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of the Grötzsch and Teichmüller rings, which are applied in the main parts of this
master thesis. The extremal properties of these rings are discussed in connection
with the spherical symmetrization.

Applications are given to the study of distortion of quasiconformal maps in the
euclidean n-dimensional space.

Key words: conformal invariants, moduli of curve families, quasiconfor-
mal mappings.



1

Contents

1. Introduction 2
2. Modulus of Curve family 2
3. Conformal invariants 14
4. Quasiconformal mapping 24
5. Distortion theory 31
6. Quadruples and quasiconformal maps 35
Acknowledgments 39
References 39



1. Introduction

This master thesis is about conformal invariants and their application to quasi-
conformal mapping and to distortion theory.

The theory of quasiconformal mappings in the euclidean n-space Rn originated
from the pioneering papers of F. W. Gehring and J. Väisälä in the early 1960’s.
Their work generalized the classical two-dimensional theory of quasiconformal maps
due to H. Grötzsch 1928, O. Teichmüller in the period 1938-44, and L. Bers, L. V.
Ahlfors from the early 1950’s on. Some of the main tools in the higher dimensional
case n ≥ 3 are conformal invariants and conformal capacity, see Gehring [G2].

This master thesis is an introduction to certain topics in quasiconformal mappings
and conformal invariants. The presentation closely follows the books [Va], [Vu], and
[AVV].

This thesis consists of six sections. In the second section we introduce the modulus
of families of curves, capacities of Grötzsch and Teichmüller rings, special functions
and Möbius transformation. The third section is about the conformal invariants
and some theorems which describe their behaviour and Mori’s ring domain. In the
fourth section, we introduce the notion of quasiconformal maps and we prove some
theorems with the applications of conformal invariants. In last two sections we are
discussing the behaviour of quasiconformal mappings with the distortion functions.

It is assumed that the the reader has knowledge of basic real analysis and calculus
in Rn. We also assume familiarity with basic topology.

2. Modulus of Curve family

A path in Rn (R
n
) is a continuous mapping γ : ∆ → Rn (resp. R

n
) where ∆ ⊂ R

is an interval. If ∆
′ ⊂ ∆ is an interval, we call γ|∆′

a sub path of γ. The path
γ is called closed (open) if ∆ is closed (resp. open). (Note that according to this
definition, e.g. the path γ : [0, 1] → Rn is closed and that it is not required that
γ(0) = γ(1)). The locus (or trace) of the path γ is the set γ∆. The locus is also
denoted by |γ| or simply by γ if there is no danger of confusion. We use the word
curve as the synonym for the path. The length ℓ(γ) of the curve γ : ∆ → Rn

is defined in the usual way, with the help of polygonal approximations and a pas-
sage to the limit (see [Va, pp. 1-8]). The path γ : ∆ → Rn is called rectifiable
if ℓ(γ) < ∞ and locally rectifiable if each closed sub path of γ is rectifiable. If
γ : [0, 1] → Rn is a rectifiable path, then γ has a parametrization by means of arc
length, also called the normal representation of γ. The normal representation of γ
is denoted by γo : [0, 1] → Rn. Making use of the normal representation we define
the line integral over a rectifiable curve γ.

We are now ready to define the modulus of curve family. Suppose that Γ is a curve
family in R

n
. That is, the elements of Γ are curves in R

n
. We denote by F(Γ) the

set of all non-negative Borel functions ρ : R
n → R ∪ {∞} such that

∫

γ
ρds ≥ 1 for
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every locally rectifiable curve γ ∈ Γ. For each p ≥ 1 we set

Mp(Γ) = inf
ρ∈F (Γ)

∫

Rn

ρpdm.

If F (Γ) = φ, we define Mp(Γ) = ∞. This happens only if Γ contains a constant
path (which will never occur in this thesis), because otherwise the constant function
ρ(x) = ∞ belongs to F (Γ). Clearly 0 ≤ Mp(Γ) ≤ ∞. The number Mp(Γ) is called
the p-modulus of Γ. The most important case for our purpose is the case p = n. We
shall denote Mn(Γ) simply by M(Γ) and call it the modulus of Γ. In the literature,
one often uses the extremal length of Γ. This is simply equal to Mp(Γ)1/(1−p).
The modulus is perhaps a more natural concept, for it has the following measure
theoretic property.

2.1. Theorem. Mp is an outer measure in the space of all curves in R
n
. That is,

(1) Mp(φ) = 0.
(2) Γ1 ⊂ Γ2 implies Mp(Γ1) ≤Mp(Γ2).

(3) Mp(
⋃∞

i=1) ≤
∞
∑

i=1

Mp(Γi).

2.2. Definition. Let Γ1 and Γ2 be curves families in R
n
. We say that Γ2 is minorized

by Γ1 and denote Γ2 > Γ1 if every γ ∈ Γ2 has a subcurve which belongs to Γ1.

2.3. Theorem. If Γ1 < Γ2, then Mp(Γ1) ≥Mp(Γ2).

2.4. Definition. The curve families Γ1,Γ2, . . . are called separate if there exist dis-
joint Borel sets Ei in Rn such that if γ ∈ Γi is locally rectifiable, then

∫

γ
gids = 0

where gi is the characteristic function of χEi
.

2.5. Theorem. If Γ1,Γ2, . . . are separate and if Γ < Γi for all i, then

Mp(Γ) ≥
∑

Mp(Γi).

2.6. Example. Given a curve family Γ, it is usually a very difficult task to compute
Mp(Γ). However, it is often easy to find an upper bound for Mp(Γ), for if we take
any ρ ∈ F (Γ), then Mp(Γ) ≤

∫

ρpdm.

2.7. Remark. If G = Rn or R
n

we often denote ∆(E,F ;G) by ∆(E,F ). Curve
families of this form are the most important for what follows. The following sub-
additivity property is useful. If E =

⋃∞
j=1 and cE(F ) = Mp(∆(E,F )) = cF (E),

then cF (E) ≤∑ cF (Ej), see Theorem 2.1(2). More precisely if G ⊂ R
n

is a domain
and F ⊂ G is fixed, then cEF (E) = Mp(∆(E,F ;G)) is an outer measure define for
E ⊂ G. In a sense which will be made precise later on, cE(F ) describes the mutual
size and location of E and F . Assume now that D is an open set in R

n
and that

F ⊂ D. It follows from Theorem 2.1(2) that

Mp(∆(F, ∂D;D \ F )) ≤Mp(∆(F, ∂D;D)) ≤Mp(∆(F, ∂D)).
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On the other hand, because ∆(F, ∂D;D) < ∆(F, ∂D) and ∆(F, ∂D;D \ F ) <
∆(F, ∂D;D), see Theorem 2.3

(2.8) Mp(∆(F, ∂D)) = Mp(∆(F, ∂D;D)) = Mp(∆(F, ∂D;D \ F )).

2.9. Theorem. Suppose that the curves of a family Γ lie in a Borel set G ⊂ R
n

and
that ℓ(γ) ≥ r > 0 for every locally rectifiable γ ∈ Γ. Then

Mp(Γ) ≤ m(G)

rp
.

2.10. The cylinder. Let E be a Borel set in Rn−1 and let h > 0. Set

G = {x ∈ Rn|(x1, . . . , xn−1) ∈ E and 0 < xn < h} .
Then G is a cylinder with base E and F = E + hen and with height h. Set
Γ = ∆(E,F,G). We show that

Mp(Γ) =
mn−1(E)

hp−1
=
m(G)

hp
.

Since l(γ) ≥ h for every γ ∈ Γ, Theorem 2.9 implies Mp(Γ) ≤ m(G)/hp. Let ρ be
an arbitrary function in F (Γ). For each y ∈ E let γy : [0, h] → Rn be the vertical
segment γ(t) = y + ten. Then γy ∈ Γ. Assuming that p > 1 we obtain by Hölder’s
inequality

1 ≤
(

∫

γy

ρds

)p

≤ hp−1

∫ h

0

ρ(y + ten)p dt.

Integration over y ∈ E yields by Fubini’s theorem

mn−1(E) ≤ hp−1

∫

E

dmn−1

∫ h

0

ρ(y + ten)p dt = hp−1

∫

G

ρpdm ≤ hp−1

∫

ρpdm.

Since this holds for every ρ ∈ F (Γ), we obtain Mp(Γ) ≥ mn−1(E)/hp−1.
The proof for p = 1 is somewhat simpler.

2.11. Lemma. Let D and D
′

be domains in R
n

and let f : D → D
′

be a conformal
mapping. Then M(fΓ) = M(Γ) for each curve Γ in D where fΓ = {f ◦ γ : γ ∈ Γ}.
2.12. The spherical ring. If 0 < a < b < ∞, the domain A = Bn(b) \ B

n
(a) is

called a spherical ring. Let E = S(a), F = S(b) and ΓA = ∆(E,F,A). We shall
prove that

(2.13) M(ΓA) = ωn−1

(

log
b

a

)1−n

.

Let ρ ∈ F (ΓA) and ωn−1 be the (n − 1) dimensional area of Sn−1. For each unit
vector y ∈ Sn−1 we let γ : [a, b] → Rn be the radial segment, defined by γy(t) = ty.
By Hölder’s inequality we obtain

1 ≤
(

∫

γy

ρ ds

)n

≤
∫ b

a

ρ(ty)ntn−1 dt

(∫ b

a

t−1 dt

)n−1

=

(

log
b

a

)n−1 ∫ b

a

ρ(ty)ntn−1 dt.
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G

F

E

Figure 1. Cylinder G with base E and F .

Integrating over y ∈ Sn−1 yields

(2.14) ωn−1 ≤
(

log
b

a

)n−1 ∫

ρndm.

Taking the infimum over all ρ ∈ F (Γ) we obtain

ωn−1 ≤
(

log
b

a

)n−1

M(ΓA).

On the other hand, we have equality in (2.14) if we define ρ(x) = 1/ (|x| log (b/a))
for x ∈ A and ρ(x) = 0 otherwise. By (2.8) the formula (2.13) holds also if A is
replaced by Rn. Letting a→ 0 we see by Theoerem 2.1 that

M(∆(F, {0})) = 0.

2.15. Lemma. Let {Γj} be separated curve families in R
n

with Γj < Γ for all
j = 1, 2, . . . . If p > 1 then

Mp(Γ)1/(1−p) ≥
∞
∑

j=1

Mp(Γj)
1/(1−p).

2.16. Lemma. Let s ∈ (0, 1) and

Γ1 = ∆([0, se1], S
n−1,Bn), Γ2 = ∆([0, se1], [

1

s
e1,∞],Rn).

Then Mp(Γ1) = 2p−1Mp(Γ2) for p > 1.

2.17. Lemma. Let Γ1 = ∆([0, e1], [t
2e1,∞)) and Γ2 = ∆([0, e], [t2e1,∞)) where

e ∈ Sn−1 and t > 1. Then M(Γ2) ≤M(Γ1).
5



2.18. Lemma. Let S = Sn−1(r), ϕ ∈ (0, π], Let K be the spherical cap S ∩ C(ϕ),
and let E and F be the non-empty subsets of K. Then

(1) M s
n(∆(E,F ;K)) ≥ bn

r
where bn is a positive number depending only on n

(see [Va, (10.4)]).

(2) If K = S,i,e. ϕ = π, then bn may be replaced by cn = 2nbn in the above
inequality.

2.19. Lemma. Let 0 < a < b and let E, F be sets in Rn with

E ∩ Sn−1(t) 6= ∅ 6= F ∩ Sn−1(t)

for t ∈ (a, b). Then

M(∆(E,F ;Bn(b) \ Bn(a))) ≥ cn log
b

a
.

Equality holds if E = (ae1, be1), F = (−be1,−ae1).
2.20. The modulus of ring. A domain D in R

n
is termed a ring, if R

n \D has
two components. If the components are C0 and C1 we write D = R(C0, C1). The
(conformal) modulus of a ring R(C0, C1) is defined by

modR(C0, C1) =

(

M(∆(C0, C1))

ωn−1

)1/(1−n)

.

The capacity of R(C0, C1) is M(∆(C0, C1)). A ring is a special case of a condenser.
A condenser is a pair (A,C) of an open set A ⊂ Rn and a compact set C ⊂ A. If
R(C0, C1) is a ring and C0 is bounded, then (Rn \ C1, C0) is a condenser. For the
capacity of condenser see [Vu].
In the two-dimensional case the modulus of a ring R has the following geometric
interpretation: modR = t if and only if R can be mapped conformally onto the an-
nulus {z ∈ R2 : 1 < |z| < et}. Owing to this geometric interpretation the modulus
of a ring often is convenient to use in the two-dimensional case. In the multidi-
mensional case there is no such geometric interpretation for the modulus of a ring
because of the rigidity of the class of conformal mappings in Rn, n ≥ 3. On the
other hand there is also a geometric way of looking at the capacity of a particular
ring, the so-called Grötzsch ring, which is applicable to all dimensions n ≥ 2. For
this reason we shall prefer the capacity to the modulus of a ring.

2.21. The Grötzsch and Teichmüller rings. The complementary components
of the Grötzsch ring RG,n(s) in Rn are B

n
and [se1,∞], s > 1, while those of

the Teichmüller ring RT,n(t) are [−e1, 0] and [te1,∞], t > 0. We shall need two
functions γn(s), s > 1, and τn(t), t > 0, to designate the moduli of the families of
all those curves which connect the complementary components of the Grötzsch and
Teichmüller rings in Rn, respectively.
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Bn
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se1
∞ −e1 0 se1

∞

Γs
∆s

Figure 2. capRG,n(s) = M(Γs) = γn(s), capRT,n(t) = M(∆t) = τn(t).

(2.22)

{

capRG,n(s) = γn(s) = M(Γs),
capRT,n(t) = τn(t) = M(∆t).

Where Γs = ∆(B
n
, [se1,∞]) and ∆t = ([−e1, 0], [te1,∞]). We shall refer to these

functions as the Grötzsch capacity and the Teichmüller capacity.

2.23. Lemma. The following functional inequalities hold:

(1) τ(s) ≤ γ(1 + 2s) = 2n−1τ(4s2 + 4s), s > 0,

(2) τ(s) ≤ 2τ(2s+ 2s
√

1 + 1/s), s > 0,

(3) τ(s) ≤ τ(t) + τ

(

s(1 + t)

t− s

)

, 0 < s < t <∞,

(4) τ(u) ≤ τ

(

uv

u+ v + 1

)

≤ τ(u) + τ(v), u, v > 0.

The Grötzsch and Teichmüller rings RG,n(s) and RT,n(s) can also be understood
as condensers in the following way:

(2.24)

{

RG,n(s) = (Rn \ te1 : t ≥ s,B
n
), s ∈ (1,∞),

RT,n(s) = (Rn \ te1 : t ≥ s, [−e1, 0]), s ∈ (0,∞).

We define functions Φ = Φn and Ψ = Ψn by modRG,n(s) = log Φ(s) and modRT,n(s) =
logΨ(s). Then

(2.25)

{

capRG,n(s) = ωn−1(logΦ(s))1−n = γn(s),
capRT,n(s) = ωn−1(logΨ(s))1−n = τn(s).

2.26. Lemma. The function Φ(t)/t is increasing for t > 1 and Ψ(t − 1) = Φ(
√
t)2

for t > 1. Moreover, the functions γn and τn are strictly decreasing.

We define the Grötzsch constant λn by

(2.27) log λn = lim
t→∞

(log Φ(t) − log t)
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by Lemma 2.26 there exists lim ∈ R∪{∞} for n = 2 : λ2 = 4 and λn ∈ [4, 2en−1], n ≥
3.

2.28. Lemma. For each n ≥ 2 there exists a number λn ∈ [4, 2en−1), λ2 = 4 such
that

(1) t ≤ Φ(t) ≤ λnt, t > 1 ,

(2) t+ 1 ≤ Ψ(t) ≤ λ2
n(t+ 1), t > 1 .

Furthermore, λ
1/n
n → e as n→ ∞ and, in particular, λn → ∞ as n→ ∞.

For the statement of the next result we need the following notation

µ(r) =
π

2

K(
√

1 − r2)

K(r)
, K(r) =

∫ 1

0

[(1 − x2)(1 − r2x2)]−1/2dx

for 0 < r < 1.
The function K(r) is called a complete elliptic integral of the first kind and its

values can be found in tables. The argument r is sometimes called the modulus of
the elliptic integral K(r). The complement of r ∈ (0, 1) is r

′

=
√

1 − r2. From the
basic properties of K(r) see [AVV, pp.48-55], it follows easily that the normalized
quotient

(2.29) µ(r) =
π

2

K
′

(r)

K(r)

is a strictly decreasing homeomorphism of the interval (0, 1) onto (0,∞), with limit
values µ(0+) = ∞, µ(1−) = 0.

2.30. Theorem. For s ∈ (1,∞) and n ≥ 2

(1) ωn−1(log λns)
1−n < γn(s) ≤ ωn−1µ(1/s)1−n < ωn−1(log(s+ 3

√
s2 − 1))1−n

(2) 2n−1cn log

(

s+ 1

s− 1

)

≤ γn(s) ≤ 2n−1cnµ

(

s− 1

s+ 1

)

< 2n−1cn log

(

4
s+ 1

s− 1

)

Moreover, if s ∈ (0,∞) and a = 1 + 2(1 +
√

1 + s)/s, then

(3) cn log a ≤ τn(s) ≤ cnµ(1/a) < cn log(4a),

and (1 + 1/
√
s)2 ≤ a ≤ (1 + 2/

√
s)2 holds true. Furthermore, when n = 2, the

second inequality in (1), the second inequality in (2), and the second inequality in
(3) hold as identities.

2.31. Theorem. For n ≥ 2, s > 1, and x, c > 0

(1) γn(s) = 2n−1τn(s2 − 1),

(2) τ−1
n (cτn(x)) = (γ−1

n (cγn(
√
x+ 1)))2 − 1.

8
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∞

r

xo ∞

E∗

Figure 3. Spherical symmetrization E∗ of set E.

The functions γn and τn are continuous and strictly decreasing, with range (0,∞).

2.32. Hyperbolic metric and capacity. Let J [x, y] be a geodesic segment of the
hyperbolic metric, x, y ∈ Bn and Tx ∈M(Bn) [Vu, 2.25] implies that

(2.33)







cap(Bn, J [x, y]) = cap(Bn, TxJ [x, y])

= cap(Bn, [0, |Txy|e1]) = γ

(

1/ tanh
ρ(x, y)

2

)

substitution into 2.30(2) yields

(2.34)



























2n−1cnρ(x, y) ≤ cap(Bn, J [x, y])

≤ 2n−1cnµ







1 − tanh
ρ(x, y)

2

1 + tanh
ρ(x, y)

2






= 2n−1cnµ

(

cosh ρ
2
− sinh ρ

2

cosh ρ
2

+ sinh ρ
2

)

≤ 2n−1cnµ(e−ρ) ≤ 2n−1cn log(4eρ(x,y)) = 2n−1cn(ρ(x, y) + log 4)

where the inequality µ(t) < log
4

t
was also used (see [AVV, (5.3)]). For large values

of ρ(x, y) Lemma 2.34 is quite accurate. When ρ(x, y) is small, better bounds follow
from Theorem 2.30(1) and [Vu, 7.24].

2.35. Spherical symmetrization. If x0 ∈ Rn, E ⊂ R
n

and if L is a ray from x0

to ∞, then the spherical symmetrization E∗ of E in L is defined as follows:

(1) x0 ∈ E∗ if and only if x0 ∈ E.
(2) ∞ ∈ E∗ if and only if ∞ ∈ E.
(3) For each r ∈ (0,∞), E∗ ∩ Sn−1(x0, r) 6= φ if and only if E ∩ Sn−1(x0, r) 6= φ,

in which case E∗ ∩ Sn−1(x0, r) is a closed spherical cap centered on L with
the same mn−1 measure E ∩ Sn−1(x0, r).
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Let (A,C) be a condenser and x0 ∈ Rn. Denoted by C∗ and B the spherical
symmetrizations of C and R

n \ E in two opposite rays L and L
′

emanating from
x0, and let A∗ = Rn \B. Then it is easy to verify that (A∗, C∗) is a condenser [S].

2.36. Theorem. If (A,C) is a condenser, then for p ≥ 1,

p− cap(A,C) ≥ p− cap(A∗, C∗).

Next we give two important applications of Theorem 2.36. The first one is an
extremal property of a Grötzsch ring RT,n(t), s ∈ (1,∞), and the second is an
extremal property of a Teichmüller ring RT,n(t), t ∈ (0,∞).

2.37. Theorem. Let R = R(C0, C1) be a ring in R
n

such that B
n ⊂ C0 and x,∞ ∈

C1, where |x| = s, 1 < s <∞. Then

capR ≥ capRG,n(s) = γn(s).

2.38. Theorem. Let R = R(C0, C1) be a ring in R
n
, and let a, b ∈ C0,x,∞ ∈ C1 be

distinct points. Then

capR ≥ capRT,n(t) = τn(t), t =
|a− c|
|a− b| .

Equality holds for the Teichmüller ring RT,n(t), with a = 0, b = −e1, and c =
te1, t > 0.

Proof. Since the inequality remains invariant under similarity transformations, let
f(x) = (x− a)/|a− b|. Then |f(c)| = t and f(a) = 0.
The spherical symmetrizations of f(C0) and f(C1) in the negative and positive x1-
axis, respectively, contain the complementary components of RT,n(t). Hence the
result follows from Theorem 2.36. �

2.39. Lemma. For t > 1 let

R1 = R([0, e1], [te1,∞]) and R2 = R([0, e], [te1,∞]),

where e ∈ Sn−1.Then
capR2 ≤ capR1 = τn(t− 1).

2.40. Lemma. Let x, y ∈ Bn and E a continuum with x, y ∈ E. Then

cap(Bn, E) ≥ cap(Bn, J [x, y]) = γ

(

1/ tanh
ρ(x, y)

2

)

.

Proof. As in (2.33) we get

cap(Bn, E) = cap(Bn, TxE) ≥ cap(Bn, (TxE)∗)

symmetrization in Theorem 2.36 was applied and ∗ stands for the spherical sym-

metrization in x1-axis. As [Vu, 2.25] implies that

[

0,

(

tanh
ρ(x, y)

2

)

e1

]

⊂ (TxE)∗.

The claim follows from (2.33) �
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2.41. The spherical (circular) symmetrization for n=2. In the plane one can
modify the spherical symmetrization results (cf. Theorem 2.38) by using an auxiliary
conformal mapping. In certain cases this method leads to sharper inequalities than
does a direct use of spherical symmetrization.

2.42. Special function ϕK. The functions γn and τn as well as their inverses
and various combinations of these will occur often in next results. Of particular
importance is the function ϕK : [0, 1] → [0, 1], which will occur in the quasiregular
version of the Schwarz lemma as well as in its many applications. This function is
defined as follows, for 0 < r < 1 and K > 0

(2.43) ϕK(r) =
1

γ−1
n (Kγn(1/r))

= ϕK,n(r)

and set ϕK(0) = 0, ϕK(1) = 1. This function also occurs in the following expres-
sions:

(2.44)























ηK(t) = ηK,n(t) ≡ 1 − ϕ1/K(1/
√

1 + t)2

ϕ1/K(1/
√

1 + t)2
= τ−1

n

(

1

K
τn(t)

)

ηK,2(t) =

(

ϕK(
√

t/(1 + t))

ϕ1/K(1/
√

1 + t)

)2

,

where for ηK,2, the identity ϕK(r)2 + ϕ1/K(
√

1 − r2)2 = 1 from [AVV, 10.5(1)] is
used. In particular,

(2.45) λ(K) ≡
(

ϕK(1/
√

2)

ϕ1/K(1/
√

2)

)2

= ηK(1) =

(

τ−1
n (π/(2K))

τ−1
n (πK/2)

)2

,

It is easy to see that ϕK : [0, 1] → [0, 1] is a homeomorphism. Next we shall
derive from Lemma 2.28(1) some explicit estimates for ϕK ,

(2.46) ωn−1(logλns)
1−n ≤ γn(s) ≤ ωn−1(logs)1−n

for s > 1. From Lemma 2.28(1) it follows that for s > 1

log s ≤ log Φ(s) ≤ log(λns)

and therefore

(2.47) α log Φ(s) ≤ α log(λns) = log(λα
ns

α) ≤ log Φ(λα
ns

α).

Since (2.47) implies

Kωn−1 (log Φ(s))1−n ≤ ωn−1 (log Φ(λα
ns

α))1−n

we have

Kγn(s) ≤ γn(λα
ns

α),
11



which is equivalent to

γ−1
n (Kγn(s)) ≤ λα

ns
α.

Similarily we can obtain

tα/λn ≤ γ−1
n (Kγn(s))

and therefore

(2.48) tα/λn ≤ γ−1
n (Kγn(t)) ≤ λα

nt
α

for all t > 1 and K > 0, where α = K1/(1−n). From (2.48) it follows that

(2.49) rα/λ−α
n ≤ ϕK(r) ≤ λnr

α

holds for all K > 0 and r ∈ (0, 1).
It is easy to see that 0 < A ≤ B < ∞ implies ϕA(r) ≤ ϕB(r). In particular,
ϕ1/K(r) ≤ r = ϕ1(r) ≤ ϕK(r) for K ≥ 1.

2.50. Definition. Let D and D
′

be a domain in Rn and let f : D → D
′

be a
homeomorphism. We call f conformal if
(1) f ∈ C1

(2) Jf (x) 6= 0 for all x ∈ D and
(3) |f ′

(x)| = |f ′

(x)||h| for all x ∈ D and h ∈ Rn. If D and D
′

are domains in
R

n
, we call a homeomorphism f : D → D

′

conformal if the restriction of f to
D \ {∞, f−1(∞)} is conformal.

2.51. Example. Some basic examples of conformal mappings are the following ele-
mentary transformations.

(1) A reflection in hyperplane P (a, t) = {x ∈ Rn : x · a = t}∪ {∞} where t ∈ R
and a ∈ R \ {0}:

f1(x) = x− 2(x · a− t)
a

|a|2 , f1(∞) = ∞.

(2) An inversion (Reflection) in Sn−1(a, r):

f2(x) = a+
r2(x− a)

|x− a|2 , f2(a) = ∞, f2(∞) = a.

(3) A translation f3(x) = x+ a, a ∈ Rn, f3(∞) = ∞.
(4) A stretching by a factor k > 0 : f4(x) = k · x, f4(∞) = ∞.
(5) An orthogonal mapping, i.e. a linear mapping f5 with

|f5(x)| = |x|, f5(∞) = ∞.

2.52. Remark. The translation x 7→ x + a can be written as a compostion of
reflection in P (a, 0) and P (a, 1

2
|a|2). The stretching x 7→ kx, k > 0, can be written

as a composition of inversion in Sn−1(0, 1), and Sn−1(0,
√
k). It can be proved, that

an orthogonal mapping can be composed of at most n+ 1 reflections in planes.
12



2.53. Möbius transformation. A homeomorphism f : R
n → R

n
is called a

Möbius transformation if f = g1 ◦ . . . ◦ gp where gi is one of the elementary trans-
formations in Example 2.51(1)-(5) and p is a positive integer. Equivalently (see
Remark 2.52) f is a Möbius transformation if f = g1 ◦ . . . ◦ gm where each hj is a
reflection in a sphere or in a hyperplane and m is a positive integer.
It follows from the inverse function theorem and chain rule that the set of all con-
formal mappings of R

n
is a group. Also the set of all Möbius transformations

constitutes a subgroup of the group of conformal mappings, and we denote it by
GM(R

n
) or GM . Further we shall write

GM(D) = {f ∈ GM(R
n
) : fD = D}

for D ⊂ R
n
. We denote by O(n) the set of all orthogonal maps in Rn. A map f in

GM with f(∞) = ∞ is called a similarity transformation if |f(x)−f(y)| = c|x−y|
for all x, y ∈ Rn where c is a positive number.

2.54. Stereographic projection. The stereographic projection π : R
n → Sn(1

2
en+1,

1
2
)

is defined by

(2.55) π(x) = en+1 +
x− en+1

|x− en+1|2
, x ∈ Rn, π(∞) = en+1.

Thus π is precisely the restriction to R
n

of an inversion in the n-sphere Sn(en+1, 1)

in R
n+1

. In fact, we can identify π with this inversion. Since π−1 = π, it follows
that π maps the Riemann sphere Sn(1

2
en+1,

1
2
) onto R

n
.

The spherical (chordal) metric q in R
n

is defined by

(2.56) q(x, y) = |π(x) − π(y)|, x, y ∈ R
n
,

where π is in (2.55). From [Vu, (1.5)] and (2.55) we obtain

(2.57)















q(x, y) =
|x− y|

√

1 + |x|2
√

1 + |y|2
, x, y ∈ Rnand x 6= ∞ 6= y,

q(x,∞) =
1

√

1 + |x|2
, x ∈ Rn.

2.58. Absolute ratio. For an ordered quadruple a, b, c, d of distinct points in R
n
,

we define the absolute cross ratio by

(2.59) |a, b, c, d| =
q(a, c)q(b, d)

q(a, b)q(c, d)
.

It follows from (2.57) that

|a, b, c, d| =
|a− c||b− d|
|a− b||c− d| ,
13



π(y)

y

x

0

π(x)

en+1

R
n

Figure 4. Visualization of formulae (2.52) and (2.53).

where the limiting value is taken if one of the points is ∞. One of the most important
properties of Möbius transformations is that they preserve absolute ratios; namely,
if f ∈ GM

(2.60) |f(a), f(b), f(c), f(d)| = |a, b, c, d|

for all distinct a, b, c, d in R
n
. In fact, the preservation of absolute ratios is a

characteristic property of Möbius transformations.

3. Conformal invariants

In this section we shall introduce two conformal invariants, the modulus metric
µG(x, y) and its “dual” quantity λG(x, y), where G is the domain in R

n
and x, y ∈ G.

The modulus metric µG is functionally related to the hyperbolic metric ρG ifG = Bn,
while in the general case µG reflects the “capacitary geometry” of G in a delicate
fashion. The dual quantity µG(x, y) is also functionally related to ρG if G = Bn.
For a wide class of domain in Rn, the so called QED-domains, we shall find two
sided estimates for λG(x, y) in terms of

rG(x, y) =
|x− y|

min{d(x, ∂G), d(y, ∂G)} .

14
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Figure 5. Conformal invariants λG and µG.

3.1. The conformal invariants λG and µG. If G is a proper subdomain of R
n
,

then for x, y ∈ G with x 6= y we define

(3.2) λG(x, y) = inf
Cx,Cy

M(∆(Cx, Cy;G)).

Where Cz = γz[0, 1) and γz : [0, 1) → G is a curve such that z ∈ |γz| and γz(t) → ∂G
when t → 1, z = x, y. It follows from Lemma 2.16 that λG is invariant under
conformal mappings of G. That is, λfG(f(x), f(y)) = λG(x, y), if f : G → fG is
conformal and x, y ∈ G are distinct.

If card(R
n \ G) = 1, then λG(x, y) ≡ ∞. Therefore λG is of interest only in the

case of card(R
n \ G) ≥ 2. For card(R

n \ G) ≥ 2 and x, y ∈ G, x 6= y, there are
continua Cx and Cy in (3.2) with Cx ∩ Cy = ∅ and thus M(∆(Cx, Cy;G)) < ∞ by

[Vu, 5.23]. Thus if card(R
n \ G) ≥ 2, we may assume that the infimum in (3.2) is

taken over continua Cx and Cy with Cx ∩ Cy = ∅.
For a proper subdomain G of R

n
and for all x, y ∈ G define

(3.3) µG(x, y) = inf
Cxy

M(∆(Cxy, ∂G;G)),

where the infimum is taken over all continua Cxy such that Cxy = γ[0, 1] and γ is a
curve with γ(0) = x and γ(1) = y. It is clear that µG is also a conformal invariant
in the same sense as λG, µG is a metric if cap∂G > 0, we call µG the modulus metric
or conformal metric of G.

3.4. Remark. Let D be a sub domain of G. It follows from Remark 2.7 and (2.8)
that µG(a, b) ≤ µD(a, b) for all a, b ∈ D and λG(a, b) ≥ λD(a, b) for all distinct a, b ∈
D. In what follows we are interested only in the non-trivial case card(R

n \G) ≥ 2.
Moreover, by performing an auxiliary Möbius transformation, we may and shall
assume that ∞ ∈ R

n \ G throughout this section. Hence G will have at least one
boundary point.

15
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Figure 6. Graph for the proof of Theorem 3.5 .

In a general domain G, the value of λG(x, y) and µG(x, y) can not be expressed
in terms of well-known simple functions. For G = Bn they can be given in terms of
ρ(x, y) and the capacity of Teichmüller condenser.

3.5. Theorem. For x, y ∈ Bn, x 6= y

(1) µBn(x, y) = γ(1/ tanh(ρ(x, y)/2)) = 2n−1τ(1/ sinh2(ρ(x, y)/2)),

(2) λBn(x, y) = 1
2
τ(1/ sinh2(ρ(x, y)/2)) = 2−nγ(cosh(ρ(x, y)/2)).

Proof. (1) follows from Lemma 2.40 and Theorem 2.31.
(2) The assertion is GM(Bn)-invariant, hence we may assume that
x = re1 = −y and r = tanh(ρ(x, y)/4). Now

λBn(x, y) ≤ M(∆(E,−E;Bn)) (E = [re1, e1])

≤ 1

2
M(∆(E2,−E2;B

n))

(

E2 = [re1,
1

r
e1]

)

=
1

2
τ

(

4r2

(1 − r2)2

)

=
1

2
τ

(

sinh2 ρ(x, y)

2

)

,

because

4r2

(1 − r2)2
=

(

2r

1 − r2

)2

=

(

2 tanh ρ
4

1 − tanh2 ρ
4

)2

=
(

2 sinh
ρ

4
cosh

ρ

4

)2

= sinh2 ρ(x, y)

2
.

Therefore it is enough to prove λBn ≥ 1
2
τ(sinh2 ρ

2
), let Cx, Cy be as in (3.2) and

C∗
x, C

∗
y their images under the inversion x 7→ x/|x|2, Cs

x = Cx ∪ C∗
x, Cs

y = Cy ∪ C∗
y

see Figure 6. May assume 0 /∈ Cy. Choose compact connected sets E ⊂ Cx, x ∈
E,F ⊂ Cy, y ∈ F . Let Sym(Es) : Es symmetrized in the positive x1-axis and
Sym(F s) : F s symmetrized in the negative x1-axis Theorem 2.36 implies that

16



(3.6) cap (Rn \ Es, F s) ≥ cap (Rn \ sym(Es), sym(F s))

then (3.6) implies

(3.7)







M (∆([−1/re1,−re1], [re1, 1/re1]))

= τ

(

4r2

(1 − r2)2

)

= τ

(

sinh2 ρ(x, y)

2

)

.

The above convergence means: When d(E, ∂Bn) → 0 and d(E, ∂Bn) → 0, then
Sym(Es) → [re1,

1
2
e1], Sym(Es) → [−1

r
e1,−re1] and (3.7) holds. On the other hand

by

M(∆(Cx, Cy;B
n)) ≥ M(∆(E,F ;Bn))

≥ 1

2
cap (Rn \ Es, F s) → 1

2
τ

(

sinh2 ρ(x, y)

2

)

when d(E, ∂Bn) → 0, d(F, ∂Bn) → 0 and x ∈ E, E continuum y ∈ F, F continuum.
Because Cx, Cy were arbitrary sets in (3.2), the assertion λBn ≥ 1

2
τ(sinh2 ρ

2
) follows.

�

3.8. Remark. From Theoerm 2.30(3) we obtain the following inequalities for x, y ∈
Bn

1

2
τ

(

sinh2 1

2
ρ(x, y)

)

≥ cn log tanh
1

4
ρ(x, y)

= 2cnarth
(

e−
1
2
ρ(x,y)

)

≥ 2cne
− 1

2
ρ(x,y).

Here the identities 2 cosh2A = 1 + cosh 2A and sinh 2A = 2 coshA sinhA were
applied. Recall that

sinh2 1

2
ρ(x, y) =

|x− y|2
(1 − |x|2)(1 − |y|2)

by [Vu, 2.19]. Similarily, by Theorem 2.30(3) we obtain also

1

2
τ

(

sinh2 1

2
ρ(x, y)

)

≤ 1

2
cnµ

(

tanh2(
1

4
ρ(x, y))

)

<
1

2
cn log

4

tanh2 1
4
ρ(x, y)

= cn log
2

tanh 1
4
ρ(x, y)

.

3.9. Lemma. Let G be a proper subdomain of Rn, d(x) = d(x, ∂G), Bx = Bn(x, d(x)),
let y ∈ Bx with y 6= x, and r = |x − y|/d(x). Then the following two inequalities
hold:

(1) λG(x, y) ≥ λBx(x, y) =
1

2
τ

(

r2

1 − r2

)

> cn log
1

r
,

17
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Figure 7. The function p(x).

(2) µG(x, y) ≥ µBx(x, y) = γ

(

1

r

)

ωn−1

(

log
1

r

)1−n

.

Proof. (1) By Remark 3.4, Theorem 3.5(2) and Remark 3.8 we obtain

λG(x, y) ≥ λBx(x, y) =
1

2
τ

(

r2

1 − r2

)

≥ −cn log tanh
1

4
(2arth r)

= cn log
1 +

√
1 − r2

r
> cn log

1

r
(2) The desired inequalities follow from Remark 3.4 and [Vu, 7.24]. �

3.10. The function p(x). Fix x ∈ Rn \ {0, e1} and set

(3.11) p(x) = inf
E,F

M(∆(E,F ))

where the infimum is taken over all the pairs of continua E,F such that 0, e1 ∈
E, x,∞ ∈ F . If we carry out two spherical symmetrization with centres 0 and e1,
respectively, we see by Theorem 2.38, that

(3.12) p(x) ≥ τn(min{|x|, |x− e1|}).
It is easy to see that equality holds here for x = se1 with s ∈ (−∞, 0) ∪ (1,∞).

3.13. Teichmüller problem: Find p(x) in terms of well known functions.
This problem was presented in 1938 and solved by Schiffer in 1948 for n = 2. We
consider here the n-dimensional case.

3.14. Lemma. For x ∈ Rn \ {0, e1}
p(x) ≥ max{τ(|x|), τ(|x− e1|)}

with equality if x = se1 and s ∈ (−∞, 0) ∪ (1,∞).

Proof. Spherical symmetrization with centre at 0 implies that p(x) ≥ τ(|x|).
Spherical symmetrization with centre at e1 implies that p(x) ≥ τ(|x− e1|).

18



If x = te1, t > 1 and E0 = [0, e1], F0 = [te1,∞) p(x) = τ(t− 1).

For the case x = te1, t > 0 the choice E1 = [0, e1], F1 = [−te1,∞) yields

p(x) = M(∆(E1, F1)) = τ(t).

�

We next map the quadruple (0, e1, x,∞) to (−e1, y,−y, e1).

3.15. Lemma. Let f ∈ GM with (0, e1, x,∞)
f−→ (−e1, y,−y, e1), |y| ≤ 1. Then

|y| =
|x− e1|

1 + |x| + t
and |y + e1|2 =

|y − e1|2
|x| =

4

1 + |x| + t

where t = ((1 + |x|)2 − |x− e1|2)1/2.

Proof. The Möbius invariance yields

|0, e1, x,∞| = | − e1, y,−y, e1| and |0, e1,∞, x| = | − e1, y, e1,−y|
and, equivalently, |y − e1|2 = |x||y + e1|2 and 4|y| = |x− e1||y + e1|2.
The first equation implies

2ye1 =
1 − |x|
1 + |x|(1 + |y|2)

substitution of this into the second equation yields

4|y| = |x− e1|
(

|y|2 +
1 − |x|
1 + |x|(1 + |y|2) + 1

)

⇔

|y|2 − 2|y| 1 + |x|
|x− e1|

+ 1 = 0 ⇒ |y| =
1 + |x| ± t

|x− e1|
.

The minus sign yields |y| ≤ 1 and the desired formula follows. This computation
also yields the desired formula for |y + e1|. �

3.16. Corollary. Let f ∈ GM with (a, b, c, d) 7−→ (−e1, y,−y, e1),|y| ≤ 1.

If r = |b, a, c, d|, s = |a, b, c, d|, t =
√

(1 + s)2 − t2 then

|y| =
r

1 + s+ t
and |y + e1|2 =

|y − e1|2
s

=
4

1 + s+ t
.

3.17. Lemma. For a ∈ (0, 1) let b =
2a

1 + a2
. Then for r > 0

M(∆([−are1, are1], S
n−1(r))) = M(∆([0, bre1], S

n−1(r))) = γ

(

1 + a2

2a

)

.

19



Proof. Choose h ∈ GM(Bn(r)) such that (−re1,−are1, are1, re1) 7−→ (−re1, 0, bre1, re1).
Then

| − re1,−are1, are1, re1| = | − re1, 0, bre1, re1|.

This implies b = 2a/(1 + a2). This equality follows from the conformal invariance
of modulus and the definition of γ. �

3.18. Lemma. Let y ∈ Bn \ {0}, E = [−y, y], F = [−e1,∞) ∪ [e1,∞) and E1 =
[−|y|e1, |y|e1]. Then

M(∆(E,F )) ≤M(∆(E1, F )) = τn

(

(1 − |y|)2

4|y|

)

.

Proof. By the definition of τ and conformal invariance of the modulus we have

M(∆(E,F )) = τn(|y|e1,−|y|e1, e1 − e1|) = τn

(

(1 − |y|)2

4|y|

)

.

To prove the inequality write y = t2e, |e| = 1, t ∈ (0, 1), S = Sn−1(t)
Γ1 = ∆(E, S), Γ2 = ∆(F, S). Then by the Lemma 3.17

M(Γ1) = M(Γ2) = γn

(

1 + t2

2t

)

= 2n−1τn

(

1 + |y|
2
√

|y|

)2

− 1 = 2n−1τn

(

(1 − |y|)2

4|y|

)

.

By (2.15)

M(∆(E,F ))1/(1−n) ≥M(Γ1)
1/(1−n) +M(Γ2)

1/(1−n) = 2
1

2
τn

(

(1 − |y|)2

4|y|

)1/(1−n)

,

which yields the inequality. �

3.19. The Ahlfors brackets. For x, y ∈ Rn, we define the Ahlfors brackets A[x, y],

A[x, y]2 = 1 + |x|2|y|2 − 2xy

= (1 − |x|2)(1 − |y|2) + |x− y|2.
It is easy to show that A[x, y] = A[y, x], and A[x, y] = |x||y − x∗| for x ∈ Rn \ {0}.
This notation is convenient in the study of Möbius transformations of Bn onto itself.

3.20. Remark. The Teichmüller ring RT,n(t) can be mapped by the Möbius trans-
formations onto each of the following ring domains:
(a) R = R(E,F ), where E and F are circular arcs in

S = Sn−1 ∩ {x1 = · · · = xn−2 = 0},
joining x, y ∈ S and −x,−y respectively, with

|x+ y| = |x− y|
√
t.
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(b) R = R([−ae1,−e1], [e1, ae1]), a = 1 + 2(1 +
√

1 + t)/t.

(c) R = R([−e1, e1], [−be1,∞] ∪ [be1,∞]), b = 1 + 2t(1 +
√

1 + 1/t).

3.21. Lemma. For x, y ∈ Bn let r = |x|, s = |y|, d = |x− y|. Then

(1) d+ (1 − r)(1 − s) ≤ A[x, y] ≤ d+ r
′

s
′

, with equality in the first iff y = −tx
or x = −ty for some t ∈ [0, 1] and in the second iff x = y,

(2) A[x, y] ≤ rd+1−r2 ≤ d+(1−r)(1+s), where the first inequality reduces to
equality iff x = −ty or y = tx for some t ∈ [0, 1] and the second inequality
reduces to equality iff y = tx for some t ∈ [0, 1],

(3) (1 − r2)(1 − s2) ≤ (1 − (r + s)2/4)2 ≤ (1 − d2/4)2, with equality in the first
iff r = s and in the second iff y = −tx or x = −ty, t ∈ [0, 1],

(4) (1 − r2)(1 − s2) ≤ (1 − rs)2 ≤ A[x, y]2. There is equality on the left if and
only if r = s and on the right if and only if x = ty or y = tx, t ∈ [0, 1].

3.22. Theorem. For x ∈ Rn \ [0, e1],

p(x) ≤M(∆(E,F ;Rn)) ≤ τn

( |x| + |x− e1| − 1

2

)

,

where E is a circular arc with 0, e1 ∈ E, and F = [xt : t ≥ 1] is a ray with x ∈ F .
Both inequalities reduce to equality if x = se1 and s ∈ (−∞, 0) ∪ (1,∞).

Proof. Let h : R
n → R

n
be the Möbius transformation taking x, 0, e1,∞ onto

−e1,−y, y, e1, respectively, where |y| < 1. With E1 = [−|y|e1, |y|e1], E ′ = [−y, y]
and F ′ = [−e1,∞] ∪ [e1,∞], by Lemma 3.18 we have

M(∆(E1, F
′)) = τn

(

(1 − |y|)2

4|y|

)

.

Next, by invariance of cross ratio, we get

|x,∞, 0, e1| = | − e1, e1,−y, y| and |x,∞, e1, 0| = | − e1, e1, y,−y|,
which give

|x| =
|y − e1|2

4|y| and |x− e1| =
|y + e1|2

4|y| .

Hence

|x| + |x− e1| − 1 =
(1 − |y|)2

2|y| .

Now, with E = h−1(E ′), F = h−1(F ′), from 4.15 and [AVV, 8.17(1)]

p(x) ≤M(∆(E,F )) = M(∆(E ′, F ′))

≤ M(∆(E1, F
′)) = τn

(

1

2
(|x| + |x− e1| − 1)

)

.
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Figure 8. Graph for the proof of Theorem 3.25.

�

3.23. Corollary. For x ∈ Rn \ B
n
, the following inequalities hold:

τn(|x− e1|) ≤ p(x) ≤ τn(|x− e1|/2) ≤
√

2τn(|x− e1|).
Proof. The first inequality follows from (3.12) and second one from Theorem 3.22.
The third one follows from τn(ct)/τn(t) ∈ (1, 1/

√
c) for t > 0 and c ∈ (0, 1) [AVV,

11.25(1)]. �

3.24. Corollary. Let G = Rn \ {0} and x, y ∈ G with x 6= y. Then

λG(x, y) ≤ τn

( |x− y| + ||x| − |y||
2 min{|x|, |y|}

)

≤ τn

( |x− y|
2 min{|x|, |y|}

)

.

Proof. By invariance under homotheties we may assume that y = e1 and |x| ≥ 1.
Since min{|x|, |y|} = 1 the result follows from Theorem 3.22 and (3.2). �

3.25. Theorem. Let G = C \ {0} and z, w ∈ G, z 6= w, then

λG(z, w) = min{p(z/w), p(w/z)}.
Proof. In view of the definition of λG we have two possible choices of continua (a)
and (b) see Figure 8.

The choice (a) leads to p(w/z) whereas (b) leads to p(z/w). �

3.26. Theorem. Let G = Rn \ {0} and x, y ∈ G, x 6= y, and let rz be the similarity
mapping with rz(0) = 0 and rz(e) = e. Then

λG(x, y) = min{p(rx(y)), p(ry(x))}.
Proof. We see that

|rx(y) − e1| = |x− y|/|x|
and that rz(x) takes the role of y/z. �

3.27. Theorem. Let G ⊂ Rn be a domain, x, y ∈ G, x 6= y, and

m(x, y) = min{d(x), d(y)} .
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Figure 9. Mori’s extremal ring domain.

Then

λG(x, y) ≤ inf
z∈∂G

λRn\{z}(x, y) ≤ τn

( |x− y|
2m(x, y)

)

≤
√

2τ

( |x− y|
m(x, y)

)

.

Proof. The claim follows from Corollaries 3.23 and 3.24. �

3.28. Corollary. For x, y ∈ G = Rn \ {0}, x 6= y,

τn

( |x− y|
m

)

≤ λG(x, y) ≤ τn

( |x− y|
2m

)

≤
√

2τn

( |x− y|
m

)

,

where m = min{|x|, |y|}.
Proof. The first inequality follows from Theorem 2.38, second follows from Corollary
3.24 and third follows from [AVV, 11.25(1)]. �

We next use Theorem 3.22 to estimate the capacity of a particular ring domain,
the n-dimensional analogue of the so-called Mori’s ring, well known in the theory
of plane quasiconformal mappings [LV, p.58].

3.29. Mori’s ring domain in Rn. For 0 < α < π/4, Mori’s ring domain in Rn,
denoted by RM,n(α), has a boundary components the ray {te1 : t ≤ 0} and the
circular arc

{x ∈ Sn−1 : x3 = . . . = xn = 0, |x+ e1| ≥ 2 cosα}.
Mori’s extremal ring is sketched in Figure 9.
set

νn(α) = capRM,n(α).

The sets E and F in Theorem 3.22 are the boundary components of a generalized
Mori’s ring domain. Indeed, while such a ring domain is not, in general, conformally
equivalent to the Mori’s ring domain defined above, its boundary components are
still a circular arc and a half line. Note that for n = 2 and x = (1

2
, t) for some real t,
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Mori’s ring is extremal for p(x) (cf.[LV]). The explicit formula ν2(α) = 2π/µ(sinα),
where µ is as in (2.29) and [LV, p.59].

3.30. Corollary. For 0 < α < π/4,

τn

(

1

2 sin(2α)

)

≤ νn(α) ≤ τn

(

1

2 tan(2α)

)

.

Proof. The lower bound follows from Theorem 2.38. For the upper bound, clearly
the ring RM,n(α) is equivalent, under the Möbius transformation, to the ring R
whose boundary components are C0 = [−en tanα, en tanα] and C1 = [−e1,∞] ∪
[e1,∞]. Hence, by [AVV, 8.17(1)(c),7.52(1)(c)],
νn(α) = capR ≤ τn((1 − tanα)2/(4 tanα)) = τn(1/(2 tan(2α))). �

4. Quasiconformal mapping

The study of quasiconformal and quasiregular mappings in this section will be
based on the trasformation formulae for the moduli of curve families under these
mappings. In most cases it will be enough to make use of these transformation
formulae specialized to the conformal invariants µG and λG.

4.1. Definition. The set Tn consists of all the triples (y, f,D), where f : G → R
n

is a continuous mapping, G ⊂ R
n

is a domain, D is a domain with D ⊂ G and
y ∈ R

n \ f∂D.

4.2. Lemma. There exists a unique function µ : Tn → Z, the topological degree,
such that

(1) y 7→ µ(y, f,D) is a constant in each component of R
n \ f∂D.

(2) |µ(y, f,D)| = 1 if y ∈ fD and f |D is one-to-one.
(3) µ(y, id, D) = 1 if y ∈ D and id is the identity mapping.
(4) Let (y, f,D) ∈ Tn and D1, . . . , Dk be disjoint domains such that

(y, f,Di) ∈ Tn and f−1(y) ∩D ⊂ ⋃k
i=1Di. Then

µ(y, f,D) =
k
∑

i=1

µ(y, f,Di).

(5) Let (y, f,D), (y, g,D) ∈ Tn be such that there exists a homotopy ht : D →
R

n
, t ∈ [0, 1], with ho = f |D, h1 = g|D, and (y, ht, D) ∈ Tn for all

t ∈ [0, 1]. Then µ(y, f,D) = µ(y, g,D).

4.3. Definition. A mapping f : G → R
n

is called sense-preserving (orientation-
preserving) if µ(y, f,D) > 0 wheneverD is a domain withD ⊂ G and y ∈ fD\f∂D.
If µ(y, f,D) < 0 for all such y and D, then f is called sense-reversing (orientation-
reversing).

The branch set Bf of a mapping f : G→ R
n

is defined to be the set of all points
x ∈ G such that f is not a local homeomorphism at x. It is easily seen that Bf
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is a closed subset of G. We call f open if fA is open in R
n

whenever A ⊂ G is
open, light if f−1(y) is totally disconnected for all y ∈ fG, and discrete if f−1(y)
is isolated for all y ∈ fG.

Let G ⊂ R
n

be a domain. We denote by J(G) the collection of all subdomains
D of G with D ⊂ G.

4.4. Definition. Let f : G → R
n

be discrete. Fix x ∈ G and a neighborhood
U ∈ J(G) of x such that x = U ∩ f−1(f(x)). The number µ(f(x), f, U) is denoted
by i(x, f) and called the local (topological) index of f at x.

4.5. Lemma. Suppose that f : G → R
n

is open, that U ⊂ Rn is a domain, and
that D is a component of f−1U such that D ∈ J(G). Then D is a normal domain,
fD = U , and U ∈ J(fG).

4.6. Lemma. Suppose that f : G → R
n

is a discrete and open mapping. Then
limr→0 d(U(x, f, r)) = 0 for every x ∈ G. If U(x, f, r) ∈ J(G), then U(x, f, r) is
a normal domain and fU(x, f, r) = Bn(f(x), r) ∈ J(fG). Furthermore, for every
point x ∈ G there is a positive number σx such that the following conditions are
satisfied for 0 ≤ r ≤ σx :

(1) U(x, f, r) is a normal neighborhood of x.
(2) U(x, f, r) = U(x, f, σx) ∩ f−1Bn(f(x), r).
(3) ∂U(x, f, r) = U(x, f, σx) ∩ f−1Sn−1(f(x), r) if r < σx.
(4) R

n \ U(x, f, r) is connected.
(5) R

n \ U(x, f, r) is connected.
(6) If 0 < r < s < σx, then U(x, f, r) ⊂ U(x, f, s), and U(x, f, s) \ U(x, f, r) is

a ring, i.e. its complement has exactly two components.

If f : G→ R
n
, A ⊂ Rn and y ∈ Rn, denote

N(y, f, A) = card(A ∩ f−1(y)),

N(f,A) = sup{N(y, f, A) : y ∈ Rn},
N(f) = N(f,G).

HereN(y, f, A) is called themultiplicity of y inA andN(f,A) the maximal multiplicity
of f in A.

4.7. Quasiregular mappings. Let G ⊂ Rn be a domain. A mapping f : G→ Rn

is said to be quasiregular if f is ACLn (absolutely continuous on almost all lines)
and there exists a constant K ≥ 1 such that

(4.8) |f ′

(x)|n ≤ KJf (x), |f ′

(x)| = max
|h|=1

|f ′

(x)h|,

almost every where in G. Here f
′

(x) denotes the formal derivative of f at x. The
smallest K ≥ 1 for which this inequality is true is called the outer dilatation of f
and denoted by Ko(f). If f is quasiregular, then the smallest K ≥ 1 for which the
inequality
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(4.9) Jf (x) ≤ Kl(f
′

(x)), l(f
′

(x)) = max
|h|=1

|f ′

(x)h|,

holds almost every where in G is called the inner dilatation of f and denoted by
KI(f). The maximal dilatation of f is the number K(f) = max{Ko(f), KI(f)}.
If K(f) ≤ K, f is said to be K-quasiregular. If f is not quasiregular, we set
Ko(f) = KI(f) = K(f) = ∞.
It follows from linear algebra (see [Va, p.44] and [R, p.22]) that

Ko(f) ≤ KI(f)n−1, KI(f) ≤ Ko(f)n−1.

4.10. Quasiconformal mapping. If f is homeomorphism satisfying (4.8) and (4.9)
with |Jf (x)| in place of Jf (x) then f is called quasiconformal.
We now give an analytic definition of quasiconformal mapping. Let G,G

′

be a
domain in R

n
f : G→ G

′

be a homeomorphism. Then f is K-quasiconformal if

(4.11) M(Γ)/K ≤M(fΓ) ≤ KM(Γ)

for every curve family Γ in G. Moreover, the dilatations of f are defined as

(4.12) KI(f) = sup
M(fΓ)

M(Γ)
, Ko(f) = sup

M(Γ)

M(fΓ)
,

where the superema are taken over all curve families Γ and G such that M(Γ) and
M(fΓ) are not simultaneously 0 or ∞. Thus

M(Γ)/Ko(f) ≤M(fΓ) ≤ KI(f)M(Γ)

for every curve family Γ in G.

4.13. Notation. For domains D,D
′

in R
n

we let QCK(D,D
′

) denote the class of
all K-quasiconformal mappings of D into D

′

. We also let QCK(D,D) = QCK(D).

4.14. Theorem. Let f ∈ QCK(Rn) with f(0) = 0 and f(e1) = e1. Then

|f(x)| + |f(x) − e1| ≤ 1 + 2τ−1
n

(

1

K
τn(m)

)

for x ∈ Rn, where m = min{|x|, |x−e1|}. Equality holds here if K = 1 and x = te1,
where t ∈ (−∞, 0) ∪ (1,∞).

Proof. If K = 1, then f is a Möbius transformation (cf.[G1]). Further, since a
Möbius transformation fixing 0, e1 and ∞ must be the identity map, we must have
f(te1) = te1, and equality follows.
From (3.12), Theorem 3.22 and Definition 4.10 we obtain

τn(m) ≤ p(x) ≤ Kp(f(x)) ≤ Kτn

( |f(x)| + |f(x) − e1| − 1

2

)

.

�
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4.15. Theorem. Let f ∈ QCK(Rn) with f(0) = 0. Then for x, y ∈ Rn \ {0} ≡ G,

η1/K,n(r(x, y)/2) ≤ r(f(x), f(y)) ≤ 2ηK,n(r(x, y)),

where ηC,n(t) = τ−1
n (τn(t)/C), C > 0, and r(x, y) =

|x− y|
min{|x|, |y|} .

Proof. From Theorem 3.28 and quasi-invariance of f , we have

τn(r(x, y)) ≤ λG(x, y) ≤ KλG(f(x), f(y)) ≤ Kτn(r(f(x), f(y))/2).

Solving this for r(f(x), f(y)), we get the second inequality. The first inequality is
proved similarly, or may be obtained by applying the second inequality to f−1. �

4.16. Corollary. Let f ∈ QCK(Rn) with f(Bn) ⊂ Bn, f(0) = 0. Then

|f(x) − f(x)| ≤ 1 + 2τ−1
n

(

1

K
τn

( |x− y|
min{|x|, |y|}

))

for x, y ∈ Bn.

Proof. This follows immediately from Theorem 4.15, since min{|x|, |y|} < 1 when
x, y ∈ Bn. �

4.17. Theorem. Let f ∈ QCK(Rn) with f(0) = 0 and f(Bn) ⊂ Bn. Then

|f(x) − f(x)| ≤ 128|x− y|1/K

for all x, y ∈ Bn with equality if and only if x = y.

Proof. Clearly we may assume that x 6= y. For |x−y| ≥ 21−3K we have the inequality

|f(x) − f(y)| ≤ 2 ≤ 2

( |x− y|
21−3K

)1/K

= 24−1/K |x− y|1/K .

Thus in the rest of proof we may assume that 0 < |x − y| < 21−3K . Let m =
min{|x|, |y|}, r = r(x, y) = |x− y|/m, and ρ

′

= ρ(f(x), f(y)).

Case 1. 0 < |x− y| < 21−3K and m ≤ 15/16.
By Lemma 3.21 and [AVV, 7.64,13.20(2)] we obtain

|f(x) − f(x)| ≤ 2 tanh
ρ

′

4
≤ 2 min{2, K}

(

tanh
ρ

4

)1/K

≤ min{2, K}
(

|x− y|
A[x, y] +

√

(1 − |x|2)(1 − |y|2)

)1/K

≤ min{2, K}
( |x− y|

1 − |x||y|

)1/K

≤ min{2, K}161/K |x− y|1/K < 64|x− y|1/K .
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Case 2. 0 < |x− y| < 21−3K and m > 15/16 by Corollary 3.28 and [AVV, 13.39]

|f(x) − f(x)| ≤ 2τ−1
n

(

1

K
τn

( |x− y|
m

))

≤ 2 · 43−(1/K)

(

16

15

)1/K

|x− y|1/K

=

(

4

5

)1/K

128|x− y|1/K .

�

4.18. Theorem. Let G be a proper subdomain of Rn and let f : G → G
′

be a
K-quasiconformal mapping of G onto a subdomain G

′

of R
n
. Then, for x, y ∈ G

q(f(x), f(y))q(∂G
′

) ≤ 128

( |x− y|
d(x, ∂G)

)1/K

.

Here q denotes the chordal metric as in (2.56).

Proof. We may assume that x 6= y. Fix a, c ∈ ∂G
′

with q(a, c) = q(∂G
′

) > 0. Let
r = |x − y|/d(x, ∂G). If r ≥ 2−7K , then the right side of the inequality is at least
unity, and there is nothing to prove. For r ∈ (0, 2−7K) we argue as follows.

With B = Bn(x, d(∂G)) we have by Theorem 3.9

λG(x, y) ≥ λB(x, y) =
1

2
τn

(

r2

1 − r2

)

.

Let D = R
n \ {a, c}. By (3.4), (3.24), (2.59) and [AVV, 8.48] we have

λG
′ (f(x), f(y)) ≤ λD(f(x), f(y))

≤ τn(max{|f(x), a, f(y), c|, |f(y), a, f(x), c|}/2)

≤ τn(q(f(x), f(y))q(∂G
′

)/2).

Since

λG(x, y) ≤ KλG′ (f(x), f(y)),

the above inequality yields

q(f(x), f(y))q(∂f(G)) ≤ 2τ−1
n

(

1

2K
τn

(

r2

1 − r2

))

.

Now r < 2−7K implies that r2/(1 − r2) < 2−7K , and by [AVV, 13.44(11b)] we get

q(f(x), f(y))q(∂f(G)) ≤ 2 · 42−1/2Kλ2(2K)1/(n−1)−2
n

( r

r′

)1/K

r
′(1/K)−2(2K)1/(n−1)

≤ 128
( r

2r′

)1/K

≤ 128r1/K ,

as desired. �

28



4.19. Theorem. Let f : R
2 \ E → R

2 \ B2 be a K-quasiconformal mapping, where
E is a continuum with 0, 1 ∈ E and let f(∞) = ∞. Then for x ∈ R2 \ E,

|f(x)| ≤ γ−1
2

(

1

2K
γ2(

√
1 +m)

)

≤ 42K−1(1 +m)K ,

where m = min{|x|, |x− 1|}.
Proof. Let f = f−1([f(x),∞]) so that x,∞ ∈ F . By circular symmetrization see
(2.31), (2.35), (2.41) and (3.12),

M(∆(E,F )) ≥ τ2(min{|x|, |x− e1|}) =
1

2
γ2(

√
1 +m),

where m = min{|x|, |x− e1|}, and further

M(∆(f(x), [f(x),∞])) = γ2(|f(x)|) ≥ M(∆(E,F ))

K
,

so

γ2(|f(x)|) ≥ 1

2K
γ2(

√
1 +m).

Hence by [AVV, 8.74(2),8.69],

|f(x)| ≤ γ−1
2

(

1

2K
γ2(

√
1 +m)

)

=
1

ϕ1/(2K),2(1/
√

1 +m)
≤ 42K−1(1 +m)K .

�

For plane conformal mappings we have the following sharper result.

4.20. Theorem. If the mapping in Theorem 4.19 is conformal, that is, K = 1, then

|f(x)| ≤ (
√

1 +m+
√
m)2,

where m = min{|x|, |x− 1|}.
Proof. By the Theorem [AVV, 10.5(4)] we have

ϕ1/2,2(r) =

(

r

1 + r′

)2

.

From the proof of Theorem 4.19, with K = 1, we then have

|f(x)| ≤ 1

ϕ1/2,2(1/
√

1 +m)
= (

√
1 +m+

√
m)2,

as desired. �

The result of Theorem 4.20 is sharper than the result of Theorem 4.19 because

42K−1(1 +m)K ≥ 4(1 +m) ≥ (
√

1 +m+
√
m)2.
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4.21. Theorem. For x ∈ R2 \ [0, 1] there exist a circular arc E with 0, 1 ∈ E, x ∈
R2 \ E, and a conformal mapping f of R

2 \ E onto R
2 \ B

2
with f(∞) = ∞ such

that

|f(x)| ≥ s+
√
s2 − 1, s = |x| + |x− 1|.

Proof. Choose E and F as in the proof of Theorem 3.22. Let f be given by the
Riemann Mapping Theorem with f(∞) = ∞. Then

M(∆(f(E), f(F ))) = M(∆(E,F )) ≤ τ2

( |x| + |x− 1| − 1

2

)

,

while by 2.36,

M(∆(f(E), f(F ))) ≥ γ2(|f(x)|).

Then by Theorem 2.31 we get, as in the proof of Theorem 4.20,

|f(x)| ≥ γ−1
2

(

1

2
γ2

(

√

s+ 1

2

))

=
1

ϕ1/2,2(
√

2/(s+ 1))

=

(
√
s+ 1 +

√
s− 1√

2

)2

= s+
√
s2 − 1,

where s = |x| + |x− e1|. �

4.22. Remark. The fact that the bounds in Theorems 4.20 and 4.21 concide for
x = te1, t > 1, shows that these estimates are sharp.
When n = 2, the next theorem shows that the upper bound in Theorem 3.22 is
quite sharp, by exhibiting it as the minimal modulus of a class of curve families in
R2 \ {0, 1}.
4.23. The Joukowski map. The conformal mapping z 7→ 1

2
(z + 1/z) of the

exterior of the unit disk on to R2 \ [−1, 1] is called the Joukowski map. As well-
known property of this map is that it transforms circles centered at the origin, e.g.
|z| = r > 1, onto ellipses with the foci -1 and 1 : {w = (u, v : |w − 1| + |w + 1| =
r + 1/r)}. This property of the Joukowski map is similiar to the property of the
conformal map of the disk minus radial segment onto annulus, given in [AVV, 4.61].

4.24. Theorem. For x ∈ R2 \ [0, 1], let F be a any continuum in R
2

containing x
and ∞. Then

M(∆([0, 1], F )) ≥ τ2

( |x| + |x− 1| − 1

2

)

.

Moreover there exists an extremal continuum F for which equality holds.

Proof. Let f be the conformal mapping of R
2 \B

2
onto R

2 \ [0, 1] given by f(z) =
(z + 1)2/(4z), f(∞) = ∞, and let g = f−1. We note that f is the Joukowski map
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in 4.23 followed by similarity transformation z 7→ (z+1)/2. Then by Theorem 2.37

M(∆([0, 1], F )) = M(∆(g[0, 1], g(F )))

≥ γ2(|g(x)|) = τ2

(

(|g(x)|) − 1)2

4|g(x)|

)

= τ2

( |x| + |x− 1| − 1

2

)

.

Finally, the choice F = f([g(x),∞]) clearly gives equality. �

5. Distortion theory

The goal of this section is to study the distortion functions ϕK,n, ϕ
∗
K,n and ψK,n.

We will obtain estimates, functional inequalities, and asymptotic limits for them,
as well as relations among them. We begin with the following definition.

5.1. Definition. For n ≥ 2, 0 < K <∞, 0 < r < 1, r
′

=
√

1 − r2,
α = K1/(1−n),

(1) ϕK,n(r) =
1

γ−1
n (Kγn(1/r))

= M−1
n (αMn(r)),

ϕK,n(0) = 0, ϕK,n(1) = 1,

(2) ψK,n(r) =
√

1 − ψ1/K,n(r′)2,

(3) ϕ∗
K,n(r) =























sup{|f(x)| : |x| = r, f ∈ QCK(Bn), f(0) = 0},
if 1 ≤ K ≤ ∞,

inf{|f(x)| : |x| = r, f ∈ QC1/K(Bn), f(0) = 0
(Bn) = Bn}, if 0 < K ≤ 1,

where for 1 ≤ K < ∞, QCK(Bn) denotes the the set of all K-quasiconformal
mappings of Bn into itself.

5.2. Lemma. For n ≥ 2 and r ∈ (0, 1) we have

(1) ϕK,n(r) ≤ λ1−α
n rα, for K ≥ 1, α = K1/(1−n),

(2) ϕ1/K,n(r) ≥ λ1−β
n rβ, for K ≥ 1, β = 1/α.

Proof. (1) By the proof of Lemma 2.26 we see that M(r) + log r is decreasing on
(0, 1). Set s = ϕK,n(r) ≥ r, then

M(r) + log r ≥ M(s) + log s

M(r) + log
r

λn

≥ M(s) + log
s

λn

= αM(r) + log
s

λn

.

Note that by (2.27) log λn ≥M(r) + log r implies 0 ≤ −M(r) + log λn/r.
Therefore

−αM(r) + α log λn/r ≤ −αM(r) + log λn/s,
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which is equivalent to

(5.3) α log λn/r ≤ log λn/s.

Inequality (5.3) is equivalent to

s ≤ λ1−α
n rα.

The part (2) is proved in the same way. �

5.4. Corollary. For K ≥ 1 we have

ϕK,n(r) ≤ 21−1/KKrα, α = K1/(1−n).

Proof. Lemma 2.28 implies log λn ≤ n− 1 + log 2 for all n ≥ 2. Clearly 1 − α ≤
1 − 1/K and (1 − α)(n− 1) = (1 −K1/(1−n))(n− 1) ≤ logK where in the last step
the inequality 1 − e−x ≤ x, x > −1, was used. Now

(1 − α) log λn ≤ (n− 1 + log 2)(1 − α) ≤ logK + (1 − 1/K) log 2.

This last inequality together with Lemma 5.2 yields

ϕK,n(r) ≤ λ1−α
n rα ≤ 21−1/KKrα.

�

5.5. Theorem. Let f : G→ Rn is a non-constant quasiregular mapping, then

(1) µfG(f(a), f(b)) ≤ KI(f)µG(a, b) ∀a, b ∈ G in particular, f : (G,µG) →
(fG, µfG) is Lipschitz-constant. If N(f,G) < ∞, then for all a, b ∈ G,
f(a) 6= (b),

(2) λG(a, b) ≤ Ko(f)N(f,G)λfG(f(a), f(b)).

5.6. Theorem. Let f : Bn → Bn be K-quasiregular and α = K1/(1−n). Then for all
x, y ∈ Bn

(1) tanh ρ(f(x),f(y))
2

≤ ϕK,n

(

tanh ρ(x,y)
2

)

≤ λ1−α
n

(

tanh ρ(x,y)
2

)α

.

(2) ρ(f(x), f(y)) ≤ Kµ(e−ρ(x,y)) ≤ K(ρ(x, y) + log 4).

Proof. Fix x, y ∈ Bn. Because fBn ⊂ Bn, Theorem 3.4 and Theorem 3.5(1) imply
that

µfBn(fx, fy) ≥ µBn(fx, fy) = γn(1/ tanh b)

where b = ρ(fx, fy)/2. By Theorem 5.5(1) and Theorem 3.5(1)

µfBn(fx, fy) ≤ KµBn(x, y) = Kγn(1/ tanh a)

where a = ρ(x, y)/2. Theorem 5.2(1) implies (1). Part (2) follows from the above
inequalities (cf. (2.34) and (2.40))

2n−1cnρ(fx, fy) ≤ γn(1/ tanh b)

and γn(1/ tanh a) ≤ 2n−1cnµ(e−ρ(x,y)) ≤ 2n−1cn(ρ(x, y) + log 4).

�
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5.7. Corollary. Let f : Bn → Bn K-quasiconformal, f(0) = 0 and fBn = Bn.
Then

ϕ1/K,n(|x|) ≤ |f(x)| ≤ ϕK,n(|x|).

Proof. [AVV, 2.16] implies that tanh
ρ(0, f(x))

2
= |f(x)|.

The second inequality follows from Theorem 5.6(1). Because fBn = Bn and f is
injection we may apply Theorem 5.6(1) also to the K-quasiconformal map f−1 :
Bn → Bn, obtaining

|x| = |f−1(f(x))| ≤ ϕK,n(|f(x)|)
observing that ϕ−1

K,n = ϕ1/K,n this yields the first inequality. �

Theorem 5.6 shows that a K-quasiconformal map f : Bn → Bn is uniformly
continuous as a map f : (Bn, ρ) → (Bn, ρ), with the modulus of continuity

(5.8) ωf = 2arctanhϕK,n(tanh
t

2
).

In the case fBn 6= Bn it is natural to expect that here the target space (Bn, ρ)
could be replaced by (fBn, kfBn).

5.9. Example. We show that the analytic function f : B2 → B2 \ {0} = fB2,

f(z) = exp

(

z + 1

z − 1

)

, z ∈ B2, is not uniformly continuous as a map f : (B2, ρ) →
(fB2, kfB2). Let xj = (ej − 1)/(ej + 1), j = 1, 2, 3, . . . then [Vu, 2.16] implies
ρ(0, xj) = j and thus ρ(xj, xj+1) = 1. Write Y = B2 \ {0}. Because f(xj) =
exp(−ej) we obtain by [Vu, 3.5]

kY (fxj, fxj+1) ≥ jY (fxj, fxj+1) = log(1 + (exp ej+1) − exp(−ej+1))

= ej+1 − ej → ∞, j → ∞.

Because ρ(xj, xj+1) = 1, we see that f : (B2, ρ) → (Y, kY ) is not uniformly continu-
ous.

5.10. Theorem. Let f : Bn → Bn be K-quasiregular, N = N(f,Bn) < ∞,
x, y ∈ Bn, f(x) 6= f(y), ρ = ρ(x, y), ρ

′

= ρ(fx, fy). Then

(1) sinh2 ρ
′

2
≤ τ−1

(

1
NK

τ(sinh2 ρ
2
)
)

,

(2) tanh ρ
′

4
≤ 2

(

tanh ρ
4

)1/(NK)
.

5.11. Theorem. Let f : Bn → Bn be K-quasiconformal and f(0) = 0. Then
∀x ∈ Bn

A(|f(x)|) ≤ 2A(|x|)1/K : A(t) = t/(1 +
√

1 − t2).

Proof. Use Theorem 5.10(2) and

tanh

(

1

4
log

1 + s

1 − s

)

= tanh

(

1

2
arctanh

)

= A(s).
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�

5.12. Remark. Putting together Lemma 5.2, Theorem 5.7 and Theorem 5.11 one
can prove: If f : Bn → Bn = fBn, f(0) = 0 is K-quasiconformal then

41−K2 |x|K ≤ |f(x)| ≤ 41−1/K2 |x|1/K .

5.13. Theorem. Let f : Rn → Rn be a K-quasiconformal map with f(0) = 0. Then

|f(x) − f(y)|
min{|f(x)|, |f(y)|} ≤ τ−1

n

(

1

K
√

2
τn

( |x− y|
min{|x|, |y|}

))

∀x, y ∈ Rn \ {0}.

Proof. Let D = Rn \ {0}, D′

= Rn \ {0}. Then fD = D
′

and ∀x, y ∈ D. Corollary
3.24 and Theorem 3.27 implies that

λD(x, y) ≥ τn(rD(x, y))

[

because λD(x, y) ≥ τn

( |x− y|
min{|x|, |y|}

)]

λD
′ (fx, fy) ≤

√
2τn(rD

′ (fx, fy))

λD(x, y) ≤ KλD′ (fx, fy).

These imply the assertion

rD
′ (fx, fy) ≤ τ−1

n

(

1

K
√

2
τn(rD(x, y))

)

.

�

5.14. Theorem. Let G ⊂ Rn be c-QED and f : G→ fG ⊂ Rn be K-quasiconformal.
Then for all x, y ∈ G, f(x) 6= f(y)

rfG(fx, fy) ≤ τ−1
n (dτn(rG(x, y))), d =

c

2nK
.

Proof. Write r = rG(x, y)
it follows from Lemma 2.23(1) that

(5.15) λG(x, y) ≥ cτn(4r2 + 4r) ≥ 21−ncτn(r),

Theorem 3.27 yields

(5.16) λfG(fx, fy) ≤
√

2τn(rfG(fx, fy)).

Inequalities (5.15) and (5.16) together imply the assertion. �

5.17. Example. We show that the c-QED hypothesis in Theorem 5.14 can not be
left out. Let G = B2 \ [0, 1) and f : G → fG = B2 ∩ H2 be the conformal map
f(z) =

√
z , z ∈ G. Write xj = (1/2, 1/j), yj = (1/2,−1/j) j = 4, 5, . . .. Then

rG(xj, yj) = 2 but it is easy to see that rfG(f(zj), f(yj)) → ∞, j → ∞. (Note: It is
easy to show that G is not c-QED for any c > 0).
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5.18. Remark. Let f : Bn → Bn, f(0) = 0, be K-quasiconformal. Then
sinh2(ρ(x, 0)/2) = |x|2/(1 − |x|2) = A(|x|) and Theorem 5.10(1) yields

(5.19) A(|f(x)|) ≤ τ−1
n (τn(A(|x|))/K) .

Because 2n−1τn(s) = γ(
√

1 + s) we see that 2n−1τn(A(t)) = γ(1/
√

1 − t2). Therefore
(5.19) is equivalent to

γ(1/
√

1 − |fx|2) ≥ γ(1/
√

1 − |x|2) 1

K
,

which implies

(5.20) 1/(1 − |fx|2) ≤ γ−1(γ(1/
√

1 − |x|2)/K)2 = ϕ1/K,n(
√

1 − |x|2)−2.

The inequality (5.20) implies that

(5.21) |f(x)|2 ≤ 1 − ϕ1/K,n(
√

1 − |x|2)2.

For n = 2, 1 − ϕ1/K,2(
√

1 − r2)2 ≡ ϕK,2(r)
2, hence (5.21) is the same as the bound

of Corollary 5.7. For n ≥ 3, (5.21) improves the Schwarz lemma.

6. Quadruples and quasiconformal maps

The absolute ratio (see Definition 2.58) is invariant under Möbius transformations
of R

n
. In this section we will prove a corresponding result for K-quasiconformal

mappings. As K tends to 1, this result reduces to the aforementioned property of
Möbius transformations.
We begin with the following lemma.

6.1. Lemma. Let f : R
n → R

n
be K-quasiconformal with 0 and ∞ as fixed points.

Then for 0 < |z| < |x|,

BK,n

( |z|
|x|

)

≤ |f(z)|
|f(x)| ≤ CK,n

( |z|
|x|

)

,

where

(6.2)















CK,n(t) =
ϕK,n(

√
t)2

1 − ϕK,n(
√
t)2
,

BK,n(t) = ϕ1/K,n

(√

t
1+t

)2

= C−1
K,n(t),

for 0 < t < 1. In particular,
|f(x)|
|f(y)| ≤

CK,n(t)

BK,n(t)

whenever t ∈ (0, 1) and |x| = |y| > 0.

Proof. We prove only upper bound for |f(z)|/|f(x)|, since the lower bound is ob-
tained from it by inversion. Let ∆ = ∆([0, z], [x,∞]). Then by Lemma 2.39 and
Theorem 2.31,

M(∆) ≤ τn((|x|/|z|) − 1) = 21−nγn

(

√

|x|/|z|
)

.
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Since f(0) = 0, f(∞) = ∞ we obtain, by spherical symmetrization (see Theorem
2.37 and Theorem 2.31),

M(f(∆)) ≥ τn

( |f(x)|
|f(z)|

)

= 21−nγn

(
√

1 +
|f(x)|
|f(z)|

)

.

Those two inequalities together with the estimate M(f(∆)) ≤ KM(∆) (see 4.12),
yield

γn

(
√

1 +
|f(x)|
|f(z)|

)

≤ Kγn

(
√

|(x)|
|(z)|

)

.

Since γn is strictly decreasing, the result follows from Definition 5.1(1). �

For n ≥ 2, 1 ≤ K <∞, t ∈ [0,∞), as in [AVV, 9.13(3)], we let

(6.3)







η∗K,n(t) = sup{|f(x)| : |x| ≤ t, f ∈ QCK(R
n
)},

f(0) = 0, f(e1) = e1, f(∞) = ∞.

It is well known ([A],[LV, pp.80-82, 105-108], and [AVV, 9.33]) that

(6.4) η∗K,2(t) = ηK,n(t) ≤ η∗Kn−1,n(t)

for all n ≥ 2, k ≥ 1, t ∈ (0,∞) where ηK,2 is as in [AVV, 10.3].
More precisely, following [LVV, pp.9.10], we will find the extremalK-quasiconformal
mapping for (6.3) with t = 1, which was used by Agard [A] to prove the iden-
titiy in (6.4). The map takes the upper half plane into itself (hence, by reflec-
tion, R2 onto itself), with the quadruple −1, 0, 1,∞ going onto the quadruple
−λ(K), 0, 1,∞. The construction is as follows: First, an elliptic function maps the
quadrilateral H(−1, 0, 1,∞) conformally onto a square with vertices corresponding.
Next, an affine mapping with constant dilatation K takes this square onto a rec-
tangle that is conformally equivalent (by an elliptic function) to the quadrilateral
H(λ(K), 0, 1,∞). The composed mapping ot H onto itself is, after reflection in the
real axes, the desired extremal mapping of R2. Hence, by Theorem [AVV, 9.33],
the rotation F of the mapping f about the real axes is a Kn−1-quasiconforaml
self-mapping of Rn, so that the inequality in (6.4) holds.

6.5. Lemma. The following inequalities hold for n ≥ 2, K ≥ 1:

(1) η∗K,n(1) = sup

{ |f(x)|
|f(y)| : |x| = |y| > 0, f ∈ F(n,K)

}

,

(2) η∗K,n(1) = sup

{ |f(x)|
|f(y)| : |x| = |y| = t, f ∈ F(n,K)

}

,

for each t > 0, where F(n,K) = {f ∈ QCK(R
n
) : f(0) = 0, f(∞) = ∞}.

Proof. First, if we denote the right side of (1) by a, it is clear that η∗K,n(1) ≤ a.
Now fix b < a and choose f ∈ F(n,K), and xo, yo ∈ Rn \ {0} with |xo| = |yo| and
|f(xo)|/|f(yo)| > b. Let hj : Rn → Rn be similarities with hj(0) = 0, j = 1, 2,
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and h1(e1) = yo, h2(f(yo)) = e1. Then g ≡ h2 ◦ f ◦ h1 satisfies g(0) = 0, g(e1) =
e1, g(∞) = ∞, and

|g(h−1
1 (xo))| = |h2(f(xo))| = |f(xo)|/|f(yo)| > b.

Since b < a was arbitrary, we have proved that η∗K,n(1) ≥ a, and (1) follows. Part
(2) follows from (1) by Möbius invariance of the absolute ratio (see (2.60)). �

6.6. Theorem. With notation as in Definitions 5.1(1), (6.2) and (6.3), the following
inequalities hold for n ≥ 2 and K ≥ 1:

(1) η∗K,n(t) ≤ η∗K,n(1)ϕ∗
K,n(t), 0 ≤ t ≤ 1,

(2) η∗K,n(t) ≤ η∗K,n(1)/ϕ1/K,n(1/t), t ≤ 1,

(3) η∗K,n(1) ≤ inf0<t<1
CK,n(t)

BK,n(t)
.

Proof. For part(1) let f : Rn → Rn be a K-quasiconformal mapping with f(0) = 0
and f(e1) = e1. Then the function g : Bn → g(Bn) ⊂ Bn defined by g(x) =
f(x)/η∗K,n(1), satisfies |g(x)| ≤ ϕ∗

K,n(|x|), by Definition 5.1(3), so (1) follows.

In part (2) we may assume that t > 1. Fix xo with |xo| = t, yo = f(xo) so that
|yo| = |f(xo)| = max{|f(x)| : |x| = t}. We may assume that |yo| > η∗K,n(1) = c,

say. Let g = f−1. Then g(Bn(|yo|)) ⊃ Bn(t), and g(Bn(c)) ⊃ Bn. Let h(x) =
x∗ = x/|x|2 be reflection in Sn−1, and let F = h ◦ g ◦ h ( note that h = h−1).
Then F ∈ QCK(R

n
), f(0) = 0, f(e1) = e1, F (∞) = ∞, and F (Bn(1/c)) ⊂ Bn,

F (Bn(1/yo)) ⊂ Bn(1/t). Hence, by Definition 5.1(3) and Theorem [AVV, 13.2(1)],

1/t = 1/|g(yo)| = |F (y∗o)| ≤ ϕ∗
K,n(c/|yo|) ≤ ϕK,n(c/|yo|),

so that |yo| = |f(xo)| ≤ c/ϕ1/K,n(1/t). The result follows when we take the supre-
mum over all f .
Part (3) follows from Lemmas 6.1 and 6.5(2). �

The next result improves Theorem 6.6 for n = 2.

6.7. Theorem. For K ≥ 1 let f be a K- quasiconformal automorphism of the plane

R
2
. Then

1

λ(K)
min{t1/K , tK} ≤ |f(a), f(b), f(c), f(d)| ≤ λ(K) max{t1/K , tK}

for each ordered quadruple of distinct points a, b, c, d in the plane, where t = |a, b, c, d|.
Moreover the inequalities are sharp for each K ≥ 1.

Proof. By symmetry it is sufficient to prove the upper bound. By Möbius invariance
of (absolute) cross ratio (2.60), we may assume that a = f(a) = 0, b = f(b) = 1,
and d = f(d) = ∞. Then, by (6.3), (2.44), (6.4), and Theorem [AVV, 10.24],

|f(a), f(b), f(c), f(d)| = |f(c)| ≤ λ(K) max{|c|1/K , |c|K}
= λ(K) max{t1/K , tK}.
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Finally, let g be the extremal K-quasiconforaml automrphism (see [AVV, 9.25]) of
the plane that maps the ordered quadruple −1,∞, 0, 1 onto −λ(K),∞, 0, 1. Since
|−1,∞, 0, 1| = 1 and |−λ(K),∞, 0, 1| = λ(K), the sharpness assertion follows. �

Next, we derive an explicit upper bound for η∗K,n(1).

6.8. Theorem. For n ≥ 2 and K ≥ 1,

η∗K,n(1) ≤ exp(4K(K + 1) ≤
√
K − 1).

Proof. By Corollary [AVV, 8.74(1)] we have 1 − ϕK,n(
√
t)2 ≥ 1 − λ

2(1−α)
n tα. If

1 − λ
2(1−α)
n tαo = 1/K, then to = (λ

2(α−1)
n (K − 1)/K)β, so to ≤ (K − 1)/K. Thus

1 − ϕK,n(
√
t)2 ≥ 1/K for 0 < t ≤ to. Hence, by Theorem 6.6(3) and Corollary

[AVV, 8.74(1),(2)], we have

η∗K,n(1) ≤ CK,n(to)

BK,n(to)
≤ Kλ2(β−α)

n tα−β
o (1 + to)

β

≤ Kλ2(β−α)
n t(α−β)

o

(

2 − 1

K

)β

= Kβ(β−1)(K − 1)1−β2

λ2(β2−1)
n (2K − 1)β ≡ E.

Since maxx>0 x
−x = e1/e by elementary calculus, it follows that

(K − 1)1−K ≤ exp
(

(2/e)
√
K − 1

)

,

where we have used x =
√
K − 1. We will also need the estimate λβ−1

n ≤ 2K−1KK

from Lemma [AVV, 8.74(2)]. The rest of the proof is divided into two cases.

Case 1. If K ≥ 2, then (K − 1)1−β2 ≤ 1 and

E ≤ KK(K−1)λ2(β2−1)
n (2K − 1)K

≤ KK(K−1)
(

2K−1KK
)2(K+1)

(2K − 1)K

= KK(K−1)22(K2−1)K2K(K+1)(2K − 1)K

= exp[(3K2 +K) logK +K log(2K − 1) + 2(K2 − 1) log 2]

< exp[(3K2 +K)
√
K − 1 +K

√
2
√
K − 1 +

√
2(K2 − 1)]

< exp[(3K2 + 3K)
√
K − 1 + 2(K2 − 1)]

= exp[
√
K − 1(K + 1)(3K + 2

√
K − 1)]

≤ exp
(

4K(K + 1)
√
K − 1

)

,

where we have used the inequality log x ≤
√
x− 1, x > 1.
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Case 2. Next, if 1 < K ≤ 2, we have

(K − 1)1−β ≤ (K − 1)1−K ≤ exp

(

2

e

√
K − 1

)

,

so

E ≤ KK(K−1)
(

2K−1KK
)2(K+1)

(2K − 1)K exp

(

2

e
(K + 1)

√
K − 1

)

= KK(3K+1)4(K−1)(K+1)(2K − 1)K exp

(

2

e
(K + 1)

√
K − 1

)

= exp[(3K2 +K) logK + (K − 1)(K + 1) log 4 +
2

e
(K + 1)

√
K − 1 +K log(2K − 1)]

≤ exp[(3K2 +K)
K − 1√

K
+

2K(K − 1)√
K

+ (K − 1)(K + 1) log 4 +
2

e
(K + 1)

√
K − 1]

= exp[3(K − 1)(K + 1)
√
K + (K − 1)(K + 1) log 4 +

2

e
(K + 1)

√
K − 1]

= exp

{

(K + 1)
√
K − 1

[

(

3
√
K + log 4

)√
K − 1 +

2

e

]}

.

Then, by the arithmetic-geometric mean inequality [AVV, (1.42)], and the fact
that 0 < K − 1 ≤ 1 and 2 < e, we have

3
√

K(K − 1) + (log 4)
√
K − 1 +

2

e
≤ 3

2
(2K − 1) + log 4 + 1 < 3K + 1 < 4K,

so E ≤ exp(4K(K + 1))
√
K − 1, as desired. �
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