TURUN KAUPPAKORKEAKOULUN JULKAISUJA

PUBLICATIONS OF THE TURKU SCHOOL
OF ECONOMICS AND BUSINESS ADMINISTRATION

Luis Alvarez

On Risk Adjusted Valuation:

A Certainty Equivalent

Characterization of a Class of Stochastic
Control Problems

Sarja Keskustelua ja raportteja/

Series Discussion and Working Papers

K&R 5:2004

ISBN: 951-564-194-2 (PDF) 951-564-193-4 (nid.)
ISSN: 1459-7632 (PDF) 0357-4687 (nid.)






ABSTRACT

This paper analyzes the certainty equivalent deterministic character-
ization of a broad class of stochastic control problems arising in the val-
uation of both single and sequential real investment opportunities and in
the rational management of renewable resources. We consider two alter-
native risk adjustment techniques and study the qualitative properties of
these adjustments. We present a set of weak conditions under which the
sign of the relationship between increased volatility and the required risk
adjustments can be unambiguously characterized. We also present a set
of typically satisfied conditions under which the risk of potential liquida-
tion increases the required risk adjustment and, therefore, strengthens the
effect of volatility on the adjustment and the required exercise premium.
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1 Introduction

One of the basic lessons of the research considering irreversible but
deferrable investment under uncertainty is that the optimal investment
threshold and, therefore, the required rate of return is typically an in-
creasing function of the volatility of the underlying state variable even
under risk neutrality. However, since the optimal investment threshold is
usually a decreasing function of the discount rate and an increasing func-
tion of the expected percentage growth rate of the underlying diffusion,
we find that the decelerating impact of increased volatility on irreversible
investment can be at least partially neutralized by either increasing the
discount rate or decreasing the expected percentage growth rate of the
underlying state variable. On the other hand, the results of the stud-
ies considering optimal exit indicate that the optimal threshold at which
irreversible exit is optimal is a decreasing function of volatility and an
increasing function of both the discount rate and the expected percentage
growth rate of the underlying state variable. Consequently, we observe
that the decelerating effect of increased volatility (in the sense that the
irreversible decision is postponed) on optimal exit can be at least par-
tially neutralized by either increasing the discount rate or the expected
percentage growth rate of the underlying state variable. These obser-
vations naturally bring up three important questions. First, given the
comparative static properties presented above it is natural to ask whether
the impact of increased volatility can always be neutralized by adjust-
ing either the growth rate of the underlying state variable or the discount
rate. Second, given that an appropriate risk adjustment exists, it is natu-
rally of importance to characterize the required risk adjustment and es-
pecially its monotonicity as a function of the volatility of the underlying
state variable thereby providing valuable information on the equilibrium
relationship between volatility and the required rate of return. Third,
given the significant variety of applied models and exercise payoffs as-
sociated with irreversible decision making problems it is of interest to
study whether the risk adjustment is state-dependent or not and, there-
fore, whether the adjustment is sensitive with respect to the current mar-
ket conditions and the precise nature of the payoff associated with the
considered decision making problem.

Motivated by these arguments, it is our purpose in this study to an-
alyze for a broad class of diffusions modelling the underlying state dy-
namics and potential exercise payoffs the two most familiar forms of
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risk-adjustment arising in the literature on financial decision making.
Namely, the adjustment of the interest rate at which future cash flows
are discounted and the adjustment of the infinitesimal growth rate (drift)
at which the randomly fluctuating underlying value process is expected
to grow. In order to attain this objective, we first analyze a broad class of
stochastic Markovian functionals arising typically in both financial and
economic applications of stochastic impulse control and optimal stop-
ping of linear diffusions. We state an explicit representation of these
functionals by relying on a combination of the classical theory of diffu-
sions and stochastic calculus. We then derive the certainty equivalent de-
terministic formulations of the considered stochastic valuations by sim-
ply adjusting either the discount rate or the growth rate in a way which
guarantees that the solutions of the associated boundary value problems
representing the values of the considered functionals coincide with each
other. It is worth pointing out that even though we consider a certainty
equivalent formulation of a class of dynamic programming problems,
our approach differs from the classical approaches introduced originally
in the seminal studies by Theil (1954, 1957) and Simon (1956) (which
were later extended by Malinvaud (1969)). More precisely, instead of
considering quadratic programming problems of multidimensional (po-
tentially time dependent) random variables, we analyze directly a broad
class of general valuations subject to a one-dimensional but otherwise
general diffusion modelling the underlying state varidbi@iven these
certainty equivalent valuations, we state a set of typically satisfied con-
ditions under which increased volatility unambiguously increases the re-
quired risk adjustment and, therefore, increases the risk premium asso-
ciated with the considered class of irreversible decision making prob-
lems. More precisely, we prove that the sign of the relationship be-
tween increased volatility and the required risk adjustment (and, there-
fore, the required exercise premium) is positive in most relevant cases
where the net appreciation rate of the diffusion modelling the underly-
ing state variable is non-increasing. This observation is of importance,
since it emphasizes the role of the net appreciation rate as the principal

Lit is worth pointing out that our study is related to the analysis of Henry (1974) through
the irreversibility of the considered decisions. However, instead of relying on a discrete for-
mulation of the considered class of decision making problems, we rely on a continuous model.
Moreover, given the applicability of the considered class of stochastic control problems in the
analysis of irreversible investment decisions and the rational management of renewable re-
sources, we also consider sequential decision making problems where an irreversible decision
can repeated later in the future.



determinant of the sign of the relationship between volatility and the ir-
reversible decision (for alternative approaches emphasizing the precise
form of the exercise payoff see, for example, Bergman, Grundy, and
Wiener (1996), El Karoui, Jeanblanc-Pi&juand Shreve (1998), Hob-
son (1998), and Janson and Tysk (2003)). Since our conclusions are
valid both for single (once-and-for-all-type) and sequential irreversible
decisions, we find that our results clearly support the findings of studies
considering the impact of increased volatility on irreversible investfment
(see, for example, McDonald and Siegel (1986), Pindyck (1988, 1991),
Caballero (1991), Demers (1991), Ingersoll and Ross (1992), and Dixit
and Pindyck (1994)). Itis also worth emphasizing that since the class of
considered valuations arise in the literature on inventory theory (see, for
example, Manne (1961)), in stochastic capital theory (see, for example,
Brock, Rothschild, and Stiglitz (1988)), in the literature on irreversible
investment (see, for example, McDonald and Siegel (1986), Pindyck
(1991), and Dixit and Pindyck (1994)), and in the literature on optimal
forest rotation (see, for example, Willasen (1998), Sgdal (2002), and Al-
varez (2004)) our result affect a considerably broad class of problems
arising in the literature on irreversible decision making. As intuitively

is clear, our findings indicate that the risk adjustment is typically state
dependent (cyclical) and, therefore, that the magnitude of the required
adjustment may fluctuate considerably depending on the state and on the
precise form of the infinitesimal coefficients of the diffusion modelling
the dynamics of the underlying state variable. We also present a set of
typically satisfied conditions under which the risk of potential liquida-
tion increases the required risk adjustment and, therefore, strengthens
the effect of volatility on both the risk-adjusted discount and growth rate
(cf. Milne and Robertson (1996)).

The contents of this paper are as follows. In section 2 we charac-
terize both the underlying stochastic dynamics and the associated deter-
ministic processes. In section 3 we then present the considered class of
valuations and establish a certainty equivalent formulation for the con-

2|t is worth pointing out that the sign of the relationship between increased volatility and

the required risk adjustment may be locally negative whenever the net appreciation rate is
hump shaped. This is the case in many models subject to mean reversion (cf. Alvarez (2001)
and Sarkar (2003)). A similar phenomenon also arises in models based on geometric Brow-
nian motion and concave payoffs (cf. Alvarez and Kanniainen (1998) and Sarkar (2000)), in
studies considering optimal risk adoption (cf. Alvarez and Stenbacka (2004)), and in stud-
ies considering optimal forest rotation in the presence of amenity valuation (cf. Alvarez and
Koskela (2003)).



sidered problems. In section 4 we then apply our findings to a broad
class of optimal stopping problems arising in real option models of irre-

versible investment and single rotation problems in forestry economics
(single irreversible decision). In section 5 our findings are, in turn, ap-
plied to a class of stochastic impulse control problems arising typically
in studies considering optimal dividend policies or the optimal ongoing

rotation policy in forestry economics (sequential irreversible decisions).
Our results are explicitly illustrated in section 6 by relying on geometric

Brownian motion and on a mean reverting diffusion. Section 7 finally

concludes our study.
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2 The Underlying Stochastic Dynamics

The main objective of this study is to consider how a broad class of
stochastic control problems arising in the literature on the valuation of
real investment opportunities can be solved by relying on deterministic
models adjusted to the risk of the underlying value. In order to accom-
plish this task, assume that the underlying value dynamics evolve in the
absence of interventions as an ordinary linear diffusion. More precisely,
let X = {X/;t > 0} be alinear, time-homogeneous, and regular diffu-
sion defined on a complete filtered probability spéeeP, { F; }i>0, F),

and evolving on the state-spate- (a,b) C R according to the stochas-

tic dynamics described by the stochastic differential equation

dX{ = p(XP)dt + po(XP)dW:,  X§ =z, (2.1)

wherep € R, is an exogenously determined scaling factor, and the
infinitesimal coefficientg: : Z — R ando : Z — R, (i.e. o(x) >

0 on 7) are sufficiently smooth (at least continuous) for guaranteeing
the existence of a solution for the stochastic differential equation (2.1).
In accordance with most economic and financial applications diffusion
processes, we also assume that the boundaaeslb of the state-space

of the underlying diffusion are either natural, exit, or killing. As usually,

we denote as ,
R d d

the differential operator associated with the diffusifl. Before pro-
ceeding in our analysis, we state the following definition.

Definition 2.1. (cf. Borodin and Salminen 2002, pp. 17-20) The Green-
function of the diffusion process described in (2.1) reads as

B~',(x)p,(y)
B, (y)p,(x)

<y

o (2.2)

Gr(z,y) = {

T
X

where, : 7 — R, denotes the increasing ang, : 7 — R, denotes
the decreasing fundamental solutions of the ordinary second order differ-

ential equation(A,u)(z) = ru(z), B = (¢},(x)p,(x)—¢,(2),(2)) /S, (x) >
0 denotes the constant Wronskian of these solutions, and

s [ 455)
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denotes the density of the scale functiyiz) of the diffusionX;. Es-

pecially, @) o)
B ] =i (G032

wherer = inf{t > 0 : X/ = y} denotes the first hitting time of process
X/ tothe statey € 7.

Given the stochastic dynamics described in (2.1) and the definition of
the fundamental solutions, (x) andy,(z), we now define the associated
deterministic processegX,,t > 0} and{X,,t > 0} evolving onZ
as the processes described by the ordinary time homogenous first order
differential equations

~

X/ =n(X,), Xo=z€T (2.3)
and
X]=p,(X,), Xo=wx€T, (2.4)

wheref, : Z — R is a known sufficiently smooth mapping (which

will be determined explicitly in the subsequent analysis). Hence, we
assume that the underlying procesXé’th, andX, evolve on the same
state-space althoughkl! is stochastic and(t and X, are assumed to be
deterministic. Especially, it is worth observing that the procéssan be
viewed as the process characterizing the dynamics (2.1) in the absence
of stochasticity (i.e. ag | 0).
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3 On Certainty Equivalent Valuation

Having presented the underlying stochastic dynamics and the two asso-
ciated deterministic processes it is our purpose to now present the con-
sidered class of valuations and their certainty equivalent formulations.
We are now in position to state the following result characterizing the
first type of certainty equivalent valuations subject to a risk adjusted and
typically state dependent discount rate.

Theorem 3.1. (A) Assume that(z) > 0 onZ and that

k() = u<x>zz—§j§ . ép%?(x)Z’;—g. 3.1)

Then we have for alj € C(Z) andz,y € 7 that

e I X (%) = B [T W g(XE)

7(y)
_ {g(fﬁ) T 2>y (3-2)
gy T <y,

wherer(y) = inf{t > 0 : X/ > y} denotes the first entrance time of the
underlying diffusion to the exercise regign b) and¢(y) = inf{t > 0 :

X, >y} = max([! ds/p(s),0).

(B) Assume that(z) < 0 onZ and that

p() 1 ()

ky(x) = plx) = =r — Zp?o?(x) : (3.3)
Then, we have for alj € C'(Z) andz,y € 7 that
— [iw) Xs)ds y —r7
e Jo ¥ ko(Xs)d g(Xf(y)) —E, |:6 (y)g(X;—)(y))
_ {g(y)ip(y) rT>y (3.4)
g(x) z <y,

where7(y) = inf{t > 0 : X/ < y} denotes the first entrance time of the
underlying diffusion to the exercise regiém y] and#(y) = inf{t > 0 :

X, <y} = max(— [ ds/u(s),0).
Proof. See Appendix A. O

Theorem 3.1 states a set of sufficient conditions under which the ex-
pected net present value of an arbitrary continuous exercise payoff ac-
crued at the first time the underlying diffusion enters into an exercise
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region characterized by a single exercise boundary can be expressed in
terms of the associated deterministic proc¥ssind a risk adjusted dis-
count rate. These results are of interest in various financial and eco-
nomical applications of stochastic analysis since essentially Theorem
3.1 states a set of conditions under whacrandom valuation subject to
constant discounting can be transformed into an equivalent determinis-
tic valuation subject to a different and typically state dependent discount
factor thereby demonstrating that uncertainty can in this way be inter-
preted as a discount rate effet¢hterestingly, we observe from Theorem
3.1 that given the positivity of the fundamental solutions the required
risk adjustment is dependent on the second derivative and, therefore, on
the convexity properties of the fundamental solutions.

A second important finding demonstrating how the stochasticity of
the underlying diffusion can be alternatively eliminated by adjusting the
growth rate of the associated deterministic value dynamics is now sum-
marized in the following.

Theorem 3.2. (A) Assume that

~ _ 7”2/1,,(1:)

Then we have for alj € C(Z) andz,y € 7 that

- (o) + o) (35)

g(x) T2y

Yp(z)

(3.6)
g(y)wp(y) Tz <y,

e_rt(y)g(j(f(y)) =E, [e—TT(y)g(Xf(y))] — {

wherer(y) = inf{t > 0 : X/ > y} denotes the first entrance time of the
underlying diffusion to the exercise regign b) and(y) = inf{t > 0 :

X >y} = (Iny,(y) — 1H¢p(l"))+/7“-

(B) Assume that

R R 37)

Then, we have for alj € C(Z) andz,y € Z that

(x)
, . 9 T >y
e "Wg(Xey)) = By | (y)g(Xﬁ(y))} = { ) (3.8)

where7(y) = inf{t > 0 : X! < y} denotes the first entrance time of the
underlying diffusion to the exercise region y] and¢(y) = inf{t > 0 :

Xt <y} =(ln @p(y) —In 90p<x>>+/7”-
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Proof. See Appendix B. ]

Theorem 3.2 states a set of conditions under which the expected net
present value of a continuous exercise payoff accrued at the first time
the underlying diffusion enters into an exercise region characterized by
a single exercise boundary can be expressed in terms of an associated
deterministic valuation subject to a risk-adjusted growth rate but to the
same discount rate as the original stochastic valuation. Interestingly, we
observe that the results of Theorem 3.2 are in accordance with the clas-
sical findings on risk premiums arising under risk aversion (cf. Laffont
1989, pp. 19-24) since the required risk adjustment of the growth rate is
either of the form; p?0?(x)(Lv,)(x) or of the form}p?o?(z)(Ly,)(x),
where(Lu)(x) = u"(z)/u/'(x) denotes the percentage growth rate (i.e.
logarithmic derivative) of the marginal valué(z) (in utility theory the
factor—(Lu)(x) is known as thé\rrow Pratt measurg Thus, Theorem
3.2 indicates that the ability to defer an irreversible investment decision
results into a risk adjustment resembling the premia arising in studies
considering decision making in the presence of uncertainty and risk aver-
sion.

The results of Theorem 3.1 are valid for models subject to a single
once-and-for-all-type decision. However, the results of Theorem 3.1 do
not show how the discount rate should be adjusted in the sequential case.
This task is accomplished in the following theorem extending the results
of Theorem 3.1 to the cases where the underlying diffusion is restarted
from a given generic initial state whenever it hits an arbitrary threshold
on the state space of the underlying diffusion.

Theorem 3.3. (A) Assume that(x) > 0 onZ, thatk,(z) is defined as
in (3.1), and that the mappings, : Z — R and Fy : Z — R satisfy for
all z € Z, xy < y, andg € C(Z) the recursive (running present value)
relations

Fp(ﬂf) — E:c [e—m‘(y) <g(Xf(y)) =+ Fp(flfg))]
Fo(m) _ f(;f(y) kp(Xs)dS (g(Xt(y)) + F0($0)> ,

wherer(y) = inf{t > 0: X!/ > y} denotes the first entrance time of the
underlying diffusion to the exercise regignb) andt¢(y) = inf{t > 0 :
X, >y} = max( [’ ds/p(s),0). Then

(z) = Fy(z) = {g(a:) + H3(y)ho(wo) € [y,b)

(3.9)
HS(y)Y, () r € (a,y),

15



where

a9
ST T TN E) (810

(B) Assume that(z) < 0 onZ, thatk,(z) is defined as in (3.3), and
that the mapping#<, : Z — R and K, : Z — R satisfy for allz € Z,
xo >y, andg € C(Z) the recursive (running present value) relations

Ky(@) = By e (g(X2,) + K,(x0))]
~ — (EW) k(X Vds 5 -~
Ro(r) = e R 800 (g(R0) + Kofao)).

7(y) = inf{t > 0 : X/ < y} denotes the first entrance time of the
underlying diffusion to the exercise regiém y] and#(y) = inf{t > 0 :
X; <y} = max(— fyx ds/u(s),0). Then

- Hp(y)p,(2) z € (y,b)
K,(z) = Ko(x) = P 3.11
(o) = {gm FH e vy
where
b 9(y)
B = ) - et (812
Proof. See Appendix C. O

Theorem 3.3 extends the findings of Theorem 3.1 to the case where
the exercise payoff can be sequentially accrued every time the underlying
diffusion hits an arbitrary fixed exercise threshold in the state-space of
the underlying diffusion. More precisely, Theorem 3.3 states a set of
conditions under which the expected cumulative net present value of a
continuous exercise payoff accrued every time the underlying diffusion
enters into an exercise region characterized by a single exercise boundary
can be expressed in terms of an associated deterministic valuation subject
to a risk-adjusted discount rate. The results of Theorem 3.2 are, in turn,
extended to the sequential stopping case in the following.

Theorem 3.4. (A) Assume thai,(z) is defined as in (3.5) and that the
mappingsF, : Z — R and F| : 7 — R satisfy for allx € 7, zy < y,
andg € C(Z) the recursive (running present value) relations

Fp(x) = E; [e_”’(y) (g(XTp(y)> * FP(wO))]

o) = 0 (g(Xy) + Folwo))
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wherer(y) = inf{t > 0 : X/ > y} denotes the first entrance time of
the underlying diffusion to the exercise regignb) and(y) = inf{t >
0:X, >y} = (Ine,(y) — Ine,(x))*/r. ThenF,(z) = Fy(z) and the
value can be expressed as in (3.9).

(B) Assume that, () is defined as in (3.7) and that the mappings :

7 — RandK, : 7 — R satisfy for allz € Z, 2, > y, andg € C(Z) the
recursive (running present value) relations

Ky(a) = Bo |77 (g(X0,) + K,(w0)) |

Rofa) = ™0 (g(Xi)) + Kolao) )

where7(y) = inf{t > 0 : X/ < y} denotes the first entrance time of
the underlying diffusion to the exercise regi@ny] andt(y) = inf{t >

0: X, <y} = (Ingp,(y) — Ing,(x))*/r. Thenk ,(z) = Ky(x) and the
values read as in (3.11).

Proof. See Appendix C. O

In accordance with our previous findings on risk adjusted valuation,
Theorem 3.4 demonstrates that the same risk adjustment which is needed
in the single decision case is sufficient in the sequential case as well. Itis
worth emphasizing that Theorem 3.3 and Theorem 3.4 imply that the val-
ues of the sequential investment policies can alternatively be expressed
as

Fp(x) = Fp(o) + ($p(2) — ¥p(20)) Hy (max(z, y)) (3.13)

and

K,(z) = K,(x0) + (p,(z) — wp(xo))HS(min(x, v)) (3.14)

showing how the value of the considered sequential (cyclical) policy can
be decomposed into two parts. The first part captures the value accrued at
the generic initial state while the second captures the value of the future
investment (or harvesting) opportunities. Moreover, the assumed bound-
ary behavior of the underlying diffusion implies thiin, ., ¢,(z) =

limgqp 0, (x) = 0 and, therefore, that

lim F,(z) =

zola

) (3.15)
95z <y

{ﬂ@ T >y



and

lim () =

wp(z)
{g(y) @Z(y) T >y (3.16)

g9() <y

thereby demonstrating how the value of the sequential investment oppor-
tunity is connected with the single investment opportunity considered in
Theorem 3.1 and Theorem 3.2. In other words, given the boundary spec-
ification of the considered class of diffusions the value of the sequential
investment opportunity approaches the value of the single investment
opportunity as the generic initial state tends to the boundary of the state
space of the underlying stochastic dynamics.

Even though Theorem 3.1, Theorem 3.2, Theorem 3.3, and Theorem
3.4 present a certainty equivalent deterministic form for a considerably
broad class of valuations subject to stochasticity, these theorems do not
describe the sign of the required adjustment, nor do they describe how
increased volatility affects the considered values in general. In order to
accomplish this task, we first state the following auxiliary result partially
extending the results on the strict convexity of the fundamental solutions
stated in Alvarez (2003a, 2003b, 2004) and emphasizing the key role of
the net appreciation rat§z) = u(x) — rz as the key determinant of
the convexity properties of the fundamental solutions and, therefore, the
values of the the considered class of investment strategies.

Theorem 3.5. (A) Assume that the net appreciation réte:) = u(x) —
rz is non-increasing and thafm,, ;(z)/¢,(z) < 0. Then, the in-
creasing fundamental solution,(x) is strictly convex and satisfies for
all x > y, wherex,y € 7, andp > p the inequalities

vo(z) _ ¥p(@) va(e) _ ()
d
o) = ) O U(a) = Gyla)
Moreover, for allxg < z, wherex, zy € Z, andp > p we have
AT AC)
Up(x) = p(x0) — Wp(x) — ¥plxo)

(B) Assume that(z) = p(z)—ra is non-increasing and thaim,, u(x) /1, (z) >
0. Then, the decreasing fundamental solutigyix) is strictly convex
and satisfies for alk: > y, wherex,y € Z, andp > p the inequalities

©5(z)

op() >Spp($) and gp’p(x)
pp(z)

0s(y) ~ pu(y) Pp(T)

<

18



Moreover, for allz < xy, wherezx, zo € Z, andp > p we have

©5(2) - P,(2)
©s() = (o) — @p(2) = @p(x0)

Proof. See Appendix D. ]

Theorem 3.5 states a set of conditions under which the fundamen-
tal solutions are strictly convex and, therefore, under which increased
volatility unambiguously increases the present expected value of a unit of
money accrued at the exercise date (i.e. the price of a zero coupon bond
expiring at exercise). Interestingly, and in accordance with the findings
of Alvarez (2003a, 2003b), Theorem 3.5 shows that the monotonicity
of the net appreciation ratdz) = p(z) — rz is the principal determi-
nant of the strict convexity of the fundamental solutions and, therefore,
of the sign of the relationship between increased volatility and the value
of the considered investment opportunities for a broad class of diffusion
processes modelling the underlying state variable. An important con-
sequence of Theorem 3.1 and Theorem 3.5 is now summarized in the
following.

Corollary 3.6. Assume that the conditions of part (A) or (B) of both
Theorem 3.1 and Theorem 3.5 are satisfied. Thenk,(x) < r for all

x € Z. Moreover, if the conditions of part (A) of both Theorem 3.1 and
Theorem 3.5 are satisfied thép(z) > u(z)/x for all x € Z as well.

Proof. The inequality) < k,(z) < r is a straightforward consequence
of the strict convexity of the fundamental solutiahgz) andy,(z) and

the assumptions on the drift(z). To establish thaj(z) < k,(x)x
whenever the conditions of part (A) of both Theorem 3.1 and Theo-
rem 3.5 are satisfied we first observe that the strict convexity and mono-
tonicity of the fundamental solution,(z) and the boundary condition
¥,(0) = 0 implies thaty) (z)z > v,(x) and, therefore, that,(z) =
)0 () /(@) > pl) [ =

Corollary 3.6 states the familiar result from utility theory that in order
to attain indifference an investor should be compensated from investing
in a project yielding a stochastic return instead of investing in the risk
free project rendering a known rate of return. Put somewhat differently,
Corollary 3.6 demonstrates that in order to attain indifference the oppor-
tunity costs of investing must be lower in the presence of uncertainty
than in its absence. A second important implication of Theorem 3.2 and
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Theorem 3.5 characterizing how increased volatility affects the required
cash flow adjustment is now summarized in the following.

Corollary 3.7. (A) Assume that the conditions of part (A) of both Theo-
rem 3.2 and Theorem 3.5 are satisfied. Them,) < fi,(z) < rz for all
rel.

(B) Assume that the conditions of part (B) of both Theorem 3.2 and The-
orem 3.5 are satisfied. Then,(z) < p(z) forall z € 7.

Proof. The alleged results are direct implications of Theorem 3.2 and
Theorem 3.5. ]

A third important consequence of Theorem 3.5 related to both the
impulse control and the optimal stopping of the underlying linear diffu-
sion is now summarized in our next corollary.

Corollary 3.8. (A) Assume that the conditions of part (A) of Theorem 3.5
are satisfied, that the exercise payoff is non-decreasirif and contin-
uously differentiable outside a st C 7 of measure zero, that, € 7

is a known exogenously determined constant, and ghat p. Then
ha(x) > hy(x) forall 2 € (20,b)\D and{z € (20,b)\D : Hy'(v) >

0} € {z € (20,0)\D : H}'(x) > 0}, where

xXr) — T x
i) = S @) a0 = gt
(B) Assume that the conditions of part (B) of Theorem 3.5 are satisfied,
that the exercise payoff is non-increasingDmand continuously differ-
entiable outside a séd C 7 of measure zero, that, € 7 is a known
exogenously determined constant, and hat p. Thenh’(z) > hb(z)
forall z € (a,z9)\D and {z € (a,x¢)\D : Hgl(x) >0} C {z €
(a,20)\D : HY (z) > 0}, where

thto) = £ ) ) g0y and ) = A

Proof. See Appendix E. O
Corollary 3.8 states a set of typically satisfied conditions under which

increased volatility unambiguously increases the value of the mappings

h{(r) and hl;(x) determining the monotonicity properties of the map-

pingsH(z) andH)(z). Thus, part (A) of Corollary 3.8 actually states a
set of conditions under which we find that if the mappiiig( =) attains a
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unique maximum, it attains it at a higher state than the mapfifig).

On the other hand, part (B) of Corollary 3.8 states a set of conditions un-
der which we find that if the mappinﬁg(x) attains a unique maximum

it attains it at a lower state than the mappifig(z). It is also worth
emphasizing that sindém,, |, v,(z) = 0 andlim,,; p,(z) = 0 by the
assumed boundary behavior of the underlying diffusion, we find that the
results of Corollary 3.8 can be extended to the case where the considered
functional is eithew(z)/vy,(x) or g(x)/¢,(x) as well and, therefore, to

the case where the considered policy can be exercised only once. As we
will later observe, these results are closely related to the standard argu-
ment stating that increased volatility should postpone the exercise of an
irreversible investment decision by increasing the value of waiting and,
therefore, the required exercise premium associated with the investment
opportunity.

Having considered the nature of the required risk adjustment, we
now plan to consider the comparative static properties of the considered
certainty equivalent valuations. More precisely, we plan to analyze how
increased volatility affects the required risk-adjustment. Our first set of
results on this subject are now summarized in the following.

Theorem 3.9. Assume that the conditions of either part (A) or part

(B) of Theorem 3.1 and Theorem 3.5 are satisfied. Assume also that
g 1(R,) # Pandthaty € g~' (R, ). Then, increased volatility increases

the expected present value of the exercise payoff and decreases the risk
adjusted discount factor. More preciselygit> p, thenk,(z) > k;(z)

and

) ¢ Vds ~ — [t (X )ds > :

e Jo " ho(Xa)d Q(Xt(y)) < e do T ha(Xe)d 9<;(t(y)) if ju(z) >0
t(y) -~ t(y) 5 .
Tl TR (X)) < e TR B (X5 ) if ple) <0,

Proof. The alleged result is a straightforward implication of Theorem
3.1 and Theorem 3.5. O

Theorem 3.9 demonstrates the economically sensible result that given
the conditions of our theorems 3.1 and 3.5 increased volatility decreases
the risk adjusted discount rate and, therefore, increases the present ex-
pected present value of the exercise payoff. Consequently, itis clear that
the incentives of holding such contracts alive (whenever exercise can be
postponed) increases as the volatility of the underlying diffusion process
increases. This finding is naturally a consequence of the strict convex-
ity of the fundamental solutions, since as was demonstrated in Alvarez
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(2003a) the strict convexity of these mappings imply that-akcessive
mappings for a linear diffusion are strictly convex on the continuation
set where exercising a deferrable contract is suboptimal. Thus, Theorem
3.9 actually establishes that increased volatility can be discounted away
by simply adjusting the discount rate to match the added volatility. The
impact of increased volatility on the risk adjusted growth rger) is

now characterized in the following.

Theorem 3.10.(A) Assume that the conditions of part (A) of both The-
orem 3.2 and Theorem 3.5 are satisfied and fhat p. Then,ji;(x) >

fi,(z) forall z € 7.

(B) Assume that the conditions of part (B) of both Theorem 3.2 and The-
orem 3.5 are satisfied and that > p. Then,ji;(z) < f,(z) for all

r el

Theorem 3.10 states a set of conditions under which the impact of
increased volatility on the risk adjusted growth rate can be unambigu-
ously described. It is worth observing that in contrast to our findings on
the risk adjusted discount rate the risk adjusted growth rate may be an
increasing or a decreasing function of the underlying volatility depend-
ing on whether the considered adjustment is based on the increasing or
the decreasing fundamental solution. The reason for this observation are
naturally the terms)7 () /47,(x) andy} (z) /¢, (z) which have opposite
signs whenever the fundamental solutions are convex. A set of results
characterizing the impact of increased volatility on the value of sequen-
tial stopping problems is now summarized in the following.

Theorem 3.11. Assume that the conditions of either part (A) or part
(B) of Theorem 3.1 and Theorem 3.5 are satisfied. Assume also that
g '(R,) # 0 and thaty € ¢ '(R,). Then, increased volatility in-
creases decreases the risk adjusted discount factor and increases the
valuesF,(z) and K ,(z). More precisely, ifp > p, thenk,(z) > k;(x),

Fy(x) > Fy(x) and K;(z) > K,(x) forall z € Z.

Proof. See Appendix F. O

Theorem 3.11 extends the results of Theorem 3.9 to the sequential
case. Again we find that, given the strict convexity of the fundamental
solutions, increased volatility unambiguously decreases the risk-adjusted
discount rate and, therefore, increases the value of the sequential invest-
ment opportunities by increasing the present value of the exercise payoff.

It is at this point worth emphasizing that the introduction of potential
liquidation risk has a strong impact on both the risk adjusted discount
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rate and on the risk adjusted growth rate. To illustrate this explicitly, as-
sume that the underlying diffusiaki/ is killed whenever it exits the set
(I,b) C Z (i.e. when an exogenously determined liquidation threshold
[ is introduced). In that case the increasing fundamental solution (given
up to a multiplicative constant) of the ordinary second order differential
equation(A,v)(x) = rv(z) reads as),(x) = ,(x) —1,(1)e,(x) /0, 1).
Therefore, in that case the risk adjusted discount factor and the risk ad-
justed growth rate read as

ho(2) = k() + 20005 (@)
Uo(2) 0, (1) (2)
and .
fip(x) = fip(x) — @bg(x)gpp(l)@/;;(x) < fi,(7)

wherek,(zr) = p(z)y,(x)/v,(x) and fi,(z) = r,(z)/¢,(z). Itis
now clear from these expressions thatif:) > 0 thenk,(z) > k,(z)
demonstrating the intuitively clear result thadtential liquidation risk
increases the risk adjusted discount rabe economic termsa rational
investor will require a higher compensation for undertaking an invest-
ment subject to both value uncertainty and the risk of potential liqui-
dation Similarly, if the underlying diffusionX? is killed whenever it
exits the seta, u) C 7 then the decreasing fundamental solution of the
ordinary second order differential equatiQd,v)(x) = rv(x) reads as
Op(z) = @,(z) — Yp(x)p,(u)/¢,(u). In accordance with our findings
above we now observe that the risk adjusted discount factor and the risk
adjusted growth rate now read as

(@) pp(u)BS'(x)
()Y (u)Pp()

bp(z) = k()
and )
ro,(u)BS' ()
CACICAIEAC)
It is now clear from these expressions thapif:) < 0 thenk,(z) >

k,(x) demonstrating that the introduction of liquidation risk increases
the risk adjusted discount rate in this case as well.

fip(z) = [ip(z) + > fip().
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4 Optimal Timing of a Single Investment Oppor-
tunity

We now plan to apply the general results of our previous section in the
analysis of a broad class of optimal stopping problems appearing in the
literature on the valuation and rational exercise of real investment op-
portunities and in the analysis of single rotation (or harvesting) oppor-
tunities. More precisely, we now plan to investigate the optimal timing
problems

V,(x) =supE, [e‘”g(Xf)] , (4.1)
f/o(x) — St%) [e—fot ’fp(f(s)dsg(f(t)] : (4.2)

and
Vo(z) = sup [e‘”g(f(t)} , (4.3)

>0

wherer > 0 denotes the exogenously determined risk free discount
rate,k, : 7 — R, is a known positive and continuous mapping, and

g : T — R is a sufficiently smooth mapping (at least continuous) mea-
suring the exercise payoff accrued whenever the underlying process is
endogenously stopped. It is worth emphasizing that this type of valua-
tions arise typically in models considering irreversible decision making
under uncertainty (for example, irreversible investment and Wicksellian
single rotation problems) and in the determination of the price and ra-
tional exercise strategies of perpetual American contingent contracts. In
accordance with the approach introduced in the previous section, we plan
to present a certainty equivalent deterministic formulation of the stochas-
tic valuation (4.1) in terms of a deterministic valuation (4.2) subject to a
potentially state-dependent discount rate. Our first main result character-
izing the relationship of the solutions of the optimal stopping problems
(4.1) and (4.2) in the case the exercise payoff is non-decreasing is now
summarized in the following.

Theorem 4.1. Assume that the exercise paygff) is continuous and
non-decreasing, and that the mappi(@ )/, (z) attains a unique global

~

maximum atc; € Z. Define the mappiny), : Z — R, as

) = o () sun | 29| = g9(z) x € [x,b)
V() = y,( >yzlj pr(y)} = {g(ﬁ)i’k—% z € (a,2) (4.4)
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and assume that the mapping

v, () () -
ha(x) = o ¥p(@) — 7= Vol@)
SACI Sp(x) *
IS non-increasing, continuously differentiable outside a countable set
D C Z, and satisfies the conditidn/ (z+)| < oo for all x € D. Then
V,(z) = V,(z) and the optimal stopping date i$ = inf{t > 0: X/ >

x%}. Moreover, ifu(z) > 0 onZ andk,(z) = “(@Zig’ thenV,(z) =

V,(z) = Vo(x) and if fi,(z) = rgggjg, thenV,(z) = V,(z) = Vi(z).

Proof. See Appendix G. ]

Theorem 4.1 presents a set of sufficient conditions under which both
the value and the optimal exercise threshold of the optimal stopping
problem (4.1) can be explicitly solved in terms of the increasing funda-
mental solution and the exercise payoff. In accordance with the findings
of part (A) of Theorem 3.1 and part (A) of Theorem 3.2, Theorem 4.1
also states a set conditions under which the value of the optimal timing
policy can be expressed in a certainty equivalent deterministic form. It
is worth emphasizing that since this type of valuations typically arise
in studies considering either the valuation and exercise of irreversible
investment opportunities, optimal entry, or the valuation of perpetual
American contingent contracts written on a dividend paying asset, our
results essentially indicate that within that class of problems the optimal
policy and its value can be typically derived by analyzing the associated
deterministic risk adjusted problem and, therefore, by relying on ordi-
nary techniques of differential calculus.

A set of sufficient conditions under which the optimal stopping prob-
lem (4.1) is solvable in the case of a non-increasing exercise payoff,
arising typically in studies considering optimal exit and the valuation of
perpetual American put options written on a dividend paying asset, is
now summarized in our following theorem:

Theorem 4.2. Assume that the exercise paygff) is continuous and
non-increasing, and that the mappin@r) /¢, (x) attains a unique global
maximum at, € Z. Define the mappiny, : 7 — R, as

/() = p,(z) su 9) | _ g(jp)jj(—?p)) z € (Zp,b)
Vo) = gyl | £ ‘{g@) Tl e

y<z
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and assume that the mapping

o) = o)~ S

is non-increasing, continuously differentiable outside a countable set
D C Z, and satisfies the conditidh; (z+)| < oo for all x € D. Then,

~

V,(z) = V,(z) and the optimal stopping date i$ = inf{t > 0 : X/ <

i,}. Moreover, ifu(z) < 0onZ andk,(z) = u(x)iigg, thenV,(z) =

V() = Vo), and ifi,(v) = £, thenV,(x) = V, (x) = Vi(x).

Proof. The proof is analogous with the proof of Theorem 4.1. [

Having established a set of conditions under which the stochastic
stopping problems can be solved by re-expressing the original valua-
tions in a certainty-equivalent deterministic form subject to a potentially
state-dependent discount rate, we now plan to analyze the impact of in-
creased volatility on the required risk adjustment and on both the value
and optimal exercise threshold of the considered valuations.

Theorem 4.3. (A) Assume that the conditions of Theorem 4.1 and part
(A) of Theorem 3.5 are satisfied. Then increased volatility increases the
value and postpones rational exercise by increasing the optimal exercise
threshold. More precisely, for all > p we have thav/;(x) > V,(x) and

x> x;,. Moreover, ifu(x) > 0 for x € Z, thenk,(x) < k,(z), and if
fip(z) = 1 (x) /¢ (x) for x € Z, thenji;(x) > fi,(z) for z € 7.

(B) Assume that the conditions of Theorem 4.1 and part (B) of Theo-
rem 3.5 are satisfied. Then increased volatility increases the value and
postpones rational exercise by decreasing the optimal exercise thresh-
old. More precisely, for allp > p we have that/;(z) > V,(z) and

T; < T,. Moreover, ifu(z) < 0 for z € Z, thenk,(z) < k,(z), and if
fip(z) = rp,(x) /¢ (x) for x € Z, thenfi;(z) < fi,(z) for x € 7.

Proof. The alleged result are straightforward implications of Theorem
4.1, Theorem 3.5, and Theorem 3.9. O

Theorem 4.3 states a set of conditions under which the standard argu-
ments stating that increased volatility should increase the value of an in-
vestment opportunity and postpone rational exercise are valid. Put some-
what differently, Theorem 4.3 states a set of conditions under which

oo (82) 0
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whenever the exercise payoff is non-decreasing and

= argmax{ 9(z) } < argmax{ 9(z) } — i, (4.7)

p(@) o(@)

whenever the exercise payoff is non-increasing. This result, which clearly
indicates that the ratio between the exercise payoff and the corresponding
fundamental solution is the principal determinant of the required exer-
cise premium can also be motivated by applying the results of Corollary
3.8. In line with Theorem 3.9, Theorem 4.3 again also demonstrates that
increased volatility decreases the required risk-adjustment as well.
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5 On the Timing of Sequential Irreversible Poli-
cies

In order to extend the analysis of the previous section to a broad class of
impulse control problems arising in studies considering the optimal tim-
ing of sequential irreversible policies (for example, in Faustmannian on-
going rotation problems, in capital accumulation models subject to non-
negative gross investment rates, and in cash flow managements models
considering rational dividend policies), assume that the dynamics of the
underlying controlled diffusion process are described by the generalized
[td-equation

t t
XV =+ / n(X)ds + / po(XD)AW, + > ¢&, (5.1)

0 0 TR <t
wheret € [0,7(Z)), 7(Z) = inf{t > 0 : X} & I} < oo denotes
the possibly finite first exit time from the state-spates € {—1,1}
is a known parameter determining whether the implemented control in-
creases or decreases the state of the controlled diffusion; afid— R
ando : Z — R, (i.e. o(z) > 0 for all x € 7) are known sulfficiently
smooth (at least continuous) mappings guaranteeing the existence of a
solution for (2.1) (cf. Borodin and Salminen 2002, pp. 46-47). As in
Alvarez 2004, an impulse control for the system (5.1) is a possibly finite
sequence

UV = (7’1,7'2,...,Tk,...;gl,fg,...,fk,...)kSN (NSOO),

where{; }r<x is an increasing sequence®f-stopping times for which
7 > 0, and{&; }r<n denote a sequence of non-negative impulses (i.e.
& > 0forall £ < N) exerted at the corresponding intervention dates
{7 }x<n, respectively. In other words, the timeg can be interpreted
as the dates at which the irreversible policies are exercised,amea-
sures the size of the implemented irreversible policy. In line with vari-
ous financial and economical applications of impulse control, we assume
that whenever the irreversible policy is exercised, the system is instanta-
neously driven to a known generic initial statgc Z and restarted from
there. We denote as the class of admissible policies and assume that
7. — 7(Z) almost surely for all admissible policiesc V and all states
x el

Given the stochastic system described in (5.1) and our assumptions,
we now plan to determine the admissible impulse control palicye
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VY which maximizes the expected cumulative present value of all future
exercise payoffs from the present up to a potentially infinitely distant
future. More precisely, we now plan to consider the stochastic impulse
control problem

J,(z) =supE,

vey

N

Z ] , (5.2)

k=

whereg : 7 — R is a continuous mapping representing the revenues ac-
crued each time the irreversible policy is exercised. We assume through-
out this section thaf(zy) < 0, that is, that the exercise payoff is negative

at the generic initial state (thereby generating incentives to wait imme-
diately after the irreversible policy has been exercised). In line with the
notation in the previous section, we denote the associated deterministic
processes as

t
Xy = [ uX0ds+ Y s 0<t<T(D)
0

te <t

and

t
Xt”::c—l—/,up(X” ds+Y <&, 0<t<T(D),

t <t

whereT”(Z) = inf{t > 0 : X/ ¢ I} andT¥(Z) = inf{t > 0 :

Xg’ ¢ T} denote the first exit times of the underlying deterministic pro-
cesses‘?f andf(t” from the state-spacg, respectively. Accordingly, the
value of the associated deterministic impulse control problems are now
denoted as

N
Jo(z) = sup Y e~ ot oKy ) (5.3)
2% 1
and
— N ~
Jo(z) = sup » e "g(Xy ), (5.4)
veEYy k=1

wherer denotes the implemented sequential policy &pdienotes the
class of admissible irreversible policies (i.e. a sequence of deterministic
stopping times and non-negative impulses). We can now establish the
following important result characterizing both the value and the optimal
policy of the considered sequential timing problem.
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Theorem 5.1. Assume that = —1, that the exercise payoff(x) is
continuous and non-decreasing, and that the mappiijgr) attains on
the set(zy, b) a unique maximum at the stag¢ € (ro,b). Define the
mappingJ, : 7 — R, as

S

o) = Jo(wo) + (¥p(x) — (o)) sup {Hy(y)}

- {g(a:) + Hy(yp)¥p(z0) € [y;,0) (5.5)
Hy(y;) () z € (a,y))

and assume thal/s (y;) (v, () — ¥,(w0)) — g(w) is non-increasing on
(a,y3) and that

)
= 5" " 50

cp(x) Jp(7)

is non-increasing, continuously differentiable outside a countable set
D C Z, and satisfies the conditiof'(z+)| < oo for all z € D.
Then, J,(z) = J,(z) and the optimal impulse control is to instanta-
neously take the process; to the generic initial stater, whenever

the processXy hits the thresholdj; and restart the process from,.
Thus, the optimal impulse dates are= inf{t > 0 : X} > y;}, and

Ter1 = inf{t > 7 1 X} > y;}, k > 1, and the associated impulses
are §; = max(z,y;) — xo, k > 1. Moreover, ifu(x) > 0 andk,(z) =

u() 2, then,(x) = J,(x) = Jo(x), and it i, (x) = ri,(x) /) (2),
thenJ,(z) = J,(z) = Jo(z).

Proof. See Appendix H. ]

Theorem 5.1 states a set of weak conditions under which the consid-
ered stochastic impulse control problem (5.2) can be solved explicitly.
Along the lines indicated by our findings on the optimal timing problems,
Theorem 5.1 also presents a set of conditions under which the value of
the considered sequential stochastic control problem coincides with the
values of the associated certainty equivalent deterministic impulse con-
trol problems (5.3) and (5.4). It is worth pointing out that although the
value and the optimal policies can be described in an entirely analogous
way, the actual timing of the irreversible policies are naturally not iden-
tical due to the randomness of the intervention dates in the sequential
stochastic control case. An interesting implication of Theorem 5.1 is
now summarized.
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Corollary 5.2. Assume that = —1, that the exercise payaffx) is non-
decreasing, thay € C'(Z) N C*(Z\D), whereD is a countable set of
points inZ, and thatg”(z+) < oo for all z € D. Assume also that the
mappingg(r)/v,(x) attains a unique global maximum af € Z, and

that ¢’(x) /¢, (z) is decreasing orf. Then, the results of Theorem 5.1
are valid. More precisely, there is a unique threshgfde (z¢, b) max-
imizing the auxiliary mappind?;(z), the valueJ,(z) reads as in (5.5),

and the optimal impulse control can be characterized by the sequence
v = (G} = {(inf{t > 7y 0 XY > 5} max(z,yf) — @)}

Moreover, ifu(z) > 0 andk,(z) = u(m)iigg, thenJ,(z) = J,(z) =

jo(x), and if i, (z) = r,(z) /9, (), thenjp(x) = J,(x) = Jo(x).
Proof. See Appendix I. ]

Corollary 5.2 states a set of slightly stronger conditions under which
the considered class of sequential timing problems can be explicitly solved
and under which the value of the optimal policy coincides with the value
of the associated certainty equivalent formulations of these valuations.
Moreover, in accordance with the findings of Alvarez (2004) and our
findings (3.15) and (3.16) we also find the following analogy between
the stochastic sequential timing problem (5.2) and the optimal timing
problem (4.1).

Corollary 5.3. Assume that the conditions of Theorem 5.1 are met. Then
Jo(z) > V,(z) andy; < z7. Moreover,J,(x) | V,(z) andlimg,, v T
T, asxg | a.

Proof. The value function/, € C*(Z) N C*(Z\(D U {y;})) satisfies the
variational inequalities/,(z) > J,(zo) + g(z) > g(x) forallz € 7 and
(ApJ,)(x)—=7rJ,(x) < 0forallz € T\(DU{y;}). Moreover,J) (v+) <

oo forall x € Du{y;} implying that the conditions of Theorem 10.4.1 in
@ksendal (1998) are met and, therefore, that) > V,(z). Sincel =

9' W) Wo(yy) — wp(wo)) = 9(p)vn(y,) < ' (Wp)be(wy) — 9(up) v, (yp),

the inequalityy; < z; follows directly from the analysis of part (A) of
Corollary 3.8. The rest of the results are direct implications of Theorem
5.1 and the limitim,, ¥,(z) = 0 following from the assumed boundary
behavior of the underlying diffusion at the lower boundary ]

Corollary 5.3 demonstrate that there is a close connection between
the stochastic impulse control problem (5.2) and the optimal stopping
problem (4.1). More precisely, Corollary 5.3 shows that given the con-
ditions of Theorem 5.1, the value and optimal exercise threshold of the
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considered sequential irreversible policy tends towards the value and ex-
ercise threshold of the associated optimal timing problem of a single
irreversible policy (4.1) as the generic initial statetends towards the
lower boundary: of the state space of the diffusion modelling the under-
lying state variable. However, the value of the impulse control problem
dominates the value of the associated optimal stopping problem. The
reason for this finding is naturally the fact that in the sequential stop-
ping case, the decision maker does not lose the option to exercise the
policy once again later in the future. Hence, the required exercise pre-
mium is lower in the impulse control than in the optimal stopping case
and, accordingly, the exercise threshold of the opportunity is lower in
the sequential stopping case than in the single stopping case. In terms of
forest economics, Corollary 5.3 demonstrates that the expected present
value of the future harvests is higher and the optimal rotation threshold
is lower in the ongoing rotation problem than in the single rotation case
(cf. Alvarez 2004).

In line with the analysis of the optimal stopping problem (4.1) in
the presence of a decreasing exercise payoff, we can now establish the
following.

Theorem 5.4. Assume that = 1, that the exercise payoff is contin-
uous and non-increasing, and that the mappﬁg(x) attains on the
set(a, z9) @ maximum at the statg, € (a,z). Define the mapping

A

J,:IT— R, as

~ ~

Jo(w) = Jp(x0) + (¢,(x) = @p(w0)) sup {Hy(y)}

:{mw+@@mmm>xem@A (5.6)
Hy (1), (%) z € (i, b)

and assume thatf’(7,)(¢(z) — ¢(x9)) — g(x) is non-decreasing on
(9,,b) and that

o) = ofenle) = )

IS non-increasing, continuously differentiable outside a countable set
D C Z, and satisfies the conditiohﬁ’;'(:ci)] < oo for all x € D.
Then, J,(z) = J,(z) and the optimal impulse control is to instanta-
neously take the process; to the generic initial stater, whenever

the processXy hits the thresholdj, and restart the process from,.
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Thus, the optimal impulse dates are= inf{t > 0 : X} < g,}, and
e = inf{t > 7, : X} < g,}, k£ > 1, and the associated impulses
are §; = wo — min(z,y3), k > 1. Moreover, ifu(z) < 0 andk,(z) =
p() 2, then () = J,(x) = Jo(x), and it fi,(x) = re,(x) /&) (@),
thenJ,(z) = J,(z) = Jo(z).

Proof. The proof is analogous with the proof of Theorem 5.1. [

Theorem 5.4 states a set of conditions under which the stochastic
impulse control problem (5.2) can be solved in terms of the decreas-
ing fundamental solution when the exercise payoff is decreasing. Such
configurations arise typically in models considering irreversible lumpy
capital investments and inventory control. An interesting implication of
Theorem 5.4 is now summarized.

Corollary 5.5. Assume that = 1, that the exercise payoffx) is non-
increasing, thaty € C*(Z) N C*(Z\D), whereD is a countable set of
points inZ, and thatg”(z+) < oo for all z € D. Assume also that
the mappingy(z)/¢,(x) attains a unique global maximum &t € Z,
and thatg'(z) /() is increasing orZ. Then, the results of Theorem
5.4 are valid. More precisely, there is a unique threshglde (a, ()
maximizing the auxiliary mapping{S(x), the valueJ,(z) reads as in
(5.6), and the optimal policy can be characterized by the sequenee
{(7h,Cx)} = {(inf{t > 71 : X} < g, }, 20 — min(z,y,))}. Moreover,

if u(z) < 0 andk,(z) = u(z) 222 then,(z) = J,(z) = Jo(z), and if

®p (z)

fip(x) = 10,(2) /19 (), thenJy(z) = J,(x) = Jo(2).

Proof. The proof is analogous with the proof of Corollary 5.2.  [J

As in the case of Theorem 5.1, we can now establish a connection be-
tween between the stochastic sequential irreversible investment problem
(5.2) and the optimal timing problem of a single investment opportunity
(4.1). This connection is established in the following.

Corollary 5.6. Assume that the conditions of Theorem 5.4 are met. Then
Jy(z) > V,(x) andyg, > z,. Moreoverlim,,, J,(z) = V,(x) and

limgop Y, = ).
Proof. The proof is analogous with the proof of Corollary 5.3. [

In accordance with the finding of Corollary 5.3, Corollary 5.6 demon-
strates that there is again a close connection between the impulse control
and the optimal stopping of a linear diffusion. Having established a set
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of sufficient conditions under which the considered stochastic impulse
control problems are explicitly solvable, we now consider the impact of
increased volatility on the value and exercise threshold of the optimal
policy. In accordance with the findings of Theorem 4.3 we now find the
following.

Theorem 5.7. (A) Assume that the conditions of Theorem 5.1 and part
(A) of Theorem 3.5 are satisfied. Then increased volatility increases the
value and postpones rational exercise by increasing the optimal exercise
threshold. More precisely, for afl > p we have that/;(z) > J,(x) and

y; > y,. Moreover, ifu(z) > 0 for x € Z, thenk;(z) < k,(x) and if
fip(z) = 7’%(37)/1/1;(3?) thenjis(z) > fi, ().

(B) Assume that the conditions of Theorem 5.4 and part (B) of Theo-
rem 3.5 are satisfied. Then, increased volatility increases the value and
postpones rational exercise by decreasing the optimal exercise thresh-
old. More precisely, for allb > p we have that/;(z) > J,(z) and

U < Yp. Moreover, ifu(x) < 0forz € 7, thenk;(x) < k,(z) and if
o) = rip, () /6, () thenji () < fiy(x).

Proof. The alleged result are straightforward implications of Theorem
4.1, Theorem 3.5, and Theorem 3.9. O

Theorem 5.7 extends the results of Theorem 4.3 and states a set of
conditions under which increased volatility unambiguously increases the
value of an investment opportunity and postpones its rational exercise
by increasing the required exercise premium. In line with the analysis
of Theorem 4.3, we observe that Theorem 5.7 states a set of conditions
under which

y; = argmax { H¢(x)} > argmax { H}(x)} =y (5.7)
whenever the exercise payoff is non-decreasing and
7 = argmax {Hﬁ(m)} < argmax {H,l))(x)} =Up (5.8)

whenever the exercise payoff is non-increasing. This result, which clearly
indicates that the ratio between the exercise payoff and the corresponding
fundamental solution is the principal determinant of the required exercise
premium can also be motivated by applying the results of Corollary 3.8.
In line with Theorem 3.9, Theorem 4.3 also demonstrates that increased
volatility decreases the required risk-adjustment in this case as well.
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6 Explicit lllustrations

6.1 Geometric Brownian Motion

In order to illustrate our results explicitly in a parametrized and typi-
cally applied framework, assume that the underlying stochastic dynam-
ics{X/;t > 0} are described by the stochastic differential equation

AX7 = pX7dt + o XZdW,, X§ =z, (6.1)

whereu € R ando € R, are known exogenously determined constants
and W, denotes a standard Wiener process. It is now clear that in the
present example the fundamental solutions read d4s) = z* and

v (x) = 2%, where

denotes the negative root of the characteristic equatiotx —1)+2u2—
2r = 0. Given these observations, we find that the results of Theorem
3.1 can be expressed in the present case as follows.

Corollary 6.1. (A) Assume that > 0 and thatk,(z) = pa, = r —

s0%a,(a, — 1). Then we have for alj € C(R,) andz,y € R, that

g(x) T2y

ef“a”t(y)g(xt( ) =E, [eiTT(y)g(Xg )] -
y ) g (z/y)* <y,

whereX, = ze, t(y) = inf{t > 0: X; > y} = %(lny —Inz)* and
T(y) =inf{t > 0: X7 > y}.

(B) Assume that: < 0 and thatk,(z) = pl3, = r — 30°6,(6, — 1).
Then, we have for alj € C(R,) andz,y € R, that

) =E, [eTWg(X7,)] = {g(y)(m/y)ﬁa x>y

e_l‘ﬂaf(y)g(Xg
(
g9() z <y,

Y

whereX, = zet, i(y) = inf{t > 0: X, <y} = —+(Inz —Iny)* and
T(y) =inf{t > 0: X7 <y}.
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It is worth noticing that if the conditions of part (A) of Corollary 6.1
are satisfied, then

Oks(x)  20,(1 — ay)
00 B M 0_(040 - ﬂa)

That is, as was already indicated by our Theorem 3.5, the required risk
adjusted discount rate is a decreasing function of the underlying volatil-
ity only if © < r, thatis, only if the net appreciation ratér) = px —rx

is decreasing. However, in case the conditions of part (B) of Corollary
6.1 are satisfied the net appreciation rate is always decreasing and, there-
fore, in that case

0, pu=r.

ANV
ANV

ak0<x> 2@7(50 B 1)

80 B Iu 0<&U - ﬁa) = 0

The results of Theorem 3.2 are illustrated in the present example in the
following.

Corollary 6.2. (A) Assume thai, () = rz/a, = (u+ 3(a, — 1)0?)z.
Then we have for ay € C(R, ) andz,y € R, that

g() r>y

e " Wg(Xi,)) = B [e T Wg(XZ,))] =
" v g (z/y)*  x <y,

~

whereX, = ze(/*) i(y) = inf{t > 0: X, >y} = Sa(lny — Inz)*
and7(y) = inf{t > 0: X7 > y}.

(B) Assume thafi, (z) = rz/3, = (n — 3(1 — B,)0%)z. Then, we have
forall g € C(R,;) andz,y € R, that

gy)(z/y)% = >y

e~ W) o (X0 =E, P ¢)) o —

whereX, = ze(/f)t t(y) = inf{t >0: X, < y} = —ﬁT"(lnfc—ln y)t,
and7(y) = inf{t > 0: X7 < y}.

It is now clear from Corollary 6.2 that i, (z) = rx/a, then

Ofig(x)  2rz(os —1)

oo aso(as — Bs) 0, r

AV
AV

1

proving that the required risk adjusted growth rate is an increasing func-
tion of the underlying volatility as long as the net appreciationfétg =
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px — rx is decreasing. As in the case of the risk adjusted discount rate,
we now find that ifg, (x) = rz /3, then

Ofio(x) _ 2raz(l -5,
80’ B ﬁaa<@a - 50’)

That is, as was established in Theorem 3.10, the risk adjusted growth
rate is a decreasing function of the underlying volatility coefficient.

< 0.

6.2 Mean Reverting Diffusion

To illustrate our results in a more complex case, consider the diffusion
X7 described or{0,7~ '), wherey > 0 is a known exogenously deter-
mined parameter, by the stochastic differential equation (logistic growth
subject to a stochastic intrinsic growth rate)

dX7 = pX{ (1 —yX7)dt + o X7 (1 — 4 X7)dW,, X =z. (6.2)

In order to illustrate the results of our first four sections, we first have
to determine the fundamental solutions(x) andy, (x). As was estab-
lished in Alvarez 2000, we can now establish the following.

Lemma 6.3. The fundamental solutions read as

YT o YT
= F P el
a2 (1 —’V:v) (a’b’c’ 1—7&3)

Bo
v v
o = F 7bu y
#0(2) (1—%‘) (a ‘ l—w)

where F' denotes the standard hypergeometric function, the parameters
a, > 0andg, < 0 are defined as in the previous sections 1 — (5, +

and

aaa
1 pu > or 1w > or
=1 -z - 4+ £ =
¢ +\/(2 02) T \/(2+02> T
and
2
W 2r 1w 2r
b=1 - — = — -+ = —
+\/<2 a2> +02+\/(2+02> o?
Proof. See Lemma 5 in Alvarez 2000. ]
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It is now clear from the findings of Lemma 6.3 that given the com-
plexity of the fundamental solutions in the present example, deriving the
explicit representation of the risk adjusted discount rate and expected
growth rate is uninformative. Hence, in order to characterize the form
of the risk adjustments we illustrate the nature of the adjustments nu-
merically. Since the net appreciation rate reads in the present case as
x(p — r — pyz) we find that whenever the growth rate is smaller than
the discount rate, that is, when< r, the conditions of Theorem 3.5 are
satisfied and, therefore, thay (z) is strictly convex and that increased
volatility decreases the risk adjusted discount fater) and increases
the risk adjusted growth rate,(z). In Figure 1 the risk adjusted dis-
count ratek, (x) is illustrated for various values of the volatility coeffi-
cientc = 0.1,0.15, 0.2 under the assumption that= 0.01, x = 0.025,
andr = 0.035. Figure 1 clearly indicates that in the present case the risk
adjusted discount rate is not only a decreasing function of the volatility
coefficient, it is also a decreasing function of the underlying state. For
example, the numerical illustration presented in Figure 1 indicates that
for a volatility of 10% the risk adjusted discount rate ranges frass
to 2.5%. Similarly, for a volatility of20% the risk adjusted discount rate
ranges fron8% to 1.5%.

K(X)
0.0325 F
003+

0.0275

0.025

0.0225

20 40 60 . 80 100
0.0175 | -

0.015 *

Figure 1: The risk adjusted discount ratg ).

Figure 2 in turn illustrates the risk adjusted expected growth rate
te(x) = 11, (x) /9 (x) for various values of the volatility coefficient
under the assumption that= 0.01, x = 0.025, andr = 0.035. As was
established in Theorem 3.10 increased volatility increases the risk ad-
justed growth rate,, (z). As Figure 2 clearly indicates, the risk adjusted
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growth rateii, (x) is, in accordance with the the underlying mean revert-
ing dynamics, hump-shaped and that the impact of increased volatility is
relatively weak close to the boundaries of the state space and strong in a
neighborhood of the maximal attainable growth rate.

Ho(X)

1 RPN
0.8
0.6 O

7 Y \ \
0.4 // \
/,

0.2 / |

20 40 60 80 100

Figure 2: The risk adjusted expected growth ratér).

Itis now clear that ifu > r then the increasing fundamental solution
is not convex on the entire state space and, therefore, in that case the
impact of increased volatility is ambiguous and depends on the state of
the underlying process. The impact of increased volatility on the risk
adjusted discount rate is illustrated in Figure 3 for various values of the
volatility coefficiento under the assumption that= 0.01, = 0.045,
andr = 0.03. As Figure 3 clearly indicates, the impact of increased
volatility on the risk adjusted discount rate becomes ambiguous and that
the sign of the relationship between increased volatility and:) can
be actually reversed depending on the current state of the underlying
diffusion.
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Figure 3: The risk adjusted discount ratgx).
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7 Conclusions

In this paper we have considered the certainty equivalent characteriza-
tion of a broad class of valuations arising in the literature on irreversible
decision making (for example, in the literature on irreversible invest-
ment and on the rational management of renewable resources). We pre-
sented a set of conditions under which the original valuation subject to
a stochastic underlying state variable can be expressed in a determinis-
tic certainty equivalent form by risk-adjusting either the interest rate at
which future cash flows are discounted or the infinitesimal growth rate at
which the randomly fluctuating underlying value process is expected to
grow. Given the volatility-dependence of these adjustments, we stated a
set of typically satisfied conditions under which increased volatility un-
ambiguously increases the risk premium associated with the considered
class of irreversible decision making problems and, therefore, tends to
postpone the rational exercise of irreversible decisions. We character-
ized the comparative static properties of the risk-adjustments and found
that the impact of increased volatility on the risk-adjusted discount rate is
typically positive while its impact on the risk-adjusted growth rate may
be positive or negative depending on the precise form of the considered
valuation. We also showed that the risk adjustments are typically state-
dependent and that the risk of potential liquidation strengthens the effect
of volatility on both the risk-adjusted discount and growth rate.

Although the conclusions of this study are considerably general (in
terms of the considered class of valuations) there are two possible direc-
tions to which the analysis could naturally be extended. First, although
the assumed potential perpetuity of the considered planning horizon is
acceptable for models considering deferrable decisions subject to stable
market conditions (in the sense that the objective remains unchanged) it
is not clear whether our conclusions would remain valid within a finite-
horizon setting where the irreversible decision can be postponed only up
to a known date at which the opportunity is expired. Second, it is not
clear whether the conclusions of our study remain valid in a multidimen-
sional framework where the underlying stochastic state-variables have a
dynamic and potentially correlated stochastic structure. Although the re-
sults of the seminal study McDonald and Siegel (1986) clearly indicate
that a certainty equivalent formulation is possible in that specific case, it
is not clear whether this conclusion can be extended to a more general
multidimensional setting. Such extensions naturally require a different

43



and more general mathematical analysis which is out of the scope of the
present study and, therefore, left for future research.
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A Proof of Theorem 3.1

Proof. (A) The positivity and monotonicity of the increasing fundamen-
tal solutiony,(x) implies that the mapping,(z) = u(z)y),(z)/¥,(v)

is well-defined and does not diverge in the interior of the state-space
Thus, standard differentiation yields

dt

d [6— Ig ko (X)dsqpy (%)

S TWTRPE = (X (X)) — kp(X)w,(Xy) = 0.

Hence, the assumptignz) > 0 onZ implies that the first exit time of
the process(; from any open sefa, y) C 7 is finite and, therefore, that

W)k (R0ds ) O _ W) g (%))ds
€ Jo ko(Xe)d ¢p(Xt(y)) =€ Jo™™ ko (Xs)d wp(y) = %(95)

On the other hand, since the mappingx) is r-harmonic for the diffu-
sion X/ and the lower boundary is either natural, exit or killing (implying
thaty,(a) = 0), we find that

B, [e7"9,(X7,)] = B. [0 ,(0) = 6,(0)

Given these observations, let us now consider the identity (3.2). Since
7(y) = t(y) = 0 for all z > y, we find that ifxr < y then

-rT —rT ¢ X
E, [e <y>g(xf(y))] — g(y)E, [ W] = g(y)ﬁ
and
— Jo@ ko(Xs)ds X _ — [I) g, (Ro)ds _ ¢p(37)
e = e —
9( X)) = 9(y) (v) )
completing the proof of part (A). The proof of part (B) is completely
analogous. ]

B Proof of Theorem 3.2

Proof. In light of the proof of Theorem 3.1 it is sufficient to establish
that




Slncet( ) = 0forall z € [y,b) andg(z) is continuous, we find that
"W g(X;,) = g(z) forall z € [y,b). On(a,y)) we find that

e_rf(y)g()?f(y)) = g(y)e—rf(y) = g(y)dy(x)7

where the mapping,(z) satisfies the ordinary first order differential
equationji,(x)d, (r) — rd,(x) = 0 subject to the boundary condition
dy(y) = 1. Choosingji,(z) = ry,(z)/¢;(x) then yields thatl, (v) =
Y,(x)/1,(y) which completes the proof of part (A) of our Theorem.
Proving part (B) is completely analogous. ]

C Proof of Theorem 3.3
Proof. (A) The recursive definition of the mappirg (x) implies that

Yp(2)
1/)p(y)

for all < y. Lettingz — z, and solvingF,(x,) from the resulting
equation then implies that

Fo(r) = (g9(y) + F,(x0)) (C.1)

o) x0)
Folwo) = 3 00) = by (o) (©2)

Plugging (C.2) into (C.1) then yields tha},(x) = ., (y)y,(x) for all

x < y. Sincer(y) = 0 for all z > y we find thatF,(z) = g(z) +
Fy(w0) = g(x) + g (9)p(0) = 9(x) — 9(y) + 112 (4}, () for al

x > y and, therefore, that,(z) can be expressed as in (3.9). The
identity F,(z) = Fy(z) is now a straightforward implication of part (A)
of Theorem 3.1. Proving part (B) is entirely analogous. O

D Proof of Theorem 3.5

Proof. (A) As in Alvarez (2003a, 2003b, 2004), assume that | <
u < b (implying that(l,u) C Z) and let7 = inf{t > 0: X/ & (l,u)}
denote the first exit time of the underlying diffusion from the open inter-
val (1, u). Invoking Dynkin’s theorem yields
E, [ X! =z + Ex/ e "0(X?)ds. (D.1)
0
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On the other hand, solving the boundary value problems representing the
expected values appearing in (D.1) yields

E, [e77X!] = lM + UM

P Y(u)

and

E, / CeTa(X0)ds = B'p(a) / "G )P (y)dy
B / " ()8 (y)dy,

wherem/,(z) = 2/(p*c*(2)S)(x)) denotes the density of the speed mea-
sure of X7, ¢(x) = wp(w) — o)t (2)/,(u) , P(x) = Vy(x) —
wp(l)wp(x)/%(l), and

B=(1- ) ®

denotes the Wronskian of the solutiopgz) and+)(z). Inserting these
equations into (D.1) and differentiating then yields that

—l—ug((gzl + B

15 () / "G w)B)m (y)dy
LB / * B (y)dy.

Dividing this expression with{/(a:) and reordering terms yields

~1 _ ~lgb’(x) LY
Px)  @)el) - Plu)

F@) [* - ,
o | iwotm )y

— Bl/ P(y)0(y)m),(y)dy.

Differentiating this equation and multiplying the resulting identity with

the factor—(¢’(z))? then implies that

— B!

n _ 25;(1’) r - m —0(r '(;/(l’) i riB
0 = s [ | wewmynn — gy -

Invoking now the assumed monotonicity of the mapgitg) then finally
yields that

28,(2)B p(l)
o?(z) (1)
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Letting ! | a, invoking the inequalityim,, ;(x)/¢,(z) < 0, and ob-
serving thatlimy, ¢ (z) = ¢5(z) then finally implies that)7(z) > 0

for all x € Z, proving the alleged convexity of the solution. The re-
sult thaty,(z) /vs(y) > ¥,(x)/v,(y) follows from Corollary 3 in Al-
varez 2003a. Thus, it remains to establish that the percentage growth
rate (i.e. logarithmic derivative) of the increasing fundamental solution
1,(x) dominates the percentage growth rate of the increasing fundamen-
tal solutiony;(x). To observe that this is indeed the case, we notice that

the inequality, () /s(y) > v, (x) /4, (y) implies
Us) [T

: VoY) =/ Vp(y) ’

from which the alleged result follows by the mean value theorem for
integrals. In order to prove the last alleged result, we follow the approach
introduced in Alvarez 2004 and define the continuous mappind. —

R forall x € Z andy > x (with (zq,y) C Z) as

u,(z) = Yp() _ V() — Pp(0) _ Vp(20) (Vp(y) — ¢p($))
g wﬂ(y) wp(w - ¢p(x0> ¢p(y) (djp(y) - ¢p($o))

The positivity, monotonicity and continuity of the increasing fundamen-
tal solution clearly implies that,(x) > 0forall z < y and thatim,, u,(z) =
0. Moreover, since),(z)/v,(y) < ¥s(x)/v;(y) for all 2 < y and the
mappingu,(z) is continuous, we find that for adl > 0 there is an open
neighborhoody — 6, y) of y such that for all- € (y — d, y) we have that

Ya() — ¥p(xo) _ ¥p(x) by () () = Po(o)
= 1p(

—E>———£&>
SU())

Vp(y) — (o) ~ ¥p(y) V() V()

However, since > 0 is arbitrary andim,, (¢s(x) — ¥5(x0))/ (¥s(y) —

Vp(20)) = limgry (¥, () — ¥p(20))/ (Yp(y) — Yp(x0)) = 1, we find that

Vi(y) - V(y)
V() — (o) ~ Vp(y) — p(o)

forall y € (zg, 00). Proving part (B) is completely analogous. O

— E&.
p

E Proof of Corollary 3.8

Proof. Consider the mappings; () andh’(x) defined onZ\D. It is
now clear that under the conditions of part (A) of Theorem/3,&:) >
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h{(x) for all x € Z\D proving the first claim of part (A) of our corollary.
Standard differentiation of the mappirig;(z) yields that for allz €
(x0,0)\D we have
/
HY () = V) ey >

p

G Y
(p(x) = ¥p(w0))* 777 (Wp(x) — Yp(w0))* P
proving the second claim of part (A) of our corollary. Establishing the
validity of part (B) is entirely analogous. O

F Proof of Theorem 3.11

Proof. Consider first the mapping,(z) and assume thgt > p. Our

assumptions now imply that;(x)/v;(y) > ¥,(z)/¢,(y) forall z <y
and, therefore, that

Fy(wo) = % —9(y) < % = 9(y) = Fp(xo)

Yo (y) Vs(y)

demonstrating that increased volatility increases the value at least locally
at xo. Combining this local observation with the recursive formulation
of F,(z) now implies that

UolT) < (g() + Fy(wo) 22 = Fy(a)

A ¥p(y)

forall z € (a,y). SinceF,(x) = g(x) + F,(zo) < g(x) + Fi(zg) =
F,(z) only, b) we find that increased volatility increases the vatjér)
on the entire state spade Proving this result for the valu&/,(x) is
entirely analogous. O

Fp(x) = (g(y) + Fp(xo))

G Proof of Theorem 4.1

Proof. Since
Vp(w) = By [ g(X2)]

we find thatV,(z) < V,(z). To establish the opposite inequality we
first observe that the conditions of the theorem imply KPj)aéE ClIZ)n
C*(Z\D), thatf/p”(a:i) < ooforallz € D, and thal/, () > max(g(z),0)
for all z € Z. Moreover, sincé AV,)(z) = rV,(x) on (a, %) and

(@) = ((AV,)(2) = 1V, (@), (@)mj () <0
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for all z € (z3,b)\D, we find that(AV,)(z) < rV,(z) for all z €
T\D. Thus,V,(z) constitutes an-excessive majorant of the exercise
payoff g(z) for the underlying diffusionX/. However, sincé/,(z) is the
least of these majorants we find thatz) > V,(z) and, therefore, that
V,(z) = V,(x). The latter part of our theorem is now a straightforward
implication of part (A) of Theorem 3.1 and part (A) of Theorem 3.2l

H Proof of Theorem 5.1

Proof. Itis now clear that since the proposed value is attained by apply-
ing an admissible impulse control strategy we have ﬁ;éd:) < J,(z)

for all x € Z. In order to prove the opposite inequality we first ob-
serve that/, € C*(Z) N C*(Z\{y’}), thatJ,(z) > 0, and that/,(z) =

A

Jo(z0) + g(z) for all z > y*. However, since

o) = Jp(x0) = g(w) = Hy () (Wy(2) — ¥ (0)) — g()

forall z € (a,y;) and HE (y;) (¥, (2) — ¥p(20)) — gl
be non-increasing ofu, y;), we observe thaf, () >

all z € 7. Moreover, sincé.A,J,)(z) — rJ,(z) = 0

assumption

) was assumed to
Jo(wo) + g(x) for
on (a,y;) and by

&) = (A, (@) = (@), () () < 0

for all z € (y?,b)\D we find that(A,.J,)(z) — rJ,(z) < 0 forall z €
I\(D U {y:}) and, therefore, thaf,(z) > J,(z) for all z € Z, thus
completing the proof of the first claim of our theorem. The latter part of
our theorem follows directly from Theorem 3.1 and Corollary 3.8[]

| Proof of Corollary 5.2

Proof. Consider first the mapping

() = L2 (o) = o)) ~ g(2)

Our assumptions imply thadt;(z) is decreasing and satisfies the condi-
tions 4 (x9) = —g(xo) > 0 andhi(x) = —g' (a3 ), (o) /) () < O
demonstrating that/;(z) attains a uniqgue maximum afx,, b). It s,
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therefore, now sufficient to demonstrate that the proposed value func-
tion satisfies the standard quasi-variational inequalities guaranteeing the
optimality of the proposed policy. The assumed monotonicity of the

mappingg’ () /() implies that

A9) (o) = rgte) < 7 (£, 0) ~ o(0))

for all = € 7\D. Thus, we observe that dp;, b)

A

Ai(z) = (.AJp)(:E)—ij(x)
g'(x)

IWo) ) rtala) — ol
< o (L) - S ) - o) - o)

Since Ay (y;) < 0 and A,(x) is decreasing by the monotonicity of

g'(x) /¢, (z), we find that(AJ,)(z) — rJ,(z) < 0forall z € T\D.
Consider now for alk € (a,y;) the difference

9'(y,)
()
Since Ay(y;) = 0 and Ay(r) is decreasing by the monotonicity of
g'(x)/¢,(x), we find thatA,(x) > 0 for all z € (a,y;) and, there-
fore, thatJ,(z) > J,(x0) + g(x) for all = € Z. Sinceg”(z+) < oo for

all z € D, we find that the conditions of Theorem 5.1 are satisfied thus
completing the proof of our corollary. O

D) = Jp(2) = J,(w0) — glz) =

(Vo) = p(0)) — 9()
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