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Abstract 
Particulate nanostructures are increasingly used for analytical purposes. Such particles are 

often generated by chemical synthesis from non-renewable raw materials. Generation of 

uniform nanoscale particles is challenging and particle surfaces must be modified to make the 

particles biocompatible and water-soluble. Usually nanoparticles are functionalized with 

binding molecules (e.g., antibodies or their fragments) and a label substance (if needed). 

Overall, producing nanoparticles for use in bioaffinity assays is a multistep process requiring 

several manufacturing and purification steps. 

This study describes a biological method of generating functionalized protein-based 

nanoparticles with specific binding activity on the particle surface and label activity inside the 

particles. Traditional chemical bioconjugation of the particle and specific binding molecules is 

replaced with genetic fusion of the binding molecule gene and particle backbone gene. The 

entity of the particle shell and binding moieties are synthesized from generic raw materials by 

bacteria, and fermentation is combined with a simple purification method based on inclusion 

bodies. The label activity is introduced during the purification. The process results in particles 

that are ready-to-use as reagents in bioaffinity. Apoferritin was used as particle body and the 

system was demonstrated using three different binding moieties: a small protein, a peptide and a 

single chain Fv antibody fragment that represents a complex protein including disulfide bridge. 

If needed, Eu3+ was used as label substance. 

The results showed that production system resulted in pure protein preparations, and the 

particles were of homogeneous size when visualized with transmission electron microscopy. 

Passively introduced label was stably associated with the particles, and binding molecules 

genetically fused to the particle specifically bound target molecules. Functionality of the 

particles in bioaffinity assays were successfully demonstrated with two types of assays; as 

labels and in particle-enhanced agglutination assay.  

This biological production procedure features many advantages that make the process 

especially suited for applications that have frequent and recurring requirements for 

homogeneous functional particles. The production process of ready, functional and water-

soluble particles follows principles of “green chemistry”, is upscalable, fast and cost-effective. 
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1 Introduction 
Submicrometer-sized nanoparticles have been developed for bioaffinity assays used to 

quantify the presence of specific molecules from various samples. Such particles are typically 

employed as labels in diverse assay formats and as enhancers in agglutination-based assays, and 

also, to some extent, as solid phases. Various luminescent, fluorescent, semiconducting, 

electrochemical and magnetic nanosized particles have been used as labels in different detection 

technologies (Chan and Nie, 1998; Härmä et al., 2001; Schultz et al., 2000; Wang et al., 2003; 

Zijlmans et al., 1999). In general, nanoparticles offer specific activities superior to those of 

conventional labels (Soukka et al., 2001) and label-particle-related research is vigorous. In 

particle-enhanced agglutination assays, nanometer-scale particles are agglutinated in the 

presence of target molecules and the induced light dispersion is detected by turbidometry or 

nephelometry. 

The preparation of functionalized nanoparticles for biological detection applications usually 

consists of several distinct production and purification steps, each requiring control of the 

quality. Particles are synthesized using organic or inorganic processes, and when separate label 

molecules or ions are needed they are introduced either during particle synthesis or afterwards. 

Additionally, binding molecules, such as antibodies, must be separately produced, usually in 

biological processes such as cell culture (eukaryotic or prokaryotic) or animal immunization, 

and then isolated and purified. Bioconjugation to nanoparticles is performed actively (i.e., by 

forming covalent bonds via chemical reactions) or passively (i.e., by hydrophobic and/or 

electrostatic adsorption), after which unbound excess binding molecules must be separated from 

the particles. Conjugation often occurs in random orientations resulting in loss of a considerable 

proportion of binding capacity.  

Particles employed in bioaffinity assays are often of organic polymer nature, such as 

polystyrene or copolymers thereof generated by chemical synthesis. In addition, inorganic 

metallic particles have generated interest because of inherent features exceptionally valuable in 

nanoelectronic and biological applications. The generation of uniform nanoscale particles is 

challenging, and the characteristics of both organic and inorganic particles are not optimal for 

use under biological conditions. Often, particle surfaces must be modified to make the particles 

biocompatible and water-soluble (Dubertret et al., 2002; Matsuya et al., 2003), and also to 

enable conjugation of biological binding molecules. Particle biocompatibility is an important 

issue in biological assays; biocompatibility improves the solubility of particulate reagents and 

minimizes both particle aggregation and nonspecific interactions between sample components 

and assay reagents. 

The concept of green chemistry i.e., sustainable chemistry is one important aspect in 

contemporary chemistry and especially in nanotechnology. The principles of green chemistry 

include twelve items (U.S. Environmental Protection Agency): (1) Prevent waste that need to be 

treated. (2) Design safer chemicals and products. (3) Design less hazardous chemical syntheses. 

(4) Use renewable feedstock. (5) Use catalysts. (6) Avoid chemical derivatives. (7) Maximize 

atom economy. (8) Use safer solvents and reaction conditions. (9) Increase energy efficiency. 
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(10) Design chemicals and products to degrade after use. (11) Analyze in real time to prevent 

pollution. (12) Minimize the potential for accidents. The term ‘safe’ in these principles refers to 

materials or methods less toxic for both organisms and environment, not accumulating in 

organisms or environment and safe to handle. Traditional nanoparticles are made of non-

renewable and non-biodegradable raw materials, such as polystyrene (Menshikova et al., 2005). 

Additionally, preparation of metallic nanoparticles often need harsh conditions and solvents. 

The synthesis of these traditional particles, as well as bioconjugation of the binding molecules, 

require variety of chemicals and solvents, and specific, often harsh, conditions and extensive 

purification (Chen et al., 2007; Huhtinen et al., 2005; Sharma et al., 2008; Ye et al., 2005). 

These multiple manufacturing steps consume energy and result in non-renewable, non-

biodegrading particles. In contrast, biotechnological, and especially microbial material 

production inherently complies with many of the principles of green chemistry (Chang and 

Keasling, 2006). 

All in all, identical and stably functionalized particles are often difficult and expensive to 

produce. Economy and straightforward production are particularly important in applications 

that need large amounts of homogeneous functionalized particles, such as commercial 

applications employing nanoparticles. Sustainable ways of producing nanoparticles, and 

material safety regarding both organisms and environment are aspects that need to be 

considered for future applications. Consequently, efforts have been devoted to developing new 

nanomaterials for particle synthesis and alternative methods of such synthesis and 

functionalization (Douglas and Young, 1998; Flenniken et al., 2003; Sengupta et al., 2008; von 

Maltzahn et al., 2008). 

A novel nanoscale group of structures that is gaining increasing interest is composed of 

biological or biologically produced materials, and these developments have been reviewed by 

several researchers (Katz and Willner, 2004; Sarikaya et al., 2003; Uchida et al., 2007). For 

example, various virus coats have been used as nanoparticle bodies, and microbes or microbial 

systems have been employed to produce metallic particles. 

In the present study, a microbial production procedure is established. The process produces 

functionalized nanoparticles using a globular protein, apoferritin, as model for the particle. 

These nanoparticles are ready for use in bioaffinity assays. First, literature on ferritin is 

examined to reveal the several advantages offered by the protein as a modern nanomaterial, and 

to describe some potential applications thereof developed in recent years. 
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2 Ferritin 
Ferritin is an iron-storing, well-conserved protein present in humans, animals, plants, and 

prokaryotes. Ferritin consists of 24 subunits that form a globular protein. Ferritin protein without 

loaded iron is termed apoferritin. Plant and prokaryote ferritins are homopolymers whereas 

vertebrate ferritins contain two types of subunits, heavy (~21 kDa) and light (~19 kDa) chains, as 

has been extensively reviewed (see, for example, Andrews et al. (1992)). The proportions of 

ferritin subunits in mammalian ferritins are tissue-dependent (Arosio et al., 1978).  

2.1 Ferritin structure 

The structures of several ferritins have been revealed by crystallographic studies. These 

include structures from horse, mouse, human, Escherichia coli, and other microbes (Banyard et 

al., 1978; Ford et al., 1984; Hempstead et al., 1997; Rice et al., 1983; Stillman et al., 2001; 

Trikha et al., 1995; Wang et al., 2006; Yariv et al., 1981). Figure 1 shows as an example a 

crystallographic image of quaternary structure of ferritin consisting of human heavy chains.  

A. B.  

Figure 1. X-ray crystallographic structure of human ferritin. (A.) 24-meric ferritin consisting of human 
ferritin heavy chains and (B.) single heavy chain subunit. (PDB id: 2fha, figure adapted from Hempstead 
et al. (1997)).  

The quaternary structure of ferritin (i.e., the globular protein shell) is well-conserved. The 24 

ferritin subunits fold to form a globular protein coat approximately 12 nm in outside diameter, and 

the internal cavity diameter is about 8 nm (Figure 2A). The N-terminal ends of subunits are 

located on the ferritin surface and the C-terminal ends point toward the inner cavity (Figure 2B). 

Also the ferritin subunits of several organisms studied to date have similar conformations even 

though amino acid sequence similarity can be low (e.g., even as low as 20% for bacterial and 

mammalian heavy chains) (Andrews et al., 1991). For example, human heavy and light chain 

polypeptides share a sequence similarity of only 55% but they naturally co-assemble to form 

heteropolymeric ferritin (Arosio et al., 1978; Lawson et al., 1991). Even hybrid ferritins have been 

generated (e.g., ferritin with a mixture of human and mouse subunits) (Rucker et al., 1997). 
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Figure 2. Schematic representations of ferritin (cross section). A. Ferritin is globular, hollow protein with 
outer and inner diameters of 12 nm and 8 nm, respectively. The protein coat is perforated by several small 
channels. B. Ferritin consists of 24 subunits, the amino-termini (denoted with N) of which protrude from the 
protein outer surface. The carboxy-termini (denoted with C) are located in the inner cavity of the protein. 

The subunits fold to form a bundle of four α-helixes (A-D, named in order from the amino 

terminus), with one short α-helix (E) in the carboxy-terminal end lying at a 60° angle with respect 

to the four-helix bundle (Figure 3A) . A long, mainly non-structural loop connects α-helixes B 

and C and the turns between the helical portions and both polypeptide ends are non-structural 

(Figure 3A). The interior of the four-helix bundle is hydrophobic, except for the central region, 

which has specific functions in both heavy and light subunits (Figure 3B). The four-helix bundle 

is stabilized by salt bridges, hydrogen bonds, and hydrophobic interactions between α-helices and 

non-structural portions, especially the N-terminus. The α-helix E probably further stabilizes 

subunits by hydrophobic contacts and hydrogen bonds with α-helices (B, C and D) (Banyard et 

al., 1978; Hempstead et al., 1997; Jappelli et al., 1992; Lawson et al., 1991). 
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Figure 3. Schematic representations of ferritin subunit. A. The subunit consists of bundle of four long, 
roughly parallel α-helical portions (A-D) and one shorter α-helix (E) at an 60° angle to the bundle (α-helices 
are symbolized by the “sticks”). The helices are joined by non-helical portions, the longest of these  being 
between helices B and C. B. The interior of the four-helix bundle is mainly hydrophobic (light grey area) with 
hydrophilic area in the centre (dark circle) in which certain important functions of ferritin reside. 
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Ferritin subunits assemble further into a 24-meric structure that is characterized by two-, 

three-, and four-fold symmetry axes (Figure 4). The interfaces between subunits are stabilized 

by both hydrophobic and hydrophilic forces, with the hydrophilic forces often being mediated 

by water molecules (Hempstead et al., 1997). It has been shown that in addition to α-helices, 

many non-helical regions such as the N-terminus and loop regions (e.g., the long loop between 

the B and C α-helices, and some shorter inter-helix loops) function in maintenance of structure 

of the 24-meric protein (Hempstead et al., 1997; Jappelli and Cesareni, 1996; Jappelli et al., 

1992). Each two-fold axis consists of subunit dimers, in which the subunits settle in an anti-

parallel direction (Figure 4A). These dyad structures are the first and probably most stable 

intermediates in the folding process that eventually forms the ferritin quaternary structure. 

However, there is no consensus regarding the intermediates that follow before the complete 

protein structure is obtained (Ford et al., 1984; Gerl et al., 1988; Santambrogio et al., 1997; 

Stefanini et al., 1987). The dimer is firmly held together by hydrophobic forces in the middle 

and hydrophilic forces at the ends of the helices (both helical-and non-helical portions). 

Importantly, also the long loops between the B and C α-helices stabilize the dimer by forming a 

short pleated sheet structure and through van der Waals forces. Each three-fold axis consists of 

three ferritin subunits that form well-conserved hydrophilic channels through the protein shell 

into the cavity (eight channels per ferritin molecule) (Figure 4B). In addition to acting as 

connections between helices of the participating subunits, the N-terminal end of the subunits 

stabilize the three-fold axis. Only relatively late regarding the research on ferritin it has been 

discovered that this three-fold channel may actually be a gated pore, which opens in certain 

physiological conditions (Liu et al., 2003). The role for this gate is presumably releasing the 

iron for cellular use, the process, which has long been unresolved (Liu et al., 2003; Takagi et 

al., 1998). Each four-fold axis is formed by four subunits, usually via hydrophobic interactions 

between the E α-helices of the subunits, thereby creating a small hydrophobic channel within 

the axis (Figure 4C). The channels (six per ferritin molecule) are rich in leucine residues 

(Banyard et al., 1978; Hempstead et al., 1997; Luzzago and Cesareni, 1989). There is some 

evidence that the carboxy-terminal E α-helices are not essential for correct protein folding, and 

they can, under certain conditions, even be flipped to the outside of the ferritin core. Although 

C-terminal mutations do not necessarily affect the folding process of ferritin in vivo, such 

mutations have marked effects on ferritin stability and prevent protein folding in vitro (Jappelli 

et al., 1992; Luzzago and Cesareni, 1989). 
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Figure 4. Schematic representations of two-, three-, and four- fold axes of ferritin 24-meric structure. A. 
The two-fold axis is formed of two subunits settled in antiparallel direction. These are first and probably 
most stable intermediate structures of ferritin. B. Three-fold axis consists of three subunits that form a 
hydrophilic channel perforating ferritin cage. C. Four-fold axis is mainly formed by α-helices E of four 
subunits. They form a leucine-rich hydrophobic channel through the protein cage. 

The non-conserved amino acid residues (e.g., those that differ when light and heavy chains 

are compared, or chains are compared between species) are mostly located inside the folded 

subunits and on both inner and outer protein surfaces (Hempstead et al., 1997; Santambrogio et 

al., 1992). Highly conserved amino acids are concentrated in the interfaces of the subunits and 

in important intra- and inter-subunit salt bridges (both in helical and non-structural portions), 

thereby confirming the overall conservation of protein structure. Channels on both the three- 

and four-fold axis interfaces contain many conserved amino acid residues whereas the two-fold 

interface consist principally of amino acid residues showing similar chemico-physical features 

(Hempstead et al., 1997; Levi et al., 1988).  

2.2 Ferritin properties 

The well-conserved structure of ferritin is responsible for several characteristics that make 

the protein an intriguing material for biotechnology applications. Special features of ferritin are 

stability and an ability to bind several metal ions. Biological functions of ferritin inside living 

organisms are mainly related to iron homeostasis. Ferritin mineralizes iron inside the hollow 

core, thereby keeping iron readily available but in a non-toxic (i.e., non-reduced) form (Cozzi et 

al., 1990). In addition to iron storage, ferritin has other biological functions, but these functions 

have not been studied extensively. The ferritin H-chain has been reported to have an anti-

oxidant function in some patho-physiological conditions (e.g., ischemia, inflammation, 

exposure to xenobiotics) and ferritin has been proposed to regulate protein synthesis and cell 

proliferation (Broxmeyer et al., 1986). 

The relationships between ferritin structure and functionality have been (and are still being) 

studied using chemical modifications and various mutant proteins. Same methods have long 

been used for analyzing ferritin properties. Iron loading mechanisms have mainly been revealed 

by spectroscopic detection of particular iron intermediates or the final iron core (Levi et al., 

1988). Spectroscopic methods are still used in contemporary kinetic and mechanistic studies 

(Bou-Abdallah et al., 2004). Transmission electron microscopy (TEM) has often been 
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employed in work with ferritin (Wade et al., 1991). Ferritin stability has been assessed mainly 

through the use of electrophoresis-based and spectroscopic (e.g., circular dichroism) methods 

(Ingrassia et al., 2006; Santambrogio et al., 1992), and to some extent with X-ray 

crystallography (Butts et al., 2008).  

2.2.1 Iron storage function 

Ferritin can take in up to 4,500 Fe3+ ions as a mineral core. The iron intake process includes 

Fe2+ ion movement, oxidation, and storage as a hydrated iron oxide mineral, the so-called 

ferrihydrite, that contains iron oxide and water molecules (X Fe2O3 · Y H2O) (Harrison et al., 

1967; Towe and Bradley, 1967). The iron core of ferritin is electron-dense, and can thus be 

visualized using TEM, without additional staining. Natural ferritin iron cores often contain 

traces of phosphate adsorbed on their surfaces, and bacterial ferritins (for example) have higher 

phosphate contents than mammalian ferritin, thereby lowering the degree of crystallinity of the 

iron cores (Mann et al., 1986; Rohrer et al., 1990; Treffry and Harrison, 1978). 

The details of the mechanism by which iron is mineralized inside ferritin are still unclear; 

several possible mechanisms have been proposed and a number of mineralization intermediates 

have been observed. Most studies have been performed in vitro and the conclusions may not 

necessarily apply in vivo. For example, it has been shown that a homopolymer of ferritin light 

chain is able to load iron in vitro but not under physiological conditions in vivo (Arosio et al., 

1977; Santambrogio et al., 1996). However, three different, and likely concurrently operating 

iron loading mechanisms have been identified and widely accepted. They are summarized in 

Figures 5 and 6. 

First, Fe2+ ions probably enter ferritin through the channels of the three-fold axes that are 

known to have carboxyl group-based metal ion binding sites (Lawson et al., 1991; Macara et 

al., 1973; Stefanini et al., 1989; Treffry et al., 1993; Wardeska et al., 1986). In addition, there is 

one possible path through each heavy chain, which is not available in light chains (Lawson et 

al., 1991).  

The presumably main iron mineralization mechanism is presented in Figure 5. Based on 

several studies using homopolymeric ferritins, the heavy and light chains were shown to have 

partially complementary roles. It is therefore to be expected that the two subunits will co-

operate in the main process of iron storage in ferritin (Levi et al., 1994b). Ferritin heavy chains 

have a distinct dinuclear center with a catalytic (ferroxidase) function, which rapidly oxidizes 

Fe2+ ions to Fe3+ using O2 or some other electron acceptor, producing H2O2 and four H+ ions as 

by-products (Kadir et al., 1991; Lawson et al., 1989; Watt et al., 1988; Xu and Chasteen, 1991; 

Yang and Chasteen, 1999). The ferroxidase site is located close to the three-fold channel, in a 

hydrophilic region in the center of an otherwise hydrophobic α-helix bundle (Figure 3B), and 

consists of six amino acid residues (five Glu and one His) that are conserved in almost all 

known ferritins except the light chain ferritins (Santambrogio et al., 1996; Trikha et al., 1995) 

(several sequences have been summarized in the review by Andrews et al. (1992). These amino 

acid residues form ligands for two Fe2+ ions, hence the designation dinuclear center (Sun et al., 

1993). Further processing of Fe3+ includes movement into the hollow cavity and formation of 
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the mineral core. Ion movement from the ferroxidase site probably occurs with the aid of an 

electrostatic potential that directs Fe3+ cations to the interior of ferritin (Douglas and Ripoll, 

1998). Light chain subunits are mainly responsible for mineral core formation, the so-called 

nucleation, probably via six negatively charged Glu residues located on the interior surface of 

ferritin (Levi et al., 1994b; Santambrogio et al., 1996). There is also an indication that an 

electrostatic potential may enhance Fe3+ ion flux into nucleation sites, because the negatively 

charged Glu patch is partially surrounded by positive charges (Douglas and Ripoll, 1998). 

Ferritin heavy chains contain some of these Glu residues, which have been suggested to be 

involved as nucleation centers; however, they are not necessary for iron mineralization (Bou-

Abdallah et al., 2004; Lawson et al., 1991). Overall, these distinct carboxylate groups in both 

heavy and light chains are vital for efficient iron mineralization. 
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Figure 5. Main process in ferritin iron mineralization that probably includes co-operation of heavy and 
light chains. Fe2+ enters ferritin via the three-fold channel (A), from which it is driven to dinuclear 
ferroxidase centre inside the ferritin heavy chain (B). Fe2+ is oxidized to Fe3+ in ferroxidase centre 
(magnified in C).  Fe3+ ions enter ferritin cavity and are driven to the nuclease centre of the light chain (D) 
(on the inner surface of the protein cage). The mineralization of Fe3+  begins in the negatively charged 
nuclease centre (magnified in E). 

As the ferroxidase-based mechanism proceeds, another Fe2+ oxidation reaction takes place, in 

which the H2O2 produced in the ferroxidase reaction oxidizes more iron, and H2O2 is detoxified 

(Figure 6A) (Zhao et al., 2003). In addition, a third reaction relevant to Fe3+ storage occurs on 

the mineral surface inside ferritin; this is auto-oxidation of Fe2+ (Figure 6B). This reaction 

becomes predominant as the amount of Fe2+ ions increases, and when the core is already formed 

or when no significant ferroxidase activity is present (Levi et al., 1988; Macara et al., 1972; Sun 

et al., 1993; Zhao et al., 2003). 
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Figure 6. Two other iron mineralization processes in ferritin. A. H2O2 is produced during ferroxidase 
function of heavy chain subunits. Ferritin can partly utilize H2O2 to oxidize Fe2+ to Fe3+ within ferritin. 
Fe3+ is probably mineralized in nucleation centre of ferritin light chain subunit. B. Fe2+ can auto-oxidize to 
Fe3+ on the surface of formed mineral cores. This mechanism is predominant at high iron loadings. 

Homopolymers of light and heavy chains are able to mineralize iron in vitro even though iron 

uptake efficiency is highest when heteropolymers are used (Levi et al., 1994b). Homopolymers 

show differences in iron loading. Heavy chain homopolymers with ferroxidase activity load 

iron faster than light chain apoferritin. However, light chain homopolymers are able to take up 

iron in vitro at pH values above 7.0 even more efficiently than heavy chains at high iron 

loadings (Levi et al., 1989b; Santambrogio et al., 1996). In addition, larger and more defined 

iron cores are formed, and higher quantities of Fe2+ ions are tolerated, by ferritin consisting of 

light chains. In acidic conditions and in the presence of phosphate or citrate, light chain 

apoferritin is not able to load iron even in vitro (Levi et al., 1989b; Santambrogio et al., 1996). 

The mechanism of light chain homopolymer iron loading is probably based on iron auto-

oxidation (Figure 6B), which is more efficient inside ferritin than in solution, and bulk iron 

precipitation is therefore efficiently inhibited (Levi et al., 1994b; Santambrogio et al., 1996; 

Wade et al., 1991). The light and heavy chains have co-operative roles in complete, 24-meric, 

ferritin, and the ratio of heavy-to-light chains affects ferritin functionality. In general, heavy 

chains speed up iron incorporation (although maximum incorporation is seen at 35% heavy 

chain content), and light chains both confer improved stability (See below) and inhibit protein 

aggregation at high Fe2+ loads (Levi et al., 1994b; Santambrogio et al., 1993). 

In conclusion, iron mineralization in ferritin is a robust process. Several mutations can be 

tolerated; these affect mainly the shape and size of the iron core. Only major structural changes, 

or specific changes in some amino acids of either ferroxidase or the nucleation sites, seriously 

inhibit ferritin iron loading (Lawson et al., 1989; Levi et al., 1989a; Treffry et al., 1993; Wade 

et al., 1991) Various substances, for example several cations and anions, have been reported to 

enhance or inhibit iron loading, but in practice the effects are minor, varying loading times by a 

few minutes to a few hours (Cheng and Chasteen, 1991; Cutler et al., 2005; Polanams et al., 

2005).  
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2.2.2 Protein stability 

Ferritin is exceptionally stable. Several experiments have shown that the 24-meric protein 

coat can endure temperatures up to 80°C and extremes of pH (Crichton and Bryce, 1973; 

Santambrogio et al., 1992). Therefore, heat treatment is generally used as a purification step 

when isolating ferritin from various biological matrices. The full denaturation of for example, 

horse spleen ferritin can be accomplished by treating protein at a pH below 3, boiling in 1% 

(w/v) SDS, or treating protein with high urea or guanidine hydrochloride concentrations under 

acidic conditions (Crichton and Bryce, 1973; Listowsky et al., 1972). Ferritin stability is also 

reflected by the fact that (at least) human ferritin subunits (both heavy and light chains) can 

readily refold in vitro after denaturation (Santambrogio et al., 1993; Smith-Johannsen and 

Drysdale, 1969). 

The causes of such impressive stability are probably the relatively high number of both inter- 

and intra-subunit salt bridges. In addition, tight subunit packing may have a stabilizing effect 

(the surface-to-volume ratio is low) (Hempstead et al., 1997). The iron core inside ferritin does 

not affect at least to the thermal stability of ferritin (Stefanini et al., 1996). In general, several 

amino acid changes are tolerated without changes in ferritin folding or resistance to physical 

stress. This is understandable, considering the large variations in ferritin primary sequences. 

However, mutations in regions that have conserved amino acids may have serious effects. 

Protein folding may be completely inhibited, or ferritin may fold to the quaternary structure but 

protein stability or iron loading ability may fall. Figure 7 summarizes some of the critical parts 

of subunit that affect ferritin functionality. Loop sequences have been deduced to be relatively 

sensitive to mutation, especially amino acid substitutions and deletions reflecting their 

participation in stabilizing the subunit dimers. Such mutations often have dramatic effects, and 

may completely prevent protein folding or may cause aggregation of the folded protein (Jappelli 

and Cesareni, 1996; Jappelli et al., 1992; Levi et al., 1989a; Santambrogio et al., 1997). 

Variants that often retain folding ability but with impaired stability of the protein shell have 

been reported to be deletions of the N-terminus (13 amino acids) or C-terminus (22 amino 

acids), or to have particular changes in the channels, the two-fold interfaces, or the C-terminus. 

The effects on iron incorporation have often been less severe, and only major mutations totally 

block iron loading (Ingrassia et al., 2006; Levi et al., 1988; Levi et al., 1989a; Santambrogio et 

al., 1992; Wade et al., 1991; Yoshizawa et al., 2007). Amino acid insertions have been 

described to be relatively well-tolerated for example in loop sections, the N-terminus and, to 

some extent, the C-terminus (Levi et al., 1989a; Yoshizawa et al., 2007). An N-terminal, α-

helical polypeptide (29 amino acid residues) extension of ferritin may even assist in ferritin 

stability. Improved thermal stability of the mutant at high protein concentrations has been 

shown (Kim et al., 2001). 



Ferritin 

 

21

 

Deletion

N

C

Insertion

Deletion or substitution

Deletion or substitution

Changes

Insertion

Insertion

Deletion

N

C

Insertion

Deletion or substitution

Deletion or substitution

Changes

Insertion

Insertion

 

Figure 7. Areas of ferritin subunit that are affected by certain mutations in amino acid sequence. Amino 
acid deeletions and certain substitutions (black arrows) cause impaired ferritin function. Most vulnerable 
areas are usually those having inter- or intra-chain interactions in ferritin assembly. Usually the insertions 
in these areas are tolerated relatively well (denoted with white arrows) 

The light chains of ferritin are more stable than the heavy chains. The refolding kinetics of 

the two ferritin chains are similar although heavy chain denaturation is faster (Santambrogio et 

al., 1993). The enhanced stability of the ferritin light chain is conferred mainly by a salt bridge, 

which resides in the hydrophilic patch inside the α-helix bundle (Figure 3B). This salt bridge is  

enabled by two amino acid substitutions of the heavy chain ferroxidase center (Glu to Lys and 

Glu to Gly), after which the salt bridge is formed between Lys and one additional Glu of the 

ferrioxidase center (Figure 3) (Hempstead et al., 1997; Lawson et al., 1991; Santambrogio et 

al., 1992). Additionally, the better stability of the light chain extends to the whole protein 

assembly. When light chains are mixed with heavy chains the stability of the 24-meric protein is 

increased as the light chain proportion rises (Santambrogio et al., 1993). With this effect even 

mutated subunits may be tolerated if “diluted” with pristine subunits within the ferritin 

assembly (Santambrogio et al., 1997). 

2.2.3 Metal-binding ability 

Early studies showed that (apo)ferritin had binding sites for some divalent metal cations other 

than iron. Metal binding abilities were identified by inhibition of (apo)ferritin iron loading using 

certain divalent cations and these findings have been confirmed also in X-ray crystallography 

studies (Lawson et al., 1991; Macara et al., 1973; Niederer, 1970; Rice et al., 1983). At least 

Be2+, Cd2+, Ca2+, Cr3+, Cu2+, Mn2+, Tb3+, UO2

2+, VO2+, and Zn2+ ions are bound by the (apo)ferritin 

interior surface (e.g., the three-fold channels or the cavity) and Cd2+ is additionally bound on the 

ferritin surface. The binding sites for different cations may vary and some ions have several 

binding sites with different binding affinities (Grady et al., 2000; Hoare et al., 1975; Macara et 

al., 1973; Pead et al., 1995; Price and Joshi, 1983; Treffry and Harrison, 1984; Wardeska et al., 

1986; Wauters et al., 1978). For example, Tb3+ appears to have a binding site in the channel of 

the three-fold axis whereas Zn2+ ion may bind to the ferroxidase site (Treffry et al., 1993). The 

number of bound metal ions is typically 30-40 per apoferritin, depending on the pH, indicating 
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that most metal binding sites consist of amino acid residues with carboxyl groups (Chasteen and 

Theil, 1982; Treffry and Harrison, 1980). 

In addition, native ferritin, (i.e., ferritin with an iron core including some phosphate) is able 

to bind several cations (e.g., Be2+, Cd2+, Zn2+) to an extent greater than shown by apoferritin or 

even by ferritin without phosphate. This binding is probably aided by phosphate on the surface 

of the iron core. This indicates that ferritin may have a physiological role in detoxification of 

metal cations other than iron, a feature that may be deleterious for an organism in some cases 

(Atkinson et al., 2005; Pead et al., 1995; Price and Joshi, 1982; Price and Joshi, 1983). 

2.3 Ferritin-like proteins 

Ferritin-like proteins, Flps, include microbial proteins that generally function in protecting 

bacterial DNA and bacterial cells against oxidative damage (H2O2 or O2·). These proteins are 

termed Dps proteins (DNA-binding proteins during stationary phase) and Dpr (Dps-like 

peroxide-resistance) proteins, with reference to their principal functional modes. Flps have 

several characteristics resembling those of ferritin, but also show distinctive features, and are 

hence termed ferritin-like proteins. Flps from several microbes have been studied; the work has 

been reviewed by Smith (2004) together with data on the actual ferritins of the same microbes.  

Ferritin-like proteins consist of 12 subunits (each about 18 kDa) that fold in a four-helix 

bundle as do the subunits of 24-meric ferritins, but the E α-helix does not exist in Flps (Ceci et 

al., 2003; Ilari et al., 2000). The 12 subunits also form a globular, hollow, protein but the outer 

and inner diameters are 9 nm and 4.5 nm, respectively. The quaternary structure features a 2/3 

assembly (i.e., Flps show only two- and three-fold symmetry axes). The structures of at least 

some Flps resemble that of ferritins with respect to stability because heat-treatment (65°C) has 

been successfully used as a purification step for certain Flps (Allen et al., 2002; Kramer et al., 

2005). Those Flps that are able to store iron have a ferroxidase site, which, however, is located 

in an area (at the interface of two subunits) distinct from that of ferritin, and the site contains 

different amino acid residues than are found in actual ferritins (Su et al., 2005). The iron storage 

mechanisms of Flps and ferritins may thus differ somewhat; Flps store iron faster in the 

presence of H2O2 whereas the main mechanism of iron storage used by ferritins employs O2. 

Because Flps are smaller than ferritins, a Flp takes up only approximately 500 iron ions (4,500 

for ferritin) (Bozzi et al., 1997). Because of structural and functional similarities with ferritins, 

Flps have also been used in modern biotechnological applications developed with actual 

ferritins.  
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3 Ferritin and recombinant gene technology 
Recombinant DNA technology has been used primarily for basic research on ferritin. 

However, this approach has also paved the way for the use of ferritin in biotechnology because 

microbial culture enables efficient, upscalable production of the desired protein. 

3.1 Recombinant ferritin production and purification 

Before the advent of recombinant DNA technology, ferritins were isolated from various 

tissues and organisms. Protein overexpression in fast-growing microbial cells has facilitated the 

study of ferritins of small organisms (e.g., various prokaryotes) from which the isolation of 

large amounts of ferritin is difficult. E. coli permits the use of efficient heterologous protein 

expression systems and these have been applied to clone and express human ferritin chains in 

high yields. 

Human heavy and light chain ferritin subunits were first cloned into E. coli cells for protein 

overexpression in the late 1980s, and the homopolymers were determined to have 

characteristics generally corresponding to features of native human ferritin (i.e,. formation of 

24-meric protein, thermostability, and iron loading) (Levi et al., 1987; Levi et al., 1989b; 

Santambrogio et al., 1993). Recombinant technology has enabled the study of ferritin 

homopolymers consisting of human light or heavy chains, and ferritins from other species; and 

since then recombinant ferritins have been used to study ferritin characteristics (as outlined 

above in section 2.2). 

Apart from microbially-produced homopolymers, both ferritin chains have been 

simultaneously expressed in a bicistronic system and a dual vector system not only in E. coli 

but also in yeast, Saccharomyces cerevisiae (Grace et al., 2000; Kim et al., 2003; Rucker et al., 

1997). The subunits produced in E. coli have formed heteropolymeric ferritins of various 

subunit ratios; the polymers could be separated chromatographically. However, there is some 

controversy on whether subunit ratios vary or are relatively constant (Grace et al., 2000; Rucker 

et al., 1997). In vitro studies have shown that the ratios of heavy and light chains in 

heteropolymeric ferritins can be controlled by variation in initial subunit concentrations, so that 

different features of heavy and light chains can be emphasized in a heteropolymer if desired 

(Santambrogio et al., 1993). 

Recombinant, soluble ferritin is typically purified using a protocols developed for purifying 

ferritin from tissues (Arosio et al., 1978; Crichton et al., 1973). The traditional purification 

scheme includes heat treatment (approximately 70°C), ammonium sulfate precipitation, and 

both size-exclusion and anion exchange chromatography, or ultracentrifugation instead of the 

ion exchange chromatography. Usually at least two or three of these steps are still employed 

(Levi et al., 1987; Swift et al., 2006; Uchida et al., 2008). However, alternative purification 

mechanisms (affinity purification, sonication-based purification combined with gel filtration, or 

a combination of heat treatment with high molecular weight-polyethylene glycol precipitation) 

have been reported (Ahn et al., 2005; Huh and Kim, 2003; Luzzago and Cesareni, 1989; von 

Darl et al., 1994). 
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The yields of purified recombinant human ferritins from bacterial batch cultivation are in the 

ranges 10-15 mg/l and 2-5 mg/l for heavy and light chains, respectively. Recently, a yield of 

100 mg/l for the heavy chain has been reported (Santambrogio et al., 1993; Uchida et al., 2006). 

The higher yields of human heavy chain subunits may be related to the higher solubility of 

ferritin heavy chains in E. coli cells, and also because human ferritin light chain subunits are 

produced largely as insoluble inclusion bodies (Kim et al., 2001). The better solubility of heavy 

chains has been proposed to reflect expression of a binding site for a particular chaperone (Ahn 

et al., 2005). Ferritin light chains have been recovered from inclusion bodies by denaturing the 

inclusion bodies at pH 12, and then quickly refolding the light chains by shifting to pH 8. This 

straightforward process indicates that human light chain ferritins have formed inclusion bodies 

with relatively loose (non-covalent) interactions (Kim et al., 2001). However, this may not be 

the case for certain other ferritins, for which refolding from inclusion bodies has been 

unsuccessful, at least under the conditions tested (Levi et al., 1994a; Van Wuytswinkel et al., 

1995; von Darl et al., 1994). 

Recombinant ferritin production produces reasonably large amounts of ferritin for various 

applications (Hoppler et al., 2008; Trikha et al., 1995; Trikha et al., 1994; Yamashita et al., 

2006). However, because the primary sequences of different ferritins vary quite significantly, 

efficient microbial expression of a particular ferritin may sometimes require optimization 

(Rucker et al., 1997; Van Wuytswinkel et al., 1995; von Darl et al., 1994). To date, the use of 

recombinant ferritins has been minor in modern applications and commercial ferritins (usually 

isolated from horse) have been used instead. Flps used in different applications are most often 

recombinant. 

3.2 Genetic modifications 

Genetic modification has been used to examine ferritin structure, function, and 

characteristics, for many years. The first mutation analyses were performed when the first 

recombinant ferritins were produced. The ferroxidase center in heavy chains, the putative 

nucleation sites of heavy and light chains, and a salt bridge contributing to L-chain stability, 

have been identified by site-directed substitutions of amino acid residues with residues of 

opposite chemico-physical features. For example, the functions of heavy and light chain 

ferritins have been interchanged in such work (Levi et al., 1994b), and deletions have been 

frequently used to map regions involved in ferritin folding or essential to native protein function 

(Levi et al., 1994a; Santambrogio et al., 1992). One of the first genetic fusions involving ferritin 

was the carboxy-terminal fusion of the ferritin heavy chain to the α peptide of β-galactosidase; 

the system was exploited as a reporter in the study of ferritin folding (Luzzago and Cesareni, 

1989). More recently, mutations in the ferritin light chain gene have been found to be related to 

a neurodegenerative disorder; a phenomenon subsequently reviewed (Levi et al., 2005). This 

has encouraged ferritin researchers to re-focus on mutation analysis, and specifically on effects 

of mutations on ferritin functions in eukaryotic cells (Ingrassia et al., 2006; Vidal et al., 2008). 

The terminal ends of ferritin subunits that point out from the protein surface, or towards the 

relatively spacious inner cavity (Figure 2B), provide interesting sites for protein fusions. Real 
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biotechnological applications of genetically engineered ferritins emerged only in early 2000s, 

even though first amino or carboxy-terminal fusions to a ferritin subunits, associated with 

additional functionalities, were reported in the early 1990s (Sidoli et al., 1993; von Darl et al., 

1994). For example, the amino terminal fusion partner, maltose-binding protein, had been used 

to purify ferritin by affinity chromatography, and the protein “tag” was removed after 

purification (See Figure 8A). The maltose-binding protein consists of 371 amino acid residues, 

demonstrating the capacity of a ferritin subunits to form a globular structure after fusion to a 

protein twice the size of the subunit itself (approximately 180 amino acids) (von Darl et al., 

1994). Recently, N-terminal fusions have imparted totally new properties to ferritin proteins. 

These applications include peptides with selective binding activities for certain metals (GEPIs; 

Genetically Engineered Peptides for Inorganics) and peptides targeting desired tissues or other 

molecules (Hayashi et al., 2006; Sano et al., 2005; Uchida et al., 2006; Yamashita et al., 2006). 
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Figure 8. Sites for mutations adding new functionalities to ferritin. A. N-terminal insertions are well-
tolerated, and they provide sites for displaying desired molecules on the surface of ferritin. B. Small 
insertions, such as peptides in C-terminal ends can also be tolerated. These can provide new features to use 
ferritin as nanocontainer. C. Large insertions in C-terminus may result in “flop” conformation, in which C-
termini with inserted proteins/peptides point outside from the cavity, even though the stability of the 
ferritin cage is compromised. D. The changes in the chemico-physical features of ferritin cavity surface 
may alter ferritin specificity for different metals and other substances.    
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The inner cavity of ferritin is size-constrained, and, as has been shown by Luggazzo and 

Cesareni (1989), two or three 90-amino acid peptides can fit into the cavity. However, if 

packing becomes excessive, the C-terminal ends of ferritin monomers can switch to become 

directed to the outside of the ferritin, to yield the so-called “flop” conformation (Figure 8C). 

Under such circumstances protein coat integrity is compromised leading to loss of protein 

stability and inability to load iron inside the protein (Jappelli et al., 1992; Levi et al., 1989a; 

Luzzago and Cesareni, 1989). Some useful carboxy-terminal fusions of ferritin with other 

proteins have been reported. The “flop” conformation of the ferritin C-terminus has been 

utilized to display certain allergens and antigens on the ferritin surface (Figure 8C) (Choi et al., 

2005; Sidoli et al., 1993). Another intriguing experiment has combined a GEPI with the C-

terminal end of the ferritin subunit, resulting in a ferritin that generates silver particles inside the 

cavity (Figure 8B) (Kramer et al., 2004). So far, at least two research groups have reported 

changes in the ferritin cavity surface using genetic engineering, with the intention of loading 

alternative, non-iron materials inside ferritin (Figure 8D) (Abe et al., 2008; Butts et al., 2008; 

Swift et al., 2006). 
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4 Ferritin as a nanocontainer 

4.1 Hybrid materials: proteins combined with metals 

Metal or semiconducting nanoparticles conjugated to biomolecules (proteins or nucleic acids) 

and artificial particulate metalloproteins have several useful functions and properties (for a 

review, see Katz and Willner (2004). These hybrid materials are becoming more extensively 

studied and the focus of the work is shifting from basic research to applications, because hybrid 

materials have potential in various electronic, optical, and catalytic applications. Several 

synthesis methods are available for preparation of nanoscale metal and semiconductor particles, 

which often require surface-capping systems to prevent particles from aggregating into a bulk 

material and to control particle size. Some of these preparation methods have been reviewed by 

Masala and Seshadri (2004). Metallic particles combined with specific proteins or other 

biomolecules as capping agents are receiving increasing attention. For example, proteins 

enhance particle water solubility, minimize particle aggregation and bring specific recognition 

or catalytic features to the metallic particles. Preparation mechanisms for these artificial 

metalloproteins are based on (1) covalent or non-covalent cross-linkage between the protein and 

metal complex, (2) accretion of metals with proteins (e.g., using GEPIs), (3) use of proteins 

(such as ferritin) naturally mineralizing metals, or (4) encapsulation of metals in protein cages 

(such as capsids of viruses). 

Certain protein cages, such as various viral capsids (Douglas and Young, 1998) devoid of 

nucleic acids and heat-shock proteins (Flenniken et al., 2003), provide size- and shape-

constrained templates for the synthesis of metallic nanoparticles (for a review see Uchida et al. 

(2007)). Metallic particles based on biological templates or protein cages sometimes enable 

particle production under significantly milder conditions than feature in conventional inorganic 

reactions (Ensign et al., 2004; Iwahori et al., 2005; Klem et al., 2005; Lee et al., 2002; Okuda et 

al., 2003). On the other hand, protein cages should preferably resist relatively harsh conditions 

(e.g., wide pH range and high temperature) when used in the generation of particular metallic 

compounds (Meldrum et al., 1992; Wiedenheft et al., 2005). The minimal criteria when a 

protein is to be used as a template are as follows (Figure 9): (1) A cagelike structure that can 

spatially separate metal particles from the outer solvent is required. (2) Chemically or 

electrostatically distinct exterior and interior surfaces are needed to allow appropriate ions to 

concentrate inside the protein. (3) The desired molecules or ions must be able to migrate inside 

the protein cage (Douglas and Young, 1998).  

The protein core of ferritin fulfills all the criteria mentioned above (i.e., ferritin has three- and 

four-fold channels through the protein and a negatively charged interior surface with an 

electrostatic potential directing cations from outside to the cavity) in addition to good physical 

stability, and, hence, ferritin has been successfully used in studies preparing protein-templated 

nanoparticles. Also, various compounds that do not form nanoparticles have been loaded inside 

the ferritin cage, thus using the protein as a nanocontainer. 
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Figure 9. Minimal criteria for a protein to act as a template for creating metallic nanoparticles. Cations are 
here as an example for the starting material. (1) A cage-like structure for size-constrained particle 
synthesis, (2) Distinct exterior and interior surfaces, and (3) a route for desired ions to move inside the 
cage. 

4.2 Ferritin as a nanocontainer (metals and other compounds) 

Nanoparticles of several metal compounds, and different approaches for generating such 

nanoparticles inside apoferritin or ferritin cavities, have been described. Additionally other, 

relatively large compounds such as drugs have also been loaded in ferritin. Basically, four 

approaches are taken (Figure 10). Most methods are based simply on diffusion of various ions 

and compounds into apoferritin under specific conditions (Figure 10A) (Douglas and Stark, 

2000; Hosein et al., 2004; Meldrum et al., 1995; Meldrum et al., 1991; Okuda et al., 2003). The 

cores of both natural and non-natural ferritins are catalytic under certain conditions, or can 

undergo in situ reactions (Nikandrov et al., 1997; Ueno et al., 2004), and new materials have 

been created utilizing these features (Figure 10B). Ferritins have been used in photochemical 

reactions, in which ferritin with associated iron oxide catalyzed reduction of metals (Cr6+, Cu2+) 

in the presence of UV/visible light to produce colored metallic particles (Ensign et al., 2004; 

Kim et al., 2002). Alternatively, various chemicals can be used to transform the preformed 

cores of non-natural or natural ferritins (Galvez et al., 2005; Meldrum et al., 1991; Ueno et al., 

2004). The refolding ability of apoferritin has been used to passively (in part) encapsulate 

various metal particles and other compounds. In these procedures, the protein cage is dissolved 

at extreme pH (pH 2 or pH 12) and the desired compounds are passively encapsulated within 

the protein cores by returning the pH to neutral (Figure 10C) (Webb et al., 1994). This approach 

has often been exploited in recent years because it enables loading of larger molecules than can 

pass through the apoferritin channels. Thus, in addition to the synthesis of metallic particles 

inside apoferritin, other substances such as metal chelates, drugs and even ready particles can be 

loaded inside the ferritin protein cavity (Dominguez-Vera and Colacio, 2003; Hennequin et al., 

2008; Webb et al., 1994). An additional novel approach uses GEPIs fused to ferritin subunits to 

drive the formation of desirable metal particles (Figure 10D) (Kramer et al., 2004). Examples of 

compounds loaded or generated with the aid of apoferritin (or ferritin) and ferritin-like proteins 
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are presented in Table 1. The examples are organized by the loading methods utilized, as shown 

in Figure 10. 

Desired ions 
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Figure 10. Ferritin-loading approaches. A. The desired ions diffuse inside apoferritin and form particles by 
some reaction (e.g., auto-oxidation). The reaction starts often at multiple sites on the cavity surface 
forming several small incipient particles that grow and finally merge. B. Ferritin or apoferritin loaded with 
some metal (Method in A) can be in situ transformed to another material. C. By denaturing (e.g., pH 2) 
and refolding (e.g., pH 7) apoferritin protein cage substances can be encapsulated inside ferritin cage. D. 
Using metal-binding peptides desired materials can be loaded inside apoferritin. 
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Table 1. Different substances loaded into apoferritin, or particles formed using ferritin or apoferritin. The 
materials are organized by loading method. Potential features or functionalities of the particles, as stated 
by the researchers, are presented, as well as source of ferritin used and reported application of the material.  

Material 
loaded in or 

formed using 
ferritin / 

apoferritin 

Potential particle 
features or 

functions stated in 
respective 
references 

Source of 
ferritin 

Demonstrated application / 
functionality  

Reference 

Loading methods that are based on diffusion on one or several ions. 

Cadmium 
sulfide (CdS) 
particles. 

Semiconducting 
particles. 

Horse spleen 
apoferritin  

N/A, preliminary work. (Wong and 
Mann, 1996) 

Semiconducting 
particles, 
possibly 
utilizable in 
nanoelectronics, 
photoluminescent
. 

Recombinant 
ferritin-like 
protein used. 

Particles show some 
photoluminescence even 
though they are 
polycrystalline. 

(Iwahori et al., 
2007) 

Cadmium 
selenide 
(CdSe) 
particles. 

Semiconducting 
particles possibly 
utilizable in 
nanoelectronics 
and 
photoluminescen
ce. 

Horse spleen 
apoferritin used. 

N/A.  (Iwahori et al., 
2006; 
Yamashita et 
al., 2004) 

Carbonate 
particles of 
calcium, 
strontium, or 
barium  
(and calcium 
phosphate). 

N/A. Apoferritin from 
horse spleen 
ferritin used. 

N/A, new reaction model. (Li et al., 
2007) 

Chromium 
particles. 

Possibly usable 
in 
nanoelectronics. 

Both horse spleen 
apoferritin and 
recombinant 
apoferritin used. 

N/A. (Okuda et al., 
2003) 

Cobalt 
oxyhydroxide/ 
oxide 
particles. 
 

N/A. 
 

Horse spleen 
apoferritin used. 

N/A (Color, olive green). (Douglas and 
Stark, 2000) 

Magnetic and 
catalytic particles 

Recombinant 
ferritin-like 
proteins used. 

N/A. (Allen et al., 
2003) 

 Magnetic, 
catalytic, 
possibly 
utilizable in 
nanoelectronics. 

Horse apoferritin 
used. 
 

N/A, apoferritin loading 
mechanism studied.  

(Kim et al., 
2005) 
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 Magnetic, 

catalytic, 
possibly 
utilizable in 
nanoelectronics. 

Recombinant 
ferritin-like 
protein used. 
 

Magnetism showed. (Resnick et 
al., 2006) 

Co3O4 to Co 
(metallic) 
particles. 

Magnetic and 
catalytic. 

Recombinant 
ferritin-like 
protein used. 
 

N/A. (Hosein et al., 
2004) 

Europium, 
iron, titanium 
particles 
(oxides). 

N/A. Commercial 
mammalian 
apoferritin used. 

N/A, new type of loading 
method (high-oxidation 
state ions). 

(Klem et al., 
2008) 

Gold particles. Catalytic. N/A. Single-walled carbon 
nanotubes were produced 
using the gold particles 
produced with ferritin.  

(Takagi et al., 
2007) 

Surface plasmon 
resonant 
particles, 
catalytic 
properties. 

Horse spleen 
apoferritin used. 
 

N/A. (Zhang et al., 
2007) 

Surface plasmon 
resonant 
particles. 

Recombinant 
apoferritin used. 
Apoferritins were 
mutated to 
possibly optimize 
the loading.  

Surface plasmon resonance 
of the particles shown. 

(Butts et al., 
2008) 

Gold sulfide 
particles. 

Semiconducting 
particles, 
possibly 
utilizable in 
nanoelectronics. 

N/A. Apoferritin coating confers 
water solubility of Au2S 
particles. 

(Yoshizawa et 
al., 2006) 

Indium oxide 
particles. 

Possibly 
utilizable in 
nanoelectronics. 

Recombinant 
apoferritin used. 

N/A. (Okuda et al., 
2005) 

Iron arsenate, 
phosphate, 
vanadate, 
molybdate 
particles. 

Catalytic. Horse spleen 
apoferritin used. 

N/A. (Polanams et 
al., 2005) 

Iron cobalt 
particles 
(oxide) 
(FeCo). 

Magnetic. Commercial 
apoferritin used. 
 

Magnetism showed with 
ferritin. 

(Klem et al., 
2007) 
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Iron oxide 
particles (i.e., 
regular 
ferrihydrite). 

Catalytic. Commercial 
apoferritin and 
ferritin used. 

Ferritin acting as 
photocatalyst in presence 
of UV/visible light.  

(Kim et al., 
2002; 
Nikandrov et 
al., 1997)  

Catalytic. Both recombinant 
ferritin-like 
proteins and 
regular ferritins 
have been used. 

Iron oxide without ferritin 
protein catalysed 
production of carbon 
nanotubes. 

(Kramer et al., 
2005)  

Catalytic. 
 

Commercial 
apoferritin was 
used. 
 

Ferritin acting as 
photocatalyst in presence 
of visible light reducing 
copper. 

(Ensign et al., 
2004)  
 

Iron oxide 
particles 
(magnetic). 

Magnetic 
particles. 
Potential as MRI 
contrast agent. 
 

Horse spleen 
apoferritin used. 
 

Magnetism showed. 
 

(Bulte et al., 
1994a; Bulte 
et al., 1994b; 
Meldrum et 
al., 1992; 
Wong et al., 
1998)  

Magnetic. Apoferritin from 
horse spleen 
ferritin used. 

Magnetic ferritin used to 
label and separate certain 
cells. 

(Zborowski et 
al., 1996) 

Magnetic. Recombinant 
ferritin-like 
proteins used. 

Magnetism showed. 
 

(Allen et al., 
2002) 

Magnetic, 
Potential as MRI 
contrast agent. 

Recombinant 
apoferritin used. 
Binding peptide 
genetically fused 
to the surface of 
recombinant 
apoferritin. 

Magnetism showed. 
MRI experiments have 
been performed. 

(Uchida et al., 
2006; Uchida 
et al., 2008) 

Magnetic. 
 

Recombinant 
apoferritin from 
thermophilic 
bacterium 
Pyrococcus 
furiosus. 

Particles showed enhanced 
magnetic properties to 
previous ones (due to 
possibly different interior 
from mammalian ferritins). 

(Parker et al., 
2008) 

Lead sulfide 
(PbS) 
particles. 

Photoluminescent 
particles, near- 
infrared. 

Apoferritin from 
horse spleen 
ferritin used. 

Produced particles within 
ferritin are inherently 
photoluminescent. 

(Hennequin et 
al., 2008), 
Two separate 
loading 
methods 
(another 
below) 
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Lutetium 
phosphate. 

Model for 
radionuclide 
Lutetium-177 
that has potential 
medical 
applications. 

Horse spleen 
apoferritin used. 
 

N/A. (Wu et al., 
2008) 

Manganese 
oxide/ 
oxyhydroxide
particles.  

N/A. Both recombinant 
apoferritins and 
apoferritin made 
of horse spleen 
ferritin were 
used. 

N/A, a basic loading 
mechanism study. 

(Meldrum et 
al., 1995; 
Meldrum et 
al., 1991) 

Nickel 
particles. 

Possibly usable 
in 
nanoelectronics. 

Both horse spleen 
apoferritin and 
recombinant 
apoferritin used. 

N/A. (Okuda et al., 
2003) 

Palladium 
complexes. 

Catalytic. Recombinant 
apoferritin used. 

Catalytic reactions were 
shown. 

(Abe et al., 
2008) 

Phosphate 
particles from 
cadmium, 
zinc, or lead.  
Alternatively, 
mixtures of 
different 
phosphates in 
single particle. 

Released metal 
ions can be 
detected 
voltammetrically. 

Horse spleen 
apoferritin used. 
 

Loaded apoferritin surface 
chemically biotinylated. 
Particles used as labels in 
electrochemical 
immunoassay.  

(Liu et al., 
2007; Liu et 
al., 2006c) 
Two loading 
methods 
demonstrated 
(see below) 

Silver 
(metallic) 
particles. 

Surface plasmon 
resonant 
particles. 

Recombinant 
apoferritin used. 
Apoferritins were 
mutated to 
possibly optimize 
the loading.  

Surface plasmon resonance 
of the particles shown. 

(Butts et al., 
2008) 

Uranyl 
oxyhydroxide. 

N/A. Apoferritin from 
horse spleen 
ferritin used. 

N/A, preliminary study. (Meldrum et 
al., 1991) 

Uranium 
(oxide) 
particles 

Radioactive 
ferritin (in a 
neutron beam). 
Suggestion as 
radio- 
pharmaceuticals. 

Commercial 
horse apoferritin 
used. 
 

Antibody Fab-fragments 
chemically coupled to the 
protein cage. 

(Hainfeld, 
1992) 

Zinc selenide 
(ZnSe) 
particles. 

Semiconducting 
particles used in 
nanoelectronics 
and 
photoluminescen
ce 

Recombinant 
apoferritin used. 

Weak photoluminescence 
shown. (Weakness due to 
polycrystallinity of ZnSe) 

(Iwahori et al., 
2005) 
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Loading methods that are based on transforming core of ferritin or on reactions of ferritin core. 

Iron sulfide- 
coated iron 
oxide 
particles. 

N/A. Horse spleen 
ferritin was 
used.  
 

Slight magnetism shown 
by St. Pierre et al. 1993. 
(Color, black) 

(Meldrum et 
al., 1991; St. 
Pierre et al., 
1993) 
 

Iron sulfide 
particles. 

N/A. 
 

Horse spleen 
ferritin was 
used.  

N/A (Color, green). (Douglas et 
al., 1995) 

Loading methods that are based on first diffusion of the ions and then transformation of the core 
material. 

Cisplatin. Anticancer drug. Apoferritin 
from horse 
spleen ferritin 
was used. 

Preliminary cytotoxicity 
has been  
demonstrated. 

(Yang et al., 
2007) 

Cu particles. 
 

N/A.  
 

Horse spleen 
apoferritin was 
used.  

N/A (Color, yellow). (Galvez et al., 
2005) 

CuFe 
particles. 

Magnetic. 
 

Horse spleen 
apoferritin was 
used. 

N/A (Color, red-brown). (Galvez et al., 
2005) 

Cobalt and 
nickel 
particles. 

Magnetic. Horse spleen 
apoferritin was 
used. 

Some magnetism was 
shown. 

(Galvez et al., 
2006) 

Cobalt 
platinum 
(CoPt) 
particles. 

Magnetic. Apoferritin 
from 
commercial 
ferritin used. 

Proper magnetism was 
shown with ferritin coat 
removed.  

(Warne et al., 
2000) 

Palladium 
(metallic). 

Catalytic. Apoferritin 
from horse 
spleen ferritin 
used. 

Loaded ferritin particle 
used in size-selective 
olefin hydrogenation. 

(Ueno et al., 
2004) 

Silver 
(metallic) 
particles. 

Surface plasmon 
resonant particles. 

Horse spleen 
apoferritin 
used. 

Surface plasmon 
resonance was shown. 

(Dominguez-
Vera et al., 
2007) 

Loading methods that are based on using peptides for inorganics. 

Ag (metallic) 
particles. 

N/A. C-terminal 
template 
peptide used 
for generating 
particles inside 
recombinant 
apoferritin. 

N/A. (Kramer et al., 
2004) 

CoPt particles. Magnetic particles. Preparation as 
above. 

N/A. (Kramer et al., 
2004) 
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Loading methods that are based on denaturation-refolding of apoferritin. 

Entrapment of 
pH indicator 
molecules. 

pH indicator N/A. N/A, used for studying 
ferritin. 

(Webb et al., 
1994) 

Entrapment of 
gadolinium 
complexes. 

Magnetic particles, 
Potential as MRI 
contrast agent. 
 

Commercial 
apoferritin 
used. 

MRI experiments have 
been performed (in vitro 
and in vivo).  

(Aime et al., 
2002b; Geninatti 
Crich et al., 
2006) 

Hexacyanoferr
-ate particles. 

Potential as marker 
molecule. 

Horse spleen 
apoferritin 
used.  

Addition of Fe resulted in 
a blue color (“Prussian 
blue”). 

(Dominguez-
Vera and 
Colacio, 2003) 

Potential as marker 
molecule. 

Horse spleen 
apoferritin 
used. 

Particles used as labels in 
electrochemical 
immunoassay. 

(Liu et al., 
2006a; Liu et 
al., 2006b) 

Entrapment of 
doxorubicin 
molecules. 

Potential 
anticancer drugs 
within ferritin. 

Horse spleen 
apoferritin 
used. 

N/A. (Simsek and 
Kilic, 2005) 

Entrapment of 
fluorescein. 

Fluorescent 
particles. 

Horse spleen 
apoferritin 
used.  

Particles used as labels in 
immunoassay. 

(Liu et al., 
2006b) 

Entrapment of 
methylene 
blue. 

The compound 
acts as 
photosensitizer: 
Potential use in 
photodynamic 
therapy of cancer. 

Horse spleen 
apoferritin 
used. 

Cytotoxicity has been 
demonstrated 

(Yan et al., 
2008) 

Entrapment of 
cisplatin and 
carboplatin 

Anticancer drugs. Apoferritin 
from horse 
spleen ferritin 
was used. 

Cytotoxicity has been 
demonstrated. 

(Yang et al., 
2007) 

Entrapment of 
PbS particles. 

Photoluminescent 
particles, near-
infrared.  

Apoferritin 
from horse 
spleen ferritin 
was used. 

Particles entrapped by 
apoferritin are inherently 
photoluminescent; no need 
for heat treatment. 

(Hennequin et 
al., 2008) 

 

Mechanisms of metallic nanoparticle formation inside apoferritin have not received much 

attention. However, it is hypothesized that many different reactions are involved, in which 

components form metallic cores under specific conditions. These reactions don’t presumably 

involve ferritin heavy chain ferroxidase activity because it is mainly involved only in loading of 

small ions but additional oxidants, such as H2O2, are used to permit oxidative hydrolysis if that 

is needed. Also, several different ions can be added simultaneously or sequentially, thus 

generating materials other than typical metal hydroxides or oxides (Douglas and Stark, 2000; 

Liu et al., 2006c; Wong et al., 1998). In general, the theory behind such processes assumes that 

metal ion binding sites are present on the inner surface of the protein cage, based on (for 

example) electrostatic forces. These sites probably act as startpoints for mineralization reactions 

(e.g., autoxidation), which proceed further on the surfaces of incipient metal particle seeds 



Ferritin as a Nanocontainer 

 

36 

(Figure 10A). Incipient particles probably grow, and further merge, on the surface of the 

apoferritin cavity, thereby forming multinucleate single particles (Kim et al., 2005). Exceptions  

have been, however, reported. Indium oxide particles have presumably grown from a single 

nucleation point thus forming exceptionally homogeneous particles inside apoferritin (Okuda et 

al., 2005). These metal loading approaches offer the possibility of fine-tuning metallic particle 

size within ferritin cage by varying the proportions of added substances in the reactions. Size-

tunability is important in (for example) semiconducting and magnetic nanoparticles. 

(Dominguez-Vera et al., 2007; Gider et al., 1995; Hosein et al., 2004; Uchida et al., 2006) 

When encapsulation methods are used (Figure 10C), molecules are typically passively loaded 

into apoferritin.  

In summary, various compounds have been introduced into ferritin, apoferritin, and ferritin-

like proteins (Table 1). Metal aggregates in bulk solution have rarely been formed if precursor 

compounds have been added at near-stoichiometric amounts. The typical method for study of 

apoferritin loading has been transmission electron microscopy (TEM) because metal particles 

formed can often be visualized and differentiated from the protein coating, thus directly 

showing loading efficiency. Also, chromatographic methods combined with spectroscopic 

analysis have been employed. Detailed analyses of metal particles are based on energy-

dispersive X-ray approaches that reveal the compositions of metal particles as well as possible 

crystal structures. Reported apoferritin particle loading efficiencies, where mentioned, have 

been 50-90%, depending largely on metal particle type (Kramer et al., 2004; Meldrum et al., 

1995; Okuda et al., 2003; Yamashita et al., 2006; Yoshizawa et al., 2006). Thus, further efforts 

may be needed to optimize several loading methods, depending on the final particle application. 

Additionally, discovery of optimal loading conditions may not be trivial, and at least some 

reactions require particular conditions, and thereby extensive experimental optimization (Okuda 

et al., 2003). Parameters to be investigated may include reaction atmosphere, pH, temperature, 

buffer type, possible need for additional ions for compound synthesis, any need (using polymers 

or chelators) for inhibition of excessively fast reactions leading to non-specific metal 

aggregation, and any requirement for enhancers (e.g., additional reducers or oxidants) of ferritin 

function (Ensign et al., 2004; Li et al., 2007; Okuda et al., 2003; Okuda et al., 2005). 

The characteristics and potential functions of loaded ferritins, or of particles produced using 

apoferritin protein cages, are many. Colored, semiconducting, magnetic, catalytic, and 

fluorescent particles have been formed (Table 1). Metallic compounds/particles have been 

loaded inside ferritin with two intentions. First, ferritins are used as “particle reactors” to form 

size- and shape-constrained metallic particles, possibly aiding in particle targeting to desired 

surfaces. Such applications often include removal of the ferritin protein coating, for example by 

pyrolysis at temperatures above 400°C under nitrogen gas (Iwahori et al., 2005; Takagi et al., 

2007; Yamashita et al., 2006). Sometimes this heat treatment is necessary before a metal 

particle shows desired properties such as efficient photoluminescence or particular magnetic 

properties, which are compromised by the multinucleate character of apoferritin-generated 

metal particles (Figure 10A). The heat treatment transforms particles to single crystals and 

simultaneously removes ferritin cage (Galvez et al., 2006; Hosein et al., 2004; Iwahori et al., 

2005; Warne et al., 2000). Secondly, in some potential applications both the apoferritin cage 
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and the material inside are utilized. The protein cage has made metallic particles, in particular, 

water-soluble, and minimized non-specific aggregation of such particles (Yoshizawa et al., 

2006). In addition, the protein coating offers possibilities for various further particle 

modifications (e.g., bioconjugation). Recently, inherently photoluminescent PbS particles were 

successfully created within apoferritin. Two methods were described, and there was no need for 

heat treatment, thus enabling also utilization of the protein cage (Hennequin et al., 2008).  

4.3 Modifications of ferritin nanocontainers 

Most methods described in Table 1 have used commercial ferritins (mostly equine) with only 

a few examples of recombinant ferritins. Ferritins actually loaded or potentially loadable with 

different molecules have additionally been modified by chemical means and recently also 

utilizing recombinant gene technology. 

Chemical reactions exploiting free amino and carboxyl groups on the surface of ferritin 

nanocontainers have been used to add further functionalities, such as specific binding activities 

(e.g., biotin, or mononucleotides) or label activities (e.g., fluorescent molecules conjugated to the 

ferritin surface) (Fernandez et al., 2008; Fernandez et al., 2007; Li et al., 1999; Liu and Lin, 2007; 

Wu et al., 2008). Another purpose of chemical modifications has been to modify chemico-

physical characteristics of ferritin. For example, ferritins with chemically altered surface charges 

(i.e., cationic ferritins) have long been used to visualize oppositely charged spots on various cells 

in TEM and recently also as charge-specific contrast agents in magnetic resonance imaging (MRI) 

(Bennett et al., 2008; Danon et al., 1972). By conjugating hydrophobic molecules onto ferritin the 

hydrophilic nature of the surface is altered thus enabling ferritins to be dissolved in hydrophobic 

solvents. This may extend ferritin loading possibilities in reactions requiring organic solvents, and 

may impart self-directing properties to ferritin in polymer solvents, which could permit (for 

example) controlled multistage drug release (Sengonul et al., 2007; Wong et al., 1999). Actual 

applications along these lines have not, however, been reported. 

 There are few reports on use of recombinant gene technology to load ferritin with alternative 

substances. As mentioned earlier, a straightforward and promising approach to expand the 

spectrum of ferritin-binding specificities includes fusion of ferritin subunits to peptides specific 

for certain metals (such as Ag or CoPt) or other molecules, and located inside apoferritin. 

Alternatively, this method has been used to add specific binding activities (for carbon 

nanotubes, cell markers, and metals) to the outer surface of apoferritin (Hayashi et al., 2006; 

Kramer et al., 2004; Sano et al., 2005; Uchida et al., 2006; Yamashita et al., 2006). As peptide 

specificity can be relatively easily modified using in vitro display methods, the possibilities are 

vast (Whaley et al., 2000). Recently, efforts to genetically modify the inner surface of the 

ferritin protein cage to make the cage more (or less if desired) attractive to particular ions or 

molecules have been reported. The goals of the studies have been to control the numbers of 

nucleation points inside apoferritin or optimizing apoferritin loading by amino acid changes and 

to make the negative inner surface of ferritin suitable for acceptance of hydrophobic molecules 

(Abe et al., 2008; Butts et al., 2008; Swift et al., 2006). 
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5 Ferritin in biomedical applications 
Even though research on ferritin loading with various compounds has been vigorous, 

research groups demonstrating actual biomedical applications of ferritin have been relatively 

few. Only in recent years ferritin has been employed in biological applications, even though 

early suggestions on biomedical uses of ferritin (for example as a “magic bullet” to transport an 

anticancer activity in humans) appeared already in the early 1990s (Hainfeld, 1992). Recently, 

preliminary experiments in vitro have shown potential cytotoxicity of drug-loaded ferritins 

(Yan et al., 2008; Yang et al., 2007). 

5.1 Bioaffinity assays utilizing ferritin as a reagent 

Lin’s group has developed various bioaffinity assays, in which specific target molecules have 

been quantitatively detected in vitro. The assay systems have thus produced signals proportional 

to amount of the target molecule. Detection has been based on bifunctionalized apoferritin 

particles. For these assays, horse spleen apoferritin was loaded with various marker molecules 

and the ferritin surface chemically functionalized to show affinity toward target molecules.  

Work has included development of both fluorescence (using fluorescein) and electrochemical 

detection technologies. The marker hexacyanoferrate [K3Fe(CN)6] was first employed as an 

electrochemically detectable material and later on, metallic phosphate particles (phosphates of 

Cd2+, Zn2+, and Pb2+) competing with semiconducting quantum dots were introduced. Quantum 

dots of these cations can also be detected electrochemically but require harsh conditions to 

release metal ions prior to the measurement, unlike respective phosphates (Liu et al., 2007; 

Wang et al., 2003). Different metal ions have different potentials in which they produce 

measurable currents and the current intensities are related to ion levels. Lin and others have 

succeeded also in producing bimetallic Cd2+ and Pb2+ phosphate particles inside apoferritin. The 

current intensities obtainable with such particles correlate with the proportions of each metal in 

the particles, which is controllable by proportions of cations used in preparation of particles. 

Therefore, ferritin-based nanoparticles with individual detection codes can be made using this 

method because the detection codes depend on the metals used, and their proportion in the 

material. This enables assay multiplexing, which means that multiple targets can be 

simultaneously detected in a single assay by using various specific particles (Liu et al., 2007; 

Liu et al., 2006c). Binding molecules (e.g., biotin, oligonucleotides, antibodies) have been 

chemically conjugated to loaded apoferritin surfaces to enable particle binding to target 

molecules. Assay performances, such as detection sensitivities for proteins or single nucleotide 

polymorphisms (SNP) have been stated to be equal to or even better than those of conventional 

assays (Liu and Lin, 2007; Liu et al., 2006a; Liu et al., 2006b; Liu et al., 2007; Liu et al., 

2006c).  

Lee’s group have used genetically modified recombinant ferritins in bioaffinity assays to 

capture target antibodies on a solid surface (Lee et al., 2007). In such applications, various 

antigens have been genetically fused to the C-terminal end of the heavy-chain ferritin subunit. 

Thus, ferritin has been forced into the “flop” conformation, in which the C-terminal ferritin end 
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points to the outer surface of ferritin instead of to the cavity interior even though this 

compromises particle stability (see Section 3.2) (Choi et al., 2005; Lee et al., 2007). Ferritin 

particles displaying surface antigens were bound to a solid surface (a membrane), on which they 

captured target antibodies. Two detection mechanisms were used. One was PCR-based, and the 

other involved labeled antibodies conjugated to highly photoluminescent commercial quantum 

dots. Different antibodies (e.g., diabetes autoantibodies and hepatitis B antibody) could be 

detected using this rather complicated assay procedure, with high sensitivities for both antibody 

types. Additionally, assay multiplexing has been demonstrated (Lee et al., 2007). 

5.2 Potential in vivo applications of ferritin 

Progress in medical imaging technologies such as MRI has drawn attention of researchers. In 

addition to a role as improved contrast agents for MRI, magnetic particles can be useful in 

cancer therapy (hyperthermia treatment of cancer cells). The use of two types of ferritin-based 

magnetic materials have been demonstrated in preliminary biomedical applications; these 

materials are iron oxides and paramagnetic gadolinium chelates. 

Gadolinium chelates incorporated in the ferritin cavity using the pH encapsulation method 

(Figure 10C) have shown magnetic effects superior to those of free chelates in water, as 

represented by conventional contrast agents (Aime et al., 2002b). It has been suggested that the 

observed enhancement is related to the presence of multiple chelates in a single ferritin particle, 

and to an interaction between the paramagnetic chelates and protein surface of the ferritin cavity 

(Aime et al., 2002b; Vasalatiy et al., 2006). An additional advantage of ferritin is the possibility 

to modify the protein coat to assist in directing the contrast agent to specific organs or cells, 

facilitating molecular visualization by improved, targeted responses (Aime et al., 2002a; 

Geninatti Crich et al., 2006). Chemically biotinylated apoferritin, loaded with gadolinium 

complexes (8-10 chelates/protein shell), have been shown to concentrate in desired pre-targeted 

cells (tumor endothelial cells) both in vitro and in vivo in mice with Severe Combined 

Immunodeficiency (SCID) (Geninatti Crich et al., 2006). 

Creating of magnetic iron oxide particles (magnetite or maghemite) inside ferritin was 

described in the early 1990s (Meldrum et al., 1992), and the loading method was refined 

thereafter (Uchida et al., 2006; Wong et al., 1998). The loading of iron oxide mimics normal 

iron mineralization by ferritin but different reaction conditions are employed. Thus, loading is 

performed under N2 at temperatures above 60°C using H2O2 as an additional oxidant. The use of 

such magnetic ferritin particles in cells has been demonstrated in recent years. Cancer cells have 

been specifically targeted using recombinant human ferritin with N-terminal targeting peptides 

on the ferritin surface and internal magnetic iron oxide; even though cancer cells also have 

some receptors for wild-type ferritin (Fargion et al., 1988; Uchida et al., 2006). Macrophages 

were also visualized by MRI using non-targeted ferritins loaded with magnetic iron oxide, and 

the MRI performance of ferritin-coated iron oxide was determined to be comparable to or even 

better than current commercial iron oxide MRI contrast agents (Uchida et al., 2008).  

Ferritin particles may offer targeting possibilities in vivo, presumably non-toxicity, and 

biocompatibility. However, biodistribution and toxicity have not yet been examined in detail. 
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When human-like ferritin proteins are microbially generated, the lack of possible eukaryotic 

post-translational modifications (Zaman and Verwilghen, 1981) may affect functions in 

humans. Also, effects of ferritin functionalizations, such as targeting moieties and associated 

markers or therapeutic agents need to be considered. 
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6 Aims of the study 
The overall aim of the study was to develop a novel production system for functionalized 

nanoparticles used in bioaffinity assays. The specific aims were as follows: 

 

(1) Design of ferritin cage-based particles that contain a marker substance and display 

binding molecules on the surface. Production of functional particles should follow 

principles of “green chemistry”. 

 

(2) Establishment of a simple biological production system for functional ferritin-based 

nanoparticles, offering the possibility for easy upscaling of the production, including 

purification of the particles. 

 

(3) Demonstration of the utility of the functionalized particles in bioaffinity assays, with 

reference to contributions made by binding molecules and marker agents.  

 

These goals were pursued by genetically fusing genes encoding binding molecules and a 

ferritin subunit, and by microbial particle material production. The non-chromatographic 

purification procedure was straightforward, including self-assembly of particles with surface 

binding molecules, during which the marker molecules were introduced. This system can be 

easily upscaled and bacterial fermentation complies with the principles of green chemistry.  
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7 Materials and Methods 
The human ferritin light chain was used because this chain is more stable than the heavy 

chain subunit (Santambrogio et al., 1993). The ferritin-based particles produced are called 

hereafter as ferritin even though the particles contained no iron. Three different binding 

molecules were chosen for analysis. The first was Biotin Carboxyl Carrier Protein, BCCP, a 

small protein of 87 amino acids, that becomes biotinylated in E. coli cells (Cronan, 1990), 

thereby generating particles with an inherent ability to bind streptavidin (Figure 11A) (Wilchek 

and Bayer, 1999). The second was a single-chain antibody fragment (scFv), a complex binding 

protein, enabling the production of particles inherently specific for a desired analyte (Figure 

11B). The scFv protein contains the variable parts of antibody heavy and light chains joined by 

a linker, and stabilized by a disulfide bridge, to form a single polypeptide chain (Bird et al., 

1988). The third binding molecule was the 27-amino acid calmodulin-binding peptide, CBP, 

which binds to calmodulin in the presence of approximately 2 mM Ca2+ (Neri et al., 1995). 

Calmodulin can be genetically fused to any binding moiety, such as an antibody fragment, and 

particles of desired specificity can be generated by associating CBP-ferritin with a fusion 

protein including calmodulin and a binder molecule (Figure 11C). The model antibody 

fragment used here, scFv, is directed against thyroid-stimulating hormone (TSH), and is termed 

αTSHscFv (Brockmann et al., 2005). This protein was directly fused to either ferritin or 

calmodulin.  
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Figure 11. Ferritin-based nanoparticles containing different types of surface binding molecules and Eu3+ 
ions as fluorescent markers. A. BCCP-ferritin. Biotin carboxyl carrier protein, BCCP, is a small protein 
that is biotinylated in E. coli cells. Consequently, the particles are able to bind streptavidin and further any 
biotinylated molecules. B. αTSHscFv-ferritin contains, on the ferritin surface, an antibody fragment 
specific for thyroid stimulating hormone (TSH). Such particles are inherently TSH-specific. C. 
Calmodulin-binding peptide (CBP)-ferritin. CBP binds calmodulin in the presence of Ca2+ ions. 
Calmodulin can be fused to many binding molecules, such as scFv. TSH-specific scFv was associated with 
calmodulin. Figure modified from publication III. 

The different binding moieties permit various particle applications. The scFv can be used to 

directly produce particles specific for desired analytes; BCCP enables particle use in 

(strept)avidin-biotin technology; CBP-displaying particles can be linked to antibodies (or other 
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binding molecules) of any specificity, via calmodulin, to create modular systems. When particle 

label functionality was required, Eu3+ ions were used as an inorganic label because these ions 

can be detected at very low levels using time-resolved fluorometry. The technology has been 

reviewed in Hemmilä and Mukkala (2001). The use of both Eu3+ and binding molecules should 

make the particles suitable as labels in bioaffinity assays. Particles without label may be used in 

particle-enhanced agglutination assays. 

All details of materials and methods have been published in original research papers. Here, 

the methods used are described in general. 

7.1 Gene fusions and particle production 

The 3’ ends of genes encoding the desired binding molecules were fused with the 5’ end of 

the human ferritin light chain gene because the amino-terminal ends of ferritin subunit chains 

are located on the outer surface of ferritin. Thus, the binding molecules will point out to the 

solution.  

The process for generating ready-to-use particles with surface binding molecules and Eu3+ 

ions as a marker is outlined in Figure 12. Production involved bacterial cultivation. Fusion 

polypeptides consisting of the binding moiety and the ferritin subunit were produced as 

inclusion bodies within E. coli. Particle purification commenced with inclusion body isolation; 

this was easily achieved using generic procedures (i.e., washing with detergent followed by 

optional sonication and centrifugation). Next, the inclusion bodies were dissolved at low pH or 

in 8 M urea and released polypeptides were allowed to self-assemble by raising the pH 

gradually or by diluting the urea solution 10-fold (Figure 12). This forms globular nanoparticles 

with surface binding activities (Figure 11). When desired, particle labeling was achieved by 

introducing Eu3+ ions before the self-assembly step. 
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Figure 12. The production-purification process of particles using BCCP-ferritin as a model particle. 
BCCP-ferritin fusion polypeptide chains were produced as inclusion bodies in E. coli containing a plasmid 
expressing the fusion gene BCCP-FtL. Inclusion bodies were purified from cell lysates by two steps of 
centrifugation, sonication (optional), and washing (denoted with a spiral). Inclusion bodies were 
solubilized at pH 2.0 or in 8 M urea, and the particles reassembled when the pH was gradually raised to 
pH 8.5, or urea was diluted 10-fold. To label the particles, 0.6 µM EuCl3 was added to solutions when the 
pH was below pH 6.0. Figure modified from publication I. 

7.2 Particle characterization 

In general, protein yields were determined by SDS-PAGE analysis, or using a ferritin 

immunoassay with wild-type ferritin as standard. This can be done when the binding moiety on 

the ferritin surface is considered sufficiently small to permit anti-ferritin antibodies to recognize 

the fusion ferritins. The immunoassay scheme is shown in Figure 13A. Purification efficiencies 

were qualitatively estimated from SDS-PAGE gels. Additionally, the formation of BCCP-

ferritin particles was studied by TEM.  

The functionalities of binders fused to ferritin were determined in bioaffinity assays using 

ferritin particles without loaded Eu3+. The assay schemes for each particle type are presented in 

the Figures that follow. Figure 13B shows the bioaffinity assay determining the streptavidin-

binding activity of biotin-displaying BCCP-ferritin particles, using labeled streptavidin. For 

both αTSH-ferritin and CBP-ferritin, correct folding of binding molecules on the ferritin 

surface was confirmed using biotinylated and Eu3+-chelate-labeled TSH (Figure 14). 
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Figure 13. Assays used to examine BCCP-ferritin particles. A. An immunoassay for ferritin. Biotinylated 
anti-ferritin antibodies were bound to streptavidin-coated microtiter wells. After removal of unbound 
antibody by washing, BCCP-ferritin was added to the wells. After incubation, Eu3+-chelate-labeled anti-
ferritin antibody was added. Unbound ferritin and antibody were removed by washing and Eu3+ 
fluorescence measured. B. Streptavidin binding assay. Biotin-displaying BCCP-ferritin particles were 
added to streptavidin-coated microtiter wells. To measure non-specific particle binding, specific binding 
was inhibited by saturating some streptavidin-coated wells with free biotin. After removal of unbound 
particles, Eu3+-chelate-labeled streptavidin was added. Unbound streptavidin was removed and Eu3+ 

fluorescence measured. SA=streptavidin. Figure modified from publication I. 
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Figure 14. TSH-binding activities of particles lacking Eu3+. A. The TSH-binding activity of αTSHscFv-
ferritin was assessed using biotinylated and Eu3+-chelate-labeled TSH. αTSHscFv-ferritin particles were 
attached to a solid surface containing biotinylated TSH. After removal of unbound particles, TSH labeled 
with Eu3+-chelate was added. Unbound labeled TSH was removed and fluorescence was measured. B. The 
TSH-binding activity of CBP-ferritin combined with αTSHscFv-calmodulin was evaluated as described 
above (in A) for αTSHscFv-ferritin. αTSHscFv-calmodulin was associated with CBP-ferritin in the 
presence of Ca2+ before addition of particles to the assay. The negative controls for the assay were CBP-
ferritin without αTSHscFv-calmodulin and αTSHscFv-calmodulin combined with wild-type ferritin. In 
addition to TSH-binding, the calmodulin-binding activity of CBP on the surface of ferritin was measured. 
SA=streptavidin. Figure modified from publication II. 
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7.3 Use of particles in bioaffinity assays 

Functionalities of the produced nanoparticles were demonstrated in bioaffinity assays. 

Particles (BCCP-ferritin, αTSHscFv-ferritin, and CBP-ferritin) loaded with Eu3+ ions, were used 

in heterogeneous assays (i.e., assays including separation steps) as shown in Figure 15. The 

assays utilized solid carriers (e.g., a. microtiter well) which enabled excess, unbound reagents to 

be removed by washing. Fluorescence specific for the target molecule (biotinylated IgG or 

TSH), from Eu3+ ions, was detected using DELFIATM technology (Perkin-Elmer Life Sciences, 

Turku, Finland). Eu3+ fluorescence was developed using dissociating fluorescence enhancement 

solution that has low pH (pH 3.5) and that contains materials dissociating Eu3+ ions from 

particles. The chelates in solution form highly fluorescent chelates with released Eu3+. The 

fluorescence of the Eu3+ chelates can be measured in a time-resolved manner. For a review of 

the technology, see Hemmilä and Mukkala (2001)  

BCCP-ferritin without Eu3+ was also tested in particle-enhanced agglutination assays (Figure 

16). Ferritin nanoparticles coated with specific binding molecules (e.g., BCCP linked to biotin) 

were agglutinated with appropriate amounts of a target molecule (streptavidin) with multiple 

biotin-binding sites. The agglutination reaction was spectrophotometrically quantified by 

detecting light dispersion by the aggregates. Also, agglutination products were visualized by 

TEM. 

SA

Anti-mouse 
IgG

Biotiynlated 
IgG

BCCP-ferritin

A.

Eu3+

SA

Anti-mouse 
IgG

Biotiynlated 
IgG

BCCP-ferritin

A.

Eu3+

Biotinylated anti-
TSH IgG

TSH

αTSHscFv-
ferritin

SA

Eu3+

B.

Biotinylated anti-
TSH IgG

TSH

αTSHscFv-
ferritin

SA

Eu3+

B.  C.

Biotinylated
anti-TSH IgG

TSH

αTSHscFv-
calmodulin

SA

Eu3+

CBP-ferritin

Ca2+

C.

Biotinylated
anti-TSH IgG

TSH

αTSHscFv-
calmodulin

SA

Eu3+

CBP-ferritin

Ca2+

 

Figure 15. Functionality of ferritin-based nanoparticles used as label agents in bioaffinity assays. A. 
BCCP-ferritin was used to detect biotinylated antibody. The biotinylated antibody bound to anti-mouse-
IgG-coated microtiter wells. Unbound antibody was removed by washing. BCCP-ferritin was mixed with 
streptavidin and added to the wells. After removal of excess particles by washing, Eu3+ fluorescence was 
measured. B. αTSHscFv-ferritin was used to detect TSH. Biotinylated monoclonal antibody against TSH 
was attached to a streptavidin-coated solid surface. Unbound antibody was removed by washing, and TSH 
was added to the wells. Following the removal of unbound TSH, αTSHscFv-ferritin particles containing 
Eu3+ were added. Unbound particles were removed and Eu3+ fluorescence measured. C. CBP-ferritin 
containing Eu3+ and combined with αTSHscFv-calmodulin was measured by using the particles as 



Materials and Methods 

 

47

labeling agents in an assay for TSH, as described above (in B) for αTSHscFv-ferritin. αTSHscFv-
calmodulin was associated with CBP-ferritin in the presence of Ca2+ before particle use. SA=streptavidin. 
Figure modified from publications I-III. 
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Figure 16. Particle-enhanced agglutination assay using BCCP-ferritin particles devoid of Eu3+ ions. 
Because streptavidin has four biotin-binding sites, streptavidin cross-links biotin-displaying BCCP-ferritin 
particles, creating aggregates. The sample (streptavidin) was added to biotin-displaying-ferritin. Reactants 
were mixed briefly and incubated at room temperature for 5 minutes. The absorption spectrum of the 
agglutination product was measured. Figure modified from manuscript IV. 
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8 Summary of Results 

8.1 Bacterial production and purification of the proteins 

The extent of bacterial production of fusion ferritin subunits (Figure 11), and the effective 

purification of such proteins, were examined by SDS-PAGE performed after purification and 

denaturation-refolding employing both the urea and pH methods. Inclusion bodies of BCCP-

ferritin were purified with a protocol utilizing sonication but sonication was omitted during 

purification of αTSHscFv-ferritin and CBP-ferritin. 

 SDS-PAGE of BCCP-ferritin revealed the presence of a fusion polypeptide of the 

appropriate size (29.7 kDa) (Figure 17A). Both particle preparations were pure but particles 

generated using the pH refolding method contained less contaminating proteins than did those 

produced with the urea method, even though urea-refolded particles were five-fold more dilute 

than were pH-refolded particles.  

SDS-PAGE analysis of αTSHscFv-ferritin fusion polypeptides, produced using both refolding 

methods, revealed bands corresponding to the fusion polypeptide (47.3 kDa) (Figure 17B and 7C), 

and bands corresponding to CBP-ferritin polypeptides were also clearly visible at 23.5 kDa 

(Figure 17D). Remarkably few contaminating proteins were detected considering the simple 

purification procedure used (no sonication was employed during isolation of inclusion bodies). 

Two contaminating bands may be detected by comparison with the SDS-PAGE tracks of BCCP-

ferritin, the inclusion bodies of which had been purified using sonication (Figure 17A). 

       

Figure 17. SDS-PAGE gels of ferritin fusion polypeptides produced by both pH and urea denaturation-
refolding methods. Gels were run after production, purification, and self-assembly of subunits to create the 
final particles. A. αTSHscFv-ferritin produced by pH method. Lane 1: molecular weight calibration 
protein mixture; lane 2: polypeptides resulting from fusion of αTSHscFv and the ferritin subunit. The 
arrow indicates αTSHscFv-ferritin subunits (47.3 kDa). B. αTSHscFv-ferritin produced by urea method. 
Lane 1: fusion polypeptide; lane 2: molecular weight calibration protein mixture. The arrow indicates 
αTSH-ferritin. C. CBP-ferritin fusion polypeptides produced by the pH and urea methods. Lanes 1 and 2: 
CBP-ferritin produced by pH and urea denaturation-refolding, respectively; lane 3: molecular weight 
calibration protein mixture. The arrows indicate CBP-ferritin subunits (23.5 kDa). D. Lanes 1 and 2: 
BCCP-ferritin generated by the pH and urea denaturation-refolding methods, respectively, showing 
BCCP-ferritin polypeptides of appropriate size (29.7 kDa). Lane 3: molecular size standard mixture.  
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The yield of BCCP-ferritin in bacterial production was estimated by immunoassay using 

wild-type ferritin as a standard (Figure 3A). The yield of BCCP-ferritin particles was on 

average 2.3 mg/l and 6.5 mg/l of bacterial culture medium when the pH and urea denaturation-

refolding methods, respectively, were used. By varying refolding conditions (setting the pH to 

8.5, adding reduced glutathione, and raising the pH gradually) the refolding yield was improved 

to 11 mg/l. BCCP-ferritin particles were also produced in two different E. coli strains 

[BL21(DE3)pLysS and BL21(DE3)] and at two different temperatures (37ºC and 26ºC); 

production conditions affected both particle yield and the extent of biotinylation. Strain 

BL21(DE3)pLysS expresses T7 lysozyme; the enzyme slightly inhibits T7 RNA polymerase, 

and thus slows expression of the desired gene (BCCP-ferritin). This probably affords BCCP 

more biotinylation time prior to folding into inclusion bodies. 

The yields of αTSHscFv-ferritin and CBP-ferritin were calculated from the SDS-PAGE gels. 

αTSHscFv-ferritin particles were produced at yields of 4.4 mg/l and 1.1 mg/l of culture medium 

urea and pH denaturation-refolding methods, respectively. CBP-ferritin yields with the urea and 

pH methods were 42.3 mg/l and 9.3 mg/l of culture medium, respectively. 

Overall, yields from the urea and pH denaturation-refolding methods, and levels of 

contaminating proteins seen, were similar for all ferritin fusions. The results indicated that urea 

denaturation-refolding was the gentler method for releasing polypeptides from inclusion bodies. 

Use of urea improved particle concentration but increased the amount of contaminating proteins. 

8.2 Characterization of particles 

8.2.1 Particle formation 

The formation of BCCP-ferritin particles was examined by TEM, and the particles were 

homogenous (Figure 18A). Compared to wild-type ferritin particles (Figure 18B), the surfaces of 

BCCP-ferritin particles (Figure 18A) were sometimes studded with small spikes. These are 

probably BCCP molecules protruding from the particle surface. As BCCP is rather small, its 

appearance varies and depends on the amount of staining solution remaining around the particles.  

  

Figure 18. TEM images of (A) BCCP-ferritin and (B) wild-type ferritin particles. Both samples are 
negatively stained with phosphotungstic acid (PTA; 0.5%, w/v). The scale bars are 100 nm. The insert 
shows single particles at higher magnification. 
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8.2.2 Activities of binding molecules  

Functionalities (binding activities) of molecules on the ferritin surface were demonstrated 

using bioaffinity assays with particles not loaded with Eu3+. The ability of BCCP-ferritin 

particles to bind the target streptavidin was determined by attaching BCCP-ferritin particles to 

streptavidin-coated plates, followed by detection with Eu3+ chelate-labeled streptavidin (Figure 

13B). BCCP-ferritin produced by pH denaturation-refolding was employed. To determine the 

extent of nonspecific binding, specific binding was inhibited by saturating solid-phase 

streptavidin with soluble biotin (Figure 13B). The results show specific streptavidin-binding 

activity of BCCP-ferritin particles (Table 2). 

Table 2. Specific streptavidin-binding activity of BCCP-ferritin particles. 

-Fold dilution 

Specific binding Nonspecific bindingb 

Fluorescence (RFU)a 
CV% 
(n=2) 

Fluorescence
(RFU)a CV% (n=2) 

100 372058 6 9195 16 

1000 37833 3 2209 61 

10000 2021 2 679 11 

a RFU, Relative fluorescence units. 
bNonspecific binding indicates binding of the labeled streptavidin to microtiter wells that did not contain 
bound BCCP-ferritin particles. 
 

The results from assays with αTSHscFv-ferritin particles (Figure 14A) showed that both 

urea- and pH-preparations bound specifically to TSH, as the negative control, wild-type ferritin 

particles did not display significant fluorescence in the assay (Table 3). These data also 

indicated that most αTSHscFv fragments refolded properly on the ferritin surface, and disulfide 

bridges formed in the presence of the redox shuffling agent, enabling the binding of αTSHscFv-

ferritin particles to TSH. 

Table 3. TSH-binding ability of αTSHscFv-ferritin particles generated by the pH and urea denaturation-
refolding methods. 

-Fold dilution 

Fluorescence (RFU)a 

αTSHscFv-
ferritin; pH 

method 

αTSHscFv-
ferritin; urea 

method 
Negative controlb 

50 5954±714 30857±6316 
906±311 

250 1168±70 8504±826 

a RFU, Relative fluorescence units, 
bExcess wild-type ferritin was used as a negative control not binding specifically to wells. 
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To determine the activity of CBP on the ferritin surface, particles were first associated with a 

fusion protein composed of calmodulin and αTSHscFv, followed by evaluation of TSH-binding 

ability (Figure 14B). Particles bound specifically to TSH, as neither CBP-ferritin alone nor 

αTSHscFv-calmodulin combined with wild-type ferritin yielded significant fluorescence signal 

(Table 4). It may be concluded that CBP was able to bind to calmodulin on the surface of 

ferritin particles and that particles combined with αTSH-calmodulin effectively bound TSH. 

Table 4. Calmodulin-binding ability of CBP-ferritin particles generated using both urea and pH 
denaturation-refolding methods. Denatured inclusion bodies of αTSH-calmodulin were added to refolding 

reactions. 

-Fold 
dilution 

Fluorescence (RFU)a 

CBP-ferritin• combined with  combined with 
αTSHscFv-calmodulin 

Negative controlsb 

Urea method pH method CBP-ferritin 
Wild-type ferritin•  

combined with αTSHscFv-
calmodulin  

50 17615±1161 18628±787 1509±401 1230±61 

250 8720±1296 10482±2047 738±29 977±113 

1000 4875±159 5125±579 545±38 844±197 

aRFU, Relative fluorescence units 

bCBP-ferritin alone and wild-type ferritin combined with αTSH-calmodulin were used as negative 
controls to evaluate the specificity of the CBP calmodulin-binding activity. 

8.2.3 Loading of Eu3+  

The amount of Eu3+ in each particle was estimated by binding BCCP-ferritin to streptavidin-

coated microtiter wells as in Figure 13B, and (without adding labeled streptavidin) then 

detecting the amount of particle-associated Eu3+. The concentration of BCCP-ferritin was 

determined using a ferritin-specific immunoassay (Figure 13A). The calculated number of Eu3+ 

ions per particle varied from 20 to 150, depending on the batch, and was commonly 30.  

8.3 Functionality of particles in bioaffinity assays 

8.3.1 Particles as labels 

Functionality of complete particles consisting of ferritin with binding molecules on the outer 

surface and label activity inside were tested in bioaffinity assays using particles as labels 

(Figure 15). Also, the stability of the system was examined. 

The use of BCCP-ferritin particles as labels was shown with a bioaffinity assay detecting 

biotinylated antibodies (Figure 15A). The response curve was linear over a wide range of 

analyte concentration (Figure 19A). The requirement for BCCP-ferritin particles was small; one 
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liter of culture provided enough material for 1,200,000 bioaffinity reactions under these assay 

conditions.  

Stability of Eu3+-containing particles was shown after storage at room temperature for at 

least 18 months, under final production conditions and without stabilizing agents. Particles 

remained functional in the bioaffinity assay after this time, although the signal level was 

somewhat reduced (Figure 19B). Additionally, a strong Eu3+ chelator, diethylenetriamine 

penta-acetic acid (DTPA), extracted only some Eu3+ from freshly prepared BCCP-ferritin 

particles, but was unable to extract Eu3+ from particles stored for 18 months (Figure 19). This 

indicates that most association between Eu3+ and the particles was very stable, but freshly 

prepared particles probably contained some DTPA-extractable Eu3+ ions attached (for 

example) on the surface. 
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Figure 19. Use of BCCP-ferritin as label in a bioaffinity assay detecting a biotinylated molecule. 
Diethylenetriamine penta-acetic acid (DTPA), a strong chelator of Eu3+, was used (at 0.5 mM) to test 
whether Eu3+ ions were loosely bound to the particles. Circles=without DTPA, squares=with DTPA. A. 
Functional BCCP-ferritin particles were obtained after particle formation. B. Particles were functional 
after 18 months of storage room temperature.  

Complete functionalities of αTSHscFv-ferritin and CBP-ferritin particles loaded with Eu3+ 

ions were demonstrated in assays quantitatively detecting TSH (Figure 15B and C). Particles 

consisting of αTSHscFv-ferritin fusions generated by either the urea or pH denaturation-

refolding methods effectively detected TSH in a concentration-dependent manner (Figure 20), 

and the dynamic range of the assay was 1,000-fold. The negative control, wild-type ferritin, 

produced and labeled as TSH-specific particles, did not display concentration dependency in the 

TSH assay. Application of excess DTPA, a strong chelator of Eu3+, failed to remove Eu3+ ions 

from αTSH-ferritin produced by urea denaturation-refolding, confirmed by the finding that the 

assay fluorescence signal remained unaffected (Figure 20B). Thus, it appears that Eu3+ ions are 

an integral part of particles generated by the urea denaturation-refolding method, as with those 

obtained using the pH refolding method (Figure 19). These data confirmed the functionality of 
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particles with a protein fusion between a ferritin subunit and a single-chain antibody fragment, 

and using Eu3+ as a label. 
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Figure 20. Bioaffinity assays for TSH using αTSHscFv-ferritin particles loaded with Eu3+ as label. 
Functionality of the particles is demonstrated by expression of TSH concentration-dependent signals. 
The means ± SDs (error bars) of three assays are presented. A. αTSHscFv-ferritin particles produced by 
the pH denaturation-refolding method. Squares=250-fold dilution of the particles. B. αTSHscFv-ferritin 
particles produced by the urea denaturation-refolding method, and using diethylenetriamine penta-
acetic acid (DTPA), a chelator of Eu3+, to examine whether weakly bound Eu3+ ions were associated 
with the particles. Circles=50-fold dilution, triagles=50-fold dilution with DTPA, Squares=250-fold 
dilution.  

To show functionality of CBP-ferritin particles loaded with Eu3+, particles were associated 

with αTSHscFv-calmodulin prior to TSH assay (Figure 15C). Concentration-dependent signals 

indicated that CBP-ferritin loaded with Eu3+ detected TSH (Figure 21). Both urea and pH 

denaturation-refolding methods were equally suitable for particle generation. Two methods of 

association of αTSHscFv-calmodulin with particles were studied. αTSHscFv-calmodulin was 

added either as a refolded protein to complete CBP-ferritin particles (Figure 21A) or as a 

denatured protein into the refolding reaction mixture (Figure 21B). Upon association of 

refolded αTSHscFv-calmodulin with complete CBP-ferritin particles, the standard curves 

(Figure 21A) were less steep than other curves (Figure 21B). It is possible that the calmodulin 

portion refolded more easily when CBP was present in refolding solution, or vice versa. The 

negative control (wild-type ferritin incubated with αTSHscFv-calmodulin) did not display any 
concentration-dependent signal. 
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Figure 21. Bioaffinity assay for TSH using CBP-ferritin particles loaded with Eu3+ as label. Particles were 
linked to αTSHscFv-calmodulin molecules to enable binding to TSH. Particles produced by both urea and 
pH denaturation-refolding methods were used. The functionalities of the particles were assessed by 
generation of TSH concentration-dependent fluorescence signals. Means ± SDs (error bars) of three assays 
are presented. Squares=pH, Circles=urea. A. αTSHscFv-calmodulin was combined with complete CBP-
ferritin particles. B. αTSHscFv-calmodulin was added to refolding CBP-ferritin. 

Soluble αTSHscFv-calmodulin derived from cell lysates, in addition to material obtained 
from inclusion bodies (Figure 22), was tested. Interestingly, it was possible to associate non-

purified TSH-binding molecules from cell lysates with CBP-ferritin particles without losing 

TSH-binding activity. However, direct comparison of particle performance using lysate and 

inclusion body αTSHscFv-calmodulins was not possible, because the concentrations of 

αTSHscFv-calmodulin could not be precisely determined. 
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Figure 22. Bioaffinity assay for TSH using CBP-ferritin particles loaded with Eu3+ as the label (see Figure 
15C). Particles were linked to  αTSHscFv-calmodulin molecules to enable binding to TSH. Soluble 
αTSHscFv-calmodulin from a bacterial lysate was added to the refolding solution of CBP-ferritin. 
Particles produced by the pH refolding method were used. Particle functionalities were assessed by TSH 
concentration-dependent fluorescence signals. Means±SDs (error bars) of three reactions are presented. 
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8.3.2 Particles in particle-enhanced agglutination assays 

We wished to establish whether the small (12 nm) ferritin particle body could be employed in 

particle-enhanced agglutination assays. BCCP-ferritin, with biotin on the surface, was used as a 

model particle because the target molecule, streptavidin, is able to agglutinate the particles 

because streptavidin possesses four binding sites for biotin (Figure 16). 

Interactions between streptavidin and BCCP-ferritin were first analyzed by TEM. Figure 23A 

shows TEM images of particles in the absence of the target protein, streptavidin. BCCP-ferritin 

particles settled as a particle monolayer, and were covered by the negative stain solution, so that 

single particles were easily visualized. Figure 23B  shows an agglutination reaction, in which 

the majority of the particles were agglutinated with streptavidin and largest absorption change 

would be expected. No free BCCP-particles were visible, and, because the aggregates could not 

settle as monolayers but rather as three-dimensional bundles, the negative stain laid excessively 

on the aggregates and therefore particles appeared relatively small and were difficult to identify. 

A reaction using a large excess of target protein resulted in almost all available binding sites 

being occupied by protein. This blocked agglutination of BCCP-ferritin particles by 

streptavidin, and the absorbance change would be thus lowered. BCCP-ferritin particle 

aggregates were visible, and, depending on the amount of negative stain that covered the 

proteins, free streptavidin and also streptavidin bound to BCCP-ferritin were occasionally 

visualized (Figure 23C). 
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Figure 23. Agglutination reactions under different conditions. Samples were negatively stained with 0.5% 
(w/v) PTA. Scale bars represent 100 nm. A. BCCP-ferritin particles without the target protein, 
streptavidin. If the target protein was absent, there was no aggregation and the particle-containing solution 
showed no increase in absorbance (indicated by the arrow). Right panel: TEM image of BCCP-ferritin 
particles in the absence of streptavidin. B. BCCP-ferritin particles reacting with streptavidin. The number 
of biotin binding sites of streptavidin was roughly equivalent to the amount of biotin on BCCP-ferritin 
(i.e., a 0.25 molar ratio of streptavidin molecules with respect to biotin on the ferritin surface). With an 
appropriate amount of streptavidin, specific agglutination of particles was achieved and the absorbance 
change was optimal (arrow). Right panel: TEM image of BCCP-ferritin particles specifically aggregated 
by streptavidin. A few aggregates were evident (white arrows), and the levels of free BCCP-ferritin or free 
streptavidin were negligible. C. BCCP-ferritin particles incubated with a large excess (10-fold) of 
streptavidin. In the presence of excess streptavidin, the majority of BCCP-ferritin particle binding sites 
were occupied by streptavidin, and specific particle agglutination was blocked, leading to a negligible rise 
in absorbance (indicated by arrow). Right panel: TEM image of BCCP-ferritin particles reacted with 
excess streptavidin showing individual BCCP-ferritin particles, with occasionally visualized bound 
streptavidin (white arrow #1). Free streptavidin can also be seen (white arrow #2), as can a few particles 
bound to each other (white arrow #3). 

 

The agglutination of BCCP-ferritin particles with streptavidin was also examined 

spectrophotometrically (Figure 24). The absorption change produced by the specific reaction 

between streptavidin and BCCP-ferritin with surface biotin was confirmed by addition of excess 

free biotin before BCCP-ferritin particles were added. Free biotin blocked biotin-binding sites 

of streptavidin and prevented BCCP-ferritin binding to streptavidin. In the presence of free 

biotin the absorbance level did not increase when BCCP-ferritin particles were added (Figure 

24B), indicating that free biotin blocked the biotin-binding sites of streptavidin, thereby 

inhibiting the agglutination of BCCP-ferritin particles. Thus, the observed absorption reaction 

was specific (Figure 24A). 

400 500 600 700 800
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0A SA/ mgl-1

 0
 150
 6000

Ab
so

rb
an

ce

nm
400 500 600 700 800

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0
SA/ mgl-1

 0
 150
 6000

A
bs

or
ba

nc
e

nm

B

 

Figure 24. A. Absorption spectra of BCCP-ferritin (1.5 mg/ml) reacting with various amounts of 
streptavidin. B. Specificity of the agglutination was shown by adding free biotin before addition of 
streptavidin to the reaction. Absorbances between wavelengths 350 and 800 nm are shown. 
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Figure 25 shows streptavidin-dependent absorption changes generated by BCCP-ferritin 

particles at selected wavelengths; the absolute changes in absorbances are relatively small. This 

may be because of the relatively small amount of biotin on the ferritin surface. It is probable 

that BCCP is not adequately biotinylated when the protein is produced in inclusion bodies 

(Cronan, 1990). The results show, however, that ferritin-based particles can be used in particle-

enhanced agglutination assays even though the particles are relatively small for the application.  
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Figure 25. Particle-enhanced agglutination reactions between streptavidin and biologically produced and 
in vivo biotinylated BCCP-ferritin particles. BCCP-ferritin at (A) 1.5 mg/ml and (B) 0.3 mg/ml of BCCP-
ferritin reacting with various amounts of streptavidin. Absorbances at wavelengths 400, 500, 595, and 635 
nm are shown. 
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9 Conclusions and future prospects 
In conclusion, synthesis of BCCP-ferritin particles showed that it is possible to generate 

protein-based nanoparticles using a simple biological production system. These particles had 

specific binding and label activities, which enabled their use in biological assays measuring 

desired molecules. Two different assay types were described: a heterogeneous bioaffinity assay 

on a solid phase; and a homogeneous, separation-free, particle-enhanced agglutination assay.  

The general worth of the system was demonstrated using two additional binding molecules, 

the αTSHscFv antibody fragment and CBP. The use of different binding moieties showed, as 
might be expected, that production and refolding conditions for different molecules need to be 

individually adjusted. Overall, such adjustment may be of value in effective particle formation. 

This biological procedure for generation of functional particles is, to a large extent, a “green 

method”, which is increasingly important also in nanotechnology applications as have been 

reviewed by Bhattacharya and Gupta (2005), Eckelman et al. (2008) and Sarikaya et al. (2003). 

The twelve principles of green chemistry are mainly followed (U.S. Environmental Protection 

Agency): (1) No toxic waste or waste to be treated is generated. (2) Particle body consists of 

biological molecule, ferritin, thus the produced material is biodegradable and it is not toxic. (3) 

Synthesis of the particles is not hazardous: safe raw materials are used and no hazardous side 

products are generated. (5) Bacterial cells are biocatalyst factories the enzymatic pathways of 

which can additionally be modified (Maury et al., 2005). (6) Temporary chemical derivatives 

are not needed. (8) No organic solvents are used. (9) Bacterial material production saves 

energy: simple and inexpensive sugar is used as source of energy and bacterial fermentation can 

be performed in mild conditions. Also, the material of both particle body and binding moieties 

are co-produced and the whole procedure is simplified and shortened employing generic 

methods. Hence the overall energy requirements are reduced. (10) Protein is biodegradable and 

does not accumulate in environment. (12) The process is not hazardous (safe reagents, methods, 

products). Renewable raw materials (item 4) are mainly used with exception of Eu3+ ions, which 
needs to be mined. Items 7 and 11 of the principles of green chemistry do not apply to 

biological production. 

In addition to green aspects, this biological procedure may have several advantages in 

nanoparticle production, particularly in applications that require mass production of 

homogeneous functional particles often and regularly. These make system suitable for industrial 

purposes. First, ready-to-use particles are produced from simple carbon raw material in a single 

bacterial culture, followed by straightforward purification instead of multiple distinct 

preparation steps. The whole process is even simpler than production of binding molecules used 

in traditional functionalization of nanoparticles. Second, production is cost-effective, because 

the total time required is brief, the materials used are generic and inexpensive, and only a 

relatively small amount of energy is needed. Third, the process is readily upscalable. Fourth, 

binding molecules are favorably oriented on the surface (binding sites point into solution) when 

compared to typical methods that lead to random orientation of the binding moieties. Fifth, the 

conjugation of the binding molecule by genetic fusion is stable because the binding moiety is 
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covalently connected to the particle. This means that there are no weakly bound binders that 

might interfere final applications. Sixth, and importantly, affinity reagents (peptides, 

recombinant antibodies, binder scaffolds) developed using in vitro display methods, such as 

phage or cell surface display (Lu et al., 1995; Smith, 1985), can be easily combined with the 

production system presented here, enabling generation of labeled particles of virtually any 

antigen specificity. 

These ferritin-based nanoparticles have properties that may make them valuable as label 

agents or nanoparticles in bioaffinity assays. First, the particles have inherent binding activity, 

good water solubility, and (likely) biocompatibility. The particles do not need extra 

modification and purification steps for ensuring water solubility as traditional organic and 

inorganic particles often need. Second, ferritin is stable. Third, the particles are uniform and 

small (< 20 nm in diameter), which minimizes steric hindrance when particles encounter target 

molecules. Generating small and structurally similar particles using traditional methods is still a 

challenge.  

To estimate the actual commercial utility of these biological particles in bioaffinity assays, 

the particle performance with an optimized assay should be evaluated. Especially testing assays 

under true assay conditions (e.g., using true sample matrixes) would be essential to ensure 

overall utility of the system.  

Further research directions could include identifying the particle characteristics that possibly 

require further optimization. For example, refolding conditions could be explored further to 

improve the refolding of complex binding molecules. Also loading of Eu3+ should preferably be 

improved. A recently introduced method for generating Eu3+ oxide particles specifically within 

apoferritin using UV light might be useful. Formation of particles inside ferritin using high-

oxidation state ions such as Eu3+ or Ti4+, has not been previously successful (Klem et al., 2008). 

However, used heat treatment (+65°C) might be challenging when certain complicated binding 

molecules on ferritin surface are required. Additionally, efficient lanthanide-binding peptides 

selected for binding of e.g., Tb3+ or Eu3+ could be fused to C-terminal ends of ferritin and 

displayed inside the ferritin cage (Nitz et al., 2003).  

The range of applications incorporating these biologically produced particles could and 

should be expanded in future. For example, removal of metal ions that are not loaded inside 

ferritin is necessary for some nanoparticle applications (e.g., homogeneous assays that employ 

labeled nanoparticles). A straightforward and easily upscalable procedure is attractive from the 

perspective of principles of green chemistry and economy. Methods based on precipitation of 

non-loaded ions could be helpful if co-precipitation of ferritin particles can be controlled. 

Additionally, the production procedure presented here is possibly compatible with several 

methods for loading different materials inside apoferritin (Table 1), which remarkably widens 

the possibilities using it. For example, synthesis of particles geared towards in vivo applications 

such as magnetic resonance imaging could be an interesting and viable goal. 
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