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Object-oriented programming is a widely adopted paradigm for desktop software devel-
opment. This paradigm partitions software into separate entities, objects, which consist
of data and related procedures used to modify and inspect it. The paradigm has evolved
during the last few decades to emphasize decoupling between object implementations, via
means such as explicit interface inheritance and event-based implicit invocation.

Inter-process communication (IPC) technologies allow applications to interact with each
other. This enables making software distributed across multiple processes, resulting in a
modular architecture with benefits in resource sharing, robustness, code reuse and secu-
rity. The support for object-oriented programming concepts varies between IPC systems.
This thesis is focused on the D-Bus system, which has recently gained a lot of users, but
is still scantily researched. D-Bus has support for asynchronous remote procedure calls
with return values and a content-based publish/subscribe event delivery mechanism.

In this thesis, several patterns for method invocation in D-Bus and similar systems are
compared. The patterns that simulate synchronous local calls are shown to be danger-
ous. Later, we present a state-caching proxy construct, which avoids the complexity of
properly asynchronous calls for object inspection. The proxy and certain supplementary
constructs are presented conceptually as generic object-oriented design patterns. The
effect of these patterns on non-functional qualities of software, such as complexity, per-
formance and power consumption, is reasoned about based on the properties of the D-Bus
system. The use of the patterns reduces complexity, but maintains the other qualities at a
good level.

Finally, we present currently existing means of specifying D-Bus object interfaces for the
purposes of code and documentation generation. The interface description language used
by the Telepathy modular IM/VoIP framework is found to be an useful extension of the
basic D-Bus introspection format.

Keywords: D-Bus, proxy object, design patterns, interface description language, inter-
process communication, object-oriented, Telepathy
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Oliopohjainen ohjelmointi on laajasti käytetty menetelmä työpöytäohjelmistojen toteutta-
miseen. Tässä menetelmässä ohjelmisto jakautuu erillisiin osiin, olioihin, jotka koostuvat
tiedosta ja siihen liittyvästä toiminnallisuudesta, jota käytetään tiedon muokkaamiseen ja
tarkasteluun. Menetelmä on kehittynyt viimeisten vuosikymmenten aikana painottamaan
olioiden toteutusten erottamista toisistaan, tavoilla kuten rajapinnoista periminen ja ta-
pahtumapohjainen implisiittinen kutsuminen.

Prosessienvälisen kommunikaation (IPC) menetelmät mahdollistavat sovellusten kommu-
nikoinnin toistensa kanssa. Tämän ansiosta ohjelmistot voidaan hajauttaa useaan proses-
siin, jolloin syntyy modulaarinen arkkitehtuuri, mistä on hyötyä resurssien jakamiselle,
selviytymiskyvylle, toteutuksen uudelleenkäytölle ja turvallisuudelle. Tuki oliopohjaisen
ohjelmoinnin periaatteille vaihtelee IPC-järjestelmien välillä. Tässä opinnäytteessä keski-
tytään D-Bus-järjestelmään, joka on viime aikoina saanut paljon käyttäjiä, mutta on yhä
vahäisesti tutkittu. D-Bus-järjestelmässä on tuki asynkronisille etäproseduurikutsuille pa-
luuarvoin ja sisältöpohjainen julkaisija/tilaaja-tyyppinen tapahtumienvälitysmekanismi.

Opinnäytteessä vertaillaan muutamia malleja metodien kutsumiseen D-Busissa ja saman-
kaltaisissa järjestelmissä. Synkronisia paikallisia kutsuja matkivien mallien näytetään ole-
van vaarallisia. Myöhemmin esitellään tilaa peilaava edustajaoliorakenne, joka kiertää
aitojen asynkronisten kutsujen monimutkaisuuden olioiden tarkastelussa. Edustajaolio ja
eräät täydentävät rakenteet esitetään käsitteellisesti yleisinä oliopohjaisina suunnittelu-
malleina. Näiden mallien vaikutusta ohjelmistojen ei-toiminnallisiin ominaisuuksiin, ku-
ten monimutkaisuuteen, suorituskykyyn ja virrankulutukseen, arvioidaan D-Bus-järjestel-
män ominaisuuksiin perustuen. Mallien käyttäminen vähentää monimutkaisuutta, mutta
säilyttää muut ominaisuudet hyvällä tasolla.

Lopuksi tarkastellaan olemassa olevia menetelmiä D-Bus-oliorajapintojen määrittelyyn
ohjelmakoodin ja dokumentaation generointia varten. Modulaarisen Telepathy-viestintä-
ohjelmakehyksen käyttämä rajapintojen määrittelykieli havaitaan hyödylliseksi laajen-
nokseksi D-Bus-introspektiomuotoon nähden.

Asiasanat: D-Bus, edustajaolio, suunnittelumallit, rajapintojen määrittelykieli, prosessi-
envälinen kommunikointi, oliopohjaisuus, Telepathy
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1 INTRODUCTION

Computer desktop environments have traditionally been seen as collections of applica-
tions that are implemented using a common infrastructure. However, the applications are
just means to an end—they are utilized by users to achieve the goals in their personal use

cases for the system. A single application can seldom offer all the functionality required
for a particular use case without becoming excessively complicated to use for others. Fur-
thermore, large monolithic applications end up duplicating a lot of their implementation
with other applications with overlapping functionality. Thus, it is beneficial to combine
smaller software components together, so that they can be used to perform a real-world
task.

Software libraries allow factoring out common parts of application implementations
to modules that are shared between multiple applications. Libraries consist of constructs
such as methods, object-oriented classes, and data. For example, the visual representation
code of the lower-level graphical user interface components such as buttons and forms can
be shared by the applications in a desktop environment. Such reusable elements are typ-
ically implemented as object-oriented classes. In general, object-oriented programming
has been widely adopted in desktop application development due to the possibilities it
offers for creating intuitive analogues of real-world entities.

Inter-process communication (IPC) technologies, such as CORBA, DCOP, and D-
Bus, allow applications to interact with each other. Such interaction allows delegating

parts of the tasks that an application is required to perform to other applications, which
act as services. Some desktop service applications might be stand-alone backends, with
no directly accessible user interface. Multiple user-visible frontend processes can access
a single backend concurrently.

Both utilizing software libraries and delegating duties to backends via IPC help avoid
duplication of implementation effort in applications. However, while applications em-
ploying a library’s services end up duplicating its runtime state, a single backend’s state
and the results it produces can be consumed by any number of frontend consumers si-
multaneously, conserving resources. This is especially important in processing power,
working memory and electrical energy constrained environments, such as those present
in the emerging smart phone and mobile internet device fields.

Some resources cannot be concurrently accessed by multiple applications. A backend
can be used to expose such a resource as a service, governing access to it. As a practical
example, many online real-time communications services, such as Windows Live Mes-
senger, only allow one connection to be made to a user account at a time. Unless this
connection is shared via a backend process that serves as an intermediary, only a single
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application can communicate through the online service simultaneously. Such online ser-
vices however offer functionality related to multiple different use cases, such as voice and
video calling, file transfer and sharing media such as images, in addition to textual conver-
sations. Incorporating all that functionality to a single application, as would be necessary
unless a frontend-backend model is utilized, would require a very large and complicated
user interface and would be a significant implementation and maintenance burden.

Thus, refactoring traditional monolithic applications to a multitude of frontend and
backend processes, connected using IPC, can enable a more task-oriented division of
desktop functionality. Continuing the instant messaging example, a minimal taskbar ap-
plet application could be constantly running to show and allow changing the user’s online
status in the network. Another purpose-built application could be used to view the list
of contacts reachable through the account, and a yet separate one would launch to han-
dle a call placed on one of them. All three applications could share a single network
connection to the messaging network, maintained by a backend. The Telepathy frame-
work [dTdCDG+12] is a practical generalized implementation of online real-time com-
munication functionality, such as instant messaging (IM), built around the D-Bus IPC
system.

While IPC enables new kinds of application interaction patterns, its use also gives rise
to many challenges that are not present in the design of monolithic applications. Invoking
remote methods and especially transferring the results back carries a significant perfor-

mance overhead compared to calling code in the local process. Concurrent programming

pitfalls, such as the possibility for deadlocks and race conditions, also apply because the
frontend and backend processes run independently. Overcoming these drawbacks can
increase programming complexity.

Whereas a service backend encompassing a given set of functionality is usually imple-
mented just once, the challenges in accessing it via IPC are present in all of its frontends.
Suitable IPC protocol and service access interface design enables providing service-specific
client libraries that ease this burden and hence further the use of desktop services. A client
library is a software library specifically created to offer a more natural interface to access
backend services. Ideally, they could make remote objects as simple to use programmati-
cally as local ones, while handling the IPC communication behind the scenes in a correct
and efficient fashion.

1.1 Problem Definition

There are multiple existing distributed software frameworks, built around various kinds
of IPC systems to fulfill desktop use cases. This report attempts to define the most ad-
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vantageous IPC communication patterns for building such systems. The three mutually
conflicting viewpoints of performance/scalability, correctness and programming conve-
nience are considered.

The D-Bus IPC system has gained extensive practical adoption during the last few
years, especially on Linux-based platforms. However, there is little academic research
available on the subject of this system. We will study the properties of D-Bus in the
context of existing research on other IPC technologies.

As the widespread adoption of desktop services is more dependent on frontend than
backend implementation convenience, a specific focus is given to design techniques for
the client libraries used by frontends to access the services. The goal is to identify and
formalize object-oriented design patterns specifically related to inter-process object ac-
cess. The design of the components of the Telepathy framework is used here as a source
of ideas and examples.

Additionally, we explore methods to automate some parts of the implementation of
client libraries. This is centered around a study of languages for specifying D-Bus inter-
faces.

These focus areas of the research can be summarized as the following questions:

• How do IPC systems in general and D-Bus in particular support object-oriented
programming?

• How should IPC messaging be designed to ensure reasonable performance and re-
liability?

• Which kinds of design patterns are useful for building well-behaving object-oriented
software with the D-Bus system?

• How can the implementation effort of D-Bus communication be kept at a manage-
able level?

1.2 Project Organization

This report has been authored by Olli Salli, in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science at the University of Turku.
The research leverages work done for and is supported by Collabora Limited, a software
consultancy specializing in open source technologies and principles.

The work is supervised at the Department of Information Technology in the University
of Turku by Professor, Ph.D. Olli Nevalainen. This final report has additionally been
inspected by Professor, Ph.D. Ville Leppänen.
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1.3 Report Structure

Chapter 2

In Chapter 2 we present, through literary review, core object-oriented programming con-
cepts, as relevant to our study of object-oriented systems in a distributed setting. We
also make observations on certain challenges in the practical implementation of these
concepts. These will be very relevant in the inter-process context.

Chapter 3

In this chapter, inter-process communication is explored. The support for generic object-
oriented concepts in existing IPC systems is evaluated. There is a specific focus on the
properties of the D-Bus message bus system.

Chapter 4

Chapter 4 introduces the formal methods we will later use for describing implementa-
tion patterns of object-oriented distributed software, and for evaluating their impact on
software complexity.

Chapter 5

In this chapter, we propose some architectural guidelines for the design of D-Bus client
software. This is be centered around an extension to the proxy pattern of Shapiro [Sha86]
for structuring distributed systems. We study implementing the extended proxy pattern
using D-Bus facilities, and formally evaluate its impact on non-functional qualities of
resulting systems. Also, some other constructs directly related to the proxies are explored,
as are implications on D-Bus interface design.

Chapter 6

In this chapter, we describe some methods to describe D-Bus interfaces in a machine
readable fashion. We present a sophisticated interface description language (IDL), from
which documentation and lower-level D-Bus client and service code can be automatically
generated.

Chapter 7

Here, we review key points of the research and summarize the findings.
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2 OBJECT-ORIENTED PROGRAMMING

The object-oriented paradigm of programming partitions software into separate runtime
entities, objects, which consist of data and related procedures used to inspect and modify
it [Coh84]. Objects belong to one or more classes, which serve as templates for object
instances (Section 2.1). The ability to extend classes via inheritance (Section 2.2) com-
pletes the classical definition of an object-oriented language [Weg87]:

object-oriented = objects + classes + inheritance

Delegation (Section 2.3) can be thought of as a more dynamic form of inheritance.
Inheriting from explicit interfaces (Section 2.4) and having events (Section 2.7) as object
interface members are more recent refinements to the object-oriented paradigm. All three
of these concepts attempt to decrease coupling between object implementations. This
decoupling improves modularity and code reusability, as will be discussed later. Finally,
the design by contract philosophy (Section 2.5) and exception handling (Section 2.6) deal
with corner-cases during the execution of object-oriented software.

Object-oriented programming is a very wide subject. Here, we just define the core
concepts that are relevant to our analysis of object orientation in a distributed environ-
ment. Additionally, the implementation of object oriented concepts varies highly between
programming languages. We attempt to present them in a language neutral manner, but
still draw examples from certain archetypal languages. Our target application area of dis-
tributed systems is not restricted to a single language either, even within a single system.
We will study how principles and implementations of inter-process communication relate
to these generic object-oriented concepts in Chapter 3.

2.1 Abstraction

In procedural programming, algorithmic solutions to problems are constructed from pro-

cedures. These smaller program fragments perform sub-tasks in a “black box” fashion.
Input data is passed to procedures as parameters. The parameters are often constructed
from results which have itself been produced by procedures invoked earlier [BBG+63].
Recursive composition of ever higher level procedures leads to a complete solution to the
original problem, as illustrated in Figure 2.1. Thus, procedures act as functional abstrac-

tions [LZ74]—building blocks that solve a particular task without their user having to
know how exactly they do that.

The SIMULA 67 programming language introduced the concept of classes. Classes
bundle together patterns of data and procedures operating on it (actions) [DMN68]. These

5



Prepare dinner

Procure ingredients Cook meals Serve to table

Select Pay

Figure 2.1: Recursive decomposition of a problem

collections of functionality can be used without manually transferring data between indi-
vidual procedures. This makes them ideal as abstract reusable models of problem oriented
concepts, such as customers, shapes or bank accounts, as opposed to a bunch of unrelated
memory locations (variables) and executable code.

Classes are not live instances of the entity they are modeling by itself, but instead act
as static templates, cookie-cutters for an arbitrary number of objects which fill this role at
runtime [Coh84]. Objects of a given class all share the set of functionality defined in the
class, but the internal data used by their member procedures is separate. This individual
“memory” of objects is called their state [Weg87]. For example, there could be a Person
class, which models real-world people. One object of this class could carry a birth date
of 1948-05-12 as part of its state, while another one could simultaneously store the date
1963-05-04. These objects are depicted in Figure 2.2 along with an object of another
class.

Classes

Objects

Person

+printBirthCertificate()

Circle

+paint()
+moveTo(x, y)

Name

John Doe

Born

1948-05-12

is a

Name

Jane Doe

Born

1963-05-04

is a

Position

(-1, 3)

Radius

2

is a

Figure 2.2: Objects and classes
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Object state is represented by member variables. The data members of SIMULA ob-
jects can be directly accessed anywhere ([DMN67], Chapter 7). In fact, it’s possible to
usefully declare pure data classes that contain no other actions than access [DMN68].
Liskov and Zilles argued [LZ74] that the abstract semantics and available operations
should define a data type, not the internal representation of its state. Accordingly, the
principal difference between their concept of operation clusters and SIMULA classes is
that cluster state variables are only accessible within operation implementations. The state
is observed externally using inspection operations, which decouple the semantics of the
data from its representation. Hence clusters provide a form of data abstraction, unlike
SIMULA classes [Weg87]. The language used by Liskov and Zilles for their research
was later named CLU, specifically after the cluster feature.

The use of the class keyword from SIMULA has been widely adopted in more re-
cent object-oriented programming languages, such as C++. In many of these languages,
outside access to object internals can be restricted [Sny86]. Thus, the classes of these lan-
guages have the data abstraction capabilities of CLU clusters, unlike those of SIMULA.

The key feature introduced in CLU that enabled full data abstraction was the con-

structor (called “create-code” in CLU). The constructor is a special class/cluster oper-
ation which initializes the internal representation of an object when one is created. It
decouples the layout of the object from the parameters, if any, required by it to generate
the values for the members. It is thus possible to change the internal representation of
objects without breaking existing user code creating them, as long as the constructor can
initialize the new layout from the old parameters. In the example in Figure 2.3, the way of
storing a geometrical object’s location could be changed from separate coordinate values
to a Point class, while keeping the same external interface.

Simple operations which allow inspecting a particular aspect of an object’s state are
called getters in programming parlance (e.g. [Hug02]). Liskov and Zilles identified the
need to perform calls to these small operations as a potential performance problem. Their
solution was a compiler optimization, which replaces the calls with inlined code. Inlining
means copying the operation implementation to the call site, such that function call over-
head is avoided [LZ74]. However, as we will explain later, it is not very straightforward
to realize this optimization in an inter-process context.

2.2 Inheritance

SIMULA classes could already be used as “prefixes” in each other, such that a class would
inherit all data and actions from the classes declared as its prefixes [DMN68]. A class
that inherits members from a prefix class is called a subclass. New members declared in
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Circle
-xPos: double
-yPos: double
-radius: double

+<<ctor>> (xPos,yPos,radius)
+paint()
+moveTo(x:double,y:double)

Point
-x: double
-y: double

+<<ctor>> (x,y)

Circle
-position: Point
-radius: double

+<<ctor>> (xPos,yPos,radius)
+paint()
+moveTo(x:double,y:double)

Old implementation

New implementation

Figure 2.3: The constructor decouples the parameters used for creating an object from its
internal layout

the subclass make it a conceptual specialization of the prefix class (also called superclass

or “parent” class). For example, there could be a Point class which models a point in a
two-dimensional plane. A ColoredPoint class could use it as a prefix, but add a color
attribute. Thus, all ColoredPoints could be considered Points, but not the other way
around. This example is illustrated in Figure 2.4.

Class inheritance can be applied recursively. The ”grandparent”, ”grand-grandparent”
etc. classes which result are collectively called the ancestors of a class. Data and actions
from all ancestors in this chain are prefixed to the final class.

The relationship between a subclass and its superclass can also be described by saying
that a subclass is derived from its superclass. Multiple subclasses can be derived from one
superclass. This kind of inheritance leads to a tree hierarchy of the classes, where each
class node has its superclass as a parent and any subclasses derived from it as child nodes.

Declarations for SIMULA classes can also include a virtual part ([DMN67], Sec-
tion 2.2.3). The operations declared therein will be defined by subclasses. This is an
instance of the general concept of subtype polymorphism: the behavior of a virtual oper-
ation depends on the subclass defining it, and so of the actual subtype of the object it has
been invoked on. This can also be considered a form of functional abstraction: The base
class declares what an operation should do, and the derived classes define how to do it.

A fairly natural extension to the concept of inheritance is being able to derive a sub-
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Point
+x: double
+y: double

ColoredPoint
+x: double
+y: double
+color: Color

(2, 2) (0, 1, Red)(1, 1, Blue)

Figure 2.4: Specializing classes through inheritance

class from multiple superclasses simultaneously. This is called multiple inheritance. In
contrast with the previously presented concept of single inheritance, the classes in multi-
ple inheritance schemes form a directed acyclic graph topology, as shown in Figure 2.5.
Multiple inheritance complicates subtype polymorphism somewhat: As it is possible for
multiple classes at the same level of the inheritance hierarchy to define a common opera-
tion, there is ambiguity in which definition should be used [Sny86].

Car

Sedan Sport utility vehicle Station wagon

Crossover vehicle

Figure 2.5: Example of multiple inheritance
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2.2.1 Implications on typing

Liskov and Zilles suggested [LZ74] that languages should treat mismatches between ac-
tual and excepted types either as errors (strong typing) or through automated type conver-
sions. This should happen for both built-in and user-defined (class) types. However, the
cluster concept in their research language did not support any form of inheritance.

The introduction of inheritance complicates the notion of typing. What should happen
when a derived type is used in a context which expects an object belonging to its parent
class? Such a situation might occur for example when an object reference is passed as a
parameter to a function.

In many languages, using a subclass instance where one of its parent class is expected
is considered acceptable: In them, class inheritance directly establishes a subtyping rela-
tionship. Snyder associates [Sny86] these semantics with a thinking where the purpose
of inheritance is recursive definition of types by specializing the parent class. From this
perspective, the relationship between the parent and the derived class is a public commit-
ment. Snyder further argues that it should be possible to use inheritance to facilitate code

sharing, without making such a constraining decision. This is called implementation in-

heritance. Changing a class used as an implementation helper is guaranteed to not break
existing callers only if implementation inheritance is not visible in the external interface
of classes [Wol92].

2.3 Delegation

Objects are the runtime instances of classes. The runtime state of objects can change
independently from other instances of the same class. However, the set of operations
which defines an object’s interface to its users is tied to what was declared in its own class
and ancestor classes. In other words, the set of supported operations is static at runtime.
Even more importantly, the specific virtual method definition to use for those operations is
also chosen based on the inheritance relationships established when writing the program.

Delegation [Lie86] is the act of an object operation implementation to transfer the
responsibility for its completion to some other object. The choice may be based on a
runtime attribute, e.g. a reference to the object which is delegated to (the delegatee). This
enables dynamic operation specialization, even for a single object instance, such as how
instances of the Car class delegate the act of starting up to different Engines in Figure 2.6.

Let us consider the parts of objects contributed to them by each ancestor class as
separate objects in their own right. Then, we can interpret class inheritance schemes as
defining a static delegation setup between these objects (e.g. Wolczko [Wol92]). When an
operation is invoked on an object of a derived class type, it uses the derived class imple-
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Car
-engine: Engine

+changeEngine(engine)
+start()

Engine
-serialNumber
-mileage

+start()

delegates

RepairShop
+spareEngines: Engine[]

calls

Figure 2.6: Delegating to an object based on a runtime reference

mentation, if there is one. Otherwise, it delegates to one of the part-objects corresponding
to the ancestor classes. This is the case for the moveTo() operation in the example in Fig-
ure 2.7. This operation is the same for regular and colored points, so colored points use
the implementation from their superclass. We can conclude that the concept of delegation
is at least as general as that of class inheritance.

Point
-x: double
-y: double

+moveTo(x,y)
+paint()

ColoredPoint
-x: double
-y: double
-color: Color

+moveTo(x,y)
+paint()

delegates

Specialized implementation

Figure 2.7: Delegating to an ancestor class

Central to the delegation pattern is an assumption that the delegated-to objects will
often need to query the object delegating to them (the client) for additional details required
for completing the task. Lieberman [Lie86] gives an example of a turtle delegating the
responsibility for drawing itself to a pen. The pen must query the the turtle for its position
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to determine where to draw.
Wolczko [Wol92] demonstrates this side of delegation with an analogy of a manager

giving a task to his or her subordinates. The subordinates consult the manager for de-
tails as required. It could be theoretically possible for the manager to specify all the
details along with giving the task. However, this would imply specifying more details
than needed for any given subordinate, as different employees will need different details
to supplement their own knowledge. Only if the manager had perfect knowledge of the
background of each employee, could he pass on just the relevant hints. But then the sub-
ordinates would not be treated uniformly any longer: there would be increased coupling
between the manager and the subordinates.

Accordingly, it is a key feature for systems where general delegation is important to
provide a mechanism for a delegatee to be able to query arbitrary additional information
from their client [Weg87]. One such mechanism is rebinding self, which makes the del-
egatee dynamically able to refer to attributes of the current client object like they were
its own. Wolczko notes [Wol92] that this is similar to how operations defined in parent
classes can access attributes that might be redefined by the subclasses. However, because
that is based on the static inheritance relationship, it is less flexible than dynamic rebind-
ing to an arbitrary client.

With any mechanism for querying additional information from the client, it is neces-
sary for the client to be able to respond to the query, although it is at the same time waiting
for the delegatee to finish the operation. A deadlock would otherwise occur [Lie86]. This
observation will be very important for us later in Section 3.5.2, where we define certain
constraints for the messaging patterns used for communication between objects in differ-
ent processes.

2.4 Explicit Interfaces

If class inheritance is used just for implementation code-sharing, superclasses should not
be visible to the users of a subclass. This however implies that the public operations of the
superclass must not be available either. Hence polymorphic behavior through a superclass
reference is not attained.

The problem with inheriting both externally visible interface attributes and implemen-
tation from a superclass is that these two components are tied together. When deriving
from a superclass to gain an interface compatible with its clients, one will also restrict
themself to the overall implementation pattern of the superclass. On the other hand, when
inheritance is used to reuse implementation, one will have to continue using that particular
implementation helper class forever. Otherwise, compatibility will be lost with any users
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that depend on the parts of the external interface contributed by that class. Whatever the
motivation for using inheritance is, unless the classes involved are very minimal, some
flexibility has been sacrificed unnecessarily.

This flexibility can be regained by decoupling the implementation and external inter-
face aspects of inheritance from each other. Recall that the external interface of a class is
defined by the operations it supports. An explicit interface is a named collection of opera-
tion declarations without any associated implementations. By implementing the member
operations of an explicit interface, a class can provide an interface for external access
without placing any constraints on the internal implementation [CCHO89].

There are attractive properties in referring to objects by interface references—just
having knowledge of exactly one interface they implement. One can call interface meth-
ods, and the object pointed to determines the class from which an implementation is used.
Thus, calls through an interface reference are polymorphic. The actual class type of the
object itself is not visible through an interface reference, so neither is what the class is
derived from. Thus, the class can use whichever implementation helper(s) it pleases to im-
plement the interface—either through class inheritance or delegation. Also, the object can
implement an arbitrary number of additional interfaces without the user of a single aspect

of it gaining knowledge of that fact. Hence, users can not accidentally grow dependencies
to these other interfaces. This is illustrated in Figure 2.8.

Point
-x: double
-y: double

+<<ctor>> (x,y)
+moveTo(x,y)
+paint()

<<interface>>

Movable
+moveTo(x,y)

<<interface>>

Drawable
+paint()

Physics subsystem

Graphics subsystem

Pendelegates drawing

Figure 2.8: Accessing an object through an interface reference

Comparing objects for equality is a common operation. However, objects of different
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types can not be sensibly compared, even if they are derived from the same superclass.
This is because specialized subclasses have additional information, which must be con-
sidered for a full comparison, but is not present in instances of “sibling” subclasses or the
parent class [CHC90]. For example, the intuitive definition of equality for two objects
of the Point class of Figure 2.4 from Section 2.2 is that their coordinate values match.
However, is the blue ColoredPoint at (1, 1) equal to a non-colored Point at the same
location? This is an excellent example of how such a fundamental and widely applicable
operation can cause conceptual issues if included, via inheritance, in the external interface
of a subclass. One should not pollute interfaces that are intended to be generic with such
ambiguous operations.

Interface pollution is actually an even more general issue. Objects are typically used
by more than one kind of a client. The variety in clients naturally leads to differing
requirements on the operations supported by the object. Let us consider one kind of
client, which is intended to use a certain subset of the object’s public interface. If the
interface visible to the client exposes aspects of the object interface outside that subset,
the client might start accidentally depending on properties which are not really relevant
to it. This danger constrains changes to these parts of the object, even if their actually
intended users could cooperate in going through some needed modification. From this
point of view, parts of the interface beyond the subset intended to be used by a given
client are pollution. This leads to the Interface segregation principle [Mar96], which
states that there should be a separate explicit interface for each kind of a client. Turning
the relationship around, there should be an interface corresponding to each role the class
is supposed to “act in” for its clients.

In the manager and subordinate example of the previous section, the manager had a
role of answering queries from subordinates who need additional information. He will
likely also have a separate role in which he has to report the progress of tasks to his own
superiors. These could be formulated as a task detail query and as a task status reporting
interface, respectively. This increases flexibility: If the manager started using some kind
of automated reporting software, he could pass on a reference to the reporting interface
implemented in this software system to his superiors instead of having to respond to report
queries directly himself. Thanks to the explicit reporting interface, he can do this safely.
There are no worries that the superiors might have accidentally carried away to snooping
around task details. This info would not be available through the software their reference
(say, an email address) now points to, but only to subordinates. This isolation scheme is
shown in Figure 2.9.

The reporting software used by the manager is a good example of an additional con-
struct closely related to interfaces. Whereas interfaces are collections of operation dec-
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Legend:

Senior management

Progress reporting

Reporting software Project manager

Object

gives reporting reference

Task details

Subordinate

assigns tasks

Interface

Figure 2.9: The possibility of implementing an interface transparently using a helper
object

larations, mixin classes [BC90] are bunches of definitions for functionality. As the name
implies, their functionality is intended to be “mixed in” via multiple inheritance or dele-
gation to produce composite objects. Mixing in to an arbitrary object is only possible if
the definition of a mixin class does not depend on knowledge of the other classes mixed
in with it. This requirement is very similar to the flexibility rationale behind the interface
concept. If there is a sufficiently close mapping between external explicit interfaces a
class is required to implement and the mixin classes available to it, the class can use the
mixins as swappable implementation helpers for the interfaces (e.g. [Ber00]).

2.5 Design by Contract

The practice of defensive programming advocates guarding all operation implementa-
tions against misuse and promises broken by the operations they themselves invoke. This
is to be done by explicitly checking that all assumptions made by the code hold true.
This leads to callers checking that everything is in an allowed state for calling a method,
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and the called methods itself checking that the caller did this preparatory work. Meyer
argues [Mey92] that these checks are mutually redundant, and hence add unneeded com-
plexity. This makes the checks counterproductive—their purpose is to increase reliability,
but according to him, that has an inverse correlation with complexity.

To remove the intrinsic redundancy from defensive programming, while retaining its
benefits on special case survivability, Meyer proposes a division of the checking effort.
Methods must document all of the conditions that must hold true to make them usable
(preconditions), and the additional properties they make true when successfully called
in a suitable state (postconditions). Before calling an operation, a caller ensures that
all of the preconditions hold true. Then, the called operation can safely assume that the
preconditions are fulfilled, without explicitly checking for them. Similarly, the caller does
not need to check that the operation did what it was supposed to, because this is guaranteed
by its postconditions. Meyer relates this mutually beneficial agreement with real-world
contracts between clients and suppliers. As a consequence, this design ideology is called
design by contract.

In Section 2.1, we introduced the constructor, a special class operation responsible
for initializing the member variables of a created object. Thus, a postcondition of the
constructor is that the internal state of the object is consistent. The consistency relations
established by the constructor are collectively called the class invariant [Web01].

As a practical example, a container object must have at least as much space reserved
as there are elements. A constructor that pre-fills the container with a certain number
of elements (e.g. from another container) must therefore take care that this condition is
fulfilled after its execution finishes. For operations adding elements to the container,
there are two design alternatives. Either we have a separate resizing operation, which
must be called by the user explicitly to guarantee that there is sufficient space for adding
elements, or the insert operations do this automatically and have no such requirement.
In the first alternative, the insert operations have a precondition that sufficient space has
been reserved beforehand. In the second option, automatic expansion to a large enough
capacity is guaranteed by the class invariant, which all of the operations must preserve.
These two approaches are compared in Figure 2.10.

Guaranteeing that the preconditions are fulfilled is mainly of use to an operation’s con-
crete implementations, which can omit explicit special case checks. Similarly, postcondi-
tions impose specific requirements on what the implementations must achieve. However,
the contract they together form is part of the operation’s abstract declaration, not specific
to a given implementation [Mey92]. Any implementation of an abstract operation must
fulfill the terms of the contract for the operation. However, an implementation can of
course do even better—that is, require their caller to ensure less preconditions, or make
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ManualResizeContainer
invariant: always space for

at least the number of
elements in the container

+<<constructor>> (elements)
postcondition: space for the
given elements

+reserveSpace(numElements)
postcondition: space for the
given amount of elements

+addElement(element)
precondition: enough space
has been reserved previously

AutoResizeContainer
invariant: always space for
at least one more element
than there are currently

stored

+<<constructor>> (elements)
postcondition: space for the
given elements and at least
one more

+addElement(element)
postcondition: still space
for more elements

Figure 2.10: The class invariant and method contracts

more postconditions hold than required. Meyer makes this observation in the context of
overriding superclass method implementations. However, it is equally applicable to ex-
plicit interfaces, as operations are declared in them with the same level of detail as in
concrete superclasses. Thus, the contracts established by an explicit interface must be
followed by all objects implementing it. Otherwise, users of the interface would need to
separately consider the requirements (preconditions) imposed by each possible implemen-
tation. If this was required, the flexibility offered by the decoupling the external interface
from its concrete implementation would be lost.

2.6 Exceptions

It is not always possible for a method implementation to fulfill its contract, such that even
though its preconditions have been satisfied, the postcondition can not be achieved. This
is because the preconditions can never be truly exhaustive. For example, a finite global
resource, such as working memory, might be depleted between invoking an operation and
the operation trying to allocate some of the resource for use. Also, regarding this specific
example, very few systems provide any means for a caller to check for sufficient available
working memory in the first place. When a procedure encounters a force majeure event
like this, it must somehow tell its client that it failed.
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There are a few possibilities for reporting errors to the user of an operation. A sim-
ple approach is to extend the result domain of the operation with additional values that
indicate failure cases. As an example, consider a function that returns the square of a
real number (x 7→ x2, x ∈ R). The result of this operation is non-negative for all x ∈ R.
If a real number type which can represent both positive and negative values is used for
the return value of this function, negative values can be returned to indicate errors in the
calculation, such as arithmetic overflow. This approach is however problematic, first, be-
cause for some operations the entire range of values representable by the return type are
needed for actual results. And second, because in this approach essentially the same event
(e.g. memory exhaustion) has to be represented in different ways by operations with dis-
similar result domains. Additionally, there is a danger of the client interpreting the error
code as a normal result, or ignoring the result completely.

A better way to signal errors, provided the programming environment supports it, is
to raise an exception [Goo75]. An exception is a uniform way to indicate that a particular
erroneous circumstance has been encountered, no matter what the result domain of the
operation is. Furthermore, the programming environment can enforce the calling function
to take some action when an exception is raised, or failing that, perform a default action
such as program termination. The rationale for handling the exceptions in the callers of
the operation which encountered the error is that it they have the best knowledge of the big
picture. This knowledge can be used to gracefully recover from the error, or consciously
ignore it.

Goodenough’s example [Goo75] of an error which should be handled differently de-
pending on the high-level context concerns an input stream, perhaps one that reads data
from a file. For a byte-by-byte read operation on the stream, encountering the end-of-file
position is a critical error. However, for a higher level procedure, the purpose of which is
to read a file in its entirety to memory, this event would simply be an indication that its
task is finished. This is different for an operation that reads multi-byte records using the
same byte read operation. For it, only managing to read half of the bytes that are needed
for a complete record before the error occurs would be a failure.

So, external circumstances might prevent an operation from finishing successfully
even if its formal preconditions were fulfilled. But what if they were not fulfilled in the
first place? Meyer notes [Mey92] that in a single-threaded, local process context, this is
always a programming error, because the client has failed to keep its side of the contract.
However, he also observes that this is different when multiple threads access an object
concurrently. Then, a caller might have properly ensured that a precondition holds true,
but a parallel thread may cause it to turn false again by the time the invoked operation
depends on it.
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Another kind of class invariant violation might occur because of the fact that opera-
tions are usually sequences of multiple subtasks. Class invariants may be broken by the
first steps, as long as they are re-established later, before the method finishes executing.
Thus, a parallel or re-entrant invocation of one of the object’s operations between these
steps might find that the class invariant is not satisfied [Web01]. An example of this is de-
picted in Figure 2.11. We will compare a few patterns of inter-process method invocation
considering these aspects in Section 3.5.2. For now, it suffices to observe that in the pres-
ence of multiple concurrent callers, the fulfillment of preconditions and class invariants is
not a given. Thus, gracefully handleable run-time exceptions are needed to communicate
when they have been violated.

Bank account

Customer

balance: Integer
deposits: List

withdrawals: List

Invariant:
balance =

deposits.sum -
withdrawals.sum

withdraw(amount):

assert(amount <= balance)

withdrawals.append(amount)

client.chargeServiceFee(1)

balance -= amount

return amount

chargeServiceFee(amount):

while (cash < amount)
 cash += account.withdraw(20)

pay(amount)call

Invariant only
re-established here

cash: Integer

call

Figure 2.11: The invariant of the account class is broken when the withdrawal is recorded,
which is done before the call to charge a service fee. The invariant is only re-established
after the call, by adjusting the balance. Thus, the invariant is not satisfied during a possible
re-entrant method invocation.

2.7 Events

The previous sections have been concerned with structures combining operations with
data, building hierarchies of such structures, and various ways to hide the implementation

19



of their operations from the callers. However, even with these mechanisms, the caller still
always explicitly invokes a particular operation, with specific arguments, on a particular
instance it has a reference to. Thus, the caller is strongly coupled to the particular interface
it uses.

An alternative mechanism for object interaction is implicit invocation. In this paradigm,
objects announce events, which cause handler methods to be invoked on other objects.
The announcing object does not need to know which methods on which objects are in-
voked, or if any are invoked at all. This new kind of decoupling enables hooking up new
components to be invoked by old ones, which do not need to be modified [GN91]. Further-
more, making different kinds of event-handler connections between the same components
allows altering the system’s behavior without any changes inside the components. This
makes it possible to reuse the components in varying contexts with reduced effort [XZ02].

The flexibility benefits require that an event announcer does not need to know about
the listeners for its events. Thus, there must be some kind of separate registry of con-
nections between announcers and listeners. As illustrated in Figure 2.12, this subsys-
tem invokes the correct handlers at runtime for each announced event [XZ02]. There
are multiple ways to implement this connecting service even in the context of a single
process. These range from restricted mechanisms integral to the language itself like the
Smalltalk-80 model-view-controller facility, through language extensions provided by a
preprocessor, to library facilities implemented using the target programming language it-
self [NGGS93]. In Section 3.3, we will study a similar concept for distributed systems.
Then, in Section 3.4.3, we will analyze the bus daemon of the D-Bus message bus system
as a practical implementation of the connecting service for a multiple process context.

Handlers
Announcers

Handler 1
Event 1connected to

Handler 2
Event 2connected to

Handler 3 connected to

Connecting service

announce

invoke

invoke

Figure 2.12: Connections between events and handlers are registered with a mechanism
that is independent of the event announcers
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The capabilities of implicit invocation systems vary due to constraints set by the pro-
gramming environments and the applicability to the general style of programming in
them [GS93]. This variability includes dimensions like where and how events are de-
fined, and whether they can be defined dynamically or just at compile time. The same
goes for connections between events and handlers, and how closely any statically defined
parameter lists of the events need to match those of the handlers connected to them. Al-
though flexible dynamic connections decrease the predictability of the system [NGGS93],
we view that this capability is essential due to the increase in reusability it offers. In fact,
it would be completely impossible to implement our extended proxy construct without
dynamic event handler registration, as we will see in Chapter 5.

The existence of the connecting service enables an event announcer to avoid explicitly
invoking the handlers. However, parties that register connections between these must still
explicitly specify the events and the handlers. A handler is a method of some object,
which in this use fulfills the role of a listener for an event or a set of events. Thus, Martin’s
Interface segregation principle (ISP) (Section 2.4) applies, and for maximum reusability,
the listener should be referenced through an interface specific to this particular listener
role.

Additionally, just like handler methods are a part of the listener objects’ external inter-
face, so are events a part of the publicly visible interface of announcers. In fact, exported
events and methods can be considered equal contributions to an interface [XZ02]. We ar-
gue that the ISP should apply to the interfaces where events are declared just as it applies
to those with methods. It should however be noted that events seldom constitute a fully
independent role. For example, an event might be announced when a buffer object has
space for inserting more elements. It would be a sensible middle ground to have both this
event and the insert operations in a role-based interface used by clients that insert items.
This arrangement is illustrated in Figure 2.13, complete with another interface to be used
by clients that extract items.
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BoundedBuffer
-elements
-maximumSize

<<interface>>

Appendable
+hasSpace(): bool
+append(element)
+<<event>> nowHasSpace()

<<interface>>

Drainable
+hasElements(): bool
+takeFirst()
+<<event>> nowHasElements()

Inserter

Extractor

Figure 2.13: Example of role-based distribution of events across interfaces
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3 INTER-PROCESS COMMUNICATION

Functional abstractions and encapsulated objects enable applications to delegate solving
certain subtasks to self-contained procedures and modules. These building blocks can be
put to shared libraries to increase their reusability. However, they still need to be loaded to
the application’s virtual memory space and executed locally. In distributed systems, it is
also possible to invoke functionality from other processes running on the same computer
(node) and possibly even on other nodes [DSC92]. Here, we use the term process to refer
to an operating system construct that comprises a single protected address space and a set
of associated resources. One or many threads of control can run in a single process, each
with their own instruction pointer.

For it to be possible for an application to invoke functionality and query data from
other processes, there must be a method of communication that is able to cross the pro-
tection boundaries between processes in a safe and controlled way. This is the essence
of inter-process communication (IPC). Figure 3.1 illustrates the concepts of nodes, pro-
cesses and threads, and forms of IPC between them.

Node 1

Node 2

Process A

Memory Thread 1

Process B

Memory Thread 1 Thread 2

Intra-node

Process C

Memory Thread 1 Thread 2

Inter-node

Figure 3.1: Nodes, processes and threads in a distributed system

One mechanism for inter-process delegation is to put the code and data to be used from
multiple processes in a special shared memory area [Hor90]. This scheme is depicted in
Figure 3.2. Using shared memory is especially workable within a single node.

In the shared memory approach, code is invoked by a direct call, like a normal proce-
dure implementation that resides in private memory. Thus, restrictions are imposed on the
implementation of the caller and callee. In particular, their code and data representations
must be compatible. Hence, it is often not possible to call code that has been written in
a different programming language, except for a small set of languages which can be used
through a foreign function interface. Such interfaces can however be rather restrictive.
And most certainly, it is not possible to share code compiled for different processor ar-
chitectures or operating systems in this fashion—that is, code that targets heterogeneous
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Process A

Private memory Thread 1

Shared memory space

Code Data

Process B
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Figure 3.2: Code and data in a shared memory area

nodes. For general inter-node access, the call arguments and results must be mapped be-
tween the particular representations required by the two systems [BCL+87], or a single
system independent representation must be used. The use of such a representation can
also enable communicating with local processes that are implemented with different pro-
gramming languages and runtime facilities, as long as they provide a compatible remote
call interface.

Benefits of IPC within a single node

In the introductory chapter, the Telepathy framework for online real-time communica-
tion [dTdCDG+12] was used as an example of the benefits that IPC offers for desktop
applications, even in the context of a single node. Here are a few further reasons for
Telepathy’s modular architecture [Har08]:

Robustness Components of the system can crash and/or be restarted individually.

License independence Licensing differences may restrict linking libraries to a single
process. The multi-process approach allows some processes to be open-source and
some closed as needed, but still function together.

Increased code reuse The language-independent distributed architecture forces defining
abstract interfaces for inter-process access. As explained in Section 2.4, such inter-
faces enable transparently reusing a frontend (client) although the backend (service)
is changed (e.g. to one implementing a different IM protocol). The same backends
have also been successfully shared by separate user interface (frontend) implemen-
tations for different desktop environments.

Security A monolithic application requires privileges to directly access all of the re-
sources that its functionality depends on. Each domain-oriented module of a dis-
tributed system only needs a smaller credential subset. An example of how this
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would apply to a system that handles various kinds of textual communication can
be found in Figure 3.3. Furthermore, the interaction between the modules can be
controlled and monitored by the messaging system that connects them together.

IPC system

Jabber backend

Internet connectivityIRC backend

SMS backend

Cellular modem

Account manager

Filesystem Conversation logger

Text chat UI

Windowing system

Figure 3.3: Distribution of privilege requirements over a modular application

Wittenburg identifies [Wit05] similar reasons for the components of a desktop com-
municating together. These reasons include sharing globally unique services between
applications (like IM network connections in Telepathy’s case), announcing events such
as application start-up progress, and transparency on whether an invoked service is local
or remote to the node. The observation that desktop services are scriptable, which means
that they can be machine-driven, is shared with [Pet07]. In our experience, this capability
has also been utilized in real-world Telepathy implementations.

In summary, there are many functional benefits to be gained from making desktop
applications distributed, even within a single node. Real-world studies [BALL90] put the
portion of inter-node access at just a few percent of all IPC. This might be because inter-
node access is always much slower than calling a process in the same node. Hence, real-
world software architectures tend to avoid overdependence on inter-node calls, wherever
performance and/or interactivity is essential. Accordingly, for most of our research, we
will focus on the inter-process communication technologies and patterns that are most
suitable to the single-node context.

Concentrating on node-local inter-process communication allows us to side-step a few
challenges associated with more general IPC, e.g. across the Internet. In particular, we
do not consider the complex global resource naming and location services that are used
for announcing exported services [RSW98]. Furthermore, access control is simple to im-
plement in the local context with mechanisms such as UNIX credential passing ancillary
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messages [Lin10]. Network address translation (NAT) schemes and firewalls also signif-
icantly hinder inter-node access and peer-to-peer communication through the Internet in
general.

The D-Bus messaging system is a main focus for the rest of this report. As shown
later, it is especially suitable for IPC within a single node. There is less attention in
its design for inter-node usage. However, the Telepathy Tubes [HOD+11] mechanism
extends the reach of D-Bus over the Internet. This is accomplished by piggybacking on
firewall/NAT traversal and service discovery mechanisms which already exist in instant
messaging services for purposes such as file transfer, media streaming (Voice/video over
IP) and presence announcement. Thus, the usability domain of D-Bus is extended, and so
is the application area of the research presented here.

The first few of the next sections present general concepts of distributed systems,
through literary review. This establishes context for the study of the D-Bus messaging
system that follows. Finally, we will set out some guidelines for how messaging protocols
should be designed when using D-Bus and similar systems.

3.1 Remote Procedure Calls

A low-level notion of interprocess communication can be based directly on transport layer
network services, like byte stream or datagram sockets, or pipes [Wit05]. These transfer
untyped data as essentially just sequences of bytes. When a client and a service are
connected together using such means, they must obviously agree on the semantic meaning
of the bytes. This agreed meaning constitutes the network protocol that is used in the
communication. However, designing a byte-level protocol separately for each client–
service application pair is cumbersome, and also steals implementation attention away
from the actual unique functionality of the system.

In Section 2.1, we introduced the concept of procedural programming. In that paradigm,
functional abstractions provided by procedures are used as central building blocks of al-
gorithms. Remote procedure calls (RPC) invoke procedure implementations from other
processes [BN84]. From the point of view of one writing an algorithm, classic RPC
appears almost exactly like calls to procedures in the local process. In either case the
implementation of the procedure is not important, only the task it accomplishes. Thus,
the implementation can as well run in some other process if that is needed e.g. to gain
access to a certain resource owned by it. The motivation behind this IPC paradigm is that
programmers are used to procedural programming. Hence, emulating it in the distributed
context requires minimal reorientation and relearning for creating distributed systems.

A key feature of RPC facilities is that they are not application-specific; the funda-
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mental mechanism offered by them—a way to transparently transfer control to a remote
process—can be used in building any kind of software where procedural programming is
useful. By using RPC, low-level network protocol details do not need to be considered
in client and server design, but merely the set of procedures the server exports for clients
to call. Thus, RPC can be considered a reusable application level protocol for building
distributed systems that follow the procedural programming paradigm.

For a remote procedure to be callable like a local one, there must be an ordinary
local function with the same type signature as the remote one. Instead of performing the
computation or other action by itself, this function causes the call to be forwarded to the
remote process using lower-level RPC facilities. These forwarding procedures form the
the client stub. The client stub type-checks and encodes the call arguments in a form that is
suitable for transfer to the service. A corresponding service stub component in the remote
process decodes the arguments. The stubs can do this because they have knowledge of the
exact signature of the procedures. The stub code is often automatically generated from a
description of the signatures of the procedures to export. The data transfer itself can be
handled by a runtime library service that is common to all kinds of services and hence to
sets of procedures. This layered architecture is illustrated in Figure 3.4.

Client process

Service process

Algorithm 1

Proc. A client stub Proc. B client stub

RPC runtime

Algorithm 2

Proc. A impl. Proc. B impl.

Proc. A service stub Proc. B service stub

RPC runtime

Figure 3.4: Client and service stubs in an RPC system

The RPC runtime can transfer the encoded call arguments to the remote process in
a number of ways. The archetypal example is sending a call packet over a transport
layer connection, as in the original implementation of Birrell and Nelson [BN84]. As
mentioned in the introduction to this chapter, most inter-process calls do not actually
need to be transferred over the network between computers, but access processes running
on the same node. Intra-node calls can be optimized, e.g. by sharing the stack memory
containing the call arguments between the processes. In this approach, the arguments
do not need to be sent over a communications link, but they can simply be read from
the shared memory by the service. This approach, illustrated in Figure 3.5, can yield a
multi-fold speedup [BALL90]. However, it also hinders cross-language and especially
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cross-architecture communication, because the service must be able to interpret the data
in the exact form the caller code passed it to the client stub.

Client process

Service process
Distributed algorithms

Client stubs

RPC runtime
Shared stack

Procedure implementations

Service stubs

RPC runtime
Call trigger

Figure 3.5: Sharing the argument stack between processes

Transparent mapping services between data representations and call semantics have
been proposed to correct the cross-system communication issues in naive RPC mecha-
nisms. The aim of this is to enable integrating existing heterogeneous systems together
with minimal modifications. [BCL+87] The mapping adds overhead, and already implic-
itly constrains the type of information that can be passed to that representable in both the
client and server systems. Based on these facts, we argue that it is better to just define
RPC messaging semantics and a data syntax in a system independent fashion. As we will
see later, this is also the approach taken by the D-Bus IPC system. The reimplementation
effort is not a major concern, as in our opinion, IPC still has not been exploited nearly as
much as possible in the area of desktop applications.

3.1.1 Asynchrony and return values

So far we have discussed just one side of RPC, namely that of initiating calls. The return
values of procedures and the time at which their execution finishes are also significant
in procedural programming. However, RPC mechanisms differ in their method return
semantics. In classic RPC, the caller process is blocked until the service has informed it
of the outcome of the call via the delivery of a reply packet. The reply packet is translated
to the local stub procedure’s return value, or an exception if the call failed. Only after this,
client execution continues. Thus, the execution of the client and the service is effectively
synchronized, so that only one of them is executing at a time.

In addition to errors encountered while executing a procedure, an exception can also
result in RPC if the communication link between the client and the service process is
severed [BN84]. This can happen not only before the service starts processing the call,
but also during the execution of the operation. It is also possible that even though the
procedure itself has been executed successfully, it will be impossible to tell that to the
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caller. Thus, the state of the service is ambiguous to the client after a communication
error. A few related scenarios are illustrated in Figure 3.6. We will revisit this subject in
Chapter 5 in the form of invalidation, when presenting our extended proxy construct.

Client process Service process

A successful call:

Call packet

Executing procedure

Reply packet

The client knows that the call was processed and can extract the results.

When the call packet is lost:

Call packet

Processing of the call didn’t even start.

When the reply packet is lost:

Call packet

Executing procedure

Reply packet

The call was processed, but the client can’t know that.

Figure 3.6: Ambiguity of service state after a communication failure

The synchronous semantics that are inherent to traditional remote procedure calls do
not allow client execution to continue in parallel with the service. Thus, even for raw
computations which do not have to wait for any other resource to be available besides
central processing unit (CPU) execution time, parallelism which could net a speedup in
a multiprocessing system has been lost. Similarly, to execute some operations, external
resources like network services, peripheral hardware devices or even the human user may
need to be queried. Communicating with these resources can impose delays on the com-
pletion of an operation, even if there is idle CPU time in the system. If a process blocks to
invoke such an operation, the use of CPU time may become inefficient even on a unipro-
cessor system. This is because the calling process might be able to utilize the idle CPU
time for tasks such as animating its user interface [Pen08].

To regain parallel execution capability with synchronous RPC, multiple threads can
be used in the caller process, as portrayed in Figure 3.7. However, the use of threads
is programmatically unwieldy [ATK92]. The threaded approach is also not scalable to a
large amount of outstanding calls, as threads with separately allocated execution stacks
need to be spawned for the sole purpose of sitting waiting for a call to finish [WFN90].
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Wait for results Reply packet

Results

Clean up

Figure 3.7: Using threads to continue local execution during RPC

An alternative to running synchronous RPC in threads is to make the remote calls
itself asynchronous. This means that the calling thread is not blocked for the execution
of the remote procedure, so it can continue to do local processing. In addition to the
performance aspects described above, some correctness arguments on why inter-process
calls must handled asynchronously will be presented in Section 3.5.2.

Some asynchronous RPC systems try to batch similar calls together to increase ef-
ficiency. This can go as far as to result in call reordering [ATK92]. Reordering means
that a call that is made first by a client is actually executed later than a succeeding one.
We will further elaborate on the problems associated with message reordering in Section
3.5.1.

Many asynchronous RPC systems do not actually have support for methods returning
values to the caller. Additionally, the client is not notified of even successful execution
of a procedure in some of them (“fire and forget” or may-be semantics) [ATK92]. This
is different from local calls and synchronous RPC, in which there is universal support for
determining the outcome of procedure invocations. Despite our asynchrony requirement,
we stress that this bidirectional data exchange capability is essential for all IPC systems.

The incompatibility between asynchronous remote calls and method return values is
fairly simple to understand. In synchronous RPC, the client stub method only returns to its
caller when the remote method has finished. The return value of the remote method is also
reported to the caller at that point. However, as the reason for making calls asynchronous
is to enable the caller process to continue its execution during a call, an asynchronous
client stub procedure must return immediately after sending the call packet. Hence, it can
not wait to receive the reply packet from the service process.

To communicate the result of an asynchronous call to the caller, other means than
the stub function’s return value must be used. The stub immediately returning a promise

object [LS88] is one such mechanism. A promise object is a token which the caller can
later use when it requires the result to continue its execution. The token can be used to
wait for the call to finish, and once finished, extract the return value. This is effectively
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the synchronous RPC stub method split in two parts: the first merely starts the call, and
the second waits for it to complete and gives the result. Figure 3.8 illustrates RPC with
promise objects. Note how the client can only wait for one promise to be fulfilled at
a time. The future mechanism [WFN90] is similar to promises, but additionally allows
waiting for multiple pending results collectively, so that they can be processed as soon as
they are available. In Section 5.1, we will present a refined object-oriented pattern that
utilizes implicit invocation to deliver asynchronous results.

Client code RPC stub Service process 1 Service process 2

call Service 1 Call packet

Promise A

call Service 2 Call packet

Promise B

Local processing
Reply packet

wait(Promise A)

Reply packetResults from Service 1

wait(Promise B)

Results from Service 2

Figure 3.8: RPC with promise objects

3.2 Proxies

In Section 2.1, we described how data abstraction makes it possible to change the inter-
nal representation of objects without affecting clients that access them. For a monolithic
application, the benefit of this might be restricted to not needing to re-compile the client
modules when a change is made. In other words, merely time taken for compilation after
a change is conserved. However, if the application is distributed, it is hard to arrange for
a re-compile or re-link to occur as needed, e.g. when a service binary has been upgraded,
so this alone is a significant benefit [Sha86]. Of course, if there are incompatible changes
to an object interface, e.g. some methods are completely removed, or their signature has
been changed, even a re-compile does not suffice for either monolithic or distributed ap-
plications. The client source code must instead be manually “ported” to the new interface
in both of these cases.

The proxy pattern of Shapiro [Sha86] promotes object-oriented data abstraction and
encapsulation for inter-process communication. A proxy object lives in a client’s address
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space and represents a certain service object, its principal, or a part thereof. This is
illustrated in Figure 3.9. The method of communicating with the service is considered
an internal implementation detail of the proxy. Thus, it is hidden from the client. An
unique feature of the proxy pattern, as compared to remote procedure calls, is that instead
of a collection of procedures in a flat name space, encapsulated objects which bundle
operations together with state are exported.

Client process

Service process

Client code

Proxy object

Principal object

IPC

Figure 3.9: Shapiro’s proxy pattern

In Shapiro’s work, it is assumed that there is operating system level support for mi-
gration of objects between processes. Using this mechanism, the entire implementation
of proxy objects is downloaded from their corresponding services. Additionally, there
is a security framework that restricts inter-process access to service objects to just proxy
code. These two properties mean that the service can predict the fashion in which it
is accessed, and thus it does not have to take arbitrary special cases into consideration.
In Section 3.4.3, we will discuss how the bus daemon process in the D-Bus system can
provide similar guarantees, although no such trustworthy object download mechanism is
employed.

In addition to not requiring specialized operating system facilities, there are interoper-
ability benefits to not utilizing object migration. This is because the fact that proxy code
is downloaded from the service implies that the service must be able to supply code that is
executable in and callable from the client. These requirements inhibit cross-architecture
and cross-language communication, respectively. For the same reason, inlining (Sec-
tion 2.1) of remote methods is also hard to implement in a distributed context without
restricting callers and callees to a single language and processor architecture.

Just like their principals, proxies are full-blown objects with internal state [Sha86].
Thus, they can be used for more purposes than simple remote procedure invocation facili-
ties. For example, a proxy can store a local copy of service object state that is relevant for
method preconditions (Section 2.5). Although in systems where services do not supply
the proxy code, they have to guard against all kinds of incorrect access, a proxy with a
state copy can prevent calls which would fail precondition checks, as an optimization.
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Additionally, the state copy can be used to run some operations locally without accessing
the service [Sha86]. The runnable operations are those with no mutating side effects on
the service object, i.e. observation operations (“getters”). Figure 3.10 depicts possible
operation of a proxy with a local state copy. We will formalize a state mirroring proxy
design that uses D-Bus facilities, and will show its usefulness in environments that are
restricted to asynchronous invocation, in Chapter 5.

Client code Proxy object Service object

‘‘Bank account’’

State: balance=1000

getBalance()

1000

withdraw(500)

Call: withdraw(500)

OK

OK

getBalance()

500

withdraw(1000)

Error: Insufficient balance!

Figure 3.10: Operation of a proxy object with a local state copy

Primitive values and simple records composed of them can usually be transferred as
byte-for-byte copies when they are used as RPC arguments and return values. A raw copy
of an object’s internal data can not however be usefully interpreted without the abstract
semantics that the object’s public inspection operations give to it. Thus, in systems that
do not support migration of the implementations of object operations, objects can not be
easily passed between processes as arguments or return values. Furthermore, the purpose
of some objects is to govern access to a single shared resource. Duplicating such an
object would be counterproductive, because then multiple instances would try to access
that resource. These challenges seem to be the motivation behind classifying objects as
either service objects that offer abstract functionality or data objects, which are just simple
records [OPSS93]. Passing the name/address of an object and constructing a proxy for

33



it in an IPC receiver’s address space can be used to provide transparent shared access to
non-migratable objects [EGD01]. The use of a proxy to represent an object returned by a
service method is illustrated in Figure 3.11.

<<service object>>

Car
-engine: Engine

+getEngine(): pointer to Engine

<<service object>>

Engine
-numCylinders
-bore
-stroke

+getDisplacement()

<<proxy>>

Car
+getEngine()

<<proxy>>

Engine
+getDisplacement()

returns

calls

calls

Service process

Client process

Figure 3.11: Representing an returned service object with a proxy

3.2.1 Proxy-principal communication protocol

In implementations of the proxy pattern that are based on object migration, proxy code
can directly access private interfaces of service objects, as the services can trust them
to do so responsibly. Hence, a predefined protocol with a restricted set of invokable
operations is not needed [Sha86]. However, in other kinds of systems, there must be
an adaptor-style object in the service, which is analogous with the RPC service stub.
The adaptor implements the service export protocol and binds it to calls to the service
object implementation. The relationship between adaptors, proxies and principal objects
is shown in Figure 3.12. The role of the adaptor is fulfilled by message converters in
the distributed knowledge object system of Huang and Duan [HD93]. Both the proxies
and the message converters in this system are written by hand, along with the principal
objects.

The proxy methods that call the service and the message subtypes in the communi-
cation protocol between the proxy and the adaptor both map to the operations that the
adaptor invokes on the principal object. Designing these entities separately is therefore
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Proxy object

Adaptor object
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Figure 3.12: Adaptor objects in a proxy-based IPC system

redundant work. The Proxify++ code generator tool in the Choices system inspects C++

class header files to gather information on operations that are marked for export to clients.
Then, it generates the corresponding proxies [DSC92]. Thus, the interface is designed
only once when writing the service-side implementation. However, in that system, spe-
cial annotations that detail the semantics of the method interface are needed to guide the
encoding of parameters for transfer (marshalling).

In the spirit of explicit interface oriented design (Section 2.4), we argue that one
should not try to extract IPC interfaces from existing object implementations, especially
if they need to be augmented with further metadata. Instead, all of this knowledge should
be encoded in a separate interface specification, which will dictate the operations that
must be supported by concrete implementations. This is the approach taken in the Java
RMI and CORBA systems, for example. In Chapter 6, we will propose an XML-based
interface description language (IDL), that can be used to generate proxies for use with the
D-Bus messaging system.

Most of our research is concerned with the client side of IPC systems. Hence, we
often blur the line between service adaptors and principal objects in our examples, and
refer to them together as service objects.

3.3 The Publish/Subscribe Paradigm

Remote procedure calls hide the complexity of network communication from inter-process
procedural programming, and the proxy pattern translates the benefits of object-oriented
data abstraction (encapsulation) to the distributed setting. However, in both paradigms
the entity that initiates communication must still specify the receiver using some refer-
ence. This can be an explicit address or an abstract name to be translated by a name
service. Additionally, the exact operation invoked is always directly specified in RPC,
although proxies can transparently remap [DSC92] or even avoid calls depending on the
capabilities and state of the remote object, which they can locally mirror [Sha86]. Hence,
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these mechanisms lack the kind of full decoupling between information producers and
consumers (event announcers and receivers) that is achieved by implicit invocation (Sec-
tion 2.7).

Event-driven communication can be facilitated in a distributed setting by allowing
publishers to announce events on some kind of a shared medium, where messages are
routed to subscribers based on their registered interests [EFGK03]. The interests are
registered on the connecting service, and not using application-specific facilities imple-
mented by the publishers. Hence, the publishers are fully decoupled from the identities
of the consumers for the events they announce. Additionally, if the rules specifying an
interest are based solely on the event itself and not on the identity of the entity which
produced it, producers also remain anonymous to their consumers [OPSS93]. The multi-
plicity of producers and consumers is also flexible: Events from one or more publishers
can be routed to an arbitrary number, including zero, of subscribers with a matching in-
terest. The basic structure of the publish/subscribe paradigm [EFGK03] is illustrated in
Figure 3.13.

Publishers Messaging system Subscribers

1

2
Message routing

publish(event A)

3

publish(event B)

Event interests

uses
2deliver(event A)

3

deliver(event A)

1
register

Figure 3.13: The publish/subscribe paradigm

How the interesting events are specified varies in concrete publish/subscribe messag-
ing implementations. In subject/topic-based systems, events are labeled with a subject
identifier and delivered to all receivers subscribed to that subject. Thus, all events under
a certain topic can be thought to be delivered to a group of of subscribers. This one-to-
many mapping is only altered when subscriptions are made or broken, so it does not need
to incur a per-message cost [OPSS93].

In contrast to the above, content-based systems allow subscriptions to be based on
multiple meta-data attributes of the events, and sometimes even on (parts of) the pay-
load itself. As expressing these kinds of interests is more complex than naming a sub-
ject, a subscription language needs to be used to specify them. Rules written in this
language are interpreted by the messaging system to do message routing. The rules spec-
ify ranges of values for certain properties of messages that should make them delivered
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to the subscriber. Matching messages against the content-based rules implies additional
per-message routing work. However, it allows more fine-grained rules than topic-based
subscription. Thus, it can help avoid unnecessary message transfer and execution context
switches which could result from too broad rules that cause uninteresting events to be
delivered to receivers [EFGK03]. Furthermore, when the majority of the event filtering
work being done in a central component, common rule subexpressions can be evaluated
together as an optimization [EGD01]. The match rules of D-Bus [PCL+12] are also a
form of content-based subscriptions. Our D-Bus-based extended proxy construct lever-
ages fine-grained match rules to avoid redundant communication, as will be explained in
Section 5.3.

A further refinement to the paradigm is representing events as full-fledged objects—
that is, as abstract entities defined by their operations, and belonging to one or more class
hierarchies. Implementing this requires an object migration mechanism, and as explained
earlier, the use of such mechanisms imposes restrictions on language interoperability. The
main motivation for the use of first-class event objects is gaining type safety in the event
communication [EGD01]. It is however possible to do type-checking without the events
being objects just as it is done for method arguments, if the type signatures of events are
specified in an explicit interface description alongside the methods. This is the case in the
interface description language we present in Chapter 6.

Although implicit invocation has many uses, certain drawbacks make regular asyn-
chronous RPC calls better suited for some tasks. Hence, it is useful to utilize both of
these communication paradigms in a distributed system. Events are by nature fire-and-
forget; it is not possible to know whether they were delivered to certain producers or not.
Hence, for cases where it must be known that an action was properly undertaken, RPC is
more suitable [EFGK03]. A classical example is the trading floor [EGD01]: Stock price
updates are inherently multicast-type events, where the most recent update of a given se-
curity’s price completely supersedes earlier ones. However, the outcome of a single act of
purchasing or selling a stock, and that it is attempted exactly once, is very crucial. Those
actions should therefore be explicitly invoked operations. A single messaging system can
be used to transport operation invocations and replies in addition to events [OPSS93].
This is also reflected in the message types supported by D-Bus (Section 3.4.2).

Concrete publisher and subscriber instances communicating together can be added,
removed, altered and replaced freely at runtime due to identity decoupling. A related
decoupling dimension is that of temporal decoupling: the medium can store the event
messages in non-volatile memory, and forward them only when a consumer is prepared
to retrieve them. If this is done, no events are lost even in cases such as temporary network
downtime or consumer crashes [EFGK03].
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The subscription rule registry, and the store and forward facility, can both be imple-
mented in either a distributed or a centralized manner. In the first style, the rules are
stored by each publisher process (though to achieve implementation transparency in the
publisher applications, this functionality should be provided by a library). The store and
forward functionality is implemented in a shared fashion by using message queues in both
producers and consumers. Then, either of them can crash or be busy processing some-
thing else, but still eventually have the events transferred. Figure 3.14 depicts a distributed
publish/subscribe architecture.

Publishers Subscribers

1
Interests

Message queue

2
Interests

Message queue

Message queue 2deliver(event A)

Message queue 3
deliver(event A)

3
Interests

Message queue

Message queue 1
register

Figure 3.14: Distributed publish/subscribe architecture

In a centralized architecture, both interest registration and guaranteed delivery are
implemented by a specific process, or an abstract load-balancing collection of proces-
ses [OPSS93]. The parties communicating in the system connect to this central service
with point-to-point links [EFGK03]. By connecting relevant publishers and subscribers
together, such an entity however provides the illusion of a shared bus topology [OPSS93].
This construction is illustrated in Figure 3.15. In Section 3.4.3, we will describe the
subscription-based virtual bus implemented by the bus daemon component of the D-Bus
system.

No event store-and-forward facility is included in D-Bus. We assert that in our context
of (mostly) node-local systems, communication failures are always resolved in such a
short time, that non-volatile event storage would not be useful.
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Figure 3.15: Publish/subscribe communication using a central messaging service

3.4 D-Bus

There has been a drive to connect Linux desktop applications together to achieve a more
integrated user experience since the 1990s, when the GNOME and KDE desktop environ-
ments were born. Sweet et al. have documented [S+00] the earliest phases of inter-process
communication efforts in the KDE project, which we will now quickly summarize. This
is important as the context that led to the eventual creation and adoption of the D-Bus
system.

The first IPC mechanism that was widely employed in KDE was built on top of the
X Atoms mechanism. The Atoms mechanism is a part of the underlying X11 windowing
system. It was used in communication between the core visual components of the desktop,
such as the window manager and the panel. Although the Atoms mechanism is simple to
utilize, it was quickly found to be too restricted and inflexible in terms of what kind of
information can be exchanged through it.

In the development of the KOffice office tools suite, it was identified that a more
general reusable IPC mechanism was needed. There was an extensive investigation on
adopting an implementation of the CORBA system for this purpose. At the time, the
GNOME project used the ORBit implementation of CORBA. However, the KDE study
found ORBit and other existing CORBA implementations to be unsatisfactory in terms
of functionality and completeness. Another problem was their usability with the C++

programming language, which was used for most of KDE’s implementation. Also, even
the implementation-independent CORBA specification itself was judged to lead to too
static software architectures. Simultaneously, the CORBA system was found to be so
complex that the learning curve would have been insurmountable for smaller applications.
The complexity problem was also evident from characteristics of the prototype, which was
built around the MICO CORBA implementation. It suffered from slow compilation and
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execution, excessive memory usage and unsatisfactory stability.
The DCOP system was then created as a ”simpler CORBA”, to bring the benefits of

generic IPC to KDE without the complexity imposed by CORBA. DCOP is based on
the X Window System Inter-Client Exchange (ICE) mechanism, which has been a part
of all contemporary X Window System releases in the X11R6 series. However, ICE
is a very low-level mechanism. For example, its type system is restricted to primitive
integer, boolean and character types and homogenous lists of those [SB94]. For this
reason, DCOP uses the QDataStream facility from the Qt framework for serialization
and de-serialization of more complex data [S+00]. While Qt is the basis of KDE, it is not
used in the GNOME project, and hence this design choice hampers interoperability with
GNOME and other non-Qt systems [Wit05].

D-Bus is a full-featured IPC system. Its type system is designed to be flexible and
extensible enough so that it can be used in both GNOME and KDE, without additional in-
compatible typing and (de-)serialization layers above it [Lov05]. It has since been adopted
as the sole high-level IPC mechanism by both of these desktop environments, in which it
has replaced CORBA and DCOP, respectively. As such, D-Bus has widespread availabil-
ity, which has enabled cross-platform projects to depend on it [AFF+09].

In the following sections, we will analyze the features and qualities of the D-Bus sys-
tem in the context of existing research on object-orientation and inter-process communi-
cation. The analysis is based on the canonical specification document, which is published
as a freedesktop.org standard [PCL+12]. We will specifically focus on the properties
which are the most important for the principles and patterns we introduce later. Specifi-
cally, we deliberately ignore issues such as the features for peer authentication, message
validation, and the lowest level details on the binary representation of messages.

3.4.1 Object model

Services export their functionality over D-Bus in the form of objects, which typically,
though not necessarily, are backed by concrete native objects in the address space of the
service process. The D-Bus object model does not have a concept of classes (as defined
in Chapter 2). Instead, the access interface of objects is determined exclusively by the
explicit interfaces (Section 2.4) that a particular instance implements.

The objects in a single process are identified uniquely by object paths of the form
/rooms/Third_floor/301, that is, a series of elements, which are preceded and sepa-
rated by slash (/) characters. The elements consist of alphanumeric characters and under-
scores. Object paths are usually mapped to memory addresses of real objects by runtime
facilities, but unlike raw memory pointers, they provide an abstract, architecture indepen-
dent, human-readable and hierarchical identifying system. It is common to leverage these
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benefits e.g. by exporting some kinds of objects at a fixed well-known path. For example,
the Telepathy runtime debugging facility is always present at /org/freedesktop/Te-
lepathy/debug. It is also common to give semantics to elements at certain levels of the
hierarchy, such as in the paths of Telepathy Account objects. These paths include the net-
work protocol and backend implementation used for it as the second- and third-from-last
elements, respectively [dTdCDG+12].

The interfaces that D-Bus objects implement are in turn referred to by names like
org.freedesktop.Telepathy.Connection. Although at the time of writing, there
exists no global registry of D-Bus interfaces, an Internet domain name that belongs to
the designer or user organization is often included in a reversed form before a number of
locally identifying elements, to attain global uniquity for interface names.

Arguably the most important members of interfaces are methods, which are functional
abstractions, as defined in Section 2.1. Methods are named in a CamelCase fashion, and
can take an arbitrary number of parameters and also return an arbitrary number of return
values. The interface defines the types of these items of data for each method, so that type
compatibility can be enforced. The details of the D-Bus type system will be elaborated
more in the next section.

Instead of finishing successfully and producing the expected set of return values, a
D-Bus method invocation can also result in an error. D-Bus errors are analogous to
exceptions, which can happen for process-local calls (Section 2.6). Errors have a type,
which is a global name with a form similar to that of interface names. For example,
the error org.freedesktop.Telepathy.Error.Channel.InviteOnly is used in the
Telepathy framework to indicate the failure to join a chat room for which an invite is
required. Errors can have any kind of data associated with them. However, usually there
is just a single string argument that carries a human-readable debugging message, which
describes the error in more detail.

Implicit invocation (Section 2.7) is included in D-Bus in the form of signals, which are
emitted on a particular object instance, but are not targeted towards any specific receiver
object. Signals may include arguments. The presence and type of these arguments is
defined in the description of the interface which a signal is defined in, as is the case for
method parameters. Unlike methods, there is no response to signals, such as a result
gathered from the objects listening to it, or even acknowledgement of any process having
received it.

As D-Bus interfaces are concerned with how objects are accessed, instead of how
they are implemented, they do not include any members with less-than-public accessibil-
ity. In a typical encapsulated native object, the data representation would be private to
the object—an implementation detail of the data abstraction the object provides. Such
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Table 3.1: D-Bus basic types

Name Code Description
BYTE y Integer in (0 . . . 255)
BOOLEAN b Truth value: 1 (TRUE) or 0 (FALSE)
INT16 n Integer in (−32768 . . . 32767)
UINT16 q Integer in (0 . . . 65535)
INT32 i Integer in

(
−231 . . . 231 − 1

)
UINT32 u Integer in

(
0 . . . 232−1

)
INT64 x Integer in

(
−263 . . . 263 − 1

)
UINT64 t Integer in

(
0 . . . 264 − 1

)
DOUBLE d IEEE 754 double-precision floating point number
STRING s Arbitrary-length string of characters in UTF-8 encoding
OBJECT_PATH o Path to a D-Bus object
SIGNATURE g Type signature of other data

details are not relevant for D-Bus object interfaces; however, they can include publicly
accessed attributes in the form of properties. These do not need to be backed directly by
instance variables of a compatible type, but are usually implemented in services through
a getter (inspection) function. If a property is mutable, there is also a corresponding setter
(mutator) function. The Properties and ObjectManager interfaces, and some parts of
the design of our state caching proxies, all presented later, are specifically concerned with
accessing, transferring and updating these properties of objects.

3.4.2 Message format

Inter-process communication between D-Bus objects takes the physical form of messages,
which consist of a header and a body. The header specifies how the message should be
interpreted, and the body carries the actual data. In particular, the header includes most
of the information needed for routing the message to its intended recipient(s).

Type system

All values in D-Bus messages, including both the header and the body, are represented
using a well defined type system. The smallest unit of typing is that of the basic types.
Each basic type has an associated signature code, which can represent it by itself or as
part of a signature of a more complex type. Table 3.1 lists these data types of D-Bus.

The simplest way to combine primitive types together is concatenation. For example,
the signature iis would mean that two 32-bit signed integers are followed by a character
string. In this case, all three values are separate. A distinct concept is the STRUCT, which
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is represented in signatures by parentheses, such as in s(yb). In this signature, a string
value is followed by a single structured value, which is composed of a byte-sized integer
and a boolean.

The basic types belong to a larger group, that of single complete types. The signature
ii has two single complete types following each other, while a STRUCT groups single
complete types together to form a new single complete type. Another way to form new
complete types is the ARRAY construct. Arrays are represented in signatures by the ‘a’
character followed by a single complete type, which determines the type of elements in
the resulting homogenous sequence. For example, the signature ai specifies a list of
integers, and a(uu) a list of pairs of 32-bit unsigned integers.

The final primitive for forming complex types is the DICT, which is semantically a
key-value mapping. Its keys must be unique, but can be of any basic type. The value
associated with each key can be of any single complete type. A string-keyed dictionary
which has integer triples as values would be written as a{s(iii)}.

The VARIANT type is represented in signatures by the ‘v’ character. A variant can hold
a value of any single complete type. To enable the receiver to interpret the value correctly,
variants also carry the type signature of the value. Variants also belong to the group of
single complete types, so they can be used as array elements and mapping values.

An important property of all single complete types is the ability to nest them in vari-
ants, structs, arrays and dictionary values. There is a limit to the maximum depth of the
nesting, presumably to avoid security and reliability issues caused by stack overflows in
message handling code. However, this limit is well beyond any practical uses, at 64 levels
in total. This means that constructs such as arrays of arrays of structures are supported.
For example, the signature aa(sii) would be interpreted as a two-dimensional array of
(STRING, INT32, INT32) triples. This nesting capability is what makes the type system of
D-Bus truly powerful. The system is able to encode virtually any kind of complex values
in a programming environment- and architecture-independent fashion.

We will use D-Bus signatures later on to describe the types of parameters and return
values of D-Bus methods, of arguments of signals, and those of properties. As an example,
consider the following declaration of a single method. The method takes an array of
floating-point values as its only parameter, and produces as its result a single number, the
sum of the values in the array.

com.example.Calculator.Sum(ad: Numbers) → d: Total

Message types

The D-Bus message header has a field for the type of the message, which determines the
set of type-specific additional header fields applicable to it, and the interpretation of its

43



body. The first such type is METHOD_CALL, which requests starting the invocation of a
method. In essence, this is the call packet (Section 3.1) of D-Bus. The method to invoke
is identified in these messages by an interface name and the name of the method in that
interface. A path is also given to the object instance on which the method should be
invoked.

The body of METHOD_CALL messages consists of the parameters passed in to the
method, if it requires any. With the description of the interface that contains the method,
the signature of the body can be checked against the type signature of the method. All
parameters are passed by value—reference arguments are not supported. However, as the
object path is a possible value type, mutable reference parameters can be simulated for
non-copiable object entities by proxying, as explained earlier in Section 3.2.

The header for all D-Bus messages carries a serial number field, which uniquely iden-
tifies messages from a single sender (though not globally amongst all senders). This serial
number of method call messages is used to associate with them later METHOD_RETURN
messages, which represent successful completion of method execution. The same goes
for ERROR messages, which indicate that an D-Bus error/exception occurred. These mes-
sages together constitute the reply packets (Section 3.1.1) of D-Bus. As the “packet”
terminology never seems to be used in the context of D-Bus, we will exclusively refer to
D-Bus call and reply packets as messages.

The header of D-Bus reply messages contains a reply_serial field. This is set to
the serial number of the call message that they should be interpreted as a response to.
Figure 3.16 illustrates the use of this field in practice.

Client process Service object

METHOD_CALL
member=Disconnect

serial=1

METHOD_CALL
member=Disconnect

serial=2

METHOD_RETURN
reply_serial=1

ERROR
reply_serial=2

"com.example.AlreadyDisconnected"

Figure 3.16: The function of the reply_serial field in D-Bus

Method return messages have two purposes. First, they indicate successful completion
of a method’s execution. If the method produces return values, the message also serves
as a carrier for them. This is similar for error messages, except that their contents are
usually limited to the D-Bus name of the error. Return messages are only generated and
sent by the process that implements the method. However, errors can be generated any-
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where in the messaging system, e.g. because the service process has crashed or otherwise
became unreachable or unresponsive. Having separate messages for starting method calls
and conveying their result enables D-Bus methods to be invoked asynchronously. How-
ever, it is still possible for callers to receive results and in general, know the outcome of
operations which they invoked. When this is not needed, the NO_REPLY_EXPECTED flag
can be set in the header of method call messages to prevent a reply from being generated.
This can be useful to avoid the cost of sending and delivering the reply message in cases
where the result would anyway be ignored by the caller.

Signal emissions are represented by messages with the type SIGNAL. Similarly to
METHOD_CALL messages, their body contains the arguments of the event. However, in
their case, the object path does not identify a receiver for the message, but instead the
object from which the signal originated.

Signal messages are delivered to objects in listening processes primarily based on
match rules, which are explained in the next section, amongst other subjects related to
the D-Bus bus daemon process. However, before that, we will close our treatise of the
format of D-Bus messages with a few words on their representation for transfer over
communication channels.

Wire representation

Data in textual formats like XML can be easily transferred between systems using net-
work protocols that are intended for transporting human readable text. However, typical
processors expect an architecture-specific binary representation for values that are used
for arithmetic in executable code. Textual data needs to be converted to this native binary
format for processing, which can be expensive. A common difference in the native repre-
sentations of different processor architectures is whether the most or least significant bits
of a multi-byte value should be stored first in memory. This is called endianness.

D-Bus uses a binary format to encode messages for transfer. Thus, conversions be-
tween a textual format for communication and a binary format for processing are not
needed. However, D-Bus specifies binary layout details such as alignment and padding
for all kinds of values that are supported by its type system. Additionally, the message
header contains a flag indicating the endianness of data in messages, which a receiver can
use to convert the values to its native endianness if there is a mismatch. These facts put
together mean that although messages are transported in a binary format, this format is
architecture independent. Hence, D-Bus can be used for arbitrary cross-machine com-
munication as well. The ”receiver converts” paradigm means that endian conversions are
avoided in local-node usage, which improves performance.
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3.4.3 The bus daemon

In Section 3.3, we touched the subject of centralized event queueing and routing services
in the context of publish/subscribe systems. Publishers and subscribers connect to the
service by point-to-point links. However, because the service routes messages between
these links, it is possible for any subscriber to consume events from any publisher. Thus,
a logical bus topology is formed between the publishers and subscribers.

The communication primitives presented in the previous subsections can be used over
peer-to-peer links between two D-Bus applications. However, more typical is to commu-
nicate through the bus daemon, which delivers messages in a bus-like fashion, much like
the publish/subscribe central routing services. The structure of this case is illustrated in
Figure 3.17.

Process A

Bus daemon

Process B

Process C

Virtual bus

Figure 3.17: D-Bus bus topology

The DESTINATION field can be set in D-Bus messages to have the bus daemon for-
ward the message to a particular recipient. This form of unicast messaging is always
employed for method calls to services on the bus. The bus daemon automatically fills in
the complementary SENDER field based on the process that sent the message. Services use
the value of this field as the destination when building method return and error messages,
which result from the method calls.

Every connection to the bus daemon is assigned an unique name, such as :1.234.
These names are distinguished by an initial ‘:’ character and are never reused on a bus.

A process can request additional names for itself by the following method imple-
mented by the bus daemon on the bus service interface, org.freedesktop.DBus:

RequestName(s: Name, u: Flags) → u: Disposition

The Name parameter specifies the name to request. The bus name format is similar to
the format for D-Bus interface names, e.g. com.example.Service. The flags and details
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on the disposition return value are only relevant when multiple processes try to claim the
same bus name. For our purposes, it suffices to know that with certain flags, the operation
only succeeds if the process obtains the name, and fails otherwise.

The destination field of a message can be filled with either a unique name or any other
bus name successfully claimed by a service. The bus daemon routes unicast messages
according to all the mappings established with RequestName. The effect of sending a
message to a non-unique name is the same as setting the destination to the unique name
of the process which owns that name. These mappings can be broken by their owner by
calling the following method of the bus service interface:

ReleaseName(s: Name) → u: Result

When a name is successfully acquired or released by a process, the bus daemon emits
the NameOwnerChanged signal on the same interface. Other processes can listen to this
signal to be notified of services appearing and exiting. To specify which names are inter-
esting, D-Bus interface specifications often define certain well-known names or patterns
for them, for implementations of particular functionality. For example, Telepathy protocol
backends register names like

org.freedesktop.Telepathy.ConnectionManager.gabble

where the last component is the name of the executable [dTdCDG+12].
Signal messages can specify a destination as well, to make them routed in a uni-

cast fashion. However, usually this is left out and they are delivered to interested re-
ceivers according to match rules. The match rules are specified as strings of the form
key1=’val1’,key2=’val2’,. . . such as

interface=’org.freedesktop.MediaPlayer’,member=’StatusChange’

Table 3.2 partially describes the semantics of this subscription language. The expres-
siveness of match rules makes D-Bus a content-based publish/subscribe system. How-
ever, there are some restrictions on how content can be matched, as detailed in the table,
so it is not a fully general one. Match rules can be added and removed at runtime, so
D-Bus supports dynamically altering the connections between event announcers and lis-
teners (Section 2.7). This is done by calling the following two methods of the bus service
interface:

AddMatch(s: Rule) → nothing

RemoveMatch(s: Rule) → nothing
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Table 3.2: Some semantics of D-Bus match rules

Key Example value Matches on
type signal The type of the message.
interface org.freedesktop.DBus The name of the interface the method or sig-

nal the message pertains to is a member of.
member RequestName The name of the method or signal (member

of the interface).
path /rooms/301 The path to the object to invoke a method on,

or which has emitted a signal.
argN “John Doe” The value of the Nth argument of the (method

call or signal) message, starting from arg0
for the first argument. Restricted to string ar-
guments.

arg0namespace com.example The initial components of the first ar-
gument, which has to be a string for-
matted like a D-Bus interface name
or bus name. The example would
match com.example.EchoService and
com.example.MusicPlayer, but not
com.examplesoftwarecompany.Editor.
This is useful for watching a family of names
by listening to the NameOwnerChanged
signal, as the bus name for which the owner
changed is the first argument in that signal.
However, there are no corresponding match
rule keys for arguments other than the first
one.

path_namespace /rooms Similarly, the initial components of the path
of the object which the message pertains to.
The example would match /rooms/301 and
/rooms/415 etc. but not /roomservice.
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If a method call is directed to a non-unique bus name that no process currently owns,
the bus daemon will attempt to start the service that should provide it. The mapping of
bus names to executables that will register them are stored in service description files.
If the name is found from those files, the daemon will start the service and wait until it
has connected to the bus and requested the name. This is called service activation. The
method call message that caused the service to be activated will be delivered afterwards.

Access control

Any number of D-Bus bus daemon processes can run on a single machine, to create mul-
tiple virtual buses. However, there is usually one machine-wide system bus for system
services, shared between all users, and one bus for each logged in user session (ses-

sion bus). The session bus is typically configured to allow all traffic between connected
processes, but the system bus restricts access to destructive actions and confidential in-
formation. However, the session buses only allow processes run by their owner user to
connect.

To enforce the differences between system, session and other kinds of buses, the bus
daemon has a configurable security policy. The security policy can, for example, be
used to only allow particular users and executables to claim a particular well-known bus
name, to prevent spoofing. Also, access to methods and other service properties can be
restricted based on user credentials. These restrictions can be used to prevent malicious
use of services. In this way, the bus daemon can provide some security guarantees, which
would be implicit in a system based on runtime proxy object migration, as we detailed in
Section 3.2.

3.4.4 The Properties interface

In addition to the bus service interface implemented by the bus daemon, the D-Bus spec-
ification defines a few other standard interfaces. These interfaces contain generic func-
tionality, which is intended to be useful for many kinds of applications.

In Section 3.4.1 we mentioned that in addition to methods and signals, D-Bus inter-
faces may include properties. There is a standard interface, which objects can implement
to expose access to properties on their other interfaces. This interface, org.freedesk-
top.Properties, is presented in Listing 3.1.

Suppose an object implements the standard Properties interface, and additionally
the Counter interface presented in Listing 3.2. The semantics of the Counter interface
should be self-explanatory. A call of Get("com.example.Counter", "CurrentVal-
ue") could be used to discover the current value of the counter. The value will be packed
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Get(s: Interface, s: Property) → v: Value

Set(s: Interface, s: Property, v: New_Value) → nothing

GetAll(s: Interface) → a{sv}: Properties

PropertiesChanged(s: Interface, a{sv}: Changed,
as: Invalidated) [signal]

D-Bus interface 3.1: org.freedesktop.Properties

in a D-Bus VARIANT value, as per the return type of the Get method.

Increment() → nothing

Reset() → nothing

u: CurrentValue [read-write property]

t: LastReset [read-only property]

D-Bus interface 3.2: com.example.Counter

The GetAllmethod can be used to download all of the properties on a given interface
an object implements. This is functionally equivalent to making separate Get calls to
discover the value of each property, as long as their values do not change between the calls.
However, with GetAll, only a single method call round trip is needed to download the
entire state of an interface. The call GetAll("com.example.Counter") would return
both the current value of the counter and a timestamp for when it was last reset. The
values are returned in a string-variant map, with the property names as the keys.

The method Set can be used to set object properties. However, it often does not make
sense to allow altering the values of some properties. This is the case for the LastReset
property, for example, since it is supposed to indicate the point of time when the Reset
method was most recently successfully called. Thus, it is marked as a read-only property
in the interface description, and Set calls to assign a new value to it would always produce
an error.

The PropertiesChanged signal is emitted when the value of one or more properties
on an object changes. The first argument will specify the interface which the properties in
question belong to. The second argument is a mapping with a similar layout as the return
value for GetAll. Its contents will be new values of the properties.

The last argument of the PropertiesChanged signal is probably the hardest part of
the entire Properties interface to understand. It would be inefficient to transfer the
new values of some properties fully as part of the Changed map. The Invalidated
list contains the names of such properties. The information necessary to form their new
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value is communicated with other means. For example, objects which represent group
conversations in Telepathy have a property called Members. This property lists all of the
members in the conversation. Some conversations might have thousands of members; for
them, sending the full list each time one member joins or leaves would be wasteful. The
MembersChanged signal is emitted for those events. Its arguments specify the members
which were added to and removed from the conversation, along some other information
[dTdCDG+12]. These changes can be applied to the previous value of the Members prop-
erty by a receiver to discover to the new value.

3.4.5 The ObjectManager interface

The Properties interface can be used to download state from a single object and to keep
it up-to-date. Clients are sometimes interested in entire sub-trees of service objects, that
is, on a root object, and all its children and further descendants. Listing 3.3 presents the
ObjectManager interface, which is useful for these cases.

GetManagedObjects() → a{oa{sa{sv}}}: Objects_With_State

InterfacesAdded(o: Object, a{sa{sv}}: State) [signal]

InterfacesRemoved(o: Object, as: Interfaces) [signal]

D-Bus interface 3.3: org.freedesktop.ObjectManager

The GetManagedObjects method can be called on an object to download the state
of all objects in the sub-tree rooted at it. The return value is a nested mapping, where the
keys on the first level are paths of the objects. The second level keys are the names of the
interfaces each object implements. The innermost mapping contains the current state of
each of these interfaces. In this mapping, property names are mapped to their values in an
identical fashion to the GetAll return value. Figure 3.18 shows an example return value
with the state of two objects.

The InterfacesAdded signal is emitted when a new object appears in the sub-tree,
or an existing object gains one or more new interfaces. The second argument maps the
names of the interfaces to their state, like the inner two levels of the return value of
GetManagedObjects. The InterfacesAdded signal is emitted when interfaces are re-
moved from existing objects. The last interface(s) being removed from an object means
that the object ceases to exist.

The result of GetManagedObjects and the arguments of the InterfacesAdded sig-
nal convey the initial state of all interfaces on the objects. However, changes to the state
are not signaled on this interface. The PropertiesChanged signal and other more spe-

51



"/rooms/Third_floor/301" "/rooms/Third_floor/302"

"com.hotel.DoubleRoom"

"com.hotel.RoomFeature.Minibar"
"com.hotel.SingleRoom"

"Tenant1" "Tenant2" "DoorOpened" "Balance" "Tenant"

s "John Doe" s "Jane Doe" b True d -192.20 s "Sam Sparing"

Figure 3.18: Layout of the GetManagedObjects return value

cific change notification signals should still be monitored to keep the state synchronized
with the service. The idea is that clients using the ObjectManager interface will add a
match rule which catches all signals emitted in the sub-tree. This will include the change
notification signals as well, so they do not need to be subscribed to separately for each
object. The path_namespace key of match rules can be used to match entire sub-trees,
as in the following example:

type=’signal’,name=’com.hotel.LondonRiverside’,path_namespace=’/rooms’

Clients which use the ObjectManager interface will always receive all information
for a given sub-tree of objects. If only some information is actually needed, e.g. a few of
the objects, or not from some interfaces of them, the rest is transferred for nothing. Thus,
more granular mechanisms should be used to communicate the state of service objects,
unless entire sub-trees are really interesting. These finer-grained mechanisms will likely
use the Properties interface directly, like the state caching proxy pattern that will be
presented in Chapter 5.

3.5 Correctness and Scalability Constraints

In the previous sections, we have described the messaging primitives available in D-Bus.
It is possible to use this functionality in many different ways to communicate the same
information. Here, we analyze practical implications of some commonly emerging mes-
saging patterns. Thus, we can establish constraints on designing messaging such that bad
behavior is avoided.

D-Bus communication is done in terms of messages. The messages are delivered on
a virtual bus shared by clients. The bus topology is formed by the central daemon, which
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routes messages between point-to-point connections to each client. Although we use D-
Bus as an example case, the conclusions drawn here are applicable to any system which
shares these properties.

3.5.1 Message ordering

D-Bus signals can be used to indicate that an event has occurred. A method return mes-
sage indicates that an operation has finished and describes the operation’s outcome. The
effect and outcome of methods called on objects depends not only on the parameters
passed to them, but also the state the object was in at the time of the call. Some kinds of
states might be completely unsuitable for invoking a particular operation—namely, those
in which the operation preconditions are not fulfilled (c.f. Section 2.5).

Invoking operations on objects that no longer exist does not make sense. Thus, the
object being alive and well can be considered an implied precondition of all methods. On
D-Bus, one will get an UnknownObject or UnknownMethod error when calling a method
on a nonexistent object [JTM08]. However, this is not always an error on the part of the
caller. Some external event might have caused the object to go away just before the call.
On the other hand, calling a method on an object which has never existed is always an
error. However, in terms of the error code returned, that is indistinguishable from the
object having ceased to exist right before the call started processing. It is not feasible for
services to provide more information in the error reply, because to do that they would have
to remember indefinitely which objects have existed at some point in time. This would
consume more and more resources as objects are created and destroyed.

D-Bus objects managed by the ObjectManager interface indicate being destroyed
through the InterfacesRemoved signal, as explained in Section 3.4.5. Thus, it is pos-
sible to distinguish the two error cases where the object does not exist by listening to
this signal. If the object did exist, but goes away during a method call, there will be an
InterfacesRemoved signal message before the error reply message. If a client receives
and processes the messages in order, it can correctly interpret the error reply as an object
having existed, but just now ceased to exist. But if it for some reason processes the reply
first, it can not distinguish between the two cases.

For a more concrete example, consider a D-Bus object representing a conversation
with multiple participants. Let us assume that current members are able to ”kick” other
current members out of the conversations, at which point they cease to be members.
This is exactly how e.g. IRC and XMPP multi-user conversations are represented in the
Telepathy framework: A RemoveMembers method can be called to kick other members.
Kicked members get a MembersChanged signal, the parameters of which indicate that
they were removed from the set of current members due to being kicked by another
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user [dTdCDG+12]. After being kicked, one is no longer a member and thus can not
kick others, and calls to the RemoveMembers method would fail. Distinguishing errors
resulting from this case from those, where a kick or some other action is attempted even
before joining the conversation, requires processing the MembersChanged signals and
RemoveMembers replies in the correct order. Figure 3.19 depicts an ambiguous situa-
tion, which can occur if the method reply message is processed first, and other messages
reordered after it. The reordered messages are shown in gray.

Client process Multi-user conversation

MembersChanged(local user kicked)

Closed() (object ceases to exist)

RemoveMembers(other user)

ERROR: "UnknownObject"

Figure 3.19: Reordering of a kick event and a method call

One does not even have to mix signals and method calls to see the benefits of consis-
tent message delivery and processing order. Previously, we mentioned that it’s not always
efficient enough to transfer the new value of object properties fully when they change.
Instead, a delta from the old value to the new value is transferred as a signal argument.
Clearly, if the deltas from successive signals are applied in the wrong order, the end result
can be different.

We can conclude that preserving message order is imperative for a messaging system
like D-Bus. Luckily, the D-Bus bus daemon guarantees that it delivers messages from a
single sender in the same order in which they were sent. However, some client implemen-
tation patterns can cause reordering during message processing in the client, as we will
see in the next section.

3.5.2 Asynchronous method calls

Previously in Section 3.1.1, we have established that by invoking remote methods asyn-
chronously, a client can run in parallel with the service, or get multiple services working
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in parallel. This can increase the total system throughput, i.e. the amount of work ac-
complished in a given amount of time.

In addition to throughput, for applications with a graphical user interface (GUI), user-
visible latency is also important. The main event loop of GUI applications must be able
to dispatch repainting of the interface 30-60 times per second to maintain smooth anima-
tion. Users do not see the total number of frames drawn or the average rate of repaints, but
they can notice if there is a significant delay between successive frames. Thus, nothing
must block the execution of the main loop for significant amounts of time, even occasion-
ally [Pen08].

An application can only guarantee that its event loop runs at a consistent pace, if tasks
run by the loop always finish in a shorter time than the maximum allowed interval be-
tween user interface repaints. Sending a D-Bus method call message can be done in a
known-short time, as it’s just a matter of sending a small amount of data over the connec-
tion to the bus daemon. Similarly, reading a method reply and interpreting it can always
be done fairly quickly. However, the client does not have any guarantees about how long
the service is going to process the method call until it sends the method reply. Both the
method call begin and reply messages can also both end up queued inside the bus daemon
for an indefinite amount of time before they even reach their destination. Thus, either ini-
tiating a D-Bus method call or processing the reply for one can be considered acceptable
within a single iteration of the main loop of an interactive application. However, initiating
a method call, waiting for its result and processing it, all between two successive repaints,
can lead to a sluggish user experience.

Despite these suboptimal performance characteristics, real-world D-Bus client libraries
like dbus-glib, dbus-python and QtDBus provide a mechanism to invoke D-Bus meth-
ods and block until their result has been received. We will call this mechanism pseudo-

blocking, as in Simon McVittie’s work on the subject [McV08]. The operation of this
mechanism is outlined in Algorithm 3.1.

Send method call message
M ← the SERIAL number of the message
loop

Wait until there is a complete message from the bus daemon
if the received message has REPLY_SERIAL=M then

return the body of the message
else

Copy the message to a queue of messages to be processed later
end if

end loop

Algorithm 3.1: D-Bus pseudo-blocking method invocation
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In addition to slowing down the client main event loop, pseudo-blocking calls have
the potential to completely halt it for a longer period of time. This will occur if the
service process has locked up. In this case, the pseudo-blocking algorithm will loop until
a timeout is reached [McV08]. In this way, the effects of programming errors causing
deadlocks can propagate from services onwards to clients.

The pseudo-blocking algorithm has to push aside D-Bus messages other than the one
it is waiting for. Typically, these messages would be processed later, when the application
resumes running its main event loop. However, this means that these messages will only
be processed after the method return message [McV08]. As demonstrated in the previous
section, this can cause the return value to be misinterpreted.

Pseudo-blocking calls also have the potential to lock up two otherwise well-behaving
processes, if they happen to call each other at the same time. Let us call these processes
A and B. If A uses the pseudo-blocking algorithm for making the call, it will not process
incoming messages, such as method calls from B, until it has received the method reply
it is expecting. But if B is doing the same, it will not process the method call A sent, and
hence will not reply to it. The D-Bus message exchange for this scenario is presented in
Figure 3.20. The two processes are in a cycle waiting for a reply from each other, which
they will not send because they are reordering incoming method calls after the reply they
are expecting. This puts them in a deadlock. We will call this potential cause of deadlocks
a wait-reorder cycle. Note that this kind of symmetric method calling will occur e.g. if A
is using B as a delegatee, and the method call from B is a query for additional information
required to complete the operation delegated to it (c.f. Section 2.3 on delegation).

Process A Process B

METHOD_CALL serial=1

METHOD_CALL serial=2

A and B will be stuck here waiting for each other, if they use pseudo-blocking

METHOD_REPLY reply_serial=2

METHOD_REPLY reply_serial=1

Figure 3.20: Simultaneous method call between two processes

It is possible to break the wait-reorder cycle by making either A or B call the other
end asynchronously. If A just starts the method call and then resumes running its main
event loop, it is able to process other events, such as incoming method calls from B. The
reply to the method will be just another event handled by A’s main loop. It is not easy
to predict when implementing A, if asynchronous behavior will be needed. It is only
safe to make a pseudo-blocking method call to B, if it is known that B will never make a
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similar call back to A at the same time. In theory, if B is just a D-Bus service, and never
makes outgoing method calls, it can not participate in a wait-reorder cycle. However,
the implementation of B may change over time. If B has a plug-in system, a plug-in
might end up making pseudo-blocking method calls, although the core B application itself
would not. If the plug-ins run in the parent application’s main loop, they can stall the
parent [McV08]. We have seen deadlocks caused by plugins that make pseudo-blocking
calls in the development of both One Laptop per Child and Nokia mobile device operating
systems.

Changing pseudo-blocking code to be fully asynchronous is not trivial. It requires
rewriting almost from scratch the parts of the application that invoke remote methods
using D-Bus [Pen08]. This is because with pseudo-blocking calls, the result of the remote
method can be utilized right after the call, e.g. by showing it to the user. This is helpful,
because the context that led to invoking the remote method is still reachable, and it can
be used to decide what the result should be used for. Algorithm 3.2 presents the basic
structure of code that makes a single pseudo-blocking method call and utilizes its result.
Algorithms 3.3 and 3.4 show similar asynchronous code for comparison. Notably, the
algorithm needs to be split to a part which starts the call and to a part which finishes it
and utilizes the result. Context needs to be explicitly transferred between the two halves
of the algorithm. Because of this significant difficulty of changing pseudo-blocking calls
to asynchronous ones, we argue that all code should be written to be fully asynchronous
from the beginning.

Do local processing
R← Result of pseudo-blocking D-Bus method call to B
Use the result R for more processing
return to main event loop

Algorithm 3.2: Code that utilizes pseudo-blocking calls

Do local processing
Start an asynchronous D-Bus method call to B
Set Algorithm 3.4 to be invoked when the reply is received
Save local context so that the processing can continue later
return to main event loop

Algorithm 3.3: Code that invokes a service asynchronously

Re-entrant pseudo-blocking

Some D-Bus client libraries provide a re-entrant variant of the pseudo-blocking mecha-
nism. An example of this is the QDBus::BlockWithGui call mode of the QDBus library.
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R← Newly received D-Bus method result
Resume saved context for the operation
Use the result R for more processing
return to main event loop

Algorithm 3.4: Code that utilizes the asynchronously received result

In this variant, instead of pushing messages other than the desired reply to a queue, they
are processed like the main loop was running again [McV08]. Hence the name—the main
loop is effectively re-entered for the duration of the call. Switching to this mode might
seem like an appealing alternative to changing code to be properly asynchronous, because
it will provide the method result to the caller immediately, just like pseudo-blocking calls.
However, as the messages are processed directly, not through a queue, the message re-
ordering and deadlock drawbacks of classic pseudo-blocking are not present.

Let us recall the concept of class invariant from Section 2.5. The class invariant is
a condition that must always hold in an object of a class unless a method has currently

been invoked on it. Typically, class methods have restored the invariant by the time they
return, but it might not hold at all times during their execution. Now, if an object makes
re-entrant blocking calls in one of its methods, it might have to process other method calls
on itself as a part of the re-entrant event processing. These method calls expect that the
class invariant holds. Thus, even though the original method has not returned to the main
loop, it has to have restored the class invariant. This is much less obvious than the need
to carry state between the two halves of an asynchronous algorithm, and can be harder
or even outright impossible to accomplish. Thus, we consider re-entrant pseudo-blocking
behavior to be too unpredictable, and hence something that should be avoided.

3.5.3 Message granularity

For a D-Bus message to get delivered from a process to another one, many steps need
to happen. First, the message is encoded to the wire format. Then, it is sent over the
connection to the bus daemon. The bus daemon uses the information in the message
header to decide which processes to deliver the message to. The message is sent to the
receivers through the connections to them. Finally, the receiving process(es) decode the
message from the wire format and process it.

It is notable that all messages pass through the bus daemon process on their way from
one process to another. This requires a context switch to the bus daemon, and further ones
to the receiving processes. Additionally, at least in Linux, the network traffic between the
processes on the bus and the bus daemon causes a context switch to the operating system
kernel, because the kernel transfers the data between the processes. Figure 3.21 depicts

58



the minimum context switches needed to transfer a D-Bus message from its sender to a
single receiver in this kind of a system.

The same context switches are needed for messages of any size. Large D-Bus mes-
sages do not take significantly more time than small ones to transfer [Cre08]. This is
consistent with practical results from older IPC systems (e.g. [BN84]). It can be inferred,
that context switch overhead dominates the time required for message transfer, and the
time taken to actually send the message payload on the wire has less of an effect.

Sender Bus daemon

Operating system kernel

Receiver

Figure 3.21: Context switches during D-Bus message delivery

By packing more data in a single message, more throughput can be attained, because
greater amounts of useful data is transferred between each context switch. It has been
found that messages with several dozens of kilobytes of payload give around four times
more throughput than messages with 1kB payload, which in turn yield several magni-
tudes of throughput more than small messages of only a few bytes each. However, most
messages in real-world usage of D-Bus fall in the size range from dozens to hundreds of
bytes [Tho11]. Thus, it should be made a priority for messaging design to always strive
for the largest message size possible. This can be achieved by batching related actions
and events together. This done e.g. in the initialization of objects following our D-Bus
proxy pattern, which will be proposed in Chapter 5.
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4 METHODOLOGY

The following chapters introduce principles for the design and implementation of object-
oriented systems using the D-Bus system. These principles draw heavily from our experi-
ences on the design of the Telepathy messaging framework [dTdCDG+12]. The Telepathy
software will also serve as a source of examples.

The principles we present comprise several practical software design patterns. Each
pattern will be described formally, as elaborated in the next section.

The impact of the patterns on non-functional qualities of the resulting software will
also be studied, where appropriate. Of those, we will especially focus on the effects of the
patterns on programming complexity. We will select a few metrics to use for this purpose
in Section 4.2.

As established in Section 3.5.3, minimizing the number of D-Bus messages trans-
ferred, by increasing the amount of information in a single one, leads to the best through-
put. This will be the basis for the discussion of performance properties. A more accurate
analysis of the performance qualities would likely be dependent on implementation de-
tails, such as whether method calls or signals are processed more efficiently.

4.1 Describing Design Patterns

Design patterns were popularized as a tool for object-oriented software design in a 1994
book by Gamma et al. [GHJV95]. By their definition, a design pattern is a reusable idea
that can be applied to solve an abstract design problem recurring in multiple concrete
applications. As is the case in the book, the descriptions of our patterns will include the
following major elements:

Name A short but descriptive name given to a pattern can be used to easily document
and discuss its use in practical designs. A brief description of the intent of the pattern
expands on the name.

Problem A practical problem is the motivation for the existence of a pattern. In which
kinds of cases is the pattern useful? This part identifies the issues which the pattern can
help to solve, and thus provides constraints on what is required for it to be applicable.

Solution An abstract outline of how to solve the problem. The structure of the solution
is shown graphically using Unified Modeling Language version 2 (UML2) class diagrams.
Here, the role each participant class and object plays is listed, and the collaborations that
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occur between them are described. As the intent is for the solution to be general, these
descriptions need to be filled out with application-specific details such as class names to
produce concrete designs. We will mention examples of such concrete known uses of the
patterns to further illustrate how they solve practical problems.

Consequences How will the use of the pattern affect the properties of the resulting
design? Here, we will describe the tradeoffs inherent to the use of the pattern, in areas
such as performance, complexity and flexibility. The consequences can be crucial when
choosing between multiple design alternatives.

As an example of this pattern description format in action, we will now describe the
classic Factory pattern from the Gamma et al. book [GHJV95]. A specialized version of
this particular pattern will also be presented in Section 5.4.

Example pattern: Abstract Factory

Intent Make it possible to create objects that implement a given interface without spec-
ifying their concrete class, so that the concrete classes can be substituted as needed.

Problem A central motivation behind class inheritance is to allow specializations of a
given base class to be treated uniformly. For example, a text field user interface element
might be a base class, and be specialized for different user interface toolkits. A component
that sets the contents of a text field can do so using the generic interface of the base class.
However, when creating an object, to attain correctly specialized behavior, a specialized
subclass instance needs to be created. If the instance is created directly, the exact subclass
will be hard-coded and can not be changed without modifying the creator component.

Participants

• The abstract base class which declares the common interface for objects created by
the factory. This is the TextField class in the example depicted by Figure 4.1.

• Derived classes which provide specialized behavior for the interface. In the exam-
ple, these are the GtkTextField and QtTextField classes.

• Abstract base class for factories that create objects which implement the interface.

• Specialized factory subclasses, which create corresponding derived class instances.
The GtkWidgetFactory and QtWidgetFactory specialize the WidgetFactory
base class in the example, to create their own types of text field objects.
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Collaboration Instead of constructing objects directly, methods of the abstract factory
interface are used to create object instances. The factory subclass determines the con-
crete class of the object produced. A factory can produce just one kind of objects, as in
Figure 4.1, or a family of related kinds of objects.

TextField
+contents

+paint()

GtkTextField
+paint()

QtTextField
+paint()

WidgetFactory
+createTextField(): TextField

GtkWidgetFactory
+createTextField(): GtkTextField

QtWidgetFactory
+createTextField(): QtTextField

Figure 4.1: Structure of the Abstract Factory pattern

Consequences Code creating objects is decoupled from their concrete classes. This
makes it easy to specialize behavior later by just replacing the factory with one that pro-
duces objects of a different concrete class. The factory adds a level of indirection to object
creation, which can incur a slight performance overhead.

4.2 Predicting Programming Complexity

The complexity of a programming interface affects how easy it is to understand. Un-
derstanding an interface is a precursor to using it correctly [GG04]. Hence, to maximize
reusability of software components, the complexity of their interfaces should be kept min-
imal [BA04].

Gill and Grover proposed a metric [GG04] for measuring the complexity of compo-
nent interfaces. The value of this metric is a weighted sum of three factors:

IC = aCs + bCc + cCg ,

where Cs is determined by the signature complexity of the interface, Cc by the interface
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constraints and Cg by the interface configurations. a, b and c are suitable weights, to be
determined empirically.

The signature complexity comes from the number of operations and events in the
interface:

Cs = a1no + b1ne ,

where no and ne are the total number of operations and events in the interface. Properties
are also considered to be a part of the interface signature, but they are not included in the
metric - presumably because accessing them is fairly trivial in non-distributed applica-
tions.

Boxall and Araban argue [BA04] that the sheer size of an interface is an unreliable
indicator of its understandability and reusability. This is because larger interfaces imply
more functionality, and hence possibly being useful for more purposes. Instead, they
focus on the number of arguments the interface members have on average. The logic is
that procedures with fewer arguments are easier to understand, and thus to reuse. The
same reasoning can be extended to events. We can formulate this metric for methods and
events commonly as arguments per member (APM), given by

APM =
na

no + ne
,

where na is the total number of arguments in all methods and events on the interface, and
no and ne are as before.

The constraint factor Cc of Gill and Grover’s metric comes from the rules on how the
interface can be used. The pre- and postconditions for interface methods (see Section 2.5)
increase this value. Contracts that are subjectively harder to fulfill have a larger impact.
Another kind of contribution to the constraint factor may come from dependencies be-
tween property values, if they can be set to illegal combinations.

The final factor Cg comes from the fact that when a given component is used in multi-
ple kinds of scenarios, it will be configured differently. It might interact with other com-
ponents in a different fashion, or different parts of its interface may be used. An interface
that functions in a similar fashion in all its use scenarios will have a lower configuration
complexity.

Boxall and Araban also provide multiple metrics for measuring the consistency of
an interface. The rationale is that a more consistent interface is easier to learn, because
knowledge of a single part of it can be transferred to using other parts. These metrics
are mostly concerned with low-level details such as argument naming, and so are not
applicable for our pattern-level analysis. However, we will use the basic assumption that
consistency lowers complexity in other ways.
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Gill and Grover also mention that non-functional qualities such as security, perfor-
mance and reliability affect reusability. This is because these qualities propagate to an
application that uses the component. No formula to produce an aggregate numeric value
for these qualities is provided, however. Rather, deficiencies in these areas may rule out
reusing a component altogether in a particular application, no matter how simple its inter-
face would be.

These metrics can not be applied in their original form to distributed software. This is
because they lack the notion of asynchronous method calls. As explained in Section 3.5.2,
placing an asynchronous call necessitates saving the state of the local computation and
resuming it in a second method, to be executed once the call completes. Thus, the com-
plexity contributed by an asynchronous method can be thought to be at least twice that of
a synchronous one, and possibly more, depending on the difficulty of saving and restoring
the state. This means that asynchronous operations are a major contribution to the com-
plexity of remote object access interfaces. This conclusion matches practice—we have
discovered asynchronicity to be a major programming challenge.

Interface properties need similar special treatment. The properties forming the state of
local objects can be inspected easily by calling a synchronous getter method, usually with
no arguments. This kind of method can be considered very simple. However, inspecting
the value of a remote object property requires invoking the getter remotely. To avoid the
problems described in Section 3.5.2, this call also needs to be asynchronous. Thus, unless
special measures are taken, properties also need to be considered fairly complex in the
distributed setting.

The exact numerical values of the metrics depend on empirically assigned weights,
and will not be comparable between different kinds of components and application ar-
eas [GG04]. As we will attempt to come up with generic solution patterns, we will ac-
cordingly analyze the trends and asymptotic behavior of the metrics rather than their exact
values.
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5 DESIGNING D-BUS CLIENT APPLICATIONS

In the previous chapters, we have explored concepts of object-oriented software, the struc-
ture of distributed systems in general, and the properties of the D-Bus system in particular.
Now, we will describe some mechanisms we have found useful when building object-
oriented systems with D-Bus. These mechanisms have been developed in the context
of the Telepathy real-time communication framework, but they are general enough to be
suitable for other application areas as well. Generic implementations of some of the con-
structs in fact already exist, for example in the GDBus library [Zeu12].

The bulk of the functionality of a distributed system is implemented in its service
components. However, this functionality is only exposed to users by the frontend compo-
nents. Frontends, especially those with a graphical user interface (GUI), tend to be tied to
specific environments more than the backends are. As an example, we have been able to
share the protocol backends and account management infrastructure of Telepathy between
the GNOME and KDE desktops and various mobile devices. However, most GUI com-
ponents have been reimplemented for each of these environments. This motivates us to
make it as easy as possible for such components (clients) to access the services, while still
obeying the constraints for messaging design (see Section 3.5). This ensures maximum
reusability.

To accommodate convenient access to the services, we have implemented a set of
client libraries for Telepathy. The Telepathy-Qt library [SMM12] is used by the KDE
desktop and Nokia N9 phone frontend software, and the telepathy-glib library [AAB+12]
e.g. in the GNOME desktop. These libraries mainly consist of proxy objects that mirror
interesting service objects in client address space. D-Bus connects the clients and services
together. However, the proxy objects hide the actual D-Bus communication behind a
friendly programming interface. The following sections detail the design of the proxies
and how their communication needs are implemented with D-Bus primitives. Besides
proxies, some related helpful constructs will also be described.

The structure of client libraries has to closely follow the design of the underlying
D-Bus interfaces, which the service objects implement. However, the only purpose of
exporting objects over D-Bus is to allow clients to access them. Thus, we see D-Bus in-
terface design as just a tool to make client libraries as convenient and efficient as possible.
Accordingly, the following sections will also touch subjects in interface design.
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5.1 Pending Operation Objects

Proxy objects are just representatives of the real objects that reside in service address
space. Thus, they need to make D-Bus method calls to the service to implement a lot
of their functionality. These calls must be made asynchronously, because otherwise the
use of the proxies would incur the drawbacks of synchronous calls, as described in Sec-
tion 3.5.2. Concretely, this means that in proxies, no operation that may potentially call
a service with D-Bus can wait for the call to complete before returning to its own caller.
This implies that the outcome of the D-Bus operation needs to be reported to the caller
via some other mechanism, after the proxy operation has returned.

In Section 3.1.1, we mentioned the concepts of promise and future objects. These
kinds of objects represent the result of an asynchronous computation. When the com-
putation is finished, the result can be extracted from them. The objects support polling
to check whether the result is available already, and waiting for it to become available.
However, they were designed for performing distributed calculations. In that context, the
rationale for making remote operation invocation asynchronous is to make it possible to
start multiple operations in parallel, and/or do local processing while a remote calculation
is executing. In either case, the caller will have a definite point in its execution, at which it
has nothing else to do until it gets the results. At that point, it will wait for the results to be-
come ready and then continue processing with them. This is unlike applications that must
remain responsive to user input, have a GUI to animate, or need to serve inter-process
method calls themselves. They never have such an opportunity to start waiting for results.
On the other hand, periodic polling for the result to be available would be wasteful, and
would add latency, up to the polling interval, before the result gets processed.

To avoid both blocking to wait for results and wasteful polling, an event (Section 2.7)
can be announced to indicate that a previously started operation has finished. The results
can be processed in a handler for the event. This can happen as soon as the application
has no other work to do, with no added latency.

It is usually necessary to know to which invocation of an operation results belong,
in order to correctly interpret them. Thus, the operation completion events must include
some reference to the particular invocation. One approach is to assign an opaque opera-

tion identifier to started operations, and to include this value later in the arguments of the
corresponding event. This is analogous to low-level D-Bus messages, which include a se-
rial number, and where reply messages specify the serial of the message they correspond
to. However, the need to communicate the operation identifier increases the complexity
of the event’s signature, which shows as an increase in the value of the arguments per

member metric.
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In Telepathy-Qt, running asynchronous operations are represented as objects. These
objects are instances of classes derived from the PendingOperation base class. No
separate operation identifiers are employed—the object identity implicitly determines
the corresponding operation invocation. The PendingOperation interface includes an
event that indicates that the operation has finished, and methods to check whether it fin-
ished successfully, or if an error occurred. This information is common to all opera-
tions, unlike the type of a result produced for a successful invocation. Subclasses such
as PendingAccount and PendingConnection exist, roughly corresponding to each re-
sult type. The subclasses add methods to inspect the value of the result. Using a single
base class to represent the common information gives a lower total number of operations
and events, which reduces total signature complexity. It also makes the way of signaling
operation completion consistent between all operations.

Sometimes, a client requires multiple operations to finish before it can continue. Often
in these cases, the operations do not depend on results from each other, and so they can
be started independently. Telepathy-Qt includes the PendingComposite class, which
makes it easy to wait for a set of concurrently started operations to finish. In a way, this is
similar to the futures mechanism that was mentioned in Section 3.1.1, but applied to the
context of event-driven desktop software.

We will now generalize the scheme of representing asynchronous operations as objects
in the Telepathy-Qt library, as a formal design pattern. This will be followed by a similar
description of the aggregation mechanism that is implemented by the PendingComposite
class.

Pattern: Pending Operation Objects

Intent Provide a consistent way to deliver asynchronous operation results once avail-
able, without blocking and/or polling.

Problem Interactive applications can never stall their event processing for indefinite
amounts of time. Results that take an unbounded amount of time to be produced must
therefore be processed asynchronously. Result availability can be announced as an event,
but there needs to be a way to associate the results in the event with the original request, in
order to correctly interpret them. Adding these events and mechanisms to associate results
with requests to a programming interface can increase its complexity if done naively.

Participants

• The base class for all pending operation objects, which includes the common at-

67



tributes and the event that is used to signal the completion of the operation. This
is the PendingOperation class in the Telepathy-Qt library, and in the example in
Figure 5.1.

• Derived classes for each type of operation result. These make it possible to retrieve
the value of the result in an appropriate form. In the example figure, these would be
PendingAccount and PendingConnection.

• Classes that need to have asynchronous operations, such as proxies for D-Bus ob-
jects. These create and return the pending operation object instances when an asyn-
chronous operation is started on them. AccountManager and Account are the
classes with this role in the example.

Collaborations Results for asynchronous operation invocations are delivered by having
an event announced on the corresponding pending operation object. Client code extracts
the values of results using methods declared in the result type specific subclasses. The
complete structure of the solution is illustrated in Figure 5.1, with the class names corre-
sponding to those in the Telepathy-Qt library.

AccountManager
+createAccount(): PendingAccount

Proxy

Account
+connect(): PendingConnection

PendingOperation
+isFinished
+error

+<<event>> finished()

PendingAccount
+account: Account

PendingConnection
+connection: Connection

creates

creates

returns

Figure 5.1: Structure of the Pending Operation Objects pattern

Consequences Completion of all asynchronous operations is signaled in a uniform way.
This avoids having to re-learn how completion is indicated for each operation, and there-
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fore can make an interface with many asynchronous operations easier to understand.
However, creation of the pending operation objects incurs a space and time cost. This
cost is usually greater than that of using a simple type, such as an integer, as an opera-
tion identifier. If performing the operation itself is very cheap, this might be a significant
detriment to performance.

Pattern: Composite Pending Operation

Intent Make it easy to continue processing once a number of independent asynchronous
operations have finished.

Problem Resuming processing once an asynchronous operation has finished is by itself
complex to achieve. If the completion of multiple operations needs to be considered,
this becomes even more difficult. Running the operations as a chain, with one operation
finishing causing the next one to be started, and the last one resuming processing, is one
way to achieve this. However, that will limit the degree of parallelism by serializing the
execution of the operations, which is not strictly necessary unless some operations depend
on results from others.

Participants

• Pending operation objects of arbitrary types, which represent the real running tasks.
These are instances of PendingOperation subclasses in the Figure 5.2 example.

• A composite pending operation container object, which also appears as an pending
operation to users. This is the PendingComposite class in the example figure, and
also in the Telepathy-Qt library.

Collaborations The composite operation object will keep track of individual subtasks
finishing. To do this, it holds references to them, as shown in Figure 5.2. Once all of the
tasks are done, the composite operation will announce itself to have finished. If users need
to inspect the results of individual tasks, they can additionally keep references to them. In
any case, they are able to only consider the finish event of the composite operation.

Consequences Waiting for a set of asynchronous operations to finish is as easy as wait-
ing for just one. Essentially, there is just one asynchronous operation instead of multiple
ones contributing to software complexity. However, this might make it tempting to over-
use composite operations, such that the results of some operations that could be utilized
immediately are left waiting for unrelated operations to complete.
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PendingOperation
+isFinished
+error

+<<event>> finished()

PendingAccount
+account: Account

PendingConnection
+connection: Connection

PendingComposite
+operations: PendingOperation[]

+<<ctor>> (operations)

1..*

Figure 5.2: Structure of the Composite Pending Operation pattern

5.2 State Caching

The state of local objects can be inspected by calling simple getter functions. However,
even a call to a getter function would need to be asynchronous, if made over D-Bus. This
makes direct inspection of the state of D-Bus objects very inconvenient. To alleviate this
problem, proxies in the Telepathy client libraries store a local copy of the remote object’s
state. This cached copy of the state can be inspected synchronously without making any
D-Bus calls. Thus, state caching could also be considered an optimization, but the main
motivation has been to avoid the inconvenience of asynchronous calls to inspect state.

The proxy state cache must be initially populated by querying the state of the remote
object using D-Bus calls. In early versions of Telepathy, this was accomplished by calling
D-Bus methods such as GetProtocol and GetStatus on Connection objects. These
methods resembled typical getter functions to a large extent, with one method for each
attribute. However, nowadays the state of Telepathy objects is represented as D-Bus prop-
erties (see Section 3.4.4). This makes it possible for proxies to download the state of an
entire D-Bus interface at once, using the GetAll method [Mad11]. Thus, there are fewer
D-Bus messages exchanged in total than if individual getters were called. This leads to
less context switches, and thus, better performance (Section 3.5.3).

Regardless of the specific D-Bus methods used to implement the initial state down-
load, it needs to be an asynchronous operation, and proxy state accessors can only be
used after it is finished. The net effect is that one asynchronous operation needs to be
performed to initialize the cache, but afterwards accessor functions can synchronously
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return cached values. In proxies for objects with multiple state properties, this reduces
the interface signature complexity contributed by asynchronous operations. However, the
preconditions of the accessor functions simultaneously become more complex, as they
require the state download to have been successfully performed. In Telepathy-Qt proxies,
the becomeReady() method starts the state download. The telepathy-glib counterpart is
the tp_proxy_prepare_async() function.

The initial state download only captures the state of the remote object at a certain
point of time. If the state changes, the local state copy needs to be updated. Otherwise
the values returned by state accessors would get out of date. To keep the state cache
up to date, proxies can subscribe to change notification events from their remote object.
Starting the state download also causes Telepathy proxies to subscribe to the appropriate
change notification events. Note that state updates are only propagated to proxy objects
when the change notification events reach them. Thus, the service objects and proxies are
not always perfectly synchronized. This has seldom been found to be a problem, however,
and the same kind of delay applies to naively invoking the getter functions over D-Bus.

The PropertiesChanged D-Bus signal is a suitable way to implement change notifi-
cation for most D-Bus properties. However, the design of most parts of Telepathy predates
the addition of this signal to the D-Bus specification. For that reason, custom change no-
tification signals exist in many interfaces, such as StatusChanged in the Connection
interface. As explained before, the PropertiesChanged signal is not well suited for
announcing changes to properties that have values of a very large size, if the change just
affects a small part of the value. Reporting the changes incrementally is more appropri-
ate for such properties. A proxy can be programmed to apply incremental changes to a
cached property values to derive the new values.

If D-Bus properties and PropertiesChanged change notification are used to rep-
resent state of D-Bus objects, it is straightforward to implement state caching. This is
because subscribing to PropertiesChanged and calling GetAll is all that is needed.
No interface-specific knowledge is needed on facts such as which getter functions to call
and how to interpret custom change notification signals. The GDBusProxy class in the
GDBus library caches property values in a generic fashion.

When the remote object disappears, values in the state cache lose their meaning. Sim-
ilarly, operations can no longer be invoked on the object. At this point, Telepathy proxies
consider themselves invalidated. This might result from normal events such as closing
communication sessions (e.g. hanging up a call), or faults such as the backend process
having crashed. The exact conditions that cause invalidation depend on the proxy. Typi-
cally, they at least watch for NameOwnerChanged signals (see Section 3.4.3) to catch the
process hosting the remote object disappearing from the bus.
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The example in Figure 5.3 illustrates in a simplified form, how the state caching fa-
cility of Telepathy-Qt Connection proxies works. The state of Telepathy Connection
objects includes information such as whether the connection is still in the process of es-
tablishing a connection to the service, or if that is already done. After the asynchronous
initialization operation, client code can query the proxy for the state synchronously. The
state queries do not require any D-Bus calls to be made. As the asynchronous initializa-
tion operation includes subscribing to change notification signals, the proxy state is kept
up-to-date through service state changes. Finally, the proxy object invalidates itself when
the connection is disconnected.

Some parts of object state retain the same value for the lifetime of the object. If this
is always the case for a certain state property, it does not need change notification. We
will call such properties immutable. If the value of an immutable property is in some way
known previously, it does not need to be rediscovered when initializing the state cache
of a proxy, as it can not have changed in the meantime. For example, Channel objects
in Telepathy represent active communication sessions, such as text chats and video calls.
The properties in the main Channel interface describe what kind of a session the Channel
represents—whether it was initiated by the local user or a remote one, whether there is
a group of peers or just one, and so on. All of these properties in the Channel interface
are immutable. When the creation of a new Channel is announced, the values of the
immutable properties are included in the signal arguments. This makes it possible for
Telepathy proxies to skip the GetAll call for properties on Channel and other similar
interfaces. Instead, they can initialize the state cache with the values from the creation
signal. This optimization is currently not possible with the generic state caching facility
of GDBus proxies.

Next, we will give a formal description of the above proxy state caching mechanism.
The example case in this description is a simplified form of the corresponding parts of the
Telepathy-Qt library.

Pattern: State Caching Proxy

Intent Allow inspecting the state of remote objects synchronously, without hitting the
usual problems associated with synchronous D-Bus calls.

Problem Inspecting the state is a common operation in the use of many kinds of objects.
That is needed e.g. to present information from an object to the user, or to decide whether
some operation could be invoked on the object. The state of local objects can be inspected
by calling simple getter methods. However, when an object is accessed over D-Bus,
invoking getter methods is not as simple. Synchronous calls to them could block the
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becomeReady()

subscribe(change not.)

subscribe(invalidation)

GetAll(Connection)
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Connecting

StatusChanged(CONNECTED)
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disconnect()

Disconnect()

Disconnect() return

StatusChanged(DISCONNECTED)

finished()
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invalidated()

getInvalidationReason()

"Error.Disconnected"

Figure 5.3: Life cycle of a Connection proxy

73



calling thread for an indefinite amount of time or lead to deadlocks. Making the getters
asynchronous increases interface complexity.

Participants

• Service objects which expose their state and changes to it through their D-Bus in-
terfaces. The Connection and Channel service objects have this role in the Fig-
ure 5.4 example. These objects expose their state as D-Bus properties using the
Properties interface.

• Proxy objects that cache service object state. In the example figure, there is a proxy
for each of the Connection and Channel service objects.

• The bus daemon, which can inform clients that another client has disconnected from
the bus.

Collaborations Proxy objects subscribe to change notification and download a copy of
service object state in an asynchronous initialization operation. The cached copy of state
is kept up to date as changes occur. This is done over D-Bus using the Properties
interface, as shown in Figure 5.4. Client code can hence inspect the cached state values
synchronously. The proxies also monitor when their state copy becomes invalid, as per
interface-specific criteria.

Consequences Inspecting the state of remote objects becomes as easy as that of local
objects. However, an initial asynchronous operation must be performed before the state
can be inspected, which readds some signature complexity. Being subscribed to change
notification events causes the client process to be woken up whenever changes occur. If
the new value for a state attribute is not needed by a particular client, the wakeup for it
is an unnecessary context switch. Such unnecessary context switches delay resuming the
execution of processes with useful work to do, and returning to processor sleep states.
This can be significant especially for mobile devices, where the use of sleep states affects
battery runtime.

5.3 Opt-in to Avoid Unnecessary Wakeups

Let us recall the concept of object roles from Section 2.4. The idea is that each kind of a
user for an object will use it in different ways. In other words, the object plays a different
role for each user. This is no different for D-Bus objects. A part of the rationale for
making software distributed was to allow multiple different frontend components to utilize
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<<service object>>

Connection
+Protocol
+Status

+<<event>> StatusChanged(newStatus)
+<<event>> NewChannel(objectPath,
                      immutableProperties)
+<<event>> Disconnected()

<<D-Bus interface>>

Properties
+Get(property)
+Set(property,value)
+GetAll()
+<<event>> PropertiesChanged(changed,invalidated)

<<service object>>

Channel
+ChannelType
+RequestedLocally
+TargetID
+InitiatorID

+<<event>> Closed()
+Close()

Proxy
+isReady
+isValid
+invalidationReason

+becomeReady(): PendingOperation
+<<event>> invalidated(reason)

<<proxy>>

Connection
+protocol
+status

+<<event>> statusChanged(newStatus)
+<<event>> newChannel(channel:Channel)

<<proxy>>

Channel
+channelType
+requestedLocally
+targetID
+initiatorID

+close(): PendingOperation

D-Bus

Figure 5.4: Structure of the State Caching Proxy pattern

75



services from a backend at once. The exact set of functionality employed will naturally
be different for each frontend. It follows that if proxies expose all of the functionality of
a service object to all clients, some of it will be redundant.

Offering redundant functionality is not a problem in itself. However, because keeping
a proxy’s state cache up to date necessitates subscribing to change notification events,
caching unneeded pieces of state causes unnecessary wakeups. As noted in the previous
section, this can be detrimental to performance and power usage.

The harmful effects of proxying unneeded functionality is not limited to wakeups for
change notification. D-Bus signals are used for announcing other kinds of events than just
state changes. These events are relayed by proxies to the client in a suitable form. If some
events are not interesting, the wakeups caused by them will also be unnecessary. Addi-
tionally, many proxies in Telepathy client libraries aggregate information from multiple
D-Bus interfaces implemented by service objects. This is done to provide a more natural
programming interface. However, if the state of a particular interface is not needed at all,
the GetAllmethod call to fetch it will be wasted, increasing both D-Bus traffic and proxy
initialization latency for no reason.

To solve this, some functionality of Telepathy proxies is conditionally enabled. These
individual subsets of functionality are called the optional features of the proxies. For
example, proxies for text chat objects report the unread messages in the chat. This func-
tionality is likely needed by anything observing a text chat session. However, there is also
support to report the active state of the chat—whether the remote user is currently typing,
is inactive, and so forth. This information can be instantly displayed to a user. However,
it makes little sense to permanently store the chat state in a log, as it is transient by nature.
Accordingly, both a user interface (UI) application for text chatting and a daemon that
logs conversations to permanent storage would utilize the message buffer, but only the UI
application would enable the feature that causes typing notifications to be delivered.

The features can be individually enabled, or multiple features can be activated in a sin-
gle asynchronous operation. The corresponding signal subscriptions and state download
will be performed behind the scenes by the proxy. Note that this depends on the capability
to dynamically subscribe to the change notification signals, and thus the dynamic nature
of D-Bus match rules.

Features further increase the complexity imposed by the asynchronous initialization
of proxies: availability of proxy functionality is no longer just a matter of whether a
proxy has been prepared for use, but also whether suitable features have been requested
while doing so. We will consider these effects as a part of the following formal pattern
description.
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Pattern: Optional Proxy Features

Intent Avoid wakeups from unneeded events on proxied remote objects, and initializa-
tion work pertaining to those parts of state that are not interesting to a given client.

Problem Service objects tend to have a wide array of related functionality. However,
any given user of an object is likely to utilize only a subset of it. Proxying all of the
functionality to each user would cause redundant work to be performed.

Participants

• Feature objects, that signify subsets of proxy functionality to enable. The Chat
State item in Figure 5.5 is a feature object.

• Proxies, on which functionality can be conditionally enabled. In Figure 5.5, some
functionality of the TextChannel proxy requires the Chat State feature to be
enabled.

Collaborations Client code requests the necessary features to be enabled when making
a proxy ready for use. Subsets of proxy functionality become available, once the operation
where they were requested has finished.

Proxy
+isReady
+readyFeatures: Feature[]

+becomeReady(features:Feature[]): PendingOperation

TextChannel
+chatState
requires Chat State feature

+pendingMessages

+<<event>> chatStateChanged()
requires Chat State feature

+<<event>> messageReceived()
Feature

Chat State

Figure 5.5: Structure of the Optional Proxy Features pattern
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Consequences When proxy functionality is carefully divided to features, redundant
work to offer unneeded functionality can be avoided. However, the preconditions of the
conditionally enabled proxy members become more complex as a result. This can also be
seen to increase the configuration complexity factor of Gill and Grover’s interface com-
plexity metric (see Section 4.2). This is because client code may need to prepare to use
proxy objects with multiple configurations of features enabled. Cautious measures to pre-
vent this might include enabling more features than is actually needed, which defeats the
purpose of optional proxy features.

5.4 Asynchronous Proxy Factories

Not all Telepathy proxy instances are created directly by application code. Some of them
are created by other proxies and other client library components. For example, Telepa-
thy Account objects store information such as credentials, server addresses, etc. that is
necessary to connect to a communication service, such as an Instant Messaging (IM) net-
work. A Connection object, in turn, represents an active connection to such a service.
Account proxies create a Connection proxy to represent the connection whenever one
exists. When disconnecting from the service, the Connection object ceases to exist. At
this point, the Account proxy will also drop the corresponding Connection proxy.

For proxies to be useful to application code, their asynchronous initialization opera-
tion must be finished. Furthermore, the proxy features that the application uses need to
have been requested in the operation. This is no different for proxies created by client
library components. Consider how this could be accomplished for the Connection prox-
ies created by an Account proxy. When an Account announces that there is now a
connection and a proxy for it, application code could start the asynchronous operation
to initialize the proxy. However, that operation might not finish before the connection
goes away. A new Connection might even appear during the operation. These various
possible sequences of events make it rather complicated to handle the events for proxies
appearing, becoming ready to use and disappearing.

Instead of giving out unprepared proxy objects, the library components can perform
the asynchronous initialization before announcing a proxy to the application. Then, the
components can internally handle the complexity of preparing the proxies while the cor-
responding service object might be replaced or dropped. But which proxy features should
they request to be enabled?

The Telepathy-Qt client library includes a set of factory classes that construct proxies.
These factories allow overriding the class type of created objects, following the classic
Abstract Factory pattern that was presented in Section 4.1. But more importantly, they can
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be set up by the application to enable desired features on the created proxies. As enabling
features is an asynchronous operation, it is necessary for the object creation operation
on the factories to be asynchronous as well. This operation is usually completed inside
library code, however. By the time a proxy is given to the application, the features that the
factory was configured to enable will be ready. Thus, application code only has to deal
with the complexity caused by the initialization of those proxies that it itself creates.

The factories can also be configured to perform no setup work at all. This is useful
e.g. for an account configuration application: it is concerned only with the parameters of
the accounts, and will not care about connections to them. By configuring the connection
factory to not make anything ready, no redundant work will be performed to initialize
Connection proxies.

A side benefit of creating proxy objects through a factory is that the factory can cache
the created proxies. This is useful, as multiple components might want to expose a proxy
for a given remote object at the same time. In this case, only the first request for a proxy
from the factory will lead to the creation of an instance. Succeeding requests will reuse
the object created for the first request. Once no references to a proxy remain outside a
factory, the proxy will be removed from the cache and destroyed. This is done so that an
unused proxy will not keep the application subscribed to events from the corresponding
remote object.

We will now formulate this scheme as a design pattern. To keep the description fo-
cused on the more novel features of the pattern, the factory is depicted as creating objects
of just one kind. However, like in the classic Abstract Factory pattern (Section 4.1), a
factory object might be responsible for the creation of objects of a family of related types.
In fact, similar functionality in the telepathy-glib library follows this design, with a single
factory class creating all of Account, Connection, and Channel proxies.

Pattern: Asynchronous Proxy Factory

Intent Allow specifying what kind of proxies and with what features enabled should
be given to application code, so that it does not need to deal with complex asynchronous
initialization by itself.

Problem Performing asynchronous initialization of proxy objects is a complex task. Li-
brary components could do this setup work before giving proxies they create to applica-
tion code. However, if the components blindly enable proxy features that the application
does not actually need, some setup work may be wasted, and unneeded events may get
subscribed to. Also, if multiple components want to proxy the same remote object, they
can end up creating and initializing duplicate proxies.
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Participants

• A proxy class, which may have specialized subclasses. In the example depicted by
Figure 5.6, this is the Connection proxy.

• Proxy factory, which can create proxy objects with pre-set features ready. Has an
internal cache of proxies to avoid constructing multiple proxies for the same remote
object. In the example, the factory constructs just Connection proxies.

• Optionally, subclasses of the proxy factory, which construct specialized proxies.
The subclasses override a private operation that is called by the base class if a
requested proxy is not found in the cache. The greyed out part of the example
figure depicts these optional components.

• Components that create proxies, without knowing the exact subclass they end up
being, or what features should be prepared on them. In the example, this role is
filled by the Account and ChannelObserver classes.

Collaborations Application code sets up factory instances with the features it requires
to be enabled on proxies. Library components request proxies from the factories with an
asynchronous operation that finishes once the configured features are ready. The compo-
nents only announce the proxy to the application when it is ready to use, if it is still mean-
ingful at that point. Application code can also subclass the factory classes to create proxy
instances with a custom derived type. These interactions are illustrated in Figure 5.6.

Consequences Application code does not have to perform asynchronous initialization
of proxy objects created by library components. This lowers the effective signature com-
plexity contributed by the asynchronous setup operations for these objects. Library com-
ponents can share proxy instances created for each other, so redundant setup work is not
performed or memory wasted for duplicate instances.

5.5 Multiplexed State Synchronization

Normal proxies do at least one GetAll call to download the initial state of the corre-
sponding remote object. This is fine if there are relatively few objects to proxy. However,
certain kinds of objects can exist in very large numbers. For example, large chat rooms
can have hundreds or thousands of member contacts, the details of whom are natural to
represent as objects. It would be good for performance if the state of such objects could
be downloaded in bigger batches than one contact per method call.
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ConnectionFactory
-proxy cache
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-createProxy(): Connection
+getProxy(objectPath): PendingConnection

<<proxy>>
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+<<constructor>> (objectPath)
+becomeReady(features): PendingOperation
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+connection: Connection
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+<<event>> disconnected()

ChannelObserver
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creates

uses

uses

creates

optional

Figure 5.6: Structure of the Asynchronous Proxy Factory pattern

The standard ObjectManagermechanism of D-Bus (Section 3.4.5) allows download-
ing the state of an entire object sub-tree in a single D-Bus call. If the chat member objects
were in a tree that is rooted at the chat session object, this mechanism could be used for
efficient download of the state of the chat and all its members. However, in Telepathy,
contact objects are conceptually children of the connection to the messaging service, not
the individual chat sessions. The sessions merely have references to the contacts. This
scheme is depicted in Figure 5.7. The rationale behind this approach is that that the same
contact objects could simultaneously be members of multiple chats and e.g. be in the
permanent address book of the user. It follows that it would only be possible to retrieve
the state of all contacts of a connection at a time with ObjectManager. This would be
wasteful for a process that only shows the contacts in the address book, or those in a
particular chat room.

To provide an efficient way to download the state of a given subset of its contacts,
Telepathy Connection objects implement a D-Bus method called GetContactAttri-
butes. The first argument to this method is a list of contact identifiers, which specify
the contacts to fetch information for. The identifiers are integer handles which map to
underlying protocol addresses for the contacts. While it is efficient to perform set opera-
tions such as testing for membership with integers, others [Pen07] discourage referring to
objects by anything other than D-Bus object paths in D-Bus interfaces.

The second argument of GetContactAttributes is a list of D-Bus interfaces. These
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Figure 5.7: Contact ownership in Telepathy

specify which aspects of contact information are interesting to the caller. The return
value includes the corresponding state attributes for the requested contacts. In the client
libraries, the interfaces are represented as optional features, in a similar manner to those
that can be enabled on proxies (Section 5.3).

The client libraries use the GetContactAttributesmethod to initialize local objects
representing contacts. These objects are not proxies in the previously established sense,
as they do not perform D-Bus traffic to a corresponding service object on their own.
Instead, they represent information retrieved by a Connection proxy from a Connection
service object. Thus, the service object conceptually multiplexes data from several contact
objects on the service, and the proxy demultiplexes this data to separate objects. This
allows downloading the state of an interesting set of contacts in one batch. However, the
contacts are still represented in an intuitive fashion—as separate objects—in client-side
code. Besides initial state download, change notification is also multiplexed. We will now
attempt to generalize this overall mechanism as a formal design pattern.

Pattern: Multiplexed State Synchronization

Intent Allow downloading the state from several service objects at once, without the
batching increasing client application code complexity.

Problem Downloading state individually for a large number of objects imposes D-Bus
message header and context switch overhead in the order of the number of the objects.
The ObjectManager D-Bus interface is a ready-made solution for downloading the state
of an entire object sub-tree at once. However, when only a fraction of the tree is useful to
a client, the use of this interface causes unnecessary data transfer.
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Participants

• Service data objects, of which multiple ones, but not all, are useful to an average
client. The example in Figure 5.8 follows the use case from Telepathy, in which
these object represent remote contacts.

• Service object acting as a multiplexer, which can give out data from a desired set
of objects in a single operation. In the example, this is the Telepathy Connection
service object.

• A proxy, which demultiplexes the batched data from the service objects. In the
example, this is the proxy for the Connection.

• Client data objects, which the proxy uses to represent the demultiplexed service
data. These objects represent individual contacts in the example.

Collaborations The proxy requests data from the multiplexing service object, when it
is required. The data is represented to client code as separate data objects. The entire
scheme is shown in Figure 5.8.

<<service object>>

Connection
+GetContactAttributes(ids,
                      interfaces)
+<<event>> LocationUpdated(contactId,
                           latitude,
                           longitude)
+<<event>> PresenceChanged(contactId,
                           availability,
                           message)

<<service object>>

Contact
+id

<<interface>>

Presence
+availability
+message

<<interface>>

Location
+latitude
+longitude

0..*

<<proxy>>

Connection
+getContacts(ids,
             features): PendingContacts

PendingContacts
+contacts

+<<event>> finished()

<<client object>>

Contact
+id
+location
requires Location feature

+presence
requires Presence feature

+<<event>> locationChanged()
+<<event>> presenceChanged()

1..*

D-Bus

Figure 5.8: Structure of the Multiplexed State Synchronization pattern
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Consequences The state of an arbitrary number of objects can be downloaded with
a constant number of D-Bus method calls. Objects outside the interesting set do not
increase the amount of downloaded data. However, as the proxy demultiplexes the data
to independent objects, client code can still manipulate each object without regard to the
batch in which they were actually downloaded in. As such, no complexity is added to the
programming interface that is visible to client code.
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6 AUTOMATED D-BUS PROXY GENERATION

At the lowest level, the details of the communication between proxies and services are
tightly defined by the D-Bus interfaces, which the service objects implement. The client
libraries have a corresponding low-level proxy layer, which is similar in principle to a
collection of RPC stub procedures (see Section 3.1). In essence, a low-level proxy object
provides a set of methods, which send the corresponding D-Bus METHOD_CALL messages
to invoke remote methods, and events, which are fired, when D-Bus SIGNALmessages are
received from the remote object. The low-level proxies always correspond one-to-one to
D-Bus interfaces. The high-level proxies, which we explored in Chapter 5, utilize one or
more low-level proxies to implement their communication with the remote object. This
scheme is depicted in Figure 6.1.

<<high-level proxy>>

Account

<<low-level proxy>>

fdo.Tp.Account
<<low-level proxy>>

fdo.Tp.Account.I.Avatar
<<low-level proxy>>

fdo.DBus.Properties

<<service adaptor>>

fdo.DBus.Properties
<<service adaptor>>

fdo.Tp.Account
<<service adaptor>>

fdo.Tp.Account.I.Avatar

<<service object>>

Account

D-Bus

Figure 6.1: Layering of proxies in Telepathy client libraries

The close correspondence of low-level proxies and D-Bus interfaces allows generating
the proxy code from sufficiently detailed interface descriptions. Thus, hand-writing these
parts of the client libraries can be avoided. If the corresponding low-level service code is
also generated from the same descriptions, it is guaranteed that the clients and the services
will be compatible, as far as D-Bus messaging goes. In this chapter, we will describe the
evolution of D-Bus interface description techniques, and what kind of client library code
can be generated from descriptions written with them.
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6.1 Procedural Interface Description

The Introspectable standard interface of D-Bus contains one method, Introspect,
which returns an XML description of the object it has been called on. This description
lists the methods, signals and properties in each interface that the object implements. The
D-Bus type signatures of properties and the arguments of methods and signals are also
included [PCL+12]. As an example, here is a description of the standard Properties
interface (Section 3.4.4) in this format:

<interface name="org.freedesktop.DBus.Properties">

<method name="Get">

<arg name="Interface" type="s" direction="in" />

<arg name="Property" type="s" direction="in" />

<arg name="Value" type="v" direction="out" />

</method>

<method name="Set">

<arg name="Interface" type="s" direction="in" />

<arg name="Property" type="s" direction="in" />

<arg name="New_Value" type="v" direction="in" />

</method>

<method name="GetAll">

<arg name="Interface" type="s" direction="in" />

<arg name="Properties" type="a{sv}" direction="out" />

</method>

<signal name="PropertiesChanged">

<arg name="Interface" type="s" />

<arg name="Changed" type="a{sv}" />

<arg name="Invalidated" type="as" />

</signal>

</interface>

The D-Bus specification suggests that this format could also be used as an interface

description language (IDL), from which code can be generated [PCL+12]. The introspec-
tion information is sufficient to describe what kind of messages can be sent to an object,
and what it sends out, as far as the D-Bus type system is concerned. Additionally, the
names of interface members and arguments can be used as identifiers in proxy code, as
long as some adjustment is performed to make them consistent with coding conventions
in the target language. This can be sufficient for generating a useful proxy interface for
very simple interfaces. For example, the Set D-Bus method could become the following
C++-like proxy method declaration:
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PendingOperation ∗set(const String &interface,

const String &property,

const DBusVariant &newValue);

For this simple method, this is a satisfactory interface. This is mostly due to its self-
evident semantics, and the primitive types of the arguments. Let us consider a more com-
plex example. The ContactsChanged signal of the ContactList interface is emitted
on Telepathy Connection objects, when the contents of the user’s server-stored address
book changes. The signal is defined as

ContactsChanged(a{u(uus)}: Changes,au: Removals) [signal]

Representing the ContactsChanged signal in a C++ proxy is no longer straight-
forward. The first argument has a complex nested type—which C++ type should it be
mapped to? And how should code which receives this signal interpret the integers and
strings that make up that type? They do not even have names to explain themselves, after
all. In the next section, we will describe a set of extensions to the D-Bus introspection
format, which make it possible to solve these kinds of issues.

6.2 The Telepathy Interface Description Format

The D-Bus interfaces that Telepathy components implement are described with an ex-
tended version of the D-Bus introspection format [MMHT11]. These extensions make it
possible to specify interface semantics in a more detailed fashion. The enhanced possi-
bilities for code generation have led to others adopting [AFF+09] the use of this extended
format as well.

6.2.1 Integer and string constants

The D-Bus type signature of the first argument of the ContactsChanged signal was
a{u(uus)}. This means that it is a mapping from unsigned integers to structures, which
consist of two unsigned integers and a string. The keys of the mapping are integer iden-
tifiers for contacts, and the value structure describes the disposition of the corresponding
contact in the address book. The disposition tells if the remote contact has allowed us to
see details such as whether they are online or away and so on, and if we have done the
same for them. The structure of the entire data type is shown graphically in Figure 6.2.

As illustrated in the figure, the integers in the disposition structure are actually used
to represent an enumerated type. Variables with an enumerated type can take one of just
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Figure 6.2: Layout of the first argument of the ContactsChanged signal

a few values, each of which has a distinct meaning. The Telepathy interface descrip-
tion format allows specifying the allowed values for enumerated types with the tp:enum
element, as follows:

<tp:enum name="Subscription_State" type="u">

<tp:enumvalue suffix="Unknown" value="0" />

<tp:enumvalue suffix="No" value="1" />

<tp:enumvalue suffix="Removed_Remotely" value="2" />

<tp:enumvalue suffix="Ask" value="3" />

<tp:enumvalue suffix="Yes" value="4" />

</tp:enum>

The code generator in the build system of the Telepathy-Qt library would turn this to the
following C++ enumerated type declaration:

enum SubscriptionState {

SubscriptionStateUnknown = 0,

SubscriptionStateNo = 1,

SubscriptionStateRemovedRemotely = 2,

SubscriptionStateAsk = 3,

SubscriptionStateYes = 4

};

A similar element, tp:flags, can be used to specify flag values for bit fields. In bit fields,
a set of one-bit flag values are bitwise-OR’d together to produce a combination of flags
represented as an integer.

D-Bus errors have names that resemble D-Bus interface names, e.g. org.freedesk-
top.DBus.Error.UnknownMethod. When a method produces an error, the error name
is given as a string in the ERROR message. The tp:possible-errors element can be
attached to a D-Bus method declaration to list the errors that can result from invoking that
method, and to describe what meaning they have in that context. When standard D-Bus
errors are not sufficient, the global tp:errors element can be used to define additional
well-known error names, like:
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<tp:errors namespace="org.freedesktop.Telepathy.Error">

<tp:error name="Network Error" />

<tp:error name="Not Implemented" />

</tp:errors>

The information in tp:errors elements can be used to define string constants for error
names. The client libraries also include generated string constants for D-Bus interface
names, as these have been found useful.

6.2.2 Complex types

The tp:struct element can be used to give a name and semantics to D-Bus structures.
The definition of the contact disposition structure for the ContactsChanged signal fol-
lows:

<tp:struct name="Contact_Subscriptions">

<tp:member name="Subscribe" type="u" tp:type="Subscription_State" />

<tp:member name="Publish" type="u" tp:type="Subscription_State" />

<tp:member name="Publish_Request" type="s" />

</tp:struct>

In this definition, the tp:type attribute is used to link the first two structure members
to the enumerated type that was presented earlier. This attribute can also be used to
reference a defined structure by its name. With this, we can define the full mapping type
of the ContactsChanged signal’s first argument, using the tp:mapping element:

<tp:mapping name="Contact_Subscription_Map">

<tp:member name="Contact_Handle" type="u" />

<tp:member name="States" type="(uus)" tp:type="Contact_Subscriptions" />

</tp:mapping>

With these type definitions, a C++ code generator could produce something like the fol-
lowing code to declare the corresponding C++ types:

struct ContactSubscriptions {

SubscriptionState subscribe;

SubscriptionState publish;

String publishRequest;

};

typedef Map<unsigned int, ContactSubscriptions> ContactSubscriptionMap;

The tp:type attribute is also used to specify the semantical type to use for method
and signal arguments and properties. The characters “[]” can be appended to any type
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name in a tp:type value to specify an array of the type to be used. For example, the
Telepathy ConnectionManager interface defines a structure, which represents an al-
lowed connection parameter, as follows:

<tp:struct name="Param_Spec">

<tp:member name="Name" type="s" />

<tp:member name="Flags" type="u" tp:type="Conn_Mgr_Param_Flags" />

<tp:member name="Signature" type="s" />

<tp:member name="Default_Value" type="v" />

</tp:struct>

This definition is used to declare the D-Bus property

Parameters: a(susv) [read-only property]

on the Protocol interface, with the following XML code:

<property name="Parameters"

type="a(susv)"

access="read"

tp:type="Param_Spec[]"

tp:immutable="yes" />

The tp:immutable attribute shown in the above declaration can be used to mark a prop-
erty as immutable, as defined in Section 5.2.

6.2.3 Miscellaneous features

Naming types and constant values based on their semantics makes D-Bus interfaces a
great deal more self-documenting than if just the D-Bus type signatures were used. How-
ever, more elaborate free-form documentation is typically desirable. The tp:docstring
element can be used to attach arbitrary textual documentation to almost any element in
a D-Bus interface description, from a top-level interface to a single enumeration value.
The documentation may also include XHTML markup, which can make longer runs of
documentation more readable. While the Telepathy interfaces are thoroughly documented
in this fashion, the tp:docstring elements were deliberately left out from the preceding
interface description fragments to make them more concise.

The tp:copyright element can be used to specify the copyright ownership for a
section of an interface description. Licensing terms can be written inside tp:license
elements. The content of both of these elements is free text.

These additions make it possible to generate, besides library code, annotated doc-
umentation of D-Bus interfaces. The Telepathy D-Bus Interface Specification docu-
ment [dTdCDG+12] is generated in this fashion from the interface description XML, with
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no other input data. The specification document is the canonical source of information on
how components of the framework must communicate and behave.
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7 CONCLUSION

In this thesis, we have analyzed the properties of the D-Bus system within the context
of established research on object-oriented software design and inter-process communica-
tion. Practical considerations for the design and implementation of D-Bus-based object-
oriented software have also been presented, based on these properties.

D-Bus was found to be a rather multi-faceted system. It supports both explicit invo-
cation through method calls and implicit invocation via signals, and the match rules are
a fairly complex example of a content-based publish/subscribe subscription system. This
has made establishing a base of comparison for our analysis fairly challenging, as research
on existing systems with each of these invocation patterns needed to be referenced. On
the other hand, this multitude of features in D-Bus makes it possible to build elaborate
mechanisms, such as our sophisticated state-caching proxy pattern (Chapter 5).

In Section 3.5, constraints for D-Bus messaging design were presented. The pseudo-
blocking patterns for placing method calls were reasoned to be harmful for interactivity.
Additionally, the classic pseudo-blocking pattern causes a loss of message ordering se-
mantics and is prone to deadlocks, while the re-entrant variant makes class invariants
unreliable. Fully asynchronous method calls do not have these drawbacks, but are pro-
grammatically unwieldy. Besides D-Bus, these conclusions would seem to apply to any
IPC system with a call packet → reply packet style of procedure invocation (see Sec-
tion 3.1).

Our presentation of the software design patterns in Chapter 5 has been mainly concep-
tual. Additionally, their possible effect on software complexity, performance and other
non-functional qualities has been briefly reasoned about. These patterns used together
would seem to reduce the complexity of inspecting and presenting the state of remote
objects to the level of local objects, without violating the messaging constraints that were
established earlier, or decreasing performance substantially. However, a case study of
taking the patterns into use in an existing software system could provide empirical further
proof for these claims. In any such effort, accuracy of performance and power consump-
tion measurements will be affected by implementation details. For example, there are
recent plans [Cre10] to reassign some message routing responsibilities from the D-Bus
bus daemon to the operating system kernel. This alters the context switch requirements
(Section 3.5.3) of D-Bus message transfer.

The design patterns presented in Chapter 5 and the interface description language
described in Section 6.2 have materialized as a by-product of functional development
of the Telepathy IM/VoIP framework. A study of adapting them in some other system
could also provide insights on the breadth of their applicability. The multiplexed state
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synchronization mechanism from Section 5.5 likely needs the most adjusting work to fit
into further uses besides communicating remote contact information in Telepathy.

As mentioned in Section 5.2, a basic property caching facility already exists in a
generic form in the GDBus library. This facility could perhaps be augmented with sup-
port for custom change notification mechanisms and initialization of the state copy from
known values, as present in the Telepathy client libraries. This would lower the barrier
of employing these mechanisms in other software, but would likely require annotating
their D-Bus interface descriptions with extra information, such as how properties can be
marked as immutable in the Telepathy specification (Section 6.2.2).

We haven’t often found the necessary delay between a service object state change and
the corresponding proxy state cache update problematic. However, it requires some care
to be taken in D-Bus interface design to avoid race conditions. Analyzing the consistency
properties of the state caching pattern and its implications on interface design would be
an interesting topic for future research.

In general, the Telepathy specification format (Section 6.2) has been found to be a
sizable improvement over basic D-Bus introspection data for code and documentation
generation purposes. It helps avoid hand-writing lower-level parts of D-Bus software
and thus lowers implementation effort. However, this might be dependent on the target
programming language; the suitability for generating code for other kinds of languages
than the imperative C, C++ and Python remains to be seen.

A distributed software architecture built around an IPC system like D-Bus can have
many benefits over a monolithic solution. However, as illustrated by this thesis, employ-
ing an IPC system optimally is far from trivial. Thus, the success of any such system is
strongly dependent on its set of accompanying reusable implementation support libraries,
code generation machinery and other tools which can aid and guide in this process.
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