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Abstract 
 
Signaling pathways represent a central regulatory mechanism of biological 
systems where a key event in their correct functioning is the reversible 
phosphorylation of proteins. Protein phosphorylation affects at least one-third of 
all proteins and is the most widely studied posttranslational modification. 
Phosphorylation analysis is still perceived, in general, as difficult or cumbersome 
and not readily attempted by many, despite the high value of such information. 
Specifically, determining the exact location of a phosphorylation site is currently 
considered a major hurdle, thus reliable approaches are necessary for the detection 
and localization of protein phosphorylation. The goal of this PhD thesis was to 
develop computation methods and tools for mass spectrometry-based protein 
phosphorylation analysis, particularly validation of phosphorylation sites. In the 
first two studies, we developed methods for improved identification of 
phosphorylation sites in MALDI-MS. In the first study it was achieved through 
the automatic combination of spectra from multiple matrices, while in the second 
study, an optimized protocol for sample loading and washing conditions was 
suggested. In the third study, we proposed and evaluated the hypothesis that in 
ESI-MS, tandem CID and HCD spectra of phosphopeptides can be accurately 
predicted and used in spectral library searching. This novel strategy for 
phosphosite validation and identification offered accuracy that outperformed the 
other currently existing popular methods and proved applicable to complex 
biological samples. And finally, we significantly improved the performance of our 
command-line prototype tool, added graphical user interface, and options for 
customizable simulation parameters and filtering of selected spectra, peptides or 
proteins. The new software, SimPhospho, is open-source and can be easily 
integrated in a phosphoproteomics data analysis workflow. Together, these 
bioinformatics methods and tools enable confident phosphosite assignment and 
improve reliable phosphoproteome identification and reporting. 
 
 
Keywords: mass spectrometry, protein phosphorylation, spectral library, 
phosphosite validation, simulation of spectra 
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Tiivistelmä (Finnish summary) 

Veronika Suni 
Laskennalliset menetelmät ja työkalut proteiinien fosforylaatioanalyysiin 

Signalointireitit ovat tärkeä biologisten järjestelmien säätelymekanismi, jossa 
keskeinen tapahtuma niiden oikeassa toiminnassa on proteiinien palautuva 
fosforylaatio. Proteiinien fosforylaatio vaikuttaa ainakin kolmasosaan kaikista 
proteiineista, ja on eräs laajimmin tutkittuja translaation jälkeisiä modifikaatioita. 
Fosforylaatioanalyysiä pidetään edelleen yleisesti ottaen vaikeana ja työläänä 
toteuttaa, eikä sitä siksi suoriteta tyypillisesti sen tarjoaman informaation hyö-
dyllisyydestä huolimatta. Erityisesti eksaktin fosforylaatiosijainnin määrittäminen 
ja havainnointi nähdään keskeisenä haasteena, jonka ratkaisemiseksi tarvitaan 
luotettavia lähestymistapoja. Tämän väitöskirjan tavoite on kehittää ohjel-
mistollisia työkaluja massaspektrometriaperusteiseen fosforylaatioanalyysiin, 
erityisesti fosforylaatiosijainti validointiin. Kahdessa ensimmäisessä tutkimuk-
sessa kehitimme metodeja fosforylaatiosijaintien identifioimiseen MALDI-tyyp-
pisessä massaspektrometriadatassa. Näistä ensimmäisessä hyödynsimme useista 
matriiseista peräisin olevien spektrien automaatttista kombinaatiota, kun taas 
jälkimmäisessä esittelimme optimoidun prosessin näytteiden valmisteluun ja puh-
distusolosuhteisiin. Kolmannessa tutkimuksessa esittelimme ja arvioimme hypo-
teesia, jossa fosfopeptidien ESI-, tandem CID- ja HCD –tyyppisten massaspektro-
metrien tuottamaa spektridataa voidaan ennustaa tarkasti ja näin hyödyntää 
spektrikirjastopohjaisessa haussa. Tämä uusi fosforylaatiosijaintien validoimis- ja 
identifikaatiostrategia tarjoaa nykyisin yleisesti käytössä olevia metodeja 
tarkempia tuloksia ja osoittautui soveltuvaksi kompleksisten biologisten 
näytteiden analysointiin. Lopuksi, toteutimme merkittäviä käytettävyys- ja tehok-
kuusparannuksia aiemmin esittelemäämme komentorivipohjaiseen prototyyp-
pisovellukseen optimoimalla lähdekoodia ja lisäämällä siihen graafisen käyt-
töliittymän sekä joukon asetuksia simulaatioparametrien muokkaamiseen ja va-
littujen spektrien, peptidien tai proteiinien suodatukseen. Uusi sovellus nimeltä 
SimPhospho on lähdekoodiltaan avoin ja helposti integroitavissa fosfoproteo-
miikan data-analyysiprosesseihin. Yhdessä nämä bioinformatiikan metodit ja 
sovellustyökalut mahdollistavat luotettavan fosforylaatiosijaintien määrityksen ja 
parantavat fosfoproteomien identifikaation luotettavuutta. 
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INTRODUCTION 

Background and motivation 

Signaling pathways represent a central regulatory mechanism of biological 
systems where a key event in their correct functioning is the reversible 
phosphorylation of proteins. Protein phosphorylation affects at least one-third of 
all proteins and is the most widely studied posttranslational modification (Hunter, 
1995) because of its important role in cellular behaviour. Protein phosphorylation 
can be examined in several ways, but the most versatile non-radioactive methods 
that currently exist use mass spectrometry.  

While protein identification by mass spectrometry is a standard technique, there 
are still challenges related to protein phosphorylation analysis, which can be 
roughly categorized as either biological or technical. The biological challenges 
that make phosphorylation difficult to detect are low stoichiometry, heterogeneity, 
and low abundance of protein phosphorylation. State of the art mass spectrometry, 
separation and phospho-enrichment techniques have been effectively used to 
tackle these problems. The technical challenges, which are addressed using 
bioinformatics tools, concern spectra interpretation, in particular finding the exact 
position in a protein sequence where a phosphorylation event is taking place. 
Importantly, unambiguous identification of phosphorylation sites can help avoid 
costly and tedious downstream biological characterization experiments misguided 
by incorrect site assignments (Gunawardena et al., 2011; Vaga et al., 2014).  

Bioinformatics has now become a critical component of any successful 
proteomics experiment and it is also usually the most time-consuming step. The 
vitally important role of bioinformatics in proteome study has been recognized, 
which resulted in the considerable advances in the field of proteomics informatics 
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in the past decade, driven mainly by free and open-source software tools (Deutsch, 
Lam and Aebersold, 2008). The rapidly emerging field of bioinformatics has 
introduced the means to handle heterogeneous data sets and improved the 
knowledge discovery process (Blueggel, Chamrad and Meyer, 2004). As a result, 
mass spectrometry combined with enrichment strategies for phosphorylated 
proteins and advanced data processing has been employed to identify thousands 
of high-confidence phosphorylation sites (Giansanti et al., 2015; Batth et al., 
2018). However, unambiguous identification of the phosphorylated residues is 
still considered a major hurdle. 

At the time when this PhD project began, an interesting study was conducted by 
Proteome Informatics Research Group (Rudnick et al., 2010). Their aim was to 
evaluate the consistency of reporting of phosphopeptide identifications and 
phopshosite localization across 22 laboratories in both academic and industry 
proteomics communities. Participants were given a common dataset and were 
allowed to use the bioinformatics methods and tools of their choice. The 
agreement between the groups on phosphosite localization was as low as ~38%, 
and what made the results more alarming was that the use of the same data analysis 
tools led to different, even conflicting results. Such inconsistency in phospho-
proteomics informatics suggested that false-positive and false-negative rate in 
high-throughput phosphoproteomic data sets could be substantial and that the best 
practice is still to be defined (Lee, Jones and Hubbard, 2015).  

There have been significant developments in the past years to improve reliable 
phosphoproteome identification. The most important ones include (1) the latest 
data format for identification results that support scores associated with 
localization of modifications, including phosphorylation, which should accelerate 
the development of phosphoproteomics data analysis pipelines (Vizcaíno et al., 
2017); (2) additional information about ambiguity of phosphosites in the 
phosphorylation databases (Gnad, Gunawardena and Mann, 2011; Hornbeck et 
al., 2015); as well as (3) the appearance of repositories that include experimentally 
observed and validated mass spectra (Hummel et al., 2007; Bodenmiller et al., 
2008; Farrah et al., 2013). Collections of high quality tandem mass spectra, also 
called spectral libraries, enable a new promising validation method for 
phosphorylation analysis through spectral library matching which offers more 
precise similarity scores. However, the difficulty of generating enough data for 
such a library to be complete and useful for phosphosite validation appeared to be 
a major limitation to explore the potential of spectral library matching approach.  
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The aim of the work described in this PhD thesis was to develop new 
computational methods and tools to assist the analysis of protein phosphorylation, 
in particular identification and validation of phosphorylation sites.  
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Research questions 

The thesis attempts to answer the following research questions: 

1. Can phosphorylation sites be successfully determined in MALDI-MS
experiments through combination of spectra from multiple matrices?

2. What are the optimal sample loading and washing conditions for ITO-coated
glass slides for phosphopeptide purification in MALDI-MS?

3. Can the spectra of phosphopeptides be accurately predicted using spectra of
dephosphorylated peptides in ESI-MS experiments? Is the resemblance strong
enough to be used for predictive purposes? Can this resemblance be used to
confidently identify the correct phosphopeptide isoforms in CID and HCD
tandem mass spectra?

4. What are the optimal parameters for generating simulated spectra of
phosphopeptides?

Hence, the first two research questions deal with methods for phosphopeptide 
analysis using MALDI-MS, while the other two research questions focus on ESI-
MS. The goal of the first research question was to develop an approach for site-
specific phosphorylation analysis that uses a panel of matrix-assisted laser 
desorption ionization (MALDI) matrices, and to compare their performance to 
each other and the commonly used workflows that employ electrospray ionization 
(ESI) (P1). The second research question concerns testing various sample loading 
and washing conditions for the indium tin oxide (ITO) coating glass slides used 
in MALDI-MS to maximize the phosphopeptide purification effect (P2). The third 
question is about the development of a software based phosphosite validation 
method for ESI-MS experiments using predicted spectra, and its integration into 
a phosphoproteomics experimental and data analysis workflow. It also includes 
benchmarking against several popular methodologies (P3). The fourth question 
concerns the optimization of the parameters for simulation of spectra as well as 
enhancing the functionality of the software (P4).  
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Organization of the Thesis 

This thesis is structured as follows. In the first three chapters, I present a literature 
review introducing topics relevant to this thesis work. Chapter 1 focuses on 
current mass-spectrometry based methods for protein phosphorylation analysis. 
After the introduction to protein phosphorylation and phosphoproteomics, there is 
a brief overview of the essential sample separation techniques and finally, types 
of instruments that were used in this dissertation. In Chapter 2, the main three 
categories of computational methods for spectral interpretation and peptide 
identification are presented. First, the manual spectral interpretation, known as de 
novo sequencing, is discussed. Next, the principles of protein sequence database 
and spectral library search engines are described. Chapter 3 discusses localization 
of phosphorylation sites and their validation. Methods based on delta scores are 
presented, as well as probability-based tools. The chapter is concluded with a 
review of studies describing the most recent strategies for phosphosite validation. 

In Chapter 4, the summary of this Thesis work is presented, each paper described 
in a separate section. The first paper (P1), that discusses a novel MALDI-MS 
method, describes the implementation of spectral data combination for 
comparison of different matrices in site-specific phosphorylation studies. The 
second paper (P2) systematically evaluates characteristics of indium tin oxide 
coated slides for phosphopeptide analysis using MALDI-MS. The third paper (P3) 
describes the method that was developed for ESI-MS, and its comparative analysis 
with popular phosphosite validation methods using real-life and synthetic 
datasets. The fourth article (P4) presents an improved version of the prototype 
program, SimPhospho, developed in the previous study P3. Improvements include 
a graphical user interface, better performance, additional features and enhanced 
predictive capability.  
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1 MASS-SPECTROMETRY BASED 
METHODS FOR PROTEIN 

 PHOSPHORYLATION ANALYSIS 

1.1 Protein phosphorylation 

Proteins are a fundamental component of all living cells executing the majority of 
their functions. Proteins are large molecules made up of twenty different smaller 
molecules, amino acids. Each type of protein has a unique sequence of amino 
acids. The collection of proteins produced by organisms is termed the proteome 
and it is studied by proteomics in analogy with the complement of genes, genome, 
studied by genomics. In 2014 the first two drafts of the human proteome were 
presented in Nature journal (Kim et al., 2014; Wilhelm et al., 2014), showing 
protein evidence for 18,000 genes. Protein diversity is further increased through 
posttranslational modifications, which are chemical modifications of a protein 
after its translation from a gene.  

Among the hundreds of types of protein modifications (Krishna and Wold, 1993), 
protein phosphorylation is among a few that have been proven to be of regulatory 
importance in biological processes (Hunter, 1995). The regulation of protein 
phosphorylation is so extensive that the majority of intracellular proteins are 
thought to be phosphorylated at any given time, many with more than one 
phosphate. The aims of protein phosphorylation studies include obtaining 
phosphorylation site information by detecting the amino acid residues that are 
phosphorylated in a particular protein, determining the number of phosphorylation 
sites and therefore, establishing protein phosphorylation stoichiometry, 
identifying the kinase(s) responsible for the phosphorylation event, and analyzing 
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the functional impact of the observed phosphorylation  (Patterson, Aebersold, & 
Goodlett, 2001). Hence, phosphoproteomics, a sub-discipline of proteomics, is 
focused on deriving a comprehensive view of the extent and dynamics of protein 
phosphorylation, and its ultimate goal is the rapid analysis of entire 
phosphorylation-based signaling networks (Mumby and Brekken, 2005; Olsen et 
al., 2006). 

While phosphorylation can occur on nine out of twenty amino acids, the most 
common and studied phosphorylation targets are Serine, Threonine and Tyrosine. 
It has been estimated that 90% of phosphorylation events occur on Serine, 10% 
on Threonine and less than 0.1% on Tyrosine (Hunter, 2000). Lately, there has 
been more focus on Histidine phosphorylation (Fuhs et al., 2015). 

Current methods for analysis of the phosphoproteome rely heavily on mass 
spectrometry (MS), an analytical technique for the determination of the 
composition of a sample by identifying the chemical structure of peptides. Most 
MS-based strategies for identifying phosphorylation sites in proteins include the 
following three stages: sample preparation involving protein purification and 
enzymatic digestion; isolation and separation of the phosphopeptides from non-
phosphorylated peptides through enrichment and concentration procedures; and 
finally, identification and structural characterization of the phosphopeptides by 
MS (Corthals, Aebersold and Goodlett, 2005). 

1.2 Separation and enrichment 

Prior to analysis in a mass spectrometer, peptides are often separated in a liquid 
phase column based on their hydrophobicity using e.g. high performance liquid 
chromatography (HPLC). HPLC can be directly coupled to the mass spectrometer 
or separation can be done offline. 

Low stoichiometry, heterogeneity, and low abundance of protein phosphorylation 
make it difficult to detect. Thereby, isolation and separation of the 
phosphopeptides from nonphosphorylated peptides through enrichment is crucial 
for phosphorylation analysis by MS. Among the separation techniques available, 
two-dimensional phosphopeptide mapping (2DPP), two-dimensional gel 
electrophoresis (2DE) and immobilized metal affinity chromatography (IMAC) 
have all been successfully used for the separation of phosphopeptides (Corthals, 
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Aebersold and Goodlett, 2005; Larsen and Robinson, 2008). The initial peptide 
loading conditions of titanium dioxide (TiO2) phosphopeptide enrichment (Pinkse 
et al., 2004) were further optimized (Larsen et al., 2005) and the approach has 
gained in popularity and is now widely used in phosphoproteomics studies. TiO2 
chromatography offers high purification efficiency and specificity, isolating 
phosphopeptides from nonphosphorylated peptides. 

1.3 Mass-spectrometry 

MS instruments, mass spectrometers, consist of three main parts: an ion source, a 
mass analyzer, and a detector. Before the components of the sample can be 
measured, the ion source has to ionize them and convert them into gaseous ions, 
i.e. electrically charged molecules. Next, these analyte ions are transferred to the
mass analyzer, which separates them according to their mass-to-charge ratio
(m/z). After separation, the components reach the detector, which records the
output as the ion intensity at different m/z values. This output can be visualized
by a plot with m/z on the X-axis and ion intensity on the Y-axis, or a mass
spectrum. Generally, every MS instrument is classified by the ionization method
and the type of analyzer(s) it uses.

1.3.1 Ionization methods 

The most commonly used ionization methods in proteomics are electrospray 
ionization (ESI) and matrix-assisted laser desorption and ionization (MALDI). 
Both ionization techniques were recognized by the Nobel Prize in Chemistry in 
2002. One of the fundamental differences between these methods is that MALDI 
is employed on samples in a solid state, whereas ESI is employed on samples in a 
liquid state. 

For MALDI (Karas and Hillenkamp, 1988; Tanaka et al., 1988), the analyte is 
first dissolved with a large amount of a chemical matrix. The mixture of sample 
and matrix is then spotted onto a plate and left to dry. The evaporation of residual 
water or other solvent from the sample allows the formation of a crystal lattice 
into which the peptide sample is integrated cocrystallizing analyte and matrix. 
MALDI creates ions by the laser energy striking the crystalline matrix, which has 
a specific absorption wavelength that is close to the laser wavelength, and 
consequently causing rapid excitation of matrix and subsequent ejection of matrix 
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and analyte ions into the gas-phase. Singly protonated analyte ions are formed, 
which are then guided to the mass analyzer of choice by electrical potentials. 

For ESI (Whitehouse et al., 1985; Fenn et al., 1989), a liquid-
chromatography (LC) column that contains the analyte and solvent molecules is 
held at a high electrical potential, which creates gas-phase ions. The sample enters 
the source through a flow stream and passes through a stainless-steel cone or 
needle held at high voltage. As the flow stream exits the needle, it sprays out in a 
fine spray of droplets. The droplets contain peptide ions as well as components of 
the LC mobile phase (water, acetonitrile, acetic acid, etc.). Next, the source 
separates the peptide ions from the solvent components through the process 
known as desolvation, and transfers the ions into the mass analyzer. Solvent is 
removed as the droplets enter the MS by heat or some other form of energy such 
as energetic collisions with an inert gas (Matthiesen, 2007). 

In contrast to MALDI, ESI yields multiply charged ions, which means ESI spectra 
are considerably more complex than MALDI spectra, with a collection of peaks 
for each charged state. In addition, by producing multiply charged ions, ESI makes 
larger proteins accessible to analysis than MALDI does. ESI spectra always 
require mass spectral deconvolution, that is, extraction of the molecular mass from 
the distribution of multiply charged ions of the molecule of interest, while for 
MALDI deconvolution is needed not nearly as often: in the cases of overlapping 
isotope patterns in very complex peptide samples (Xu et al., 2018). Recently the 
influence of the ion source on peptide detection in large-scale proteomics was 
investigated (Nadler et al., 2017). Significant differences were observed with 
respect to amino acid composition, charge-related parameters, hydrophobicity, 
and modifications of the detected peptides. Also, it has been shown that MALDI 
can complement ESI ionization for phosphoproteomics, particularly in detection 
of acidic and phosphotyrosine containing peptides (Ruprecht et al., 2016). ESI 
shows better overall performance and it is currently the dominant ionization 
process.  
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1.3.2 Analyzers 

All mass spectrometers have at least one analyzer. Instruments constructed with 
two or more analyzers that are coupled together are known as tandem MS or 
hybrid instruments. There are three most widely used groups of analyzers: time of 
flight, quadrupole, and ion trap analyzers. Ion trap and quadrupole analyzers are 
normally coupled to ESI ion sources, whereas time of flight analyzers are usually 
employed with MALDI ion sources.  

Time of flight (TOF) mass analyzer measures the time it takes for the ions to fly 
from one end of the analyzer to the other and to strike the detector (Weickhardt, 
Moritz and Grotemeyer, 1996). The speed with which the ions fly down the 
analyzer tube is determined by their kinetic energy and inversely proportional to 
the root of the mass. Using a constant accelerating the field, the speed is inversely 
proportional to the square root of the m/z ratio. Quadrupoles (Q) consist of four 
parallel poles or rods. The electric field between the rods deflects the ions in 
complex trajectories, and as a result ions with the selected m/z ratio pass through 
the analyzer to be collected at the detector while other ions with unstable 
trajectories will eventually collide with the rods (Leary and Schmidt, 1996). 
Quadrupoles essentially act as mass-filters. Ion traps (IT) are using 
electromagnetic fields to retain, or “trap”, ions inside, and depending on the setup 
the trapped ions can either be detected or used for further fragmentation. There 
are three major types of IT analyzers: radiofrequency ion traps (2D or 3D), Fourier 
transform ion cyclotron resonance (FT-ICR), and Orbitrap (Nolting, Malek and 
Makarov, 2019). Radiofrequency ion traps resemble quadrupoles in design, where 
in a 3D ion trap two parallel rods are replaced with two hyperbolic metal 
electrodes, and in 2D, also called linear ion traps, electrodes are coupled with 
quadrupole rods. Because of using direct or alternating current and radio 
frequency, ion traps can be used both to collect and inject pulses of ions coming 
from the ion source. FT-ICR and Orbitrap detect ions on the basis of their 
oscillating frequencies, requiring a Fourier transform algorithm for the signal 
processing, and are known for their high resolution and mass accuracy. FT-ICR 
(Comisarow and Marshall, 1974) detects ions through excitation of their circular 
motion in a strong magnetic field (the ion’s cyclotron motion). The frequency of 
the cyclotron motion is inversely proportional to the ion’s m/z ratio. Orbitraps 
(Makarov, 2000) use a spindle-shaped electric field to define ion motion such that 
radially the ions rotate around the spindle, and axially the ions oscillate at a 
frequency inversely proportional to the ion’s m/z ratio.  
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In this thesis, three different mass spectrometers were used. One instrument with 
a MALDI source (Ultraflex II by Bruker Daltonics), and two ESI instruments 
(LTQ Orbitrap Velos and Q Exactive, both by Thermo Fisher Scientific). The 
schematics are presented in Figures 1, 2.  

Ultraflex II TOF/TOF (Figure 1), introduced in 2003, enables high-throughput 
protein identification by MALDI-TOF peptide mass fingerprinting, immediately 
followed by more detailed protein characterization using MALDI-TOF/TOF 
tandem mass spectrometry on the same prepared sample. The instrument features 
a linear and reflectron TOF analyzer, PAN (“panoramic”) technology for high MS 
mass resolution over a broad mass range (Suckau et al., 2003).  

Figure 1 Schematic of Ultraflex II TOF/TOF (Image reproduced 
with permission of the rights holder, Bruker Daltonics) 

Orbitrap LTQ Velos, launched in 2009, with the ETD module is a hybrid ion trap-
Orbitrap instrument (Olsen et al., 2009). It features a dual pressure linear ion trap, 
which is an independent MS detector that can store, isolate, and fragment ions and 
then send them either to the Orbitrap analyzer for further analysis or to a 
Secondary Electron Multiplier (SEM) detector.  

Q Exactive (Figure 2) was launched in 2011 and it is one of the top Orbitrap-based 
mass spectrometers. It is a hybrid quadrupole-Orbitrap instrument that combines 
high-performance quadrupole precursor selection with high-resolution accurate 
mass Orbitrap detection (Michalski et al., 2011). It features an S-lens ion source 
for increased sensitivity, a hyperbolic quadrupole mass filter for selection of 
precursor ions and ion transmission, a C-trap, Orbitrap mass analyzer for high 
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mass resolution and spectrum quality, and an HCD collision cell for high 
fragmentation efficiency for MS/MS spectra.  

Figure 2 Schematic of Q Exactive (Image reproduced with permission 
of the rights holder, ThermoFisher Scientific) 

A wide variety of MS configurations exists depending on the combination of the 
types of mass analyzers used, for instance tandem TOF (TOF/TOF), Q-TOF, triple 
quadrupole (TQ). Although these mass analyzers differ in the details of how they 
work, they all perform the same type of basic mass analysis. From a mixture of 
peptide ions generated by an ion source, the tandem MS analyzers select a single 
m/z species. This ion is then subjected to e.g. collision-induced dissociation 
(CID), which induces fragmentation of the peptide into fragment ions and neutral 
fragments. The fragment ions are then analyzed on the basis of their m/z to 
produce a product ion spectrum. The information contained in this tandem or 
MS/MS spectrum permits the sequence of the peptide to be deduced. 

1.4 Peptide and phosphopeptide fragmentation 

The characteristics of tandem mass spectra generated from peptide fragmentation 
depend on the peptide sequence, but also the mass spectrometer used, in particular 
the type of ion source and mass analyzer. In addition, the fragmentation 
techniques, or activation types, determine how the peptide ions are activated for 
fragmentation.  
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Figure 3 Generalised product ion series generated from a peptide 
fragmentation in the mass spectrometer 

The general schematic of a peptide consisting of four amino acids is presented in 
Figure 3.  Each amino acid has a central carbon atom (–C) attached to a carboxyl 
group (–COOH), an amino group (–H2N), a hydrogen atom (–H), and a side group 
(–R). Only the side group differs from one amino acid to another. Here, a chain of 
amino acids is formed through covalent peptide bonds, where one amino acid 
loses a hydrogen and oxygen from its carboxyl group (COOH) and the other loses 
a hydrogen from its amino group (NH2). This reaction produces a molecule of 
water (H2O) and two amino acids join by a peptide bond (-CO-NH-). The two 
ends of a polypeptide chain are chemically different: the end carrying the free 
amino group is the amino terminus, or N-terminus, and the one carrying the free 
carboxyl group is a carboxyl terminus or C-terminus.  

Fragments will only be detected if they carry at least one charge. If this charge is 
retained on the N terminal fragment, the ion is called either a, b or c; if the charge 
is retained on the C terminal, the ion type is either x, y or z (Roepstorff and 
Fohlman, 1984; Johnson et al., 1987). A subscript indicates the number of residues 
in the fragment. When a b/y-type fragmentation occurs twice in the same 
molecule, it generates so-called internal fragment ions. An internal fragment with 
just a single side chain formed by a combination of a-type and y-type cleavage is 
called an immonium ion. 

Three popular types of fragmentation were used in this thesis: CID, HCD and 
ETD. The most common peptide fragmentation method is collision-induced 
dissociation (CID), also known as collisionally activated dissociation (CAD) 
(Hayes and Gross, 1990; Morris et al., 1996). CID fragmentation results in ions 
that are formed through cleavage of the weaker bonds within the peptide, resulting 
in b- and y-series of ions (Figure 3). In case of phosphopeptide fragmentation, 
prominent ions are produced after the loss of a phosphoryl group from 



15 

phosphorylated serine- and threonine- containing peptides, which can be either a 
direct loss of H3PO4 from the phosphorylated residue or the combined losses of 
HPO3 and H2O from the phosphorylation site and from an additional site within 
the peptide. The characteristics of CID tandem mass spectra of peptides were 
reviewed in detail (Papayannopoulos, 1995). 

Another type of fragmentation method is called beam-type CID or higher energy 
collision dissociation (HCD). HCD is a variation of CID that requires increased 
radiofrequency voltage. Similar fragmentation patterns (b/y-type) are observed in 
CID and HCD, however, unlike CID, HCD spectra contain ions in low-mass 
regions, including a2, b2, y1, y2 and immonium ions (Olsen et al., 2007). 
Phosphotyrosines typically lead to a unique immonium ion with m/z 216.0426, 
whereas HCD spectra of histidine-phosphorylated peptides have a diagnostic 
immonium ion with m/z 190.037 (Potel et al., 2018). Neutral losses from 
phosphorylated serine and threonine are present in HCD spectra too, although the 
combined loss pathway was found to be less dominant under ion activation 
conditions associated with HCD-MS/MS than with CID-MS/MS (Cui et al., 
2014). Several studies compared HCD and CID fragmentation and investigated 
their performance for phosphopeptide analysis (Olsen et al., 2009; Jedrychowski 
et al., 2011; Michalski et al., 2012).  

Electron transfer dissociation (ETD) was introduced in 2004 (Syka et al., 2004) 
and it is currently the most prominent alternative to CID.  It was developed as a 
low-cost, more widely accessible ECD-like (Zubarev, Kelleher and McLafferty, 
1998) dissociation method. ETD induces fragmentation of the peptide backbone 
along the pathways that are analogous to those observed in ECD. ETD generates 
c- and z-type fragment ions through cleavage of the bond between the amino group
and carbon atom. The information content of an ETD spectrum is dramatically
different form b- and y-type of ions observed in CID. The other important
difference is that in case of phosphopeptide fragmentation, ions produced by loss
of phosphoric acid are absent.

Another fragmentation type that combines ETD and HCD is called EThcD (Frese 
et al., 2011). In principle, after an initial electron-transfer dissociation ETD step, 
all ions are subjected to CID, which yields both b/y- and c/z-type fragment ions in 
a single spectrum. This rich spectrum provides higher peptide sequence coverage 
and more confident localization of phosphorylation sites (Frese et al., 2013).  
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2 IDENTIFICATION OF PEPTIDES AND 
 PHOSPHOPEPTIDES 

Peptides and proteins can be identified from MS1 level spectra using peptide mass 
fingerprinting (PMF) technique that was developed in 1993 by several groups 
(Henzel et al., 1993; James et al., 1993; Pappin, Hojrup and Bleasby, 1993; Yates 
et al., 1993). In PMF, an unknown protein is digested with a protease with high 
bond specificity (e.g. trypsin) to yield constituent peptides. Molecular masses of 
these peptides are measured by MS1 analysis and the resulting list of masses is 
compared to a calculated peptide peak list obtained from the in silico digestion of 
each protein in a protein sequence database according to the rules defined by a set 
of user-defined parameters. The fingerprint of a protein is therefore the unique set 
of peptide masses generated by the cleavage.  

The comparison of measured masses to calculated ones is done automatically by 
programs called search engines that calculate a score used for ranking the proteins. 
The  most widely used PMF search engines are Mascot (Perkins et al., 1999), 
ProFound (Zhang and Chait, 2000), and MS-Fit (Clauser, Baker and Burlingame, 
1999). Among the parameters that can be specified in PMF search, the most 
critical one is the choice of protein sequence database. The other parameters 
include the enzyme used in the analysis, missed cleavages, mass tolerance and 
possible amino acid modifications. 

Currently, the standard mass spectrometer for protein fingerprinting is MALDI-
TOF type, but PMF can also be performed on spectra generated by ESI 
instruments. Before PMF can be performed, the acquired mass spectra that consist 
of signals of both sample and noise need to be preprocessed, to extract peaks lists. 
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Denoising and peak extraction is frequently done using the software that comes 
with a mass spectrometer, but there are also separate automated analysis tools, i.e. 
pipelines for high-throughput peptide mass fingerprinting (Samuelsson et al., 
2004). An additional step for ESI is deconvolution of multiply charged ions to 
singly charged ions. Post-processing would involve deisotoping and filtering out 
matrix (MALDI) or solvent (ESI) peaks, as well as contaminant peaks, such as 
keratins or enzyme autolysis peaks.  

PMF was designed for protein identification, and it accomplishes it very well both 
for non-phosphorylated and phosphorylated proteins. However, it can also act as 
a peptide-identification technique in certain situations. The main limitation for 
peptide identification using PMF is that a number of different peptides may share 
the same molecular mass, if search is done e.g. against the entire SwissProt 
database. But if the original sample is known to contain just a few proteins, then 
the number of expected peptides is dramatically reduced, and those peptides that 
do not have in their sequences amino acids with identical molecular mass can be 
identified uniquely. For phosphopeptides, confident identification using PMF is 
also possible provided that the peptide has only one amino acid in its sequence 
that can be phosphorylated (S, T, or Y).  

In most cases, however, peptides have more than one possible phosphorylation 
site and additional fragmentation of the peptide by e.g. CID is required. Methods 
used for the characterization of the fragments, which represent tandem mass 
spectra, are discussed in the following sections. 

2.1 Peptide and phosphopeptide identification methods  

In general, there are two main classes of methods for identifying peptides from 
MS/MS spectra. The first one is de novo sequencing (discussed in Section 2.1.1), 
where the peptide sequence is reconstructed from the spectrum based on the rules 
of the peptide fragmentation manually or automatically. The second class is by 
using specialized software tools that perform either protein database searching 
(Section 2.1.2) or spectral library matching (Section 2.1.3). 
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2.1.1 De novo sequencing 

The derivation of a peptide sequence from its MS/MS spectrum alone, without 
help of a protein database, is called de novo sequencing. De novo sequencing 
methods allow reliable proteoform recognition and identification of previously 
unknown peptide sequences. More importantly, for the unknown or not yet 
sequenced genomes, this method is the only option to get sequence identifications. 

There is a set of rules that are generally applied to de novo sequencing, concerning 
amino acid composition, loss of ammonia and water, isobaric masses, and spectral 
intensity rules. For example, the rules describe how to determine if the tryptic 
peptide ends with a K or an R (diagnostic y1 ion at 147 is observed for K and 175 
for R), or which fragments to expect to lose ammonia (R, K, Q, and N), and water 
(S, T, and E), when to expect double cleavage (at P or H residue), or y- and b- 
ions swapping intensities (when a P, H, K, or R is encountered in the sequence). 

Some of the popular tools for de novo are PEAKS (Ma et al., 2003; Zhang et al., 
2012), pNovo+ (Chi et al., 2013), pepNovo+ (Frank and Pevzner, 2005; Frank et 
al., 2007; Frank, 2009b, 2009a) and Novor (Ma, 2015). Their performance was 
compared in the recent reviews (Gorshkov et al., 2016; Muth and Renard, 2018).  

Data analysis using software tools for de novo sequencing can be divided into four 
main steps: preprocessing, candidate computation, refined scoring, and 
confidence scoring. Below, these four steps are described using the example of 
PEAKS. The first step, preprocessing of the raw MS/MS data, typically includes 
noise filtering, peak centering, and deconvolution of the doubly and triply charged 
species to singly charged ions. Preprocessing was found critically important for 
successful de novo sequencing, as preprocessing done by vendors’ software 
differs a lot and might confuse spectra interpretation. Second, for candidate 
computation, 10,000 best sequences of all possible combinations of amino acids 
for a given precursor ion mass are computed. The algorithm considers the main 
ions to explain observed fragment masses using a score that rewards peaks close 
to calculated ions and co-existing –H2O and –NH3 ions, taking into account the 
intensities of the peaks, while the missing peaks are penalized. The idea is to find 
a sequence with a maximum total reward score. Refined scoring is performed on 
all candidates or on a lower number specified by the user. Mass error tolerance 
used for refined score calculation is stricter, and additionally immonium ions and 
internal cleavage ions are used for reward and penalty calculations. Finally, the 
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confidence score is calculated for each of the top-scoring peptide sequences that 
includes the confidence score of each residue in the top-scoring sequences. 

2.1.2 Protein sequence database search 

Tools for interpreting tandem mass spectra using protein databases are called 
search engines just as tools for PMF. Most of the protein database search engines 
operate in the same manner. Each acquired tandem mass spectrum of a peptide is 
compared against theoretical tandem mass spectra of peptides generated by in 
silico digestion of the specified protein sequence database. In other words, in 
addition to PMF type of search, in silico fragmentation is performed on peptides 
with matching masses, and finally the resulting fragment ion peaks are compared 
to acquired tandem mass spectra. The general process of sequence database 
searching is illustrated in Figure 4.  

A sequence database search cannot be performed without the actual protein 
sequence database (e.g. Swiss-Prot or TrEMBL). The other parameters that are 
provided by the user when submitting the search usually contain information 
about (1) the characteristics of mass spectrometer that was used for acquisition of 
the spectra, which will define the types of fragment ions; (2) the protease used to 
digest the proteins in the sample, which will limit the number of candidate 
peptides; (3) number of missed cleavages (internal K or R residues in case of 
trypsin digestion) that algorithm for in silico digestion should allow; (4) method 
of calculation of the peptide mass, i.e. monoisotopic or average; (5) parent ion 
mass tolerance that determines how close the mass of the measured peptide and 
calculated mass of the candidate peptides from the sequence database should be; 
and (6) fragment ion mass tolerance. Generally all search engines consider 
posttranslational modifications, including phosphorylation. If phosphorylation is 
specified in the initial query of the search, the search time will be prolonged 
considerably, since phosphorylation is a variable modification and a search engine 
will be generating candidate peptides both with and without modified residues that 
can be phosphorylated.  
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Figure 4 General view of the experimental steps and flow of the data 
in shotgun proteomics analysis (adapted from Nesvizhskii 2007) 

Some of the most commonly used sequence database search engines, SEQUEST, 
Mascot and X!Tandem, are discussed below. Other popular tools that are not 
covered here are OMSSA (Open Mass Spectrometry Search Algorithm) (Geer et 
al., 2004), Andromeda (Cox et al., 2011), MS-GF+ (Kim and Pevzner, 2014) and 
Crux (Park et al., 2008). MSFragger (Kong et al., 2017) is the newest and 
reportedly the fastest to date database search tool designed specifically for PTM 
identification. 

The scoring methods vary somewhat between engines, but comparisons reveal 
that they can be fairly similar in their performance, each finding a roughly similar 
number of peptides, although identifying different spectra and peptides. It has 
been shown that combining results of multiple search engines improves coverage 
of the analysis (Searle, Turner and Nesvizhskii, 2008; Shteynberg et al., 2013). 
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This strategy has gained popularity and several proteomics data analysis pipelines 
support “simultaneous” analysis of the same raw data using more than one engine. 

SEQUEST (Eng, McCormack and Yates, 1994) was the first database search 
engine that became commercially available. First, experimental spectra are pre-
processed, the intensities of the peaks are normalized and low-intensity peaks are 
removed. Spectra of candidate peptides from the database are reconstructed using 
simplified fragmentation rules. SEQUEST then calculates the cross correlation 
score (Xcorr) between each experimental spectrum and its candidate peptides’ 
spectra, which reflects the number of fragment ions that are common between 
each pair. Hence, the longer the peptide, the higher score is to be expected. Finally, 
the highest scoring peptide-spectrum match is reported, along with the Xcorr score 
and DeltaCn. 

Mascot (Perkins et al., 1999) is another widely used commercial database search 
engine. The main difference between Mascot and SEQUEST is in the way the 
similarity score is being calculated. It is also based on a number of matching 
fragment ion peaks, but it is not a simple count as in SEQUEST. Mascot estimates 
the probability of that number of matches to occur by chance, considering the 
numbers in the experimental and theoretical (predicted) spectra. The final score is 
called ion score.  

X!Tandem (Craig and Beavis, 2003, 2004), originally called TANDEM, was the 
first open-source sequence database search engine. It relies on the assumption that 
for each identifiable protein, there should be at least one identifiable tryptic 
peptide. The workflow is therefore slightly different from the other tools. First, 
X!Tandem performs a quick database search; and from detected peptides, proteins 
are inferred. Then, it creates a database with those proteins, and finally searches 
the same tandem mass spectra again, this time extensively, including modified 
peptides, but against that database of reduced number of proteins. X!Tandem can 
be used through the interface of Trans-Proteomic Pipeline (Keller et al., 2005; 
Deutsch et al., 2010). The equivalent to SEQUEST’s XCorr score is X!Tandems’s 
hyperscore.  
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2.1.3 Spectral library search 

Although sequence database searching is currently a standard method in 
proteomics, it has a number of shortcomings: it is time-consuming, error-prone 
and it can also be excessive, when within an experiment mostly the same spectra 
are searched multiple times and spectral information obtained in previous 
experiments remains unused. A decade ago a new type of search algorithm, called 
spectral library matching, has become available. 

Unlike sequence database search engines, that compare experimental spectra to 
theoretical spectra generated based on protein sequence database, spectral library 
methods match experimental spectra to a library of spectra derived from previous 
identifications. By comparing two experimental spectra, this new approach takes 
advantage of comparison of specific spectral features (often ignored in database 
searches), including actual peak intensities, neutral losses from fragments, and 
various uncommon or even unknown fragments, to determine the best match. 
Therefore, the similarity scores of spectral searching algorithms are more precise 
and are well suited for identification of phosphopeptides, where tandem mass 
spectra are predominantly complex and rich in neutral loss ions. The relevance 
and potential of the use of spectral libraries in large-scale phosphoproteomics was 
highlighted in several studies (Bodenmiller et al., 2008; Alcolea, Kleiner and 
Cutillas, 2009). The improved sensitivity of spectral library searching was 
demonstrated in a comparison study of spectral library search engine with several 
sequence database search engines using “equalized” search space, where the 
peptide content of the spectral libraries and the databases was the same (Zhang et 
al., 2011). The results illustrated an additional advantage of spectral searching in 
identifying spectra of low-quality or spectra containing a lot of multiply charged 
fragments.  

The first tools developed for spectral library searching were Bibliospec (Frewen 
et al., 2006), X!Hunter (Craig et al., 2006) and SpectraST (Lam et al., 2007). All 
of them are free and open source. Spectrum Library Central, hosted at 
PeptideAtlas (Desiere et al., 2006), provides access to the spectral libraries built 
specifically for spectrum library searching of tandem mass spectrometry data. 
Spectral libraries can be either downloaded from public resources or built in-house 
using the tools mentioned above.  
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A well prepared spectral library contains high quality spectra and reliable 
identifications with a single representative spectrum for every peptide, which can 
be constructed using several strategies. One approach is to select the highest 
scoring replicate spectrum (obtained in sequence database search) and discard the 
others, while the other is to combine replicate spectra into a consensus spectrum 
keeping those peaks that are present across replicates. Finally, depending on the 
tool, a different number of most intense peaks per spectrum will be kept in the 
library.  

The typical search parameters used in spectral library searching are not nearly as 
many as in protein database searching and will usually include, in addition to the 
information about the spectral library to be searched, precursor mass or m/z 
tolerance and sometimes charge states. If one is interested in modified peptides, 
then those need to be present in the spectral library, otherwise they cannot be 
identified. Ideally, reference spectra for the library have been acquired on the same 
instrument or in the least the same type of instrument where the sample is 
analysed, which insures that fragmentation pattern will indeed be similar and 
spectra will be successfully and accurately matched to the peptides. 

The latest reviews of the spectral library matching for proteomics (Griss, 2016; 
Shao and Lam, 2017) are listing more than 15 different tools. The most common 
scoring function used to estimate a pairwise spectrum comparison is the dot-
product, also called the “spectral contrast angle”. Its value ranges from 0 to 1, 
where 1 is given to a pair of identical tandem mass spectra. 

Spectral library searching and protein sequence database searching can be 
considered to be complementary techniques. It has been shown that it is possible 
to increase the number of confidently identified tandem mass spectra by 
subsequent library search after the database search (Ahrné et al., 2009). When 
searching the spectral library, constructed using database search results, it was 
possible to recover additional spectra that were noisy or represented modified and 
missed cleaved peptides. Interestingly, the majority of these spectra were also 
identified by database search, but were filtered out due to their low confidence 
scores. A similar hybrid approach was evaluated in another study (Cannon et al., 
2011). 
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2.2  Data formats and standards 

Numerous commercial and open-source software tools have been developed for 
the analysis of proteomics data. That has become possible because of the adopted 
common data formats both by instrument and software vendors. There are several 
types of MS data, such as raw data, peak lists, peptide-level identifications, 
protein-level identification, output from quantification software and others. 
Currently, more and more software tools generate files directly in widely 
supported data formats, but converters to create compatible data files are still very 
popular. 

Proteomics Standards Initiative (PSI) was established in 2002 by Human 
Proteome Organization (HUPO) with a goal to define and promote common 
standardized data formats and software tools for proteomics data (Orchard, 
Hermjakob and Apweiler, 2003). New standards are developed and old ones are 
maintained through PSI working groups by the members of the scientific 
community, and software and hardware vendors. Among the existing standards 
there are the MIAPE (Minimum Information About a Proteomics Experiment), 
mzML, mzIdentML, mzQuantML, and mzTab. The progress of the initiative over 
the years and planned future work were recently reviewed (Deutsch et al., 2017). 
While some formats may be officially retired (“obsolete”), their use may still be 
compulsory as they may be the only supported input to certain software tools, such 
as SpectaST.  

Trans-Proteomics Pipeline (TPP) (Keller et al., 2005; Deutsch et al., 2010) was 
the first proteomics data analysis platform that utilized open file formats, which 
were mainly XML-based (extensible markup language). TPP enabled a uniform 
analysis of MS/MS spectra using a variety of open source tools for sequence 
database and spectral library searching, validation of peptide and protein 
assignments as well as tools for peptide and protein quantitation. Other projects 
that provide a single environment for proteomics data analysis workflows are The 
OpenMS Proteomics Pipeline (TOPP) (Kohlbacher et al., 2007) and MaxQuant 
(Cox and Mann, 2008). 

One of the main advantages of using XML syntax is that it allows storing in a 
single document numerous structured components, i.e. elements that may include 
other elements. The examples of such elements are scans for files with spectral 
data and peptide-spectrum matches (PSM) for files with identifications. XML 
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formats used in proteomics have a well-defined structure, or schema. Invalid files, 
i.e. files that contain elements or their attributes that are not allowed, cannot be
used for downstream analysis. XML data formats are both human readable and
machine readable.

2.2.1 Spectra 

The native output file formats from each mass spectrometer vendor that contain 
the raw measurement data (spectra) are different. For example, Thermo Fisher 
Scientific instruments generate .raw files, while .wiff files are typical to some of 
the ABI/Sciex mass spectrometers. mzXML data format (Pedrioli et al., 2004) 
was developed at the Seattle Proteome Center (SPC) in the Institute for Systems 
Biology (ISB) as a common open data format for representation of MS data for 
data analysis within TPP and beyond. Even though .mzXML is a widely accepted 
format in the proteomics community, it is not a standard.  

.mzML on the other hand is a standard that was designed as a joint project by 
HUPO-PSI, SPC-ISB and other members of proteomics research and industry 
(Deutsch, 2010). .mzML is a more complex format than .mzXML due to its 
integrated controlled vocabularies and in addition there exists a separate semantic 
validator. 

2.2.2 Peptide identification 

Data files generated by the tools for database or library search are called peptide 
identification files. Until recently, every search engine generated output in its own 
data format, which led to the development of parsers, or converters, that would 
allow data extraction from results of different search engines and automation of 
the downstream analysis, such as MascotDatfile (Helsens et al., 2007), OMSSA 
parser (Barsnes et al., 2009), and X!Tandem parser (Muth et al., 2010). In 
addition, several converters are integrated within TPP, where the uniform format 
for storing and handling identification data has been .pepXML (.pep.xml). 
PepXML, however, similarly to .mzXML is an open format, but not a PSI 
standard. 

In 2012, the first version of an exchange standard for peptide and protein 
identification data, mzIdentML, was published (Jones et al., 2012). It was 
designed by HUPO-PSI to act as a single data format for identification data. In 
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2017, the latest version 1.2 of mzIdentML data standard was described (Vizcaíno 
et al., 2017). One very important improvement included the implementation of 
features supporting scores associated with localization of PTMs on peptides, 
which were missing from the earlier versions.  
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3 VALIDATION METHODS OF PEPTIDE 
AND PHOSPHOPEPTIDE IDENTIFICATION 

Methods for assessing the reliability of assignments of MS/MS spectra to peptides 
(peptide-spectrum matches, PSM) and for estimating error rates in the datasets 
have become very important in proteomics research and even more so in large-
scale studies. Search engines return a list of the best matching peptides that were 
found in the database for almost every spectrum. However, the top peptide 
matches that are reported are not necessarily correct. In fact, in some cases the 
proportion of correct peptide sequence assignments is rather low.  

A number of the likely reasons for poor results of sequence database searching 
have been summarized (Nesvizhskii, 2007). In addition to deficiencies of the 
search engines’ scoring schemes that frequently use simplified rules for peptide 
ion fragmentation, poor quality of the spectra due to low signal-to-noise ratios, 
contamination or incomplete fragmentation will cause incorrect interpretation by 
the programs. Furthermore, when complex peptide mixtures are analysed, several 
peptide ions with similar m/z might fragment simultaneously, producing 
complicated MS/MS spectra that search engines would fail to assign correctly. 
And finally, charge state might be incorrectly determined, or search parameters 
specified by the user may be too strict, limiting the search space. 

Manual validation of peptide assignments becomes impossible when dealing with 
thousands of spectra. Instead, historically peptide identification results would be 
ordered by the database search scores and simple score threshold would be 
applied, which is problematic when one wants to know the error rate or to compare 
or correlate results obtained using a different threshold or a search engine. An 
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improved approach is to convert a database search score into an expectation value 
(E-value), which reflects the expected number of peptides with scores equal to or 
better than the database search score by random chance. The lower the E-value, 
the less likely a PSM is to be random and therefore more likely to be correct. This 
type of probability-based scoring is implemented in Mascot. 

3.1 False discovery rate 

The most commonly used statistical measures for proteomics datasets are local 
and global false-discovery rates (FDR). The local FDR (also referred to as 
posterior error probability) is used to measure the statistical significance of 
individual PSMs, as in the case of Mascot’s E-values. The global FDR, on the 
other hand, reflects the error rate for the set of PSMs and is very important for 
large datasets. 

Local FDR estimation can be done using mixture model-based approach, where 
for every MS/MS spectrum, the frequencies of different scores from all the 
theoretical spectra in the database are fitted to a model distribution. This 
distribution is typically a mixture of two underlying distributions, representing 
correct and incorrect PSMs (Figure 5a). The two best known computational tools 
that implement model-based error rate analysis are PeptideProphet (Keller et al., 
2002; Choi and Nesvizhskii, 2008) and Percolator (Käll et al., 2007; Brosch et al., 
2009). They also support global FDR estimations. 

Global FDR can be estimated using target-decoy databases, statistical modelling, 
or a combination of both. Target-decoy strategy was first introduced in proteomics 
for evaluation of SEQUEST results (Moore, Young and Lee, 2002). The strategy 
is simple to implement and it is applicable to data generated by any search engine 
(Elias and Gygi, 2007). Tandem mass spectra are searched against the 
concatenated standard protein database (target) and database with clearly labelled 
reversed sequences (decoy). The proportion of decoy and target hits in the ordered 
list of highest scoring PSMs is used to guide the selection of the filtering criteria, 
such as discriminant score cut off, based on the desired statistic threshold (e.g. 1% 
FDR). Here, FDR is calculated as a number of false positives divided by the total 
number of PSMs above score thresholds. Decoy hits represent obvious false 
positives, but because there can be as many hidden false positives among the target 
hits, the convention has been to use the doubled number of decoy hits as false 
positive.  
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Numerous variations of the target-decoy method exist. In addition to simply 
reversing the sequences from the target database, decoys can also be generated by 
randomizing or shuffling. Importantly, for every method the size of the decoy 
database has to be the same as the target database. The decoy database search can 
be performed in tandem (concatenated database) or in sequence, where two 
separate searches are performed, one against the target and one against the decoy 
database (Fitzgibbon, Li and McIntosh, 2008). Alternatively, decoy fusion 
method, implemented in PEAKS  (Zhang et al., 2012), can be applied. 

FDR estimation of peptide identifications using the target-decoy strategy was also 
evaluated for spectral library searching (Lam, Deutsch and Aebersold, 2010). An 
alternative FDR estimation method was later developed for SpectraST with a goal 
to enable decoy-free validation (Shao, Zhu and Lam, 2013). The similarity scoring 
function was modified to produce a score distribution that has a good 
discrimination power and in addition is more accurately fitted by PeptideProphet. 

3.2 False localization rate 

When database search results are scored, ranked and validated, they might be 
reported together with their FDR value and that is generally acceptable. However, 
in phosphoproteomic studies, when the results contain mainly phosphopeptides, 
that is not enough to ensure that the number of false identifications is minimum. 
The problem arises from the fact that the top-scoring alternative peptide 
identifications for each spectrum may have the exact same score, but only one of 
them is shown among results, or difference in the score is insignificant, suggesting 
that both are valid candidates. In case of spectra of modified peptides, these 
candidates are phosphopeptide isoforms (homologues), i.e. the same peptides, but 
with different phosphorylation sites. Consequently, identifications that were 
filtered for FDR may still contain incorrect assignments, because the reported hits 
are not necessarily correct. Below is a schematic from a paper by (Zubarev, 
Zubarev and Savitski, 2008) (Figure 5b) highlighting that a task of setting up a 
score threshold above which the assignments are considered reliable becomes 
complicated if not impossible in case of a dataset with homologous hits, such as a 
phosphoproteomics dataset. 

The implications of phosphorylation site mis-assignments may not seem severe, 
because the peptide sequence is after all typically correct and it will contribute to 
identification of the correct protein. However, unambiguous identification of 
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a     b 

phosphorylation sites can help to avoid costly and time-consuming downstream 
biological characterization experiments misguided by incorrect site assignments 
(Gunawardena et al., 2011; Vaga et al., 2014). 

For a while, there has not been any uniform method for calculating and reporting 
ambiguity of phosphopeptide identifications, until a study conducted in 2010 by 
ABRF Proteome Informatics Research Group (iPRG). The focus of the study was 
to evaluate how bioinformatics analysis is done in proteomics laboratories across 
the world using a common dataset of phosphopeptides. It was shown to be 
generally challenging for all the participants to identify phosphopeptides and to 
localize the phosphorylation sites correctly. In the framework of this study, the 
term False Localization Rate (FLR) was introduced. FLR is calculated by dividing 
the number of incorrect site assignments by the total number of site assignment as 
a function of the score. True FLR can only be measured when the correct 
phosphosites are known, which is the case when synthetic phosphopeptides are 
used. 

Figure 5 Theoretical shapes of the distributions of search-engine 
scores. (a) Idealized "hit or miss" situation; (b) more realistic 

situation taking into account the existence of homologs in MS/MS 
datasets (adapted from Zubarev et al.) 
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Various computational approaches have been developed for large-scale 
phosphoproteomics to localize phosphorylation sites in peptide sequences 
(Chalkley and Clauser, 2012; Wiese et al., 2014; Ferries et al., 2017). As a result, 
the quality of reported phosphopeptide identification data has improved 
significantly. Some of the representative methods, which can be divided roughly 
into two groups, are reviewed below in Section 3.3 (methods based on delta 
scores) and Section 3.4 (specialized phosphosite validation tools).  
 

3.3 Delta scores 

3.3.1 Mascot delta score 
 
Database search engine Mascot outputs Mascot delta (MD-) score, which reflects 
the difference of the Mascot ion scores between the highest and the second highest 
ranking peptide spectrum match. A related score, normalized MD-score, was at 
some point considered and used for phosphosite validation. Specifically, 
normalized MD-score was defined as the difference between the top two Mascot 
ion scores of alternative phosphorylation sites in the same peptide sequence 
divided by the ion score of the top ranking site. However, after re-evaluation of 
the ability of MD-score without normalization to estimate the probability of 
correct phosphosite localization (Savitski et al., 2011), it showed outstanding 
performance compared to normalized MD-score and popular phosphosite 
validation tool, Ascore. In that study, FLR of each method was calculated using a 
benchmarking data set of 180 synthetic phopshopeptides with known 
phosphorylation sites. The authors also found that phosphosite assignments are 
more reliable both by MD-score and Ascore if the potential phosphorylation sites 
are more than one amino acid apart when compared to sites that are adjacent. 
Afterwards, Mascot results in phosphoproteomics experiments would frequently 
be reported together with Mascot delta score information.  
 

3.3.2 Sequest delta score 
 

Delta Cn, ΔCn, is the normalized difference between the best and the second-best 
scores reported by SEQUEST (Eng, McCormack and Yates, 1994). Similarly to 
MD- or normalized MD-score, this score helps determine the uniqueness of a 
match. If there are multiple matches, the reported ones would be the best and the 
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matches with the score within 5% of that best match. A commonly used cutoff for 
ΔCn is 0.10. The value ΔCn indicates the difference of the normalized correlation 
parameters between the first and second ranked sequences from the species-
specific database search. These days SEQUEST results would be more commonly 
accompanied by the Ascore score, described below (3.4.1), rather than ΔCn. 

3.3.3 SpectraST delta score 

By default, delta score calculated by spectral library search engine SpectraST 
reflects the difference between the dot-score of top and second-ranking non-
homologous peptides. Therefore, it deliberately excludes phosphopeptide 
isoforms from the comparison. It is however possible to change that and compare 
the hits with the same peptide sequence but different phosphorylation sites. We 
called that difference score recalculated delta-score in P2. We have shown that a 
cutoff of 0.005 helped improve FLR in the experiment with synthetic peptides. 
Similarly to sequence database search results, there are situations (not as common 
though) where delta score is equal or near zero and such assignments can be 
eliminated as ambiguous. After the recalculated delta score is obtained, 
discriminant score (f-value) can be recalculated as well. F-value summarizes dot 
score, delta dot score, and a score that reflects the number of peaks that contributed 
to the match.  

3.4 Phosphosite validation tools 

3.4.1 Ascore 

Ascore (Beausoleil et al., 2006) was developed to enable validation of 
phosphopeptide identifications made by SEQUEST database search engine. 
Ascore measures the probability of correct phosphosite localization based on the 
presence and intensity of site-determining ions. To evaluate the Acore algorithm, 
several datasets with known phosphosites were used, including synthetic 
phosphopeptides and manually validated datasets. An Ascore value of at least 19 
is recommended to achieve 1% FLR. The performance was compared with Mascot 
and SEQUEST, as well as specific Mascot and SEQUEST (shown further in 
brackets) scores, such as Delta Ions score (dCn) and Ions Score (XCorr).  
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MS/MS spectra are preprocessed to contain a certain number of most intense 
peaks per 100 m/z units. That number is called peak depth and it varies from 1 to 
10. Water and phosphoric acid ion losses are removed, as well as all but one peak
per isotopic cluster. The predicted spectra of b- and y- ions for every possible
phosphopeptide isoform are compared separately with the preprocessed observed
spectrum. Based on the matching peaks and peak depth, binomial probability is
computed and only the best scoring phosphopeptide is reported. The actual Ascore
is calculated using site determining ions.

Even though it is generally perceived that Ascore is only applicable to SEQUEST 
results, there is a study describing a workflow that included file conversions and 
the application of Scaffold software that allowed assigning Ascore values to 
Mascot results (Taus et al., 2011). On a separate note, Ascore was developed 
further by another group into SLoMo (Bailey et al., 2009) or turbo-SLoMo 
(Collins et al., 2014). SLoMo supports files from SEQUEST, Mascot and 
OMSSA, low and high resolution CID, ETD and ECD data. SLoMo, like Ascore, 
reports the best scoring site(s) assignments, second best are not known. 

3.4.2 PTM score  

PTM score (Olsen et al., 2006) is a phosphosite validation tool that is included in 
MaxQuant (Cox and Mann, 2008) and can be used after Andromeda (Cox et al., 
2011) or Mascot database search. PTM score is based on an algorithm previously 
published by the same group,  that improved peptide identification by two 
consecutive stages of mass spectrometric fragmentation (MS2 and MS3) (Olsen 
and Mann, 2004). PTM score is using, similarly to Ascore, so-called peak depth, 
only it is pre-set to 4 most intense fragment ions per 100 m/z units in MS/MS. 
Unlike Ascore, all potential phosphorylation sites are reported together with their 
PTM scores, which represent localization probabilities. A cutoff value of 0.75 is 
used to separate peptide-spectrum matches with ambiguous phopshosite 
localization and more reliable ones that are called “class I” sites. 
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3.4.3 PhosphoRS 

PhosphoRS (Taus et al., 2011), is a phosphosite localization tool implemented in 
Java and integrated in Proteome Discoverer (Thermo Fisher Scientific) analysis 
software. PhosphoRS was developed to support phosphosite validation of spectra 
from several fragmentation techniques. The scoring parameters are optimized for 
MSA, HCD, ETD and ETD-high. Unlike other similar tools, the peak depth for 
peak extraction is not fixed in phosphoRS, but the optimal value is dynamically 
determined for each 100 m/z window (maximum of 8 peaks) by calculating the 
cumulative binomial probability for each phopshosite. Another difference 
compared to e.g. Ascore is that not only site-determining fragment ions are used 
to calculate probability of the site, but all theoretical fragment ions. According to 
the authors, phosphorylation site probability of 0.99 should correspond to FLR of 
1%, while phosphoRS site probability of 0.75 should still lead to FLR of less than 
2%. 

In the original study phosphoRS was compared to Ascore and MD-score using 
synthetic phosphopeptide and biological data sets. PhosphoRS could localize 
phosphosites at 1% FLR in a higher number of PSMs and unique phosphopeptides 
than the other validation methods. Later, phosphoRS was renamed into ptmRS, 
since the application of the tool was expanded to assign probabilities to other 
modifications.  

3.4.4 LuciPHOr 

LuciPHOr (Fermin et al., 2013) is a phosphorylation site localization algorithm 
with direct FLR estimation, compatible with input from Mascot, SEQUEST and 
X!Tandem search engines. Relying on a novel target-decoy-based approach, the 
algorithm uses both mass accuracy and peak intensities for site localization 
scoring and FLR estimation. For each identified peptide, permutations with 
modification on every amino acid are considered. Decoy permutations are 
generated by placing phosphorylation on amino acids that cannot be 
phosphorylated (non-S/T/Y), while non-decoy permutations are the ones with 
modification on S, T, or Y. All permutations are scored based on how well the 
observed spectrum matches the theoretically calculated fragment ions. Based on 
the score distributions of decoy and non-decoy permutations, LuciPHOr 
calculates the FLRs using the statistical method for estimating FDRs with the 
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empirical Bayes method. LuciPHOr’s performance was evaluated using synthetic 
phosphopeptide data and it was compared with MD-score and Ascore.  
 
Later, LuciPHOr2, a re-implementation of the original LuciPHOr, was developed 
(Fermin et al., 2015). It has several improvements and novel features, such as 
operation system independence, reduced computation time and in addition to 
phosphorylation, support for site localization of generic PTMs. Another important 
improvement is that LuciPHOr2 reports the two best site localizations, and not 
just one, as previously, allowing identification of positional isomers, i.e. co-
eluting species of the same peptide with different phosphorylation sites. 
 

3.5 Other strategies 
 
Several other tools for phosphosite validation should be mentioned, such as 
PhosSA (Saeed et al., 2012, 2013) that supports Mascot and SEQUEST results 
compared to PhosphoRS in the original study, modification site localization score 
SLIP (Baker, Trinidad and Chalkley, 2011) integrated into Protein Prospector 
(Chalkley et al., 2008), and finally the most recent method, P-bracket (phospho-
bracket) (Xiao et al., 2017), that relies on ion-pairs, which are distinctive to 
phosphorylation sites.  
 
Besides delta scores and scores generated by designated validation tools, 
orthogonal phosphopeptide identification methods can be used for phosphosite 
validation. For example, it may be enough to analyse raw MS/MS data of 
phosphopeptides using different search engines, thereby enabling analysis by 
additional validation tools, which were not directly supported by the single search 
engine originally used. Alternatively, in addition to protein database search 
engines, spectral library searching can be used, provided a suitable spectral library 
is available. We have developed semi-simulated spectral libraries for this purpose 
(studies P3 and P4), and others have suggested to combine spectral libraries of 
high-confidence phosphopeptide spectra with predicted spectra to improve the 
coverage (Shao and Lam, 2017) of the proteome in the library. It has been shown 
that PTMs can be discovered by “blind”, or “open” modification search, where 
the algorithm tries to detect mass-shifted spectral matches (Bandeira, 2007). The 
open modification search tools designed for spectral library searching are pMatch 
(Ye et al., 2010) and QuickMod (Ahrné et al., 2011). Open search is now also 
supported by SpectraST (Ma and Lam, 2014). 
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One of the main reasons for ambiguous assignments of phosphopeptides using 
tandem mass spectrometry and automated tools for spectra interpretation is the 
fact that sequence information is usually incomplete, i.e. not all the fragment ions 
are present in the spectra as predicted by the algorithms. The situation can be 
improved by repeating the analysis with complementary fragmentation or 
ionization techniques, using other protease than trypsin or performing digestion 
twice. That in turn would require more advanced bioinformatics tools that would 
combine the complementary data. 
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4 SUMMARY OF THE THESIS WORK 

Contributions 

This dissertation is composed of four original publications, all of which have been 
peer-reviewed and are now published. The topic for all studies remained the same, 
development of methods to improve accuracy of site-specific phosphorylation 
analysis by mass spectrometry. In P1, we have shown that combining spectra from 
different matrices when analyzing the same sample with MALDI ionization 
without prior phosphopeptide enrichment can generate higher number of 
confidently identified phosphopeptides than when using matrices separately or 
using ESI ionization with phosphopeptide enrichment. My contribution in this 
project included data analysis, development of scripts for spectra combination and 
for comparison of the results, and manuscript review and editing. In P2, various 
sample loading and washing conditions for the indium tin oxide (ITO) coating 
glass slides used in MALDI-MS were systematically tested and the optimal ones 
were determined for the most efficient phosphopeptide enrichment. My 
contribution was the development of scripts to support data analysis and 
integration, and manuscript review and editing. In P3, we have tested the 
hypothesis that spectra of phosphopeptides can be predicted based on the spectra 
of dephosphorylated peptides and then used for phosphosite validation using 
spectral library searching. In this project, I implemented and refined the phospho-
peptide spectral simulation method, performed protein database and spectral 
library searches, compared the performance of software tools, and wrote the 
original draft of the manuscript. In P4, we significantly improved the software 
implementation of SimPhospho from P3 and optimized the simulation parameters. 
My contribution was the design of the graphical user interface, performance 
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optimizations, introduction of additional features, data analysis, and writing the 
original draft of the manuscript.  

P1, P2 and P3 were published in specialized proteomics journals (Rapid 
communications in mass spectrometry, Molecular Biosystems, and Journal of 
proteome research), while a more readily accessible and established solution 
presented in P4 was published in a more general journal, Bioinformatics.  

4.1 Data combination from multiple MALDI matrices: 
opportunities and limitations for MALDI analysis  

In study P1, we examined spectra generated from different MALDI matrices and 
found that they sometimes can be regarded as complementary. That led us to the 
development of a method that allowed identification of a larger number of 
phosphopeptides with MALDI-TOF/TOF using four different matrices and 
without prior phosphopeptide enrichment than when using ESI-qTOF after TiO2-
purification. In addition, the sample amount needed for the MALDI multi-matrix 
workflow was reduced greatly compared to ESI analysis.  

The following workflow was used. NFATc1 protein sample was digested with 
trypsin. The resulting peptide sample was first analysed with four different 
MALDI matrices. Then, MS-data (peptide masses) were collected from all the 
matrices and combined for PMF. Identified phosphopeptides were subjected to 
MS/MS analysis with all four matrices regardless from which matrix they were 
originally detected. MS/MS spectra from the same precursor mass were merged 
and used for MS/MS Mascot database search. The illustration of the data flow is 
shown in Figure 6.  

The initial data analysis was done using Biotools (Bruker Daltonics). Through the 
interface of this program one can perform both peptide mass fingerprinting (MS 
level) and Mascot database search (MS/MS level). We wanted to see if combined, 
or in other words, merged spectra used as an input would generate comparable 
results with methods that use phosphopeptide enrichment. There were no means 
to accomplish that, so my task was to develop a Microsoft Excel macro that would 
allow creating different but easily customizable combined peak lists. These 
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resulting merged peak lists needed to be in a certain format, to be compatible with 
downstream analysis. The created macro was run repeatedly in the sample 
preparation optimization phase of the project. The user had to select the correct 
corresponding input files and followed the progress of the data analysis. In 
principle, mass-intensity pairs acquired on different matrices are collected by the 
script in one list, and then sorted by their mass. When peaks are found in different 
matrices in close proximity to each other, the average m/z is calculated and the 
highest intensity value is assigned to that averaged mass. Excel offered a familiar 
interface to the end-user and an interactive environment for automated execution 
of a series of computational and data manipulation steps. Macros were 
implemented using Visual Basic for Applications (VBA).  

Figure 6 Schematic of multimatrix approach for phosphopeptide 
identification (adapted from Kouvonen 2010) 

Peptide sample is analyzed with 
four different MALDI matrices 

MS‐spectra from multiple matrices 
are combined for PMF database 
search 

Identified phosphopeptides are 
subjected to MS/MS 

MS/MS‐spectra from the same 
precursor mass are merged for 
database search 

SAMPLE 
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4.2 Enrichment and sequencing of phosphopeptides on 
indium tin oxide coated glass slides. 

In paper P2, we evaluated the capability of commercially available indium tin 
oxide (ITO) coated glass slides used with MALDI ionization for phosphopeptide 
enrichment, earlier reported in (Imanishi et al., 2009). Multiple sample loading 
and washing conditions were tested and finally an optimized protocol for 
extremely fast and sensitive phosphopeptide purification was suggested.  

First, the effects of ammonia, washing solution and loading solutions were 
systematically tested using transcription factor NFATc1 phosphorylated with 
protein kinase A. We confirmed that the use of loading solution in combination 
with an ammonia (pH 11) wash prior to the matrix addition improved detection of 
phosphopeptides. Next, we tested the effect of TFA concentration (0.5%, 1%, 2%, 
3%, 4%, 5%, and 6%) in the washing solution on phosphorylated and 
nonphosphorylated peptides. We found that already with 1% TFA phosphopeptide 
peak area was close to maximum and that concentration was chosen for the 
subsequent analysis. 

To determine the sensitivity of ITO-purification and to compare our method with 
TiO2 affinity chromatography, we analysed in triplicates samples with dilutions 
series containing 200, 100, 50, 25, 12 and 6 fmol of tryptic phosphopeptides. ITO- 
glass slide purification outperformed TiO2 enrichment by allowing positive 
identifications starting at 12 fmol amount of sample, while TiO2 required at least 
100 fmol. In addition to determining the limit of identification described above, 
we compared ITO and TiO2 in terms of limit of detection. Limit of detection for 
ITO-coated glass slides was 0.75 fmol and for TiO2 is was 12 fmol. 

The initial data analysis were performed similarly to the previous study. To allow 
a thorough comparison of many samples and conditions tested I developed VBA 
scripts for data analysis and integration of the results. 
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4.3 Confident site localization using a simulated 
phosphopeptide spectral library 

 
In this paper, we described a novel method for detecting the sites of 
phosphorylation in phosphopeptides using ESI mass spectrometry. It enabled 
automated validation of phosphorylation sites using a reference-facilitated 
strategy (Imanishi et al., 2007) on a large scale via spectral library searching of 
simulated spectra. The strategy is based on the observation that very similar 
fragmentation patterns are observed when spectra of phosphopeptides are 
compared with spectra of their dephosphorylated counterparts.  
 
Four datasets including synthetic peptides and HeLa data were used in this study 
for method development and its benchmarking (Table 1). 
 

Dataset  Fragmentation  Description 

HeLa 

HeLa phosphorylated 
peptides 

HCD, ETD, CID, MSA 
Phosphopeptides were enriched from a HeLa 

tryptic digest 

HeLa dephospho‐
rylated peptides 

HCD, ETD, CID, MSA 
Enriched HeLa phosphopeptides were 

dephosphorylated 

Synthetic 

20 synthetic 
phosphopeptides 

HCD, CID 
20 singly phosphorylated peptides were 

selected and synthesized 

Dataset from Marx et 
al., 2013 

HCD 
>100,000 of singly phosphorylated peptides 
and nonphosphorylated counterparts were 

synthesized 

 
Table 1 LC-MS/MS data sets used in this study (adapted from 

Suni et al., 2015) 
 
Figure 7 below shows the principle that was tested and evaluated using spectral 
library searching. Spectra of experimentally observed peptide, LFEDDDSNEK, 
with and without phosphorylation of Serine show a shift of 18 Da (denoted in 
blue) of ions containing a phosphosite. Simulated spectrum is shown on top and 
is used as a reference. In this study we have shown that it is possible to accurately 
simulate spectra of phosphopeptides by introducing a mass shift in the 
fragmentation pattern in a predicted way while preserving the intensity of the 
intact fragments. 
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The experimental workflow was as follows (Figure 8). Human HeLa cell protein 
sample was digested with trypsin and enriched for phosphopeptides using TiO2 
and then half of the sample was dephosphorylated. This sample preparation was 
done in Institute of Molecular Systems Biology, ETH Zurich. Then, in Proteomics 
facility in Turku Centre for Biotechnology, both samples were analyzed on the 
same instrument, LTQ Orbitrap Velos, by CID, MSA, ETD and HCD. We 
observed superior performance of HCD in terms of number of identifications, both 
in the analysis of phosphorylated and dephosphorylated peptides. Also, the most 
striking similarity between spectra of phosphorylated and dephosphorylated 
peptides was observed in HCD spectra. HCD spectra of the dephosphorylated 

Simulated spectrum of  
phosphopeptide 

Experimentally observed 
spectrum of phosphopeptide 

          18 Da shift 

Experimentally observed 
spectrum of dephosphorylated 
peptide 

Figure 7 Representative HCD MS/MS spectra of phosphorylated and 
dephosphorylated peptides (LFEDDDS167NEK) 
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peptides were used to build a reference spectral library, for which spectra of all 
possible singly phosphorylated peptides were simulated. The simulated spectra 
were used to identify the phosphorylated peptides by spectral library searching.  

Figure 8 Experimental outline of reference-facilitated spectral library 
matching of phosphopeptides 

We compared the performance of our simulated spectral library with publicly 
available ones, as well as combined our library to a larger background library. 
Datasets are organized below in a table (Table 2).  
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Spectral library  Num. of spectra  Description of source data 

Experimental 

Synthetic 
phosphopeptide 
spectral library 

31  HCD spectra of 20 synthetic phosphopeptides 

Simulated 

SimHeLa library  23,126 
Phosphopeptide HCD spectra simulated based on 

HeLA dephosphorylated peptides 

SimMarx library 
(Marx et al., 2013) 

285,252 
Phosphopeptide HCD spectra simulated based on 
synthetic nonphosphorylated peptides of Marx 

dataset 

Combined 

SimHeLa‐mouse‐
yeast library  

(Hu and Lam, 2013) 
162,789 

SimHeLa library merged with CID spectral libraries 
of mouse and yeast phosphopeptides 

Hu&Lam library  
(Hu and Lam, 2013) 

106,330 
Library of experimentally obtained and simulated 

CID spectral of phosphopeptides 

Table 2 Spectral libraries used in the study of simulated spectra of 
phosphopeptides (adapted from Suni et al., 2015) 

In addition to 20 synthetic phosphopeptides that we selected for synthesis and had 
analyzed in Turku, we used a published HCD dataset of 100,000 synthetic 
peptides. To simulate spectra for those, we used the spectra of their 
nonphosphorylated forms, generated by (Marx et al., 2013). We wanted to 
evaluate the simulated spectral library using this large dataset that had pairs of 
phosphorylated and nonphosphorylated synthetic peptides. Majority of the 
spectral matches for that dataset of nonphosphorylated peptides had ambiguous 
identifications (30% Mascot delta score 0, and 60% Mascot delta score ≤ 10). For 
simulation we only used those matches that had Mascot identification higher than 
1% FDR. Our results showed that our simulated libraries outperformed other 
simulated libraries and that they can be used as a promising alternative strategy 
for phosphosite validation.  
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4.4 SimPhospho: a software tool enabling confident 
phosphosite assignment 
 
We were motivated to develop further the command line tool for simulation of 
phosphopeptide spectra implemented as part of the P3 article. First of all, we 
wanted to investigate how the different intensity combinations would affect the 
accuracy of localization of phosphosites and to make improvements to the 
implementation, to make the simulation process faster, and to add more features. 
This new version of SimPhospho included a user-friendly Qt based GUI, 
executables for Linux, Mac and Windows operating systems, and the option to 
filter the initial MS/MS spectra using the scan number, specific peptide sequence 
or protein name. The default simulation parameters in the new program are set to 
the ones we found to produce the best results for accurate site-specific 
identifications. Interface of SimPhospho is shown in Figure 9. 
 
As in the original algorithm, simulation of phosphopeptide fragment spectra 
(MS/MS) is performed using MS/MS of non-phosphorylated version of peptides. 
Ser/Thr phosphorylation and Tyr phosphorylation are simulated differently. For 
Ser/Thr phosphorylation we predict intact ions and neutral loss ions, but for Tyr 
it is only intact ions. In the previous implementation, pTyr containing fragment 
ions had intensity percentage that was automatically set equal to neutral loss ion 
intensity for pSer/pThr. In the new program this parameter is set separately. Also 
it is possible to select which ion types are going to be used for simulated spectra. 
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Figure 9 Interface of SimPhospho. Main view (top)  
and output log view (bottom) 



 

49 

We have studied a number of intensity combinations for simulated peaks. 
Originally, in P3, the values of these parameters were set empirically, by applying 
prior knowledge about the spectra of phosphopeptides. There, we chose to use 
100% neutral loss, 10% intact ion intensity for pSer and pThr containing 
fragments, and 100% intact ion intensity for pTyr contacting fragments. However, 
in this study (P4) the best combination we found was (50%-50%ST,50%Y).  
Overall, the new tool provided faster data processing and improved 
phosphopeptides’ MS/MS simulation compared to the older version implemented 
for P3. For example, on the same files provided as test data, the runtime improved 
from 48 min to 53 sec, the new version being ~50 times faster than the old one. 
This faster data processing has been achieved by the changes in the software 
implementation. We saw a clear increase in the number of correct spectra 
identified using SpectraST and simulated libraries. The increase at 1% FLR was 
49%. 
 
The new SimPhospho was significantly better than the prototype program, but at 
the same time it still relies on preparation of input data using TPP and conversion 
tools, just like the old version did. It is also biased towards singly phosphorylated 
peptides, in other words, peptides with multiply phosphorylated sites cannot be 
identified using a spectral library built using simulated spectra by SimPhospho. 
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DISCUSSION 

In the past two decades, development of methods for phosphosite validation has 
been an active area of research. In the beginning of 2000s when phosphosite 
identifications were primarily reported without validation, many of those results 
inevitably contained error. Currently, the issue of ambiguity of site assignment by 
search engines is widely recognized. Consequently, the term “false localization 
rate” was adopted by the proteomics community, which helps researchers interpret 
the results with better understanding of their reliability.  

Several phosphosite validation tools were developed, of which delta scores 
perhaps provide the easiest first measure of quality assessment of phosphopeptide 
identification. By applying simple arbitrary cutoffs – which have been accepted 
in the field – one separates and recognizes those phosphopeptide identifications 
that need to be taken with caution or require additional computational validation. 
Another promising approach involves the use of spectral libraries, which would 
be ideal for phosphopeptide identification because of the sensitivity of the 
similarity metrics used. Competing hits that represent the main challenge of 
spectra interpretation originate mainly from confusion between spectra of the 
phosphopeptide isoforms that frequently would have the majority of fragment ions 
overlapping. The matching scores used in spectral library searching can more 
accurately account for every peak and therefore are able to reflect the better hit 
more effectively compared to sequence database search engines. The limiting 
factor of the widespread use of spectral libraries in phosphoproteomics is that they 
are incomplete. Some phosphopeptide isoforms may not have yet been previously 
observed and therefore will be missed in the identification. Simulation of spectra 
to supplement the libraries was attempted before and worked well for 
nonphosphorylated peptides. 
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The novelty and the main contribution of this thesis work was the development of 
the simulation method that allowed simulation of all possible singly 
phosphorylated peptide isoforms if spectra of corresponding nonphosphorylated 
or dephosphorylated peptide were available. The major finding to emerge from 
this thesis work is that spectral library searching against simulated spectra of 
phosphopeptides achieves greater sensitivity in site-specific identification 
compared to the tools currently considered a golden standard. 
 
A quantitative phosphoproteomic study (Kauko et al., 2015) demonstrated the 
application of our developed approach and software, SimPhospho, where 
candidate phosphorylation sites obtained from a sequence database searches were 
further refined. Database search results were compared to the results of the 
spectral library search against a simulated library and based on the agreement and 
overlap, phosphorylation sites were either 1) confirmed, 2) flagged as ambiguous, 
or 3) complemented by phosphorylation sites identified only using a simulated 
library. 
 
It is noteworthy that the use of spectral libraries has gained a lot of attention 
largely due to the popularity of targeted and data-independent acquisition 
proteomics, where spectral libraries play a central role in the data analysis. This 
thesis, however, applies spectral libraries in shotgun phosphoproteomics. 
Currently, spectral libraries can be integrated in a number of popular proteomics 
data analysis pipelines, including Trans-Proteomic Pipeline (TPP), Proteome 
Discoverer and OpenMS. 
 
Data sharing in proteomics has been a great influence. Raw mass spectrometry 
data is deposited online, along with identification files and other needed resources 
to reproduce the results or to assess the quality of the data. Commonly, these data 
would be available not only for the reviewing procedure but also for the other 
researchers, that way supporting new method development and validation by the 
community. For instance, our published simulated spectral libraries from P3 were 
used in a recent study that presented an automated pipeline called Epsilon-Q (Cho 
et al., 2017). It implements the idea of combining the results from multiple 
simulated spectral libraries and DB searches. In addition to spectral library search 
and statistical estimation, results are combined and protein abundances are 
calculated within Epsilon-Q. Another example is an article describing a 
phosphosite validation method using phospho-brackets (Xiao et al., 2017) that 
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used our HeLa phosphopeptide raw data and identifications that we made public 
in P3 study. 

Hopefully, this thesis work will raise awareness of the challenge of assigning 
phosphorylation sites accurately. We demonstrated that the use of simulated 
MS/MS spectra, i.e. (1) merged/combined spectra from different matrices in 
MALDI, and (2) simulated based on spectra of nonphosphorylated peptides in 
ESI, provides higher quality input data (MALDI, P1) or reference data for the 
library (ESI, P3, P4) and improves site-specific identification and validation of 
protein phosphorylation, reducing FLR of the analysis. 

Future directions  

The following areas for future research can be highlighted. 

The most apparent future development areas include adapting the simulation 
method to multiply phosphorylation peptides, as well as spectra from another 
fragmentation type and other PTMs. In addition to CID and HCD spectra, we have 
observed the resemblance of fragmentation and intensity patterns of 
phosphorylated and dephosphorylated peptides in ETD spectra. However, we 
have not explored the simulation of that type of spectra yet. Further research might 
investigate if spectra of other PTMs would behave similarly to phosphorylation, 
and based on spectra of nonmodifed peptides, we could build spectral libraries of 
PTM of interest. An example of difficult to investigate but important PTM where 
simulated libraries could be tested includes glycosylation. Incidentally, our 
approach was recognized in the recent review article covering algorithms and 
design strategies towards automated glycoproteomics analysis (Hu, Khatri and 
Zaia, 2017).  

All the methods developed in this thesis concern phosphorylation of serine, 
threonine and tyrosine residues, the three most common phosphorylation targets. 
We have considered the possibility to expand SimPhospho to simulate non-
canonical phosphorylation e.g. of phosphohistidine. The detection of 
phosphohistidine has been shown to be very challenging (Kee and Muir, 2012). 
Based on the studies that observed spectra of phosphohistidines (Oslund et al., 
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2014), we can anticipate that with some changes of our program, simulation of 
spectra of peptides containing phosphohistidine could be successful.  
 
A significant improvement to our software would be the support of the latest 
HUPO-PSI standard formats. There are popular tools that employ these standards 
and their user-base is likely lost due to our software being incompatible with them. 
Workflow systems, such as KNIME (Berthold et al., 2009; Fillbrunn et al., 2017), 
allow integration of various old and new tools and creation of truly customizable 
data analysis pipelines. Proteome Discoverer offers similar interface based on 
nodes, but the choice of the nodes is limited, while tools, such as SearchGUI 
(Vaudel et al., 2011; Barsnes and Vaudel, 2018) with PeptideShaker (Vaudel et 
al., 2015) offer a user-friendly way to handle proteomics data. 
 
And finally, having an option of fully automated phosphosite validation would be 
very beneficial. For that, considerably more work would need to be done. In 
particular, our suggested workflow would need to be optimized to be used on-the-
fly, possibly together with the sequence database search engines, ultimately 
having all the data combined into a single result file. This would require the 
adaptation to the aforementioned standard formats and development of 
independent module that could be integrated with workflow systems. 
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