has performance penalties while transmitting
filtered data to a high-end cloud computer consumes more
energy. Expensive floating point computations on high sam-
pled accelerator data, such as multiplications, square root, and
filtering, can be relaxed to gain performance. We have run the
fall detector mechanism over three sample persons for 8 h
of a day. Sensory data are collected at 100 samples/s and
fall detection is executed at a gateway between sensor nodes
and cloud server. These test cases show that accelerometer
signals generate data that are usually redundant, indicating that
skipping some of the sensory data samples would induce only
a tolerable error. Reducing the sampling of sensor and filter
length by half produced results that are similar to accurate
computations. Relaxing accuracy of data analysis can thus
improve fall detection’s performance.

V. KNOB ACTUATION SCENARIOS

We primarily monitor power consumption, workload inten-
sity, and sensitivity of applications to make knob actuation
decisions. The threshold for power consumption is TDP. Power
consumption exceeding TDP indicates a power violation.
Furthermore, we also set another parameterizable threshold
TDPth, a metric that indicates possibility of a potential TDP
violation, such that 0.66 × TDP < TDPth < TDP. We
use accumulated wait time (AWT) of application requests
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Fig. 6. Knob actuation scenarios. Each scenario shows applications running on a 36-core system along with power consumption and workload intensities.

made for monitoring the workload. For a set of applica-
tions App1, App2, . . . , AppN with wait times w1, w2, . . . , wN ,
AWT is given as

AWT =
(

N∑

i=1

wi

)
/N. (1)

Longer application wait time indicates the higher workload
intensity. A parametrized metric AWTth is set as threshold for
workload intensity. The power objective is to restrict the power
consumption to TDP and throughput objective is to restrict
the AWT to AWTth. For the actuation of APPX knob, we use
sensitivity metric of an application to choose an application
and its corresponding level of APPX.

A. Application Sensitivity

The performance and energy gains varies for different
applications over different levels of APPX. This presents a
case where approximating one application might yield more
performance gain than that of the others. We identify each
application with a sensitivity metric as performance that could
be gained per error induced. The motivation behind this is to
choose an application that results in higher performance gain
for the amount of error induced.

We define an application’s sensitivity metric as

Sensitivity = Perfi − Perfi−1

Errori − Errori−1
(2)

where Perf i and Errori represent performance and error
induced at i th level of APPX. Sensitivity of an application
for any two given levels of accuracy would be high when the
performance gained by lowering accuracy is high or when the
accuracy loss in performance improvement is lower. Subject
to application characteristics and input data, sensitivity of an

application varies through different levels of APPX. Sensitivity
metric of an application presents a wider Pareto-space of
accuracy-performance tradeoffs that can be explored in choos-
ing an application to be approximated and the level of APPX.
Sensitivity metric identifies tasks that will result in the highest
performance gain among the set of tasks currently running, and
prioritizes these tasks as candidates for switching their mode
of execution to approximate. This enables fine-grained control
on APPX knob, appropriate choices for mode switching,
and performance and energy gain at lower relative error, and
limits the possibility of overcompensation with APPX. Details
on sensitivity metric used for evaluation purpose are detailed
in Section VII. We demonstrate possible scenarios that
require knob(s) actuation under diverse power consumption
and workload intensities. Fig. 6 summarizes these scenarios,
representing power consumption, workload intensity, and
knob actuations employed over a span of execution. Each
scenario (a)–(i) shows power consumption with respect to
TDP, applications waiting in the queue, applications that are
mapped on the chip with their respective voltage and frequency
levels, and application’s sensitivity. Voltage and frequency
levels of each mapped application (App1, App2, . . . , Appn) are
represented as [(v1, f 1, s1 ), (v2, f 2, s2), . . . , (vn, f n, sn)].
The lowest and highest levels of voltage and frequency are
(vL , fL ) and (vM , fM ), respectively. The corresponding lowest
and highest levels of sensitivities are represented as s1∞ (lowest
level is s∞ as error is 0) and s1

m . The sensitivity for each
application at different levels of APPX is shown as sn

i , where
n is the application number and i is the level of APPX. Criteria
for knob actuation are TDP violation (power > TDP) and
high request rate of incoming applications (AW T > AWTth).

1) Scenario (a): Two applications App1 (v1, f 1, 1∞)
and App2 (v2, f 2, s2∞) are currently running in the
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Fig. 7. Power management framework.

accurate mode of execution. At time t1, a power vio-
lation (power > TDP) occurs, while the throughput is
under control (AWT < AWTth). DVFS knob is triggered
over App1 and App2 to lower the power consumption
within TDP.

2) Scenario (b): App1 and App2 are now running at
downscaled voltage and frequency levels (v1, f 1, s1∞)
and (v2

L , f 2
L , s2∞) with DVFS invocation at t1. Although

power consumption is relatively lower than at t1, power
violation still persists. So, PG knob is invoked to power
gate the remaining unoccupied cores (power gated cores
are shaded). This would potentially violate throughput
constraint, since subsequently arriving applications do
not have any free cores to be mapped onto.

3) Scenario (c): Power consumption is below TDP and
there is no power violation. Application request rate has
increased and there is a throughput violation (AWT >
AWTth), due to power knobs triggered previously.
APPX knob is invoked to counter throughput viola-
tion. App3, arrived at t3, has a higher sensitivity than
App1 and App2, and hence is mapped in its approximate
version [App3(v3, f 3, s3

1 )]. Intuitively, we are reducing
the execution time of App3 so that there are free cores
for potentially incoming applications.

4) Scenario (d): At time t4, the power consumption
approaches TDPth, indicating the possibility of power
violation. DVFS knob is triggered to avoid potential
power violation over App2, which is chosen as candi-
date for voltage downscaling based on its network and
compute characteristics [App2(v

2
L , f 2

L , s2∞)].
5) Scenario (e): At time t4, power is under control, while

throughput violation persists. App3 is running in approx-
imate mode at level-1. APPX knob is invoked again
to address throughput violation, with a choice among
switching App2 to its next level, i.e., level-2 of APPX,
or App1 to level-1 of APPX. The sensitivity metric
for App1 at level-1 s1

1 is higher than the other two
applications at level-2 (s2

2 , s3
2 ), hence App1 is chosen

to switch to level-1 of APPX [App1(v1
L , f 1

L , s1
1 )].

6) Scenario (f): At time t5, power is under control,
while request rate is still high. All the approximable
applications are running in approximate mode at
level-1. APPX knob is invoked again, with a choice
among the applications for maximum performance gain.

The sensitivity metric for App3 at level-2 of APPX is
higher (s3

2 > s2
2 > s1

2 ), and is thus chosen to switch
the level of APPX further to level-2 (shown in bold)
[App3(v3

L , f 3
L , s3

2 )].
7) Scenario (g): At time t5, power consumption is below

TDP, so the DVFS knob is invoked to upscale the voltage
and frequencies of some cores. Among the three appli-
cations, App2 is chosen for upscaling, as it benefits the
most based on its network and compute characteristics.

8) Scenario (h): At time t8, power consumption is below
TDP, and the application request rate is also below its
threshold. DVFS knob is invoked to upscale voltage
and frequencies of some more cores. Since App2
is previously upscaled, App1 is now chosen as the
candidate that benefits from upscaling. Since the
throughput constraint is maintained, APPX knob is
invoked. App3, which has a higher sensitivity, is chosen
to switch a level up in accuracy, going into level-1 of
APPX from level-2 [App3(v3

L , f 3
L , s3

1 )]. This invocation
can be influenced by a user-defined parameter to upscale
voltage instead of switching up the level of APPX.

9) Scenario (i): At time t9, power consumption is
well below TDP, allowing more power to be consumed
safely. DVFS knob is invoked to upscale the voltage and
frequencies of all active cores to their maximum values.
The application request is still higher than threshold,
despite voltage upscaling and hence APPX knob is
invoked. App8 has the highest sensitivity among running
applications, hence it is chosen to switch mode of
execution to approximate at level-1 [App8(v8

M , f 8
M , s8

1 )].

VI. SYSTEM DESIGN

We design our power management framework for
NoC-based many-core systems supporting dynamic arrival of
applications. Our power management framework monitors per-
core power consumption and utilization, network intensity,
incoming application request rate, and sensitivities of appli-
cations to error to actuate different knobs accordingly. The
top-level view of our system architecture is shown in Fig. 7.

A. Application Modeling

We model individual computational blocks of an application
as a task. Each task is identified by its compute intensity,
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Fig. 8. Compound task graph—workflow.

communication volume with other tasks, and power consump-
tion. Applications are modeled as directed graphs, with each
node representing a task running concurrently with other tasks.
Analysis of applications’ power-performance characteristics
and task graph formation is implemented as an off-line func-
tion. Incoming applications are classified as approximable
and nonapproximable. Approximable applications have one or
more tasks that can be replaced by their approximate versions.
Such applications are modeled as compound task graphs, as
shown in Fig. 8. We generate compound task graphs that
include multiple versions of approximable tasks (in dotted
lines), and the approximate tasks are shown in solid fill.

B. System Architecture

1) Runtime Mapping and Mode Selection: Incoming appli-
cations are queued in the application repository and make a
request to be executed on the chip. The run-time mapping
and mode selection unit (RMSU) responds to the application
request by selecting free cores and maps the application
in a task-per-core manner. In addition, if the application is
approximable, RMSU buffers the approximate tasks from the
compound task graph into the task bank. The task bank
is implemented as a memory structure that holds pointers
to the addresses of approximable tasks, to provide easier
access to approximable tasks without a significant overhead.
We use proactive application mapping MapPro, presented
in [27]. Upon application mapping, RMSU sends the core
allocation information to the power controller for potential
actuation decisions. Servicing an application depends on the
availability of free cores on the chip, which in turn depends
on performance and power consumption of active cores. The
number of outstanding application requests weighed with the
time before they get serviced, and AWT (1) is sent to the
power controller for knob actuation decisions.

2) Power Controller: Power controller is the central man-
ager that monitors power consumption, incoming application
request rate, and system metrics for power and performance
knob actuation decisions. Every core on the chip is provided
with power and processor utilization sensors. We use the
combination of processor utilization, packet injection rate, and
buffer utilization to prune the design space for the selection of
candidates that are more suitable for voltage down/up scaling.
Selection of appropriate candidates for employing the DVFS
and PG knobs is elaborated in our previous work [5], [17].

Thus, we monitor power consumption, processor utilization,
network congestion, and network intensity at runtime, forming
the monitor phase of the power management framework.
Actuation decisions of the power controller are based on
parameters received from the monitor phase. We feed the
difference between power consumption of the chip and TDP to

a PID controller. Output of the PID controller is proportional
to the difference between power consumption and TDP and
determines voltage and frequency levels to be downscaled to
avoid power violation. In case of power consumption being
below TDP, voltage and frequency would be upscaled for
better power utilization. Knob Setting block of the power
controller receives the new voltage and frequency levels from
the PID controller, along with processor utilization, buffer
utilization, and packet injection rate from the monitor phase.
Based on utilization and network parameters, knob setting
block decides the cores to which voltage and frequency levels
are to be updated. The PID controller’s output is also used to
decide the number of cores to be power gated. Both DVFS
and PG actuations are applied to the chip, as shown in Fig. 7.

Load analyser compares application request rate, repre-
sented by AWT, and the threshold, AWTth, to determine
throughput violation (AWT > AWTth). The Knob Setting
uses this information and invokes APPX knob. Sensitivity
metric over different levels of APPX for all the applications
is summarized into a lookup table. Each application has k
(parametrized) levels of APPX and sensitivities associated
with each level. The level of APPX of an application that
is currently running on the chip determines current sensitivity
factor, while the ones that are preceding and succeeding are
the previous and next sensitivity factors. The lookup table is
pruned to find the application that has the highest sensitivity
factor in its next level of APPX. For example, consider App1
running at level-1 of APPX and app2 running at level-2 of
APPX. If APPX is to be invoked, the next level of APPX for
app1 is level-2 and for app2 is level-3. So, the sensitivities of
app1 at level-2 (succeeding the current level-1) and app2 at
level-3 (succeeding the current level-2) are compared to find
the application with highest next sensitivity value. The chosen
application and corresponding level of APPX are forwarded
to the RMSU. The RMSU retrieves the approximable tasks of
the chosen application with the level specified by the APPX
Level Selection from the task bank. The accurate task is
then replaced with the approximate task retrieved from the
task bank. For evaluation, we currently use four levels of
APPX in increasing order of accuracy-performance tradeoffs.
Alternatively, several fine-grained levels of accuracy tradeoffs
could be used.

Mode switching: APPX knob invocation triggers switch-
ing the mode of execution of an approximable application.
Depending on APPX knob setting, RMSU chooses the version
of task to be included in the application mapping, while the
other versions are buffered. With the invocation of APPX
knob, there are two possible scenarios for mode switching:
1) mapping approximate task graphs and 2) switching mode
of execution of applications currently running by task replace-
ment. In the former case, the RMSU maps every incom-
ing application in its approximate version by including the
approximable tasks instead of accurate tasks, until the mode
is switched back to accurate. The level of APPX is specified by
the power manager. For applications that are currently running
on the chip, power manager chooses the application(s) and the
level of APPX to switch to. Based on these, RMSU identifies
the corresponding approximate task specified by the power
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Fig. 9. Mode switching.

Fig. 10. Hierarchy of knobs.

manager from the task bank and replaces the accurate task with
the approximate task. We modeled applications for evaluation
as data-dependent concurrent tasks that execute periodically.
The computational process repeats until the end of execution
with a specified periodicity. Streaming and signal processing
applications are good examples, which execute periodically
over incoming samples of data, where it is possible to relax
certain aspects of computation when new data arrive every
period. In a similar manner, IoT applications work on real
world sensory data, preprocessing, filtering, and computation
over continuous intervals in a batch. Precisely, in these appli-
cations, the computational task remains the same while new
data arrive after every interval. When the RMSU has to replace
an accurate task with approximate, it lets the current iteration
of accurate task’s computation to finish execution. It waits
until data from the accurate task are received at its destination
end task (if any). Once the data transfer is completed, the
RMSU loads the approximate task on to the chip, replacing
the accurate task. Fig. 9 shows the process of task replacement
during mode switching. The example has three tasks 1–3 out
of which task2 is approximable. On invocation of APPX knob,
the switching happens in the following sequence: 1) the RMSU
finds the approximate task task2_appx from the task bank;
2) it waits until data from task2 (data23) is received at task3;
3) task2_appx is loaded by fetching the instruction stream
into the cache (I-cache); and 4) after the data is received
at task3, the execution of task2 will now start from new
instruction stream of task2_appx . Depending on the size
of instruction cache used, instructions of task2 may require
flushing, however, this is subject to hardware platform. Since
the computational process of the application is periodic in
nature, data are not changed with mode switching, and moving
the data or flushing the data cache (D-cache) is not needed.
The state of the application is hence preserved at the end
of the period. The mode switching overhead is elaborated in
Section VII.

C. Power Management Algorithm

We employ the DVFS and PG knobs synergistically with
APPX in a hierarchical way, as shown in Fig. 10. Triggering
and tuning of these knobs together for power capping and
performance maintenance is handled by power management
algorithm, as listed in Algorithm 1. We define three epochs
e1, e2, and e3 for actuation of APPX, PG, and DVFS knobs,

Algorithm 1 Power Management Algorithm

Algorithm 2 APPX Level Calculation Function
[appxChoose()]

respectively, such that e1 > e2 > e3. At every epoch e1,
application request rate is monitored. The difference between
AWT and its threshold is used to choose settings for APPX
knob. Settings for the APPX knob viz., application and level
of APPX, are determined by level selection algorithm, as
listed in Algorithm 2. The extent of throughput violation (�T )
determines the mode of incoming applications. If (�T > 1), it
reflects a steeper request rate of applications. Then, the mode
is set to in, indicating to the RMSU that newly incoming
applications are to be mapped in their approximate mode at
level-1. If (1 > �T > 0), the mode is set to run, i.e., to
switch the execution mode of currently running applications
only. In this case, based on sensitivity factors of currently
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TABLE I

APPLICATIONS’ ENERGY-ACCURACY TRADEOFFS

Algorithm 3 Mode Switching Algorithm

running applications, the sensitivity factor vector for the next
level of APPX is looked up from the sensitivity factor lookup
table (SFLT). This vector is sorted to find the application with
highest sensitivity among running applications. The chosen
application and level of APPX are returned to the power
manager for invocation of APPX knob. In case the throughput
is not violated (�T < 0), the APPX level of a chosen
application is shifted up, to a relatively accurate level. The
sensitivity factors of preceding level of APPX of currently
running applications are looked up from SFLT. These are
sorted to find the application that is least sensitive to error.
This application is chosen for the invocation of APPX knob,
and the application and its level of APPX are returned to
the power manager. APPX knob is invoked by the power
manager by sending the knob settings received from the level
selection algorithm to the RMSU. This is presented in a
listing in Algorithm 3. When the mode is in, new incoming
application’s tasks are buffered into the task bank. The new
application is mapped in its approximate mode at level-1.
When the mode is set to run, the task and its level of
APPX specified by the power manager are retrieved from the
task bank. Accurate version of this task is replaced by the
approximate task. Epochs e2 and e3 are smaller than e1 and are
concerning power violations. Power violations are monitored
at epoch e2. If power consumption exceeds TDP, PCPG knob is
actuated by PG cores that are currently unoccupied on the chip.
Conversely, when power consumption is below TDP, cores
that are previously power gated are powered up. At epoch
e3, power violations are addressed by DVFS knob. Cores

that benefit relatively higher from DVFS actuation are the
preferable cores. DVFS knob is actuated over these preferable
cores. Similar to the PCPG knob, voltage and frequency levels
of preferable cores are upscaled when power consumption
is below TDP. The actuation of PCPG and DVFS knobs is
based on our prior work on multiobjective power management
framework [5], [17].

VII. EVALUATION

In this section, we assess the efficiency of our APPX-
enabled power management approaches APPEND+ and
APPEND, with and without considering sensitivity of appli-
cation. We compare our approach against the state-of-the-art
dynamic power management/capping techniques PG [12]
which is based on PCPG, and MOC [5] which is based on
per-core DVFS and PCPG.

A. Application Setup

For evaluation purpose, we choose interdisciplinary error-
resilient application domains of machine learning and signal
processing. Furthermore, we selected two applications from
IoT domain, given the nature of input data and computa-
tions involved. The applications used for the evaluation of
APPEND+ are presented in Table I. The chosen machine
learning applications are data-triggered on-line learning tech-
niques that fall under classification and estimation. They
are interdisciplinary, specifically with IoT-based applications,
being used in recognition, mining, synthesis, and automation
that are performance and energy demanding. These workloads
are based on the iterative methods of computation, mean-
ing that the accuracy of result converges toward an optimal
solution with a more number of iterations. Since an accurate
solution may not exist and lower convergence could still offer
an acceptable result, they become candidates for APPX. For
evaluation purpose, we choose four levels of APPX, level-1
through level-4. We normalize the performance and energy
gains of approximate tasks from level-1 to level-4 against
their accurate versions. Table I shows the normalized gain
in performance and energy, and relative error induced with
APPX for different applications and levels of APPX. The
applications tested are error resilient in general. We chose
APPXs that result in soft errors, ensuring there are no critical
errors or exceptions. For linear regression, we use training data
of 1 million data samples and a test it over 1000 samples.
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TABLE II

APPLICATION SENSITIVITY

We use loop perforation to skip 5% to 15% of computations
on input training data. The error is calculated as relative
to accurate regression. For k-means clustering and k-nearest
neighbors, we use relaxed convergence. We compromise on
the number of flips, coverage of neighbors, and training data
sets, respectively, for these applications. We set the limits of
relaxation on convergence from 3% to 10% for four levels
of APPX. For the fast Fourier transform, we approximate
the computation involving exponential functions with relaxed
memorization and storing the twiddle factors in lower preci-
sion. We compute the complex exponential for one iteration
and reuse it for subsequent samples, despite the inputs to
exponential function not being the same. For a low-pass filter,
we use a Blackman window with 50 coefficients. We reduce
the number of coefficients up to 5 for relaxed execution. We
use sparse vector multiplication because of its broader usage
and application in several other fields. For this application,
we simplify the logic of product calculation that replaces
accumulated multiplications of rows and columns with a single
multiplication of means of a row and column. For IoT case
study on EWS, we reduce the number of samples of heart
rate sensor and compromise data fusion. We run the accurate
and approximate versions on data sets collected from three
different subjects. For fall detection, we reduce the sampling
rate of an accelerometer and the number of filter coefficients,
and simplify the logic of magnitude vector computation. We
use real-time accelerator data collected from a subject wearing
the fall detector, over different physical activities of walking,
sprinting, and resting.

We used the normalized performance gain and relative error
induced upon mode switching for each application over four
levels of APPX. We calculated the error sensitivity as gain
in performance per error, as described in (2). Table II shows
the sensitivity metrics for the applications used over different
levels of APPX. It should be noted that normalized gain
and sensitivity with increasing level of APPX are distinct.
The sensitivity metric represents the amount of performance
gained per amount accuracy lost by moving a level of APPX
further. For example, linear regression has sensitivity of 10.1
at level-1, while the sensitivity at level-2, 0.09, is much lower
than the previous level. This intuitively means that changing
the level of APPX for this application from level-1 to level-1
either has a lower performance gain or higher error penalty or
both. Similarly, k-means at level-1 has much higher sensitivity
than that of the other levels. The normalized gain at level-1

for k-means is 1.23, however, the error, 0.01, (see Table I)
is extremely small, making the sensitivity high. APPEND+
considers the sensitivity metric of all the applications currently
running on the chip to make decisions on which application
and which level of APPX are to be chosen for APPX knob
actuation. APPEND is oblivious to the sensitivity metric and
chooses applications in a naive manner and corresponding
level of APPX in a sequentially increasing order.

B. Simulation Environment

Applications are modeled as task graphs, as described in
Section VI. We implement each application such that one task
is allocated one core on interval-core-based Sniper simulator,
annexed with McPAT for modeling power [28]. We used
Gainestown architecture that has Nehalem-like processing
elements (PEs) with 32 kB of instruction and data caches.
We model the application into concurrent tasks, preserving
data flow nature. We use loop perforation and relaxed con-
vergence in case of approximate tasks. We extract execution
time, average power, and energy consumption per task. We
normalize these values as compute factor metric for each
node in the task graph, along with the amount of data flow
as the communication volume between tasks. The task graph
for each application is thus a directed network of nodes that
holds execution time, communication volume, average static,
and dynamic power consumption for accurate and approximate
tasks. The performance and power values extracted from these
simulations provide the relative performance and power gains
of a task when the execution is switched to approximate from
accurate. We use this ratio to model the power and throughput
gains while simulating, so that the APPEND+ framework
can be adaptive for all hardware platforms irrespective of
architecture. The Sniper simulator provides PEs with other
variants of microarchitecture. The relative performance gains
for approximate versions over the accurate versions may hold
good over different hardware platforms, unless the architecture
is highly customized. We use our in-house cycle accurate
simulator implemented in SystemC to evaluate the proposed
power management framework. We extended Noxim [29] NoC
simulator using its network infrastructure for interconnects.
The power characteristics of PEs are modeled based on metrics
extracted from McPAT and Lumos [30]. Lumos is an analytical
framework that quantifies power-performance characteristics
with technology node scaling for many-core systems. We used
Lumos for physical scaling parameters, voltage scaling, and
TDP metric for different network sizes. We added the support
for dynamic arrival and servicing of applications through the
run-time mapping unit. The mapping unit receives commands
from power controller, implemented as a software module.
The test bed is a rectangular network with X-Y routing.
The tile(0,0) of the mesh acts as the central manager that is
responsible for keeping track of mapping information. The
network size is 12×12 and the chip area is 138 mm2. For the
first node selection in the run-time mapping process, we use
MapPro [27] method. For the DVFS purpose, we use 15 VF
levels with voltage in the range of 0.8–1.2 V. The frequency of
the on-chip communication network (e.g., routers) is set to the
maximum level (similar to [12] and [5]). The TDP value is
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Fig. 11. Instantaneous power consumption of different knobs (a–e) on a
144-core system. (a) APPEND+, (b) APPEND, (c) MOC, and (d) DVFS, (e)
PG. Power is capped at TDP.

set to 90 W, calculated based on the chip’s power density.
We also evaluate our approach for power capping under
a variable power budget, TSP [4]. TSP is calculated as a
function of simultaneously active cores, which vary at runtime
based on application arrival and mapping. TSP provides a
relatively higher power budget than the conservative design
time estimate of TDP. We estimate TSP online and use it as
the upper bound on power budget for evaluating APPEND+.
We implemented the APPEND+ technique over integrated
simulation framework, as summarized earlier. It is possible
to implement the same as an operating system level policy,
provided the hardware platform supports sensing and actuation
of power.

C. Evaluation Metrics and Results

For evaluation purposes, we simulate the system over a
period in which 200 applications are serviced. The evaluation
metrics are as follows.

1) Power consumption: Power consumption of the system
over the period of execution, honoring TDP by capping
the power.

2) AWT: Accumulated value of wait time of applications
before the application request is serviced.

3) Throughput: Time consumed to service 200 applications.
Our prerequisite goal is to cap the power consumption such
that TDP constraint is honored throughout the period of exe-
cution. Fig. 11 shows the power consumption of DVFS, PG,
MOC, APPEND, and APPEND+, along with TDP constraint,
over the execution time for servicing 200 applications. TDP
violation is more frequent with PG and DVFS knobs, while
TDP is honored for most of the execution period with MOC,
APPEND, and APPEND+. Fig. 12 shows the power consump-
tion of the system with TSP as the upper bound on power.

Fig. 12. Instantaneous power consumption of different knobs (a–e) on a
144-core system. (a) APPEND+, (b) APPEND, (c) MOC, (d) DVFS, and (e)
PG. Power is capped at TSP calculated at run-time.

Fig. 13. Accumulated waiting time.

Unlike TDP, TSP varies at runtime offering a flexibility in
power capping. DVFS knob violates the TSP limit and is not at
efficient power capping. PG honors TSP constraint, however,
the power consumption always remains lower than (but not
closer to) TSP, indicating a lower utilization of available power
budget. MOC, APPEND, and APPEND+ meet the power
capping requirement and have a better power budget utiliza-
tion. APPEND and APPEND+ maintain power consumption
closest to TDP when compared with other knob combinations,
reflecting better utilization of available power budget. This
indicates mitigation of dark silicon and can be attributed to
hierarchical usage of power knobs in APPEND+’s power
controller. Moreover, we actuate power knobs, DVFS and
PG, by monitoring power consumption over an epoch e1 and
trigger the APPX knob proactively over epoch e2 with e2
being five times longer than e1. This eliminates possible
random actuations or oscillations between different modes of
execution. With better utilization, APPEND and APPEND+
are able to service applications faster, reducing the runtime
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Fig. 14. Normalized throughput (TDP).

Fig. 15. Normalized throughput (TSP).

and consequently wait time of incoming applications. Fig. 13
shows the AWT for different power capping actuators over
the period of execution. We present AWT as a function that
is directly related to the rate of application requests made.
Similar to power capping, APPEND+ has the best AWT,
preceded by APPEND, MOC, PG, and DVFS. DVFS- and PG-
based actuations have higher AWTs already when the applica-
tion request rate reaches 3 per second. MOC has a relatively
high AWT when application request rate is 5 per second.
However, APPEND and APPEND+ have a near-zero AWT
for as long as five times more than DVFS and PG and three
times more than that of MOC. This demonstrates the ability
of APPEND and APPEND+ to service applications faster
despite high workloads, when compared with the other knobs.
APPEND+ has AWT greater than zero when the application
request rate reaches 15 per second. Also, AWT accumulation
is more steeper in case of other knobs than that of APPEND
and APPEND+, indicating a substantial rise in their wait
times with high request rates. The minimal AWT and high
service rates of APPEND and APPEND+ also results in
high throughput and energy efficiency. Normalized gain in
throughput for all knob combinations with TDP as upper
bound and TSP as upper bound is shown in Figs. 14 and 15,
respectively. APPEND+ followed by APPEND has the higher
throughput, that is up to 1.9× better than PG and 1.4× better
than MOC, showing a significant gain in performance and
energy while power capping is strictly maintained. Employing
APPX knob allows APPEND+ to minimize execution time
of applications running on the chip. With applications leaving
the system faster, more resources (cores) become available for
incoming applications and reduce their wait time. APPEND
benefits from AWT and throughput mutually improving each
other. It is also to be noted that throughput gain of APPEND+
is relatively higher with TSP than that of TDP. The same
trend can be seen with throughput of all the other knobs too,
reflecting better utilization of power under TSP constraint.
APPX knob can be implemented exclusively in software,
making the APPEND+ framework scalable and adaptable
across different hardware platforms. In the context of IoT
applications, APPEND+ can be used both at the edge and

TABLE III

APPLICATIONS—BEHAVIOR AND OVERHEAD

cloud layers which can deliver real-time high performance at
the front end. The sensitivity lookup table can be used only
to store sensitivity metrics of applications that are currently
running on the chip, limiting the size of the lookup table
without affecting scalability.

1) Error and Overhead Analysis: Behavioral patterns of
accurate (Acc) and approximate (Appx) versions of each
application are shown in Table III. The approximate versions
are at level-4 of APPX, to reflect the maximum overhead
caused and maximum performance gained. The number of
instructions of each application (Instructions), the number
of instructions simulated [Instr. Sim (M) in million], the
number of L1-instruction cache accesses [L1-I Accesses (M)]
(in million), and normalized overhead (in %) are presented
in Table III. These metrics are extracted from individual
application simulations (accurate and approximate) on Sniper.
A number of instructions are slightly higher for approximate
tasks due to conditional branching involved. However, these
instructions eventually result in reduced overall workload
and hence improve performance. For each application, we
used 1 million elements in training set in increasing steps
of 100 000 data points per period. A number of simulated
instructions depend on training and test data sets used, and
are variable in case of different sizes of data used. With
loop perforation and relaxed convergence, input data elements
are skipped, resulting in fewer instructions required to be
simulated. Switching execution from accurate to approxi-
mate version incurs some overhead due to monitoring and
triggering the approximate version. For every approximate
task, the switching of execution mode involves a conditional
branching instruction(s). The overhead incurred during this
transformation included in the approximate task’s compute
factor. For the applications we used, the normalized overhead
penalty incurred in mode switching ranged between 0.3% up
to 1.2%. This overhead is negligible when compared with the
workload reduced by APPX and thus levies no significant
performance penalty. In terms of power overhead, the task
bank and sensitivity lookup tables used in APPEND+ frame-
work are simple memory structures with fewer access during
execution of an application. The power consumption of these
components is insignificant compared with the total system
power. Loading an approximate task involves moving new
instruction stream to the instruction cache, with a possibility
of increase in the number of DRAM accesses. However, this
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depends on the number of application instructions and the
size of L1-instruction cache. For instance, a larger application
coupled with smaller L1-instruction cache presents a worst
case scenario that would force the system to evict accurate task
and fetch the approximate task from main memory. In our test
bed, we used L1-I cache of 32 kB and all the applications have
instructions up to as many as 1500. The worst case penalty in
terms of communication for switching from accurate version
of a task to the approximate version can be calculated as
follows:

penalty = sizeapp

sizepkt
× (PL + (n × rL) + MCL + DRAML)

(3)

where sizeapp and sizepkt are the application and packet sizes,
PL is the packetizing latency, n is the number of hops from
a core to nearest memory controller, rL is the router channel
latency, and MCL and DRAML are the access latencies of
memory controller and off-chip memory. We demonstrate the
theoretical worst case overhead penalty of mode switching
for a video encoding application run on Intel SCC as an
example [31]. The experimental many-core platform Intel SCC
has the off-chip memory, core, and network frequencies of
400, 533, and 800 MHz, respectively. The worst case mode
switching penalty on SCC for the video encoding application
of size 6 kB using the formula in (3) is 1.5 ms. For the
same application, penalty in task migration is 10.6 ms, seven
times more than the mode switching overhead, to move both
instructions of 6 kB and data of 16 kB. Task migration
overhead can still be higher when more data are to be moved,
while mode switching needs no movement of data. It should be
noted that these values are subjective to the platform on which
they are executed, while the relative difference in overheads
between mode switching and task migration might hold good.

VIII. CONCLUSION

In this paper, we proposed APPX as another knob for
power management in many-core systems. We implemented
APPX knob based on application’s sensitivity to error such
that performance gain is maximized within minimal error. We
developed power managing schemes to combine DVFS and PG
knobs with APPX knob to meet system requirements in power
capping, performance, and energy efficiency. We presented
a power management framework, APPEND+, that monitors
chip’s power and performance requirements at runtime and
triggers different knob actuations accordingly. We evaluated
APPEND+ against other state-of-the-art power management
techniques, over machine learning, signal processing, and IoT
applications. APPEND+ improves performance and energy
efficiency with the APPX knob and sensitivity aware actuation
of the APPX knob, while power capping is maintained with
the combination of APPX, DVFS, and PG knobs.
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ABSTRACT
Run-time resource management of heterogeneous multi-core sys-
tems is challenging due to i) dynamic workloads, that often result
in ii) conflicting knob actuation decisions, which potentially iii)
compromise on performance for thermal safety. We present a run-
time resource management strategy for performance guarantees
under power constraints using functionally approximate kernels
that exploit accuracy-performance trade-offs within error resilient
applications. Our controller integrates approximation with power
knobs - DVFS, CPU quota, task migration - in coordinated manner
to make performance-aware decisions on power management under
variable workloads. Experimental results on Odroid XU3 show the
effectiveness of this strategy in meeting performance requirements
without power violations compared to existing solutions.

CCS CONCEPTS
• Hardware → On-chip resource management; • Computer
systems organization → Multicore architectures;

KEYWORDS
On-chip resource management, approximate computing

1 INTRODUCTION
Heterogeneous multi-core systems that are resource constrained
exacerbate the run-time management challenge with i) diverse per-
formance requirements of applications ii) fixed power budgets iii)
dynamic workload characteristics iv) core-level heterogeneity. Ex-
isting resource management techniques use Dynamic Voltage and
Frequency Scaling (DVFS) [2], task migration [15], power gating
and CPU quota scaling [18, 19] etc., for power optimization. Such
techniques propose joint actuation of power knobs [2, 14, 15, 18, 25]
and application characteristics exploitation [7, 9] to maximize per-
formance within the fixed power budgets. These strategies minimize
the effect of power actuation on performance, yet inevitably com-
promise on performance for thermal safety. This specifically affects
a class of streaming applications from domains such as machine
learning, artificial intelligence, multimedia processing, computer
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vision and Internet-of-Things [12, 21]. These applications may in-
clude user interaction and serve as intermediate results to other
computational kernels (e.g., computer vision in self-driving vehi-
cles), making them latency-sensitive. Typical power actuation tech-
niques cannot provide real-time performance guarantees required
to ensure user satisfaction and responsiveness. At the same time,
such applications are relatively error resilient (i.e., approximable)
due to their algorithmic tolerance nature, redundant input data and
perceptive end results. Approximate computing [4] has become a
popular choice for energy and performance gains exploiting the
error resilience of certain application domains. Functionally ap-
proximate kernels present a Pareto space of accuracy-performance
trade-offs that can be leveraged at run-time to achieve better per-
formance within lower power and/or energy resources, for an ac-
ceptable loss in accuracy [1, 22]. In this work, we propose a novel
run-time resource management strategy for heterogeneous multi-
core systems running dynamic and unknown workloads, exploiting
approximation together with traditional power knobs. Our strategy
jointly coordinates with power knobs and approximation knob to
scale accuracy of the applications as per available resources, when
power/performance requirements cannot be met with traditional
knobs. Subject to system dynamics and applications’ requirements,
we switch application’s mode of execution from accurate to ap-
proximate to meet i) power constraints - by lowering resources
to approximate kernels, and/or ii) performance requirements - by
opportunistically reducing workloads. Coordinated usage of ap-
proximation knob complements the traditional power knobs to
overcome their limitations and conflicting decisions. The major
contributions of our work are:

• Coordinated actuation of approximation knob with other
power knobs to satisfy both power and performance con-
straints subject to system dynamics,

• Resource allocation policy for heterogeneous multi-core sys-
tems running unknown/dynamic workloads using the coor-
dinated actuation strategy through DVFS, CPU quota assign-
ment, task migration and approximation,

• Evaluation of our strategy on a real test-bed of Odroid XU3
8-core ARM big.LITTLE platform, over a set of error resilient
machine learning applications.

Organization: Motivation for coordinated actuation of approx-
imation with other power knobs and related work are presented in
Sections 2 and 3, highlighting the novelty of our solution. Section 4
discusses the background on system architecture. The proposed
resource management strategy for power-performance actuation
is described in Section 5. Section 6 presents an evaluation of our
approach with selective workloads on Odroid XU3 HMP platform.
Finally, Section 7 concludes the paper with future work.
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Figure 1: Effect of conflicting knob actuations. (a) DVFS and
APX are triggered without co-ordination [13]. (b) DVFS and
APX are tuned with co-ordination.
2 MOTIVATION
We demonstrate the effect of combining approximation (APX) knob
with power actuation through an example, using the control strat-
egy presented in [13]. For simplicity, we use only DVFS as the power
knob, and loop perforation [22] based approximation as the APX
knob. As a test case, we use least squares curve fitting application
over 24000 pairs of inputs, and 10% of the loops skipped to realize
the approximate version. Figure 1(a) shows the power consump-
tion and corresponding performance (measured in heartbeat/s, as
described in Section 4) of the application. We assume 2W as the
threshold for power actuation, 10 seconds (for presentation ease)
as the control period for resource management decisions , along
with a target performance requirement (the red line). At t = 10s ,
power exceeds the threshold, triggering DVFS to reduce power,
while performance requirements are satisfied. Subsequently, power
consumption is reduced during the control period, also reducing
the performance below the requirement. At t = 20s , performance
requirements are not met - triggering the APX knob, while power
consumption is below the threshold - triggering DVFS (upscaling).
With the uncoordinated actuation decisions performed by [13],
performance is restored with some accuracy loss, while power con-
sumption again exceeds the threshold during the following control
period. At t = 30s , performance requirements are met, hence the
application is switched to accurate execution; DVFS is triggered
again to lower power consumption. A similar oscillation between
accurate-approximate executions and high-low frequencies will
continue in the subsequent control periods. Although the perfor-
mance violation at t = 10s could be recovered with approximation
at t = 20s , the lack of coordination between DVFS and approxi-
mation either over-compensates or under-compensates the knobs’
actuation. This occurs because of the reactive nested loop structure
of such control policies (as in [13]), where power and performance
actuation happens independently, and is mutually agnostic.

Figure 1(b) shows power and performance for the same scenario,
with a coordination among DVFS and approximation. At t = 10s ,
DVFS is triggered to address power violation. At the same time,
considering the performance loss with power actuation, approxi-
mation is triggered pro-actively by predicting the potential loss in
performance due to DVFS (downscaling). As a result, performance
requirements are met during the subsequent control period despite
DVFS downscaling. At t = 30s , VF is upscaled with availability

of power headroom and the same is indicated to the performance
manager. This allows the performance manager to make informed
decisions on performance actuation, which in turn restores the
accurate mode of execution. As a conclusion, while combination
of approximation and DVFS addresses the performance loss due to
power actuation to an extent, tight coordination between power and
performance actuation provides better results in i) meeting perfor-
mance requirements often, and ii) minimizing the accuracy loss due
to approximation. In a realistic scenario, the resource management
policy has to consider 1) a wider set of power knobs viz., DVFS,
CPU quota assignment, task migration and fine-grained levels of
approximation, and 2) variable workload characteristics having
applications entering and leaving the system with an unknown
trend, and each one being characterized by a specific performance
requirement. When considering these aspects, knob actuation for
maximizing performance within minimal power consumption and
accuracy loss becomes dramatically complex and challenging. Our
goal is therefore to address this issue by enabling coordinated deci-
sion making on power knobs and approximation actuation.

3 RELATED WORK
Resource Management. We primarily focus on run-time resource
management techniques proposed for heterogeneous multi-core
systems, targeting big.LITTLE architecture. HMP is the last ver-
sion of Linux scheduler for big.LITTLE architectures designed by
Samsung [26]. It maps compute-intensive applications on the big
cluster and I/O bounded ones on the LITTLE cluster. However,
it neither considers performance requirements expressed by the
user, nor acts on CPU quota and DVFS. Race-to-idle policy is not
efficient in the case of asymmetric processors for neither power
dissipation nor energy consumption, as shown in [11]. Therefore,
advanced strategies are required especially when considering also
performance requirements. Numerous works enhanced the HMP
idea with advanced run-time resource management to meet per-
formance requirements while concurrently optimizing energy and
power consumption [3, 6, 10, 15]. The most representative one
is [15] - using task mapping, DVFS, CPU quota and task migra-
tion, which eventually coordinate and converge towards meeting
performance requirements within power limits.
Run-time Approximation. [24] has proposed a static scheduling
algorithm considering various approximate versions of tasks in an
application to maximize performance within a given error bound,
while honoring power constraints. It is assumed that approximate
versions of tasks (based on loop perforation) are provided before
hand and the scheduler relies on an off-line heuristic to determine
scheduling decisions of the approximate task. [13] proposes the
use of approximation as a performance knob in covering up for the
performance lost during power capping in many-core architectures.
They assume two approximation levels to be provided for each
task and switch the execution mode from accurate to approximate
and vice-versa based on performance surges. No tight coordination
between approximation and other power knobs is the limit of this
work, as shown in Figure 1. Run-time approximation for thermal
management of a single video application through content-aware
error resilience characterization has been proposed in [16]. It de-
fines four approximate levels for reducing power and temperature
opportunistically over specific cases of video applications, however



Table 1: Qualitative comparison of proposed solution w.r.t. existing approaches.

Technique Goal Multi- Unknown Knobs APX Levels Coord.Programmed Workload DVFS CPU quota Task Mig. APX
HierCtrl [15] Performance within power cap ✓ ✓ ✓ ✓ ✓ ✘ ✘ +/-

ApxSched [24] Energy efficiency and QoS ✓ ✘ ✓ ✓ ✓ ✓ 5 ✘

ApxTherm [16] Thermal optimization ✘ ✘ ✓ ✘ ✘ ✓ 4 ✘

ApxKnob [13] Power capping ✓ ✓ ✓ ✓ ✘ ✓ 2 +/-
Our Appr. Performance within power cap ✓ ✓ ✓ ✓ ✓ ✓ Fine-grained ✓

it does not use approximation from a resource management perspec-
tive, nor it deals with multi-programmed workloads. Finally, [23]
proposes a proactive control of knobs for approximating a given
program, satisfying a set of system parameters for minimum loss in
accuracy. This technique is based on an off-line learning, where the
approximation knob takes into account, for a given set of inputs,
the introduced error and the achieved performance improvement;
moreover, no resource management is considered.

Table 1 reports and compares the most representative among the
mentioned existing solutions, by listing their supported features.
The last line in the table shows our proposed approach, which
considers a more comprehensive scenario compared to the others,
addressing the resource management and application approxima-
tion in a more fine-grained and tightly coordinated way.

4 SYSTEM ARCHITECTURE
Figure 2 presents our system overview comprising hardware, soft-
ware and interface. The specific processing platform deploys the
well-known ARM big.LITTLE asymmetric multi-core model, com-
posed of a cluster of high-performance power-hungry big cores, and
an alternative cluster of low-power LITTLE cores. The processor is
constrained by a Thermal Design Power (TDP) [5] - the conservative
maximum power specified for the chip’s thermal safety, and is pro-
vided with per-cluster DVFS and power sensors to support power
management. The loaded Operating System (OS) utilities provide
control over resource allocations through: task migration between
different clusters, task mapping on a specific core within a cluster,
and CPU quota assignment to set the percentage of time/resources
the core will devote per application. The overall system we propose
is similar to the ones used in [15, 17, 24] - the key distinctive aspect
of our approach is the APX knob set by the controller to determine
the accuracy levels of the applications at run-time.

In this work, we target applications with a computationally in-
tensive loop, where the main kernel is continuously repeated. Ap-
plications may enter and leave the system with an unknown trend,
thus causing a highly variable workload. The applications are as-
sumed to be enhanced with the HeartBeat API [8] for a throughput
measure (in terms of loop iterations or heartbeats, performed per
unit of time, hb/s , which is proportional to the amount of processed
data per unit of time). This also allows expression of user-level per-
formance requirements, in terms of the minimum throughput to
be guaranteed. Finally, we assume the compute kernel to be pos-
sibly implemented with an approximation strategy, e.g., the loop
perforation [22], that can be tuned at run-time.

The last component in Figure 2 is a run-time controller (similar
to [15]), capable of accessing the described system-level sensors
and actuation knobs through the OS interfaces, and the application-
level ones through the HeartBeats API. The proposed run-time
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Figure 2: System Architecture.
resource management policy implemented as the controller module
is presented in the following section.

5 THE PROPOSED POLICY
The run-time resource management policy functions in idle, decide
and refine phases, implemented as a finite state machine shown in
Figure 3, and described as follows.
5.1 Policy phases
Idle. This phase corresponds to the unloaded system or to a thor-
oughly balanced one, satisfying power and performance require-
ments, eventually. When in this phase, the controller monitors
relevant events causing significant variations in system dynamics.
Such an event typically occurs when a new application enters the
system (requesting system resources), or a currently running appli-
cation leaves it (freeing them). In such events resource allocation
decisions are to made, by transitioning into the decide phase.

Decide. Resource allocation decisions on core selection, DVFS,
CPU quota, task migration and approximation are made in this
phase. When a new application enters the system, it is conser-
vatively mapped on a LITTLE core. Each time an application en-
ters/exits, the running workload on each cluster is re-mapped to
make utilization uniform on the various cores. Actuation decisions
are based on power and throughput measurements from the OS-
level and application-level monitoring interfaces. Knob settings
are determined to be proportional to applications’ performance
requirement and power budget available. Failing to meet an appli-
cation’s performance requirement or violating the upper bound on
power budget are two instances when decision making becomes
critical. Upon such events, the controller decides between combina-
tions of power knobs alone (DVFS, CPU quota and/or task migra-
tion) and/or power knobs combined with approximation, subject
to whichever yields better performance within acceptable power
constraints and accuracy loss (the logical flow of this strategy is
presented in a more detailed way in the next subsection). We use
estimation models (detailed in Section 5.3) to predict near-optimal
knob settings during the decide phase. They minimize the knob set-
ting space to be pruned, allowing a faster arrival at a near-optimal
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Figure 3: Work flow of the designed policy.
solution. Estimating performance loss/gain over every power actu-
ation decision allows to establish coordination among conflicting
power-approximation knobs settings. At the end, selected resource
allocation decisions are enforced. If task migration has been per-
formed, this significantly alters application’s performance thus the
decide phase is repeated; otherwise the subsequent refine phase will
take place.
Refine. The refine phase monitors power and performance metrics
and fine-tunes any coarse-gained knob settings enforced during the
decide phase. This provides precise control over resource allocation,
primarily using CPU quota and APX knobs. Further, any possible
aberrations, or over/under compensation decisions made during
the decide phase, will be converged towards required knob settings
in the subsequent refine phase so that a stable resource allocation
is eventually reached. The refine phase will last as long as needed
to ensure the performance target, for all running applications, is
met within the power budget.

5.2 The decision strategy
The algorithmic flow of the decide phase is shown in Algorithm 1.
Actuation decisions are invoked in two cases - a power violation,
i.e., measured power consumption (P ) exceeding TDP (Lines 1–13)
and power constraints honored (Lines 14–45), detailed next.
Power Violation. Recovery actions have to be taken by acting
mainly on the big cluster since it is the responsible of relevant
power consumption. Application(s) that have a minimal perfor-
mance penalty (set to < 10%) upon migrating to the LITTLE cluster
are chosen, if any (Line 3), and each selected application is migrated
from the big cluster to the LITTLE one. Approximation is invoked
simultaneously, by setting an accuracy level that is proportional to
the estimated loss in performance with task migration (Lines 3–5).
This ensures that a potential performance loss with migrating to the
low-power LITTLE cluster is pro-actively addressed with reducing
the workload through approximation. If no application with toler-
able performance loss upon task migration is available, DVFS is
used for reducing power consumption (Lines 7–13). Target voltage
and frequency (VF) levels are determined by the ratio of current
power consumption and budget P/TDP , using the estimation model
in Equation 1 (presented next – Line 7). For each application, the
possible performance loss with lowered VF levels is estimated with
the model in Equation 4 (Line 10). Approximation is triggered over
such applications that could suffer performance loss with the new
VF levels. The level of approximation is set proportional to the esti-
mated performance loss (Lines 12–13). In this scenario, DVFS and
APX are triggered coordinately such that any possible performance
loss incurred in power actuation is pro-actively and proportionally
covered up through approximation, using the estimation models.
Power Budget Honored. We analyze each cluster separately (Line
15). We start on the LITTLE and we first identify possible applica-
tions that do not meet target performance at the highest resources.

If any, such applications are migrated on the big cluster and the cur-
rent decision phase ends and it will be restarted on the subsequent
control period to have an updated measure of the throughput in
the new configuration (Lines 18–22).

After that, on each cluster the application having the highest
assigned CPU quota is chosen as the most demanding (Line 25). The
VF level is then determined such that performance requirements of
this selected application are met at maximum CPU quota; indeed
as shown in [15, 17] selecting the minimum necessary VF level at
maximum CPU quota minimizes power consumption among all
configurations offering the same level of performance (Lines 26–
27). Performance of other applications is estimated with the newly
determined VF level (Line 29). The applications which have met the
performance requirements and were approximated in the previous
decision phases are recovered back to accuracy, subjective and pro-
portional to the availability of surplus power budget and current
performance levels (Lines 30–32). Among the other applications,
CPU quota of applications that have already met the performance

Algorithm 1 Decide phase workflow.
Inputs: Apps : Applications currently running
Global Variables: U : Overall utilization of all the cores
Vb , Fb , Vl , Fl : VFs of big and LITTLE clusters
P : Measured power consumption
Global Constants: T DP : Power band limit
miдPenalty : Performance penalty threshold upon task migration
Body:
1: if P ≥ T DP then
2: for every appi in Apps ∈ biд do

3: if appi .max P er f OnLIT T LE
appi .t arдet P er f ≥ 1 −miдPenalty then

4: T askMiдr ation(appi , LITT LE) //it forces decide phase re-execution
5: APX (appi , miдPenalty)
6: else
7: Vr , Fr ← power Estimate(Vl , Fl , U , P/T DP )
8: set DV F S (Vr , Fr )
9: for every appi in Apps do

10: appi .per f Estimate ← per f Estimate(Vr , Fr , appi .quota)
11: if app .per f Estimate < 1 then

12: loss ← 1 − appi .per f Est imat e
appi .per f T arдet

13: APX (appi , loss)
14: else
15: for each cluster c ∈ {biд, LITT LE } do
16: Appsc ← дet_appls_on_cluster (c)
17: r edecide ← f alse
18: if c = LITT LE then
19: for every appi in Appsc do
20: if appi .per f ≤ appi .tarдet Per f then
21: T askMiдr ation(appi , biд)
22: r edecide ← true
23: if r edecide = true then
24: exit() //it forces decide phase re-execution
25: appH ← дet_appl_with_max_CPU quota(Appsc )
26: Vr , Fr ← power Estimate(Vc , Fc , U , appH .per f )
27: set DV F S (Vr , Fr )
28: for every appi in Appsc do
29: appi .per f Estimate ← per f Estimate(Vr , Fr , appi .quota)
30: if app .per f Estimate > 1 then
31: if appi .apx > 0 then
32: APX (appi , appi .per f )
33: else
34: qold ← appi .quota
35: q ← per f Estimate(Vr , Fr , appi .quota)
36: setQuota(appi , q)
37: U ← U − qold + q
38: else
39: qold ← appi .quota
40: q ← per f Estimate(Vr , Fr , appi .quota)
41: setQuota(appi , q)
42: U ← U − qold + q
43: appi .per f Estimate ← per f Estimate(Vr , Fr , u)
44: if appi .per f Estimate < 1 then
45: APX (appi , appi .per f )



requirements (if any) are lowered proportionally within their per-
formance requirements (Lines 33–37). For applications that do not
meet the performance requirements with new VF settings, CPU
quota is increased proportional to the target throughput if possible
(Lines 39–42). In case of persistent performance violation, approxi-
mation is invoked, setting the level of approximation proportional
to the loss in performance, as estimated (Lines 43–45).

5.3 Power and Performance Estimates
Within the discussed Algorithm 1, we used performance and power
estimation models adapted from [17, 20, 24] and experimentally
verified on the considered board. We represent power consumption
Pj of a cluster j running a set of N applicationsAppi as a function of
the overall cluster utilizationUj and the relatedVj , Fj . As presented
in [17, 20, 24], a fast/almost-accurate estimation of power for each
Vj , Fj pair can be obtained as a function of Uj :

PVj ,Fj = aVj ,Fj ·Uj + bVj ,Fj (1)
where aVj ,Fj and bVj ,Fj are empirically derived at each Vj/Fj pair.
Utilization Uj of a cluster j indicates the amount of time in a given
control period for which the included cores are busy:

Uj =

NÕ
i=0

Ui (2)

where N is the number of cores in the cluster. Moreover,Ui measure
is directly provided by the OS, whereas the assigned CPU quota is
directly proportional to the utilization. Then, power consumption
Pt of the system is the sum of values of the two clusters. As shown in
previous works (e.g.[17, 24]), performance (Per fi ) of an application
i has an almost linear relationship with the CPU quotaQ , VF setting
of the cluster it is mapped on, expressed as:

Per f (i) = αQ(Appi )Fi (3)
where α is a variable parameter that depends on application char-
acteristics and cluster where the application is running. Thus, we
estimate the performance penalty with actuation of power knobs
viz., CPU quota assignment, VF level and task migration from a
configuration old to the new one as:

Penalty(Appi ) =
Per fnew

Per fold
=

αnewQnew (Appi )Fnew

αoldQold (Appi )Fold
(4)

6 EXPERIMENTAL RESULTS
Experimental Setup. For the experimental evaluation, we consid-
ered an Odroid XU3 board running Linux Ubuntu 15.04. It features
Samsung Exynos 5422 with 4 ARM A7 (LITTLE) and 4 ARM A15
(big) cores, operating within 200−1400MHz and 200−2000MHz fre-
quencies respectively. TDP was set to 5W , considering a restriction
on-chip temperature to 80◦C. The controller has been implemented
in C++ and runs as a user space process. It uses Linux drivers to
access on-board sensors for power measures and to apply DVFS
settings. Application’s execution and allocation of CPU quota are
enabled through CGroups Linux library. Communication between
applications and the controller is established through Linux shared
memory mechanism. An in-house implementation of HeartBeats
API uses this shared memory space to periodically 1) write the appli-
cation throughput information - to enable the controller’s through-
put monitoring and 2) read approximation levels determined by
the controller - to dynamically switch the application accuracy
level. Approximation level is passed as parameter to the kernel

Table 2: Simulated workload.
Application Input Approximation

LeastSq 1 million pairs loop perforation
KNN 25k points and 25 test cases loop perforation and task skipping

kMeans 50k points into 3 clusters relaxed convergence
LinReg 1 million pairs relaxed convergence

function, dynamically creating a range of fine-grained approximate
versions without any compilation and memory overhead. For ex-
perimentation, we used four applications from machine learning
domain, listed in Table 2 and the type of software approximations
used. Larger number of iterations over input data yields results
that converge towards optimal result due to algorithmic nature
of these applications. We only temporarily trade the accuracy to
meet power/performance requirements, while accurate execution
is enabled when enough resources are available. The epoch for the
controller invocation is parametrizable and can be tuned as per plat-
form and applications’ characteristics. In our evaluation, we set the
epoch to 1s to collect stable throughput measurements upon knob
actuation, given the streaming nature of the chosen applications.

Evaluation. To test our proposed solution, we created a dy-
namic workload scenario ranging from 1 to 4 concurrently running
applications, emulating unknown workloads. We compare it against
similar state-of-the-art approaches, namely ApxKnob [13] and Hi-
erCtrl [15]. These approaches exploit the uncoordinated usage of
the APX knob with other power knobs, and the coordinated usage
of power knobs without any approximation, respectively. All sys-
tems are fed with the same dynamic workload scenarios. Figure 4
shows a comparison of power consumption, and Figure 5 reports
each application’s performance against the set requirements over
the workloads (with a −1/+1hb tolerance band). Table 3 lists the
average power consumption and percentage of power violations
for each approach. ApxKnob violates power budget the most, at
35% of the overall execution period, mainly with conflicting power-
performance decisions resulting in constant oscillation between
high-low power-performance states. HierCtrl has a much lower
power violation at 3.5%, as different controllers converge eventually
towards stable configurations. Our solution has a negligible 0.5%
power violation with pro-active and coordinated knob actuation,
benefiting from the estimation models. Table 3 also reports for
every approach, the performance guarantees in terms of the per-
centage of execution time during which the requested performance
is achieved for each application. The loss in accuracy with approxi-
mation knob is presented as the weighted sum of execution time
and approximation level set, also shown in Table 3. ApxKnob meets
the performance requirements mostly by leveraging approximation,
and largely due to uninhibited power usage. Although the loss in
accuracy for performance guarantees is acceptable, this approach is
limited by frequent thermal violations. HierCtrl relies on degrading
throughput requirements to address power emergencies, resulting
in dramatic performance loss, particularly under heavy workloads.
Although HierCtrl achieves the lowest average power consumption

Table 3: Power, performance and approximation behavior.
Technique Avg. Power

Violation (%)
Perf. Violation (%) Approximation (%)

Power (W) LR LeSq KNN kM LR LeSq KNN kM
ApxKnob [13] 4.6 35.8 1.6 15.3 3.5 4.5 0 2 5.3 2.6

HPM [15] 2.82 3.5 28.6 89.7 44.2 42.6 0 0 0 0
Our Appr. 3.34 0.58 0.62 3.04 1.85 1.3 0.1 5 6.4 3.9



� ��� ��� ��� ��� ��� ���

��������

�

�

�

�

�

�

�

�

�

�

�
�
�
�
��
��

�

�����

������������

�������������

������������

���

Figure 4: Power consumption measures.
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Figure 5: Performance measures for different applications.
and has a lower power violation rate, performance losses are sig-
nificant. Our proposed approach, on the other hand, balances both
performance requirements and power constraints, in particular, it is
effective in delivering the requested performance, within minimal
power consumption and an acceptable loss of accuracy. The effec-
tiveness of approximation knob in power management although
is trivial, requires disciplined tuning to achieve performance gains
within power limits. Figure 5 shows that ApxKnob over compen-
sates for performance (resulting in power budget violation), while
HierCtrl violates performance requirements (with conservative
power actuation). Our approach tunes approximation effectively to
obtain the requested performance while minimizing the necessary
power consumption. This can also be observed in Figure 5, where
our approach consistently provides precisely the required perfor-
mance, while ApxKnob and HierCtrl often over/under provision,
resulting in their respective power and performance violations.

7 CONCLUSIONS
We presented a run-time resource management policy for asymmet-
ric multi-cores that integrates functional approximation with other

power knobs viz., DVFS, CPU quota assignment and task migra-
tion in a disciplined manner, to make performance-aware decisions
on power management. The designed solution is able to minimize
the penalty of power actuation decisions leading to performance
loss with coordinated invocation of approximation together with
other power knobs. Experimental results performed on an Odroid
XU3 board demonstrates the effectiveness of the proposed solution
w.r.t. the most representative existing approaches. Future work will
focus on considering the management of multi-thread applications
possibly targeting also the GPU resource.
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