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ABSTRACT 

Olli Eskola 

FLUORINE AND 18F-FLUORINE IN RADIOPHARMACEUTICAL PREPARATION 

Department of Chemistry and Turku PET Centre, University of Turku, Turku, Finland 

Annales Universitatis Turkuensis 
Painosalama Oy, Turku, Finland, 2013 
 

Recently the use of fluorine has increased in synthetic pharmaceuticals since its unique 

physicochemical characteristics can confer better efficiency and potency in a pharmaceutical. 

The effect of fluorine substitution on the pharmacokinetics of a lead compound can be versatile, 

i.e. it can lead to modulations in lipophilicity, pKa, metabolic stability and even evoke 

conformational changes. 

The radionuclidic properties of the positron emitter 18F have made it one of the most important 

radioisotopes in positron emission tomography (PET). Its comparatively long half-life (109.8 

min) and the low β+-energy enable lengthy PET-imaging protocols and can contribute to 

obtaining high-resolution images. 18F can be produced in large quantities enabling the synthesis 

of radiopharmaceuticals with high yields and high specific radioactivities (SA). 

The incorporation of 18F into organic molecules is usually accomplished either via nucleophilic 

or electrophilic routes. The electrophilic method is useful in labelling electron-rich structures, 

such as alkenes and aromatics, but often suffers from low yields and low SA. In this study, 

[18F]F2, produced with a “post-target” method, was used as an electrophilic labelling reagent. 

The aim was to evaluate the efficiency of “post-target” [18F]F2 chemistry in electrophilic 

fluorodestannylation and electrophilic addition reactions as ways of producing high quality 

radiopharmaceuticals with reasonable yields and with elevated SA. 

The catecholamine analogues 4-[18F]fluorometaraminol (4-[18F]FMR) and  6-

[18F]fluorodopamine (6-[18F]FDA) were produced with reasonable yields and with adequate SA, 

although the selectivity of 18F-incorporation in 6-[18F]FDA production was not optimal. 3-[[4-

(4-[18F]fluorophenyl)piperazin-1-yl]methyl]-1H-pyrrolo[2,3-b]pyridine ([18F]F5P) was 

produced with a low radiochemical yield due to the formation of numerous side-products. In 

contrast, [18F] 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)-acetamide 

([18F]EF5) was produced at a sufficient yield despite the formation of several side products. 

Key words: fluorine, fluorine-18, electrophilic substitution, electrophilic addition, specific 

radioactivity 
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TIIVISTELMÄ 

Olli Eskola 

FLUORI JA 18F-FLUORI RADIOLÄÄKEVALMISTUKSESSA 

Kemian laitos ja Valtakunnallinen PET-keskus, Turun Yliopisto, Turku, Suomi 

Annales Universitatis Turkuensis 
Painosalama Oy, Turku, 2013 
 
Fluoriatomi esiintyy yhä useammin uusissa synteettisissä lääkkeissä, koska fluorin 

erikoislaatuisilla fysikokemiallisilla ominaispiirteillä voidaan myötävaikuttaa lääkkeen 

tehokkuuteen ja vaikutuskykyyn. Fluorisubstituution vaikutukset lääkkeen farmakokinetiikkaan 

voivat olla moninaiset, mukaan lukien vaikutukset lääkkeen rasvaliukoisuuteen, pKa-arvoon, 

metaboliseen pysyvyyteen ja konformaatioon. 

Positroniemitteri fluori-18 isotoopin radionuklidiset ominaisuudet ovat myötävaikuttaneet 

siihen, että se on eräs tärkeimmistä radionuklideista positroniemissiotomografian (PET) alalla. 

Suhteellisen pitkä puoliintumisaika (109.8 min) sekä matala emittoituvan positronin energia 

mahdollistavat pitkät PET-kuvausprotokollat sekä PET-kuvantamisen korkealla erotuskyvyllä. 

Fluori-18 isotooppia voidaan tuottaa suuria määriä, mikä mahdollistaa radiolääkeaineen tuoton 

korkealla saaliilla ja korkealla ominaisradioaktiivisuudella (OR). 

Nukleofiiliset ja elektrofiiliset synteesit ovat tyypillisimmät menetelmät liittää 18F isotooppi 

orgaanisiin molekyyleihin. Elektrofiilinen menetelmä on käytännöllinen leimattaessa 

elektronirikkaita rakenteita, kuten alkeeneja ja aromaattisia yhdisteitä, mutta haittapuolena ovat 

menetelmän matalat radiokemialliset saaliit sekä matala OR. Tässä työssä käytettiin 

elekrofiilisenä leimausreagenssina [18F]F2 kaasua, joka tuotettiin sähköpurkauksella (“post-

target” menetelmä). Tavoitteena oli tutkia sähköpurkauksella tuotetun [18F]F2 kaasun kemian 

tehokkuutta elektrofiilisissa fluoridestannylaatio- ja additioreaktioissa kun päämääränä on 

tuottaa hyvälaatuisia radiolääkeaineita kelvollisilla saaliilla ja riittävän korkealla 

ominaisradioaktiivisuudella. 

Katekoliamiinianalogit 4-[18F]FMR ja 6-[18F]FDA syntetisoitiin kohtuullisilla saaliilla ja 

riittävällä ominaisradioaktiivisuudella, joskin 18F-substituution selektiivisyys 6-[18F]FDA:n 

synteesissä ei ollut optimaalinen. [18F]F5P:n synteesi tuotti matalan radiokemiallisen saaliin, 

mikä johtui useista muodostuneista sivutuotteista. [18F]EF5 syntetisoitiin riittävällä 

saalisprosentilla huolimatta lukuisista muodostuneista sivutuotteista. 

Avainsanat: fluori, fluori-18, elektrofiilinen substituutio, elektrofiilinen additio, 

ominaisradioaktiivisuus. 
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ABBREVIATIONS 

Ac Acetyl 
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Deoxofluor Bis(2-methoxyethyl)aminosulfur trifluoride 
DFI 2,2-difluoro-1,3-dimethylimidazolidine 
DFMBA N,N-diethyl-α,α-difluoro(m-methylbenzyl)amine 
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DMSO Dimethylsulfoxide 
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[18F]EF5 [18F] 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)-

acetamide 
EMIM 1-ethyl-3-methyl imidazolium 
EOB End of bombardment 
EOS End of synthesis 
[18F]F5P 3-[[4-(4-[18F]fluorophenyl)piperazin-1-yl]methyl]-1H-pyrrolo[2,3-

b]pyridine 
6-[18F]FDA 6-[18F]fluorodopamine 
Fluorspar Calcium difluoride 
4-[18F]FMR 4-[18F]fluorometaraminol 
Freon-11 CCl3F, trichlorofluoromethane 
GC Gas chromatography 
GMP Good manufacturing practice 
His Histidine 
HPLC High performance liquid chromatography 
K2.2.2 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]-hexacosane 
LC-MS Liquid chromatography mass spectrometry 
MOST 4-morpholinosulfur trifluoride 
MRI Magnetic resonance imaging 
n.c.a. no carrier added 
NFBTSI N-fluorobis[(trifluoromethyl)sulfonyl]imide 
NFOBS N-fluoro-o-benzenedisulfonimide 
NFPCB N-fluoro-2,6-dichloropyridinium tetrafluoroborate 
NFPT N-fluoropyridinium triflate 
NFQT N-fluoroquinuclidinium triflate 
NFSI N-fluorobenzene sulfonimide 
Nuc Nucleophile 
PET Positron emission tomography 
Phe Phenylalanine 
PPHF Polypyridinium hydrogen fluoride 
RA Radioactivity 
RCP Radiochemical purity 
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RP Reversed phase 
Rt Retention time 
SA Specific radioactivity 
Selectfluor 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane 

bis(tetrafluoroborate) 
Ser Serine 
TBABF Tetrabutylammonium bifluoride 
TBAF Tetrabutylammonium fluoride 
TBAOH Tetrabutylammonium hydroxide 
TFA Trifluoroactic acid 
THF Tetrahydrofurane 
TMAF Tetramethylammonium fluoride 
Tyr Tyrosine 
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1. INTRODUCTION 

The 1906 Nobel Prize in chemistry was awarded to Henri Moissan for his 

groundbreaking work to isolate fluorine, a new element, the work having been done in 

1886 with electrochemical methods. In the 16th century, a fluoride containing mineral 

CaF2 (also known as fluorite or fluorspar) was described as a substance which 

facilitated the melting of ores. In the subsequent centuries, studies on the chemical 

nature and reactions of fluorspar continued, particularly with hydrogen fluoride which 

was obtained by reacting fluorspar with acids. In the 19th century it was realized that 

hydrogen fluoride contained a new element, the properties of which resembled chlorine. 

The new element was found to be extremely reactive and attempts to isolate it proved 

difficult, laborious and in some unfortunate cases even fatal for the scientists working 

with it. Finally, Henri Moissan succeeded in isolating elemental fluorine, which he 

prepared by the electrolysis of a solution containing potassium hydrogen fluoride KHF2 

and liquid hydrogen fluoride (Moissan 1886, Groult 2007, Flahaut 1986, Banks 1986). 

The usage of elemental fluorine grew considerably during the mid 20th century, when 

methods were developed to enrich 235U from natural uranium by using uranium 

hexafluoride UF6. Gradually during the 20th century, scientists were able to both control 

and then exploit the high reactivity of fluorine which had previously limited its use as a 

versatile fluorinating reagent. The rapid progress of industrial organofluorine chemistry 

can be considered to stem from the invention of several familiar compounds such as 

Teflon®, a landmark in fluoropolymer chemistry, and Freons®, which initiated the vast 

commercial use of chlorofluorocarbons (CFC’s) as refrigerants.  

Fluorine-containing molecules were rare in agrochemical and pharmaceutical 

applications before the 1970’s. The development of selective, less reactive and safe 

fluorination reagents (see next paragraphs) turned the tide and allowed scientists to 

investigate fluorine incorporation reactions for both academic and industrial purposes. 

At present, hundreds of fluorinated drugs exist; in fact they account for more than 20 % 

of all pharmaceuticals (Müller 2007). 
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Figure 1. Top-selling fluorinated pharmaceuticals. The antidepressant Prozac®, cholesterol-
lowering drug Lipitor® and quinolone antibiotic Ciprobay®. 

In addition to the naturally occurring stable 19F-isotope, fluorine has several radioactive 

isotopes (Lasne 2002). 18F, a new radioisotope of fluorine was first described by Arthur 

Snell in 1936. This isotope was produced by the bombardment of neon gas with 5 MeV 

deuterons. The isotope was found to emit “positive electrons”, had a half-life of 112 ± 4 

minutes and it decayed to 18O. Since it was neither of the then known radioisotopes of 

fluorine, i.e. 17F or 20F, it was deduced to be 18F. Absorption measurements of the 

positron indicated that it had a maximum energy of about 500 keV (Snell 1937). 

Over the decades, 18F (and to a lesser extent 17F) has become a widely used radionuclide 

in the field of nuclear medicine, especially with positron emission tomography (PET) 

(Phelps 2000, Phelps 2004). PET is a nuclear medical imaging modality that uses 

biologically active molecules labelled with short-lived positron emitters (β+ emitters) 

(Welch 2003, Ametamey 2008). Whereas MRI and CT scans provide accurate 

anatomical information, PET scans offers a non-invasive tool for monitoring the 

pharmacokinetics (such as biodistribution, metabolism and excretion) of these 

radiolabelled molecules in vivo. The most widely used PET-radionuclides are 11C (t½ = 

20 min), 13N (t½ = 10 min), 15O (t½ = 2 min) and 18F (t½ = 110 min). These radionuclides 

are produced with cyclotron bombardment of an appropriate target, and are immediately 

incorporated into the radiotracer prior to its PET use. Due to the favourable chemical 

properties of fluorine and the useful radionuclidic properties of 18F-isotope, in many 

ways 18F has proved to be a near ideal radionuclide for PET. 
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2.  REVIEW OF THE LITERATURE 

2.1. General properties of fluorine 

Fluorine is the 13th most common element in the earth’s crust. Fluorine is a small atom, 

the smallest of the halogens, with a van der Waals radius of 1.47 Å (Bondi 1964). As 

such it can be considered the smallest possible substituent in organic chemistry, if one 

excludes hydrogen and its isotopes. Fluorine is the most electronegative element in the 

periodic table, with a value of 3.98 on the Pauling electronegativity scale. It has a very 

low polarizability. Elemental fluorine F2 is not only the most reactive halogen, but 

arguably the most reactive pure element in the periodic table. It can react with all other 

elements, with the exception of the lighter noble gases, He and Ne. The high reactivity 

of F2 is a result of the very weak F-F bond (159 kJ/mol) combined with the ability of 

fluorine to form very strong bonds with other atoms (Dolbier 2005, Groult 2007). 

Table 1. Physical properties of most common natural elements and halogens (Begue 2008, 
Weast 1982). 

Element 
[X] 

van der Waals 
radius [Å] 

Electronegativity
[Pauling scale] 

C-X bond length
[Å] 

C-X bond strength 
[kJ/mol] 

H 1.20 2.20 1.09 337 

C 1.70 2.55 1.70 607 

N 1.55 3.04 1.47 770 

O 1.52 3.44 1.43 1077 

F 1.47 3.98 1.39 536 

Cl 1.75 3.16 1.77 397 

Br 1.85 2.96 1.94 280 

I 1.98 2.66 2.13 209 
 

2.2. Natural occurring fluoro-organic compounds 

The presence of fluorine in organic compounds is rare in nature and organofluorides are 

the least abundant organohalides of the natural compounds (see Figure 2). Most 

fluorides are found in minerals such as fluorspar, cryolite and fluorapatite. The fluoride 

ion has a high energy of solvation in water, which debatably has hindered its reactivity 

and uptake in bio-organisms (Dolbier 2005, Müller 2007). Consequently, the vast 

majority of organofluorocompounds that we have today are mostly unnatural, 

essentially man-made synthetic compounds. 
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Figure 2. Some fluoro-organic compounds found in nature (Dolbier 2005). 

2.3. Fluorine in pharmaceuticals 

Over the last 25 years, the number of fluorine containing drugs and biomolecules has 

increased significantly. This is largely due to the development and commercial 

availability of selective fluorinating agents (see paragraph 2.5). On the other hand, the 

ever-growing knowledge of how fluorine substitution can modulate the 

physicochemical and biochemical properties of lead compounds has been a source of 

inspiration for scientists to develop novel fluorinated biomolecules and drugs. 

The incorporation of fluorine into a drug achieves the simultaneous modulation of 

electronic, lipophilic and steric parameters, and all of these properties can influence 

both the pharmacokinetic and pharmacodynamic properties of drugs (Elliot 1995). The 

size and electronegativity of fluorine as well as the length and the strength of C-F bond 

are the key factors related to fluorine substitution and its outcome. In this chapter, 

fluorine substitution and its exploitation in pharmaceutical development are discussed. 

2.3.1. Typical fluorine substitutions and steric perturbation 

Bioisosterism refers to the capacity of atoms and functional groups with similar sizes or 

shapes to be interchanged without significantly altering the biological behaviour, such 

as affinity (Patani 1996). 
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Frequently, fluorine is introduced to replace hydrogen in biomolecules. In terms of size, 

the Van der Waals radius of fluorine (1.47 Å) is closer to oxygen (1.52 Å) than that of 

hydrogen (1.20 Å) (Ismail 2002). Despite the slight difference in size, the C-F bond can 

often replace and mimic the C-H bond with minimal steric consequences (Kirk 2006). 

Nonetheless, fluorine substitution always increases the steric size of alkyl groups. As an 

example, the trifluoromethyl group –CF3 is much larger than the methyl group –CH3, 

with steric volume close to isopropyl (Smart 2001) or ethyl group (Müller 2007), albeit 

with a very different shape. 

Fluorine and oxygen are nearly isosteric from a structural point of view and the bond 

length of C-F (1.39 Å) is close to the bond length of C-O (1.43 Å) (Müller 2007). 

Replacement of hydroxyl group –OH with fluorine is therefore possible without adding 

exessive steric strain. Bioisosterism of C-OMe versus C-F has also been observed 

(Schweizer 2006). 

Some examples of substituting a carbonyl group with fluorinated moieties exist, for 

instance, the trifluoromethyl fragment –CF3 has also been introduced as a substitute for  

–C=O (Black 2005). Fluoromethylene C=CHF and difluoromethylene C=CF2 groups 

have been used as bioisosters of the peptide bond (Zhao 2003) and phosphate esters 

(Berkowitz 1994). 

2.3.2. Fluorine substitution effects on pKa 

Due to its strong electron withdrawing nature, fluorine substitution has a profound 

impact on acidity and basicity of the neighbouring functional groups via inductive 

effects. Depending on the position of fluorine substitution, pKa shifts of several log 

units can be observed. Generally, alcohols, carboxylic acids, heterocyclics and phenols 

become more acidic with adjacent fluorine substitution. Similarly, linear and cyclic 

amines become much less basic with β-, γ- and in some examples even with δ-fluorine 

substitution (Hagmann 2008, Böhm 2004). 

Often a change in pKa has a major impact on the pharmacokinetics of the molecule and 

its binding affinity. A nice example of this was reported by van Niel et al. (see figure 3) 

who developed novel fluorinated indole derivatives 3.1 - 3.3 as selective 5HT1D receptor 

ligands (van Niel 1999). With sequential fluorine incorporation, the pKa values of the 

compounds were found to decrease. This reduction of basicity, with concomitant 
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weakening of the affinity to the receptor, had a strong beneficial effect on oral 

absorption of the drug. However, the difluoro compound 3.3 was no longer sufficiently 

basic to achieve high binding affinity for the 5HT1D receptor (see Figure 3). 

 

Figure 3. Effect of sequential fluorine substitution on the pKa of a set of 5HT1D agonists (van 
Niel 1999). 

2.3.3. Fluorine substitution effects on lipophilicity 

Lipophilicity is an important parameter that influences the in vivo distribution of the 

drug, for instance, it can enhance the binding affinity to the target protein. No common 

rule to explain how fluorine substitution affects lipophilicity can be provided. The 

change in lipophilicity after fluorine substitution is very much affected by the atoms and 

functional groups in close vicinity to the substitution site. For example, the presence of  

a fluorine close to an oxygen atom can increase the overall polarity of the molecule and 

thus enhances its solvation in polar medium. Likewise, fluorine may polarize the 

neighbouring oxygen atom leading to stronger hydrogen bonding between oxygen and 

water molecules (Böhm 2004). 

Lipophilicity increases with aromatic fluorination, per/polyfluorination and with 

fluorination adjacent to atoms with π-bonds (with the exception of some α-carbonyl 

compounds) (Smart 2001). 
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Terminal mono-, di- and trifluorination and trifluoromethylation of saturated alkyl 

groups decreases lipophilicity. If heteroatoms are present in the alkyl chain, then the 

effect is less predictable (Smart 2001). 

2.3.4. Hydrogen bonding and intermolecular interactions 

Electronegativity considerations would indicate that C-F behaves similarly to C-O and 

C-N fragments and acts as a good hydrogen bond acceptor, but this does not seem to be 

the case (Dunitz 1997). Organic fluorine has a very low proton affinity and is weakly 

polarizable (Müller 2007). Nevertheless, the importance of C-F in hydrogen bonding 

has been debated intensively within recent years. Some investigators have concluded 

that organic fluorine is at best a weak hydrogen bond acceptor (Shimoni 1994, Howard 

1996). A more accurate interpretation seems to be that organic fluorine hardly ever 

accepts hydrogen bonds and does so only in the absence of better acceptors (Dunitz 

1997, Dunitz 2004). Thus in intermolecular interactions, such as in protein-ligand 

complexes, the probability that a covalently bound fluorine engages in hydrogen 

bonding is very small. In most cases, the non-bonding interactions of a C-F unit are 

better described in terms of weak polar interactions (Böhm 2004). 

Interactions of the C-F moiety with strong H-bond donors (such as N-H of protein 

backbone amide bonds, His side-chains, OH groups of Tyr, Ser and bound water) have 

been reported in the literature. Possible interactions can also be formed between C-F 

and lipophilic side chains such as aromatic residues of Phe. Furthermore, an aromatic C-

F can influence aromatic-aromatic interactions through alterations of the electronic 

characteristics of the aromatic ring (Kirk 2006). 

2.3.5. Fluorine substitution effects on metabolism 

Lipophilic compounds have a tendency to be oxidized by liver enzymes like 

cytochrome P450. Hence, the modulation of oxidative metabolism by fluorine 

substitution has become a noteworthy strategy in drug development. This can be used 

not only to prolong or modulate the biological half-life of the drug, but also to prevent 

the formation of potentially toxic products via oxidative metabolism (Kirk 2006). 

The ability of fluorine to block oxidative metabolism in saturated aliphatic systems is 

apparently not merely due to the fact that the C-F bond is stronger than the C-H bond. 

In fact, the high bond energy and heat of formation of the C-O bond and O-H bond 
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relative to the F-O bond essentially excludes an oxidative attack on fluorine. Oxidation 

of the C-H bond adjacent to –CF3 group and perfluoro groups are retarded mainly by 

field effects as steric and the conformational changes are imposed as compared to the 

lead structure (Purser 2008). 

Fluorine substitution can also block, or at least slow down, oxidation in the aromatic 

ring. This is typically accomplished by introducing fluorine at the 4-position of the 

phenyl ring. 

 

Figure 4. Development of ezetimib by optimization of the lead structure SCH 48461. As part of 
the optimization, two metabolically labile sites were blocked by fluorine substitution 
(Rosenblum 1998). 

A good example of how fluorine substitution can be utilized to modify drug 

metabolism, is exemplified in the optimization of the cholesterol uptake inhibitor 

ezetimib (see Figure 4). The lead compound SCH48461 4.1 was metabolised 

extensively and some metabolites were more potent than the drug itself. Fluorine was 

introduced into the para-position of the phenyl ring to prevent oxidation to a phenol. 

Furthermore, the 4-methoxy group was replaced by fluorine to avoid metabolic 

demethylation. These fluorinations, along with the addition of some supplemental 

functional groups, contributed to the “optimized” drug ezetimib 4.2, which was 400 

times more potent than the lead compound (Rosenblum 1998). 

Conversely, sometimes it has been advantageous to replace the fluorine atom from lead 

compounds with metabolically labile groups. For instance, the replacement of fluorine 

of the cyclo-oxygenase 2 (COX 2) inhibitor 5.1 with methyl group led to celecoxib 5.2 

(see Figure 5) and reduced the very long half-life of 5.1 (220 h in rat) to a more 

acceptable level (3.5 h in rat) (Penning 1997). 
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Figure 5. Development of celecoxib. Replacement of fluorine by metabolically labile methyl 
group reduced the half-life of the lead compound to acceptable level (Penning 1997). 

Naturally, there are examples where aromatic fluorine substitution does not prevent 

oxidative metabolism at the substitution site. This is observed particularly for phenyl 

rings with nitrogen substituent at the para position to the fluorine substituent. During 

P450-catalyzed oxidation, rearrangement (NIH-shift) takes place in which the fluorine 

moves to the adjacent carbon and the phenol metabolite is formed para to the nitrogen 

substituent (see Figure 6) (Dear 2000, Park 2001). 

 

Figure 6. Formation of the NIH-shift metabolite 6.2 of the novel quinoxazoline reverse 
transcriptase inhibitor GW420867X 6.1 (Dear 2000). 

Figure 7 illustrates the in vivo epimerisation of thalidomide, a notorious drug that was 

developed as a sedative hypnotic for the treatment of nausea in pregnancy until it was 

withdrawn from the market in 1962. The (R)-enantiomer is responsible for the clinically 

effective sedative hypnotic effects while the (S)-enantiomer is responsible for the 

teratogenic side effects. Epimerisation makes the biological evaluation of the individual 

enantiomers quite difficult. The epimerisation of thalidomide under physiological 

conditions is due to the presence of an acidic hydrogen atom in the stereogenic centre 

adjacent to the carbonyl group. The replacement of this hydrogen with fluorine is able 

to prevent the in vivo epimerisation process (Purser 2008). 
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Figure 7. In vivo racemization of thalidomide. (3R)- and (3S)-fluorothalidomide are not 
racemized due to the replacement of the acidic hydrogen with fluorine (Purser 2008). 

2.3.6. Fluorine substitution effects on molecular conformation 

Substitution of H by F can profoundly change the conformational preferences of small 

molecules and sometimes these changes are quite subtle and difficult to predict 

beforehand. A tutorial example can be seen with conformations of methoxyphenyl and 

trifluoromethoxyphenyl groups. The methoxyphenyl group lies in the plane of the 

phenyl ring whereas the trifluoromethoxy group tends to turn out of plane because of its 

larger size and stereoelectronic effects (Leroux 2005, Müller 2007). 

 

Figure 8. Cholesteryl ester transfer protein inhibitors. Ethoxy substituent in 8.2 favours in-plane 
orientation. Tetrafluoroethyl side chain in compound 8.1 favours the out-of-plane orientation 
with enhanced binding affinity (Massa 2001). 

The difference in conformational preference induced with fluorine substitution was 

exploited in the development of superior inhibitors for cholesteryl ester transfer protein. 

(see Figure 8). When the tetrafluoroethoxy substituent of 8.1 was changed to an ethoxy 

substituent, an 8-fold loss of potency was observed. Molecular modelling experiments 

revealed that the tetrafluoroethyl group preferred an out-of-plane orientation with 
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respect to the phenyl ring, which promoted more efficient binding to the target protein 

(Massa 2001). 

2.4. Fluorine in radiopharmaceuticals 

The chemical properties of 18F are the same as those of the stable 19F isotope. 

Subsequently, the effects of 18F-substitution on biochemical characteristics of 

pharmaceuticals, such as lipophilicity and pKa, are the same as with 19F-substitution. 

Furthermore, the 18F-labelled radiotracer has essentially the same properties as the non-

radioactive 19F-analogue, the small isotope effect is usually negligible (Matsson 1993). 

For tracer applications, the 18F-labelling strategy is usually directed toward the position 

that will have as little effect as possible on the characteristics on the parent molecule.  It 

is common, that 18F is introduced into a radiopharmaceutical to replace either hydrogen 

or a hydroxyl group of the lead compound. As with stable fluorine, 18F can be used to 

block the metabolism of the radiotracer, but the 18F-substitution can also be used to 

detect in vivo metabolism as a function of time through analysis of the 18F-labelled 

metabolites. The ability of fluorine to alter drug lipophilicity can be used in PET-

studies, for instance by determining the ability of the 18F-labelled compound to cross the 

blood brain barrier. 

18F is considered an excellent positron emitting radionuclide because of its nuclear and 

chemical properties. Compared to 15O (t1/2 = 2.03 min), 13N (t1/2 = 9.97 min) and 11C (t1/2 

= 20.4 min), the comparatively long half-life of 18F (109.77 min) allows time for 

complex and multi-step radiolabelling procedures. The appropriate 18F-labelled tracers 

can be used as tools for following biochemical processes with slow kinetics (for as long 

as six hours) with a PET-camera. In addition, 18F-labelled tracers can be obtained with 

high SAs, typically > 400 GBq/μmol at EOS. 

18F decays largely by positron emission (β+: 97 %, EC 3 %) and the positron energy of 
18F is the lowest (max 0.635 MeV) of the common positron emitters. As a consequence, 

the positron has the shortest linear range in tissues which greatly contributes to its 

ability to provide high resolution images if one uses 18F-labelled tracers (Lasne 2002). 

Finally, in many cases 18F-labelled radiopharmaceuticals can be produced in large 

quantities. This, coupled with the relatively long half-life of 18F, enables shipping of 
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these radiopharmaceuticals to centres which do not have access to an on-site cyclotron 

or a radiochemistry laboratory. 

 

Figure 9. D-glucose and its 18F-labelled analogue [18F]FDG, the most widely used PET-
radiopharmaceutical. 

The most frequently used radiopharmaceutical for PET is 2-deoxy-2-[18F]fluoro-D-

glucose [18F]FDG, originally developed in the late 1970’s (Ido 1978), with applications 

in oncology, neurology and cardiology. [18F]FDG is a glucose analogue and it can be 

used to assess glucose metabolism in vivo. [18F]FDG is a good example on how 18F-

fluoride can be introduced as a bioisoster of hydroxyl group while maintaining the 

desired biochemical characteristics of the parent compound D-glucose. It also illustrates 

how metabolism of the parent compound can be modulated with fluorine substitution. 

[18F]FDG is phosphorylated in the same manner as D-glucose, but due to the absence of 

a hydroxyl group in C2-position, it cannot undergo glycolysis and is therefore trapped 

inside the cell. 

2.5. Formation of C-F bond 

The selective introduction of fluorine into biomolecules is of paramount importance if 

one wishes to exploit the advantages of fluorine substitution discussed in the previous 

chapter. Nonetheless, the preparation of organofluorine compounds remains a 

formidable challenge. The traditional techniques of fluorination involve unusual 

reagents that are often hazardous and corrosive (elemental fluorine, hydrofluoric acid, 

sulfur tetrafluoride), and the handling of these requires special laboratory equipment. 

Moreover, they are often poorly selective and incompatible with elaborate and fragile 

substrates. 

However, thanks to the development of selective fluorination agents and building 

blocks, today there are many ways to introduce fluorine in a regio- and stereoselectively 

controlled way to organic molecules. There are many excellent books, reviews and 

monographs describing in detail the broad array of reactions available today for 
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scientists and fluorine chemists. Fluorination reactions to form organofluorine 

compounds utilize the nucleophilic, electrophilic and radical forms of fluorine. The goal 

of this section is to highlight the principle methodologies used to achieve 

organofluorine substitutions. The emphasis will be placed on aliphatic and aromatic 

monofluorinations. 

2.5.1. Nucleophilic fluorinations 

Nucleophilic fluorination implies that the C-F bond is created through the reaction of 

fluoride anion F- with a suitable substrate. This is not as straightforward as it appears. 

The small size of fluorine and its low polarizability encourages F- to behave as a base 

rather than a nucleophile (Wilkinson 1992), sometimes F- has even been successfully 

used as a mild base in organic synthesis (Clark 1980). Moreover, the fluoride anion is 

generally strongly solvated in protic solvents (hydration energy 123 kcal/mol) and is 

prone to form tight ion pairs, which render F- poorly reactive (Bégué 2008, Kirk 2008). 

Traditional fluorinating agents: Nucleophilic substitution of halogens with F- was first 

achieved in 1863 by Borodine (Borodine 1863). Since then, many reagents have been 

developed to overcome traditional problems like poor solubility, substitution versus 

elimination in nucleophilic substitution reactions, high price, high toxicity and low 

stability of the fluorinating reagents. Some of these first-generation fluorinating 

reagents are presented in Table 2. Many of these are still in use, in spite of their 

occasionally non-optimal characteristics such as toxicity and very high reactivity. 

Table 2. Traditional first-generation fluorinating reagents (Wilkonson 1992, Dmowski 1986, 
Rozen 2005)  

Reagent  

TASF Tris(dimethylamino)sulfonium difluorotrimethylsiliconate 

AgF Silver(I) fluoride 

CuF2 Copper(II) fluoride 

HgF2 Mercury(II) fluoride 

ZnF2 Zinc(II) fluoride 

SiF4 Silicon tetrafluoride 

BrF3 Bromine trifluoride 

SF4 Sulfur tetrafluoride 

FAR Fluoroalkylamine reagents; Yarovenko’s reagent, Ishikawa’s reagent 

XeF2 Xenon difluoride   

AHIF Aromatic hypervalent iodine fluorides 
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Alkali metal fluorides: “Classical” alkali metal fluorides such as LiF, NaF, KF and CsF 

have been used to introduce fluorine into a variety of compounds such as alkyl 

sulfonates, alkyl halides and aromatic halides. The fluorinations are often carried out in 

high-boiling solvents which improve the solubility of the ionic fluorides or alternatively 

in anhydrous solvents. Various activation methods, that direct fluoride ion to act as a 

nucleophile rather than as a mild base, are in most cases required. The reactions can be 

conducted in the presence of crown ethers, which solvate inorganic fluorides by 

complexation and enhance their solubility in nonpolar solvents such as benzene. Other 

cation complexing agents such as glycols and glymes can also be used (See figure 10) 

(Wilkinson 1992, Halpern 1995, Begue 2008, Kirk 2008, Furuya 2008). 

 

O
TsO

OMe

OBnBnO

OBn

O
F

OMe

OBnBnO

OBn

KF / polyethyleneglycol 400

44 h / 70 oC

10.1 10.2  

Figure 10. Replacement of O-tosyl group of 10.1 using potassium fluoride as the nucleophilic 
source of fluorine in a glycol solvent (Wilkinson 1992). 

Tetra-alkyl ammonium fluorides: Tetra-alkyl ammonium fluorides were developed to 

overcome the problems related to alkali metal fluorides. They provide a soluble source 

of F-. In addition, by replacing the metal cation with a bulky organic cation, the ion 

pairing is reduced and the nucleophilicity of F- is enhanced. The most widely used 

reagent is the commercially obtainable tetrabutyl ammonium fluoride TBAF, available 

as a trihydrate. It is a potent source of nucleophilic fluoride, but also a strong base. 

Furthermore, it is difficult to obtain TBAF in completely anhydrous form, which can 

lead to variability in some cases, for instance, by hydrolysis of the leaving group or 

through elimination reactions (see Figure 11) (Cox 1984, Halpern 1995, Furuya 2008, 

Sun 2005). Elimination side-reactions can be avoided by using tetramethylammonium 

fluoride TMAF which can be obtained as an anhydrous salt (Furuya 2008). 

Tetrabutylammonium bifluoride TBABF is a non-corrosive analogue of TBAF with 

good solubility properties and high thermal stability (Bosch 1987, Kim K-Y 2008). 
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Figure 11. Synthesis of the 4-fluoroproline derivative 11.2 with TBAF and TBABF. With 
TBABF higher yields are achieved due to the decreased formation of the elimination product 
11.3 (Kim K-Y 2008). 

HF and its derivatives: Anhydrous hydrogen fluoride (AHF) is one of the most popular 

fluorination reagents, but due to its corrosive nature and low boiling point (19 ºC), 

alternatives are required. AHF can be “tamed” with suitable donor solvents such as 

alkyl amines Et3N and Et2NH or with pyridine to form polypyridinium hydrogen 

fluoride PPHF, commonly known as Olah’s reagent. PPHF has mainly been used to 

fluorinate secondary and tertiary alcohols, alkenes and alkynes and in halogen exchange 

reactions (Wilkinson 1992). 

Alkyl amine hydrogen fluorides such as Et3N•3HF are other useful sources of F-; they 

are less corrosive than PPHF. Et3N•3HF has been utilized in bromofluorinations of 

double bonds and allylic alcohols. Et2NH•3HF has been used in regioselective ring 

opening of epoxides (see figure 12) (Wilkinson 1992, Muehlbacher 1988). 
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Figure 12. Use of Olah’s reagent (PPHF) and Et2NH•3HF in ring opening of epoxides. The ring 
strain of the epoxide itself provides the activation for the reaction to proceed. With Et2NH•3HF, 
the nucleophilic fluoride was generally found to attack the least hindered carbon of the epoxide 
ring (Muehlbacher 1988, Kirk 2008). 

Sulfur fluorides and other novel fluorination reagents: Diethylamino sulfur trifluoride 

DAST can be considered as the main reagent for nucleophilic fluorination (Hudlicky 

1995, Middleton 1975) and its use is quite versatile (Singh 2002). Direct transformation 

of a C-OH bond to a C-F bond is possible with primary, secondary and tertiary alcohols. 

These reactions are in most cases stereoselective and inversion of configuration is 

observed. Ketones and aldehydes can be reacted to form difluoroalkyl compounds. 

Other, more stable, DAST related reagents such as DeoxofluorTM (Lal 1999) and MOST 

(Furuya 2008) are also available. DFI (Hayashi 2002) and DFMBA (Kobayashi 2004) 

also belong to the family of second-generation fluorination reagents. 

 

Figure 13. Novel nucleophilic fluorination reagents. 
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Various types of fluorinations can be accomplished by using sulphur fluorides as 

nucleophilic fluorination reagents. Some examples are shown in Figure 14. 

 

Figure 14. Examples of fluorinations with DAST and Deoxofluor. The C-1 fluorination of 
2,3,4,6-tetra-O-acetyl-β-D-mannopyranose 14.1 (Albert 2000). The secondary –OH group 
replacement of 2S-hydroxy-γ-butyrolactone 14.3 with the inversion of the configuration (Shiuey 
1988). Cyclic ketone fluorination of 14.5 with deoxofluor to produce the gem-difluoride 
compound (Singh 2002). 

2.5.2. Electrophilic fluorinations 

Electrophilic fluorination means that the C-F bond is created through the reaction of the 

fluoride “cation” F+ with a substrate that has a high electron density. The ability of 

fluorine to behave as a F+ electrophile is not easily achieved, since fluorine is the most 

electronegative element. There are ways to overcome this problem e.g. by either 

withdrawing the electronic charge from fluorine through inductive effects or by 

introducing the presence of a good leaving group adjacent to fluorine substitution site or 

by combination of these effects (Wilkinson 1992). 

Initially, molecular fluorine F2 was the sole source of electrophilic fluorinations. Due to 

its extreme and uncontrollable reactivity, the development of alternate electrophilic 

reagents was necessary (Rozen 1980a). The “second generation” electrophilic reagents 

included fluoroxytrifluoromethane CF3OF, perchlorylfluoride FClO3, xenon difluoride 

XeF2, nitrogen oxide fluorides (Barton 1968, Patrick 1995, Nyffeler 2005, Rozen 1975, 

Schmutzler 1968, Tius 1995) and other hypofluorites, acetohypofluorite in particular 

(Appelman 1985, Lerman 1981, Lerman 1984, Navarrini 1999, Rozen 1979, Rozen 

1980b, Rozen 1981a). These reagents served as safer alternatives for F2, but the need 
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for more stable and less toxic reagents still remained. These reagents will be discussed 

in the following chapters. 
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Figure 15. N-F type electrophilic fluorination reagents: 1-chloromethyl-4-fluoro-1,4-
diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor®), N-fluoroquinuclidinium 
triflate (NFQT), N-fluoropyridinium triflate (NFPT), N-fluoro-2,6-dichloropyridinium 
tetrafluoroborate (NFPCB), N-fluorobis[(trifluoromethyl)sulfonyl]imide (NFBTSI), N-
fluorobenzene sulfonimide (NFSI) and N-fluoro-o-benzenedisulfonimide (NFOBS). 

N-F reagents: A new class of agents with the general structure R2N-F or R3N
+-F has 

revolutionized the field of electrophilic fluorination. In comparison to the earlier 

reagents, these compounds are milder, safer, more stable and less expensive to produce. 

Some of these agents possess as high reactivity as the previous reagents but they are 

also capable of achieving selective fluorination which was not previously possible 

(Davis 1995, Lal 1996, Banks 1998, Rostami 2007, Furuya 2008, Kirk 2008). The most 

widely used N-F type electrophilic fluorination reagents are presented in Figure 15. Of 

these 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate), 

also known as F-TEDA-BF4 or Selectfluor®, has proved the most versatile reagent for 

fluorinating many types of organic compounds and thus it has become a commercially 

available hazard-free source of fluorine. It is also remarkably stable, non-toxic and does 

not require harsh reaction conditions (Taylor 1999, Singh 2004, Nyffeler 2005, Begue 

2008). Many types of fluorinations have been accomplished with Selectfluor, some 

examples are shown in figure 16. 
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Figure 16. Examples of electrophilic fluorinations reactions with the N-F reagent Selectfluor. 6-
fluorination of a testosterone enol acetate 16.1 (Reydellet-Casey 1997). Preparation of 5-
fluorouracil 16.5 (Banks 1998). Fluorinations of 3-trimethylstannyl-1-tosylindole 16.6 (Hodson 
1994) and 3-methylindole 16.8 (Takeuchi 1999). 

Enantioselective fluorination has also progressed significantly within the last 10 years, 

largely because of the availability of asymmetric electrophilic N-F reagents. Some of 

these are described in figure 17. The most promising of these is compound 17.4, an N-

fluoroderivative of a naturally occurring cinchona alkaloid. Examples of the extensive 

use of these asymmetric electrophilic N-F reagents can be found in the literature (Muniz 

2001, Shibata 2007, Ma 2008, Cahard 2010). 

 

Figure 17. Asymmetric electrophilic fluorination reagents. N-fluorocamphorsultam 17.1. N-
fluoro-N-tosyl-1-phenetyl-1-amine 17.2. N-fluorosulfonamide 17.3. N-fluorocinchonidium 
tetrafluoroborate 17.4. 
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Elemental fluorine: Elemental fluorine (F2) is the classical electrophilic fluorination 

reagent. Unfortunately, due to its chemical character, it is also the most challenging 

reagent with which to work. The ease of radical F• formation coupled with its high 

toxicity, strong oxidizing potential with little or no selectivity and potential free radical 

reactions have limited its use in selective fluorinations (Nyffeler 2005). 

(1)  -CH3 + F2  →  -CH2-F + HF,  ΔH = -149 kcal/mol  

Although several selective electrophilic fluorination reagents have been developed, the 

interest in utilizing F2 in selective direct fluorinations has not disappeared. Gradually, 

scientists have been able to control the vigorously exothermic reaction of F2 with the C-H 

bond (see Equation 1). In order to assist in the removal of the heat of reaction, the reactions 

are often performed using fluorine diluted to 5-10 % with nitrogen. Lighter noble gases may 

also be used. In most cases, cooling of the reaction mixture is advantageous (Moilliet 2001). 

The choice of the right solvent is crucial. Previously the solvents tended to be chosen 

primarily not only for their inertness but also for their ability to dissolve both the 

substrate and fluorine. Most successful selective fluorination reactions are carried out 

under conditions which limit any free radical processes and enhance the nucleophilic 

attack of the substrate to fluorine (Moilliet 2001, Sandford 2007, Hutchinson 1997). 

Consequently, either high dielectric aprotic solvents such CH3CN or strong protonic 

acids such as formic acid or sulfuric acid can be used to make fluorine more susceptible 

to nucleophilic attack (see figure 18). For instance, in acids, the fluorine molecule is 

polarized and while the electronegative end of the molecule is protonated by the acid the 

electropositive end is free to react. 

F F HNuc Nuc F + F H

F F HNuc Nuc F + F HSolvent

Nuc = C H C C etc.

(1)

(2)

 
Figure 18. Effects of protonic acid (equation 1) and high dielectric aprotic solvent (such as 
CH3CN, equation 2) to F-F bond polarization, which makes the F-F bond more prone to 
nucleophilic attack. 
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A polar solvent (Solv-H) not only encourages polarizarion of fluorine molecule and 

makes it more susceptible to nucleophilic attack, but more importantly, acts as an 

acceptor for the counter ion (fluoride ion) in the transition state (see figure 19). 

 

Figure 19. Polarization of F-F bond induced by a polar solvent, which also acts as an acceptor 
of the fluoride ion in the transition state. 

 

 

Figure 20. Selectivity of fluorinations of cyclic and aliphatic compounds with dilute F2 
(Chambers 2002). 



Review of the literature 32

With aliphatic substrates, hydrogen atoms attached to tertiary sp3 carbon are selectively 

replaced with the retention of configuration by fluorine over secondary or primary sites. 

Examples of this are the fluorination of trans-decalin 20.1 and fluorination of 

adamantine 20.3 (see Figure 20). Secondary sites can also be replaced by fluorine if no 

tertiary sites exist or if the tertiary C-H bond has a lower p orbital contribution and is 

therefore less nucleophilic than the available secondary site; fluorination of norbornane 

20.6 highlights this case, where the hydrogen attached to the tertiary C-1 carbon is not 

fluorinated due to the strain induced in the bridged C-1 carbon. Mixtures of several 

mono-fluorinated products are often obtained with aliphatic non-cyclic substrates, such 

as in fluorination of n-decane 20.8 with F2 (Chambers 2002, Gal 1980, Gal 1982, Rozen 

1981b, Rozen 1987a, Rozen 1987b, Rozen 1988, Sandford 2007). 

Selective fluorination of aromatic systems is also possible with elemental fluorine. The 

products are consistent with electrophilic aromatic substitution processes, where the 

introduction of fluorine into a certain position of the aromatic ring can be influenced by 

the presence of electron withdrawing (NO2, CN) and electron releasing (OH, OMe, 

NHAc, Me) substituents. Protonic acids (formic, sulfuric, triflic acid and HF) are 

effective media for promoting selective fluorination of aromatic systems. Fluorine is 

considered to be made more susceptible towards nucleophilic attack after polarization in 

the acid (see Figure 21), whilst competing unselective free radical processes are 

minimized. Even compounds which are very unsusceptible towards electrophilic attack, 

such as 2,4-dinitro-1-chlorobenzene 21.1, have been fluorinated in a protonic acid with 

high yields using dilute F2. It is, however, important to carefully control the amount of 

F2; extensive di-fluorination may also occur if excess of F2 is used, as seen with the 

fluorination of 7-methoxycoumarin 21.3 (see Figure 21). Mixtures of organic solvents 

and acids can also be used, as these also may improve the solubility of the substrate to 

be fluorinated (Sandford 1997, Moilliet 2001, Sandford 2007). 
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Figure 21. Fluorinations of aromatic compounds with dilute F2 (Sandford 2007). 

2.5.3. Electrochemical fluorination 

Electrochemical methods are frequently employed to perform fluorination reactions 

involving a conversion of C-H bond into its C-F counterpart. Fluorinations are 

conducted in nickel or steel cells equipped with nickel, steel or platinum anodes and 

cathodes. Organic substrates are dissolved in mixture of a suitable solvent, often 

acetonitrile, and a supporting electrolyte medium, which usually serves also as the 

source of the fluoride ion. Electricity is then conducted through the mixture (Adcock 

1995). 

Traditionally, electrochemical fluorinations were performed in liquid HF solutions with 

nickel anodes or KF•2HF melt on carbon anodes. Both these methods mainly produce 

perfluorinated organic compounds since they convert all of the C-H bonds into C-F 

bonds (Noel 1997). Selective electrochemical fluorination remained an academic pursuit 

for a very long time. This is mainly due to the competitive polymerization processes at 

the high anodic potential generally required to achieve the fluorination process. The 

breakthrough in selective electrochemical fluorination occurred when triethylamine-HF 

dissolved in acetonitrile was employed as the electrolyte medium. Even better results 

were obtained by using Et3N•nHF and Et4NF•nHF, which meant that even aromatic 
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compounds containing electron withdrawing substituents could be fluorinated 

selectively (Noel 1997).  

 

 

Figure 22. Effect of solvent on the outcome of electrochemical fluorination of 3-
phenylthiophthalide 22.1. Low yields and mixture of products 22.2 and 22.3 are obtained with 
THF as solvent (upper reaction scheme). 22.2 is obtained exclusively with a high yield using 
ionic liquid [EMIM][OTf] as solvent (Fuchigami 2007). 

Unfortunately the use of organic solvents in electrochemical fluorination has its 

drawbacks e.g. anodic passivation which results in low efficiency for anodic 

fluorination. A rather novel method has been described which involves molten salts i.e. 

ionic liquids (see Figure 22) at room temperature as the sole reaction medium without 

any organic solvents (Fuchigami 2005, Fuchigami 2007). 

2.6. 18F-labelling chemistry 

2.6.1. General 

In recent decades, PET has advanced to become an important clinical diagnostic and 

research modality and it is also a valuable tool in drug discovery and development. The 

number of new targets for nuclear molecular imaging is constantly increasing. Hence, 

there is an increasing demand for radiolabelled tracers, and concurrently the 

methodologies to synthesise the compounds. 

18F can be used for labelling of simple molecules, such as amino acids, or complex 

molecules of biological interest including peptides, proteins and oligonucleotides, when 

the range of the biological process is compatible with the half-life of 18F-fluorine. The 

labelling chemistry with 18F-ion is however by no means straightforward and the 
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versatility of possible labelling strategies is somewhat restricted, especially when 

compared to carbon-11. 

18F chemistry is primarily determined by the production method of 18F (see paragraph 

3.2). Depending on the nuclear reaction, 18F can be obtained as anionic fluoride 18F-, a 

source for nucleophilic labelling, or as [18F]fluorine gas, used in electrophilic labelling. 

The chemical reactions involving positron emitters have to be specially designed to take 

into account the short half-life of the radionuclide, the limited number of radiolabelled 

starting materials (or precursors) and the sub-micromolar amounts of these radiolabelled 

starting materials. Moreover, the reactions must be possible with a minimal addition of 

the stable isotope, especially with receptor ligands or toxic molecules. Large amounts of 

reagents are used as compared to the amounts of the radiolabelled precursor, which in 

many cases, allows for rapid reactions. On the other hand, harsh reaction conditions are 

often required to achieve fast reactions and unexpected labelled impurities can be 

formed from side reactions of the reagents present in excess or from reactive impurities 

in the reaction medium. 

Rapidity and robustness are the key words in the production procedure of a 

radiopharmaceutical. The synthesis route should aim at incorporating the label as late as 

possible into the sequence. The overall time of production, including labelling 

chemistry, purification and formulation of the radiopharmaceutical for intravenous 

injection should be as short as possible, generally not more that 3 hours with 18F-

labelled compounds. 

Each step of the radiolabelling synthesis requires optimization. Both the reaction 

conditions (reaction time, temperatures, solvents, reagent concentrations) and purification 

and formulation procedures entail fine-tuning to achieve a high radiochemical yield and a 

high radiopharmaceutical quality in the smallest possible time window. 

Finally, radiation protection and automation of synthetic procedures have to be 

considered when planning the synthesis of radiopharmaceuticals. Automation enhances 

both rapidity and reproducibility of tracer synthesis and perhaps more importantly 

reduces the radiation burden on the operators by reducing human hand-made 

manipulations. All the procedures, starting from radionuclide production and ending in 
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the release of the radiopharmaceutical for injection, have to meet the ever-growing 

demands of Good Manufacturing Practice (GMP). 

Table 3. Selected radionuclides that decay by positron emission and are relevant to PET 
imaging (Cherry 2004). 

Radionuclide Half-life  β+ Emax [MeV] β+ branching ratio 
82Rb 1.27 min 2.60, 3.38 0.96 
15O 2.03 min 1.73 1.00 
62Cu 9.74 min 2.93 0.97 
13N 9.97 min 1.20 1.00 
11C 20.4 min 0.96 1.00 
68Ga 67.6 min 1.89 0.89 
18F 109.8 min 0.63 0.97 
64Cu 12.7 h 0.65 0.18 
76Br 16.2 h various 0.56 
124I 4.17 d 1.53, 2.14 0.23 
22Na 2.60 y 0.55 0.90 
 

2.6.2. Properties of 18F 
18F is a short-lived (t½ = 109.8 min) positron-emitting isotope. It is considered an ideal 

positron emitter for PET because of its nuclear and physical characteristics. The 

comparatively long half-life is favourable since it permits longer-lasting radiosyntheses, 

time-demanding PET-studies and enables long-lasting pharmacokinetic studies such as 

metabolite analysis. The low positron energy of 18F ensures a short range of positron in 

tissues leading to acquisition of PET-images of the highest resolution (Jacobson 2010). 

Some selected physical properties of common positron-emitting PET-radionuclides are 

presented in table 3. 

2.6.3. Production methods of 18F    
18F can be produced by several nuclear reactions most of which require the use of an 

accelerator, typically a cyclotron (Guillaume 1991). The choice of the optimal way to 

produce 18F is dependent on several factors. Initially, depending on the nuclear reaction 

needed, different accelerated particles and particle energies are required and their 

availability is determined by the type of the cyclotron (Le Bars 2006). Secondly, the 

target-systems available at the cyclotron laboratory have to be considered. Thirdly, the 

chemical form of fluorine (nucleophilic or electrophilic) and the required amount of the 
18F-radioactivity have to be taken into account. Further, the required specific 
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radioactivity of 18F has to be considered when choosing a suitable 18F-production 

method. The basic nuclear reactions to produce 18F are summarized in Table 4. 

Table 4. Selected nuclear reactions with which to produce 18F-labelled precursors (Ferrieri 
2003). 

Nuclear reaction Target 
18F-labelled precursor 

18O(p,n)18F [18O]H2O [18F]F- 
18O(p,n)18F [18O]O2/ Noble gas + carrier F2 [18F]F2 
20Ne(d,α)18F Ne + carrier F2 [18F]F2 
20Ne(3He,αn)18Ne, 18N→18F 2% H2/Ne [18F]HF 
16O(3He,p)18F H2O [18F]F- 
16O(α,d)18F H2O [18F]F- 
 

The most useful and common nuclear reaction to produce 18F is 18O(p,n)18F, in which 
18O-enriched water is irradiated with protons. This nuclear reaction is intrinsically high 

yielding at low proton energies (< 16 Mev) and produces [18F]fluoride with a high 

specific radioactivity as the [18F]F- ion in aqueous solution (Ruth 1979, Solin 1988). 

Electrophilic fluorine [18F]F2 is produced mainly through two nuclear reactions. The 
20Ne(d,α)18F nuclear reaction employs neon gas as a target with added F2 to maintain the 

produced fluorine as molecular fluorine (Lambrecht 1978, Casella 1980). The 18O(p,n)18F 

nuclear reaction uses 18O2 gas as the target material (Nickles 1984). After the irradiation, 
18F becomes deposited in the target walls and 18O2 is recovered cryogenically. A second 

irradiation in the presence of noble gas and F2 is then needed for the isotopic exchange of 

the adsorbed 18F to obtain [18F]F2. As an alternative, a “post-target” method, developed in 

Turku PET Centre (Bergman 1997), can be used to obtain [18F]F2 with increased SA. This 

method will be discussed in more detail in paragraph 2.6.7. 

2.6.4. Improving the reactivity of 18F-anion  

The first step in radiochemistry with [18F]fluoride ion is almost without exception the 

removal of the bulk [18O]water. In the presence of water, the fluoride ion is highly 

solvated and hydrogen bonded, two properties which decrease the nucleophilicity of 

[18F]fluoride and render it quite unreactive. Some simple, but extremely important, 

manipulations are therefore required to prepare reactive and nucleophilic [18F]fluoride, 

or “naked” [18F]fluoride as some investigators like to call it (Cai 2008, Lasne 2002). 

This is commonly achieved via two alternative methods (see Figure 23). 



Review of the literature 38

(1) [18F]fluoride, dissolved in the target water, is adsorbed onto an ion exchange resin 

(typically an ion exchange cartridge) from which it is eluted with a small volume of 

aqueous base, most commonly potassium carbonate. Water is then removed with 

successive cycles of azeotropic evaporation with acetonitrile in the presence of 

kryptands, typically aminopolyethers. This method enables the laboratory to recycle the 
18O-enriched water for further use. 

(2) Another method is to direct the irradiated target water directly to a reaction vessel 

and then to perform azeotropic evaporation cycles in the presence of base and kryptands 

or other phase-transfer catalysts. 

The [18F]fluoride ion drying procedure in the presence the aminopolyether Kryptofix 

K2.2.2 and a counter-ion (K+) leads to a “dry” aminopolyether complex 

K+/K2.2.2/[18F]F- (Figure 23). This complex improves the reactivity of [18F]fluoride ion 

in two ways. First, the aminopolyether serves to capture the counter-ion K+ and 

separates it from the [18F]fluoride ion. Second, the complex is readily soluble in organic 

solvents, where the [18F]fluoride ion is not solvated and remains reactive. 

 

Figure 23. Preparation of reactive 18F-fluorine ion through the formation of [18F]F-/K2.2.2/K+-
complex (“Kryptofix-complex”) with two alternative methods starting from cyclotron-irradiated 
target water H2

18O. The amount of residual water is sequentially reduced; the fully hydrated 
complex is transformed to a “dried” complex containing trace amount of water where m << n 
(Cai 2008). 
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There are several variations possible with which to produce the dry and reactive fluoride 

complex, including the use of different bases (bicarbonate, oxalate), kryptands (18-

crown-6) and counterions (Rb+, Cs+, Bu4N
+). A large cation (Cs+, Et4N

+, Bu4N
+) 

without a kryptand can also serve the same purpose in charge separation. The 

[18F]fluoride ion is easily rendered non-nucleophilic by protonation, and thus most 

reactions are conducted in mildly basic conditions with poorly nucleophilic bases such 

as CO3
2-, HCO3

- or C2O4
2-. Therefore, the precursor to be labelled should not itself be a 

source of protons and should not contain base labile structures (Cai 2008). 

2.6.5. Specific radioactivity 

The specific radioactivity (SA) is defined as the amount of radioactivity per mass unit, 

the mass usually being expressed as a molar mass. The maximum SA (SAmax) of a 

radionuclide can be calculated using the equation SAmax = NA * ln2/T1/2, where NA is 

Avogadro’s number and T1/2 is the half-life of the radionuclide. From this one can 

derive that the theoretical maximum of SA for 18F is 6.34 x 104 GBq/μmol. However, 

this level can never be reached due to the contamination with the stable isotope 

originating from the radionuclide production, the solvents, chemicals and other non-

intentional sources. 

SA is a very important topic both in PET radiochemistry and PET imaging. PET is 

basically a tracer method and the goal of the PET experiment is to probe a physiological 

process without perturbing that process. In other words, it is necessary to administer low 

amounts, or “trace” amounts, of the radiolabelled molecule to the study subject. This is 

particularly important when studying low-density receptor sites, that are readily 

saturated by the radiotracer, or when the radiotracer itself is potent or toxic. The 

challenge for the radiochemist is to develop a synthetic strategy in such a way that the 

highest possible SA can be achieved. 

In [18F]fluorine chemistry, the SA depends mainly on the nuclear reaction used to 

produce 18F. High SA can be obtained by using the 18O(p,n)18F reaction with 18O-

enriched water targets, the most common method in use to produce 18F for nucleophilic 

labelling. The production of the electrophilic labelling reagent [18F]F2, produced either 

with in-target or post-target methods, requires the use of carrier-F2 and so [18F]F2 cannot 

be obtained with high SA (Lasne 2002, Satyamurthy 2004). 
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2.6.6. Nucleophilic fluorinations 

 

Figure 24. Synthesis of the dopamine transporter ligand [18F]LBT-999 24.3 via two alternative 
nucleophilic methods; the indirect labelling of nor-fluorobutylene precursor 24.1 with the 18F-
labelled prosthetic group; the direct labelling of the chloro-precursor 24.2 with aminopolyether 
complex (Miller 2008). 

Nucleophilic substitutions with [18F]fluoride have been extensively used both in 

aliphatic and aromatic series. The 18F-fluorinating agent is almost exclusively the dried 

K+/K2.2.2/[18F]F- complex. Usually radiofluorinations do not require any carrier and so 

the products can be obtained with high SAs. The radiofluorination can be performed 

either directly on a suitable and complex precursor of the target molecule or indirectly 

via a simple 18F-fluoroaliphatic derivative i.e. an 18F-labelled prosthetic group (see 

figure 24). Both methods have their inherent drawbacks. The direct method can result in 

low radiochemical yields and the indirect method may involve time-consuming and 

multi-step procedures. 
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Figure 25. Synthesis of [18F]FLT 25.3 by two alternative aliphatic nucleophilic substitutions; 
direct and conventional substitution of a sulfonate leaving group of precursor 25.1; substitution 
via ring-opening reaction of cyclic precursor 25.2 (Been 2004). 

The aliphatic nucleophilic substitution with [18F]fluoride ion is a noteworthy method but 

the radiochemical yield is very dependent on the chemical structure of the precursor. 

Precursor reactivity closely follows the pattern of a typical SN2 type reaction with 

substitution at the primary carbon favoured for high yield. Substitutions at a secondary 

carbon may be accompanied by an elimination reaction from the precursor. Usually the 

leaving groups are sulfonates (triflate, tosylate, mesylate, nosylate) or halides (Cl, Br, I). 

Certain cyclic systems may also be opened by nucleophilic [18F]fluoride attack (see 

figure 25) (Lasne 2002, Cai 2008). 

Aliphatic nucleophilic substitutions with  [18F]fluoride are usually performed in polar 

aprotic solvents such as DMF, DMSO, THF, CH2Cl2 and acetonitrile, which are suitable 

and effective for many reactions and are also easily removable (Cai 2008). As an 

alternative to these conventional solvents, the use of polar protic solvents has been 

explored and successfully applied in many recent studies (see figure 26). Sterically 

hindered alcohols, such as tert-butyl alcohol (t-BuOH), have achieved optimal results. 

This polar medium actually increases the nucleophilicity of the [18F]fluoride ion and 

thereby increases the rate of nucleophilic fluorination as compared to conventional 

solvents, especially with aliphatic substrates. The polar medium may also reduce the 

competing formation of by-products such as alkenes, alcohols or ethers (Kim DW 

2008). The reaction mechanism has been proposed to differ from the classical SN2 

reaction. t-BuOH, through H-bonding, may act as a Lewis base to weaken the ionic 

bond between the counter-cation and 18F; also, t-BuOH may act as a Lewis acid and 
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assist the departure of the leaving group from the alkyl chain through H-bonding (Oh 

2007, Cai 2008, Schirrmacher 2007). 

 

Figure 26. Radiosynthesis of the dopamine transporter ligand [18F]FP-CIT 26.2 in polar aprotic 
solvent (A) and in polar protic solvent (B). A much higher radiochemical yield is obtained with 
a polar protic solvent (CH3CN:t-BuOH 1:5) (Chaly 1996, Lee 2007). 

Aromatic nucleophilic substitution is an efficient method to introduce fluorine into 

homo- or heteroaromatic structures. This reaction requires that the aryl ring has a good 

leaving group, usually at ortho- or para-position to at least one electron-withdrawing 

substituent. Normally, quite harsh reaction conditions (120 ºC – 180 ºC on DMSO in the 

presence of kryptand and K2CO3) are mandatory to achieve a sufficient fluoride 

incorporation yield. Typical leaving groups and their approximate order of increasing 

reactivity are I < Br < Cl < F < NO2 ≈ N+Me3. Typical electron-withdrawing groups in 

their order of increasing ability are 3-NO2 < 4-Ac < 4-CHO < 4-CN ≈ 4-CF3 < 4-NO2 

(Cai 2008). Synthesis of [18F]-N-methylspiperone 27.2 (Figure 27) is a typical aromatic 

nucleophilic substitution, where p-nitro group is substituted with 18F with moderate 

fluoride incorporation. Only a few examples have been reported for efficient 18F-

fluorination reactions with an electron-withdrawing group in the m-position. The 

synthesis of mGluR5 radioligand [18F]FMTEB 27.4 is an example; 18F-fluoride 

incorporation is enhanced with the use of microwaves but nonetheless a low 

radiochemical yield has been reported. 
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Figure 27. Synthesis of [18F]-N-methylspiperone 27.2 and [18F]FMTEB 27.4 with direct 
nucleophilic aromatic substitution (Hamacher 1995, Guo 2007). 

Me3N+ is generally a good leaving group (with chloride, perchlorate or triflate as a 

counter-ion) and it permits also a straightforward separation of the precursor and the 

fluoro-product. Even though the nucleophilic displacement of nitro-group is feasible, 

the separation of the unreacted nitro-precursor from the fluoro-product can sometimes 

be very difficult as a result from the co-elution in the HPLC (Cai 2008, Lasne 2002). 

The use of heteroaromatic nucleophilic substitutions with [18F]fluorine has lately 

expanded especially with pyridine structures (Dolle 2005). As in the aliphatic series, 

only a good leaving group is generally necessary. Figure 28 shows the syntheses of 

nAChR ligand 2-[18F]fluoro-A-85380 (28.4 and 28.6) with two alternative methods 

using ortho-fluorination; higher yields are obtained by using precursor 28.5 with a 

trimethylammonium leaving group in the labelling synthesis. The presence of a highly 

electron-withdrawing substituent to activate the heterocycle is recommended to 

fluorinate the meta-position; only a few examples of meta-[18F]fluoropyridine 

derivatives are known to date, one example being N-(2-aminoethyl)-5-

[18F]fluoropyridine-2-carboxamide 28.2 (see figure 28). 
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Figure 28. Examples of heteroaromatic nucleophilic substitution reactions to the meta-position 
(28.2) and the ortho-position (28.4, 28.6). Meta-fluorination is generally difficult to achieve 
(Beer 1995, Dolle 1998, Dolle 1999). 

2.6.7. Electrophilic fluorinations 

Electrophilic reagents generate a chemical environment in which the fluorine atom is 

highly polarized with a positive charge. This is not easily achieved since fluorine is the 

most electronegative atom in the periodic table of elements. With electrophilic 

fluorination, it is possible to fluorinate a large range of electron-rich substrates such as 

alkenes, aromatic compounds and carbanions, the labelling of which is not always 

achievable with nucleophilic n.c.a. 18F-labelling methods (Ferrieri 2003, Coenen 2007). 

In brief, electrophilic 18F-fluorinations can be divided into two subgroups; aromatic 

electrophilic fluorinations (including hydrogen substitutions and demetallation 

reactions) and aliphatic electrophilic fluorinations. The radiofluorination reactions are 

typically conducted either in strong protonic acids (acetic acid, trifluoroacetic acid, 

liquid HF) or in very inert solvents such as acetonitrile or halomethanes. Naturally the 

reaction solvent and also the protecting groups of the precursor themselves should not 

be substrates for electrophilic attack. 

However, there are several challenges facing the radiochemist when working with 18F-

labelled electrophilic reagents; these include low SA, low yields and poor 

regioselectivity of the 18F-fluoride incorporation. 
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The classic and most common reagent for electrophilic fluorination is radiolabelled 

elemental fluorine gas [18F]F2. It can be produced by “in-target” methods using 
20Ne(d,α)18F or 18O(p,n)18F nuclear reactions. In both of these nuclear reactions, the 

usage of carrier fluorine is mandatory. As a consequence, [18F]F2 cannot be produced 

with very high SA. This, in turn, has severely limited the use of [18F]F2 gas in 

radiopharmaceutical preparations, particularly when producing toxic molecules or 

radiopharmaceuticals for low-density receptors. 

 

Figure 29. Potent radiotracers that require high SA in human studies and are difficult to 
produce with electrophilic fluorination that results in low SA. nor-chloro-[18F]fluoroepibatidine 
29.1, [18F]CFT 29.2 and 6-[18F]fluorodopamine 29.3. 

A “post-target” method (see Figure 30) to produce [18F]F2 with a SA of up to 55 

GBq/μmol (decay corrected to EOB) has been developed in the Turku PET Centre 

(Bergman 1997). This method utilises high-SA 18F-labelled fluoromethane produced 

from aqueous [18F]F−, which is mixed with low amounts (300–1200 nmol) of carrier F2 

in an inert neon matrix. The constituents are atomised with an electrical discharge; 

afterwards, rearrangement and 18F for 19F exchange occurs, and high SA [18F]F2 is 

available for use as a labelling precursor in various types of electrophilic fluorinations.  

 

 

Figure 30. Synthesis of high SA [18F]F2 with a “post-target” method developed at Turku PET 
Centre (Bergman 1997). 

When [18F]F2 is used in electrophilic substitution reactions, only one of the two fluorine 

atoms is incorporated into the substrate; the maximum achievable radiochemical yield is 
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therefore only 50%. However, this is hardly ever achieved because of the numerous side 

reactions due to the high reactivity of [18F]F2. The reactivity of fluorine can be reduced 

mainly with two methods. Firstly, fluoride can be diluted with an inert gas (typically 

Ne) resulting in a more controllable gas mixture (Chen 2010). A second option is to 

convert [18F]F2 into less reactive secondary electrophilic reagents. The most commonly 

used example of these is 18F-labelled acetyl hypofluorite [18F]CH3CO2F  (see figure 31) 

(Fowler 1982, Berridge 1986, Ogawa 2003). Other secondary reagents, derived from 

[18F]F2, include [18F]trifluoromethyl hypofluorite, [18F]perchloryl fluoride, [18F]xenon 

difluoride, 1-[18F]fluoro-2-pyridone, N-[18F]fluoropyridinium triflate, various N-

[18F]fluoro-N-alkylsulsulfonamides, various N-[18F]-sulfonimides and [18F]Selectfluor 

bis(triflate) (Ferrieri 2003, Hiller 2008, Constantinou 2001, Oberdorfer 1988, 

Satyamurthy 1990, Teare 2007, Teare 2010). Although these reagents have been used in 

various experiments to study the electrophilic 18F-incorporation into small molecules, 

none of these has yet surpassed the use of [18F]F2 in radiopharmaceutical syntheses. 
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Figure 31. 18F-labelled electrophilic reagents derived from [18F]F2. [18F]Acetyl hypofluorite 
31.1, [18F]trifluoromethyl hypofluorite 31.2, [18F]perchloryl fluoride 31.3, [18F]xenon difluoride 
31.4, N-[18F]fluoropyridinium triflate 31.5, 1-[18F]fluoro-2-pyridone 31.6, N-
[18F]fluorobenzenesulfonimide 31.7, N-[18F]fluoro-endo-norbornyl-p-tolylsulfonamide 31.8, 
[18F]Selectfluor bis(triflate) 31.9. 

Aromatic electrophilic hydrogen substitution reactions with electrophilic [18F]F2 are 

generally unspecific and can result in the formation of mixtures of 18F-labelled 

regioisomers (Miller 2008). Thus, aromatic systems are usually fluorinated via 

demetallation reactions with mercury or tin containing precursors which, through 

increasing the carbanionic character of the metal bearing carbon, make the labelling 

much more regioselective (Coenen 2007) (see figure 32). 
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Figure 32. Direct labelling of L-DOPA 32.1 with [18F]F2 is unselective and results in the 
formation of three regioisomers. Selectivity is improved by using a demetallation reaction with 
a stannylated precursor 32.5 (Firnau 1984, Forsback 2008). 

Aliphatic electrophilic fluorinations are rare as compared to aromatic electrophilic 

substitutions. The most common reaction is the addition of [18F]F2 to a double bond. 

This method was used in the original synthesis of [18F]FDG (figure 33) before being 

replaced with the far more efficient nucleophilic fluorination route. Another example is 

the synthesis of the hypoxia tracer [18F]EF5 (Dolbier 2001, Eskola 2012a) that will be 

discussed in detail in further chapters of this thesis. 

 

Figure 33. Synthesis of [18F]FDG 33.5 via electrophilic addition of [18F]F2 to the 3,4,6-tri-O-
acetyl-D-glucal precursor 33.1. [18F]-difluoroisomers 33.2 and 33.3 were produced with 1:3 
ratio. Subsequent hydrolysis of these compounds led to [18]fluorodeoxymannose 33.4 and 
[18F]FDG 33.5. The radiochemical yield of [18F]FDG was 8% (Ido 1978). 
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2.6.8. Other fluorination methods 

In addition to the conventional nucleophilic and electrophilic fluorination methods, a 

few useful techniques have been devised to incorporate fluorine-18 into 

radiopharmaceuticals; isotopic exchange reactions can be useful when one does not 

need to obtain high SA (Langer 2003, Blom 2009); enzymatic reactions offer chemo-

selective ways for 18F-fluoride incorporation since these types of reactions are bio-

catalytically controlled (Martarello 2003, Deng 2006); various 18F-labelled prosthetic 

groups, usually synthesised with standard nucleophilic methods, have been widely used 

to label macromolecules, such as peptides and oligonucleotides (Ametamey 2008, 

Miller 2008). In particular, recently prosthetic labelling through click chemistry (1,3-

dipolar Huisgen cycloaddition reaction) has become rather popular. This offers a fast 

and selective radiolabelling method for biomolecules with mild reaction conditions (Li 

2007, Sirion 2007). The techniques mentioned in this paragraph will not be discussed in 

a more detailed manner in this thesis. 
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3. AIMS OF THE STUDY 

All the syntheses included in this study were done with [18F]F2 that was produced with a 

“post-target” method (Bergman 1997). The aim was to demonstrate the suitability and 

efficiency of “post-target” produced [18F]F2 as an electrophilic labelling reagent with 

which to synthesise high-quality radiopharmaceuticals. This “post-target” technique is 

advantageous in many ways as compared to the conventional “in-target” method; (1) an 

elevated SA is obtained, (2) the over-all production time is short and (3) reduced 

amounts of non-radioactive starting materials can be used, which enables more 

straightforward purification of the radiopharmaceutical. All these aspects were 

evaluated in this study while at the same time trying to maintain a sufficient 

radiochemical yield. The chemical structures of the radiopharmaceuticals chosen for 

this work were such, that the 18F-fluoride incorporation into these structures could, in 

theory, be accomplished efficiently via electrophilic fluorination. Efficiency was 

generally assessed in terms of achieving three properties; high radiochemical yield, high 

selectivity for the introduction of the 18F-label and high SA. 

The following objectives were set: 

1. To study the efficiency of aromatic electrophilic fluorodestannylation; 

introduction of 18F-fluoride into aromatic rings with a carbanionic character 

induced by a trimethylstannyl leaving group. 

2. To study the efficiency of fluorodestannylation with a multiaromatic precursor 

containing many electron-rich centers; synthesis of [18F]F5P. 

3. To produce potent catecholamine analogues through electrophilic aromatic 

substitution with a high radiochemical yield and an elevated SA; synthesis of 4-

[18F]FMR and 6-[18F]FDA. 

4. To study the electrophilic addition reaction of [18F]F2 to a double-bond 

containing precursor; synthesis of [18F]EF5. 
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4. MATERIALS AND METHODS 

4.1. Production of radiopharmaceuticals 

4.1.1. General 

All the radiopharmaceuticals described in this section were synthesised using custom-

made synthesis units built at Turku PET Centre. A Merck-Hitachi L-7100 HPLC pump 

(Merck AG, Darmstadt, Germany) and a Merck-Hitachi L-7400 UV-absorption detector 

(Merck AG, Darmstadt, Germany) were used in the semi-preparative HPLC separations. 

A 2”x2’’ NaI crystal was used for radioactivity detection on the HPLC-column outflow. 

Radioactivity was measured with VDC-405 ionisation chamber (Veenstra Instruments, 

Joure, The Netherlands). 

The precursor for [18F]F5P (34.1) was synthesised in the Turku PET Centre. The 

precursor for 6-[18F]FDA (36.1) was obtained commercially (ABX, Radeberg, 

Germany). The precursors for 4-[18F]FMR (35.1) and [18F]EF5 (37.1) were supplied by 

scientific collaborators. All the other reagents were obtained from commercial suppliers. 

More detailed information about the materials and instrumentation related to the 

radiopharmaceutical productions can be found in the following scientific articles 

(Eskola 2002, Eskola 2004, Eskola 2012a, Eskola 2012b). 

4.1.2. Production of [18F]F- 

[18F]F- was produced using the 18O(p,n)18F nuclear reaction by irradiating 700 µl 18O-

enriched water with 17 MeV proton beam produced with an MGC-20 cyclotron 

(Efremov Institute of Electrophysical Apparatuses, St. Petersburg, Russia). 

4.1.3. Production of high SA [18F]F2 

[18F]F2 was synthesised in an electrical discharge chamber by the 18F/19F-exchange 

reaction. The 18F-source was high SA n.c.a. [18F]fluoromethane, which was mixed with 

a low amount (250-1200 nmol) of carrier fluorine (F2) inside a discharge chamber. 

[18F]fluoromethane was produced from iodomethane by a nucleophilic substitution 

reaction with [18F]F-. The aminopolyether Kryptofix K2.2.2 in dry acetonitrile was used 

to enhance the nucleophilicity of the [18F]fluoride to improve the SN2 reaction with 

iodomethane at an elevated temperature (85-90 C). A detailed description of this "post-

target" [18F]F2 synthesis set-up can be found in the literature (Bergman 1997). 
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4.1.4. Synthesis of [18F]F5P (I) 

3-[[4-(4-[18F]fluorophenyl)piperazin-1-yl]methyl]-1H-pyrrolo[2,3-b]pyridine ([18F]F5P) 

34.2 was synthesized from precursor 34.1 through electrophilic destannylation with 

18FF2 gas. 300 g (0.66 mol) of 34.1 was dissolved in a solution containing freon-11 

(600-700 µl) and dry acetic acid (25-50 µl). 18FF2 was bubbled through this reaction 

mixture at room temperature. Freon-11 was evaporated and the residue was dissolved in 

0.1 M HCO2NH4-solution, which was injected on the semi-preparative HPLC-column 

(Waters Bondapak C18, 7.8 x 300 mm, 10 m). For the first two minutes, the column 

was eluted isocratically with 0.1 M ammonium formate solution and after that 

isocratically with a mixture of 0.1 M ammonium formate/MeOH (45:55) with a flow 

rate of 4 ml/min. Separation of products was monitored with a radioactivity detector and 

a UV-detector (λ=280 nm). The fraction containing compound 34.2, eluting at 

approximately 18 minutes, was collected and the radioactivity was measured. This 

fraction was then evaporated to dryness and the dry residue was dissolved in 0.9 % 

NaCl-solution (pH 4.7). 

 

 

Figure 34. Synthesis of [18F]F5P 34.2 with electrophilic aromatic substitution using [18F]F2. 

4.1.5. Synthesis of 4-[18F]FMR (II) 

The synthesis of (1R,2S)-2-amino-1-(4-[18F]fluoro-3-hydroxyphenyl)-1-propanol (4-

[18F]FMR 35.3) is outlined in figure 35. The stannylated precursor 35.1 (1.26 - 1.72 mg, 

2.4 - 3.2 mol) was dissolved in a mixture of freon-11 (500 - 600 l) and dry acetic acid 

(50 l). [18F]F2 was bubbled through this mixture at room temperature. Freon-11 was 

evaporated and 300 l of 47 % HBr was added to the residue. The hydrolysis of the di-

Boc-compound 35.2 was carried out at 90 C for five minutes. The reaction mixture was 

partially neutralised by addition of 170 l 10.8 M NaOH and 300 l HPLC eluent. 4-

[18F]FMR 35.3 was purified by semi-preparative HPLC. The HPLC-column (Waters 
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Bondapak C18, 7.8 x 300 mm, 10 m) was eluted with 0.9% NaCl-solution containing 

2% ethanol and 0.02% AcOH (flow rate 3 ml/min). Separation of products was 

monitored with a radioactivity detector and a UV-detector (λ=280 nm). The fraction of 

35.3 (Rt = ~11.5 min) was collected and measured for radioactivity. This ethanolic 

saline solution, which was suitable for intravenous injection, was used in preclinical 

experiments. 

 

Figure 35. Synthesis of 4-[18F]FMR 35.3 with electrophilic aromatic substitution using [18F]F2. 

4.1.6. Synthesis of 6-[18F]FDA (III) 

The synthesis of 4-(2-aminoethyl)-5-[18F]fluorobenzene-1,2-diol (6-[18F]FDA 36.3) is 

outlined in figure 36. The stannyl precursor 36.1 (1.26–1.72 mg, 2.4–3.2 µmol) was 

dissolved in a mixture of freon-11 (500–600 µl) and dry acetic acid (20 µl). [18F]F2 was 

bubbled through this mixture at room temperature with neon as the sweep gas. Freon-11 

was evaporated and 300 µl of 57% HI was added to the acetic acid residue, after which 

the hydrolysis was carried out at 125 C for 10 min. The reaction mixture was then 

partially neutralised with the addition of 170 µl of 10.8 M NaOH solution diluted with 

the HPLC eluent. 6-[18F]FDA 36.3 was purified by semi-preparative HPLC. A Waters 

Bondapak C18 column (7.8 x 300 mm, 10 m) was eluted with 0.9% NaCl-solution 

containing 2% ethanol and 0.02% AcOH (flow rate 3 ml/min). Elution of products was 

monitored with a radioactivity detector and a UV-detector (λ=280 nm). The 6-[18F]FDA 

fraction (Rt = 12–13 min) was collected and measured for radioactivity. This ethanolic 

saline solution, applicable for intravenous injection, was used in preclinical 

experiments. 

 

Figure 36. Synthesis of 6-[18F]FDA 36.3 with electrophilic aromatic substitution using [18F]F2. 
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4.1.7. Synthesis of [18F]EF5 (IV) 

The synthesis of the regioisomers of [18F]EF5 is shown in figure 37. The trifluoroallyl 

acetamide precursor 37.1 (1.04 - 1.20 mg: 3.9 - 4.5 mol) was dissolved in TFA (600 - 

700 μl). [18F]F2 was bubbled through this mixture at room temperature with neon as the 

sweep gas. TFA was evaporated by bubbling neon gas through the reaction vessel 

heated at 60 C. The dry residue was dissolved in a solution of 0.1 M ammonium 

formate (pH adjusted to 4.6) and CH3CN (75/25 v/v). [18F]EF5 was purified by gradient 

RP-HPLC using Waters Bondapak C18 column (7.8 x 300 mm, 10 m). Semi-

preparative HPLC separation was achieved using a gradient method with 0.1 M 

ammonium formate (pH adjusted to 4.6) (Eluent A) and CH3CN (Eluent B) as mobile 

phases (A/B 74/26 → 50/50, 15 min linear gradient continued with isocratic conditions 

with (A/B 50/50) until 20 minutes). The flow rate was 3 ml/min. Separation of products 

was monitored with radioactivity detector and UV-detector (λ=325 nm). The fraction 

containing the [18F]EF5 isomers 37.2 and 37.3 was collected, measured for radioactivity 

and evaporated to dryness with a rotary evaporator. The residue was dissolved in 

physiological saline and filtered through a 0.22 μm sterile filter into a sterile vial. 
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Figure 37. Synthesis of the two regioisomers of [18F]EF5 37.2 and 37.3 with aliphatic 
electrophilic addition reaction using [18F]F2. 

4.2. Quality of radiopharmaceuticals 

Radiopharmaceutical quality of the end products was determined by analytical HPLC 

using a Merck-Hitachi L-7100 HPLC pump (Merck AG, Darmstadt, Germany), a 

Merck-Hitachi L-7400 UV-absorption detector (Merck AG, Darmstadt, Germany) and a 

2”x2’’ NaI-crystal for radioactivity detection. Determinations of product identity, 

chemical purity, radiochemical purity (RCP) and SA were carried out by comparing 

retention times and peak intensities to reference compounds of known concentrations. 

Radiochemical yields were calculated from the initial amount of [18F]F- and were decay-

corrected to the end of bombardment (EOB). The SAs of the radiopharmaceuticals were 

decay-corrected to the end of synthesis (EOS). More detailed information about the 
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materials and instrumentation related to the quality analyses of the individual 

radiopharmaceuticals can be found in the following scientific articles (Eskola 2002, 

Eskola 2004, Eskola 2012a, Eskola 2012b). 
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5. RESULTS 

5.1. Production of radiopharmaceuticals 

5.1.1. Synthesis of [18F]F5P (I) 

[18F]F5P 34.2 (see Figure 34) was synthesised from precursor 34.1 via 

fluorodestannylation with [18F]F2. The average synthesis time was 50 minutes. The 

radiochemical yield was low, on average 0.7  0.1 % (decay corrected to EOB) as 

calculated from the amount of [18F]F- produced. This was due to the formation of 

several radiofluorinated side products. The absolute amount of radioactivity in the form 

of 34.2 was on average 183  32 MBq at EOS. The major non-radioactive side-product 

that was formed using the strategy was found to be the des-fluorophenylpiperazine 

analogue of 34.2, where fluorine has been replaced with hydrogen. The SA of 34.2 (at 

EOS) was in average 14.6  1.8 GBq/mol. 

HPLC analysis of the end product revealed the presence of an unidentified 18F-labelled 

contaminant. This contaminant, eluting as a bulky broad peak from the semi-preparative 

HPLC column before compound 34.2, decreased the radiochemical purity of 34.2, 

which was on average 90.3  1.7 %. The chemical purity exceeded 95 %. 

5.1.2. Synthesis of 4-[18F]FMR (II) 

4-[18F]FMR 35.3 (see figure 35) was synthesised from precursor 35.1 by a 

fluorodestannylation reaction with [18F]F2. The synthesis time was 60 minutes. Based 

on seven production runs, the radiochemical yield of 35.3 was 2.8  1.1 % (decay 

corrected to EOB). Radioactivity of 35.3 varied from 337 MBq to 1010 MBq at EOS. 

The SA of 35.3 was 11.8  3.3 GBq/mol and ranged from 7.7 to 16.8 GBq/mol at 

EOS. The radiochemical purity, as analysed with analytical HPLC, exceeded 99 % in 

every case, and was found to be unchanged for at least three hours after the end of 

synthesis. 

5.1.3. Synthesis of 6-[18F]FDA (III) 

6-[18F]FDA 36.3 was synthesised by a fluorodestannylation reaction from precursor 

36.1 using high SA [18F]F2 (see figure 36). The synthesis time was typically 60 min. 

The radiochemical yield of 6-[18F]FDA, decay corrected to EOB, was 2.6 ± 1.1%. The 

total amount of 6-[18F]FDA after HPLC purification was 663 ± 291 MBq and varied 
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from 171 MBq to 1006 MBq at EOS. The SA of 6-[18F]FDA, decay corrected to EOS, 

varied from 10.0 to 18.8 GBq/µmol and was 13.2 ± 2.7 GBq/µmol. As a side reaction, a 

radiofluorinated compound, tentatively assigned as 2-[18F]FDA, was obtained, the 

radioactivity of which was 184 ± 92 MBq at EOS. The radiochemical purity of 6-

[18F]FDA was determined with analytical HPLC and it exceeded 99.0% in every 

experiment. The radiochemical purity of the final product remained unchanged over a 

time period of 3 h after synthesis. 

5.1.4. Synthesis of [18F]EF5 (IV) 

[18F]EF5 (regioisomers 37.2 and 37.3) was synthesised by electrophilic addition of high 

SA [18F]F2 to the trifluoroallyl precursor 37.1 (see Figure 37). The synthesis time was 

approximately 65 minutes. The radiochemical yield of [18F]EF5, decay corrected to the 

EOB, was 2.80.6%. The total amount of the HPLC-purified [18F]EF5 was 595153 

MBq, ranging from 406 MBq to 1027 MBq at EOS. The SA, decay corrected to EOS, 

was 6.61.9 GBq/μmol and ranged from 2.3 to 9.8 GBq/μmol. Radiochemical purity 

was determined by analytical HPLC and exceeded 99.0% in each experiment and was 

found to be unchanged for at least three hours after the end of synthesis. 

5.2. Summary of results 

The main results for the radiopharmaceuticals synthesised for this thesis are 

summarized in table 5. 

Table 5. Summary of the main results for the four radiopharmaceuticals produced for this 
thesis. 

Tracer Synthesis time 
[min] 

RA range at EOS
[MBq] 

RA at EOS 
[MBq] 

RCY1) 
[%] 

SA at EOS2) 
[GBq/μmol] 

[18F]F5P 50 132 - 223 183 ± 32 0.7 ± 0.1 14.6 ± 1.8 

[18F]FMR 60 337 - 1010 729 ± 281 2.8 ± 1.1 11.8 ± 3.3 

[18F]FDA 60 171 - 1006 663 ± 291 2.6 ± 1.1 13.2 ± 2.7 
[18F]EF5 65 406 - 1027 595 ± 153 2.8 ± 0.6 6.6 ± 1.9 
1) Radiochemical yield (RCY) is calculated from the initial [18F]F- radioactivity at EOB 
and from the RA of the radiopharmaceutical, decay corrected to EOB. 

2) SA is decay corrected to EOS. SAs of the different tracers are not completely 
comparable since different amounts of carrier-F2 and different amounts of initial [18F]F- 
radioactivity have been used with the individual tracers. 
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6. DISCUSSION 

6.1. Synthesis of [18F]F5P (I) 

[18F]F5P was synthesised by electrophilic aromatic substitution from a non-protected 

stannyl precursor 34.1 (see Figure 34) using high SA [18F]F2 as the labelling reagent. 

Reduced amount of carrier-F2 was used in order to obtain [18F]F5P with a moderately 

high SA. A small amount of acetic acid was added to the reaction medium in order to 

polarize [18F]F2 and thus to convert it into a better electrophile. The incorporation of 

radiofluorine into the desired para-position of the phenyl ring was not optimal; a low 

radiochemical yield, on average 0.7  0.1 % (decay corrected to the EOB), was 

obtained. This was due to the formation of several radiofluorinated side products. A 

large number of these compounds were more polar than [18F]F5P showing earlier Rt in 

the RP-HPLC system. These were arguably produced through fragmentation, a common 

phenomenon with highly reactive and non-discriminating [18F]F2. The unprotected 

pyrrolo[2,3-b]pyridine moiety of 34.1 has also a high electron density and was, as such, 

a structure which could attract an electrophilic attack of [18F]F2. The trimethylstannyl 

group attached to the para-position of phenyl ring thus did not activate this position 

sufficiently to achieve selective fluorination of this position. 

HPLC analysis revealed the presence of an unidentified 18F-labelled contaminant in the 

end product solution of 34.2. This contaminant, eluting as a bulky broad peak from the 

semi-preparative HPLC column before compound 34.2, reduced the radiochemical 

purity of 34.2, which was  on average 90.3  1.7 %. The SA (at EOS) was on average 

14.6  1.8 GBq/mol. 

6.2. Synthesis of 4-[18F]FMR (II) 

The major aim of this work was to obtain 4-[18F]FMR 35.3 with increased SA while at 

the same time maintain a reasonable radiochemical yield. Increased SA is considered 

mandatory in  4-[18F]FMR studies, since elevations in blood pressure have been 

observed in anaesthetized dogs after a 50-125 g/kg administration of other 

fluorometaraminol regioisomers (Wieland 1990). The SA we obtained was 7.7 - 16.8 

GBq/mol, which is at least 250-fold higher than the values previously achieved with 

electrophilic labelling of 6-[18F]FMR (Mislankar 1988). Consequently, the improved 

SA obtained in our study permits the administration of trace levels of 4-[18F]FMR, 
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equivalent to a 2.1 – 4.4 g administration of 4-FMR with the typical 185 MBq tracer 

injection. Even higher SAs, up to 106 GBq/μmol,  have been obtained with nucleophilic 

methods (Langer 2000, Langer 2001, Ermert 1999). However, the nucleophilic methods 

used to produce 4-[18F]FMR involve several reaction steps, are quite long-lasting and 

require the chromatographic separation of stereoisomers, aspects which can be avoided 

by using the present electrophilic method.  

Our initial labelling experiments started with a benzyl protected stannylated precursor 

38.1 (see figure 38). However, the use of this precursor in electrophilic synthesis of 4-

[18F]FMR was unsuccessful. A series of mass signals, corresponding to mono-, di- and 

trifluorinated derivatives of precursor 38.1, were detected with LC-MS. Apparently, 

[18F]F2 was unable to displace the trimethylstannyl leaving group of 38.1 and instead it 

reacted with the electron rich benzyl protecting groups (see figure 38). Thus, very low 

yields of 4-[18F]FMR, less than 20 MBq, were obtained and the precursor was changed 

to a Boc-derivative 35.1 which helped to overcome these problems. 

 

 

Figure 38. A failed attempt to radiolabel benzyl protected 4-[18F]FMR precursor with 
electrophilic labelling. [18F]F2 reacted mainly with benzyl protecting groups and as a rule was 
unable to displace the stannyl leaving group. 

By using the Boc-precursor 35.1, 4-[18F]FMR was obtained as the major 

radiofluorinated product. Radiochemical yields were satisfactory and high enough for 

several injections from a single batch despite the fact that a reduced amount of carrier-

F2 was used to obtain increased SA. Four radiolabelled side-products, eluting within 1-4 

minutes after 4-[18F]FMR from the semi-preparative HPLC column, were detected, and 

these were likely to be fluorinated aromatic regioisomers of 4-[18F]FMR. The major 

chemical side-product generated in this synthesis was metaraminol, produced through 

the hydrolysis of the unreacted precursor 35.1. Finally, the adoption of ethanolic saline 
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solution as the HPLC eluent enabled the easy formulation of the HPLC-fraction for in 

vivo use through sterile filtration. 

6.3. Synthesis of 6-[18F]FDA (III) 

Electrophilic aromatic substitution with [18F]F2 is a noteworthy method to introduce the 
18F isotope into electron-rich molecules. Due to its high reactivity, the fluorination 

chemistry with [18F]F2 is almost instantaneous and can often be conducted at the last 

reaction steps. Unfortunately, the high reactivity of [18F]F2, coupled with its high 

oxidising strength, also enhances its tendency to create side products, typically through 

exothermic radical chain reactions (Lasne 2002). Thus, when complex and 

multifunctional molecules are labelled with [18F]F2, radiochemical yields tend to be low 

and a complex mixture of compounds may be obtained. Another challenge is to 

introduce the 18F label selectively at the desired position by using [18F]F2 as the 

labelling reagent. In many cases, the selectivity can be improved by 18F-

fluorodemetallation reactions; e.g., by displacement of Hg- or Sn-containing leaving 

groups with [18F]F2.  

 

Figure 39. Formation of 2-[18F]FDA as a side-reaction. 

The goal of this study was to develop a high-yield electrophilic synthesis 6-[18F]FDA 

and to obtain a significantly higher SA than that previously achieved with electrophilic 

productions of 6-[18F]FDA (Chaly 1993, Goldstein 1993, Namavari 1995, Chirakal 

1996). Few chemical side products were formed, due to the simplicity of the 

trimethylstannyl precursor 36.1 (see Figure 36). However, as a result of unselective 

labelling, a considerable amount of a side-product was formed, the yield of which was 

on average 29 ± 7% of the amount of 6-[18F]FDA. This side-product was tentatively 

assigned as 2-[18F]FDA (39.3, see figure 39). The presence and formation of 5-

[18F]FDA regioisomer, possibly co-eluting with 2-[18F]FDA in our chromatographic 

system, is also possible and cannot be excluded. However, both the radiochemical side-

products and the major nonradioactive chemical side product dopamine were efficiently 

separated from 6-[18F]FDA using semi-preparative reversed-phase HPLC purification 
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with ethanolic saline as the mobile phase. Since the mobile phase was suitable for 

intravenous administration, the HPLC fraction could be sterilised and formulated for 

intravenous injection via a simple membrane filtration. 

The radiochemical yield of 6-[18F]FDA (as calculated from the initial amount of [18F]F-) 

was low mainly for the following reasons. Firstly, a large amount of [18F]F- at EOB was 

required to obtain a sufficient amount of high SA [18F]F2 (the labelling precursor) and 

subsequently a reasonable amount of end product. Secondly, in order to obtain 6-

[18F]FDA with increased SA, a low amount of carrier-F2 had to be used, which 

inevitably decreased the radiochemical yield of the labelling precursor. Thirdly, as a 

result of unselective labelling, the formation of the side-product, probably 2-[18F]FDA, 

was the principal factor decreasing the yield. Based on this observation, one would 

predict that the selectivity of the electrophilic labelling to the 6-position should be 

increased by using an alternate precursor that contains functional groups which promote 

the electrophilic attack to 6-position more efficiently. 

A nucleophilic method to produce 6-[18F]FDA has been reported by Ding et al.; their 

method afforded 6-[18F]FDA with relatively high SA (up to ~100 GBq/μmol at EOS) 

and with adequate RCY (20%), albeit several reaction steps were required to create the 

molecule (Ding 1991). In the previously reported electrophilic syntheses of 6-[18F]FDA, 

the highest SA achieved has been ~0.4 GBq/μmol at EOS (Chaly 1993, Goldstein 1993, 

Namavari 1995, Chirakal 1996). By using the “post-target” method for [18F]F2 

production, it was intended to synthesise 6-[18F]FDA with moderately high SA, on the 

order of 15 GBq/μmol at EOS. The SA range was 10.0–18.8 GBq/μmol, by far the 

highest value so far reported for 6-[18F]FDA using electrophilic labelling. The amount 

of cold 6-fluorodopamine, with typical 185 MBq PET-tracer administration, would have 

been 1.7–3.2 μg, accordingly. A therapeutic dose of dopamine is 2–10 μg/kg/min. The 

SA obtained in these present experiments can thus be considered as adequate to perform 

human PET studies at trace levels. 

6.4. Synthesis of [18F]EF5 (IV) 

[18F]EF5 37.3 is an example of a molecule which has so far proved impossible to 

produce via nucleophilic fluorination; neither Br-to-18F exchange nor isotopic exchange 

of any of the fluorine atoms in authentic EF5 have proved successful. Thus, 
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electrophilic labelling remained as the only choice, and the electrophilic addition of 

[18F]F2 gas to the double bond of the trifluoroallyl acetamide precursor 37.1 was 

demonstrated to be quite suitable (Dolbier 2001, Dolbier 2006). By performing the 

labelling reaction in a highly acidic medium, the electron density of the nitroimidazole 

ring was reduced via protonation, and the trifluoroallyl moiety became more susceptible 

towards electrophilic attack. Dolbier et al. used “in target produced” [18F]F2 gas with a 

large amount of carrier-F2 (Dolbier 2001). Due to this large amount of carrier, it is 

difficult to control the high and unselective reactivity of F2, the chemical manipulations 

become more difficult and the specific radioactivity of the end product is inevitably low. 

By using the “post-target” method to produce [18F]F2 (Bergman 1997), it was intended 

to synthesise [18F]EF5 with moderately high SA, whilst maintaining a high 

radiochemical yield. A 200-fold increase in SA, as compared to previous reports, was 

obtained with the present method making it possible to decrease the injected amount of 

non-radioactive EF5 significantly. The radiolabelling procedure was simplified from 

that reported by Dolbier et al. Smaller amounts of reagents were used, in particular the 

trifluoroallyl precursor 37.1 (1 mg in our study versus 25 mg used by Dolbier) and TFA 

(0.7 ml versus 5 ml by Dolbier). Bubbling the [18F]F2 gas through the precursor solution 

was completed within 30 seconds, after which removal of TFA was achieved in 

approximately 10 minutes. A considerable amount of volatile 18F-labelled compounds 

was distilled from the reaction vessel during the TFA removal. A rather recent report 

has described a procedure where the somewhat laborious TFA-removal step could be 

accomplished with an alternative method (Chitneni 2012); the TFA reaction mixture 

was at first partially neutralized and then passed through a solid-phase cartridge prior to 

the HPLC purification; a less complex mixture for semi-preparative HPLC purification 

was thus obtained. Replacement of the evaporation step with solid-phase extraction also 

makes the overall synthetic process easier to automate (Chitneni 2012). 

The large number of radiofluorinated side-product emphasises the high and 

uncontrollable reactivity of [18F]F2,, even though a fairly simple molecule, such as 

precursor 37.1, was radiolabelled. More than ten chemical and radiochemical side-

products were generated during the labelling. To obtain sufficient radiopharmaceutical 

quality, the development of a gradient HPLC purification method was mandatory. The 

major chemical impurity after the labelling was the unreacted precursor 37.1. The major 
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radiolabelled side-products eluted after [18F]EF5, indicating that these products were 

more lipophilic than [18F]EF5; these products are postulated to be nitroimidazole ring 

fluorinated products or compounds formed through radical polymerization. The amount 

of radiolabelled side-products also decreased the radiochemical yield to approximately 

3% (decay corrected and calculated from initial 18F-radioactivity). The amount of 

purified [18F]EF5 produced with the present method was, however, sufficient for at least 

two consecutive human PET studies from a single batch. 
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7. CONCLUSIONS 

The major conclusions of the work presented in this thesis are: 

 Post-target produced [18F]F2 is a suitable fluorination reagent for achieving 

electrophilic substitution of a trimethylstannyl group attached to an aromatic 

ring; three radiopharmaceuticals were produced via aromatic electrophilic 

fluorodestannylation and the descending order of the 18F-fluorination efficiency 

was 4-[18F]FMR > 6-[18F]FDA > [18F]F5P. The selectivity of 18F-incorporation 

was the main reason for lowered efficiency. However, these three 

radiopharmaceuticals were produced with moderately high SA, a result not 

achievable with “in-target” produced [18F]F2. 

 Selective 18F-incorporation to the multi-aromatic precursor was poor; many side-

products were formed resulting in a low radiochemical yield. Synthesis of 

[18F]F5P was not efficient. 

 The catecholamine analogues 4-[18F]FMR and 6-[18F]FDA were obtained with 

moderate efficiency. In [18F]fluorometaraminol synthesis, 4-[18F]FMR was the 

main radiofluorinated product, although some side-products, probably 

radiofluorinated regioisomers of 4-[18F]FMR, were generated. Similarly in 

[18F]fluorodopamine synthesis, 6-[18F]FDA was the main radiofluorinated 

product, but the selectivity was not optimal; 2-[18F]FDA was produced in 

considerable amounts as a side-product. Nonetheless for both 4-[18F]FMR and 6-

[18F]FDA, the SA and the radiochemical yield were high enough to permit 

preclinical applications. 

 Post-target produced [18F]F2 is a suitable fluorination reagent for use in 

electrophilic addition reactions. [18F]EF5 was produced through electrophilic 

addition of [18F]F2 to a double bond with moderate efficiency. [18F]EF5 was the 

main fluorinated product but many side-products were formed through 

competing substitution reactions. The SA and radiochemical yield were high 

enough for preclinical and clinical applications. 

 



Acknowledgements 64

8. ACKNOWLEDGEMENTS 

This work was carried out in the Radiopharmaceutical Chemistry Laboratory and at the 

MediCity Research Laboratory of the Turku PET Centre, University of Turku. 

I sincerely thank Professor Juhani Knuuti, the director of Turku PET Centre, for giving 

me access to the facilities, for the opportunity to complete my work and for his support, 

criticism and scientific attitude that have encouraged me, and many others, to proceed 

forward. I warmly thank Professor Harri Lönnberg, my research director at the 

Department of Chemistry, for teaching me the fundamentals of organic chemistry, for 

his encouragement to conduct logical thinking and for always emphasising the value of 

hard work. 

I owe my sincerest thanks to my supervisors Professor Olof Solin and Jörgen Bergman, 

PhD, who introduced me to the fascinating world 18F-radiochemistry and encouraged 

me to ask the questions “why” and “how”. During the past 17 years you have also been 

extremely friendly and patient, even during the less successful days (of which there 

have been a few). Your pioneering and unselfish work has raised our laboratory to a 

higher level and has made it a research laboratory with an exceptional character and 

international reputation. Well done! 

I warmly thank the official reviewers of my thesis Docent Anu Airaksinen, PhD and 

Thomas Ruth, PhD. Their valuable comments and criticism clearly improved the 

scientific value and clarity of my manuscript. 

Naturally I thank all my co-authors. It has been an invaluable lesson for me to share 

your expertise in chemistry, biology and medicine and see the thoughts and results 

finally combined in our articles. Especially I would like to thank Docent Merja 

Haaparanta-Solin for the guidance provided during my “early years” and of course for 

your essential contribution to the preclinical studies – many questions were answered 

because of you and you always pushed me forward. I am also most grateful to Tove 

Grönroos for helping me in all the “results and discussions” and for the long hours you 

have spent conducting the preclinical work – and of course it has been a pleasure to 

“chat and argue with you in a friendly atmosphere”. And of course I have to thank 

Sarita Forsback, my closest colleague, with whom I have shared many “ups and downs” 

behind the F2-device – I think we have both learned from each other and still keep on 



Acknowledgements 65 

learning, I hope (and sorry for all that singing). I would also like to thank Pertti 

Lehikoinen, “the source of ideas” especially in QC-analyses, and Päivi Marjamäki for 

her “serotonergic know-how” (and also for the nice chats). Johanna Tuomela, Pirkko 

Härkönen, Gaber Komar and especially Heikki Minn are kindly acknowledged for 

making my sometimes “hypoxic thoughts” much more oxygenated. 

Nothing would have happened without high-quality radioisotopes, so I owe my thanks 

to the personnel at the Accelerator Laboratory of Åbo Akademi University: Docent 

Sven-Johan Heselius, Stefan Johansson, Per-Olof Eriksson, Erkki Stenvall, Jan-Olof 

Lill, Johan Rajander and Jussi Aromaa – keep on maintaining the high beam current! I 

also thank Esa Kokkomäki, Simo Vauhkala and Timo Saarinen for the technical 

assistance and high-quality automation. Nina Laurén, Margit Åhman-Kantola and 

Marja-Liisa Pakkanen are kindly thanked for keeping the laboratory well organized, 

before and after the synthesis. I also thank Tarja Marttila for the assistance in preclinical 

work and also for keeping to a strict budget (and for all our victories in the badminton 

court). I thank Marko Tättäläinen and Rami Mikkola for all the “trouble-shooting” and 

for their assistance in IT-issues. Mirja Jyrkinen and Laura Jaakkola are kindly thanked 

for keeping up an “excellent office” and for resolving a large number of my “little 

problems”. Finally, I thank Kirsti Torniainen and Riikka Kivelä for “all the quality 

beyond compare”. 

My fellow researchers Tapio Viljanen, Nina Sarja, Anna Kirjavainen, Eveliina Arponen, 

Semi Helin, Johanna Rokka, Pauliina Luoto, Viki-Veikko Elomaa, Cheng-Bin Yim, 

Paula Lehtiniemi and Hannu Sipilä are all thanked for your good collaboration, help and 

nice discussions – you make a great team and I hope many more thesis will follow. 

Piritta Saipa, Enni Saksa, Hanna-Maarit Seikkula, Juha Seikkula, Riikka Purtanen, 

Miika Lehtinen, Jani Uotinen, Henri Sipilä and Laura Auranen; thanks for all your 

valuable work and for making this “family of radiochemistry” complete (and thanks for 

putting up with my jokes during the coffee breaks). 

I also thank all the personnel in the PET Centre for their help on all the many projects 

on which we have worked together. Especially, I warmly thank Marko Seppänen and 

Minna Aatsinki for all the work we did together to build up the imaging schedule – that 

very much helped me to understand how the PET Centre works as a whole. And of 

course I have to hum “Thank you for the music” to honour our fabulous Pets and Boys 



Acknowledgements 66

band – it has been fun to create harmonies with you and to share those exciting 

moments on stage (and backstage). 

Finally, I owe my deepest thanks to my family, especially to my mother and father, who 

always supported me and understood me. 

This work was financially supported by the Turku University Foundation and the 

Finnish Society of Nuclear Medicine. 

 

 

Turku, February 2013 

 

 



References 67 

9. REFERENCES

Adcock JL in: Hudlicky M, Pavlath AE (Eds.). 
Chemistry of organic fluorine compounds II. 
A critical review. American Chemical 
Society, Washington DC, 1995, pp. 97-119. 

Albert M, Repetschnigg W, Ortner J, Gomes J, 
Paul BJ, Illaszewicz C, Weber H, Steiner W 
and Dax K. Simultaneous detection of 
different glycosidase activities by 19F NMR 
spectroscopy. Carbohyd Res. 2000; 
326:395–400. 

Ametamey SM, Honer M and Schubiger PA. 
Molecular imaging with PET. Chem Rev. 
2008; 108:1501-16. 

Appelman EH, Mendelsohn M and Kim H. 
Isolation and characterization of acetyl 
hypofluorite. J Am Chem Soc. 1985; 
107:6515-18.  

Banks RE. Isolation of fluorine by Moissan: 
setting the scene. J Fluorine Chem. 1986; 
33: 3–26. 

Banks RE. SelectfluorTM reagent F-TEDA-BF4 
in action: tamed fluorine at your service. J 
Fluorine Chem. 1998; 87: 1–17. 

Barton DHR, Godinho LS, Hesse RH and 
Pechet MM. Organic reactions of fluoroxy-
compounds: electrophilic fluorination of 
activated olefins. Chem Commun. 1968: 
804-6. 

Been LB, Suurmeijer AJH, Cobben DC, Jager 
PL, Hoekstra HJ and Elsinga PH. [18F]FLT-
PET in oncology: current status and 
opportunities. Eur J Nucl Med Mol Imaging. 
2004; 31:1659–72 

Beer H-F, Haeberli M, Ametamey S and 
Schubiger PA. Comparison of two synthetic 
methods to obtain [18F]-N-(2-aminoethyl)-5-
fluoropyridine-2carboxamide, a potential 
MAO-B imaging tracer for PET. J Label 
Compd Radiopharm. 1995; 36:933–45. 

Bégué J-P, Bonnet-Delpon D: Julien Legros 
(Ed) In: Bioorganic and medicinal chemistry 
of fluorine. John Wiley & Sons, Inc., 
Hoboken, New Jersey, 2008 

Bergman J and Solin O. Fluorine-18-labeled 
fluorine gas for synthesis of tracer 
molecules. Nucl Med Biol. 1997; 24:677–83 

Berkowitz DB, Shen Q and Maeng J-H. 
Synthesis of the (α,α-
difluoroalkyl)phosphonate analoque of 
phosphoserine. Tetrahedron Lett. 1994; 
35:6445–8. 

Berridge MS and Tewson TJ. Chemistry of 
fluorine-18 radiopharmaceuticals. Appl 
Radiat Isot. 1986; 37:685–93. 

Black WC, Bayly CI, Davis DE, Desmarais S, 
Falgueyret J-P, Léger S, Li CS, Massé F, 
McKay DJ, Palmer JT, Percival MD, 
Robichaud J, Tsou N and Zamboni R. 
Trifluoroethylamines as amide isosteres in 
inhibitors of cathepsin K. Bioorg Med Chem 
Lett. 2005; 15:4741–44. 

Blom E, Karimi F and Långström B. [18F]/19F 
exchange in fluorine containing compounds 
for potentional use in 18F-labelling 
strategies. J Label Compd Radiopharm. 
2009; 52:504–11. 

Bondi A. van der Waals volumes and radii. J 
Phys Chem. 1964; 68:441–51. 

Borodine A. J Liebigs Ann Chem. 1863; 
126:58–62. 

Bosch P, Camps F, Chamorro E, Gasol V and 
Guerrero A. Tetrabutylammonium 
bifluoride: a versatile and efficient 
fluorinating agent. Tetrahedron Lett. 1987; 
28:4733–36. 

Böhm H-J, Banner D, Bendels S, Kansy M, 
Kuhn B, Müller K, Obst-Sander U and Stahl 
M. Fluorine in medicinal chemistry. 
ChemBioChem. 2004; 5:637–43. 

Cahard D, Xu X, Couve-Bonnaire S and 
Pannecoucke X. Fluorine & chirality: how to 
create a non-racemic stereogenic carbon-
fluorine centre?. Chem Soc Rev. 2010; 
39:558–68. 

Cai L, Lu S and Pike VW. Chemistry with 
[18F]fluoride ion. Eur J Org Chem. 
2008:2853–73. 

Casella V, Ido T, Wolf AP, Fowler JS, 
MacGregor RR and Ruth TJ. Anhydrous F-
18 labeled elemental fluorine for 
radiopharmaceutical preparation. J Nucl 
Med. 1980; 21:750–7. 



References 68

Chaly T, Dahl R, Matacchieri R, 
Bandyopadhyay D, Belakhlef A, Dhawan V, 
Takikawa S, Robeson W, Margouleff D and 
Eidelberg D. Synthesis of 6-
[18F]fluorodopamine with a synthetic unit 
made up of primarily sterile disposable 
components and operation by a master slave 
manipulator. Appl Radiat Isot. 1993; 
44:869-73. 

Chaly T, Dhawan  V, Kazumata K, Antonini A, 
Margouleff C, Dahl R, Belakhlef A, 
Margouleff D, Yee A, Wang S, Tamagnan 
G, Neumeyer JL and Eidelberg D. 
Radiosynthesis of [18F]N-3-fluoropropyl-2-
β-carbomethoxy-3-β-(4-iodophenyl) 
nortropane and the first human study with 
positron emission tomography. Nucl Med 
Biol. 1996; 23:999–1004. 

Chambers RD, Kenwright AM, Parsons M, 
Sandford G and Moilliet JS. Elemental 
fluorine. Part 14. Electrophilic fluorination 
and nitrogen functionalisation of 
hydrocarbons. J Chem Soc Perkin Trans 1. 
2002:2190–7. 

Cherry SR and Dahlbom M. PET: Physics, 
instrumentation, and scanners. In: Phelps 
ME (Ed). PET, molecular imaging and its 
biological applications. Springer-Verlag, 
New York, Inc. 2004. pp. 1-124. 

Chirakal R, Coates G, Firnau G, Schrobilgen GJ 
and Nahmias C. Direct radiofluorination of 
dopamine: 18F-labeled 6-fluorodopamine for 
imaging cardiac sympathetic innervation in 
humans using positron emission 
tomography. Nucl Med Biol. 1996; 23:41-5. 

Chitneni SK, Bida GT, Dewhirst MW and 
Zalutsky MR. A simplified synthesis of the 
hypoxia imaging agent 2-(2-nitro-1H-
imidazol-1-yl)-N-(2,2,3,3,3-[18F]penta-
fluoropropyl)-acetamide ([18F]EF5). Nucl 
Med Biol. 2012; 39:1012–8. 

Clark JH. Fluoride ion as a base in organic 
synthesis. Chem Rev. 1980; 80:429–52. 

Coenen HH. Fluorine-18 labelling methods: 
features and possibilities of basic reactions. 
Ernst Schering Found Symp Proc. 2007; 
64:15–50. 

Constantinou M, Aigbirhio FI, Smith RG, 
Ramsden CA and Pike VW. Xenon 
difluoride exhanges fluoride under mild 
conditions: a simple preparation of 
[18F]xenon dilfuoride for PET and 

mechanistic studies. J Am Chem Soc. 2001; 
123:1780–1. 

Cox DP, Terpinski J and Lawrynowicz W. 
Anhydrous tetrabutylammonium fluoride: a 
mild but highly efficient source of 
nucleophilic fluoride ion. J Org Chem. 1984; 
49:3216–9. 

Davis FA, Han W and Murphy CK. Selective, 
electrophilic fluorinations using N-fluoro-o-
benzenedisulfonimide. J Org Chem. 1995; 
60:4730–7. 

Dear GJ, Ismail IM, Mutch PJ, Plumb RS, 
Davies LH and Sweatman BC. Urinary 
metabolites of a novel quinoxaline non-
nucleoside reverse transcriptase inhibitor in 
rabbit, mouse and human: identification of 
fluorine NIH shift metabolites using NMR 
and tandem MS. Xenobiotica. 2000; 30:407-
26. 

Deng H, Cobb SL, Gee AD, Lockhart A, 
Martarello L, McGlinckhey RP, O’Hagan D 
and Onega M. Fluorinase mediated C-18F 
bond formation, an enzymatic tool for PET 
labelling. Chem Commun. 2006:652–4. 

Ding Y-S, Fowler JS, Gatley J, Dewey SL, 
Wolf AP and Schlyer DJ. Synthesis of  high 
specific activity 6-[18F]fluorodopamine for 
positron emission tomography studies of 
sympathetic nervous tissue. J Med Chem. 
1991; 34:861–3. 

Dmowski W. Advances in fluorination of 
organic compounds with sulfur tetrafluoride. 
J Fluorine Chem. 1986; 32:255–82. 

Dolbier WR, Li A-R, Koch CJ, Shiue C-Y and 
Kachur AV. [18F]EF5, a marker for PET 
detection of hypoxia: synthesis pf precursor 
and a new fluorination procedure. Appl 
Radiat Isot. 2001; 54:73–80. 

Dolbier WR. Fluorine chemistry at the 
millenium. J Fluorine Chem. 2005; 
126:157–63. 

Dolbier WR. “Preparation of compounds useful 
for the detection of hypoxia”. U.S. Patent 
US 2006/0159618 A1, Jul. 20, 2006. 

Dolle F, Valette H, Bottlaender M, Hinnen F, 
Vaufrey F, Guenther I and Crouzel C. 
Synthesis of 2-[18F]fluoro-3-[2(S)-2-
azetidinylmethoxy]pyridine, a highly potent 
radioligand for in vivo imaging central 



References 69 

nicotinic acetylcholine receptors. J Label 
Compd Radiopharm. 1998; 41:451–63. 

Dolle F, Dolci L, Valette H, Hinnen F, Vaufrey 
F, Guenther I, Fuseau C, Coulon C, 
Bottlaender M and Crouzel C. Synthesis and 
nicotinic acetylcholine receptor in vivo 
binding properties of 2-fluoro-3-[2(S)-2-
azetidinylmethoxy]pyridine: a new positron 
emission tomography ligand for nicotinic 
receptors. J Med Chem. 1999; 42:2251–9. 

Dolle F. Fluorine-18 labelled fluoropyridines: 
advances in radiopharmaceutical design. 
Curr Pharm Design. 2005; 11:3221–35. 

Dunitz JD and Taylor R. Organic fluorine 
hardly ever accepts hydrogen bonds. Chem 
Eur J. 1997; 3:89–98. 

Dunitz JD. Organic fluorine: odd man out. 
ChemBioChem. 2004; 5:614–21. 

Elliot AJ in: Hudlicky M, Pavlath AE (Eds.). 
Chemistry of organic fluorine compounds II. 
A critical review. American Chemical 
Society, Washington DC, 1995, pp. 1119-25. 

Ermert J. Berichte des Forschungszentrum 
Jülich. 1999:3499. 

Eskola O, Bergman J, Lehikoinen P, Haaparanta 
M, Grönroos T, Forsback S and Solin O. 
Synthesis of 3-[[4-(4-
[18F]fluorophenyl)piperazin-1-yl]methyl]-
1H-pyrrolo[2,3-b]pyridine. J Label Compd 
Radiopharm. 2002; 45:687–96. 

Eskola O, Grönroos T, Bergman J, Haaparanta 
M, Marjamäki P, Lehikoinen P, Forsback S, 
Langer O, Hinnen F, Dolle F, Halldin C and 
Solin O. A novel electrophilic synthesis and 
evaluation of  medium specific radioactivity 
(1R,2S)-4-[18F]fluorometaraminol, a tracer 
for the assessment of cardiac sympathetic 
nerve integrity with PET. Nucl Med Biol. 
2004; 31:103-10. 

Eskola O, Grönroos TJ, Forsback S, Tuomela J, 
Komar G, Bergman J, Härkönen P, 
Haaparanta M, Minn H and Solin O. Tracer 
level electrophilic synthesis and 
pharmacokinetics of the hypoxia tracer 
[18F]EF5. Mol Imaging Biol. 2012a; 14:205-
12. 

Eskola O, Grönroos TJ, Naum A, Marjamäki P, 
Forsback S, Bergman J, Länkimäki S, Kiss 
J, Savunen T, Knuuti J, Haaparanta M and 
Solin O. Novel electrophilic synthesis of 6-

[18F]fluorodopamine and comprehensive 
biological evaluation. Eur J Nucl Med Mol 
Imaging. 2012b; 39:800–10. 

Ferrieri RA. Production and application of 
synthetis precursors labeled with carbon-11 
and fluorine-18. In: Welch MJ and Redvanly 
CS (Editors). Handbook of 
radiopharmaceuticals. Radiochemistry and 
applications. John Wiley & Sons Ltd, 
Chichester, West Sussex, England. 2003. pp. 
229-82. 

Firnau G, Chirakal R and Garnett ES. Aromatic 
radiofluorination with [18F]fluorine gas: 6-
[18F]fluoro-L-Dopa. J Nucl Med. 1984; 
25:1228–33. 

Flahaut J and Viel C. The life and scientific 
work of Henri Moissan. J Fluorine Chem. 
1986; 33:27–44. 

Forsback S, Eskola O, Haaparanta M, Bergman 
J and Solin O. Electrophilic synthesis of 6-
[18F]fluoro-L-DOPA using post-target 
produced [18F]F2. Radiochim Acta. 2008; 
96:845–8. 

Fowler JS, Shiue C-Y, Wolf AP, Salvadori PA 
and MacGregor RR. Synthesis of 18F-labeled 
acetyl hypofluorite for radiotracer synthesis. 
J Label Compd Radiopharm. 1982; 19(11-
12):1634–6. 

Fuchigami T and Tajima T. Highly selective 
electrochemical fluorination of organic 
compounds in ionic liquids. J Fluorine 
Chem. 2005; 126:181–7. 

Fuchigami T. Unique solvent effects on 
selective electrochemical fluorination of 
organic compounds. J Fluorine Chem. 2007; 
128:311–6. 

Furuya T, Kuttruff CA and Ritter T. Carbon-
fluorine bond formation. Curr Opin Drug 
Discovery Dev. 2008; 11:803-19. 

Gal C, Ben-Shoshan G and Rozen S. Selective 
fluorination of tertiary carbon-hydrogen 
single bonds in aliphatic series. Tetrahedron 
Lett. 1980; 21:5067–70. 

Gal C and Rozen S. The effect of two electron-
withdrawing groups on remote tertiary 
hydrogens susceptible to electrophilic 
fluorination using F2. J Fluorine Chem. 
1982; 20:689-–93. 



References 70

Goldstein DS, Eisenhofer G, Dunn BB, 
Armando I, Lenders J, Grossman E, Holmes 
C, Kirk KL, Bacharach S, Adams R, 
Herscovitch P and Kopin IJ. Positron 
emission tomographic imaging of cardiac 
sympathetic innervation using 6-
[18F]fluorodopamine: initial findings in 
humans. J Am Coll Cardiol. 1993; 22:1961–
71. 

Groult H, Lantelme F, Salanne M, Simon C, 
Belhomme C, Morel B and Nicolas F. Role 
of elemental fluorine in nuclear field. J 
Fluorine Chem. 2007; 128:285–95. 

Guillaume M, Luxen A, Nebeling B, Argentini 
M, Clark JC and Pike VW. 
Recommendations for fluorine-18 
production. Appl Radiat Isot. 1991; 42:749–
62. 

Guo N, Ansari MS, Price RR, Baldwin RM. 
Synthesis and microwave 18F labeling 
reactivity of aromatic derivatives: 3-
substituted-5-methylbenzonitrile. J Label 
Compd Radiopharm. 2007; 50(Suppl):S143. 

Hagmann WK. The many roles of fluorine in 
medicinal chemistry. J Med Chem. 2008; 
51:4359–69. 

Halpern DF and Vernice GG in: Hudlicky M, 
Pavlath AE (Eds.). Chemistry of organic 
fluorine compounds II. A critical review. 
American Chemical Society, Washington 
DC, 1995, pp. 172-98 

Hamacher K and Hamkens W. Remote 
controlled one-step production of 18F labeled 
butyrophenone neuroleptics exemplified by 
the synthesis of n.c.a. [18F] N-
methylspiperone. Appl Radiat Isot. 1995; 
46:911–6. 

Hayashi H, Sonoda H, Fukumura K and Nagata 
T. 2,2-difluoro-1,3-dimethylimidazodiline 
(DMI). A new fluorinating agent. Chem 
Commun. 2002:1618–9. 

Hiller A, Fischer C, Jordanova A, Patt JT and 
Steinbach J. Investigations to synthesis on 
n.c.a [18F]FClO3 as electrophilic fluorinating 
agent. Appl Radiat Isot. 2008; 66:152–7. 

Hodson HF, Madge DJ, Slawin ANZ, 
Widdowson DA and Williams DJ. 
Electrophilic fluorination in the synthesis of 
new fluoroindoles. Tetrahedron. 1994; 
50:1899–906. 

Howard JAK, Hoy VJ, O’Hagan D and Smith 
GT. How good is fluorine as a hydrogen 
bond acceptor. Tetrahedron. 1996; 
52:12613–22. 

Hudlicky M and Pavlath AE (Eds.). Chemistry 
of organic fluorine compounds II. A critical 
review. American Chemical Society, 
Washington DC, 1995. 

Hutchinson J and Sandford G. Elemental 
fluorine in organic chemisrty. Top Curr 
Chem. 1997; 193:1–43. 

Ido T, Wan C-N, Casella V, Fowler LS, Wolf 
AP and Kuhl DE. Labeled 2-deoxy-D-
glucose analogs, 18F-labeled 2-deoxy-2-
fluoro-D-glucose, 2-deoxy-2-fluoro-D-
mannose, 14C-2-deoxy-2-fluoro-glucose. J 
Label Compd Radiopharm. 1978; 14:171–
83. 

Ismail FMD. Important fluorinated drugs in 
experimental and clinic use. J Fluorine 
Chem. 2002; 118:27–33. 

Jacobson O and Chen X. PET designated 
fluoride-18 production and chemistry. Curr 
Top Med Chem. 2010; 10:1048–59. 

Kim DW, Jeong H-J, Lim ST, Sohn M-H, 
Katzenellenbogen JA and Chi DY. Facile 
nucleophilic fluorination reactions using 
tert-alcohols as a reaction medium: 
significantly enhanced reactivity of alkali 
metal fluorides and improved selectivity. J 
Org Chem. 2008; 73:957–62. 

Kim K-Y, Kim BC, Lee HB and Shin H. 
Nucleophilic fluorination of triflates by 
tetrabutylammonium bifluoride. J Org 
Chem. 2008; 73:8106–8. 

Kirk KL. Selective fluorination in drug design 
and development: an overview of 
biochemical rationales. Curr Top Med 
Chem. 2006; 6:1447-56. 

Kirk KL. Fluorination in medicinal chemistry: 
methods, strategies, and recent 
developments. Org Proc Res Dev. 2008; 
12:305-21. 

Kobayashi S, Yoneda A, Fukuhara T and Hara 
S. Deoxyfluorination of alcohols using N,N-
diethyl-α,α-difluoro-(m-methylbenzyl)-
amine. Tetrahedron. 2004; 60:6923–30. 



References 71 

Lal GS, Pez GP and Syvret RG. Electrophilic 
NF fluorinating  agents. Chem Rev. 1996; 
96:1737–55. 

Lal GS, Pez GP, Pesaresi RJ, Prozonic FM and 
Cheng H. Bis(2-methoxyethyl)aminosulfur 
trifluoride: a new broad-spectrum 
deoxofluorinating agent with enhanced 
thermal stability. J Org Chem. 1999; 
64:7048–54. 

Lambrecht RM, Neirinckx R and Wolf AP. 
Cyclotron isotopes and radiopharmaceuticals 
- XXIII. Novel anhydrous 18F-fluorinating 
intermediates. Int J Appl Rad Isot. 1978; 
29:175–83. 

Langer O, Valette H, Dollé F, Halldin C, Loc’h 
C, Fuseau C, Coulon C, Ottaviani M, 
Bottlaender M, Mazière B and Crouzel C. 
High specific radioactivity (1R,2S)-4-
[18F]fluorometaraminol: a PET radiotracer 
for mapping sympathetic nerves of the heart. 
Nucl Med Biol. 2000; 27:233–8. 

Langer O, Dollé F, Valette H, Halldin C, 
Vaufrey F, Fuseau C, Coulon C, Ottaviani 
M, Någren K, Bottlaender M, Mazière B and 
Crouzel C. Synthesis of high-specific-
radioactivity 4- and 6[18F]fluorometaraminol 
– PET tracers for the adrenergic nervous 
system of the heart. Bioorg Med Chem. 
2001; 9:677–94. 

Langer O, Mitterhauser M, Wadsak W, Brunner 
M, Müller U, Kletter K and Müller M. A 
general method for the fluorine-18 labelling 
of fluoroquinolone antibiotics. J Label 
Compd Radiopharm. 2003; 46:715–27. 

Lasne M-C, Perrio C, Rouden J, Barre L, Roeda 
D, Dolle F and Crouzel C. Chemistry of β+-
emitting compounds based on fluorine-18. 
Topp Curr Chem. 2002; 222:201–58. 

Le Bars D. Fluorine-18 and medical imaging: 
Radiopharmaceuticals for positron emission 
tomography. J Fluorine Chem. 2006; 
127:1488-93. 

Lee SJ, Oh SJ, Chi DY, Kang SH, Kil HS, Kim 
JS and Moon DH. One-step high-
radiochemical-yield synthesis of [18F]FP-
CIT using a protic solvent system. Nucl Med 
Biol. 2007; 34:345–51. 

Lerman O, Yitzhak T and Rozen S. Acetyl 
hypofluorite as a taming carrier of elemental 
fluorine for novel electrophilic fluorination 

of activated aromatic rings. J Org Chem. 
1981; 46:4629–31. 

Lerman O, Yitzhak T, Hebel D and Rozen S. A 
novel electrophilic fluorination of activated 
aromatic rings using acetyl hypofluorite, 
suitable also for introducing 18F into benzene 
nuclei. J Org Chem. 1984; 49:806–13. 

Leroux F, Jeschke P and Schosser M. α-
fluorinated ethers, thioethers, and amines: 
anomerically biased species. Chem Rev. 
2005; 105:827–56. 

Li Z-B, Wu Z, Chen K, Chin FT and Chen X. 
Click chemistry for 18F-labeling of RGD 
peptides and microPETimaging of tumor 
integrin αvβ3 expression. Bioconjugate 
Chem. 2007; 18:1987–94. 

Ma J-A and Cahard D. Update 1 of: 
Asymmetric fluorination, 
trifluoromethylation, and perfluoroalkylation 
reactions. Chem Rev. 2008; 108:PR1-PR43. 

Martarello L, Schaffrath C, Deng H, Gee AD, 
Lockhart A and O’Hagan D. The first 
enzymatic method for C-18F bond formation: 
the synthesis of 5’-[18F]-fluoro-5’-
deoxyadenosine for imaging with PET. J 
Label Compd Radiopharm. 2003; 46:1181–
9. 

Massa MA, Spangler DP, Durley RC, Hickory 
BS, Connolly DT, Witherbee BJ, Smith ME 
and Sikorski JA. Nover heteroaryl 
replacements of aromatic 3-
tetrafluoroethoxy substituents in trifluoro-3-
(tertiaryamino)-2-propanols as potent 
inhibitors of cholesteryl ester transfer 
protein. Bioorg Med Chem Lett. 2001; 
11:1625–8. 

Matsson O, Persson J, Axelsson S and 
Långström B. Fluorine kinetic isotope 
effects. J Am Chem Soc. 1993; 115:5288-9. 

Middleton WJ. New fluorinating reagents. 
Dialkylaminosulfur fluorides. J Org Chem. 
1975; 40:574–8. 

Miller PW, Long NJ, Vilar R and Gee AD. 
Synthesis of 11C, 18F, 15O, and 13N 
radiolabels for positron emission 
tomography. Angew Chem Int Ed. 2008; 
47:8998–9033. 

Mislankar SG, Gildersleeve DL, Wieland DM, 
Massin CC, Mulholland GK and Toorongian 
SA. 6-[18F]fluorometaraminol: a radiotracer 



References 72

for in vivo mapping of adrenergic nerves of 
the heart. J Med Chem. 1988; 31:362–6. 

Moilliet JS. The use of elemental fluorine for 
selective direct fluorinations. J Fluorine 
Chem. 2001; 109:13–17. 

Moissan H. C.R. Acad Sci. 1886; 103:202–5. 

Muehlbacher M and Poulter CD. Regioselective  
opening of simple epoxides with 
diisopropylamine trihydrofluoride. J Org 
Chem. 1988; 53:1206–30. 

Muñiz K. Improving enantioselective 
fluorination reactions: chiral N-
fluoroammonium salts and transition metal 
catalysts. Angew Chem Int Ed. 2001; 
40:1653–6. 

Müller K, Faeh C and Diederich F. Fluorine in 
radiopharmaceuticals: looking beyond 
intuition. Science. 2007; 317:1881–6. 

Namavari M, Satyamurthy N and Barrio JR. 
Synthesis of 6-[18F]fluorodopamine, 6-
[18F]fluoro-m-tyramine and 4-[18F]fluoro-m-
tyramine. J Label Compd Radiopharm. 
1995; 36:825–33. 

Navarrini W, Tortelli V, Russo A and Corti S. 
Organic hypofluorites and their role in 
industrial fluorine chemistry. J Fluorine 
Chem. 1999; 95:27–39. 

Nickles RJ, Daube ME and Ruth TJ. An 18O2 
target for the production of [18F]F2. Int J 
Appl Radiat Isot. 1984; 35:117–22. 

Noel M, Suryanarayanan V and Chellammal S. 
A review of recent developments in the 
selective electrochemical fluorination of 
organic compounds. J Fluorine Chem. 1997; 
83:31–40. 

Nyffeler PT, Durón SG, Burkart MD, Vincent 
SP and Wong C-H. Selectfluor: mechanistic  
insights and applications. Angew Chem Int 
Ed. 2005; 44:192–212. 

Oberdorfer F, Hofmann E and Maier-Borst W. 
Preparation of a new 18F-labelled precursor: 
1-[18F]fluoro-2-pyridone. Appl Radiat Isot. 
1988; 39:685–8. 

Ogawa M, Hatano K, Oishi S, Kawasumi Y, 
Fujii N, Kawaguchi M, Doi R, Imamura M, 
Yamamoto M, Ajito K, Mukai T, Saji H and 
Ito K. Direct electrophilic radiofluorination 
of a cyclic RGD peptide for in vivo αvβ3 

integrin related tumor imaging. Nucl med 
Biol. 2003; 30:1–9. 

Oh Y-H, Ahn D-S, Chung S-Y, Jeon J-HH, Park 
S-W, Oh SJ, Kim DW, Kil HS, Chi DY and 
Lee SL. Facile SN2 reaction in polar solvent: 
quantum chemical analysis J Phys Chem A. 
2007; 111:10152–61. 

Park  BK, Kitteringham NR and O’Neill PM. 
Metabolism of fluorine-containing drugs. 
Annu Rev Pharmacol Toxicol. 2001; 
41:443–70. 

Patani GA and LaVoie EJ. Bioisosterism: a 
rational approach in drug design. Chem Rev. 
1996; 96:3147–76. 

Patrick TB in: Hudlicky M, Pavlath AE (Eds.). 
Chemistry of organic fluorine compounds II. 
A critical review. American Chemical 
Society, Washington DC, 1995, pp. 133-71. 

Penning TD, Talley JJ, Bertenshaw SR, Carter 
JS, Collins PW, Docter S, Graneto MJ, Lee 
LF, Malecha JW, Miyashiro JM, Rogers RS, 
Rogier DJ, Yu SS, Anderson GD, Burton 
EG, Cogburn JN, Gregory SA, Koboldt CM, 
Perkins WE, Seibert K, Veenhuizen AW, 
Zhang YY and Isakson PC. Synthesis and 
biological evaluation of the 1,5-
diarylpyrazole class of cyclooxygenase-2 
inhibitors: identification of 4-[5-(4-
methylphenyl)-3-(trifluoromethyl)-1H-
pyrazol-1-yl]benzenesulfonamide (SC-
58635, Celecoxib). J Med Chem. 1997; 
40:1347-65. 

Phelps ME. Positron emission tomography 
provides molecular imaging of biological 
processes. Proc Natl Acad Sci. 2000; 
97:9226–33. 

Phelps ME (Ed). PET, molecular imaging and 
its biological applications. Springer-Verlag, 
New York, Inc. 2004. 

Purser S, Moore PR, Swallow S and 
Gouverneur V. Fluorine in medicinal 
chemistry. Chem Soc Rev. 2008; 37:320–30. 

Reydellet-Casey V, Knoechel DJ and Herrinton 
PM. Comparison of commercially available 
reagents for fluorination of steroid 3,5-
dienol acetates. Org Process Res Dev. 1997; 
1:217–21. 

Rosenblum SB, Huynh T, Afonso A, Davis HR, 
Yumibe N, Clader JW and Burnett DA. 
Discovery of 1-(4-fluorophenyl)-(3R)-[3-(4-



References 73 

fluorophenyl)-(3S)-hydroxypropyl]-(4S)-(4-
hydroxyphenyl)-2-azetidinone (SCH 58235): 
a designed, potent, orally active inhibitor of 
cholesterol absorption. J Med Chem. 1998; 
41:973–80. 

Rostami A. N-fluorobenzenesulfonimide 
[(PhSO2)2NF – a neutral N-F-containing 
electrophilic fluorinating agent. Synlett. 
2007; No.18:2924–5. 

Rozen S, Shahak I and Bergmann ED. 
Reactions of glycyrrhetic acid derivatives 
with trifluoromethyl hypofluorite. 
Preparation of a new triterpenoid system. J 
Org Chem. 1975; 40:2966–9. 

Rozen S and Lerman O. A new approach toward 
the synthesis and chemistry of fluoroxy 
compounds. J Am Chem Soc. 1979; 
101:2782–4. 

Rozen S and Menahem Y. Taming elemental 
fluorine: indirect use of fluorine for the 
synthesis of α-fluoroketones. J Fluorine 
Chem. 1980a; 16:19–31. 

Rozen S and Lerman O. Synthesis and 
chemistry of trifluoroacetyl hypofluorite 
with elemental fluorine. A novel method for 
synthesis of α-fluorohydrins. J Org Chem. 
1980b; 45:672–8. 

Rozen S, Lerman O and Kol M. Acetyl 
hypofluorite, the first member of a new 
family of organic compounds. J Chem Soc 
Chem Commun. 1981a:443–4. 

Rozen S and Brand M. Elelctrophilic attack of 
elemental fluorine on organic halogens. 
Synthesis of fluoroadamantanes. J Org 
Chem. 1981b; 46:733–6. 

Rozen S and Gal C. Selective substitution of 
aliphatic remote tertiary hydrogens by 
fluorine. J Org Chem. 1987a; 52:4928–33. 

Rozen S and Gal C. Activating unreactive sites 
of organic molecules using elemental 
fluorine. J Org Chem. 1987b; 52:2769–79. 

Rozen S and Gal C. Direct synthesis of fluoro 
bicyclic compounds with fluorine. J Org 
Chem. 1988; 53:2803–7. 

Rozen S. Attaching the fluorine atom to organic 
molecules using BrF3 and other reagents 
directly derived from F2. Acc Chem Res. 
2005; 38:803–12. 

Ruth TJ and Wolf AP. Absolute cross sections 
for the production of 18F via the 18O(p.n)18F 
reaction. Radiochim Acta. 1979; 26:21–4. 

Sandford G. Elemental fluorine in organic 
chemistry (1997-2006). J Fluorine Chem. 
2007; 128:90–104. 

Satyamurthy N, Bida GT, Phelps ME and Barrio 
JR. N-[18F]fluoro-N-alkylsulfonamides: 
novel reagents for mild and regioselective 
radiofluorination. Appl Radiat Isot. 1990; 
41:733–8. 

Satyamurthy N. Electronic generators. In: 
Phelps ME (Ed). PET, molecular imaging 
and its biological applications. Springer-
Verlag, New York, Inc. 2004. pp. 217-69 

Schmutzler R. Nitrogen oxide fluorides. Angew 
Chem Int Ed Engl. 1968; 7:440–55. 

Schweizer E, Hoffmann-Röder A, Schärer K, 
Olsen JA, Fäh C, Seiler P, Obst-Sander U, 
Wagner B, Kansy M and Diederich F. A 
fluorine scan at the catalytic center of 
thrombin: C-F, C-OH and C-OMe 
bioisosterism and fluorine effects on pKa and 
logD values. ChemMedChem. 2006; 1:611-
21. 

Shibata N, Ishimaru T, Nakamura S and Toru T. 
New approaches to enantioselective 
fluorination: cinchona alkaloids 
combinations and chiral ligands/metal 
complexes. J Fluorine Chem. 2007; 
128:469–83. 

Shimoni L and Glusker JP. The geometry of 
intermolecular interactions in some 
crystalline fluorine-containing organic 
comounds. Structural Chemistry. 1994; 
5:383–97. 

Shirrmacher R, Wängler C and Schirrmacher E. 
Recent developments and trends in 18F-
radiochemistry: syntheses and applications. 
Minirev Org Chem. 2007; 4:317–29. 

Shiuey S-J, Partridge JJ and Uskokovic MR. 
Triply convergent synthesis of 1α,25-
dihydroxy-24(R)-fluorocholecalciferol. J 
Org Chem. 1988; 53:1040–6. 

Singh RP and Shreeve JM. Recent advances in 
nucleophilic fluorination reactions of 
organic compounds using deoxofluor and 
DAST. Synthesis. 2002; No. 17:2561-78. 



References 74

Singh RP and Shreeve JM. Recent highlights in 
electrophilic fluorination with 1-
chloromethyl-4-fluoro-1,4-diazoniabicyclo-
[2.2.2]octane bis(tetrafluoroborate). Acc 
Chem Res. 2004; 37:31-44. 

Sirion U, Kim HJ, Lee JH, Seo JW, Lee BS, Lee 
SJ, Oh SJ and Chi DY. An efficient F-18 
labeling method for PET study: Huisgen 1,3-
dipolar cycloaddition of bioactive substances 
and F-18-labeled compounds. Tetrahedron 
Lett. 2007; 48:3953–7. 

Smart BE. Fluorine substitution effects (on 
bioactivity). J Fluorine Chem. 2001; 109:3–
11. 

Snell AH. A new radioactive isotope of fluorine. 
Phys Rev.  1937; 51:143. 

Solin O, Bergman J, Haaparanta M and Reissell 
A. production of 18F from water targets. 
Specific radioactivity and anionic 
contaminants. Appl Radiat Isot. 1988; 
39:1065–71. 

Sun H and DiMagno SG. Anhydrous 
tetrabutylammonium fluoride. J Am Chem 
Soc. 2005; 127:2050–1. 

Takeuchi Y, Tarui T and Shibata N. A novel 
and efficient synthesis of 3-fluorooxindoles 
from indoles mediated by selectfluor. Org 
Lett. 2000; 2:639–42. 

Taylor SD, Kotoris CC and Hum G. Recent 
advances in electrophilic fluorination. 
Tetrahedron. 1999; 55:12431–77. 

Teare H, Robins EG, Årstad E, Luthra SK and 
Gouverneur V. Synthesis and reactivity of 
[18F]-N-fluorobenzenesulfonimide. Chem 
Commun. 2007:2330–2. 

Teare H, Robins EG, Kirjavainen A, Forsback 
S, Sandford G, Solin O, Luthra SK and 
Gouverneur V. Radiosynthesis and 

evaluation of [18F]Selectfluor bis(triflate). 
Angew Chem Int Ed. 2010; 49:6821–4. 

Tius MA. Xenon difluoride in synthesis. 
Tetrahedron. 1995; 51:6605–34. 

van Neil MB, Collins I, Beer MS, Broughton 
HB, Cheng SKF, Goodacre SC, Heald A, 
Locker KL, MacLeod AM, Morrison D, 
Moyes CR, O’Connor D, Pike A, Eowley M, 
Russell MGN, Sohal B, Stanton JA, Thomas 
S, Verrier H, Watt AP and Castro JL. 
Fluorination of 3-(3-(piperidin-1-
yl)propyl)indoles and 3-(3-(piperazin-1-
yl)propyl)indoles gives selective human 5-
HT1D receptor ligands with improved 
pharmacokinetic profiles. J Med Chem. 
1999; 42:2807–104. 

Weast RC (Ed). In: CRC handbook of chemistry 
and physics. CRC Press, Inc., Boca Raton, 
Florida, 62nd ed. 1981-1982 

Welch MJ and Redvanly CS (Editors). 
Handbook of radiopharmaceuticals. 
Radiochemistry and applications. John 
Wiley & Sons Ltd, Chichester, West Sussex, 
England. 2003. 

Wieland DM, Rosenspire KC, Hutchins GD, 
Van Dort M, Rothley JM, Mislankar SG, 
Lee HT, Massin CC, Gildersleeve DL, 
Sherman PS and Schwaiger M. Neuronal 
mapping of the heart with 6-
[18F]fluorometaraminol. J Med Chem. 1990; 
33:956–64. 

Wilkinson JA. Recent advances in the selective 
formation of the C-F bond. Chem Rev. 
1992; 92:505–19. 

Zhao K, Lim DS, Funaki T and Welch JT. 
Inhibition of dipeptyl peptidase IV (DPP IV) 
by 2-(2-amino-1-fluoro-propylidene)-
cyclopentanecarbonitrile, a fluoroolefin 
containing peptidomimetic. Bioorg Med 
Chem. 2003; 11:207–215. 


