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Abstract

The topological solitons of two classical field theories, the Faddeev-Skyrme
model and the Ginzburg-Landau model are studied numerically and ana-
lytically in this work. The aim is to gain information on the existence and
properties of these topological solitons, their structure and behaviour under
relaxation.

First, the conditions and mechanisms leading to the possibility of topo-
logical solitons are explored from the field theoretical point of view. This
leads one to consider continuous deformations of the solutions of the equa-
tions of motion. The results of algebraic topology necessary for the sys-
tematic treatment of such deformations are reviewed and methods of de-
termining the homotopy classes of topological solitons are presented.

The Faddeev-Skyrme and Ginzburg-Landau models are presented, some
earlier results reviewed and the numerical methods used in this work are
described.

The topological solitons of the Faddeev-Skyrme model, Hopfions, are
found to follow the same mechanisms of relaxation in three different do-
mains with three different topological classifications. For two of the do-
mains, the necessary but unusual topological classification is presented.

Finite size topological solitons are not found in the Ginzburg-Landau
model and a scaling argument is used to suggest that there are indeed none
unless a certain modification to the model, due to R. S. Ward, is made. In
that case, the Hopfions of the Faddeev-Skyrme model are seen to be present
for some parameter values. A boundary in the parameter space separating
the region where the Hopfions exist and the area where they do not exist is
found and the behaviour of the Hopfion energy on this boundary is studied.
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Chapter 1

Introduction

In this work, the existence and properties of topological solitons in certain
physical models is studied. The idea of topological solitons is very old. Per-
haps the earliest attempt of using topological concepts to describe physical
objects was the knotted vortex model of atoms by Lord Kelvin [1]. While
he did not use the term topological soliton, his model is still considered a
precursor of modern theories with topological solitons. Another precursor
is the Dirac monopole [2,13], where the usual model of the electromagnetic
field is modified so that it contains magnetic poles. The Dirac monopole
is not a proper topological soliton because the pole itself is singular, but
nevertheless the field configuration very far from the pole has a non-trivial
topology, which defines a topological invariant. The topological invariant
of the model is interpreted as the magnetic charge of the monopole.

With the advent of Abrikosov vortices [4] in superconductors and the
Skyrme model |3, 16, 7, [8], modern research into topological solitons had be-
gun. After these, many other topological solitons were considered, mostly
in particle physics, like the monopole of 't Hooft and Polyakov [9, 10], the
dyon of Julia and Zee [11] and the knot soliton of Faddeev [12], which is
often called a Hopfion. By the 1980’s, the field of topological solitons, or
defects as they were often called, had established itself as an important
source of descriptions and candidate explanations for things like the matter
distribution of the universe [13], quark confinement [14], defects in liquid
crystals [15] and some properties of the superfluid phase of liquid helium
[16], ferromagnets [17] and superconductors [4]. Topological solitons are
also present in supersymmetric models [18]. The problem, however, is that
rigorous mathematical analysis of topological solitons is currently severely
limited: analytical solutions are known for very few models — two such ex-
amples will be presented in Section 2.3l Therefore, numerical investigation
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12 Introduction

is necessary. The problem is of such complexity, that the numerical capa-
bilities have only recently become sufficient for a detailed analysis of many
of the models, including those studied here.

Creating topological solitons is now common routine in many labora-
tories, even though some of the models with topological solitons are not
experimentally realisable, like the early universe. For example, the de-
fects in nematic liquid crystals [19] have been studied experimentally for
quite some time, and Abrikosov vortices have been studied for decades [20)].
The topological solitons have been found to have a profound effect on the
properties of the material in which they occur. Vortices in Bose-Einstein
condensates [|21] and superfluid helium [16, 22, 23, 24] are now also rou-
tinely observed. The number of new situation where topological solitons
are observed is continually expanding with new cases [25, 26].

The multitude of laboratory experiments prompt the important ques-
tion of theoretical modelling of topological solitons. Therefore it is neces-
sary to study in detail the basic theories with topological solitons, in order
to be able to apply this knowledge to more realistic models and perhaps pro-
pose experiments where they can be observed and their effect and relevance
appreciated. Due to difficulties related to obtaining analytical solutions, it
is necessary to use numerical methods and this is the main content of the
work at hand.

One very interesting case is the Faddeev-Skyrme model [12] studied
in this work. It is the simplest (known) three dimensional model which
supports topological solitons and it is known to exist as a limit of some
more complicated or realistic models |27]. There are connections with the
Faddeev-Skyrme model and the way hadrons combine into more compli-
cated structures such as protons and nuclei |14, 128]. The Faddeev-Skyrme
model can also be embedded into the other model studied in this work, the
Ginzburg-Landau model |29], which is the model behind perhaps the most
famous topological solitons, the Abrikosov vortices. Therefore, studying
the Faddeev-Skyrme and Ginzburg-Landau models in detail provides in-
valuable insight into the properties of topological solitons.

This work is arranged as follows. In Chapter 2] the concepts of clas-
sical field theory are introduced and two examples are given. These give
physical motivation for the use of the topological concepts and properties
covered in Chapter [B] where the term topological soliton is defined and the
most relevant results from topology are reviewed without reference to any
specific physical model. In Chapter @ the results of Chapter B are applied
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to the physical models investigated in this work. The numerical methods
are described in Chapter [fl and the results and conclusions of the original
publications are presented in Chapters [0l and [ The notations chosen in
this work mostly follow the usual conventions of theoretical physics and are
summarised in Appendix[Al The original publications are reprinted at the
end (Papers I-V, corresponding to [30, 31, 132, 133, 134], respectively).
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Chapter 2

Classical field theory

This work studies topological solitons solely in the classical context. A
classical field is a set of values defined at all points of the relevant physical
space, for example the temperature in a room, the wind velocities of a
cyclone or the electromagnetic field. A more complicated example would
be the general theory of relativity. The physical space is denoted by P
in this work and will usually be R3. The values of the field are usually
either R™ or C" or subsets thereof. The set of values in the first three
examples above belong to R, R? and R?%; the set of possible values is called
the configuration space and is here denoted by C. The field itself is then a
mapping f : P — C. As the variety of examples suggests, classical fields
are prevalent throughout theoretical physics, even though the theories are
not always treated as field theories. The notable exceptions, where classical
fields are absent, are quantum physics and Newtonian mechanics of a finite
number of point particles or rigid bodies. (However, the classical theory
of fields can be obtained from the Newtonian mechanics in the limit of an
infinite number of particles.)

2.1 Classical field and Euler-Lagrange equations

The basic objects of a classical field theory are the field f, the physical space
P, the configuration space C and a function called the Lagrangian density,
which gives the dynamics of the theory. The field is a function f : P — C
and the fields in this work are assumed to be smooth. The Lagrangian
density is a function of the field f and its time and space derivatives as
follows.

15



16 Classical field theory

Definition 2.1 (Lagrangian density). Let f : P — C be a classical field
and £ a function of f and its derivatives. If the function £

i) is an analytic function of the field f,
ii) is a polynomial of the space derivatives V f,
iii) contains at most the square of the time derivative 9y f and
iv) contains no higher derivatives,
it is called Lagrangian density and can be written
L=L(f,0f) and (2.1)
= 500f0"fA(f,Vf) = B(f)C(VF) = U(f), (2.2)

where C'(0) = 0. For a Lagrangian density, there is an associated integral

S[f]z/tQ/PL‘(f, of)dPxdt, (2.3)

which called the action integral, or simply action.

For the investigation of static topological solitons, the notion of static
energy density proves very useful. The energy density can be derived as
follows. First define a quantity called momentum density,

= 866§f (2.4)
and then define the Hamiltonian density by a Legendre transform,
H=10f — L (2.5)
and if the metric is (+ — ——) one can write
H = 3(ID?A(f, V) + B(HC(V )+ U(f). (2.6)

As in point particle mechanics, the Hamiltonian is related to the energy of
the system and we can define

Definition 2.2 (Energy density). If II = 0, the (static) quantity

£=H=B(f)C(Vf)+U(f) (2.7)
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is called the static energy density and its space-integral the static energy.

Since all energies in this work are static, the qualifier is usually dropped
without fear of confusion.

The guiding principle in classical field theory is the so-called principle
of stationary action. The principle was apparently originally suggested
by Pierre Louis Maupertuis (this has been disputed) and was formulated
in its current form by William Rowan Hamilton. Mathematically, it is
the requirement that the action integral (2.3)) is stationary under small
variations of the field f with f(¢1) and f(t2) fixed. From the calculus of
variations, the following result is known.

Theorem 2.3 (Euler-Lagrange). The action

to
S = / LdPzdt (2.8)
t1 P
is stationary iff
oL oL
Oy=———~——— =0. 2.9
“B0.0)  oF 29
Proof. See, for example [35, p. 78]. O

This is the Fuler-Lagrange equation for the Lagrangian density £. Solu-
tions of the Euler-Lagrange equations are interpreted as the physical enti-
ties of the theory. For the static solutions considered here, once the Euler-
Lagrange equations are obtained, the time derivatives of the field(s) are
assumed to be zero. Solutions are then obtained for the simplified Euler-
Lagrange equations. These solutions are also solutions of the full equations.

Note that adding a constant to € or £ does not alter the corresponding
Euler-Lagrange equations. For sake of simplicity, it is assumed here that
this addition is always done so that the global minimum of the energy is
zero. The set of solutions for which £ = 0 is important enough to warrant
the following definition.

Definition 2.4 (Vacuum). Let f be the field and £ the Lagrangian density
of the model, £ the corresponding energy density and the total energy
E[f] = fp dP& > 0. The set of constant solutions of the Euler-Lagrange
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equations for which E[f] = 0 is called the vacuum and is denoted

Vz{f|8uf:0,U(f) = 0 and E[f] :o}. (2.10)

Now consider the static case where the P = RP+! and the set U =
{flU(f) = 0} is discrete and the energy finite and therefore the boundary
value f(oco) € U. The discreteness of U means that it is not possible to
alter these boundary values without costing an infinite amount of energy
or altering the field discontinuously. Therefore, the boundary values must,
once chosen, remain fixed. It will be demonstrated in Chapter Bl how such
a situation is mathematically described in terms of homotopy classes.

The concepts defined above can be generalised to multiple fields f; in
a straightforward manner: replacing f — f;, one obtains Euler-Lagrange
equations for each field from a single Lagrangian density. If the Lagrangian
density does not contain any terms which depend on two different f;, the
fields decouple and can be treated independently.

In principle, it is now possible to take any Lagrangian density, write
the Euler-Lagrange equations and solve them to obtain a description of
the behaviour of the corresponding physical system. Unfortunately, explic-
itly solving the equations is only possible in very few cases. Nevertheless,
important information about the system can be obtained without solving
the equations, e.g. from conservation laws of the system and how they are
related to the symmetries of the Lagrangian density. This is the famous
Noether’s theorem, which states that for each differentiable symmetry of the
Lagrangian density there is a corresponding conserved current, the Noether
current; and the space-integral of the 0-component of such a current is a
conserved charge, the Noether charge. While these are quite important in
field theory, they are not required in this investigation of topological soli-
tons; there are continuous symmetries and the Noether currents exist, but
they are not studied here.

There is another property that can be obtained from the Lagrangian
density without solving the Euler-Lagrange equations, which is very impor-
tant in the study of topological solitons. This is called Derrick’s theorem.
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2.2 Derrick’s theorem

One of the most important early results regarding topological solitons is
called Derrick’s theorem [36]; it is not limited to topological solitons, but
applies to stable, static, finite-energy solutions of field theories in general.
The original work of Derrick considered the case where the energy density
is (%)2 + f(z); this is too limited in the present situation. Therefore, a
slightly more general form of the theorem is presented. During this section,
the following notation will be used: ®) = ®(Az) and E\ = E(¢y).

Definition 2.5 (Localised solution). A solution of the static Euler-Lagrange
equations, whose energy is finite and either the energy density is or the fields
themselves are asymptotically constant outside some finite region of P, is
called a localised solution.

Definition 2.6 (Stable solution). Any solution ®(x) of the static Euler-
Lagrange equations of a field theory for which

d _ d?
ﬁE)\ )\:1— 0 and WE)‘ N > 07

will be called a stable solution (of the static Euler-Lagrange equations in
question).

Note that this definition only concerns stability under scaling by A.
There are also other deformations and definitions of stability.

Theorem 2.7 (Derrick’s theorem). Let ¢, be the scalar fields and L the
Lagrangian density and of the model in question. Let the energy density of
the model £ = E + E4 + &y where

o = g(®), (2.11)
& = ||0;®|> and (2.12)
Ex = [(®)D;0 03" D¢ Dt M (®). (2.13)

Here g and M are such smooth maps P — C that the corresponding integrals
Es5, By, Ey are finite and positive. Then the full Lagrangian density does not
have stable, static, localised solutions if

(2—D)Ey + (4 — D)E; — DEy #0 (2.14)
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or

(2—D)(1-D)Ey+ (4—D)(3—D)Ey+ D(D +1)Ey <0. (2.15)
Proof. Let A > 0. Assume that ® is a static, localised solution of the Euler-
Lagrange equations of £. Now E = E(®) = [ dDJ:(SQ + &1+ &) < oo due

to locality of ®.
Now perform a uniform scaling of the solution ® so that & — &, and

B By = [ Pa(jo,al? + 550050050, 610M A (@)
+9(®1)). (216)
After a change of integration variables from x to y = Az we obtain
Ey =X "PE,+ X PE, + \PE,, (2.17)

This is a (possibly local) minimum under variation of \ iff

(d%EA> ’/\:1: (2—D)E; + (4 - D)Ey — DEy =0, (2.18a)
2
(&Ek) ’H: (2—D)(1—D)Ey+ (4—D)(3— D)E,

+D(D+1)Ey > 0. (2.18b)
Since ® is a solution, this completes the proof. O

Note that the equation (ZI8]) has simpler forms, if D € {1,2,3,4}. This
work deals with three dimensional theories, in which case the simplification
leads to elimination of E4 term in (2.18D)).

Corollary 2.8 (Virial theorem). For any stable, localised solution of the
Euler-Lagrange equations, the equation (2.18al) is satisfied. This is called
the virial theorem.

There is a similar theorem for other than scalar fields, as well. In this
work, the only other kind of field present will be the gauge field. The gauge
field A has to scale as Ay = MA(Ax); this will be clear from the definition
of the covariant derivative: the gauge field must scale like a derivative.
Therefore, one can expand the definitions of & and &4 in Derrick’s theorem
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to include quadratic and quartic gauge fields, respectively, and the theorem
remains unchanged otherwise.

It is worth reminding that the Euler-Lagrange equations of the energy
functional do not necessarily provide a minimum of the energy, only an
extremal. While it is easy to construct a theory so that the energy is
bounded from below (as is always the case in this work) but not above,
thus ruling out the possibility of a global maximum, the possibility of saddle
points still remains. Also, the possibility of local maxima remains. These,
however, can be dealt with in various ways. In the definition 2.6 the
inequality is used for precisely this purpose: it ensures that any stable
solution is a minimum. The possibility of a local minimum instead of global,
however, remains. Indeed, this is desired and shall become evident when
solutions of different homotopy classes are introduced: the solutions which
are not homotopic with the vacuum will not usually be global minima of the
theory, but rather global minima within their homotopy classes. Sometimes
one can find solutions that are not global minima even in their homotopy
classes, but are just local minima even there. The vacuum will be identified
with the minimum of the homotopy class of the constant map (the trivial
homotopy).

It is immediately clear from the proof of theorem [2.7] that for any La-
grangian field theory with positive definite components &; of energy, the
virial theorem holds for any static, stable, localised solutions. This will
provide a useful check of the quality of the numerical solutions.

Due to its nature of being a proof of non-existence, a field theory which
“passes” Derrick’s theorem, is still not guaranteed to have static, stable,
localised solutions. In fact, counterexamples can easily be found.

Next, two simple examples of field theories with topological solitons are
presented.

2.3 Two simple examples

Consider a simple classical field theory with a single field ¢ : R?> — R and
the Lagrangian density

L= 30"¢0.6 — U(¢) (2.19)
U(p) >0 Vo (2.20)
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For topological solitons, the part of the Lagrangian density with time-
derivatives is uninteresting, because the solitons will be static. Therefore,
just the energy density is considered from now on and the notation short-
ened to x = x1 for the rest of this section. The energy density of the theory
is

E=11019 +U(9) (2.21)

For physical theories, the energy is (usually) required to be finite, so it is
necessary that ¢(z) approaches the vacuum sufficiently fast as |z| — oo.
It is customary to denote lim, 100 ¢(z) = ¢+. It is immediately clear
that here V = {¢|U(¢) = 0}. However, there is no reason that ¢4 = ¢_.
Indeed, if ¢+ # ¢_, an interesting situation arises: no such solution can
be continuously deformed into a vacuum solution and the solutions can be
classified topologically by homotopy classes.

The next question to answer is, whether the model (2I9) can evade
Derrick’s non-existence theorem 2.7 By substituting the values D = 1 and
E4 = 0, one sees that the conditions of possible existence of topological
solitons become

/ 11019 da = / U(¢)dz , and (2.22)
R R
/U(¢) > 0. (2.23)
R

The latter equation is easily satisfied, but whether the first equation is satis-
fied or not, depends, in principle, on whether the Euler-Lagrange equations
allow such solutions.

Now, there is an observation by Bogomolny [37] that the above virial
theorem can be manipulated so that it becomes (assuming Ey and Fy are
finite)

E = /]R % |81¢)’2 +U(¢)dx > :|:/ V2U (¢)0h pda, (2.24)

and therefore

B> ‘ | V2T@on s

- }/f \/dez)‘. (2.25)
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Because U(¢) > 0, it is possible to define U(¢) such that U(¢) = %(60(4’))2
and therefore obtain

E > |U(¢+) = Ulg-)| (2.26)

and hence conclude that the (static) energy of the solution depends solely
on the boundary conditions ¢+. Energy bounds of this type, where the
energy is constrained by the boundary values, are called Bogomolny bounds.
Bogomolny bounds exist for many field theories. Sometimes it is also useful
in solving the Euler-Lagrange equations, as shall be seen in the next section.

Note that all this has been derived without using the Euler-Lagrange
equations or even the explicit form of the potential U, although its non-
negativeness was required.

2.3.1 The Klein-Gordon model

Next, the specific case of the Klein-Gordon model, also called the ¢* theory,
is considered. In this case, the potential U(¢) is defined as follows.

U(¢) = 7M1 = ¢°)° = (1 - 2¢% + ¢), (2.27)

where A > 0.

The boundary conditions expressed in the Bogomolny bounds capture
the homotopy of the field ¢. The vacuum is now the set of two numbers
V = {—1,+41} and therefore ¢4 — ¢_ is necessarily an integer, which can
be normed to give the following definition:

N=1(¢:— o). (2.28)

The value of N characterises the system: as soon as the boundary values
are fixed, N cannot change and in a certain sense this characterisation is
complete. For now, it is easy to see that N € {—1,0,+1}, depending on
the boundary conditions. If N = 0, the boundary conditions are equal, the
trivial solution ¢(x) = constant = lim,_,o ¢(x) is valid and there are no
interesting static solutions. If, however, |N| = 1, there will be a topological
soliton in the system. In this simple example, it will even be possible
to obtain an analytic form for it. Before that, it is worth noting that the
Bogomolny bound (2:27]) really is a topological one because it can be related
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to N by
o VB[ 0w Bl
= %\/§\¢+ —¢-| = %\/;Ayzvy. (2.30)

The static Euler-Lagrange equations are now

(2.29)

01010 + \op(1 — ¢?) = 0. (2.31)

In principle, this equation could be solved as is, but this particular theory
has an easier equation to solve, as well. In the derivation of the Bogomolny
bound, a simple inequality is necessary:

1

(\/Qaﬂbi VU (@) = 0. (2.32)

A field is said to saturate the Bogomolny bound if the equality above holds.
This can then be solved easily to obtain

¢ = tanh((z + a)y/3A). (2.33)

This is also a solution of the Euler-Lagrange equation (2.31]) as can easily
be checked. The energy density ([2:21]) becomes

& = 4 sech!(y/3A(z +a)). (2.34)

Solutions of this type, which interpolate between two different (fixed) bound-
ary values, are called kinks; as can be seen in Fig. 2.Tal the name is well
deserved and descriptive. The shape of the energy density has a well de-
fined peak at x = —a, so this can reasonably be called the location of the
soliton and the requirements of definition are clearly met.

2.3.2 The sine-Gordon model

The sine-Gordon theory is obtained from (ZI9]) by specifying the following
potential

U(¢) = (1 — cos o). (2.35)
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It is immediately clear that U(¢) = 0 < ¢ € 27Z and therefore V
is isomorphic to Z and, as in the case of the Klein-Gordon model, the
boundary conditions dictate the topology of the system. The boundary
values are now n € Z and ¢4 = 2mn. There is again a constant of motion
defined by the unchanging boundary values, given by

N=k(ds —6o). (2.36)

This is clearly an integer and like in the Klein-Gordon theory, it completely
characterises the system in some sense. It is not a coincidence that a similar
invariant exists in both the Klein-Gordon and sine-Gordon -theories; such
invariants that cannot change in continuous deformations are given a more
general and detailed mathematical description in Chapter [Bl

Due to the translation invariance of the theory, there is a simplification
that can be made: if m € Z, changing ¢ — ¢ + 2mm does not change L, so
we can always choose, without loss of generality, ¢_ = 0.

The Euler-Lagrange equation of Eqs. (Z19) and (2.35)) is

900 = 010" ¢ + sin &, (2.37)
which reduces to (compare with (2:37]))

8181(]5 = sin¢ (2.38)

for static fields (note that the metric is (+—)). The static equation can be
solved; the solution is

¢ = 4darctan(e® %), (2.39)

where a is an integration constant (the other being fixed by the boundary
conditions). The above solution also saturates the Bogomolny bound ([2:24]),
just like the static solution of the Klein-Gordon model. Given suitable
initial conditions, the dynamical equation can also be directly integrated,
but one solution can also be obtained simply by giving the static solution
a Lorentz boost. Because of the Lorentz invariance of ([2.19)), such a ¢ will
automatically be a solution of the dynamical equation. One example of the
static solution is displayed in Fig. 21Dl showing how the value of ¢ starts
from 0 and smoothly interpolates into 2.

It is often useful to have an idea of the “location” of a topological soliton.
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1.0

0.5]
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-0.5

-1.0 .
-10 -5 0 5 10 T -5 0 5 10

(a) A kink solution (solid curve) of the (b) The field ¢/7 (solid curve) and the
Klein-Gordon theory and its energy den- energy density (dashed curve) of the sine-
sity (dashed curve) with A = 2,a = 3.5. Gordon model with a = 3.

Figure 2.1: Kink solutions of the Klein-Gordon and sine-Gordon models.

However, a suitable definition for the location is not always immediately
clear, as shall be seen in the case of the Faddeev-Skyrme model. In the case
of the sine-Gordon theory, the energy density gives a reasonable definition
for the location. The energy density (Z.2I)) becomes £ = 4sech? (:U — a),
which has a single maximum at = a. Thus the location of the maximum
can be called the location of the soliton. For a dynamical soliton, the
maximum of course moves as the soliton moves. The energy density is also

displayed in Fig. 2.1l



Chapter 3

Topology

It was seen in Chapter 2 how sometimes the fixed boundary conditions
prevent the solution from evolving into a vacuum configuration since it
would require an infinite amount of energy or altering the field in a dis-
continuous way. While the latter option is allowed in quantum theories,
where it becomes the tunneling effect, in classical theory, neither option is
realisable and therefore these boundary conditions cannot be changed once
fixed. Furthermore, they were used to characterise the system in a way
which describes the whole system using only the boundary conditions, c.f.
(Z28). The characterisation of a field configuration by such invariant prop-
erties is quite common in physics. In principle, any conserved quantity can
be so used to characterise a system, but the N of (2.28) belongs to a rather
special class of conserved quantities, called topological invariants. In order
to give a definition of topological invariants in general, some concepts and
results from topology are presented in this Chapter, providing the foun-
dation for the application of topology to classical field theory. The main
player will be a property called homotopy, which describes how two maps
(such as two different field configurations) can (or cannot) be continuously
deformed into each other. In the context of physics, this deformation is
often interpreted as the time evolution of the system. Hence, if the field
configurations cannot be continuously deformed into each other, they are in
some sense decidedly different, whereas if they can they are in some sense
equal. The approach here will be rather heuristic, without explicit proofs
of the various theorems; pointers to suitable references for the proofs are
given after the theorems.

Next, to lay the foundation of the term topological soliton, some ideas
from algebraic topology are quoted.

27
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3.1 Topology of space

While this work is not concerned with the topology of physical space, P, it
is worth clarifying what is meant by its topology. Currently, there are no
observations which (clearly) indicate that the space would be topologically
non-trivial, but it is very difficult to rule it out either. Non-trivial topology
of physical space includes some closed, like toroidal, universes and various
other features, like wormholes, which can be realised as solutions of the
Einstein field equations of the general theory of relativity; in topological
terms these features make the space multiply connected.

3.2 Topology in field theories

Topological features in field theories refer to the properties of the fields. The
set of possible field configurations are classified according to their topolog-
ical properties. The classification depends on both the physical and config-
uration spaces, but the topological properties of the spaces themselves are
not analysed. Here only the topology of scalar fields is considered and the
theories are divided in two. The first set contains theories where the field
takes values on R or R™ if there are n fields. The second set contains the-
ories where the fields take values on a subset of R™ defined by a non-linear
constraint equation, for example the static field can be a map f : RP — R”
with a constraint || f|| = 1.

It will be seen that if the n fields take values on R™, the topological
properties arise from the symmetries of the vacuum V C C. It will be nec-
essary that V ; C and that card V > 1, otherwise the topological properties
are trivial. The situation is slightly different if the fields take their values
on a subset of R™. In this case, the properties of the vacuum manifold
are not important; indeed even the case ¥V = C may now yield interesting
topology, as will be seen in the context of the Faddeev-Skyrme model.

The classification the fields f : P — C according to their topologi-
cal properties is accomplished by dividing the fields into homotopy classes.
This is important because members of one homotopy class cannot be trans-
formed into members of another class with continuous transformations (ho-
motopies), such as the usual time-evolution. Therefore, if there are multiple
classes, there can be field configurations which are in some sense different.
Mathematically, the difference is encoded into a homotopy invariant. These
concepts will be introduced in Section B.3l
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It should be noted, that it is not a priori clear, whether there is more
than one homotopy class. If there is only one class, all fields can be de-
formed into the vacuum configuration and the model is topologically trivial.
Also, even if there are multiple homotopy classes, it is not guaranteed that
static, localised solutions of the field equations are found in all classes. For
example, in the static sine-Gordon theory, it can be shown that there are
no static, localised solutions of the field equations for N > 1 [38, p. 117].

If there are more than one homotopy class with solutions of the field
equations, such solutions are called topological defects or topological soli-
tons, depending on context. In this work, such solutions are desired features
of the system and therefore called topological solitons. A more thorough
definition of a topological soliton will be given in Section [3.41

The process by which the vacuum manifold causes the topological prop-
erties of the field f is called the Kibble |13] or Kibble-Zurek [13, 39] mech-
anism and will be detailed in Section B.3l The fact that homotopies cannot
change some properties of a field and that the usual time-evolution is contin-
uous (a homotopy), means that something different is required to produce
(or destroy) topological solitons. One example is a phase transition. It
is possible for the vacuum structure of the model to change in a phase
transition, therefore allowing topological solitons to form (or disappear).

3.3 Homotopy

The definitions of algebraic topology presented here are not necessarily the
most general forms possible, but in order to avoid unnecessary mathemat-
ical detail, they are formulated so that they are sufficient for this work. A
more mathematical discussion of the matter can be found in books [40] and
[41].

Definition 3.1 (Homotopy). Let f and g be smooth maps X — Y and
I = [0,1], the unit interval. If there exists a smooth map h: X xI — Y
such that Vx € X : h(z,0) = f(z) and h(z,1) = g(z), h is called homotopy
between f and g, and it is said that f and g are homotopic. We denote this
by writing f ~g.

Note. A common notation for homotopy is h(z) = h(z,t), where the ho-
motopy condition becomes hg = f,h1 = g.

The fact that two maps f and g are homotopic means that they can
be continuously deformed into each other, like the famous coffee mug and
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doughnut. In physics the interval I is usually time and h; therefore be-
comes the time evolution of a field configuration f into g. Time evolution
is usually considered smooth and therefore all the future field configurations
that f evolves to are homotopic to f. So, if there are two non-homotopic
field configurations, they will stay non-homotopic. This is the basic build-
ing block of a topological soliton: the fact that two non-homotopic field
configurations will stay non-homotopic and two homotopic ones will stay
homotopic provides us with a reason to use the term topological soliton.
The qualifier “topological” is used to distinguish the concept from the usual
meaning of the term soliton because a topological soliton is not necessarily
a soliton in the usual sense.

It is easy to see that homotopy is an equivalence relation: it is symmetric
because the time interval can be reversed, it is transitive because the unit
interval can be joined and scaled, and it is reflexive because f is trivially
homotopic to itself. Thus maps X — Y can be classified into equivalence
classes. Sometimes there is just one equivalence class, the class of maps
homotopic to the constant map ¢ : X — Y, ¢(z) = ¢. This is the case,
for example, if Y = R, because for any X and f : X — Y, one can set
h(z,t) = (1 —t)f(x) 4+ tc. The same works for all R”, which may, at first
look, put this whole consideration of homotopies into a slightly odd light:
what is its role in such a theory, where the configuration space is R” (or C")
and topology is trivial there? This will become evident in a moment, but
first the theory of homotopies is developed a little further. To accomplish
this, the concept of based homotopy is defined and a restriction placed on
X.

Definition 3.2 (Based homotopy). A homotopy h; between maps f,g :
X — Y for which there exists a yo for which V¢ : h(0X) = f(0X) = yo, is
called a based homotopy.

Now consider based maps when X = R”. The requirement that bound-
ary of X maps to a single point in Y means that one can perform the one-
point compactification of X by identifying topologically R” U{co} =SP,
the D dimensional sphere, i.e. surface consisting of the points of the
set {z € RPH|||z|| = 1}. Next, consider S!, where continuity demands
f(0) = f(27) = f(00), therefore making the image f(S') a closed path.
Such a map is called a loop. For D > 1 the analog is a map where a single
point, call it p, on the S? takes the role of the point at infinity (in R”) and
continuity demands that f(p) = lim,_o f(z). For loops and their higher
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dimensional analogs, it is possible [41, p. 340] to define an operation called
composition, which provides the set of equivalence classes of maps S” — Y
with group structure. The composition itself is not needed in this work, so
the details are not presented here; they can be found in [41, p. 340]. The
fact that this becomes a group, however, is very important because it en-
sures that compositions of maps stay within the same homotopy class and
allows one to discuss isomorphisms between homotopy groups and some
more familiar groups.

Definition 3.3. The group of equivalence classes of maps S — Y is called
the Dth homotopy group of Y and denoted mp(Y).

The concept of homotopy group is very powerful. For example, the
simply connectedness of a set can easily be checked if its first homotopy
group is known: it is a theorem that any connected set is simply connected
iff its first homotopy group (i.e. ) is trivial (i.e. the group of one element).
Other very powerful results also follow, although the computation of the
homotopy groups themselves is sometimes highly non-trivial. In this work,
it is assumed that the field f is either a single scalar field or a multiplet of
scalar fields. Sometimes, the scalars are coupled to gauge fields, but other
than that, there are no other fields and the topology of gauge fields is not
discussed.

If fields are continuous maps to R™, their topology becomes trivial,
as noted above, and there are no topological solitons. However, if some
restrictions are placed on the fields, a different picture emerges. In field
theory, the domain of the static fields is usually R”. Physical arguments
often lead to considering fields whose energy density falls rapidly to zero
when r — 0o, where r is the distance from the origin. It also makes sure that
whenever r — oo, the field f € V, providing a boundary condition. This is
crucial, because now the possibility of something with non-trivial topology
exists! Another usual physical argument is the finiteness of the energy of
the system, but the previous argument is sufficient, for now. The decay of
energy density may not be rapid enough to guarantee a finite energy, but it
does provide a system with localised solutions according to definition
Now, if there is non-trivial topology, there is also automatically a localised
solution, so there finally is something that can reasonably be called a (still
undefined) topological soliton.

The non-trivial topology arising from the properties of the vacuum and
the ensuing boundary condition lim, . f(r) € V is due to the fact that
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topologically, no information is lost if only the boundary ORP = SP~1 is

considered instead of the whole RP”. Now the field configuration on the
boundary becomes a map f : SP~! — V, which is non-trivial whenever
mp—1(V) # 0. For a vast class of field theories, this is indeed the case. Note
that if V = C, the triviality of C is carried over to the vacuum and there
are no topologically non-trivial maps. This also happens if the vacuum is
a single point: then all maps SP?~! — V necessarily are homotopic. Such
cases are therefore excluded from the following considerations.

Fields with non-trivial topology at the boundary will usually have di-
vergent energy, regardless of how fast lim,_, f(r) € V, because there will
be gradients of f in the Lagrangian and they will not vanish. This is easy to
see when considering a D+ 1-dimensional model with a Lagrangian contain-
ing a term like 0, fO" f and writing the static energy in polar coordinates.
If f(co) € V, the integral of the gradient term in the angular direction can
be performed and is finite, leaving a radial integral [ *rP=3dr, which is
divergent for D > 1. Finite energy systems can be constructed by coupling
the field(s) to a gauge field. The gradient term is now replaced by covariant
derivatives, which it is sometimes possible to arrange the covariant deriva-
tive to vanish so fast that the energy remains finite, but it is not always
the case.

The case of constrained fields is different: now, the energy is required
to be finite. It follows from a similar argument regarding the gradient
terms in the energy functional as in the first case, that energy can only be
finite in an infinite space, if 3¢ € C : lim, .~ f(r) = ¢ € V. Topologically,
this requirement is equivalent to the one-point compactification of R” used
earlier. Thus, the homotopy group considered in the this case is mp(C).
Note that, if there is a potential, it imposes the restriction that ¢ must
be such that ¢ € V in order to keep the energy finite. The existence of a
potential is generally not required now, unlike in the case of unconstrained
fields, because the topology of C itself may be non-trivial. These fields can
also be coupled to gauge fields, which can alter the requirement of finite
energy just like for unconstrained fields. This expands the possibilities
greatly such cases and are not considered in this work.

The exact form of the Lagrangian of the field theory has intentionally
been left unspecified. The details of the Lagrangian may complicate the
topological features of the system, as was seen with the coupling of fields
to gauge fields.

This digress into homotopy theory is now ready to be finished by defin-
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ing one last concept.

Definition 3.4 (Topological invariant). Let P and C be topological spaces
and f : P — C a smooth map. Any property of f which is unchanged under
homotopy, is called a topological invariant or homotopy invariant.

The topological invariant used most often is the homotopy class of f;
in this case f is identified with its equivalence class as an element of the
homotopy group of maps P — C.

3.4 Topological soliton

The word soliton has different meanings, depending on the context. These
include the classical solitons: localised, smooth solutions of completely in-
tegrable systems that scatter elastically, experiencing just a phase shift,
and do not change shape with time. These features are consequences of
the complete integrability of the system, and while the objects studied in
this work share some of these characteristics, they are not (known to be)
completely integrable - except the example in Section Therefore, it
is desirable to distinguish the solitons considered in this work from soli-
tons of integrable systems; the concept of topological soliton is used for this
purpose.

Definition 3.5 (Topological soliton). Let L(f,df) be a Lagrangian of some
field theory, where f : P — C is a smooth map. A solution f of the static
Fuler-Lagrange equations of £ is called a topological soliton iff

f is stable (definition 2.6)) (3.1)
f is localised (definition 5], and
f possesses a non-trivial topological invariant (definition 34).  (3.3)

Topological solitons can also be defined for dynamical solutions instead
of just static ones, but those are outside the scope of this work. Since
time evolution is considered as the homotopy, the topological properties of
a topological soliton are preserved even in a dynamical theory. Similarly,
the locality and stability against scaling (although the definitions for these
are not necessarily usable any more) are also preserved. There are also
dynamical topological solitons that are not constructed from static ones.
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Some of these do not move at all, but oscillate instead, like some breather
solutions of the sine-Gordon model [42].

3.5 On homotopy classifications

In this section, methods to classify topological solitons by their homotopies
will be developed. Computing the homotopy groups wp of a space is highly
non-trivial, except in some rare cases. One example of the easy cases was
seen above, where the homotopic equivalence classes of R were considered.
Considering a based map does not alter the situation in this case at all:
the same homotopy still works for all maps, thus proving that Vn,m € N :
T (R™) = 0. The non-trivial situations require more work and the proofs
would require such a long detour into algebraic topology, homology and
differential geometry that they will be given here as references only.

3.5.1 Homotopy groups of spheres
Theorem 3.6. Let m,n € N. For all m < n,

Tm(S™) = 0. (3.4)
Proof. The quite simple proof can be found in [41, p. 349]. O

Theorem 3.7. Let n € N. The nth homotopy group of n-sphere is isomor-
phic to the group of integers,

(S = Z. (3.5)
Proof. See [41, p. 361]. O

It is easy to construct a map homotopic to a member of a chosen equiv-
alence class of 7, (S™). Before doing that, however, it is helpful to introduce
a method to directly determine the class of a given map.

Definition 3.8 (Degree). Let f : X — Y be a proper map, f* its pull-
back, dim X = dimY and w a normalised volume form on Y. The value
of

degf:/Xf*w (3.6)
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is called the degree of f.

For spheres, it is now easy to construct a member of any homotopy class.
Consider the function f : S™ — S™ for which f(z) = (r cos k¢, rsin k¢, xo, . . .,
Zn), where k € Z and x; are the natural coordinates of R™*1 in which the
S™ is embedded. Let w be the unit volume form of S, A(n) the area of S™
and V' (n) the volume of n-ball D". Now,

deg f = / frw
1

= Tl fo /\ 4,

n

m/( /\ dfi).

1,k#

Using polar coordinates xg = cosf and x; = sin#, one finds that dfy =
—ksin(k0)dl, dfi = kcos(kf)dd and dfpdfi; o< df A df = 0. Thus

1 n ) 2w
deg f = —— / da’ / kdo
A(n) Jpn— Jl—‘[Q 0

1
= mV(n —1)27k

=k,
by using the relation 27V (n — 1) = A(n).
Theorem 3.9. For a smooth map f: X —Y,

deg f € Z. (3.7)

Proof. See [40, p. 41]. O

It is now easy to note that the degree is invariant under homotopies.
Because the degree is an integer, it cannot change under continuous defor-
mations. There is a also a much stronger result.

Theorem 3.10. The degree map deg : m,(S™) — Z is an isomorphism.

Proof. See [40, p. 215] for the rather complicated proof. O
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The homotopy class of a map f is now equal to its degree and thus the
(in principle) simple computation of the degree can be used to determine
if two maps are homotopic. Also, the relative ease with which maps of any
degree can be constructed will be useful later.

These results are sufficient for many purposes in physics. In the case
of unconstrained static fields, the domain is usually R” with D € {2, 3},
giving the first and second homotopy groups of the vacuum manifold. It is
now easy to construct a field theory where the vacuum manifold happens
to be SP~1, yielding a homotopy group isomorphic to the integers. For
constrained fields, it is very often the case that the configuration space is
a sphere, immediately yielding homotopy groups 7,,(S™), where m < n.

There are only three classes of important field theories where these
theorems and 3.7 do not suffice.

One such class is the set of field theories, where the physical space
is not R” nor a sphere (compactified R”). These shall be discussed in
Section The two other cases provide two important special cases.
First is the special case where the domain is R - this is the case in the sine-
Gordon model, for example. The boundary of the domain now becomes a
disconnected set of two points, which is here denoted by S for consistency.
The classification into homotopy classes works like before, but in general
they are not groups (the definition of the group operation fails). They are
nevertheless denoted by my(Y); its elements are maps from a single point
to Y and therefore mo(Y) is the set of disconnected components of Y. If
Y is connected, all maps are homotopic and my(Y") is a group - the trivial
group of a single element.

Suppose now that the domain of an unconstrained field f is R and
the vacuum manifold is V, yielding the boundary {£oc}. Thus at both
boundaries f is a member of my(V), which is supposed to be non-trivial.
Thus f can be considered as member of 7y(V) x mo(V). If f(—o0) = f(0),
the field has trivial topology: h(t,z) =tf(oco)+ (t — 1) f(z) is the required
homotopy. If f(—o0) # f(c0), the field interpolates from f(—o0) to f(o0)
and there is no homotopy which would take f to a constant map because
the values f(+o00) must not change because that would require an infinite
amount of energy. Thus topological invariance is guaranteed. For all models
considered in this work, card my(V) < card Z and therefore the topological
invariant has an integer nature as was in Sections 2.3.1] and 2.3.2] where
card my(V) < card Z and card mo(V) = card Z, respectively.

The third case is the class of field theories, where m > n. For other
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combinations of m,n other than (3,2), the homotopy group becomes in-
creasingly more difficult to compute (and usually also more complex), a
large list of such homotopy groups can be found in |41, p. 339]. The case
m = 3,n = 2, while not necessarily any easier to compute than the others,
is one of the cases considered in this work.

Theorem 3.11. The 3rd homotopy group of 2-sphere is isomorphic to the
group of integers,

m3(S?) = Z. (3.8)
Proof. See [41, p. 375]. O

There is a method to compute the homotopy class a map f : S — S2.
It requires some concepts from differential geometry, that the reader is
assumed to be familiar with. The definitions can be found in references
[43] and, if a more rigorous treatment is desired, in [40].

Definition 3.12 (Hopf invariant). Let n € N, f : S?"=1 — Sn f* its
pull-back, « be the unit area form of S", w such that dw = f*« and
H : C>®(S?"~1 S") — R a map defined by

H(f)= /s%l wA dw. (3.9)

The value H(f) is called the Hopf invariant of f.

It can be shown that H(f) exists (the required 1-form w always exists),
is independent of the choice of o and w and that it is indeed invariant
under homotopies of f [40, p. 228]; as a consequence, the Hopf invariant is
sometimes defined on 7o, _1(S") instead of C*°(S?*"~1 S"). This yields an
equivalent definition. There are many results regarding the Hopf invariant
(see |40, Chapter 17] and [41, Chapter 4.B]), the most important here
being the following, which radically changes the naive domain R of the
Hopf invariant.

Theorem 3.13. The Hopf invariant H : wo,—1(S™) — Z is a homomor-
phism and for n = 2 it is an isomorphism.

Proof. For the first part, see |41, Proposition 4B.1]. For the second part,
recall that that 73(S?) = Z (theorem [B.I1)); the result then follows from [41,
Corollary 4B.2]. O
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As an isomorphism, the Hopf invariant provides a useful way to classify
maps S? — S? and for the remainder of this work, the Hopf invariant shall
be taken to refer only to the case n = 2. The Hopf invariant also provided
a reason for the next definition.

Definition 3.14 (Hopfion). A topological soliton which is classified by the
Hopf invariant is called a Hopfion.

Like the degree, the Hopf invariant is also called a topological quantum
number or topological charge.

There is an important property of 73(S?) which relates it to 73(S%) by
something called the Hopf map.

Definition 3.15 (Hopf map). Let o; be the Pauli matrices. Denote the
cartesian coordinates of y € S? by the column vector y = (y1,v2,%3,%4)",
where ||y|| = 1 so that y € S®. Define h : S3 — S? by

2(y1y3 + Y2va)
hy)=y'dy = | 20vays —viva) |- (3.10)
Y+ 3~y — v
The map h is called the Hopf map and Hopf fibration.

It is easy to see that, if we denote zg = y1 + iy2 and z; = y3 + ty4, then
h(y) = (2R(2071), 23(20%1), |20]” — |21]%), and [|h(y)]| = 4|z0Z1]* + [20]" —
2|20 |21> + |21]* = (J20)* + |21/*)? = ||y||> = 1. Thus h is indeed a map to
s2.

The Hopf invariant of the Hopf map is historically quite important and
we will also need the result shortly.

Theorem 3.16. Let h : S — S? be the Hopf map and H : C*(S3,5%) — Z
the map giving the Hopf invariant. Then

H(h) =1. (3.11)
Proof. See [40, p. 235] O

The following theorem now gives us a correspondence between maps
from S? — S3 and S3 — S2.
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Theorem 3.17. Let f : S? — S3 be a smooth map and h : S> — S? the
Hopf map. The value of the Hopf invariant of ho f is

H(ho f)=degf. (3.12)

Proof. Let a be the unit area form of S? and w the unit volume form of
S3. The left hand side of [B12)) equals [w’ A dw’, where w’ is such that
dw’ = (ho f)*« and the right hand equals [ f*w. Now,

dw' = (ho f)*a=aoho f = f*(aoh) = f"(h*a) = f*(dw) (3.13)
— d(f*w), (3.14)

which holds, if h*a = dw. This is equivalent to the requirement that one
can compute H (h), which is always possible. Therefore, one may write

H(hof)= /53 W AdW = g ffond(ffw) = /53 [flwndw)  (3.15)
= deg f, (3.16)

where again a further result is needed to justify the last equality because
it requires that w A dw is the unit volume form. This is not a trivial
requirement, but it is equivalent to the requirement that H(h) = 1, theorem
This completes the proof. O

The fields with topological invariants are customarily given descriptive
names according to their dimension, whether they are constrained or not
and their respective homotopy groups. Some of these are summarised in

table [3.11

3.5.2 Torus homotopies

When the domain of the static fields is not the compactification SP of R”
nor the compactification SP~1 of the boundary of R”, the homotopy groups
of spheres cannot be used to classify the field configurations.

The Abrikosov lattice [4] of two-dimensional superconductors is one
such situation: mathematically, the vortices can be modelled as a gauged
complex scalar field living on a 2-torus, T2, with flat a metric (the domain
is simply R? with a periodicity condition imposed on the fields). Homo-
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unconstrained fields constrained fields
D | homotopy | descriptive name | homotopy | descriptive name
Kink m1(C Kink
1 | m(V) 1)
Domain wall Domain wall
Vortex o (C Baby Skyrmion
2 | m) < 2(C) y Sky
Cosmic string
Monopole m3(C Hopfion
3 | m(V) P 3(C) PHo!
Skyrmion

Table 3.1: Classification of static fields of dimension D with topological
invariants

topy classes of maps, whose domain is a torus, are sometimes called torus
homotopies, a term introduced in [44].

Two other examples are studied in [34], where the domain is either
S? x S! or T3 and the constrained fields take values on S?. The homotopy
classification is now much more complicated than in the case of a spherical
domain. Instead of a single homotopy invariant completely classifying the
fields, there are now two, or four. The classification is originally due to
Pontrjagin [45], but here a corollary of the restricted version of [46] is
sufficient.

Theorem 3.18 (Pontrjagin). Let f : S? x S' — S2. There are two homo-
topy tnvariants of f: a primary invariant so = degf’S2 and if so # 0 there
is a secondary invariant sy € Zss, for each class so. Let g : T3 — S2.
There are three primary homotopy invariants of g: t1, ts, t3. Denote
t = ged(ty,te,ts) to define a secondary invariant, hy, which depends on
t. Ift =0, hy = H(f) and if t # 0, the hy € Zoy for each t.

Proof. See Theorem 1 of [46], where a more general result is proven, whose
special case this is. O

The nature of the invariants ¢; require a detailed description. Consider
amap f: T3 — S? and a regular value p € S%. Now, the preimage f~!(p) is
a closed path on the domain and therefore can be represented by a directed
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path v : S' — T3. Now, each t; counts the number of times v travels around
the respective S' of the T2, as shall be seen in [3.5.3

Note that it is possible to change the integration domain in the definition
of the Hopf invariant. If one changes the domain to S% x S' or T3, the
value of the integral is still here called the Hopf invariant, although it is no
longer homotopy invariant except in the case t = 0, where H = hy.

Due to the secondary invariants s; and h;, the primary invariants are not
sufficient for complete homotopy classification. However, two homotopic
maps have the same invariants s; or t;, h, but two maps with the same s
or t1,to, t3 are not necessarily homotopic. The complete classification is not
required to establish the existence of topological solitons and in this work,
we only deal with the primary invariants ¢; and ss.

3.5.3 Determining the homotopy group of a map

It is not always easy to determine the homotopy group of a given map. The
integrals involved in definitions B.12] and B.8] are usually too complicated
to compute analytically, and numerical methods must be used. Therefore,
it is desirable to have an alternative, independent method of computing
the invariants. Fortunately, such a method exists for all the homotopy
invariants considered in this work. These methods are described in this
section.

The alternate method of computing the Hopf invariant requires the con-
cept of linking number. The exact mathematical definition can be found
in [40, p. 229-234], here a heuristic approach is used. Suppose that f is
a smooth map S® — 52, choose two distinct points yo,y1 € S? and find
the preimages f~'(yo) and f~!(y1). These preimages will consist of a set
of closed curves by virtue of f being continuous. Next, it is necessary to
choose a direction for the preimages. The direction can be thought of as a
parametrisation of a path I': v : I — I', where the direction would be in
the direction of increasing ¢t € I, and the path is the preimage. In the case
of a disconnected preimage, it is necessary for the direction to be chosen
consistently. It can be done in all cases considered in this work, either
by choosing points whose preimages are connected, or by following how
the preimage changes when the point moves around S2. In the numerical
work, a previously connected preimage can become disconnected during the
minimisation process. In these cases the directions of the disconnected com-
ponents must be consistent with the direction of the connected preimage
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just before the disconnection occurs because the deformation is continuous.
After all this consideration, the preimages are projected onto a plane; de-
note this operation by P. The projection must be such that any normal
of the plane crosses any connected component of any preimage at most
twice. This is easy to do visually, but finding such a plane algorithmically
is not trivial. After completing the projection, all the points satisfying the
condition P f~1(yg) = P f~1(y1) are located and the preimage closer to the
plane is marked. The usual convention is to mark it by making a small cut
into the projected image so that it looks like it is under the other preimage.
Finally, the linking number of the preimages can be defined. It is done with
the help of figure 3.1l

Definition 3.19 (Linking number of preimages). Using the method and
notation described above, let yy # y1, the signs of the crossings of preimages
f1(yo) and f~!(y1) be defined as in figures and BJ)(b)] and the set of
crossings € = P f~1(yo) NP f~(y1). The linking number of the preimages
is defined as

H(f)=1> " e(i). (3.17)

It is instructive to follow through the procedure described above with
an example. Figure Bl shows the sequence described above, resulting in
linking number of unity.

The linking number of preimages of f equals the value of its Hopf in-
variant, up to a sign.

Theorem 3.20. Let f : S? — S2. Then, with a suitable choice of direction
for the preimages,

H(f)=H(f) (3.18)

Proof. See [40, p. 230]. O

Note that the linking number of preimages is equal to the Hopf invariant
for maps defined on S% x S! and T3 as well [40, p. 230]. Thus the above
method can be used to compute the Hopf invariant in these cases as well;
as noted in Section [3.5.2] it is no longer invariant unless the real homotopy
invariant ¢ = 0, but it turns out that it is still conserved under certain
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Figure 3.1: Computing the linking number of preimages. Definitions of
the signs of the crossings of two distinct preimages are @] € = +1 and
@ e = —1. Figure represents a point on the target S?, its preimage
on S3 and the inverse mapping f~! before the projection. In figure @]
the projection of two preimages has been performed, preimages marked
according to which one was above before the projection, the directions of
the preimages chosen and finally the values of the crossing are marked in
to give a system with H = 1.

continuous energy minimisation deformations of fields defined on S? x S!
[31] and for fields defined on T3 [34].

A similar construction works for the degree of map f: X — Y as well.
Now the preimages are sets of points instead of loops and there is no notion
of crossing. The points must be chosen such that the Jacobian of the map
f is non-zero at the preimages. Fortunately, such points occur all over Y.
The alternative definition of degree can now be made and shown to equal
the previous one.

Theorem 3.21. Let f : X — Y be a smooth map, J its Jacobian, yo € Y
and ty, = {zo|f(z0) = yo}. Let yo be such that J(x) # 0 Va € ry,. Then

deg f = Z sign J(z). (3.19)

Ly

Proof. See [38, p. 57]. O

For field f defined on T3, a different approach is required. Recall that
the invariants t; count the number of times a preimage travels around the
respective S of the T2. An easy visual method to determine the values t;
is as follows. For each t;, choose a plane defined by é; and a regular value
p € S%. Let v : S' — T2 again denote the path defined by the preimage
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f~1(p) € T3. Going around the path, mark all points where 7 travels from
one side of the plane to the other, numbering them with j € Z. For each
of these points, let €(j) = +1 if 7 is directed in the same direction as é;
or €(j) = —1 if the directions are opposite. Now, for each i one defines
t; == >, €(j). In the case where y(61) = 7(62) & 6h = 6> (le. 7 is an
injection), it is easy to determine ¢; visually: the step of going around ~
can now be replaced by finding all points z on the plane, where f(z) = p.

During the research at hand, the linking number of preimages has been
the predominant method of checking the homotopy of the field. Visually
inspecting the preimages is a very fast (at least for low values of H) method
and therefore well suited for the task of checking the consistency of the
computations. The degree is not quite so fast, but most of the fields in this
work will eventually be maps S? — S2, so the degree is not that important.



Chapter 4

Models

This chapter introduces the models investigated in this work and applies
the results of Chapter Bl to them. It turns out that very few models with
topological solitons yield to analytical methods and thus numerical methods
are needed. Indeed, this is the case with both models investigated here: the
Faddeev-Skyrme model and Ginzburg-Landau model.

4.1 Faddeev-Skyrme model

The Faddeev-Skyrme model was first proposed by L. Faddeev in [12]. It
resembles an earlier model, nowadays known as the Skyrme model af-
ter T.H.R. Skyrme, which was proposed as a model for baryons in a se-
ries of ground-breaking papers [5, 16, [7, 47, |48, 8]. Skyrme developed
the model starting from one-dimensional models, eventually formulating
a model where the fields form a map f : R* — S3. He was then able to
show that there is a topological soliton in the system, which he interpreted
as a baryon. It has later been shown that the Skyrme model represents the
low energy limit of QCD as the number of quark colours increases [49, 50]
and it is the topological soliton which is again interpreted as a baryon.
These topological solitons are usually called Skyrmions.

The Lagrangian density of Faddeev’s model is the same as Skyrme’s,
but there is one field less than in the Skyrme model, so the fields form
amap f : R* — S? instead. This difference may seem small, but the
different configuration space makes it possible to consider knotted struc-
tures as possible topologically stable static configurations, classified by the
Hopf invariant. Indeed, the existence of stable knotted structures was one
of Faddeev’s key points [12]. There are no knot solitons in the Skyrme

45
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model. Another very interesting result, which shall be presented in more
detail shortly, is that the energy of the Faddeev-Skyrme model is bounded
from below, the bound is non-zero except for the homotopy class of vacuum
solutions and the bound depends on the 3/4 power of the Hopf invariant
[51]. Similar bounds can often be constructed for topological solutions, but
usually they depend linearly on the respective homotopy invariant. The dif-
ference between 3/4 and 1 is important, because linear dependence means
that a solution with homotopy invariant N > 1, can be decomposed into
N infinitely separated solutions with N = 1 without increasing the energy.
In the case of the Faddeev-Skyrme model, this does not occur, due to the
sub-linear dependence.

4.1.1 Formulation of the Faddeev-Skyrme model

Let ® = (¢1, ¢2, #3)T. Then the Lagrangian density of the Faddeev-Skyrme
model can be written as follows.

=FE =
2 =Fy
Lps = 0,970 ® + 4 F, FH, (4.1)
F= %@T@L(I) x 0,® or, alternatively
= %€abc¢aau¢bau¢ca
where ¢ and ¢4 are coupling constants. Choosing the usual metric (+, —, —, —)

yields the static energy density
Ers =ca||V @[ + ca| Fyi||? (4.4)

which is perhaps the most important equation of this work. The model
evades Derrick’s non-existence theorem 2.7] by the virtue of having exactly
the correct amount of derivatives in both terms:

dE),

A - LB+ E =0 & Ey=FE 4.5

I\ },\:1 9+ Ly 2 4 ( )
d’FE,,

=2F5 >0 2N Ey > 0. 4.6

a2 ‘)\:1 2> 2> (4.6)

Because both Es and F, are non-negative, the non-existence theorem is
circumvented (recall that the theorem assumes E; > 0). The finiteness of
energy again ensures the locality of solutions, the topological invariant is
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provided by the Hopf invariant (definition B12) and (LX) gives the virial
theorem obeyed by any solution of the static field equations. The energy
of the Faddeev-Skyrme model is bound from below as follows.

Theorem 4.1 (Vakulenko-Kapitanskii). Let ¢ : S — S? be a smooth map
with Hopf invariant H(¢) and energy E defined by the Faddeev-Skyrme
energy functional. Then 3¢ > 0 such that

E > c|H(o)**. (4.7)
Proof. See e.g. [51] or [52]. O

The maximal value of ¢ was not given by Vakulenko and Kapitanskii
and it is still unknown, but it was shown by Kundu and Rybakov [53] that
Cmaz > 27/233/87r2\/m ~ 168.6,/coc4 holds. It has later been suggested by
R. S. Ward [52] that ¢ = 3272, /cacq =~ 315.8,/cacy; the latter has not been
rigorously proven (except for the case where the domain is exactly - not
just topologically - S3), but all the numerical work done to date suggests it
holds.

The field equations have not been needed until now. They turn out
to be analytically intractable, so to prove that there indeed are topologi-
cally non-trivial solutions, one must resort to numerical methods. These
investigations form the majority of the results presented in this work.

It is not trivial to search for the solutions numerically. Simply supplying
the boundary conditions at r — oo will (at least typically) yield solutions
homotopic to the vacuum, which are uninteresting. Thus, instead of solving
the Euler-Lagrange equations by direct integration, a different approach is
used. Recall that the Euler-Lagrange equations of the energy density are
actually a condition for its extremal; thus any method designed to find the
extrema of an integral will be applicable. The methods used in this work
are all based on the gradient flow and shall be described in Chapter Bl In
order to apply these methods, one needs an initial configuration (or guess)
which belongs to the desired (i.e. non-zero) homotopy class. Two such
initial configurations are presented in the next section.

It has been noted in Section 2.3.2] that it is not always easy to define
a good concept of location for a topological soliton. The Faddeev-Skyrme
model is one of the examples, where the energy is not so informative: the
solution for H = 1 has spherically symmetric energy density, but the fields
themselves only have cylindrical symmetry (see [54] for an illustration com-
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paring the energy density with the soliton location). Instead, the following
definition is used.

Definition 4.2. Let ® be the field of the Faddeev-Skyrme model and
®(00) =lim, o ®. The preimage ®~!(—®(00)) is called the core of the
soliton. This is also identified as the location of the soliton.

Successful numerical attempts to find minimal energy solutions of the
Faddeev-Skyrme model had to wait two decades after the model was first
proposed; this was most likely due to the system being computationally
very difficult, possessing no symmetries that could be used to reduce the
dimension below three. The first works regarding the Faddeev-Skyrme
model, those of Vakulenko and Kapitanskii [51] and de Vega [55], did not
even attempt to find a solution, concentrating on other aspects instead.
Enz [56] used a slightly simplified model to obtain straight, infinite vortices
and gave qualitative arguments for the existence of closed vortices. Finally,
Nicole used a different modified model with 55’ /2 and no &, at all in order
to construct a scale-invariant theory and found an exact solution [57]. Af-
ter this, the theory did not receive notable interest before first numerical
attempts to find solutions were done. Here follows a short review of these
works.

The first ones were by Gladikowski and Hellmund [58], Faddeev and
Niemi [59,160]. The former group used a slightly extended model with extra
derivative terms and a potential term, but also reported results when these
terms were not present. Their main results were the energy distribution
of the H = 1 Hopfion, which was unexpectedly found to be concentrated
at the origin unlike the core of the Hopfion; they also obtained a H = 2
Hopfion and confirmed that such a solution has an energy barrier against
decomposition to two H = 1 solitons. The main results of the latter group
were the (apparently independent) discovery of solitons with H = 1,3.
However, the results were qualitatively the same: now, the H = 1 energy
density was found to be toroidal. The H = 3 case had an intriguing knotted
shape, but both the toroidal energy density and the knot shape are now
believed to be due to an assumption of rotational symmetry or the incorrect
handling of boundary conditions, or both. It should be noted that both
these groups assumed rotational symmetry in their numerical work.

The first fully three dimensional numerical analyses were those of Bat-
tye and Sutcliffe [54, I61], and Hietarinta and Salo [62, 163]. The former
group confirmed the earlier H = 1,2 results, but found a disagreement



Models 49

with the H = 3 Hopfion: their H = 3 Hopfion is not rotationally symmet-
ric, but instead a twisted torus. They also found Hopfions of H up to 8
and discussed the possible mechanisms behind the rich variety of solitons
in the model. The latter group also found Hopfions up to H = 7, but this
time using quite different initial configurations than the others. The results
were found to agree with those of Battye and Sutcliffe, therefore providing
a strong independent confirmation of the earlier results. The latter group
used a very versatile method of creating linked configurations and also de-
veloped a very powerful and informative method of visualising Hopfions.
Both groups discovered that the H = 7 Hopfion has a knotted core, finally
realising the the original idea of Faddeev [12].

To summarise these works, it was found that the solution of Hopf invari-
ants one and two have a toroidal soliton core, while higher values provide
increasingly complex core shapes, ultimately yielding the first real knot
soliton at H = 7. Numerical work in this direction has since expanded
considerably, not only by the results presented in this work, but also by
that of Sutcliffe, who has found Hopfions up to H = 16 [64].

Although there have been many numerical results, a definite, rigorous
proof of the existence of Hopfions was not available until Lin and Yang
managed to prove the following [65].

Theorem 4.3. Let Q be a bounded, smooth domain in R3, E(-) the energy,
Xo = {®:R> = S*|E(®) < co and ®((int Q)°) = constant}, (4.8)

and q € Z. Then there ezists a field ®, for which H(®,) = q and
E(®,) = min{E(®)|® € Xq and H(®) = ¢}. (4.9)

Proof. See [65]. O

They also provided a slightly weaker statement for unbounded domains.
In that case the values of d are restricted to an (unknown) infinite subset of
Z. As a byproduct, Lin and Yang were also able to show that the energy of
the minimal energy configuration is bound not only from below (theorem
[4.1]) but also from above.

Theorem 4.4. Using the notation of theorem [{.3, there exists 0 < C € R
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such that
E(®,) < ClgP. (4.10)

Proof. See [65]. O

No value of C was given by Lin and Yang, but an upper limit for it
was later found [66] and [67]. By using numerical integration at certain
stages of the derivation, Hirayama et al. provided the lower estimate, C' =

6233\ /C2CY.

4.1.2 Initial configurations

Naturally, all the works mentioned above have their methods of generating
initial configurations of the desired Hopf invariant. The method described
and used by Sutcliffe [64] is perhaps the most flexible one, but the method
used in this work is due to [58, 68]. It is worth mentioning that [68] consid-
ered an altered model without & and SZ’ o provide scale invariance. They
were able to give an exact solution of Hopf invariant one and construct a
completely integrable model admitting Hopfions. The initial configuration
of |58, 168] can be written as follows.

Theorem 4.5. Let n, &, ¢ be the toroidal coordinates of one-point com-
pactified R3, related to the cartesian ones by

sinh(n) cos(¢p) sinh(n) sin(p)
e I S —

(4.11)

A = cosh(n) — cos(&),

S
w
Il

p,q €7Z, and g: [0, oo) — [0, 1] monotonic. Define the map x : S® — S? by
)

x = (g9(n) cos(p€), g(n) sin(p),

2 cos(qp), /1 — g(n)2 sin(—qcp)). (4.12)

1—g(n)
Now deg x = pq.

Proof. See [68]. O
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Corollary 4.6. Using the notation of theorem [4.5], define

g(n)\/1 — g (1)* cos(p€ + qp)

29(n)\/1 — g (n)* sin(p€ — q) (4.13)
2¢% (n) —
Now the Hopf invariant of ® is
H(®) = pq. (4.14)
Proof. The result follows from theorem B.17] O

There are many simplifications and choices to be made in ([@I2]). One
possibility is to take p = ¢ = 1, which gives the original map used by Hopf
[69] to prove that there is a map S — S? which is not homotopic to the
constant map. One can also denote r = ||z||, choose

V(2 + 1) — 4(af +a3)
r2 41

9(77) :g(:c,y,z) = ) (415)
and identify nqy = ¢9, no = ¢1, and n3 = ¢3 to obtain the field 7 used in
[62, 63].

The initial configuration used in our vortex investigation is slightly dif-
ferent due to the altered topology of the system. The configuration can
be thought of as the same as in theorem [L8] but that the toroidal core
has been cut and the torus straightened into a cylinder. Using cartesian
coordinates and two integers m, n, the form of the field ¢ is

1— f(p)? cos(mb + 2mnz/L)

¢ = 1— f(p)? sin(mé + 2wnz/L) |, (4.16)

f(p)
where L is the box length in the z-direction and f is just some profile func-
tion with f(0) = —1, f(o0) = +1. Sometimes the initial configuration was

also slightly bent in order to reduce the computation time required for en-
ergy minimisation. More details and motivation are discussed in |31]. Since
the domain is no longer S3, but S? x S! instead, the topological invariants
are s1 and sy as given by theorem B.I8l Using the integral formula for the
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degree ([B.0) or inspecting the configuration visually using the method of
theorem [B.21] one obtains sy = m. As was seen in [3.5.2] the linking num-
ber of preimages remains well defined and is equal to the Hopf invariant,
although its value is no longer homotopy invariant. Simple computation of
the linking number of these initial configurations gives H = mn.

For the systems investigated in [34] the domain of the fields is T3 and
the topological classification is that of theorem B.I8 The initial configu-
rations, are constructed using (£I6) with m = 1 and n = 6. In two of
the computations of [34], several identical vortices were packed in a tight
formation into the computational lattice. Using the method described in
section B.5.3] it is straightforward to check that for (4.16]) t; =t = 0 and
t3 = 1. For the packed formations of vortices these are simply multiplied
by the number of vortices. The Hopf invariant can also be calculated for
these configurations, but as was seen in [34], it is conserved only in special
cases.

4.2 The Ginzburg-Landau model

This section introduces the Ginzburg-Landau model. It is usually used
to describe (planar) superconductors near the critical temperature, but
it is also the static limit of the Abelian Higgs model with two complex
Higgs scalars. The model is widely known for its topological solitons in two
dimensions, called Abrikosov vortices according to the work by Abrikosov
[4]; indeed, the 2003 Nobel prize in physics was awarded to Abrikosov,
Ginzburg and Leggett for work related to the Ginzburg-Landau theory and
its vortices.

It is possible to derive the Faddeev-Skyrme model from Ginzburg-Landau
model using a derivative expansion [27], but this method does not allow for
investigation of solitons in the Ginzburg-Landau model since it does not cor-
respond to any parameter limit. Instead, the Faddeev-Skyrme model can
be embedded in the Ginzburg-Landau model by a change of variables, as
shown by Babaev et al. [29]. This embedding makes an intriguing connec-
tion between the Faddeev-Skyrme and Ginzburg-Landau models. However,
the topological features of the Faddeev-Skyrme model cannot be directly
applied without further considerations as shall be demonstrated in Sections

1.2.9] and 4.2.31

The next few results relate to the Ginzburg-Landau model in general.
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After those, the special cases of Abrikosov vortices and the embedding
of the Faddeev-Skyrme model are considered. In what follows, only the
energy density will be defined and the Lagrangian density will be left unde-
termined. There is a reason for this. The Ginzburg-Landau energy density
is not unique to the Ginzburg-Landau model: the same energy density oc-
curs as the static energy density of the Abelian Higgs model as well. Since
this work does not deal with the dynamical model, but only the static one,
deciding which time-dependent part to use is not necessary.

The usual version of Ginzburg-Landau model has one complex field, but
it can be extended to any number of fields; in this work, the version with two
fields has been used, with a few comparisons with the usual model of one
field. In the following paragraphs and sections, therefore, the notation of ¥
always refers to the two-component model, 1, to one of these components
and 1 to the one component model.

Definition 4.7 (szburg—Landau energy). Let ¢q : RP — C and A4 :
RP — R3 be the fields, Da =V zgaA the covariant derivative and g, € R
coupling constants. The Ginzburg-Landau energy density is

=21 D1l + 5| oo (4.17)
E4=35|Vx A (4.18)
E0=3V (¥, ¢s) (4.19)
Ear=E+E4+ & (4.20)

with some potential V. Usually, and always in this work, the potential has
the form

V (1, 49) = e1|hr|* + ealtha|* + e3|in [ [eh]?
+ bu [t |* + ba o] + ap. (4.21)

It should be noted, that various different notations have been used for
the Ginzburg-Landau model. For example, in condensed matter physics, it
is usual to write

£ =

+2u0 IV AJ% + 301" = a v,

or a variation thereof. There are physical reasons for this kind of formula-
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tion; most notably the two experimentally important values

b
A= and §=h/v2ma,
e\l 2upa

called the penetration depth and coherence length. However, for mathe-
matical treatment, the form in (A7) is more appropriate. For a single
field, it can be further simplified as shall be seen in Section E.2.11

As usual, the first step in determining the possibility of topological
solitons in a model is to apply Derrick’s theorem. However, the situation
is no longer the simple one with just scalar fields: the introduction of the
gauge field A makes things significantly more complex. The exact details
of how the situation changes will not be covered here, but, as shall be
seen in Section [£2.0] the gauge field makes it possible to have a finite
energy even for the gradient term: it is possible that 5¢ = 0 even if
V1 # 0. The Abrikosov vortex discussed below is one such situation.
For the application of Derrick’s theorem, however, one needs to know the
scaling behaviour of the gauge field. It is necessary for the gauge field
to behave like a derivative which can most easily be understood from the
differential geometric formulation, where the gauge field becomes a 1-form.
From Derrick’s theorem one obtains the following necessary condition for
the existence of topological solitons in Ginzburg-Landau model

E, — B,
when D = 2, and (4.22)
Ei+3E, >0,
E. =Ly 4+ 3E
‘ 2550 when D = 3. (4.23)
Ey+6E, >0,

The locality condition of definition must be checked separately for
all prospective topological solitons, but for any finite energy configuration
it will necessarily be satisfied. The last requirement of the existence of a
topological invariant is dependent on the value of D and therefore will only
be discussed after D is fixed.

It should be emphasised, that the fields of the Ginzburg-Landau model
are maps to R? = C and therefore it is perfectly possible that ¥ = 0 at one
or even all points of the domain. This implies that it is possible to violate
the assumptions of Derrick’s theorem and have any or all of E; = 0. The
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implications of this shall be evident in Section A.2.2]

4.2.1 Abrikosov vortex

In this section, the Ginzburg-Landau model with one complex field only is
considered. The target space C implies that the relevant homotopy group
is mp(V), where V is defined by the potential V. If the V is too large (like
the whole C) or too small (like just one point), the homotopy group will be
trivial. There is a very important case, where

D=2 g=1 and V()= 2(¢|-1)"

0|3

The vacuum is now V = S' and hence the relevant homotopy group 71 (S');
a member of 7 (S!) is often called a winding number. Note that there is
just one parameter in the model: 7. This is the only free parameter of
the one-component model, all the others can be scaled away. Of course,
there are different ways to scale away the dependent parameters and any
parameter can be chosen as the independent one. The form presented here
is perhaps the most common.

The vortex configurations of winding number unity have rotational sym-
metry [58, |59], so it is easiest to describe the fields in polar coordinates,
when they become functions of only the radial coordinate, r. The fields have
the following properties: ¥(0) = A(0) = 0, |¢)(c0)| = 1 and A(c0) = 0. Due
to the rotational symmetry of the system, it is natural to call the origin the
location of the vortex, but for larger winding numbers, origin is not always
a special point, so another definition is needed. The natural choice is the
property of the scalar field at the origin: the Abrikosov vortex location is
defined by the preimage 1~!(0). This coincides with origin for the unit
winding vortex, but it works also for other vortices.

The value of n = 1 splits the parameter space in three: the fields where
n < 1 are called type-1, fields where n > 1 are called type-1I and the case
n = 1 is a special one; it is often called the critical coupling. For the super-
conductor interpretation of the theory, the properties of type-I and type-II
fields are significantly different. The phase diagram of type-I superconduc-
tors have a single critical temperature above which the superconductivity
is lost while type-II superconductors have two critical magnetic fields B,
and B., with B., < B.,. Below B, just the superconducting phase is
present, but for field strengths between B, and B,,, a mixture of normal
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and superconducting phases appears. This is called a mixed state. The
regions of the normal phase are the cores of the Abrikosov vortices and if
allowed to relax, they form the famous Abrikosov lattice [4]. The proper-
ties of the vortices are also different, but the details depend on the selected
time-dependence.

Without the time dependence specified, it can only be determined that
vortices with positive (negative) winding attract if n < 1 and repel if n > 1
— obviously at n = 1 they do neither, but are in an equilibrium and the
vortices can exist anywhere on the plane. Vortices with opposite winding
always attract and annihilate. Therefore, if the total winding number is
zero, the configuration is homotopic to the vacuum.

There is a second important difference between the critical and non-
critical vortices. For a number of field theories, there is a lower bound
for the energy, which relates the energy and homotopy class of the field
at the boundary. These bounds are called Bogomolny bounds due to the
observations in [37]. For critical vortices in the present model, the bound
becomes E > N7, where N € m1(S') is the homotopy class of 1 and E the
total energy.

4.2.2 Ginzburg-Landau model in three dimensions

The two dimensional Abrikosov vortices can trivially be extended into three
dimensions, if the system is made translation invariant in the new dimen-
sion. This extension, does not change the topological character of the
model. For examples of more complicated ways of embedding the two di-
mensional vortices in three dimensions, see [70)].

Things change, however, if the third dimension is added without any
symmetry requirements. The topological features of the system must then
again be determined by the boundary values and the vacuum manifold. The
vacuum manifolds used in this work are V = SU(2) and V = U(1) x U(1).
Topologically SU(2) = S? and U(1) x U(1) = T2, so the relevant homotopy
groups become 73(S3) = 0 and 72(T?) = 0. Thus the search ends: there
is no non-trivial topology. However, this is changed when the theory is
considered as a constrained one, and the vacuum manifold is no longer the
sole player in the topology of the system.

One way to proceed is to require that || V|| = 1 everywhere, making the
fields maps R? — S3. Now, by the arguments of Section 3.3} the relevant
homotopy group becomes 73(S?) = Z and there is a possibility of topological
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solitons.

There exists an interesting change of variables for the constrained ver-
sion due to Babaev et al. [29]. Recall the definition of the Hopf map,
denote it again with h and let gy = g9 = ¢. It should be noted that the
original work in [29] and that presented in [32] used g3 = —g2 = g, but this
is equivalent to global gauge rotation 1 — 1o, which can be done without
changing anything else. The requirement ||¥| = 1 is also relaxed so that
the only constraint on ¥ is || W(x)|| > 0 everywhere. It is now convenient
to define y : S3 — S by x=U/[|¥|| and define the new fields ®, p,C as
follows.

p E\/%(|1/)1|2 + 1),

c EQ(i(YTVx—xTVY) - 295), (4.24)
& =h(x).
Using these new variables, the energy density becomes
2 2, =
£ =Vl + IV pl* + FICI* + V (p, @)
+ 5 |07 0@ x 9D + O Cy|. (4.25)

This is the form derived by Babaev et al. [29] and the embedding of
Faddeev-Skyrme model into the two-component Ginzburg-Landau model
is quite explicit: when C = 0, it becomes the Faddeev-Skyrme model,
except that there is a potential V; the presence of a potential does not
alter the topology of the system and if also V' = 0 it becomes exactly the
Faddeev-Skyrme model.

The next topic to explore is again Derrick’s theorem. Recalling ([£.23]),
one is tempted to conclude that this model does indeed support topological
solitons. This is, however, not the case. Until now, just the topology of the
field ® has been considered, but a glance at (£.17)) reveals that the balancing
term in (£23]), &4, does not depend on ® (or ¥) at all! It is solely a function
of the gauge field A Therefore, nothing ensures that £, > 0, as assumed
by Derrick’s theorem. Indeed, it has been be rigorously proven [71] that
for the energy density (28] there are no stable solutions which are global
minima of the Ginzburg-Landau energy within their respective homotopy
classes; i.e. for a given homotopy class, the global minimum of energy is
always zero. This is ultimately due to the term &; having no compelling
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reason to be non-zero. This is rather unfortunate, but the possibility of local
minima remains. While these would not normally be considered topological
solitons, in the classical theory they are stable against small perturbations.
Therefore they are interesting objects as well, if they exist. Their possible
existence has been investigated in [32].

There are several ways to possibly escape this conundrum. One way is
to enforce a non-zero (possibly external) magnetic field into the system, or
to introduce a phase winding for ¥ at r — oo, which will force A to com-
pensate lest the covariant derivative term yields an infinite energy. These
two methods do not seem to have been investigated. A third method is to
modify the energy density so that it is energetically unfavourable for &4 to
be zero. There are various ways of achieving this. Most notable of these
are the introduction of an Andreev-Bashkin type term [72] and an approach
based on modifying the metric of the configuration space [73]. The last of
these methods will be discussed next.

4.2.3 Ward’s modification

The idea behind the Ward’s modification [73] is simple. The symmetry of
® consists of a local U(1) gauge symmetry and a global SU(2). By altering
the metric of the SU(2) part, the energy density gains an additional term

Ew = k|01 DD|?, (4.26)

where k > 0 is a new parameter in the system. The potential must now be
SU(2) symmetric

Vv =gn(|e)* - 1% (4.27)

The limit x,n7 — oo recovers exactly the Faddeev-Skyrme model, be-
cause at this limit, ||®]] — 1 and ¢ — 0 everywhere. Therefore, it is
reasonable to ask, if the Hopfions of Faddeev-Skyrme model survive when
k,n are finite. It turns out, they do [73]. The proof of [71] holds even with
the additional term, and, therefore, any Hopfions are necessarily only local
minima of their respective homotopy classes. This modified model has been
further investigated in [33].
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4.2.4 Initial configuration

Recall that the eventually interesting object will be the Hopfion, the con-
figuration of ®, not W. Therefore, all the initial configurations used in
studying the three dimensional Ginzburg-Landau model have been con-
structed using the theorem B.I7F any map x for which degy = n € Z, the
Hopf map h and field configuration ® =ho y, it will follow that H(®) =n
as well. There are numerous ways of constructing maps of desired degree.
The one used here is the x given in theorem. 45t the value of p has been
fixed to a constant (usually p = 1) for all initial configurations. It should be
noted that even though the initial configuration is here presented in terms
of variables used by Babaev et al. [29], all the computations have been
done in ¥, A only.

The initial configuration for A needs to be determined as well. For
pure Ginzburg-Landau computations, the initial configuration was simply
A= 0, but for the modified model, A was initialised according to the
condition ®'D® = 0. Where the solution is not real, only the real part is
used.
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Chapter 5

Numerical methods

It was noted in the beginning of Chapter @ that numerical methods are often
needed to study topological solitons. The Euler-Lagrange equations are not
integrable analytically, so numerical integration is required. Regardless of
the numerical method, some kind of discretisation is necessary.

In principle, one can try to integrate the Euler-Lagrange equations di-
rectly, given some boundary conditions. However, as was noted in Section
[4.1], this tends to lead to solutions homotopic to the vacuum, which are
not interesting. This is especially true for constrained fields, which have
no enforcing topology at the boundary; for unconstrained fields and topo-
logically constrained boundary conditions, the result of a direct integration
should, in principle, provide a configuration of the respective homotopy
class. There is a caveat: the equations of motion are often very non-linear
and stiff, and direct integration may, therefore, be extremely sensitive to
the initial (boundary or otherwise) values.

In this chapter, the following notations are used. For a variable z € RP,
the symbol % is a point on the corresponding lattice, h is the distance be-
tween two lattice points (the same in all directions and all over the lattice),
M is the number of fields, counting both scalar and gauge and N is the num-
ber of lattice points. In a typical computation in this work, N € [1203, 7203].
If @ denotes the fields, the gradient of a discrete functional with respect to
each field at each lattice point will be denoted by V. Thus Vg gives a
vector of MN components.

61
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5.1 Discretisation

The discretisation scheme chosen in this work is the finite difference method.
It is built on the definition of derivative: in its simplest form, the finite
difference method simply makes a substitution for all derivatives 0; f(x) —
(f(& + hj) — f(2))/h and changes the integrals [dz — > h in the energy
functional (and similarly for higher derivatives if there are any) - in practise,
more sophisticated methods are often used.

The discretisation used in [30, 131, 134] is fully described in [62, 63].
In short, the second order term was discretised on links by simple forward
differences and the fourth order term was discretised on plaquettes (again by
forward differences); for example Fjj(x) is discretised on the Jk-plaquette
as follows

1

$a(®) = 1 Y ¢al@+ hij+ hmk) (5.1)
I,m=0
1 ~ ~
0j¢a(x) = 5= > (¢a(d + hj + hik) — ¢o(3 + hik)). (5.2)
=0

During the minimisation process, the algorithms presented later in this
chapter do not guarantee that the norm of the unit-vector field ® is pre-
served. Indeed, it was observed that it never is. Therefore, some method
of keeping the norm fixed was necessary. The solution chosen in [62] was
to renormalise the field after each iteration and this method was used also
in the work presented here.

This discretisation works quite well for scalar fields and problems like
the question of the existence of topological solitons, where it is not necessary
to find the most accurate solution possible. For gauge fields, the situation
is different. Using the same discretisation for gauge fields will destroy the
gauge invariance of the model. Fortunately, Wilson has devised a way
of discretising gauge fields gauge invariantly [74]. The method is fully
described in [32], but the crucial point is the use of exponentials as follows.
If one denotes a lattice point by Z, the covariant derivative term becomes
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3
I(V —igA)gu(@)I* — D (Pl + hj)u()eo 4@

j=1
+ U ( + hj)p(@)e b
— (@ + hj)(® + hy) — Ur(@)vr(@)), (5.3)

and the magnetic field energy

3
IVx A(z)|* — —6+ > el (5.4)
j.k=1
where
Fin(#) = Aj(2 + hik) — Aj(2) — Ap(& + hJ) + Ap(3). (5.5)

It is easy to see that (B.3) and (5.4) indeed are exactly gauge invariant
under the discretised gauge transformation

A3(@) — Aj(@) + (0@ + hj) - (&) /h 56)
i, — Ppe'?? @), (5.7)

The additional term introduced in Section [£.2.3]is discretised similarly, for
details, see [33]. The accuracy of the energy thus achieved on the continuum
limit is O(h), which is quite sufficient for a study of existence.

It is also perhaps worth noting that after discretisation the fields are
independent unknowns in each lattice point, thus an energy density with
M independent fields and a lattice of N points yields a discretised energy
which is a function of MN variables. The discretised energy functional is a
function of the discretised fields W, A at each lattice point, so the Euler-
Lagrange equations reduce to the gradient of the energy density (taken with
respect to the fields at each lattice point).

For dynamical systems, the same method can be used for time deriva-
tives as well, as is done in lattice QCD, but the usual way of discretisation is
to do the above for spatial derivatives, then find the Euler-Lagrange equa-
tions for the space-discretised Lagrangian and finally discretise the time
evolution separately.
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5.2 Algorithms

One possible — and the one used here — approach to investigating the exis-
tence and properties of topological solitons is to treat the energy functional
as an optimisation problem. It is well known that if the minimum of the
energy functional is found, it will necessarily be a solution of the full dy-
namical model as well, so the approach is valid. For a Lorentz invariant
theory, this soliton can then be set in motion by a Lorentz transformation.

In the numerical search of a minimiser of the objective function F, no
single algorithm is always the best by all criteria. The accuracies of the
gradient based algorithms are generally equally good if the convergence
criterion is chosen suitably, but the speed of convergence of an algorithm
depends on both the initial guess and the objective function, with no re-
liable way of telling which algorithm will converge fastest. Sometimes it
is possible to give an upper limit for the number of iterations needed to
reach a solution, like for quadratic functions and some conjugate gradient
methods |75, p. 64]. Even that is not a reliable way of comparing the algo-
rithms because this is a limit, not always the actual number used. Also, in
the present work, the problem is not quadratic. It is usually not even pos-
sible to know how long a single iteration will take. Consider an algorithm
using a line search (defined in Section [5.2.1]). The number of line searches
needed per iteration is not known a priori and can change from iteration
to iteration, so it is not possible to estimate the total time spent doing the
line searches. Thus, the only way of choosing one algorithm over others is
to see how they perform with the specific task at hand.

There are also constraints on the selection of the algorithm: their mem-
ory requirements are different, so if the optimisation problem is very large,
the memory requirements may prevent the use of some of the algorithms.

All the algorithms used in this work use a gradient based minimisa-
tion algorithm. There are algorithms that work without gradients, but
they are generally much slower and therefore gradient based algorithms
are preferable whenever the gradient information exists (or can reliably be
estimated). The drawback is that gradient based algorithms will find a
minimum, possibly local, and cannot proceed further. For global minimisa-
tion, something else is needed. One very popular example of a non-gradient
algorithm suitable for global minimisation is provided in Section

If the initial guess is not a solution already, all these algorithms will
find a minimum. If the initial guess is a solution, these algorithms do
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nothing regardless of the nature of the stationary point. There is usually
no fear of this happening for two reasons. Numerical inaccuracies will most
likely be such that the gradient is not exactly zero even for a solution and
the algorithms proceed down from the maximum or saddle point. It is also
usually trivial to change the initial guess slightly to provide a similar nudge.
Of course, such accidentally found solution might prove very valuable if, for
example, its functional form is known.

The various algorithms all need a condition when to stop the algo-
rithm. A proper discussion of this is easier after the algorithms have been
introduced and some numerical considerations discussed. Therefore, the
discussion of convergence conditions of the algorithms will be delayed to

Section (£.3.31

5.2.1 Line search

The algorithms presented in the following sections rely heavily on the con-
cept of line search. This means that, given the objective function E, some
starting point x and direction d, one is to find the value 7 for which E(z+7d)
obtains its minimum value. The exact details of how this is accomplished
are largely irrelevant. Apart from possible numerical inaccuracies and
rounding errors (which are not due to the method), the only practical differ-
ence between line search algorithms is their speed. There is no single best
algorithm, but some of the often used ones are Fletcher’s method [75] and
ordinary bisection method. In principle, any one-dimensional minimisation
algorithm could be used.

5.2.2 Steepest descents

The method of steepest descents is also known as gradient flow. It is based
on the fact that the objective function E(®) decreases in the direction
— Vg E(®). In its simplest form, the objective is reached by taking small
steps until the minimum is found. Let E(®) be the objective function (in
this work it will always be the energy, hence the symbol E), A, the step
sizes and ®( the initial guess. Note that ®; is the total set of variables F
depends on; it is not the kth component of ® (which is denoted by ¢x).

1: k<0

2: while not converged do

3:  determine )\; in some manner
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4: CI)]C+1 — CI)k — Ak V@k E(CI)k)
5: k—k+1
6: end while

The determination of Ag in step Bl can be done in different ways. The
simplest option is to use a sufficiently small constant value. A more sophis-
ticated method uses a line search to find the optimal value of A\ for each
step; however, unlike for the conjugate gradient and Newton methods, for
steepest descents line searches are not required. The version used in [32,|33]
uses a compromise between the two. The line search eventually boils down
to taking many steps with different values of A, which can be time consum-
ing, depending on how many steps are needed to converge the line searches.
The compromise used here starts with some value for A\. At each iteration,
the old value of X is first tried and if that results in a decreased objective
function value, A is updated to twice its old value and that will be used
for the next iteration. If the first try results in an increased objective func-
tion value, A is decreased to A — 0.55)\ and a new attempt is made; this
is repeated until the step results in a lower objective function value. The
resulting A is then used for the next iteration.

5.2.3 Conjugate gradient algorithms

While the gradient method is mathematically well understood, simple to
implement in a computer, easy to understand and guaranteed to find the
minimum, it is also sometimes very inefficient. To compensate for this dis-
advantage, a set of algorithms called the conjugate gradient algorithms have
been developed. Like the gradient method, they also start the optimisation
process in the gradient direction, but also remember something about all
the previous directions the algorithm has used, and utilise this information
when taking the next steps. The various conjugate gradient algorithms
differ only in the way the previous gradients are used. The perhaps most
commonly used ones are due to Fletcher and Reeves [76] and Polak and
Ribiere [77], but others exist as well.

For a quadratic problem and exact line searches, it can be shown that
the Fletcher-Reeves algorithm converges in a number of steps equal to or
less than the number of variables [75]. This is not true for a simple gradi-
ent algorithm. This is a strong motivation for using these algorithms for
quadratic problems, but it turns out they are often quite effective for other
problems as well.
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The conjugate gradient method can be written as an algorithm as fol-
lows, using the notation of Section [5.2.2] In the algorithm the vector dj is
called the search direction.
k<0
: B0
: d,1 — 0
while not converged do

d, < — Vo, E(®k) + Br-1dk—1
perform line search to find Ay which minimises E(®y + diA\x)
Ppy1 — Pi + Apdy
update [ according to the chosen scheme
k—k+1
end while

—_

© 2 DT @

—_
e

The Fletcher-Reeves scheme for updating 3 is

Ve, E(®k1)l

= 5.8
%= N, E@0] (58)

and the Polak-Ribiére scheme is
ﬁk _ (v<1>k E(q)kJrl) — vq)k E(q)k))T vq)k E(q)kJrl) . (5.9)

IV, E(P)]|

In practise, if the objective function is not quadratic, the algorithm may
run out of conjugate directions; it may also become exceedingly slow if it
wanders to a region where the convergence is far from quadratic. For these
reasons, the algorithm is usually modified so that for every £k = 0 (mod n),
the search direction is reset to dy = — Vg, E(Py). Usually n is taken to be
the number of unknowns in the system, but a smaller value is also sometimes
used. In [32,133], restarts were performed whenever the algorithm failed to
take a step despite the gradient being non-zero. Due to the implementation
of the algorithm, this can happen either due to numerical inaccuracies or if
the function is very far from quadratic in the search direction. In practise,
this happens a few times per each minimisation process and also whenever
computing had to be halted. At this point, only the fields ® and A were
saved to disc so the conjugate information was lost. The search direction
would have been reset when £ = n, but that many iterations were never
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necessary. The two of the three versions of conjugate gradient algorithms
used in this work are derived from the GNU Scientific Library, version 1.9
[78]. In [62, 163, 134] the line search was replaced by heuristic or constant
values for A, and restarts were performed only when the computing was
halted. Nevertheless, this proved to be enough. Note that not using a
line search does not change the validity of the algorithm, but usually more
iterations are required to converge. This drawback is approximately offset
by the fact that one iteration is much faster without the line search.

5.2.4 Newton’s algorithm and its descendants

The conjugate gradient algorithm is quite efficient and for very large scale
problems, its memory needs are not significantly worse than those of the
gradient method. If, however, there is enough computer memory avail-
able, there is — at least theoretically — an even more efficient family of
algorithms, called quasi-Newton algorithms. Newton algorithms exist as
well, but their efficiency is severely limited by the requirement of comput-
ing (and inverting) the Hessian matrix of the system. Let H denote the
Hessian matrix, which is here computed with respect to the fields at all
points, i.e. 7 = (hzy) and hgy = % when Z, § enumerate the lattice
points. The quasi-Newton methods are all derived from Newton’s method,
but avoid the time consuming computation of the Hessian and its inversion
by building an approximation to the inverse as the iteration proceeds. Gen-
erally, these methods require even less iterations than conjugate gradient
methods, but there is no guarantee that they are faster in time. The initial
value of the inverse Hessian is required to be symmetric and the updates
are required to maintain this property. A common choice for the initial
value is Hy = Id.

Let H;, denote the approximate inverse Hessian. Then a general quasi-
Newton algorithm can be described as follows.

k<0
: dOF—VE((I)O)
. Ho =1d

while not converged do
perform line search to find A, which minimises E(®y + di\x)
Ppy1 — Pr + Apdy
compute Hyq according to the chosen scheme
des1 — =Hps1 V E(Pp)

S R S B e
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9: k—k+1
10: end while

The quasi-Newton implementation used here is called the limited mem-
ory, variable metric BEGS algorithm which is due to Broyden [79], Fletcher
[80], Goldfarb [81] and Shanno [82]. It has some interesting properties solely
due to the way the approximate Hessian is updated; for details, see [75].
The BFGS method of updating the inverse Hessian matrix is

Y=V (@) — V E(®y) (5.11)
T T T T
v Hey\ 06 dHpy! + Hyyd
Hip1 = Hi + (1 + 5T”y )5T”y — (5T”y . (5.12)

One interesting property of this formula is the variable metric property,
indicated in the name of the algorithm. It is used to describe a situation
where the estimated Hessian is guaranteed to be positive definite, hence
ensuring that the search direction is indeed towards the minimum. Methods
without this property must resort to checking for positive definiteness of
the approximated Hessian and use some other direction whenever it is not
positive definite; the usual solution is to restart the method with gradient
direction, but other solutions exist. For details and proof of the variable
metric property, see [75].

The implementation of this algorithm used in [32, 33] has also been
derived from the GNU Scientific Library, version 1.9 |78]. It is now known
to include a badly designed line search algorithm, so it should not come as
a surprise that it is not very efficient. This was, however, not noticed until
after most of this work was complete.

It is worth noting that the gradient based methods mentioned above
all have equivalent conditions on convergence, the main differences are the
number of iterations required, the time elapsed and the amount of com-
puter memory required. The number of iterations is very important in
mathematical comparisons of convergence, but in practice, the important
factors in deciding which algorithm to use are the time it takes for the al-
gorithm to converge and the amount of memory it requires. It is generally
held that the BFGS method is the fastest in elapsed time and the steepest
descents is the slowest, but it was noted during this work that it is not
always the case. The badly designed line search of GNU Scientific Library
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version 1.9 explains, at least in part, why the BFGS was not performing
as expected. The exact reasons for the varying performances of the various
algorithms are outside the scope of this work. The particular method for
each computer run in [32,133] was selected mostly by the available memory:
most of the computations were made using the conjugate gradient algo-
rithm (Fletcher-Reeves scheme), but the steepest descents was used when
necessary. Before the poor performance of the implementation of the BFGS
algorithm was noticed, it was used whenever memory requirements allowed
with the expectation that it would be the fastest. Afterwards, it was only
used for several verifications of the results gained by the other algorithms.

5.2.5 Simulated annealing

The simulated annealing algorithm, like the name suggests, mimics a cool-
ing physical process. It was first described by Kirkpatrick el al. and Cerny
[83, 184]. It is a type of Metropolis Monte Carlo algorithm by nature, and
in some fields of research it is almost always so called instead of simulated
annealing. The method itself is very simple: take an initial configuration
and make some random changes to it, always accepting a configuration with
lower objective value, but also accepting ones with higher values with some
probability. The probability depends on a quantity usually called temper-
ature. The probability is the highest when the temperature is the highest.
After taking a number of steps at one temperature, it is lowered, and then
the process continues. This is repeated until a desired final temperature
is reached. Details on how the system is cooled down (called the cooling
schedule) and the random number distributions vary, but they do not alter
the characteristics of the algorithm.

The most important feature of the simulated annealing algorithm is
that it can escape from local minima. Another very important feature is its
good suitability to problems which are known to be very hard to solve by
other methods. On the other hand, its statistic nature makes it very slow.

A simple version of the algorithm can be described as follows. Let Tj
and T’y be the initial and final temperatures, respectively, and ®¢ the initial
configuration. In the pseudocode P() denotes a probability distribution and
R() is a function generating a random number (using some distribution)
from the interval [0, 1).

1. T «—1Tjy
2: Ppest — Po
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3: By Epest — E(q)())

4: while T > Tf do

5 generate new ®

6: if F(®) < Ejpest then

T Dpest «— D, Epest — E(CI))

8: end if

9. if P(E(®),E.,T,Tf) > R then

10: &y — &, E, — E(D)

11:  end if

12:  reduce T according to the cooling schedule (may result in no change)

13: end while

It is usual for P(a,b,c,d) to be such that for a < b = P(a,b,c,d) = 1, thus

guaranteeing a step whenever it produces a lower objective function value.
The simulated annealing method has been used successfully in the study

of topological solitons, for example in [85, 86], but its excessive slowness

ruled it out from this work. Some trials were made, however, establishing

its applicability. In this work, two implementations of the algorithm have

been used. One was an independent implementation and a member of a

special class of simulated annealing algorithms, called quench algorithms,

where the cooling schedule is trivial: the system is cooled by the same

amount at every iteration. This was used in [30, 31]. The other was an

adaptation of the one found in GNU Scientific Library and was used in [33].

5.3 Numerical considerations

Section .1l introduced the concept of space discretisation, which is neces-
sary in order to use numerical methods like those in Section 5.2l In prin-
ciple, the algorithms themselves do not introduce errors into the solutions:
the error of the result is dictated by the discretisation, not the algorithm.
In practice, however, it is generally not possible to find a configuration,
where the gradient is exactly zero, even assuming that the discretisation
and algorithm themselves are capable of finding it. This is the consequence
of the floating point arithmetic of modern computers.

5.3.1 Floating point inaccuracies

Modern computers represent non-integer numbers as approximations. The
representation consists of an ordinary base-2 representation, except that
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for non-integers negative powers of 2 are included. The number of consec-
utive powers of two used in the approximation varies; the precision of the
current standard format is 16 significant digits, needing 53 bits (represent-
ing successive powers of two). In addition there is an exponent of 11 bits
and a sign bit. This amount of accuracy is usually good enough for many
computational purposes and it is quite sufficient for the work at hand.

Most problems usually come from adding or subtracting numbers of very
different magnitude. The energy computation routines used in this work
necessarily fall into this category: when summing the energies of different
lattice points, eventually the sum will be much larger than the term being
added, especially near the boundary of the lattice which is nearly vacuum.
For an existence proof this does not matter, however, since these errors do
not build up during successive iterations.

The finite precision does affect the convergence, however. Most of
the computations presented here were finished before the initially set con-
vergence criterion was satisfied because numerical accuracy was not high
enough. This happens when the energy is very close to its minimum and
the acceptable step size is very small. In this situation, the values of the
field variables are of the order of one and the value of the step size mul-
tiplied by the search direction vector is very small. Converging the line
search becomes impossible and the minimisation must be stopped. Luckily,
this happens only when the gradient is already very small. In this work this
happens when the average value of the gradient is of the order of 1077, and
the maximum value of the order of 1072. Setting a somewhat less strin-
gent convergence criterion (the criterion used here was that the average
gradient is < 107?) would have masked the whole effect by stopping the
minimisation earlier.

5.3.2 Finite size truncation, finite lattice constant

Another source of error in a numerical investigation comes from finite size
effects. Recall that the discretised energy density is only accurate to O(h).
While it can in principle be constructed to be accurate to arbitrary order,
O(h™), it is rarely practical to any orders n > 4. These inaccuracies can
be limited by lowering h, but at some point the floating point inaccuracies
will be of the same order as the discretisation error, so any further decrease
in h will be useless. The point at which this happens is highly problem
dependent and it has not been investigated. Usually, floating point inaccu-
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racies start to dominate only after A < 1072, so this is not a likely concern
with the values of h > 1072 used in this work.

Another obvious source is the finite size L of the computational lattice,
supposedly representing an infinite space. The error caused by this trun-
cation is highly dependent on the size of the soliton in the lattice and not
related to the lattice spacing in any obvious way. It was noticed during
the computations reported in [31] that the finite size cutoff effects can even
alter the shape of the core of the minimal energy soliton! For this reason,
it has been customary in this work to always check any final configuration
in a lattice with roughly doubled size. For an acceptable result the energy
should not alter more than what could be expected from the discretisation
errors. The virial theorem [2.8] provides a useful check, too.

The finite size of h also means that it is impossible to investigate features
smaller in size than h. Usually this is not a concern, since h can be chosen
small enough, but in [32] the collapse of the solitonic configuration presented
a serious concern. The collapsing soliton would always shrink to a size
smaller than A, causing the minimisation algorithm to take “forbidden”
steps, steps which are not approximations of any continuous deformation
and hence threw the system to another homotopy class, the trivial one. It
is not easy to distinguish this purely numerical behaviour from an incorrect
implementation of the numerical scheme.

The relative sizes of these sources of error seem to be such that the finite
size cutoff effect is the largest, the finiteness of h next, with the floating
point errors the smallest by several orders of magnitude. The two largest
errors were estimated by both increasing the lattice size L, while keeping
h constant and vice versa. The errors were usually of the same order, less
than O(h), except for cases where the shape of the soliton was affected by
the boundary. After ensuring the soliton is in a large enough lattice, the
cutoff error falls below the finiteness error. The size of the floating point
error was estimated for some of the computations by making the same
computations in both 32 and 64 bit floating point arithmetic; the results
were identical to within 6 significant digits. This can be considered very
good because this is one less than the maximum number of accurate digits
in 32 bit floating point numbers.
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5.3.3 On convergence

In mathematical treatments of optimisation algorithms, exact values for
all variables are often assumed. In that situation, the gradient based algo-
rithms converge when the gradient is zero, and some rigorous results can be
obtained, like the one mentioned in Section F.2.3l As was seen in Section
(3l in computer implementations, the inaccuracies explained in Sections
B3 T and creep into the system in addition to the floating point num-
bers being inherently approximative. Indeed, it was explained in Section
(.31 how the floating point inaccuracy sometimes prevents the algorithm
from achieving the desired precision.

The simulated annealing algorithm does not have a proper concept of
convergence: it simply reaches the desired temperature and stops. For
many systems, the function changes less and less when this temperature is
approached, but this is not always the case. Therefore, the method is most
often employed not to find the minimum of the objective function, but a
small enough value. In some situations, the local minima may be very close
to the global minimum and requiring that the shortest route is found may
increase the necessary computing time disproportionately.



Chapter 6

Results

This chapter summarises the results of this research, grouped according to
the model.

6.1 The Faddeev-Skyrme model

Hopfions of the Faddeev-Skyrme model were studied in [30], [31] and [34].
Although the model is the same in all three articles, the boundary condi-
tions used were different. As was seen in Chapter Bl imposing the boundary
conditions modifies the topological character of the system. This section is
divided according to the boundary conditions of the field on the domain.

6.1.1 Domain homeomorphic to S3

The work done in [30] is a direct continuation of [62, 63] and the same
boundary condition

lim ®(z) — ®(c0) (6.1)

llz[|—o0

was used. This compactifies the domain to S* and the relevant topological
invariant is the Hopf invariant. This work presents a detailed investigation
of the processes involved when the preimages of the initial configuration
deform into the final ones. Especially interesting is the case where a set of
preimages becomes a single preimage or vice versa.

These processes conserve the Hopf invariant and should therefore be
possible in any system with Hopfions. At the core of these deformations is
the splitting and reconnection of preimages. Recall from Section [B.5.3] that
the preimage of a point, ®~!(z), is either a single loop or a set of loops. Let
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Ng(z) be the number of distinct loops in the preimage ®~!(x). Suppose
then that there is a configuration and points x, y such that Ng(x) < Ng(y).
By continuity there are then Ng(y)—Ng(z) points z;, i € [1, No(y)— No ()]
for which Ng(z;) = Ng(x) + i, and whose preimages interpolate between
the preimages ®~!(z) and ®~!(y). Furthermore, this interpolation is such
that for each z;, some two of the previously distinct loops share a single
point. This process, when viewed from ®~1(z) to ®~!(y), is the splitting
of preimages and the other direction is the reconnection. An example of
this process is shown in Figure [6.1, where a formation of a figure-8 loop
is displayed. Each colour represents a single preimage and the sequence of
four colours represents a preimage of a line segment.

Again, by continuity, it is impossible to change the linking number
of preimages in this process. Also, it is unknown whether three or more
preimages can simultaneously reconnect or split, that is, if three or more
previously distinct loops can share a single point. From topological argu-
ments, this may be possible, but to date there seems to be no observation
of such process. The reason may be that such a process is energetically
unfavourable.

6.1.2 Partially periodic domain, S? x S*

In [31] the boundary conditions are different as follows. Let (x;)+ be the
minimum and maximum values of x; coordinate within the lattice and L =
(z3)+ — (z3)—. Then the boundary conditions can be written as
®((21)+,x2,3) = (21, (22)4, 23) = (0,0,1)T (6.2)
q)(zl,xg,xg) :<I>(:c1,1:2,1:3+L). '

The initial configuration is now a vortex in the periodic direction. The
boundary conditions change the domain to S? x S!, which invalidates the
one-point compactification of R? — S3 but, as was noted in Section E1.2]
the linking number of preimages is still well defined and will now be called
the Hopf invariant, too. The energy of the vortex is finite per unit length.

The main result of [31] was the identification of minimum energy con-
figurations for vortices with conserved Hopf invariants H € [5,8]. Recall
from Section B.5.2] that the Hopf invariant is not necessarily conserved in
this case. The real homotopy invariants are the Pontrjagin invariants s;
and sg; for all the computations of [31], the value sy = 1 was used. The
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(c) (d)

Figure 6.1: A sequence of images (a)-(d) showing the splitting-reconnecting
process of a two linked loops into a single figure-8 loop. Each colour repre-
sents one preimage and the sequence of four colours represents a preimage
of a line segment. The figures are reproduced from @]

value of s1 was not considered.

It was found that the resulting configurations have the following re-
semblance to the closed knot-like Hopfions of the usual Faddeev-Skyrme
system: if the core of a closed Hopfion is cut at one point and resulting
ends pulled to the edges of the lattice, the result looks just like the mini-
mum energy configuration of the vortex system. This is shown in Figure
[6.2] where the initial and final configurations of knot and vortex Hopfions of
H = 7 are shown beside the corresponding minimum energy configurations.

Another intriguing discovery in ﬂﬂ] was the indication that the lower
bound of the energy of the vortices might be a linear function of the Hopf
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e

(a) Initial state of the knot Hopfion (b) Final state of the knot Hopfion

) ©

(c) Initial state of the vortex Hopfion (d) Final state of the vortex Hopfion

Figure 6.2: Comparison of knot and vortex Hopfions of H = 7.

invariant, £ > 130.72 + 75.312|H|, instead of the E ~ H3/* of the closed
Hopfions studied earlier. The form of the energy bound for these systems
is still an open question ﬂﬁ]

6.1.3 Fully periodic domain, T3

The altered boundary conditions were taken a step further in @] The
boundaries are periodic for all dimensions:

®(x) = ®(z+ Lej) Vje{l,2,3} (6.3)
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The initial configurations were sets of identical vortices packed closely to-
gether and the individual vortices were the same as in [31)].

Earlier studies had concentrated in single vortices (and single or double
knot-like Hopfions), but there are many systems, where bunches of vortices
form; e.g. liquid helium [39, 22, 23].

The condition further alters the topology of the system: the domain
is now topologically T3, the 3—torus Now that restriction has been relaxed
as much as possible while keeping the domain T2. The homotopy classifica-
tion is given by theorem [B.18 and even though these integers do not provide
a complete classification of the maps, they are homotopy invariants. Hence,
even tough the Hopf invariant is no longer useful, there is still possibility
of topological solitons, classified by the invariants ¢; introduced in Section
3.5.2]

Indeed, it was observed in [34] how the linking number of preimages
can vanish in a continuous deformation driven by energy minimisation,
while the real homotopy invariants ¢; are conserved. Vanishing follows after
repeated preimage splittings and reconnections across the xy-boundary and
the final configuration consists of only straight preimages in the z-direction
with no linking. These splittings and reconnections follow the same rules
as those reported in [30, [31].

By putting a set of four vortices in a lattice whose dimensions were
large compared to the volume occupied by the vortices [34], the behaviour
was altered. As expected, the energy minimisation process now favours
configurations where the non-trivial sections of the configuration do not
approach the zy-boundaries and hence reconnections and splittings across
the boundary cannot occur, while they still occur between neighbouring
vortices. The final configuration is a bunch of intertwined vortices with
the Hopf invariant and the real homotopy invariants ¢; conserved. One
intermediate state and the final configuration are shown in Figure[6.3] where
the preimages of (0,0,—1) (blue) and a point with n3 = 0.1 (red) are
displayed. By counting the linking number of preimages it can be seen
that the initial linking number of 24 has been conserved while the initially
separate, straight vortices have deformed to a bunch of intertwined vortices.

Thus the Hopf invariant is conserved even though it is not a homotopy
invariant in this system. The behaviour of the system here is similar to

From the point of view of the computational lattice, it could be argued that even
the domain of the knot-like closed vortices was T2, albeit with the value of ® fixed to
(0,0,1)T in some region.
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Figure 6.3: An intermediate @ and final @ configuration of a set of four
identical parallel vortices. The preimages of the core (blue) and one point
from n3 = 0.1 (red) are shown; the wire frame shows the size of the lattice
in z-direction and locations of the cores of the initial configuration. The
computational box is larger and the thicknesses of the tubes are arbitrary.
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the case where the domain is S? x S!, where the Hopf invariant is also
conserved even though it is not a homotopy invariant there either. The
same is believed to hold for a closed Hopfion as well, so in T3, the knot
soliton is stable only if the T3 is large enough.

6.2 Ginzburg-Landau model

It was noted in Section that there are no non-zero global minima
in the homotopy classes of x = ¥/||¥|| in the Ginzburg-Landau model.
However, in [88] one possible local minimum is identified, but that has not
been confirmed. Thus, it remains an open question whether there are local
minima and what the corresponding field configurations might look like.
To answer this, an extensive search, spanning much of the parameter
space of the model was performed in [32]. No non-zero minima were found,
but the relaxation process always, after some initial buildup of magnetic
field energy, leads to a vanishing magnetic field energy accompanied by
simultaneous shrinking of the core of the toroidal soliton. In a contin-
uum model, this shrinkage could eventually lead to a core, whose radius
approaches zero until it is much smaller than the lattice spacing. This
happens even with the smallest lattice spacings that were computationally
possible. This concentrates all the energy density to a curve with zero
integrated total energy. The topology is still unchanged: the shrinkage is
simply a homotopy where the radius r of the core is reduced by a homotopy
h(t) = (t—1)r with the final value of ¢ arbitrarily close to unity. The picture
in the numerical investigation is drastically different. Recall from Section
that it is not possible to investigate features smaller than the lattice
spacing. Now, the homotopy h will inevitably shrink the soliton into sizes
smaller than the lattice spacing no matter how small the lattice spacing is.
The relaxation process, however, yields a surprise: the shrinkage of
the soliton is accompanied not only by decreasing magnetic energy, but
also by decreasing ||| at some point. This is unfortunate, because the
moment there is even a single point in the lattice where [|[¥]| = 0, the
compactification R3 — S3 of the configuration space fails, giving a map
S3 — R3. Since m3(R3) = 0, these maps are uninteresting. Even if at a
later point in the relaxation ||¥|| > 0 everywhere again, there is no reason
to hope that the homotopy class of x obtained from this ¥ would be the
same as before the moment when ||¥| = 0. Indeed, it was observed that
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even though the potential term V(¥) = ¢(||¥||> — 2)? yields an increasing
energy when ||¥| — 0, there is a point in the relaxation process where
||| = 0 somewhere in the lattice. The numerical approximation of deg ¥
falls to zero simultaneously, thus confirming that the topology has changed
at the moment when ||¥| = 0 somewhere.

Therefore, it was necessary prevent ¥ from vanishing. Increasing the
above potential strength ¢ by several orders of magnitude did not change
the process (numerical inaccuracies place an upper limit on possible values
of ¢), so something else was needed. The potential was altered to include
a term of the form b/||¥||? in the hope that it would increase fast enough
to stop the vanishing of ||¥||. Now it was possible to follow the decrease
of magnetic field without associated vanishing of ||¥|| and the result was
a confirmation that the vanishing magnetic field allows homotoping the
dimensions of the soliton into sizes smaller than the lattice spacing. Thus
none of the initial configurations and parameters investigated in [32] lead to
a non-zero local minimum under an energy minimisation process. However,
it cannot be ruled out that there are some well hidden local minima which
need an initial configuration very close to the minimum in order to be found.

6.3 Ward’s modification of the Ginzburg-Landau
model

The search for local minima of the Ginzburg-Landau model is not yet over.
Ward showed [73] that by modifying the energy density by adding the
term (£26]) and using the potential (.27, local minima can be found on
the curve = k% + 1 of the parameter space. This work was expanded in
[33] to the nr-plane of the parameter space (the parameter space is actually
three dimensional). The main results of [33] were the shape of the boundary
between the regions of parameter space yielding stable solitons and unstable
ones, and the energy of the solitons along this boundary. Figure shows
the approximate shape of the boundary with stable configurations above
and to the right of the curve and unstable ones below and to the left.
Figurel6.4Dlyields an intriguing result: the energy along the above boundary
does not change, even though the size of the minimum energy soliton is
different along the boundary. These results may be of assistance in any
future attempts to construct an initial configuration which yields a non-
zero local minimum.
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(a) Boundary between stable and unsta-
ble regions: the solid black circles denote
pairs of (k,n«), yellow circles denote the
largest unstable values of 1 and the curve,

(b) Energies (black discs) of the stable con-
figurations closest to the boundary, the
heights of the error bars show the inaccu-
racy of the solution as determined from the

virial theorem and the horizontal line is the

1
n = 457%7" 4 0.5k 2 approximates the
least-squares fit of a constant energy.

boundary.

Figure 6.4: The boundary between stable and unstable regions [@] and the
energies of stable configurations closest to the boundary @ The figure is
reproduced from [33].

Ultimately, investigations of this modification of the Ginzburg-Landau
model, and possibly other modifications as well, may provide such insight
into the model that it is possible to construct an initial configuration which
yields a non-zero local minimum in the plain Ginzburg-Landau model. Of
course, it is quite possible that such minima do not exist, but it seems un-
likely to rule out their existence with numerical investigations only; a rig-
orous proof would most likely be necessary to establish their non-existence.
Meanwhile, some of these modifications, like that of [72], may turn out to
be physically relevant in addition to just providing insight into the structure
of the minima of the Ginzburg-Landau energy functional.



84

Results




Chapter 7

Conclusions

This work consists of a number of original research results regarding the
Faddeev-Skyrme model [30], [31], [34] and Ginzburg-Landau model [32],
[33]. In the Faddeev-Skyrme model, unconventional boundary values have
been imposed, resulting in topologically slightly different models than the
usual one, but nevertheless possessing topological invariants and a rich va-
riety of phenomena related to the topological solitons of the model. In [31],
where the field is ® : S? x S! — S2, sliced and straightened versions of the
familiar knot solitons are encountered as minimum energy configurations
and in [30] the processes of preimage splitting and reconnection are shown
to be the dominant method of deformation in many situations.

In [34], a version of the model where ® : T3 — S? was studied. The
model now has a different topological classification due to Pontrjagin [45]
and a very different picture emerges, involving unwinding the usual twisted
structure, but nevertheless having the necessary features to warrant being
called a topological soliton. The familiar preimage splitting and reconnec-
tion processes are responsible for the unwinding.

The two component Ginzburg-Landau model was investigated in [32] and
despite extensive searching, no non-trivial local minima were found. This
does not form a proof of their non-existence, but does provide a strong
argument against their existence within the region of the parameter space
investigated. The processes leading to the trivial minimum were carefully
analysed, revealing that there are two possible outcomes. The first one
is the expected shrinking of the soliton due to a vanishing magnetic field,
but the second involves a violation of the assumption ||¥| > 0 everywhere,
which is the requirement for the existence of topologically non-trivial config-
urations. Violating this assumption is both physically and mathematically
valid, but it has the unfortunate side-effect of producing a configuration
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which is no longer a map ¥ : S* — S3 but instead ¥ : S? — R3, where the
topology is trivial and the topological information of the initial configura-
tion is lost.

Local minima with non-zero energy were found to exist in an extended
Ginzburg-Landau model studied in [33]. These take the familiar shape
of the (un-)knot Hopfion. A certain two-dimensional subset of the three
dimensional parameter space was divided into two regions, according to
whether local minima with non-zero energy exist or not. The approximate
shapes of these regions were found. Perhaps the most interesting result
was that the energy of the stable Hopfion on the boundary between these
regions seems constant.

The results obtained in this work shed light on the properties of the
Ginzburg-Landau model, perhaps helping in delivering the final judgement
on the existence of its non-trivial local minima. The Ginzburg-Landau
model is a well established model of superconductors and -fluids, and there-
fore theoretical understanding of the model is important for our understand-
ing of these important phenomena in nature.

The results of the Faddeev-Skyrme and Ginzburg-Landau models pro-
vide insight into the general processes and properties of Hopfions and the
models themselves, in addition to widening our understanding of how these
models can be used as building blocks in understanding features of effec-
tive field theories, which may play an important part in areas like quark
confinement [14, 28]. Other theoretical models related to Hopfions include
three dimensional ferromagnets [17], electrically conducting plasmas [89],
and topological insulators [90].

The Faddeev-Skyrme and Ginzburg-Landau models are also related to
such experimentally observed phenomena as vortex solitons in superfluid
helium |16, 91, 24], the Abrikosov vortices of superconductors [4], non-
Meissner superconductors [25] and possibly even topological insulators [26].



Appendix A

Notation

The following notations and conventions are used in this work unless other-
wise stated. The usual notations of theoretical physics, such as the Einstein
summation convention are used throughout and the metric g,, is always
such that goo = 1 and g;; = —1 for j > 0.

o

Physical space, domain of the field maps.

Configuration space, target of the field maps.

Dimension of physical space without time; D = dim P — 1.
jth basis unit-vector of the physical space.

Jjth coordinate of P; x; = gjkxk. Also time ¢ = 2°.
D+1-dimensional vector (or 1x (D+1)-matrix) (xg,z1,...,2p).
Always denotes a map @ : P — C.

jth component of .

0; = %.

For a function f this is the vector Vf = (01 f,...,0pf).

For a vector f this is the matrix (Vf)jk = 0; fx-

For a discretised ®, V4 denotes the derivatives with respect to
all fields @ at all lattice points.

For a function or vector f, df = (0yf, V).

For a space or set X, 0X is the boundary of X.

Lagrangian density £ = L(f,0f).

Energy density of the corresponding Lagrangian density.

Total energy, E = [, €.
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R, ¥  Real and imaginary parts, respectively, of a complex number.

z Complex conjugate of z.

2T Transpose of z.

2t Adjoint of z, z = z7.

1d Identity matrix.

N The set of natural numbers, not including zero, ie. N =
{1,2,...}.

flU Restriction of function f: X — Y to U C X.

f(o0)  f(o0) = limyz| oo [ ().

€,..4, Jotally antisymmetric permutation symbol: changing any two
indices changes the sign. If the indices form an increasing se-
quence, €ipdices = 1.

(Kl For an f with one index, this is the usual norm || f[| = |/3_; (sz).
For f with two indices, this is the Hilbert-Schmidt norm || f|| =
Vik (k)

sr n-dimensional sphere, S" = {z € R""!|||z| = 1}.

D" n-dimensional ball, D" = {z € R"|||z|| < 1}.

H The map giving the Hopf invariant; sometimes also the value of

h when applied to some function.
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