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Abstract

The problem of the dynamics in open and correlated quantum systems has
gained attention in recent years due to the impressive experimental advances
that were made in quantum transport in molecular systems. The importance
of understanding and controlling molecular electronic and quantum transport
will soon lead to the realization of quantum technological devices that can be
integrated in the present silicon-based technology to make better and faster
circuitry. On a fundamental and theoretical level, one needs to take into ac-
count time-dependent processes where self-interactions within the parts of an
atomic or nano-scale system and interactions with macroscopic external envi-
ronments are the main cause for quantitative and qualitative changes on the
physical and dynamical properties of the quantum system itself.

This thesis aims at discussing the problem of transport in correlated open
quantum systems by using the non-equilibrium Green’s function approach for
describing in particular the effects of correlations in the charge and heat trans-
port dynamics. Unfortunately, because of the unusual two-times structure of
the integral formulation that characterized the theory, nowadays there are no
commercial software available to carry out the calculations needed to find its
solutions, and thus, dedicated software have to be self implemented and pro-
grammed. Hence, in the thesis, we first give an introduction of the overall
structure of the theory and then a detailed explanation on how to numeri-
cally implement tools for several operations on the non-equilibrium Green’s
functions, the construction of self-energies, and the solution of the integral
equations.

Furthermore, as the formalism allows for studying time-dependent transport
in interacting and arbitrary nano-scale systems coupled to wide band and
macroscopic leads, we present and discuss several applications when these sys-
tems are rapidly brought out-of-equilibrium with the application of electrical
and thermal biases. More specifically, we theoretically investigate transport
of correlations across quasi-crystalline structures and how charge and heat are
carried along nanoscopic junctions that span from quantum dots, quantum
nanowires and carbon nanotubes.
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Tiivistelma

Avointen ja korreloituneiden kvanttisysteemien tutkimus on saanut viime vuo-
sina paljon huomiota molekyylisysteemeissa tapahtuvan kvantti-kuljetuksen
kokeellisten edistysaskelten ansiosta. Molekulaarisen sédhkon- ja kvanttisiir-
ron ymmartidmisen tarkeys on sellaisten kvanttiteknologioiden toteuttaminen,
jotka voidaan integroida nykyisiin piipohjaisiin teknologioihin parempien ja
nopeampien piirien tuottamiseksi. Perustavanlaatuisella ja teoreettisella ta-
solla on otettava huomioon aikariippuvia prosesseja, joissa seké itseisvuoro-
vaikutukset atomi- ja nanokokoisten systeemien sisélla ettd vuorovaikutukset
makroskooppisten ymparistojen kanssa ovat ensisijainen syy kvanttisysteemin
fysikaalisten ja aikariippuvien ominaisuuksien laadullisiin ja maarallisiin muu-
toksiin.

Tama véitoskirja kéasittelee korreloituneissa avoimissa kvanttisysteemeissé ta-
pahtuvan kvantti-siirron problematiikkaa kéyttden hyodyksi epdtasapaino Gree-
nin funktioiden lahestymistapaa kuvaamaan erityisesti korrelaatioiden vaiku-
tusta varaus- ja lampdosiirron aikakehityksessa. Valitettavasti teorian karakte-
risoivasta integraalimuotoilun kaksiaikarakenteesta johtuen nykyéaén ei ole tar-
jolla kaupallisia ohjelmistoja jotka pystyvét suorittamaan laskuja ratkaisujen
16ytamiseksi. Siksi téata tarkoitusta varten tdytyy itse ohjelmoida siihen réaaté-
16ityjé ohjelmistoja. Tésta syystd tama vaitoskirja esittelee ensin johdannon
ja teorian péadpiirteisen rakenteen. Sen jélkeen késitelldédn yksityiskohtaisesti,
kuinka implementoida numeerisesti itseisenergiat, integraalimuotojen ratkai-
sut ja tyokaluja useita operaatioita varten epdtasapaino Greenin funktioille.
Sen liséksi formalismi mahdollistaa aikariippuvan siirron tutkimisen vuorovai-
kuttavissa ja mielivaltaisissa nanomittakaavan systeemeissd, jotka on kytket-
ty makroskooppisiin ja laajan transmissiovyon johtimiin. Esittelemme ja kéa-
sittelemme useita sovelluksia, joissa ndméa systeemit saatetaan nopeasti pois
tasapainosta kayttden sdhko- ja lampo-vinoumaa. Tarkemmin sanottuna tut-
kimme teoreettisesti kuljetusa ja korrelaatioita kvasikiderakenteita pitkin ja
kuinka varaus ja lampé kulkeutuvat pitkin nanokokoisia liitoskohtia, kuten
kvanttipisteité, kvanttinanojohtimia ja hiilinanoputkia.
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Chapter 1

Introduction

Non-equilibrium in broad and simple terms relates to every individual physical
system and phenomena that are far from the so called equilibrium, from Latin
aequi and libra, well balanced. The thermodynamic meaning of the latter con-
cept refers to the tendency for an isolated system to increase its entropy, or
disorder, when opposing forces or influences acting on it are balanced. Even
though everyone of us has learned that this is one of the most fundamental
aspects ever conceived in modern physics, we do not have to forget the partic-
ular circumstances that lead to this rared and privileged state. Indeed, there
are a plethora of physical and in particular biological systems that try to avoid
the equilibrium state. As was already suggested by Schrodinger in 1944 [1],
the very act of living by eating, drinking, breathing, is the perpetual effort to
stave off disorder for as long as we can manage. Beside its extremely impor-
tance in biology, the non-equilibrium dynamics are of fundamental interest in
various fields of physics, both, theoretically and experimentally. Frequently
these dynamics concern the physics of interacting quantum many-body sys-
tems, where the fundamental constituents of the system like electrons, atoms
or molecules, interact with external environments as well as with each other
and easily lead to non-equilibrium situations.

There is a large variety of excitation scenarios that drive a many-body sys-
tem rapidly out-of-equilibrium. These include excitation by strong laser pulses
from infrared to x-ray range in the electromagnetic spectrum [2—7]; pump—probe
spectroscopy that has evolved as a powerful experimental tool to probe the
time evolution of atoms, molecules and materials [8-11]; electrical and ther-
mal transport in correlated nanoscopic junctions for the realization of quantum
technological devices [12-18]. Another relevant experimental platform is rep-
resented by correlated atoms in optical lattices for which additional excitation
schemes have been developed [19-22]. Some of these techniques include rapid
changes of the pair interaction (interaction quench) via Feshbach resonance,
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rapid changes of confinement potentials (confinement quench) or periodic mod-
ulation of the lattice depth (lattice-modulation spectroscopy). In recent years,
all these methods have seen a rapid development via sophisticated and well-
designed experimental techniques that have allowed for accurate and precise
diagnostic of the time evolution of many-body systems.

Despite such a wide range of applications, the theoretical description of out-of-
equilibrium many-body systems still remains a challenging task that requires
extensive studies and developments in order to achieve detailed comparisons
and explanations with the experimental observations. The theoretical diffi-
culty arises because different and fundamental aspects of the many-body prob-
lem need to be included in the description. Some of these are the many-body
interactions, the inclusion of external time-dependent fields and the possibil-
ity for the system to exchange energy and matter with external environments.
To give an insight, due to their mutual interactions, the motion of the con-
stituents of a quantum many-body system is dependent on the motion of all
the other components of the system itself. This is a fundamental aspect and
makes any calculations to solve the many-body problem almost impossible for
large systems. Thus, one has to find different ways and strategies to tackle it.
One strategy, that was enough to often predict correctly whether a material
is a good conductor or not and that was used to obtain correct characteristics
for many systems, is to exclude the complicated effects of the inter-particle
interactions and treat the constituents as independent, moving in a mean
field which mimics the effect of the many-body interactions. Although the
solution of such independent-particle systems has been extensively used and
has given fairly good results for a long period, this first order approximation
method has also led to wrong predictions. To give an example, certain materi-
als that have shown insulating behavior have been predicted to be conductors
from independent-electron calculations. The reason for this limited predictive
power lies on the fact that there are several cases where the complicated fea-
tures and the effects of the many-body interaction need to be more carefully
considered. Thus, a reliable theoretical description is important, not only for
the vast technological implications that will follow from the understanding and
the prediction of nanoscale systems behaviors, but also for the fundamentals
of many-body physics itself. As it should be clear by now, the major role
for having a proper theoretical description of these systems, is played by the
many-body interaction, which not only triggers single particle excitations, but
also the emergence of collective excitations behavior such as phonon, plasmon
and exciton. The electron-electron interaction term also crucially determines
the so-called quasi-particle lifetime of the electronic excitations. As we al-
ready mentioned, via absorption and photoemission spectra it is possible to
experimentally access the one-particle and collective excitations.

However, as was reported previously, solving the many-body problem directly
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for atoms with more than a few electrons goes already beyond the present day
computational capabilities.

The theoretical approaches that have been applied most extensively in the
field of correlated systems are exact diagonalization (CI) [23-25], density-
matrix renormalization group (DMRG) methods [26-28], diagrammatic Monte
Carlo [29-31], real-time quantum Monte Carlo (RTQMC) [32, 33|, reduced-
density-matrix approaches [34-36], and time-dependent density-functional the-
ory (TDDFT) [37-40]. However, each of these methods comes with different
fundamental problems and limitations. To give some examples, CI is suitable
for small systems because it faces an exponential increase of the computational
time with the system size. RTQMC can only treat short evolution times due
to the dynamic fermion numerical sign problem. DMRG is restricted to 1D
systems and is accurate at strong coupling with notable difficulties to consider
moderate and weak coupling. Finally, TDDFT has no dimensional restric-
tions, but it comes with the limitation that is not able to accurately treat the
electronic correlations in a systematic way. Besides, TDDFT simulations usu-
ally involve the adiabatic approximation which neglects memory effects that
result into unreliable predictions. Nowadays, many theoretical research activ-
ities are intensely focused on improving and refining each of these approaches
and methods.

Another independent approach to study the dynamics of correlated systems
that originates in quantum-field theory, is based on the non-equilibrium Green
functions (NEGF) that were introduced by Keldysh [41], Kadanoff and Baym [42].
This method has been extensively applied in many different physical scenarios
and it has been extremely successful in predicting some of their characteris-
tics. Among others, this includes small atoms and molecules [43, 44], nuclear
physics [45-47], high-energy physics [48-50], laser plasmas [51, 52], semicon-
ductor optics [53, 54] and semiconductor quantum transport [55-58]. Further-
more there are several text-book reviews on the topic [54, 59, 60]. Compared
to the other methods, the NEGF approach does not suffer from most of the
limitations that we have mentioned above and has achieved remarkable re-
sults. It was benchmark against CI simulations for small systems, cold-atom
experiments and DMRG data, showing impressive accuracy of many physical
observables. Nonetheless, the impressive predictive power of this approach has
a price to pay: the NEGF methods are complicated and extremely expensive
from the computational point of view (details are given in the next Chapters).
The use of reduced quantities, instead of the full and complicated state vector
or wave function for every particle, is one of the key ingredients in the the-
ory of non-equilibrium Green’s functions. This means that by looking at less
complicated quantities, like few-particle correlation functions, i.e., expectation
values or ensemble averages of field operators, we are still able to theoretically
describe an observable and predict its properties. Furthermore, the whole
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theory relies on a time-ordering of these ensemble averages of field operators
according to a specific path or contour (Keldysh contour [41]) in a complex
two-time plane. This path-ordered technique is the reason why the NEGF
approach is directly applicable to non-equilibrium problems and to systems
evolving under time-dependent external fields. The last but not least relevant
feature of the method is that the properties of the many-particle system are
obtained by expansion in powers of the interactions via self-energy insertions.
The self-energy describes the effect of the mutual-interaction between the con-
stituents of a quantum many-body system and its degrees of approximation
are often responsible for the excellent quantitative agreement with benchmark
data or experimental results that one could obtain with the method.

The thesis is organized as follows. In Chapter 2, we summarize the theo-
retical foundations to describe the physics of many-particles systems and we
present a brief introduction into the concepts of the non-equilibrium Green’s
function theory and Keldysh formalism, including the equations of motion for
the NEGF—the Keldysh—Kadanoff-Baym and Dyson equations. This is fol-
lowed by an overall presentation of the main self-energy approximations that
we have used in the original publications included in the thesis. In Chapter 3,
we present a list of the useful physical quantities to describe transport prop-
erties that one can extract within the NEGF framework. In particular, we
discuss the original derivation contained in publication III for the expression
of the energy-current that flow in a correlated open quantum system. Then in
Chapter 4, we discuss the details of the numerical implementation for the so-
lution of the dynamical equations for the single-particle Green’s function and
we provide a short summary of the structure of a scalable open source soft-
ware/library that we have developed and that is the content of publication I.
Finally, in Chapter 5, we present several effects and results that characterize
different transport setups and models included in the original research articles
I-V.



Chapter 2

Non-equilibrium Green’s
function theory

In this chapter, we briefly recall the theoretical foundations to describe the
physics of many-particles systems. The aim of this section is to give an
overall presentation of the mathematical tools based on the non-equilibrium
Green’s function theory and Keldysh formalism used in the original publica-
tions. Firstly, we introduce the quantum-mechanical model that represents a
many-particles system and then the technique based on the non-equilibrium
Green’s function and the many-body perturbation theory needed to charac-
terize the dynamics of such a system. Our main focus here is not a full and
rigorous description of the method, instead we give a general framework and
we refer to more extensive and comprehensive reviews for further details [60—
63].

2.1 Models for many-body open quantum systems

In order to describe transport of energy and particles in nano-scale devices, we
need to construct a quantum-mechanical model that takes into account the rel-
ative positions, the energy configurations and the interactions between many
identical particles confined in well-defined structures. In the exact quantum
theory formulation based on the solution of the time-dependent Schrodinger
equation [64, 65], this is absolutely non trivial because of the need to deal
directly with the many-particle wave functions. The second quantization or
occupation number representation [61-63, 66] can be used to simplify the de-
scription in terms of creation and annihilation operators that add or remove
particles into/from the system of interest. The statistical mechanics, Fermi
(Bose) statistics, are built-in automatically and most importantly, we have a
powerful tool to treat systems with variable number of particles, a very fre-
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Figure 2.1: Schematic representation of the multiterminal transport model
described by Eq. (2.1). A central correlated quantum system (C) tunnel-
coupled (T,) to an arbitrary number of macroscopic leads.

quent situation in non-equilibrium phenomena. A typical quantum transport
setup consists of two or more non-interacting macroscopic and metallic elec-
tron reservoirs (leads) and a microscopic scattering region (e.g. a quantum dot,
quantum wire, or a molecular system) which is attached to these reservoirs
and can exchange particles and energy with them. A schematic representation
of this model system is shown in Fig. 2.1. The general Hamiltonian describing
this transport setup consists of three terms

A

N N
H(z) = Ho(z)+ > Ho(2) + Y Vac(2), (2.1)
a=1 a=1

where z is a generic complex time variable on the Keldysh contour v [41, 54,
59, 60], Fig. 2.2 1. The Hamiltonian in second quantization in terms of creation
and annihilation operators for the central correlated region is given by

N ~ ~ 1 A A ~ N
Ho(2) = [[dsa 31 ORUB) + 1 [ drat’ 60 01, 1950150
(2.2)
The indices 1 = (x1,21), 1’ = (x], 2]) are collective indices for the position-

spin coordinate x = (r,o) and complex-time z. The single-particle Hamil-
tonian in the central region h(1) contains the kinetic energy and a general

Notice that even though we deal with real-time operators, like the Hamiltonian, we can
always express them along the complex-time contour provided that they are the same on the
forward and backward branches of the contour H(z = t4+) = H(t), with t+ € v

6
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time-dependent external potential. v(1,2) = d,(21 — 22)v(x1, 21; X2, 22) is a
generic two-body interaction between pairs of electrons in the scattering re-
gion. The latter can be the familiar Coulomb interaction or local interactions
where v(x, z; %/, 2') ~ d(x — x’), ubiquitous in model systems used to describe
experimental platforms with ultra-cold atomic gases [67]. The fermion-field op-
erators satisfy the usual anti-commutation relations {1 (x), )(x)} = 6(x—x')
and {{1(x),dT(x')} = {{(x),(x')} = 0, these relations reflect the antisym-
metry property of the many-body wave function and thus its statistics. In an
analogous way, the non-interacting particles in the a-th lead are described by

fal2) = [ dxidi(Dha(1)ia(1) (2.3)

with hq(1) the single particle Hamiltonian of the a-th lead and similar anti-
commutation relations as before for their fermionic-field operators. The Hamil-
tonian accounting for the coupling between the interacting region and the leads
is chosen to be tunnel-like and given by

Vao(z) = [ dxy (91 ()Ta(D)a(1) + hie.) (2.4)

with 7'(1) describing the amplitude energy needed for a particle to tunnel
across the interacting region and the a-th lead. The representation of the
total Hamiltonian in terms of the field operators is a useful and powerful tool
to carry out calculations and derivations along the complex-time contour, see
Sec. 3.4. Nonetheless, for practical numerical calculations it is convenient to
expand the field operators into a suitable single-particle basis. The latter is
chosen accordingly to the problem at hand in such a way to retain only the
most relevant degrees of freedom for the specific physical scenario considered.

to t_

. t 8
to — 1T +

Y to—1if8

Figure 2.2: Keldysh complex-time contour . The arrows denote the time
ordering on the contour with the latest time being one on the vertical track.
Observables along the forward and backward branches are assumed to be equal

O(z = t1) = O(t).
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A possible and very general choice is the spin-orbital basis ¢;(x) = ¢;(r)dsr,
using which we can express the creation and annihilation operators CZI o> dig for
the state io as a linear combination of field operators at different position-spin

coordinates

@, = [ dx il (x) (25)
dip = / dx ot (x)P(x). (2.6)

where the integral is [dx = Y, [ dr. The operators CZIO_ and dj, inherit the
anti-commutation rules from the field operators ¢ and 1. Eq. (2.5) and (2.6),
together with their anti-commutation relations, lead to the following represen-
tation for the Hamiltonian

fo(z) = Bo(2) + V' (2) (2.7)
Ho(2) = Y hij(z)d},djo (2.8)
ij,0
~ 1 ~ A
V(Z) = § % Z vijkl(z)@g@g/dko’dlo (29)
ijkl oo’
Ho(z) = > haij(z)égoéja (2.10)
ijEQ,0o
Vao(z) = Y (Ta(2)dl,ej0 +hic.) (2.11)
i€eCjea,o

where the matrix elements in the spin-orbit basis of the one-body parts are
given by

his(2) = [ de @i ()h(r 2)p5(0) (2.12)
haij(2) = [ dr i (0)ha(r. 2)i,(x) (2.13)
Tois (2) = [ d (1) Ta(r. 2)5(0) (214)

while the two-body matrix elements describing the electron-electron interac-
tion is
wjul) = [ drdr’ i @i e al). (215)

To simplify the model, we have assumed that both the single particle Hamil-
tonian h and the interaction v are spin independent, even so it is easy to
generalize the above expressions in the case where a magnetic field and/or
spin orbit coupling is present.
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2.2 Dyson equation and two-time evolution

In this section we review for completeness the main elements of the non-
equilibrium Green’s function theory (NEGF), as well as the key ingredients
of the many-body perturbation theory (MBPT) used to treat interactions
in weakly interacting fermions and couplings of such a system with external
macroscopic reservoirs. The Keldysh Green’s function theory [41, 42, 63] in-
cludes as limiting cases the zero-temperature Green’s function (time-ordered)
and the Matsubara formalism which are recovered by specific choices of the
contour in the complex-time plane. Furthermore, it retains the formal struc-
ture of the many-body perturbation theory extending it to non-equilibrium
phenomena. It allows for a systematic study of time-dependent expectation
values and steady-state properties when electron-electron (electron-phonon)
interaction is present. The correlation effects of the interaction are included
via an integral kernel called self-energy that can be methodically constructed
via a diagrammatic expansion of selected Feynman diagrams. We start the
section by introducing the definition and properties of the NEGF as well as
the equations that rule their dynamics on the complex-time contour and then
we outline the steps that led to the MBPT in the two-time plane. Our aim
is to give a brief characterization and few examples of the most used elec-
tronic self-energies approximations which embody both the role of many-body
interactions and the coupling with external leads.

2.2.1 Single-particle Green’s functions

The starting point in the theory of the non-equilibrium Green’s function to-
gether with the many-body perturbation expansion is the definition of the
single-particle Green’s function (SPGF) as the expectation value of the contour-
ordered product of the creation and annihilation operators

G 1) = =i (T, [du (P (1)]), (2.16)
here the subscript H denotes the Heisenberg picture and the indexes 1 =
(x1,21) and 1" = (x, 1) are collective indexes for position, spin and complex-
time. Furthermore, z and 2’ are a contour time variables and 75 orders the
operators along the Keldysh contour « by arranging the operators with later
contour times to left Fig. 2.2. Similarly, we denote by h(1) the matrix elements
of the first quantized Hamiltonian h in the position, spin and complex-time
indexes. Here the symbol (.. .), denotes the average over the initial many-body
thermal state. By applying [i0,, — h(z)] and using the Heisenberg equations
of motion for the field-operators 1) and )T under the evolution given by H, c(z)
on the complex-time contour, one obtains the first equation of the Martin-

9
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Schwinger hierarchy (MSH):

(i0= — h(1))G(1,1) = 6(1,1) — /div(1, 1)Go(1,1;1',17) (2.17)

where Ga(1,21,2) = (—i)? (T, [@H(1)¢H(2)z;}{(2/)zzj{(1/)]>0 is the two-
particle Green’s function. Here the integral is [dl = [dx; [ dz and 17 =
(x1,21+0) denotes a time with an infinitesimally small shift § on the Keldysh
contour . A similar equation is obtained by acting to the left with the op-
erator (—i@zi — h(l )) With the contour Heisenberg equations and contour
calculus as described above, one can derive the equations of motion for the
two and higher particle Green’s functions, and find equations which couple
the N-particle one to the (N + 1)-particle Green’s function. In many practical
situations, see Chap. 3 for more details, the knowledge of the single-particle
Green’s function is sufficient to describe the physical problem at hand, in this
case it is suitable to introduce the so-called single-particle self-energy 3, which
allows one to (formally) decouple the time-evolution of the Green’s function
from those of the (N > 1)-particle Green’s functions and obtain a closed equa-
tion for the one-particle one. In order to truncate the MSH, the self-energy is
implicitly defined as:

/d12(1,I)G(I,1') — —/div(1,I)G2(1,I;1',I+) (2.18)

The physical meaning of the self-energy X is to introduce an effective function
which accounts for the two-particles scattering which are encoded into the two-
particles Green’s function G3. Thanks to the definition of ¥ with Eq. (2.18)
one obtains the following equation on the complex contour for the single-
particle Green’s functions:

(i02, — h(1))G(1,1) = 6(1,1) + /diE(l, DG, 1) (2.19)

which has to be solved with the Kubo-Martin-Schwinger (KMS) boundary
conditions G(to, 21) = —G(to — if3, 2}), following directly from Eq. (2.16) and
the cyclic property of the trace. By means of the Langreth and Wilkins
rules [60, 68], it is possible to project these equations of motion for the single-
particle Green’s function onto the real and imaginary time axis. The resulting
set of equations for those components are called the Kadanoff-Baym equa-
tions [42, 69] and represent, together with the initial conditions, the standard
way to completely determine the single-particle Green’s functions once a choice
for the self-energy is made. The numerical implementation of the solution of
such equations has been extensively explored and requires fine and elegant
schemes for the two-times propagation [43, 44, 59, 60].

10
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An alternative approach to find the interacting Green’s function in Eq. (2.16)
is to use the interaction picture and then to expand the evolution operator
containing the interaction term V'(z),

LIRSS L (B [VE) - e )

where the tilde is used to denote operators in the interaction picture. That is, if
we are able to compute contour time-ordered products then we have a general
and powerful way to obtain the SPGF. This can be done for some particular
cases, for example by means of the Wick’s theorem [60] we can write down a
series expansion for the interacting single-particle Green’s function in terms
of the non-interacting one Go(1,1’), which satisfies the following equations:

(30-1 = h(1))Go(1,1) = 6(1,1') (2.21)
=
Go(1,1)( =70 — h(1)) = 5(1, 1), (2.22)

By collecting the wanted terms of this series expansion and systematically
representing them as Feynman diagrams one can built a proper self-energy
and obtain the Dyson equation for the SPGF":

G(1,1) = Go(1,1') + /di B Go(1,1)(1,2)G(2, 1) (2.23)

The Dyson equation is the formal solution of the Martin-Schwinger hierar-
chy for the one-particle Green’s function, as one can easily verify by apply-
ing (i6(1,1')0,, — h(1',1)) to Eq. (2.23) to obtain Eq. (2.19) with the help
of Eq. (2.21). Because of that, the Dyson equation is formally equivalent to
Eq. (2.19) and it contains the same physical information about the dynam-
ics of the single-particle Green’s function through the double time integral on
the r.h.s. of Eq. (2.23). The last integration is performed along the Keldysh
time-contour v and thus encompasses information of the statistical physics
(vertical track) as well the time-ordered and anti-time ordered dynamics (hor-
izontal branches) (see Fig. 2.2) that the system is subjected to. Moreover,
the correlation effects of the interaction are included via the integral kernel
represented by the self-energy functional. Before proceeding, we shortly want
to recall the main definitions for the functions with time arguments on the real
and imaginary branches of the complex-contour . The choice of the localized
single-particle basis and the field operators representation on this basis (2.5)
and (2.6), allow us to write down the basis representation of a generic double

11
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to V- G~ G=<

< e, _
Y+ Z1 )

Figure 2.3: Forward and backward branches of the Keldysh complex-time
contour v = v_ @ 4. Position along the contour of the two-time arguments
for the lesser and greater components of the function G(z1, 22).

multi-indices quantity as:

A(1,2) = A(x121,X222)
=D 01 (x1)¢5(x2) Aij (21, 22), (2.24)
ij

as before the indices 7,j represent spatial and spin degrees of freedom. In what
follows, to lighten the notation, we usually drop the single-particle basis indices
when the quantities have the explicit complex-time dependence A;;(z,2") =
A(z,2'). Any two-time function defined on the contour is said to belong to
the Keldysh space and in general such function can be written as

Az, 2') = 8(2,2)A%(2) + 0(2,2)) A% (2, 7)) + 0(2', 2) A< (2, 2') (2.25)

where 6(z, 2’) is the contour Heaviside step function, i.e.:

0(z,2") = (2.26)

1, for z> 2

0, otherwiswe
here the symbol > is intended as later with respect to the ordering on the
contour. The contour delta function is defined as §(z, 2") = 9.60(z, 2’). Exam-
ples of quantities like A(z,2’) in Eq. (2.25) are of course the Green’s function,
whose singular part G? is zero, and the self-energy, with the time-local part
given by the Hartree-Fock self-energy % = Yyp[G], see Sec. 2.2.2. The
greater A~ (z,2") and lesser A<(z, 2’) term respectively denote the correlation
parts. From this expression we can define several subordinated functions. It is
customary to denote by z = ¢t_ points on the forward branch of the complex-
contour, z = t; point on the backward branch and z = ty — 7 points on
the vertical track, Fig. 2.2. The Keldysh components lesser (<), greater (>),
retarded (R), advanced (A), left ([), right (]) and Matsubara (M) can be

12
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defined accordingly to the different positions of the two-time coordinates on
the contour of a generic two-time function [54, 59, 60], see Fig. 2.3,

AM (7 71y = A(tg — i, tg — i7') ( )
Al(r, ) = A(tg — T, t') (2.28)
Al(t, 1) = A(t, to — i7) (2.29)
AZ(t, 1) = At 1) (2.30)
AR/A(t,t’) = A‘s(t)é(t—t’) +0(£(t—t)[A7(t, 1) — A<(t,t)]. ( )
It is also useful to recall the symmetry properties between these different

real/imaginary time components of a generic two-times function. Those are
given in the single-particle basis (for fermions) by:

AM(T, ) = —Af\J/-I(T, )* (2.32)
(T, t) = A]Z-(t g—r)* (2.33)
At 1) = Al (¢ )" (2.34)
(t’,t) = —A>(t t'* (2.35)

where A = G,3. The importance of the symmetries in this context is that
they allow to reduce both the computational time and the memory required.
With the definitions in Eq.s (2.27)—(2.31), the properties in Eq.s (2.32)—(2.35)
and with the help of the Langreth rules for the projection of integral of prod-
ucts of two Keldysh functions [60, 68], we can write the equations for the
real-time components of the Dyson equation:

GM(r,7) = [GY + GYT + =M < GM (7, 7)), (2.36)

GRIAR ) =[G + G/t SR GRIA (1, 1), (2.37)

Gl(r,t) =[Gl + G- 34 G+ G x 3l 6+ GYT M Gl (n,1),
(2.38)

Gl(t,7) =[G+ G -3 GV 4+ GF - 2T« GM + Gl 2V« GM (8, 7),
(2.39)
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GE(t,t) = G5 + G- 25 -G+ G5 -2 - G 4 G 2 6
+ Gy x M Gl 4+ GF ST+ Gl 4+ G5l G4 (1, 1).
(2.40)

The notations - and * denote the real-time and imaginary-time convolutions:

A-Bl(tt) = [ A DBE )L, (2.41)
’ to—if3
(A% B](r,7') = —i /to A(r,7)B(r,7')dr, (2.42)

with A, B two generic functions on the contour and where the matrix multi-
plication among indices of the single-particle basis is assumed. Similar expres-
sions hold for functions with mixed time arguments on horizontal and vertical
branches of the contour.

Eq. (2.36) is the only equation which is completely decoupled from all other
equations and gives information on the initial state preparation of the system
at time ¢y. All other equations are coupled and their solution has to be found
self-consistently as discussed in the next section. Egs. (2.38) and (2.39) give
the contributions of the initial state to the dynamical properties of the sys-
tem, whereas the retarded and advanced components, solutions of Egs. (2.37),
contain the spectral characteristics and properties of the system at hand. The
solution of Eqgs. (2.40) instead, describes the dynamical correlation effects car-
ried by the particle and hole propagators.

Equation (2.23) shows us that by starting from the non-interacting solu-
tion we can obtain the full interacting Green’s function G at the level of the
chosen self-energy approximation ¥ via an iterative procedure. This iterative
procedure of generating the full interacting Green’s function from the non-
interacting one is called dressing of the Green’s function. With this compact
notation that highlights the time structure only is much easier to see the un-
derlying connections between these quantities and to represent them by the
corresponding Feynman diagram. The fully connected vertices, the ones that
describe propagation-interaction-propagation or similar events and processes,
that correspond to the integration variables are implicitly determined by the
times coordinates. So equation (2.23) can be shortly represented as

G(1,2) = Go(1,2) + Go(1,3)%(3,4)G(4,2) (2.43)
with corresponding Feynman diagram as shown in Fig. 2.4.
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0=1=0:o—<—o+o—<—0<©<0=1=0

Figure 2.4: Diagrammatic representation of the Dyson equation Eq. (2.23)
or equivalently Eq. (2.43). Directed double solid lines represent the non-
equilibrium Green’s function G, the directed solid line is the non-interacting
single-particle Green’s function Gy and the shadow gray circle with ingoing
and outgoing lines is the many-body self-energy X. Solid black dots indicate
inner vertices where summation over all degrees of freedom and integration
over contour variables is assumed.

2.2.2 Many-body self-energy

As we mentioned in the previous section, in order to account for the effect of
many-body interactions in the dynamics of the single-particle Green’s func-
tion it is possible to define a self-energy which describes the effect of the whole
system at the single particle level. Formally, the self-energy arise either as a
way to truncate the Martin-Swinger hierarchy or, in the diagrammatic expan-
sion of the evolution operator, as a way to choose which physical processes
are relevant to describe the physical system. In the first case one obtains

-9 e

Figure 2.5: Diagrammatic representation of the Hartree-Fock self-energy
Eq. (2.45). It is made of the tadpole or Hartree diagram (first term) and the
first order exchange diagram (Fock, second term). The wavy line represents
the electron-electron interaction.
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the Kadanoff-Baym equations, whereas in the second one the Dyson equation
or, in a more general framework, the set of Hedin equations [60]. In either
case, the choice of the self-energy is, to some extent, left to the needs of the
problem addressed, meaning that the choice of the diagrams to be included in
the self-energy depends only upon the physical processes which are believed
to contribute the most to the specific case at hand. However, there are some
general restrictions that need to be consider, specifically those imposed by the
macroscopic conservation laws. To guarantee that the latter are preserved,
such as conservation of particle, momentum, energy, and angular momentum,
the self-energy has to be the functional derivative of a Luttinger-Ward func-
tional ®[G] [60, 70, 71]. This last quantity can be easily calculated using
standard diagrammatic techniques when the nature of the scattering process
(the interaction) is known [60]. The self-energies which are functional deriva-
tives of some ® functional are call ®-derivable:

Yup(l,1) = 52?1[?,]1)‘ (2.44)
In this case the resulting single-particle Green’s function is guaranteed to
fulfill macroscopic conservation laws. This introduces a non-trivial problem
if one attempts to find the interacting Green’s function. Because of its ®-
derivable property, the self-energy is a functional of the interacting single-
particle Green’s function itself which in turn can be found only through the
knowledge of the self-energy. Therefore, conservation laws are satisfied if and
only if a self-consistent procedure is employed. Because of this self-consistent
nature of the problem, it is reasonable and understandable to resort on nu-
merical techniques to tackle it, see Sec. 4. The most well-known conserving
approximations for the many-body self-energy are the Hartree-Fock (HF), the
second Born (2B), the GW, and the T-matrix approximations. In this thesis,
we present the first three of these approximations and we give a brief recall
of their properties. The first-order approximation for the self-energy, i.e. the
HF approximation, has the following functional form

Yur(G)(1,1) = —i5(1,1’)/div(1,i)G(LI+) +iG(1,1) (17, 1), (2.45)

Its diagrammatic representation is depicted in Fig. 2.5. This approximation
describes how a particle moves freely under the influence of an effective po-
tential which depends on all the other particles, that is the HF self-energy in-
cludes the effects of the interaction through a mean-field approximation. The
HF self-energy require only one integral over the spatial degrees of freedom
and not over time due to the delta like structure of v(¢,¢') in the double time
plane. This approximation is mostly used to take into account the mean-field
effect like the global shift of the single-particle energies due to the many-body
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@ s

Figure 2.6: Diagrammatic representation of the second Born self-energy
Eq. (2.46). Beside the HF terms, it contains the first order bubble diagram
(third term) and the second order exchange diagram (forth term).

interaction.
Up to the second-order approximation for the self-energy, the first example
which one encounters is the 2B:

Yo5[G](1,1)) = Syp[G)1,1) — 2G(1, 1’)/d1d§v(1, DG(1,2)G(3, T)(1',2)

+i2/did§v(1,I)G(1,§)G(§,I)G(Q, 1)0(1',3)
(2.46)

here, in addition to the time-local part of the self-energy (X r), we have terms
up to the second order in the Coulomb interaction v(z,z’) = v(x,x")d(t,t').
The first term after the HF-part of the self-energy is generally denoted as first
order bubble diagram, it describes propagation of a particle (or hole) while
interacting with particle hole-pair, i.e., it includes to first order effects of the
polarization of the media due to uneven density distribution of particles and
holes. The last term is nothing but the second order correction to the Fock
term, second term in the r.h.s of Eq. (2.45), see Fig. 2.6. Notice that also
the 2B does not require integration over time, once again due to the delta-like
structure of the two-body interaction potential.

In the GW approximation the electronic self-energy takes the form

SawlG)(1,1) = S (1,1) 4+ iG(1,1)W(1,1') (2.47)

with Yz being the Hartree part of the self-energy, the first term of the r.h.s
of Eq. (2.45), and where the dynamically screened interaction W satisfies the
Dyson equation

W(1,1) = v(1,1') + /didiv(l, 0)P(1,2)W (3, 1), (2.48)

the polarization is usually approximated in the random-phase approximation
(RPA) as P(z,7') = —iG(z,2")G(7, 2), see Fig. 2.7. The GW approximation
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can be seen as a dynamically screened exchange approximation able to describe
the effects of long-range interaction. From the computational point of view it
is more complex than the HF or the 2B as it requires to solve the equation
for the dressed interaction W, which is a Dyson-like equation and it involves
integration in both time and spatial degrees of freedom. Other choices for
the polarization diagram are possible [60, 72] but, even if they result in more
accurate and precise approximations, they typically make the computation
more demanding. In fact, this corresponds to include in the set of equations to
be solved a vertex functional which as a consequence leads to a more involved
set of equations than the ones including only the Green’s function and the
self-energy. This set, named Hedin equations, is made of five equations which
have to be solved at the same time and self-consistently. The difficulties arise
mostly due to the nature of the vertex functional which has in general a tensor
structure in the localized base and it is not trivially manageable in the Keldysh
space.

2.2.3 Embedding self-energy

For an open interacting system, the self-energy in Eq. (2.23) has to take into
account not only the many-body interactions, but also the tunneling of elec-
trons between the central region and the leads. As opposite to the many-body
self-energy that needs to be treated with a proper perturbation scheme, the
self-energy that accounts for the effects of leads (embedding self-energy) can
be treated exactly in the NEGF formalism. The embedding self-energy can
be shown to be proportional to the non-interacting lead Green’s function, in

-7 e
PV = AW\e + ANV

Figure 2.7: Diagrammatic representation of the GW self-energy Eq. (2.47)
(top). In this approximation the Fock term is calculated with the dynami-
cally screened interaction W (double wavy solid line). In the random phase
approximation the latter quantity satisfies its own Dyson equation Eq. (2.48)
(bottom).
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the localized single-particle basis we can express this quantity as

Na
Yemb(2,2)) ZEQ ii(2,2") ZZTa,ikgk,a(%Z/)T;,kj (2.49)
a k

here k labels the energy-levels in the leads, whereas i, j label the sites in the
central region. Furthermore, A, is the number of sites in the lead « (in all the
publications we have considered a continuum of states for the leads N, — 00).
The lesser and greater real-time components of the non-interacting Green’s
function of the leads are given by:

Gap(tt) = if(eap)e " JulcormntValidt (2.50)
021 (1) = i(f(ap) — Ve~ JulcosmitVa@it (2.51)

where V() is the time-dependent applied bias voltage in the lead «, the func-
tion f(e) = 1/(e?#) 4+ 1) is the Fermi-Dirac distribution function that de-
scribes the non-interacting equilibrium electrons of the a-leads with chemical
potential x4 and inverse temperature 5 = 1/7T. By introducing the dissipation
matrix rate:

Tyij(e) =27 Z Toki6(€ = €ae) T ki (2.52)

the expressions for the lesser and greater components of the embedding self-
energies read:

S5y (1,t) = ie VO [ ICE, ) flee e =) (2.53)

a,ij

.t = T

5745t ) = i~ Ju Vo gifrra,me)(f(e) — e iemt=t)(2.54)
Furthermore, the [, | and M component are similarly worked-out by consider-
ing the time-arguments on different parts of the Keldysh contour. The calcu-
lation of the embedding self-energy is particularly straightforward as it does
not depend upon the interacting Green’s function of the system and therefore
it needs to be calculated only once with the computational effort given solely
by the integration over the frequencies. In the original publications, we adopt
the wide band limit approximation (WBLA) which assumes that the energy
bandwidth of the electronic reservoirs is the largest energy scale and thus the
dissipation matrix rate is energy-independent I'w;j(e) = I'asj. Moreover, we
choose a purely imaginary constant for the dissipation rate, this practically
stands in neglecting all possible energy-shifts effects induced by the coupling
with the electronic leads.
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2.2.4 Inbedding technique

Up until now we have been focused on the SPGF of the microscopic scattering
region and on how we could include the influence of correlation effects and
couplings to macroscopic external reservoirs on this system. Nonetheless, one
could also be interested in the effects that the correlated central system has
on the non-interacting leads, thus one could ask the question: is it possible to
infer physical quantities of the reservoirs from the knowledge of the molecular
Green’s function? In other words, is it possible to explore the back-action that
the microscopic scattering system has on the macroscopic electronic leads?
The answer is affirmative and we now show how this can be achieved by using
the inbedding technique [60, 73, 74]. The last method allows us to find the
single-particle Green’s function for the electronic lead a:

Gaa(1,1) = =i (Trea(1)eL(1)). (2.55)

The equation of motion that describes the time-evolution of this quantity can
be easily worked out by using the Heisenberg equations of motion for the
creation and annihilation operators [60], the solution is found to satisfy the
Dyson equation:

Coon(1,1) = gaa(1, 1) + /did?gw(l, DS (1, 2)gaa(2, 1)
(2.56)

with the inbedding self-energy defined in the localized basis of the lead « as

iia(2,2) =Y ThaiGij(2, 2 ) Tjia. (2.57)

ij

Here Gj;(z, 2) are the matrix elements of the interacting single-particle Green’s
function in the localized basis of the central microscopic region that accounts
for the effects of the electron-electron (electron-phonon) interaction and the
tunnel-coupling with the electronic reservoirs Eq. (2.23). It is worth noticing
that the Dyson equation for the lead o Eq. (2.56) does not depend on the
SPGF Gaa(1,1') itself, this is due to the prior assumption that the macro-
scopic electronic leads are treated as non-interacting. Analogously to what we
have done for the SPGF of the correlated region, we can now use the Langreth
rule to project Eq. (2.56) into real-time and write down the components of the
electronic lead Green’s function

GRALY) = glAw) + [gMA s A ) (258)

ax
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Gra(t:t) = gaalt,t) + [0% - B - g + 9™ - 55, g + 9" B - g5+
+g! ~Ei[n 'gA+gR-Zln*g(+g] *E%*g[]w(t,t’)
(2.59)

once again we assume matrix multiplication among indices of the single-
particle basis and the time convolutions as in Eq. (2.41). In the next section
we will see how to use the inbedding technique of Eq. (2.56) to calculate the
variation of energy and consequently the temperature variation of the elec-
tronic reservoirs when they are strongly coupled to a microscopic scattering
region.

2.3 Generalized Kadanoff-Baym Ansatz

In the previous section we saw that to compute the time-dependent SPGF,
either the Dyson equation, see Eq. (2.23), or the Kadanoff-Baym equations,
see Eq. (2.19) have to be solved. Both methods, due to their inherent two-
time structure, are computationally expensive with a (’)(Nt?’) scaling with the
simulation duration time Ny (number of time steps). A way to reduce the com-
putational scaling of the NEGF theory is through the so called Generalized
Kadanoff-Baym Ansatz (GKBA). In its first formulation [75-79], it lowers
the computational cost from cubic to quadratic by making use of the ap-
proximation that consists in replacing the two-time correlation propagator
G=(t,t'), with the reduce one-particle density matrix —iG<(¢,t) and the re-
tarded propagator. Recently, a second reformulation that maps the GKBA
integro-differential equations onto a coupled system of ordinary differential
equations has lead to time-linear scaling of the scheme [80-82]. In what fol-
lows, we present a brief but self-contained introduction of the first formulation
of the GKBA. The approximation starts by rewriting the lesser/greater com-
ponent of the Dyson equation Eq. (2.40)

VA

GE(t,t) = iGR(E,)GE () + [GR - 5% - G4 (1) + [GR - 3% - G5 (1. 1)+

—iGE(t, )G ) + |G 25 GA (1) + [65 - 24 G4 (1, 1),
(2.60)

where we have used the Dyson equation for the retarded /advanced components
Eq. (2.37) and the homogeneous differential equation for the non-interacting
SPGF Eq. (2.21). Notice that, even if some advanced has been made to include
the correlated initial state [83-85], here we disregard all these contributions
as they are not relevant for the subject of our discussion. The GKBA is done
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by only retaining the non-integral terms in the previous expression,
G5 (t, 1) = iGR(t, tGS (', 1) — iGS(t, t)GA(t, 1), (2.61)

Those components enter in the real-time lesser/greater projections of the KBE,

(00 = h(1)) G (t,t) = I5(t, ) (2.62)

through the so-called collisional integrals:
I<(t,t) = [2<-GA+ 28 a<|(t, 1) (2.63)
I (t,t") = [G< - 24 + GER . 25|t 1)). (2.64)

The approximation in Eq. (2.61) allows us to decouple the dynamics along the
time-diagonal component from the off-diagonal one, see below. Nonetheless,
the retarded and advanced propagators, that are untouched by the approxi-
mation, are still two-times functions that obey equations of similar complex-
ity as the original KBE (cubic scaling). To bypass this problem and achieve
quadratic scaling these last propagators are treated with a different approxima-
tion compared to the one of the time-propagation. In the case of a many-body
open quantum system the retarded propagator satisfies the inhomogeneous
equation

(i0n — n(0)) GR(1,¢) = 8(1.1) + / i (28 5+ 5B (DGR ), (2.65)

if we choose the many-body self-energy at the Hartee-Fock level ¥y,5 = Xgyp
and the embedding one within the wide band limit approximation Efmb(t, t') =
—(i/2)T6(t,t'), with T' = >, T'ni; as defined in Eq. (2.52), thanks to their
time-local structure the solution for the retarded and advanced propagators

are easily found to be

Cpt! - ~ .
GRIA(t 1) = FO[£(t — )| Te S dEhar@=iT/2) (2.66)

where hgp = h + Xgp. As a result of this approximation, the propagator
accounts for the interaction at the mean field level as well as for dissipation
induced by the presence of the macroscopic reservoirs. Higher-order correla-
tion effects beyond the Hartree-Fock are not included into the propagator, but
they can be considered into the time evolution of the lesser and greater com-
ponents. The dynamics of the single-particle density matrix p(t) = —iG<(t,1),
namely the lesser component of the SPGF along the time-diagonal, is given
by the equation

%p(t) +ilhar(t), p(t)] = —(I(t) + h.c), (2.67)
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with the collisional integral at equal-time defined as
I(t) = /df[2>(t,f)G<(f, t) — B<(t,t)G” (t, )], (2.68)

where the exchange self-energy ¥ = X 75+ Yemp accounts for both the correla-
tion effects beyond mean-field and coupling with the external electronic leads.
Summarizing, the GKBA consists in calculating the ansatz in Eq. (2.61) with
an initial seed (typically the non-interacting SPGF) and the retarded prop-
agator in Eq. (2.66), then constructing the collisional integral in Eq. (2.68)
and finding the evolution of the time-diagonal lesser and greater components
Eq. (2.67) that in turn will be used to rebuild the ansatz until self-consistency
is reached. Despite the limitations imposed by construction on the retarded
propagator, in the original publication V we have shown that the GKBA is
able to describe well physical quantities that strongly depend on the spectral
features of the system at hand.

2.4 Non-equilibrium steady state

As we have already stated in the previous section, to find the solution of the
Dyson equation is a demanding task that has a cubic scaling with the simula-
tion time. Beside the GKBA approximation, another way to avoid the excess
of computational power is to find the solution of the Dyson equation directly
at the non-equilibrium steady-state (NESS). As it should be clear from its
definition the NESS, whenever exists, provides only limited time-independent
information about the correlated system. Thus it is not useful to study systems
where the correlated initial state plays a crucial role and when the relevant
physical phenomena are encoded in the short transient dynamics. However,
it is of fundamental importance in transport-configurations where transport
characteristics and properties like electrical, thermal conductance and other
affinities are well defined and measured. The NESS is defined as the long-
time limit of the Dyson equation or equivalently of the equations of motion
for the SPGF. In this limit initial correlations and initial-state dependences
are washed out, two-times functions in the Keldysh space, like the SPGF and
the self-energies, depend on the time difference only and the equations linking
them are notably simplified.

Whenever a contour-function depends on the time difference only, it possible
to define its Fourier transform and conveniently express it in frequency domain

A1) = [ gﬂe—iw@—t’m(w). (2.69)

™

Furthermore, the long-time limit of the convolution integral, see Eq. (2.41),
can be expressed in its conventional form; it is enough to change variable under
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the integral sign:
Ct—t) = dtA(t —t)B(t —t)

_ /t A B(t— T — 1)
(2.70)

and then taking the long-time limit ¢ — oo and renaming t — ¢ = ¢
C(t) = / drA(T)B(t — 7). (2.71)

By definition, the convolution integral in time becomes a simple algebraic
product in frequency domain

C(w) = A(w)B(w). (2.72)

With those basic elements, we can now express the Dyson equation for the
real-time components of the SPGF in frequency space. We starts by an-
other exact reformulation of the Dyson equation of the lesser/greater functions
Eq. (2.40) [60] that is convenient to the ends of our discussion:

GE(t, 1) = GR(t,10)GF (to, 1) G (to, ¥) + | (G725 + GT«21) - 64 (1,1)+
— iG-S« G 4 G2« G (8 40) G2 (to, )
(2.73)

As we introduced before, for system out of equilibrium all initial-correlations
and initial-state dependences are washed out in the long-time limit, thus all
terms in Eq. (2.73) vanish except for the convolution G# - 5. GA. The latter
can be straightforwardly expressed in the frequency domain as

G (w) = GE(W)25(w)GA(w). (2.74)

To close the set of coupled equations needed to find the solution at the NESS,
we need an equation in frequency space for the retarded /advanced components
of the SPGF, that is provided by the Fourier transform of Eq. (2.37)

GR/A (W) = G (W) + G (W) 2B (W) GRIA (w). (2.75)

This result allows us to calculate steady-state quantities without solving the
full two-time Dyson equation and accordingly to reduce the computational
cost of the simulation to a linear scaling O(N,,) with the number of frequency
points N,,.
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Physical Quantities

In this chapter we present a list of useful physical quantities that one could ob-
tain within the NEGF framework. Specifically, we discuss the time-dependent
single-particle quantities that require the knowledge of both the single-particle
Green’s function and the self-energy. We will show that two-particle quanti-
ties that depend on the two-particles Green’s function, such as the energy rate
flowing in and out of the central correlated region, can still be expressed in
terms of the single-particle Green’s function provided that the two-particles
Green’s function is calculated consistently with the approximation done for the
self-energy. Moreover, whenever it will be useful, we will present the NESS
counterpart of these quantities.

3.1 Occupation number and momentum distribu-
tion

The first physical quantity of interest is the occupation number of a given
single particle state, which can be computed by means of the lesser Green’s
function as:

ns(t) = —iG5(t,t). (3.1)

This quantity gives us information on the time-dependent occupation of the
state with quantum numbers s. In the case in which the chosen basis is in the
position-spin representation, namely s = {j, o} where j labels the site position
in a N-sites lattice in d-dimensions and ¢ the particle spin, then one can define
the momentum distribution with momentum k as follows

1 itk
m(k) = —i- >0 > e WREGE L (t1). (3.2)
g ji1j2
This is particularly relevant in the case of ultracold atomic gases where the
momentum distribution is a routinely measured quantity via time-of-flight
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techniques.

3.2 Spectral Function

Information on the single particle spectrum are encoded in the spectral func-
tion, defined as the Fourier transform of G~ — G< with respect to the relative
time coordinate 7 =t — ¢’ for a given value of the time 7' = (¢t +t')/2, i.e.,

dr .- T T

AT, w) = —Im/%e Q <T+ §,T - 2) , (3.3)
where Q = Trs [G” — G<] and the trace is over all degrees of freedom not
belonging to the central region (system of interest). For value of T" sufficiently
large, when the transient dynamics becomes negligible, and in the absence
of external drivings, the spectral function becomes independent of 7', namely
A(T,w) — A(w). In this case, the density of states (DOS) D(w) = TrcA(w)
displays peaks at the accessible single-particle energies for the central region.
The spectral function also contains other information such as the momentum
distribution of the system and therefore the single-particle dispersion relation
due to its dependence upon the frequencies w. The spectral function is nor-
malized such that in the non-interacting case [ dw/(2m)A(w) = Ngp, where
Ny is the number of single particle energy levels [60]. It is worth mentioning
that the calculation of the spectral function requires the knowledge of the two-
time Green’s function and therefore one might believe that the information it
carries are not accessible in the context of the GKBA. Actually, as we have
seen in Sec. 2.3, this information has to be provided a priori via the ansatz
on the retarded and advanced components of the Green’s function Eq. (2.66).
Because of this, and since so far the most used approximation is the GKBA-
HF for the retarded propagator (or GKBA-HF+WBLA in the case of open
system), we can include in the spectral properties of the correlated region only
mean-field effects. Nonetheless, in one of the original publication V included
in the thesis, we were able to show that the GKBA master equation, com-
puted with an HF+WBLA propagator and a second Born self-energy, is able
to capture spectral features which go beyond the mean-field approximation.

3.3 Particle currents

We have seen that, from the knowledge of the single particle Green’s function of
the central region Eq. (2.16) and its components along the Keldysh contour, we
have access to the time-dependent ensemble average of all one-body operators
of the central region. We also have access to the total current flowing between
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this region and the lead . The particle current reads

A A

Talt) = S {Ra)) = i {[Vealt), Nal)]), (3.4)

where Na(t) is the total number of particle operator of the lead o whereas
Vca(t) is the coupling Hamiltonian between the central region and the leads.
One can easily write this expression in terms of the single particle Green’s
function of the central region and the embedding self-energy of the lead o by
means of the equation of motion Eq. (2.19) [54, 60, 86]:

Lo(t) = 2Re {Tr [v5 - GA+ 38 6= + 3« 61| (t,1)} (3.5)

The last term in Eq. (3.5) explicitly accounts for the effects of initial corre-
lations and initial-state dependence. If one assumes that both dependencies
are washed out in the limit ¢ — oo, then for large times we can discard the
imaginary-time convolution. Equation (3.5) provides a generalization to the
transient time-domain of the Meir—-Wingreen formula [56, 58] that in turn was
the extension to interacting systems of the well-established Landauer—Biittiker
formula [87, 88]. Another important expression for the current can be obtained
by replacing the embedding self-energy in Eq. (3.5) with the many-body one:

Iw(t) = 2Re {Tr [2< GALYR. .G x]« Gq (t, t)} . (3.6)

This current comes from the interaction term V(t) and has to go to zero due
to the conserving nature of the approximation of the many-body self-energy.
However, as we discussed above, macroscopic conservation laws hold only if
self-consistency is implemented, in this case we expect that

> I(t) =0 (3.7)

and hence we can make use of Eq. (3.6) as good figure of merit for the con-
vergence of the self-consistence procedure. For the particle currents, it is

also true that the current into the lead is equal and opposite to the charge
— éa). Here

we defined the current into the central region due to the lead « as Zléa) =
(0%

variation in the central system due to that lead, namely I, =

i([H(2), No(2)])2=¢. This relation translates into formal mathematical expres-
sion the intuitive concept of the locality of the number operator. Basically,
they state that particles flowing out of a lead necessarily enter the central
region causing an equally and opposite variation.

Since in most practical situations one is interested in the transport properties
when a NESS is reached, we report also here the steady-state counter part
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of Eq. (3.5) that can be obtained in the long time limit by Fourier trans-
form the Keldysh’s components of the single-particle Green’s function and the
embedding self-energy

I, = 2Re / ;lTi Tr [z; (e)GA(e) + EQR(E)G<(E)] . (3.8)

Notice that the last term in Eq. (3.5) has been disregarded due to the initial
state dependence of the left and right components.

3.4 Energy currents

As opposite to the charge currents, the energy currents that are present in
the transport model considered here are strongly non-local. In other words,
it is not true anymore that the incoming energy fluxes into the central region
are equal and opposite to the ones flowing out from the metallic leads. This
is mostly due to the presence of non-local interactions in the central region,
as well as to the existence of a tunneling contacts between the conducting
correlated island and the leads. The tunneling or contact regions can absorb
and store a finite amount of energy that is not trivial to quantify. In the
next sections, we present the details of the original derivation reported in the
Publication IIT on how to compute the expression of the energy variation in
the contact and in the central correlated region. Our main interest is focused
on the relations that occur between all the different contributions to the energy
currents in the reservoirs, in the central interacting region and in the tunneling
barrier. For such purposes, we evaluate the time derivative of each component
of the total Hamiltonian (2.1), which are given by

Jalt) = {1 (0) = i {110), 0] + 22O (39
sty = & (o) = i (1), fow)) + 280 (3.10)
Ecalt) = jt <Vca( )> = ¢<[Pf(t), VCa(t)]> + W, (3.11)

the last terms in the r.h.s. of these equations are the power injected by the
explicit time-dependent drives present in the Hamiltonian. In the following,
we disregard those terms as they are not relevant for the overall discussion
and they can be easily added back when the shapes of the external time-
dependent pulses are known. Besides, the different contributions to the energy
currents are linked because of the conservation of the total energy, which is
given mathematically by

i (A, H®)]) = 0="3 Jalt) + Jolt +Ze(;a (3.12)

[e%
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The first energy current we encounter is the rate of change of the energy in
the non-interacting electron reservoirs, its expression in terms of the single-
particle Green’s function and embedding self-energy can be worked out easily
in a similar manner to what is done for the particle current [54, 58, 89]

dsg ., dSE o dmh
Ja(t)—2Re{Tr [Z o -G —HW.G +1 o *G| (t,t) . (3.13)

The main difference with Eq. (3.5) is the presence of the time-derivative of
the embedding self-energy, this is a consequence of the fact that all the terms
in the expression for the energy current are weighted by the single particle
Hamiltonian of the a-th lead. Eq. (3.13) contains the physical effect of the
energy carried by the flowing particles and, as it is clear from its expression, is
not a simple manageable quantity due to the presence of the time derivative of
the embedding self-energy. However, its NESS counter part has a very handy
expression and has been widely used to study transport and thermoelectro
effects in different physical systems [89-94|

Jo=2Re | ;Li =T [B5(5)GA(e) + SEE)E(9)] (3.14)

Once again the difference between this expression and the one for the charge
current, see Eq. (3.8), is the presence of the energy of the a-th lead.

3.4.1 Energy variation of the central region

In this section, we show how to compute the variation of energy in the interact-
ing central island. As we have seen before, the energy variation of the central
region is nothing but the Heisenberg equation of motion for the Hamiltonian
of the central part of the total system:

Jot) = o (He(t) =i ([ 1), Ae(t)])

We will show that this quantity can be recast in terms of the single-particle
Green’s function, the embedding and the many-body self-energy in a form
very similar to the time dependent Meir-Wingreen expression for the particle
current [56, 58, 86]. To achieve this, we proceed in steps and we begin by
showing how the energy variation can be expressed in terms of single- and
two-particle mixed Green’s functions, i.e., we prove that the energy variation
is indeed a two-particles quantity. Even though the quantities we are interested
in are real-time quantities we carry the calculation along the imaginary time
contour to lighten the already cumbersome and lengthy expressions. Firstly,
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we compute explicitly the commutators entering into the definition of the
energy current:

= 32 [ e TOR) (300 +7 [ i T () (GO +
_;/dei//dxldxﬁ (1)L, ) (=) (1 O b1 (1)) +
# 3 [ [ [ s T (0 00) +
-8 [t [ [ s T @ 0007 (OF AE) +
w0 [ [ [ st 000,00 (G0 50000) )

(3.15)

where again z is the complex time variable on the path v in the complex-
time plane and 1 = (x1,21), 2 = (X2,22) and 1" = (x], 2{) are multi-indexes
for position, spin and complex time. At the end of the calculations, we take
z1 =t to project the complex time variable onto the real axis. We can rewrite
the first two terms in the following way

[ b(1) [17 i (G5 = T (§(Dda(1))] =

= 2Re{/dx1 h(1)T*(1)Gea(1; 1*)}
(3.16)

where we use the definition of the mixed Green’s functions: Geo(1,1) =
—i (T(PL)) and Gac(131') = =i (Tha()PH(1)), with T, the time-
ordering operator over the Keldysh contour v and where we exploit the prop-
erty Goo(1;1) = —[Geoa(l’;1)]*. Moreover 1T = (x1,2;) with z;" being a
time infinitesimally greater than z; on the Keldysh contour. A similar ma-
nipulation can be done in the other four terms arising from the commutator
of the interacting Hamiltonian. By a change of the integration variables, and
using the relation (¢)f(1)$1(1)$(1)da(1)) = — (¥ (1) (1)ih(1)fa(1)), the

last four terms are equal in pairs, this cancels out the factor 1/2 and we are
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left with:
i [ i [ [ st T2 )0 (EF D)D) + e

—2Re{ /dzl//dxldxl (1, 1) ()G (U, 151, 1’+)}
(3.17)

where we use the definition of the mixed two-particle Green’s functions

Glboa(1,2:3,4) = (=) (T ()P2)0L )P (3)) (3.18)
GRoo(1,2:3,4) = (=) (T (D@D W E)),  (3.19)

together with the relation G (1,15 14,1%) = [GRLo, (1, 1;17,17)]
By collecting all terms we obtain:

ZQR@{/dxh )T*(1)Gea(1T)+

+z/dz //dxdx v(1;1)TE(1 )GééCa(l’ ;1 1’+)}
(3.20)

In the following, we demonstrate how to manipulate these expressions in or-
der to recast them in terms of single-particle quantities of the central region.
We have seen in Eq. (3.20) that it is possible to express the energy current
flowing through the middle interacting part of the total system as the sum
of two terms. These terms contain the mixed Green’s functions accounting
for the propagation of both particles in the central region and in the leads.
It is important to realize that a similar situation occurs for the calculation
of the particle (charge) current [86]. The usual way to find an expression for
the mixed Green’s functions G¢®(1;1’) is based on the equation-of-motion ap-
proach [54, 60]. Since the leads are treated as non-interacting, the method
allows to write down a closed set of equations and then a general formula
for GE®(1;1) in terms of the single particle Green’s function. Even though
appealing for its conceptual simplicity, the equation-of-motion technique can-
not straightforward be applied to the mixed two-particle Green’s function
chca(1,2;3,4) since the analysis and the calculations gets quite involved
and a closed set of equations can be found only if one relies on some physical
approximations. The latter must be chosen consistently with the approxima-
tions used for the single-particle Green’s function.

Rather than the equations-of-motion technique we find a general expression
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for both, single and two particles mixed Green’s functions, by a direct expan-
sion of the S-matrix in the interaction picture with respect to the coupling
Hamiltonian [54]. Despite the fact that the derivation is somehow more elab-
orate for the mixed single-particle Green’s function, it is very general and
can be extended easily to the mixed n-particle Green’s functions. To be-
gin with, we look at the first term of the energy current, namely the one
containing the single-particle Hamiltonian hA(1). To unfold once more the
main idea of this approach, we want to express the contour-ordered mixed
single-particle Green’s function G (1;1') = —z'< 71&(1)1[1&(1’» in terms of
both the contour-ordered single particle Green’s function of the particles in
the central region Geoe(1;1) = —i <7TY@Z(1)@ZA)T(1’)>, and the one in the leads

g0(1;1) = =i (Tda (L)),

The derivation follows by writing the Green’s function G, (1;1’) in terms of
the interaction-picture operators (denoted by a tilde) with respect to the free
Hamiltonians fIC and fIa of both the central region and the lead o . Accord-
ingly, the evolution operator is expressed in terms of the coupling Hamiltonian
Vi in the interaction picture. Thus, in this picture the mixed single-particle
Green’s function can be written as:

Goa(1;1) = =i (T()PL ) = =i (TP )FL1)S) (3.21)

where we introduce the S-matrix as:

N Ly S .
s_kz:% y Ldzl---LdszCa(l)...Vca(k). (3.22)

By inserting the explicit form of the S-matrix into Eq. (3.21) we obtain

A TAY 7 Tt o (_Z)k
Gea(l; 1) z<7;w(1)¢a(1)§: D
k=0 ’

(i k o )
- /diz ( k;l) (=) <Tﬂ/}a(1)¢£(1’)>T(1)x
k=0

X <7'71/~1(1)1;T(I) X o X / dékf/ca(/;:)> + (k — 1 remaining terms)
(3.23)

The crucial element in the second step of the calculation is the assumption
that the leads are non-interacting, this allows us to use the Wick’s theorem for
the a-operators. Besides, in the interaction picture the operators ¥ and ),
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are independent and thus we can factorize the expectations values. Finally,
by relabeling all integration variables in the remaining k¥ — 1 terms we notice
that all these terms are equal and hence we get a factor k, therefore:

Gea(i1) = [ dITL(D)(=0) {Tydal >¢?&<1’>> x
x (=) <m< WY G 1 . H / dzVea(p >
_/dl G(1; 1T, 1) o(1;1),

(3.24)

where in the last line we use ¥o (1) = 4 (1), and restore the S-matrix expansion
for the single particle Green’s function. The first term in Eq.(3.20) can be
rewritten as:

Zme{/dxlhu)T;(l)GCa(l; 1+)} _
- ZQRe{/dxldi B(1)G(1; 1) Sa (I; 1+)},

(3.25)

where we use the definition of the embedding self-energy as in Eq. (2.49)
Ya(1;2) = Th(1)g9a(1;2)T2%(2). The second term of Eq.(3.20), containing the
mixed two-particle Green’s function G(?CC&, can be manipulated in a similar
manner and thus can be rewritten in terms of the contour-ordered two-particle
Green’s function of the central interacting region G(2):

Gobea(1,1317,17) = (=) (T (V)b ()3 (1)t (1) )
= (=i ()Rl (1)t ah)s)

= COP(TA B (1) x
X;i(_k?k/v a1 (DD (Dda(T) + hue.) x xAdszCQ(k)>
: AN = (i)
= [l (= (T)s O3 1) Y - TT [ daVeal®) ) %
k=0 p=1"7
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where in the last step we recognize the series expansion in the interaction
picture of the two-particle Green’s function of the central region and the single-
particle Green’s function of the lead «. Inserting this result into the second
term of Eq. (3.20) we obtain:

zZ/dx d1 v(1, )T (1)G2 0 (1, 1,17, 1) =
=iy / dx'd1d1 v(1',1)T*(1)GP (1,117, 1T (1) gaa(1; 1)
— i Z/dx'dldi o1, DG (1, 15T, 1T (1) ga(T; 17H)T(1)

_ Z/dx’dldi 21 1)G(1;1)Sa(T; 1)
(3.27)

where we use v(1,1") = v(1’,1), the symmetry relations of the two-particle
Green’s function G(?)(1,2;3,4) = —G®)(1,2;4,3) and the definition of the
embedding self-energy ¥, (1;2). The fundamental step in obtaining the result
above is to use the relation linking the two-particle Green’s function in the
interacting region with the many-body self-energy Eq. (2.18):

/di o1, )G (1, 1;1,11) = z’/di 2(1,1)G(1, 1), (3.28)

which is nothing but the relation which defines the many-body self-energy
itself. Now we have all the ingredients to write down the final expression in
terms of the currents, which combined with Eq. (3.10) gives:

)= I8
_ Z2Re{/dx1dld2 {h(l)é(l,l) (1, 1)}@(1;2)201(2, 1+)} L (3.29)

To verify the correctness of our derivation, we have compared the expression
for the variation of the energy Eq. (3.29) with the derivative of the total energy
that in the NEGF formalism reads:

fgc { /dx1d1 [ 5(1 I)+;E(1;I)]G(I;1+)

(3.30)

z1=t

Even though at first glance these last two equations look similar, a careful
reader will notice a fundamental and non trivial difference: Eq. (3.29) takes
into account how each individual lead influences the energy transport in the
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central correlated region and thus gives information on how the energy vari-
ation changes due to the different leads’s contributions. On the contrary,
Eq. (3.30) accounts for the rate of the total energy that cannot distinguish
from the various weights coming from the different leads.

3.4.2 Energy variation of the contact region

Here we show how to compute the variation of energy in the contact region.
Instead of considering directly the commutator Eq. (3.11), we exploit some
useful identities that make the calculation faster and straightforward. The
average variation of energy in the tunneling region then reads:

jt%a( £) = 2Re{—z/dx1 T )ddaoau;ﬁ)}

z1=t

/dxlle i (I;1+)ha(1)} +

z1=t

2re
—2Re{ dx1d1d2{ (1)6(1,1) + 2(1; 1)}(}(1 2)%4(2, 1+)} -
—2Re{

dx1d1d2 Yemp(1;1)G(1;2)3,(2, 1+)} ,
(3.31)

where we use Eq. (3.24) together with the equation of motion for the single
particle Green’s functions in the central region and in the leads:

jz(;(u) 5(1,1) + h(1)G(1; 1)) +/d1 (1;1) + Semn(1; 1)) G(1; 1)

d
i@ga(l; 1/) = _6(13 1,) - ga(1§ 1/)ha(1/), (3.33)
and where Y¢5(1;1) = > ¥5(1;1'). It is easy to recognize the nature of
B

the different contributions: the first term is nothing but the opposite of the
variation of the energy of the lead o, Jo(t) = 3 4 (H,(t)) BEq. (3.13). The second

term is —Jéa) (), see Eq. (3.29), namely the opposite of the variation of the
energy on the central region due to the coupling with the lead «. The last
term describes the direct coupling between the lead « and all the others leads.
This is a very interesting and peculiar situation, indeed we have a scenario
where the coupling between the leads is mediated by the central region and
therefore of the fourth order in the coupling between the central region and
the leads. To see it explicitly, we consider the mixed single particle Green’s
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function Ggn(1;1") = —i <7;1/A15(1)1ﬁly(1’)> and use once again the S-matrix
expansion:

Gaal1:1) / 412 (=) (T3 (VD) T30 To(2)(=1) (T 020401 X

(3.34)

Physically this term represents exactly the scattering of a particle (or a hole)
from the lead « to the lead 5 through the central region. It is now easy to see
that the third term in Eq. (3.31) can be written as:

/dx1d1d2 Yemb(1;1)G(152)84(2,17) =

_ /dx1ZTﬂ(l)Gga(l;lJr)T;(l).
B

(3.35)

It is simple to check that the term S = « does not contribute since it is purely
imaginary. Finally, we can recast Eq. (3.31) as

d ()

<cjCoz( ) dt <VCa( )) - _']a(t) - JCa (t) - AJa(t)7 (336)

where AJ,(t) = > [dxi1Tp(1)Gpa(1;17)T7(1). Accordingly to authors of
f7a

Ref. [95], it has been shown that the DC component of Eq. (3.36) is £ca(t) = 0
and thus
Ja(t) = —J& (8) = Ada(t). (3.37)

This interesting result tells us that the variation of the energy of the a-th lead
is not necessarily accompanied by an equal and opposite change in the energy
of the central region. The difference between the two is given by the term
AJ,(t), which arises from the direct propagation of particles from any other
of the leads, let us say (3, to the lead « via virtual scattering through the central
region. This interpretation is supported by the physical meaning of Eq. (3.34),
it represents the propagation of a particle from one lead to another through
the central system. The expression Ys,(1;1) = T5(1)G(1;1)Tn(1') is the
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inbedding self-energy of Eq. (2.57) introduced in Sec. 2.2.4 and accounts for
the back-action that the correlated island has onto the non-interacting leads.
This term is usually either negligible or zero altogether. In the weak coupling
limit this term is vanishingly small due to the fact that it is of fourth order
in the coupling between the central region and the leads. Moreover, it also
vanishes when the two integrals in the expression for Ggq(1;1’) have different
spatial supports, namely when T, (1) and T3(1’) for a # 8 are non-zero on
different spatial regions and therefore their product vanishes.

Nonetheless, it is possible to envisage situations in which this term gives a non-
vanishing contribution: short quantum wires (mean free path comparable with
the size of the wire), more than one lead coupled to the same spatial region
or spatially extended coupling between the leads and the central region. As
an example where this term is not negligible, we have studied its effect in the
original article III in an interacting quantum dot in the Kondo regime.

3.5 Effective electronic leads temperatures

In this section we describe how to use the inbedding technique introduced in
Sec. 2.2.4 to extract physical information about the macroscopic electronic
leads. In particular, we are interested in the variations of temperature and
chemical-potential that the metallic reservoirs experience when they are in
contact with the correlated region. In other words, if we start from an initial
equilibrium state for the mode k in the leads « described by a Fermi-Dirac
distribution f(e, pga, Tha) = 1/(e€#re)/kTka 4 1) with initial temperature
Tro and chemical-potential upo, what is the effects of the back-action that the
presence of the interacting region has on this distribution? The question is
conceptually challenging and surely does not have a commonly agreed answer
in the scientific community. The reason is rooted on the simple observation
that, after the interaction with the central region, the macroscopic lead would
reach a non-equilibrium state and thus would not posses any of the properties
that characterize the thermodynamic equilibrium. One possible solution to
solve this conundrum is to resort to the so called hot-electron assumption.
This assumption presumes that recombination and relaxation processes in the
lead distribution happen very quickly due to a longer particles dispersion time
compared to the interaction time in the correlated region. In what follows, we
will see how combining the hot-electron assumption and the inbedding tech-
nique it is possible to extract the effective electronic temperatures of metallic
reservoirs in typical transport configuration. From the lesser component of
the SPGF of the lead a Eq. (2.59), we can extract some relevant quantities of
the electronic leads such as the average number of particles and energy of the
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mode k in the contact a under non-equilibrium steady-state condition:

Ny = — deG - (@), (3.382)

S / e (3.38b)

with Gy, (e) the Fourier transform of Gy, (t,t'). Since the mean electron
leakage-time from the leads is longer than the electron-electron scattering-
time in the central system, it is valid to assume a fast relaxation in the leads
distributions. In such a way, it is reasonable to consider a quasiequilibrium
Fermi-Dirac distribution for the leads f(e, iy, Thy) = 1/(e Hra)/FoTho 4 1),
with well-defined electronic temperature and chemical potential T}, and p,,.
Thus, with the constrains imposed by Eq. (3.38) and the hypothesis of the
quasiequilibrium distributions, we can construct the following non-linear sys-
tem of equations:

de

Nia = [ 52 1(E Hhas Tha). (3.39%)
de , y

Bra = [ 5ot thas Tha): (3.39D)

The solutions of these equations are the new temperatures and chemical po-
tentials of the leads due to the presence of the correlated scattering region. In
the publication IV included in the thesis, we have used this method to sim-
ulate and predict the lead electronic temperatures in a quantum dot junction
and we have obtained a remarkable agreement with the measured one. This
confirms the fact that, even if the hot-electron assumption imposes a strong
hypothesis on the relaxation process in the metallic leads, it is possible to
envisage physical implementations where these effects are present and can be
measured.
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Numerical implementation

In this chapter we discuss the details of the numerical implementation for the
self-consistent solution of the Dyson equations for the real-time components of
the single-particle Green’s function Eqgs. (2.36)-(2.40). The main idea of this
chapter is to give the reader a brief overview of the numerical procedures un-
derlying the solution of these equations on the Keldysh contour. In particular,
we present a detailed method based on the numerical inversion scheme on the
full two-time plane. As we have already stated, finding the solution through
this procedure is completely equivalent to find the solution of the most stan-
dard Kadanoff-Baym equations [42, 69], see Eq. (2.19), employing well tested
two-times propagation schemes (time-stepping technique) [43, 44, 59, 60].

We start the discussion by reviewing the numerical representation on the dis-
cretized contour time-interval of all fundamental quantities and their relations
to the NEGF formalism. We then underline the main steps to implement
the self-consistent scheme as discussed in Sec. 2.2.1, and finally we show how
a proper distributed-memory parallelization over the space/momentum de-
grees of freedom allows for large-scale simulations. Furthermore, we provide a
short summary of the structure of our open source software/library, currently
under development, which implements tools for basic operations on the non-
equilibrium Green’s functions, the construction of the self-energies, and for
the solution of integral equations involving contour Green’s functions [96, 97].

4.1 Discretization of the contour time arguments

To solve numerically the system of Dyson equations (SyDEs) Egs. (2.36)-
(2.40), we need to discretize the time intervals on both the horizontal ¢t € [to, ]
and vertical 7 € [0, 5] branches of the contour. We choose to divide the real
axis into (Ny+1) equidistant point ¢t — ¢, = ndt, n =0, ..., N;, whereas we use
the following samples for the Matsubara branch 7 — 7, = ndr, n =0,..., N,

39



N.W. Talarico

with 7o, = $7'. The numerical representation of a generic function A(t,t')
appearing in the system of Dyson equations has a matrix structure that comes
from the finite-dimensional single-particle basis made of N, orbitals for the
discrete representation of the spatial-spin (or momentum) degrees of freedom,
as well as it acquires an extra matrix form due to the time discretization:
A(t,t') — A(tp,t),) = App (similarly for functions with time arguments on
the vertical axis and mixed time arguments). The overall or global structure
of a generic two-time function can be thought as Ny x N; matrix partitioned
in blocks having spatial dimension Ng x Ng:

A A - Ay, a1 a2 - GIN,
At A -+ Aap, a1 a2 -+ G2N,
A= . ) . ) Ay = )
AN Ango - AN, an, an,2 - GN,N,
(4.1)

Thus, due to the basis and discrete time representation of the non-equilibrium
Green’s functions and all other quantities entering the SyDEs, the objects to
be handled are in general time-dependent matrices which allows for a numeri-
cally straightforward implementation. The system of Dyson Egs. (2.36)-(2.40)
are Volterra integral equations of the second kind. After discretization they
become a system of algebraic equations which can be solved by means of
standard linear algebra operations [98]. The discretized system of Dyson’s
equations (DiSyDEs) reads:

GM (1, 7)) = [GO + G« 2 M % GM} (T, 1), (4.2)
GR/A(tn,t;Z) _ [GR/A + GR/A ER/A GR/A} (tnatn) (43)

Gl (7, 1. ):[ lral mt.grrglasl.cr gl . zM*Gf](Tn, 1,
(4.4)

Gl(tn, 1) =[Gh+ G- 27 G+ G 15 GM 4+ Gl SM 5 GM (b, 72),
(4.5)
G=(tn, 1)) = [G5 + G- 5. GA+ G5 - 24 64+ G- w1 6=
+ Gy xS+ Gl 4+ G ST« Gl 4 Gyl - 64 (ks )

(4.6)
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where the - and x symbols are the numerical representation of the time integral
convolution:

Ni—1
[A B tn,t m Z wp tnvt (tpvt;n) (4'7)
Ny—1
[Ax B](1p, 7)) = —i Z wp A(Tn, 1) B(1), 7). (4.8)

The weights w, and w, depend on both the type of grid chosen and the numer-
ical scheme used for the integration. For instance for the standard Riemann
integration, we have w, = t;/N; and w, = /N,. Other choices are of course
possible and allow us to exploit different numerical integration methods to
reduce the error of the simulations, analogously to what it is done in the case
of integro-differential equations (KBE) by choosing higher order integration
schemes [98]. Furthermore, the accuracy of the numerical model can always
be improved by carefully choosing the number of points in the contour time-
intervals N; and N, and their constant time steps dt, dr, according to the
problem at hand. For instance, for a continuously driven system it might be
the case that there is no stationarity on the time scale of interest and therefore,
the choice of the time step is based on a good resolution of the time-dependent
drive itself. For a periodic drive this means that the time grid spacing has to
be dense enough to resolve the oscillations in the drive.

Other important elements that need to be represented on the discretize time-
interval for the numerical implementation of the NEGF are the identity oper-
ators acting on the horizontal and vertical branches of the contour

[1d, - A](t, 1) = A(t, 1), (4.9)
[Id; % A](7,7") = A(7, 7). (4.10)

Using the above definitions for the numerical time-convolution operations of
Eq. (4.7) and (4.8), it is straightforward to check that the numerical version
of the identity operators are

Id; — Gsy/Gpm /W (4.11)
Id; — 10550 /w, (4.12)

where d,¢ is the Kronecker delta on the spatial(momentum)/spin indexes and
0nm and 6,, are Kronecker delta on the time grids indexes. Now, by applying
those discretization scheme to a generic Volterra integral equation with un-
known A, kernel B and source term C, we can rewrite this equation in the
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following way:

Cij(tns tm) = (b, tm) — [C- B A] O (4.13)
N¢—1
= Aij (tna tm) - Z Z wpwqcis(tna tp)BST‘(tpv tq)Arj(tqa tm)
rs p,q=0
(4.14)
Ni—1 Ni—1
=Y {0ibng — Y > wpwgCis(tn, tp) Ber(tp tq) | Arjlttm)
' q:O S p:O
(4.15)

combining into a multi-indexes R = {r,n} the orbital index r and the discrete
time index ¢, we can recast it into the following matrix equation

Crq =Y KprrARQ, (4.16)
R

with the matrix K defined as

Nyg—1

Kir(tn,tq) = 0irbng — > Y wpwCis(tn, tp) Ber(tp, tq)- (4.17)
S p:()

Eq. (4.16) is nothing but a collection of NyN; algebraic equations whose solu-
tion can be found numerically.

4.2 Self-consistent solution of the Dyson equation

After discretization of the time variables, the original SyDEs is mapped onto
an algebraic problem which can be solved by means of standard algebraic
operations such as matrix multiplications and inversions. We have seen that
self-consistency is required to find a solution which respects macroscopic con-
servation laws. This implies that the self-energy is a functional of the Green’s
functions itself, see Sec. 2.2.2. Therefore, the solution of the DiSyDEs has
to be found self-consistently due to the presence of the kernel self-energy as
functional of the SPGF. This means that we have to perform an iteration cycle
starting form an initial seed for the Green’s function G(¢,t") = Go(t,t’), that
is needed to calculate the initial components of the many-body self-energy
Y g[Go](t,t'). With this self-energy the DiSyDEs is solved for the compo-
nents of the interacting Green’s function G(¢,¢). Then new components of
the self-energy are computed, and the process is repeated until convergence.

Since the Matsubara and the retarded/advanced components of the Green’s
function are decoupled from all other equations, the solution of the DiSyDEs
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is then performed into two main steps: 1) solve self-consistently the Matsub-
ara and the retarded /advanced Dyson equations, 2) solve self-consistently the
Dyson equation for all other components.
The self-consistent solution to the Mastubara Dyson Equation at [41 iteration
can be written as:

GM(IJ'_I)(TH,T,{L) = [RM(Z) *Géw] (Tns 1), (4.18)

n

-1
RMO(r,,71) = [ (1, = GYT 5 2M0) (7, 70), (4.19)
with the resolvent matrix RM(®) (7, 7/) defined as the inverse of the identity
minus the kernel matrix, such that the following relation is satisfied:

RMO s (1d, — G§T =MD = 1d,.

Thus, the solution of the Matsubara Green’s function requires a matrix in-
version at the iteration step [ to find the resolvent RM®. Because the latter
depends on the Matsubara self-energy that needs to be updated during the it-
erative cycle, the inversion has to be done at each iteration step. Analogously
to what is done for the Matsubara component, we can find the self-consistent
solution of the retarded/advanced equation from:

GRIAED @, 11y = [READ - GEA (2, 1), (4.20)
RRIAO 4, 1) = [ (1d, — G4 SRA0) (1, 8,), (4.21)

where we have defined the retarded/advanced resolvent to satisfy
RAD . (1d, — G - A0 = 14,. (4.22)

Once the Matsubara and the retarded/advanced components of the interact-
ing SPGF and self-energy are found, they can be used as input in the other
equations to calculate self-consistently the remaining components. Although
this procedure may appear very simple, few words are in order to clarify
some subtle points that one could encounter. Indeed, for the left/right and
lesser /greater components at the iteration step [+ 1, one might be tempted to
think that all the quantities on which they depend in the r.h.s. of the equa-
tions are taken to the current iteration step [. This is found to be an erroneous
and inaccurate choice and can lead to the violation of the symmetries proper-
ties for the lesser/greater and left/right components of the Green’s functions
Eq.s (2.35) and (2.33) .

To show this statement explicitly, for simplicity we consider the case in which
the dynamical influence of the initial state can be neglected. This translates
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in dropping all the functions with at least one time on the vertical time axis
and focusing only on the dependence that the lesser/greater components have
on the retarded/advanced one. To further lighten the notation we temporar-
ily omit the time-dependence of all the quantities involved in the calculation.
Accordingly, the equation to find the lesser/greater Green’s function at the
iteration step [ 4+ 1 reads:

) — G5 4 g . x50 . gAP) L g5 . 5AD . gAR) L gt RO gD,
(4.23)

At this stage, because in principle we have granted both information, we as-
sume that the iteration index p for the advanced SPGF can be either the
current p = [ or the next p =1+ 1 iteration step. We will come back shortly
to this point. For now, we rewrite the self-consistent solution of the above
equations moving all the terms containing GSU+Y to the Lh.s.

(Idt — gl ZR/A(l)) LGS+

=G5 - (Idt + nAO . GA(p)) +GE x50 . AW,
(4.24)

Then using the identity for the retarded resolvent Eq. (4.22), we get:
GSU+1) _ pR(O) [G? . (Idt 4+ nAO . GA(p)> +GE. xS0 GA(p)] (4.25)
Now, if we fix the iteration index p = [, we are left with the following expression
GsU+1) — pRO) | G? . (Idt O GA(Z)) + GRUAD st Al (4.26)

where we have used the solution of the retarded component Eq. (4.20). From
the previous expression it is clear that one would need to use simultaneously
the new spectrum of the system to evolve forward (encoded in GR(+1)) and
the old spectrum to evolve backward in time (encoded in GA"). This of
course would lead to wrong predictions, especially during the first iteration
steps where the spectrum of the interacting system is expected to experience
notable changes. Moreover and most importantly, this solution results in a
violation of the symmetries of the lesser and greater Green’s functions due to
the asymmetry in the forward and backward propagation.

In order to be consistent at each iteration step we have to use in Eq. (4.25)
p =1+ 1, in doing so, we can easily recognize in the expression

(Idt + EA(Z) . GA(I+1)> _ RA(l)
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the formal solution of the advanced resolvent ! which allows us to recast the
solution for the lesser /greater Green’s functions into a simple and elegant form:

GsUD (g, 1) = [ RRD . GE . RAW 4 GRUHD . 350) . GA<l+1>] (tn, 1)
(4.27)

Hence, in the particular case where the initial state does not influence the
dynamics, the solution of the Dyson equation for the lesser and greater Green’s
functions requires only the knowledge of the retarded resolvent R®(Y) at the
current iteration step. As we already mentioned, the computational effort for
this task is converted in finding the inverse of a matrix at each iteration step.
There is no need to worry about the advanced component since the latter
one can be easily computed using the symmetry relations linking it to the
retarded one, see Eq (2.34). Nonetheless, when the Matsubara component
is present, the same line of reasoning applies, namely one can calculate self-
consistently all the other components by using the solutions and the resolvent
of the Matsubara and retarded equations. The main difference compared to
the case we have analyzed above is that one has to perform an extra inversion
to find the Matsubara solution. The self-consistent scheme described above is
repeated until convergence is reached. The convergence of a generic matrix at
hand A can be established for example by taking the norm over all orbitals
and all grid points between two successive iteration, i.e.

Ni—1

AA = HAUH) - AU)H =Y ]Agl;l)(tn, tm) — AD (tn,tm)]. (4.28)
rs n,m=0

In particular, we use the definition of the norm, Eq. (4.28), to check that the
MB current in Eq. (3.6) becomes smaller than a given threshold between two
successive iteration and consequently truncate the iterative procedure.
One last point to address for the implementation of the self-consistency, is
which Green’s functions are used to calculated the new self-energy. In general,
one could use simply the Green’s functions calculated at the previous iteration
or rely on a mixing scheme that mixes the Green’s functions at the current and
earlier iterations with ad hoc chosen weights [99-101]. Due to the considerable
amount of memory required for the mixing procedure, we avoid to use it for the
full two-time simulations. We only use this implementation in the numerical
scheme that finds the solution at the non-equilibrium steady-state. The self-
consistent iteration scheme for the solution of the DiSyDEs is summarized in
the flowchart of Fig. 4.1.

LTo verify the correctness of this expression, it is enough to use it in the advanced solution
Eq. (4.20) to recast the advanced Dyson equation.
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Figure 4.1: Self-consistent iteration algorithm for the solution of the dis-
cretized system of Dyson’s equations. After the allocation of the NgNp x NNy
matrix we compute the single-particle Hamiltonian to construct the non-
interacting Green’s function. This is used as a seed for the calculation of
the MB self-energy that enters the self-consistent cycle. Once the convergence
test is passed, we can proceed with the calculation of the physical quantities.

4.3 Parallelization

We have seen that, in order to solve numerically the discretized system of
Dyson equations (DiSyDEs), see Eq.s 4.2-4.6, we have to store several matri-
ces whose total size is given by NsN;y X NgN¢, with Ng the number of spatial
and spin (or momentum and spin) points and Ny(N;) the samples in which
the real (imaginary) time-interval is divided into. Typical values of these pa-
rameters depend heavily on the type of system that one wants to study. To
give an example, we can consider a small chain composed of four sites Ny = 4
and characterized by high frequency correlation effects that require a very
fine time-grid with N; = 10 points to be described. Since each matrix has as
entries double-precision complex numbers (a pair of double-precision real num-
bers), one would need a memory of 25.6 GB to store a single matrix required
to study this system. In order to handle such dense and memory consuming
matrices, it is wise to resort on parallel computing so that one could distribute
chunks of matrices across several processes that are able to perform simulta-
neous calculations on them. The structure of the DiSyDEs as a linear algebra
problem also suggests to exploit already existing, well tested and widely used
numerical libraries for matrix operations. It is known that a matrix-matrix
multiplication performed with a sequential naive algorithm would require a
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scaling of the order O(N3) with N the total dimension of the matrix. Parallel
computation allows one to exploit more refined schemes which help in lowering
the scaling with the matrix size to O(N®) with 2 < o < 3.

A fundamental aspect in dealing with any parallel algorithms is to minimize
communication between the different processes to avoid transmission bottle-
necks which would spoil any advantages that arise from the simultaneous
calculations. To minimize and avoid disadvantageous communications, one
possible turn around is to cleverly choose the size of the chunks of the matrix
to be distributed across the several processes. Indeed, we have paid particu-
lar attention to the computation of the self-energies, since this is notoriously
the typical hot spot limiting the algorithmic efficiency in any numerical im-
plementations for the solution of the KBEs, GKBA and Dyson’s equation. It
is pivotal to realize that all the self-energies discussed in Sec. 2.2.2 are nu-
merically calculated from algebraic operations among matrices with fixed time
arguments. Therefore, for a given pair of times (¢,t'), (t,7), (r,t), (7,7'),
the operations needed for their calculations are sums over spatial (momen-
tum) and spin indexes. It is also important to notice that this still applies in
the case of the GW self-energy, where the extra computational effort comes
from the additional matrix-inversion for the dressed interaction rather then
the non-local time structure itself. A similar example is the one of the T-
matrix approximation for the self-energy, where again an extra inversion is
required in order to solve the Bethe-Salpeter equations for the two-particle
scattering amplitude [102]. Thus, it is reasonable to divide the global matrix
of dimension NgN; X NgN; into chunks or blocks which correspond exactly
to the full spatial (or momentum) dimension Ng X Ny and to distribute them
across the different processes. This refers to a situation where, for a given
pair of time coordinates, each process possesses all the pieces to update the
matrix elements of a corresponding global matrix (self-energy, Green’s func-
tion, ecc...) without the need to communicate with any other processes during
the calculation. In other words, the computation and the assignment of the
different chunks of the self-energies can be performed locally by each process
lowering the communication requirements and speeding-up the calculation.
To deal with parallel computing, we have used the standard Message Passage
Interface protocol (MPI) to handle the distribution and creation of a processes-
grid together with the Scalable Linear Algebra Package (ScaLAPACK) to
perform matrix operations and the Basic Linear Algebra Communication Sub-
programs (BLACS) to treat communications between processes. The choice
to use such standard protocol schemes and well-established routines comes
from the fact that the ScaLAPACK libraries together with the BLACS offer a
user-friendly interface to exploit efficiently the MPI capabilities, together with
the possibilities to take advantages of well-tested and optimized routines to
perform algebraic operations and communication tasks. Indeed, for standard
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Figure 4.2: (a) View of a NyN; x NgN,; global matrix in the two-time plane
with spatial blocks of dimension N, x N (dots). (b) Distribution of the spatial
blocks for the first pairs of times coordinates according to the 2-dimensional
block-cyclic distribution scheme (2DBCD) into a p, X p. = 2 x 3 processes grid
generated by using a row-major ordering of the processes (RMOP).

matrix operations such as matrix-matrix or matrix-vector multiplication and
matrix inversion, we rely on the improved ScaLAPACK subroutines which are
designed exactly for this purpose.

The initialization of p processes into a processes-grid of dimension p, X p.
is done by using a row-major ordering of the processes (RMOP), while the
distribution of the spacial blocks of the global matrices into this grid is done
via a 2-dimensional block-cyclic distribution scheme (2DBCD). Fig. 4.2 panel
(a) shows the global structure of a matrix in the two-time plane with spatial
blocks of dimension Ny x Ny (dots), panel (b) illustrates how these spatial
chunks for the first pairs of times coordinates are distributed according to the
2DBCD protocol into p, x p. = 2 x 3 processes-grid.

4.4 Overview of the NEGFs numerical library

In the previous section we have seen how the NEGF formalism is well suited
for a numerical implementation which helps us to find the solutions of sev-
eral non-equilibrium phenomena. Unfortunately, due to the uncommon two-
times structure of the integral equations there are no commercial software
presently available to perform the tasks needed to find those solutions, and
hence, dedicated software has to be self implemented and programmed. We
have developed an open source and scalable library that implements tools
for several operations on the non-equilibrium Green’s functions, the construc-
tion of self-energies, and for the solution of the integral equations involving

48



Chapter 4

contour functions [96, 97]. The NEGFs numerical library contains different
routines written in the Fortran 90 programming language that allow the users
to implement customized programs for the solution of various physical sys-
tems. These routines are categorized according to their core functionalities
and they are distinguished between: utilities, initialization, solver and data
functions. The utilities subroutines are exploited to handle the initialization of
the processes-grid and the allocation of the global matrices through standard
MPI and BLACS functions. The routines s1 init, mpi comm size and
blacs gridinfo are used for the implementation of the RMOP and 2DBCD
schemes explained in the previous section. For the initialization stage, we have
implemented the tbham, diagsy and freeg subroutines that are optimized
and designed for the creation of the single-particle Hamiltonian, its diagonal-
ization and the construction of the components of the non-equilibrium Green’s
functions. At this level, one could also build the embedding self-energy for the
inclusion of the effects that come from the presence of external macroscopic
baths Sec. 2.2.3. This is done by calling the subroutine fmcembslfen which
construct this self-energy starting from the characteristic parameters of the
external fermionic leads such us temperature and chemical potential. Once
the initialization phase is completed, the users can choose the degree of ap-
proximation with whom they want to study the physical systems by using
the subroutines hfself, sndbrn and GW for the creation of the different
MB self-energies, see Sec. 2.2.2. These functions are called inside the itera-
tion loop for the implementation of the self-consistent cycle where they are
used together with the main routine dyson for the solution of the integral
equations Eq.s (4.2)-(4.6). During the cycle the data subroutine mcurr is
called to calculate the MB current as explained in Sec. 3.3, Eq. (3.6) and
also to check rather that the self-consistent loop has reached convergence or
not. This in practice means that the iteration will continue until the value
of the MB current is smaller than a given threshold number. After the self-
consistent cycle has reached the required convergence threshold, one can cal-
culate the relevant physical quantities from ad-hoc data subroutines such as
mcurr, ecurr, occnum and dos. As the nomenclature suggests, these rou-
tines provide algorithms to compute the corresponding dynamical quantities
presented in Chapter 3. We have used the NEGFs numerical library and the
above program architecture to study all the different physical systems pre-
sented in the original research articles collected in this thesis. Though, being
the software still under development, it comes with some limitations that is
worth to highlight. In particular, since we have focused our study mostly on
transport setup configurations and initially uncorrelated systems, we did not
have the need to computes the Matsubara, left and right components of the
non-equilibrium Green’s functions. Thus, all the routines related to these par-
ticular tasks are implemented but not tested. Further details of the NEGFs
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numerical library will be soon available trough an extended documentation of
the routines capabilities and functionalities at the online repository [96, 97].
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Results

In this chapter we present a selection of effects and results of the quantum
transport problems that we have studied in the original research articles I-V
included in the thesis. Our aim is to present an overview of the results ob-
tained during the PhD thesis and, at the same time, to help the reader under-
stand some of the interesting physical phenomena that characterize different
transport setups and models. First of all, we describe how the spreading of
correlations in a close and interacting system is affected by a non-trivial inter-
play between the many-body interaction and the underlying energy landscape
geometry that characterize quasi-crystalline structures.

Secondly, we test the consequences of the expressions for the variation of en-
ergy in correlated open quantum systems derived in Sec. 3.4 by considering an
interacting single-level quantum system coupled between two electronic reser-
voirs. Then, using the non-interacting version of the same model, we show
how it is possible to predict the outcome of a cutting edge thermometry ex-
periment that allows the measurement of the electronic lead temperature.
Finally, we present transport spectroscopy results obtained within the sta-
tionary solution of the Generalized Kadanoff-Baym Ansatz master equation
applied to the prototypical transport setup where two leads, considered in
the wide band limit approximation, are connected through a central region.
The latter is taken to be either a one-dimensional quantum wire or a two-
dimensional carbon nanotube, with the fermionic particles that experience a
repulsive interaction treated within the second order Born approximation.

5.1 Anomalous transport in quasiperiodic geome-
tries

The discovery and the production of stable samples of quasi-crystalline ma-
terials has triggered theoretical investigations to clarify the origin of their
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unusual physical properties [103-105]. The increase of their resistivity, for
example, was soon understood to be intimately related to the singular contin-
uous (SC) nature of the single-particle energy spectrum (SPES) [106], whose
scaling properties determine anomalous transport and diffusion [107-110]. An
essential physical model which describes particle hopping in a one-dimensional
quasi-periodic lattice and where the nature of the spectrum plays a pivotal
role is the Aubry-André model (AAM). It displays a metal-to-insulator transi-
tion [111-113], with the spectrum being absolutely continuous (AC) and pure
point (PP) in the metal and insulating phases, respectively. At the transition
point between these two phases, the model exhibits a purely singular con-
tinuous energy spectrum. The model has been recently realized within the
experimental platform of ultra-cold atomic gases loaded in bi-chromatic op-
tical lattices [114-116]. This experiment revealed a dynamical slowing down
of correlations due to a non-trivial interplay of quasi-periodicity and inter-
particle interaction. Inspired by these results on cold-gases, we provide an
explanation based on the nature of the single-particle energy spectrum of the
observed dynamical slowing down in an interacting gas loaded in an incom-
mensurate bi-chromatic potential. How the many-body interactions affect the
properties of SC spectra has been studied in the seminal work in Ref. [117].
There the authors, treating the interactions at the mean-field level, conclude
that the SC SPES would be completely washed out by the presence of these in-
teractions. We go beyond their considerations by including correlation effects
via the second-order Born approximation, see Sec. 2.2.2 and showing that the
singular continuous spectra are robust even when many-body interactions are
considered.

We consider a gas made of spin-1/2 particles in one dimension, described by
the Fermi-Hubbard model:

N o J /. . A
H = Z €nCL,gcn,o -5 (cLH,Uan + h.c.) + U iy 470, (5.1)
n,o

here éIL’o(én,g) are fermionic creation (annihilation) operators at site n with
spin o and 7, o = éiwén,g is the corresponding number operator. J represents
the hopping strength (which we set as reference energy), €, is the onsite energy
and U describes the on-site interaction between particles with different spin
in the s-wave approximation. The interacting Aubry-André model (AAM) is
obtained by setting €, = A cos(2wrmn) with 7 = (\/5 + 1) /2 being the golden
mean and A the amplitude of the quasiperiodic potential. We choose also to
work with open boundary conditions to avoid enforcing any artificial periodic-
ity. It is well known that in the non-interacting case U = 0 this model witnesses
a metal-to-insulator transition at A = 1, in particular, in the thermodynamic
limit, one finds that for A < 1 the eigenstates are completely delocalized,
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whereas for A > 1 all eigenstates are exponentially localized [111-113]. For
the initial state of the system, we consider two particles with opposite spins at
each even site of the chain, whereas the odd sites are left entirely empty. This
can also be seen as the ground state of the non-interacting Hamiltonian with
a shallower amplitude for the on-site potential at even sites. At time t=0 we
assume that a sudden quench of the interaction and of the on-site potential
is performed and the Hamiltonian H can be used to describe the dynamics of
the system. In the case of a quantum walk in aperiodic lattices [110], it has
already been shown that the dynamical behavior of the system is essentially
independent of the choice of the initial state, provided that the latter is spread
among most of the delocalized eigenstates. This ensure that the system would
explore most of the single particle spectrum during the time evolution. To
study the dynamical properties of this system we apply the numerical scheme
discussed in the previous sections and specifically we focus on the informa-
tion encoded in the lesser components of the single particle Green’s function.
The correlation effects that arise from the interaction between particles with
opposite spin is treated at the second Born level, see Sec. 2.2.2.

5.1.1 Anomalous diffusion induced by the energy landscape
potential

The spreading of correlations in non-interacting systems characterized by
an absolutely continuous (AC) single-particle energy spectrum are ballistic
in nature, with a maximum velocity which is limited by the Lieb-Robinson
bound [118] and dependent on the initial state and the energy spectrum itself.
For systems that possess a pure point (PP) single-particle energy spectrum
instead, the spreading is fully suppressed by localization effects that make the
correlations to take place only in a finite region, the size of this region is pro-
portional to the localization length and vanishes in the thermodynamic limit.
As it was suggested in Ref. [102], we use the variance o(t) of the probability
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Figure 5.1: Quasiperiodic on site energy landscape potential for the Aubry-
André (AAM) and the Fibonacci model (OFM).

23



N.W. Talarico

------ L=400
L=800
— 1=1000 1
2 4 6 8 10

Figure 5.2: (Color online). a) Spreading of the single-particle correlations in
the Aubry-André model quantified by the time-dependent probability distri-
bution Pi(t) = |G};(0;1)?, with ip = 100 and for two values of the on-site
potential A. Panels b) and c) show the exponent of the power law o(t) o t*
as a function of the on-site potential strength A and for different system sizes
N for the Aubry-André (AAM) and on-site Fibonacci (OFM) model respec-
tively. The vertical green line at A = 1 in panel b) shows the metal-to-insulator
transition point of the AAM, in the thermodynamic limit. Solid and dashed
horizontal lines highlight the values of the exponent ap =1, ap = 0.5 ex-
pected for ballistic and diffusive spreading.

distribution:
Pi(t) = |G (05 1) (5.2)

90,0

to quantify the spreading of the correlations in a non-interacting system with
an underlying quasiperiodic potential. Since we treat the non-interacting case
U = 0, the spin degree of freedom can be disregard and we are free to consider
spinless fermions for this analysis. Fig. 5.2 panel a) shows the time-dependent
probability distribution, Eq. (5.2), of the AAM into two different phases of
the system that are characterized by two values of the amplitude potential A,
in particular we have the delocalized phase at A = 0.8 and the critical phase
at the transition point A = 1.

The anomalous propagation of correlations can be quantified by looking at the
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exponent of the power-law that the variance of the probability distribution
follows at long times, in other words by assuming a power-law behavior at
long time Jt > 1 for the variance o(t) o< t* of the time-dependent probability
P;(t), we can infer the nature of the dynamics of correlations by studying
the exponent « of the power-law decay for different system sizes and different
values of the amplitude potential \. As we can see from Fig. 5.2 panel
b), the expansion of correlations is ballistic (« = 1) for A < 1, whereas it
is heavily suppressed for A > 1 in the thermodynamic limit. The residual
expansion for A > 1 comes from the tails (present because of the finite size of
the system) of the exponentially localized eigenstates. At A = 1 the exponent
drops to a ~ 1/2, thus indicating a clear deviation from both the ballistic
and the localized behavior. To better understand the dynamical-correlations
features of the AAM, we compare them with those of the on-site Fibonacci
model (OFM), that is obtained by setting €, = A(|(n + 1)/7] — [n/7]) in
Eq. (5.1). The OFM does not show any phase transition and it is known
to exhibit a purely singular continuous (SC) energy spectrum [119] that is
induced by its underlying quasiperiodic geometry [120, 121]. The exponent
of the power-law for the variance of the probability Eq. (5.2) in the OFM
is shown in Fig. 5.2 panel c), where one can recognize a deviation from the
ballistic spreading of correlations for any values of the amplitude potential
A. The almost diffusive propagation in the OFM is a characteristic behavior
that is shared by other aperiodic structures [122, 123] and it is related to
the critical nature of the eigenfunctions together with the SC nature of the
spectrum [108, 110, 119]. The above analysis suggests that the AAM at the
transition point (A = 1) shares with the OFM the SC nature of the single-
particle energy spectrum, which is responsible of the deviation from either
the simple ballistic propagation or the full localization of the dynamics of
correlations.

5.1.2 Interplay between geometry and interaction

In non-interacting systems, we have seen how the presence of an underlying
quasiperiodic potential induces anomalous diffusion. Thus, it is reasonable
to wonder how these dynamical features caused by a non-trivial geometry
may be altered by the inclusion of a many-body interaction. To examine this
matter, we apply the machinery of the non-equilibrium Green’s functions and
treat the interaction at the second order in the perturbation theory to look
at the dynamics of a many-body interacting system described by the Hamil-
tonian in Eq. (5.1) for both the AAM and the OFM. It is well understood
that the presence of density-density type interactions can alter in a remark-
able way the transport properties of a system. Indeed, in weakly interacting
systems in the ergodic phase, where the single-particle eigenfunctions are de-
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localized, the spreading of correlations can drastically change from ballistic to
diffusive [19, 102]; moreover, for systems that are in the non-ergodic localized
phase, the interactions may help the system to acquire a finite diffusivity, by
wiping out the confinement properties.

For this particular study, we look at the particle imbalance that is an ex-
perimentally accessible physical quantity and it is useful to characterized the
diffusion properties of a system [19, 115, 116]. The imbalance is defined as

AN(t) = (Ne(t) - No(t))/Ntot7 (5'3)

with N /,(t) the time-dependent number of particles at the even/odd sites and
Nyt the total number of particles in the system. In the delocalized ergodic
phase, because all the particles will redistribute evenly among the different
sites, the particle imbalance decays to zero AN(t) — 0 on a single-particle
time scale (~ J~1). In the localized non-ergodic phase instead, this quantity
reaches an asymptotic value AN (t) — N(X\,U) # 0 at long times (Jt > 1).
The authors of Refs. [115, 116] have shown with experiments in cold gases that
this is still true in presence of interaction. Close to the critical point A = 1,
the particle imbalance decays to zero with a power-law behavior. This trend
is a clear indication of a non-trivial interplay between the effect of interaction
and geometry that we have further investigated in our work. In the numeri-
cal simulations that we performed for the AAM, we confirmed the dynamical
features of the imbalance that we just described, namely as we increase the am-
plitude potential A the time-dependent behavior of the imbalance experiences
a slowing-down from an exponential to a power-law decay. In order to quanti-
tatively assess these characteristics, we fitted the imbalance with a power-law
of the form AN(t) = at=?. Notice that all the fits have been performed by
excluding the first few tunneling times Jt > 5 as suggested in Ref. [116]. The
reason for that is to avoid the initial, transient dynamics that is characterized
by single-particle tunneling. The power-law exponent S is shown in Fig. 5.3
for different values of the amplitude potential A and the interaction U. We
can see that for A < 1, AN(¢) — 0 in a sub-ballistic/super-diffusive way with
1/2 < 8 < 1. Moreover, as U increases the exponent  decreases, as expected
for 1D systems at small interactions in the ergodic phase [19]. For A > 1,
we can distinguish two main behaviors depending on the value of the inter-
action. As a matter of fact, one can identify a threshold value U.(\) such
that: for U < U.()\), the particle imbalance tends to an asymptotic value
AN(t) — N # 0 and the exponent goes to zero § = 0, thus pointing to a
characteristic long-time localization; for interactions greater than the thresh-
old value U > U.()), one finds that the imbalance decays to zero AN (t) — 0 as
a power-law, with an exponent that is smaller than the one in the delocalized
phase and with values included in the range 0 < 8 < 1/2, which is essentially
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Figure 5.3: (Color online): a) Power-law exponent of imbalance decay
AN(t) o< t=% in the AAM as a function of the potential strength A\ and inter-
action U. The black dashed curves identify the region at § = const, whereas
the vertical grey lines show the points of U used in panel c¢). b) Exponent
B as a function of U for different values of A\. The horizontal grey dashed
line corresponds to § = 0.5. ¢) Exponent /3 for U = 0.4 (solid) and U = 1.4
(dashed) as a function of A.

attributed to a sub-diffusive dynamics. In this last configuration, the dynam-
ics shows a peculiar anomalous dilation compared to the non-interacting case,
that is nonetheless very different from pure localization. Furthermore, one
can also appreciate that the results obtained with the numerical simulation
are in quantitative agreement with the ones extracted from the experiment
with ultra-cold atomic gases in Ref. [116], see Fig. 5.3 c).

In the last part of this section, we want to highlight how crucial is the fact
that one has access to those dynamical quantities when dealing with small
system sizes. Indeed, the characteristic equilibrium spectral properties might
not be so evident unless very large system sizes are considered. To give an
example, in Fig. 5.4 we plot the spectral function in frequency and momentum
space A(k,w) = —m~1Im GF(k,w) with

nomo
T—o0
nmo

—ik(n—m) s
GR(k,w) = lim }j%/df G (T47/2T—7/2), (54)
T

for the Aubry-André model in different points of the phase diagram of Fig. 5.3.
In the delocalized phase, corresponding to panel a) and b) one can clearly see
the different sub-bands induced by the modulation of the energy landscape.
Two main gaps are visible, as well as one sub-gap in the top most sub-band
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and another in the bottom one. The effects related to the presence of the inter-
action are quantified by the broadening of the peaks along the w direction, as
well from the closure of the smaller sub-gaps. The latter observation explains
how the interaction is able to make the spectrum piece-wise continuous with
the closure of the smallest gaps. For higher values of the amplitude potential
A, Fig. 5.4 panels c¢) and d), the spectral functions shows a broadening along
the momentum direction which corresponds to more localized and confined
states in real space. Nonetheless, the parameters of the system in panel d)
are such that the spreading is anomalous and the presence of localization is
substantially reduced.

As in the case of non-interacting systems, the dynamical regimes that dis-
tinguish the phase diagram in Fig. 5.3 are emerging features that one can
relate to the nature of the single-particle energy spectrum (SPES). In par-
ticular, by using arguments from the statistical analysis of time dependent
signals [110, 124-127], we were able to identify the presence of an absolutely-
continuous SPES in the ergodic phase for small values of the amplitude of
the quasi-periodic potential, and a pure-point spectrum in the localized non-
ergodic phase at large A\. Moreover, we have discovered that in between these
two extreme behaviors lies a critical dynamical region that features a singular
continuos SPES, where the dynamics is still ergodic, but on time scales much
longer than the typical single-particle ones II. These results confirm that the
dynamical properties of these systems are guided by the non-trivial competi-
tion that takes place between the underlying order, induced by the potential
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Figure 5.4: (Color online): Spectral function A(k,w) of the interacting AAM in
the delocalized (panels (a) and (b)) and localized (panels (c¢) and (d)) phases.

58



Chapter 5

energy landscape, and the many-body interaction.

5.2 Energy variation of a single-level junction in the
Kondo regime

Another meaningful example where correlations effects play a crucial role in
the transport properties of a system, is given by the single-impurity Ander-
son model (SIAM) [128-131]. This minimalistic model describes a one-level
quantum system coupled between two metallic leads at very low temperature
and it can be used to study energy and charge transport in experimentally
feasible configurations like quantum dot junctions [14, 15]. In the original
Publication III included in this thesis, we have used this model to test the
consequences of the expressions derived in Sec. 3.4 for the variation of energy
in correlated open quantum systems. The Hamiltonian of the single-impurity
Anderson model reads:

I:[ =€ Z CZ};CZU + Udj\CZTCZiCa + Z (Eakg + ua)éLkJéQkU —g Z (éako’d\l. + hc)
o a,ko a,ko

Here, cﬁ, (cio) are the creation (annihilation) operators of electron on the sin-
gle impurity level with spin o, the single-particle energies is denoted by € and
U represents the electronic charging energy. The operator éLk » (Cako) creates
(annihilates) an electron with state k£ and spin ¢ in the lead a = L, R with
chemical potential u,. Finally, g is the tunneling amplitude between the elec-
tronic leads and the impurity level. We use the wide-band limit approximation
as discussed in Sec. 2.2.3, thus we are left with a frequency-independent cou-
pling T' = |g|?2. We consider unbiased leads with their chemical potential
fixed to the Fermi energy (1 = pur, = pg = ep = 0), and we apply a finite
and symmetric thermal bias to the macroscopic reservoirs T, = T + AT/2,
Tr=T—-AT/2, with T = (T, + Tr)/2 = 0.125 the mean temperature of the
two leads and AT = T, — Tk = 0.15 their difference. We study the dynamical
quantities, in particular charge and energy current, as function of the impu-
rity level position €. The results are presented as a function of the shifted
single-particle energies or gate-voltage vy = ¢ 4+ U/2, such that the particle-
hole symmetric point € = —U/2 coincide with vy = 0.

Under particular conditions, which provide high charging energy and tunnel
coupling at sufficient low temperature U > I' > T and T < Tk, the SIAM
might unveil Kondo effects that are characterized by the formation of a corre-
lated asymmetric resonance in the spectral structure of the system [129, 131].
The expression for the threshold temperature, the Kondo temperature, below
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Figure 5.5: Characterization of the Kondo regime. a) Density plot in the
strong coupling regime I' = 1.3 and different interactions strength U = 0, 2,4
of the non-equilibrium spectral function A(w) in the gate-voltage/frequency
plane vy —w. The white dashed lines represent the range of gate-voltage where
the Kondo correlations are expected —U/2 +1'/2 < vy < U/2 —T'/2 for the
respective interactions strength. b) Corresponding non-equilibrium spectral
function at the particle-hole symmetric point v, = 0 , ¢ = —U/2 for the
different interactions considered. It is possible to appreciate how the shape of
spectral function changes as the Kondo regime is reached U/I" > 1. ¢) Kondo
temperature Tx as a function of v, in the range of gate-voltage where Kondo
correlations occur for the charging energy U = 4. The red solid line represents
the value of the "average" temperature of the leads T' = (1, +Tr)/2 = 0.125 .

which these effects take place is given by:

Tk = %\/ﬁe:np (WW) (5.5)

and is strictly valid in the Kondo regime where —U/2 +1'/2 < v, < U/2 —
I'/2 [130]. The many-body interactions in this system are treated within the
self-consistent GW approximation (see Sec. 2.2.2 for details), which is known
to be able to capture certain features of the Kondo regime [100]. To study
the transport of energy in the single-level junction, we have solved the Dyson
equation numerically using the method described in Chap. 4.
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5.2.1 Kondo correlations

Before the systematic study of the currents, we have first characterized the
regime of parameters for which the Kondo correlation effects are present.
Fig. 5.5 panel a) shows a density plot in the gate-voltage/frequency plane
of the steady-state non-equilibrium spectral function of the system A(w) =
i[GR(w) — GA(w)] obtained from the numerical solution of the Dyson equa-
tion in a strong-coupling regime with the leads I' = 1.3 and for different
charging energies U = 0,2,4. As the value of the interaction increases, it is
possible to identify a range in the gate-voltage where the spectral function
is centered at the chemical-potential of the leads (1 = 0). This interval in
gate-voltage corresponds exactly to the range where Kondo correlations are
expected —U/2+T1'/2 < vy, < U/2 —T'/2 (white dashed lines). Fig. 5.5 panel
b) shows how the Kondo correlations are responsible for reshaping the spectral
function at the charge degeneracy point v, = 0. Moving from zero to large in-
teractions, it is visible how the typical Lorentzian shape for a non-interacting
system is gradually lost in favor of a pinned and asymmetric structure.

In Fig. 5.5 panel ¢) we show the Kondo temperature T for the charging
energy U = 4 as a function of v, in the range of gate-voltage where Kondo
correlations take place. As one can notice the average temperature of the leads
T (red solid line) lies slightly above the Kondo temperature Tk in a region
close to the degeneracy point v, = 0. As we mentioned before, for high aver-
age temperatures, it would not be possible to observe the formation of Kondo
correlations. Nonetheless, a clear signature of the Kondo regime still remains,
namely the spectral function is always pinned at the chemical potential of the
macroscopic leads in the whole interval considered and its shape is very dif-
ferent from a Lorentzian function. The explanation for this behavior comes
from the highly non-linear out-of-equilibrium scenario (7' ~ AT') that we have
considered; indeed, in this framework, it is very likely that the system does
not equilibrate to the average temperature of the leads T" and instead reaches
a lower temperature that allows the Kondo correlations to persist.

5.2.2 Energy current and virtual processes

After the characterization of the Kondo regime, we have studied the non-
equilibrium steady-state properties of the particle and energy currents that
flow inside the single level junction. In particular we have compared the vari-
ation of charge and energy between the macroscopic leads and the central
correlated part of the system. In the case of two symmetrically coupled termi-
nals the particle current of Eq. (3.8) can be rewritten as the Meir-Wingreen
formula

lim 1o(0) = Lo =T = [ dolT(@)[falw) - fa(@A@). (5.6
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Here I'(w) = 't (W) r(w) /[T (w) + Tr(W)], & # a, fo(w) = (1 + Palw—pa))=1
is the Fermi-Dirac distribution function for the electrons in the macroscopic
a-lead and A(w) is the non-equilibrium spectral function of the central region.
For the energy current we compare the steady-state expression of the energy
variation for the central region that we have derived in Chap. 3, Eq. (3.29),

tlim Jéa) (t) = jéa), with the energy counterpart of the Meir-Wingreen formula
—00

that properly describes how the energy runs across the non-interacting leads:

Jim Ja(t) = Jo = T = [dowl@fa@) - fa@lA@).  67)

Fig. 5.6 shows the agreement between the charge current in the central region
due to the left electronic lead IéL) (t) = IéL) (t) and the opposite of the cur-

rent that flows into the same lead —IIES), the results refer to both the weak
coupling I' < AT (panel a)) and the strong coupling regime I' > AT (panel
b)) for different values of the interaction strength U. As one would expect,
see Sec. 3.3 for details, the two currents are equal and opposite regardless the
regimes considered and the values of the parameters chosen.

In contrast to the particle current, a perfect agreement between the energy
current across the interacting region due to the left reservoir jéL) and the

opposite current in the same lead —7 I—ES) is found only in the weak-coupling
scenario as shown in Fig. 5.6 panel ¢). In the strong coupling regime, one
can notice not only a quantitative deviation between these two expressions,
but rather a qualitatively different behavior due to the considerable interac-
tion between system and environment, see Fig. 5.6 panel d). The many-body
interactions are not responsible for this deviation as the effect is persistent,
and actually more pronounced, in the non-interacting case (U = 0). When
the system is at particle-hole symmetric point (v, = 0), it is at resonance
with the leads and therefore is completely transparent, so that all the energy
flows from one lead to the other without affecting the energy of the central
region. This explains the maximum difference between the two currents at
this particular gate voltage where jéL) is zero and J. IES) has its maximum.
The presence of Kondo correlations manifests itself as a plateau in the en-
ergy currents in the range of gate-voltage where they are predicted, namely
for —U/2+T/2 < vy < U/2 —T/2. These regions are shown in Fig.5.6 as
green and gray shaded areas and they corresponds to the regions in which the
spectral function is pinned at the chemical potential of the leads, as shown
by the horizontal dashed lines in Fig.5.5 panel a). As we noticed above, the
pinning of the spectral function is an hallmark of the emergence of the Kondo
bound state. Thus it is particularly significant that this feature manifests
itself through relevant physical quantities like the energy current and other
transport properties, since this can help envisaging experimental platforms
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Figure 5.6: Particle and Energy currents. (a) — (b) comparison of the steady-
state particle currents flowing through the central region due to the left lead
tlim IéL) (t) (markers) and the opposite current that runs into the same lead
—00

- és) (solid lines) in the weak coupling I' = 0.04 (a) and in the strong cou-
pling regimes I' = 1.3 (b) at the charging energy U as indicated in the legend.

(¢) — (d) parallel between the steady-state energy currents across the interact-
ing system from the left lead jéL) (markers) and the opposite of the energy

current flowing into the corresponding lead —J ]-ES) (solid lines) at the same
couplings and charging energies as in the case of particle currents. (e) — (f)
comparison between (minus) the sum of the two steady state energy currents
—(jL(S) + j(gL)) (markers) and the term 1tli}m AJL(t) (solid lines) in the region
of parameters as specified before. All theo(ciuantities are normalized by their
respective I'. The shade areas in the figures correspond to the gate-potential
range of the Kondo regime —U/2 +T'/2 < vy < U/2 —T'/2 for the related
couplings and charging energies.

to probe Kondo correlations [15]. Interestingly, in the case of a thermal bias
in the leads the plateau induced by the Kondo cloud appears in the energy
current, whereas in the case of small bias voltage it appears in the particle
current as we have shown in Ref. I. In general, one would expect that inter-
actions increase the change of energy in the central region with respect to
the non-interacting case. We have found however that this is not always the
case and, indeed it strongly depends on the relative energy position of the
level junction compared to the chemical potential of the electronic leads. We
do not have a physical explanation for this feature yet and we are currently
planning a follow up investigation to further understand the physical origin of
this effect.

We have seen that the energy variation of one electronic lead and the lead’s
contribution to the variation of the energy in the central correlated region
differ in the strong coupling regime by an amount AJ,(t). We have derived
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this term in Sec. 3.4, see Eq. (3.35), and we have seen that it comes from
a direct lead to lead coupling via second order processes through the cen-
tral region. Furthermore, we have seen that this term is not vanishing in the
strong coupling regime of the SIAM and also that is weakly influenced by the
many-body correlations and still present in the non-interacting system. If we
calculate the term —7 L(S) — jéL) and compare it with AJ; computed sepa-
rately, see Eq. (3.37), we obtain a perfect agreement as presented in Fig. 5.6
e) — f) for both the weak and the strong coupling regime respectively. It is
worth to notice that, whenever the interaction is present, the energy rate con-
tribution j(gL) (t) is never zero when the density of states of the dot is in the
energy window of the leads. Thus, the presence of the interaction redistributes
the energy within the quantum dot and forbids from a complete transparency
as in the non-interacting case.
The lead-lead coupling has been already discussed in [132-134] with the no-
ticeable difference that in these works the lead-lead interaction was already
introduced in the Hamiltonian of the system. Moreover, the influence of such
coupling on the energy transfer and its microscopic mechanism has not been
investigated. As a concluding remark, we would like to emphasize the sig-
nificance and the implications of the term A, whenever it is not vanishing.
When probing electrical or thermal conduction properties of a system, mea-
surements are carried out on the macroscopic leads. In the case of particle
currents, the rate of change of particles in the electronic lead equals the change
of particles in the central region due to that particular lead. Therefore, the
measure of the charge current into the lead is equivalent to measuring the
change in the particle currents in the central region. Hence, it is meaningful
to infer the electrical conductivity of the central region from the measured
current in the electronic macroscopic leads. Nonetheless, when it comes to
compute the thermal conductivity of the system in the central correlated re-
gion ]
oo 99

OAT '7}¥=0’

with the heat current given by

O = (7Y — 78, (5.9)

one has to bear additional care on what is the real interpretation of what it
is calculated. Indeed, according to Eq. (3.37), at the non-equilibrium steady-
state and in the absence of external drive, one has

(5.8)

— 9 7(L) L

K= TOAT (\70 —urle + AJL) |Z.(CL):0, (5.10)

where we replace Ing) — —I((JL) = —tlim IéL) (t). The last equation shows
—00

that to compute the thermal conductance of the central region, the lead-lead
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Figure 5.7: (a) False-colored scanning-electron-micrograph (SEM) image of
the device. The source is colored in red, the drain in green and the supercon-
ducting leads in blue. The circuit diagram shows the heat transport set-up.
The longer superconductor-normal metal-superconductor (SNS) junction is
used as a heater driven by a constant d.c. battery and the shorter SNS junc-
tion is used as a thermometer. (b) Zoomed-in view of the nano-gap between
the source and drain created by electromigration and the nano-particles made
by Au evaporation. (c) Schematic of the device, with the different heat flows
to/from the source. (d) Differential conductance map of the device measured
at 70 mK against the drain-source bias voltage V} and the gate voltage V, with
no additional heating applied.

term AJ;, has to be included. As we have investigated, this term accounts
for the energy transfer through the contacts. Accordingly, in the strong cou-
pling regime or for spatially extended couplings, what one really calculates is
the interface thermal conductance between the two leads, as if the two were
directly coupled via a renormalized tunneling.

We conclude this section noticing that, in the case of strong coupling and/or
when the coupling of the leads are spatially extended, the common description
of thermal conductance could be misleading as a figure of merit for the ther-
mal characteristics of the central region. This is in contrast with the electrical
conductance which is, instead, always consistent with the particle currents in
the central region.

5.3 Quantum dot heat-valve

Due to the miniaturization of electronic components down to the nano-scale, it
has become necessary to understand how heat is dissipated and redistributed
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down to this scale [135-138]. Handling of heat fluxes and thermometry at
nanoscale and in the milli-Kelvin regime is a very interesting and challenging
problem for quantum technologies that will ultimately lead to engineering new
and more efficient electronic components [132]. At the same time, new sce-
narios are opening, such as that of a heat-driven circuitry [139, 140]. Feasible
gate-tunable single-quantum dot (QD) junctions [141] are paradigmatic test
benches for quantum transport and fundamentally important in the emerging
field of quantum thermodynamics to understand heat transport and dissipa-
tion effects in quantum electronic devices. In publication I'V, included in the
thesis, we demonstrate the possibility of engineering a heat-valve through a
single-level quantum dot. In contrast with the common expectation that the
heat conduction is zero at a degeneracy point, we observe a significant cool-
ing over a sizable parameter range around this point, therefore making the
heat-valve having a broad operational range. This experimental achievement
is reached through the combination of ultra-sensitive electronic thermometry
based on a hybrid Josephson junction and electro-migration in a single device,
see Fig. 5.7. The experimental data are then compared with the theoreti-
cal approach based on the non-equilibrium Green’s functions presented in the
previous chapters that allows to extract the temperatures directly from the
stationary electronic distributions of the macroscopic reservoirs, see Sec. 3.5.
The agreement between the experimental data and the theory for a particular
set of parameters allows us to explore the characteristics of the heat-valve in a
wider range of temperatures and coupling of the quantum dot to the electronic
leads.

The system used to model the experimental device is similar to the one
used in the previous section with the exceptions that now we consider a
non-interacting and spin-independent single-impurity Anderson model. The
Hamiltonian of the total system (quantum dot plus source and drain reser-
voirs) is given by:

A=Hop+ Y Hat+ Y VS (5.11)
a=S,D a=S,D
Hop = v,d'd, 5.12)
Hy =Y el er., (5.13)
ko
V5= ga (eL d+dey ) (5.14)
ka
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where vy = «o(V, — Vgo) is the gate voltage measured from the considered

resonance and accounting for the coupling parameter 1. chog is the cou-
pling Hamiltonian between the quantum dot QD, and the source and drain
leads o« = S, D. Using the non-equilibrium Green’s function approach pre-
sented in Chap. 2, and assuming that the whole system reaches a possibly
non-equilibrium steady-state, the state of the QD is completely characterized
by the retarded and lesser single-particle Green’s functions Eq.s (2.74), (2.75)
as explained in Sec. 2.4. The embedding self-energy approach, see Sec. 2.2.3,
accounts for the effect that the leads have on the physical properties of the
system, but once the numerical solution is obtained, it is possible to find
the Green’s functions of the leads and explore how the QD influences on the
physical characteristics of the reservoirs. By introducing the inbedding self-
energy (Sec. 2.2.4) and resorting to the hot-electron assumption as described
in Sec. 3.5 we were able to predict the outcome of the thermometry experiment
on the electronic lead temperature.

5.3.1 Electronic lead temperature

Here we report the main results that we have obtained and we refer to pub-
lication IV for further details on the experimental realization of the sample
and the measurements implementation. In the experiment, the source lead is
heated up by applying a constant heating power Qi = 6fW to the heater junc-
tion, see Fig. 5.7. The drain is biased at a potential V}, relative to the source
that is grounded via one of the superconductor-normal metal-superconductor
(SNS) thermometer contacts. Figure 5.8 (a) shows the measured map of the
source electronic temperature as a function of V3 and V. The source tem-
perature T, increases rapidly as the charge current raises due to the related
Joule power. Right at the charge degeneracy point, the source temperature
drops down to its equilibrium value and it is lower than in the rest of the
map. Figure 5.8 (c) shows a simple energy diagrams representation that is
used to explain the observed behavior for the cases specified by circles in the
temperature T, (V) profiles at two different bias of Fig. 5.8 (b). At zero bias
and away from the charge degeneracy point (case 1), there is neither heat
flow through the QD nor Joule power due to the particle current. The source
is overheated up to T, = 163.5 mK due to the balance between the applied
power Qg and the main thermal leakage channel, namely the electron-phonon
coupling Qe,ph. Still at zero bias, but near a charge degeneracy point (case
2), there is a heat flow QQ p through the QD, but still no charge current. This
shows up (blue curve in Fig. 5.8 (b)) as a temperature T, drop by several

'Here a is an experimental parameter called coupling parameter that translates the effect
of the gate voltage in terms of shift in chemical potential of the QD.
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Figure 5.8: (a) Experimental map of the source electronic temperature in
the V, — V; plane. (b) Individual gate traces of the source temperature at
two different bias values. (c) Schematic energy diagram of the heat flowing
in/out of the electronic source in various conditions as indicated by labels in
(b): (1) away from charge degeneracy and at zero bias (left), (2) at a charge
degeneracy point V; = V) and at zero bias (middle) or (3) at non-zero bias
(right). The gray profile depicts the quantum level spectral density. The ratio
between the level broadening Al', the bias V; and the thermal energy kg7 is
in correspondence with panel (b) conditions. The arrows indicate the applied
heatlng power Qp, the Joule power 7, the electron-phonon coupling power
Q._ —pn and the power flow through the QD Op.

drain
source

mK at the charge degeneracy point. Thus, the gate-controlled QD junction
allows the heat to flow-out from the source lead acting as a heat-valve. At
higher bias (case 3), this cooling contribution is overcome by the Joule power
Q. A maximum value of the electronic source temperature is thus observed
for gate potentials close to the charge degeneracy point (red curve in Fig. 5.8
(b)). As we mentioned before, the device can be described as a non-interacting
single energy level, Eq. (5.11), due to the experimental high charging energy
in the proximity of a charge degeneracy point. The inbedding-technique is
not based on a full heat balance model between the heat flow via phonons
and the superconducting leads. Instead, it makes the assumption that the
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main particle and energy redistribution processes in the lead are dominated
by electron-electron interactions and not by the electron-phonon coupling. By
including in the theory the measured temperature (163.5 mK) of the source
when it is decoupled from the QD, we effectively take into account its ther-
mal coupling to the phonon-bath. The high resolution theoretical temperature
map around a charge degeneracy point is shown in Fig. 5.9 (b) and reveals
a nice agreement with the experimental data in Fig. 5.9 (a). Here, the tem-
perature of the drain Ty is set to 85 mK and the coupling of the QD to the
drain is asymmetric with a coupling ratio I',/Tg = 3/17 between left and
right leads and I' = 0.25meV. These are the best fit values that allow us to
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Figure 5.9: (a) A highly-resolved map of the source electronic temperature at
the same experimental condition as in Fig. 5.8 and around a charge degeneracy
point defined by V,; = Vgo. (b) Calculated temperature map obtained with the
inbedding-technique with I' = 0.25meV, ', /Tr = 3/17 and Ty = 85mK. (c)
Experimental and (d) theoretical variation of the temperature in the region
where crossing from cooling to heating is observed; each curve refers to a given
applied bias V4: (blue) 20uV, (orange) 22uV, (red) 24uV. (e) The schematics
describing the crossover between the heat flow Qp and the Joule heat Q as
a function of the gate potential and at fixed bias voltage. At V, — Vg0 =-0.12
mV (case 1, left) temperature decrease, at 0.16 mV (2, middle) the two heat
flows balance each other and at 0.46 mV (3, right) temperature increase.
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reproduce quantitatively the temperature profiles of the crossing region, see
Fig. 5.9(c,d). It is of greatest importance to notice that the observed cooling
at the charge degeneracy point is incompatible with the theoretical predictions
in a weak coupling, sequential tunneling regime. Indeed, the experiment deals
with a strong tunnel coupling between the QD and the leads, with a ratio of
about Al'/kpT, ~ 20, that makes the weak coupling picture inapplicable.

Another important and peculiar feature that we have observed and predicted
in this study is the asymmetry in gate voltage that emerges in the experi-
mental and theoretical temperature map. For a bias voltage V, around 22
1V, the source temperature can be tuned either below or above the reference
temperature of 163.5 mK by acting on the gate voltage, see Fig. 5.9 (c). We
have found, see I'V, that this characteristic is an unambiguous signature of the
QD discrete energy spectrum. At a given bias, the value of the gate potential
determines the position of the broadened energy level in the QD (see the grey
profile in Fig. 5.9(e)) and thus the mean energy of the tunneling electrons.
This in turn affects the heat balance in the source and modifies the boundary
of the cooling region in the temperature map. The extension in bias of this
crossover zone, where one can switch from cooling to heating by adjusting
with the gate, depends on both the coupling I' and the temperature difference
across the QD. To conclude this section, we want to highlight that this work
proposes both a new technological viable route to control heat fluxes and per-
form less-invasive temperatures measurement, and, from the theoretical point
of view, it gives a clear understanding of the manipulation of heat flow in terms
of microscopic processes without relying on any phenomenological approaches.

5.4 Transport spectroscopy of correlated quantum
wires and carbon nanotubes

We have seen that understanding the properties of correlated systems cou-
pled with macroscopic reservoirs with which they can exchange energy and
particles is of fundamental importance for the realization of new quantum
technological devices. The field of application is broad, encompassing out-
of-equilibrium phases, pump-probe experiments and time-resolved dynamical
properties, transport in correlated systems, equilibration and thermalisation
in strongly correlated materials. Despite such a wide range of applications,
the theoretical description of out-of-equilibrium many-body systems remains
a challenging task. The difficulty arises because different and relevant ingre-
dients need to be included in the description. Some of these are many-body
interactions, external time-dependent fields and the possibility of exchanging
energy and matter with the environment. Among the perturbative methods,
we have used the non-equilibrium Green’s functions which describe the open
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Figure 5.10: (Color online) Schematic of the transport setups considered. a)
A quantum wire connected with two metallic leads. Only the outer-most sites
are connected to the leads. b) A carbon nanotube connected to two metallic
leads. The left-most carbon atoms are connected to the left lead, and the right-
most carbon atoms are connected to the right lead (rows Ny = {1,3,5}). The
red arrow signifies periodic boundary condition along the y-direction folding
a graphene nanoribbon into a carbon nanotube.

correlated system dynamics trough the Kadanoff-Baym equations or equiva-
lently the Dyson equation (Chap. 2).

In the original research article V included in this thesis, we use the Gener-
alized Kadanoff-Baym Ansatz (GKBA), which reduces the complexity of the
Kafanoff-Baym equations by lifting the two-time structure, and allows to de-
rive a master equation for the system’s density matrix, see Sec. 2.3. There,
we study a transport setup where two leads, considered in the wide band limit
approximation, are connected through a central region, taken to be either a
one-dimensional or a two- dimensional quantum system, see Fig. 5.10. Our key
result is that the GKBA is able to capture fundamental features of the spec-
trum of a correlated many-body system when the stationary particle current
is used as a probe for such properties. For this reason, we refer to the latter
technique as a transport spectroscopy technique in correlated open quantum
systems.

Our work, together with the recent speed-up achieved in the computation of
the collision integrals for self-energies beyond the Second-Born one [80, 81],
contributes to show that the GKBA is a powerful and reliable method to
study out-of-equilibrium phenomena in many-body open and closed quantum
systems. In the following, since the conclusions that we have drawn are the
same for both the systems considered, we report only the results for the two-
dimensional system that models the transport properties of a carbon nanotube
(CNT) [142, 143]. The total adimensional Hamiltonian to describe the CNT
is the usual Fermi-Hubbard Hamiltonian used to model the previous systems,
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with the exception of the Hamiltonian for the central system that now is de-
fined on an honeycomb lattice:

A . 1
c= eZnig ~3 Z LCJJ + UZCTC i\ Cil it (5.15)
io <i7j>1la
= Z €a k:dAL’kgda,kaa (516)
Vo = Z kclada ko ,le A’L,kgéiaa (517)
i,ko

where éL, ¢io are the creation (annihilation) operators of electrons in the basis
labeled by i and spin o =1 / |, where the indexes i run over the points of a
honeycomb lattice and (- - - ), stands for the sum over the vertices of the lattice.
The operators cf:; ko ciaykg are the creation (annihilation) operators of the two
different leads, denoted as le ft and right, and labelled by o = L, R. Once
again, € is the on-site potential, U is the two-body interaction between spin-
up and spin-down particle on the same site and 77 is the tensor containing
the coupling rates between the leads a and the chain. We consider periodic
boundary conditions along the y direction as shown in Fig. 5.10 and therefore
a zigzag nanotube. In addition, we consider the number of armchair dimer
lines in the transport direction N, = 6 representing a metallic character.
The two leads are kept in a thermal state at the same temperature, i.e. S =
Br, but a with different chemical potential given by ur = —ur = p. In
particular, we have set the initial parameters as follows 177 = T12~2 = 0.5,
= 0.5and U = 1. As in the previous analysis, we use the gate potential
Vg = €+ U/2 to shift the spectrum of the central region with respect to
the chemical potential of the leads and we use the developed particle current
through the junction to probe the spectral properties of the central region
at different energies. Furthermore, we look at the differential conductance
o = dI/dV that is able to capture more details of the spectral weights than
the current that is an integrated quantity. In the previous expression V is the
applied bias voltage across the central region, i.e. V = 2u. Before moving to
the actual analysis of the results, we briefly justify the reasons why those two
quantities are well suited for the transport spectroscopy study. The general
expression for the particle current that flows into the lead a was derived in
Sec. 3.3 and its non-equilibrium steady-state counterpart is written in Eq. 3.8.
The latter can be rewritten as:

19— g—:Tr (55 (W) Aw) — Ta(@)G<(w)], (5.18)

where [ (w) = i (Z8(w) - T (w)) and Aw) = i (GR(w) - GAw)). Here
one can see explicitly the dependence of the current from the spectral function
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A(w) (the long-time limit of Eq. (3.3)) and the Fourier transform of the lesser
Green’s function G<(w). Eq. (5.18) can be further rearranged in the Landauer-
Biittiker form [87, 88]:

19 = [ 52 3 Tupl@)(fale) ~ Fo(e), (519
B

with fo(w) = (1 + efa@=ra))=1 the Fermi-Dirac distribution of the electronic
lead o and Tpp(w) = Tr [Fa(w)GR(w)FB(w)GA(w)} the transmission coeffi-
cient. Because of its direct dependence on the retarded propagator, this ex-
pression might suggest that the GKBA, even within the 2B approximation,
is not able to go beyond the spectral features captured at the HF level, see
Sec. 2.3 for details. However, it is critical to realize that the derivation of
Eq. (5.19) relies heavily on the equality G<(w) = GF(w)X<(w)GA(w). The
latter holds at the non-equilibrium steady-state, see Sec. 2.4, and it is a direct
consequence of the Dyson equation with the full retarded self-energy. Thus,
it can not hold in the case of the GKBA-HF approximation. Eq. (5.18) is an
exact reformulation of the expression that comes from the definition of the
particle current and contains explicitly the lesser Green’s function. The latter
quantity in the GKBA-HF formulation carries information about higher order
correlation effect through a different many-body self-energy compared to the
one of the retarded propagator. Thus, we ought to rely on Eq. (5.18) to cap-
ture features beyond the mean field approximation.

First of all, we compare the results obtained with the GKBA master equa-
tion with the ones obtained with the two-times solution at the HF level. This
comparison is shown in Fig. 5.11 for the case of a N, = 6, N, = 6 and
N, =10, Ny, = 6 CNTs. For this particular case, since the solution of the
GKBA-HF master equation corresponds to the exact solution of the Dyson
equation 2, we obtain a perfect agreement in both the current and the differ-
ential conductance. In the profile of the asymptotic currents, one can observe
the emergence of two peaks around the energies of V;, ~ £1 with respect to
the center of the band, that are a clear signal of a high concentration of states
in this energy interval. Indeed, as it is shown in Fig. 5.12 (left panel), the den-
sity of states A(w) = Tr.A(w) reveals the presence of two structures at these
energies that can be identified as van Hove singularities [144]. Usually, when
the gate voltage enters the window of the leads, the result is a net increase
in the current flowing into or from the electronic reservoirs. Instead, as it is
shown in the bottom panel of Fig. 5.11, the differential conductance is larger
when the window of the leads encloses only the central part of the spectrum.
This is due to the maximum variation of the injected number of particles in

2The many-body self-energy is treated at the same degree of approximation for both the
dynamics and the spectrum.
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Figure 5.11: (Color online) Particle current in the left lead and conductance
for a carbon nanotube with a) N, = 6, N, = 6, b) N, = 10, N, = 6 com-
puted with the 2-times (solid blue) at stationarity and the GKBA-HF master
equation (red dashed) with the exchange self-energy at the Hartee-Fock ap-
proximation.

the system at low energies. The last argument is understood from a closer
inspection of the expression of the current in Eq. (5.18) together with the def-
inition of the differential conductance. Indeed, in the formula for the current,
one can recognize two terms that depend upon the bias, the lesser self-energy
and the lesser Green’s function of the central region. The variations of the
lesser self-energy with the bias are very weak and result in a small shift of
an otherwise constant function. The lesser Green’s function is instead more
sensible to the change in bias because it carries information on the density of
particles which varies drastically as the bias is altered. Therefore, the larger
broadening of the low energy states results in a considerable variation of the
number of particles.

In Fig. 5.13, we show the asymptotic current and the differential conductance
calculated by including the 2B self-energy for different system sizes. As we
have observed in V for the one dimensional case, the GKBA predicts a larger
resistance compare to the two-times solution. Nonetheless, both approaches
agree on the reducing behavior of the current (top panels) with the length of
the carbon nanotube. This fact is consistent with the common argument for
which, in a non-interacting system, increasing of the characteristic length of
the system reduces the scattering time and therefore brings to a reduction of
the current. On the contrary, in the HF case discussed before, the current
remains the same as the length of the system is increased and the transport
continues to be fully ballistic. The differential conductance, displayed at the
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Figure 5.12: (Color online) Density of states, shifted by U/2, of a carbon
nanotube computed with the 2-times approach at the HF level (left) and with
the second-Born approximation (right). In the upper and lower panel, we
display the results for N, = 6, N, = 6 and N, = 10, N, = 6 respectively.

bottom panels of Fig. 5.13, shows a much better mutual agreement between the
GKBA-HF and the two-times solution, not only in a qualitative but also in a
quantitative way. In particular, it is able to properly describe the interaction-
induced broadening which is a consequence of the changes in the density of
states of the system (shown in Fig. 5.12). Furthermore, the differential con-
ductance decreases with the length of the CNT in agreement with the increase

a)N, =6 Ny=6 b)N,=8 N, =6 C)N,=10 N, =6
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Figure 5.13: (Color online) Particle current in the left lead and conductance
for a carbon nanotube with a) N, = 6, N, = 6, b) N, =8, N, = 6, and c)
N, =10, N, = 6, computed with the 2-times (solid blue) at stationarity and
the GKBA-HF master equation (red dashed) where the exchange self-energy
is the Second Born one.
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in the resistance discussed above. In addition to this, one can observe the
emergence of a new interesting feature. As the length of the CNT increases,
the central peak of the differential conductance decreases faster compared to
the sided structures. Once again, this suggests that the main role of the ob-
served effect is played by G<(w) which accounts for the change in the particle
number of the system. Higher population at low energies will result in higher
repulsive interactions that are responsible for the decrease of the differential
conductance.

To summarize, by using the stationary current and the conductance as figures
of merit, we were able to give numerical evidence that the GKBA is indeed
able to capture spectral features, encoded in the lesser Green’s function, that
go beyond the HF propagator. This finding makes the GKBA, not only a
valuable tool to describe transport phenomena in correlated many-body sys-
tems, but also a key method for the simulation and the description of ARPES
and pump-probe experiments, where the central object for the reconstruction
of the signal is exactly the lesser component of the Green’s function. In ad-
dition it is worth to mention that, even if we have focused on the stationary
state limit, the approach allows to study without difficulties also time-resolved
transport in correlated quantum systems.
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Concluding Remarks

In this thesis, we studied transport in correlated open quantum systems out-
of-equilibrium by using many-body perturbation theory with non-equilibrium
Green’s functions. This approach requires a computational effort that exceeds
the one of other many-body approaches. However, as proven also by the re-
sults of this thesis, it has great potential, thanks to its predictive power, and
may become a broadly used tool in many fields of physics, including atomic
and molecular physics, condensed-matter physics, nuclear matter, warm dense
matter and cold atomic and molecular gases. Generally the use of Green’s
functions methods requires an in-depth understanding of the theory as well
as of the different self-energy approximations used, and the development of
reliable codes that efficiently solve the equations involved. My PhD research
work focused on both the previous requirements with theory developments and
a new numerical implementation. In Chapter 2, we introduced the transport
problem in many-body systems together with a summary of the theoretical
foundations of the many-body perturbation theory and Keldysh formalism. A
large part of the discussion was related to the description of the characteristics
of the equations of motion for the NEGF: the Keldysh-Kadanoff-Baym and
Dyson equations. Moreover, there was a broad presentation of the different
degrees of approximation in the theory.

We want to remind that Chapter 2 was not intended to be a complete and
formal analysis of the topics presented, but rather its aim was to provide the
Reader with a self-contained introduction to the basic tools necessary to bet-
ter follow the rest of this doctoral work.

In Chapter 3, we presented the most useful physical quantities that the NEGF
framework allows to extract for the description of the transport properties of
a many-body system. Specifically, we discussed the derived time-dependent
expression for the energy-current in a correlated open quantum system. The
latter result is an analytical solutions that is a direct consequence of the equa-
tions of motion for the Green’s function. With it we were able to predict
secondary correlation effects that occur between pair of electronic reservoirs
and which might influence their thermo-electric properties. This was mainly
the content of publication ITI where we have also studied a simple model sys-
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tem to discuss the consequences of our finding.

In Chapter 4, we focused on the details of the numerical implementation of the
solution of the dynamical equations for the single-particle Green’s function on
the Keldysh contour. In particular, we highlighted the main steps to imple-
ment a self-consistent method based on the numerical inversion scheme on the
full two-time plane, see publication I. We showed that, with a clever and well-
designed layout for distributed-memory-parallel calculations, we were able to
conceive a numerical code for large-scale simulations. This was possible be-
cause, during the numerical realization of the code, we took into account two
key aspects: the minimization of the communication between the different pro-
cesses and the significant fact that the operations needed for the self-energies
calculations were sums over spatial (momentum) degrees of freedom. Further-
more, the several numerical routines that we developed, were collected into an
open-source computational physics library that provides a simple and efficient
framework for simulations of quantum many-body systems out-of-equilibrium,
based on the Green’s function formalism. As an additional comment, we want
to recall that whenever a new approach is developed, it is not trivial to know a
priori whether that approach is suitable for a specific problem or not. Accord-
ingly, a large part of the implementation work was spent in testing, debugging
and assessing the different type of approximations. Very often, this was done
by studying very simple systems where comparisons with known results were
possible. We found that such benchmarking is extremely important in this
context, because it allows us to highlight the strengths and weaknesses of the
implemented method.

Finally, in Chapter 5, we presented several effects and results, summarized
in publications I—V, that characterize different transport setups and models
including closed-interacting, open-non-interacting and open-interacting sys-
tems. We described how the time-dependent spreading of correlations in a
system made of interacting particles loaded in quasi-crystalline structures is
affected by a non-trivial interplay between the many-body interaction and the
underlying energy landscape geometry. Then we tested the consequences of
the expressions for the variation of energy in correlated open quantum sys-
tems and the effects of the second order lead-to-lead coupling that originates
in an interacting single-level quantum dot junction in the Kondo regime. Af-
ter that, we showed how to use the NEGF formalism to extract the electronic
leads temperatures, which we have seen to match perfectly with a pioneer-
ing thermometry measurement performed on a gate-tunable single-quantum
dot junction. Lastly, we presented the transport spectroscopy results that
we have obtained within the stationary solution of the Generalized Kadanoff-
Baym Ansatz master equation applied to a transport setup where the inter-
acting region was taken to be either a one-dimensional quantum wire or a
two-dimensional carbon nanotube. By using the stationary current and the
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conductance as figures of merit, we were able to give numerical evidence that
the GKBA is capable of capturing spectral features that by construction are
not present in this approximate scheme of the theory.

In conclusion, we showed throughout this thesis that the non-equilibrium
Green’s function method offers a natural framework for the description of
quantum transport. The work done constitutes developments of the time-
dependent and steady-state description of many-body non-equilibrium quan-
tum physics, with specialization to quantum transport phenomena. As future
perspectives and developments, we plan to investigate the time-dependent
description of physical scenarios that include electron-phonon interactions,
excitonic-insulator phases and pump-probe processes. At the same time, our
future motivations are guided by the will for improving the existing codes
based on the NEGF formalism for a better scalability and faster computation.
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