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Tässä tutkielmassa käsitellään avoimen eli ympäristönsä kanssa vuorovaikut-
tavan kvanttisysteemin dynamiikkaa. Painopiste on unitaarievoluution sijaan
dekoherenssin ja dissipaation kuvauksessa. Nämä kaksi ilmiötä aiheuttavat
kvanttimekaanisen superpositio- ja kietoutuneen tilan hajoamisen. Dekoherenssi
ja dissipaatio kvanttisysteemeissä johtuvat väistämättömästä vuorovaikutuksesta
ympäristön kanssa. Dekoherenssin ja dissipaation tarkka dynamiikka riippuu
ympäristön rakenteesta.

Mallisysteeminä tässä tutkielmassa on harmonisessa potentiaalissa liikkuva hiukka-
nen, joka vuorovaikuttaa termisen ympäristön kanssa eli niin sanottu QBM-malli.
Olen johtanut tälle systeemille liikeyhtälön heikon kytkennän approksimaatiossa
käyttäen apuna ei-Markovista teoriaa, joka mallintaa ympäristön ja systeemin
vuorovaikutusta. Liikeyhtälöstä saatavat ajasta riippuvat kertoimet ∆(t) ja γ(t)
ilmaisevat dekoherenssin ja dissipaation nopeuden.

Olen tehnyt vertailevan teoreettisen tutkimuksen dekoherenssivakioiden ∆(t) ja
γ(t) dynamiikasta kolmella eri ympäristömallilla sekä korkeissa että matalissa
lämpötiloissa. Tutkin myös miten systeemin keskimääräinen energia käyttäytyy
sekä lyhyillä että pitkillä ajanjaksoilla. Tulokset antavat yleiskuvan dekoherenssi-
ja dissipaatioilmiöiden nopeuteen vaikuttavista tekijöistä. Tämä tieto on hyödyksi,
kun pyritään kehittämään kvanttitietokoneita, joiden toiminta perustuu superposi-
tiolla ja kietoutuneilla kvanttitiloilla operointiin.

Nyt saatuja tuloksia voidaan myöhemmin hyödyntää tutkittaessa miten
superpositio- tai kietoutuneita tiloja voidaan suojata ympäristön haittavaikutuk-
silta suorittamalla ei-selektiivisiä mittauksia.

Asiasanat: Kvanttimekaniikka, avoimet kvanttisysteemit, dekoherenssi, dissipaatio
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Preface

In this thesis we examine how the interaction with the environment affects the

dynamics of a quantum system. The quantum system under scrutiny is the com-

monly used quantum harmonic oscillator with damping induced by the coupling to

a thermal environment. We use theoretical methods to first derive an approximate

equation of motion for the system of interest. We then discuss the exact equation

of motion and its solution. Finally we present our main result, a comparative study

on the effect that different environments have on the dynamics of the quantum har-

monic oscillator. To this aim we introduce three different environments and compare

the dynamics of the time-dependent coefficients characterizing the effect of the en-

vironment on the system. We also study how the environment induced heating of

the system oscillator varies with different environments.

The thesis is structured in the following way. In the first chapter a general in-

troduction to the topic of open quantum systems is given and the open quantum

system model used throughout the thesis, namely, the quantum Brownian motion

model is presented. In chapter 2 we derive an equation of motion for this model.

The derivation relies on some approximations, but an exact equation of motion is

also given for reference. We then briefly discuss the exact solution to the equation of

motion of a quantum Brownian particle. Chapter 3 focuses on the microscopic inter-

action between the system and the environment, and discusses the different physical

quantities playing a role in the modeling of the interaction. In chapter 4 we present

our results on the time-dependent decay rates appearing in the equation of motion.
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These decay rates characterize the dissipative dynamics of the quantum state of the

system. More results characterizing the heating of the quantum Brownian particle

due to the interaction with a thermal reservoir are presented in chapter 5. The final

chapter 6 contains the conclusions.
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for being an ingenious source of inspiration, and the rest of my family and relatives

for their support. I acknowledge financial support from the Academy of Finland

(Project No. 115982).

iv



Chapter 1

Open systems in quantum

mechanics

1.1 Introduction

Textbook approach to quantum mechanics introduces the Schrödinger equation

i
d

dt
|ψ(t)〉 = H|ψ(t)〉 (1.1)

that describes the evolution of the system whose state is represented by the state

vector |ψ〉 with Hamiltonian H. Here we have set h̄ = 1 and will use the same

natural units throughout the thesis. The time evolution of |ψ〉 is given by the

unitary operator Ut = e−itH as

|ψ(t)〉 = Ut|ψ(t)〉. (1.2)

These equations describe the dynamics of systems that do not interact nor are

entangled with other systems. Systems like this are defined to be closed. A system

can never be completely isolated from its surroundings but inevitable interactions

with the environment occur, e.g., via heat transfer. In this respect all physical

quantum systems are open, while sometimes it is useful and well argued to use the

closed system approach as a reasonable approximation.
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Research in open quantum systems has been fueled by the efforts to develop quan-

tum information devices that can utilize the potential emerging from two peculiar

features of quantum systems, namely entanglement and the existence of quantum

superposition. Entanglement is a quantum correlation between two parts of a com-

posite system. In addition to being a key concept in the theoretical description of

the quantum world, entanglement is also a necessary ingredient in quantum informa-

tion devices. Entanglement and quantum superposition can be used to implement

quantum information processing that, in some cases, is hugely more efficient than

classical information processing [1].

Entanglement and quantum superpositions deteriorate when a quantum sys-

tem interacts with the environment. The coupling to the environment transforms

quantum superpositions into classical statistical mixtures in a process called envi-

ronment induced decoherence [2]. This transformation is also known as quantum

to classical transition. Also the entanglement between, e.g., two qubits (i.e., the

quantum counterparts of classical bits), is destroyed by the noise induced by the

system-environment coupling. The environment is typically described by a spectral

distribution function. Different physical contexts, e.g., solid state physics, photonic

band gap materials and quantum optics, are characterized by different spectral dis-

tributions. By conducting a comparative study on the effect different environments

have on quantum state deterioration in open systems, we can understand how and

to which extent the important quantum properties could be used in technologies. It

has been proven that the more macroscopic and distinguishable are the components

of a quantum superposition, the faster is the environment induced decoherence [3].

In this context it is possible to understand, why there exists no superpositions of

macroscopic objects like the one in Schrödinger’s cat paradox [4]: the size of the

system is huge and therefore decoherence takes place almost instantaneously.

The description of the total closed system-environment dynamics is typically a

virtually impossible task due to the large, generally infinite, number of degrees of
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freedom of the environment. Moreover, very often we are not interested in the dy-

namics of the environment but rather on its effects on the reduced system dynamics.

A common approach in studying the dynamics of open systems is therefore first to

write an equation of motion for the total closed system (i.e., system plus the environ-

ment) and then to derive an equation of motion for the reduced system by tracing

over the environmental degrees of freedom. This means that the evolution operator

is not unitary anymore, as was the case for the Schrödinger equation for closed sys-

tems. The reduced density operator of the system is defined as ρS = trE{ρ}, where

ρ is the density operator of the total system and trE indicates the partial trace over

environmental degrees of freedom [5].

In the theoretical study of open quantum systems, the system and the environ-

ment can be modeled in various ways. In this thesis we use the model consisting

of a damped quantum harmonic oscillator as our system and a chain of quantum

harmonic oscillators linearly coupled to this system as our environment. This is also

known as the quantum Brownian motion model.

1.2 Quantum Brownian motion

In this section we introduce the physical system whose dynamics is the object of

this thesis. This system is quantum Brownian motion in a harmonic potential.

Quantum Brownian motion (QBM) is a paradigmatic open quantum system model,

describing a particle (quantum Brownian particle) with mass m and position coordi-

nate x, moving in a harmonic potential V (x) and coupled to the environment. The

Hamiltonian for the quantum Brownian particle is

HS =
p̂2

2m
+ V (x̂), (1.3)

where p̂ is the particle momentum operator and x̂ is the position operator [5]. In

the following we will focus on the case of a quadratic potential, i.e. V (x̂) = 1
2
mω2

0x̂
2.

In this case, essentially, the QBM model describes a quantum harmonic oscillator
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of frequency ω0 with damping caused by the coupling with the environment. QBM

is one of the few open quantum systems models that can be solved analytically,

being therefore a valuable tool in many physical contexts. One of the applications

of QBM is the description of a quantum electromagnetic field propagating in a linear

dielectric medium [6]. Quantum Brownian motion also describes the dynamics of a

particle interacting with a quantum field in dipole approximation [7], a trapped ion

for example. In addition to these quantum optical applications, the QBM model is

used in nuclear physics [8] and quantum chemistry [9].
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Chapter 2

Dynamics of quantum Brownian

motion

2.1 Introduction

This chapter focuses on the description of the theoretical approach used to inves-

tigate the dynamics of QBM in a harmonic potential. We will begin deriving the

approximated master equation for the reduced density matrix using perturbation

theory. For the sake of completeness also the exact master equation will then be

presented and briefly discussed. Finally, we will introduce the solution of the master

equation and discuss its features.

The derivation of the equation of motion for the reduced density operator, known

as the master equation, is often a very difficult task. For this reason often one per-

forms a number of approximations that turn out to be reasonable in many physical

contexts. This is the approach followed also in this thesis. To find the equation

of motion for QBM, we fist assume that at some initial time t0 the system and

the environment are uncorrelated and that the environment is stationary, that is,

it does not change with time. Second, we make a weak coupling approximation or

Born approximation, which limits the validity of the master equation to systems
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where the interaction with the environment is not very strong. This is a reasonable

approximation for most applications, for example, in the case of trapped ions [10].

The third approximation is the secular approximation. This means neglecting terms

that oscillate very rapidly compared to the timescale of the dynamics.

In the following we will examine in detail the microscopic derivation of the master

equation and derive the condition of validity of these approximations.

2.2 Microscopic derivation of master equation -

perturbative approach

2.2.1 General form for master equation

We begin considering the general derivation of the master equation for the reduced

system density matrix starting from a microscopic description of the closed total

system and assuming that the system and the environment are weakly coupled. We

follow the derivation methods used in Ref. [5]. We begin with a total Hamiltonian

H = HS +HE + αHI ,

where HS, HE and HI are the Hamiltonians of the system, environment and inter-

action, respectively, and α is a dimensionless constant proportional to the strenght

of the coupling between the system and the environment. It is convenient to use

the interaction picture (denoted by tilde). The density operator in the interaction

picture is given by

ρ̃(t) ≡ eit(HS+HE)ρ(t)e−it(HS+HE). (2.1)

The derivation starts from the interaction picture von Neumann equation

d

dt
ρ̃(t) = −iα[H̃I(t), ρ̃(t)], (2.2)
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which can be formally integrated. This gives us the total density matrix

ρ̃(t) = ρ̃(0)− iα

∫ t

0

[H̃I(t
′), ρ̃(t′)] dt′. (2.3)

Using recursively this expression we get the Dyson series

ρ̃(t) = ρ̃(0)− iα

∫ t

0

[H̃I(t
′), ρ̃(0)] dt′ + (−iα)2

∫ t

0

∫ t′

0

[
H̃I(t

′), [H̃I(t
′′), ρ̃(0)]

]
dt′′ dt′

+ (−iα)3

∫ t

0

∫ t′

0

∫ t′′

0

[
H̃I(t

′),
[
H̃(t′′), [H̃(t′′′), ρ̃(0)]

]]
dt′′′ dt′′ dt′ + . . . (2.4)

Taking the derivative of equation (2.4) and neglecting terms that are higher than

second order in the coupling constant yields

d

dt
ρ̃(t) = −iα[H̃I(t), ρ̃(0)]− α2

∫ t

0

[
H̃I(t), [H̃I(t

′), ρ̃(0)]
]
dt′. (2.5)

This approximation is the Born or weak coupling approximation. The terms ne-

glected are O(α3) and are therefore extremely small, given that we had assumed a

weak coupling, that is, a small value for α. So far, all the equations are valid for

the closed total system. Open system dynamics emerge, when we trace over the

environmental degrees of freedom obtaining an equation for the reduced system:

d

dt
ρ̃S(t) = −iαtrE{[H̃I(t), ρ̃(0)]}+ (−iα)2

∫ t

0

trE{[H̃I(t), [H̃I(t
′), ρ̃(0)]]} dt′. (2.6)

In order to proceed further, few assumptions are made. First, we assume that at

initial time t = 0 the system and the environment are uncorrelated, that is

ρ̃(0) = ρ̃S(0)⊗ ρ̃E(0). (2.7)

Second, we assume that the environment is stationary. By definition this means

that [HE, ρE] = 0, where ρE is the density matrix of the environment. From the

stationarity assumption it also follows that ρ̃E(0) = ρE. By substituting Eq. (2.7)

into Eq. (2.6) we get

d

dt
ρ̃S(t) = −iαtrE{[H̃I(t), ρ̃S(0)⊗ ρE]} − α2

∫ t

0

trE{[H̃I(t), [H̃I(t
′), ρ̃S(0)⊗ ρE]]} dt′.

(2.8)
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The integral form of Eq. (2.8) is

ρ̃S(t)− ρ̃S(0) = −iα
∫ t

0

trE{[H̃I(t
′), ρ̃S(0)⊗ ρE]} dt′ +O(α2). (2.9)

From this expression, ρ̃S(0) can be solved and substituted into Eq. (2.8). This leads

to the following perturbative master equation for the system S

d

dt
ρ̃S(t) = −iαtrE{[H̃I(t), ρ̃S(t)⊗ ρE]} (2.10)

+ α2

∫ t

0

trE{[H̃I(t), trE{[H̃I(t
′), ρ̃S(t)⊗ ρE]} ⊗ ρE]} dt′

− α2

∫ t

0

trE{
[
H̃I(t), [H̃I(t

′), ρ̃S(t)⊗ ρE]
]
} dt′.

This equation is known as the Redfield equation. To summarize, it was obtained

by using perturbation theory up to the second order in the coupling constant and

assuming a factorized initial state and a stationary environment. It is a very general

form of master equation, since we have not specified anything about the system,

environment or interaction Hamiltonians. The Redfield equation (2.10) is also local

in time, meaning that the state of the system depends only on the current time t

and not on the past time t1 < t. The master equation, however, does depend on the

initial state ρ̃(0).

2.2.2 Specifying the system and the environment

We now have a general master equation in the second order perturbation theory. In

order to proceed further, the system and environment Hamiltonians must be defined.

We are examining the case of quantum Brownian motion in a harmonic potential,

so the system is a harmonic oscillator with Hamiltonian given by Eq. (1.3). This

Hamiltonian can also be written in the following form

HS = ω0

(
a†a+

1

2

)
, (2.11)
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where

a =
(X + iP )√

2
(2.12)

a† =
(X − iP )√

2
(2.13)

are the creation and annihilation operators, with commutation property [a, a†] = 1.

X and P are the dimensionless position and momentum operators

X =

(
mω0

h̄

)1/2

x̂ (2.14)

P =

(
1

mh̄ω0

)1/2

p̂. (2.15)

The environment is a heat bath modeled as an infinite chain of harmonic oscillators

with the Hamiltonian

HE =
∞∑

n=0

ωn

(
b†nbn +

1

2

)
, (2.16)

where b†n, bn and ωn are the the creation operator, annihilation operator and the

frequency of the nth oscillator, respectively. An environment with infinite degrees of

freedom and in thermal equilibrium, such as in our case, is usually called a reservoir.

The system and the reservoir are coupled linearly via the position operators, X

and x̂n for the system and reservoir oscillators, respectively, so that the interaction

Hamiltonian is

HI = X
∑

n

knx̂n =
1√
2
(a+ a†)

∑
n

kn

√
1

2ωn

(bn + b†n). (2.17)

Here kn measures the coupling between each reservoir mode and the system oscil-

lator. An interaction of this type yields a renormalization of the potential V (x̂).

To compensate for this renormalization, we include one extra term to the total

Hamiltonian. This counter term reads

Hc = x̂2
∑

n

k2
n

2mnω2
n

. (2.18)

With this adjustment we have as a system Hamiltonian H̄S = p2

2m
+ Vc(x̂), with

Vc(x̂) = V (x̂) + x̂2
∑

n

k2
n

2mnω2
n

. (2.19)

9



Eigenoperators

In order to proceed with the derivation of the master equation it is desirable to

express the interaction Hamiltonian HI in terms of the eigenoperators of the sys-

tem Hamiltonian, because in this way the transformation to the interaction picture

becomes much easier [5]. An eigenoperator S(ω) is defined for a generic operator S

with the help of the eigenvalues ε of HS and the projections Π(ε) onto the eigenspace

corresponding to ε

S(ω) =
∑

ε′−ε=ω

Π(ε)SΠ(ε′). (2.20)

One of the properties of eigenoperators is that

[HS, S(ω)] = −ωS(ω), (2.21)

[HS, S
†(ω)] = ωS†(ω). (2.22)

Another important property allows us to express in a simple way the eigenoperators

in the interaction picture:

S̃(ω) = eiHStS(ω)e−iHSt = e−iωtS(ω), (2.23)

S̃†(ω) = eiHStS†(ω)e−iHSt = eiωtS†(ω). (2.24)

From Eqs. (2.21) and (2.22) it can be easily checked that a and a† are the eigen-

operators of HS, since, for example, [HS, a] = −ω0a. Therefore a and a† in the

interaction picture are simply given by

ã(t) ≡ eiHStae−iHSt = e−iω0ta

ã†(t) ≡ eiHSta†e+iHSt = eiω0ta†. (2.25)

With the help of the equations above we can express the interaction Hamiltonian in

the interaction picture as follows

H̃I(t) =
1√
2
(ã+ ã†)⊗ Ẽ(t) =

1√
2
(e−iω0ta+ eiω0ta†)⊗ Ẽ(t), (2.26)

10



where we have

Ẽ(t) =
∑

n

kn
1√
2ωn

[
bn(t) + b†n(t)

]
. (2.27)

The form of the master equation given in Eq. (2.10) can be simplified in the case of

a thermal reservoir at temperature T described by a density operator of the form

ρE =
1

ZB

exp

(
−
∑

n

ωnb
†
nbn

kBT

)
, (2.28)

where kB is the Boltzmann constant and ZB is the partition function. From this it

follows that

trE{[H̃I(t), ρ̃S(t)⊗ ρE]} = 0.

Therefore the first two terms of the Redfield equation (2.10) vanish and we are left

with the following master equation

d

dt
ρ̃S(t) = −α2

∫ t

0

trE{
[
H̃I(t), [H̃I(t

′), ρ̃S(t)⊗ ρE]
]
} dt′. (2.29)

Inserting Eq. (2.26) into Eq. (2.29) gives

d

dt
ρ̃S(t) =

α2

2

∫ t

0

{
trE{Ẽ(t′)ρEẼ(t)}[ã(t′) + ã†(t′)]ρ̃S(t)[ã(t) + ã†(t)]

−trE{Ẽ(t)Ẽ(t′)ρE}[ã(t) + ã†(t)][ã(t′) + ã†(t′)]ρ̃S(t) + h.c.

}
dt′. (2.30)

The two traces in the above equation are actually equivalent because the trace

operation is cyclic, i.e., tr{abc} = tr{cab} = tr{bca}. By defining a correlation

function for the electric field operators as

〈Ẽ(t)Ẽ(t′)〉 = trE{Ẽ(t)Ẽ(t′)ρE}, (2.31)

and using the formalism given in Eq. (2.25) the master equation can be cast in the

form

d

dt
ρ̃S(t) =

α2

2

∫ t

0

{
〈Ẽ(t)Ẽ(t′)〉

[
aρ̃S(t)ae−iω0(t′+t) + aρ̃S(t)a†eiω0(t−t′)

+a†ρ̃S(t)ae−iω0(t−t′) + a†ρ̃S(t)a†eiω0(t+t′)
)

−〈Ẽ(t)Ẽ(t′)〉
(
aaρ̃S(t)e−iω0(t′+t) + aa†ρ̃S(t)e−iω0(t−t′) (2.32)

+a†aρ̃S(t)eiω0(t−t′) + a†a†ρ̃S(t)eiω0(t+t′)
]
+ h.c.

}
dt′.

11



Since the environment is stationary, it is invariant under time translations. Therefore

we set t− t′ = s and obtain the following form for the master equation

d

dt
ρ̃S(t) =

α2

2

{
Γ−ω0(t)

[
a†ρ̃S(t)a+ a†ρ̃S(t)a†eiω02t − aa†ρ̃S(t)− a†a†ρ̃S(t)eiω02t

]
+Γω0(t)

[
aρ̃S(t)ae−iω02t + aρ̃S(t)a† − aaρ̃S(t)e−iω02t − a†aρ̃S(t)

]
+ h.c.

}
,

(2.33)

where the time dependent coefficients Γ±ω0(t) are the one-sided Fourier-transforms

of the reservoir correlation function

Γ±ω0(t) =
α2

2

∫ t

0

〈Ẽ(s)Ẽ(0)〉e±iω0s ds. (2.34)

2.2.3 Calculating the reservoir correlation functions

The reservoir correlation functions that appear in the time dependent coefficients

determine the behavior of the system as it evolves in time. In this subsection, we

calculate the explicit form of these coefficients in the case of a thermal reservoir.

Inserting Eq. (2.27) into Eq. (2.34) we get

Γ±ω0(t) =
α2

2

∫ t

0

e±iω0s
∑
n,m

knkm

2
√
ωnωm

[
〈bn(s)bm〉+〈bn(s)b†m〉+〈b†n(s)bm〉+〈b†n(s)b†m〉

]
ds.

(2.35)

Note that all operators are still in the interaction picture, but the tildes have been

omitted to ease the notation. Also the notation bn(0) = bn has been used. The

environment density operator ρE is diagonal in the Fock state basis |n1, . . . nk, . . . 〉,

so terms of the form 〈bn(s)bm〉 differ from zero only when n = m. With the help of

the thermal state density operator given in Eq. (2.28), the terms in brackets in Eq.

(2.35) can be calculated. For example,

〈b†n(s)bn〉 = eiωns〈b†nbn〉 = eiωnstrE{b†nbnρE} = eiωnsN(ωn), (2.36)

where

N(ωn) =
1

exp( ωn

kBT
)− 1

(2.37)
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is the Planck distribution, that is, the mean number of quanta in a mode with

frequency ωn of the thermal reservoir at temperature T . Similarly,

〈bn(s)b†n〉 = e−iωns[N(ωn) + 1], (2.38)

while all the other terms are zero. The time-dependent coefficients thus obtain the

form

Γ±ω0(t) =
α2

2

∫ t

0

∑
n

k2
n

2ωn

{
eiωnsN(ωn) + e−iωns[N(ωn) + 1]

}
e±iω0s ds. (2.39)

Continuum of frequencies

For a three dimensional electromagnetic field the coupling strength between each

individual environment oscillator mode and the system oscillator kn can be given in

the form

kn =

√
4πh̄ω2

n

V
, (2.40)

where V has the units of a volume [12]. We now pass to a continuum of frequencies

by replacing the sum with the corresponding integral:

1

V

∑
n

−→
∫

d3k

(2π)3
. (2.41)

In spherical coordinates the volume element is d3k = k2dk sin θdθdΦ, with k = |~k| =

ωn/c, and hence we get the following result∫
d3k

(2π)3
=

1

(2π)3c3

∫ ∞

0

dωnω
2
n

∫
dΩ =

1

3π2c3

∫ ∞

0

dωnω
2
n. (2.42)

The integral
∫
dΩ is the integral over a solid state angle of the wave vector. When

two possible states of polarization are taken into account, this integral yields 8π/3,

where we have used the relation∫
dΩ
(
δij −

kikj

k2

)
=

8π

3
. (2.43)

The time dependent coefficients Γ±(t) now take the form

Γ±ω0(t) =
2

3πc3
α2

2

∫ ∞

0

dωω3

∫ t

0

ds
{
ei(ω±ω0)sN(ω) + e−i(ω∓ω0)s[N(ω) + 1]

}
.

(2.44)
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For a generic spectrum one has∑
n

k2
n −→

∫
J(ω) dω. (2.45)

As can be seen from the calculations above,

J(ω) =
2

3πc3
ω3 (2.46)

is the spectral density of the three dimensional electric field in free space. The aim

of this thesis is to study the dynamics of a QBM using different types of environ-

ments, i.e., different spectral densities J(ω). The expression of the time-dependent

coefficients in terms of a generic spectral distribution reads as follows

Γ±ω0(t) =
α2

2

∫ t

0

ds

∫ ∞

0

dω J(ω)
{
ei(ω±ω0)sN(ω) + e−i(ω∓ω0)s[N(ω) + 1]

}
. (2.47)

Separating the real and imaginary parts of Γ(t)

We can express Γω0(t) as a sum of real and imaginary parts:

Γω0(t) =
1

2
γω0(t) + iλω0(t), (2.48)

where

γω0(t) = Γω0(t) + Γ∗ω0
(t) (2.49)

λω0(t) =
1

2i

[
Γω0(t)− Γ∗ω0

(t)
]
. (2.50)

From Eq. (2.49) we obtain

γω0(t) =
α2

2

∫ t

0

ds

∫ ∞

0

dω J(ω)
[
ei(ω+ω0)sN(ω)

+ e−i(ω−ω0)s(N(ω) + 1) + e−i(ω+ω0)sN(ω) + ei(ω−ω0)s(N(ω) + 1)
]
. (2.51)

By using the addition formula for the cosine function we get

γω0(t) = 2

∫ t

0

ds

∫ ∞

0

dω J(ω)

[
N(ω) +

1

2

]
cos(ωs) cos(ω0s) (2.52)

+ 2

∫ t

0

ds

∫ ∞

0

dω
J(ω)

2
sin(ωs) sin(ω0s),
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where α2 has been incorporated in J(ω). We denote Eq. (2.52) as

γω0(t) = ∆(t) + γ(t), (2.53)

where

∆(t) = 2

∫ t

0

ds

∫ ∞

0

dω J(ω)

[
N(ω) +

1

2

]
cos(ωs) cos(ω0s) (2.54)

γ(t) = 2

∫ t

0

ds

∫ ∞

0

dω
J(ω)

2
sin(ωs) sin(ω0s).

Following the same line of thinking we obtain the other time dependent coefficient

γ−ω0(t) = ∆(t)− γ(t). (2.55)

Similarly we can express λ±ω0(t), defined by Eq. (2.50) as follows

λ±ω0(t) = Π(t)∓ r(t), (2.56)

where

r(t) =

∫ t

0

ds

∫ ∞

0

dω
J(ω)

2
cos(ωs) sin(ω0s)

Π(t) =

∫ t

0

ds

∫ ∞

0

dω J(ω) [N(ω) + 1] sin(ωs) cos(ω0s) (2.57)

The physical meaning of terms ∆(t), γ(t), r(t) and Π(t) is the following: γ(t) is a

damping term, while ∆(t) and Π(t) are diffusive terms. The term r(t) is a frequency

renormalization term [5].

2.2.4 Secular approximation

We can neglect the terms oscillating at frequency 2ω0 in the master equation (2.35)

since their contribution averages to zero for times ω0t � 1. This is a common

procedure in quantum optics. It is also known as the rotating wave approximation

(RWA). We are left with the following master equation in the secular approximation

d

dt
ρS(t) = Γ−ω0(t)

[
a†ρS(t)a− aa†ρS(t)] + Γω0(t)

[
aρS(t)a† − a†aρS(t)

]
+ h.c. (2.58)
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By substituting γ and λ terms defined earlier, the master equation above can be

divided into a part describing unitary evolution and a part giving the dissipative

dynamics
d

dt
ρS(t) = −i[HLS, ρS(t)] +D[ρS(t)], (2.59)

where the dissipation part is given by

D[ρS] = γω0(t)

[
a†ρSa−

1

2
{aa†, ρS}

]
+ γ−ω0(t)

[
aρSa

† − 1

2
{a†a, ρS}

]
(2.60)

and the unitary evolution is given with the help of the Lamb shift Hamiltonian HLS

as

[HLS, ρS] = [λω0(t)aa
† + λ−ω0(t)a

†a, ρS] (2.61)

= (Π(t)− r(t))[aa†, ρS] + (Π(t) + r(t))[a†a, ρS]) (2.62)

= 2Π(t)[aa†, ρS]. (2.63)

Here [ , ] and { , } represent the commutator and anti-commutator, respectively.

Decoherence dynamics

We are mostly interested in the decoherence dynamics, so we will neglect the unitary

part of the master equation. After inserting Eqs. (2.53) and (2.55) into Eq. (2.60),

the dissipator part of the master equation takes the form

d

dt
ρS(t) =

∆(t)− γ(t)

2

(
2a†ρSa− aa†ρS − ρSaa

†)
+

∆(t) + γ(t)

2

(
2aρSa

† − a†aρS − ρSa
†a
)
, (2.64)

where

∆(t) = 2

∫ t

0

ds

∫ ∞

0

dω J(ω)

[
N(ω) +

1

2

]
cos(ωs) cos(ω0s) (2.65)

γ(t) = 2

∫ t

0

ds

∫ ∞

0

dω
J(ω)

2
sin(ωs) sin(ω0s). (2.66)

This equation is our starting point to investigate the decoherence and dissipation

phenomena in QBM.
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The quantum Brownian motion model, along with two-level system coupled to a

bosonic reservoir, is one of the few models for which one can derive an exact master

equation. It has been shown that, for certain class of observables, the perturbative

solution derived in this thesis differs very little from the exact solution in the weak

coupling limit [17]. It is thus well justified to use this approximative master equation

as a starting point in the analysis of the dynamics of QBM.

2.3 Exact master equation

An exact master equation for QBM was first presented by Hu, Paz and Zhang in

1992 [16]. The authors used an influence functional path-integral method. After this,

somewhat simpler methods of derivation have been introduced, for example in Ref.

[17]. The derivation of the exact master equation is not conducted here. Instead, it

is simply stated that if (i) the system and the environment are uncorrelated at the

initial time t = 0, (ii) environment is stationary, that is [HE, ρE(0)] = 0 and (iii) the

expectation value of the environment is zero, e.g., in the case of a thermal reservoir,

an exact master equation can be derived [11, 17] in the form

d

dt
ρS(t) = −iHS

0 ρS(t)− [∆(t)(XS)2 − Π(t)XSPS (2.67)

− i

2
r(t)(X2)S + iγ(t)XSPΣ]ρS(t).

Bold letters indicate superoperators, i.e., operators that act on other operators.

Superscript S(Σ) indicates commutator (anticommutator) in the following way:

XSρ = [X, ρ], PΣ = {P, ρ}. The time-dependent coefficients in the exact master

equation to the second order in the coupling constant α, coincide with the coefficients
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derived in our perturbative master equation, namely,

∆(t) =

∫ t

0

κ(τ) cos(ω0τ)dτ

γ(t) =

∫ t

0

µ(τ) sin(ω0τ)dτ

Π(t) =

∫ t

0

κ(τ) sin(ω0τ)dτ

r(t) =

∫ t

0

µ(τ) cos(ω0τ)dτ,

with

κ(τ) = α2〈{E(τ), E(0)}〉

and

µ(τ) = iα2〈[E(τ), E(0)]〉.

The exact master equation (2.67) is not limited to any specific coupling strength or

temperature regime. It should be kept in mind, however, that the coefficients ∆(t),

γ(t), Π(t) and r(t) given above are the result of weak coupling approximation. It

is possible to show that the exact and perturbative master equation have the same

form in the weak coupling regime we are interested in [5].

2.4 Solution to the ME in terms of quantum char-

acteristic function

In the literature there exists several approaches to the solution of the master equa-

tion (2.67). In the following we briefly review one of them, based on the algebraic

properties of superoperators appearing in the QBM master equation [19]. The so-

lution is given in terms of the quantum characteristic function (QCF) defined as

χt(x, p) = tr{e−i(pX̂−xP̂ )ρ}. (2.68)
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From the knowledge of the QCF one can calculate the mean value of observables of

interest such as, for example, the mean energy by means of the relations [18]

〈Xn〉 = (−i)n

(
∂n

∂pn
χ(x, p)

)
x,p=0

(2.69)

〈P n〉 = (i)n

(
∂n

∂xn
χ(x, p)

)
x,p=0

. (2.70)

It has been demonstrated [19] that, in the weak coupling limit, the dynamics of the

mean energy of the system oscillator are not affected by the RWA, so the master

equation derived in this chapter, instead of the exact master equation (2.67), can be

used to study the dynamics of the mean energy, provided that the system-reservoir

coupling is weak enough. For the derivation of an analytical solution for the exact

master equation, Eq. (2.67) can be recast into the following form

d

dt
ρS(t) = [−iH̄S

0 (t)−DS(t) + γ(t)(N + 2)]ρ(t), (2.71)

where

DS = ∆(t)(XS)2 + Π(t)XSPS (2.72)

and

H̄0(t) =
h̄ω0

2

[
P 2 +X2 − r(t)

ω0

X2 +
γ(t)

ω0

(XP + PX)
]
. (2.73)

A formal solution is given by

ρ(t) = T(t)ρ(0), (2.74)

where the temporal evolution superoperator T is given by

T = expc

{∫ t

0

[
− iH̄

S
0 (t1)−DS(t1) + γ(t1)(N + 2)

]
dt1

}
. (2.75)

Subscript c stands for Dyson chronological ordering.

2.4.1 Factorizing the temporal evolution superoperator

In order to obtain the solution, it is useful to try to manipulate T in order to get a

form which is more convenient for the calculations. This has been done in a paper by

19



Intravaia et al., where it has been shown that T(t) can be factorized in the following

way [19]:

T(t) = TS(t)TΓ(t)TD(t), (2.76)

where

TS(t) = expc

[
− i

∫ t

0

H̄
S
0 (t1)dt1

]
, (2.77)

TΓ(t) = exp

[
Γ(t)

2
(N + 2)

]
, (2.78)

TD(t) = exp

[
−
∫ t

0

eΓ(t1)D̄(t1)dt1

]
, (2.79)

with

Γ(t) = 2

∫ t

0

γ(t1)dt1, (2.80)

D̄(t) = T−1
S (t)DS(t)TS. (2.81)

The factorization is done with the help of Feynman’s rule and with certain algebraic

properties of superoperators. Feynman’s rule states that exponent functions that

have sum of operators or superoperators as an argument can be factorized in the

following way

expc

[ ∫
[A(t) +B(t)]dt

]
= expc

[ ∫
A(t)dt

]
expc

[ ∫
B̄(t)dt

]
, (2.82)

with

B̄(t) =

(
expc

[ ∫
A(t)dt

])−1

B(t)

(
expc

[ ∫
A(t)dt

])
. (2.83)

Next step is to examine how the temporal evolution superoperator T(t) acts on the

initial density matrix. To make this process easier, we express the initial density

matrix with the help of the QCF given in Eq. (2.68) as

ρS(0) =
1

2π

∫
χ0(x, p)e

−i(pX̂−xP̂ )dxdp. (2.84)
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2.4.2 Applying T(t) to initial density matrix

If we now apply the time evolution superoperator to the initial density matrix given

by the previous equation, we have

ρS(t) =
1

2π

∫
TS(t)TΓ(t)TD(t)χ0(x, p)e

−i(pX̂−xP̂ )dxdp. (2.85)

By calculating the effect of the operators TS(t),TΓ(t) and TD(t) on e−i(pX̂−xP̂ ), we

obtain an expression for the density matrix at time t

ρS(t) =
1

2π

∫
χt(x, p)e

−i(pX̂−xP̂ )dxdp, (2.86)

where

χt(x, p) = exp

−(x p
)
W̄ (t)

x
p

χ0

e−Γ(t)/2R−1(t)

x
p

 (2.87)

is the quantum characteristic function for the QBM. In this expression the matrix

R is given by

R(t) =

 cosω0t sinω0t

− sinω0t cosω0t

 (2.88)

and

W̄ (t) = e−Γ(t)[R−1(t)]TW (t)R−1(t). (2.89)

Moreover, we have

W (t) =

∫ t

0

eΓ(t1)M̄(t1)dt1 (2.90)

M̄(t) = RT (t)M(t)R(t) (2.91)

M(t) =

∆(t) −Π(t)
2

−Π(t)
2

0

 . (2.92)

2.4.3 Secular approximation

By performing the secular approximation, i.e., neglecting terms that are oscillating

rapidly, we obtain a simpler form of the QCF for our system. In practice this is done
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by neglecting the terms rotating at frequency 2ω0 from the term W̄ (t). If we insert

into the definition of W̄ (t) all the relevant variables given by (2.88) and (2.90)-(2.92)

we obtain the following expression for the QCF,

W̄ (t) = e−Γ(t)

∫ t

0

eΓ(t1)

[
∆(t1)

2
+

∆(t1)

2
C2(t− t1)−

Π(t1)

2
S2(t− t1)

]
dt1, (2.93)

with

C2(t) =

 cos 2ω0t − sin 2ω0t

− sin 2ω0t − cos 2ω0t

 (2.94)

S2(t) =

sin 2ω0t cos 2ω0t

cos 2ω0t − sin 2ω0t

 . (2.95)

By performing the secular approximation, the matrices C2 and S2 average out to

zero. Hence we are left with

W̄ (t) = e−Γ(t)

∫ t

0

eΓ(t1) ∆(t1)

2
dt1 =

∆Γ(t)

2
. (2.96)

Inserting this expression into the solution of the exact master equation, we get

ρsecular
S (t) =

1

2π

∫
e−∆Γ(t)(x2+p2)/2χ0

e−Γ(t)/2R−1(t)

x
p

 e−i(pX̂−xP̂ )dxdp, (2.97)

with

∆Γ(t) = e−Γ(t)

∫ t

0

eΓ(t1)∆(t1)dt1. (2.98)

The coefficient Γ(t) is given by Eq. (2.80).

To sum up, the temporal evolution superoperator was first factorized to simplify the

calculations. After that, the effect of the superoperator T(t) on the initial density

matrix was calculated, yielding the solution to the exact master equation in terms

of the quantum characteristic function.

2.5 Markovian vs. non-Markovian dynamics

One of the essential aspects of open quantum systems is the existence of memory

effects between the system and the environment. Essentially, the unavoidable cou-
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pling between a quantum system and its surrounding causes a flow of information

and/or energy from the system to the environment. This information/energy can

be fed back into the system due to the ”environment-memory”. This memory effect

is characterized by the so called reservoir correlation time, which depends on both

the properties of the system and the environment. When memory effects are taken

into account, the future state of the reduced system is dependent on its past, and

the dynamics is said to be non-Markovian.

2.5.1 Markovian approximation

In some quantum systems the reservoir correlation time is much shorter than the

relaxation time. In this case one can perform the Markovian approximation that

consists in neglecting the short time memory effects. Mathematically this amounts

at replacing the upper limit of integrations in Eqs. (2.65)-(2.66) with infinity. The

time dependent coefficients are therefore not time dependent anymore. They become

constants reflecting the absence of feedback from the reservoir into the system.

In this thesis the main interest is in the short time behavior of the system,

so we focus on the non-Markovian master equation (2.64). For times longer than

the reservoir correlation time, however, the time-dependent coefficients reach their

asymptotic Markovian value. We calculate, as an example, the Markovian value of

the diffusion coefficient,

∆(t) = 2

∫ t

0

ds

∫ ∞

0

dω J(ω)

[
N(ω) +

1

2

]
cos(ωs) cos(ω0s) (2.99)

= 2

∫ ∞

0

dω J(ω)

[
N(ω) +

1

2

]
1

2

[
sin[(ω − ω0)t]

ω − ω0

+
sin[(ω + ω0)t]

ω + ω0

]
.

We can simplify this expression with the help of the Dirac delta function, defined as

lim
a→0

1

aπ

sin x/a

x/a
= δ(x). (2.100)

23



If we define t = 1/a, we get

lim
t→∞

sin tx

x
= πδ(x). (2.101)

This can be used in Eq. (2.99) to obtain the Markovian value of ∆(t)

∆M = lim
t→∞

∆(t) =

∫ ∞

0

dω J(ω)2

[
N(ω) +

1

2

]
1

2

[
δ(ω − ω0) + δ(ω + ω0)

]
= πJ(ω0)

[
N(ω0) +

1

2

]
. (2.102)

In a similar manner we get the Markovian value for γ(t),

γM =
π

2
J(ω0). (2.103)

In short time scales the Markovian equations do not give correct dynamics because

relevant memory effects are neglected. In longer time scales, however, the Markovian

and non-Markovian dynamics coincide. Non-Markovian equations must be used, for

example, in the context of atom lasers [21] or atoms decaying in photonic band gap

materials [22].
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Chapter 3

Modeling the interaction

3.1 Introduction

In the previous chapter we have modeled the interaction between system oscillator

and the bosonic reservoir as a product between the position operators X and x̂n for

the system and environment operators, respectively. We have denoted with kn the

strength of interaction between the position operators of each individual environment

oscillator and the system oscillator, see Eq. (2.17). We recall here the form of the

interaction Hamiltonian

αHI = αX
∑

n

knx̂n, (3.1)

where α is a dimensionless constant used to measure the overall strength of inter-

action. The master equation (2.64) we derived was based on the weak coupling

approximation, so we assumed α small enough for the perturbative approach to be

valid. In the limit of a continuum of reservoir modes, the function describing the

strength of interaction is called spectral distribution and it has already been shown

to depend on the frequency of the reservoir oscillators in Eq. (2.46). In the follow-

ing sections we will introduce different types of spectral densities corresponding to

different types of reservoirs. Different physical contexts, e.g., solid state, quantum

optics and photonic crystals, are characterized by different spectral distributions.
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By plotting the behavior of the decay coefficients for different types of reservoirs we

gain an understanding of the fundamental way in which interaction with the environ-

ment changes the state of the damped harmonic oscillator. This comparative study

of decoherence for different types of spectral distributions tells us which physical

context, being less affected by decoherence, is more suitable for realizing quantum

devices. We will discuss the physical interpretation of the various spectral densities

to be introduced and provide figures to aid the analysis of the decay coefficients that

we will consider in chapter 4.

3.2 Spectral density and distribution

We indicate with J(ω) a generic spectral density, which depends on the frequency

of the environment oscillators. For a 3D-electric field, e.g., the specific form of J(ω)

was given in Eq. (2.46). We now introduce the spectral distribution I(ω) obtained

from the spectral density by multiplying it with [N(ω) + 1/2]:

I(ω) = J(ω)

[
N(ω) +

1

2

]
, (3.2)

where N(ω) is the Planck distribution given in Eq. (2.37). This quantity tells us how

the energy is distributed between the different modes of oscillation of the reservoir.

The spectral distribution depends on the temperature of the reservoir through the

Planck distribution N(ω). We can write the Planck term in Eq. (3.2) as

N(ω) +
1

2
≡ coth

(
ω

2kbT

)
. (3.3)

By expanding this expression into Taylor series, we find that, for high temperatures

T ,

coth

(
ω

2kbT

)
≈ 2kBT

ω
. (3.4)

On the other hand, at zero temperature N(ω) = 0, hence the thermal factor becomes

simply N(ω) + 1
2

= 1
2
. Therefore we get different approximated expression for
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the spectral distributions (or spectra, for short) in the high temperature and zero

temperature cases, namely,

I(ω) =
2kBTJ(ω)

ω
(high temperatures) (3.5)

I(ω) =
J(ω)

2
(zero temperature). (3.6)

In this thesis, we focus on these two temperature regimes.

3.3 Different types of Ohmic spectral densities

Different physical contexts are characterized by different forms of environmental

spectra, which in turn affect directly how fast the system decays. In quantum in-

formation devices the time it takes for the state of the system to decohere or decay,

determines the available computational time. By using artificial engineered reser-

voirs as the environment of a qubit, researchers can manipulate the time available

before the quantum state deteriorates. The motivation for studying different types

of spectra stems partly from this objective. From a purely theoretical point of

view this study gives us the tools to deepen our understanding of the underlying

microscopic physical processes.

Thermal noise is characterized by a flat spectrum, while structured reservoirs

are often encountered in solid state physics, e.g., in Josephson junctions [23], or

when the density of reservoir modes is modified as, e.g., in photonic crystals [24].

By comparing different spectra we aim to chart the behavior of dissipation in the

QBM model in different physical contexts. In this section we briefly examine three

different paradigmatic spectra that are used later to evaluate numerically the decay

and dissipation rates. It is useful to look at the differences in the spectral densities

considered in order to understand the behavior of the decay dynamics. In this thesis

a comparative study is conducted by taking into account reservoir spectral densities

of the following form

J(ω) = α2(ωph)
1−sωs, (3.7)
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where we have included the dimensionless coupling constant α in the definition

of J(ω), and where ωph is a reference frequency added to ensure that the spectral

density has the unit of frequency. Here s is a variable and we will focus our attention

to the cases where s = 1/2, 1 and 3. These are examples of the so called sub Ohmic,

Ohmic and super Ohmic spectral distributions, respectively.

3.3.1 Ohmic case

The Ohmic spectral density corresponds to the choice s = 1. In this case

J(ω) = α2ω. (3.8)

This type of spectrum is one of the most common in the literature of open quantum

systems. The Ohmic spectrum gives, for QBM, a friction-like force that is pro-

portional to velocity. The Ohmic spectrum can be used, e.g., to describe charged

interstitials (conductive electrons) in metals [20].

3.3.2 Super Ohmic case

The super Ohmic case corresponds to s > 1. Here we investigate s = 3, so the

spectral density is given by

J(ω) = α2 ω
3

ω2
ph

. (3.9)

This form of spectral density corresponds, e.g., to a phonon bath in one or three

dimensions, depending on the symmetry properties of the strain field [20]. It is

also possible to show that this type of environment can be used in describing the

effect of the interaction between a charged particle and its own electromagnetic field

[25]. Also, the spectral distribution for the 3D-electric field given in Eq. (2.46) was

exactly of this form.
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3.3.3 Sub Ohmic case

Sub Ohmic case, with s=1/2, has the following spectrum

J(ω) = α2√ωphω. (3.10)

This type of noise may occur in some solid state devices and, in the high T case, is

similar to the ”1/f noise” in Josephson junctions [26].

3.4 Cutoff function

The spectral densities given above may lead to unphysical behavior since as ω grows,

the spectral density increases without a limit, yielding divergence of certain physical

quantities, such as momentum dispersion [20]. Physical spectral densities must fall

off in the limit ω → ∞. To eliminate these divergencies one typically introduces

a cutoff function ensuring that J(ω) goes to zero in the limit of infinitely high

frequencies. It is reasonable to expect that the form of the cutoff function does not

play a major role in the dissipative dynamics of the system at least as long as the

cutoff is sufficiently far from the frequency of the system oscillator [20]. An example

of the effect that different cutoffs have on the dynamics of the decay coefficient ∆(t)

is demonstrated in Fig. 3.1 for three different cutoff functions. In particular we

consider the commonly used Lorentz and exponential cutoff functions and the step

function. The cutoff frequency ωc appearing in the cutoff functions characterizes

the duration of the system+reservoir correlations. Indeed the reservoir correlation

time τR can be defined as τR = 1/ωc [29].

Lorentzian cutoff

By multiplying a Lorentzian cutoff function (sometimes called the Lorentz-Drude

cutoff) with the spectral distribution given in (3.7), we obtain

J(ω) = α2(ωph)
1−sωs ω2

c

ω2
c + ω2

. (3.11)
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Figure 3.1: The main features of ∆(t) in the high temperature regime do not depend

significantly on the choice of the cutoff function. The cutoff functions corresponding

to the curves from top to bottom are the step function (dotted line), exponential

(solid line) and Lorentzian (dashed line). In this figure we have set ωc = ω0.

Exponential cutoff

The spectral density with exponential cutoff is given by

J(ω) = α2(ωph)
1−sωse−ω/ωc . (3.12)

Step function

With a step function as the cutoff, the spectral distribution reads

J(ω) = α2(ωph)
1−sωsS(x), (3.13)

where the step function is defined as

S(x) =

1, if x < ωc;

0, if x ≥ ωc.
(3.14)

In the following we will focus on the exponential cutoff, because it turns out to be

the most convenient for the calculations.
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3.5 Parameter r

A relevant parameter in the description of the behaviour of the QBM model is

r =
ωc

ω0

, (3.15)

i.e., the ratio between the cutoff frequency ωc and the frequency of the system

oscillator ω0. This coefficient tells us whether our system is on resonance with the

environment spectrum, or out of resonance. If r � 1, then ωc � ω0, which means

that the system oscillates at a frequency much higher than the value of the cutoff

frequency. In this case the system experiences quite a small effective coupling with

the reservoir. This is the off resonant case. If r � 1, then ωc � ω0 and the system

oscillator has a frequency ω0 that lies within the most strongly coupled modes of

the reservoir. In this case we say that the system is on resonance with the reservoir.

At r = 1, ωc is the same as ω0, which indicates a somewhat intermediate situation

compared to the two previous one. In this thesis we will focus on three exemplary

values of r, covering the off resonant, resonant and intermediate regimes.

3.6 Plots of distribution functions

In the plots of the distribution functions for the sub Ohmic, Ohmic and super Ohmic

reservoirs we have set ωph = ωc.

The high temperature case

From Eqs. (3.2) and (3.7) it can be seen that for high temperatures we have

I(ω) = α2(ωc)
1−sωs 2kBT

ω
e−ω/ωc . (3.16)

Our intention is to express this spectral distribution in a form that includes only

fixed constants and one variable frequency ω̄, i.e., we want to have an expression of

the type I(ω0, r, α, N̄(ω0), ω̄), where N̄(ω0) = N(ω0) + 1/2. By defining

ω̄ =
ω

ω0

, (3.17)
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we obtain

I(ω̄) = 2α2N̄(ω0)ω0

( ω̄
r

)s−1

e−ω̄/r. (3.18)

In the figures we plot the dimensionless quantity

Ī(ω̄) =
I(ω̄)

2α2N̄(ω0)ω0

. (3.19)

The spectral densities for all three spectra are plotted in Fig. 3.2 for three different

values of r. For better understanding the results presented in the following chapter

it is useful to observe where the frequency of the oscillator ω0 is located and how the

strength of coupling, i.e., the value of Ī(ω̄), experienced by the oscillator varies as we

change the parameters of the reservoir, i.e., r, and the structure of the reservoir. This

will explain indeed the differences in the decay dynamics of the QBM for different

environments.

We can see from Eq. (3.17) that when ω = ω0, we have ω̄ = 1. This means that the

frequency of QBM in harmonic potential, marked with solid red line, is located at

ω̄ = 1 in all the graphics in Fig. 3.2. The cutoff frequency, marked with a dotted

black line, is defined with respect to the system frequency as ωc = rω0.

The zero temperature case

At zero temperature the spectral density with exponential cutoff is

I(ω) =
J(ω)

2
=
α2

2
(ωc)

1−sωse−ω/ωc . (3.20)

For plotting purposes we manipulate this expression in a similar manner as in the

high temperature case, and get

I(ω̄) =
α2

2

( ω̄
r

)s−1

ω̄ω0e
−ω̄/r. (3.21)

In the figures we plot

Ī(ω̄) =
2I(ω̄)

α2ω0

. (3.22)

The plots of this expression are shown in Fig. 3.3.
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Figure 3.2: Spectral distributions Ī(ω̄) = I(ω̄)/(2α2N̄(ω0)ω0) for Ohmic, super

Ohmic and sub Ohmic cases at high temperatures. The frequency of the system

oscillator is always located at ω̄ = 1. Different values of r correspond to different

positioning of the oscillator frequency ω0 with respect to the cutoff frequency ωc,

i.e., r = ωc/ω0. In sub Ohmic case, the spectrum diverges for ω̄ = 0.
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Figure 3.3: Spectral distributions Ī(ω̄) = 2I(ω̄)/(α2ω0) for Ohmic, super Ohmic and

sub Ohmic reservoirs at zero temperature. The frequency of the system oscillator is

depicted as a solid red line and it is always positioned at ω̄ = 1. We consider three

different exemplary values of r = ωc/ω0.
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Chapter 4

Decay rates

4.1 Introduction

In this chapter we will examine the dynamics of the time-dependent coefficients

[∆(t) ± γ(t)]/2, where ∆(t) and γ(t) are the diffusion and damping coefficients

defined in Eqs. (2.65) and (2.66), respectively. These coefficients represent the

relaxation rates for the decay channels of the QBM model [5]. In the Fock state

basis the decay channels are associated with the transition |n〉 → |n + 1〉 given by

the operator a†, and the transition |n〉 → |n − 1〉 given by the operator a. These

transitions happening via the decay channels destroy the quantum coherence of

initial quantum superpositions. The rates at which these processes occur are given

by the coefficients [∆(t)± γ(t)]/2, i.e., the decay rates. The transition up channel,

corresponding to the heating process, is associated with the decay rate

∆(t)− γ(t)

2
(transition up), (4.1)

while the transition down channel corresponding to the cooling process, is associated

with the dacay rate
∆(t) + γ(t)

2
(transition down). (4.2)
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From the definition of ∆(t) in Eq. (2.65) one sees immediately that the rate at which

the decay occurs depends on the type of reservoir through the spectral density J(ω).

We study the decay rates in three different reservoirs and in both the zero and the

high temperature reservoirs. The decay rates always start from zero and after some

time they reach their constant Markovian value, which is always non-negative. In

some cases the rates may acquire temporarily negative values. It has been shown

that, when the time-dependent coefficients attain negative values, the corresponding

decay channel operates in a reverse way, i.e., the down channel actually induces

heating and vice versa [27].

4.2 High temperature case

By looking at ∆(t) and γ(t) given in Eq. (2.65) and (2.66) we notice that only

the ∆(t) term depends on the Planck distribution, which for high temperatures is

approximated by 2kBT/ω. Therefore, for high temperatures and for times much

smaller than the thermalization time τth, ∆(t) � γ(t). Under these conditions, the

two decay channels operate at the same rate, namely, ∆(t)/2. By plugging in the

spectral density given in Eq. (3.16) into Eq. (2.65), the following expression is

obtained:

∆(t) = 4α2kBT

∫ t

0

dt′
∫ ∞

0

dω

(
ω

ωc

)s−1

e−ω/ωc cos(ωt′) cos(ω0t
′). (4.3)

The integral with respect to ω can be solved analytically. The remaining integration

with respect to time t′, however, must be calculated numerically. We have plotted

∆(t) for the three different reservoirs given in Eqs. (3.8), (3.9) and (3.10) and with

three different values of the parameter r. The results we obtained are shown in Fig.

4.1. In the plots we use dimensionless time τ , with τ = ωct. The front factor of ∆(t)

is set to

4α2kBT = 100. (4.4)
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Figure 4.1: Decay rate ∆(t) for high temperatures. The red horizontal line depicts

the Markovian value ∆M = limt→∞ ∆(t).

We have included in the plots the Markovian value of ∆(t), which is obtained from

Eq. (2.102) by simply plugging in the spectral distribution for high temperatures

given by Eq. (3.16). The Markovian value is

∆M(t) =
100π

4

(
1

r

)s−1

e−1/r, (4.5)

and it is denoted by a solid red line in Fig. 4.1. When analyzing the results it is

important to keep in mind Fig. 3.2 picturing the spectral densities. We now look

at the dynamics of ∆(t) for different values of r and different reservoir spectra. Let

us start by comparing changes in ∆(t) arising from variations of the values of the

parameter r. When moving from r � 1 to r � 1, we notice two distinct features in

the dynamics of ∆(t) common to all of the reservoir spectra.

The first common feature is that while oscillations in ∆(t) may still be present,
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∆(t) becomes always positive. In fact, ∆(t) < 0 for certain time intervals only when

r � 1. This is important for understanding the dynamics of the heating function

in the next chapter. By comparing this oscillatory behavior to the reservoir spectra

in Fig. 3.2, we notice that the amplitude and the presence of oscillations itself arise

from that part of the spectrum with ω < ω0. In the sub Ohmic case the spectrum

has a divergency point at ω = 0, so a large part of the spectrum lies very near this

point. This explains why the oscillations are always present in the sub Ohmic case,

while in the other two reservoirs the oscillations are lost when r increases.

The second characteristic feature arising for r � 1 is the increase in the Marko-

vian value of ∆(t). The only exception to this rule is the super Ohmic case with

r = 10. Equation (2.102) shows that the Markovian value of ∆(t) is directly propor-

tional to the strength of the coupling at the oscillator location, i.e., ∆M ∝ I(ω0), as

one can also see by comparing Figs. 3.2 and 4.1. This explains the deviate behavior

of the super Ohmic r = 10 case: the value of I(ω0) for r = 10 is simply smaller than

in the r = 1 or r = 0.1 cases.

In order to understand how different types of reservoirs affect the dynamics,

we fix the value of r. In the r = 0.1 case, oscillations and negative values of ∆(t)

appear for all of the reservoir types. As mentioned above, in the off resonant case, the

low frequency part of the spectrum is dominant and thus oscillations are expected.

In the super Ohmic and Ohmic cases these oscillations are damped more rapidly

than in the sub Ohmic case. When r = 1, the sub Ohmic case oscillates with a

large amplitude for a long time, while the other two cases exhibit almost identical

dynamics with only a few rapidly damped oscillations. The Markovian values are

practically the same in all three cases, which results from the fact that also I(ω0)

has almost the same value in all the cases. For r = 10, the sub Ohmic case exhibits

oscillations that damp very slowly. The other two reservoirs show no oscillations at

all, which is consistent with the fact that there is only a small amount of spectrum in

the low frequency range. There is a strong initial ”bump” in the super Ohmic case,
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but in Ohmic case ∆(t) approaches the Markovian value monotonically. The bump

in the super Ohmic case might be due to the fact that most of the spectrum is in

the high frequency range. High frequencies contribute to the short time dynamics.

These short time scale effects can have substantial impact on the non-Markovian

dynamics of ∆(t). These effects might be responsible for the rapid increase in ∆(t)

for short non-Markovian times in the super Ohmic case. For t � τc, ∆(t) quickly

decreases to its (smaller) Markovian value.

For quantum information purposes decoherence and dissipation are unwanted

phenomena, and therefore the most preferable reservoir is the one that induces least

amount of deteriorating effects on the qubit implemented, e.g., by a single trapped

ion. Current quantum computing devices operate in time scales that are essentially

Markovian. However, if we wish to reduce the harmful decoherence induced by the

environment, we need to shorten the time needed to perform a logical operation in

quantum computing devices. This leads to non-Markovian dynamics. In this case

we have to take the short time dynamics of ∆(t) and γ(t) into account. That is,

when judging which of the reservoirs introduced in Section 3.3 causes least amount

of dissipation/decoherence we need to evaluate the slope of the decay rate, not its

Markovian value. More precisely, we have to first decide how long we need to protect

a qubit from the effects of the environment and then determine which reservoir is

the best, i.e., which reservoir has the smallest decay rate up to that point of time.

The time scales in different reservoirs are not directly comparable in our figures,

because they are plotted in units of ωc and the choice of r affects the time scale as

well.
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4.3 Zero temperature case

For zero temperature the time-dependent coefficients in the master equation (2.64)

take the following form

∆(t) = 2α2

∫ t

0

dt′
∫ ∞

0

dω
ωc

2

(
ω

ωc

)s

e−ω/ωc cos(ωt′) cos(ω0t
′) (4.6)

γ(t) = 2α2

∫ t

0

dt′
∫ ∞

0

dω
ωc

2

(
ω

ωc

)s

e−ω/ωc sin(ωt′) sin(ω0t
′). (4.7)

In this case, contrary to the high temperature regime, ∆(t) and γ(t) are of the same

order of magnitude. The transition up and transition down channels are given by

Eq. (4.1) and (4.2), respectively. Because the reservoir is at zero temperature, the

transition up channel is expected to close for ωct � 1, while the decay rate for

transition down channel reaches eventually its positive Markovian value.

Since the reservoir is at zero temperature, it would seem plausible that no transi-

tions up can occur because the reservoir is empty of energy. However, the interaction

Hamiltonian (2.17) induces an oscillatory behavior in the coefficients ∆(t) and γ(t)

giving rise to a non-zero transition up rate. The interaction Hamiltonian gives us

four terms characterizing the emission and absorption processes, namely, abn, ab†n,

a†bn and a†b†n. The two terms in the middle correspond to real processes conserv-

ing the unperturbed energy, while the other two are known as the counter rotating

terms. These terms describe the simultaneous creation or annihilation of a quantum

of energy both in the system and in the reservoir oscillators. The energy required

for such processes to occur comes from the system-reservoir coupling. A schematic

figure of these processes is shown in Fig. 4.2. By combining these two counter ro-

tating terms, we obtain a process that corresponds to energy conserving processes,

as depicted in Fig. 4.3. It can be shown that at zero temperature the dynamics

of the decay rate for the transitions up originate from these counter rotating terms

[11]. The oscillations in ∆(t) and γ(t) have also a role in the dynamics of the energy

of the harmonic oscillator, as we will see in the next chapter. In the Markovian

approximation the counter rotating terms are neglected and the transition up rate,
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Figure 4.2: The four terms in the interaction Hamiltonian. Here γ is one quantum

of energy and n is the number state in the Fock state basis. The terms a) and b)

correspond to real processes, while the c) and d) terms are virtual processes that do

not conserve the unperturbed energy. Figure is taken from [11].

Figure 4.3: By combining processes a)+b) and c)+d) in Fig. 4.2 we obtain two

energy conserving processes. In the figure γ is one quantum of energy and n is the

number state in the Fock state basis. The process on the left is a real process, while

process on the right originates from two virtual processes that conserve energy when

combined in this way. Figure is taken from [11].
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in the case of zero temperature reservoir, is always zero.

With the help of Eqs. (2.102) and (2.103) we can calculate the Markovian value

of the decay rate for downward transition

lim
t→∞

∆(t) + γ(t)

2
=
π

2
J(ω0), (4.8)

while the Markovian value for the decay rate for upward transition is, as expected,

lim
t→∞

∆(t)− γ(t)

2
= 0. (4.9)

The results we obtained for the decay rates are shown in Figs. 4.4, 4.5 and 4.6 for

the r = 10, 1 and 0.1 cases, respectively.

We observe that the intervals of time at which the transition rates ∆(t) ± γ(t)

attain negative values diminishes when r goes from r � 1 to r � 1, just like in

the high temperature case. The reason is once more found in the structure of the

spectra shown in Fig. 3.3, i.e., a large part of the spectrum lies in the low frequency

range when r � 1. It is worth noticing that ∆(t)−γ(t), for r = 10 and in the super

Ohmic case, still oscillates between negative and positive values before reaching its

final zero value. While practically no spectrum lies in the low frequency range in

this case, an explanation to this anomaly exists. For certain time intervals, indeed,

∆(t) < γ(t), and therefore ∆(t)− γ(t) is negative even if the low frequency part of

the reservoir spectrum does not contribute significantly.

One evident feature in the plots is that the super Ohmic spectrum seems to be

inducing the steepest decay rates for all values of r. One way to interpret this is

to remember that super Ohmic spectrum is used to model three dimensional envi-

ronments. In a way, due to the higher dimensionality, the system is more strongly

coupled in the super Ohmic case than in the Ohmic and sub Ohmic cases. This

leads to faster dissipation compared to the other environments. An interesting as-

pect worth mentioning in the plots of the decay rates is visible in super Ohmic case

with r = 10, depicted in Fig. 4.6 as the dotted line. We observe that the transition

down channel nearly closes when ω̄ ≈ 3, and around the same time the transition up
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Figure 4.4: The decay rates at zero temperature in the off resonant r = 0.1 case.

Ohmic (dashed line) and super Ohmic (dotted line) cases are shown in the upper

plots. The sub Ohmic case (solid line) is plotted separately. The figures on the left

show the transition up rates, while the figures on the right show the transition down

rates.
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Figure 4.5: The decay rates for parameter r = 1 at zero temperature for sub Ohmic

(solid line), Ohmic (dashed line) and super Ohmic (dotted line) cases. The figure

on the left shows the transition up rates, while the figure on the right shows the

transition down rates.

Figure 4.6: The decay rates for parameter r = 10 at zero temperature for sub Ohmic

(solid line), Ohmic (dashed line) and super Ohmic (dotted line) cases. The figure

on the left shows the transition up rates, while the figure on the right shows the

transition down rates.
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rate becomes negative and tends to zero from the negative side. It has been proven

in Ref. [27] that in correspondence to negative regions in ∆(t)± γ(t), reverse tran-

sitions restoring the previous quantum state occur. In view of these results one can

argue that, in the case considered above, the up channel acts like a transition down

channel. This implies that the thermalization is achieved via a reverted transition

up channel, while the actual transition down channel is almost completely closed.
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Chapter 5

Dissipation dynamics

In this chapter we consider the dissipation dynamics of the QBM in terms of the

heating function 〈n(t)〉, which is defined as the mean number of excitations in the

oscillator, where n is the number operator a†a. The heating function is closely

related to the energy of the quantum harmonic oscillator defined as

〈E〉 = h̄ω0

(
〈n(t)〉+

1

2

)
. (5.1)

Since the system oscillator is interacting with a thermal reservoir its energy will

eventually approach the thermal value kBT , with T the reservoir temperature. We

will now look at the heating function dynamics for time scales much shorter than

the thermalization time.

5.1 Heating function

We obtain an expression for the heating function 〈n(t)〉 by using the secularly ap-

proximated quantum characteristic function of QBM given in Eq. (2.97), with the

help of the relations given by Eqs. (2.69) and (2.70). As was stated in Section 2.4,

the secular approximation does not affect the dynamics of the mean energy of a

quantum harmonic oscillator. Therefore, we obtain the following exact expression
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for the heating function

〈n(t)〉 = e−Γ(t)〈n(0)〉+
1

2

[
e−Γ(t) − 1

]
+ ∆Γ(t), (5.2)

where Γ(t) and ∆Γ(t) are given by Eqs. (2.80) and (2.98), respectively. We will

focus on the case where the initial state of the oscillator is the ground state, i.e.,

〈n(0)〉 = 0. We study the heating function dynamics looking at the short and long

time scales separately. Long time refers to times much longer than the reservoir

correlation time τR corresponding to the Markovian dynamics.

5.1.1 Heating function in long time scales

In the long time limit, we can replace the values of ∆(t) and γ(t) appearing in the

terms Γ(t) and ∆Γ(t) of Eq. (5.2) with their constant Markovian values ∆M and

γM . The heating function in this case takes the form

〈n(t)〉 = N(ω0)
(
1− e−Γt

)
, (5.3)

where Γ = 2γM . From the above equation we see that when the system thermalizes,

we obtain 〈n(t)〉t→∞ = N(ω0). To investigate how the system oscillator approaches

thermalization we study the function

〈n(t)〉
N(ω0)

= 1− exp

[
−2πα2

(
1

r

)s−1

e−1/rτ

]
, (5.4)

where we have used the expression for γM obtained by combining Eqs. (2.103)

and (3.7), with an exponential cutoff, with τ = ω0t. For simplicity, we have also

set 2πα2 = 1. Now we can directly compare the thermalization times for different

reservoirs. The results are shown in Figs. 5.1-5.4. Because of a difference in the scale,

the off resonant case with r = 0.1 is shown separately in Fig. 5.4. We considered

here the high temperature case, so the corresponding environmental spectra are

shown in Fig. 3.2. As we can see by comparing the graphics of the heating function to

the reservoir spectra the time it takes to thermalize in a given environment depends
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Figure 5.1: Heating function in the sub Ohmic case for long times. The resonant

case corresponding to r = 10 thermalizes first because the coupling is the strongest.

Figure 5.2: Heating function in the Ohmic case for long times.
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Figure 5.3: Heating function in the super Ohmic case for long times. Now r = 1

case thermalizes the fastest and even the r = 0.1 case shows thermalization time

that is of the same order of magnitude as for the other two cases.

on the strength of the coupling at the oscillator location, i.e., on the value I(ω0).

Thus, in general, the more detuned the reservoir is, the slower is the thermalization

of the system. The off resonant case with r = 0.1 is plotted in Fig. 5.4 in order to

see more clearly what actually happens. From this figure it can be observed that

due to the structure of the reservoir spectra, the super Ohmic case thermalizes at

the fastest rate, while now it is the Ohmic case, that heats up at the slowest rate,

meaning that the coupling is weaker in the Ohmic than in the sub Ohmic case. This

can be confirmed by looking at Fig. 3.2.

5.1.2 Non-Markovian dynamics of the heating function

We now focus on the dissipation dynamics of the QBM for times much shorter than

the thermalization time τth and for the initial ground state. Under these conditions,

Eq. (5.2) can be approximated as

〈n(t)〉 =

∫ t

0

[∆(t1)− γ(t1)] dt1. (5.5)
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Figure 5.4: Long time heating function for the off resonant case. Here it is clearly

visible that different reservoirs cause thermalization to occur at different times even

in the off resonant case, which was not clearly visible in the previous graphics.

The reason why 〈n(t)〉 in the above equation only depends on the transition up

channel, characterized by ∆(t)−γ(t), stems from our choice of the initial condition.

For times t � τth, indeed, the probability that the system absorbs one quantum

of energy from the environment, is much higher than the opposite process, i.e., the

emission of a quantum of energy from the system to the environment.

For high temperature reservoirs, Eq. 5.5 can be approximated as follows

〈n(t)〉 =

∫ t

0

∆(t1) dt1. (5.6)

It is clear that the sign of ∆(t) determines whether the dynamics of the heating

function exhibit monotonic or oscillatory behavior. The plots of the heating function

for high temperature and for t� tth, are given in Figs. 5.5 - 5.7.

It has been shown in Ref. [13] that, for an Ohmic spectral density, the main

features of the dynamics of 〈n(t)〉 may be grouped into two types of behavior and

that there exists a connection between these main features and the spectral dis-

tribution. The heating function, indeed, can either grow monotonically or present

small amplitude oscillations superposed to the monotonic growth. In Ref. [13] it
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Figure 5.5: Short time dynamics of the heating function 〈n(t)〉 for different reser-

voirs. Here depicted at r = 0.1, i.e., when the system is off resonant. Plots are given

in dimensionless time τ = ωct.

Figure 5.6: Short time dynamics of the heating function 〈n(t)〉 for different reser-

voirs. Here depicted at r = 1. Plots are given in dimensionless time τ = ωct.

was shown that the oscillatory dynamics originate from the low frequency part of

the spectrum, while the monotonic growth is related to the resonant part of the

spectrum, i.e., essentially, to the value of I(ω0). By comparing the plots in Figs.

5.5 - 5.7 and the high temperature spectra in Fig. 3.2 we see that, also for the dif-

ferent environmental spectra studied in this thesis, the dynamics can be explained

with this division in mind. In the off resonant case, i.e., when r � 1 we see from

Fig. 5.5 that oscillations are present in all the reservoirs, since nearly the whole

spectrum lies in this case at low frequencies. In the Ohmic and sub Ohmic cases the

heating function appears to reach some constant value, while in the super Ohmic

case it keeps growing. This is due to the fact that in the super Ohmic r = 0.1

case, compared to the other two reservoirs, the strength of the coupling is greater

at the oscillator location. In the r = 1 case, we see from Fig. 5.6 that there are
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Figure 5.7: Short time dynamics of the heating function 〈n(t)〉 for different reser-

voirs. Here depicted at r = 10, i.e., when the system is off resonant. Plots are given

in dimensionless time τ = ωct.

no oscillations. The heating function grows in a monotonic manner in all the cases.

With the sub Ohmic reservoir there exists a level plateau in I(ω) ≈ 5, resulting from

the fact that the oscillations in ∆(t) almost reach negative values. In the resonant

case, i.e., when r � 1, the behavior of the heating function in the super Ohmic

case differs qualitatively from the Ohmic and sub Ohmic dissipation. Namely, the

heating function grows quickly first and then almost approaches a constant value,

for τ > 10, before reaching the Markovian regime. The slow increase of 〈n(t)〉 after

the initial fast growth can be explained by the fact that I(ω0) is extremely small,

≈ 0.01. The initial growth originates from the bump in the decay rate ∆(t) pictured

in Fig. 4.1. When we integrate over this bump, 〈n(t)〉 grows rather rapidly but the

growth is slowed down because the final value of the decay rate, ∆M , is small.

The oscillations in the heating function tell us that in the thermalization process

the system can give back to the reservoir some of the energy that has previously

absorbed from it. In other words, the direction of the energy flow is reversed during

the time periods in which the slope of 〈n(t)〉 is negative. These oscillations are a

sign of the non-Markovian dynamics. Due to the finite reservoir memory the system

recovers some of the information/energy ”lost” in the reservoir.

When the system oscillator interacts with a zero temperature reservoir, for an

initial ground state, the dynamics of the heating function are basically due to the

finite, although small, system-reservoir coupling energy. The short time behavior of
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〈n(t)〉 at zero temperature can be obtained by plotting Eq. (5.5). To give an example

of the dynamics, we have plotted this equation in Fig. 5.8 for an Ohmic reservoir.

We see that oscillations are present when r = 0.1 and r = 1. This corresponds to the

occurrence of temporarily negative values of ∆(t) − γ(t) depicted in Figs. 4.4-4.5.

When the system thermalizes, the dynamics disappear as limt→∞〈n(t)〉 = 0.
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Figure 5.8: Short time dynamics of the heating function 〈n(t)〉 at zero temperature

for the Ohmic reservoir. Plots are given in dimensionless time τ = ωct.
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Chapter 6

Summary and conclusions

The purpose of this thesis was to investigate how the dynamics of an open quan-

tum system depend on the structure of the reservoir. We considered the quantum

Brownian motion model, in the specific case of a harmonic potential. Starting from

a closed total system consisting of the system oscillator and a thermal reservoir, we

derived a perturbative master equation for the open reduced system. An exact mas-

ter equation was introduced for reference. The exact and the perturbative master

equations are equivalent in the conditions we focus on, namely, in the weak coupling

regime for certain classes of observables such as the heating function. We briefly

reviewed the derivation of the exact solution of the exact master equation. This

solution allows one to obtain an analytical expression for the heating function.

The master equation we consider is local in time and of Lindblad type. The

non-Markovianity of the system is reflected in the presence of the time-dependent

decay rates which entail all the information about decoherence and dissipation. We

have considered different examples of environmental spectra, and we have evaluated

the dynamics of the QBM both in zero and high temperatures.

For time scales much shorter than the thermalization time of the reduced system,

the decay rates in the master equation exhibit characteristic non-Markovian features.

We have seen that typical non-Markovian dynamics are characterized by oscillations
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that result from the reservoir memory, as for the case of the heating function. We

also investigated the relationship between the temporal behavior of the decay rates

and the spectral structure of the reservoir. We noticed that when the system is off

resonant with respect to the reservoir, the decay rates in both temperature regimes

exhibit oscillations attaining temporarily negative values. In the resonant case, the

decay rates are always positive for high temperatures. However, the sub Ohmic

reservoir induced oscillations even in the resonant regime, while the Ohmic and

super Ohmic reservoirs did not. We have also seen that the spectral distribution

at the oscillator location affects the Markovian value of the decay rates, i.e., the

stronger the coupling, the higher is the Markovian decay rate.

At zero temperature the decay rates for transitions up and down have different

values, whereas in the high temperature approximation the two channels were as-

sociated with the same decay rates, for times much shorter than the thermalization

time. For high temperature reservoirs, when the decay rate for transition up channel

was temporarily negative, it means that the channel is operating in reverse direction,

i.e., due to the reservoir memory, the information that went from the system into

the reservoir feeds back into the system. A particularly interesting behavior occurs

in the super Ohmic resonant case at zero temperature. In this case, indeed, our

results show that the thermalization process takes place via the reversed transition

up channel.

We also examined the heating function for short and long time scales. At short

times the non-Markovian dynamics of the heating function may be characterized

by oscillations indicating that the system gives back to the reservoir some of the

energy it had obtained previously. In the long time limit the thermalization times

strongly depend, as expected, on the reservoir type and on the resonance factor

r. The off resonant reservoirs heat up the systems considerably slower than the

resonant reservoirs. We observed a clear connection between the heating function

dynamics and the reservoir spectral density. For all types of reservoir spectra, the
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low frequency part of the spectrum induces oscillations, while the high frequency

part is responsible for the Markovian monotonic heating.

The results obtained in this thesis pave the way to the study of the possible

influence of the reservoir spectrum on the occurrence of Zeno or anti-Zeno effect.

The Zeno effect is the inhibition of the decay of an unstable/open quantum system

due to a series of measurements aimed at checking whether the system is still in

its initial state or not [28]. The quantum Zeno effect predicts that, under certain

conditions, the more frequently the measurements are performed, the slower is the

system decay. In theory, by performing continuous measurements, one would be able

to stop the decay completely. In some cases, however, measurements give rise to an

anti-Zeno effect, i.e., the acceleration of the system decay. The borderline between

the occurrence of the Zeno or anti-Zeno effect is characterized by the spectrum of

the environment through decay coefficient ∆(t). A comparative study of the Zeno-

anti-Zeno crossover is thus a natural follow-up of this thesis.
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