
TURUN YLIOPISTON JULKAISUJA –  ANNALES UNIVERSITATIS TURKUENSIS

SARJA - SER. D OSA  - TOM. 1427  | MEDICA - ODONTOLOGICA | TURKU 2019

INVOLVEMENT OF HUMAN 
PAPILLOMAVIRUSES, 

HERPES SIMPLEX VIRUS  
AND EPSTEIN-BARR  
VIRUS IN HEAD AND  
NECK CARCINOMAS

Aaro Turunen

31095537_Turun_yliopisto_Vaitoskirja_Aaro_Turunen_Laaketiet_tdk_kansi_wire_19_04_25.indd   1 25.4.2019   8.48.07





TURUN YLIOPISTON JULKAISUJA –  ANNALES UNIVERSITATIS TURKUENSIS
SARJA - SER. D OSA  - TOM. 1427  |  MEDICA - ODONTOLOGICA  |  TURKU 2019

Aaro Turunen

INVOLVEMENT OF HUMAN 
PAPILLOMAVIRUSES, HERPES 

SIMPLEX VIRUS AND EPSTEIN-
BARR VIRUS IN HEAD AND  

NECK CARCINOMAS

31095537_Turun_yliopisto_Vaitoskirja_Aaro_Turunen_Laaketiet_tdk_sisus_19_04_25.indd   1 25.4.2019   8.25.44



Supervised by

Professor Stina Syrjänen, DDS, PhD
Department of Oral Pathology and 
Oral Radiology Institute of Dentistry
University of Turku
and Department of Pathology,
Turku University Hospital, Turku, Finland

Professor Veijo Hukkanen, MD, PhD
Institute of Biomedicine
Department of Virology
University of Turku
Turku, Finland

University of Turku 

Faculty of Medicine
Institute of Dentistry
Department of Oral Pathology and Oral Radiology
and Institute of Biomedicine, Department of Virology
Finnish Doctoral Program in Oral Sciences (FINDOS-Turku), Finland

Reviewed by

Docent Ivana Kholová, MD, PhD
Department of Pathology
Faculty of Medicine and Health 
Technology
Tampere University
Tampere
and Pathology, Fimlab Laboratories
Tampere, Finland

Docent Eeva Auvinen, PhD
Department of Virology
Medicum, Faculty of Medicine
University of Helsinki
Helsinki, Finland

Opponent

Professor Tina Dalianis, MD, PhD
Department of Oncology-Pathology
Karolinska Institutet
Stockholm, Sweden

The originality of this thesis has been checked in accordance with 
the University of Turku quality assurance system using the Turnitin 
OriginalityCheck service.

ISBN 978-951-29-7643-0 (PRINT)
ISBN 978-951-29-7644-7 (PDF)
ISSN 0355-9483 (Print)
ISSN 2343-3213 (Online)
Grano Oy - Turku, Finland 2019

31095537_Turun_yliopisto_Vaitoskirja_Aaro_Turunen_Laaketiet_tdk_sisus_19_04_25.indd   2 25.4.2019   8.25.45



 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    A goal is not always meant to be reached, 

it often serves simply as something to aim at 

       Lee Jun-Fan (1940-1973) 
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ABSTRACT 

Aaro Turunen 

Involvement of human papillomaviruses, herpes simplex virus and Epstein-Barr virus in head and neck 

carcinomas. 

University of Turku, Faculty of Medicine, Institute of Dentistry, Department of Oral and Maxillofacial 

Pathology and Radiology and Institute of Biomedicine, Virology. Finnish Doctoral program for Oral 

Sciences (FINDOS-Turku)  

Annales Universitatis Turkuensis, Medica-Odontologica, Turku, Finland, 2019 

 

Human papillomaviruses (HPV) are common oncogenic DNA viruses that replicate in differentiating epithelial 

cells. HPVs cause a significant proportion of squamous cell carcinomas of the head and neck (HNSCC), 

particularly of oropharyngeal subsites, the prevalence of which has been increasing. HNSCC patients are often 

afflicted by common Herpes simplex type 1 (HSV-1) infections during radiotherapy. In addition, Epstein-Barr 

virus, another herpesvirus, is a causative factor in nasopharyngeal carcinomas but its influence on carcinomas in 

other anatomical subsites of the head and neck is unknown.  

 

This work aims to describe the effect of differentiation-related calcium signaling on HPV E6 and E2 expression and 

cell proliferation in HPV-positive and -negative gingival cells and hypopharyngeal carcinoma cells. As cells from 

these areas can be exposed to HSV-1 in vivo, the next aim was to determine what effect HSV-1 infection and 

irradiation has on the viability and apoptotic gene expression of cultured cells. Lastly, the prevalence of EBV in 

head and neck carcinomas with previously known HPV and HSV-1 status was studied using in situ hybridization 

and immunohistochemistry in order to determine what role HSV-1 and EBV play in HPV-positive or -negative 

HNSCCs.  

 

The results show that calcium signaling increases E6 oncogene expression in gingival and hypopharyngeal 

carcinoma cells, potentially in order to resist differentiation and subsequent cell death. Alone, HSV-1 infection or 

irradiation caused cytotoxic effects. However, the combined effects increased radiation resistance and halved the 

apoptotic caspase 3 signaling after irradiation compared to uninfected cells. Simultaneously, the relative HPV16 E6 

and E7 expression in HPV16-positive carcinoma cells increased. Moreover, the viability of gingival cells was 

increased, whilst similarly treated skin cells did not display such effects. EBV was present in 21%, whereas HSV-1 

was present in a minority of HNSCCs, 47% of which were also HPV-positive. Therefore it is possible these viruses 

could also coinfect cells in vivo and affect their radiation responses via the inhibition of apoptotic signaling, 

potentially acting as cocarcinogens. Lastly, the presence of coinfections leads to poorer prognoses in HNSCC. Thus 

the effects of herpesviruses coinfecting HPV-positive tissues need further study, particularly in patients undergoing 

radiation therapy. 

 

Keywords: human papillomavirus, Herpes simplex virus type 1, Epstein-Barr virus, head and neck carcinoma, 

irradiation, oncogenes, HPV, HSV, EBV, oral cancer, prevalence, cell culture 
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TIIVISTELMÄ 

Aaro Turunen 

Ihmisen papilloomavirus, herpes simplex -virus ja Epstein-Barrin virusinfektiot pään ja kaulan syövissä.  

Turun yliopisto, Lääketieteellinen tiedekunta, Hammaslääketieteen laitos, Suupatologian ja -radiologian 

osasto ja Lääketieteellinen tiedekunta, Virusoppi.  

Suun terveystieteiden tohtoriohjelma FINDOS-Turku  

Annales Universitatis Turkuensis, Medica-Odontologica, Turku, Suomi, 2019 
 

Pään ja kaulan syöpien esiintyvyys on lisääntymässä niin Pohjoismaissa kuin muuallakin länsimaissa. Osa pään ja 

kaulan alueen syövistä on ihmisen papilloomavirusten (HPV) ja erityisesti HPV16 genotyypin aiheuttamia. Myös 

Herpes simplex -virus, tyyppi 1 (HSV-1) on yleinen pään ja kaulan alueen virus, jota esiintyy usein etenkin syöpää 

sairastavilla- ja leukakirurgisilla potilailla suussa. HSV-1:tä ei kuitenkaan pidetä itsenäisenä pään ja kaulan alueen 

syöpien vaaratekijänä, mutta sen vaikutusta syöpäsolujen säteilyvasteeseen ei ole juurikaan tutkittu. Epstein-Barrin 

virus (EBV) infektoi puolestaan lähes kaikkia aikuisia latenttina infektiona B-lymfosyyteissä. EBV aiheuttaa 

nenänielun karsinoomaa, mutta sen merkitys muissa pään ja kaulan syövissä on epäselvä, koska syöpäkudoksissa 

on myös B-lymfosyyttejä, jotka PCR-pohjaisessa diagnostiikassa antavat vääriä positiivisia tuloksia, kun 

määritetään EBV:n yhteyttä ko. syöpään. EBV:n esiintyvyydestä itse syöpäsoluissa on vain vähän tutkittua tietoa.  

Tässä tutkimuksessa selvitettiin ikenen epiteelisoluissa ilmentyvän HPV16:n syöpägeenin E6-vastetta solun 

erilaistumissignalointiin. Lisäksi HSV-1:n aiheuttamaa epiteelisolun vastetta säteilytykseen tutkittiin ihosoluissa, 

ikenen soluissa ja HPV16-positiivisissa syöpäsoluissa. Lopuksi selvitettiin HPV:n, HSV-1:n ja EBV:n esiintyvyyttä 

pään ja kaulan syöpänäytteissä useilla eri menetelmillä ja näitä tuloksia verrattiin syövän tautispesifiseen 

ennusteeseen.  

 

Tutkimukset osoittivat, että erilaistumissignalointi lisää HPV16:n E6-syöpägeenin ilmentymistä, joka puolestaan 

saattaisi pitkittää solun jakaantumista ennen sen lopullista erilaistumista. Ihosoluissa HSV-1-infektio ja säteily 

yhdessä ja erikseen aiheuttivat solukuolemaa. HPV16-positiivisissa syöpäsoluissa ne lisäsivät yksinään 

solukuoleman ja siihen liittyvien mRNA-molekyylien ja proteiinien ilmentymistä. HSV-1:n ja säteilyn yhdistelmä 

kuitenkin heikensi näiden erikseen aiheuttamaa solukuolemaa ja siihen liittyvää signalointia ikenen soluissa ja 

erityisesti HPV16-positiivisissa syöpäsoluissa. EBV havaittiin 21 %:ssa kaikista pään ja kaulan alueen 

syöpänäytteistä. EBV oli todettavissa itse syöpäsoluissa myös osassa suun ja kurkunpään syövistä, joista 47 % oli 

myös HPV-positiivisia. HSV-1 havaittiin vain muutamassa suun ja suunielun syövässä. Useiden virusten 

koinfektion havaittiin liittyvän tilastollisesti huonompaan taudin ennusteeseen. Tulokset antavat aihetta 

jatkotutkimuksille virusten ja säteilyn yhteisvaikutuksesta pään ja kaulan syöpien synnyssä ja hoidossa. 

 

Avainsanat: ihmisen papilloomavirus, Herpes simplex tyyppi 1, Epstein-Barrin virus, pään ja kaulan syöpä, 

säteily, onkogeenit, HPV, HSV, EBV, suusyöpä, esiintyvyys, soluviljely 
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1. INTRODUCTION 

The human upper airways are lined with mucosa which protects against infectious agents, moisturizes the 

inhaled air, enables eating and speech and rapidly heals in cases of tissue damage. The mucosal surfaces 

are covered by epithelia, consisting of terminally differentiated and differentiating keratinocytes and 

proliferating basal and parabasal cells underneath. Rapidly proliferating cells are at risk for acquired 

mutations during cell division, despite the genome being well-protected against such incidents. If the 

mutations are especially harmful, the cell either stops division and suicides, activating programmed cell 

death, apoptosis, or is eliminated by the immune system. This prevents cells with genomic changes from 

persisting and acquiring further DNA damage. However, some of the mutated cells may survive and 

acquire a growth advantage, starting their path toward malignancy. In the head and neck region, this 

heterogenic group of carcinomas is known as head and neck cancer (HNSCC).  

 

The exposure of epithelial cells to carcinogens is of main importance in head and neck carcinogenesis. 

Tobacco and alcohol are the main etiologic agents, explaining approximately 80% of HNSCC. In 

addition, viruses, bacteria and yeasts can act as biological carcinogens directly via expression of their 

specific oncogenes or indirectly via chronic inflammation which promotes carcinogenesis. Lastly, 

exposure to ionizing radiation from medical and natural sources is an important cause of carcinogenesis.  

 

The most important viral etiology for HNSCC is infection with human papillomaviruses (HPVs). 

Approximately 20% of oral and laryngeal cancers and 50-70% of oropharyngeal cancers are HPV-

related. The prevalence of HPV-positivity in HNSCC is globally variable, however. The reservoir of 

HPV in the head and neck region is unknown but possible sites include tonsillar crypts and the gingival 

pocket epithelium. HPVs exert their carcinogenic effects by chronically infecting the basal keratinocytes 

and their oncogenes, E6 and E7 especially, forcing the infected cell to divide. Simultaneously, the 

capacity of the cell to enter apoptosis is blocked, which leads to its genomic instability, making the cell 

more susceptible to further carcinogenic mutations.  

 

Herpes simplex viruses (HSV) are common and cause recurrent labial herpes infections (i.e. cold sores) 

in otherwise healthy individuals. HSV is also often shed to the saliva without any clinical symptoms. 

HSV-1 is the most prevalent virus type in the oral region and is often detected in the saliva of HNSCC 

patients as it reactivates more readily in these patients. HSV-1 can inhibit apoptotic mechanisms and 

cause genomic instability, but has not been shown to be an independent risk factor for HNSCC. This is 

mainly because the target cell is killed due to lytic infection in almost all cases. The role of coinfections 

of different herpesviruses with each other and/or HPV has not been studied in detail.  
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Epstein-Barr virus (EBV), another member of the herpesvirus family, is a well-recognized oncovirus, 

infecting almost everyone by adulthood. It remains latent in the B-lymphocytes and circulates in the 

bloodstream. EBV is able to infect the epithelial cells of the head and neck region, particularly in the 

nasopharyngeal area, where it can cause nasopharyngeal carcinoma. It has also been found in other 

HNSCCs such as oral, oropharyngeal or laryngeal carcinomas, but its significance in these diseases 

remains obscure. Because EBV may be carried over to the inflamed carcinoma tissue via B-lymphocytes, 

EBV detection in a carcinoma sample might not signify infected carcinoma cells. Therefore the 

significance of EBV detection in HNSCCs is unclear. Moreover, although reported, the effect of EBV 

coinfection of HPV-positive cells is not understood. 

 

The present thesis aims to determine if extracellular calcium, irradiation and/or HSV-1 infection 

affect the apoptosis-related gene expression or cell viability of HPV16-positive and -negative cells of the 

head and neck area as single or combined exposures and if these lead to differing outcomes. In addition, 

the effects of EBV presence as a coinfection with HPV or HSV-1 on HNSCC outcomes was analyzed in 

HNSCC patient samples using in situ hybridization and immunohistochemistry. These studies reveal 

whether coinfections with these viruses might play a role in HNSCC development or prognosis. 
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2. REVIEW OF THE LITERATURE  

 

2.1 Head and neck cancer  
 

Head and neck cancers comprise a diverse group of mostly squamous cell carcinomas (head and neck 

squamous cell carcinoma, HNSCC) affecting different anatomical subsites of the upper aerodigestive 

tract. According to the anatomic localization, HNSCC are categorized as carcinomas of the oral cavity, 

pharynx (including oropharynx, nasopharynx and hypopharynx) and larynx (Figure 1). Sinonasal 

carcinomas are also classified as HNSCCs but arise from the pseudostratified ciliated epithelium of the 

sinonasal passages, and as such differ from the squamous epithelium-derived carcinomas that comprise 

the majority of HNSCC. Malignancies of the lymphoid tissues, sarcomas and melanomas are different 

disease entities and thus included in their own respective cancer classes. This discussion will limit itself 

to HNSCC derived from squamous epithelia (with the exception of the incidence ratings shown below). 
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Figure 1. The incidence of HNSCC in Finland in 2010-2014. 
Incidence percentage (from all HNSCC) and numbers derived from the NORDCAN database 

(http://www-dep.iarc.fr/NORDCAN/FI/frame.asp, accessed 20.11.2017). Percentages are 

calculated from the incidence figures (per 100 000) for males and females combined and 

derived from the database.  

2.1.1 Incidence and prevalence worldwide 
 

HNSCCs are a global burden with an annual mortality of around 370 000 patients and with more than 

680 000 new annual cases (Ferlay et al. 2015, Ndiaye et al. 2014). Therefore HNSCCs comprise the sixth 

most common cancer type worldwide, being among the most common cancers of the developing 

countries (Joshi et al. 2014). Worldwide, sinonasal carcinomas are also less common, with an average 

global incidence rate of 7.5 per one million (Youlden et al. 2013). Furthermore, despite the fact that 

smoking confers an increased risk for these carcinomas, a pronounced risk from exposure to other 

environmental carcinogens such as wood dust is also observed (Franchi et al. 2011). 

31095537_Turun_yliopisto_Vaitoskirja_Aaro_Turunen_Laaketiet_tdk_sisus_19_04_25.indd   14 25.4.2019   8.25.47



 

15 

 

 
 
Figure 1. The incidence of HNSCC in Finland in 2010-2014. 
Incidence percentage (from all HNSCC) and numbers derived from the NORDCAN database 

(http://www-dep.iarc.fr/NORDCAN/FI/frame.asp, accessed 20.11.2017). Percentages are 

calculated from the incidence figures (per 100 000) for males and females combined and 

derived from the database.  

2.1.1 Incidence and prevalence worldwide 
 

HNSCCs are a global burden with an annual mortality of around 370 000 patients and with more than 

680 000 new annual cases (Ferlay et al. 2015, Ndiaye et al. 2014). Therefore HNSCCs comprise the sixth 

most common cancer type worldwide, being among the most common cancers of the developing 

countries (Joshi et al. 2014). Worldwide, sinonasal carcinomas are also less common, with an average 

global incidence rate of 7.5 per one million (Youlden et al. 2013). Furthermore, despite the fact that 

smoking confers an increased risk for these carcinomas, a pronounced risk from exposure to other 

environmental carcinogens such as wood dust is also observed (Franchi et al. 2011). 

31095537_Turun_yliopisto_Vaitoskirja_Aaro_Turunen_Laaketiet_tdk_sisus_19_04_25.indd   15 25.4.2019   8.25.48



 

16 

 

2.1.2 Risk factors for HNSCC 
 
The classical major risk factors for HNSCCs are smoking and alcohol consumption (Hashibe et al. 2007) 

(Figure 2). Other known risk factors include the use of smokeless tobacco (Luo et al. 2007) and poor 

oral hygiene (Ahrens et al. 2014), exposure to certain chemicals such as formaldehyde and betel quid 

chewing habits, which predominate in Asia, especially in India (Chen et al. 2014). Dietary risk factors 

include consumption of meat and starch-rich foods, whereas fruit and vegetables are claimed to confer a 

protective effect (Bravi et al. 2012, Edefonti et al. 2012). Still, the effect of diet on HNSCC incidence as 

a whole is likely of limited clinical significance (Barasch & Litaker, 2011). Spontaneous DNA damage 

from hydrolysis, reactive oxygen species (ROS) formed in cell metabolism, ionizing radiation from 

varying sources (discussed separately in 2.2) and DNA replication errors are possibly responsible for 

sporadic HNSCC in patients without any known risk factors. However, the carcinoma risk for individuals 

is also affected by their genetic predisposition, as exemplified in patients with Fanconi anemia, which is 

a DNA repair disorder leading to genomic instability and susceptibility to cancer (Sasaki & Tonomura 

1973). As the etiology of HNSCCs is variable, novel yet unknown causes for HNSCC are likely to be 

discovered in the future. 
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Figure 2: Factors influencing the development of HNSCC. 
The most important risk factors are chemicals, such as tobacco-related nitrosamines or 

acetaldehyde. The second most important risk factors are viral infections with HPV and 

Epstein-Barr virus. Non-viral microbes such as bacteria and yeasts have been linked to 

HNSCC indirectly in patients with poor oral hygiene. Other contributing factors are intrinsic 

errors in DNA replication, metabolic pathways, extrinsic radiation or chronic inflammation 

(Brennan et al. 2017). 
 
With a decrease in smoking prevalence, HNSCCs due to the classical risk factors have been in decline in 

first-world countries. This is particularly evident in the reduction in lip and larynx carcinomas 

(Chaturvedi et al. 2008, Engholm et al. 2010). In Nordic countries, the incidence of tongue cancer has 

continued to rise from the 1960s (Annertz et al. 2012). This same trend has been present in the USA 

(Myers et al. 2000). In addition, according to the NORDCAN database, which catalogs the 50 most 

significant cancers reported in the Nordic countries, the incidence of oral cavity and oropharyngeal 

cancers is clearly on the rise in Finland, with 10-year annual incidence rises of 1.25% and 9.9%, 

respectively (Engholm et al. 2010), and is seen in Figure 3. A similar trend is apparent in a recent 

German cohort, signifying that the factors affecting the etiology of these carcinomas are still not 

completely known (Tinhofer et al. 2015). The prevalence of oncogenic human papillomavirus- (HPV) 

associated HNSCC has significantly increased, but nevertheless the observed increases in incidence are 

not seemingly only attributable to HPV.  
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Figure 3: HNSCC incidence trends in Finland 
Incidence ratings of tongue (straight lines), pharyngeal (dashed lines, long dashes) 

and non-tongue oral (dashed lines, short dashes) HNSCCs in female (orange) and 

male (blue) patients in Finland from 1956 to 2014. Increases in each category of 

HNSCCs are seen. Data from the Finnish Cancer Registry website, 

(https://tilastot.syoparekisteri.fi/syovat, updated 23.09.2016 accessed 19.11.2017). 

Licensed under Creative Commons BY 4.0.  
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2.1.3 The importance of anatomic localization 
 
The specific risk factors and prognosis for HNSCC vary with the anatomical subsite (Figure 1). Lip 

carcinomas are associated with UV light and smoking and the 5-year survival is nearly 90% (Han et al. 

2016). Oral carcinomas are associated with tobacco smoking, alcohol consumption and the use of betel 

quid or smokeless tobacco. To a lesser extent, oral squamous cell carcinomas (SCCs) are associated with 

HPV infections (Ndiaye et al. 2014). The 5-year disease-free survival of HPV-attributed advanced oral 

SCC is over 50% but whether HPV positivity confers a survival advantage remains unclear (Lai et al. 

2017). Nasopharyngeal carcinoma arises most often due to infection with EBV. The prognosis ranges 

from 93% to 48.8% in early-stage compared to advanced carcinomas (Kang et al. 2017). Oropharyngeal 

carcinomas, which include tonsillar and base of the tongue carcinomas, are predominantly associated 

with HPV. Dahlstrom et al. (2016) reported survival ratings of between 94% and 69% between T1 and 

T4 carcinomas. The prognosis is better in the never-smoker group, with disease-specific survival ratings 

of up to 99% having been reported. Smoking decreases this to 80% and further to 76% in HPV-negative 

HNSCCs (Broglie et al. 2017). Hypopharyngeal SCCs are less often HPV positive and have a poorer 

outcome. For example, 86% and 31% 3-year survival ratings were detected for HPV-positive and -

negative hypopharyngeal carcinomas, respectively in a recent Swedish cohort (Dalianis et al. 2015). 

Laryngeal carcinomas are most often related to smoking, although a subset of them are associated with 

HPV infection. The disease is of average prognosis, with a 5-year DSS of 62% (Finnish Cancer Registry 

database, accessed 11.2017).  

 

2.1.4 Molecular pathology 
 
The "Hallmarks of cancer" theory first proposed by Hanahan and Weinberg in 2000 and updated in 2011 

is a widely accepted theory on the properties of cancer cells that make them tumorigenic compared to 

their normal counterparts (Figure 4). Despite the wide acceptance of this view, called the somatic 

mutation theory, some authors criticize the focus on the single cancer cell. Sonnenschein and Soto (2013) 

emphasized that cancer is always a tissue-specific disease that is dependent on the interactions between 

the different cell types present in the tissue. In addition, cells in a benign tumor already demonstrate a 

significant number of these attributes. Therefore, HNSCC development requires both the epithelium and 

its interactions with the underlying altered stroma. This requires the mutation of specific genes and the 

deregulation of several pathways which are only now beginning to be characterized. The following 

sections will describe current knowledge of head and neck carcinoma development.  
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Figure 4. The Hallmarks of cancer (Modified from Hanahan & Weinberg 2011) 

1: Evading growth suppressors - Immunity from extra- and intracellular signaling that 

suppresses cell cycle progression such as differentiation-related signaling.  

2: Avoiding immune destruction - Immunity from detection by cytotoxic lymphocytes and 

resistance to apoptosis-inducing signals such as the FAS pathway. 

3: Enabling replicative immortality - Ability to divide indefinitely, via telomerase expression. 

4: Tumor-promoting inflammation - Growth stimulation from inflammatory mediators. 

5: Activating invasion and metastasis - Ability to degrade the extracellular matrix and later to 

enter the vascular or lymphatic structures and metastasize into different organs. 

6: Inducing angiogenesis - A tumor rarely grows past ~500 µm without novel vessel formation. 

7: Genome instability and mutation - Loss of DNA repair mechanisms adds to the mutation rate. 

8: Resisting cell death - Resistance to apoptotic mechanisms. Key pathways p53, pRb and 

caspase 8 and 9 are often inhibited and oncogenes such as Bcl-2 overexpressed. 

9: Deregulating cellular energetics - Cancer cells use anaerobic glycolysis to maintain energy 

levels even in the low oxygen concentrations associated with radiation resistance, for example. 

10: Sustaining proliferative signaling - Upregulation in proliferative gene expression.  

Produced using Servier Medical Art (Servier 2019), licensed under a CC BY 3.0 
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2.1.5 DNA damage in cancer 
 

DNA damage happens constantly due to extrinsic exposure to radiation, reactive molecules or the 

intrinsic generation of DNA-damaging agents such as ROS formed during mitochondrial oxidative 

energy production (Czarnecka et al. 2010). A large proportion of mutations can be attributed to 

spontaneous depurination or deamination reactions or mistakes in replication during cell division. Worse 

yet, a break in one or both DNA strands can form. These are usually caused by ionizing radiation, which 

is an important extrinsic cause of DNA damage. Fortunately, the bulk of the human genome is comprised 

of intron sequences whose mutations affect the phenotype of the cell less often. Because thousands of 

mutations happen in the human cell daily, the presence of DNA repair mechanisms is imperative for the 

survival of the genome. Diseases in which these repair mechanisms malfunction result in high 

probabilities of cancer (Hashimoto et al. 2016).  

2.1.6 DNA damage repair  
 
The most important mechanisms in cellular DNA repair include the base excision repair (BER) pathway 

in which an aberrant nucleotide is excised and a correct one is inserted. This is utilized in the repair of 

common damage caused by ROS and other reactive molecules (Clancy 2008). The worst damage 

sustained by DNA is a double-strand break (DSB). This is usually caused by high-energy ionizing 

radiation (γ-ray or X-ray irradiation) or UV, but may also happen during DNA replication (Shee et al. 

2013). Radiation-induced DNA double-strand breaks (DSB) induce the DNA damage response initiated 

by the MRN complex, formed from the RAD50, MRE11 and Nibrin proteins, which senses DNA 

damage and is able to bind the damaged strands in order to phosphorylate the ATM kinase, which 

phosphorylates p53 and the checkpoint kinases CHK1 and CHK2. This leads to cell cycle arrest via the 

p21 in order to induce the DNA repair pathways until the damage has been repaired. The non-

homologous end-joining (NHEJ) and homologous recombination (HR) DNA repair pathways are then 

employed, depending on the phase of the cell cycle in which the lesion has to be repaired (Branzei & 

Foiani 2008). NHEJ uses the remains of the partially single-stranded DNA at the break to join the ends, 

whereas the more often used and error-free HR pathway utilizes the homologous chromosome as a 

template for repair (Valerie & Povirk 2003). Should the damage prove too severe for repair, the cell 

either senesces (i.e. stops dividing permanently) or activates apoptosis via the mitochondrial pathway and 

caspase 3 activation (Maier et al. 2016). This is countered by NFκB, activated by exposure to ionizing 

radiation and able to induce antiapoptotic gene expression (Ahmed and Li 2008). Carcinoma 

development may result from the malfunction of these protective mechanisms that allow unrepaired 

DNA damage to accumulate.  
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2.2 Effects of radiation on tissues  
 
Humans are exposed to radiation from various sources, natural and medical being the most important. 

Ionizing radiation consists of either high-energy electromagnetic (photon-) radiation such as ultraviolet 

or X-ray radiation or particle (nuclear-) radiation such as alpha or beta radiation, which carries higher 

radiation energies. Ionization affects human tissues in two ways: Firstly, it can directly affect the 

molecules of the cell and break molecular bonds; secondly, water molecules can become ROS upon 

radiolysis. These form “oxidative stress”, causing increased damage to cells (Azzam et al. 2012). 

Mitochondria occupy a substantial portion of the cellular cytoplasm, and as radiation strikes the 

mitochondria it leads to increased ROS production and contributes to genomic instability (Dayal et al. 

2009), increasing radiation toxicity after therapeutic irradiation (Nishida 2014). As oxygen is 

radiosensitizing and ROS mediates large parts of clinical effects of radiation, hypoxic tissues such as are 

present in HNSCCs are less susceptible to radiation therapy (Pettersen et al. 2015). Massive doses of 

irradiation lead to necrosis, as detected during early attempts at therapeutic irradiation (McGurk & 

Goodger 2000). The effects of irradiation are not confined to the exposed cells but to nearby 

nonirradiated cells as well via the bystander effect. This is caused by radiation-induced signaling 

molecules such as exosomes and microRNAs, which diffuse through gap junctions to influence the entire 

vicinity of the irradiated cells (reviewed by Yahyapour et al. 2018). These pathways function to protect 

the cell from day-to-day exposures but, upon aberrant expression in diseases such as HNSCC, may 

adversely affect their treatment. 

2.2.1 Ionizing radiation in the imaging of the head and neck region 
 
It is said that one malignant tumor develops for every two million exposures of panoramic radiograph or 

two bitewings. In Finland, up to 2.3 million intraoral radiographs and 400 000 panoramic radiographs are 

taken annually (Suutari 2016). However, as the effective dose is used to compare the whole-body risk of 

cancer development in a population, the entrance dose in the path of the primary beam itself is of interest 

for better understanding the local mucosal irradiation dose. The entrance dose of intraoral imaging was 

1.15-2.8 mGy in a recent study (Hart et al. 2012).  

 

Certain clinical occasions necessitate consecutive intraoral radiographs. For example, endodontic 

treatment might begin with a panoramic tomograph (PTG, 19-75 uSv) and two bitewing examinations (2-

20 uSv). After this stage additional intraoral X-rays (1-10 uSv) or at times cone-beam computer 

tomography (CBCT, 27-674 uSv, Suomalainen et al. 2009) are used to confirm a diagnosis. If a dental 

infection is diagnosed that requires root canal treatment the root canal is navigated with a file whose 

position is verified radiographically (1-10 uSv). Before filling the root canal, the position of the filling 

cone is verified and a postoperative radiograph is taken (2-20 uSv). This accounts for a total of five direct 

31095537_Turun_yliopisto_Vaitoskirja_Aaro_Turunen_Laaketiet_tdk_sisus_19_04_25.indd   22 25.4.2019   8.25.50



 

23 

 

exposures, one panoramic exposure, a possible CBCT and one indirect (i.e. the bitewing from the other 

side) exposure in this possible clinical scenario whose total radiation exposure can be calculated: 

 

19-75 uSv (PTG) + 1-10 uSv (intraoral) x5 + 27-674 uSv (CBCT) 

=51-799 uSv effective dose in total. 

In a recent study by Granlund et al. (2016), the oral mucosa received the highest absorbed doses from 

both intraoral and panoramic radiography. The organ dose was reported as 41 uGy for one intraoral 

radiograph and 348-2151 uGy for panoramic tomographs. Therefore the above calculation may not 

represent the actual energy transfer to the oral mucosa. Using absorbed doses, the result would be up to 

2356 uGy absorbed into the oral mucosa, without a CBCT examination. CBCT would further increase 

the value significantly, by 915-17581 uGy (Ludlow & Ivanovic 2008). In addition, metallic implants and 

fillings are able to potentiate the radiation intensity locally (Beyzadeoglu et al. 2006). This signifies that 

the oral mucosa can be exposed to biologically significant amounts of radiation even during routine 

dental treatments. 

2.3 HNSCC specific mutations 
 
As DNA damage may lead to carcinogenesis via several different mutations, finding specific driver 

mutations for HNSCCs has proved more problematic than originally thought. This is because HNSCCs 

are a more heterogeneous disease than can be appreciated from their histologic appearance. Only recently 

has next-generation sequencing (NGS) revealed novel and already-known genes to be associated with 

HNSCC. After considerable effort, the strongest evidence for established cancer genes in HNSCC to date 

has been found for the following genes (in italics, their protein products in parentheses): TP53 (p53), the 

pRb family of genes (RB1, RBL1 [p107], RBL2 [p130]), Casp8 (Caspase 8), CDKN2A (p16INK4a), 

CCND1 (cyclin D1), EGFR (epidermal growth factor receptor), PI3KCA (PI3-Kinase, p110), its 

inhibitory gene PTEN, NOTCH1 (Notch1) and SMAD4 (Stransky et al. 2011, Tan et al. 2013, Martin et 

al. 2014). It has been postulated that HNSCCs present with at least three different patterns of gene 

expression: HPV-driven, HPV-negative with and HPV-negative without copy number alterations 

(Leemans et al. 2018). In addition, a possibly inflammation-related subtype has been described (Brennan 

et al. 2017). The mutational pattern is also related to the age of the patient (Meucci et al. 2016). HPV-

positive carcinomas display more wild-type TP53 and pRb as HPV itself inactivates these gene products 

in HPV-driven carcinomas (Stransky et al. 2011). Interestingly, if an HPV-positive carcinoma recurs or 

metastasizes, the gene expression profile more closely matches that of HPV-negative HNSCCs with 

TERT and TP53 mutations (Morris et al. 2017). Moreover, for example, the frequency of FGFR3 

mutations has been shown to be significantly higher in HPV-positive than in -negative HNSCCs, likely 

due to the different etiology of these carcinomas (Lawrence et al. 2015). HPV-positive carcinomas also 
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tend to harbor mutations in PIK3CA in >55% of cases and inactivations in PTEN in one third (Lechner et 

al. 2013). However, no mutation has been found to be specifically associated with HNSCC, as they may 

also be found in other carcinomas. Further, none of these detected mutations are present in all HNSCCs 

(Leemans et al. 2011). Therefore, a proportion of HNSCCs develop through yet unknown mechanisms 

which require further study. 

 

2.3.1 Key tumor suppressors p53 and pRb 

 
The tumor suppressor protein p53 is a transcriptional activator that is activated on detection of DNA 

damage caused by radiation, for example. This activation is via the ataxia telangiectasia mutated (ATM) 

DNA damage sensor pathway leading to p53 activation (Smith et al. 2010). Activated p53 promotes the 

transcription of several genes, CDKN1A in particular, leading to the synthesis of cyclin-dependent 

kinase inhibitor p21 which halts the cell cycle in order to repair DNA damage (Xiong et al. 1993). If it is 

unrepairable, p53 activates the apoptosis via the mitochondrial route (Figure 5). TP53 mutation, present 

in 60-100% of HNSCCs, is regarded as an early event in carcinogenesis (Boyle et al. 1993) and is 

associated with a poorer prognosis (Poeta et al. 2007). p53 function may be lost not only due to mutation, 

but also via MDM2 overexpression (Figure 5) or viral interactions (Kang et al. 2015).  

 

The retinoblastoma protein (pRb) binds to the E2F transcription factor to prevent S-phase progression in 

the G1/S restriction checkpoint (Vélez-Cruz & Johnson 2017). Figure 5 displays the simplified pRb 

pathway. Normally as the cell cycle progresses, cyclin D1/CDK4/6 complex phosphorylates pRb, 

releasing E2F that leads to S-phase progression. If this pathway is mutated, uncontrolled cell replication 

may ensue. Cell cycle progression is prevented by the action of the p16INK4a (p16) protein via a 

feedback loop from the CDKN2A gene products p16 and p14 which inhibit the cyclin/CDK complex and 

p53 degradation, respectively. This leads to cell cycle arrest and senescence. The loss of p16 is a frequent 

observation in HNSCC (Wu et al. 1999), whereas deletions in CDKN2A have been detected in up to 55% 

of HNSCC (Lechner et al. 2013). 
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Figure 5. Function of the p53 and pRb tumor suppressor proteins. 
Activated p21 mediates the p53 response to DNA damage caused e.g. by irradiation. It 

accomplishes this by the inhibition of CDK proteins which would enable the progression of the 

cell cycle when interacting with cyclins. Upon release from pRb control, E2F transcription factor 

family proteins transactivate their target genes which are involved in DNA replication and cell 

cycle progression. Produced using Servier Medical Art (Servier 2019), licensed under a CC BY 

3.0 
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2.4 Apoptosis and cell death 
 
Cell death due to genomic alterations or immune clearance is mediated by apoptosis, and apoptosis-

related gene expression is crucial in cell transformation. This also applies to cancer cell survival after 

nonsurgical treatments (Wang & Scadden 2015). Apoptosis is not the only modality of cell death, 

however. Necrosis generally encompasses cell death due to catastrophic damage and leads to 

inflammation as cellular contents are spilled into the surrounding tissue (Rock & Kono 2008). This does 

not happen with apoptosis and most of the other pathway-mediated forms of cell death, in which the 

dying cell is absorbed by its neighbors or shed off the body. However, even necrosis is partly mediated 

by protein pathways such as RIP-1, drawing a fine line between caspase-mediated apoptotic signaling 

and certain forms of necrosis. Necroptosis further complicates the issue, being a pathway-mediated 

reaction of cell death leading to necrotic outcomes via necroptotic signaling such as mediated via RIP1 

and RIP3 kinases (Patil et al. 2015). Senescence can also be considered a form of cell death, as 

terminally differentiated surface cells of the mucosae or skin shed off. This is also, in part, mediated by 

p16 signaling (Takahashi et al. 2006). Lastly, autophagy is a cell stress reaction in which the cell absorbs 

its own organelles to survive increased cell stress.  

 

Apoptosis is driven by caspase proteins. Caspases are a group of cysteine aspartic proteinases that are 

crucial to the programmed cell death pathways. Each caspase effects its own parts in the activation of the 

caspase cascade that leads to apoptosis and cell death (Evan & Vousden 2001). The so-called extrinsic 

pathway starts from extrinsic signaling, i.e. from the cell surface, such as the activation of the FAS 

receptor from interaction with the FAS ligand from, for example, a cytotoxic T-cell. This pathway 

utilizes caspase 8 for activation. The intrinsic pathway starts as the mitochondrial membrane potential is 

disrupted and cytochrome C is released from the inside. This leads to apoptosome formation, which 

activates caspase 9. Both these pathways converge into caspase 3 and 7 activation and caspase 3, the 

downstream effector caspase, effects the cell destruction in an organized manner (Figure 6). 
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Figure 6: The caspase cascades in apoptosis induction. The extrinsic pathway utilizes 

caspase 8 as the effector, leading to "executioner-caspase 3" activation. This is caused via, for 

example, T-cell induction or NK-cell mediated FAS-signaling (Zhu et al. 2016). The intrinsic 

pathway or mitochondrial pathway is induced from mitochondrial damage or loss of membrane 

potential, for example. The released cytochrome c oligomerizes with caspase 9 and the Apaf-1 

protein to form the apoptosome (seen in the figure) which activates caspase 3. Caspase 3 

cleaves its specific substrates such as DNA and actin. Bcl-2 oncoprotein is localized in the 

mitochondria and Bcl-2/BAX interaction controls the rate of apoptosis. Produced using Servier 

Medical Art (Servier 2019), licensed under a CC BY 3.0 
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2.5 The field cancerization theory 
 
The head and neck mucosa are seldom exposed to carcinogens in a local and site-specific manner. 

Rather, large areas are exposed simultaneously. For example, tobacco smoke pervades the entire upper 

aerodigestive tract, and alcoholic drinks expose several anatomical areas to acetaldehyde, the first 

carcinogenic metabolite of ethanol. As early as in 1953, Slaughter proposed a model for field 

cancerization (Slaughter et al. 1953). This is supported by the following observations: 

 

HNSCC has a high rate of recurrence after successful curative treatment (Kim et al. 2015). This is 

postulated to be due to persistent genetic alterations in the clinically normal mucosae surrounding the 

original malignancy (Tabatabaeifar et al. 2017). It has been reported that premalignant changes such as 

aneuploidy persist for over a 7 cm distance from the original carcinoma, although the mucosal surface 

can be morphologically normal (Califano et al. 1996, Lydiatt et al. 1998). The underlying mechanism is 

thought to result from the mutation of a specific local stem cell. This would seem plausible, since as a 

stem cell population gains a selective growth advantage, outgrowing its nonmutated counterparts, it 

forms a heterogeneous area of premalignant foci that can conquer adjacent areas of tissue, forming fertile 

ground for future carcinogenic changes. These observations are outlined in Figure 7. For virally induced 

carcinomas it is thought that the carcinogenic exposure of the surrounding epithelia is lower, as the virus-

infected cells reside in only a limited area of the epithelium, more readily ablated after treatment. 

Moreover, the number of genetic alterations is smaller. Therefore, it is plausible that these cancers 

display lower recurrence rates and better survival after treatment (O'Rorke et al. 2012). 
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Figure 7: Progression of potentially malignant disorders of the oral mucosa toward 
invasive carcinoma. To the left, the clinical image and a presentation of the histology of 

normal tongue epithelium are shown. The normal cells senesce after a short time in culture, 

(Rheinwald et al. 2002). Moving to the right: during the progression, clinically oral potentially 

malignant disorders may be visible as a leukoplakia or erythroplakia. Histologically epithelial 

dysplasia may be present. Cultured cells become gradually immortal. Possible losses of gene 

functions are shown as a red dash over the gene name. A viral carcinogen may be a key event 

in carcinogenesis. Telomerase expression enables replicative immortality. The black vertical 

line denotes irreversible transformation. Premalignant, dysplastic epithelium may regress or 

cease progression. Epigenetic changes include gene inactivation via methylation, acetylation 

and microRNAs. Cancer cell stemness is detected by a rise in stemness markers. 

VEGF=Vascular Endothelial Growth Factor. CAF=carcinoma associated fibroblasts support 

cancer growth by intercellular signaling. MMP=Matrix metalloproteinases enable invasion. 

EMT=Epithelial-mesenchymal transition in which cells acquire an invasive phenotype. Figure 

layout modified with permission from (Forastiere et al. 2001), Copyright Massachusetts Medical 

Society. Photographs are used and edited with the permission of the patient. Produced using 

Servier Medical Art (Servier 2019), licensed under a CC BY 3.0 
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2.6 Treatment modalities in HNSCC 
 
Head and neck cancers are not novel diseases: there is evidence of HNSCC-associated bone destruction 

in ancient skull findings (Capasso 2004). The mainstay of the treatment from the 18th century onward has 

been surgery and from the 20th century, surgery combined with radiotherapy or chemoradiotherapy 

(McGurk & Goodger 2000). Radiotherapeutic methods have developed from conformal radiotherapy to 

intensity-modulated radiotherapeutic approaches, allowing higher doses to the tumor whilst minimizing 

the exposure of normal tissues. Chemotherapeutic adjuvant treatment regimes use cisplatin- or 5-

fluorouracil-based cytotoxic chemotherapeutics, or EGFR inhibitor therapy with monoclonal antibodies 

such as cetuximab, the first targeted therapy showing benefit in HNSCC. The blockade of EGFR 

improves locoregional control in HNSCC (Bonner et al. 2006) in HPV-positive cases as well 

(Pogorzelski et al. 2014). These, where applicable, mainly function to increase the effectiveness of 

radiotherapy as a curative treatment (Mendenhall et al. 2010). Still, chemotherapy has proven to be 

beneficial adjunct treatment of unresectable cancers, as is often the case with nasopharyngeal 

carcinomas. However, the treatments have remained fundamentally similar for decades and survival rates 

have improved only in small fractions. In addition, radioresistance has been implicated in treatment 

failure in many HNSCCs (Linge et al. 2016).  

 

2.7 Viruses and head and neck cancer 
 
It is estimated that 12% of the 14 million total new cancers in 2012 were attributed to infections with 

oncogenic viruses (Plummer et al. 2016). Overall, the viruses described as direct biological carcinogens 

related to HNSCC are EBV, and the high-risk HPV types (HR-HPVs) (Plummer et al. 2016). These share 

several features: they cause the infected cell to express viral oncogenes, causing proliferation and 

avoidance of apoptotic cell death. This is accomplished via upregulation of oncogene expression and 

downregulation of tumor suppressor gene expression. In addition, the infection generally does not result 

in the death of the host cell, allowing the virus to remain latently or chronically infecting the host. The 

difference between latent and chronic viral infections is that latently infected cells do not produce 

infectious virions. Chronic infections, such as Epstein-Barr virus and HPV, lead to longstanding virus 

production at a low rate. The patient is often free of symptoms. Both these patterns of long-term virus 

persistence may lead toward malignant transformation of the infected cell. However, from the point of 

view of the viruses, cancer formation can be considered an "accident," since the purpose of viral 

oncogene expression is to enhance and facilitate the production of progeny viruses, not to kill the host 

organism.  
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2.8 Human papillomaviruses (HPV) 
 

2.8.1 Overview 
 
HPVs are small, nonenveloped double-stranded DNA viruses with a genome of approximately 8 kb 

(Figure 8). High-risk HPVs (HR-HPV) are major human carcinogens. As the main cause of cervical 

carcinoma, HPVs cause over half a million new annual cases worldwide. HPV-related anogenital tract 

carcinomas also include SCCs of the external genitalia and anus of both sexes, with cervical carcinomas 

being the most important. HR-HPV types 16 and 18 are the most important, causing a vast majority of 

malignancies such as 70.8% of all cervical carcinomas (de Martel et al. 2017). 

2.8.2 Prevalence and incidence in the head and neck area 
 
After the first descriptions of HPV-related changes in HNSCCs and their later detection using molecular 

techniques in laryngeal and oral carcinomas (Syrjänen & Syrjänen 1981, Syrjänen et al. 1982, Syrjänen 

et al. 1983), HPVs have been detected in several different malignancies of the head and neck. Today, 

more conservative estimates attribute around 38 000 cases (~7%) of HNSCCs in the world to HPV each 

year. Of these, 29 000 (30.8%) are oropharyngeal, 4400 (2.2%) oral and 3800 (2.4%) laryngeal 

carcinomas (de Martel et al. 2017). The attributable fraction of HPV in HNSCCs is confirmed by DNA 

and E6/E7 mRNA expression detection by PCR and qRT-PCR combined, as PCR-only leads to the 

overestimation of this fraction (Ndiaye et al. 2014). HPV prevalence has increased during the last decade 

(Chaturvedi et al. 2008, Näsman et al. 2009, Marur et al. 2010, Chaturvedi et al. 2011). The increasing 

incidence of HPV-related cancers is proposed as a major reason for increases in HNSCC incidence in 

general. This is best exemplified in tonsillar carcinomas examined by Näsman et al. (2009), where the 

prevalence of HPV-positive cases in Stockholm increased from 23% in the 1970s to 57% in the 1990s 

and finally to 93% in 2007. Similar trends in oropharyngeal cancer are evident in studies from the USA 

(Javadi et al. 2017), Brazil, other Nordic countries (Simard et al. 2014) and the UK (Melchers et al. 

2015). Furthermore, a recent assessment of tonsillar carcinomas in a worldwide cohort showed a 

prevalence of 47% for HPV DNA (Castellsague et al. 2016). The same report showed a rise in 

oropharyngeal carcinoma prevalence from 10.8% in 1990 to 34% in 2012. For comparison, a recent 

analysis of nonmalignant tonsils revealed a low prevalence of HPV (1%) in a Finnish cohort (Ilmarinen 

et al. 2017). Thus, rises in HPV-related oropharyngeal carcinoma ratings are now an international cause 

for public health concern if these trends continue (Gillison et al. 2015), and the number of cases 

worldwide has been reported to be up from 22 000 in 2008 (estimated by de Martel et al. 2012) to 29 000 

in 2012 (de Martel et al. 2017). Although oral tongue carcinomas are also becoming more prevalent, the 

role of HPV seems to be of less importance (Simard et al. 2014). Nevertheless, HPV is also a risk factor 

for oral SCC (Gheit et al. 2017). This is supported by the fact that HPV infection is also a risk factor for 

oral leukoplakias and dysplastic lesions (Syrjänen et al. 2011). Moreover, as oral SCCs outnumber 
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oropharyngeal SCCs by a margin, even small attributable fractions can still mean a large number of 

patients. Multiple HPV types have been found in the oral cavity. In adults, HPV is detected in 8.8% of 

oral rinse samples (Orosco et al. 2016), which invariably also contain oropharyngeal secretions and a 

large amount of DNA from other microbes. In healthy young women and men of the Finnish Family 

HPV study cohort, the point prevalence of oral HPV varied from 15% to 24% and from 15% to 31% 

during the 6-year follow-up (Rautava et al. 2012, Kero et al. 2012). The samples were collected with a 

brush from the oral cavity mucosa, likely leading to more sensitive analysis.  

 
Figure 8: HPV Virion and genomic organization. The capsids of all HPV types are non-

enveloped icosahedral protein capsids formed from the L1 and L2 proteins. HPV16 genome, 

depicted here, is a circular dsDNA molecule. Transcription of HPV genes is regulated by the 

binding of viral and cellular transcription factors into its largely noncoding sequence, the long 

control region (LCR, also known as upstream regulatory region URR) where the binding sites 

necessary for replication and transcription reside. Transcription is initiated from the early 

promoter p97 or late promoter p670 for example, and terminated in either of the polyA signals 

(shown as ”A”). HPV E1^E4 and E8^E2 are fusion products that are transcribed from several 

locations (depicted with a dashed line). The genome is transcribed in one direction from one 

DNA strand (Graham 2010) using leaky scanning (Stacey et al. 2000). 
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2.8.3 HPV Entry  
 
HPVs infect the undifferentiated basal keratinocytes of squamous epithelia via small breaks in the 

epithelial integrity (Figure 9). Although mucosal HPV has been considered a sexually transmitted 

disease, HPV can be also transmitted via salivary contact, digital transmission or breast-feeding (for 

review see Syrjänen 2011). Transmission to the newborn is also possible through the birth canal or 

vertically, across the placenta from an infected mother (Rombaldi et al. 2008, Koskimaa et al. 2012). As 

HPV requires access to the basal membrane, tissues with easy access through the epithelium are 

susceptible to HPV. Classically, the transformation zone in the cervix, where the stratified epithelium 

transforms into endocervical columnar epithelium, is a well-known site for HPV, with an increased 

probability for microtrauma during intercourse facilitating viral entry. Hypothetically, targets in the head 

and neck region would be junctions between the salivary gland ducts and oral epithelium, the bottom of 

the gingival sulcus or periodontal pocket and tonsillar crypts. However, the evidence is so far scanty at 

best (Hormia et al. 2005, Begum et al. 2005, Morbini et al. 2015). Similarly to the cervical 

transformation zone, epithelial junctions are also found in the oral cavity in the mobile tongue and 

oropharynx (the tonsillar crypts, most importantly). According to the current concept, in wounded 

epithelia, HPV can attach to the basement membrane components of the extracellular matrix (ECM), 

specifically the heparan sulfate molecules, of which Syndecan-1 is the most important (Shafti-Keramat et 

al. 2003). During healing, the laterally growing basal cells come into contact with the virus, which is 

endocytosed via the clathrin- or caveolin-mediated endocytic pathways, dependent on the HPV type 

(Sapp & Day 2009). Then, HPV L2 is cleaved by furin protease to expose its active site, leading to 

lysosomal exit, and the HPV particle is transported via the microtubule network to the nucleus, where it 

releases the genome. The mechanisms of nuclear entry are not yet well-known but may involve nuclear 

breakdown during mitosis or other mechanisms of entry such as karyopherin-mediated import (Schiller et 

al. 2010, Day & Schelhaas 2014). At first, the genome replicates until it reaches 10-50 copies per cell 

(McBride, 2017). It then lies dormant, expressing only its early genes, unless the cell progresses further 

in the differentiation regime and the expression pattern begins to favor the late gene expression and 

capsid formation. 

2.8.4 Keratinocyte cell cycle and HPV in differentiating epithelium 
 
Keratinocytes normally follow a tightly regulated differentiation pattern, where the basal compartment 

houses the stem cells that divide and form a replicating compartment of basal cells. As the cell divides, 

the daughter cell moves upwards in the epithelium, ceases mitosis and begins to differentiate. As the cell 

moves further upward in the layers, local paracrine factors such as an increasing gradient of intercellular 

calcium, sensed by the calcium-sensing receptor (CasR), and vitamin D, signal the cell to eventually start 

cornification (Bikle et al. 2016), lose its nucleus and synthesize differentiation-related cytokeratins 1 and 

10 and involucrin that form the cornified envelope. In addition, ceramide and other fatty acids important 
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for the mucosal (or skin) protective barrier formation are secreted in the extracellular compartment. The 

end result of the terminally differentiated cell is senescence and shedding from the mucosal, or skin 

surface (Gandarillas & Freije 2014). This happens constantly and rapidly in vivo: for example, complete 

epithelial replacement by new cells takes 21 days in the floor of the mouth, 14 days in the buccal 

mucosa, and ca. 27 days in the labial skin (Squier & Kremer, 2001). It has long been known that HPVs 

hijack this program to their own ends, expressing their L1 and L2 genes only in terminally differentiating 

cells. This property may aid in avoiding the dendritic/Langerhans cells of the epithelium by expressing 

immunologically more detectable proteins last in the viral life cycle. HPV particles form in the 

keratinocyte nuclei of the suprabasal epithelial compartments. The virus is then released, likely through a 

passive process, as the cornified cells are shed and begin to degrade (Graham 2017). The life cycle of 

HPVs in differentiating epithelia is shown in Figure 9. 
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Figure 9. The life cycle and potential carcinogenic progression of HPV infections. First, 

HPV enters the basal cell, likely via epithelial microtrauma. It then internalizes, replicates its 

genome and persists as an episome. As the basal cell divides and the daughter cells 

differentiate, HPV sequentially expresses its early to late genes, completing its life cycle as the 

host cells of the epithelial surface are nearing terminal differentiation followed by shedding and 

virus release. If the HPV genome integrates, this usually happens in the E2 area. This may 

cause a loss of E2 regulatory functions and deregulated E6 and E7 expression. The HPV 

genome was integrated in 43% of oropharyngeal carcinoma patients in a recent study, although 

episomal genomes may also lead to carcinogenesis (Vojtechova et al. 2016). In select patients, 

persistent infection of the host cell may eventually lead to transformation. However, most often 

the infection is cleared by the immune system in 1-2 years. Produced using Servier Medical Art 

(Servier 2019), licensed under a CC BY 3.0 
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2.8.5 HPV and carcinogenesis in head and neck region 
 
HPV has been shown to play a significant role in HNSCC, particularly in oropharyngeal carcinomas 

(Mehanna et al. 2013). The relation of different HPV types implicated in the development of most 

common pathologic lesions in the head and neck area is depicted in Table 1. It is now known that not 

only alpha papillomaviruses (the so-called "mucosal types") are found in the head and neck region. Beta 

and gamma HPVs have also been detected (Table 1). Low-risk HPVs of the beta and gamma subtypes 

have recently been described in a minority of verrucous lesions of the oral mucosa in a Finnish cohort 

(Kerge et al. 2018). The function of HPV genes is listed in Table 2. Overall, HPV-encoded E1 and E2 

replicate its genome, where E1 orchestrates DNA replication and E2 regulates this process, inhibiting E6 

and E7 transcription. E2 is able to induce apoptosis via caspase 8 and p53 (Desaintes et al. 1999). The 

main carcinogenic functions of HPVs can be attributed to their E6 and E7 oncoproteins. Moreover, E5 is 

an oncogene but its main role is in the early steps of oncogenesis where E5 facilitates viral entry and exit, 

controls viral genome maintenance and amplification, and aids in immune evasion. However, E5 is also 

implicated in cell adhesion and migration, crucial components of HNSCC invasiveness (Kivi et al. 2008). 

Mutation in HPV E8 increases HPV transcription and replication (Straub et al. 2015). Therefore, E8^E2 

functions to inhibit the viral life cycle, likely to avoid immune recognition. The HPV E1^E4 fusion 

protein is the most highly expressed protein during HPV-productive infection (Wang et al. 2011) and 

functions to amplify the genome and facilitates genome packaging to virions by interacting with the 

cytoskeleton (Doorbar et al. 1991). Late genes L1 and L2 form the capsid, where L2 plays a crucial role 

later in infecting the next target cell.  
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Table 1. Different genotypes of HPV and the lesions they cause in the head and neck 
area. SCC=Squamous cell carcinoma 
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Table 2: HPV genes with special reference to the development of carcinomas of the head 
and neck region 
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2.8.6 Molecular pathways to carcinogenesis  
 
The progression of HPV infection toward malignancy is a long and stepwise process, with alterations in 

the cell cycle considered to be the most important mechanism (zur Hausen 2002). E6 and E7 are the main 

HPV oncoproteins that disrupt cellular tumor suppressor pathways p53 and pRb, respectively. p53 and 

pRb normally prevent S-phase entry after differentiation-related signaling, trigger apoptosis on detection 

of DNA damage, and protect the cell against progression toward malignant phenotype (seen in Figure 4). 

The main functions of E6 and E7 are outlined in Figure 10. The E6 protein of HR-HPVs interacts with 

the cellular E6-AP ubiquitin ligase to target the p53 tumor suppressor protein for proteasomal 

degradation (Scheffner 1993). It also represses p53 transcriptional activity (Zimmermann et al. 1999). 

This in turn leads to a decline in p21 expression, negating the inhibitory effects of p21 on the 

cyclin/CDK function. Loss of p53 also leads to genetic instability and inhibits DNA repair. E6 also 

activates telomerase (hTERT) to immortalize the cell and inhibits innate immunity via NFkappaB -

related signaling.  

 

HPV E7 interacts with several host proteins. For example, E7 directly binds the pRb (Dyson 1992) and 

targets it for proteasomal degradation (Boyer 1996), activating S-phase progression via E2F. p21 is also 

inhibited by E7, signifying cooperation between HPV oncogenes (Funk et al. 1997). E2F upregulates p16 

that inhibits the cyclin D1/Cdk4 complex which in HPV-positive cells is unable to inhibit cell 

proliferation as E7 degrades pRb (Khleif et al. 1996). Thus, overexpression of p16 has been used as a 

surrogate marker for HPV infections. 

 

The transforming potential of HPV oncogenes with either high-risk or low-risk E6 and E7 has been 

shown (Woodworth et al. 1989). High-risk E6 contains a PDZ-binding domain that enables interaction 

(and ubiquitin-mediated degradation) with several substrates contradictory to that of the low-risk E6 

proteins (Ganti et al. 2015). High-risk E7 binds p21 efficiently, whereas low-risk E7 proteins only 

present with low levels of p21 inhibition. As E6 causes its inhibition, p53 pathway mutations are 

uncommon in HPV-driven cancers (Westra et al. 2008), and an otherwise often mutated CDKN2A/p16 

pathway is made redundant due to the release of E2F from E7-phosphorylated pRb (as seen in Figure 

10) (Lechner et al. 2013). Activation of the PI3K pathway has been suggested to be sufficient for tumor 

progression in p53 and pRb-deficient states such as are caused by HPV (Martin et al. 2014, Table 2). 

The pathway activation has been recently linked to APOBEC proteins, upregulated by HPV, which 

increase genomic instability (Vieira et al. 2014). Taken together, both E6 and E7 are promising targets to 

treat HPV-associated carcinomas (Hoppe-Seyler et al. 2017). However, HPV E2 also has potential 

oncogenic functions. It interacts with several cellular proteins and has been postulated to increase 

abnormal mitoses leading to aneuploidy, a premalignant trait for cells (Bellanger et al. 2011). 
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Figure 10. The effects of high-risk HPV E6 and E7 oncoproteins on pathways related to 
cell cycle progression. These functions enable HPV persistence and viral replication but 

expose the cell to further carcinogenic changes. Note the increase in p16 expression due to E7. 

Produced using Servier Medical Art (Servier 2019), licensed under a CC BY 3.0 

 

2.8.7 Effect of HPV on cellular radioresponse 

  
HPV-attributed HNSCCs are more readily treatable by irradiation (Ang et al. 2010). As p53 is wild type 

in most HPV-induced tumors, low levels of residual p53 expression in HPV-positive carcinomas could 

result in cell death after radiation (Kimple et al. 2013), explaining the better radiation responses. HPV-

negative carcinomas usually harbor p53 mutations that prevent such a response. HPV16 E6, E7 and E5 

proteins increase the PI3K/AKT pathway signaling that regulates several genes important for radiation 

resistance via the mTOR and MAP pathways (Zhang et al. 2015). The HPV16 E5 protein sensitizes the 

cell to EGF signaling, which increases proliferation (DiMaio & Mattoon 2001). High EGFR expression 

has been linked with activation of PI3K-Akt and RAS, leading to radioresistance (Zimmermann et al. 

2006), whereas E5 also has potential interactions with the antiapoptotic Bcl-2 (Auvinen et al. 2004) and 
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may prevent apoptotic cell death via the PI3K-Akt pathway. Therefore, E5 may play a role in 

radioresistance as well. Lastly, Vermeer and colleagues (2013) showed that CD47, a tumor surface self-

marker critical for immune clearance, was downregulated after irradiation of HPV-positive tumor cells, 

leading to better tumor immune clearance in mice. Therefore, the effects of immunity, which HPV alters, 

are also of importance for the outcomes of the radiated cell. 

2.8.8 Specific treatments for HPV-driven HNSCC 
 
HPV-positive HNSCCs often present with large cystic lymph nodes in the neck, signifying a late-stage 

disease (Lajer & Von Buchwald 2010). Nevertheless, HPV-positive HNSCCs, particularly those of the 

oropharynx, have been shown to retain a better prognosis (Ang et al. 2010). Therefore, de-escalation of 

treatment aggressiveness has been proposed. The 8th edition of the TNM classification (2017) has 

reclassified HPV-positive HNSCCs, detected using p16 staining. The novel classification downstages 

HPV-positive oropharyngeal carcinomas that may lead to de-escalated treatment tailoring to individual 

patients (Würdemann et al. 2017). The evidence supporting this practice is, however, still controversial 

(Wu et al. 2016). Despite this, de-escalation protocols have been planned with enthusiasm, and 

seemingly excellent disease control rates using deintensified chemoradiotherapy have been published 

(Chera et al. 2018). HPV-positive HNSCCs have also shown superior responses to chemoradiotherapy 

using an EGFR inhibitor (Cetuximab) when compared to the standard chemotherapeutic agent, cisplatin 

(Huang et al. 2016). Furthermore, modern immunotherapeutic approaches using programmed death-1 

(PD-1) antibodies have shown benefit in treatment of recurrent disease (Saleh et al. 2018). Despite these 

facts, in select patient subgroups there is also evidence to the contrary. HPV-positive late-stage cancers 

may display an increased risk for distant metastases and, therefore, grim prospects for survival (Lee et al. 

2012). Moreover, the effect of coinfections between other viruses and HPV could theoretically play a 

role in carcinoma invasiveness, but has not been studied in detail.  
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2.9 Herpes simplex virus type 1 (HSV-1) 
 
Herpes simplex virus type 1 (HSV-1) is one of the most common herpesviruses, infecting 50% of the 

population in the developed and 90% of the population in the developing world at some point in their 

lives (Whitley & Roizman 2001). Herpesviruses are large viruses composed of a lipid bilayer, the 

envelope, covering the proteinaceous tegument and nucleocapsid that harbors its linear dsDNA genome 

(Figure 11). Attached to the envelope are nonglycosylated and glycoprotein spikes which function in the 

first steps of the infection to facilitate cell entry. The tegument contains viral proteins, microRNAs and 

exosomes that aid in the first stages of viral genome internalization and replication and the avoidance of 

apoptosis and innate immunity reactions, such as the viral protein 16 (VP16/α-TIF) and virion host 

shutoff (vhs) protein for HSV-1. The icosahedral nucleocapsid encloses the double-stranded DNA 

genome of 152 kb that encodes over 80 genes. 

 
Figure 11: HSV-1 virus particle and its genome. 
The HSV-1 capsid encloses its linear dsDNA genome. The HSV-1 genome consists of unique 

long and short segments Ul and Us, respectively. The segments are flanked by inverted repeat 

regions named ab and b'a' for long and a'c' and ca for short segments. The "pac" signals HSV 

uses in delivering its genome into new capsids are shown as blue rectangles. The localizations 

of key genes involved in apoptotic cell death are shown as arrows. Produced using Servier 

Medical Art (Servier 2019), licensed under a CC BY 3.0 
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2.9.1 HSV entry 
 
Herpesviruses infect new hosts primarily via mucosal secretions, i.e. oral or genital fluids. As the 

epithelial barrier mechanisms are powerful in preventing pathogen entry, herpesviruses likely require a 

breach in the epithelium, such as a skin abrasion on the fingertip or a gingivitis lesion in the gums, to 

enter the basal keratinocyte layer (Figure 12). Infecting keratinocytes, the first target cell HSV-1 

encounters in the body, the virus attaches to the heparan sulfate glycoproteins (HSPG), mainly with its 

surface glycoproteins C (gC) and B (gB) (Campadelli-Fiume et al. 1990, Herold et al. 1994). It uses these 

glycoproteins to react with its glycoprotein D (gD) which facilitates interaction with the herpes virus 

entry mediator (HVEM) and Nectin-1 (Thier et al. 2017). Then, it uses surface proteins gB and gH-gL in 

order to fuse its envelope with the cell surface membrane. HSV-1 is also able to use additional entry 

mechanisms such as endocytosis to enter some cell types (Nicola et al. 2003). The end result is release of 

the contents of the viral particle such as the tegument and capsid into the cytoplasm. The tegument 

proteins αTIF and virion host shutoff (vhs) activate viral transcription and shut down host cell defenses 

(Strand & Leib 2004). Concurrently with HSV-1 particle ingress, exosomally transported viral and 

cellular factors such as STING may function to suppress cellular innate immunity (Kalamvoki et al. 

2014). The viral DNA is transported through the cytoplasm encased in its capsid via cellular 

microtubular transport until it comes into contact with the outer nuclear membrane. The contents of the 

capsid are interestingly under several atmospheres of pressure, and upon contact with the nuclear pore 

complex are "injected" into the nucleus at high pressure (Bauer et al. 2013). Subsequently, immediate-

early gene transcription can proceed (Rahn et al. 2011).  

2.9.2 HSV replication 
 
The entire replicative life cycle of HSV-1 takes less than 24 hours (Lehman & Boehmer 1999). The 

tegument, upon release into the cytoplasm, initiates viral gene transcription via VP16, suppresses host 

responses via γ34.5 and vhs (virion host shutoff) proteins and inhibits apoptotic cell death with Us3 and 

ICP4 (Peri et al. 2011). On entering the nucleus, the viral DNA circularizes (Strang & Stow 2005). First, 

viral protein VP16 induces the expression of viral α (immediate-early) genes in order to commence β 

(early) gene expression in a process that lasts around 4 hours. β genes then induce DNA synthesis via the 

viral DNA polymerase. Then, γ gene expression results in capsid formation in the nucleus and finally, the 

formation of new infectious virions (Lehman & Boehmer 1999).  

 

The DNA polymerase protein complex is necessary for viral replication and is a target for anti-HSV 

medications such as acyclovir (Schaffer et al. 1971). The viral capsids that form in the nucleus are 

packaged with the unit-size viral DNA. This capsid envelops at the inner and then fuses at the outer 

nuclear membrane, crossing into the cytoplasm where virion maturation can occur. This proceeds by the 

addition of the proteinaceous tegument and finally the viral envelope, which is gained as the particle 
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fuses with the outer cell membrane at locations now enriched with virus-specific outer membrane 

glycoproteins (Mettenleiter et al. 2009). Thus, part of the viral architecture is formed from components of 

the host cell. The release of infectious virions results in the death of the host cell. The mechanism by 

which HSV-1 infection kills cells is not completely clear; however, shutoff of cellular gene expression 

via the early ICP27 and late vhs (virion host shutoff, UL41) proteins, apoptosis and necroptosis play 

significant roles, controlled by viral gene expression (Yu & He 2016).  

 

2.9.3 Establishment of latency 
 
After HSV-1 infects the epithelium and undergoes a period of lytic cycles, it infects and retreats to the 

nearby sensory neurons. It then travels to the neuronal nucleus in its respective ganglion where it resides 

in latency, reactivating only occasionally to cause herpetic lesions and, more often, asymptomatic 

shedding. The mechanisms that govern the establishment of latency are not well-known, but the LAT 

gene expression plays a major role. HSV-1 can also become latent in organotypic keratinocyte cultures, 

where LAT mRNA and HSV-1 DNA are present, but no cytopathic effects or replication are detected 

(Syrjänen et al. 1996).  

 

2.9.4 Reactivation and shedding 
 
HSV-1 reactivation is mediated by sensing cell stress, changes in metabolic parameters or trauma (Vink 

et al. 2017, Bloom 2016). The molecular pathways governing reactivation are only beginning to be 

characterized, although inhibition of the PI3K/AKT pathway and calcium signaling are important in the 

induction of reactivation (Suzich & Cliffe 2018). This reactivation may or may not coincide with 

recrudescent, blister-forming infections such as "cold sores." Still, it is known that asymptomatic 

shedding of the virus is far more common than symptomatic replication, and the asymptomatic presence 

of HSV in saliva, for example, is considered a major transmission route. It has been reported that at least 

70% of saliva samples from asymptomatic patients contained HSV-1 DNA at least once a month (Miller 

& Danaher 2008). A daily sample has an up to 7.6% chance of being HSV-1 positive, with viral loads 

between 100 and 2.8x10(6) per ml of saliva (Miller & Danaher 2008). Recently, oral HSV-1 DNA was 

found in 11.8% of 304 young Finnish mothers (Mäki et al. 2015), while 12.9% their spouses were HSV-1 

DNA-positive at some point in their 6-year follow-up (Mäki et al. 2017). Asymptomatic shedding into 

the saliva has been detected in 84.6% of patients visiting an oral surgery clinic, which shows the effect of 

anxiety and postoperative states on HSV replication (Hyland et al. 2007). Moreover, HSV-1 has been 

detected in the gingival biofilms of patients with periodontal disease (Nishiyama et al. 2008, Ling et al. 

2004), underlining the importance of HSV-1 in clinical patient care. Recently, HSV-1 has also been 

demonstrated in the ganglions of the parasympathetic system of the head and neck area (Lee et al. 2015), 
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signifying that HSVs do not seem to require the trigeminal nerve root ganglia specifically, and others can 

support the infection as well. Furthermore, it is not known how UV light affects the sensory neurons to 

reactivate HSV-1 and how UV-protecting creams can prevent such occurrences.  
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Figure 12: The life cycle of HSV-1 
1. HSV-1 enters the basal cell compartment via small openings in the epithelial barrier such as 

microtrauma.  

2. HSV-1 fuses with the cell outer membrane or the membrane of an endosome, releasing the 

tegument and capsid into the cell. The capsid travels via microtubules using the dynein motor 

protein until it reaches the nucleus. 

3. HSV-1 genes are expressed in a sequential fashion, where alpha (immediate-early) genes 

induce beta (early), which induce DNA replication and subsequently, gamma (late) gene 

expression.  

4. The productive infection results in cell destruction which clinically manifests as an epithelial 

blister. The virus then exits the body into the surface. HSV-1 may also enter the sensory 

neurons and travel (arrow) to their nucleus where it is able to remain latent for the life of the 

host.  

5. The trigeminal nerve (yellow) ganglion hosts the virus in a latent state where it occasionally 

replicates and travels back to the mucosal surfaces in order to spread to new hosts (arrow).  

Produced using Servier Medical Art (Servier 2019), licensed under a CC BY 3.0 
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2.9.5 HSV-1 and apoptosis  
 
In HSV-1 infected cells, apoptosis is prevented, facilitating efficient viral replication. This downregulates 

many pathways such as the p53 pathway and inhibits caspase activation to allow viral persistence and 

replication. The antiapoptotic features of HSV-1 genes are outlined in Table 3. 

 
Table 3. Antiapoptotic gene products of HSV-1 and their function. The cell line of the 

original observation is depicted as follows: Vero cells are African green monkey kidney cells, 

Jurkat cells are an immortalized human T-lymphocyte cell line, HEp2 Human HeLa derivative 

contaminant cervical carcinoma cell line (HPV18+), C1300 are mouse neuroblastoma cells. 
1=likely an indirect effect on the pathway, 2=not known, 3=also expressed early in the infection, 

so-called ”leaky-late gene.” R1=Ribonucleotide reductase large subunit 1. grB Granzyme B 

mediates cytotoxic T-lymphocyte cell killing. The FAS ligand is the inducer of the extrinsic 

apoptotic pathway leading to caspase 8 activation. BAD is a Bcl2 inhibitor. CI-MPR is a cation-

independent mannose 6-phosphate receptor. Its inhibition blocks apoptosis and may result in 

radiotherapy resistance in HNSCCs (Jamieson et al. 2003).
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2.9.6 Generation of DNA instability and effect on radiation responses 
 
HSV-1 interacts with DNA repair mechanisms, particularly the MRN protein complex of the Ataxia 

telangiectasia mutated (ATM) pathway essential in cellular responses to radiation (De Braekeleer et al 

1992, Balasubramanian et al. 2010). Moreover, HSV-1 DNA synthesis preferentially uses the 

homologous recombination DNA repair pathways and interferes with the Fanconi anemia DNA repair 

pathway used in NHEJ-type DNA repair (Karttunen et al. 2014) after radiation damage. HSV-1 

infections also result in chromosomal instability of the infected cell, which has led to in vitro embryo 

fibroblast transformation (Larsson et al. 1992), for example. Chromosomal instability, on the other hand, 

is a byproduct of radiation damage and thus, these two different mechanisms of DNA damage might 

hypothetically function together to increase radiation damage in infected cells. Induction of the key 

transcription factor NFkappaB1 is a known result of both irradiation and HSV-1 infection and prevents 

apoptosis in HSV-1-infected cells (Goodkin et al. 2003). Accordingly, inhibitors have been proposed to 

prevent the oncogenic functions of NFkappaB1 (Luo et al. 2005). However, it is not known whether 

NFkappaB1 induction after HSV-1 infection might be altered in the context of simultaneous radiation 

damage to the infected cell. 

2.9.7 HSV-1 in carcinomas other than HNSCC 
 
HSV-1 replicates readily in immunosuppressed individuals such as cancer patients, especially during 

chemotherapy. HSV reactivation in the oral cavity causes pain and difficulty in eating and swallowing 

that further complicates the cancer treatment (Elad et al. 2017). A dreaded complication of HSV 

infection is encephalitis, which may fatally complicate treatment, of cerebral malignancies in particular 

(Koudriavtseva et al. 2010). Therefore many patients undergoing cancer chemotherapy are prescribed 

acyclovir prophylaxis during treatment (Glenny et al. 2009). After HPV was confirmed as a causative 

factor in cervical carcinoma, HSV was concluded to be noncarcinogenic in cervical cancer by itself, 

mainly based on immunological data (Lehtinen et al. 2002). However, HSV-2 has been 

epidemiologically associated with cervical carcinoma development after adjustment for confounding 

factors, and it has been hypothesized that HSV infections might act as cofactors with oncogenic HPV 

types to increase carcinoma risk (Smith et al. 2002). Due to its cytolytic activity, genetically engineered 

HSVs are currently being researched as oncolytic therapies, where the neurovirulence gene (γ34.5) has 

been deleted to prevent HSV-1 lytic effects outside of the tumor it infects. However, although already 

approved for clinical use, more studies are needed on the effects of recombinant HSVs in HNSCC 

treatment. 
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2.9.8 HSV-1 and head and neck cancer 
 
Older studies clearly show the carcinogenic potential of HSV-1 in animal models (Wentz et al. 1981). 

Although HSV-1 exposure itself is unable to lead to carcinogenesis, for example Hirsch and coworkers 

observed oral SCC formation in rats exposed to Swedish “snus” (smokeless tobacco) and HSV-1 in 

combination (Hirsch et al. 1984). Serological evidence links HSV-1 to increased risk for oropharyngeal 

carcinomas, interestingly only for patients with other risk factors such as HPV infection or heavy 

smoking (Starr et al. 2001). In addition, antibodies to HSV-1 were progressively higher in patients with 

increasing stages of their oral carcinomas (Shillitoe et al. 1986) and in patients with normal oral mucosa 

compared to those with premalignant or malignant lesions (Jain 2016). These findings signify that HSV-

1 may further damage the cells in progression toward malignancy. Lastly, HSV-1 mucositis has been 

shown to complicate up to half of patients receiving radiotherapy for head and neck cancer (Nicolatou-

Galitis et al. 2006), but its potential effects on the treatment are unknown. 

2.10 Epstein-Barr virus (EBV) 
 
Most (95-98.5%) of Finnish adults are infected by Epstein-Barr virus (EBV) (Puhakka et al. 2015). In the 

Western world, EBV typically causes infectious mononucleosis and some cancers such as Burkitt’s 

lymphoma and nasopharyngeal carcinoma, where EBV is regarded as a causative factor in the majority 

of carcinomas (Young & Dawson 2014). Although EBV is implicated in the development of several 

lymphoma types (Kim et al. 2009), this discussion will focus on epithelial carcinoma development. EBV 

is, along with other herpesviruses, a double-stranded DNA virus, containing a 171656-171764 kb 

genome (EBV types 1 and 2, respectively (Palser et al., 2015)). Like most herpesviruses, EBV expresses 

over 100 genes which all function to enable highly efficient spread, persistence in latency and evasion of 

immunity for the virus (Figure 13). 

 

 

31095537_Turun_yliopisto_Vaitoskirja_Aaro_Turunen_Laaketiet_tdk_sisus_19_04_25.indd   49 25.4.2019   8.25.59



 

50 

 

 
Figure 13: Epstein-Barr virus particle and genome. The viral particle is that of a typical 

herpesvirus: an icosahedral capsid surrounded by organized tegument proteins within a lipid 

bilayer envelope with its surface glycoproteins. Compared to the alphaherpesvirus HSV-1, EBV 

-a gammaherpesvirus, is highly similar in size and structure. Two origins of replication are 

shown: Origin of plasmid replication oriP and origin of lytic replication oriLyt. Latent membrane 

proteins (LMPs) are transcribed from both sides of the terminal repeat (TR) region which is the 

location where the genome circularizes upon latency (Young & Rickinson, 2004). Latent 

nuclear antigens (EBNAs 1, 2, 3a/b/c and LP), present in the nuclei of latently infected cells, 

are transcribed from their own promoters and are spliced from a single long transcript, 

represented by the line between the arrows. The short EBERs 1 and 2 are transcribed in all 

stages of EBV infection and latency (Herbert & Pimienta, 2016). They interact with host 

proteins such as the ribosomal proteins and are implicated in EBV-related transformation. 

Produced using Servier Medical Art (Servier 2019), licensed under a CC BY 3.0 
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2.10.1 Epstein-Barr virus infection and latency 
 
EBV first infects the epithelial cells in the upper respiratory tract, mainly in the oropharynx and tonsils 

(Sixbey 1984), which it reaches using shared saliva as an infection medium, spread by kissing, shared 

utensils, bottles, etc. The entry receptor in epithelial cells is integrin ανβ6, to which EBV surface 

glycoprotein gH and gL bind, allowing the virus to fuse with the cell membrane with the aid of gB and 

release its contents inside the cell. In lymphocytes, EBV is endocytosed instead (Möhl 2016). During 

acute infection, which clinically manifests as infectious mononucleosis, EBV spreads to the B-

lymphocytes throughout the body and after the disease has passed, remains latent in the resting memory 

B-lymphocytes for the lifetime of the individual (Henle et al. 1968, Lieberman, 2013).  

 

EBV has also been detected in the saliva and oral epithelia of otherwise healthy persons (Oosterveer et 

al. 1993, Mao & Smith 1993), which signifies its likely persistence and/or occasional replication in the 

epithelia as well. EBV is thought to reach the oral epithelium via plasma cells that enter the lytic viral 

cycle (Young & Rickinson 2004). EBV is carried over to the epithelial site by B-lymphocytes in which 

EBV then replicates lytically and infects the epithelium from a basal direction. Epithelial infection is 

most apparent in immunocompromized patients, where EBV causes bilateral hairy leukoplakias of the 

tongue (Greenspan et al. 1984). 

 

EBV has three forms of latency in its host cell. Type III latency, the so-called “growth pattern,” is 

utilized first during EBV infection in B-lymphocytes where a majority of EBV genes are expressed and 

the virus spreads rapidly as it drives its host cell to proliferate. This aggressive pattern, however, leads to 

immune response and host cell death via cytotoxic T lymphocytes. Therefore, EBV switches its gene 

expression into the less immunogenic type II – the “default” pattern, in which LMP-1, EBERs and 

EBNA1 are expressed. This pattern leads the infected cell to enter the resting phase and there EBV can 

activate its stealthy latency patterns I (EBNA1 and EBV-miRNAs) and 0 (EBV-miRNAs only), 

expressed to persist indefinitely in the human host (Dheekollu et al. 2016). The type I latency pattern is 

used in proliferative B-lymphocytes such as those of Burkitt's lymphoma whereas the most common 

latency type in epithelial – such as gastric and nasopharyngeal carcinoma cells – is type II. 

2.10.2 EBV in epithelial cells  
 

EBV was discovered over three decades ago in oral hairy leukoplakia lesions (Greenspan et al. 1985). 

Despite this, the epithelial life cycle of EBV is poorly characterized. Infected B-lymphocytes transport 

the virus to the apical surface of the mucosal epithelium. There, EBV enters the basal cell after release 

from the B-lymphocytes, likely mediated by endocytosis (Nanbo et al. 2016). EBV then establishes 

latency and spreads as the infected cells start to differentiate (Temple et al. 2014). Recent in vitro studies 
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performed by laser-capture microdissection and high-sensitivity qRT-PCR have demonstrated EBER 

transcripts without lytic gene expression in basal epithelial cells, suggesting EBV latency (Nawandar et 

al. 2015). EBV genome replication and immediate-early gene expression are triggered in the suprabasal 

layer during cell differentiation (Nawandar et al. 2015). In addition, epithelial cell-cell contacts are 

needed for persistent EBV infection in the epithelium in vitro, linking EBV infections to differentiating 

epithelia (Chang et al. 1999). However, although latent EBV infections in putative epithelial cell 

reservoirs have not been conclusively proven in nonmalignant epithelia in vivo (Hutt-Fletcher 2016), the 

expression of LMP-1 has recently been linked to the lytic reactivation of EBV in cultured epithelial cells 

(Nawandar et al. 2017). Lastly, EBV has also been detected in the normal tongue epithelium (Walling et 

al. 2001, Frangou et al. 2005), normal base-of-tongue (Jiang et al. 2015) and tonsillar and adenoid 

epithelia (Endo et al. 2001), thus it is clear that the effects of EBV on head and neck epithelia are only 

beginning to be characterized. 

2.10.3 EBV and carcinogenesis  
 
EBV is one of the most intensively studied oncogenic viruses because its ubiquity causes a high disease 

burden to society. In 2014 Khan and Hashim calculated that approximately 143 000 people died that year 

globally due to EBV-related malignancies (1.8% of global cancer deaths in 2010) and 92% of these 

deaths were attributed to epithelial, nasopharyngeal and gastric cancers (over 132 000 cases), whereas 

EBV-related lymphomas were less prevalent (Khan & Hashim 2014). However, because of its ubiquity 

and the geographical distribution of NPCs (i.e. more common in Asian countries), EBV infection alone is 

thought not to suffice for development of carcinoma, and additional cofactors are likely needed (Huang 

et al. 2013). 

 

In order to replicate and persist, EBV encodes several proteins that lead to cell cycle dysregulation, 

apoptosis avoidance and stimulation of growth receptor pathways (Kang & Kieff 2015) (summarized in 

Table 4). LMP-1 is considered the main oncoprotein of EBV and is expressed in the majority of EBV-

linked malignancies (Chen et al. 2015). LMP-1 functions to prevent p53-mediated apoptotic cell death, 

being itself upregulated by p53 expression (Wang et al. 2017). LMPs 1 and 2A lead to calcium-mediated 

signaling via PKC and activate NF-κB, for example. These properties may immortalize the infected cell 

and compromise DNA repair (Wang et al. 2017). EBNA (Epstein-Barr virus nuclear antigen) proteins 

enable latency and EBV DNA replication (Ambinder et al. 1991). They also inhibit p53, increasing the 

malignant potential of the infected cell (Sivachandran et al. 2008).  

 

EBERs (EBV-encoded small RNAs) are small RNAs, present in all EBV infected cells. They affect a 

multitude of host cell proteins, with the intention of enabling EBV persistence while preventing 

apoptosis and detection by the immune system (Ahmed et al. 2014). BARTs (BamHI-A rightward 
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transcripts) are a family of microRNAs that also have a variety of roles within the cell that are only 

recently being characterized. BHRF1 (BamHI fragment H rightward open reading frame 1) encodes a 

Bcl-2 protein analog that localizes at the mitochondrion to block the intrinsic apoptotic pathway (Dawson 

et al. 1995, Khanim et al. 1997). 

 

Each EBV latency pattern leads to different outcomes. For reasons not well-known, epithelial 

malignancies such as nasopharyngeal carcinomas display EBV LAT II pattern–type expression in which 

LMPs confer apoptosis avoidance and cell immortalization functions and EBNAs cause cell cycle entry. 

It has been shown in vitro, that EBV causes normal oral keratinocytes grown in organotypic cultures to 

invade the underlying collagen network (Nawandar et al. 2015). LMP-1, LMP-2A and EBNA2 genes 

seem to be the most important oncogenes in the development of nasopharyngeal carcinoma (Liu et al. 

2006). EBNAs are proteins that affect gene expression in the nucleus (Kang and Kieff 2015). EBNA2 

activates the expression of c-myc and it has been shown in vitro that reducing EBNA2 and LMP1 

expression with Cidofovir seems to increase the radiosensitivity of epithelial cells through the activation 

of caspases 9 and 3 and downregulation of Bcl-2 (Abdulkarim et al. 2003). In addition, EBV-encoded 

miRNAs are able to modulate resistance to apoptosis and immune evasion in latency (reviewed by Flór 

& Blom, 2016). 
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Table 4: EBV main oncogenes related to HNSCC 

 
2.10.4 EBV and radioresponse 
 
Irradiation causes oxidative stress via ROS that is known to lead to ATM-DNA repair pathway activation 

and p53 activation. p53 activation is said to be necessary for EBV reactivation in vitro, suggesting a link 

between EBV reactivation and radiation responses (Huang et al. 2013). The same group also observed 

EBV reactivation after H2O2 treatment of NPC, linking EBV lytic activation with ROS increase and 

activation of DNA damage-signaling pathways. EBV reactivation causes increased expression of EBV 

oncogenes such as BARF1 and genomic instability, contributing to carcinogenesis (Hu et al. 2017). 

EBNA1, LMP1 and EBERs are associated with oxidative stress, and it has even been proposed that 

EBV-positive tumors are ROS-driven (Hu et al. 2017). In their recent review, Hu et al. (2017) 

emphasized that cancer stem cells (CSC), the most radiation-resistant carcinoma cell type, have lower 

levels of ROS after irradiation and this may be caused by enhanced NFκB and HIF-1 (hypoxia-induced 

factor) expression in EBV-positive cells. These factors contribute to the possible inhibition of radiation-

induced cell death by LMP-1 that may confer CSC-like characteristics, potentially enhanced by the 

expression of antiapoptotic EBERs, BHRF, EBNA1 and BARTs (Table 4, Yang et al. 2013). 
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2.10.5 EBV in head and neck cancer 
 
EBV is a leading cause of NPC (Guidry et al. 2017). EBV DNA is also found circulating in the 

bloodstream of NPC patients (Leung et al. 2003). In addition, EBV DNA has been detected in 0% to 

100% of oropharyngeal carcinomas and its epidemiology in other HNSCC is unclear at best (Guidry et 

al. 2017). Therefore, the role of EBV in the carcinogenesis of these non-nasopharyngeal tumors is 

unclear, because carcinoma tissue always contains B-lymphocytes which may harbor EBV DNA and 

lead to confusing results. EBV has been detected in oral premalignant disorders in up to 77.8% of cases 

(Shamaa et al. 2008). Horiuchi et al. (1995) detected EBV in 5.3% of leukoplakias and 40% of 

carcinoma in situ lesions of the oral cavity with PCR, but only in single premalignant cases with in situ 

hybridization (ISH). Moreover, 27% of oral cancers were positive for EBV-in situ hybridization in their 

study. EBER expression seems to be rare in oral cavity carcinomas, although LMP-1 has been detected 

more frequently, especially in carcinomas of the lateral border of the tongue. Although LMP-1 is not 

reliable as a diagnostic marker for EBV, this has cautiously been reported to associate with oral tongue 

cancer (Gonzalez-Moles et al. 2002). 

 

2.11 Viral coinfections  
 

2.11.1 HSV-1 coinfecting tissues with HPV 
 
HSV-1 and HPV are ubiquitous in the human head and neck region. Their coinfections are not 

uncommon, although fairly scarce in the younger Finnish population (Mäki et al. 2015). These 

coinfections have been reported in dental abscesses, commonly encountered by dentists worldwide 

(Ferreira et al. 2011). Thus, it is plausible that these pathogens as coinfections might affect the 

development of HNSCC and/or even the treatment responses. So far, the presence of HPVs, HPV16 in 

particular, is well-established as the etiologic agent of a subgroup of HNSCCs. However, HPV16 is also 

the most prevalent HPV genotype in normal oral mucosa. Hyland and coworkers (2007) detected HSV-1 

in up to 84.6% of patients before oral surgery. In addition, HNSCC patients undergoing radiation 

treatment develop oral ulcerative mucositis. HSV-1 has been detected in up to 48.2% of these patients 

(Nicolatou-Galitis et al. 2006). The ulcers also healed after valacyclovir antiviral medication and 

recurred after quitting the antivirals, proving the presence of HSV-1 as a causative factor in many oral 

mucositis cases (Nicolatou-Galitis et al. 2006). Therefore, as HPV-positive HNSCCs are often treated 

with radiation therapies, coinfection with HSV-1 may be a common occurrence, reported to be present in 

52% of OSCCs (Jalouli et al. 2015). Meurman (2010) reviewed data from 1990 to 2009 and concluded 

that seropositivity to HSV-1 was associated with oral cancer. It is known that as many as 62% of tonsillar 

carcinomas harbor high-risk HPV (Herberhold et al. 2017). Interestingly, up to 82% of tonsillar 

carcinoma patients have been found to be seropositive to HSV-1 (Starr et al. 2001) and the authors 
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observed that HSV-1 seropositivity was associated with a two-fold increase in tonsillar carcinoma risk 

among individuals with HR-HPV DNA in either tumor tissue or oral scraping samples, but not in HPV 

DNA-negative patients. Mechanistically, HSV-1 increases genomic instability (Deng et al. 2014), as do 

HR-HPVs, which could augment these effects in coinfected tissues. To date, HSV-1 is thought to kill all 

infected keratinocytes. Despite these findings, abortive HSV infections could still lead to cellular damage 

(Barreca & O'Hare 2006). In addition, chronic replication in tissues adds to the ROS burden of cells, 

which can function as a cofactor in carcinogenesis (Williams et al. 2011). Exosomal HSV-1 signaling 

also influences cells next to those infected in ways that are only starting to be discovered (Kalamvoki & 

Deschamps 2016), therefore HSV-1 must be studied further as a cofactor in HPV-mediated 

carcinogenesis. 

2.11.2 EBV coinfecting tissues with HPV 
 
In vitro, EBV has been proven to enter HPV-infected cells, where HPV increases the capacity of the cell 

to sustain the EBV genome in the infected cell (Makielski et al. 2016). Interestingly, HPV has been 

detected in oral hairy leukoplakia caused by EBV(reviewed by Greenspan et al. 2016). HPV + EBV 

coinfections proved the most common coinfection type in all corners of the world in a recent study, with 

a 21% overall prevalence in OSCC (Jalouli et al. 2012). EBV has also been found coinfecting HPV-

infected cervical cancer cells, where its presence was a significant predictor of the integration of HPV 

types 16 and 18 (Kahla et al., 2012). Moreover, recent studies have suggested coinfection by EBV and 

HPV in tonsillar and base-of-tongue (oropharyngeal) carcinomas, where the target cells of HPV and 

EBV are also present in greater volumes. This presents a suitable environment for the viruses to spread 

into the same cells (Jalouli et al. 2012, Polz-Gruszka et al. 2015). 

  

Due to the prevalence of EBV and HPV in certain carcinomas, the occurrence of coinfections is plausible 

(Shi et al. 2016). Truly, EBV/HPV coinfections have been detected in oral carcinomas (Jiang et al. 

2015), cervical precursor lesions and carcinomas (Lattario et al. 2008, Khenchouche et al. 2013), breast 

cancers (Glenn et al. 2012), middle ear squamous cell carcinomas (Surono et al. 2018), nasopharyngeal 

carcinomas (Rassekh et al. 1998, Punwaney et al. 1999), and esophageal carcinomas (Kunzmann et al. 

2017). Curiously, EBV increased the likelihood of integrated HPV16 genomes seven-fold in cervical 

carcinomas (Szostek et al. 2009). EBV was also present in over 10% of esophageal carcinoma cases in 

combination with HPV16 or HSV-1, increasing the pathological grade (Zhang et al. 2011). Jiang (2015) 

showed that EBV/HPV coinfections were detectable in a subset of oral carcinomas. Taken together, these 

results show that EBV and HPV are found coinfecting HNSCCs, where their coinfection could affect the 

carcinoma cells. However, these associations require further study, as the prevalence of coinfections is 

low and the ratings vary greatly between countries. 
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2.11.3 HSV-1 coinfecting tissues with EBV 
  
HSV/EBV coinfections have been detected in up to 17% of periodontal pockets in patients with 

periodontitis (Kazi et al. 2017). Reports on the effects of multiple herpesvirus infections in HSNCCs are 

scanty, although coinfections with multiple herpesviruses are prevalent in the general otherwise healthy 

populace, in particular those from lower socioeconomic groups (Delaney et al. 2015). No coinfections for 

EBV/HSV-1 in Polish HNSCCs were detected although HPV/EBV coinfections were fairly common 

(15%) (Polz et al. 2011, Polz-Gruszka et al. 2015). Mixed results have been found when attempting to 

analyze HPV or herpesviral prevalence ratings in different countries: for example, OSCC patients from 

the UK displayed significantly higher numbers of HSV-1 (55%) and EBV (80%) than patients from 

Yemen (HSV-1 10% and EBV 20%). Furthermore, 11% of 155 OSCC patients from industrialized 

countries displayed HSV-1/EBV coinfections (Jalouli et al. 2012). 

  

Mechanistically HSV-1 and EBV coinfections are possible in HNSCCs: EBV might facilitate the 

replication of HSV-1 via tegument protein BNRF1 (Lu et al. 2016). On the other hand, HSV-1 cellular 

entry and Us3 protein activates EBV via the PKA-CREB pathway, and thus HSV-1 may facilitate EBV 

reactivation (Wu et al. 2012). Therefore HSV-1 and EBV have been detected in HNSCCs as 

coinfections, although the results of coinfections between these viruses are mostly unknown. 
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3. AIMS OF THE STUDY 

The main aim of this work was to clarify if HSV-1 infection alters the radiation response of 

HPV-positive cells in vitro and, if so, whether the infection of HPV-positive or -negative 

HNSCCs by herpesviruses HSV-1 or EBV influences the survival of HNSCC patients. Because 

these infections concern differentiating epithelia, the effect of differentiation-related signaling 

on HPV gene expression was studied first. 

  

The specific aims of the study were to: 

 

1) Identify HPV16 E6 and E2 gene expression in head and neck keratinocytes or carcinoma 

cells, induced to differentiate. 

 

2) Determine the effects of HSV-1 on oral keratinocytes with and without exposure to radiation. 

 

3) Determine the radioresponse on head and neck cancer cells infected with HPV16 alone or 

with a coinfection of HSV-1. 

 

4) Estimate the prevalence and possible prognostic influence of EBV in non-nasopharyngeal 

HNSCCs with special reference to the use of radiation therapy in their treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31095537_Turun_yliopisto_Vaitoskirja_Aaro_Turunen_Laaketiet_tdk_sisus_19_04_25.indd   58 25.4.2019   8.26.03



 

59 

 

4. MATERIALS AND METHODS  

4.1 Cell lines (I-III) 
 
Table 5 presents the cell lines used. All cell lines used had undergone routine testing for 

mycoplasma contamination before experimentation. Same-passage cells were used for 

replicate studies where possible. 

Cell 

line  

Origin  Cell type  Genome  Culture 

medium  

Supplements  Reference  Acquired 

from  

HMK  

 

Human 

gingiva  

Spontaneously 

immortalized, 

nontumori-

genic  

Hypo-

tetraploid  

KSFM  

0.09mM 

calcium  

BPE 20-30 

µg/ml and 

EGF 0.2ng/l  

Mäkelä 

1999  

Original 

author  

IHGK  Human 

third molar 

gingiva  

Immortalized 

with HPV16 

E6/E7, 

nontumori-

genic  

Aneuploid  KSFM  

0.045m

M 

calcium  

BPE 20-30 

µg/ml and 

EGF 0.2ng/l  

Oda 1996  Original 

author 
via 

professor 

Salo  

UD-

SCC-

2  

Hypopha-

ryngeal 

SCC  

Well-

differentiated 

squamous cell 

carcinoma, 

tumorigenic  

Aneuploid,

600 copies 

of HPV16 

integrated 

and 

episomal  

DMEM  10% FCS  Balló 1999  Prof. 

Kunz-
Schughart, 

University 

of 

Regens-

burg, 

Germany  

HaCat  Human 

skin, 

melanoma 

periphery  

Differentiates 

normally, 

nontumori-

genic  

P53 

mutated, 

hypo-

tetraploid  

DMEM  10% FCS  Boukamp 

1988  

CLS Cell 

Lines 

Service 

GmbH, 
Eppel-

heimer, 

Germany 

Vero  African 

green 

monkey 

kidney  

Epithelial, 

nontumori-

genic  

Diploid  RPMI  5% FCS and 

gentamycin  

Yasumura 
1963  

ATCC 

(Bethes

da, MD, 

USA)  
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4.2 Exposure to calcium (I) 
 
After passaging in their own respective culture medium until ~70% confluent, the cells were plated and 

allowed to attach for 48 hours until the medium containing 0mM (i.e. no calcium), 0.045mM, 0.09mM, 

1.8mM, 3mM, 4mM, 5mM or 6mM was added. The concentrations were achieved by adding CaCl 

solution to the original growth medium without calcium (KSFM, Keratinocyte serum-free medium, 

Gibco, Grand Island, NY, USA). 

4.3 Preparation of growth curves (I) 
 
After calcium exposure, the cells were cultured for 3, 6 and 9 days and trypsinized free at the time points. 

D-MEM with 10% FCS was added to prevent further trypsin activity. The suspension was then 

centrifuged in 10 000g for 5 minutes, resuspended and calculated using Bürker hemocytometers. The cell 

number was calculated and averaged from two triplicate high-power fields. These were then used to 

prepare the growth curves seen in (I). 

4.4 HSV-1 infections and quantification (II,III) 
HSV infections were performed by adding the infection medium to the culture wells for 1 hour. After this 

attachment period, the cells were washed with PBS and the medium was replaced. Control cells were 

mock-infected with only the medium. HSV-1 quantification was performed using plaque titration assays 

on confluent B-Vero cell monolayers as per standard protocol (Nygårdas et al. 2011). The plates were 

incubated for 1 hour with the dilution series of medium samples. After 3 days the plates were fixed with 

4% methanol at 4˚C, stained using crystal violet and read using an inverted microscope. To detect HSV-1 

replication in HMK cells, immunostaining for glycoprotein gC was also used as described previously 

(Ziegler et al. 1988) (II). 

4.5 Viability assays (II,III) 
Quantification of cell viability was done using the CellTiter-Glo ATP assay (Promega, Madison, 

Wisconsin, USA). This method analyses the presence of cellular ATP using a luminescence reaction with 

a firefly luciferin and luciferase enzyme. In the experiments presented herein, 24-well plates instead of 

96-well plates were used due to their larger cell content per well (depicted in Figure 14). In addition to 

the samples, medium only-controls were included as quadruplicates.  
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Figure 14: CellTiter-Glo assay for determining cell viability (original publications II,III). 1. 
Half of growth medium is removed. 2.Removed medium is replaced with CellTiter-Glo reagent. 

3.The plates are shaken in an orbital shaker for two minutes. 4.Then the luminescent reaction 

continues in the dark. 5.After 10 minutes, 200ul from each well is transferred into an 96-well 

plate in a minimum of duplicates. 6.The result is then read using a luminometer. 

4.6 Quantitative reverse-transcriptase PCR (I-III) 
 
The response of HPV16 E2 and E6 to extracellular calcium in IHGK and UD-SCC-2 cells (I) was 

analyzed using TaqMan. NFkB1, Bcl-2 and caspases 3, 8 and 9 were similarly studied in HSV-1 infected 

HMK and UD-SCC-2 cells exposed to 2 Gy radiation (II-III). Total RNA was extracted using the 

TRIZOL reagent (Life Technologies, Invitrogen Corporation, Carlsbad, CA, USA). The First-strand 

cDNA Synthesis Kit was then used (Applied Biosystems, Foster City, CA, US) with total RNA as a 

template. Real-time RT-PCR (TaqMan) reactions were performed using TaqMan Universal PCR 

MasterMix and TaqMan® Gene Expression assays (Applied Biosystems, described in detail in their 

respective original publications I-III). The custom primers and probes for HPV16 (original publications I 

and III) were constructed by Applied Biosystems custom TaqMan® Gene Expression assays (Applied 

Biosystems, Foster City, CA, USA). The custom primers and probes for HPV-1 E6 and E2 cDNAs were 

constructed according to Peitsaro et al. (2002), and Kari et al. (2007, Applied Biosystems, III) for E7. In 
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addition to HSV plaque titration assays, to further determine viral replication, the Rotorgene qRT-PCR 

method was used to quantify the cellular HSV-1 ICP27 and VP16 mRNA expression, described in detail 

in original publication II and by Broberg et al. (2003) and Nygårdas et al (2011). A list of primers and 

probes used in the current thesis is given in Table 6. 

 

Table 6: Primers and probes used in the PCR analyses. 
The method and original publication the primers/probes were used in are shown in 

parentheses. 

E6 (TaqMan, I,III) probe  CAGGAGCGACCCAGAAAGTTACCACAGTT  

E6 forward primer  GAGAACTGCAATGTTTCAGGACC  

E6 reverse primer  TGTATAGTTGTTTGCAGCTCTGTGC  

E2 (TaqMan, I) probe  CACCCCGCCGCGACCCATA  

E2 forward primer  AACGAAGTATCCTCTCCTGAAATTATTAG  

E2 reverse primer  CCAAGGCGACGGCTTTG  

E7 (TaqMan, III) probe  CCAGCTGGACAAGCAGAACCGGAC  

E7 forward primer  CAGCTCAGAGGAGGAGGATGAA  

E7 reverse primer  CACACTTGCAACAAAAGGTTACAATATT  

EBV (Luminex assay IV) probe  GGAAACCAGGGAGGCAAATCTA  

EBV Forward primer  GACTGTGTGCAGCTTTGACGAT  

EBV Reverse primer  CAGCCCCTTCCACCATAGGT  

HSV-1 (Luminex assay, IV) probe  CAGTTATCCTTAAGGTCTCT  

HSV-1 Forward primer  ATCACGGTAGCCCGGCCGTGTGACA  

HSV-1 Reverse primer  CATACCGGAACGCACCACACAA  
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4.7 Luminex-multiplex assay for EBV and HSV-1 (IV) 
 
The presence of both high- and low-risk HPV and HSV-1 in the tumors had already been reported earlier 

by Rautava (2012). EBV DNA was detected, similarly to HSV-1, using a Luminex xMAP-based method 

(Paaso et al. 2011, Original publication IV). 

4.6 Immunocytochemistry (III) 
The cells were scraped free from the plates using a sterile technique in PBS. The suspension was gently 

vortexed and diluted to achieve an estimated 20 000 cells / 250ul PBS which was drawn gently through a 

sterile .23G needle to avoid cell clustering and then applied to glass silanized coverslips. After drying, 

fixation was performed using 10% formalin for 10 minutes. The fixed slides were washed twice with 

PBS and stored at -20C. The antibody dilutions were verified beforehand using a test series of control 

UD-SCC-2 cells, fixed and stained using the same protocol. The specific staining conditions are 

presented in original publications II-IV and Table 7. The staining positivity percentage was calculated 

manually. 

 
Table 7: Antibodies and staining protocols for immunohisto/-cytochemical stains. 

Mc=Microwave 5min in citrate buffer, Mt=Microwave 5min in TrisEDTA (pH 9), H2O2 = 

hydrogen peroxide 2.5%, SB = serum blocking. 

Antibody  
Dilution / Clonality 

Source 
Pretreatments Visualisation 

Original 

publication 

Casp 3 

(cleaved)  

1:200 Polyclonal 

Biocare Medical 

(CA/USA) 

Mc, H2O2  Dako LSAB kit  III 

Ki67  1:150 Monoclonal 

Dako (Glostrup, 

Denmark) 

Mc, H2O2  Dako LSAB kit   III 

Bcl-2  1:100 Monoclonal 

Dako 

Mt, H2O2  Dako LSAB kit  III 
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p16INK4a  Ready to use 

Monoclonal 

(Ventana, Tucson, 

AZ, USA) 

Mt, H2O2  CINtec Kit  III 

Cyclin E   1:20 Monoclonal 

Leica Novocastra 

(Wezlar,Germany) 

Mc, H2O2  Dako LSAB kit  III 

MDM-2  1:100 Monoclonal 

Leica Novocastra 

Mc, Sb  Dako LSAB kit  III 

HSV-1  1:100 Polyclonal 

Biogenex (Fremont, 

CA,USA) 

Mc, H2O2  Dako LSAB kit  III 

HSV-1 gC  1:1000 Polyclonal 

Dako 

H2O2  HRPO-labelled 

antibodies, IPS 

(Ziegler 1988).  

II 

4.7 Immunohistochemistry (IV) 
The formalin fixed paraffin-embedded (FFPE) samples were stained using routine laboratory 

immunohistochemical staining protocols in an automated tissue stainer (Dako TekMate®, Dako, 

Glostrup, Denmark) with a compatible LMP-1 staining kit (Dako). Counterstaining was performed using 

Mayer's Hematoxylin. The samples were analyzed visually. Particular attention was paid to the 

localization of the staining and its pattern.  

4.8. Clinical data of cancer patients from the 1988-2009 cohort studied in (IV) 
For EBER-ISH and LMP-1 staining, the FFPE blocks were acquired from the department of Pathology, 

Turku University Hospital, and patient survival data were collected from the Turku University Hospital 

records (Rautava et al. 2012).  
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4.9 In situ hybridization for detection of EBV infection (IV) 
The presence of EBV RNA transcripts EBER-1 and EBER2 was examined with the "Epstein-Barr Virus 

(EBER) PNA Probe/Fluorescein and PNA-ISH Detection Kit" (Dako, Glostrup, Denmark) according to 

the manufacturer’s instructions on the FFPE cancer samples (IV). Samples were counterstained with 

Eosin.  

4.10 Statistical analysis 
Statistical analyses were performed using SPSS (IBM SPSS Statistics for Windows with SPSS advanced 

statistical package, Version 19, Armonk, NY: IBM Corp. Released 2010). Levene’s T-testing was 

utilized to detect intergroup differences (I). Univariate general linear model (GLM) was employed to 

detect the effects of calcium on gene expression (I). Mann-Whitney U-testing was used to analyze for 

differences in viability and gene expression ratings (II, III). Univariate GLM was used to determine 

whether irradiation had a general effect on HSV-1 VP16 expression (II, III). The Χ2-test was used for 

categorical variables with the likelihood ratio (LR) or Fisher’s exact test (IV). Odds ratios (OR) were 

calculated using the exact method and with 95% confidence intervals. Disease-specific survival (DSS) 

was analyzed using univariate survival analysis for outcome measures, using the Kaplan-Meier method 

and Mantel-Cox log-rank statistics. Analyses were performed two-sided. P-values of <0.05 were 

considered significant in all studies. 

4.11 Ethical considerations 
The use of human samples was approved by the Ethical Committee of the Hospital District of Varsinais-

Suomi, Finland (4/2009) (IV). 
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5. RESULTS AND DISCUSSION 

5.1. Proliferation and HPV gene expression in head and neck cell lines exposed 
to increasing concentrations of extracellular calcium (I). 
 

As the viral life cycle of HPVs is linked to the epithelial differentiation of the target cell, the effects of 

HPV16 E6 and E2 were first studied in order to clarify the oncogene expression changes according to the 

differentiation-related signaling of keratinocytes. HPV16 E6 and E7-immortalized IHGK cells and 

HPV16-positive UD-SCC-2 cells were cultured and exposed to increasing concentrations of extracellular 

calcium of the medium as outlined in the Methods (4.1-4.2). It was hypothesized that as the epithelial 

differentiation proceeded, the HPV early gene expression would be downregulated concomitantly with 

upregulation of late gene expression, as described previously (Yasumoto 1989). Interestingly, as the 

calcium concentration rose, IHGK cells gained a growth advantage, proliferating well in up to 1.8mM 

calcium, considerably over the so-called “calcium switch” where keratinocytes start to differentiate when 

exposed to over 1mM calcium (Hennings et al. 1980). This contrasted with the HPV-negative oral 

keratinocytes (HMK) that ceased to proliferate at 1.8mM calcium and died, likely via senescence, by 

days 6 and 3 of the 9-day experiment at 3mM and 4mM of calcium. Although senescence was not 

analyzed per se, the cells begun detaching from the culture flasks displaying polygonal, terminal 

differentiation-related morphology. UD-SCC-2 cells reacted similarly: proliferation slowed after 1.8mM 

calcium and halted after 3mM. Higher concentrations resulted in cell death. E6 and E2 were similarly 

upregulated in high-calcium concentrations (Figure 15, E2 not shown). Preliminary studies using 

DMEM and KSFM from 0mM to 6mM calcium also showed an almost linear upregulation in E6 

expression from 2mM concentration upward (data not shown). This work was the first to describe the 

increased expression of E6 and E2 due to calcium. This likely resulted in resistance to differentiation-

related senescence and enables proliferation in the presence of differentiation-inducing signals (I). 

Confluence may be sufficient to trigger the differentiation program in keratinocytes (Kolly et al. 2005). 

In the present study, most of the cells reached confluence by the end of the study at day 9. Despite this, 

involucrin expression, a marker for terminal differentiation, was upregulated only in cells grown in a 

high-calcium medium. It has been reported that transforming HPV16 infection utilizes E6 in order to 

suppress Notch1 via p53 inhibition. This enables keratinocyte proliferation at high cell densities. It 

appeared that E6 plays a dominant role in nullifying the effects of cell-cell contact-related signaling and 

its inducing effect on keratinocyte differentiation. Therefore, elevated E6 is likely to play a significant 

part in resistance to differentiation and, by extension, the progression of high-risk HPV lesions toward 

malignant transformation. 
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Figure 15: HPV16 E6 and involucrin expression in different calcium 
concentrations (I). The expression levels of E6 or involucrin, a differentiation marker, in 

different medium calcium concentrations for monolayer-cultured UD-SCC-2 cells and IHGK 

cells at day 9 after exposure to calcium are presented. * = p<0.05 compared to result without 

calcium. Dashed line = E6 expression. Solid line = Involucrin expression. 
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5.2 Effects of HSV-1 and irradiation on gingival keratinocytes 
 
HMK cells were infected at a low MOI (0.0001-0.00001) corresponding to 20 to 2 pfu at day 0 per 

culture plate in order to introduce a progressive HSV-1 infection to the cultures that would enable 

detection of the effects of a low-grade HSV-1 infection (i.e. cells still viable in 6 days whereas a high 

MOI would likely destroy the cells) (II). In most published experiments concerning HSV-1, the viral 

stock is used at several-fold higher concentrations than used in our studies. This introduces HSV-related 

exosomes to the cells that could alter their responses (Kalamwoki & Deschamps 2016). Therefore, one 

advantage of our studies is that due to the use of low MOI, smaller amounts of soluble contaminants 

from the virus stock are added to the cell culture. The infection progressed during the experiment and 

practically all the cells infected by the higher MOI were infected by 144 hours of analysis, as was proven 

by the HSV-1 gC staining (II). The lower MOI resulted in around 50% positively staining cells. 

However, because gC is a late gene, the total number of cells infected was likely higher, as more recently 

infected cells would express only early genes. Irradiated HMK cells displayed transiently elevated 

NFkappaB1 and Bcl-2 mRNA expression, consistent with the literature, but most expression level 

alterations faded during 6 days in culture. Caspase 8 is blocked by HSV-1 ribonucleotide reductase but 

functions actively in determining the apoptotic or necroptotic death of the infected cell (Guo et al. 2015). 

Caspase 9 can be blocked by the PI3K-Akt pathway, activated by HSV-1 (Liu & Cohen 2015). In the 

presence of HSV-1 infection 6 days after irradiation, HSV-1 combined with irradiation significantly 

lowered the expression of caspases 3, 8 and 9 and coincided with a relative upregulation of Bcl-2 and 

NFkB1 compared to nonirradiated HSV-1 infected HMK cells (compare these effects with the pathway 

seen in Figure 6). Simultaneously, cell viability was significantly higher than in nonirradiated cultures. 

Interestingly, downregulation in caspases was only seen in irradiated HSV-1 infected cultures. Therefore 

HSV-1 might confer radioresistance to infected human gingiva cells and expose them to further DNA 

damage after irradiation, should the cell resist apoptosis due to infection. Table 8 compares the means of 

the results from HMK, UD-SCC-2 and HaCat cells (II,III) with the results from their respective untreated 

control cells. 
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Table 8: Expression of mRNA (qRT-PCR) and protein (IHC) in oral keratinocytes, 
skin cells or HPV16-positive HNSCC cells caused by HSV-1 infection and/or 
irradiation (II and III). Green signifies downregulation/decrease in level 

(immunohistochemical detection of >5% change from untreated). Red signifies upregulation or 

increase. Blue represents no change. White represents unavailable data. Light red or green 

signifies up or downregulation trends that are not statistically significant but may be of interest. 

The upper row of triangles contain mRNA and the lower row (colored triangles) contain the 

immunocytochemical data. If only mRNA expression data is available, a solid square is used. 
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HSV-1 seemingly functioned to decrease apoptotic gene expression in these cells after irradiation. At the 

same time, after HSV-1 infection, nonirradiated cells displayed lower Bcl-2 and higher caspase 3 and 8 

expression. NFkappaB1 and caspase 9 were not altered. The Bcl-2 oncogene has been previously shown 

to be rescued from downregulation in HSV-1-infected cells exposed to the cytotoxic agent cisplatin, 

putatively via ICP27 and ICP4 (Zachos et al. 2001). Here it was shown that HSV-1 infection resulted in 

higher Bcl-2 levels in irradiated cells after 144 hours, which might increase cell survival. In contrast, 

uninfected cells displayed non-significant changes due to irradiation. These cells were genetically 

abnormal (Table 5) and so may have alterations in their responses to viruses: further experimentation 

was therefore performed on HMK cells after determining that some viability increases can also be noted 

after irradiation in the absence of HSV. UV-inactivated HSV-1 virus stock was used to infect the cells. 

These cells did not display lytic HSV-1 effects but the highest viability ratings in the series were 

observed. In addition, it seemed that these inactive viral particles likely enabled the cells to increase their 

radioresistance (II). Moreover, inactive viruses may trigger the keratinocytes' innate immunity responses, 

leading to the NFkappaB1 upregulation that is known to increase resistance to apoptosis and radiation 

(Veeraraghavan et al. 2011). In the present study, NFkappaB1 was upregulated by HSV-1 infection 

and/or irradiation, although 144 hours after irradiation, the effect was still present only in cells irradiated 

and infected with 0.0001 MOI. Inactivated HSV-1 has been shown to transform cells in vitro (Michútová 

et al. 2017). As HSV-1 can be inactivated by other common factors such as snuff via its antiapoptotic 

proteins ICP4 and -27 (Larsson et al. 1992), the effects observed here due to UV-inactivated HSV-1 

could theoretically happen in vivo as well. In the future, additional studies concerning bystander reactions 

to epithelial HSV-1 infection could reveal whether the epithelial cells surrounding the HSV-infected cells 

are affected. These results could explain the previous results of HSV-related cell transformation in vitro 

where, although HSV-1 is known to increase genomic instability and mutation rate (Shillitoe et al. 1993), 

transformation by HSV-1 in vivo seems to be rare. Lastly, as HSV-1 has been only weakly linked to lip 

carcinomas in smokers (Blomqvist et al. 1991) it seems plausible that complete carcinogenic change is 

unlikely without cofactors.  

 

It has been noted that radiographic exposure, even panoramic radiography (Waingade and Medikeri 

2012), is sufficient to bring about genomic alterations in oral cells. Should these alterations remain long-

term, these alterations may push the cells further toward malignant change, especially if the patient 

suffers from premalignant conditions in their oral mucosa that likely contain aneuploid cells (Islam et al. 

2010), as used in the present study. As asymptomatic HSV-1 infection is a distinct possibility in these 

patients (Jain 2016), the findings presented here further emphasize the rational use of X-rays in clinical 

practice. It can be concluded that for immortal oral epithelial cells, HSV-1 will most likely not lead to 

carcinogenesis alone, but when combined with exposure to irradiation, may function to increase cell 
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survival, evasion of apoptosis and therefore potential carcinogenic change, the clinical relevance of 

which needs further study. 

5.3 Effect of HSV-1 and irradiation on skin keratinocytes 
 
The effects of HSV-1 and irradiation were studied in the HaCat monolayers as control cells to the head 

and neck mucosal keratinocytes. HSV-1 caused infections similarly in HaCat cells as in HMK cells (II). 

HSV-1 did, however, significantly lower the viability ratings of HaCat cells, whether irradiated or not, 

and radiation exposure also caused viability losses (Figure 16). This is in contrast to HMK cells, in 

which even higher viability was observed, particularly after combined exposures (Table 8). 

 

 
Figure 16. Viability of HaCat cells, infected (+HSV) or mock-infected with 0.0001 MOI HSV-1, 

144 hours after irradiation with 2Gy (+ 2Gy). Error bars are standard error margins from 

triplicate analyses of a minimum of triplicate cultures.  
 

HaCat cells seem to display more "normal" responses to increasing cytotoxic insults, such as HSV-1 and 

radiation, when compared to the other cell lines from the head and neck studied. Cell viability is lowered 

by HSV-1 or irradiation and further by a combination of these. Radiation with 2Gy has been proven to 

lower HaCat cell viability (Assad et al. 2018) as well as infection with a low-MOI HSV-1 (Megyeri et al. 

2009), supporting our findings. Therefore it can be concluded that skin keratinocytes, the most common 
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targets for HSV-1, harbor properties that make them permissible for HSV-1-induced cytopathic effects, 

thus enhancing viral spread.  

5.4 Effect of HSV-1 and irradiation on HPV16 positive HNSCC cells  
 
UD-SCC-2 cells are hypopharyngeal carcinoma cells harboring 600 integrated HPV16 genome copies 

per cell. The cells are sensitive to radiation and 2Gy lowers the survival of UD-SCC-2 cells to around 

10% (Sørensen et al. 2013). Therefore the cell line was chosen for the experiments. In the present work, 

2Gy of irradiation lowered the viability to 75%. These differences likely relate to the irradiation 

procedure, with our cultures being irradiated with a faster protocol (3Gy/min compared to 0.58Gy/min) 

and analyzed with a viability (ATP) assay rather than a clonogenic assay, as cells might retain more of 

their viability but still lose efficient growth of new colonies after irradiation. Disregarding these 

differences in methods, it is certain that UD-SCC-2 cells, like most HPV-positive carcinoma cell lines, 

display sensitivity toward radiation, and this corroborates with clinical experience gained from treatment 

of these HPV-positive tumors (Lindquist et al. 2007). HPV-positive cells are known for their E6-

mediated loss of p53 (Scheffner 1993). Kimple et al. (2013) showed that HPV-positive carcinomas 

contain low amounts of residual p53 which are sufficient to cause apoptosis via caspase 3 after 

irradiation with 2 Gy, similar to the present study, which could explain the mechanism of radiosensitivity 

in these cells. Interestingly, in this study, the UD-SCC-2 E6 and E7 mRNA levels were both 

downregulated 144 hours after irradiation, coinciding with increased apoptosis. This could mean that 

radiation-mediated lowering of E6 levels allows the residual p53 levels, as postulated by Kimple, to 

elevate sufficiently to trigger apoptosis via caspase 3. More studies need to be performed to validate this 

finding. 

  

Meyers and coworkers (2003) reported that HSV-1-infected HPV-positive tissue (raft) cultures sustained 

a lytic infection that did not destroy the culture, instead leading to cyclical replication of HSV-1 in the 

epithelium. HPV infection prevented the complete destruction of the epithelium, likely via the expression 

of its oncogenes. The UD-SCC-2 cells described here, although cultured as a monolayer, enabled 

relatively higher HPV-E6 and E7 oncogene expression in HSV-1 infected cells compared to uninfected 

irradiated cells (III, Table 8). Moreover, after combined exposure to irradiation and HSV-1, the UD-

SCC-2 cells presented with a lower expression of apoptotic proteins than after irradiation or infection 

separately. Caspase 3 showed the most striking results, as the cultures irradiated with 2Gy and infected 

with HSV-1 displayed less cells staining positive for activated caspase 3 than those with either treatment 

alone. In addition, the mRNA expression coincided with the results of the immunocytologic analysis 

(Figure 17). Simultaneously, the number of cells staining positive for Cyclin E was highest in the 

irradiated and infected cultures. MDM2 staining was lowest in HSV-1 infected cells although the 

combined exposure lead to higher levels than in control cultures (IV). These results support the Meyers’ 
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(2003) conclusions, suggesting HPV oncogenes might aid HSV-positive cells to resist apoptosis and 

perhaps could increase the possibility of abortive HSV infections leading to malignant change.  
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Figure 17.  
A) The effect of irradiation with 2Gy and 0.0001 MOI HSV-1 on activated caspase 3 
protein expression in monolayer cultures UD-SCC-2 cells infected with HSV-1. Results 

from 144 h postirradiation (III). Irradiation leads to increases in activated caspase 3, prevented 

in HSV-1-infected cultures. The photomicrograph is modified from Original publication III with 

permission. B) Quantification of activated caspase 3, described as a percentage of 

positive cells in different groups, seen in A). C) Quantification of caspase 3 mRNA 
expression by qRT-PCR in HSV-1 infected cells after irradiation. Upregulation in caspase 3 

mRNA expression is seen in uninfected irradiated cells (p<0.05; *=compared to control, ¤= 

compared to infected and irradiated cells). 
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5.5 Effect of irradiation on HSV-1 replication 
 
Irradiation has been postulated to inactivate HSV-1, and ionizing radiation itself is able to deactivate 

viruses, herpesviruses included (Henderson et al. 1978). It has also been shown that inactivated HSV-1 

has oncogenic potential (Duff & Rapp 1973, Henderson et al. 1978). This could imply that the increases 

in viability and downregulation of apoptotic gene expression observed in irradiated and HSV-1-infected 

HMK and UD-SCC-2 cells result from inactivation of HSV-1 due to irradiation. However, this study 

revealed that at 2 Gy intensity, high-energy X-rays are not sufficient to significantly reduce HSV-1 

spread and infectivity in a monolayer cell culture of HMK or UD-SCC-2 cells (Original publications II 

and III). Although inactivated viruses were also capable of increasing viability in irradiated HMK cells, it 

seems that virus inactivation due to irradiation is not the sole mechanism able to increase the viability of 

HSV-1-infected cells (II). 

5.6 EBV DNA detection in head and neck carcinomas (IV)  
 
EBV has been detected in several HNSCC types from different anatomical locations. Here, we analyzed 

73 HNSCCs with PCR where Epstein-Barr virus DNA was detected in 80% of lipSCCs, 66% of OSCCs, 

88% of NPCs, 63% of OPSCCs, 78% of HPSCCs and 63% of LarSCCs. EBV DNA was therefore 

present in a majority of all HNSCC samples. The presence of EBV DNA in HNSCCs has been studied 

previously, with varying results: EBV was present in 59.5%, 95%, 79.5%, 64% and 50% of OSCCs, 

NPCs, OPSCCs, HPSCCs and LarSCCs respectively in a Japanese cohort (Deng et al. 2014), similar to 

our findings. Therefore, EBV is a common occurrence in PCR analyses of HNSCCs, although with 

varying prevalence rates worldwide. These alterations are likely due to differences in patient 

demographics, as detection methods (PCR or nested PCR) are fairly consistent in the literature, but also 

susceptible to contamination, which could increase the number of positive samples reported worldwide. 

 

The prognosis was not altered by the presence of EBV DNA in the HNSCC samples analyzed (IV). This 

result was partially supported by the recent results of Foltyn et al. (2017) who described EBV DNA 

presence in 52.7% of oral and laryngeal cancer samples with nested PCR. The histological grade of oral 

carcinomas, size and overall number of deaths was also smaller in EBV DNA-positive than -negative 

cases (IV). This might seemingly contrast with the main observation of worse outcomes after EBER-1 

RNA detection in tumor cells (discussed below). However, as stated previously, in PCR-positive ISH (in 

tumor cells) negative cases, the EBV signals are likely detected from lymphocytes. With the presence of 

tumor-infiltrating lymphocytes, the overall survival of patients is improved significantly in HNSCCs (de 

Ruiter et al. 2017). However, additional B-lymphocytes increase the probability of EBV DNA-positive 

cells in the tissue and hence, higher probability of EBV detection. This might lead to the observed better 

prognostic parameters in EBV DNA-positive HNSCCs.  
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5.7 EBER-1 RNA and LMP-1 detection 
 
Using ISH for EBER-1 in HNSCC patient samples (n=73), overall 21% were positive for EBER-1 with 

ISH (IV). These tumors presented with a significantly lower DSS than their EBER-negative counterparts 

(Kaplan-Meier analysis, p=0.012). Unsurprisingly, NPCs presented with intense staining in all but one 

case, in which staining was not uniform, although still present. EBER-1 expression was found in a 

subpopulation of cancer cells in eight cases, of which one was NPC, two tonsillar, one hypopharyngeal, 

two laryngeal and two tongue carcinomas (Original publication IV). This is in contrast to the majority of 

carcinomas being positive with PCR, as discussed in the previous chapter. 74% of ISH-positive 

carcinoma samples were positive with PCR. Recently it was suspected that false positive findings were 

common in the EBER-ISH of oral tongue carcinomas, as PCR revealed no EBV genomes and 

immunohistochemistry for the EBNA-1 protein was negative (Wilms et al. 2017). In contrast, our 

patients presented with several simultaneously EBER-1 (ISH), -DNA (PCR) and LMP-1 (IHC) positive 

cases, two oral (Figure 18), one laryngeal and one tonsillar carcinoma. Due to the positive findings in 

several different analyses, these are certainly true positives. This study therefore showed that EBV can be 

found in non-nasopharyngeal HNSCCs, and lead to worse DSS. This is likely explained by the inclusion 

of additional head and neck areas in this study. Interestingly, Jiang and coworkers (2015) detected a 

similar discrepancy between samples presenting PCR negativity toward EBV, although expressing 

EBER-1 RNA. These samples were laser-capture microdissected from locations of EBER-1 ISH 

positivity and further qRT-PCR revealed these cells to be EBER-1 RNA-positive as well. Therefore, 

nonuniform ISH staining is most likely not a marker for false positivity and could result in 

underreporting of EBV detection. In conclusion, the presence of EBV-ISH signals in carcinomas must be 

confirmed by PCR and protein expression where possible. For comparison, for a head and neck 

carcinoma to belong to the HPV-attributable fraction, the detection of HPV DNA alone is concurrently 

considered insufficient and additional validation is required such as E6/E7 mRNA or p16-IHC. Similarly, 

further research into EBV-specific markers and their use in clinical cohorts will also clarify what 

attributable role, if any, EBV plays in non-nasopharyngeal HNSCCs worldwide. 
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Figure 18: Carcinoma of the oral tongue expressing EBER-1 and LMP-1. EBER-1 

expression (purple, a and b, arrowheads) is restricted to tumor islands infiltrating connective 

tissue. Eosin is used as background staining (a, b). LMP-1 (brown staining, c and d) is 

simultaneously expressed in a number of carcinoma cells, counterstained with hematoxylin 

(blue). This carcinoma was also positive for HPV 6. Original magnification a-c 200x, d100x. 

Original image published by Turunen et al. Oncotarget 2017, distributed under the terms of the 

Creative Commons Attribution 3.0 License (CC-BY) (IV). 

  
Recently, She and coworkers (2017) performed a meta-analysis of EBV detected in oral squamous cell 

carcinomas (OSCCs) compared to normal oral tissues. They concluded after an extensive review that the 

OR between EBV and OSCC risk was 5.03 and therefore EBV could increase the risk for oral 

carcinomas. However, despite trying to control confounders by only including tissue samples, most of 

these results were also based on PCR analysis of whole-tissue samples that are no doubt inflamed 

significantly more than the normal tissues used as controls due to the likely ulceration and subsequent 

inflammation of oral tumors. Out of 13 included articles, two used LMP-1 immunohistochemistry 

(Shamaa et al. 2008, Kis et al. 2009) but Kis and coworkers found no positive samples with LMP-1, 
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whereas Shamaa and coworkers detected LMP-1 in heterogenous OSCCs and oral premalignancies. Two 

original publications used EBER-1 in situ hybridization (Kikuchi et al. 2016, Shimakage et al. 2002), 

Kikuchi et al. found a high prevalence of LMP-1 and EBER-1 expression in severe dysplasias (72% and 

94.4% respectively) but less in OSCC (38.7% and 34.7%, respectively). In our study, LMP-1 staining 

was detected in carcinoma cells of 85% of all carcinomas (n=62, original publication IV) and EBER-1 in 

21%, as stated above. LMP-1 was also positive in all EBER-1 ISH-positive carcinomas and in 

lymphocytes in 42% of samples. Statistical analysis revealed no statistically significant effect of LMP-1 

expression on prognosis, grade or stage on any HNSCC type analyzed. Interestingly, it was more 

common to detect LMP-1 in the invasion front of the carcinoma, whether in lymphocytes (29% of 

carcinomas positive) or carcinoma cells themselves (48% of carcinomas analyzed). Figure 18d 

demonstrates one example of the localization of LMP-1 staining in which cells invading from the larger 

tumor bulk express LMP-1 whereas those in the tissue otherwise do not. LMP-1 can contribute to cell 

survival by the activation of NFkB1 and induction of cancer stem cell-like properties and is linked to 

EMT of carcinoma cells (Kang & Kieff 2015). All of these functions could result in LMP-1-expressing 

cells acquiring a more invasive phenotype, explaining their presence in the invasive front of these 

carcinomas, histologically important in the prognosis of HNSCC (Almangush et al. 2018). However, the 

LMP-1 expression pattern was not statistically associated with the DSS of the patients in this work (IV). 

This may result from the low number of patient cases, and the intriguing observation of LMP-1 

localization clearly requires further study. 

 

EBER-1 has been linked to increasing levels of epithelial abnormality: Jiang and coworkers detected an 

increasing likelihood of EBER-1 expression with worsening dysplasia grades until OSCC, compared 

with normal oral epithelium (Jiang et al. 2012). Their later analyses further confirmed this, as EBER-1 

was detected in 27% of base-of-tongue and 37% of tonsillar carcinomas compared to 7% and 15% in 

their normal tissue counterparts (Jiang et al. 2015). It is interesting to note that this study also detected 

expression of both EBER-1 and LMP-1 only in a subpopulation of carcinoma cells, similarly as 

observed. Altogether these data suggest that firstly, LMP-1 immunohistochemical detection only may be 

unreliable as a marker for EBV-attributable carcinomas, as positivity ratings vary significantly. Second, 

EBER-1 is likely a more reliable marker for EBV-related disease, but this too seems in need of further 

study. At any rate, the anatomical detection of EBV oncogene expression seems mandatory for the 

proper analysis of relationship between EBV and non-nasopharyngeal HNSCCs. 

5.8 LMP-1 in nonmalignant tissues 
 
Our study also showed LMP-1 expression in the dysplastic epithelia next to head and neck carcinomas 

(Figure 19). This interesting finding needs further analysis, as EBV carries a potential for further 

malignant changes of the epithelium, and one reason for local HNSCC recurrences is premalignant 
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epithelium surrounding the carcinoma. EBV has been detected in oral epithelial premalignant lesions 

(Shamaa et al. 2008) and its presence was more frequent in dysplastic tissues than in normal epithelium 

(Jiang et al. 2012). Hypothetically, EBV infection of a dysplastic epithelium could also function as a late 

step in carcinogenesis, initiated by carcinogens such as tobacco smoke. This could set the epithelial cells 

further down the carcinogenic pathway, and therefore the analysis of EBV in premalignant tissues would 

be of interest in the future. 

 

 
Figure 19. EBV LMP-1 staining. A) Positive EBV LMP-1 staining is seen here in invasive buds 

of a tongue carcinoma also harboring HPV6. B) In this area of severely dysplastic epithelium, a 

zone of LMP-1 staining is seen. Occasional positively staining lymphocytes can also be easily 

detected. C) LMP-1 staining seen in otherwise normal salivary duct epithelium in the vicinity of 

an invasive carcinoma. Positivity to LMP-1 stains brown, cell nuclei blue (Hematoxylin staining). 
 

5.9 LMP-1 did not affect HNSCC prognosis 
 
Contrary to recent meta-analysis by Chen and coworkers (2015), and despite the fact that LMP1 is a 

powerful oncogene which provides significant radioresistance to NPC cells (Yang et al. 2014), we did 

not establish LMP-1 as a prognostic parameter of HNSCC or with an SCC histological grade (Original 

publication IV). NPCs were also unaffected by LMP-1 expression patterns. This explanation may either 

be technical, since LMP-1 staining was not completely in agreement with EBER-1 expression and the 

sample size did not allow for sufficiently powerful statistical analysis, or LMP-1 expression does not 

always reveal the true carcinogenic potential of EBV infections, as EBV has oncogenic potential 

unrelated to LMP-1 expression. Yoshizaki and coauthors postulated that LMP-1 expression in cancer 

stem cells may remain undetected in histological examinations and could play a role in cancer 

progression. As 50% of advanced NPCs may not express LMP-1, it remains to be determined whether 

LMP-1 expression in carcinoma cell subpopulations affects HNSCC in a significant way (Yoshizaki et 

al. 2018). 
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5.10 HPV detection in head and neck carcinomas  
 
HPV types were detected in 73 HNSCCs using Luminex-PCR (IV). Overall, high-risk and low-risk HPV 

were prevalent (Table 8, IV). As HPV DNA detection has recently been rigorously evaluated in a 

worldwide patient cohort (Castellsague et al. 2016), and a high-quality meta-analysis has previously been 

performed from worldwide data (Ndiaye et al. 2014), a closer examination of this data was therefore of 

interest (Table 9).  

 
Table 9. HPV prevalence Original publication IV compared to the ratings reported by 

Castellsague et al. (2016) and from the meta-analysis by Ndiaye et al. (2014) that reports all 

HPV types combined. Results from Northern Europe are shown from Ndiaye et al. (2014) and 

when unavailable, pooled results from Europe are shown as (E). n/a = data unavailable. 

 Original 
publication IV 

Castellsague 2016 Ndiaye 2014  

 

HR-

HPV 

LR-

HPV  
n  HR-HPV LR-HPV n  

HPV 

(any type) 
n  

LipSCC 80%  80% n=5 4.8% 2.3% n=42 0-4% (E)  n=50  

OSCC  52%  43% n=24 7.4%  0%-1.4% n=1222 14%  n=494  

OPSCC  47%  11% n=19 24.9%  0%-2.1%  n=1090  57%  n=890  

HPSCC  55%  22%  n=9  3.9%  0%  n=127  22% (E)  n=173  

LarSCC  50%  0%  n=8  5.7%  0%-1.9%  n=1042  12%  n=362  

NPC  38%  13%  n=8  7.9%  0%  n=101  n/a  n/a  

 

  
High rates of HPV were found in our study. The results are most in agreement in oropharyngeal 

carcinomas and least in carcinomas of the lip and larynx, where the number of cases was also the lowest. 

PCR and Multimetrix-HPV genotyping data was used here, whereas SPF-10 PCR and a DNA enzyme 

immunoassay with further E6 mRNA detection were used by the Castellsague group and various PCR 

techniques in the meta-analysis by Ndiaye. These methods, utilized on samples from around the world, 

may lead to differences in results. In addition, Castellsague et al. gathered FFPE blocks from different 

locations, whereas the results observed in (IV) were from frozen samples. This could allow for better 

detection rates; however, the differences observed are not necessarily purely technical in nature. 

Although contamination of PCR products is always a possibility, the frequent inclusion of negative 
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controls in each 9 wells of plates analyzed makes this unlikely. Another explanation, as recently reported 

by Anantharaman and colleagues (2017) is that HPV detection rates show wide geographical 

heterogeneity, ranging from 60% in oropharyngeal SCCs from the US to 4% in their Brazilian 

counterparts, for example. HPV incidence has risen in Finland, and in the analysis by Castellsague and 

coworkers, Northern Europe showed the highest HPV DNA-prevalence (11.6%) in oral cavity 

carcinomas. The meta-analysis by Ndiaye and coworkers showed pooled HPV DNA positivity from 

Northern Europe (Ndiaye et al. 2014) and their results are more in line with the ones observed here (IV). 

Up to 31.3% of oral HPV positivity was reported in healthy Finnish subjects previously from the same 

hospital district, using the same method as used here (Kero et al. 2016). Therefore our hospital district 

area may demonstrate comparatively high oral HPV positivity compared to worldwide data, but its effect 

on HNSCC requires further study.  

 

The description of "oral HPV" is a constant problem in the literature. The oral cavity contains many 

subsites, such as the gingiva, palate or floor of the mouth, all of them different tissues, but most studies 

pool all subsites together under OSCC. Worse yet, many include base-of-tongue (OPSCC) or even 

oropharyngeal sites such as the tonsils in "oral cancer," making pooled analyses such as meta-analyses 

difficult to interpret. Lastly, laryngeal carcinomas from Europe presented with around 30% HPV DNA 

prevalence in a recent meta-analysis of 179 studies (Gama et al. 2016), also more in line with our study. 

Therefore, our results may be explained by the differences in Finnish HPV prevalence ratings than those 

averaged from worldwide analyses.  

  

In the current study, LR-HPVs 6 and 11 were detected in the same dataset (IV), being present in 24% of 

all HNSCCs taken together (Table 9). Low-risk HPV infections have been generally considered 

insignificant to HNSCC development and progression and have been detected in up to 17.9% of oral 

carcinomas (reviewed by Miller and White as early as in 1996). Despite these views, low-risk HPVs have 

been associated with malignant transformation of cells in vitro (Schmitt et al. 1994). LR-HPV types 6 

and 11, especially, have been linked with the transformation of laryngeal papillomas (Lindeberg et al. 

1989). More recently, LR-HPVs were associated with poor DSS and OS in oral cavity carcinoma patients 

in a large Taiwanese cohort, which also showed increases in LR-HPV prevalence (Lee et al. 2013) In the 

future, it also seems of interest to analyze the effect of LR-HPVs on HNSCC treatment responses. 
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5.11 HSV-1 in head and neck carcinomas  
 
HSV-1 was detected in only a few oral and oropharyngeal carcinomas (4-11%) (IV). Therefore, the 

impact of HSV-1 on HNSCC treatment likely affects only a minority of patients, although potentially 

leading to radiation resistance. One possibility is that as conventional PCR has been shown to potentially 

miss 2/3 of HSV-1 infections in specific settings, our results may underestimate HSV-1 prevalence and 

future research might further benefit from qRT-PCT analyses (Aggarwal et al. 2014). However, the 

overall high percentage of oral and oropharyngeal SCC cases compared to all HNSCCs signifies that 

despite being in the minority, HSV infections may yet affect a number of patients with HNSCC.  

 

As stated previously, HNSCCs are treated with radiotherapy, given as 2 Gy fractions to patients often on 

a daily basis that continues for several weeks. No effect on HSV-1 replication was noted in our cell 

culture studies after 2 Gy of X-ray irradiation, as stated previously. Also, 2 Gy X-ray irradiation may 

enhance HSV-1 replication if it coincides with the temporal switch from beta to gamma gene expression 

(Advani et al. 2011). Therefore, HSV replication is not likely fully prevented by 2 Gy of irradiation. As 

HSV might confer protection from apoptosis via, for example, ICP4 and Us3 gene product, as 

demonstrated by Galvan and Leopardi (Galvan et al. 1999, Leopardi et al. 1997) whether this might alter 

the clinical properties of HSV-1-infection in settings of irradiation requires further study. In addition, a 

recent observation linked the mannose-6-phosphate pathway, downregulated by HSV-1 gD (Zhou & 

Roizman 2002), with inhibition of the insulin-like growth factor 2 signaling, leading to poor 

radioresponse in HNSCC patients (Jamieson et al. 2003), further suggesting the possibility that HSV-1 

alters these responses in vivo as well.  

 

The oncogenic potential of HSV-1 has been reviewed by Metgud and colleagues (2012). To summarize, 

the carcinogenic properties of HSV-1 are not comprehensively known, but include abortive infections, 

hit and run-type mutagenesis of the host cell genome and cocarcinogenesis with other viruses such as 

HPV or EBV. These could explain the small minority of HSV-1--positive patients who we observed to 

suffer from treatment resistance (IV). This hypothesis however suffers from the fact that these few 

patients in our study also had coinfections with either EBV, HPV or both (see below). Nevertheless, 

high-dose X-ray irradiation is able to inactivate HSV-1 as well as EBV, and therefore shut down their 

proapoptotic features (Henderson et al. 1978). Theoretically this could then allow the antiapoptotic 

cellular effects of HSV-1 and innate immunity reactions triggered by the virus to persist. As the number 

of HSV-1 -positive HNSCC patients is low and coinfections with other viruses common, further research 

into the potential prognostic effects of HSV-1 as single or coinfections in HNSCC is certainly 

challenging, although of the utmost importance. 
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5.12 Coinfections in HNSCC 
 
Several synergetic effects between herpesviruses and HPVs have been discovered in cell cultures. The 

EBV oncogenes LMP-1, LMP-2A, EBNA1 and BARF1 (already discussed in the literature review) result 

in inactivation of the key tumor suppressor genes p53 and pRb, which interestingly are the targets for 

HPV E6 and E7 oncoproteins as well. As early as in 1998, HPV was linked to EBV-positive NPCs in 

52.9% of patients of Western origin (Rassekh et al. 1998) where EBV was present in 88.2% of NPCs, 

much like in our study, where 87.5% were EBV-ISH-positive and 38% coinfected. Recently, EBV/HPV 

coinfections were not detected in a Finnish NPC cohort, and EBV or HPV individually led to better 

disease outcomes (Ruuskanen et al. 2019). When their results are considered, the observed lower survival 

ratings presented herein most likely result from non-nasopharyngeal HNSCC patients in which the worst 

DSS was found due to EBV/HPV coinfections. In a recent review of EBV/HPV coinfections, Shi and 

coworkers stated that the probability of a patient to be infected with both viruses in many different 

carcinomas of the body is increasing (Shi et al. 2016). In addition, EBV and HPV have been detected 

with PCR in 46% of NPCs (Tyan et al. 1993), similarly as in our study (38%). The more recent analysis 

done by Deng and coworkers (2014) revealed that approximately 22% of Japanese HNSCC patients had 

a coinfection with HPV/EBV of a total of 209 patients detected by PCR. However, only 10% of NPCs 

and no other HNSCC types were positive for both viruses using ISH like in our study, where 3/8 NPCs 

(38%) were positive for HPV types 16 or 16 and 11 (IV). Our results differ from those of Deng in the 

finding that HPV (DNA-positive) coinfections were present in overall 47% of all EBV-ISH (in 

carcinoma cells) positive patients (n=7/15, Table 10). Of these, HPV16 was by far the most prevalent, 

but types 6, 11, 31 and 56 were also found. The result does not contradict previous findings, as patient 

ethnicity and geographical location are known to affect NPC pathogenesis. A majority of HPV-positive 

NPCs are detected in Caucasian patients, whereas HPV is less common in Far Eastern patients 

(Punwaney et al. 1999, Robinson et al. 2013). 
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Table 10. EBER-1 positive carcinomas and their association with HPV (Original 
publication IV). EBV-in situ hybridisation (ISH detected in carcinoma cells) results and the 

HPV types present, as detected with Luminex PCR-assay, are shown. Coinfections with 

multiple HPV types were also found in select carcinomas.  

 EBV-ISH positive  HPV types present  

NPC (n=8)  7  HPV16 (n=2) 

HPV11&HPV16 (n=1)  

OPSCC (n=19)  2  0  

OSCC (n=24)  2  HPV6 (n=1)  

LipSCC (n=5)  0  0  

HPSCC (n=9)  1  HPV16 (n=1)  

LarSCC (n=8)  3  HPV16 (n=1) 

HPV31&HPV56 (n=1)  

 
 
Jiang and coworkers (2015) detected HPV/EBV coinfections in 25% of tonsillar carcinomas. They also 

detected HPV/EBV coinfections in 20% of base-of-tongue carcinomas using the same method, and 

concluded that the increased tumorigenic potential of these coinfections warranted further study. None of 

our patients with oropharyngeal carcinomas had HPV/EBV (EBV in carcinoma cells) coinfections. This 

could be due to geographical variation or differences in patient characteristics as stated above (Original 

publication IV). Our patient group had four cases in which HPV/EBV coinfections were detected in 

anatomically neighboring areas. This signifies that although uncommon, HPV/EBV coinfections are 

distributed widely in the head and neck area, with the possible exception of lip carcinomas, as no EBER-

1 expression was detected there. Although EBV-DNA was present in up to 80% of all HNSCCs studied, 

the number of cases was small and in need of future larger analyses. Overall, the conclusion of Jiang and 

coworkers was further supported, and it appears that EBV research needs to widen its focus away from 

NPCs to include other HNSCCs. In addition, contrary to what is occasionally reported in the literature, 

HPV and EBV infections are most likely not mutually exclusive, as coinfections between these viruses 

were found (reviewed by Shi et al. 2016). Lastly, our study (IV) detected no EBV, HPV or HSV-1 in 

only 11% of patient samples. This interesting fact implies that HNSCC studies must consider viral 

infections in their interpretation, as a majority of HNSCC tissues seem to contain at least one if not 

several viruses. 
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We described carcinomas that were EBER-1 or LMP-1-positive in only certain areas of the tumor tissues. 

Interestingly, this finding was also reported previously (Jiang et al. 2015). They also reported increased 

invasiveness of HPV/EBV coinfected cell cultures and attributed this change to LMP-2 and E6/E7-

oncogene coexpression. Importantly, the recent report by Cantalupo and coworkers (2017) analyzed 22 

different human cancers from 3052 patients using next-generation sequencing for genome, exome and 

RNA libraries. They showed that EBV genomes were present in only a subset of tumor cells in many 

suspected EBV-driven carcinomas. Furthermore, HPVs were present in around 20% of HNSCCs. 

However, the presence and active association in the form of LMP-1 alongside EBNA- and EBER 

expression in a fraction of HNSCCs was interesting. Moreover, HSV-1 was detected in a minority of 

HNSCCs. This corroborates our findings (IV), where EBER-1 and LMP-1 were clearly detected by 

staining only in a subset of invading carcinoma cells, and paves the way for future research.  

 

In HNSCC patients studied in (IV), if EBV DNA was found with HPV DNA using PCR, the survival 

time was highest, followed by virus-negative cancers (up to 90 months). However, a troubling finding 

was that DSS was significantly lower if combined HPV DNA-positivity and EBER-ISH expression was 

found in carcinoma cells (p=0.003). HPV/HSV-1 coinfection (PCR detection) had a similar effect 

(p=0.016). EBER-ISH-positivity in carcinoma cells led to a lower survival time (p=0.012) and detection 

together with LR-HPV or HR-HPV DNA, led to the shortest survival times (9 and 19 months, 

respectively). Tumor inflammation contains B-lymphocytes leading to EBV DNA presence and has been 

linked with favorable prognosis in HNSCC (De Ruiter et al. 2017). This could explain why different 

EBV detection methods led to different survival, observed here. Despite this hypothesis, it is not known 

which property is the cause: either certain HNSCCs harbor alterations that not only make them more 

susceptible to infections by viruses but also altering their clinical behavior, leading to worse treatment 

responses, or these herpesviruses in question are the cause for the development and possibly different 

clinical behavior of these tumors. It remains a priority to analyze larger numbers of HNSCCs to confirm 

these findings and determine what property of carcinomas coinfected with HPV/EBV or HPV/HSV-1 

could cause their clinical behavior to differ from other similar HNSCCs. 

 

EBV leaves lasting procarcinogenic effects on the epigenome of cells, even several passages after the 

virus has been lost from the culture (Queen et al. 2013). This interesting finding signifies that even if the 

infection itself is transient, EBV might still contribute to the oncogenic process via imprinting alterations 

on the epigenetic profile of the cell, suggesting a "hit and run" form of carcinogenesis (Queen et al. 

2013). As all herpesviruses share the same epigenetic traits, these effects may be present in HSV-1-

infected cells as well, reviewed by Galloway and Dougall as early as in 1983 (Galloway & Dougall 

1983). Herpesvirus-induced transformation could be indistinguishable from other causes of 
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transformation, leaving no trace of the previous exposure, as reported in vitro for HSV-1 (Hwang & 

Shillitoe 1990, Bauer et al. 1992). The controversial but plausible "hit and run" mechanism was later 

reviewed by Veronika (Veronika et al. 2018). Disappointingly however, no conclusive studies on these 

potential mechanisms have been conducted for over two decades, and the data are as yet inconclusive. 

 

Lastly, one would consider the oral environment in carcinogenesis and cancer progression. Interestingly 

lactoferrin, an antimicrobial protein present in saliva, has proven efficacy against EBV and HSV-1, and 

its levels have been reportedly downregulated in NPCs caused by EBV (Zheng et al. 2012). Radiotherapy 

could therefore predispose to persistent infections via hyposalivation and potentially increase the risk for 

cellular damage by EBV and HSV-1. This could be even further complicated, as HSNCC patients have 

difficulties in maintaining oral hygiene, increasing the prevalence of dental infections that may further 

increase HPV, HSV-1 and EBV replication as well (Chen et al. 2009). This could hypothetically lead to 

the observed nonmonoclonal detection of EBV should the carcinoma tissue be infected after disease 

initiation (Shah & Mehta 2016). In addition, HPV, EBV and HSV-1 are all modifiers of the immune 

system (Schmiedel & Mandelboim 2017) and, due to their potential in establishing life-long latency 

(Ermel et al. 2018), are implicated in oncogenesis via affecting the immune microenvironment of the 

head and neck, the further discussion of which is out of the scope of this thesis. Therefore the combined 

effects of HPV, HSV-1 and EBV may form fertile ground for cells to thrive and resist apoptosis, despite 

potentially oncogenic damage that would trigger apoptosis in the altered cells in uninfected situations 

(Alibek et al. 2014). 

5.13 Limitations of the studies 
 
Original publication I: Firstly, a high-calcium concentration might cause technical cell culture problems. 

The 5mM and 6mM calcium concentration in KSFM resulted in loss of cell cultures due to cell death. 

Moreover, from 3mM calcium upwards, the formation of calcium precipitations was observed. This may 

have affected the total amount of free calcium in the experimental medium, making the concentration of 

available free calcium in the medium difficult to estimate.  

 

Original publications II and III: Utilization of ATP assays for studies in cell death involving HSV-1 

requires the consideration of a key point: HSV-1 infection has been shown to increase the ATP content 

of the infected cell, which might be speculated to lead to falsely high viability ratings. Incidentally, the 

data from Peri et al. (2011) answers these concerns, as no significant increase in the viability of cells 

infected with different wt-HSV strains (KOS and F) at late infection time points was seen. Therefore, the 

amount of additional ATP generated by the HSV-1 infection is not sufficient to cause an upward bias in 

CellTiter-Glo results. One main issue with the cell culture experiments is that monolayer cultures lack 

the signaling present in 3D cocultures. In the future it would be useful to study these effects on 3D-
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culture models to determine if increased differentiation of cells and signaling from the connective tissue 

fibroblasts affect these findings. 

 

The "EBV-study" (Original publication IV) was limited due to HPV localization not also being studied 

using in situ hybridization, which would have allowed HPV/EBV coinfections to be colocalized. As the 

main aim was to detect EBV in carcinoma cells, we wanted first of all to see whether the null hypothesis 

held or was rejected. In addition, insufficient samples were available from the original work (Rautava et 

al. 2012) for analysis of the complete set. The comparison between these two works is therefore 

unsuitable statistically. Epstein-Barr virus has two subtypes which may possess different transformative 

properties. These two were not clearly differentiated by the EBER-1 probes. In addition, the EBV’s viral 

load was not studied, although it may have an effect on tumor properties. Lastly, low case numbers and a 

lack of complete information on confounding factors such as tobacco and alcohol consumption have led 

to a need for novel studies on the subject.  

  

 

 

 

 

 

 

 

 

 

 

 

 

31095537_Turun_yliopisto_Vaitoskirja_Aaro_Turunen_Laaketiet_tdk_sisus_19_04_25.indd   87 25.4.2019   8.26.11



 

88 

 

6. CONCLUSIONS 

These studies have revealed previously uncharacterized ways in which HPV and herpesviruses HSV-1 

and EBV might influence cell death in infected cells in vitro and in vivo. All these viruses share similar 

target cells, the keratinocytes of the head and neck mucosa, which, when transformed, are responsible for 

HNSCC. As normal keratinocytes grow as differentiating stratified epithelia, differentiation-inducing 

signaling is of paramount importance to the behavior of these cells and the life cycle of the viruses 

infecting them. For HPV16, it was shown how HPV oncogene E6 expression closely follows 

differentiation-inducing calcium signaling. It is already known that this same signaling would be 

triggered by HSV-1 in order to infect the keratinocyte and express its proteins (Cheshenko et al. 2013), 

whereas EBV requires calcium signaling to transform cells (Chami et al. 2006). Understanding of these 

mechanisms is key in developing novel therapies against these viruses. As described previously, these 

differentiating head and neck keratinocytes are exposed to irradiation from several medical sources. 

During the treatment of HNSCC, surrounding areas of keratinocytes are exposed to irradiation. These 

studies revealed how skin cells behave differently to immortal aneuploid (i.e. premalignant) oral 

keratinocytes where, contrary to skin cells, an increase in viability was found, especially in the presence 

of HSV-1 infection. Further evidence was found on observing the downregulation of apoptotic gene 

expression in these irradiated and HSV-1 infected cells. HPV16-positive HNSCC cells also, despite 

already well-characterized sensitivity to irradiation, showed reduced apoptotic gene expression and 

increased HPV16 oncogene expression after irradiation in the presence of HSV-1. EBV was also 

detected infecting HNSCC cells in patients with non-nasopharyngeal carcinomas in which HPV and 

HSV-1 are commonly found, and its detection was a sign of poor prognosis. Furthermore, EBV, HSV-1 

and HPV were then detected coinfecting a minority of HNSCC patients, leading again to a poor 

prognosis and shorter survival time in the context of radiotherapy, a previously undetected effect in 

Finnish HNSCC patients which necessitates further studies. Lastly, as these studies suggest, benign as 

well as malignant head and neck keratinocytes are exposed to several different viruses that may have 

profound cell type-dependent effects on their behavior, particularly after irradiation. It is therefore of the 

utmost importance to consider these potential effects when designing future studies on HNSCC 

development and treatment. 
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