

Software Process Modeling with
Eclipse Process Framework and SPEM 2.0

Henrik Terävä

hemite@utu.fi, 55954

Master’s Thesis
October 3rd, 2007

Supervisors

Tuomas Mäkilä, University of Turku
Juha Jääskinen, SYSOPENDIGIA

UNIVERSITY OF TURKU

DEPARTMENT OF INFORMATION TECHNOLOGY

FI-20014 TURKU

FINLAND

UNIVERSITY OF TURKU
Department of Information Technology

TERÄVÄ, HENRIK: Software Process Modeling with Eclipse

Process Framework and SPEM 2.0

Master’s Thesis, 94 pages
Software Engineering
October 2007

The software development industry is constantly evolving. The rise of the agile
methodologies in the late 1990s, and new development tools and technologies require
growing attention for everybody working within this industry. The organizations have,
however, had a mixture of various processes and different process languages since a
standard software development process language has not been available.

A promising process meta-model called Software & Systems Process Engineering Meta-
Model (SPEM) 2.0 has been released recently. This is applied by tools such as Eclipse
Process Framework Composer, which is designed for implementing and maintaining
processes and method content. Its aim is to support a broad variety of project types and
development styles.

This thesis presents the concepts of software processes, models, traditional and agile
approaches, method engineering, and software process improvement. Some of the most
well-known methodologies (RUP, OpenUP, OpenMethod, XP and Scrum) are also
introduced with a comparison provided between them. The main focus is on the Eclipse
Process Framework and SPEM 2.0, their capabilities, usage and modeling.

As a proof of concept, I present a case study of modeling OpenMethod with EPF
Composer and SPEM 2.0. The results show that the new meta-model and tool have made it
possible to easily manage method content, publish versions with customized content, and
connect project tools (such as MS Project) with the process content. The software process
modeling also acts as a process improvement activity.

Keywords: Software Process Modeling, Software Processes, Method Engineering,
Software Process Improvement, Methodologies, RUP, SPEM, Eclipse Process Framework

TURUN YLIOPISTO
Informaatioteknologian laitos

TERÄVÄ, HENRIK: Ohjelmistoprosessin mallinnus Eclipse Process Frameworkilla

ja SPEM 2.0 metamallilla

Diplomityö, 94 sivua
Ohjelmistotekniikka
Lokakuu 2007

Ohjelmistot ja ohjelmistoteollisuus kehittyvät jatkuvasti. Ketterien menetelmien tulo 1990-
luvun loppupuolella, uudet kehitystyökalut ja teknologiat vaativat yhä enemmän huomiota
alalla työskenteleviltä ihmisiltä. Organisaatioilla on kuitenkin ollut sekalainen kirjo
prosesseja ja erilaisia prosessikuvauskieliä, koska standardia kuvauskieltä ei ole ollut
saatavilla.

Prosessimetamalli SPEM 2.0 julkaistiin hiljattain. Tätä mallia hyödyntää mm. Eclipse
Process Framework Composer (EPFC) –työkalu, joka on suunniteltu prosessien ja mene-
telmäsisällön kehittämiseen ja ylläpitoon. Työkalun tavoitteena on tukea useita erilaisia
projektityyppejä ja kehitystyylejä.

Tässä työssä esitellään seuraavat aiheet ja käsitteet: ohjelmistoprosessit, mallit, perinteiset
ja ketterät lähestymistavat, metoditekniikkaa sekä prosessien kehittäminen. Lisäksi
tutustutaan muutamiin tunnetuimmista metodologioista (RUP, OpenUP, OpenMethod, XP
ja Scrum) ja vertaillaan näitä. Työssä tutkitaan tarkemmin Eclipse Process Framework
Composer –työkalua, SPEM 2.0 metamallia, näiden ominaisuuksia, käyttöä sekä
mallintamista.

Esitän tutkimustulokset ja tutkimuksenkulun OpenMethodin mallintamisesta EPFC –
työkalulla sekä SPEM 2.0 -metamallilla. Tulokset osoittavat, että uusi metamalli ja työkalu
helpottavat prosessin ja menetelmäsisällön hallintaa, mahdollistavat räätälöityjen
julkaisujen teon sisällöstä, sekä yhdistävät prosessin projektityökaluihin kuten MS
Projectiin. Mallinnus voidaan lisäksi ymmärtää osana prosessin kehittämistä.

Avainsanat: Ohjelmistoprosessin mallinnus, ohjelmistoprosessit, metodikehitys, ohjel-
mistoprosessien parantaminen, metodologiat, SPEM, Eclipse Process Framework

List of Figures

Figure 2.1.1 – The role of the software process [Elv06] ...4
Figure 2.1.2 – Two conceptual models of processes: A specific process and a generalized
 one with serial and parallel activities [Joh04] ...5
Figure 2.1.3 – The relationships between Role, WorkProduct and Task [SPEM2.0]7
Figure 2.2.1 – The V Model [Gra02]...9
Figure 3.1.1 – The method engineering process [Elv06]...16
Figure 3.3.1 – The IDEAL model – a traditional SPI cycle with five phases [SEI07]........20
Figure 3.3.2 – Productivity vs. time in process improvement [Wie05]...............................21
Figure 3.3.3.1 – Relationships in Process Assessment [SPICE] ...24
Figure 3.3.3.2 – The framework for process assessment [Ele98]..25
Figure 4.1.1 – The Rational Unified Process – Phases and Disciplines [San07]28
Figure 4.4.1 – A general overview of a typical XP process [Ram06]34
Figure 4.5.1 – The Scrum process [Ram06] ..36
Figure 4.6.1 – A comparison of methodologies in flexibility and iterativity [Hai07].........37
Figure 5.1.1 – Process modeling layers [Jär05, Kos99, SPEM 2.0]....................................42
Figure 5.1.2 – Structure of the SPEM 2.0 Meta-Model [SPEM2.0]....................................43
Figure 6.3.1 – EPF with Wiki technology [Kro07b] ...54
Figure 7.1.1 – Modeling approach modeled with EPF Composer 1.2 [Mäk07]..................61
Figure 8.2.1 – Working hours spent on thesis (2007)..70
Figure 8.3.1 – The original OpenMethod opening page (in Finnish)71
Figure 8.3.2 – OpenMethod opening page modeled with EPF Composer (Finnish)...........71
Figure 8.3.3 – A part of the EPFC library view for the OpenMethod content72
Figure 8.3.4 – EPFC library view of the Standard and Custom Categories73
Figure 8.3.5 – EPFC library view of the Processes and Configurations74

List of Tables

Table 2.4.1 – A comparison of traditional and agile development [Ner05]12
Table 4.6.1 – A comparison of methodologies [Abr02, SD07, Ram06, Lar03, Ter06]39
Table 5.1.3 – Some essential SPEM 2.0 icons with short explanations44

Acronyms and Abbreviations

BPEL Business Process Execution Language
BUP Basic Unified Process
CASE Computer Aided Software Engineering
CAME Computer Aided Method Engineering
CMMI Capability Maturity Model Integration
CVS Concurrent Versions System
DSDM Dynamic Systems Development Method
EPF Eclipse Process Framework
EPFC Eclipse Process Framework Composer
IEEE Institute of Electrical and Electronics Engineers
ISO International Organization for Standardization
ISM Issue Management System
ITIL Information Technology Infrastructure Library
KM Knowledge Management
MDA Model Driven Architecture
MDE Model Driven Engineering
ME Method Engineering
MSF Microsoft Solutions Framework
NLS Native Language Support
OMG Object Management Group
OPENUP Open Unified Process
OPF Open Process Framework
PMBOK Project Management Body of Knowledge
RMC Rational Method Composer
RUP Rational Unified Process
SME Situational Method Engineering
SPEM Software & Systems Process Engineering Meta-Model
SPI Software Process Improvement
SPICE Software Process Improvement and Capability dEtermination
UMA Unified Method Architecture
UML Unified Modeling Language
UPM Unified Process Model
XP Extreme Programming

Definitions

CAME tool, software which aids in method engineering.

CASE tool, software which helps in software development, used for standardization and
normalization by developers.

Framework, provides the underlaying structure for development, used when exact
instructions on how to do things are not given. A framework can be used to develop
methodologies and it should be instantiated to yield a process [Rub05]. Often used
interchangeably with the term ‘methodology’. [Ram06, Kni07]

Method, a systematic process or technique that is used to aid in the creation of a
satisfactory software product or model [Elv06]. Method prescribes a way of performing
activity within a process, in order to properly produce a specific output starting from a
specific input [Mol06]. For example a recipe is a method for cooking a specific dish.

Method Engineering, the engineering discipline to design, construct, and adapt methods,
techniques and tools for the development of information systems [Ram06].

Software Process Engineering, consists of modeling, authoring, tailoring and enacting
processes [Jär05].

Methodology, a body and collection of methods meant to support all software
development phases. [Elv06] It is a prescriptive guidance which covers and connects
different stages in a process. The purpose of a methodology is to prescribe a certain
coherent approach to solving a problem in the context of a software process. [Mol06]
Methodology offers not only indications of what to do, but includes actual recipes of how
to do [Rub05]. This term is often considered too long and formal, and the term ‘method’ is
used instead. Examples include OpenMethodTM and XP.

Process, a sequence of actions leading to some result [Elv06]. A set of related activities
which together transform inputs into outputs to achieve a given objective. The process is
defined in more detail in section 2.1.

Software Development Process, a coherent set of policies, organizational structures,
technologies, procedures and deliverables that are needed to conceive, develop, deploy and
maintain a software product [Mol06]. Software development process is often used to refer
the term ‘software development process model’.

Software Development Process Model, prescribes a process organization around phases,
in which order phases should be executed and when interactions and coordination between
the work of the different phases should occur. In other words, a process model defines a
template, around which to organize and detail an actual process. [Mol06]

Wiki technology, the defining characteristic is the ease with pages can be created and
updated in real-time. These web pages are used as knowledge bases and appear almost
instantaneously online. The term ‘wiki’ derives from Hawaiian term ‘wiki wiki’, meaning
‘quick’ or ‘informal’. [Wik07, Mal05]

Acknowledgements

This thesis work was started in the turn of the years 2006-2007. I was lucky to get a topic
which was interesting for me and which would probably interest both the university and
the company I was working in. The University of Turku has been specializing in software
processes and they also had a TEKES project planned, which was also discussed. Within
SYSOPENDIGIA there was an interest concerning research on OpenMethod, and I want to
thank Carl-Eric Backman and the company for providing me with the work.

Many thanks go to Juha Jääskinen for being the supervisor from the company and for
providing me with all the support I needed. He has been active and spurring me to get the
work done well. From the university, I want to thank my supervisor, Tuomas Mäkilä, who
has also been active and promoting the academic thinking in the thesis. I also want to thank
Peter Haumer for giving me suggestions and improvement ideas.

I want to thank my family for their support and encouragement. I also want to thank people
who have been proofreading my text. Finally I am very thankful to all others who have
been helping me with the thesis and who have been living with me during the thesis work.
Special thanks go to my chipmunk Indy, who has disturbed me now and then, and thus
hopefully has given me new ideas and points of view.

Contents

1. Introduction..1

2. What is software process modeling? ..3
2.1 What is a software process and a model?..4
2.2 Traditional processes ...8
2.3 Agile processes ..10
2.4 Comparison of traditional and agile processes..12
2.5 Why model a software process? Benefits and drawbacks ..13

3. Software process modeling and method engineering ...16
3.1 Process construction ..16
3.2 Selection of a process ..18
3.3 Evaluation and improvement of a process ..20

3.3.1 Knowledge Management ...22
3.3.2 CMMI...22
3.3.3 SPICE...24

4. Software development methodologies..26
4.1 Rational Unified Process ...26
4.2 OpenUP ...30
4.3 OpenMethod TM ...32
4.4 Extreme Programming...33
4.5 Scrum...35
4.6 Comparison of RUP, OpenUP, OpenMethodTM, XP and Scrum.......................................37

5. Models and tools...40
5.1 SPEM 2.0...41
5.2 Eclipse Process Framework...45
5.3 Rational Method Composer...47

6. Modeling capabilities and usage of EPF and SPEM ..48
6.1 Why model existing models with EPF and SPEM?..48
6.2 How was modeling done before EPF and SPEM?..50
6.3 How have EPF and SPEM been used?..52
6.4 Capabilities of EPFC 1.2 ...54
6.5 Sufficiency of SPEM 2.0...56

7. Modeling process based on an existing model with EPF / SPEM60
7.1 Modeling with EPF and SPEM 2.0 ...60
7.2 EPF customization and tailoring ...62
7.3 Process enactment ...64
7.4 Benefits and problems experienced with modeling ..65

8. Modeling OpenMethod
TM

 with EPF and SPEM 2.0...68
8.1 Why model OpenMethod with EPF and SPEM?..68
8.2 Modeling time table...69
8.3 Modeling OpenMethod ...70
8.4 Modeling results ..76
8.5 User interviews and discussion ...77

9. Conclusions and Summary ...80

References...82

Appendix A: SPEM icons with explanations...91

Appendix B: Citations ...94

1. Introduction

 1

1. Introduction

Software development methodologies are nowadays regularly used in the software

development industry. The various different types of methodologies can be applied to

different cases. A useful process modeling language standard exists, and the first tools

based on this standard are now available.

What are the software processes and methodologies actually, and how can they be used to

improve software development? How can the process itself be modeled, and why should it

be done? What benefits and limitations have the current modeling language standards and

tools? Along with these questions, I will seek answers to the main research question:

How will the Eclipse Process Framework and SPEM 2.0 improve process modeling

and model usage?

In addition to the academic research question, this thesis is also a part of OpenMethod
 TM

research and development. This work includes providing profitable process content and

best practices supporting iterative, incremental and agile development. This should be

applicable to a wide set of development platforms and applications.

The case study includes studying the tool support for software process engineering

including the following: method and process authoring, library management of plug-ins

and configurations, efficient and practical CVS repository. The focus is mainly on

customization and publishing a process.

As there are various meta-models and methodologies, the focus is on SPEM 2.0 as it is the

most recognized as a standard and though it is methodology independent, it seemed to be

the best choice for Rational Unified Process –style methodologies such as OpenMethod.

Eclipse Process Framework Composer (EPF) is the most advanced and productized non-

commercial method and process authoring tool at the moment. As alternative study topics,

for example the public-domain OPEN Process Framework, or the commercial Microsoft

Solutions Framework with Visual Studio Team System would be different and interesting,

but are not included due to the limitations of this thesis.

1. Introduction

 2

The limitations of this study are the following:

• Focus on EPF and SPEM: even if there are other meta-models and frameworks

available, the scope is not widened, but rather concentrated around EPF and on

SPEM compliant methodologies.

• EPF under development: the development in EPF community is rapid; a detailed

discussion based on a specific version could be obsolete later on.

• Limited amount of modeling and interviews: the modeling is based on a specific

part of OpenMethod and the interviews were conducted in a short time.

In this thesis, the second chapter contains the general ideas behind software process

modeling and different life cycle models, including benefits and drawbacks. An example of

traffic processes are introduced as an analogy to software development processes. This

idea can be followed throughout the thesis. In the third chapter, we focus on method

engineering and software process improvement. In the fourth chapter, we study software

development methodologies and take a closer look at Rational Unified Process (RUP),

OpenUP, OpenMethod
 TM, Extreme Programming (XP) and Scrum. The fifth chapter

includes the meta-model SPEM 2.0 and the tools Eclipse Process Framework (EPF) and

Rational Method Composer (RMC), which are used for modeling software processes. In

the sixth chapter, we discuss the modeling capabilities of EPF and SPEM, and in the

seventh chapter, the focus is on modeling an existing model with EPF and SPEM.

Modeling of OpenMethod is performed in chapter eight. The last chapter has the

conclusions and summary. Several future work topics are also introduced.

2. What is software process modeling?

 3

2. What is software process modeling?

First, we study the definition of a software process, the role of the software process and the

model of a software process. Then, traditional disciplined and agile approaches are

introduced with a comparison of the approaches. Finally, we discuss the benefits and

drawbacks of modeling. Methodologies, such as Rational Unified Process, OpenUP,

OpenMethod, Extreme Programming and Scrum are introduced in chapter four in more

detail, followed by a comparison of the methodologies.

The main division can be made between traditional disciplined processes and agile

processes [Boe03]. This division is done mainly to ease comprehension and categorization

as in practice both styles are often accommodated. This division does not only mean the

development model (e.g. waterfall vs. evolutionary), but also the whole mindset – the

approach to development, relationships inside the team and with the customer, technology

used and organization structure and culture. Traditional processes have their origins in

general engineering, but the agile approach exists only within software development

[OT07].

Agile processes contain only what developers consider valuable. They emphasize

flexibility and responsiveness to changes. Traditional processes are executed outside the

developer’s scope and they emphasize thorough planning and control. Usually, a mixture

and balance of both styles is accommodated in a process. Standard processes are tailored

according to the customer, environment and project needs. The development staff then uses

this process with development tools for the project work. [SSE07]

While traditional processes continue to dominate the software development arena, several

opinions and surveys demonstrate the growing popularity of agile processes. Organizations

should carefully evolve toward the best balance of agile and traditional methods that fits

their situation. [Ner05]

2. What is software process modeling?

 4

2.1 What is a software process and a model?

The software process ties people and technology together to develop software products in a

specific environment, as depicted in Figure 2.1.1 [Elv06]. Environment can include

business activity and atmosphere, one’s own organization, other organizations, etc. [SD07]

Figure 2.1.1 – The role of the software process [Elv06]

Now we will study the definitions of a process, software engineering and software

development process. The definitions are based on ISO and IEEE standards.

A process has many definitions, for example

• A set of interrelated or interacting activities which transform inputs into outputs.

[ISO 9000]

• A consecutive series of interrelated actions (steps) which together transform inputs

into outputs for a given purpose. [ISO 8402]

• A partially ordered set of activities that can be executed to realize a given objective

or to achieve some desired result. [ISO 15504]

• A sequence of steps performed for a given purpose; for example, the software

development process. [IEEE 610.12]

2. What is software process modeling?

 5

If we combine these three we get

A set of related activities which together transform inputs into outputs to achieve

a given objective.

Figure 2.1.2 – Two conceptual models of processes: A specific process and a

generalized one with serial and parallel activities [Joh04]

In Figure 2.1.2 the basic model of a process is shown. A process can be further divided into

four elements: who does what, how and when [Hen06b]. Let us next introduce some more

extensive definitions.

Software Engineering is defined by IEEE 610.12 as

“The application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the application of

engineering to software.”

However, it is good to keep in mind that software engineering is done “of the people, by

the people and for the people” [Boe03]. Or as said by Bjarne Stroustrup (1991): “Design

and programming are human activities; forget that and all is lost.”

Solution

Need or
desire

Input Output

Activity 1
Activity 3

Activity 2

Activity n

 Process

Process

2. What is software process modeling?

 6

Now a software development process is defined by IEEE 610.12 as

“The process by which user needs are translated into a software product. The process

involves translating user needs into software requirements, transforming the software

requirements into design, implementing the design in code, testing the code and

sometimes, [sic] installing and checking out the software for operational use. Note:

These activities may overlap or be performed iteratively.”

The sequencing of phases and milestones to express a lifecycle is one of the common

characteristics found within process definitions. Processes define work sequences that use

time and other resources. Work sequences produce outcomes. Processes also define roles

behind work sequences and outcomes.

To clarify and to give an example of process and model thinking, we will now introduce an

analogy between software development processes and traffic processes.

Traffic has rules of its own. These traffic instructions could be thought as traffic models,

which provide the fundamental rules on how to drive a vehicle. However, if a driver is only

given a vehicle with a traffic instructions book and put into traffic without any experience,

it would be extremely hard to manage with others. For a successful adaptation to traffic,

proper training, perhaps mentors or even exams are required, which is also the case in

software development.

The rules may also be differently applied in different situations. In some traffic cultures,

the actual traffic process does not follow the models or rules, but everyone knows (e.g. has

the tacit knowledge) how to behave. The instructions might also differ in language, and a

change from one driving culture to another will not usually be straightforward. The

infrastructure can be thought as architecture, cities as systems connected by roads and

railroads as interfaces. A method would be a way of transport (train, car, airplane) and a

methodology a collection of these.

In order for traffic to be efficient, no one should neglect the main rules given. If the rules

are not followed, is the fault with the rules? However, flexibility and situational adaptation

is required in both traffic and software development.

2. What is software process modeling?

 7

A software process can be presented in natural language, by graphical descriptions without

formality, and by process modeling languages [SSE07]. This is modeling and results as in

software process model. A model is an abstract representation of a system that helps us to

answer questions about the system [OOSE04]. Next, we will take a brief look at the model

definitions of one software process modeling language, Software Process Meta-Model

(SPEM) 2.0. In section 5.1, SPEM 2.0 is studied in more detail.

Figure 2.1.3 – The relationships between Role, WorkProduct and Task [SPEM2.0]

The basic building elements in SPEM are Role, WorkProduct and Task, which are often

accompanied by Guidance. Roles perform Tasks and are responsible for WorkProducts.

Tasks use WorkProducts as input and also produce WorkProducts as output. A static

illustration of relationships between these three elements using SPEM icons is shown in

Figure 2.1.3 with an example instantiation. These static elements can be applied to

dynamic content, e.g. processes. [SPEM2.0]

Process modeling specifies a development process and is the base for any process

engineering activities. However, any modeling approach is constrained by a certain way of

thinking and of perceiving systems and software development [Kos99]. In addition,

stakeholders’ views, assumptions and beliefs constrain process approach. Different

methods and techniques are applicable in different process contexts. The term practice

model is used when describing the way software development is really done. The detection

and comparison of the differences between practice and process models gives important

information when validating the software development process. [Moo06]

2. What is software process modeling?

 8

A process model can be descriptive, prescriptive or proscriptive. Descriptive modeling tries

to make the currently used processes explicit. Prescriptive modeling specifies the

recommended way of executing the process. Proscriptive modeling describes non-allowed

behavior and is usually used as an addition to prescriptive or descriptive modeling.

[Kos99]

Interaction and engineering with models and system is called Model Driven Engineering

(MDE), and it can be divided into three types [Bez07]: forward engineering, reverse

engineering, and models at run-time. In forward engineering, the system is created from a

model; in reverse engineering, the model is created from a system; and in models at run-

time, the model and system coexist and are kept synchronized.

In chapters seven and eight, we study the modeling process based on an existing model. It

is important to understand the difference between this and the creation of a real-life work

process model, e.g. reverse engineering.

In general, software development is a complex activity characterized by tasks and

requirements with a high degree of variability. Further uncertainties arise with the diversity

and unpredictability of people who engage in such tasks. The continuously changing

environment and sophistication of the tools also present development problems. [Ner05]

2.2 Traditional processes

A software life cycle is a period which lasts from the beginning of development to the end

of software use [Hai00]. A life cycle model is a way in which development is divided into

phases and represents all the activities and work products necessary to develop a software

system. [OOSE04]

The waterfall model is a linear life cycle model. The development is sequential, like a

waterfall, with phases of requirements, analysis, design, implementation, testing,

integration and maintenance. After each phase, the project is carefully examined by

different parties before proceeding to the next phase. This is intended to eliminate the

faults in early phases of the project. [Kil07]

2. What is software process modeling?

 9

In an iterative approach, the process consists of many iterations – each containing similar

tasks that are repeated. The last iteration produces the final product. If the iterations

produce a partial product and add new functionality to the system, it is incremental

[OT07]. This approach thus comprises of some agile aspects.

The spiral model is a combination of a linear and iterative model. The development is

divided into four phases which are executed to continuously expand the project. The

phases are: determining objectives, evaluation and identifying risks, implementation and

testing, and planning the next iteration. [Kil07]

The V Model gives equal weight to testing rather than simply treating it afterwards. It

emerged as a reaction to some waterfall models, which show testing only as a single phase,

though testing could take up to half of the project time [Gra02]. The V Model highlights

the existence of several levels of testing by relating it to a specific development phase

(Figure 2.2.1). The V Model depicts the level of abstraction in the following way:

Figure 2.2.1 – The V Model [Gra02]

As we have now introduced some of the well-known traditional models, we can widen the

scope of analysis to the whole approach and way of thinking. The traditional approaches

promise predictability, stability and high assurance [Boe03]. Around the models, specific

High-Level
Design

Low-Level
Design

Code Unit Tests

Integration Tests

System Tests

Acceptance Tests Business
Requirements

Planning of testing

and
verification
of results

2. What is software process modeling?

 10

focuses and styles are accommodated in the fields of application, management, technology,

and personnel. They tend to be more mechanistic, formal and controlled, like the models.

A detailed comparison between traditional and agile approaches is shown in Table 2.4.1.

2.3 Agile processes

The introduction of Extreme Programming (XP, see section 4.4) has been widely

acknowledged as the starting point for the various agile software development approaches.

The need in the business community for lighter weight, faster and nimbler software

development processes, especially in the Internet software industry, was one of the driving

forces. [Abr02]

Although there is no agreement on what the concept of ‘Agile’ actually refers to, here are

some definitions and meanings associated with the term agile:

• the quality of being agile; readiness for motion; nimbleness, activity, dexterity in

motion [Abr02],

• quick and well-coordinated in movement; characterized by quickness, lightness,

and ease of movement; nimble, able to improvise [Dict07, Lev05],

• adaptable; responsive to a customer or to changing circumstances [Lev05],

• resourceful; thoughtful or exhibiting some discipline [Lev05].

The ‘Agile Movement’ in software industry saw the light of day with the Manifesto for

Agile Software Development, in which the developers or ‘agilists’ came to value the

following: [AGILE07]

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

“That is, while there is value in the items on the right, we value the items on the left more.”

2. What is software process modeling?

 11

At start of the agile movement words like ‘process’ or even ‘methodology’ were

considered almost dirty, but currently the agile methodologist are showing growing interest

in advertising their agile processes and methodologies. [Ram06]

According to Abrahamsson [Abr02], a software development method is agile when it is

• incremental, small software releases with rapid cycles,

• cooperative, good communication with customers and developers working together,

• straightforward, the method is efficient, and easy to learn and modify,

• adaptive, has the ability to make last-moment changes with quick response.

Agile development generally uses the evolutionary development model (EVO). In EVO, the

development cycle is divided into smaller, incremental phases in which the customer is

able to gain access to the product at the end of each cycle. The EVO model can also be

understood as a sequence of repeating small waterfalls [Hai00]. The development team

responds to customer feedback by changing the product, plans or process for the next

phase.

Agile methodologies (such as Scrum and XP, introduced in sections 4.4 and 4.5) are ideal

for projects with high variability in tasks, in the capabilities of people (because for

example pair programming combines expertise and educates beginners effectively) and in

the technology being used. They are also suitable for projects where the high value of the

product is important to customers in tradeoff with accurate plans and timetables. Agile

methodologies usually tend to suit small teams (4-10 members) better and the critical issue

for success is especially the developers’ valuing of and trust in each other. [Ner05]

As previously mentioned, choosing an agile methodology itself is not enough for the whole

development process to be considered agile. Organizations must renew their mindset –

rethink their goals and reconfigure their human, managerial, and technology components in

order to successfully adopt agile methodologies.

2. What is software process modeling?

 12

2.4 Comparison of traditional and agile processes

 Traditional Agile

Fundamental

Assumptions

Systems are specifiable,

predictable, and can be

built through precise and

extensive planning

Quality, adaptive software can be

developed by small teams through

continuous design improvement and

testing based on rapid feedback and

change

Desired

Organizational

Structure

Mechanistic (bureaucratic

with high level of

formalization)

Organic (flexible and participate,

encouraging cooperative social

action)

Management Style Command and control Leadership and collaboration

Control Process centric People-centric

Knowledge

Management

Explicit, produces large

amount of documentation

Tacit, relies on teamwork and is in

the heads of the team members;

documentation as necessary

Development

Model

Life cycle model

(Waterfall, or some

variation)

The evolutionary-delivery model

(XP, Scrum...)

Project Cycle Guided by tasks or

activities

Guided by product features

Role Assignment Individual, favors

specialization

Self-organizing teams, encourages

role interchangeability

Communication Formal, with documents Informal

Customer’s Role Important, focus during

specification

Critical, like a team member

Technology No restrictions Favors object-oriented technology

Table 2.4.1 – A comparison of traditional and agile development [Ner05]

A general comparison with the traditional and agile approach is shown in Table 2.4.1. This

table can also be used with Table 4.6.1 ‘A comparison of methodologies’ when evaluating

the level of agility in methodologies. The division is, however, often superficial and the

actual approaches usually apply both the traditional and agile elements.

2. What is software process modeling?

 13

2.5 Why model a software process? Benefits and drawbacks

Software development is about processes. Each step and pattern of the process is more or

less visible depending on how explicitly it is defined and on the level of its formality, role

and detail. The work process is defined by its environment, work culture, work practices,

tools etc. Every development team follows a process. [SSE07, Bec03]

The whole process becomes visible by creating a model of the process. This defined

process is the requirement for process understanding, analysis, execution guidance,

learning and communication. It will also support the improvement of the process.

However, typically companies have only a single, generic process for any project. Process

variation has not been studied except in bigger companies [Jär06].

There are various benefits to software process modeling and we will examine some of

them. Most references focus on the bright side of modeling, but we will also discuss the

drawbacks. Benefits and drawbacks introduced here should also be noticed when focusing

on the specific benefits and drawbacks of EPF and SPEM modeling in section 6.1.

In [Oja03] Ojala introduces the following benefits of software process modeling:

• align the whole process into manageable divisions

• standards, guidance and models support development in each phase

• models are tools and act as templates for project planning

• reduce the person dependency

• ease communication for people and other systems

• make working more efficient and faster

• increase quality, reliability, compatibility, usability and maintenance

• models and guidance help with training

Most of the arguments seem logical, but we can still ask how the models make

communication easier. How will they make working faster? Obviously communications

will be easier, if the language and terms used are coherent within the team and with other

teams. However, will the models instead simply be in the way and slow down working?

2. What is software process modeling?

 14

This is possible in some cases, so the models cannot be seen as a cure for every problem

without reasoning the case. Let us now study some benefits that Henderson-Sellers

[Hen04a] depict which were not introduced before:

• ensure a consistent, reproducible approach to all projects providing a uniform

approach to software development with guidance

• control and support the whole development life with good project planning and

management

• consistency and traceability though the whole life cycle

• emphasize analysis and understanding through customer involvement

• reduce risk associated with shortcuts and mistakes

• produce complete and consistent documentation from one project to the next

• gain flexibility to process tailoring and managing and supporting different types of

projects

Some benefits may slightly overlap with the previous ones, but the emphasis was here

clearly on a larger scale. Haikala [Hai00] introduces the following benefits:

• easier for people to switch to the next project (or between projects) if the practices

are similar to each other and the documentation is comprehensive

• when the process is anticipated, project planning and monitoring will be easier

• outside evaluation is easier for a project

Schönström [Sch05] sees the benefits from the knowledge management point of view (see

section 3.3.1):

• model usage supports knowledge management creation and sharing

• models stimulate individual knowledge – new employees can use models (when

they need information and guidance)

• models protect and support development. They contribute to a systematic and non-

random environment

• models facilitate the sharing of individual knowledge, thus creating common

ground for communication

2. What is software process modeling?

 15

Finally I propose some benefits which were not introduced by the previous authors:

• integrating work of from different teams and companies

• defining responsibilities between team members

• improvement possibilities and measurability as the process is defined and concrete

• the possibility to tailor, customize and export processes for certain uses

• models are part of a professional approach to software design

Since software process modeling is not only rewarding and productive, here are also some

drawbacks and challenges which I found reasonable to include:

• the high cost of model creation and maintenance, is the extra work beneficial?

• the benefits of the model cannot be seen instantly

• models can make processes and daily tasks heavy if followed ‘by-the-book’

• people might resist new working ways and models

• methods and tools may narrow the development

The process enthusiasts usually only see the benefits of processes and modeling. However,

the benefits obviously overcome the drawbacks even if the situation is more objectively

observed. The choosing of an appropriate process becomes more important as the

organizations and projects get bigger. In the following chapter, we will take a deeper look

at creating a process, choosing the best process depending on the situation, and process

improvement.

3. Software process modeling and method engineering

 16

3. Software process modeling and method engineering

We have already introduced the basic definitions and the most common categorizations of

processes. In this chapter, we study the construction of a process, method engineering, and

process selection criteria. Lastly, we discuss process improvement and evaluation,

knowledge management and have a brief introduction to CMMI and SPICE.

3.1 Process construction

Process modeling, and especially a standard modeling language, defines common concepts

and terminology. A unified foundation for process frameworks makes it possible to

compare, select and encapsulate fragments of process content from several sources. These

fragments can be reused to efficiently create customized processes for desired projects with

different dominant process assumptions. This is called method engineering (ME), which is

defined as follows: “The engineering discipline to design, construct, and adapt methods,

techniques and tools for the development of information systems” [Ram06]. It has been

motivated by the belief that no method fits all situations. [Jär06, Hen06]

Figure 3.1.1 – The method engineering process [Elv06]

3. Software process modeling and method engineering

 17

Typically a chunk will encapsulate both a process part (tasks, activities…) and a product

part (templates, guidance…), whereas a fragment will be one or the other. These can be

created by re-engineering methods and are stored in a method chunks repository. A method

fragment is an autonomous and coherent part of a method. It supports the realization of

some specific activity. A fragment can be composed of other fragments and have

relationships with others [Hen06b]. A situational method is constructed ‘bottom-up’ to

match the requirements of a unique project. This also exhibits flexibility as the fragments

can be added dynamically. [Hen06a, Elv06] This situational method engineering (SME) is

the most well-known subfield of method engineering (see Figure 3.1.1). Its goal is to

achieve flexibility without reducing control of the development project [Jär07].

There are several method engineering approaches; the most prominent are the following:

• Ad-hoc: Constructing a new method from scratch

• Paradigm-based: Instantiating or abstracting an existing meta-model

• Extension/Reduction-based: Enhancing (or reducing) an existing method

• Assembly-based: Reusing parts of other methods [Ram06]

• Configurative-based: Configuring reference models in a specific domain [Bec07]

Problems with method engineering include the quality measure [Zhu07], the sophistication

of the process [Hen04a], the efficiency and speed of tailoring compared to the non-tailored

method [Coc00], and the correctness of the constructed method. Even if the fragments

were extracted from a working method, would they also be suitable for another use? Using

the traffic analogy, a car would be good to transport a few persons from a city to another

city, but when transporting 50 persons, a train or even an airplane would be more

reasonable depending on the available connections and distance. When planning a longer

trip, different means of transportation (methods) should be used. Again, there are several

variables to be considered and options to choose from, as in the software development.

The requirements for a good software development process according to Abrahamsson

[Abr05] are the following: provides systematic support for high quality development (acts

as a framework), produces visible results early, is easy to learn and adjustable, is aligned

with the company’s strategic planning, and meets the needs of standard quality

requirements (convincing users and customers).

3. Software process modeling and method engineering

 18

3.2 Selection of a process

The choice of an appropriate method depends on the environment, goal and project type.

Essential matters concerning the environment are the developers’ experience,

communication with the customer, and project size vs. occurring changes. Other essential

matters are issues to plan ahead, usage of old solutions in the project, the level of detail in

the process and the evaluation, and steering of the work. [OT07, OOSE04, Coc00]

Elvesæter proposes the chosen process to be dependent on the type of system [Elv06]:

• brand new system (very rare)

• re-engineering (old system exist)

• modification (fixing a major problem)

• adding a new module (functionality)

Henderson-Sellers introduces the following process selection criteria [Hen04a]:

• alignment with the organization’s strategy

• project size and timeframe

• development type (web, business, distributed)

• safety requirements

• other: scalability, complexity, architecture, reliability, maintainability, support,

cost, development life span

Waterfall models are easy to use when the anticipated development work does not include

many changes or uncertainties. In a waterfall model, the process proceeds step by step until

the work is finished. The waterfall process is well known and easy to understand, but it

does not support planned iterations, the steps are strictly defined and the development of

first prototype is slow. [OT07, OOSE04] If requirements and the current situation are well

known, the design and analysis will be sufficient and the waterfall model is an arguable

choice [Kil07]. The waterfall or iterative models also fit well with critical systems [Coc00,

Lev05].

If a moderate number of changes are expected in the development work, the iterative

process methods are a good choice. RUP, OpenUP and OpenMethod, introduced in the

3. Software process modeling and method engineering

 19

chapter four, are iterative. Iterative methods can be customer or risk-based, and the

duration of an iteration depend on the case. Shorter iterations result in faster feedback and

risk management, but also in higher expenses. [OT07]

Agile methods are good when the number of changes and risk involved are big. They use

feedback instead of planning as their primary control mechanism. Agile methods are more

efficient than a traditional approach [Lar03], but do not provide the planning capability

needed from the business perspective. XP and Scrum are agile and they are introduced in

chapter four. It could be phrased that they “will provide the most bang for the buck, but

will not say when the bang will be”. [OT07]

Figure 3.2.1 – Dimensions affecting the method selection [Boe03]

As a conclusion, the critical dimensions affecting method selection in terms of agility can

be summarized as personnel (competency), dynamism, culture, size and criticality (see

Figure 3.2.1) [Boe03]. The personnel level 1B is able to perform procedural method steps

(e.g. coding a simple method, running tests), whereas personnel on levels 2 and 3 are able

to tailor a method to a new situation or even revise (break the rules) when necessary. It is

not, however, uncommon to change the selected method during the project [Jär07].

3. Software process modeling and method engineering

 20

3.3 Evaluation and improvement of a process

The Software Process Improvement (SPI) term is used with methods such as Capability

Maturity Model Integration (CMMI) and Software Process Improvement and Capability

dEtermination (SPICE). Järvi structures the important aspects of SPI as following [Jär06]:

business, project and process coherence, process frameworks, process definition, SPI cycle

and organization’s capability.

The main SPI task is to constantly keep the software processes matching the company’s

business objectives. Process selection was discussed in section 3.2, and the different

process methodologies will be introduced in chapter four. For process definitions, the

SPEM provides a common standard, which is gaining support in the software industry and

academic world. With the common notation, the common process definition conventions

should also be developed. The SPI cycle is very firm. The IDEALSM model (Figure 3.3.1)

is one well-known model and was originally based on CMMI. The SPI cycle could become

more efficient with proper software process modeling. Depending on the organization’s

capability, the SPI’s role can be more detached to each organizational area, and it can

better take into account the needs of different parties. [Jär06]

Figure 3.3.1 – The IDEAL model – a traditional SPI cycle with five phases [SEI07]

The IDEALSM model graphic, Copyright 1997 by Carnegie Mellon University is used in this publication with

special permission from the Software Engineering Institute.

3. Software process modeling and method engineering

 21

Börjesson [Bör04] measures the SPI success by implementation success – how initiatives

lead to actual changes in engineering practice. SPI requires planning, dedicated people,

management time and capital investment. The most efficient initiatives target practices in a

single unit or a project which requires few compromises. Engineers and practitioners are

highly committed and allocate time for improvement as they understand the need for the

new approach, and appreciate the SPI initiative. SPI reduces development cost, improves

productivity and customer satisfaction [Nia06].

A successful SPI approach emphasizes iterative development, which helps in correcting

failures and modifying processes based on practical experience. The more iterations, the

more probable is the success of implementation. In SPI, chaos is, however, expected, since

changes cause debate, anxiety and resistance. [Bör04] The productivity vs. time curve is

shown in Figure 3.3.2.

There are the following challenges and drawbacks in SPI [Sch05]: the increase of

bureaucracy with the cost of reduced innovation, software development is basically

dependent on problem solving (and not only on a good process), and that while SPI is

technically oriented, it is also a human activity requiring also social skills.

Figure 3.3.2 – Productivity vs. time in process improvement [Wie05]

P
ro

d
u

ct
iv

it
y

Time

Initial state

Process improvement begins

Learning curve

Do not give up here!

Improved future state

3. Software process modeling and method engineering

 22

3.3.1 Knowledge Management

Schönström [Sch05] argues that organizations should focus more on understanding and

improving the knowledge processes of software development together with traditional SPI.

The main knowledge processes are considered to be knowledge creation and knowledge

transfer. These are here briefly introduced to allow a more extensive view of SPI.

Knowledge creation can be divided into socialization, externalization, combination and

internalization. In socialization, new tacit knowledge is shared in everyday social

interaction. Externalization is the process where tacit knowledge is made explicit, as

concepts, documents etc, which can be stored in a repository. Explicit knowledge in a

software project includes the process it uses, e.g. RUP, and tacit knowledge is knowledge

of how processes work in a real project. During combination, explicit knowledge is

collected from various sources, processed, and a more complex and systematic knowledge

is generated. In internalization, the explicit knowledge is processed and converted into tacit

knowledge by individuals. This is when knowledge is applied and used in practical

situations.

Knowledge transfer requires a shared language and a common system of meaning.

Otherwise, individuals of one group may view another group’s knowledge as useless. Trust

has proved to be an important factor for successful knowledge sharing as knowledge can

be highly political and because knowledge is power. [Sch05]

3.3.2 CMMI

Capability Maturity Model Integration (CMMI) is a process improvement approach for

organizations. The Capability Maturity Model (CMM) was originally developed as a

response to the software crisis in the 1980s [Lju04]. As CMM models evolved into various

areas, CMMI was developed to combine these models into a single integration [SSE07].

CMMI helps an organization to

• appraise its organizational maturity,

• establish improvement priorities and implementations of these,

• focus attention on key areas,

• select contractors. [Man07, Sch05]

3. Software process modeling and method engineering

 23

CMMI is not a process description, but it rather describes the characteristics of a good

process, and gives recommendations on assessment and improvement of current processes.

It also provides guidance on how to increase maturity and performance. The changes in

process usually aim at improving the performance of the processes. [Man07, CMMI07]

The CMMI is one of the most frequently used improvement frameworks. As thousands of

organizations have used CMMI during their SPI project, it can be considered a standard

SPI model [Sch05]. Process modeling is suitable for any capability level. The ‘staged

representation’ part corresponds with the CMM model and the ‘continuous representation’

element corresponds with the SPICE model [Ter06].

The CMMI suggests five maturity levels [Man07, Sch05, SSE07]:

• Initial: The process is unpredictable, poorly controlled and reactive. Process

success depends on the competence of a few people within the organization.

Default starting level and most of the organizations are at this level.

• Repetitive: The process is characterized for projects. They are performed and

managed according to their documented plans.

• Defined: The process is characterized for organization and proactive. Common

practices and processes are defined in detail throughout the organization, and are

tailored for the specific needs of a project.

• Managed: The process is measured and controlled. Quality and process

performance are managed statistically and they are predictable.

• Optimizing: The focus is on the process improvement. Processes are continuously

developed based on history knowledge. Reasons for performance changes are

identified and measurable targets are set for improvement.

The challenges and drawbacks of CMMI are: it requires significant training to interpret the

model, it assumes that the reader is a software/system expert, it is most suitable for

bureaucratic organizations, it is large and heavy [SSE07], and it has a limited perspective -

not taking organizational context into greater consideration [Sch05].

3. Software process modeling and method engineering

 24

3.3.3 SPICE

Appraisal methods such as SPICE (Software Process Improvement and Capability

dEtermination, ISO/IEC 15504), give guidelines for determining the maturity of an

organization’s processes compared to a reference model. [SSE07]

The SPICE project was started in 1992 due to the need of organizations to reduce risks

associated with software projects and improve the quality of the software. It had the

following design goals:

• intended for process improvement and capability determination

• the standard could be used in a wide variety of environments

• use objective and, where possible, quantitative criteria

• produce profile outputs instead of number results with the support of comparisons

with outputs of other similar assessments

• promote the technology transfer of software process assessment into the software

industry [Ele98, Joh04]

The initial task of the SPICE project was to develop a suite of documents for an

international standard for software process assessment [Joh04]. The process assessment

can be used to process improvement and capability determination. The relationships in

process assessment are depicted in Figure 3.3.3.1. Note that the tacit knowledge of the

process is not observed in this model.

Figure 3.3.3.1 – Relationships in Process Assessment [SPICE]

3. Software process modeling and method engineering

 25

The main activity is the process assessment, which is conducted with an Assessment

Model, a Reference Model, an Indicator Set, an Assessment Method and one or more

competent assessors. [Ele98, SPICE]

Figure 3.3.3.2 – The framework for process assessment [Ele98]

SPICE defines the Assessment Model and the Reference Model. The Reference Model

defines the necessary rules that the Assessment Model must follow. The Reference Model

is two-dimensional, consisting of the process dimension and the process capability

dimension [Ele98, SPICE]. The capability levels correspond mostly with the CMMI levels:

The main difference is that the CMMI level ‘initial’ consists of SPICE levels 0 and 1,

where level 0 does not fulfill process requirements, and level 1 fulfills the basic process

requirements [Ter06].

The actual software process assessment is conducted using an Assessment Model. The

Assessment Method is not defined explicitly; however, the requirements for an Assessment

Method are defined. This means that there can be several Assessment Methods available

which meet these requirements. The informative criteria for a competent assessor are

defined in SPICE. SPICE can be used to assess CMMI models and CMMI Product Suite

and Reference Documents are compatible with SPICE [SPICE].

Assessment

Model

Reference

Model

Indicator

Set

Process

assessment

Process assessment input

Process

assessment

output

- Purpose
- Scope
- Constraints
- Responsibilities

- Process profile
- Assessment context

- Process purpose
- Process goals

Indicators of
 - Process performance
 - Process capability

Assessment Method

4. Software development methodologies

 26

4. Software development methodologies

A software development methodology (also known as method, framework and model) is a

structured collection of best practices, guidelines and tools for software development. It

aims to achieve a wanted goal in a given environment. [OT07] Though the term

methodology is often referred as method, the methodology is the body of methods and

meant to support all software development phases [Elv06]. A timetable with a collection of

routes and means of transportations could be considered to be a methodology for

transporting if it also contains advice on how to use the methods (e.g. how to get to the

train station) and what to do if all means of transportation are not available (e.g. service

break on a specific train route, please use the specific bus connection instead). The term

‘framework’ is used when only a basis for doing is given instead of exact instructions.

[Kni07]

First we will study in depth the following software development methodologies: Rational

Unified Process, OpenUP, OpenMethod, Extreme Programming and Scrum. RUP is

introduced most extensively to gain a more thorough view on the concept of disciplines

and phases. Since the terms defining the methodology are used interchangeably and the use

and meaning varies by the point of view, we will use the term introduced with each

methodology’s reference. These methodologies were chosen on two different criteria;

OpenMethod and RUP, which are similar to each other, with OpenUP as an open source

example, and XP and Scrum as the most agile and utilized examples. Secondly,

OpenMethod and RUP, with methodologies included with Eclipse Process Framework.

4.1 Rational Unified Process

The Rational Unified Process (RUP) is an iterative software development process

framework. It has been developed by Rational Software, which has been owned by IBM

since year 2002 [Amb06]. RUP is marketed to provide “best practices and guidance for

successful software development.” [RUP701]

RUP is one of the most popular and complete process models used by developers in recent

years. It is also the best-known and most extensively documented commercial variant of

4. Software development methodologies

 27

Unified Process [Jaf05, Wes05]. OpenUP is an open source framework of Unified Process

and explained in section 4.2.

The popularity of RUP depends on various factors. In the late 90s companies were ready

for process standardization. Many companies had own processes but began to search for

commercial ones. The RUP process development team was launched in 1996 and it

believed that the average user had to find it easier to do their jobs with the RUP than

without it. To ensure user value, the RUP was tightly integrated with user tools. The RUP’s

technical keys for success were the following: it was Web-enabled, easy-to-use and non-

intrusive. The favorable business climate during the evolution of RUP was also the key

element for RUP to gain popularity. [Kro03]

Three elements that define RUP are

• An underlying set of philosophies and principles for successful software

development.

• A framework of reusable method content and process building blocks.

• The underlying method and process definition language.

Software development risks are as for any other development: lack of resources,

insufficient funding, tight deadlines, slow organizations. The risks implicitly for software

development are new and unknown technologies, undiscovered requirements and

complicated architecture.

The RUP has the following strategies, also known as RUP best practices, to handle the

risks:

• Develop iteratively.

• Manage requirements.

• Use component architecture.

• Model visually.

• Verify quality continuously.

• Manage changes.

4. Software development methodologies

 28

RUP is included with Rational Method Composer, which allows customization of the

process. It contains RUP for several different content areas, domains and technologies.

Rational Method Composer is explained more detailed in section 5.3. Since RUP version

7.0 the terminology and concepts are as proposed for the SPEM 2.0.

RUP divides the software development lifecycle into two dimensions – phases and

disciplines. The phases of RUP are inception, elaboration, construction and transition. As

shown in Figure 4.1.1, phases divide the process over time and disciplines logically group

activities by nature. Disciplines can last over all the phases and have different time

consumptions; for example in early iterations time is spent on requirements and later on

more on implementation. [RUP701]

Figure 4.1.1 – The Rational Unified Process – Phases and Disciplines [San07]

The nine disciplines make the vertical dimension. Each discipline has its own activities,

tasks, work products and guidance [Gom05]. Let us now briefly explain the RUP

dimensions starting with the disciplines:

Business Modeling

This discipline is used to understand the structure of the target organization, both statically

and dynamically. This helps understanding the scope of the project.

4. Software development methodologies

 29

Requirements

The major objectives are to understand the customer’s needs, scope the system to be built

and provide detailed requirements and use-case model of the system.

Analysis & Design

This discipline explains how to convert requirements into models and work products which

are suitable for implementation.

Implementation

This discipline contains development of source code, unit testing and integration. These are

performed iteratively.

Test

The main activities are evaluating and assessing the product quality. Testing is done

throughout the process lifecycle.

Deployment

The objective of this discipline is to deliver the system to the customer. This includes

training, packaging, distributing, testing and installing the system.

Configuration and Change Management

This discipline explains how to manage, control and synchronize the work products. As

RUP is iterative, a lot of builds are created which results in many versions of artifacts.

Project Management

The purpose of this discipline is to manage project by planning, risk management,

monitoring progress and metrics.

Environment

The Environment discipline supports the development organization by providing tools and

processes which suit the need of the current project.

Now we introduce the RUP phases. RUP has four phases: Inception, Elaboration,

Construction and Transition. Those are decomposed over time. Every phase is

4. Software development methodologies

 30

characterized by one or more iterations and each is concluded by a major milestone. If

phase objectives are met, the project will move to the next phase.

Inception

The goal of the inception phase is to develop a common understanding among all

stakeholders on the objectives for the project.

Elaboration

The second phase of RUP is the elaboration, which purpose is to achieve understanding

what the system should do and provide the baseline of the system architecture.

Construction

In the construction phase the system is built, and the architecture is validated. This is the

most iterative and most time consuming phase of RUP.

Transition

Transition is the last phase and includes the final beta testing, and minor fixes based on the

user feedback. The product is now delivered to the customer.

RUP’s strengths include well-defined work products, it is easily combined with techniques

from other methods, and it is easily customized. RUP is also widely adopted; hence, it has

good learning and consulting resources [Lar03]. By 2003, RUP has been used by over half

a million users in more than three thousand companies [Cas07].

RUP seems to be a very big and complex methodology. It has what is needed for software

development, but the enormous amount of information can easily make it hard to use. In

the following section we will study the open source version of Unified Process, OpenUP.

4.2 OpenUP

OpenUP is an open source framework of Unified Process and part of Eclipse Process

Framework. OpenUP/Basic, which is the most lightweight version of OpenUP, is referred

4. Software development methodologies

 31

in this thesis as OpenUP. Have a look at section 5.2 for more information about EPF. This

section is based mostly on references [OpenUP] and [Bad05].

OpenUP was originally known as Basic Unified Process (BUP) developed by IBM. It was

donated to Eclipse Foundation in 2005 and renamed to OpenUP in 2006. OpenUP is a

collection of best practices from different sources – not only from IBM [Dej06].

OpenUP is minimal, complete and extensible. E.g. it has only the required content, it can be

used as an entire process to build the whole system, and it can be used as a base on which

more content can be added as needed.

OpenUP core principles are the following:

• Collaborate to align interests and share understanding.

• Balance competing priorities to maximize stakeholder value.

• Focus on the architecture early to minimize risks and organize development.

• Evolve to continuously obtain feedback and improve.

Like RUP, OpenUP is organized in two dimensions: the phases are inception, elaboration,

construction and transition, and the six disciplines are requirements, architecture,

development, test, project management and change management. The roles are divided into

the following seven roles: analyst, architect, developer, tester, project manager, any role

and stakeholder.

OpenUP strengths versus others include open source development and community with

constant improvement and up-to-date best practices. It is easily adopted and understood,

and it is well defined [IT07].

OpenUP exists so far only as an EPF version (and EPF Wiki [EPFW07]) and it is the

mostly developed compared to the EPF versions of Scrum and XP. It has content translated

at least partly for Portuguese, Russian and Spanish. The latest version 1.0 was published on

August 1st, 2007 with the release of EPF Composer 1.2. The method content and process

content are completely done and comprise of instances of all major SPEM 2.0 concepts.

4. Software development methodologies

 32

As a conclusion, OpenUP is a much simpler process than RUP, but it preserves the

essential characteristics of RUP like iterative development, use cases and scenarios driving

development, risk management and architecture-centric approach. OpenUP is designed for

small teams working together in the same location. It supports flexibility and agility, since

it has a small number of roles, tasks and artifacts and its process allows selection of desired

method elements.

4.3 OpenMethod
TM

OpenMethod
TM

 by SYSOPENDIGIA, later OpenMethod, is an Application Development

Method which is intended for IT developer organizations and for organizations buying IT

projects. OpenMethod version 9.0 is used for closer observation in this thesis.

OpenMethod provides guidelines for the business-oriented development of ICT systems,

architectures and processes. OpenMethod employs the best market practices and contains

concrete process descriptions, practical instructions, check lists, templates and examples.

[SD07]

OpenMethod is used for enhancement of systems, architectures and business-processes. It

unifies the operation methods in different phases of system development. For quality

assurance OpenMethod has instructed survey and testing practices. At the moment

OpenMethod does not contain project management. This is covered in a product called

OpenProject. A clear overlap can be noticed with the RUP and OpenMethod practices.

OpenMethod best practices are:

• Business-driven development

• Manage and accept requirements

• Model visually

• Reuse components

• Develop iteratively

• Control project quality, risks and changes

• Take care of software security

4. Software development methodologies

 33

OpenMethod is developed according to customer feedback and project experience. It has

hundreds of users in Finland, including companies outside SYSOPENDIGIA. A new

version of OpenMethod is published twice a year.

OpenMethod strengths include focus, Finnish language, specific point of view (e.g.

Rational tool support for ReqPro, Rose, SoDA, RSM, examples, templates), and a

possibility to affect the development locally. OpenMethod can also be categoriazed as a

methodology instead of a framework as it also gives the actual repices for how to do the

work. The modeling of OpenMethod is depicted in chapter eight.

4.4 Extreme Programming

XP (eXtreme Programming) was developed by Kent Beck in 1996. The advent of XP

sparked the agile movement and currently it is the most famous of the agile methods.

[Ram06, Sal03, Mar03]

XP is a set of simple and concrete principles and practices that has been found effective in

software development processes. It evolved from the problems caused by long

development cycles with traditional methods. Extreme Programming’s success is based on

the focus of responding to customer’s changing needs rapidly and many project teams will

be able to adopt it as-is [Mar03, Sal03]. XP, however, lacks of a comprehensive project

management view [Abr03].

XP’s key principles and values are

• interaction: developers and the customer must be closely connected during the

whole project life cycle and communication should be fluent,

• keep it simple: developers should concentrate on implementing only the necessary

functionalities and keeping the code as simple as possible,

• feedback: developers get rapid feedback from unit tests and customer, which helps

learning and developing the system,

• courage: when other values are met, the courage is needed to be able to make big

changes and abandon defective code when necessary. [Sal03]

4. Software development methodologies

 34

The life cycle of XP consists of six phases: Exploration, Planning, Iterations to Release,

Productionizing, Maintenance and Death (Figure 4.4.1). [Ram06, Abr02]

Figure 4.4.1 – A general overview of a typical XP process [Ram06]

1. Exploration: The customer writes the initial list of high-level requirements, while

the team familiarizes itself with tools and practices and determines the overall

system design through prototyping.

2. Planning: Focus is on prioritizing the requirements, estimating the effort and time

needed for each requirement and determining the schedule for the first release.

3. Iterations to Release: This phase includes several iterations before the first

release. The customer decides the requirements selected for each iteration.

4. Productionizing: Focus is on extra testing, verification and validation of the first

release and deployment into user production environment.

5. Maintenance: Implementation of remaining requirements into the running system.

The project is not over yet, but rather in a phase of system evolution.

6. Death: The customer does not have any further requirements to be implemented.

The documentation is written, review is conducted and the focus is on project

closing. [Mar03, Abr02]

XP’s strengths include practical, high-impact development techniques, emphasized

communication between all stakeholders and daily measurement. [Lar03]

4. Software development methodologies

 35

The EPF version of XP is still under construction. The latest version is 0.1, which contains

the key concepts, best practices, tasks, work products and roles. The method content is

modeled rather straightforward and there is not yet any actual process content.

4.5 Scrum

The term Scrum originally comes from a strategy in rugby. It means “a struggle for the ball

by the rival forwards hunched tightly round it”. In British, Scrum also has a meaning of “a

disordered or confused situation involving a number of people”. [Dict07]

In software development Scrum was introduced in 1986. It was used to refer an adaptive,

quick and self-organizing product development process originating from Japan [Abr02,

Ram06]. Scrum is a management and control process for building software that meets

business needs [Kos03]. It does not define any specific techniques for the implementation

phase, but rather concentrates on how the team members should work flexibly in a

constantly changing environment.

Scrum’s key practices and principles are [Lar03]:

• Self-directed and self-organizing team

• Once work to an iteration is chosen, no external work is added

• Daily short meetings with specific questions

• Usually 30-day iterations followed by a demo to the stakeholders

• Client-driven adaptive planning in each iteration

Scrum consists of three phases: pre-game, development and post-game (Figure 4.5.1).

1. Pre-game: focus is on setting the basis for the iterative-incremental development.

This phase has two subphases:

a. Planning: concentrates on producing the list of priotized requirements,

 analyzing the risks, estimating the resources and determining an overall

 schedule.

b. Architecture / High-level Design: determine the overall architecture of the

 system

4. Software development methodologies

 36

2. Development: Focus is on iterative and incremental development. Each iteration

(Sprint) is typically one month in duration. The daily questions include: ”What

have you done since yesterday, what are you planning to do by tomorrow, and do

you have any problems preventing you from accomplishing your goal?” Larman

[Lar03] also included questions ”Any tasks to add to the Sprint Backlog?” and

”Have you learned or decided anything new, of relevance to some of the team

members?”

3. Post-game: Focus is on integrating and releasing system into user environment.

Figure 4.5.1 – The Scrum process [Ram06]

Scrum’s strengths include simple practices, individual and team-based problem solving,

team communication, learning, and value-building with openness and visibility [Lar03].

Scrum has been used in hundreds of organizations [Sch07]. Kniberg [Kni07] presents a

good practical view on Scrum and how to combine it with XP.

The EPF version of Scrum was originally released in French but has now also an English

version. It contains a short introduction, roles, work products, and Scrum lifecycle.

4. Software development methodologies

 37

OpenUP

CMMI

SPICE

iterative

waterfall

byrocratic flexible

XP,
Scrum

 RUP,
 OpenMethod

4.6 Comparison of RUP, OpenUP, OpenMethodTM, XP and Scrum

The comparison of methodologies with others is difficult and the result is easily based on

the subjective experiences of the practitioner and the intuitions of the authors [Ram06].

According to [Ram06] the comparisons can be approached in these different ways:

1. Introduce an idealized methodology and evaluate others against it.

2. Distill a set of important features from several methodologies and compare each

method against it.

3. Define a meta-language as a communication tool and a frame of reference against

which you describe the methodologies.

4. Try to relate the features of each method to specific problems.

We will use the second approach in our study. The intention is not to value one

methodology over another, but rather identify the differences and similarities between

these different software development methodologies. See section 2.4 for general

comparison of agile and traditional processes. The results of the comparison are shown in

Figures 4.6.1 and 4.6.2.

.

Figure 4.6.1 – A comparison of methodologies in flexibility and iterativity [Hai07]

 RUP OpenUP OpenMethod XP Scrum

Key points Complete SW

development model

with tool support

Agile and open

source version of

the Unified Process

Customer driven

development model

with hands-on tools

Customer driven

development, small

teams, daily builds

Small, for self-organizing

teams, with 30-day

release cycles

Categorization Framework Framework Methodology Methodology

(discipline)

Framework

Usage Medium to large

projects

Medium projects Medium to large

projects

Medium projects Medium projects

Special features Business modeling,

tool family support

Minimal, complete

and extensible

Well-tried hands-on

tools and tool support

available

Ongoing refactoring,

for uncertain

requirements

Product development

view of Scrum, focus on

project management

Commercial

(License)

Yes No Yes No No

Team size Medium to large Small, co-located

teams

Not specific (Small to

large)

Small and medium size

teams, co-located

Small teams (or medium

divided), co-located

Language English English, partly in

Portuguese,

Russian and

Spanish

Finnish English + other

translations

English + other

translations

 RUP OpenUP OpenMethod XP Scrum

Strengths Well defined work

products, easily

combined with

techniques from

other methods, good

learning and

consulting resources

Open source

development with

constant

improvement and

up-to-date best

practices, easily

adopted and

understood

Focus, Finnish

language, hands-on

tools, specific point

of view with tool

support available,

continuous user

driven development

Practical, high-impact

development

techniques, emphasized

communication

between all

stakeholders and daily

measurement

Simple practices,

individual and team

problem solving, team

communication, learning,

and value-building with

openness and visibility

Shortcomings No tailoring

descriptions (for

changing needs),

requires a lot of

training, complex,

too strongly oriented

towards Rational

tools

Few practical real-

life experiences so

far, no tool support

Currently project

management in

OpenProject, Finnish

language, complete

life cycle not equally

covered

Process is vague, rather

a set of principles and

practices than a

methodology, lack of

formalism and

management practices,

scaling problems with

bigger projects

Lack of detail in

integration and

acceptance tests, lack of

scalability, based on

assumption that human

communication is enough

Development,

releases

Continuous Continuous, open

source

Continuous, twice a

year

Stabilizing, studies

Stabilizing, studies

Table 4.6.1 – A comparison of methodologies [Abr02, SD07, Ram06, Lar03, Ter06]

5. Models and tools

 40

5. Models and tools

This chapter focuses on the models and tools aiding software process modeling. The meta-

model chosen is SPEM as it is gaining acceptance as a process meta-model standard. Tools

can be generally divided into CASE (Computer Aided Software Engineering) and CAME

(Computer Aided Method Engineering) tools.

CASE tools are software which help or promote a phase or phases of software

development [Hai00]. They are used for standardization and normalization by developers

and are instantiated by a CAME tool [Kos99, Mol06]. A CASE tool could, for example, be

a UML tool or a testing tool. The benefits of CASE tools are eminent: they increase

productivity, ease method use, and generate at least partly automated documentation

[Hai00]. The CASE tools have the following drawbacks: they are often hard coded for

certain methods and may change current working practices and thus cause resistance. They

have limited possibilities to assess and evaluate different methods, and have a limited

ability to support customized method in a specific situation [Kos99]. CASE tools are also

often expensive and require extensive training [Hai00].

CAME tools are software which aid in method engineering. They are used by method

engineers to compose new methods, assist selection of method fragments from repository

and they instantiate a method specific CASE tool. CAME tools are based on meta-models

(e.g. SPEM 2.0). Method fragments can be created in several ways: models of the

fragments are defined by instantiating the method meta-model, fragments are assembled in

order to satisfy some specific situation, or fragments are obtained by modification of other

fragments to better satisfy the situation (see section 3.1). [Mol06]

In sections 5.2 and 5.3 we study CAME tools Eclipse Process Framework Composer and

Rational Method Composer.

5. Models and tools

 41

5.1 SPEM 2.0

The SPEM 2.0 is a meta-model developed by Object Management Group (OMG). In this

Thesis, SPEM is referred to Software & Systems Process Engineering Metamodel

Specification v. 2.0, Proposed Available Specification ptc / 2007-08-07. This section is

mainly based on [SPEM2.0] –reference.

Since the 80s, there have been various process meta-models and finally Object

Management Group decided to standardize a process meta-model. The specification of

SPEM 1.0 was released in 2002. In 2005, SPEM 1.1 [SPEM1.1] was released with minor

updates. SPEM 1.1 still had several shortcomings; for example, semantics was ambiguous

and hard to understand and there was a lack of enactment support. SPEM 2.0 was released

in 2007 fixing the flaws in previous versions, being compliant with UML 2 and providing

guidance on migrating existing process models from SPEM 1.1 to SPEM 2.0.

SPEM is a model of a model, a meta-model, which is used to describe a concrete software

development process or a family of related system and software development processes.

SPEM describes structures needed to formally express and maintain method content and

processes, i.e. it defines a language and representation schema for method contents and

processes. SPEM is not, however, intended to be a generic modeling language; rather, it

defines the ability to choose the behavior modeling approach that fits the implementer’s

needs. SPEM uses the UML 2.0 infrastructure and diagram interchange standards.

A meta-modeling language (meta-meta-model) is used to describe the SPEM meta-model

itself. The MOF 2.0 standard [MOF] provides such a language. The layers can be depicted

as levels M0, M1, M2 and M3. The layers can theoretically continue to M4, M5, etc. but

these are not used in practice [Jeu07]. M3 provides MOF which is instantiated by SPEM

2.0 on the M2 layer. UML 2 meta-model instantiates MOF in the same way. On layer M1

there are concrete instances, such as ‘Use Case’, ‘Analyst’. Layer M0 consists of the

performing process.

5. Models and tools

 42

Metamodelling

Modelling

Performing
Process

Process model
(RUP)

Metamodel
(SPEM 2.0)

Metametamodel
(MOF 2.0)

 represents

M3 Level
 uses

 determines develops perceives
 represents

M2 Level uses

 determines develops perceives

 represents
M1 Level

 M0 level

Figure 5.1.1 – Process modeling layers [Jär05, Kos99, SPEM 2.0]

SPEM 2.0 has the goal of being a standard for software process [Hau06]:

• Definition: Providing unambiguous semantics

• Presentation: Providing clear notational guidance

• Representation: Providing a concrete modular, configurable, and reusable meta-

schema

• Interchange: Define standard format for process content interchange

• Planning: SPEM processes must fit to be used as planning template

• Enactment: Fit for direct enactment and execution metrics.

SPEM tries to accommodate a large range of development methods and processes of

different styles, cultural backgrounds and communities. SPEM consists of seven main

meta-model packages (Figure 5.1.2): Core, Process Structure (defines flexible ad-hoc

process models which are ideal for the representation of agile processes), Process Behavior

(links process models to externally defined models such as UML 2.0), Managed Content

(adds textual description and documentation capabilities), Method Content (defines

reusable method content elements which provide base of documented knowledge), Process

With Methods (refines process models to base and trace process on Method Content) and

Method Plug-in (supports scaling to method libraries with plug-ins that extend each other

with variability mechanisms).

5. Models and tools

 43

Figure 5.1.2 – Structure of the SPEM 2.0 Meta-Model [SPEM2.0]

SPEM regards the main elements of a software development process as consisting of roles,

the work products they are responsible for, and the tasks that they perform on the work-

products. The relationships between these are depicted in Figure 2.1.2. The elements are

often accompanied with Guidance. The behavior of these elements is not, however, as

bound as in SPEM 1.1.

Method framework is divided into method content and process content. Method content

describes the reusable building blocks and general development techniques and practices in

lifecycle-independent form. The process content then applies method content for assembly

of different executable processes. These are described with breakdown structures.

Table 5.1.3 depicts some of the most essential SPEM 2.0 elements.

<<merge>>

<<merge>>

<<merge>>

<<merge>>

<<merge>>

<<merge>>

<<merge>>

MethodPlugin

ProcessBehavior

ProcessWithMethods MethodContent

ProcessStructure

ManagedContent

Core

<<merge>>

<<merge>>

<<merge>>

5. Models and tools

 44

Name Description Icon

Activity An Activity represents something that one or more roles perform. It is a
grouping of nested process elements (e.g. Breakdown Element) such as
other Activity instances, Task Uses, Role Uses, Milestones, etc. Activities
are related to timelines.

Breakdown
Element

A Breakdown Element is any element that is part of the process structure.

-

Delivery
Process

A Delivery Process is a special Process describing a complete and integrated
approach for performing a specific project type. It describes a complete
project lifecycle end-to-end that has been detailed by sequencing Method
Content in breakdown structures and can be used a template for projects.

Discipline A discipline is a collection of related tasks that define a major ‘area of
concern’. It works as an aid to understand the project from traditional
waterfall perspective as it is common to perform tasks concurrently across
several disciplines. (Icon used with EPF)

Guidance Guidance is a Describable Element that provides explanations and
additional information related to other Describable Elements. Specific types
of guidance having a specific structure and type of content are classified
with Kinds, for example Guidelines, Templates, Checklists, etc.

Milestone The development processes consist of sequences and milestones. A
milestone describes a significant event in the development – it is the point
where an iteration or phase formally ends. This provides a check-point for
whether the process is ready to move forward.

Phase A phase is a significant period within a development process. During phase,
a well-defined set of objectives is met and the phase ends with a major
management checkpoint, milestone.

Process Processes use content elements to relate them to partially ordered sequences
that are customized to specific projects. A process focuses on the lifecycle
and the sequencing of work in breakdown structures.

Process
Pattern
(Capability
pattern)

A process pattern is a reusable building block for creating new development
processes - Delivery Processes or larger Process Patterns. It describes a
cluster of Activities that provides a consistent approach to common
problems. This cluster has process knowledge for example of a discipline.

Role
Definition

A Role Definition is a Method Content Element that defines a set of related
skills, competencies, behavior and responsibilities of an individual or a set
of individuals. Roles are neither individuals nor necessarily equivalent to
job titles. Roles are used by Task Definitions to define who performs them
as well as define a set of Work Product Definitions they are responsible for.

Task
Definition

A Task Definition is a Method Content Element and a Work Definition that
defines an assignable unit of work being performed by Roles Definition
instances. The granularity of a Task Definition is generally a few hours to a
few days. A Task is associated to input (mandatory and optional) and output
Work Products and it usually affects one or only a small number of Work
Products. A Task provides complete step-by-step explanations of doing all
the work required to achieve this goal.

Tool
Definition

A Tool Definition is a special Method Content Element that can be used to
specify a tool’s participation and capabilities in a Task Definition. It is also
used as a container for tool mentors.

Work
Product
Definition

Work Product Definition is a Method Content Element that is used,
modified, or produced by Task Definitions. Roles use Work Products to
perform Tasks and produce Work Products in the course of performing
Tasks.

Table 5.1.3 – Some essential SPEM 2.0 icons with short explanations

5. Models and tools

 45

5.2 Eclipse Process Framework

The Eclipse Process Framework (EPF) project is an Eclipse Technology open source

project. Eclipse is an open source community building an open development platform for

developing tools [Ecl07]. EPF aims to provide an extensible framework and exemplary

tools based on SPEM concepts for defining and managing the software development

process. This section is mainly based on [EPF07].

EPF aims at producing a customizable software process engineering framework, which

supports different process methods, project types and development styles. It also contains

exemplary process content and tools. The EPF project has two goals:

• “To provide an extensible framework and exemplary tools for software process

engineering. This contains method and process authoring, library management,

configuring and publishing a process.”

• “To provide exemplary and extensible process content for a range of software

development and management processes supporting iterative, agile, and

incremental development, and applicable to a broad set of development platforms

and applications.”

Eclipse Process Framework Composer (EPF Composer) is a tool platform for those who

are responsible for implementing and maintaining processes for development organizations

or individual projects. The EPF Composer version depicted in this work was first 1.02,

which was released on March 5, 2007, and later version 1.2, which was released on August

1, 2007. The term EPF is also used when referring to the EPF Composer in this thesis.

The benefits of EPF in enterprises are various [Kro07a]. EPF helps with leveraging

existing best practices rather than reinventing the wheel. It provides a level of consistency

and shared language across the organization for process modeling and related topics. As

practitioners learn how to improve their approach to software development, new practices

can be easily captured and effectively deployed. As the process content evolves and is

rolled out to the organization, it enables continuous process improvements.

5. Models and tools

 46

OpenUP

Open Source Development ECLIPSE

Common Language & Vocabulary META MODEL (UMA/SPEM 2.0)

Extensible, Customizable, Flexible TOOLING (Authoring, Publishing)
 EPF COMPOSER

OpenUP/Basic

Value-based
Software Eng.

Model-Driven
Architechture

Scrum, XP
OpenMethod

TM

Inhouse
Content
Plug-ins

Tool
Extensions

Free Process
Content
Plug-ins

Commercial
Process
Content
Plug-ins

Extensions

- Project Mgmt.
- Oper. Mgmt.
- Systems
 Mgmt.

EPF Ecosystem

Figure 5.2.1 – the EPF Ecosystem with OpenMethod [EPF07]

From a first time user’s viewpoint, EPF Composer is quite easy to learn. It has overviews,

tutorials and first steps, and by following these, users can quickly become familiar with the

tool. It is recommended that the user explores the tool’s online help, which contains several

interactive tutorials that provide step by step instruction for various scenarios.

The main authoring perspective is divided into library, configuration and main (editing)

frames. The publishing feature produces content as a web site. This gives centralized

access to information about the practices and processes. The content can be navigated

through using different perspectives, such as by work product, by role, or by process. EPF

supports the export of content to XML, method plug-ins, and MS Project.

Eclipse Process Framework consists of EPF Composer and plug-ins of the following

methods: OpenUP, XP and Scrum (see Figure 5.2.1). OpenUP is a lighter open source

framework version of RUP. XP (Extreme Programming) and Scrum are agile software

development methodologies. These are covered in more detail in chapter four.

5. Models and tools

 47

5.3 Rational Method Composer

IBM Rational Method Composer (RMC) is a commercial product by IBM Rational

Software built on top of Eclipse. It is designed for the same purpose as EPF - authoring of

method content and for publishing configurations of method content as processes. EPF

Composer is a part of RMC code and was donated to the Eclipse Foundation by IBM as

open source. The idea is that EPF Composer will be a core component of RMC. RMC will

add value though special features and support that might not be possible in an open source

product. The main difference between EPF Composer and the RMC tool is the lack of

integrations with other IBM Rational tools such as Rational Portfolio Manager, Rational

Software Architect and Rational Process Workbench. The Rational Unified Process (RUP)

is included in the RMC software. [Hau05]

RMC includes several delivery processes of RUP [RMC06]: RUP for Small Projects, RUP

for Large Projects (Classic RUP), different content areas such as RUP for Business

Modeling and RUP for SOA Governance. Domains and technologies such as RUP for

J2EE, RUP for .NET and RUP for User Experience are also covered.

The RMC capabilities and modeling with RMC can be compared with the EPF Composer

capabilities and modeling presented in the following chapters.

6. Modeling capabilities and usage of EPF and SPEM

 48

6. Modeling capabilities and usage of EPF and SPEM

In this chapter we study the background and basis for the actual modeling. First we focus

on why EPF and SPEM should be used, how the modeling has been done before EPF and

SPEM, and what alternatives there are. Then we take an overview on how EPF and SPEM

have been used so far and end with a discussion on the capabilities of EPF and sufficiency

of SPEM.

The whole modeling process can be divided into a) notations and language, b) the actual

modeling activities, and c) context, e.g. what to model. In the end of this chapter we focus

on the notations and language. Chapter seven concentrates on the modeling process and in

chapter eight we study the modeling of OpenMethod. The chapters six and seven connect

the tools and methodologies presented in earlier chapters and the case study presented in

chapter eight.

6.1 Why model existing models with EPF and SPEM?

Eclipse Process Framework provides solutions for common problems relating to method

and process managing. In section 2.5 we studied the reasons behind modeling a software

process. These general benefits and drawbacks also apply when modeling with EPF and

SPEM.

According to Peter Haumer, a solution architect at IBM, these are some of the common

problems with suggestions [Hau07a, SPEM 2.0]:

• Development teams need an easy way to share their knowledge with a central

database for practices and processes. Typically processes are not documented or

they exist in various presentation formats. They should be easily accessed at the

workplace during work phase and not be separate from the actual work process.

EPF supports CVS and Subversion for version control.

• Problems of integrating different development processes which have own formats.

Usually books, publications and companies’ internal method contents and processes

differ in format. It is difficult to integrate processes from different sources if they

6. Modeling capabilities and usage of EPF and SPEM

 49

lack widely adopted standards and defined concepts. The SPEM language provides

grounds for presentation of method content and processes.

• Teams need up-to-date information for training. Teams need to be trained to

effectively perform development processes. Training materials and knowledge base

must constantly reflect the actual practices used in work processes and defined

projects. The use of EPF and the published web page as a knowledge base for

reusable method content in training and developing helps to overcome this

problem.

• Teams need guidance for sizing the processes in a right way. Processes are rarely

ready-to-use, but rather need to be tailored before the project and during the

lifecycle. Process tools must scale both upwards and downwards on demand and

have the ability to add new or tailored processes. EPF supports different

configurations and publishing options allowing easy tailoring and scaling.

• Make sure the practices are applicable with the standardized practices. Processes

need to be in a standardized form within an organization. Teams and process

developers therefore need to have the ability to manage process definitions and

perform auditable tailoring of these processes to individual projects.

• Effective usage of processes in projects. If a process cannot be used in real projects,

it is not useful and is difficult to improve. The gap between process engineering

and enactment must be bridged. This can be done by using similar and standardized

representation and terminology. The project lead need the ability to import the

processes into the project environment itself and these have to have a link back to

planning elements such as roles and tasks. SPEM 2.0 provides process definition

structures with enactment support.

In order for a process to follow the real life processes and be usable in software

development it must evolve. One relatively efficient way to help the process to evolve is to

model it. Modeling will bring up problems within the process and suggestions for

improvement as it is difficult to model a development process without fully understanding

and studying it.

SPEM is a standardized way of expressing any software development process. The

specification was developed especially to address the unique and complex nature of

6. Modeling capabilities and usage of EPF and SPEM

 50

software development. It is vendor, framework and methodology neutral and leverages the

expressiveness and popularity of UML. Vendors like IBM, Osellus and Intel are

implementing SPEM and more organizations are starting to use it to model their processes.

[Sue04, EPFRel07]

The SPEM can provide necessary concepts for modeling, documenting, presenting,

managing, interchanging, and enacting the development method and processes. As SPEM

2.0 is UML 2 compliant, it provides the ability to work with UML 2 tools. EPF can be used

by developers, process authors, process coaches, academia, service providers, tool

providers, and management. [SPEM2.0]

As a conclusion, SPEM could be considered the most significant development enabler to

address the process automation needs in the market. SPEM is an open standard for

modeling any software development process. Since SPEM is an open standard, customers

can use a development methodology from one vendor, model the processes that support

that methodology in SPEM using the process modeling system from another vendor, and

enact and monitor the modeled processes from a third vendor. A process automation

system would help the organizations to model, enact and monitor their processes. In this

way it has a direct positive impact on the organization’s quality, cost and time-to-market

objectives. Organizations are able to easily create knowledge of executing a process centric

project, and to use this knowledge to implement continuous quality, cost and process

improvements.

6.2 How was modeling done before EPF and SPEM?

Organization have used various styles, including own specialized models or notations and

for example customizations of UML diagrams. Within IBM there already were three

different meta-models for RUP, IBM Global Services Method and SUMMIT Ascendant.

Unified Method Architecture (UMA) is based on the meta-models of these methodologies

and the SPEM 1.1 definition in order to unify all approaches within IBM as well as to

support to most important standards in industry [OpenUPa]. UMA was used in the

development of SPEM 2.0 and EPF aims to support the final SPEM 2.0 in near future.

[Hau07a]

6. Modeling capabilities and usage of EPF and SPEM

 51

Process modeling languages can be roughly divided into software process meta-models

and more general business process modeling meta-models.

Unified Process Model (UPM, also known as Unified Software Process Model, USPM

[Kru01]) was used with older RUP versions. It is a software process modeling meta-model,

as is SPEM, and contains guidelines for UML use and is expressed in UML [Oja03].

USPM is compatible with SPEM 1.0, and has only small variations in terminology. USPM

is used for process authoring with the Rational Process Workbench tool. This tool was

used to create earlier versions of RUP. [Kru01]

In [Mäk06] Mäkilä introduces a tool for modeling software process with SPEM 1.1 called

Spemmet. It was developed on a web platform and was the author’s attempt to get practical

understanding of the SPEM 1.1 based process modeling. This tool was successfully used to

model some parts, but the SPEM 1.1 standard was considered to be too ambiguous.

Furthermore, the development of EPF Composer made it obsolete.

As alternatives to SPEM and EPF, there are for example OPEN (Object-oriented Process,

Environment, and Notation) Consortium’s OPEN Process Framework (OPF) [Ram06,

Hen04b] and ISO/IEC 24744 meta-model [Gon07]. Osellus has developed the IRIS

product family using SPEM for process authoring and tailoring (IRIS Process Author), and

for enactment and improvement (IRIS Process Live) [Ose07].

Domain Specific Language (DSL) tools or meta-CASE tools can also be used for software

process modeling [Kel07]. These tools support the generation of a specific environment,

new modeling languages and method support for these languages. Examples include

Microsoft DSL tools or MetaEdit+ from MetaCase.

The more general business process modeling meta-models include Yet Another Workflow

Language (YAWL), Business Process Modeling Notation (BPMN), Business Process

Execution Language (BPEL), Process Interchange Format (PIF, used in MIT, Stanford,

etc.), Process Specification Language (PSL), Core Plan Representation (CPR, used by

DARPA), Workflow Management Coalition Process Definition (WfMC), and Architecture

of Integrated Information Systems (ARIS) [Bre00, YAWL07, Bro03, Mäk06].

6. Modeling capabilities and usage of EPF and SPEM

 52

YAWL is based on workflow patterns and is considered as a powerful workflow language

[YAWL07]. BPEL is an XML language for composition of web services [Bro03]. The

WfMC is a non-profit, international organization of workflow vendors, customers and

users. It aims at producing standards such as the Process Definition. [Bre02]

We have now covered some history of the SPEM 2.0 evolution and the tools used before or

instead of the EPF Composer. There are also various process meta-models beyond the

software development scope and some of them were mentioned. In the following section

the focus is on the specific uses of EPF and SPEM.

6.3 How have EPF and SPEM been used?

EPF has 26 committers from different organizations, over one thousand downloads per

week and over 100 press references according to the 2007 statistics. [EPFRel07]

Three methodologies have been modeled with EPF, which can be downloaded from the

Eclipse Process Framework homepage. These are OpenUP (see section 4.2), XP (see

section 4.4) and Scrum (see section 4.5). The current major EPF version 1.2 was released

on August 1, 2007 with added contributions such as the OpenUP/DSDM (Dynamic

Systems Development Method). Agile Modeling and translation of the content are still in

progress. According to the EPF newsgroup, there are several cases where current method

content (OpenUP for instance) is being translated into different languages. EPF native

language support is also growing constantly. EPF has currently native language support for

Chinese, Danish, French, German, Italian, Japanese, Korean, Portuguese, Russian and

Spanish. [EPF07, EPFRel07]

6. Modeling capabilities and usage of EPF and SPEM

 53

In [Hau06, SPEM 2.0] the case studies include:

1. Fujitsu DMR Macroscope, which shows how SPEM 1.1 processes can be migrated

into the SPEM 2.0 format.

2. Microsoft Solutions Framework (MSF) Agile case study is a proof of concept that

SPEM 2.0’s concepts are sufficient to model all of MSF Agile’s process concepts

and structures using EPF Composer.

3. MDA Process (OpenUP/MDD) is an extension to OpenUP/Basic, which models

OMG’s Model-Driven Architecture approach.

4. IBM Tivoli Unified Process (ITUP) models processes using SPEM 2.0 concepts

and guidance to help understanding and making ITIL recommendations directly

actionable.

5. PMBOK, Sierra System used all major SPEM 2.0 concepts to re-model the Project

Management Body of Knowledge (PMBOK).

6. SOA Governance Lifecycle and Management Method, shows that SPEM 2.0 has

also been used to represent organizational governance processes.

7. OnDemand Process Asset Library (OPAL), represents a CMMI process repository

developed with SPEM 2.0. Building blocks could be selected and assembled into a

process based on the needed maturity level.

8. E&TS Application Specific Integrated Circuits Method shows that SPEM 2.0 has

also been used to model hardware developing processes. Different methods were

created for project consistency and documentation and training were used by both

project managers and technical teams.

EPF committers have also an interest in knowing about the OpenUP deploying. Questions

on the homepage include: “There have been thousands of downloads of the process but we

haven’t received much feedback on the results people are experiencing. Understanding the

successes and failures the OpenUP community is experiencing will help us to deliver more

value in the future.” [EPF07]

EPF can be conveniently used with Wiki Technology (Figure 6.3.1) [EPFW07]. This has

been used for example within the EPF community to develop method content. Wiki can be

used to gather useful feedback by writing comments around content or editing content, e.g.

the experiences are captured through harvesting. Communities can be built around key

6. Modeling capabilities and usage of EPF and SPEM

 54

 E
PF

W

ik
i

content areas, and process content improved without learning SPEM or EPF Composer

[Kro07b].

 Mandatory
 Milestones and
 key artifacts

 Guidance Principles & practices
 (built from tasks, examples…)

 Tacit Knowledge Emerging practices

Figure 6.3.1 – EPF with Wiki technology [Kro07b]

Eclipse Plug-in Central introduces how organizations are leveraging EPF [EclPC]:

• IBM Rational Method Composer is used to create current versions of RUP, see

section 5.3 for details.

• Agile Enterprise Architecture defines how ‘Enterprise Architecture’ is done in an

agile way.

• Agile / Iconix Road, Iconix Process has been modeled using EPF.

• Wilos (Wilos Is a cLever Orchestration Software) helps team members to manage

projects using exported XML file from EPF. It includes a personal assistant which

provides guidance for following the selected process, displays project items,

manages tasks etc. [Wil07]

Now we have covered modeling before EPF and SPEM, the usage of EPF and SPEM, and

some alternative approaches. In the following sections the focus is on the capabilities of

EPF Composer 1.2 and SPEM 2.0.

6.4 Capabilities of EPFC 1.2

The EPF capabilities can be divided into Method Authoring, Process Authoring, Library

Management and Content Extensibility and Configuring and Publishing [Elv06].

6. Modeling capabilities and usage of EPF and SPEM

 55

Method Authoring

The organization’s best practices can be captured as a set of method content as defined in

the SPEM 2.0 metamodel: roles, work products, tasks and guidance (templates, white

papers, examples, check lists, etc.). These can be reused through extensibility, replacement

and contribution, and categorized as desired. A rich-text editor allows the documentation

of elements, links to other elements, files, web-pages or pictures. Graphical diagrams show

the relevant relationships.

Process Authoring

Reusable process content can be organized into processes along a lifecycle dimension by

defining Work Breakdown Structures. EPF Composer allows the contruction of reusable

process chunks called capability patterns. A capability pattern may define how to design,

implement and test a scenario or a user story, and this pattern can be reused in processes.

The capability patterns are used to create a delivery process, which describes a complete

and integrated approach for performing a specific project type.

Library Management and Content Extensibility

An XML-based library enables flexible configuration management and content interchange

for distributed client-server implementations (CVS, Subversion). Method and process

content can be packaged into plug-ins allowing simple distribution, management and

extensibility. Process content can also be exported to tools such as MS Project.

Configuring and Publishing

A process configuration can be created by selecting a set of plug-ins and packages.

Publishing allows selecting the configuration and processes with variations in the layout of

the produced html-pages.

EPF Composer version 1.2 has the following key features added [EPFRel07] which were

noticed during the modeling case: the support for new SPEM 2.0 innovations (variability

and fine-granular configurations, which were applied to the modeling when the version

6. Modeling capabilities and usage of EPF and SPEM

 56

changed from 1.02 to 1.2), process, breakdown structure and Rich Text Editor

improvements (which were used to improve the appearance of diagrams and method

content), and the support for additional platforms and technologies.

6.5 Sufficiency of SPEM 2.0

The process modelling language used reflects perspectives and approaches taken on

systems development [Kos99]. It can also constrain the aspects that can be captured during

process modelling and supported during the actual process. The most frequently addressed

aspect of a process modeling language is its paradigm (vs. abstraction, modularity or

genericity).

Process modeling methods are based on widely varying philosophical, theoretical, and

cenceptual foundations. We need approaches for defining process modeling languages of

different foundations, e.g. MOF. The process meta-metamodel specifies the premises that

can be used to specify process metamodels.

A process modelling language contains a process ontology (conceptual framework), a

notation, and language semantics [Kos99]. An ontology for processes determines in which

terms and ways we abstract, discuss and determine software processes. A notation is the

system of signs or symbols which represent a conceptual framework. Semantics deals with

the meaning of signs and symbols.

The SPEM 2.0 conceptual framework provides the necessary concepts for standardized

representation and managed libraries of reusable method content, support of modeling,

documenting, managing, configuring and enacting development methods and processes.

SPEM 2.0 reuses some key classes from UML 2 infrastructure and defines the notation of

specific process diagrams. SPEM 2.0 documentation also contains full semantics for the

meta-model. [SPEM2.0]

The references on SPEM 2.0 are so far mostly EPF/SPEM community based and might

focus more on the bright side of the meta-model. The critics presented in references are

mostly for SPEM versions 1.x as the SPEM 2.0 definition is still recent. Next we will study

the new capabilities of SPEM 2.0 while discussing the shortcomings depicted with SPEM

1.x and how SPEM 2.0 will remedy these issues.

6. Modeling capabilities and usage of EPF and SPEM

 57

As SPEM 1.1 can be migrated to SPEM 2.0, we can conclude that SPEM 2.0 has the

sufficiency of at least SPEM 1.1. In addition, SPEM 2.0 takes advantage of the UML 2

standard and its new functionality. It defines extensions for enactment and has a clear

separation of method content and process content. In addition to this, it supports many

different lifecycle models, has flexible process variability and extensibility plug-in

mechanism, and reusable process patterns [SPEM2.0].

In [Hen04a] the study includes the flexibility and compliance of different frameworks and

meta-models. SPEM 1.0 is depicted as following:

• flexible technique-to-task mappings,

• process fragment selection exists,

• capability levels are not considered.

As previously noted, the two first observations apply with SPEM 2.0, but SPEM 2.0 also

supports the concept of capability levels through variability and extensions.

The SPEM 1.1 has been examined in [Jär05] as following:

• shortcomings of process components with ambiguous definition,

• modeling agile methodologies require a different approach,

• a challenging organization of process components.

The process component definition has become less ambiguous; self-containedness

constraints and ‘Unification’ mechanisms have been removed and replaced with Ports and

Work Product correspondence concepts. ‘Refers To Dependency’ has also been

deprecated. The loosely connected process fragments and flexibility of SPEM 2.0 suit agile

development better than SPEM 1.1. The organization of a process component could,

however, create challenges also with SPEM 2.0. For example, when making a process of

RUP disciplines it is clearly seen that one discipline interacts with the others and is

connected to many phases. This generates a complicated relationship between components.

These problems might, however, arise from a conceptual level above SPEM.

6. Modeling capabilities and usage of EPF and SPEM

 58

Ramsin introduces SPEM 1.0 with the following strengths [Ram06]:

• Flexibility and configurability due to the generality of the meta-model (though

there are limitations because of dependency on RUP as meta-model basis).

• A well-defined general framework.

• Well-formed rules when instantiating processes.

And with the following weaknesses:

• A process component library is not included.

• Specific procedures for instantiating a software development process using the

meta-model is not offered.

• Lacks detailed specification documents: the OMG document is a very general

description.

• Lacks sub typing for important process components, which results in the meta-

model being of very limited practical use: Poor coverage of lifecycle activities and

lacks explicit support for umbrella activities. Modeling and artifact production

issues are not explicitly addressed.

• Mainly for modeling processes similar to RUP; limits applicability and generality

• The developer is responsible for constructing the methodology. The rules are not

enough to prevent poor instantiations.

Let us now analyze the weaknesses compared to SPEM 2.0. The package is now divided

into Method Package and Process package, allowing a specific process component library.

The SPEM 2.0 meta-model can be directly instantiated for an implementation; however, a

specific procedure is not introduced. The SPEM 2.0 is much more extensive and contains

more details and examples than the SPEM 1.1 definition. Process components are renewed

as shown before with [Jär05] analysis. SPEM 2.0 supports many different lifecycle models,

and has also been used in modeling agile methodologies such as XP and Scrum. Finally

[Ram06] points out the developer’s responsibilities in constructing a methodology, which

should be obvious with all meta-models.

6. Modeling capabilities and usage of EPF and SPEM

 59

As a conclusion, the shortcomings of SPEM 1.1 discussed in various references have been

mostly corrected in SPEM 2.0. There have been several contributors participating in this

development [Ben05, SPEM2.0]. The sufficiency of SPEM 2.0 can also be evaluated by its

usage and case studies, which were covered in section 6.3. The modeling with EPF and

SPEM is covered in the following chapter and the study of EPF and SPEM 2.0 being suited

for the modeling of OpenMethod is discussed in chapter eight.

7. Modeling process based on an existing model with EPF / SPEM

 60

7. Modeling process based on an existing model with EPF / SPEM

In the previous chapter we examined the capabilities and usage of EPF and SPEM. In this

chapter we discuss the modeling with EPF and SPEM on a general level. The specific case

study is in chapter eight.

First we study the actual modeling activities and then move on to concentrate on EPF

customization and tailoring, process enactment, and finally review the problems and

benefits notified on the general level.

7.1 Modeling with EPF and SPEM 2.0

Modeling can be thought as reverse engineering as the model is created from a system

[Bez07]. The model, however, is usually created from an existing model instead of the

actual process.

Modeling creates the process models and is thus a fundamental activity in adopting process

modeling. The basic objective of a process model is to answer the following questions

[Bre00]:

• What is to be done and when?

• Who does it?

• What is produced?

Depending on the use of process models in an organization, the required accuracy, level of

detail, the amount of work effort, and the frequency of modeling work varies [Mäk07]. SPI

activities (section 3.3) could be applied in parallel with the modeling activities. In this

section, however, we will mainly focus on modeling. The reason behind modeling is often

the need to improve the process.

The model has to be easily understood. The idea is that any good model exhibits a single,

coherent vision. Conceptual integrity is the degree to which a model can be understood by

a single human mind, despite its complexity [Lan05].

7. Modeling process based on an existing model with EPF / SPEM

 61

According to [Mäk07], the modeling process as a ‘light-weight approach’ is the following

(see Figure 7.1.1, articles [sic]):

1. Start of modeling project: define goals, purpose, scope, the participants and the

schedule of the modeling project. There should be one lead modeler responsible for

the modeling work.

2. Construction of initial model: the initial model is constructed based on the

existing process documentation. The initial model can be created by identifying

roles, work products, tasks, phases, iterations and milestones in the documentation.

The process elements and their immediate relationships are then modeled with EPF

Composer.

3. Verification of initial model: process authors of the existing documentation verify

that the initial model is in line with the existing documentation.

4. Planning of interviews: interviews clarify unclear parts of the model, find

contradictions between process documentation and the actual process, and examine

how different stakeholders use the process.

5. Execution of interviews: the interviews can be done in sequence or independently

from each other. The former approach increase the modeling speed and the latter

the objectivity of the model.

6. Refinement of model: model is refined based on the comments. EPF Composer

with a version control system provides powerful tools for flexible modeling.

7. Verification of final model: the verification meeting with participants assures that

the modelers have understood the interviewees and that modeling is done correctly.

8. Closing of project: the lead modeler stores the model properly, distributes it to all

necessary parties and closes the project.

Figure 7.1.1 – Modeling approach modeled with EPF Composer 1.2 [Mäk07]

7. Modeling process based on an existing model with EPF / SPEM

 62

By-the-book modeling can be more complex than the light-weight approach, but the main

concept is similar. We will assess these depicted modeling activities with our actual

modeling experience in section 8.3. Maintaining the model should also be observed, and

other possible measurements, such as verification, should be utilized to ensure the

correctness of the model.

Models are created for knowledge creation and knowledge transfer (see section 3.3.1). The

development process model created is not the ultimate goal, and not even the only product

of the modeling process. Transformations in knowledge, agreements and commitments in

people’s minds are at least as important. [Lan05]

7.2 EPF customization and tailoring

Process flexibility and customization is one of the key elements for successfully adopting a

particular process in real life. To assess flexibility and capability for customization of

existing processes, some objective evaluation criteria must be developed. [Hen04a]

Organizational variability, which is usually the reason behind process customization, can

provide the following thoughts:

• Different organizations have different skills and techniques. Organizational culture

often determines which techniques are used.

• Different projects often demand different levels of formality and accuracy. All

projects do not require the same tasks to be done.

• Organizations perform at different capability or maturity levels. Those on higher

levels can perform jobs that the ones on lower levels cannot.

Some criteria can be derived from these facts as follows [Hen04a]:

• Does the process allow the desired technique selected for each task?

• Does the process allow the selection of tasks and work products to be used in each

project depending on the characteristics of the project?

• Does the process allow customization of tasks and work products depending on the

organization’s capability level?

7. Modeling process based on an existing model with EPF / SPEM

 63

EPF supports variability elements, which can be used to choose the appropriate elements

for, for example, each capability level. The configuration and publishing options allow the

selections of desired elements further on.

A customization of the process for different uses both inside the organization and outside

the organization (e.g. the process is tailored for a customer) also requires different points of

view. EPF itself and published contents can be customized in several ways, from style

sheets and languages to content and process tailoring, depending on customer or project

needs.

EPF uses a specific working folder for method content. If a process needs to be tailored for

another use, one possibility is to do that in a different working folder. This, however, might

complicate the maintenance process as the common building blocks would be separated. In

a situation where, for example, one additional role is added, the same role has to be added

to both folders. One solution is to use CVS as the main database which contains all the

necessary method content (tasks, roles, guidance etc.) and process information. When a

new role is added, it is also added to CVS, and the other users or work folder instances will

be able to update to the new changes.

A more elegant solution for customizing is to use different configurations depending on the

situation. There can be many configurations in the same working folder. The included

plug-ins and packages can be fully selected in the configuration. It is also possible to tailor

the views for the publishing version completely. For example, if a new configuration needs

to be created without the ‘analysis and design’ discipline, processes relating to inception

phase and work products, the new configuration is simply created with a new view which

only has the needed content and categories. It is also possible to exclude the unwanted

packages in the package selection.

A user can make various changes in the publishing of a configuration. Published processes

can be freely selected and many other minor variances can be made. These include

publishing a glossary, an index and choosing a title and a banner image. Search capability

can be added when creating a website as a Java EE web application packaged in a WAR

file. The publishing operation also supports changing several details in layout and

diagrams.

7. Modeling process based on an existing model with EPF / SPEM

 64

Tailoring of the published results, the html pages, is practically unlimited. The result of

direct html tailoring will, however, disappear in each publishing. One way to alter already

published pages is to create a modification packet (zip), which will be installed on the

published packet. The modification packet could include modified style sheets, language

packets or Java scripts to enhance the published version. As the layout of the published

pages is an important factor in organizations, more efficient customization of published

pages is needed. A possibility for adding enhancements in the layout of the published

pages could be utilized.

Native language support (NLS) consists of ten languages at the moment. For example,

executing “epf –nl fr” starts the French version of EPF, but the contents naturally remain

original (English). Language packets (NL1, NL2, NL2a) can be used for additional

language support. As the texts are in properties files, it is easy to translate the EPF user

interface or published non-content texts to any desired language. The EPF web page has

detailed instructions for translating the content that comes with EPF (e.g. OpenUP).

EPF Composer is an open-source project which allows complete tailoring of EPFC itself if

additional special features are needed.

7.3 Process enactment

Process enactment means evoking process performance according to a process model

either by a human or a machine [Kos99]. The ability to modify the process model to reflect

knowledge gained from real projects is necessary for process improvement. This requires

mechanisms for enactment. Since SPEM 2.0 covers notations, concepts and semantics, it

serves not only as a specification for a process model but also for enactment of the process.

The two most common ways of enacting the SPEM 2.0 meta-model are [SPEM2.0]:

• Mapping the processes into Project Plans and enacting these with project planning

and resource management tools such as IBM Rational Portfolio Manager or

Microsoft Project.

7. Modeling process based on an existing model with EPF / SPEM

 65

• Mapping the process to a business flow and then executing this using a workflow

engine such as a Business Process Execution Language (BPEL)-based workflow

engine.

The processes defined by SPEM 2.0 breakdown structures contain information attributes

(hasMultipleOccurrence, isRepeatable etc.) which aid the Project Planner in making

correct instantiation decisions. Plans can also be mapped using a work product breakdown

structure which is suitable for agile environments. In these, the plans for work activities are

not followed step-by-step; instead, they define which resource produces which work

products in which state for which date.

EPF Composer supports export to XML and MS Project for enactment or other use.

Microsoft Project is a common planning tool which is not based on an explicit meta-model.

MS Project meta-model is based on the project concept, which is described as a set of

tasks. These are ordered with links and assigned to different resources. The creation of a

project plan from a process model can be seen as a model transformation between SPEM

and MS Project meta-models. [Bez04]

The idea of models as exchanged artifacts may require model transformations. These

transformations can be carried out on projects and documents. Model transformations

provide the integration of different tools and expand the possibilities of model usage.

[Bez04]

7.4 Benefits and problems experienced with modeling

Modeling with EPF Composer presents benefits and problems which are now discussed

from a more practical point of view. The OpenMethod specific observations are introduced

in section 8.3.

The first major EPF version 1.0 was released on October 2nd, 2006 and the latest, 1.2, on

August 1st, 2007. There have also been three smaller releases between these and a 1.2.0.1

update on September 14th. During modeling, the version changed from 1.0.2 to 1.2. New

versions are compatible with the older ones, but the method content created with the new

7. Modeling process based on an existing model with EPF / SPEM

 66

EPFC cannot be read by an older version. The new versions convert the content to a new

format. With 1.0.2 version there were problems with the conversion if the content names

included Scandinavian letters, but version 1.2 did not seem to suffer from those.

The changes in EPF versions are easily adapted, and therefore no special training is

required for old EPFC users to use the new EPF Composer. Nevertheless, training or

support material is still needed for those users using the old (pre-EPF) model and for

process authors. The EPF-modeled version will probably look and feel different, but with a

proper mindset and attitude, other methods and materials with SPEM notations can be

easily understood.

Resource files for a custom language must be re-checked and installed separately for each

update. This should also be done when installing EPFC on a new computer. The easiest

way is to have a separate packet for the resource files for each EPFC version. This packet

can be installed after the EPFC installation to provide the desired language support.

The development community is strong and active at the moment, but if the EPF project

ends, what will happen to development? The latest version can be used and the content

improved, but possible bugs in EPFC itself will remain unfixed and tool development

stops. EPF is however, open source, which will enable other inspired contributors to

continue the work. The organizations using EPF may also continue to develop it to some

extent.

The rich text editor (even with the new EPFC 1.2 features) is rather simple, and making the

content visually convincing will probably require the use of direct modifications to the

HTML code or links to PDF or other presentation files. The publishing layout is also

simple and a tool should be developed to provide better customization and enhancements

to the layout. The style sheets should be chosen within the EPFC publishing tool instead of

modifying the published HTML or CSS pages afterwards. The design for different

browsers and resolutions should also be taken into account. Glossary and index pages are

also visually very simple.

Modeling of roles can be straightforward when modeling an existing model. Nevertheless,

the concepts must be clear when creating a new model or introducing the role. The role is

7. Modeling process based on an existing model with EPF / SPEM

 67

not an individual. One way to face this problem is to create a table mapping roles to job

positions, or to use the job position directly, especially in non-technical activities. This also

helps avoiding that they are too abstract. The work products cannot be separated into

output and input – the same instance exists in both cases. For example, ‘code’ is input but

also output to ‘testing’. There is no way to distinguish between these two, even if ‘code’ is

changed during ‘testing’. The same observation has been made by Gonzalez-Perez as he is

introducing the ISO/IEC 24744 meta-model [Gon07].

Let us now focus on some more specific problems and improvement issues regarding

EPFC 1.2. The following shortcomings were reported to Bugzilla and are waiting to be

fixed:

• No notation exists for specifying the direct relationships between tools and Work

Products, Tasks or Roles. Guidance must be added through Tool Mentors.

• Visual layout problems in diagrams in content with long names (e.g. the Finnish

term ‘järjestelmäsuunnittelija’); EPF Composer could support hyphenation

• Diagrams are saved in .JPEG format instead of lossless .GIF or .PNG

• For search capability, the page should be published as JAVA EE, but EPF doesn’t

include any guidance for this and the usage of the page

• Process pattern synchronization has to be done manually instead of automatically

There were also some other minor bugs which were reported and these will probably be

corrected soon. Some of the problems can be easily overridden; the image size is limited to

600x600 – this can be altered by directly editing the HTML code, disciplines are ordered

automatically – renaming with a starting letter overrides this. The documentation is also

continuously growing and being enhanced. The conclusion regarding EPF Composer is

that it still has some minor drawbacks, but it is continually being improved. Practically, the

tool is stabilized.

In this section, we have discussed some general modeling aspects, customization, and

specific problems observed when modeling with the EPFC tool. In the following chapter,

we will concentrate on the modeling of OpenMethod.

8. Modeling OpenMethodTM with EPF and SPEM 2.0

 68

8. Modeling OpenMethodTM with EPF and SPEM 2.0

In the previous chapter, we introduced modeling on a general level. In this chapter, we

discuss the reasons for modeling acquired from the user questionnaire, the timetable, the

modeling of OpenMethod with EPF and SPEM, and the OpenMethod user interviews.

More extensive and detailed information is found in the SD’s internal material.

8.1 Why model OpenMethod with EPF and SPEM?

In section 2.5, we introduced the reasons for modeling. The more specific arguments for

modeling with EPF and SPEM were introduced in section 6.1. These previously found

benefits and drawbacks can also be applied to modeling OpenMethod.

The specific reasons for OpenMethod modeling have been collected from interviews and

questionnaires. The interviews were conducted after the initial model and are introduced

with the benefits and challenges in section 8.4. In this section, the focus is on the

questionnaire made before the initial modeling of OpenMethod. The questionnaire was a

part of an OpenMethod user survey.

Answers to the questionnaire were received from over 160 people. Their roles included a

wide variety of professionals from project managers to developers and testers. One third of

the informants used OpenMethod as their primary methodology. Others mainly either used

customers’ methodologies or did not use any specific methodology at all. More than half of

the informants had used OpenMethod, primarily design and analysis, though other areas

were also applied. Over half of the informants used a methodology daily, weekly or at least

monthly. The following results were chosen based on importance and frequency.

The strengths of OpenMethod were considered to be as follows:

• Includes good, useful materials, guidance, templates, examples and check lists

• Coherent approach to development, provides credibility

• Works with bigger projects

• Practical and easy to approach compared to RUP, which provides only a framework

• Good support for tools, especially IBM/Rational

• No need for everyone to reinvent the wheel

8. Modeling OpenMethodTM with EPF and SPEM 2.0

 69

Drawbacks and needs for development were as follows:

• More focus needed on development phase, add best practices for CVS and ISM use

• Ability to use agile methodologies such as Scrum or XP with OpenMethod should

be added

• OpenMethod should be easily found and sufficient training should be available

• Merge of processes should be possible during organization integrations

• Process use in projects should be more standardized, while still allowing

customization

• The methodology should be easier to understand and use, and have a good focus

The process authors emphasized the importance of making the OpenMethod structure more

coherent (each author may have their own styles), and enhancements to usability and

maintenance. The SPEM standard will provide the required common concepts and

terminology. The linkage between elements and the management of up-to-date material

supporting CVS is also important. Adding the ability to customize the process for specific

needs and publish different versions should also be considered.

8.2 Modeling time table

The actual modeling took less than 80 hours. The meetings, background work, studying

EPF and knowledge work around the subject should also be considered. The whole thesis

project was started in January, 2007. The estimate was to finish before autumn and the

rough estimated time for the whole project was 500 hours. First the subject, main concepts

and focuses were chosen. The meetings, gathering of background materials, and their study

took most of the time. The actual modeling started in March, and at that time the focus was

on studying EPF and its usage. The modeling was finished at the beginning of June. The

actual time usage is shown in Figure 8.2.1.

The meetings, studying and other work should also be taken into account when estimating

the time needed to model OpenMethod completely. The creation of the modeling

instructions and other guidance materials was divided equally between the modeling and

thesis writing. The detailed estimations of the whole modeling work are depicted in the

internal materials. The modeling included parts of ‘analysis and design’ and ‘testing’. The

8. Modeling OpenMethodTM with EPF and SPEM 2.0

 70

OpenMethod structure was also modeled, including all roles and the introduction. This

provides a more extensive view of the possibilities of EPF and SPEM.

0

20

40

60

80

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Modeling

Writing Thesis

Other (Meetings, materials..)

Figure 8.2.1 – Working hours spent on thesis (2007)

The original estimations were well achieved. The time used for final improvements, checks

and proof-readings increased the whole time used. 610 hours were spent on the project and

the thesis was finished at the beginning of October, 2007.

8.3 Modeling OpenMethod

The modeling was started at the end of March. Before the actual modeling, several

meetings were held. In these meetings, the scope, reason and goals were defined. The

scope included modeling of the ‘design and analysis’ and ‘testing’ processes and

disciplines. To have a more in-depth comprehension of the model, it was also decided to

model the OpenMethod framework (skeleton). This included all the roles and a fully

functional tree browser (e.g. a navigational panel). The overall thesis schedule and

participants were applied to the modeling part, too.

The new model was constructed based on the current version of OpenMethod. The results

were frequently discussed with the process author. This part differs from the modeling

theory [Mäk07] covered in section 7.1. EPF Composer (see sections 5.2 and 6.4) was used

in the modeling process. Figures 8.3.1 (current OpenMethod) and 8.3.2 (modeled with

EPFC) show the differences in the main published view.

8. Modeling OpenMethodTM with EPF and SPEM 2.0

 71

Figure 8.3.1 – The original OpenMethod opening page (in Finnish)

Figure 8.3.2 – OpenMethod opening page modeled with EPF Composer (Finnish)

8. Modeling OpenMethodTM with EPF and SPEM 2.0

 72

The plug-in name. There can be
different methodologies (such as
Scrum) in the same view

Custom categories can include,
for example, publishing views
(e.g. the tree browser)

The Content Packages consist
of the basic SPEM building
blocks: Roles, Tasks, Work
Products and Guidance

Standard Categories are a flexible
way of defining groupings for
Content Categories

Both the original and the EPFC version are generated on a web page. EPFC version has

tabs in the tree browser, whereas in the original they are over the main frame. EPFC

version also has a ‘where am I?’ link to ease navigation, as well as easy printing, glossary,

and feedback functions. The method content in pages is structured into frames depending

on the content type (descriptions, relationships, etc) and can be expanded and collapsed.

The modeling began with the modeling of the roles, work products, tasks and guidance.

These were categorized to the appropriate packages in Method Content / Content

Packages. Figure 8.3.3 shows a compacted library view (the dots replace other method

content). To avoid long lists of tasks or work products, some content packages were

divided into smaller ones. Modeling the roles was rather straightforward. The general

information with presentation names and brief descriptions was added. The ‘detailed’ and

‘staffing information’ was not included in this initial model because ‘brief descriptions’

covered enough information for now. Some roles also required modifications, and it was

therefore decided to add the more detailed information later. The work products and

guidance were modeled in the same way. In guidance, however, some links to PDF files

were added to provide additional information, examples, or templates.

The tasks were modeled with the descriptions and the steps. The roles were linked to the

tasks as performers, the work products as inputs and outputs, and the guidance as guidance.

OpenMethod has more performer types and all these were added as additional performers.

Figure 8.3.3 – A part of the EPFC library view for the OpenMethod content

8. Modeling OpenMethodTM with EPF and SPEM 2.0

 73

Standard Categories
are used to group
method content

Tools used in the
development are introduced
here. Tool mentors describe
the specific use of a tool.
They are defined in method
content as guidance

The Custom Categories
are used here for the
‘views’ (e.g. for the
menu in the published
pages). The tabs in the
menu are the category
names and the content
below the tab is the
pages is the menu
content

As discussed in section 3.3, modeling is fundamentally an SPI activity. The goal was not

only to gain experience of EPF Composer, SPEM 2.0, and the modeling process, but also

the process improvement. Descriptions of the method content were updated and

standardized. There were also some obsolete roles so the role structure needed to be

simplified. With an up-to-date and clear content linkage, the mistakes with content

couplings were also easier to find.

After the content packages were completed, the next task was the categorization of content

into Standard Categories (see Figure 8.3.4). Disciplines for ‘analysis and design’ and

‘testing’ were created and the appropriate tasks and guidance were added. ‘Analysis and

design’ was actually defined as a discipline grouping and divided into smaller disciplines

to avoid long lists of tasks and to ease the categorization. Grouping was rather

straightforward as the current OpenMethod was well categorized and EPFC used the same

logic in its categorization.

Figure 8.3.4 – EPFC library view of the Standard and Custom Categories

8. Modeling OpenMethodTM with EPF and SPEM 2.0

 74

Processes consist of reusable
Capability Patterns and the
Delivery Processes defining
the complete approach

Configurations are used to
create customized publications
of the method content and the
processes

Next ‘analysis and design’ and ‘testing’ domains were added with the appropriate work

products. A role set with all the roles was added to ‘Role Sets’ and a separate ‘Role Set

Grouping’ was created with roles belonging to each discipline. Tools were completed with

the most used tools. These tools were linked to the tool mentor guidance. After the concept

of organizing content had been well understood, this work was done rather easily.

Customer Categories and the idea of the views were a bit difficult to understand at first.

Custom categories can be used to create any method content. Other content can also be

assigned to them. One fundamental use of custom categories is to create views (e.g. the

tree browser or the menu) of the published content (see Figure 8.3.4). Icons can be freely

selected for the items to clarify the content type. Two custom categories were created for

the tree browser. One was for main contents and the other one concerned processes.

Custom categories for the views can be selected in configurations. They are discussed in

more detail later in this chapter.

After the method content was modeled, main focus was shifted on the process content (see

Figure 8.3.5). Processes are divided into Capability Patterns and Delivery Processes. A

Capability Pattern (Process Pattern) is a reusable building block for creating new

development processes. A Delivery Process is a special Process describing a complete and

integrated approach for performing a specific project type. As the creation of a Delivery

Process would require method content from various disciplines, two Capability Patterns

were modeled instead of creating a Delivery Process. A Delivery Process could be later on

created from the Capability Patterns and the process would consist of several disciplines.

Figure 8.3.5 – EPFC library view of the Processes and Configurations

8. Modeling OpenMethodTM with EPF and SPEM 2.0

 75

Capability patterns for ‘analysis and design’ and ‘testing’ were created. As each of the

tasks was only from one discipline, adding the method content was simple. The processes

were divided into phases ending with a milestone. The diagrams were modified a bit to

evaluate the capabilities of the diagram editor. The processes would require more studies in

order to directly use them in real-life projects (e.g. enacting to MS Project, etc.) Now the

processes act as a general overview and express the possibilities of EPF Composer.

Method configurations (see Figure 8.3.5) are the basis for publishing method content and

processes. Management of the configurations allows the user to select the working sets of

content and processes for a specific project. As the content and processes are organized

into plug-ins which are further organized into method packages, the configuration is

simply a selection of the required plug-ins and packages. The same library can contain, for

example, material for the whole process lifecycle, but publishing could be done for the

‘analysis and design’ phase only. The configurations can also be used to create customer

specific publications which replace or extend the base material.

The OpenMethod configuration was created with all the previously created OpenMethod

content. Views were added to this configuration from Custom Categories. An extra

configuration for ‘Customer X’ was also created with some of the tasks replacing and

extending the basic OpenMethod content. This was done for testing the content variability.

When all the method and process content had been modeled, it was time to evaluate

publishing. Note that the content was added iteratively and publishing was initially done

quite often to study the usage of EPFC. The contents can be previewed in the Authoring

perspective, and browsed in the Browsing perspective. Publishing the configuration

generates the HTML pages which present all the method content and processes of the

particular configuration. In most cases, the default publishing options were used. Various

options were tried for testing different layouts and the OpenMethod logo was used as the

banner image.

The published opening page of OpenMethod can be seen in Figure 8.3.2. The first problem

with the published pages was the language difference; the content was modeled in Finnish,

but EPFC element names were in English. The required language changes were made to

several properties files. This way the whole publishing version could be in Finnish. EPFC

8. Modeling OpenMethodTM with EPF and SPEM 2.0

 76

includes the native language support (packets NL1, NL2, NL2a) and there is a framework

for the Finnish language in packet NL2a. This should be used when using Finnish language

with EPFC to a greater extent. The language properties should, however, be checked

during the installation of a new EPFC version and when installing EPFC on a new

computer.

8.4 Modeling results

Overall the real modeling activity followed closely the theory of modeling covered in

section 7.1. The main difference was the concentration on the initial model with the

process author and iterating at the beginning. The interviews were done at the end and the

suggestions and observations at that point were mostly on a general level.

A part of the model was stored on a Subversion repository, but the actual team work for

method authoring was not performed any further. The repository itself seemed to work fine

and there is a lot of experience of authoring using a version control system in the EPF

community.

The capabilities of EPFC (section 6.4) and the sufficiency of SPEM 2.0 meta-model

(section 6.5) were suitable for this modeling project. The general benefits and problems

experienced (section 7.4) can be applied also to this specific OpenMethod modeling. The

problems tended to be mainly minor layout issues. Method content should be modeled

more to have a better understanding on the modeled processes and of the use and

capabilities of diagrams. The enactment of the process and usability with tools like MS

Project would also require more material.

The differences with the original OpenMethod and the published EPFC version are clear.

The content is linked in the EPFC version and is therefore more consistent. The layout of

publishing is fixed, but can be easily modified to some extent with the changes to style

sheets. Some of the colors were changed mainly for testing the layout possibilities and to

make the published pages more different from the default EPFC publishes. The EPFC

publish includes by default also a page printing possibility; glossary, index and feedback

features are optional. A significant amount of the original method content is guidance,

which is in PDF or Word format. These remained the same in the EPFC published version.

8. Modeling OpenMethodTM with EPF and SPEM 2.0

 77

The main benefits which I noticed with EPF Composer and the new model were

customization, good content management, a coherent layout, and the possibilities enabled

through SPEM 2.0 and the future tools supporting it. The challenges were familiarizing

with the new tool, Finnish language support, and the long-term adaptation of the new

model.

Now we have covered the modeling part as a proof of concept of the EPFC and SPEM

modeling. The goals of the OpenMethod research depicted in the introduction were

achieved: creation of method and process content, customization, and the usage of a CVS

repository. When the tool was properly studied and its usage was well-known, modeling

was done rapidly. There were also some improvement issues which were discussed with

the process author. These are explained in the internal material in more detail.

8.5 User interviews and discussion

After the OpenMethod was modeled with EPFC to the necessary level, user interviews

were conducted to obtain comments and suggestions for the new model. The goal of these

interviews was to present the new model to some OpenMethod users, to receive further

suggestions and user experiences of the new model usage, and to make the final

adjustments to the model.

The target group was wide. Even if the number of interviewees was only five, they covered

regular OpenMethod users, developers (e.g. method authors) and trainers. Each

interviewee received a packet containing the EPFC published version of OpenMethod,

usage instructions, links to the EPF material, and several warm-up questions. The

questions were about OpenMethod experience, positive and negative comments about the

published version, and the EPF Composer tool. There were also questions about the usage

of MS Project.

Each of the actual interviews lasted for approximately one hour. At the beginning, there

was a brief introduction to the topic, EPF Composer, and the published version. Not all the

interviewees had had sufficient time to familiarize themselves with the materials packet. In

these cases, some extra time was spent on this in the introduction. The discussion then

8. Modeling OpenMethodTM with EPF and SPEM 2.0

 78

continued and focused on the most important concerns depending on the interviewees’

interest and expertise. The questions included the following:

• How much do you use OpenMethod and which parts of it?

• What features are better in the new model?

• What are the challenges in the new model?

• How can OpenMethod be improved?

• What are the benefits and drawbacks of using the EPF Composer?

• Do you have any other ideas or suggestions?

The answers were discussed with the interviewees and the main observations were

collected. The interviews produced good material and new ideas since each of the

interviewees had a different point of view, although additional or longer interviews could

naturally have yielded more information. The interviews were scheduled ad-hoc, which led

to some cancellations.

Let us now introduce the benefits and challenges observed. The observations shown are the

topics that came up most frequently and were considered most relevant. As the

questionnaire could be considered to be a pre-study to the modeling, the interviews reflect

the changes in the models.

According to the interviewees, the main benefits were the following:

• The layout of the new model corresponds to the old; adaptation for old users to use

the new version should be rather straightforward

• The layout is more consistent and clearer

• Rational Software Modeler is also built on Eclipse, which eases the EPFC use

• Support for MS Project will add value to the model

• Good support for centralized knowledge management and version control

• Potential for development, but requires commitment

• Publishing allows customization for different situations (projects and customers)

• Links to other method content make it easier to find material

• EPFC handles the changes to content and automatically keeps the links up-to-date

• Ability to extend OpenMethod with other methodologies

8. Modeling OpenMethodTM with EPF and SPEM 2.0

 79

The main challenges were the following:

• The content must be well categorized and easily found; the ‘hyperlink jungle’ of

RUP should be avoided

• Old users are used to the current views; a new mindset with links must be adopted

• The multiple features of EPFC can make it complicated

• Possible problems which are not observed in a smaller model may arise later

• An exact and detailed process model is hard to follow in software development

• Making the users utilize EPFC and the published method content in their actual

work

• Making users actively update the content and keep it up-to-date

• Confirming that the published version contains all the desired content

The questionnaire, observations made during the study and the interviews all yielded

similar results. The new model brings possibilities which overcome the challenges. The

main challenge is not about how good the model is in theory or how versatile the process

authoring tool is, but rather how people will use them in practice. If the users do not know

that the methodology exists or do not believe in it, they will naturally be reluctant to use it.

Similar conclusions are also made by other authors [Wes05, Ayd07, Mir07], and Bajec

[Baj07] summarizes the reasons for low real practical use of methodologies to inflexibility

of methodologies and their social inappropriateness. It therefore seems to be a common

challenge to have good implementation of a new process. Though the tool itself is not

difficult to use, its implementation requires a good overall educational strategy. The

support for the methodology must be provided through its whole lifetime and user

feedback and experience should be used to continuously improve it. This also acts as a

signal to the users that their contribution is valued and results in action.

The method engineer’s view is not the only important view. The end-user’s view should be

also considered. A regular user might not be interested in SPEM, but rather wants an easy

user interface and a familiar layout. Method and process content should be easily found

and used. These arguments must also be considered by the method engineer. The

organizations may also require the published versions to be visually stylish. This should be

more carefully considered in the EPF Composer tool.

9. Conclusions and Summary

 80

9. Conclusions and Summary

This thesis began with a general introduction to processes, models and the differences

between the traditional and agile approaches. The idea behind software process

improvement was then discussed and an overview was provided of some of the best known

methodologies. All these responded to the general questions of the introduction. After this

background knowledge, the focus was shifted to the Eclipse Process Framework Composer

tool, the meta-model SPEM 2.0, and their usage and capabilities.

The main research question is how Eclipse Process Framework and SPEM 2.0 will

improve process modeling and model usage. This was discussed in the previous chapter,

while in chapter seven the discussion was on a more general level. To summarize the

results, we have the following improvements: good method content management with

version control support, the standardized meta-model allows combination with other

methodologies and tools, easy customization for specific needs, and enactment support

provides the use of project tools such as MS Project and thus connects processes to real-

life project use. The modeling process itself will also improve the original process when

conducted in an appropriate manner. In this way, focusing on collection and real use of

method content and process data will be much more beneficial for an organization than

redefining the processes. As to the traffic analogy, the successful adaptation of the new

model finally results in more efficient, cheaper and environmentally friendly traffic.

There are several challenges with the EPF and SPEM. Modeling takes time and requires

commitment to use all the potential of the tool and the meta-model. The users should find

it easier to work with the new model and tools than without them. The support for Finnish

language requires a small amount of extra work. There might also be unexpected problems

which cannot be evaluated with a limited model and usage. The productivity vs. time curve

(Figure 3.3.2) will now be reaching a rather low point before beginning its upward climb.

The Eclipse platform is widely used and the EPF project will most likely continue to be

successful as it is also tightly connected to IBM and the Method Composer with the

Rational Unified Process. SPEM 2.0 has also been noticed, as discussed in section 6.3.

Both EPF and SPEM 2.0 have already been used by several vendors. Tools such as Wilos

have a direct impact on the practical usage of EPFC process models in projects.

9. Conclusions and Summary

 81

The research was successful and its goals were accomplished well. There are several areas

of research that can be followed up on after this thesis. Future work could include the

studies of handling the complete OpenMethod with the EPFC tool, and the users’ real

long-term practical interest in and usage of the method content and the process models.

Other areas that need to be further explored are the combinations of different method and

process content (e.g. OpenMethod and Scrum), the more versatile customizations in the

layout of the publications, and the use of maturity models (CMMI and SPICE) with the

modeling. The possibility of project wizards, which could select the appropriate roles (or

persons), methods, etc. for specific projects, is also an interesting topic for a study.

It is important to follow the evolvement of the EPF community and the usage of EPF and

SPEM 2.0 in other projects. The discussion between traditional and agile methodologies

will continue and the results depicted with real projects are important.

The development around EPF and SPEM 2.0 will be active. This is pioneer work with the

advantage of being at the top, but also having to challenge the risks of the unknown.

References

 82

References

Books

[Bec03] Becker, J., Kugeler, M., Rosemann M. (2003), “Process Management: A

 Guide for the Design of Business Processes”, Springer-Verlag Berlin and
 Heidelberg GmbH & Co.

[Ele98] El Eman, K., Drouin, J., Melo, W. (1998), “SPICE: The Theory and Practice

 of Software Process Improvement and Capability Determination”, IEEE
 Computer Society, Los Alamitos, California.

[Hai00] Haikala, I., Märijärvi, J. (2000), ”Ohjelmistotuotanto”, 7. painos, Talentum

Media Oy.

[Kos99] Koskinen, M. (1999), “A Metamodelling Approach to Process Concept

Customisation and Enactability in MetaCASE”, Jyväskylä University
Printing House, Jyväskylä.

[Kni07] Kniberg, H. (2007), “Scrum and XP from the Trenches”, InfoQ Enterprise

Software Development Series.

[Lan05] Lankhorst, M. (2005), “Enterprise Architecture at Work: Modelling,

Communication, and Analysis”, Springer.

[Lar03] Larman, C. (2003), “Agile and Iterative Development: A Manager’s Guide”,

Addison-Wesley Professional.

[Mar03] Martin, R. (2003), “Agile Software Development: Principles, patterns, and

practices”, Prentice Hall, Pearson Education.

[Mil06] Milovanov, L. (2006), “Agile Software Development in an Academic

Environment”, PhD thesis, TUCS Dissertations, No 81, December 2006.

[OOSE04] Bruegge B., Dutoit A. (2004), “Object-Oriented Software Engineering Using

 UML, Pattern and Java”, International Edition, Pearson Education.

[Sch05] Schönström, M. (2005), “A Knowledge Process Perspective on the

Improvement of Software Processes”, Doctoral Dissertation, Lund
University.

[Wie05] Wiegers, K. (2005), “Software Process Improvement Handbook: A Practical

Guide”, Process Impact.

Articles and other publications

[Abr02] Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J. (2002), ”Agile software

development methods. Review and analysis”, VTT Publications, Espoo.

References

 83

[Abr03] Abrahamsson, P., Warsta, J., Siponen, M., Ronkainen, J. (2003), ”New

Directions on Agile Methods: A Comparative Analysis”, Proceedings of the
International Conference on Software Engineering, May 3-5, 2003, Portland,
Oregon, USA.

[Ayd07] Aydin, M. (2007), “Examining Key Notions for Method Adaptation”, IFIP

WG8.1 Working Conference on Situational Method Engineering:
Fundamentals and Experiences (ME07), Geneva, Switzerland.

[Bad05] Baduino, R. (2005), “Basic Unified Process: A process for Small and Agile

projects”, IBM.

[Baj07] Bajec, M., Vavpotic, D., Furlan, S., Krisper, M. (2007), ”Software Process

Improvement Based on the Method Engineering Principles”, IFIP WG8.1
Working Conference on Situational Method Engineering: Fundamentals and
Experiences (ME07), Geneva, Switzerland.

[Bec07] Becker, J., Knackstedt, R., Pfeiffer, D., Janiesch, C. (2007), “Configurative

Method Engineering – On the Applicability of Reference Modeling

Mechanisms in Method Engineering”, Proceedings of the 13th Americas
Conference on Information Systems (AMCIS 2007). Keystone, CO, USA.
2007. S. 1-12.

[Ben05] Bendraou, R., Gervais, M., Xavier, B. (2005) “UML4SPM: A UML2.0-Based

Metamodel for Software Process Modeling”, MoDELS 2005, LNCS 3713,
pp. 17-38.

[Bez04] Breton E., Bézivin, J. (2004), “Applying The Basic Principles of Model

Engineering to The Field of Process Engineering”, CEPIS, UPGRADE, The
European Journal for the Informatics Professional V(5):27—33

[Bez07] Bézivin, J., Barbero M., Jouault F. (2007), “On the Applicability Scope of

Model Driven Engineering”, 4th International Workshop on Model-based
Methodologies for Pervasive and Embedded Software (MOMPES 2007),
University of Nantes, France.

[Boe03] Boehm, B., Turner, R. (2003), “Observations on Balancing Discipline and

Agility”, Agile Development Conference, Utah.

[Bre00] Breton E., Bézivin, J. (2000), “An Overview of Industrial Process Meta-

Models”, 13th International Conference Software & System Engineering and
their Applications, Paris, France.

[Bre02] Breton E., Bézivin, J. (2002), “Weaving Definition and Execution Aspects of

Process Meta-Models”, Annual Hawaii International Conference on System
Sciences (HICSS'02)-Volume 9

[Bör04] Börjesson A., Mathiassen L. (2004), ”Successful Process Implementation”,

IEEE Software, IEEE Computer Society.

References

 84

[Cas07] Castro-Herrera, C. (2007), “Towards a unified Process for Automated

Traceability”, Master’s Thesis, Center for Requirements Engineering, DePaul
University, Chicago, USA.

[Coc00] Cockburn, A. (2000), “Selecting a Project’s Methodology”, IEEE software

July/August 2000, 64-71.

[Gom05] Gomes, A., Stüeken, J., Saeed, S. (2005), “A Study of Rational Unified

Process”, Blekinge Institute of Technology, Sweden.

[Gon07] Gonzalez-Perez, C. (2007), “Supporting Situational Method Engineering with

ISO/IEC 24744”, IFIP WG8.1 Working Conference on Situational Method
Engineering: Fundamentals and Experiences (ME07), Geneva, Switzerland.

[Dej06] Dejong, J. (2006), “Taking the Rational Out of RUP – Two unified processes,

OpenUP and EssUP, streamline practices”, SD Times, November 1, 2006.

[Hen04a] Henderson-Sellers, B., Serour M., McBride T., Gonzalez-Perez C., Dagher L.

(2004), “Process Construction and Customization”, Journal of Universal
Computer Science, vol. 10, no. 4 (2004), 326-358.

[Hen04b] Henderson-Sellers, B., Gonzalez-Perez, C. (2004), “A comparison of four

process metamodels and the creation of a new generic standard”, University
of Technology, Sydney, Australia.

[Hen06a] Henderson-Sellers, B. (2006), “SPI – A Role for Method Engineering”,

University of Technology, Sydney.

[Hen06b] Henderson-Sellers, B., Cossentino, M., Seidita, V. (2006), “A metamodelling-

based approach for method fragment comparison”, Eleventh International
Workshop on Exploring Modeling Methods in Systems Analysis and Design.

[Jaf05] Jaferian, P., Elahi, G., Shirazi, M., Sadeghian, B. (2005), ”Extending

Business Modeling and Requirements Disciplines of RUP for Developing

Secure Systems”, EUROMICRO-SEAA’05.

[Jeu07] Jeusfeld, M. (2007), “Partial Evaluation in Meta Modeling”, IFIP WG8.1

Working Conference on Situational Method Engineering: Fundamentals and
Experiences (ME07), Geneva, Switzerland.

[Joh04] Johnson, M. (2004), “A Case Study in Balanced Software Process

Development”, Turku Centre for Computer Science, TUCS Technical
Report, No 599, March 2004.

[Jär07] Järvi, A., Hakonen, H., Mäkilä T. (2007), ”Developer Driven Approach to

Situational Method Engineering”, IFIP WG8.1 Working Conference on
Situational Method Engineering: Fundamentals and Experiences (ME07),
Geneva, Switzerland.

References

 85

[Jär06] Järvi A., Mäkilä T., Hakonen H. (2006), ”Changing Role of SPI –

Opportunities and Challenges of Process Modeling”, Proceedings of the 13th
European Conference on Software Process improvement (EuroSPI 2006),
Joensuu, Finland.

[Jär05] Järvi, A., Mäkilä, T. (2005), ”Observations on Modeling Software Processes

with SPEM Process Components”, Proceedings of The 9th Symposium on
Programming Languages and Software Tools.

[Kel07] Kelly, S. (2007), “Domain-Specific Modeling: The Killer App for Method

Engineering?”, IFIP WG8.1 Working Conference on Situational Method
Engineering: Fundamentals and Experiences (ME07), Geneva, Switzerland.

[Kos03] Koskela, J. (2003), “Software configuration management in agile methods”,

Espoo 2003, VTT Publications 514, 54 p.

[Kru01] Kruchet, P. (2001), “A Process Engineering Metamodel”, Rational Software.

[Lev05] Levine, L. (2005), “Reflections on Software Agility and Agile Methods:

Challenges, Dilemmas, and the Way Ahead”, SEI, Carnegie Mellon
University, Pittsburgh.

[Mir07] Mirbel, I. (2007), “Connecting method engineering knowledge: a community

based approach”, IFIP WG8.1 Working Conference on Situational Method
Engineering: Fundamentals and Experiences (ME07), Geneva, Switzerland.

[Moo06] Moor, A., Delugach, H. (2006), “Software Process Validation: Comparing

Process and Practice Models”, Proceedings of the Workshop on Exploring
Modeling Methods for Systems Analysis and Design (EMMSAD'06).

[Mäk07] Mäkilä, T., Järvi, A., Milovanov, L. (2007), ”Light-weight Approach for

Software Process Modeling – A Case Study”, In New Exploratory
Technologies 2007, Oct 2007.

[Mäk06] Mäkilä, T., Järvi, A. (2006), “Spemmet – A Tool for Modeling Software

Processes with SPEM”, Proceedings of the 9th International Conference on
Information Systems Implementation and Modelling, ISIM '06.

[Ner05] Nerur, S., Mahapatra, R., Mangalaraj, G. (2006), “Challenges of Migrating to

Agile Methodologies”, Communications of the ACM, May 2005/Vol. 48, No
5.

[Nia06] Niazi, M. (2006), “Software Process Improvement: A Road to Success”,

PROFES 2006, LNCS 3034, pp. 395-401.

[Ram06] Ramsin, R. (2006), “The Engineering of an Object-Oriented Software

Development Methodology”, Submitted for the degree of Doctor of
Philosophy, York, UK.

References

 86

[Rei07] Reinhartz-Berger, I., Aharoni, A. (2007), “Representation of Method

Fragments: A Domain Engineering Approach”, Proceedings of the
Workshop on Exploring Modeling Methods for Systems Analysis And
Design 2007.

[Sch07] Schwaber, K. (2007), “What is Scrum?”, Scrum Alliance.

[SPEM2.0] Object Management Group (2007), “Software & Systems Process

Engineering Metamodel Specification, version 2.0”, Proposed Available
Specification ptc/2007-08-07.
http://www.omg.org/docs/ptc/07-08-07.pdf

[SPEM2.0a] Object Management Group (2007), “Software Process Engineering

Metamodel Specification, version 2.0”, Final Adopted Specification ptc/07-
03-03.
http://www.omg.org/docs/ptc/07-03-03.pdf

[SPEM1.1] Object Management Group (2005), “Software Process Engineering

Metamodel Specification, version 1.1”, format/05-01-06.
http://www.omg.org/docs/formal/05-01-06.pdf

[Wes05] Westerheim, H. (2005), “The Introduction and Use of a Tailored Unified

Process – A Case Study”, EUROMICRO-SEAA’05.

[Zhu07] Zhu, L., Staples, M. (2007), “Situational Method Quality”, IFIP WG8.1

Working Conference on Situational Method Engineering: Fundamentals and
Experiences (ME07), Geneva, Switzerland.

Web pages

[AGILE07] Manifesto for Agile Software Development
 http://agilemanifesto.org/

Accessed on October 2nd, 2007.

[Amb06] Ambler, S. (2006), “History of the Unified Process”

http://www.enterpriseunifiedprocess.com/essays/history.html
Accessed on October 2nd, 2007.

[Bar07] Barnett, L. (2007), “Making Sense of the (Too) Many Agile Processes”, Agile

Journal, 6.5.2007.
 http://www.agilejournal.com/articles/from-the-editor/making-sense-of-the-

%28too%29-many-agile-processes/
 Accessed on October 2nd, 2007.

[Bro03] Brown, P., Szefler, M. (2003), “BPEL for Programmers and Architects”,
 http://www.bptrends.com/publicationfiles/BPEL4ProgArchies.pdf
 Accessed on October 2nd, 2007.

References

 87

[Dict07] Dictionary.com
 http://www.dictionary.com
 Accessed on October 2nd, 2007.

[ECL07] Eclipse – an open development platform homepage
 www.eclipse.org
 Accessed on October 2nd, 2007.

[EPF07] Eclipse Process Framework Project homepage

www.eclipse.org/epf/
Accessed on October 2nd, 2007.

[EPFRel07] Eclipse Process Framework Project, “EPF 1.2 Release Review”.
 http://www.eclipse.org/projects/slides/EPF_1-2_Release_Review.pdf
 Accessed on October 2nd, 2007.

[EclPC] Eclipse Plug-in Central

http://www.eclipseplugincentral.com/Web_Links-index-req-viewcatlink-cid-
878.html
Accessed on October 2nd, 2007.

[EPFW07] EPF Wiki
http://www.epfwiki.net/
Accessed on October 2nd, 2007.

[Gra02] Graham, D. (2002), “The Forgotten Phase”, Development Tools, Dr. Dobb’s

Portal.
 http://www.ddj.com/development-tools/184414873
 Accessed on October 2nd, 2007.

[Hau05] Haumer, P. (2005), “IBM Rational Method Composer: Part1: Key

Concepts”, developerWorks, IBM.
 http://www-128.ibm.com/developerworks/rational/library/dec05/haumer
 Accessed on October 2nd, 2007.

[Hau07a] Haumer, P. (2007), “Eclipse Process Framework Composer, Part 1: Key

Concepts”, Eclipse Process Framework homepage.
 http://www.eclipse.org/epf/general/EPFComposerOverviewPart1.pdf
 Accessed on October 2nd, 2007.

[Hau07b] Haumer, P. (2007), “Eclipse Process Framework Composer, Part 2:

Authoring method content and processes”, Eclipse Process Framework
homepage.

 http://www.eclipse.org/epf/general/EPFComposerOverviewPart2.pdf
 Accessed on October 2nd, 2007.

[Kro07a] Kroll, P. (2007), “Who will benefit from the Eclipse Process Framework”.

http://www.eclipse.org/proposals/beacon/Who%20will%20benefit%20from
%20Eclipse%20Process%20Framework.pdf
Accessed on October 2nd, 2007.

References

 88

[Kro07b] Kroll, P. (2006), “Eclipse Process Framework – Open Source Initiative”.
http://www.eclipse.org/epf/community/Eclipse%20Process%20Framework-
%20An%20Open%20Source%20Process%20Initiative%20by%20Per%20Kr
oll.ppt
Accessed on October 2nd, 2007.

[Mal05] Malloy, E. (2005), “Interactive Internet – Welcome Wiki Technology”,

Blizzard Internet Marketing inc. Newsletter.
 http://newsletter.blizzardinternet.com/featured-article-3/2005/08/15/
 Accessed on October 2nd, 2007.

[Ose07] Osellus Incorporated, (2007)

http://www.osellus.com/
Accessed on October 2nd, 2007.

[RUP701] Rational Unified Process 7.0.1 -materials on IBM web-page
 http://www-306.ibm.com/software/awdtools/rup/
 Accessed on October 2nd, 2007.

[Kro03] Kroll, P. (2003), “The RUP: An industry-wide platform for best practices”,

The Rational Edge,
 http://www.ibm.com/developerworks/rational/library/873.html
 Accessed on October 2nd, 2007.

[San07] Serqi Santos, S. (2007), “Comparing the Rational Unified Process (RUP)

and Microsoft Solutions Framework (MSF)”.
http://www.ibm.com/developerworks/rational/library/apr07/santos/index.html
Accessed on October 2nd, 2007.

[SD07] Commercial advertisements and Webpage information.
 http://www.sysopendigia.com

Accessed on October 2nd, 2007.

[SEI07] Software Engineering Institute, Carnegie Mellon University
 http://www.sei.cmu.edu/ideal/
 Accessed on October 2nd, 2007.

[SPICE] Software Process Improvement and Capability dEtermination
 http:/www.sqi.gu.edu.au/spice/
 Accessed on October 2nd, 2007.

[Wik07] Wikipedia, “Wiki”,
 http://en.wikipedia.org/wiki/Wiki
 Accessed on October 2nd, 2007.

[Wil07] Wilos Is a cLever Process Orchestration Software (Wilos)
 http://www.wilos-project.org/drupal/

 Accessed on October 2nd, 2007.

References

 89

[YAWL07] Wawl, Yet Another Workflow Language

 http://www.yawl-system.com

 Accessed on October 2nd, 2007.

[You06a] Eggtronic Team Process Video (2006)

http://www.youtube.com/watch?v=wML90z2hmZ0

 Accessed on October 2nd, 2007.

Other

[Abr05] Abrahamsson, P. (2005), “Agile Software Development: Introduction,

Current Status & Future”, Introduction to Software Engineering 2005 course
material, Jyväskylä.

[CMMI07] Capability Maturity Model Integration Version 1.2 Overview, Software

Engineering Institute, Carnegie Mellon University.

[Elv06] Elvesæter, B. (2006), “Method engineering for software development and

integration”, Lecture #7, SINTEF ICT.

[Fir06] Firesmith, D. (2006), ”Method Engineering using OPFRO”, EuroSEPG

2006.

[Hai07] Haikala, I. (2007), “Ohjelmistotuotannon menetelmät, kevät 2007”, course

material,
 http://www.cs.tut.fi/~otm/
 Accessed on October 2nd, 2007.

[Hau06] Haumer, P. (2006), “Second Revised SPEM 2.0 Submission”, OMG Meeting,

St. Louis.

[Hau07c] E-mail discussion with Haumer, P., September, 2007.

[IT07] ‘IT-viikko’ magazine, (2007), “Ketteryys kiinnostaa”, April 12th, 2007.

[Kil07] Kilpivuori, T. (2007), “Impact of technology and technical methods on

informations systems, and their parties and to their processes”, Master’s
Thesis, University of Turku.

[Lju04] Ljungqvist, P. (2004), “Tailored CMMI Software Process Assessment”,

Master's Thesis, Åbo Akademi University.

[Man07] Mantell, K. (2007), “CMMI and IBM Rational Unified Process: A practical

route to greater development maturity”, “CMMI Made Practical”, London,
19-20th March, 2007

References

 90

[Mol06] Molesini, A. (2006), “Agent Oriented Software Engineering”, Alma Mater
Studiorum, Universitá di Bologna.

[Oja03] Ojala, A. (2003), “Hallittu järjestelmäkehitys, laadukas lopputulos?”, OUGF

Spring Seminar.

[OpenUP] OpenUP 1.0, publish created on 1.8.2007.

[OpenUPa] OpenUP 1.0, publish created on 1.8.2007, uma_vs_rup concept.

[OT07] Järvi, A., Alhoniemi, E. (2007), ”TKO_5353 Ohjelmistotuotanto”, course

material, University of Turku.

[PRO00] Probasco, L. (2000), “The Ten Essentials of RUP: The Essence of an

Effective Development Process”, Rational Software White paper.

[RMC06] IBM Rational Method Composer, Rational Software White paper.

[Rub05] RubyTurtle (2005), “Microsoft Methodologies: An overview”, A RubyTurtle

Whitepaper.

[Sal03] Salonen, T. (2003), ”Application of Extreme Programming in Software

Development”, Final Theses, Turku Polytechnic.

[SSE07] Järvi, A., Mäkilä, T. (2007), ”Seminar on the Software Development

Processes 2007”, University of Turku.
 http://users.utu.fi/tusuma/SPI/
 Accessed on October 2nd, 2007.

[Sue04] Suen, V. (2004), “SPEM Overview”, Osellus Webinar series.

[Ter06] Tervonen, I. (2006), “Ohjelmistotekniikka – Luento 2”, University of Oulu.

Appendix A: SPEM icons with explanations

 91

Appendix A: SPEM icons with explanations

Name Description Icon

Activity An Activity represents something that one or more roles perform. It is a
grouping of nested process elements (e.g. Breakdown Element) such as
other Activity instances, Task Uses, Role Uses, Milestones, etc. Phases and
Iterations are special Activities which have predefined attribute values.

Activities are one of the fundamental concepts for defining processes.
Activities are related to timelines and instances of specific Breakdown
Element instances can define different relationships and textual
documentation properties for occurrences in different activities.

For example, a SPEM 2.0 user creates two instances of a Role Uses that
represent a Role Definition called “System Designer” for two different
activities. In both of the activities the same Role Definition “System
Designer” could be modeled with different relationships such as different
responsibilities for Work Products to represent the fact that the System
Designer has to focus on different responsibilities in different activities (e.g.
he might be responsible for different work product in an early phase of a
project than in a later phase; with phases modeled as Activities).

Breakdown
Element

A Breakdown Element is any element that is part of the process structure.

-

Delivery
Process

A Delivery Process is a special Process describing a complete and integrated
approach for performing a specific project type. It describes a complete
project lifecycle end-to-end that has been detailed by sequencing Method
Content in breakdown structures.

A Delivery Process is defined on the basis of experience with past projects
or engagements, and the best practice use of a development or delivery
approach. It can be used as a template or reference for planning and running
projects with similar characteristics as defined for the process.

For example, a process engineer can define alternative Delivery Processes
for software development projects that differ in the scale of the timetable,
engagement and staffing necessary, the type of the software application to
be developed, the development methods and technologies to be used, etc.

Discipline A discipline is a collection of related tasks that define a major ‘area of
concern’.

Categorization of work based upon similarity of concerns and cooperation
of work effort is an effective way to organize content, which makes
comprehension easier. It works as an aid to understand the project from
traditional waterfall perspective as it is common to perform tasks
concurrently across several disciplines. For example, test tasks can be
performed in close coordination with implementation and even during
analysis and design tasks.

Every discipline also defines ways of working. Capability patterns are used
to show how the tasks categorized by the discipline work together in the
most generic way. These are often used for educating and teaching
practitioners and it helps users to understand the whole process by breaking
it into smaller areas of concern.

(Icon used
with EPF)

Appendix A: SPEM icons with explanations

 92

Name Description Icon
Guidance Guidance is a Describable Element that provides explanations and

additional information related to other Describable Elements.

The particular Guidance should be classified with Kinds that indicates a
specific type of guidance having a specific structure and type of content.
Examples for Kinds for Guidance are Guidelines, Templates, Checklists,
Tool Mentors, Estimates, Supporting Materials, Reports, Concepts, etc.

Milestone Development processes consist of sequences and milestones. Milestone
describes a significant event in development – it is the point where an
iteration or phase formally ends. This provides a check-point for whether
the process is ready to move forward.

Phase Phase is a significant period within a development process. During phase, a
well-defined set of objectives is met and the phase ends with a major
management checkpoint, milestone.

Process Processes use content elements to relate them into partially ordered
sequences that are customized to specific projects. A process focuses on the
lifecycle and the sequencing of work in breakdown structures.

Process
Pattern
(Capability
pattern)

A process pattern is a reusable building block for creating new development
processes - Delivery Processes or larger Process Patterns. It describes a
cluster of Activities that provides a consistent approach to common
problems. This cluster has process knowledge for example of a discipline.

Process pattern supports copy and modify operations, which allows the
process engineer to customize the pattern’s content according to specific
needs. Patterns can also be used though the Activity Use mechanism. In this
way the activities can be factored out into patterns and used over and over in
a process. When the pattern is updated, all changes will automatically be
reflected in processes that applied that pattern.

Process patterns are suitable for Agile Development where the project does
not exactly follow a process, but rather works flexible based on process
fragments of best practices. Process patterns suit also for describing best
practices on performing work for a Discipline or for a specific development
technique or phase.

Role
Definition

A Role Definition is a Method Content Element that defines a set of related
skills, competencies, behavior and responsibilities of an individual or a set
of individuals. Roles are not individuals nor are necessarily equivalent to
job titles. Roles are used by Task Definitions to define who performs them
as well as define a set of Work Product Definitions they are responsible for.

The mapping from individual to Role, performed by the project manager
when planning and staffing for a project, allows different individuals to act
as several different roles, and for a role to be played by several individuals.
Examples of roles include Developer, Stakeholder and Tester.

Appendix A: SPEM icons with explanations

 93

Name Description Icon
Task
Definition

A Task Definition is a Method Content Element and a Work Definition that
defines an assignable unit of work being performed by Roles Definition
instances. The granularity of a Task Definition is generally a few hours to a
few days. A Task is associated to input (mandatory and optional) and output
Work Products and it usually affects one or only a small number of Work
Products.

A Task provides complete step-by-step explanations of doing all the work
required to achieve this goal. This description is complete, independent of
when in a process lifecycle the work would actually be done. Therefore, it
does not describe when you do what work at what point of time, but
describes all the work that gets done throughout the development lifecycle
that contributes to the achievement of the Tasks' goal.

When a Task Definition is used in a process, a reference object defined as
Task Descriptor provides information, what will actually be performed at
that specific point of time. All of the Task Definition’s default associations
and parameters can be overridden in this actual process definition.

Tasks Definition (as well as Activities) can further be used for planning and
tracking progress; therefore, if they are defined too fine-grained, they will
be neglected, and if they are too large, progress would have to be expressed
in terms of a Task Definition’s parts (e.g. Steps, which is not
recommended).

Tool
Definition

A Tool Definition is a special Method Content Element that can be used to
specify a tool’s participation in a Task Definition. It is also used as a
container for tool mentors.

A Tool Definition describes the capabilities of a CASE tool, general
purpose tool, or any other automation unit that supports the associated
instances of Role Definitions in performing the work defined by a Task
Definition.

Work
Product
Definition

Work Product Definition is Method Content Element that is used, modified,
or produced by Task Definitions.

They may serve as a basis for defining reusable assets. Roles use Work
Products to perform Tasks and produce Work Products in the course of
performing Tasks. Work Products are the responsibility of Role Definitions,
making responsibility easy to identify and understand, and promoting the
idea that every piece of information produced in the method requires the
appropriate set of skills. Even though one Role Definition would be
responsible of a specific type of Work Product, other roles can still use the
Work Product for their work, and perhaps even update them if the Role
Definition instance has been given permission to do so. 1.21

Table A.1 – some essential SPEM 2.0 icons with explanations (Annex A: SPEM icons)

Appendix B: Citations

 94

Appendix B: Citations

ALL CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
CONTAINED IN THIS PUBLICATION IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

