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Abstract

This PhD thesis in Mathematics belongs to the field of Geometric Function The-
ory. The thesis consists of four original papers. The topic studied deals with quasi-
conformal mappings and their distortion theory in Euclidean n-dimensional spaces.
This theory has its roots in the pioneering papers of F. W. Gehring and J. Väisälä
published in the early 1960’s and it has been studied by many mathematicians
thereafter.

In the first paper we refine the known bounds for the so-called Mori constant and
also estimate the distortion in the hyperbolic metric.

The second paper deals with radial functions which are simple examples of qua-
siconformal mappings. These radial functions lead us to the study of the so-called
p-angular distance which has been studied recently e.g. by L. Maligranda and S.
Dragomir.

In the third paper we study a class of functions of a real variable studied by P.
Lindqvist in an influential paper. This leads one to study parametrized analogues
of classical trigonometric and hyperbolic functions which for the parameter value
p = 2 coincide with the classical functions. Gaussian hypergeometric functions have
an important role in the study of these special functions. Several new inequalities
and identities involving p-analogues of these functions are also given.

In the fourth paper we study the generalized complete elliptic integrals, modular
functions and some related functions. We find the upper and lower bounds of these
functions, and those bounds are given in a simple form. This theory has a long
history which goes back two centuries and includes names such as A. M. Legendre,
C. Jacobi, C. F. Gauss. Modular functions also occur in the study of quasiconformal
mappings.

Conformal invariants, such as the modulus of a curve family, are often applied
in quasiconformal mapping theory. The invariants can be sometimes expressed in
terms of special conformal mappings. This fact explains why special functions often
occur in this theory.
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1. Introduction

Classical Analysis is a very wide area of contemporary mathematics and the topics
of the papers I-IV may be specified by saying that papers I and II are motivated by
geometric function theory whereas papers III and IV deal mainly with mathematical
special functions.

We will now make some remarks about the history of these two topics from the
point of view of this thesis and list some of the key references. A survey of the topics
of geometric function theory discussed below is given in several recent papers, see e.g.
F.W. Gehring [19] and M. Vuorinen [32]. The basic references are the monographs of
Lehto and Virtanen [26], Väisälä [31] and Vuorinen [33]. The handbook of Kühnau
[25] provides a collection surveys of dealing with geometric function theory and
quasiconformal mappings in particular. For the theory of special functions our
main reference is the monograph of Anderson, Vamanamurthy and Vuorinen [9]
and for the most recent results the papers [8], [10].

In the early 1960’s, F. W. Gehring and J. Väisälä originated the theory of qua-
siconformal mappings in the Euclidean n-space. Their work generalized the theory
of quasiconformal mappings in the plane due to H. Grötzsch 1928, O. Teichmüller
in the period 1938-44, and L. Bers, L. V. Ahlfors from the early 1950’s.

The study of extremal problems of geometric function theory leads to the study
of the special functions that have crucial role in the distortion theory of two-
dimensional quasiconformal mappings. Conformal invariants can often be closely
associated with particular conformal mappings. This leads to the connection be-
tween conformal invariants and special functions, expressed in terms of a conformal
mapping of the upper half plane onto a rectangle.

Quasiconformal maps are parametrized by a number K ≥ 1, the maximal dilata-
tion, which roughly speaking measures how far the maps are from being conformal:
conformal maps are the special case K = 1. Because quasiconformal maps are dif-
ferentiable almost everywhere, off a set Z of a measure zero, the local behavior of
the mapping at the points of Z is of particular importance. Another problem of
particular importance is to study the closeness of quasiconformal maps to conformal
maps. For the study of these two topics special functions have an important role as
we will see in this thesis, for instance in papers I and II.

2. Mori’s theorem

Many authors have proved distortion theorems for quasiconformal and quasiregu-
lar mappings in the plane or in the Euclidean n-space, which deal with the estimates
for the modulus of continuity and the ways distances between points are changed un-
der these mappings. The Hölder continuity, the counterpart of the Schwarz lemma
for quasiconformal mappings and Mori’s theorem are some of the important exam-
ples. A. Mori [30] gave a result, known as Mori’s theorem. He showed that if f is a
K-quasiconformal mapping of the unit disk B2 onto itself with f(0) = 0, then

|f(x)− f(y)| ≤ 16|x− y|1/K
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for all x, y ∈ B2. Some weaker results of the same type had been proved earlier by
L. V. Ahlfors and M. A. Lavrentieff. In the case n = 3 F. W. Gehring [18, Theorem
14, p.387] proved that quasiconformal mappings are Hölder-continuous. In 1988 this
problem was studied by G. D. Anderson and M. K. Vamanamurthy for the higher
dimensional case [6].

In the same year, R. Fehlmann and M. Vuorinen [16] studied the least constant
M(n,K) such that for every K-quasiconformal mapping f : Bn → Bn = f(Bn) with
f(0) = 0 we have for all x, y ∈ Bn

(2.1) |f(x)− f(y)| ≤M(n,K)|x− y|α, α = K1/(1−n).

They also found concrete upper bounds for M(n,K) and showed that M(n,K)→ 1
when K → 1 unlike Mori’s constant 16 or the constant in [6]. On the other hand
as A. Mori pointed out [30], letting K →∞ we see that the constant 16 cannot be
replaced by a smaller constant. P. Hästö [20] proved a counterpart of the Fehlmann-
Vuorinen result for the chordal metric.

A domain D in Rn
is called a ring domain or, briefly, a ring, if Rn \ D consists

of two components C0 and C1, and it is denoted by R(C0, C1). The Grötzsch ring
RG(s), s > 1 is defined by

RG(s) = R(Bn
, [s e1,∞]), s > 1 .

The conformal modulus of the Grötzsch ring is denoted by

Mn(r) = modRG,n(1/r), 0 < r < 1

(see [9, (8.35)]). The capacity of the Grötzsch ring is denoted by γn [33, (5.52)].
The Grötzsch ring constant λn is defined by

log λn = lim
r→0+

(Mn(r) + log r)

and λn ∈ [4, 2en−1) , λ2 = 4, [4], [33, p.89].
The main results of this paper are

2.2. Theorem. (1) For n ≥ 2, K ≥ 1, let M(n,K) be as in (2.1). Then M(n,K) ≤
T (n,K)

T (n,K) = inf{h(t) : t ≥ 1} , h(t) = (3 + λβ−1
n tβ)t−αλ2(1−α)

n , t ≥ 1 ,

where α = K1/(1−n) = 1/β, and λn ∈ [4, 2en−1) , λ2 = 4, is the Grötzsch ring
constant [4], [33, p.89].

(2) There exists a number K1 > 1 such that for all K ∈ (1, K1) the function h
has a minimum at a point t1 with t1 > 1 and

T (n,K) ≤ h(t1) =

[
31−α2

(β − α)α
2

αα2 λα−α
2

n + λβ−1
n

(
(3α)αλα−1

n

(β − α)α

)β−α]
λ2(1−α)
n .
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Moreover, for β ∈ (1,min{2, K1/(n−1)
1 }) we have

h(t1) ≤ 31−α2

25(1−α)K5

(
3

2
4
√
β − α + exp(

√
β2 − 1)

)
.

In particular, h(t1)→ 1 when K → 1 .

The hyperbolic metric ρ(x, y), x, y ∈ Bn , of the unit ball is given by (cf. [24],
[33])

th2ρ(x, y)

2
=

|x− y|2
|x− y|2 + t2

, t2 = (1− |x|2)(1− |y|2) .

For n ≥ 2 and K > 0, the distortion function ϕK,n : [0, 1]→ [0, 1] defined by

ϕK,n(r) =
1

γ−1
n (Kγn((1/r)))

, r ∈ (0, 1),

and ϕK,n(0) = 0, ϕK,n(1) = 1 is a homeomorphism. We denote ϕK,2 = ϕK .

2.3. Theorem. If f : B2 → R2 is a non-constant K-quasiregular mapping with
fB2 ⊂ B2, and ρ is the hyperbolic metric of B2 , then

ρ(f(x), f(y)) ≤ c(K) max{ρ(x, y), ρ(x, y)1/K}
for all x, y ∈ B2 where c(K) = 2arth(ϕK(th1

2
)) and

K ≤ u(K − 1) + 1 ≤ log(ch(Karch(e))) ≤ c(K) ≤ v(K − 1) +K

with u = arch(e)th(arch(e)) > 1.5412 and v = log(2(1 +
√

1− 1/e2)) < 1.3507. In
particular, c(1) = 1 .

The notation ch, th and arch, arth denote the hyperbolic cosine, tangent and
their inverse functions, respectively.

Observe that both Theorems 2.2 and 2.3 are asymptotically sharp when K → 1.
The proof of sharpness is based on inequalities for special functions.

3. Norm inequalities

A geometric generalization of the inner product spaces was given by Fréchet [17],
in 1935. It was proved by P. Jordan and J. von Neumann [23] that normed linear
spaces satisfying the parallelogram law. There are interesting norm inequalities
connected with characterizations of inner product spaces. In 1936, the concept of
angular distance

α(x, y) =

∣∣∣∣
x

|x| −
y

|y|

∣∣∣∣
between nonzero elements x and y in the normed space was introduced by J. A.
Clarkson [13]. In 2006, L. Maligranda considered the p-angular distance

αp(x, y) =

∣∣∣∣
x

|x| |x|
p − y

|y| |y|
p

∣∣∣∣ , p ∈ R

as a generalization of the concept of angular distance. He proved in [29, Theorem
2] the following theorem in the context of normed spaces.
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3.1. Theorem.

αp(x, y) ≤





(2− p) |x− y|max{|x|p, |y|p}
max{|x|, |y|} if p ∈ (−∞, 0) and x, y 6= 0;

(2− p) |x− y|
(max{|x|, |y|})1−p if p ∈ [0, 1] and x, y 6= 0;

p (max{|x|, |y|})p−1|x− y| if p ∈ (1,∞).

Thereafter, S. S. Dragomir [14] proved in 2009 the following upper bound for the
p-angular distance for nonzero vectors x, y . Numerical tests reported in paper II
show that sometimes his bounds are better than those in Theorem 3.1.

3.2. Theorem.

αp(x, y) ≤





|x− y|(max{|x|, |y|})p−1 + ||x|p−1 − |y|p−1|min{|x|, |y|}
if p ∈ (1,∞) ;

|x− y|
(min{|x|, |y|})1−p +

∣∣|x|1−p − |y|1−p
∣∣min

{ |x|p
|y|1−p ,

|y|p
|x|1−p

}

if p ∈ [0, 1] ;

|x− y|
(min{|x|, |y|})1−p +

||x|1−p − |y|1−p|
max{|x|−p|y|1−p, |y|−p|x|1−p} ,

if p ∈ (−∞, 0) .

Studying sharp constants connected to the p-Laplace operator J. Byström [12,
Lemma 3.3] proved in 2005 the following result.

3.3. Theorem. For p ∈ (0, 1) and x, y ∈ Rn, we have

αp(x, y) ≤ 21−p|x− y|p

with equality for x = −y .
We define the function

Aa,b(x) =

{
|x|a−1x if |x| ≤ 1
|x|b−1x if |x| ≥ 1 ,

for a, b > 0, x ∈ Rn. The following are the main results of the paper II.

3.4. Theorem. Let 0 < a ≤ 1 ≤ b and

C(a, b) = sup
|x|≤|y|

Q(x, y),

where

Q(x, y) =
|A(x)−A(y)|
|A(x)−A(z)| , x, y ∈ Rn \ {0} with x 6= y ,
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and

z =
x

|x|(|x|+ |x− y|).

Then

C(a, b) =
2

3a − 1
and lim

a→1
C(a, b) = 1.

3.5. Theorem. For all x, y ∈ Rn and p ∈ (0, 1)

αp(x, y) ≤ |Ap,1/p(x)−Ap,1/p(y)| ,
and furthermore, if |x| ≤ |y|, we have also

(3.6) αp(x, y) ≤ |Ap,1/p(x)−Ap,1/p(y)| ≤ 2

3p − 1
|Ap,1/p(x)−Ap,1/p(z)|

where z is as in Theorem 3.4.

Computer tests reported in paper II shows that none of the above bounds in
Theorem 3.1-3.3 and 3.5 for αp(x, y) is better than others. In some cases our bound
(3.6) is better than the bounds in Theorems 3.1 3.3.

4. Eigenfunctions

An eigenfunction of a linear operator A, defined on some function space is any
nonzero function f in that space which returns from the operator exactly as is,
except for a multiplicative scaling factor. A complete set of eigenfunctions is in-
troduced within the Riemann-Hilbert formation for spectral problems associated to
some solvable nonlinear evolution equations. The eigenfunctions of one dimensional
p-Laplacian operator

{
−(|u′

(x)|p−2u
′
(x))

′
= λ|u(x)|p−2u(x),

u(0) = 0, u(πp) = 0, 0 ≤ x ≤ πp

are of the form

sinp(x), sinp(2x), sinp(3x), . . . ,

where πp = 2π/(p sin(π/p)) and sinp is the inverse function of arcsinp to be defined
below. In a highly cited paper P. Lindqvist [27] studied in 1995 these eigenfunc-
tions and introduced the generalization form of the trigonometric and hyperbolic
functions. With J. Peetre [28] he also studied the generalization of Euclidean dis-
tance, which is called p-distance(length). Recently P. J. Bushell and D. E. Edmunds
studied these p-analogues functions and introduced many relations [11].

Given complex numbers a, b and c with c 6= 0,−1,−2, . . ., the Gaussian hyper-
geometric function is the analytic continuation to the slit place C \ [1,∞) of the
series

F (a, b; c; z) = 2F1(a, b; c; z) =
∞∑

n=0

(a, n)(b, n)

(c, n)

zn

n!
, |z| < 1.

-
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Here (a, 0) = 1 for a 6= 0, and (a, n) is the shifted factorial function or the Appell
symbol

(a, n) = a(a+ 1)(a+ 2) · · · (a+ n− 1)

for n ∈ Z+.
We consider the following homeomorphisms

sinp : (0, ap)→ I, cosp : (0, ap)→ I, tanp : (0, bp)→ I,

sinhp : (0, cp)→ I, tanhp : (0,∞)→ I ,

where I = (0, 1) and

ap =
πp
2
, bp =

1

2p

(
ψ

(
1 + p

2p

)
− ψ

(
1

2p

))
= 2−1/pF

(
1

p
,
1

p
; 1 +

1

p
;
1

2

)
,

cp =

(
1

2

)1/p

F

(
1 ,

1

p
; 1 +

1

p
;
1

2

)
.

For x ∈ I, their inverse functions are defined as

arcsinp x =

∫ x

0

(1− tp)−1/pdt = xF

(
1

p
,
1

p
; 1 +

1

p
;xp
)

= x(1− xp)(p−1)/pF

(
1, 1; 1 +

1

p
;xp
)
,

arctanp x =

∫ x

0

(1 + tp)−1dt = xF

(
1,

1

p
; 1 +

1

p
;−xp

)
,

arsinhp x =

∫ x

0

(1 + tp)−1/pdt = xF

(
1

p
,
1

p
; 1 +

1

p
;−xp

)
,

artanhp x =

∫ x

0

(1− tp)−1dt = xF

(
1 ,

1

p
; 1 +

1

p
;xp
)
,

and by [11, Prop 2.2] arccosp x = arcsinp((1− xp)1/p). For the particular case p = 2
one obtains the familiar elementary functions [9, 1.20].

Some of the main results of this paper read as follows

4.1. Theorem. For p > 1 and x ∈ (0, 1), we have

(1)

(
1 +

xp

p(1 + p)

)
x < arcsinp x <

πp
2
x,

(2)

(
1 +

1− xp
p(1 + p)

)
(1− xp)1/p < arccosp x <

πp
2

(1− xp)1/p,

(3)
(p(1 + p)(1 + xp) + xp)x

p(1 + p)(1 + xp)1+1/p
< arctanp x < 21/p bp

(
xp

1 + xp

)1/p

.

4.2. Theorem. For p > 1 and x ∈ (0, 1), we have

(1) z
(

1 + log(1+xp)
1+p

)
< arsinhp x < z

(
1 + 1

p
log(1 + xp)

)
, z =

(
xp

1 + xp

)1/p

,
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(2) x
(

1− 1
1+p

log(1− xp)
)
< artanhp x < x

(
1− 1

p
log(1− xp)

)
.

5. Generalized complete elliptic integrals

In 1655, John Wallis first used the term “hypergeometric series”. L. Euler studied
hypergeometric series, but the first full systematic treatment was given by J. C. F.
Gauss in 1813. Gauss hypergeometric function F (a, b; c; z) is a special function
represented by the hypergeometric series. The investigation of integral addition
theorems introduced the discovery of elliptic functions. An addition theorem for a
function f is a formula expressing f(u+v) in terms of f(u) and f(v). A. M. Legendre
investigated elliptic integrals, he showed that integrations of the elliptic integral∫
R(t)/

√
P (t) dt, where R(t) is a rational function of t and P (t) is a polynomial of

fourth degree, can be reduced to the integration of the three integrals
∫

dx√
1− x2

√
1− l2x2

,

∫
x2 dx√

1− x2
√

1− l2x2
,

∫
dx

(x− a)
√

1− x2
√

1− l2x2
,

which he called the elliptic integrals of the first, second, and third kinds, respectively.
The study of the elliptic integrals of the first kind introduces several special

functions. In [5], [21], these special functions are generalized, and many results are
given there. We introduce some notation here. For 0 < a ≤ 1/2 and a, r ∈ (0, 1),
the generalized elliptic integrals are defined by

Ka(r) =
π

2
F (a, 1− a; 1; r2), Ea(r) =

π

2
,

with K1/2 = K and E1/2 = E. The decreasing homeomorphism µa : (0, 1)→ (0,∞)
is defined by

(5.1) µa(r) =
π

2 sin(π a)

Ka(r
′
)

Ka(r)

for r ∈ (0, 1) and r
′

=
√

1− r2.
H. Alzer and S.-L. Qiu have given the following bounds for K in [3, Theorem 18]

(5.2)
π

2

(
artanh(r)

r

)3/4

< K(r) <
π

2

(
artanh(r)

r

)
.

In the following theorem we generalize their result. For the case a = 1/2 our
upper bound is better than their bound.

5.3. Theorem. For p ≥ 2 and r ∈ (0, 1), we have

π

2

(
artanhp(r)

r

)1/2

<
π

2

(
1− p− 1

p2
log(1− r2)

)

< Ka(r) <
π

2

(
1− 2

p πp
log(1− r2)

)
,

where a = 1/p and πp = 2π/(p sin(π/p)), see [27].
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5.4. Theorem. The function f(x) = 1/Ka(1/ cosh(x)) is increasing and concave
from (0,∞) onto (0, 2/π). In particular,

Ka(r) Ka(s)

Ka(rs/(1 + r′s′))
≤ Ka(r) + Ka(s) ≤

2 Ka(r) Ka(s)

Ka(
√
rs/(1 + rs+ r′s′))

≤ 2 Ka(r) Ka(s)

Ka(rs)
,

for all r, s ∈ (0, 1), with equality in the third inequality if and only if r = s.

5.5. Theorem. For p ≥ 2 and r ∈ (0, 1), let

lp(r) =
(πp

2

)2
(
p2 − (p− 1) log r2

p πp − 2 log r′2

)
and up(r) =

(p
2

)2
(

p πp − 2 log r2

p2 − (p− 1) log r′2

)
.

(1) The following inequalities hold

lp(r) < µa(r) < up(r) ,

where a = 1/p.
(2) For p = 2 we have

u2(r) <
4

π
l2(r) .

6. Conclusions and open problems

The study of quasiconformal mappings in paper II and IV shows that conformal
invariants together with special functions provide a powerful tool when examining
the case when mappings have a small maximal dilatation K > 1. It is natural to
expect that further progress is possible using this approach. This research has led
to several open problems and we list here some of them.

1. What is the sharpest constant for the Theorem 2.3 [I, Theorem 1.10] in the
higher dimensional case?

2. Do there exist analogues of addition formulas for the p-functions e.g. in the
form of an inequality?

3. Let lp(r) and up(r) be as in Theorem 5.5. Is it is true that up(r) < (4/πp)lp(r)?
For p = 2 see [IV, Theorem 1.9].

Also the publications [5], [9] and IV list a few open problems.
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(2001), 5–26, ISBN 951-39-1120-9.

[9] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen: Conformal invariants,
inequalities and quasiconformal maps. J. Wiley, 1997, 505 pp.

[10] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen: Topics in special func-
tions II. - Conform. Geom. Dyn. 11 (2007), 250–270.

[11] P. J. Bushell and D. E. Edmunds: Remarks on generalised trigonometric functions.
Rocky Mountain J. Math. (to appear), http://www.maths.sussex.ac.uk/preprints/
document/SMRR-2009-18.pdf

[12] J. Byström: Sharp constants for some inequalities connected to the p-Laplace operator.
JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 2, Article 56, 8 pp. (electronic).

[13] J. A. Clarkson: Uniformly convex spaces. Trans. Amer. Math. Soc. 40 (1936), 396–414.
[14] S. S. Dragomir: Inequalities for the p-angular distance in normed linear spaces. (English

summary) Math. Inequal. Appl. 12 (2009), no. 2, 391–401.
[15] D. B. A. Epstein, A. Marden and V. Markovic: Quasiconformal homeomorphisms

and the convex hull boundary. Ann. of Math. (2) 159 (2004), no. 1, 305–336.
[16] R. Fehlmann and M. Vuorinen: Mori’s theorem for n-dimensional quasiconformal

mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), no. 1, 111–124.
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