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1 Introduction

Convexity is a basic concept of geometry, but it is also used in other areas

of mathematics. It is used, for example, in optimization, functional analysis,

complex analysis, graph theory, partial di�erential equations, discrete mathe-

matics, algebral mathematics, probability theory and coding theory. Convex-

ity is also used outside mathematics, like in biology, physics and chemistry.

The �rst de�nition of convexity was given by Archimedes: If any two

points on a bent line are taken, then either all the straight lines connecting

the points fall on the same side of the line, or some fall on one and the same

side while others fall on the line itself, but none on the other side.[3]

This thesis discusses the generalizations of convexity for nonsmooth func-

tions, in other words functions that are not continuously di�erentiable. First

we de�ne some basic concepts of set theory. Then we de�ne a convex set and a

convex function and discuss their properties. To de�ne generalized convexity

for nonsmooth functions we need Clarke's generalized directional derivative

and generalized subgradient. We de�ne generalized pseudo- and quasiconvex-

ity for nonsmooth locally Lipschitz continuous functions. A smooth convex

function reaches its global minimum at points, where the function gradient is

zero. This property extends for pseudoconvex and generalized pseudoconvex

functions, but not for quasiconvex or generalized quasiconvex functions. Fi-

nally we de�ne well-behaved semismooth and weakly semismooth functions

and discuss their relations with generalized convex functions.

In mathematical research it is often required to make several, possibly

overlapping, assumptions because the relations between di�erent concepts

are not known. This may severely limit the generality of the results. The

purpose of this thesis is to �nd out if there are any causal relations between

these concepts, which would make some of the assumptions made in literature

redundant.
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2 De�nitions and results

This thesis discusses the Euclidean space Rn, whose elements are column-

vectors x. Let us give some basic de�nitions.

De�nition 2.1. The norm of a vector x ∈ Rn is ‖x‖ =
√
x2

1 + ...+ x2
n. The

space of m× n matrices is endowed with the norm

||A||m×n =

(
m∑
i=1

||Ai||2
) 1

2

,

where Ai ∈ Rn is the i:th row of matrix A.

De�nition 2.2. The inner product of vectors x and y ∈ Rn is xTy =

x1y1 + ...+ xnyn.

De�nition 2.3. The spherical neighbourhood B(x, δ) of an element x is a

set which consists of center x and all elements within distance δ > 0 of the

centre, i.e. B(x, δ) = {y ∈ Rn | ||x − y|| < δ}. Elements with a spherical

neighbourhood within a set S are called interior elements. Interior elements

of the complement space of the set S are called exterior elements of the set.

De�nition 2.4. The interior int(S) of a set S is the set of its interior

elements. The closure cl(S) of a set S consists of elements x which have a

spherical neighbourhood B(x, δ) such that int(S) ∩B(x, δ) 6= ∅, ∀δ > 0.

De�nition 2.5. The boundary δ(S) of a set S is the set of elements that are

neither in the interior of the set nor the interior of its complement.

De�nition 2.6. A set S is open if for every element x in the set can be given

a radius δ such that every element in the spherical neighbourhood belongs

to the set.

De�nition 2.7. A set S is closed if its complement space in Rn is open.

De�nition 2.8. A set S is bounded if there exists a positive real number r

such that ||x− y|| < r, ∀ x, y ∈ S.

De�nition 2.9. A subset S of Rn is compact if it is closed and bounded.
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De�nition 2.10. Function f : S → R is continuous if for every element

x and y of set S and for every positive real number ε there exists a positive

real number δ such that from ||x− y|| < δ it follows |f(x)− f(y)| < ε.

A continuous function is a function that does not have abrupt changes

in its value. A real-valued function is continuous if, roughly speaking, its

graph is a single unbroken graph [12]. A rigorous de�nition of continuity of

real functions can be given in terms of the idea of a limit. A function f is

said to be continuous at the point c on the real line, if the limit of f(x), as

x approaches the point c, is equal to the value f(c). A function is said to

be continuous if it is continuous at every point in its domain. A function is

said to have a discontinuity at a point c when it is not continuous there. For

example, the function f(x) = 1
x
is continuous on the domain R\{0}, but it is

not continuous over the domain R, because it is unde�ned at x = 0 (Figure

1).

Figure 1: Function 1/x is not continuous

De�nition 2.11. Function f : S → R is upper bounded if there exists a

real number M such that f(x) < M, ∀ x ∈ S (see Figure 2).

De�nition 2.12. Function f : S → R is lower bounded if there exists a

real number M such that f(x) > M, ∀ x ∈ S (see Figure 3).
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De�nition 2.13. Function f : S → R is upper semi-continuous at x if for

every sequence {xt} ∈ S which approaches element x we have lim sup f(xt) ≤
f(x).

De�nition 2.14. Function f : S → R is lower semi-continuous at x if for

every sequence {xt} ∈ S which approaches element x we have lim inf f(xt) ≥
f(x). A continuous function is both upper and lower semi-continuous.

Figure 2: An upper semi-continuous function

Figure 3: A lower semi-continuous function
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De�nition 2.15. A tangent line to a plane curve at a given point is the

straight line that just touches the curve at that point.

De�nition 2.16. [1] Let function f be de�ned in an open subset S of Rn.

The function is di�erentiable at x∗ ∈ S, if there exists a vector ∇f(x∗) ∈ Rn

such that for every element d ∈ Rn satisfying x∗ + d ∈ S

f(x∗ + d) = f(x∗) + dT∇f(x∗) + α(x∗, d)‖d‖,

where α is a real function such that limd→0α(x∗, d)‖d‖ = 0. If function f

is di�erentiable at every x∗ ∈ S, it is said to be di�erentiable on set S.

A di�erentiable function of one real variable is a function whose derivative

exists at every point of its domain. As a result, the graph of a di�erentiable

function has a non-vertical tangent line at each interior point in its domain

and it cannot contain any breaks or angles. More generally, if x is an interior

point in the domain of a function f , then f is said to be di�erentiable at x if

the function derivative exists at x. That means that the function curve has

a non-vertical tangent line at the point (x, f(x)).

If f is di�erentiable at a point x, then f must also be continuous at x.

In particular, any di�erentiable function is continuous at every point in its

domain. The converse does not hold: a continuous function does not need to

be di�erentiable. An example of such function is f(x) = |x|, which contains

an angle at x = 0.
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Figure 4: A di�erentiable function

De�nition 2.17. Function f : S → R is positively homogenous if f(λx) =

λf(x), ∀ x ∈ S, λ > 0.

De�nition 2.18. Function f : S → R is subadditive if f(x + y) ≤ f(x) +

f(y), ∀ x, y ∈ S.

Next we de�ne a convex set and give some examples.

De�nition 2.19. A nonempty set S is said to be convex if the line segment

of two elements x1 and x2 of set S also belong to the set, in other words

λx1 + (1− λ)x2 ∈ S, ∀ x1, x2 ∈ S, λ ∈ [0, 1].
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Figure 5: Illustration of convex and nonconvex sets

Here are some examples of convex sets:

1. Empty set.

2. Hyperplane S = {x | pTx = α, p ∈ Rn, α ∈ R}.

3. Half space S = {x | pTx ≥ α, p ∈ Rn, α ∈ R}.

4. Convex polygon S = {x | Ax ≤ b, A ∈ Rm×n, b ∈ Rm}.

Lemma 2.20. [2] Let S1 and S2 be convex sets in Rn. Then the sets

1. S1 ∩ S2

2. S1 + S2 = {x1 + x2 | x1 ∈ S1, x2 ∈ S2}

3. S1 − S2 = {x1 − x2 | x1 ∈ S1, x2 ∈ S2}

are also convex.

Proof. 1. Let x1 and x2 ∈ S1 ∩ S2. The line segment between x1 and

x2 is λx1 + (1 − λ)x2. Because x1 and x2 are elements of S1, by the

convexity of the set their line segment belongs to S1. Because x1 and

x2 are elements of S2, their line segment also belongs to S2. Thus it

belongs to S1 ∩ S2.
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2. Let x and y be two elements of set S1 +S2. Then they can be presented

in form x = x1 +x2, x1 ∈ S1, x2 ∈ S2 and y = y1 +y2, y1 ∈ S1, y2 ∈
S2. The line segment of x and y is

λ(x1 + x2) + (1− λ)(y1 + y2) = λx1 + (1− λ)y1 + λx2 + (1− λ)y2.

By the convexity of S1 and S2 λx1+(1−λ)y1 ∈ S1 and λx2+(1−λ)y2 ∈
S2. Therefore S1 + S2 is convex.

3. Proving the convexity of S1 − S2 is analogical.

De�nition 2.21. [2] The convex hull conv(S) of set S is the collection of all

convex combinations of S. In other words x ∈ conv(S) if and only if x can

be represented as

x =
k∑
j=1

λjxj

k∑
j=1

λj = 1

λj ≥ 0, for j = 1, ..., k,

where k is a positive integer and x1, ...,x2 ∈ S. conv(S) is the minimal

convex set that contains S. It is also the intersection of all convex sets

containing S.

De�nition 2.22. An r-simplex of set P ⊆ Rn is a convex hull of its r + 1

vertices, where r ≤ n. More formally, if the vectors x0 − x1, ...,x0 − xr are

linearly independent, the simplex determined by the vertices is the set

C =

{
λ0x0 + ...+ λrxr

∣∣∣∣∣
r∑
i=0

λi = 1, λi ≥ 0 ∀i = 0, ...r

}
.
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Figure 6: Examples of 0-, 1-, 2- and 3-simplexes

Caratheodory's theorem 2.23. [2,7] Let S be a compact set in Rn. If

x ∈ conv(S), then x ∈ conv(x1, ..., xn+1), where xj ∈ S for j = 1, ..., n + 1.

In other words, x can be represented as

x =
n+1∑
j=1

λjxj

n+1∑
j=1

λj = 1

λj ≥ 0, j = 1, ..., n+ 1

xj ∈ S, j = 1, ..., n+ 1.

Proof. Since x ∈ conv(S), then x =
∑k

j=1 λjxj, where λj > 0, j = 1, ..., k

and
∑k

j=1 = 1. If k ≤ n+1, the result is at hand. Now suppose that k > n+1.

Note that x2−x1, x3−x1, ...,xk−x1 are linearly dependent. Thus there exist

scalars µ2, µ3, ..., µk not all zero such that
∑k

j=2 µj(xj − x1) = 0. Letting

µ1 = −
∑k

j=2 µj, it follows that
∑k

j=1 µjxj = 0,
∑k

j=1 µj = 0, and not all the

µj's are equal to zero. Note that at least one µj > 0. Then

x =
k∑
j=1

λjxj + 0 =
k∑
j=1

λjxj − α
k∑
j=1

µjxj =
k∑
j=1

(λj − αµj)xj

for any real α. Now choose α as follows:

α = min
1≤j≤k

{
λj
µj

: µj > 0

}
=
λi
µi
, where index i is the argmin.
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Note that α > 0. If µj ≤ 0, then λj − αµj > 0, and if µj > 0, then

λj/µj ≥ λi/µi = α, and hence λj − αµj ≥ 0. In other words, λj − αµj ≥
0, ∀ j = 1, ..., k. In particular, λi − αµi = 0 by de�nition of α. Therefore,

x =
∑k

j=1(λj−αµj)xj, where λj−αµj ≥ 0, j = 1, ..., k,
∑k

j=1(λj−αµj) = 1,

and furthermore, λi − αµi = 0. In other words, x is represented as a convex

combination of at most k − 1 points in S. The process is repeated until x is

represented as a convex combination of n+ 1 points in S.

Carathéodory's Theorem states that if a point x of Rn lies in the convex

hull of a set P , then x can be written as the convex combination of at most

n + 1 points in P . Namely, there is a subset P
′
of P consisting of n + 1

or fewer points such that x lies in the convex hull of P
′
. Equivalently, x

lies in an r-simplex with vertices in P , where r ≤ n. The smallest r that

makes the last statement valid for each x in the convex hull of P is de�ned

as the Carathéodory's number of P . Depending on the properties of P ,

upper bounds lower than the one provided by Carathéodory's Theorem can

be obtained.

De�nition 2.24. A cone is a shape that tapers smoothly from a �at base to

a point called the apex. It is formed by a set of lines connecting a common

point, the apex, to all of the points on a base in a plane that does not contain

the apex. When the cone extends in�nitely in both directions of the apex, it

is called a double cone.
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3 Convex functions

In this chapter we de�ne convex functions and discuss their properties.

3.1 De�nition and properties

De�nition 3.1. [1] Let function f : S → R be de�ned on a nonempty

convex set S ⊂ Rn. Function f is convex if the line segment from f(x) to

f(y) of is higher than the function curve between x and y, or

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀ x, y ∈ S, λ ∈ (0, 1).

Function f is strictly convex if the above inequality is strict.

Figure 7: Convex function

The de�nition of convex functions can be illustrated in the case of a single

variable function. The left-hand side of the inequality is the expression for the

values of f between the points x and y, while the right-hand side represents

the values of the line segment of f(x) and f(y). Equivalently, if A, B C are

any three points on the graph of f such that B is between A and C, then B

is on or below the line segment AC. Let A = f(x), B = f(z) and C = f(y).

It is easy to verify the following relationship for a convex function that holds

for x ≤ z ≤ y:
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f(z)− f(x)

z − x
≥ f(y)− f(x)

y − x
≥ f(y)− f(z)

y − z
.

A convex function and a convex set are related, because a convex function

is de�ned on a convex set. Next we will show another relationship between

a convex function and set, but �rst we will give a necessary de�nition of an

epigraph.

De�nition 3.2. [2] Let S be a nonempty set in Rn and let f : S → R. The

epigraph epif of f is a subset of Rn+1 de�ned by

{(x, y) : x ∈ S, y ∈ R, y ≥ f(x)}.

The epigraph of f is the set of elements on and above the graph of f .

Figure 8: Epigraph of a convex function

Theorem 3.3. [2] Let S be a nonempty convex set in Rn and let f : S → R.

Then f is convex if and only if epif is a convex set.

Proof. Assume that f is convex, and let (x1, y1) and (x2, y2) ∈ epif ; that is,

x1, x2 ∈ S, y1 ≥ f(x1), y2 ≥ f(x2). Let λ ∈ (0, 1). Then

12



λy1 + (1− λ)y2 ≥ λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2),

where the last inequality follows by convexity of f . Note that λx1+(1−λ)x2 ∈
S. Thus [λx1 + (1− λ)x2, λf(x1) + (1− λ)f(x2)] ∈ epif , so epif is convex.

Conversely, assume that epif is convex, and let x1, x2 ∈ S. Then (x1, f(x1))

and (x2, f(x2)) ∈ epif , and by convexity of epif ,

[λx1 + (1− λ)x2, λf(x1) + (1− λ)f(x2)] ∈ epif, λ ∈ (0, 1).

In other words, λf(x1) + (1 − λ)f(x2) ≥ f(λx1 + (1 − λ)x2), λ ∈ (0, 1).

Therefore f is convex.

De�nition 3.4. Let S be a nonempty convex set in Rn and let f : S → R

be a convex function. The level set of f is

Sα = {x ∈ S | f(x) ≤ α},

where α ∈ R. The level set of f is the projection of epif onto S.

Theorem 3.5. Let S be a nonempty convex set in Rn and let f : S → R be

a convex function. Then the level set Sα is convex.

Proof. Let x, y ∈ Sα. Thus x, y ∈ S and f(x) ≤ α and f(y) ≤ α. Now let

λ ∈ (0, 1) and z = λx + (1− λ)y. By convexity of S, z ∈ S. Furthermore,

by convexity of f ,

f(z) ≤ λf(x) + (1− λ)f(y) ≤ λα + (1− λ)α = α.

Hence x ∈ Sα, and therefore Sα is convex.

De�nition 3.6. Function f de�ned on a convex set S is a closed convex

function, if its epigraph is a closed convex set.

Theorem 3.7. [2] Let S be a nonempty convex set in Rn and let f : S → R

be convex. Then f is continuous on the interior of S.
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Proof. Let x ∈ int(S). Let us prove that given ε > 0, there exists a δ > 0

such that ||x−x|| ≤ δ implies that |f(x)−f(x)| ≤ ε. Since x ∈ int(S), there

exists a δ
′
> 0 such that ||x − x|| ≤ δ

′
implies that x ∈ S. Construct θ as

follows:

θ = max
1≤i≤n

{max[f(x + δ
′
ei)− f(x), f(x− δ′ei)− f(x)]}, (1)

where ei is a vector of zeroes except for one element at the ith position. By

the convexity of f , 0 ≤ θ <∞. Let

δ = min

(
δ
′

n
,
εδ
′

nθ

)
. (2)

Choose x with ‖x− x‖ ≤ δ. If xi − xi ≥ 0, let zi = δ
′
ei; otherwise let

zi = −δ′ei. Then x − x =
∑n

i=i αizi, where αi ≥ 0 for i = 1, 2, ..., n.

Furthermore

‖x− x‖ = δ
′

(
n∑
i=1

α2
i

) 1
2

(3)

.

From (2) and since ‖x− x‖ ≤ δ, it follows that αi ≤ 1/n for i = 1, 2, ..., n.

Hence, by the convexity of f and since 0 ≤ nαi ≤ 1, we get

f(x) = f

(
x +

n∑
i=1

αizi

)
= f

[
1

n

n∑
i=1

(x + nαizi)

]

≤ 1

n

n∑
i=1

f(x + nαizi)

≤ 1

n

n∑
i=1

f [(1− nαi)x + nαi(x + zi)]

≤ 1

n

n∑
i=1

[(1− nα1)f(x) + nαif(x + zi)].

Therefore f(x)−f(x) ≤
∑n

i=1 αi[f(x+zi)−f(x)]. By (1) f(x+zi)−f(x) ≤
θ, i = 1, ..., n, and since αi ≥ 0 , it follows that

f(x)− f(x) ≤ θ

n∑
i=1

αi. (4)
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From (3) and (2) it follows that αi ≤ ε/nθ, and (4) implies that f(x)−f(x) ≤
ε. So far we have showed that ‖x− x‖ ≤ δ implies that f(x)− f(x) ≤ ε. To

�nish the proof let us show that f(x)− f(x) ≤ ε. Let y = 2x− x and note

that ‖y− x‖ ≤ δ. Therefore

f(y)− f(x) ≤ ε, (5)

But x = 1
2
y + 1

2
x, and by the convexity of f , we have

f(x) ≤ 1

2
f(y) +

1

2
f(x). (6)

Combining (5) and (6), it follows that f(x)− f(x) ≤ ε.

Next we will prove a stronger result concerning the local Lipschitz conti-

nuity of a function. First let us de�ne local Lipschitz continuity and prove

the necessary lemma.

De�nition 3.8. [1] A function is locally Lipschitz continuous at a point

x ∈ Rn if there exist scalars K > 0 and δ > 0 such that

|f(y)− f(z)| ≤ K ‖y− z‖ , ∀ y, z ∈ B(x, δ).

A function is locally Lipschitz continuous on a set S ⊆ Rn if it is locally

Lipschitz continuous at every point belonging to S. If S = Rn the function

is locally Lipschitz continuous. A function is Lipschitz continuous on a set

S ⊆ Rn if there exists a scalar K such that

|f(y)− f(z)| ≤ K ‖y− z‖ , ∀ y, z ∈ S.

If S = Rn the function is Lipschitz continuous.

It follows from the de�nition of Lipschitz continuity that a function is

Lipschitz continuous, if there exist a constant K such that the slope of the

line segment between any two points of the function graph is smaller than

K, or
|f(y)− f(z)|
‖y− z‖

≤ K, ∀ y, z ∈ Rn, y 6= z.
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For a Lipschitz continuous function at a point x∗ there exists a double

cone such that the function graph stays outside of the double cone. If the

function is Lipschitz continuous, the origin of the double cone can be moved

along the graph so that the whole graph always stays outside of the double

cone.

Figure 9: A Lipschitz continuous function

Lemma 3.9. [1] Let f be a convex function on the open convex set S ⊂ Rn.

If f is bounded from above in a neighborhood of one point x∗ of S, then it

is locally bounded, that is, each x of S has a neighborhood on which f is

bounded.

Proof. Let us �rst show that if f is bounded from above in a neighborhood

of x∗, it is also bounded from below in the same neighborhood. Suppose that

f is bounded from above by a number M in B(x∗, ε). Let us express every

z ∈ B(x∗, ε) as z = x∗ + θy, where y ∈ Rn is a vector such that ‖y‖ = 1

and θ is a su�ciently small positive number. Then

x∗ =
1

2
(x∗ + θy) +

1

2
(x∗ − θy).
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By the de�nition of a convex function

f(x∗) ≤ 1

2
f(x∗ + θy) +

1

2
f(x∗ − θy),

and thus

2f(x∗)− f(x∗ − θy) ≤ f(x∗ + θy).

By the hypothesis f is bounded from above by a number M , or f(x∗ −
θy) ≤M , hence

2f(x∗)−M ≤ f(x∗ + θy) = f(z),

and f is bounded from below for every z ∈ B(x∗, ε).

Let x ∈ S, x 6= x∗. Then x = x∗ + αy, where y ∈ Rn, ||y|| = 1 and

α is a positive number. Choose ρ > α such that u = x∗ + ρy ∈ S and let

λ = α/ρ. Then

B(x, δ) = {v | v ∈ S, v = (1− λ)z + λu, z ∈ B(x∗, ε)}

is a neighborhood of x with radius δ = (1− λ)ε. Also, for v ∈ B(x, δ)

f(v) ≤ (1− λ)f(z) + λf(u) ≤ (1− λ)M + λf(u),

by the convexity of f . That is, f is bounded from above on B(x, δ), and by

the �rst part of the proof, f is also bounded from below on B(x, δ).

Theorem 3.10. [1] Let f be a convex function on the open convex set

S ⊂ Rn. If f is bounded from below in a neighborhood of one point of S,

then f if locally Lipschitz continuous in S, hence continuous in S.

Proof. By the previous lemma, for every x∗ ∈ S there is a neighborhood

B(x∗, 2ε) on which f is bounded, or x ∈ B(x∗, 2ε) ⇒ |f(x)| ≤ M . We

now show that f is locally Lipschitz continuous at x∗, or that there exists

a constant K for which |f(x) − f(y)| ≤ K ||x− y|| , ∀ x, y ∈ B(x∗, ε).

Suppose, on the contrary, that there are points x and y in B(x∗, ε) such

that
f(x)− f(y)

||x− y||
>

2M

ε
.
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Let now z ∈ B(x∗, 2ε) be the point such that y = λz + (1 − λ)x and

||z− y|| = ε. Restricting f to the line segment of y and z it follows from the

convexity of f that

f(y)− f(z)

||y− z||
≥ f(x)− f(y)

||x− y||
>

2M

ε
,

implying that f(y) − f(z) > 2M and hence |f(z)| > M , which is a contra-

diction, and f must be locally Lipschitz continuous on S, hence continuous

on S.

Next we will show that every continuously di�erentiable function is locally

Lipschitz continuous.

Theorem 3.11. [16] Every continuously di�erentiable function is locally

Lipschitz continuous.

Proof. This proof is for vector valued functions, of which real valued functions

are a special case. Let F : Rn → Rn be continuously di�erentiable. Fix any

two points z,y ∈ Rn and de�ne the function f : [0, 1] → R as f(θ) :=

F (z + θ(y− z)). It is clear that

f(0) = F (z) and f(1) = F (y). (7)

Furthermore, by the chain rule, we know that f is di�erentiable and that

d

dθ
f(θ) = ∇F (z + θ(y− z))(y− z) (8)

Here ∇F (w) is the Jacobian matrix of F at w:
∂f1
∂w1

(w) · · · ∂f1
∂wn

(w)
...

. . .
...

∂fn
∂w1

(w) · · · ∂fn
∂wn

(w)

 , (9)

where ∂fi
∂wj

(w) is the partial derivative of the i-th component of f with respect

to the j-th coordinate.

By the de�nition of f and the and the fundamental theorem of calculus,

we have

F (y)− F (z) = f(1)− f(0) =

∫ 1

0

f
′
(θ)dθ
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=

(∫ 1

0

∇F (z + θ(y− z))dθ

)
(y− z);

where the integral in the last line is a matrix whose i, j-th component is given

by ∫ 1

0

∂fi
∂wj

(z + θ(y− z))dθ.

It follows that

||F (y)− F (z)|| ≤ ||
∫ 1

0

∇F (zθ(y− z))dθ||||y− z||,

where we use the notation || · || for both the vector norm and its associated

matrix norm.

Notice that, by the triangle inequality for integrals, we have∣∣∣∣∣∣∣∣∫ 1

0

∇F (z + θ(v− z))dθ

∣∣∣∣∣∣∣∣ ≤ ∫ 1

0

||∇F (z + θ(v− z))||dθ

sup
θ∈[0,1]

||∇F (z + θ(v− z))||
∫ 1

0

dθ

sup
θ∈[0,1]

||∇F (z + θ(v− z))||.

Furthermore by the equivalence of matrix norms we have

∃co > 0 : ||A|| ≤ c0||A||∞, ∀ A ∈ Rn×n, (10)

where c0 depends only on n and || · ||∞ is the maximum row norm sum

max1≤i≤n

(∑n
j=1 |aij|

)
.

Thus, to establish Lipschitz continuity, we �x an arbitrary point x ∈
Rn and we establish a bound for

∫ 1

0
∇F (z + θ(y − z))dθ in an approptiate

neighbourhood B of x.

Let B = B(x, δ), with δ arbitrary. Since F is continuously di�erentiable

on B, there exists K0 such that

sup
w∈B

∣∣∣∣∣∣∣∣ ∂fi∂wj
(w)

∣∣∣∣∣∣∣∣ ≤ K0, ∀ i, j ∈ [1 : n].

Here we have applied the Weierstrass Theorem which says that each contin-

uous function
(
∂fi
∂wj

(w)
)
is bounded on a closed and bounded set cl(B).
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Now, given z,y ∈ B, it follows that z+ θ(z− y) ∈ B ∀ θ ∈ [0, 1] because

B is a ball, so

sup
θ∈[0,1]

||∇F (z + θ(y− z))|| ≤ c0mK0 =: K.

It follows that

||F (y)− F (z)|| ≤ K||y− z||, ∀ y, z ∈ B;

which is to say that F is Lipschitz continuous on B(x; δ). Since x is arbitrary

this means that F is locally Lipschitz continuous on Rn.

Next let us de�ne the directional derivative of a function. For smooth

functions the directional derivative exists for every point in the domain of f .

De�nition 3.12. [2] Let S be a nonempty set in Rn and let f : S → R. Let

x∗ ∈ S and d be a nonzero vector such that x∗ + λd ∈ S for a su�ciently

small positive number λ. The directional derivative f
′
(x∗;d) of f at x∗ along

the vector d is given by

f
′
(x∗;d) = lim

λ→0+

f(x∗ + λd)− f(x∗)

λ
.

If f is di�erentiable, its directional derivative can be expressed with its gra-

dient in the form f
′
(x∗;d) = ∇f(x∗)Td. The more general variant of the

directional derivative is known as the Gateaux derivative de�ned between

any two locally convex topological vector spaces.

Lemma 3.13. [2] Let S be a nonempty convex set in Rn and f : S → R a

convex function. Then the directional derivative f
′
(x∗;d) exists for a point

x∗ ∈ int(S) for every direction d 6= 0. Furthermore,

f
′
(x∗;d) = inf

λ>0

f(x∗ + λd)− f(x∗)

λ
.

Proof. Let 0 < λ1 < λ2 be small enough numbers such that x∗ + λ1d and

x∗ + λ2d ∈ int(S). By the convexity of f

f(x∗ + λ1d) = f

[
λ1

λ2

(x∗ + λ2d) +

(
1− λ1

λ2

)
x∗
]
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≤ λ1

λ2

f(x∗ + λ2d) +

(
1− λ1

λ2

)
f(x∗).

This inequality implies that

f(x∗ + λ1d)− f(x∗)

λ1

≤ f(x∗ + λ2d)− f(x∗)

λ2

.

Therefore [f(x∗ + λd)]/λ is a nondecreasing function of λ > 0. Let λ be a

positive real number, for which x∗ + λd ∈ int(S). Then, by the convexity of

f

f(x∗) = f

(
λ

1 + λ
(x∗ − d) +

1

1 + λ
(x∗ + λd)

)
≤ λ

1 + λ
f(x∗ − d) +

λ

1 + λ
f(x∗ + λd),

and thus
f(x∗ − d)− f(x∗)

λ
≥ f(x∗)− f(x∗ − d).

Therefore [f(x∗−d)−f(x∗)]/λ is lower bounded and it has a limit, as λ→ 0.

Hence the limit in the theorem exists and is given by

lim
λ→0+

f(x∗ + λd)− f(x∗)

λ
= inf

λ>0

f(x∗ + λd)− f(x∗)

λ
.

3.2 Subgradients and extrema

In this section we will deal with the optimization of convex functions. First

let us present necessary de�nitions and theorems.

De�nition 3.14. [2] Let S ⊆ Rn be a nonempty set, and let z be a point

on the boundary of S, that is, z ∈ δ(S). Then the hyperplane

H = {x | pT (x− z) = 0, p 6= 0}

is a supporting hyperplane of S at z, if one of the following is true:

1. pT (x− z) ≥ 0, ∀ x ∈ S

2. pT (x− z) ≤ 0, ∀ x ∈ S.
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Theorem 3.15. [2] Let S ⊆ Rn be a nonempty convex set, and let z ∈ δ(S).

Then there exists a hyperplane that supports S at z; that is, there exists a

nonzero vector p such that

pT (x− z) ≤ 0, ∀ x ∈ cl(S).

Proof. Since z ∈ δ(S) there exists a sequence {yk} not in cl(S) such that

yk → z. By the Separation Theorem ([2], Theorem 2.3.4) there exists for

each yk a vector pk, for which ‖pk‖ = 1, such that

pTk yk > pTk x, ∀ x ∈ cl(S).

Since the sequence {pk} is bounded, it has a convergent subsequence

{pk}κ with limit p whose norm is equal to one. Let us �x x ∈ cl(S) and take

the limit as k ∈ κ approaches in�nity. Then we have

pTz ≥ pTx.

De�nition 3.16. [2] Let S ⊆ Rn be a nonempty convex set, and let f : S →
R be convex. Then ξ is called a subgradient (see Figure 10) of f at x∗ if

f(x) ≥ f(x∗) + ξT (x− x∗), ∀ x ∈ S.

The set of subgradients of f at x∗, ∂f(x∗), is called the subdi�erential.
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Figure 10: Subgradient

From this de�nition it directly follows that the subdi�erential of f at x∗

is a convex set. The function f(x∗)+ξT (x−x∗) corresponds to a supporting
hyperplane of the epigraph of f . The subgradient vector ξ corresponds to

the slope of the supporting hyperplane.

Theorem 3.17. Let S ⊆ Rn be a nonempty convex set and let f : S → R be

convex. Then for x∗ ∈ int(S) there exists a vector ξ such that the hyperplane

H = {(x, y) | y = f(x∗) + ξT (x− x∗)}

supports epif at [x∗, f(x∗)]. In particular,

f(x) ≥ f(x∗) + ξT (x− x∗), ∀ x ∈ S,

that is, ξ is a subgradient of f at x∗.

Proof. By the convexity of f , epif is a nonempty convex set. The point

[x∗, f(x∗)] belongs to the boundary of epif , so by Theorem 3.15 there exists

a nonzero vector (ξ0, µ), ξ0 ∈ Rn, µ ∈ R such that

ξT0 (x− x∗) + µ[y − f(x∗)] ≤ 0, ∀ (x, y) ∈ epif.

Scalar µ is not positive, because otherwise the above inequality can be con-

tradicted by choosing y su�ciently large. Let us show that µ < 0. By
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contradiction, suppose that µ = 0. Then ξT0 (x − x∗) ≤ 0, ∀ x ∈ S. Since

x∗ ∈ int(S), there exists λ > 0 such that x∗ + λξ0 ∈ S, and therefore

λξT0 ξ0 ≤ 0. This implies that ξ0 = 0 and (ξ0, µ) = (0, 0), contradicting the

fact that (ξ0, µ) is a nonzero vector. Therefore µ < 0. Denoting ξ0/|µ| by ξ
and dividing the above inequality by |µ| we get

ξT (x− x∗)− y + f(x∗) ≤ 0, ∀ (x, y) ∈ epif.

In particular, the hyperplane H = {(x, y) : y = f(x∗)+ξT (x−x∗)} supports
epif at [x∗, f(x∗)]. By letting y = f(x), we get f(x) ≥ f(x∗) + ξT (x −
x∗), ∀ x ∈ S.

Theorem 3.18. [1] Let f be a di�erentiable function of the open convex set

S ⊂ Rn. It is convex if and only if for every x∗ ∈ S, x ∈ S we have

f(x) ≥ f(x∗) +∇f(x∗)T (x− x∗).

It is strictly convex if and only if the above inequality is strict for x 6= x∗.

Proof. Let f be convex on S and let x∗ ∈ S, x ∈ S, x∗ 6= x. By the convexity

of f

f(x∗ + λ(x− x∗)) = f(λx + (1− λ)x∗) ≤ λf(x) + (1− λ)f(x∗), λ ∈ (0, 1],

or

f(x)− f(x∗) ≥ 1

λ
[f(x∗ + λ(x− x∗))− f(x∗)], λ 6= 0.

By substituting the de�nition of di�erentiability to the above inequality we

get

f(x)− f(x∗) ≥ ∇f(x∗)T (x− x∗) + α(x∗, λ(x− x∗)) ||x− x∗|| .

Since α(x∗, λ(x− x∗)) approaches zero as λ approaches zero we obtain the

inequality of the theorem from the above inequality.

Conversely, let us assume that x1 ∈ S, x2 ∈ S, 0 ≤ λ ≤ 1. Then

f(λx1 + (1− λ)x2) + (1− λ)(x1 − x2)T∇f(λx1 + (1− λ)x2) ≤ f(x1)
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and

f(λx1 + (1− λ)x2) + λ(x2 − x1)T∇f(λx1 + (1− λ)x2) ≤ f(x2).

Multiplying the �rst inequality with λ and the second with (1−λ) and adding

up we get

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2),

and therefore the function is convex.

Let us prove the result for the strictly convex case. Let f be strictly

convex and x∗ ∈ S, x ∈ S, x∗ 6= x. Since f is convex, the inequality of the

theorem follows from the above results.

Then let us show that equality cannot hold. Suppose, to the contrary,

that

f(x) = f(x∗) +∇f(x∗)T (x− x∗).

Then, for 0 < λ < 1,

f(λx∗ + (1− λ)x) < λf(x∗) + (1− λ)f(x)

= f(x∗) + (1− λ)∇f(x∗)T (x− x∗).

Now let x0 = λx∗+ (1− λ)x. Then, since x0 ∈ S and f is convex we get the

inequality of the theorem by replacing x with x0; that is,

f(λx∗ + (1− λ)x) ≥ f(x∗) + (1− λ)∇f(x∗)T (x− x∗).

This causes a contradiction in which equality cannot hold. The proof of the

converse statement for a strictly convex function is similar to the convex

case.

With this result we get the su�cient condition for the minimum of a

convex function.

Theorem 3.19. [1] Let f be a di�erentiable (strictly) convex function on

the open convex set S. If

∇f(x∗) = 0

at a point x∗ of set S, then f attains its (unique) global minimum at x∗.
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Proof. It follows from the previous theorem that for every point x ∈ S

f(x) ≥ f(x∗) +∇f(x∗)T (x− x∗).

The inequality is strict for a strictly convex function. If ∇f(x∗) = 0, then

for every x ∈ S
f(x) ≥ f(x∗).

The inequality is strict for a strictly convex function. Therefore x∗ is a

(unique) global minimum of f .

We get the same result by proving a more general theorem for nonsmooth

functions.

Theorem 3.20. [2] Let f : S → R be a convex function, and let S be a

nonempty convex set in Rn. Point x∗ ∈ S is a global minimum of f if f has

a subgradient ξ of subdi�erential ∂f(x∗) such that

ξT (x− x∗) ≥ 0, ∀ x ∈ S.

Proof. Suppose that ξT (x− x∗) ≥ 0 for all x ∈ S, where ξ is a subgradient

of f at x∗. By convexity of f , we get

f(x) ≥ f(x∗) + ξT (x− x∗) ≥ f(x∗), ∀ x ∈ S.

Therefore x∗ is a global minimum of f .

It follows from the theorem that x∗ is a global minimum of f if 0 ∈ ∂f(x∗).

The next theorem shows that subgradients really are generalizations of

the classical gradient.

Theorem 3.21. [18] If f : Rn → R is convex and di�erentiable at x ∈ Rn,

then

∂f(x) = {∇f(x)}.

Proof. See, e.g. [18], Theorem 4.30.

26



4 Nonsmooth and nonconvex functions

In this chapter we will discuss functions which are not continuously di�eren-

tiable nor convex. They have points in their domain where their gradient is

not continuous. In these points we will de�ne Clarke's generalized directional

derivative and subgradient. We will also handle generalized convexities for

nonsmooth functions.

4.1 Generalized derivative

Let us de�ne the generalized directional derivative and discuss its properties.

De�nition 4.1. [19] Let f : Rn → R be locally Lipschitz-continuous at x∗ ∈
Rn. The Clarke's generalized directional derivative of f at x∗ in direction

d ∈ Rn is de�ned as follows:

f o(x∗;d) = lim sup
y→x∗, t→0

f(y + td)− f(y)

t
, f o(x∗;d) <∞.

In the de�nition of the classical directional derivative the base point for

taking di�erences is a �xed vector x∗. In the generalized directional derivative

they are taken from a variable vector y which approaches x∗.

Example 4.2. Let us de�ne a convex function f(x) = |x|. The function can

be written as

f(x) =

x, x ≥ 0

−x, x < 0
.

The derivative of f is

f
′
(x) =

1, x > 0

−1, x < 0
.

Function derivative f
′
is not continuous at x = 0. It is nonsmooth at this

point. Let us calculate the generalized directional derivative for x = 0:

f o(0; d) = lim
y→0

sup
t→0

f(y + td)− f(y)

t

= lim
y→0

sup
t→0

|y + td| − |y|
t
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= lim sup
t→0

|td|
t

= lim sup
t→0

|d| = |d| .

By substituting d = 1 or d = −1 we get f o(0; d) = 1 for both directions.

Note that for a convex function f o(x;d) = f
′
(x;d) [18, Theorem 3.8].

Example 4.3. Let us calculate the derivative and generalized directional

derivative for the nonconvex function f(x) = − |x|:

f
′
(x) =

−1, x > 0

1, x < 0
.

The generalized directional derivative for f at x = 0 is

f o(0; d) = lim sup
y→0; t→0

f(y + td)− f(y)

t

= lim
y→0

sup
t→0

− |y + td|+ |y|
t

= lim sup
t→0

|td|
t

= lim sup
t→0

|d| = |d| .

Like for f = |x|, f o(0, d) = 1 for d = 1 and d = −1. However, the directional

derivative f
′
(0, d) for f(x) = − |x| is

f
′
(0; d) =

−1, d = 1

−1, d = −1
.

Next we will present some properties of f o.

Theorem 4.4. [5] Let f be a locally Lipschitz continuous function at point

x∗ with constant K. Then

1. Function d 7→ f o(x∗;d) is positively homogenous and subadditive in

Rn and it holds that

|f o(x∗;d)| ≤ K ||d|| ,
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2. Function f o(x;d) is upper semicontinuous as a function of (x;d) ∈ R2n

and Lipschitz continuous with constant K as a function of d in Rn,

3. f o(x∗;−d) = (−f)o(x∗;d).

Proof. Let us begin by proving the inequality of the �rst part. By the Lips-

chitz condition we get

|f o(x∗;d)| =
∣∣∣∣ lim
y→x∗

sup
t→0

f(y + td)− f(y)

t

∣∣∣∣
≤ lim

y→x∗
sup
t→0

|f(y + td)− f(y)|
t

≤ lim
y→x∗

sup
t→0

K ||y + td− y||
t

,

when y, y + td ∈ B(x∗, ε) with some ε > 0. Thus

|f o(x∗;d)| ≤ Kt ||d||
t

= K ||d||

Next we prove that the derivative is positively homogeneous. Let λ > 0.

Then

f o(x∗;λd) = lim
y→x∗

sup
t→0

f(y + tλd)− f(y)

t

= lim
y→x∗

sup
t→0

λ

{
f(y + tλd)− f(y)

λt

}
= λ lim

y→x∗
sup
t→0

{
f(y + tλd)− f(y)

λt

}
= λf o(x∗;d).
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Now we shall prove the subadditivity. Let d, p ∈ Rn be arbitrary. Then

f o(x∗;d + p) = lim
y→x∗

sup
t→0

f(y + t(d + p))− f(y)

t

= lim
y→x∗

sup
t→0

f(y + td + tp)− f(y + tp) + f(y + tp)− f(y)

t

≤ lim
y→x∗

sup
t→0

f((y + tp) + td)− f(y + tp)

t

+ lim
y→x∗

sup
t→0

f(y + tp)− f(y)

t

= f o(x∗;d) + f o(x∗;p).

Thus d 7→ f o(x∗;d) is subadditive.

Let us move to the second part of the theorem. Let {xi} and {di} ⊂ Rn

be sequences such that xi → x and di → d. By de�nition of upper limit,

there exist sequences {yi} ⊂ Rn and {ti} ⊂ R such that ti > 0,

f o(x;di) ≤ [f(yi + tdi)− f(yi)]/ti + 1/i

and

||y1 − xi||+ ti < 1/i, ∀ i ∈ N.

Now we have

f o(xi;di)−
1

i
= lim

y→xi

sup
t→0

f(y + tdi)− f(y)

t
− 1

i

≤ f(yi + tidi)− f(yi)

ti

=
f(yi + tidi)− f(yi)

ti
+
f(yi + tidi)− f(yi + tid)

ti

and by the Lipschitz condition

|f(yi + tidi)− f(yi + tid)|
ti

≤ K ||di − d||
ti

= K ||di − d|| → 0,

as i→∞ provided yi+ tidi, yi+ tid ∈ B(x; ε), ε > 0. As i→∞, we obtain

lim
i→∞

sup f o(xi;di) ≤ lim
i→∞

sup
f(yi + tid)− f(yi)

ti
≤ f o(x;d),

30



which establishes the upper semicontinuity.

Let us show the Lipschitz continuity of f ◦(x;d). Let v, w ∈ Rn. If

y + tv, y + tw ∈ B(x∗, ε), we obtain

f(y + tv)− f(y + tw) ≤ Kt ||v−w|| .

It follows that

lim
y→x∗

sup
t→0

f(y + tv)− f(y)

t

≤ lim
y→x∗

sup
t→0

f(y + tw)− f(y)

t
K ||v−w||

and

f o(x∗;v)− f o(x∗;w) ≤ K ||v−w|| .

By switching v and w, we get

f o(x∗;w)− f o(x∗;v) ≤ K ||v−w|| .

From this we get

|f o(x∗;v)− f o(x∗;w)| ≤ K ||v−w|| .

Let us prove the third part of the theorem by making the following cal-

culation:

f o(x∗;−d) = lim
y→x∗

sup
t→0

f(y− td)− f(y)

t

= lim
u→x∗

sup
t→0

(−f)(u + td)− (−f)(u)

t
,

by substituting u = y− td. We obtain the result

f o(x∗;−d) = (−f)o(x∗;d).
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4.2 Generalized subgradient

Next we will de�ne the generalized subgradient with the generalized direc-

tional derivative and discuss its properties.

De�nition 4.5. [19] Let f : Rn → R be a locally Lipschitz continuous

function at a point x∗ ∈ Rn. The Clarke subdi�erential of f at x∗ is the set

∂f(x∗) of vectors ξ ∈ Rn such that

∂f(x∗) = {ξ | f o(x∗;d) ≥ ξTd, ∀ d ∈ Rn}.

Each ξ ∈ ∂f(x∗) is called a subgradient of f at x∗. For a convex function the

above de�nition equals the subdi�erential of a convex function (De�nition

3.16).

Theorem 4.6. If f is continuously di�erentiable in x∗, it follows that

∂f(x∗) = {∇f(x∗)}.

Proof. Look [5], Theorem 3.1.7.

Theorem 3.19 for smooth convex functions follows from Theorems 3.20

and 4.6.

Theorem 4.7. [5] Let f be locally Lipschitz continuous at x. If f obtains

its local minimum value at x, we have

0 ∈ ∂f(x).

Proof. Let us assume that f obtains its local minimum at x. Then there

exists a positive real number ε such that f(x + td) − f(x) ≥ 0, ∀ 0 < t <

ε, d ∈ Rn. We get the result

f o(x;d) = lim
y→x

sup
t→0

f(y + td)− f(y)

t
≥ lim sup

t→0

f(x + td)− f(x)

t
≥ 0.

It follows that

f o(x;d) ≥ 0 = 0Td, ∀ d ∈ Rn,

so by the de�nition of subgradient 0 belongs to the subdi�erential of f at

x.
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Theorem 4.8. [5] Let f be locally Lipschitz continuous at x with a constant

K. Then

1. ∂f(x) is a nonempty, convex and compact set such that ||ξ|| ≤ K, ∀ ξ ∈
∂f(x).

2. f o(x;d) = max{ξTd | ξ ∈ ∂f(x)}, ∀ d ∈ Rn.

3. The mapping ∂f(·) : Rn → P (Rn), where P (Rn) is the powerset con-

taining every subset of Rn, is upper semicontinuous.

Proof. According to Theorem 4.4 f o(x;d) is positively homogeneous and

subadditive. Then, by Hanh-Banach Theorem ([5], Theorem 1.2.1), there

exists a vector ξ ∈ Rn such that ξTd ≤ f o(x,d), ∀ d ∈ Rn. Then, by the

de�nition of the subdi�erential, ∂f(x) is nonempty.

Let us prove the convexity of the subdi�erential by choosing ξ and ξ
′
and

λ ∈ [0, 1]. We get

[λξ + (1− λ)ξ
′
]Td ≤ λf o(x;d) + (1− λ)f o(x;d) = f o(x;d),

where λξ + (1− λ)ξ
′ ∈ ∂f(x). Therefore the subdi�erential is convex.

Let us prove the compactness by showing that ∂f(x) is closed and

bounded. By Theorem 4.4

||ξ||2 = |ξTξ| ≤ |f o(x; ξ)| ≤ K ||ξ|| .

It follows from the randomness of ξ that

||ξ|| ≤ K, ∀ ξ ∈ ∂f(x).

Therefore the subdi�erential is bounded.

Then let us choose a sequence {ξi} ∈ ∂f(x) which approaches ξ. We get

ξTd = lim
i→∞

ξTi d = lim
i→∞

(ξTi d) ≤ lim
i→∞

f o(x;d) = f o(x;d).

Thus ξ ∈ ∂f(x), so the subdi�erential is closed.
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Now let us prove the second part of the theorem. By the de�nition of the

subdi�erential we get

f o(x;d) ≥ max{ξTd | ξ ∈ ∂f(x)}.

Let us assume that there exists a vector d1 ∈ Rn, such that

f o(x;d1) > max{ξTd1 | ξ ∈ ∂f(x)}.

Then, by the Hanh-Banach Theorem, there exists a vector ξ1 ∈ Rn, such

that f o(x;d) ≥ ξT1 d, ∀ d ∈ Rn and f o(x;d1) = ξT1 d1. Therefore ξ1 ∈ ∂f(x)

and we get

f o(x;d1) > max{ξTd1 | ξ ∈ ∂f(x)} ≥ ξT1 d1 = f o(x;d1).

From this contradiction we come to the result

f o(x;d) = max{ξTd1 | ξ ∈ ∂f(x)}, ∀d ∈ Rn.

The second part of the theorem is proved.

Let us prove the third part of the theorem. Let us choose a sequence

{yi} ∈ Rn, which approaches x and a sequence {ξi} ∈ ∂f(yi), which ap-

proaches ξ. Then for every d ∈ Rn we get

ξTd = lim
i→∞

ξTi d = lim
i→∞

(ξTi d) ≤ lim
i→∞

sup f o(yi;d).

By the second part of Theorem 4.4 f o(x; )̇ is upper semicontinuous. From

this we get

ξTd ≤ f o(x;d).

Therefore ∂f(·) is upper semicontinuous.

We shall later be considering vector-valued functions. For this we will

need to de�ne the generalized Jacobian matrix.

De�nition 4.9. [18] Let F : Rn → Rm be a vector-valued function F (x) =

(F1(x), ..., Fm(x))T . We denote by ΩF the set in Rn where F fails to be
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di�erentiable and by ∇F (x) for x /∈ ΩF the usual m × n Jacobian matrix.

Let F be locally Lipschitz continuous at x. Then the generalized Jacobian

matrix of F at x is the set

∂F (x) := conv{A ∈ Rm×n | ∃(xi) ⊂ Rn\ΩF such that(xi)→ x, ∇F (xi)→ A}.

Some basic properties of ∂F (x) will now be listed.

Theorem 4.10. [18] Let Fi for i = 1, ...,m be locally Lipschitz continuous

at x with constant Ki. Then

1. F (x) = (F1(x), ..., Fm(x))T is locally Lipschitz continuous at x with

constant K = ||(K1, ..., Km)T ||2,

2. ∂F (x) is a nonempty, convex and compact subset of Rm×n,

3. the mapping ∂F (·) : Rn → P (Rn) is upper semicontinuous.

Proof. See [18].

4.3 Other derivatives

In this section we de�ne B- and F-di�erentiability, which will be used in

Section 5.

De�nition 4.11. [21] A function F : Rn → Rm is Bouligand-di�erentiable

(B-di�erentiable) at a point x∗ ∈ Rn if it is locally Lipschitz-continuous and

directionally di�erentiable at x∗. If f is B-di�erentiable at x∗, we call the

directional derivative F
′
(x∗,h) the B-derivative of F at x∗ along h.

The B-derivative is strong if the error function

e(y) = F (y)− F (x∗)− F ′(x∗;y− x)

satis�es

lim
y1 6=y2, (y1,y2)→(x∗,x∗)

e(y1)− e(y2)

||y1 − y2||
= 0 (11)
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De�nition 4.12. [21] A function F : Rn → Rm is Fréchet-di�erentiable

(F-di�erentiable) at x∗ ∈ Rn, if it is directionally di�erentiable at x∗ and

F (x∗ + h) = F (x∗) + F
′
(x∗;h) + o(||h||),

where F
′
(x∗;h) is called the F-derivative of F at point x∗, if it is linear

and continuous. So, the existence of the F-derivative implies the existence of

directional derivatives in all directions. Function F is strongly F-di�erentiable

if

lim
y1 6=y2, (y1,y2)→(x∗,x∗)

F (y1)− F (y2)− F ′(x)(y1 − y2)

||y1 − y2||
= 0.

4.4 Generalized pseudoconvexity

In this section we consider pseudoconvexity. The section is based on source

[4]. First let us de�ne pseudoconvexity for smooth functions.

De�nition 4.13. A continuously di�erentiable function f : Rn → R is

pseudoconvex, if for all x, y ∈ Rn

f(y) < f(x)⇒ ∇f(x)T (y− x) < 0.

It follows from the de�nition that if the gradient ascent of a pseudoconvex

function at x to the direction y − x is non-negative, the function is non-

decreasing in this direction. An example of a pseudoconvex function is f(x) =

x+ x3.

The result of a global minimum for a convex function (Theorem 3.19) can

be weakened: a pseudoconvex function attains its global minimum at x∗ if

and only if ∇f(x∗) = 0. The concept of pseudoconvexity can be extended

with the generalized directional derivative.

De�nition 4.14. A function f : Rn → R is f o-pseudoconvex, if it is locally

Lipschitz continuous and for all x, y ∈ Rn

f(y) < f(x)⇒ f o(x;y− x) < 0.

The following result shows that f o-pseudoconvexity is a natural extension of

pseudoconvexity.
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Theorem 4.15. If f is smooth, it is f o-pseudoconvex if and only if it is

pseudoconvex.

Proof. The theorem follows directly from the second part of Theorem 4.9,

because for a smooth function

f o(x;y− x) = f
′
(x;y− x) = ∇f(x)T (y− x)

.

Lemma 4.16. A locally Lipschitz continuous function is f o-pseudoconvex if

and only if

f o(x;y− x) ≥ 0⇒ f(y) ≥ f(x).

The proof follows directly from the de�nition of f o-pseudoconvexity.

Next we show that the su�cient optimality condition of pseudoconvex

functions extends to f o-pseudoconvex functions.

Theorem 4.17. A f o-pseudoconvex function reaches its global minimum at

x∗ if and only if

0 ∈ ∂f(x∗).

Proof. The necessary condition follows from Theorem 4.7. Let 0 ∈ ∂f(x∗)

and let y ∈ Rn. Then, by the de�nition of the Clarke subdi�erential, we get

f o(x∗;y− x∗) ≥ 0T (y− x∗) = 0.

Then, by the previous lemma,

f(y) ≥ f(x∗).

Let us show the generality of f o-pseudoconvexity with the following ex-

ample.
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Example 4.18. Let f(x) = min{|x|, x2}. Function f is clearly locally Lips-

chitz continuous but not convex or pseudoconvex. However, when x < y, the

generalized directional derivative of f is

f o(x, y − x) =


−1, x ∈ (−∞, −1]

2x, x ∈ (−1, 1]

1, x ∈ (1, ∞)

.

It follows from the symmetrity of f and Lemma 4.16 that f is f o-

pseudoconvex. Moreover, ∂f(0) = {0}, so f attains its global minimum

at this point.

De�nition 4.19. f o is pseudomonotone, if for every x and y ∈ Rn we have

f o(x;y− x) ≥ 0⇒ f o(y;x− y) ≤ 0,

or equivalently if

f o(y;x− y) > 0⇒ f o(x;y− x) < 0.

In addition, it is strictly pseudomonotone, if

f o(x;y− x) ≥ 0⇒ f o(y;x− y) < 0.

Let us write without the proof the Mean-Value Theorem, which is needed

to prove the next theorem.

Mean-Value Theorem 4.20. [5] Let x 6= y ∈ Rn and let f be Lipschitz

continuous on an open set U ⊆ Rn so that [x, y] is a subset of U . Then

there exists a point u between x and y such that

f(y)− f(x) ∈ ∂f(u)T (y− x).

Thus we have here a set composed of scalar products of subgradients with

the vector y− x.

Now we will show a connection between f o-pseudomonotonity and f o-

pseudoconvexity.

38



Theorem 4.21. Let f be locally Lipschitz continuous so that f o is pseu-

domonotone. Then f is f o-pseudoconvex.

Proof. Let us, on the contrary, assume that f is not f o-pseudoconvex. Then

there exist x and y ∈ Rn, for which f(y) < f(x) and

f o(x;y− x) ≥ 0. (12)

By the Mean-Value Theorem there exists λ∗ ∈ (0, 1) such that x∗ = x +

λ∗(y− x) and

f(x)− f(y) ∈ ∂f(x∗)T (x− y).

By the de�nition of the Clarke subdi�erential there exists a subgradient ξ∗

such that

0 < f(x)− f(y) = ξ∗T (x− y) ≤ f o(x∗;x− y). (13)

However, by (12) and the positive homogeneity of d 7→ f o(x;d) we get

0 ≥ f o(x∗;x− x∗) = λ∗f o(x∗;x− y) > 0,

which leads to a contradiction. Therefore f is f o-pseudoconvex.

The converse result for the theorem is also true. To prove this we will

need a few lemmas.

Lemma 4.22. Let f be a f o-pseudoconvex function, x, y ∈ Rn and λ∗ ∈
(0, 1). Denote x∗ = λ∗x + (1− λ∗)y. Then f(x∗) ≤ max{f(x), f(y)}.

Proof. On the contrary assume that f(x∗) > max{f(x), f(y)}. Since f is

f o-pseudoconvex and d 7→ f o(x;d) is positively homogeneous, we get

0 > f o(x∗;x− x∗) = f o(x∗; (1− λ∗)(x− y)) = (1− λ∗)f o(x∗;x− y)

and thus

f o(x∗;x− y) < 0.

Correspondingly, we obtain

0 > f o(x∗;y− x∗) = f o(x∗;λ∗(y− x)) = λ∗f o(x∗;y− x)
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and thus

f o(x∗;y− x) < 0.

Since d 7→ f o(x;d) is subadditive, we get

0 > f o(x∗;x−y) + f o(x∗;y−x) ≥ f o(x∗; (x−y) + (y−x)) = f o(x∗;0) = 0,

which is impossible. Therefore f(x∗) ≤ max{f(x), f(y)}.

Let us present the next lemma without the proof.

Lemma 4.23. [4] Let f be a locally Lipschitz continuous function. Let us

choose ε > 0 and a non-zero d ∈ Rn. Let Ωf be a set of points in which f is

not di�erentiable. Then

f o(x;d)− ε ≤ lim sup{∇f(y)Td | y→ x, y /∈ Ωf}.

Lemma 4.24. Let f be a f o-pseudoconvex function. Then there exist no

points x, y ∈ Rn such that

1. f(x) = f(y)

2. f(x;y− x) > 0.

Proof. On the contrary, let us assume that there exist points x, y ∈ Rn and

δ > 0 such that f o(x;y−x) = δ and f(x) = f(y). Since f is locally Lipschitz

continuous, there exist ε, K > 0 such that K is the the Lipschitz constant in

the ball B(x; ε). Since f o(x;y−x) = δ, by the previous lemma there exists a

sequence {zi} of points where f is di�erentiable and I ∈ N such that zi → x

and

f
′
(zi;y− x) = ∇f(zi)T (y− x) >

δ

2
, (14)

when i ≥ I. Let

ε̂ = min

{
ε,

δ

2K

}
and z ∈ B(x; ε̂)∩{(zi)|i ≥ I}. According to Theorem 4.4 f

′
(z; ·) is Lipschitz

continuous with the constant K. Therefore

|f ′(z;y− x)− f ′(z;y− z)| ≤ K‖y− x− (y− z)‖
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= K‖z− x‖ < K
δ

2K
=
δ

2
. (15)

Thus, f
′
(z;y − z) > 0 according to (14) and (15). Since f

′
(z;y − z) > 0,

there exists µ ∈ (0, 1) such that

f(µz + (1− µ)y) > f(z). (16)

Since f o(x;y− x) = δ, part 1 of Theorem 4.4 implies that there exists ε > 0

such that f o(x;d) > 0, when d ∈ B(y− x; ε). Let z ∈ B(y; ε). Since

‖z− x− (y− x)‖ = ‖z− y‖ < ε,

it follows that z − x ∈ B(y − x; ε). Thus, f o(x; z − x) > 0 and the f o-

pseudoconvexity of f implies that f(z) ≥ f(x) = f(y). Thus y is a local

minimum for f and by Theorem 4.7 we have 0 ∈ ∂f(y). Therefore, by

Theorem 4.17 y is also a global minimum. Thus we have f(y) ≤ f(z) and

(16) implies that

f(µz + (1− µ)y) > max{f(z), f(y)},

which is impossible by Lemma 4.22.

Theorem 4.25. The generalized directional derivative of a f o-pseudoconvex

function f is pseudomonotone.

Proof. On the contrary, let us assume that for a f o-pseudoconvex function

there exist x, y ∈ Rn, such that f o(x;y − x) ≥ 0 and f o(y,x − y) > 0.

Then, by the f o-pseudoconvexity we get f(x) ≤ f(y) and f(y) ≤ f(x), or

f(x) = f(y). Thus we have f o(y;x − y) > 0 and f(x) = f(y), which is

impossible by lemma 4.24

4.5 Generalized quasiconvexity

In this section we discuss quasiconvexity. The section is based on source [4].

Let us �rst present the most common de�nition of quasiconvexity.
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De�nition 4.26. Function f : Rn → R is quasiconvex, if for all x, y ∈ Rn

and λ ∈ [0, 1]

f(λx + (1− λ)y) ≤ max{f(x), f(y)}.

An example of a quasiconvex function is x3. Also, an increasing function is

quasiconvex, because for an increasing function f(x) ≤ f(z) ≤ f(y), ∀ x <
z < y. Therefore for an increasing function f(z) ≤ max{f(x), f(y)}. The

same applies for decreasing functions.

When two random points are chosen from the function graph, the graph

cannot rise above the point where the function value is higher between these

points (see �gure 11 for a non-quasiconvex function).

Figure 11: A non-quasiconvex function

A quasiconvex function does not need to be continuous. Lemma 4.22

implies that a f o-pseudoconvex function is also quasiconvex. A quasiconvex

function can also be de�ned geometrically with its level set. It was shown in

Theorem 3.5 that the level set of a convex function is convex. Now we will

show a similar result for quasiconvex functions.

Theorem 4.27. A function f is quasiconvex if and only if the level set Sα

is convex for all α ∈ R.

Proof. Let f be quasiconvex, x, y ∈ Sα, λ ∈ [0, 1] and α ∈ R. Then

f(λx + (1− λ)y) ≤ max{f(x), f(y)} ≤ max{α, α} = α.
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Therefore, λx + (1− λ)y ∈ Sα.
On the other hand, let Sα be a convex set for all α ∈ R. By choosing

β = max{f(x), f(y)}, we have x, y ∈ Sβ. The convexity of Sβ implies that

λx + (1− λ)y ∈ Sβ for all λ ∈ [0, 1]. It follows that

f(λx + (1− λ)y) ≤ β = max{f(x), f(y)}.

Next we will present the generalization of a quasiconvex function.

De�nition 4.28. Function f : Rn → R is f o-quasiconvex, if it is locally

Lipschitz continuous and for every x, y ∈ Rn

f(y) ≤ f(x)⇒ f o(x;y− x) ≤ 0,

or equivalently

f o(x;y− x) > 0⇒ f(y) > f(x).

A quasiconvex function does not need to be continuous. However, a

locally Lipschitz continuous and quasiconvex function can be expressed as

follows.

De�nition 4.29. Function f : Rn → R is l-quasiconvex, if it is locally

Lipschitz continuous and for every x, y ∈ Rn

f(y) < f(x)⇒ f o(x;y− x) ≤ 0.

It follows from the de�nition of a f o-quasiconvex function that a f o-

quasiconvex function is l-quasiconvex.

Theorem 4.30. A locally Lipschitz continuous and quasiconvex function

f : Rn → R is l-quasiconvex.

Proof. Let f be locally Lipschitz continuous and quasiconvex. Let x, z ∈ Rn

be such that f(z) < f(x). Since local Lipschitz continuity implies continuity,

there exists ε > 0 such that f(z + d) < f(x + d),∀ d ∈ B(0, ε). For the

generalized directional derivative f o(x; z− x) we have

f o(x; z− x) = lim
y→x

sup
t→0

f(y + t(z− x))− f(y)

t
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= lim
y→x

sup
t→0

f(y + t(z− x + y− y))− f(y)

t

= lim
y→x

sup
t→0

f((1− t)y + t(z + y− x))− f(y)

t
.

When t ∈ (0, 1) and y− x ∈ B(0, ε), the quasiconvexity of f implies

f((1− t)y + t(z + y− x))− f(y)

t

≤ max{f(y), f(z + y− x)} − f(y− x + x)

t

=
max{0, f(z + y− x)− f(x + y− x)}

t
.

When t→ 0 and y→ x, we get f o(x; z−x) ≤ 0. Thus, f is l-quasiconvex.

Next we will show that an l-quasiconvex function is quasiconvex. First

we need the following lemma.

Lemma 4.31. Let x, y ∈ Rn. Let f be locally Lipschitz continuous in [x,y]

so that f(x) < f(y). Then there exists x∗ = λx + (1 − λ)y, λ ∈ (0, 1), for

which f(x∗) > f(x) and f o(x∗;y− x) > 0.

Proof. Consider the nonempty set A = Sf(x) ∩ [x,y]. Since level sets of

a continuous function are closed sets and [x,y] is compact, the set A is

a compact set. Since the function g(w) = ||w− y|| is continuous, it has

a minimum on the set A. Let z be this minimum point. Then z is the

nearest point to y on the set A and the continuity of f implies f(z) = f(x).

Moreover, f(x) < f(y) implies that z 6= y. By the Mean-Value Theorem

4.20 there exists a point z∗ ∈ (z,y) and a subgradient ξ ∈ ∂f(z∗) for which

f(y)− f(z) = ξT (y− z).

Then f(z) < f(y) implies

0 < f(y)− f(z) = ξT (y− z) ≤ f o(z∗;y− z) ≤ f o(z∗;y− x).

The last inequation follows from the positive homogeneity (Theorem

4.4) of the generalized directional derivative and the inequality ||y− z|| ≤
||y− x||, because f o(z∗;y − x) = λf(z∗;y − z), where λ > 1. The choice

of z implies f(z) < f(z∗), because z∗ ∈ (z,y). By setting x∗ = z∗, we get

f(x) = f(z) < f(x∗).
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Theorem 4.32. If function f : Rn → R is l-quasiconvex, it is quasiconvex.

Proof. On the contrary assume that an l-quasiconvex function f is not qua-

siconvex. Then there exist x,y ∈ Rn and λ ∈ (0, 1) such that f(x) >

max{f(x), f(y)}, where x = λx + (1 − λ)y. Without a loss of general-

ity we may assume that f(x) ≥ f(y). By the previous lemma there exists

x̃ ∈ (x,x), for which

f(x̃) > f(x) and f o(x̃;x− x) > 0.

Denote x̃ = λ̃x + (1− λ̃)y, where λ̃ ∈ (λ, 1). From the de�nitions of points

x and x̃ we get

x− x = (1− λ)(y− x) and y− x̃ = λ̃(y− x).

Thus

x− x =
1− λ
λ̃

(y− x̃)

and

0 < f o(x̃;x− x) =
1− λ
λ̃

f o(x̃;y− x̃).

Therefore 0 < f o(x̃;y − x̃) and f(x̃) > f(x) ≥ f(y), which contradicts the

l-quasiconvexity of f . Hence f is quasiconvex.

It follows from the two previous theorems that a locally Lipschitz contin-

uous function is quasiconvex if and only if it is l-quasiconvex. Moreover, the

l-quasiconvexity implies that a f o-quasiconvex function is quasiconvex.

Quasimonotonity can be de�ned similarly to pseudomonotonity.

De�nition 4.33. The generalized directional derivative f o is called quasi-

monotone, if for all x, y ∈ Rn

f o(x,y− x) > 0⇒ f o(y,x− y) ≤ 0,

or equivalently

min{f o(x,y− x), f o(y,x− y)} ≤ 0.
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Strict quasimonotonity can be de�ned similarly to strict pseudomono-

tonity and it is equivalent to pseudomonotonity.

Theorem 4.34. If f o is quasimonotone, then f is quasiconvex.

Proof. Let us, on the contrary, assume that f is not quasiconvex. Then there

exist x, y ∈ Rn and λ ∈ (0, 1) such that

f(x) > f(x) ≥ f(y),

where x = x+ λ(y− x). Then by the Mean-Value Theorem 4.20 there exist

x̂, x̃ ∈ Rn such that

f(x)− f(y) ∈ ∂f(x̂)T (x− y)

and

f(x)− f(x) ∈ ∂f(x̃)T (x− x),

where

x̂ = x + λ̂(y− x), x̃ = x + λ̃(y− x), 0 < λ̃ < λ < λ̂ < 1.

Therefore, due to the de�nition of the Clarke subdi�erential, there exist

ξ̂ ∈ ∂f(x̂) and ξ̃ ∈ ∂f(x̃) such that

0 < f(x)− f(y) = ξ̂
T

(x− y) ≤ f o(x̂;x− y) = (1− λ)f o(x̂;x− y)

0 < f(x)− f(x) = ξ̃
T

(x− x) ≤ f o(x̃;x− x) = λf o(x̃;y− x)

by the positive homogeneity of d 7→ f o(x;d). It follows that

f o(x̂; x̃− x̂) = (λ̂− λ̃)f o(x̂;x− y) > 0

and

f o(x̃; x̂− x̃) = (λ̂− λ̃)f o(x̃;y− x) > 0,

which contradicts the quasimonotonicity. Thus, f is quasiconvex.

Theorem 4.35. If function f : Rn → R is locally Lipschitz continuous and

quasiconvex then the generalized directional derivative f o is quasimonotone.

46



Proof. On the contrary, assume that f o is not quasimonotone. Then there

exist x, y ∈ Rn such that f o(x;y− x) > 0 and f o(y;x− y) > 0. Let

δ = min{f o(x;y− x), f o(y;x− y)}.

Let ε1 > 0 be such that the local Lipschitz condition holds in the ball B(x; ε1)

with Lipschitz constantK1. Correspondingly, let ε2 > 0 be such that the local

Lipschitz condition holds in the ball B(y; ε2) with the Lipschitz constant K2.

Let K = max{K1, K2} and ε = min{ δ
4K
, ε1, ε2}. According to Lemma 4.23

there exists a sequence {zi1}, such that f is di�erentiable, limi→∞ z
i
1 = x and

an index I ∈ N such that

f
′
(zi1;y− x) = ∇f(zi1)T (y− x) ≥ δ

2
,

when i ≥ I. Similarly, there exists a sequence {zj2}, such that f is di�eren-

tiable, limj→∞ z
j
2 = y and an index J ∈ N such that

f
′
(zj2;x− y) = ∇f(zj2)T (x− y) ≥ δ

2
,

when j ≥ J . Let z1 ∈ B(x; ε)∩ {{zi1} | i ≥ I} and z2 ∈ B(y; ε)∩ {{zj2} | j ≥
J}. Due to symmetry we may assume that f(z1) ≥ f(z2) without a loss of

generality. According to part 1 of Theorem 4.4

|f ′(z1; z2 − z1)− f ′(z1;y− x)| ≤ K ||z2 − z1 − (y− x)||

≤ K ||x− z1||+K ||z2 − y|| < 2K
δ

4K
=
δ

2
.

Since f
′
(z1;y−x) > δ

2
also f

′
(z1; z2−z1) > 0. Thus, there exists λ ∈ (0, 1)

such that

f(z1 + λ(z2 − z1)) > f(z1) ≥ f(z2),

which contradicts the quasiconvexity.

It follows from the previous theorems that a function f is l-quasiconvex

if and only if the generalized directional derivative f o is quasimonotone.

Additionally, if f is f o-quasiconvex, f o is quasimonotone.
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The l-quasiconvexity of an f o-quasiconvex function and Theorem 4.32

imply that it is quasiconvex. Next we will de�ne subdi�erential reqularity

and show that for a subdi�erentially regular function quasiconvexity and

f o-quasiconvexity are equivalent.

De�nition 4.36. A function f : Rn → R is subdi�erentially regular at

a point x ∈ Rn, if f is locally Lipschitz continuous at x and if for ev-

ery directional vector d ∈ Rn the classical directional derivative exists and

f
′
(x;d) = f o(x;d). Every convex or di�erentiable function is subdi�eren-

tially regular.

Theorem 4.37. If f is both quasiconvex and subdi�erentially regular, then

it is f o-quasiconvex.

Proof. Due to the subdi�erential regularity f is locally Lipschitz continu-

ous. Suppose that f(y) ≤ f(x). Then the subdi�erential regularity and

quasiconvexity imply that

f o(x;y− x) = f
′
(x;y− x) = lim

t→0

f(x + t(y− x))− f(x)

t

= lim
t→0

f(ty + (1− t)x)− f(x)

t
≤ lim

t→0

f(x)− f(x)

t
= 0.

Therefore, f is f o-quasiconvex.

It follows from Theorems 4.30, 4.32 and 4.37 that a subdi�erentially regu-

lar l-quasiconvex function is f o-quasiconvex. Additionally, a subdi�erentially

regular function f with a quasimonotone f o is f o-quasiconvex.

The following example shows the importance of subi�erential regularity

in the previous theorem.

Example 4.38. Let us de�ne f : R→ R (see Figure 12) such that

f(x) =


|x|, x ∈ (−∞, 1)

1, x ∈ [1, 2]

x− 1, x ∈ (2, ∞)

.
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Figure 12: A non-subdi�erentially regular function

Function f is clearly locally Lipschitz continuous and quasiconvex. However,

by taking x = 1 and y = 2 we have f o(x; y − x) = f o(1; 1) = 1 > 0, but

f(y) = f(2) = 1 ≤ 1 = f(1) = f(x), and thus f is not f o-quasiconvex.

Note that f is not subdi�erentially regular, since f
′
(1; 1) = 0 6= 1 = f o(1; 1).

Furthermore, f is not f o-pseudoconvex, since 0 ∈ ∂f(1) = [0, 1] although

x = 1 is not a global minimum.

De�nition 4.39. A function f : Rn → R is said to satisfy nonconstancy

property, or NC-property, if there exists no line segment [a,b] along which f

is constant.

De�nition 4.40. A function f : Rn → R is said to satisfy generalized

nonconstancy property, or GNC-property, if there exist no x and ε > 0 such

that f(y) = f(x) ∀ y ∈ B(x; ε).

If f : Rn → R satis�es NC-property it satis�es GNC-property.

Example 4.41. Let us present a function which is subdi�erentially regular

but does not satisfy NC-property. De�ne function g1 as

g1(x) =


(x+ 1)2, x ≤ −1

0, −1 ≤ x ≤ 1

(x− 1)2, x ≥ 1

.
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On the other hand, the function

g2(x) =

2x, x ≤ 0

1
2
x, x ≥ 0

.

possesses the NC-property but is not subdi�erentially regular since go2(0; 1) =

2 6= 1
2

= g
′
2(0; 1).

Theorem 4.42. Let f be an l-quasiconvex function that possesses the GNC-

property. Then it is f o-quasiconvex.

Proof. If f is not f o-quasiconvex then there exist x, y ∈ Rn such that

f o(x;y− y) > 0 but f(x) = f(y).

Suppose that f(x) is the global minimum value of f . By the similar

deductions used in Lemma 4.24 there exist z ∈ Rn and 0 < µ < 1 such that

f(µz + (1− µ)y) > f(z). (17)

Since f(x) = f(y) is the global minimum value we also have f(z) ≥ f(y).

This and (17) contradict with the de�nition of quasiconvexity.

Suppose then that f(x) is not the global minimum value of f . By con-

tinuity of f o as a function of d there exists ε > 0 such that f o(x;d) >

0, ∀ d ∈ B(y − x; ε). Then, by the l-quasiconvexity of f there exists δ > 0

such that f(y) ≥ f(x) = f(y), ∀ y ∈ B(y; δ). Since there exists z such

that f(z) < f(x), the continuity of f implies there exists γ > 0 such that

f(z) < f(x), ∀ z ∈ B(z; γ). Furthermore, there exist w ∈ Rn and r > 0

such that

B(w; r) ⊂ B(y; δ) ∩ conv{{y}, B(z; γ)}. (18)

Since B(w; r) ⊂ B(y; δ), we have f(w) ≥ f(y), ∀ w ∈ B(w; r). By

inclusion (12), for any w ∈ B(w; r) there exist z ∈ B(z; γ) and 0 < λ < 1

such that w = λy + (1 − λ)z. By the quasiconvexity of f we have f(w) ≤
max{f(y), f(z)} = f(y). Hence, f(w) = f(y), ∀ w ∈ B(w; r) contradicting

the generalized NC-property assumption.

It follows that if f o is quasimonotone and f possesses the GNC-property,

then f is f o-quasiconvex.
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Next we show that the relationship between pseudo- and quasiconvexity

is true also for f 0-pseudo- and f 0-quasiconvexity.

Theorem 4.43. An f o-pseudoconvex function is f o-quasiconvex.

Proof. On the contrary, assume that an f o-pseudoconvex function f is not f o-

quasiconvex. Then there exist points x, y ∈ Rn such that f o(x;y − x) > 0

and f(x) = f(y). According to Lemma 4.24 this is impossible for an f o-

pseudoconvex function. Therefore f is f o-quasiconvex.

The following example shows that the result in the theorem cannot be

reversed.

Example 4.44. De�ne f : R → R such that f(x) = x3. Clearly f is

quasiconvex and as a smooth function also subdi�erentially regular. Thus,

by Theorem 4.37 it is f o-quasiconvex. However, by taking x = 0 and y = −1

we have f o(x; y − x) = f o(0;−1) = 0, but f(y) = f(−1) = −1 < 0 = f(0) =

f(x) and thus, by Lemma 4.16, f is not f o-pseudoconvex.

If a quasiconvex function f is continuously di�erentiable and the condition

∇f(x) = 0⇐⇒ x is a global minimum

holds, f is pseudoconvex. A similar result can be shown for generalized

convexities.

Lemma 4.45. Let f be l-quasiconvex and x, y ∈ Rn. If f(y) < f(x) and

0 /∈ ∂f(x), then f o(x,y− x) < 0.

Proof. Suppose that f(y) < f(x) and 0 /∈ ∂f(x). By continuity of f there

exists r > 0 such that f(z) < f(x),∀ z ∈ cl(B(y; r)).

Let ξ ∈ ∂f(x) be arbitrary. Since 0 /∈ ∂f(x), we may de�ne ŷ = y+ ξ
||ξ||r.

The l-quasiconvexity of f and the inequality f(ŷ) < f(x) imply that

f o(x; ŷ− x) ≤ 0. (19)

By the basic properties of the Clarke generalized directional derivative, the

above inequality implies ξT (ŷ− x) ≤ 0. Thus,

ξT (y− x) = ξT (ŷ− ξ

||ξ||
r − x) = −r ||ξ||+ ξT (ŷ− x) ≤ −r ||ξ|| .
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Since 0 /∈ ∂f(x), we have −r ||ξ|| < 0. Thus

f o(x;y− x) = max
ξ∈∂f(x)

ξT (y− x) ≤ max
ξ∈∂f(x)

−r ||ξ|| < 0,

proving the lemma.

Theorem 4.46. If f is l-quasiconvex and 0 ∈ ∂f(x) implies x ∈ Rn is a

global minimum of f , then f is f o-pseudoconvex.

Proof. Let x, y ∈ Rn be such that f(x) > f(y). By assumption 0 /∈ ∂f(x).

Then, Lemma 4.45 implies f o(x;y− x) < 0.

Next we will show a result concerning the subdi�erential of composite

functions, which we will need later.

Theorem 4.47. [18] Let f : Rn → R be such that f = g ◦ H, where

H : Rn → Rm is locally Lipschitz continuous at x and g : Rm → R is locally

Lipschitz continuous at g(x) ∈ R. Then f is locally Lipschitz continuous at

x and

∂f(x) ⊆ conv{∂H(x)T∂g(H(x))}.

Proof. See [18].
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5 Semismooth and well-behaved functions

In this chapter we discuss di�erent kinds of semismooth functions. We will

also de�ne well-behaved functions and show their relation with generalized

convexities.

5.1 Well-behaved functions

In this section we will de�ne a well-behaved generalized directional derivative

function and discuss its relation with di�erent convexities.

De�nition 5.1. [13] A generalized directional derivative f o of function f

is well-behaved if f o(x;d) > 0 implies that there exists t → 0 such that

f(x + td) > f(x).

If f is smooth, then the directional derivative is well-behaved. Also, the

generalized directional derivative for a subi�erentiably regular function is

always well-behaved. Next we will show that for a f o- quasiconvex function

the generalized directional derivative is well-behaved.

Theorem 5.2. The generalized directional derivative for a f o-quasiconvex

function is well-behaved.

Proof. By the de�nition of a f o-quasiconvex function, if f o(x;y−x) > 0, then

f(y) > f(x), ∀ x,y ∈ Rn. We can substitute y = x + td, t > 0, which gives

us the de�nition of a well-behaved generalized directional derivative.

Since an f o-pseudoconvex function is f o-quasiconvex, this result also

holds for f o-pseudoconvex functions.

Next we will show an example of a function whose generalized directional

derivative is well-behaved, but that is not subdi�erentially regular.

Example 5.3. Let us de�ne function f as

f(x) =


|x|, x ∈ (−∞, 1)

1
2
x, x ∈ [1, 2]

x− 1
2
, x ∈ (2, ∞)

.
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Figure 13: A function whose generalized directional derivative is well-behaved

For x = 1 and x = 2, f o(x; 1) = 1 and f is increasing in the direction

d = 1 at both points. However, the function is not subdi�erentially regular,

because f
′
(1; 1) = 1/2 < 1 = f o(1; 1), although it is subdi�erentially regular

at x = 2, because f o(2; 1) = f
′
(2; 1) = 1. The value of f

′
increases in

this cornerpoint. The generalized directional derivative of f is well-behaved,

because f
′
does not change from positive to non-positive in this direction

for any nonsmooth points. Compare with the function from Example 4.38,

where the function is not well-behaved at x = 1.

As stated previously, for a subdi�erentially regular function f o is well-

behaved. According to Theorem 4.37, a subdi�erentially regular quasiconvex

function is f o-quasiconvex. The next theorem will show that this condition

can be relaxed.

Theorem 5.4. Let f : Rn → R be quasiconvex and locally Lipschitz con-

tinuous and let f o be well-behaved. Then f is f o-quasiconvex.

Proof. On the contrary, let us assume that f is not f o-quasiconvex. Then

there exist x and y ∈ Rn such that f o(x,y− x) > 0 and f(x) ≥ f(y). Since

f o is well-behaved, there exists t → 0 such that f(x + td) > f(x), where

d = y−x. Then f(x+t(y−x)) = f((1−t)x+ty) > f(x) = max{f(x), f(y)}.
Therefore, f is not quasiconvex.
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Since the generalized directional derivative of a f o-quasiconvex function is

always well-behaved, it follows that a quasiconvex function is f o-quasiconvex

if and only if its generalized directional derivative is well-behaved. Since an

l-quasiconvex function is quasiconvex, this result applies for l-quasiconvex

functions as well. It also follows that if a quasiconvex function has the GNC-

property, its generalized directional derivative is well-behaved.

5.2 Semismooth functions

Next we will de�ne semismoothness and examine its relations with general-

ized convexities.

De�nition 5.5. [6,9,10] Let F : Rn → Rm be locally Lipschitz continuous

at x. It is semismooth at x if the limit

lim
A∈∂F (x+td

′
), d

′→d, t→0

{Ad′} (20)

exists for all d ∈ Rn. It is weakly semismooth at x if the limit

lim
A∈∂f(x+td), t→0

{Ad} (21)

exists for all d ∈ Rn.

Clearly a semismooth function is also weakly semismooth. An equivalent

de�nition for weak semismoothness is as follows [9]:

Function F : Rn → Rm is weakly semismooth at x if

1. F is locally Lipschitz continuous at x and

2. for each d ∈ Rn and for any sequences {tk} ⊂ R+, {θk} ⊂ Rn and

{Ak} ⊂ Rm×n such that {tk} → 0, {θk/tk} → 0 ∈ Rn and Ak ∈
∂F (x + tkd + θk) the sequence {Akd} has exactly one accumulation

point.

Function F : Rn → Rm is strongly semismooth at x if it is B-di�erentiable

at x and the following limit holds:
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lim
x 6=x→x

||F ′(x;x− x)− F ′(x;x− x)||
||x− x||

= 0.

If the above requirement is strengthened to

lim sup
x 6=x→x

||F ′(x;x− x)− F ′(x;x− x)||
||x− x||2

<∞,

we say that F is strictly semismooth at x.

Next we will show a connection between continuously di�erentiable and

convex functions and semismooth functions, but �rst we will show a necessary

theorem.

Theorem 5.6. [10] Let G : Rn → Rm be continuously di�erentiable in a

neighborhood Ω of x. Then a nondecreasing function δ : (0,∞) → [0,∞)

with

lim
t→0

δ(t) = 0

exists such that

||G(x) + ∂G(x)(z− x)−G(z)|| ≤ ||x− z|| δ(||x− z||)

for all z and x ∈ Ω. Here ∂G(x) is the generalized Jacobian matrix of G

in x (see De�nition 4.9). Furthermore, if ∂G(·) is Lipschitz continuous in

a neighborhood of x, then a subneighborhood Ω
′ ⊆ Ω of x and a positive

constant L
′
exist so that

||G(x) + ∂G(x)(z− x)−G(z)|| ≤ L
′ ||x− z||2

for all z and x in Ω
′
.

Proof. By the Mean-Value Theorem 4.20 for real-valued functions, we can

write, for a given z ∈ Ω and any x ∈ Ω:

G(x) = G(z) +
m∑
i=1

αi(x)∂G(yi(x))(x− z),

where αi(x) and yi(x) are such that

αi(x) ≥ 0 ∀ i,
m∑
i=1

αi(x) = 1, yi(x) ∈ [x, z] ∀ i. (22)
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But then we can write

||G(x) + ∂G(x)(z− x)−G(z)|| =∣∣∣∣∣
∣∣∣∣∣
[

m∑
i=1

αi(x)G(yi(x))− ∂G(x)

]
(x− z)

∣∣∣∣∣
∣∣∣∣∣

≤
m∑
i=1

αi(x)
∣∣∣∣∂G(yi(x))− ∂G(x)

∣∣∣∣ ||x− z|| ,
where in the last inequality we have used the �rst two relations in (22).

Furthermore, by using the last relation in (22) and the continuity of ∂G we

see that, for every i,

lim
x→z

∣∣∣∣∂G(yi(x))− ∂G(x)
∣∣∣∣ = 0.

It is then easy to see that for the �rst assertion of the proposition it su�ces

to take

δ(t) = sup
x,y∈Ω,||x−y||≤t

||∂G(y)− ∂G(x)|| .

By the continuity of ∂G and the boundedness of Ω, δ(t) is clearly �nite and

goes the zero when t tends to zero. If ∂G is locally Lipschitz continuous at

x, with Lipschitz constant L, we can write, by possibly restricting z and x

to a suitable subneighborhood Ω
′ ⊆ Ω,∣∣∣∣∂G(yi(x))− ∂G(x)
∣∣∣∣ ≤ L

∣∣∣∣yi(x)− x
∣∣∣∣ ≤ L ||x− z|| ,

which yields

||G(x) + ∂G(x)(z− x)−G(z)|| ≤ L ||x− z||2

as we have asserted.

Theorem 5.7. [10] Let f : Ω ⊆ Rn → R, with Ω open, and a point x

belonging to Ω be given.

1. If f is continuously di�erentiable in a neighborhood of x, then f is

strongly semismooth at x.
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2. If f is continuously di�erentiable with a Lipschitz continuous gradient

in a neighborhood on x, then f is strictly semismooth at x.

3. If f is convex on a neighborhood of x, then f is strongly semismooth

at x.

The proof for this theorem will be shown after Theorem 5.19.

Next we will show a result for the maximum function of weakly semismooth

functions.

Theorem 5.8. Let fi : Rn → R for i = {1, . . . ,m} be weakly semismooth

at x ∈ Rn. Then g(x) = max{f1(x), . . . , fm(x)} is also weakly semismooth

at x.

Proof. Let us de�ne set J as a subset of I = {1, . . . ,m} which contains at

least two elements of I. First let us assume that x is an element of Rn

such that g(y) = fi(y), ∀y ∈ B(x, δ), i ∈ I. Then g is weakly semismooth

at x due to the weak semismoothness of fi. Then let us assume that x

is an element of Rn such that g(x) = fj(x), ∀j ∈ J . Let Dj be the set of

directional vectors dj for which g(x+tdj) = fj(x+tdj), t→ 0, j ∈ J . Then
limξ∈∂f(x+tdj),t→0 ξ

Tdj exists for all dj ∈ Dj by the weak semismoothness of

fj. This applies for every j ∈ J . Therefore g is weakly semismooth in x.

Next we will show a relation between weak semismoothness and the di-

rectional derivative, but �rst we present the following generalization of the

Mean-Value Theorem 4.20.

Theorem 5.9. [6] Let F : Rn → Rm be Lipschitz continuous on an open set

S in Rn and x,y be two points in S. Then

F (y)− F (x) ∈ conv(∂F ([x,y])(y− x)). (23)

Theorem 5.10. [6] Let F : Rn → Rm be a weakly semismooth function.

Then the directional derivative

F
′
(x;d) = lim

t→0

F (x + td)− F (x)

t
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exists for all d ∈ Rn and

F
′
(x;d) = lim

A∈∂F (x+td), t→0
{Ad}.

Proof. The di�erence quotient F (x+td)−F (x)
t

is bounded due to the local Lips-

chitz continuity of weakly semismooth functions. So, there exists a sequence

ti → 0 and some l ∈ Rm such that

F (x + tid)− F (x)

ti
→ l.

It su�ces to show that l equals the limit in (21). By Theorem 5.9

F (x + tid)− F (x)

ti
∈ conv(∂F ([x,x+tid])d).

By Carathéodory's Theorem 2.21 there exist numbers t
(k)
i ∈ [0, ti], coe�cients

of a convex combination λ
(k)
i and matrices A

(k)
i ∈ ∂F (xi + t

(k)
i d) for k =

1, 2, ...,m+ 1, such that

F (x + tid)− F (x)

ti
=

m+1∑
k=1

λ
(k)
i A

(k)
i d,

m+1∑
k=1

λ
(k)
i = 1.

By passing to a subsequence, if necessary, we can assume that λ
(k)
i → λ(k) as

i→∞. Clearly, λ(k) ∈ [0, 1] and
∑m+1

k=1 λ
(k) = 1. Then

l = lim
i→∞
{
m+1∑
k=1

λ
(k)
i A

(k)
i d} =

m+1∑
k=1

lim
i→∞

λ
(k)
i lim

i→∞
{A(k)

i d}

m+1∑
k=1

λ(k) lim
A∈∂F (x+td), t→0

{Ad} = lim
A∈∂f(x+td), t→0

{Ad}

as required.

The following example shows that semismoothness does not imply f o-

pseudoconvexity.

Example 5.11. Let us consider the function from Example 4.38. The deriva-

tive of the function is f
′
(x) = 0, x ∈ [1, 2], which is also the subgradient ξ of

f on this interval. When x = 1 and d = 1, limξ∈∂f(x+td), t→0 ξd = 0. On the
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other hand, the derivative is f
′
(x) = 1, x ∈ [0, 1]. When x = 1 and d = −1,

limξ∈∂f(x+td), t→0 ξd = −1. The function has limits to ξd for both directions,

so it is weakly semismooth. However, it is not f o-pseudoconvex.

Next we will show that f o-pseudoconvexity does not imply semismooth-

ness.

Example 5.12. Let us present a function

f(x) =

x sin(ln(x)) + x cos(ln(x)) + 5x, x > 0

x2 + x, x ≤ 0
.

Figure 14: A non-weakly semismooth function

The derivative of f is f
′
(x) = 2 cos(ln(x))+5, x > 0. When x approaches

0, ln(x) approaches −∞, which causes 2 cos(ln(x)) to jump at the interval

[−2, 2] and f
′
(x) at the interval [3, 7]. The limit limξ∈∂f(x+td), t→0 ξd does not

approach a solid value, when x = 0 and d = 1, so f is not weakly semismooth.

It is, however, locally Lipschitz continuous and f o-pseudoconvex. It also has

a generalized directional derivative at x = 0, f o(0; 1) = 7.

Because the generalized directional derivative of the function in example

5.12 is well-behaved, but the function is not weakly semismooth, a well-

behaved generalized directional derivative does not imply weak semismooth-

ness. On the other hand, since the function in Example 4.38 is semismooth,

but its generalized directional derivative is not well-behaved, semismoothness

does not imply a well-behaved generalized directional derivative either.

Next we will show that the result from Theorem 5.10 can be reversed.
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Theorem 5.13. If a locally Lipschitz continuous function F : Rn → Rm is

directionally di�erentiable at x, it is weakly semismooth at x.

Proof. The result follows from the proof of Theorem 5.10, because if F ′(x,d)

exists for every d ∈ Rn in x, then it can be written as limA∈∂F (x+td), t→0{Ad}.

It follows that B-di�erentiability is equivalent with weak semismoothness,

since a function is weakly semismooth if and only if it is locally Lipschitz

continuous and directionally di�erentiable. It also follows that a strongly

semismooth function is also weakly semismooth, since it is required to be

B-di�erentiable. Moreover, the results in Theorem 5.7 also hold for weakly

semismooth functions.

Next we show an example of function that is weakly semismooth but not

semismooth.

Example 5.14. Let us consider the function in the following picture.

Figure 15: Apple function

The function is
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(z + 1)2 = 3.25− (x− 1.1)2 − (y + 1)2, x ≥ 0, z ≥ 0

(z + 1)2 = 3.25− (x+ 1.1)2 − (y + 1)2, x ≤ 0, z ≥ 0

inside the apple-shaped area(x− 1.1)2 + (y + 1)2 ≤ 2.25, x ≥ 0

(x+ 1.1)2 + (y + 1)2 ≤ 2.25, x ≤ 0

Figure 16: Apple function

and f(x, y) = 0 outside. The function is locally Lipschitz continuous and di-

rectionally di�erentiable, and therefore weakly semismooth. The generalized

directional derivative in the origo is 0, when d = (0, 1), and not 0, otherwise.

Therefore, when the directional derivative d approaches (0, 1) in the origo,

the limit at (20) does not exist. Therefore, the function is not semismooth.

Next we will show that subdi�erential regularity and NC-property cannot

be substituted with semismoothness.

Example 5.15. The function in Example 4.38 is quasiconvex and locally

Lipschitz continuous, so it is also l-quasiconvex. The function is not subd-
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i�erentially regular nor does satisfy NC-property, but it is semismooth. It

was shown in the example that the function is not f o-quasiconvex. There-

fore subdi�erential regularity and NC-property cannot be substituted with

semismoothness in Theorem 4.37 and Theorem 4.42.

In Theorem 5.19 we will prove a result concerning the semismoothness of

composite functions. For this we will need the following results.

Theorem 5.16. [10] Let D and D′ be open sets in Rn and Rm respectively.

Let Φ : D → Rm and Ψ : D
′ → Rp be B-di�erentiable at x ∈ D and

Φ(x) ∈ D′ respectively. Suppose that Φ(D) ⊆ D
′
. The following statements

hold:

1. The composite map Γ = Ψ ◦ Φ : D → Rp is B-di�erentiable at x,

moreover

Γ
′
(x;d) = Ψ

′
(Φ(x); Φ

′
(x;d)), ∀d ∈ Rn.

2. If Ψ is strongly F-di�erentiable at Φ(x) and Φ has a strong B-derivative

at x, then Γ has a strong B-derivative at x.

Proof. We only prove the second part, since the following proof is applicable

to the �rst part with a minor modi�cation. It su�ces to show that (11)

holds:

lim
y1 6=y2, (y1,y2)→(x,x)

eΓ(y1)− eΓ(y2)

||y1 − y2||
= 0 (24)

where

eΓ(y) ≡ Ψ(Φ(y))−Ψ(Φ(x))−Ψ
′
(Φ(x); Φ

′
(x;y− x)).

Since Ψ is F-di�erentiable at v = Φ(x), thus Ψ
′
(v; ·) is linear in the second

argument, we have, for i = 1, 2,

eΓ(yi) = eΨ(Φ(yi)) + ∂Ψ(Φ(x))eΦ(yi)

where

eΨ(u) = Ψ(u)−Ψ(v)− ∂Ψ(v)(u− v), ∀u ∈ Rm

and

eΦ(y) = Φ(y)− Φ(x)− ∂Ψ(x)(y− x), ∀y ∈ Rn
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Since Ψ has a strong F-derivative at v, we have

lim
u1 6=u2, (u1,u2)→(v,v)

eψ(u1)− eΨ(u2)

||u1 − u2||
= 0;

hence

lim
y1 6=y2, (y1,y2)→(x,x)

eΨ(Φ(y1))− eΨ(Φ(y2))

||y1 − y2||
−

lim
y1 6=y2, (y1,y2)→(x,x)

eΨ(Φ(y1))− eΨ(Φ(y2))

||Φ(y1)− Φ(y2)||
· ||Φ(y1)− Φ(y2)||

||y1 − y2||
= 0,

where the last equality holds because Φ is locally Lipschitz continuous at x,

because it is B-di�erentiable at x. Similarly, since Φ has a strong B-derivative

at x, we have

lim
y1 6=y2, (y1,y2)→(x,x)

eΦ(y1)− eΦ(y2)

||y1 − y2||
= 0;

Combining the last two expressions gives us the desired result (24).

It is important to note that in the second part of the theorem, the order

of composition is important; more precisely, if Ψ has a strong B-derivative

at Φ(x) and Φ has a strong F-derivative at x the composite map Ψ ◦ Φ

does not necessarily have a strong B-derivative at x [10]. It also follows

from the theorem that the composite of two weakly semismooth functions is

weakly semismooth, since weak semismoothness and B-di�erentiability are

equivalent.

Theorem 5.17. [10] Let a function G : Ω ⊆ Rn → Rm, with Ω open, be

B-di�erentiable at a point x in Ω. For every vector d ∈ Rn, there exists

H ∈ ∂G(x) such that G
′
(x;d) = Hd.

Proof. Let {τk} be an arbitrary sequence of positive scalars converging to

zero. For every k, we can write

G(x + τkd)−G(x) =
m∑
i=1

τkαi,kH
k
i d (25)
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for some scalars αi,k satisfying

m∑
i=1

αi,k = 1, αi,k ≥ 0

and some matrices Hk
i ∈ ∂G(x+ τ

′

i,kd), where τ
′

i,k ∈ (0, τk). By [10, Proposi-

tion 7.1.4], the sequence {Hk
i } is bounded for every i = 1, ...,m. Without loss

of generality, we may assume that each sequence {Hk
i } converges to a limiting

matrix {H∞i }, which must belong to ∂G(·), by the closedness of the Clarke

generalized Jacobian [Theorem 4.10, part 2] and by [10, Proposition 7.1.4].

We may further assume that each sequence {αi,k} of scalars, for i = 1, ...,m,

converges to a nonnegative scalar {αi,∞}. Clearly, we have

m∑
i=1

αi,∞ = 1.

Thus, dividing (25) by τk and letting k →∞, we deduce

G
′
(x;d) =

m∑
i=1

αi,∞H
∞
i

belongs to ∂G(x), by the convexity of the generalized Jacobian [Theorem

4.10, part 2].

Theorem 5.18. [10] LetG : Ω ⊆ Rn → Rm, with Ω open, be B-di�erentiable

in x ∈ Ω. The following three statements are equivalent:

1. G is strongly semismooth at x;

2. the following limit holds:

lim
x 6=x→x,H∈∂G(x)

G
′
(x;x− x)−H(x− x)

||x− x||
= 0; (26)

3. the following limit holds:

lim
x6=x→x,H∈∂G(x)

G(x) +H(x− x)−G(x)

||x− x||
= 0. (27)
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In addition, if G is strictly semismooth at x, then

lim sup
x6=x→x

G(x)−G(x)−G′(x;x− x)

||x− x||2
<∞ (28)

lim
x 6=x→x,H∈∂G(x)

G(x) +H(x− x)−G(x)

||x− x||2
<∞ (29)

Proof. 1)⇒ 2). Suppose that G is strongly semismooth at x. Then the limit

(26) is clearly equivalent to

lim
06=d→0,H∈∂G(x+d)

G
′
(x;d)−Hd
||d||

= 0.

By Caratheodory's Theorem [Theorem 2.23] applied to the convex compact

set ∂G(x + d), it follows that for every d ∈ Rn and every element H ∈
∂G(x+d), there exist scalars αi for i = 1, ...,m+ 1 and sequences of vectors

{di,k} such that
m+1∑
i=1

αi = 1, αi ≥ 0

lim
k→∞

di,k = d, ∀i = 1, ...,m+ 1,

function G is F-di�erentiable at x + di,k, and

H =
m+1∑
i=1

αi lim
k→∞

∂G(x + di,k).

Thus we have

G
′
(x;d)−Hd

=
m+1∑
i=1

αi lim
k→∞

[(G
′
(x;di,k)−G′(x + di,k;d)]

=
m+1∑
i=1

αi lim
k→∞

[(G
′
(x;di,k)−G′(x + di,k;di,k)+

G
′
(x + di,k;di,k)−G′(x + di,k;d)].

By the strong semismoothness of G at x, it follows that for every ε > 0, there

exists δ > 0 such that for every vector d
′
satisfying ||d′ || ≤ δ,

||G′(x;d
′
)−G′(x + d

′
;d
′
)|| < ε||d′ ||.
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Moreover, by the local Lipschitz continuity of G at x, it follows that there

exists a neighborhood N of x and a constant K > 0 such that for all vectors

y ∈ N and u and v ∈ Rn,

||G′(y;u)−G′(y;v)|| ≤ K ||u− v|| .

Thus

lim
y→x, ||u−v||→0

(G
′
(y;u)−G′(y;v)) = 0.

Consequently, we deduce that for all d with ||d|| su�ciently small,∣∣∣∣∣∣G′(x;d)−Hd
∣∣∣∣∣∣ ≤ ε ||d|| .

Hence (26) holds.

2) ⇔ 3). By the B-di�erentiability of G at x, we have [10, Proposition

3.1.3]

lim
x 6=x→x

G(x)−G(x)−G′(x;x− x)

||x||
= 0.

This limit clearly shows that (26) and (27) are equivalent.

2)⇒ 1). By Theorem 5.17, for every x su�ciently close to x, there exists

H ∈ ∂G(x) such that G
′
(x;x − x) = H(x − x). Thus 1) follows from 2)

readily.

Assume now that G is strictly semismooth at x. For any given vector d,

let Γ(t) = G(x + td). It is clear that Γ is locally Lipschitz continuous, and

hence di�erentiable almost everywhere on [0, 1]. Therefore, for all d with

||d|| su�ciently small, we can write

G(x + d)−G(x) = Γ(1)− Γ(0) =

∫ 1

0

Γ
′
(t)dt

=

∫ 1

0

G
′
(x + td;d)dt

=

∫ 1

0

[G
′
(x;d) + to(||d||2)]dt

= G
′
(x;d) + o(||d||2),

where the fourth equality follows from the de�nition of strict semismoothness.

By taking d = x− x, this chain of equalities establishes (28). Finally, using
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(28) and following the above proof of the equivalence of statements 1), 2)

and 3), we can easily establish (29).

An important way to obtain strictly semismooth functions is through

composition. The next theorem makes this statement precise. This theorem

implies in particular that the sum and di�erence of two strongly or strictly

semismooth functions are strongly or strictly semismooth.

Theorem 5.19. [10] Let a function F : ΩF ⊆ Rn → Rm, with ΩF open,

a point x belonging to ΩF , and a function g : Ωg ⊆ Rm → R, with Ωg

being a neighborhood of F (x), be given. If F and g are strongly or strictly

semismooth at x and F (x) respectively, then the composite function g ◦F is

strongly or strictly semismooth at x.

Proof. We only consider the strongly semismooth case; the strictly semis-

mooth case can be proven in a similar way. Since g is assumed to be a

real-valued function, elements in ∂(g ◦ F )(x) are column vectors. By Theo-

rem 5.16 we know that g ◦ F is B-di�erentiable and that

(g ◦ F )
′
(x;x− x) = g

′
(F (x);F (x− x)). (30)

We need to show

lim
x 6=x→x,ξ∈∂(g◦F )(x)

(g ◦ F )
′
(x;x− x)− ξT (x− x)

||x− x||
= 0.

By Theorem 4.46 we can write, for every x su�ciently close to x:

∂(g ◦ F )(x) ⊆ conv S(x),

where S(x) = ∂F (x)T∂g(F (x)). Therefore we get

max
ξ∈∂(g◦F )(x)

∣∣∣∣∣∣ξT (x− x)− F ′(x;x− x)
∣∣∣∣∣∣

≤ max
ξ∈convS(x)

∣∣∣∣∣∣ξT (x− x)− F ′(x;x− x)
∣∣∣∣∣∣ , (31)
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where we can write the maximum in the above formula because both the sets

∂(g◦F )(x) and S(x) are nonempty and compact [Theorem 4.10, part 2]. Let

us denote by r : Rn → [0,∞) the function

r(ξ) =
∣∣∣∣∣∣ξT (x− x)− ∂(g ◦ F )

′
(x;x− x)

∣∣∣∣∣∣ .
Obviously, r is a convex function on Rn; thus the maximum of r(ξ) over

convS(x) is attained at a point ξ in S(x). Let then ξ be a point in S(x)

where r achieves the maximum. By the de�nition of S(x) we can �nd a V

in ∂F (x) and a ς in ∂g(F (x)) such that ξ = V ς. Therefore, writing

d = x− x and Fd = f(x)− F (x),

we have, for every x su�ciently close to x,

max
ξ∈∂(g◦F )(x)

∣∣∣∣∣∣ξTd− (g ◦ F )
′
(x;d)

∣∣∣∣∣∣
≤
∣∣∣∣∣∣ξTd− (g ◦ F )

′
(x;d)

∣∣∣∣∣∣ , by (31)

=
∣∣∣∣∣∣ςTV Td− g′(F (x);F

′
(x;d))

∣∣∣∣∣∣ , by (30)

≤
∣∣∣∣∣∣ςTV Td− g′(F (x);Fd)

∣∣∣∣∣∣+ o(||d||), by (26) and the Lip.continuity of g
′
(F (x); ·)

≤
∣∣∣∣∣∣ςTV Fd − g′(F (x);Fd)

∣∣∣∣∣∣+ o(||d||), by (27)

≤ max
ξ∂g(F (x))

∣∣∣∣∣∣ξTV Fd − g′(F (x);Fd)
∣∣∣∣∣∣

+ o(||d||), because ς ∈ ∂g(F (x))

≤ o(||Fd||) + o(||d||), by the strong semismoothness of g

= o(||d||), by the Lip. continuity of F.

This chain of inequalities obviously completes the proof.

By the de�nition of semismoothness, it is easy to check that a vector

valued function is strongly or strictly semismooth if and only if each of its

component functions are strongly or strictly semismooth. Thus Theorem 5.19
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implies that the composition of two strongly semismooth vector functions is

strongly semismooth.

Let us �nally show the proof for Theorem 5.7.

Proof. If f is continuously di�erentiable in an open neighborhood on x, then

∂f(x) = {∇f(x)} in the same neighborhood. With this observation, the

strong semismoothness of f follows from Theorems 5.6 and 5.18; so does the

strict semismoothness if ∇f is Lipschitz continuous near x.

To prove 3), we have to check that for every sequence {xk} converging
to x and every sequence {ξk}, with xk 6= x and ξk ∈ ∂f(xk) for every k, we

have

lim
k→∞

f
′
(x;dk) = lim

k→∞
(ξk)Tdk, (32)

where

dk =
xk − x
||xk − x||

.

Without loss of generality, we may assume that

lim
k→∞

dk = d and lim
k→∞

ξk = ξ ∈ ∂f(x).

Since the left-hand limit and right-hand limit in (32) are equal to f
′
(x;d)

and ξ
T
d, respectively, it remains to show that

ξ
T
d = f

′
(x;d).

Since f is convex and ξk is a subgradient (in the sense of classical convex

analysis (De�nition 3.16)) of f at xk, we have

f(x)− f(xk) ≥ (ξk)T (x− xk);

dividing by
∣∣∣∣xk − x∣∣∣∣ and letting k →∞, we deduce

ξ
T
d ≥ f

′
(x;d).

But since ξ ∈ ∂f(x), we also have

f
′
(x;d) ≥ ξTd.

Thus equality holds.
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5.3 Weakly upper semismooth functions

Now we will de�ne the class of weakly upper semismooth functions and dis-

cuss its relation to semismooth functions.

De�nition 5.20. [14] Function f : Rn → R is weakly upper semismooth at

x ∈ Rn if it is Lipschitz continuous in B(x; δ), δ > 0 and for each d ∈ Rn

and for any sequences {tk} ⊂ R+ and ξk ⊂ Rn such that {tk} → 0 and

ξk ∈ ∂f(x + tkd) it follows that

lim inf
k→∞

ξTkd ≥ lim sup
t→0

[f(x + td)− f(x)]/t.

Next we will show a relation between weakly semismooth functions and

the directional derivative.

Theorem 5.21. [14] If f if weakly upper semismooth at x, then for each

d ∈ Rn, f
′
(x;d) exists and there exist sequences {τk} ⊂ R+ and {ξk} ⊂ Rn

such that {τk} → 0, ξk ∈ ∂f(x + τkd) and

lim
k→∞

ξTkd = f
′
(x;d).

Proof. Suppose {τk} → 0 is a sequence such that

lim
k→∞

[f(x + τkd)− f(x)]/τk = lim inf
t→0

[f(x + td)− f(x)]/t.

By the Mean-value theorem there exists tk ∈ (0, τk) and ξk ∈ ∂f(x + tkd)

such that

f(x + τkd)− f(x) = tkξ
T
kd.

Then, by the de�nition of weakly upper semismooth functions, since {tk} →
0, we have

lim
k→∞

[f(x + τk + d)− f(x)]/τk = lim
k→∞

ξTkd ≥ lim sup
t→0

[f(x + td)− f(x)]/t.

So,

lim inf
t→0

[f(x + td)− f(x)]/t = lim
k→∞

ξTkd ≥ lim sup
t→0

[f(x + td)− f(x)]/t,

and the desired result follow immediately.
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It follows from the above thorems and de�nitions that if f is weakly

semismooth, then f and −f are weakly upper semismooth.

Let us show an example of a function that is weakly upper semismooth

but not weakly semismooth.

Example 5.22. [14] Let us de�ne function f

f(x) = x2, x ≤ 0 or x ≥ 1,

and for each integer n = 1, 2, ...

f(x) =

(1 + 1
n
)(x− 1

n+1
), 1

n
[1− ( 1

n+1
)2] ≤ x ≤ 1

n

1
n
[1− ( 1

n+1
)2], 1

n+1
≤ x ≤ 1

n
[1− ( 1

n+1
)2].

It can be veri�ed that f
′
(0; 1) = 0 and ∂f(0) = conv{0, 1} is the set of

possible accumulation points of {ξk} where ξk ∈ ∂f(xk) and {xk} → 0.

Next we will de�ne the class of upper semidi�erentiable functions, which

is closely related to the class of weakly upper semismooth functions.

De�nition 5.23. [15] A locally Lipschitz continuous function f is upper

semidi�erentiable, if for all d and for all sequences

{θi} ⊂ R+, {ξi} ⊂ Rn, θi → 0, ξi ∈ ∂f(x + θid),

there exists K ⊂ N such that

lim
k→∞, k∈K

{[f(x + θkd)− f(x)]/θk − ξTkd} ≤ 0.

Next we will analyze the relationship between the two classes of functions.

Theorem 5.24. [15] If f is weakly upper semismooth at x, then for each

d ∈ Rn, f
′
(x;d) exists and there are sequences

{tk} ⊂ R+, {ξk} ⊂ Rn,

such that

tk → 0, ξk ∈ ∂f(x + tkd),

and

lim
k→∞

ξTkd = f
′
(x;d).
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Proof. See [14].

Theorem 5.25. [15] Let f(x) be a locally Lipschitz continuous function.

Denote

∂εηf(x) = conv

 ⋃
||y−x||≤ε

{∂f(y) + η∂(|| − x||)(y)}

 .

For all ε ≥ 0, η ≥ 0, we have that ∂εηf(x) is a nonempty, convex and compact

set of Rn.

Proof. See [15].

Theorem 5.26. [15] If f is weakly upper semismooth at x, then f is upper

semidi�erentiable at x.

Proof. Let d be any vector of Rn. Let {θi} ⊂ R+, with θi → 0, and ξi ∈
∂f(x + θid). Since

lim
i→∞

(x + θid) = x,

the sequence {x+ θid}i∈N belongs to some compact set of Rn, and, by The-

orem 5.25, we can �nd a set K ⊆ N , with

lim
k→∞,k∈K

ξTkd = lim inf
k→∞

ξTkd = α ∈ R.

By Theorem 5.24, f
′
(x;d) exists, hence,

lim
k→∞,k∈K

{[f(x + θkd)− f(x)]/θk} = f
′
(x;d).

Since f is weakly upper semismooth at x, we obtain

f
′
(x;d) ≤ α,

hence,

lim
k→∞,k∈K

{[f(x + θkd)− f(x)]/θk − ξTkd} ≤ 0,

which proves that f is upper semidi�erentiable at x.

The next example shows that the class of upper semidi�erentiable func-

tions contains strictly the class of weakly upper semismooth functions.
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Example 5.27. [15] Let

f(t) =


t sin[log(log(1/t)), 0 < t ≤ 1/2,

(1/2) sin[log(log 2)], 1/2 < t,

0, t ≤ 0.

This function is locally Lipschitz continuous at R. It cannot be weakly upper

semismooth at 0, because f
′
(0; 1) does not exist. Nevertheless, this function

is upper semidi�erentiable at 0. Indeed, let d = 1 (the case d = −1 is

obvious). If 0 < t < 1/2, we have

∂f(0+t1) = {∇f(t)} = {sin[log(log(1/t))]−cos[log(log(1/t))]×[1/ log(1/t)]}.

Hence, we have

lim
k→∞
{[f(0 + tk1)− f(0)]/tk− < gk, 1 >}

= lim
tk→0
{sin[log(log(1/tk))]}

−{sin[log(log(1/tk))]− cos[log(log(1/tk))][1/ log(1/tk)]}

lim
t→0
{cos[log(log(1/tk))][1/ log(1/tk)]} = 0.

The nonexistence of f
′
(0, 1) is the key point of this example, as we shall see

in the following theorem.

Theorem 5.28. [15] If f ′(x;d) exists for all d ∈ Rn, and if f is upper

semidi�erentiable at x, then f is weakly upper semismooth at x.

Proof. Let

d ∈ Rn, {tk} ∈ R+, {ξk} ⊂ Rn,

such that

ξk ∈ ∂f(x + tkd) and tk → 0.

Let K
′ ⊆ N be a set such that

lim
k→∞, k∈K′

ξTkd = lim inf
k→∞

ξTkd = α ∈ R.
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Since f is upper semidi�erentiable at x, there is a set K
′′ ⊂ K

′
such that

lim
k→∞, k∈K′′

{[f(x + tkd)− f(x)]/tk − ξTkd} ≤ 0. (33)

Both limits

lim
k→∞, k∈K′′

{[f(x + tkd)− f(x)]/tk} and lim
k→∞, k∈K′′

ξTkd

exist and are equal to f
′
(x;d) and α, respectively. So, by (33), we have

f
′
(x;d) ≤ α and lim inf

k→∞
ξTkd ≥ f

′
(x;d);

hence, f is weakly upper semismooth at x.

6 Summary

This thesis starts with a discussion on convex sets and functions. First we

de�ne a convex set. Then we de�ne a convex and strictly convex function.

Convex functions and convex sets are linked with each other through the

function epigraph. Quasi- and pseudoconvex functions are generalizations of

a convex function. The minimum of a smooth convex function is found on

a point where the function gradient is zero. The minimum of a nonsmooth

function is found on a point where zero is one of the function subgradients.

The thesis continues with discussion on di�erentials of nonsmooth func-

tions, which are not continuous. Clarke's generalized directional derivative

is de�ned on their points of non-continuity, with which Clarke's subdi�er-

ential is de�ned. Then we discuss generalized pseudo- and quasiconvexity

and l-quasiconvexity. We also de�ne pseudo- and quasimonotonity for the

generalized directional derivative.

The thesis ends with de�ning semismooth and weakly semismooth func-

tions and through examples discussing the relations between semismoothness

and the di�erent kinds of convexities. Semismoothness and the directional

derivative are related, because for a semismooth function at a point x the di-

rectional derivative exists for all directions at that point. We show that the
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maximum function of semismooth functions is semismooth. We also show

that the composite function of semismooth functions is semismooth.

We de�ne well-behaved generalized directional derivatives and show that

a quasiconvex function is f o-quasiconvex if and only if its generalized direc-

tional derivative is well-behaved.

Finally we de�ne weakly upper semismooth and upper semidi�erentiable

functions and show their relation to weakly semismooth functions.

The purpose of this thesis was to �gure out the relations between di�er-

ent convexities and other assumptions, like weak semismoothness and subd-

i�erential regularity. If some assumptions followed from others, they would

overlap and it would not be necessary to make them all. In [11, Theorem

3.18] it was assumed that one of the functions was subdi�erentially reqular,

f o-quasiconvex and increasing. Since an increasing function is quasiconvex,

it follows from subdi�erential reqularity that the function is f o-quasiconvex.

Therefore the assumption of f o-quasiconvexity is unnecessary. In addition,

in [11, Theorem 3.17] it was assumed that the scaled improvement function

H(x,y) = max{µi(fi(x)) − µi(fi(y)), δl(gl(x)), : i ∈ I, l ∈ L} is weakly
semismooth. It was also assumed that the functions µi and δl are subdif-

ferentially regular and therefore weakly semismooth. If we assume that the

functions fi and gl are weakly semismooth, the weak semismoothness of H

follows from theorems 5.8 and 5.16.

The thesis introduced some completely new results, which shall be listed

here: Theorem 5.2, Theorem 5.4, Theorem 5.8 and Theorem 5.13

Let us show a graph which summarizes the relations between di�erent

convexities and semismoothness.
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Figure 17: Relations between di�erent convexities and semismoothness
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