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ABSTRACT 

Johanna Rokka 

NEW [18F]TRACERS FOR ALZHEIMER’S DISEASE IMAGING. LABELING SYNTHESIS AND 

BIOLOGICAL TESTING. 

University of Turku 

Faculty of Medicine 

Department of Clinical Physiology and Nuclear Medicine, Turku PET Centre  

Turku Doctoral Programme of Molecular Medicine TuDMM 

Annales Universitatis Turkuensis Sarja- ser. D osa  - tom. 1156  

Suomen Yliopistopaino Oy, Juvenes Print - Turku, Finland 2015 

Alzheimer’s disease (AD) is the most common form of dementia. Characteristic changes 

in an AD brain are the formation of β-amyloid protein (Aβ) plaques and neurofibrillary 

tangles, though other alterations in the brain have also been connected to AD. No cure is 

available for AD and it is one of the leading causes of death among the elderly in 

developed countries. 

Liposomes are biocompatible and biodegradable spherical phospholipid bilayer vesicles 

that can enclose various compounds. Several functional groups can be attached on the 

surface of liposomes in order to achieve long-circulating target-specific liposomes. 

Liposomes can be utilized as drug carriers and vehicles for imaging agents. 

Positron emission tomography (PET) is a non-invasive imaging method to study 

biological processes in living organisms. In this study using nucleophilic 18F-labeling 

synthesis, various synthesis approaches and leaving groups for novel PET imaging tracers 

have been developed to target AD pathology in the brain. The tracers were the thioflavin 

derivative [18F]flutemetamol, curcumin derivative [18F]treg-curcumin, and functionalized 

[18F]nanoliposomes, which all target Aβ in the AD brain. These tracers were evaluated 

using transgenic AD mouse models. In addition, 18F-labeling synthesis was developed for 

a tracer targeting the S1P3 receptor. 

The chosen 18F-fluorination strategy had an effect on the radiochemical yield and specific 

activity of the tracers. [18F]Treg-curcumin and functionalized [18F]nanoliposomes had 

low uptake in AD mouse brain, whereas [18F]flutemetamol exhibited the appropriate 

properties for preclinical Aβ-imaging. All of these tracers can be utilized in studies of the 

pathology and treatment of AD and related diseases. 

Keywords: Alzheimer’s disease, β-amyloid, Functionalized nanoliposomes, Positron 

emission tomography (PET), PET tracer, Nucleophilic 18F-labeling, S1P3 receptor
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 TIIVISTELMÄ 

Johanna Rokka 

UUSIEN ALZHEIMERIN TAUDIN [18F]MERKKIAINEIDEN LEIMAUSSYNTEESI JA 

BIOLOGINEN TESTAUS 

Turun yliopisto 

Lääketieteellinen tiedekunta 

Kliininen fysiologia ja isotooppilääketiede, Valtakunnallinen PET-keskus 

Molekyylilääketieteen tohtoriohjelma TuDMM 

Annales Universitatis Turkuensis Sarja - ser. D osa  - tom. 1156  

Suomen Yliopistopaino Oy, Juvenes Print - Turku, Suomi 2015 

Alzheimerin tauti on yleisin dementiasairaus. Tyypillisimmät Alzheimerin taudin 

aiheuttamat muutokset ovat β-amyloidi(Aβ)proteiinista koostuvien plakkien sekä 

hermosäievyyhteiden muodostuminen aivoihin. Alzheimerin tautiin on liitetty myös 

muita aivomuutoksia. Tällä hetkellä Alzheimerin tautiin ei ole parantavaa hoitoa. 

Ikääntyneiden keskuudessa Alzheimerin tauti on yksi tavallisimmista kuolemaan 

johtavista syistä. 

Liposomit ovat biologisesti yhteensopivia, luontaisesti hajoavia, pallomaisia 

kaksoisfosfolipidikerroksellisia vesikkeleitä, jotka voivat sulkea sisälleen erilaisia 

yhdisteitä. Liposomin pintaan voidaan liittää useita erilaisia funktionaalisia ryhmiä, jotta 

saadaan elimistössä pitkään kiertäviä, tarkoin kohdennettuja liposomeja. Liposomeja 

voidaan käyttää lääkeaineiden ja kuvantamisaineiden kuljettimina. 

Positroniemissiotomografia (PET) on kuvantamismenetelmä, jonka avulla voidaan tutkia 

biologisia prosesseja elävässä eliössä. Tässä tutkimuksessa nukleofiiliseen 18F-

fluorileimaukseen perustuvien synteesireittien avulla kehitettiin uusia merkkiaineita 

Alzheimerin taudin aivomuutosten tutkimiseen. Kehitetyt merkkiaineet olivat 

tioflaviinijohdos [18F]flutemetamoli, kurkumiinijohdos [18F]treg-kurkumiini sekä 

funktionalisoituja [18F]nanoliposomeja. Kaikki nämä yhdisteet kohdistuivat Alzheimerin 

taudin Aβ plakkeihin. Merkkiaineet evaluoitiin käyttäen Alzheimerin tautia mallintavia 

siirtogeenihiiriä. Lisäksi kehitettiin S1P3-reseptoriin kohdentuvan merkkiaineen 18F-

leimaussynteesi.  

Valitulla 18F-leimaussynteesistrategialla on vaikutusta merkkiaineen radiokemialliseen 

saantoon ja ominaisaktiivisuuteen. [18F]Treg-kurkumiini sekä funktionaaliset 

[18F]nanoliposomit kertyivät vain vähän koe-eläimen aivoihin, kun taas 

[18F]flutemetamoli osoittautui sopivan käyttökelpoiseksi prekliiniseen kuvantamiseen. 

Kaikkia tässä työssä kehitettyjä merkkiaineita voidaan käyttää tutkittaessa Alzheimerin 

taudin ja samanlaisten sairauksien patologiaa ja hoitoa.  

Avainsanat: Alzheimerin tauti, β-amyloidi, funktionalisoidut nanoliposomit, 

positroniemissiotomografia (PET), PET-merkkiaine, nukleofiilinen 18F-leimaus, S1P3-

reseptori 
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1. INTRODUCTION 

Alzheimer’s disease (AD) is the most common form of dementia (Duthey, 2013). Several 

alterations in the brain are connected to AD, the characteristics of which are the formation 

of β-amyloid protein (Aβ) plaques and neurofibrillary tangles in AD brain (Nordberg et 

al., 2010, Serrano-Pozo et al., 2011). These characteristic changes were first observed by 

Professor Alois Alzheimer in 1906 when he examined his patient’s brain after her death 

(Mauer et al., 1997). Although knowledge about AD has grown during the last century, 

the underlying causes are still unknown. Currently, there are approximately 36.5 million 

AD patients in the world and no curative treatment is available (Duthey, 2013, 

Alzheimer’s Association, 2014). 

Nanoliposomes are closed phospholipid bilayer structures that can both encapsulate 

compounds and have functional groups attached on the surface (Torchilin, 2006, Allen 

and Cullis, 2013). Liposomes can be applied in medicine and cosmetics (Torchilin, 2006, 

Liu and Welchs, 2012, Allen and Cullis, 2013). In medicine, functionalized 

nanoliposomes are used in drug delivery and offer an interesting platform for combining 

therapy and multimodality imaging agents (Torchilin, 2006, Liu and Welchs, 2012, Allen 

and Cullis, 2013). The biggest drawback of nanoliposomes has been fast opsonin 

recognition and clearance from the blood to the reticulo-endothelial system (RES) 

(Moghimi et al., 2001, Trochilin, 2006). Several approaches have been developed to 

create long-circulating stealth liposomes, polyethylene glycol (PEG) functionalization 

being one of the most commonly used (Moghimi et al., 2001, Trochilin, 2006, Allen and 

Cullis, 2013). Nanoliposome surface functionalization is also used to enhance liposome 

entry into the tissue of interest and target-specific binding, as well as to attach imaging 

agents (Torchilin, 2006, Liu and Welchs, 2012, Allen and Cullis, 2013). Research on 

functional groups and functionalized liposomes aiming at developing long-circulating 

target-specific functionalized nanoliposomes for medicinal applications (Torchilin, 2006, 

Liu and Welchs, 2012, Allen and Cullis, 2013) is currently being carried out by many 

research groups. 

Positron emission tomography (PET) is a non-invasive imaging technique that can be 

used to study biological processes in living organisms. For a PET study, the tracer (a 

compound labeled with a positron-emitting nuclide) is administered to the subject under 
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investigation. Several positron emitters can be used for labeling the PET tracers, and the 

most commonly used are 11C, 13N, 15O, 18F, and 68Ga. These positron emitters decay 

primarily by positron emission (β+) followed by annihilation, which results in two 511 

keV γ rays that can be detected with the PET camera. 

Before PET imaging can be used as a diagnostic tool in a clinical setting, the PET tracer 

needs to be synthesized and evaluated (Figure 1.1). First, the positron emitter is produced 

with a cyclotron or radionuclide generator, and is then attached to a molecule during PET 

tracer synthesis. The tracer binding properties and specificity for the target are studied in 

vitro using cell cultures, peptide extracts, or post-mortem tissue sections. The 

pharmacokinetic properties of the tracer are then studied in experimental animals using 

in vivo or ex vivo methods (Figure 1.1.). 

Figure 1.1. Chart of new tracer production and evaluation. The PET tracer is synthesized and 

analyzed, and then evaluated preclinically before it can be administered to humans. 

This thesis describes the development of new PET tracers for imaging in AD (Figure 

1.2.). The studied tracers were thioflavin and curcumin derivatives (study II-III) and 

functionalized nanoliposomes (study IV) targeting Aβ, and a derivative of indole-3-

carboxylic acid amide targeting S1P3 receptors (study I) in the AD brain. The tracers were 

labeled via nucleophilic 18F-fluorination and the Aβ-tracers preclinically evaluated using 

transgenic mouse models of AD. 
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Figure 1.2. Relationships between studies I - IV, 18F-fluorination methods, and targets in 

the AD brain. 
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2. REVIEW OF THE LITERATURE 

2.1. Synthesis of 18F-labeled PET tracers 

2.1.1. Nucleophilic labeling 

Fluorine-18 (18F) is a positron emitter that has a half-life of 109.8 min and decays mainly 

by positron emission. Due to its relatively long half-life and positron decay properties, 

18F is one of the most commonly used radionuclides for PET studies. Nucleophilic 18F-

fluorination is the most common method for synthesizing 18F-labeled PET tracers. In 

nucleophilic reactions, the 18F-fluoride ion (18F-) substitutes the leaving group from the 

precursor molecule. This reaction is suitable both for aliphatic and aromatic nucleophilic 

18F-substitutions. Nucleophilic 18F-fluorination is an efficient reaction that can produce 

large quantities of tracer with high specific activity (SA).  

18F- is usually produced via the 18O(p,n)18F nuclear reaction; 18O-enriched water is 

irradiated with cyclotron-accelerated high energy protons in the cyclotron target chamber 

(Figure 2.1., Solin et al., 1988). The resultant 18F- is in aqueous solution and needs to be 

transformed into a more reactive form. This is achieved by (i) replacing the countercation 

and (ii) removing excess water via the acetonitrile assisted azeotropic distillation. 

Because of the nature of fluoride, the spontaneously formed ion bond between 18F- and 

the countercation in aqueous solution is very strong, hampering the nucleophilic 18F-

labeling reaction. Thus, 18F- requires a countercation that allows 18F-fluoride to react with 

a precursor molecule. In addition, the introduction of a suitable countercation increases 

the solubility of 18F- in organic solvents; this is important because nucleophilic 18F-

fluorination is usually performed in organic media (Cai et al., 2008). Suitable 

countercations for 18F- are heavy alkali metals, such as cesium and rhodium, both of which 

have been used successfully in nucleophilic 18F-fluorination reactions (Figure 2.1., 

Tewson et al., 1978, Levy et al., 1982, Attina et al., 1983, Berridge et al., 1983, Pascali 

et al., 1990, Mu et al., 2012). Currently, the most commonly used countercations for 18F- 

are tetraalkyl ammonium ions (Figure 2.1., Culbert et al., 1995) and macrocyclic 

aminopolyether-potassium complexes; among these, the complex of potassium and 

Kryptofix 2.2.2 is the most widely used (Figure 2.1., Lehn and Sauvage, 1971, Spitznagle 

and Marino, 1977, Hamacher et al., 1986). All countercations are usually introduced to 

aqueous 18F-solution as carbonates, bicarbonates, hydroxides, or oxalates. Concurrently 
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weakly basic conditions are generated, preventing the protonation of 18F-fluoride and 

increasing the reactivity of 18F- (Cai et al., 2008). 

Figure 2.1. The nucleophilic 18F-labeling reaction. The structures and names of countercations 

(Cat+) and leaving groups (LG) that are commonly used in nucleophilic 18F-labeling reactions 

are given underneath the reaction scheme. 

The leaving group of the precursor molecule is chosen to support the selected labeling 

route. Several leaving groups can be used (Figure 2.1., Cai et al., 2008). The main task of 

the leaving group is to balance the electron density during the nucleophilic 18F-
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fluorination reaction. The leaving group should also be easily displaced from the 

precursor molecule. As the leaving group has a clear impact on the reaction kinetics, it 

must be selected carefully. The 18F-labeling strategy and the structure of the precursor 

molecule will designate the most suitable leaving group for the reaction. 

In aromatic nucleophilic 18F-fluorination reactions, 18F is attached directly to the aromatic 

ring (Figure 2.1.). This reaction usually requires a long reaction time at an elevated 

temperature. The nitro group has been the classic choice as a leaving group. The 18F-

substitution of the nitro group is effective, especially if there is a nitro or cyano group at 

the ortho or para positions of the aryl ring (Attina et al., 1983). High radiochemical yields 

(RCYs) have also been achieved in one-step 18F-labeling of benzaldehydes and 

methoxybenzaldehydes if a nitro group is used as a leaving group (Shen et al., 2009). 

Several radiotracers have been synthesized using 18F-substitution of a nitro group, 

including Aβ imaging agents [18F]flutemetamol (Storey et al., 2007) and [18F]AZD4694 

(Swahn et al., 2012). 

Halides, mainly chlorine and bromine, have also been widely used as the leaving group 

of nucleophilic 18F-labeling reactions. Using p-halideacetophenone as a model 

compound, chlorine was found to be the best leaving group, followed by bromine, 

whereas iodine is the worst leaving group within halides (Hashizume et al., 1997). A nitro, 

cyano, or aldehyde group at the para position of the aryl ring assists in aromatic halide 

substitution by 18F- (Cai et al., 2008). PET tracers such as [18F]haloperidol, [18F]PK 

14105, and [18F]flutemetamol, have been produced from chlorine derivative precursors 

(Pascali et al., 1990, Hashizume et al., 1997, Mathis et al., 2003a). 18F-labeling of several 

[3,2-c]pyrazolo steroids has also been performed using 2-chloropyridyl and 2-

chloropyrimidyl derivatives as precursor molecules (Hoyte et al., 2002, Kahn et al., 

2006). In the two-step synthesis of [18F]-(S)-fluoxetine, 18F-fluorination was performed 

by substituting bromine from 1-[bromo(difluoro)methyl]-4-chlorobenzene (Hammadi 

and Crouzel, 1993). 

Aryliodonium and arylsulfonium salts are used for aromatic 18F-fluorination under mild 

conditions. Diaryliodonium salts have been used as precursor molecules for one-step 

nucleophilic 18F-labeling of electron-deficient aryl rings (Pike and Aigbirhio, 1995). In 

this reaction 18F- is selectively attached to the more electron-deficient aryl ring. Aryl(2-

thienyl)iodonium salt has been used for one-step 18F-fluorination of electron-rich aryl 
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rings (Ross et al., 2007). Ortho-substituents in aryl rings enhance the reaction between 

iodonium salts and 18F-. Triarylsulfonium salts can be used for nucleophilic 18F-

fluorination of non-activated aromatic compounds with high RCY (Mu et al., 2012). 

For aliphatic nucleophilic 18F-fluorination, several sulfonates (e.g., triflates, tosylates, 

mesylates, and nosylates) can act as favourable leaving groups (Figure 2.1.). 18F-

substitution of sulfonates is efficient, especially if the leaving group is attached to the 

primary carbon atom (Cai et al., 2008). These 18F-labeling reactions can be performed 

under mild conditions, as only moderate and short heating is required to achieve high 

RCY (Cai et al., 2008). Triflate is an excellent leaving group and has been used, for 

example, in the nucleophilic 18F-fluorination of glucose [18F]derivatives (Tewson et al., 

1978, Gatley et al., 1980, Levy et al., 1982, Hamacher et al., 1986). Indeed, triflate 

precursor is currently utilized worldwide for the production of the well known radiotracer 

[18F]FDG (Hamacher et al., 1986). Mesylate is used, for example, in the synthesis of 21-

[18F]fluoroprogesterone (Spritznagle and Marino, 1977), 6- and 7-[18F]fluoropalmitate 

acids (Berridge et al., 1983), and [18F]florbentaben (Zhang et al., 2005). Nosylate has 

been used as a leaving group in nucleophilic 18F-fluorination of nucleoside derivatives 

(Grierson et al., 2000, Oh et al., 2004, Kang et al., 2006) and [18F]curcumin derivative 

(Lee et al., 2011). Tosylate has been used in the synthesis of [18F]fluoroalkyl reagents 

(Cai et al., 2008) and for direct 18F-labeling of amyloid imaging agents [18F]FDDNP 

(Agdeppa et al., 2001), [18F]florpentapir (Choi et al., 2009), and 

[18F]fluoropropoxycurcumin (Ruy et al., 2006). 

2.1.2. 19F/18F isotope exchange reaction 

The 19F/18F isotope exchange reaction relies on the nucleophilic aromatic substitution 

mechanism (Cacace et al., 1982). Several studies have examined the effects of the 

molecular structure of the precursor compound and the kinetic parameters of the 19F/18F 

isotope exchange reaction to optimize the RCY and increase the specific radioactivity SA 

of the end product (Cacace et al., 1981, Cacace et al., 1982, Kilbourn and Subramaian, 

1990, Blom et al., 2009, Malik et al., 2011). 

With polyfluorobenzenes, the rate of the 19F/18F isotope exchange reaction is highly 

dependent on the other substituents in the ring, and the exchange rate increases as a 

function of the reaction temperature (Table 2.1., Cacace et al., 1982, Blom et al., 2009). 
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For hexafluorobenzene and for pentafluorobenzene substituted with the trifluoromethyl, 

the nitro or the formyl group the isotope exchange reaction occurs at room temperature 

with good yields (Blom et al., 2009). In pentafluorobenzenes, bromo and chloro 

substituents accelerate the exchange rate compared to unsubstituted pentafluorobenzene 

and hexafluorobenzene (Cacace et al., 1982). However, 18F-substitution on the chloro or 

bromo positions has been observed as a side reaction (Cacace et al., 1982). In 

fluorobenzophenones, the yield of the 19F/18F isotope exchange reaction is dependent on 

the position of fluorine atoms on the aryl ring (Blom et al., 2009). The exchange reaction 

occurs preferentially at the fluorine atom located in the para or ortho position of the 

carbonyl group, and to a much lower extent at the meta position. With electron-donating 

substituents such as amino, N-methylamino, hydroxide-substituted pentafluorobenzenes, 

and N-(pentafluorophenyl)formamide or N-(pentafluorophenyl)benzamide only minor 

reaction has been observed, even if the reaction solution is heated (Blom et al., 2009). 

With 2-fluoropyridine, the 19F/18F isotope exchange reaction requires elevated 

temperatures (Malik et al., 2011). Methoxy and methyl substituents at the pyridine ring 

decrease the reaction yield (Malik et al., 2011). 

Table 2.1.19F/18F isotope exchange reactions of polyfluorobenzenes and the substituents 

that increase or decrease the exchange reaction rate. 

 

X  Reference 
F Increase the exchange 

reaction rate 

Blom et al., 2009, Cacade 

et al., 1982  
H Cacade et al., 1982 
Cl 

Br 

CHO Blom et al., 2009 
NH2 Decrease the exchange 

reaction rate 

Blom et al., 2009 
NHCH3 

OH 

NHCHO 

NHCOC6H5 
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The 19F/18F isotope exchange reaction has not been observed with 

multifluoroalkylbenzenes or multifluoroalkanes (Blom et al., 2009), but moderately high 

yields have been achieved with 1,1-difluoro-2,2-dichloroethyl aryl ethers (Kilbourn and 

Subramanian, 1990). This reaction is dependent on the substituents on the aryl ring, 

reaction temperature, and reaction time (Kilbourn and Subramanian, 1990). A nitro group 

at the meta position of the phenyl ring contributes to the isotope exchange reaction and 

increases the yield compared to phenyl ether, but the yields of para-fluorophenyl ethers 

are decreased by the effect of fluorine. Higher reaction temperature, greater precursor 

concentration, and prolonged reaction time increase the yield. 

Several PET tracers have been produced using the 19F/18F isotope exchange reaction, 

including 6-[18F]fluoroverataldehyde, a labeling block for 6-[18F]fluoro-L-DOPA 

synthesis (Al-Labadi et al., 2006), 6-[18F]fluoro-L-DOPA (Wagner et al., 2009), 4-

[18F]fluorophenyl and 3,4,5-tri[18F]fluorophenyl derivatives of WAY-100635 (Blom et 

al., 2009), N-methyl-[18F]flumazenil (Ryzhikov et al., 2004), and the antibiotics 

[18F]trovafloxacin ([18F]CP 99,219, Babich et al., 1996), [18F]ciprofloxacin (Langer et al., 

2003a), [18F]levofloxacin, [18F]norfloxacin, and [18F]pefloxacin (Langer et al., 2003b) 

(Table 2.2). 
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Table 2.2. 18F-labeled tracers produced using the 19F/18F isotope exchange reaction. Tracer name and structure, initial 18F-activity (A0), 19F/18F isotope 

exchange reaction temperature (Δ), radiochemical conversion (RCC) after the 18F-fluorination reaction, number of reaction steps after 18F-fluorination, 

and the RCY and specific activity (SA) at the end of the synthesis (EOS) are listed. A dash (–) indicates that the information was not provided in the 

article. 

Tracer A0 
[GBq] 

Δ 
[˚C] 

RCC after 
[18F]fluorination 

 [%] 

Reaction steps 
after 

[18F]fluorination 

RCY @ EOS 
 [%] 

SA @ 
EOS[µmol/
GBq] 

Reference 

6-[18F]fluoroveratraldehyde 

10 -20 140 85 ± 5 0 - - Al-Labadi et al., 2006 

 
6-[18F]-L-DOPA 

- 110 50 3 22 1.5 Wagner et al., 2009 

 
[18F]4-fluorophenyl derivative of 

WAY-100635 

0.5 150 8 ± 1 0 - 0.01 Blom et al.,. 2009 

  
[18F]3,4,5-trifluorophenyl 

derivative of WAY-100635 

1 150 35 ± 3 0 - 0.58 Blom et al., 2009 

  
[18F]1-(2,4-difluorophenyl)-3-(4-

fluorophenyl)propan-1-one 

5.3 150 60 ± 5 0 - 1 Blom et al., 2009 



20 Review of the Literature  

 

 
N-methyl-[18F]flumazenil 

7.4 130 62 ± 8 - 47 ± 3 0.37 Ryzhikov et al., 2004 

 
[18F]trovafloxacin 

- 160 –- 0 15 - 30 - Babich et al., 1996 

 
[18F]ciprofloxacin 

52.5 ± 11.3 180 23 ± 7 1 2.5 0.43 ±0.20 Langer et al., 2003a 

60 -65 180 78 ± 7 1 - - Langer et al., 2003b 

 
[18F]levofloxacin 

60 - 65 180 59 ± 7 1 - - Langer et al., 2003b 

 
[18F]norfloxacin 

57.6 180 29 ± 4 1 3.5 0.303 Langer et al., 2003b 

 
[18F]perfloxacin 

50.55 180 29 ± 4 1 3.8 0.909 Langer et al., 2003b 
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2.1.3. Click chemistry 

Click chemistry is a method used to introduce the 18F label to a complex molecule under 

mild aqueous conditions. In a first step, a small molecule is labeled with [18F]fluoride, 

and then the [18F]compound is clicked with a larger molecule to obtain the desired 

[18F]molecule. The first click approaches utilized copper-catalyzed 1,3-dipolar Huisgen 

cycloaddition, in which copper(I) catalyzed the reaction of one azide and one alkyne, 

yielding a 1,2,3-triazole ring at room temperature (Figure 2.2, Huisgen, 1963, Pretze et 

al., 2013). In this reaction, either the azide or alkyne compound can be 18F-labeled before 

the click reaction. Copper-catalyzed 1,3-dipolar Huisgen cycloaddition was first 

exploited in 18F-labeling of peptide derivatives (Marik et al., 2006, Glaser and Årstad, 

2007), but it has also been adapted for the synthesis of various 18F-tracers, such as glucose 

derivatives, nanoparticles, and markers of apoptosis (Pretze et al., 2013, Devaraj et al., 

2009). 

One of the pitfalls of copper-catalyzed 1,3-dipolar Huisgen cycloaddition is the 

cytotoxicity of copper. To overcome this problem, copper-free click chemistry was 

developed. The most commonly used 1,3-dipolar Huisgen cycloaddition-related copper-

free click approach is the reaction of cyclooctyne with an azide group, which yields a 

triazole ring (Figure 2.2, Baskin et al., 2007, Pretze et al., 2013). A similar copper-free 

reaction is the tetrazine-click in which a strained cyclooctene reacts with tetrazine in an 

inverse electron-demand Diels-Alder reaction (Figure 2.2, Blackman et al., 2008). These 

reactions are as effective as 1,3-dipolar Huisgen cycloaddition under physiological 

conditions (Baskin et al., 2007, Blackman et al., 2008, Campbell-Verduyn et al., 2011, 

Pretze et al., 2013). 
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Figure 2.2. General reaction of the copper(I) catalyzed click reaction and copper-free 

click reactions. 

Copper-free click reactions can be performed in vivo (Carpenter et al., 2011, Campbell-

Verduyn et al., 2011, Devaraj et al., 2012, Emmetiere et al., 2013, Zeglis et al., 2013, 

Pretze et al., 2013, Knight and Cornelissen, 2014). The general idea behind in vivo click 

chemistry is to perform the bioorthogonal cyclization reaction in the tissue of interest. 

The first reaction component is administered to the experimental animal and allowed to 

accumulate in the tissue of interest (Knight and Cornelissen, 2014) before the radiolabeled 

component is administered to the same experimental animal. When the radiolabeled 

compound reaches the tissue of interest, a spontaneous condensation reaction occurs, 

resulting in selective trapping of the radioactivity in the tissue of interest. Using a pre-

targeting strategy, long circulating, unlabeled compounds targeting specific tissues (e.g., 

monoclonal antibodies) can be used. If the labeled compound (able to undergo the in vivo 

click reaction with the first compound) has a fast clearance, shorter lived positron emitters 

can be used, resulting in a lower radiation dose to the subject under investigation and 

enhanced signal-to-noise ratio. Bioorthogonal pre-targeting approaches have been used 

in PET imaging for, for example, peptide, antibody, and liposome labeling (Baskin et al., 

2007, Blackman et al., 2008, Campbell-Verduyn et al., 2011, Emmetiere et al., 2013, 

Pretze et al., 2013). 
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2.1.4. Analysis of [18F]tracers 

 [18F]tracers are analyzed using chromatographic methods, mainly high performance 

liquid chromatography (HPLC) and thin layer chromatography (TLC). HPLC and TLC 

methods can be used to assess reaction kinetics or to determine the quality of the purified 

tracer. Usually the identity, RCY, radiochemical purity (RCP), and SA of the tracer are 

measured with these chromatographic methods. 

The HPLC method usually employs a UV detector in series with a radioactivity detector 

in the outflow of the HPLC column. The radioactivity detector in HPLC systems is 

usually a scintillation detector that detects γ radiation, but β radiation detectors are also 

used. To increase the sensitivity, γ-γ- and β-γ-γ-coincidence detectors can be used 

(Nickles et al., 1992). HPLC is used to determine SA because the concentration and 

radioactivity of the sample can be measured using the same HPLC run. HPLC can also 

be used to determine the identity, RCY, and RCP of [18F]tracer. If the [18F]tracer does not 

have UV absorption properties, LC/MS combined with a radioactivity detector 

(radioLC/MS method) can be used to identify the [18F]tracer. RadioLC/MS and 

radioLC/MS/MS are also excellent techniques for identifying related [18F] substances or 

isomers of [18F]tracer in reaction mixtures (Kirjavainen et al., 2013). Alternativelly to the 

MS, refraction index or conductometric detectors, among others, can be used.   

Photo-stimulated luminescence (PSL) digital autoradiography is a method that detects 

positron emission using storage phosphorimaging plates. This method is useful for 

detecting radioactivity distribution on a TLC plate, as the method is very sensitive and 

has a broad linear range from 0.2 Bq to 2 kBq (Haaparanta et al., 2006, Kämäräinen et 

al., 2006). TLC combined with PSL digital autoradiography is especially useful for 

reaction kinetic analysis because only small aliquots of sample are needed and several 

samples can be analyzed simultaneously in a short period of time. In addition, identity,  

RCC, and RCP can be determined with the combined TLC/PSL digital autoradiography 

method. Besides PSL digital autoradiography also film autoradiography or different TLC 

scanners which detect the radioactivity direct from TLC plate can be used (Solin, 1983, 

Kämäräinen et al., 2006). 
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2.2. Liposomes 

2.2.1. General  

Liposomes are spontaneously forming, spherical phospholipid bilayer vesicles found in 

aqueous systems (Allen and Chonn, 1987, Torchilin, 2005, Phillips et al., 2009). 

Liposomes ares composed of naturally occurring components or their derivatives (Allen 

and Chonn, 1987, Torchilin, 2005, Phillips et al., 2009). Thus, liposomes are 

biocompatible and biodegradable. The structure of liposomes is flexible and easy to 

modify, which allows easy adjustment of a liposome’s size from a few nanometers to 

several micrometers (Jesorka and Orwar, 2008, Torchilin, 2005, Allen and Chonn, 1987). 

Liposomes can enclose hydrophilic and hydrophobic compounds. In medicinal 

applications, liposomal encapsulation can be utilized to protect the drug from early 

metabolic breakdown, minimize the adverse effects of the drug, and increase the rate of 

intracellular delivery (Torchilin, 2005, Immordino et al., 2006, Li and Huang, 2008, 

Jesorka and Orwar, 2008, Allen and Cullis, 2013). This use is especially interesting in the 

pharmaceutical and medical fields, as liposomal drugs can reduce the dose of the drug 

without compromising its effect. Currently, several biomedical liposome applications are 

in use and the research in this field is undergoing fast progress (Torchilin, 2005, Jesorka 

and Orwar, 2008, Allen and Cullis, 2013). 

One of the major disadvantages of liposomes is the fast recognition by opsonins and 

elimination from the blood to the reticulo-endothelial system (RES) (Moghimi et al., 

2001, Torchilin, 2005). Liposomes ranging from 50 to 250 nm show decreased uptake by 

the RES (Allen and Chonn, 1987, Levchenko et al., 2002, Li and Huang, 2008). Thus, 

nanoliposomes that are less than 300 nm are the focus of research. To overcome early 

clearance, the lipid composition of liposomes has been optimized and different functional 

groups attached to the liposome surface have been tested (Allen and Chonn, 1987, Webb 

et al., 1995, Moghimi et al., 2001, Torchilin, 2005, Allen and Cullis, 2013). For example, 

liposomes that consist of a mixture of cholesterol and sphingomyelin have shown longer 

circulation times in the blood and slow accumulation in the liver and the spleen of mice 

(Allen and Chonn, 1987, Webb et al., 1995, Levchenko et al., 2002). The size and lipid 

composition of liposomes have also been shown to affect liposome distribution in the rat 

brain (MacKay et al., 2005). 
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Polyethyleneglycol (PEG) functionalization has been shown to decrease liposome 

elimination to the RES (Klibanov et al., 1990, Levchenko et al., 2002); hence, pegylation 

is one of the most widely used methods for the preparation of long-circulating liposomes 

(Moghimi et al., 2001, Torchilin, 2005). Liposomes can also be functionalized to favour 

accumulation in the tissue of interest and specifically bind to the target (Moghimi et al., 

2001, Torchilin 2005). The high surface area-to-volume ratio also enables the 

multifunctionalization of liposomes with various ligands to obtain long-circulating target-

specific liposomes. 

2.2.2. Preparation of liposomes 

Liposomes were first introduced by Bangham et al. in 1965, when they reported the 

synthesis of close packed lipid-containing membranes (Bangham et al., 1965). Using the 

method called thin film hydration, or the Bangham method (Figure 2.3). In this method, 

organic solutions of lipids are mixed together and the organic solvent evaporated to 

dryness using a rotary evaporator (Bangham et al., 1965). An aqueous solution, usually 

buffer or salt solution, is added to the vessel in order to rehydrate the lipids to obtain a 

solution of liposomes. Since then, several more advanced procedures have been 

developed for liposome production (Deamer and Bangham, 1976, Szoka and 

Papahadjopoulos, 1978, Kikuchi et al., 1991, Pons et al., 1993, Buboltz and Feigenson, 

1999, Otake et al., 2001, Wagner et al., 2002, Stark et al., 2010, Zhigaltsev et al., 2012). 

Figure 2.3. Scheme of liposome preparation by Bangham’s thin film hydration. 

Although the rehydration method generally affects the liposome particle size, any method 

by itself cannot yield a uniform size distribution (Woodbury et al., 2006). Extrusion is a 

method used to unify the size of liposomes in a solution (Olson et al., 1979). To extrude 

the liposome solution, it is pushed through a filter membrane. Polycarbonate membranes 

with a pore size fixed to that of the desired liposomes are commonly used (Olson et al., 
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1979, Jesorka and Orwar, 2008). After extrusion the liposome solution needs to be 

purified, usually by column chromatography. 

Several methods can be utilized for liposome functionalization (Aubin-Tam and Hamad-

Schifferli, 2008). Functional groups can be covalently bound to the core lipid before 

liposome synthesis; alternatively, they can also be covalently or electrostatically bound 

on the surface of liposome after liposome preparation. To encapsulate the drug inside the 

liposome, the drug can be dissolved in the aqueous solution used for during liposome 

preparation; alternatively, the drug can be trapped inside the liposome after liposome 

preparation using, for example, a pH gradient (Torchilin, 2005, Allen and Cullis, 2013). 

This process is called remote loading. 

2.2.3. Functionalized liposomes for passing the blood-brain barrier  

To enhance the passing of liposomes through the blood-brain barrier (BBB), various 

functional groups targeting different BBB receptors, such as transferrin, low-density 

lipoproteins, and glucose transport receptors (Lai et al., 2013, Xu et al., 2013) have been 

used. Cell penetrating peptides have also been used to enhance liposome BBB penetration 

(Lai et al., 2013, Xu et al., 2013). The functional groups used for BBB receptor targeting 

are often derived from natural receptor ligands (Lai et al., 2013, Xu et al., 2013). 

Apolipoprotein E (ApoE) binds to the low-density lipoprotein receptors (LDLrs) on brain 

capillary endothelial cells and is transported through the BBB (Sauer et al., 2005, Lai et 

al., 2013). To utilize LDLrs as a transport route across the BBB liposomes have been 

functionalized with monomer ApoE 133-149 (COG 133) or with monomer and dimer 

ApoE 141-150 (Sauer et al., 2005, Re et al., 2011a, Re et al., 2011b, van Rooy et al., 

2011, Bana et al., 2013). In vitro cell studies and studies in healthy mice have shown that 

COG 133 functionalization does not improve the BBB penetration of liposomes; thus, 

COG 133 is not a suitable ligand to improve BBB penetration of the liposomes (van Rooy 

et al., 2011). Liposomes functionalized with monomer or dimer ApoE 141-150 have 

shown higher uptake into human and rat brain capillary cells than non-functionalized 

liposomes (Sauer et al., 2005, Re et al., 2011a, Re et al., 2011b, Markoutsa et al., 2014). 

In vitro BBB model studies have also shown that liposomes functionalized with monomer 

ApoE 141-150 (mApoE) can cross the BBB better than non-functionalized liposomes (Re 

et al., 2011a, Bana et al., 2013, Markoutsa et al., 2014). Enhanced brain uptake has been 

observed in healthy mice with mApoE-liposomes compared to plain liposomes (Bana et 
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al., 2013, Markoutsa et al., 2013), suggesting that mApoE functionalized liposomes may 

use the LDL transport system to reach the brain (Sauer et al., 2005, Re et al., 2011a, Re 

et al., 2011b, Bana et al., 2013, Markoutsa et al., 2014). 

Glucose transporter 1 (GLUT1) is expressed primarily in endothelial cells of the BBB 

and to varying extents in different regions of the brain (Hao et al., 2013). To enhance the 

BBB penetration of liposomes through GLUT1, p-aminophenyl-α-D-manopyranoside 

(MAN) and multivalent glucosides have been incorporated on the surface of liposomes 

(Ying et al., 2010, Hao et al., 2013). Based on preclinical evaluations using BBB cell 

models and biodistribution studies in mice, MAN increases the BBB penetration of 

liposomes (Ying et al., 2010, Hao et al., 2013). In vivo studies with healthy mice have 

shown that multivalent glucosides enhance liposome penetration of the BBB (Qu et al., 

2014). 

Transferrin receptors are also located on the endothelial cells of the BBB. To enhance 

liposomal BBB penetration, several ligands have been developed to target the transferrin 

receptor (van Rooy et al., 2011, Salvati et al., 2013, Markoutsa et al., 2012, Markoutsa et 

al., 2014, Huang et al., 2013). Antibodies OX-26 and RI7217 have been used for liposome 

transport via BBB transferrin receptors (van Rooy et al., 2011, Markoutsa et al., 2012, 

Markoutsa et al., 2014, Salvati et al., 2013). Surface plasmon resonance (SPR) and 

immunoblotting studies have confirmed that RI7212-decorated liposomes bind to 

transferrin receptors (Salvati et al., 2013). In vitro cell culture studies have shown that 

neither RI7212 nor OX-26 have cytotoxic effects, and they both increase the cellular 

uptake of liposomes (van Rooy et al., 2011, Markoutsa et al., 2012, Markoutsa et al., 

2014, Salvati et al., 2013). In vivo and ex vivo studies in healthy mice reported increased 

brain uptake of OX-26 antibody-functionalized liposomes compared to liposomes 

without OX-26 antibody (Markoutsa et al., 2014). RI7212 functionalized liposomes are 

found in significantly greater amounts in the cerebrum, cerebellum, parenchyma, and 

capillaries of healthy mouse brain compared to plain liposomes, although the total mouse 

brain uptake is low (van Rooy et al., 2011). 

Lactoferrin is a glycoprotein belonging to the transferrin family and utilizes receptor-

mediated transcytosis to penetrate the BBB (Huang et al., 2013). In vitro studies with rat 

endothelial cells and in vivo studies with healthy mice have revealed that lactotransferrin-
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functionalized liposomes show higher BBB penetration than plain liposomes, although 

the total brain uptake in mice was low (Huang et al., 2013). 

Transferrin-functionalized liposomes have also shown improved BBB penetration 

properties. Studies have also been carried out with other short chained cell-penetrating 

peptides: trans-activator of transcription (TAT) peptide, penetratin, mastoparan, and poly-

L-arginine (Sharma et al., 2012, Sharma et al., 2014). All of these peptides increase BBB 

penetration in vitro (in cells), but they also increase liposome toxicity. This toxicity 

decreases if transferrin is used as a functional group of liposomes. These dual-

functionalized liposomes have exhibited higher BBB penetration in vitro using cells 

(Sharma et al., 2012) and ex vivo in healthy rats (Sharma et al., 2014) compared to non-

functionalized or only transferrin-functionalized liposomes. 

2.2.4. Functionalized liposomes targeting β-amyloid plaques 

Different targeting compounds, including lipid derivatives integrated in the liposome 

lipid bilayer or compounds covalently bound to the liposome surface have been used to 

bind liposomes to β-amyloid (Aβ) plaques (Figure 2.4). 

 Figure 2.4. Liposome functional groups targeting Aβ. 

Congo red derivative methoxy-XO4 (1,4-bis(4’-hydroxystyryl)-2-methoxybenzene) has 

been shown to bind Aβ plaques with nanomolar affinity (Klunk et al., 2002). Stealth 

liposomes have been functionalized with methoxy-XO4 in order to target Aβ plaques 
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(Tanifum et al., 2012). Methoxy-XO4 has a dual role in the liposome; it targets Aβ 

plaques and acts as a fluorescent marker. In vitro studies using synthetic Aβ(1-40) fibrils 

have shown that these liposomes have high Aβ binding (Tanifum et al., 2012). Methoxy-

XO4-functionalized stealth nanoliposomes have shown improved BBB penetration and 

specific binding to parenchymal plaques and cerebral amyloid angiopathy in transgenic 

AD mice (Tanifum et al., 2012). 

Curcumin is a neuroprotective compound that inhibits the formation of Aβ oligomers and 

Aβ aggregation, and binds to Aβ plaques (Yang et al., 2005, Garcia-Alloza et al., 2007, 

Begum et al., 2008). Curcumin derivatives have been attached to the surface of liposomes 

in order to target Aβ plaques (Mourtas et al., 2011, Taylor et al., 2011, Lazar et al., 2013). 

Two different derivatives have been studied: curcumin-phospholipid conjugate (DPS-

curcumin) and the lipidic pyrazole derivative of curcumin (treg-curcumin). SPR studies 

with Aβ(1-42) fibrils and immunoassay studies with Aβ(1-42) aggregates have revealed 

that treg-curcumin-functionalized liposomes bind Aβ fibrils and inhibit aggregation, 

whereas the results for DPS-curcumin-functionalized liposomes did not differ much from 

those for plain liposomes (Mourtas et al., 2011, Taylor et al., 2011). Preclinical evaluation 

of DPS-curcumin-functionalized liposomes has shown that these bind to Aβ plaques in 

human and transgenic mouse brain sections in vitro (Lazar et al., 2013), but do not pass 

the BBB. However, DPS-curcumin liposomes directly injected into the transgenic mouse 

brain were shown to bind Aβ plaques, with low binding to diffuse Aβ plaques (Lazar et 

al., 2013). 

Liposomes functionalized with anionic phospholipids (i.e., phosphatidic acid or 

cardiolipin) have been shown to bind Aβ(1-42) fibrils in vitro (Gobbi et al., 2010, Re at 

al., 2011). Studies with brain capillary endothelial cells have shown that phosphatidic 

acid or cardiolipin do not enhance liposomal uptake into the brain (Re et al., 2011). 

Phosphatidic acid-functionalized liposomes were further functionalized with RI7212 

(Salvati et al., 2013) or mApoE (Bana et al., 2013, Re et al., 2011) in order to enhance 

brain uptake; this did not interfere with phosphatidic acid binding of Aβ(1-42) fibrils but 

improved liposome BBB penetration, which was confirmed by in vitro studies (Salvati et 

al., 2013, Bana et al., 2013, Re et al., 2011) and ex vivo studies in healthy mice (Bana et 

al., 2013). 
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Copper and zinc interact with β-amyloid peptides and create insoluble amyloid plaques 

(Mufamadi et al., 2012). These metals and the metal chelating ligands histidine and 

EDTA have been used as functional groups on liposomes developed to resolubilize the β-

amyloid peptides in amyloid plaques and reduce the number of amyloid plaques 

(Mufamadi et al., 2012). In vitro studies done with Aβ(1-42) plaques and neuronal cells 

have shown that these functionalized liposomes decrease the number of Aβ plaques and 

the neurotoxicity resulting from their presence (Mufamadi et al., 2012). 

2.2.5. Nanoparticles targeting Aβ 

In addition to liposomes, other nanoparticles have been developed to target Aβ in AD. 

Nanoparticles produced by emulsifying wax were functionalized by covalently bonding 

D-penicillamine (Cui et al., 2005). D-penicillamine has been shown to chelate metals, 

especially copper(I). Using this feature of D-penicillamine, these nanoparticles are 

capable of resolubilizing copper-Aβ(1-42) aggregates in vitro (Cui et al., 2005). 

A similar approach was used to create curcumin-loaded polylactic-co-glycolic acid 

(PLGA) nanoparticles (Mathew et al., 2012). These PLGA particles were functionalized 

with Tet-1 peptide in order to enhance BBB penetration and neuron affinity. In vitro 

studies performed with protein aggregates and glioma cells have shown that these 

nanoparticles disaggregate Aβ proteins and show uptake in glioma cells (Mathew et al., 

2012). 

Quinoline-n-butylcyanoacrylate-based nanoparticles have also been developed to target 

Aβ plaques in the AD brain (Kulkarni et al., 2009). In these particles, clioquinol is used 

to enhance brain uptake and Aβ binding (Kulkarni et al., 2009). These particles are 

prepared using a polymerization technique and a surface coating of 1% Tween-80. Using 

125I-labeling, binding to amyloid plaques in postmortem human brain sections was shown. 

These particles also quickly enter the healthy mouse brain with fast wash out (Kulkarni 

et al., 2009). The total in vivo brain uptake one hour after tracer injection was reported to 

be higher in transgenic AD mice than healthy mice, suggesting specific binding to Aβ 

plaques (Kulkarni et al., 2009). 

IgG4.1 is an antibody against human fibrillar Aβ42 peptide that has been shown to have 

specific affinity towards fibrillar Aβ (Poduslo et al., 2011). Iron oxide particles coated 

with pegylated phospholipids have been further functionalized with antibody IgG4.1 to 
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target cerebrovascular amyloid proteins in the brain (Poduslo et al., 2011, Jaruszewski et 

al., 2014). Preclinical evaluation of these nanoparticles has shown that they enter the brain 

and bind specifically to amyloid plaques in the cerebrovascular wall (Poduslo et al., 2011, 

Jaruszewski et al., 2014). 

2.2.6. Analysis of nanoliposomes 

During liposome analysis, the size, zeta potential (ζ potential), and lipid composition are 

measured (Edwards and Baeumner, 2006, Jesorka and Orwar, 2008). The exact liposome 

size can be measured using transmission electron microscopy (TEM). With TEM 

methods, the diameter, polydispersity, and size distribution of liposomes can be 

determined accurately (Edwards and Baeumner, 2006, Jesorka and Orwar, 2008). Gel 

exclusion chromatography is used to determine the hydrodynamic radius of liposomes 

(Jesorka and Orwar, 2008). Using commercial gel columns, liposomes between 30 and 

300 nm can be separated. This method can also be used to purify the liposome mixture 

after extrusion. The disadvantage of gel exclusion chromatography is that the gel material 

can interact with liposomes, causing blocking or precipitation (Jesorka and Orwar, 2008). 

Dynamic light scattering (DLS) is the most common method for determining the size 

distribution of liposomes. In this method, the hydrodynamic diameter of the liposome is 

determined (Edwards and Baeumner, 2006). The hydrodynamic diameter is the diameter 

of the liposome covered with solvent molecules, which is slightly larger than the true 

diameter of the liposome (Doane et al., 2012). With this method individual sizes cannot 

be determined, but the results show the size distribution (Jesorka and Orwar, 2008). The 

polydispersity index (PdI) indicates the variation in distribution and is usually calculated 

using the Cumulant algorithm. PdI values can range between 0 and 1, with values close 

to zero indicating that the liposomes are very monodisperse and values close to 1 

indicating that the liposomes have polydisperse hydrodynamic diameters. 

The ζ potential is the potential of the liposome surface (Doane et al., 2012 Jesorka and 

Orwar, 2008). When the ζ potential is measured, two approximations can be used: Hückel 

approximation is used for small liposomes and low dielectric constant solutions, and the 

Smoluchowski approximation is used for larger liposomes and moderately high dielectric 

constant solutions (Doane et al., 2012). If the ζ potential is known, the quality of the 

liposomes can be predicted; a value close to zero implies that the liposomes may 
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aggregate rapidly; extremely stable liposomes have ζ potentials >60 mV (Hanaor et al., 

2012). With cationic liposomes the surface charge is positive, whereas anionic liposomes 

have a negative surface charge. Factors affecting ζ potential are pH and the ion 

concentration of the solution. The isoelectric point of a liposome is the pH at which the ζ 

potential of the liposome is zero. Therefore, if the surface charge of the liposome is zero, 

the stability of the liposome decreases and liposome aggregation increases. 

The lipid content of the liposomes is measured to ensure that no lipid oxidation or 

degradation occurred during preparation or storage (Edwards and Baeumner, 2006). The 

amount of lipid and, eventually, the liposome encapsulation efficiency (i.e., the amount 

of encapsulated compound) are usually determined by chromatographic or spectrometric 

methods (Edwards and Baeumner, 2006, Jesorka and Orwar, 2008). 

2.2.7. Nanoliposomes and PET 

Nanoliposomes have also been developed as PET imaging agents. The high surface area-

to-volume ratio of liposomes allows the production of multifunctional and target-specific 

liposomes for imaging (Devaraj et al., 2009, Welch et al., 2009, Liu and Welch, 2012, 

2009, Abou et al., 2013, Li et al., 2012, Qin et al., 2013). Liposomes differ from the 

traditional small molecule PET tracers in that they usually need a longer time to 

accumulate in the tissue of interest than small molecules. Thus, PET-liposomes are 

usually labeled with 18F, 64Cu, 89Zr, or 124I due to the relatively long half-life of these 

radioactive nuclides (Phillips et al., 2009, Liu and Welch, 2012). PET-liposomes have 

been used to study the in vivo behavior of functionalized liposomes and for tumor 

imaging (Phillips et al., 2009, Welch et al., 2009, Lammers et al., 2010, Qin et al., 2013). 

Many possibilities exist for radiolabeling liposomes (Figure 2.5.). The radiolabeling can 

be done before liposome synthesis. In this case, the core-forming compound is 

radiolabeled first, and then the actual liposomes are produced (Phillips et al., 2009). The 

radiolabeled core-forming compound is usually a diacylglycerol derivative (Marik et al., 

2007, Emmetiere et al., 2013), pegylated alkoxybenzene derivative (Urakami et al., 2007, 

Devaraj et al., 2009), or cholesteryl ether derivative (Jensen et al., 2012), and 18F-labeling 

is achieved using nucleophilic 18F-fluorination. When the core-forming compound is 

radiolabeled, the radiolabel is in the lipid bilayer or very close to it. An alternative 

radiolabeling method consists of encapsulation of the PET tracer inside the liposome 
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(Phillips et al., 2009, Hatakana et al., 2010, Medina et al., 2011, Oku et al., 2011, Benezra 

et al., 2012). Liposomes can also be labeled after they are produced by applying the 

remote loading method; this labeling strategy is preferred when using radiometals 

(Phillips et al., 2009). In remote loading, the radiometal either forms a chelate with 

adjacent lipid phosphate heads on the core of the liposome (Abou et al., 2013), or is 

trapped in the chelator, which has been coupled to the surface of the liposome or trapped 

inside the liposome during preparation (Seo et al., 2008, Petersen et al., 2011, Seo et al., 

2011, Locke et al., 2012, Petersen et al., 2012, Kang et al., 2013, Li et al., 2012, Mitchell 

et al., 2013). 

Figure 2.5. Labeling approaches for PET-liposomes. The radionuclide can be found on 

the core of the liposome (left), inside the liposome (middle), or attached to the end of the 

functional group (right). 

All the aforementioned labeling strategies have advantages and disadvantages. 

Liposomes do not tolerate high temperatures or large quantities of organic solutions. If 

the labeling is done before the liposomes are produced, the liposomes will not restrict the 

labeling circumstances or purification methods. On the other hand, the RCY of the labeled 

product has to be reasonably high, especially when 18F is used as the radionuclide, 

because the total synthesis time from the start of labeling to the end of liposome synthesis 

is relatively long with respect to the half-life of the positron emitter. Therefore, the remote 

loading method of labeling is more beneficial, though the labeling must occur in aqueous 

solution and only minor variance from room temperature is allowed. In addition, the 

radiolabeled liposomes have to be purified from the reaction mixture after incorporating 

the radioactivity, which limits the utilization of remote loading labeling. 

Studies of PET-liposomes in healthy mice have shown that the lipid composition and 

functionalization of liposomes affect the biodistribution of the liposomes (Marik et al., 
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2007, Urakami et al., 2007, Devaraj et al., 2009). PET-liposomes accumulate ultimately 

in the liver, spleen, lungs, and kidneys. For tumor imaging, several liposomes have been 

developed (Seo et al., 2008, Medina et al., 2011, Petersen et al., 2011, Seo et al., 2011, 

Jensen et al., 2012, Benezra et al., 2012, Petersen et al., 2012, Locke et al., 2012, Abou 

et al., 2013, Kang et al., 2013, Li et al., 2012, Mitchell et al., 2013, Emmetiere et al., 

2013). Although the labeling strategies and functional groups for these liposomes differ, 

biodistribution studies in tumor-bearing mice have shown that all liposomes are excreted 

primarily through the liver and spleen, but relatively high accumulation in tumors has 

been observed due to the functional group on the liposome surface (Seo et al., 2008, Seo 

et al., 2011, Medina et al., 2011, Petersen et al., 2011, Jensen et al., 2012, Benezra et al., 

2012, Petersen et al., 2012, Locke et al., 2012, Abou et al., 2013, Emmetiere et al., 2013, 

Kang et al., 2013, Li et al., 2012, Mitchell et al., 2013). 

Multimodal liposomes have also been developed. These liposomes are PET and CT 

(Devaraj et al., 2009), PET and MR (Abou et al., 2013), or PET, MR, and NIR (Li et al., 

2012) imaging agents coupled in the same liposome. These liposomes have been designed 

for tumor imaging and preclinical studies have shown promising results (Abou et al., 

2013, Devaraj et al., 2009, Li et al., 2012). 

2.3. Alzheimer’s disease and PET imaging 

2.3.1. Alzheimer’s disease 

AD is a neurological disease that causes neuronal loss, dementia, and cognitive 

impairment. The severity of AD is classified using Braak stages; early onset AD is Braak 

stage I and fully developed AD is Braak stage VI (Braak and Braak, 1997). In addition to 

memory loss, common symptoms related to AD are apathy, disorientation, behavioral 

changes, and confusion (Alzheimer Association, 2014). 

The main hallmarks of AD in the brain tissue are Aβ plaques and neurofibrillary tangles, 

which Prof. Alois Alzheimer recognized in 1906 (Mauer et al., 1997, Serrano-Pozo et al., 

2011). Much research focusing on the cause and treatment of AD has been carried out 

since that discovery. Currently, the symptoms and progression of AD are well known, but 

the underlying cause is still a mystery (Braak and Braak, 1997, Nordberg et al., 2010, 

Serrano-Pozo et al., 2011). Several different hypotheses address AD (Figure 2.6.); the 

most commonly accepted are the amyloid and tau cascades, but neuroinflammation, 
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oxidative stress, alterations in glucose and fatty acid metabolism, and changes in vascular 

and receptor activity in the brain have also been connected to AD (Karran et al., 2011, 

Nordberg et al., 2010, Serrano-Pozo et al., 2011 Swomley et al., 2013). Although 

knowledge of AD has increased, no curative treatment is available. 

Figure 2.6. Pathogeneses related to Alzheimer’s disease. 

2.3.2. β-amyloid plaques and the amyloid cascade 

Aβ plaques are the primary markers of AD. Aβ plaques are insoluble, diffuse, or compact 

plaques of Aβ peptides. According to the amyloid cascade hypothesis, Aβ plaques trigger 

the cascade that eventually leads to AD (Hardy and Selkoe, 2002, Karran et al., 2011). 

Aβ peptides originate from amyloid precursor protein (APP) (Karran et al., 2011, 

Serrano-Pozo et al., 2011). Sequential cleavage of APP by β-cleaving amyloid precursor 

protein enzyme (β-secretase) and γ-secretase leads to the formation of Aβ peptides of 

varying lengths, with 40 or 42 amino acids being the most predominant length (Figure 

2.7., Karran et al., 2011). 
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Figure 2.7. Formation of Aβ plaques. Top, normal APP cleavage. Bottom, APP cleavage 

and Aβ plaque formation. 

Amyloid plaques are formed when abnormal quantities of Aβ peptides accumulate in 

extracellular areas. There are two types of amyloid plaques: diffuse and dense-core 

plaques (Serrano-Poze et al., 2011). Dense-core plaques are thioflavine T-positive and 

are associated with several harmful effects related to neuronal death. Dense-core amyloid 

plaques are more often found in the brains of AD patients, whereas diffuse amyloid 

plaques are more common in the brains of elderly non-Alzheimer’s patients (Serrano-

Poze et al., 2011). The amount of Aβ plaques varies in different regions of the AD brain. 

Small amounts are usually found in the cerebellum, whereas a high plaque density can be 

found in the cortical areas of the brain (Braak and Braak, 1997, Nordberg et al., 2010). 

The total amount of Aβ plaques in the AD brain is in the low milligram range (Karran et 

al., 2011, Serrano-Pozo et al., 2011). One of the prevalent therapeutic aims is to reduce 

the amount of Aβ plaques by decreasing production, facilitating clearance, and inhibiting 

the aggregation of Aβ peptides in the AD brain. 

Transgenic mouse models of AD have been developed to study the Aβ cascade in 

experimental animals. These mice over-express a human APP, which leads to the 

spontaneous formation of Aβ plaques in the brains of these mice (Figure 2.7.). Commonly 

used AD mouse models are tg2576 (Hsiao et al., 1996), tgCRND8 (Chrishti et al., 2001), 
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APP23 (Sturchler-Pierrat et al., 1997), and APPswe-PS1dE9 (Jankowsky et al., 2004). 

Tg2576 mice over-express the Swedish human Aβ precursor protein APP695 (K670N-

M671L), which has two mutations at amino acid positions 670 and 671 (Hsioa et al., 

1996). Tg2576 mice develop classic senile plaques and diffuse plaques, and cognitive 

deficits begin at 5 months of age (Hsioa et al., 1996, Webster et al., 2014). TgCRND8 

mice over-express the Swedish APP695 and the Indiana mutation V717F in the human 

precursor protein (Chrishti et al., 2001). Amyloid plaques and memory deficit are seen in 

TgCRND8 mice starting at the age of 3 months (Chrishti et al., 2001, Webster et al., 

2014). The APP23 mouse model has human precursor protein mutations Swedish APP695 

and London mutation V7171 (Sturchler-Pierrat et al., 1997). In this model, the first 

cognitive deficits are seen at 3 months of age and Aβ plaques from 6 months of age 

(Sturchler-Pierrat et al., 1997, Webster et al., 2014). APPswe-PS1dE9 mice also express 

the Swedish APP695 together with the presenilin 1 (PS1)dE9 mutation, which has been 

seen in early onset familial AD patients (Jankowsky et al., 2004). The memory deficit can 

be observed at 3 months of age, and at the age of 6 months the animals have Aβ plaques 

in the brain (Jankowsky et al., 2004, Webster et al., 2014). 

2.3.3. Sphingosine-1-phosphate and sphingosine-1-phosphate receptors 

Sphingosine-1-phosphate (S1P) is a lysophospholipid that plays an important role as a 

cellular mediator (Marsolais and Rosen, 2009, Hla and Brinkmann, 2011, Maceyka et al., 

2012). S1P is produced enzymatically from ceramide via N-deacylation and 

phosphorylation (Figure 2.8.). The phosphorylation reaction is catalyzed by two 

sphingosine kinases, SphK1 and SphK2. In plasma, S1P is mainly bound to high density 

lipoprotein and albumin in nanomolar concentrations and widely distributed throughout 

the body. Several enzymes regulate the S1P concentrations by degrading excess amounts 

of this phospholipid. S1P is involved in various signaling and regulatory functions in the 

cardiovascular system, immune system, and central nervous system (CNS) (Marsolais 

and Rosen, 2009, Hla and Brinkmann, 2011, Milstien et al., 2007, Sim-Silley et al., 2009, 

Soliven et al., 2011, Maceyka et al., 2012). S1P modulates activity through five different 

receptor subtypes (S1P1 – S1P5) belonging to the G-protein-coupled receptor family. 

Because of the multiple roles of S1P, the S1P receptors (S1PRs) are responsible for 

differentiating S1P regulatory and signaling tasks (Marsolais and Rosen, 2009, Hla and 

Brinkmann, 2011, Maceyka et al., 2012). 
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Figure 2.8. The formation of sphingosine-1-phosphate. 

In the CNS, all S1PRs are extensively expressed on various cells (Marsolais and Rosen, 

2009, Hla and Brinkmann, 2011, Milstien et al., 2007, Sim-Silley et al., 2009, Soliven et 

al., 2011). The functions of S1P and S1PRs in the CNS are not fully understood, but they 

have been connected to several cell responses, including cell signaling, neuronal 

proliferation, cell survival, and the regulation of BBB permeability (Marsolais and Rosen, 

2009, Hla and Brinkmann, 2011, Milstien et al., 2007, Sim-Silley et al., 2009, Soliven et 

al., 2011). The receptor subtype S1P3 is supposed to be expressed in astrocytes, 

oligodendrocytes, neurons, and microglia, and it is also related to the regulation of 

transcellular transport, hearing, and balance (Marsolais and Rosen, 2009, Soliven et al., 

2011). S1P3 receptor is also involved in inflammation and dendritic cell sequestration in 

lymph nodes, heart rate regulation, vasodilation, and vasoconstriction (Marsolais and 

Rosen, 2009, Nakamura et al., 2012, Sanna et al., 2004, Koide et al., 2007). 

Various compounds have been developed to study S1PRs (Huwiler and Pfeilschifter, 

2008, Marsolais and Rosen, 2009, Maceyka et al., 2012). FTY-720P is one of the first 

compounds developed for S1PRs (Figure 2.9, Mandala et al., 2002). FTY-720P is a non-

specific agonist for S1PRs and has been widely used in studies of S1PRs. Also, more 

selective S1PR subtype agonists and antagonists have been developed (Marsolais and 
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Rosen, 2009, Mandala et al., 2002, Huwiler and Pfeilschifter, 2008, Murakami et al., 

2010, Buzard et al., 2012, Nakamura et al., 2012, Maceyka et al., 2012). TY-52156, a 

chlorophenylhydrazone derivative, is an S1P3 receptor antagonist (Murakami et al., 

2010). Cell culture studies and animal experiments with healthy rats have shown that TY-

52156 binds specifically to the S1P3 receptors and regulates cardiovascular phenomena 

in vivo (Figure 2.9, Murakami et al., 2010). According to a database search and cell 

culture studies, 3,4-dialkoxybenzophenone derivatives VPC23019 and BLM-241 are also 

antagonists for the S1P3 receptors (Figure 2.9, Davis et al., 2005, Koide et al., 2007). A 

family of 6-substituted indole-3-carboxylic acid amide compounds has been described to 

have high agonist or antagonist biological behavior for S1P3 receptor (Figure 2.9, Beard 

et al., 2008). The biological behavior of other S1P3 receptor-specific compounds has not 

yet been evaluated. 

Figure 2.9. Compounds that have shown an affinity toward S1P3 receptors.  

Although knowledge of S1PR involvement in health and disease remains limited, the 

expression of S1PRs and level of S1P have been suggested to be related to CNS disorders 

(Marsolais and Rosen, 2009, Hla and Brinkmann, 2011, Milstien et al., 2007, Sim-Silley 

et al., 2009, Soliven et al., 2011). In the sporadic AD brain, the activity of phosphorylating 

sphingosine kinase SphK2 is elevated compared to healthy controls even though the 

amount of SphK2 is decreased (Takasugi et al., 2011). Cell studies revealed that Aβ fibrils 

increase the SphK2 activity (Takasugi et al., 2011). In neurons, increased S1P levels cause 

a variety of issues, including proteolytic activity of β-secretase 1 and overproduction of 

Aβ (Takasugi et al., 2011). Inhibition of SphK2 enzyme activity reduces Aβ formation in 
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the transgenic mouse brain (Takasugi et al., 2011). On the other hand, S1P levels are 

decreased in the human AD brain compared to healthy controls, and this loss correlates 

with the Braak stage of AD (Couttas et al., 2014). 

2.3.4. Positron emission tomography 

PET is a sensitive in vivo imaging technique that enables the study of processes in living 

organisms (Phelps, 2000) by using positron emitter-labeled tracers (PET tracers) to 

measure biochemical processes in the tissues of interest. A PET tracer is designed to 

specifically bind or interact with the target of interest. PET tracers decay by positron 

emission (β+-emission); the nucleus of the positron emitter emits a short-lived positron 

(e+). Subsequently, the positron is annihilated by an electron, creating two 511 keV γ rays 

which are emitted 180° from each other (Figure 2.10), with the gamma energies 

representing the masses of the annihilated β-particles. The PET camera detects these γ 

rays in γ-γ-coincidence in detectors on opposite sides of the organ of interest, forming an 

image of the distribution of the radioactivity (Figure 2.10). Because PET images do not 

provide morphological information, CT and MR images are commonly used for 

anatomical reference. With PET and a suitable tracer, biological processes and 

abnormalities can be identified and studied (Phelps, 2000). In AD patients, PET imaging 

can be utilized as a diagnostic tool and to study the pathophysiology of the disease. 

Figure 2.10. The principle of PET imaging using an 18F-labeled tracer. 

2.3.5. PET tracers for β-amyloid imaging of Alzheimer’s disease 

Several PET tracers have been developed for Aβ imaging in AD (Nordberg et al., 2010, 

Rowe and Villemagne, 2013).  [11C]PIB and [18F]FDDNP are the most widely used PET 
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tracers for clinical imaging of Aβ in AD, but the 18F-labeled tracers [18F]flutemetamol, 

[18F]florbentaben, [18F]florbentapir, and [18F]AZD4694 are potential new PET tracers for 

clinical and diagnostic AD imaging in humans (Figure 2.11, Nordberg et al., 2010, Rowe 

and Villemagne, 2013). In addition, several [18F]curcumin derivatives have shown 

potential as new amyloid markers (Figure 2.11, Cai et al., 2011, Lee et al., 2011, Ruy et 

al., 2006). 

Figure 2.11. Molecular structures of [11C]PIB and [18F]amyloid tracers for Aβ imaging 

in AD. 

Naphthalene derivative 2-(1-{6-[(2-[18F]fluoroethyl)(methyl)amino]-2-

naphtyl}ethylidene)malononitrile ([18F]FDDNP) was the first tracer developed for AD 

PET imaging (Agdeppa et al., 2001, Shoghi-Jadid et al., 2002). [18F]FDDNP is 

synthesized using nucleophilic 18F-fluorination and the tosyl derivative of FDDNP 

(Agdeppa et al., 2001). [18F]FDDNP is highly lipophilic and has a measured logP value 

of 3.92 (Agdeppa et al., 2001). Studies of Aβ fibrils have shown that [18F]FDDNP has 

two binding sites in fibrils with affinity in the low nanomolar range (Agdeppa et al., 

2001). In vitro binding studies done with human AD brain sections have shown that 

[18F]FDDNP binds to dense core and diffuse Aβ plaques, and weakly to the 

neurofibrillary tangles (Agdeppa et al., 2001). The Aβ binding of [18F]FDDNP is 

displaced effectively with non-steroidal anti-inflammatory drugs, such as naproxen and 

ibuprofen (Agdeppa et al., 2003). These in vitro findings were confirmed in a preclinical 
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in vivo study with the triple-transgenic AD rat model tg478/tg1116/tg11587 (Teng et al., 

2011). Studies of the displacement of Aβ binding with [18F]FDDNP and Congo Red or 

thioflavin T, as well as [3H]PIB and FDDNP, indicate that the binding site of FDDNP is 

different from the binding site of Congo Red, thioflavin T, or PIB (Agdeppa et al., 2003, 

Ni et al., 2013). In a study of the tg2576 mouse model, [18F]FDDNP did not show 

appropriate behavior for preclinical Aβ imaging of the AD mouse model (Kuntner et al., 

2009). Clinical studies have shown that [18F]FDDNP is suitable for in vivo imaging of 

Aβ plaques in the human brain (Shoghi-Jadid et al., 2001), and it has been used in several 

clinical studies (Nordber et al., 2010, Rowe and Villemagne, 2013). In addition, 

[18F]FDDNP has been used to image neurofibrillary tangles in AD (Kepe et al., 2013). 

Thioflavin derivative [11C]2-(4’-(methylamino)phenyl)-6-hydroxybenzothiazole 

([11C]PIB, [11C]6-OH-BTA-1) is the most commonly used clinical tracer for imaging Aβ 

burden in the brains of AD patients (Mathis et al., 2003b, Nordber et al., 2010, Rowe et 

al., 2013, Rowe and Villemagne, 2013). Several methods have been developed to produce 

[11C]PIB (Mathis et al., 2003b, Philippe et al., 2011, Shao et al., 2011). The easiest 

method is to use [11C]methyl triflate as a labeling agent and to label the 6-OH-BTA-0 

using a one-step synthesis. 

Studies done with postmortem human brain sections have shown that PIB specifically 

binds Aβ plaques (Klunk et al., 2004, Ikonomovic et al., 2008). The binding of [11C]PIB 

to Aβ fibrils is in the low nanomolar range (Mathis et al., 2003b, Klunk et al., 2005, 

Ikonomovic et al., 2008, Ni et al., 2013). These binding studies also showed that PIB has 

two binding sites: one high-affinity site and one low-affinity site. Structure-activity 

relationship studies revealed that Aβ fibrils have two high-affinity binding sites and one 

low-affinity binding site for PIB (Lockhart et al., 2005, Wu et al., 2008, Reinke and 

Gestwicki, 2011). The important structural features of PIB for Aβ binding are planar and 

linear hydrophobic ring systems that fit between the Aβ fibril axes and are bound to the 

two parallel high-affinity binding sites. The N-methyl group of aniline can also form 

hydrogen bonds with a nearby hydrophobic pocket of the Aβ fibril (Lockhart et al., 2005, 

Wu et al., 2008). The overall hydrophobicity of the compound is important for binding, 

and in the structure of PIB the polar hydroxyl group at the benzothiazole ring is tolerated 

due to the N-methyl group of aniline, which preserves the overall hydrophobicity of PIB 

(Lockhart et al., 2005, Wu et al., 2008, Reinke and Gestwicki, 2011). [11C]PIB has a 
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measured logP of 1.2 (Mathis et al., 2003b). In humans and mice, [11C]PIB has been 

shown to undergo moderately fast peripheral metabolism (Mathis et al., 2003b, Klunk et 

al., 2004). Studies with transgenic AD mice have shown that the transgenic mouse model 

affects the results because, with some transgenic mouse models, the Aβ plaques probably 

do not have a proper binding site for [11C]PIB (Klunk et al., 2005, Toyama et al., 2005, 

Maeda et al., 2007, Snellman et al., 2013). In humans, [11C]PIB has been shown to 

specifically bind Aβ plaques in the AD brain, though age, gender, and ApoE ε4 carrier 

status may also increase the uptake of [11C]PIB in the brains of healthy individuals (Klunk 

et al., 2004, Ikonomovic et al., 2008, Scheinin et al., 2014). Several clinical studies have 

shown that [11C]PIB is a good tracer for in vivo Aβ imaging of the human brain (Nordberg 

et al., 2010, Rinne et al., 2010, Rowe and Villemagne, 2013). 

[18F]Flutemetamol ([18F]GE-067, 3’-[18F]FPIB) is a 18F-fluorinated thioflavine derivative 

(Storey et al., 2007, Mathis et al., 2003a). In the structure of [18F]flutemetamol, the 18F 

atom is attached to the 3’-position of the aniline ring of PIB. [18F]Flutemetamol is 

produced with nucleophilic 18F-fluorination using a chlorine precursor compound with an 

ortho-nitro activating group (Mathis et al., 2003a) or nitro precursor compound (Storey 

et al., 2007). Studies done with [3H]flutemetamol have shown that flutemetamol has a 

nanomolar range binding affinity towards Aβ fibrils (Juréus et al., 2010). 

[3H]Flutemetamol binds Aβ plaques in transgenic mouse brain and human brain, but the 

non-specific binding is also relatively high (Juréus et al., 2010, Swahn et al., 2012). The 

ElogD value for flutemetamol is 3.2 (Juréus et al., 2010), which may explain the high 

non-specific binding. In humans, [18F]flutemetamol exhibits appropriate in vivo behavior 

and is a potential tracer for diagnostic AD imaging (Rowe and Villemagne, 2013). 

Benzofurane derivatives are also potential Aβ tracers. Among these, [18F]AZD4694 is 

probably the most promising (Swahn et al., 2012). The structure of [18F]AZD4694 is 

related to [18F]flutemetamol (Figure 2.11). [18F]AZD4694 is produced using nucleophilic 

18F-fluorination and a nitro-derived compound as a precursor (Swahn et al., 2012). The 

studies done with [3H]AZD4694 have shown that AZD4694 has a nanomolar range 

binding affinity towards Aβ fibrils (Juréus et al., 2010). The ElogD value for AZD4694 

is 2.8 (Juréus et al., 2010). [3H]AZD4694 specifically binds Aβ plaques in the brains of 

transgenic tg2576 mice in vitro and ex vivo, as well as the Aβ plaques of human brain in 

vitro, and the non-specific binding is low (Juréus et al., 2010, Swahn et al., 2012). The 
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initial in vivo human studies of [18F]AZD4694 have shown specific cortical retention in 

the AD patient brain and low non-specific binding (Cselényi et al., 2012, Rowe et al., 

2013). 

18F-labeled stilbene derivatives have been successfully developed for Aβ imaging, being 

[18F]florbentaben ([18F]BAY 94-9172, [18F]AV-1, Figure 2.11, Zhang et al., 2005) and 

[18F]florbentapir ([18F]AV-45, Figure 2.11, Choi et al., 2009) the most promising ones. 

[18F]Florbentaben has been produced by nucleophilic 18F-fluorination using mesyl 

derivative as the precursor (Zhang et al., 2005). The measured logP value for 

[18F]florbentaben is 2.41. Florbentaben effectively displaces [125I]IMPY and [3H]PIB 

binding of Aβ plaques in AD brain homogenates, suggesting that all these compounds 

share the same Aβ plaque binding sites (Zhang et al., 2005, Ni et al., 2013). In mice, 

[18F]florbentaben has shown appropriate in vivo kinetics and has high specific binding 

towards Aβ plaques in transgenic APP/PS1, tg2675, and APP-Swe mouse brains (Zhang 

et al., 2005, Rominger et al., 2013). In addition, studies in healthy controls and AD 

patients have shown that [18F]florbentaben is a suitable PET tracer for imaging human 

Aβ in the AD patient brain (Rowe et al., 2008, Rowe and Villemagne, 2013). 

[18F]Florbentapir has also been produced with nucleophilic 18F-fluorination using a 

tosylated precursor compound (Choi et al., 2009). Preclinical evaluation of this tracer 

using postmortem sections and homogenates of AD brain revealed that it has high 

specificity for Aβ plaques with low nanomolar range binding affinity (Choi et al., 2009, 

Lin et al., 2010). Florbentapir also effectively displaces the [3H]PIB binding of plaques 

in AD patient brain homogenates, suggesting that all of these compounds share the same 

Aβ plaque binding sites (Ni et al., 2013). Studies done with mice and monkeys have 

shown that [18F]florbentapir exhibits the appropriate in vivo kinetics and that the tracer 

binds specifically to Aβ plaques in the transgenic APPswe/PSEN1 mouse brain (Choi et 

al., 2009). In humans, [18F]florbentapir has also exhibited appropriate kinetics and is a 

suitable PET tracer for imaging human Aβ in AD patient brains (Lin et al., 2010, Rowe 

and Villemagne, 2013). 

Curcumin is a neuroprotective compound that inhibits the formation of Aβ oligomers and 

fibrils and binds Aβ plaques with high affinity (Yang et al., 2005, Garcia-Alloza et al., 

2007, Begum et al., 2008). Curcumin has two tautomeric structures, the keto and enol 

forms, which can convert spontaneously from one to another. Structure-activity 
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relationship studies have shown that the enol form is the most predominant form to bind 

Aβ (Balasubramanian, 2006, Reinke and Gestwicki, 2007, Yanagisawa et al., 2010). 

Other structural features of curcumin important for Aβ binding are the planar inflexible 

molecule structure and conjugated optimal length linker between two terminal aromatic 

ring-substituted hydrogen bond-forming groups (Balasubramanian, 2006, Reinke and 

Gestwicki, 2007, Begum et al., 2008). Several [18F]fluoropegyl and [18F]fluoroalkyl 

derivatives of curcumin (Ryu et al., 2006, Cai et al., 2011, Lee et al., 2011) have been 

developed for PET imaging. 

[18F]fluoropropoxycurcumin can be produced by nucleophilic 18F-labeling of a tosyl 

derivative in one-step or two-step reactions (Ruy et al., 2006). This compound has a 

measured logP value of 1.84. In vitro binding assays with Aβ(1-40) aggregates have 

shown that fluoropropoxycurcumin has high-affinity for Aβ binding (Ruy et al., 2006). 

Evaluation of [18F]fluoropropoxycurcumin in healthy mice revealed that uptake in the 

brain is fast with suitable wash-out (Ruy et al., 2006). To improve brain uptake, the 

hydroxyl group on the benzene ring of [18F]fluoropropoxycurcumin was replaced with a 

methoxy group (Figure 2.11, Lee et al., 2011). In this same study, other 

[18F]fluoroalkoxycurcumin derivatives were synthesized by nucleophilic 18F-fluorination 

of mesyl or nosyl precursor compounds (Lee et al., 2011).                                                                                                                                                                 

In vitro evaluation of the 4-fluoropropoxy-4’-methoxycurcumin derivative showed 

proper binding towards Aβ(1-42) aggregates in vitro, and biodistribution studies in 

healthy mice showed appropriate pharmacokinetics and high initial brain uptake (Lee et 

al., 2011); the fluoroethoxycurcumin showed a measured logP value of 2.4 and high 

binding affinity towards Aβ(1-42) aggregates and Aβ plaques in transgenic mouse brain 

sections in vitro (Lee et al., 2011).  

More advanced 4-fluoropropoxy-curcumin derivatives lack one of the two keto groups in 

the center of the molecule but have an N-methylamino or N,N-dimethylamino group on 

the benzene ring (Figure 2.11, Cai et al., 2011). These [18F]fluoropropoxy 

dibenzylideneacetone derivatives were produced by nucleophilic 18F-fluorination of 

mesyl or tosyl derivatives (Cai et al., 2011). In vitro studies performed with Aβ(1-42) 

aggregates and brain sections from transgenic APP/PS1 mice have shown that 

modifications to the curcumin structure do not affect Aβ binding, and the Aβ affinity of 

[18F]fluoropropoxy dibenzylideneacetone derivatives are in the low nanomolar range (Cai 
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et al., 2011). The logD value of these [18F]fluoropropoxy dibenzylideneacetone 

derivatives is roughly 3 (Cai et al., 2011). Biodistribution studies have revealed that both 

compounds have higher brain uptake in healthy mice than the previous [18F]fluoroalkoxy 

curcumin derivatives (Cai et al., 2011, Lee et al., 2011, Ruy et al., 2006). As several 

studies have shown, [18F]curcumin derivatives are potential PET tracers for Aβ imaging, 

but none of the developed tracers have proceeded to clinical trials. 
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3. AIMS OF THE STUDY 

The overall aim of this thesis was to develop 18F-labeling methods for novel PET imaging 

tracers targeting AD pathology in the brain. These tracers were evaluated using transgenic 

mouse models of AD. 

The specific aims of each study were as follows: 

1. Develop an 18F-labeling method for the preparation of a S1P3-receptor tracer using 

the 19F/18F isotope exchange reaction and to determine the parameters that affect 

yield and SA. 

2. Synthesize [18F]flutemetamol using aromatic nucleophilic 18F-fluorination and 

evaluate its suitability for imaging Aβ in a mouse model of AD. 

3. Develop an 18F-labeling method for the preparation of a curcumin derivative using 

aliphatic nucleophilic 18F-fluorination followed by click reaction, focusing on 

stabilizing the [18F]curcumin derivative from oxidation and radiolysis during the 

purification and formulation procedures, and to evaluate the usefulness of the 

[18F]curcumin derivative for imaging Aβ. 

4. Develop a synthesis method for the preparation of functionalized 

[18F]nanoliposomes via nucleophilic 18F-fluorination followed by thin film 

hydration and extrusion, and to evaluate the pharmacokinetics of these 

functionalized [18F]nanoliposomes in a mouse model of AD. 
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4. MATERIALS AND METHODS 

4.1. Synthesis of tracers 

4.1.1. Production of 11C and 18F 

11C-Carbon was produced using the 14N(p,α)11C nuclear reaction (Figure 4.1, Christman 

et al., 1975). To generate [11C]CO2, nitrogen gas was irradiated in the presence of 0.2% 

O2 with 17 MeV protons and a 10 µA beam current. [18F]Fluoride was produced using 

the 18O(p,n)18F nuclear reaction (Figure 4.2, Solin et al., 1988). 18O-Enriched water 

(enrichment grade 98%, 800 µl, Hyox, Rotem Industries Ltd., Israel) was irradiated with 

17 MeV protons and a 10 µA beam current. Irradiations were performed with the MGC-

20 cyclotron (Efremov Scientific Research Institute for Electrophysical Apparatuses 

(NIIEFA), St. Petersburg, Russia) at the Åbo Akademi University Accelerator 

Laboratory. 

4.1.2. Synthesis of [11C]PIB (II) 

[11C]Carbon dioxide was transferred to the synthesis device and converted to [11C]methyl 

triflate (Figure 4.1., Crouzel et al., 1987, Jewett, 1992). [11C]Methyl triflate was trapped 

in the acetone solution of precursor 6-OH-BTA-0 (Figure 4.1.). The reaction mixture was 

heated for 3 min at 80˚C and then purified by semipreparative HPLC. The collected HPLC 

fraction was evaporated to dryness using a rotary evaporator. Finally, the end product, 

[11C]PIB, was formulated in propyleneglycol/ethanol/phosphate buffer (0.1 M, pH 7.4) 

solution at a ratio of 2/1/14 (v/v/v). 

Figure 4.1. Synthesis of [11C]PIB. 

4.1.3. General 18F-synthesis 

18F-labeling was performed using an in-house built, remote controlled device. In each 

synthesis, the aqueous solution of [18F]fluoride from the cyclotron target was collected in 

a vessel containing a base (potassium carbonate or potassium bicarbonate) and Kryptofix 
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222 (Figure 4.2). Water was removed using an azeotropic distillation procedure in which 

acetonitrile (1 ml) was added to the solution and the liquid evaporated under a stream of 

helium at reduced pressure. The solution was heated at 100C for 3 min. The distillation 

procedure was repeated three times, yielding a dry [18F]fluoride-potassium-Kryptofix 

complex.  

Figure 4.2. Production of [18F]fluoride and the synthesis of Kryptofix 222-potassium-

[18F]fluoride complex. 

After the 18F-labeling reaction, the product was separated from the reaction mixture by 

semi-preparative HPLC. UV absorption and radioactivity were monitored at the outflow 

of the column using a UV detector and NaI(Tl) scintillation detector connected in series. 

The HPLC eluent containing the end product fraction was removed by solid phase 

extraction. Finally, the end product was eluted from the cartridge using ethanol and 

formulated in a physiological solution. 

4.1.4. Synthesis of [18F]flutemetamol (II) 

A solution of the precursor (nitro derivative of flutemetamol) in DMSO was added to the 

dry residue of [18F]fluoride complex (Figure 4.3.). Radiofluorination was achieved by 

heating the reaction mixture at 160ºC for 10 min. Synthesis proceeded as described in the 

patent WO 2007/020400A1 (Storey et al, 2007). 

Figure 4.3. Synthesis of [18F]flutemetamol. 

4.1.5. Synthesis of [18F]S1P3 receptor ligand (I) 

[18F]S1P3 receptor ligand was synthesized by the 19F/18F isotope exchange reaction. The 

precursor 1-benzyl-N-(3,4-difluorobenzyl)-2-isopropyl-6-(2-methoxyethoxy)-1H-
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indole-3-carboxamide was dissolved in 300 µl of DMSO. The precursor-DMSO solution 

was added to the dry [18F]fluoride complex (Figure 4.4.). For reaction kinetics studies, 

the reaction mixture was heated at 170C or 190C with varying amounts of precursor or 

initial 18F-activity. Aliquots were collected from the reaction mixture at intervals for up 

to 60 min. Starting with approximately 30 GBq of initial activity for [18F]fluoride and 2 

µmol of precursor, the reaction mixture was heated at 190C for 20 min and the product 

purified by semipreparative HPLC. 

Figure 4.4. Isotope exchange reaction of [18F]S1P3 receptor ligand. 

4.1.6. Synthesis of [18F]treg-curcumin (III) 

An 18F-labeled curcumin derivative, [18F]treg-curcumin, was synthesized using a one-pot, 

two-step reaction utilizing nucleophilic 18F-fluorination and click chemistry (Figure 4.5.). 

First, 2-[2-(2-azidoethoxy)ethoxy]ethyl tosylate was dissolved in DMSO and allowed to 

react with the dry [18F]fluoride complex. Next, 2-[2-(2-azidoethoxy)ethoxy]ethyl 

[18F]fluoride was clicked with 2-[3,5-bis(4-hydroxy-3-methoxystyryl)-1H-pyrazol-1-yl]-

N-(prop-2-yn-1-yl)acetamide in a Cu(I)-catalyzed reaction. In the purification and 

formulation procedures, oxidation and radiolysis of [18F]treg-curcumin were inhibited by 

methanol-ascorbic acid or ethanol-ascorbic acid solutions. 
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Figure 4.5. Synthesis of [18F]treg-curcumin. 

4.1.7. Synthesis of functionalized [18F]nanoliposomes (IV) 

Functionalized [18F]nanoliposomes were produced by nucleophilic 18F-fluorination and 

thin film hydration. The mesyl derivative of diacylglycerol was dissolved in DMSO and 

added to the dry [18F]fluoride complex (Figure 4.6.). The product, [18F]diacyl glycerol 

derivative ([18F]DAG), was separated from the reaction mixture by semi-preparative 

HPLC. 

Figure 4.6. Synthesis of [18F]DAG. 

Monofunctionalized PA- and Curc-[18F]nanoliposomes (PA- and Curc-[18F]NL) were 

prepared using thin film hydration, by preparing a lipid solution containing cholesterol, 

sphingomyelin, maleimide-PEG-PE, and phosphatidic acid or curc-lipid in a molar ratio 

of 46.25:46.25:2.5:5, and the collected [18F]DAG fraction from the preparative HPLC-

column (Figure 4.7.). The particle size of the [18F]liposomes was adjusted with extrusion 

at 55C using a 100-nm-pore filter. Finally, these [18F]nanoliposomes were purified using 

a PD-10 column. 

In the synthesis of liposome-encapsulated [18F]treg-curcumin, liposomes were produced 

as PA- or Curc-nanoliposomes, but without [18F]DAG, and the formulation solution of 
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[18F]treg-curcumin resulting from formulation was used as a rehydration solution (Figure 

4.7.). 

PA- and Curc-[18F]nanoliposomes and liposomal [18F]treg-curcumin were further 

functionalized with ApoE peptide derivative by incubating the nanoliposome solution 

with ApoE derivative at 37˚C for 30 min. 

Figure 4.7. Scheme of [18F]liposome syntheses. Modified from the original publication 

IV 

4.1.8. Analysis of PET tracers (I-IV) 

The SA, RCY, RCP, and chemical purity of the end product were analyzed using an 

analytical HPLC method. The concentration of the end product was analyzed by linear 

calibration with an authentic standard of known concentration. The HPLC fraction 

observed at the radioactivity detector was collected and its radioactivity measured. The 

cholesterol and sphingomyelin concentrations of liposome solutions were determined by 

an analytical HPLC method using linear calibration with an authentic standard of known 

concentration. The total lipid concentration of liposomes was calculated using the 

measured cholesterol and the molar ratio of the lipids. 

RCC and RCP were also determined by a TLC method combined with digital 

autoradiography. TLC plates were developed using an appropriate solvent solution. 

Radioactivity on the plate was detected and quantified using PSL digital autoradiography. 
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The distribution of hydrodynamic diameters and PdI values derived using the Cumulant 

algorithm were measured for each liposome batch after radioactive decay. The zeta 

potentials and isoelectric points of the liposomes prepared in water solution were 

measured using the Hückel approximation and Smoluchowsky approximation, 

respectively. All measurements were made with a Malverin Zetasizer Nano ZS device at 

25 ˚C. 

4.2. Preclinical evaluation 

4.2.1. Animals (II-IV) 

Animal studies were performed with healthy adult male Sprague Dawley rats and healthy 

C57BL/6N and FVB/N mice. As animal models of AD transgenic Tg2576, APP23, and 

APPswe-PS1dE9 mice and corresponding wild-type (WT) control mice were also used. 

All animals were housed under standard conditions at the Central Animal Laboratory, 

University of Turku, Finland. Animal experiments were approved by the Animal 

Experiment Board of the Province of Southern Finland. 

4.2.2. In vitro binding studies (II, III) 

Binding to Aβ plaques was studied using 20-µm postmortem brain cryosections from 

transgenic AD and WT mice (Table 4.1.). Sections were incubated in 0.5 MBq/ml tracer 

in human serum albumin in phosphate buffer solution (HSA-solution) for 30 min. For 

heterologous competitive binding studies, non-radioactive PIB (ABX GmbH, Radeberg, 

Germany) was added to the incubation solution. The distribution of radioactivity in the 

brain sections was detected by digital autoradiography. The Aβ plaque pattern in these 

tissue sections was identified by thioflavin S staining. 

Table 4.1. Animals and PET tracers used for preclinical in vitro evaluations in studies II 

and III. N = 1 for all mouse strains. 

Study Tracer Animal strain Age 

[mo] 

II [11C]PIB and 

[18F]Flutemetamol 

Tg2576 16 

C57BL/6N 2 

III 
[18F]Treg-curcumin  

APP 23 18 

WT 28 
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4.2.3. In vivo PET imaging studies (II-IV) 

The in vivo biodistribution of 18F-tracers was evaluated using transgenic AD mice and 

WT mice (Table 4.2.). In vivo studies were performed using the Inveon Multimodality 

PET/ CT scanner (Siemens Medical Solutions, Knoxville, TN, USA). Animals were 

anesthetized and CT performed for attenuation correction and anatomical reference. 

Subsequently, 18F-tracer was injected into a tail vein and a dynamic 60-min PET scan 

initiated. Data were collected in 3D list mode, divided into several time frames, and 

reconstructed using the 2D-filtered back-projection algorithm. Dynamic data were 

analyzed using the Inveon Research Workplace analysis tool v. 4 (Siemens Medical 

Solutions). Time-radioactivity curves were obtained for the regions of interest which were 

drawn after the CT image or high 18F-accumulation and the results presented as 

percentages of the injected dose per gram of tissue (%ID/g), standard uptake values 

(SUVs) or as target area-to-reference area ratios. 

Table 4.2. Summary of the animals used for PET experiments in studies II-IV. 

Study Tracer Animal strain n Age 

[mo] 

Injected dose 

[MBq] 

II [11C]PIB C57BL/6N mouse 2 2 8.5 ± 0.5 

[18F]Flutemetamol 
Sprague Dawley rat 4 2 32 ± 4 

C57BL/6N mouse 2 2 3.0 ± 0.5 

III 
[18F]Treg-curcumin 

APP23 mouse 2 16 3.8 ± 1.2 

WT APP23 mouse 2 25 3.8 ± 1.2 

IV [18F]DAG  FVB/N mouse 1 3 4.2 

PA-[18F]NL 
FVB/N mouse 2 2 ; 3 5.5 ; 4.4 

APP23 mouse 2 26 5.9 ; 5.9 

Curc-[18F]NL 
APPswe-PS1dE9 mouse 2 6 6.8 ; 4.7 

C57 mouse 2 4 6.9 ; 4.8 

PA-mApoE-[18F]NL 
FVB/N mouse 2 2 ; 3 5.9 ; 5.8 

APP23 mouse 3 26 6.2 ± 0.7 

Curc-mApoE-[18F]NL 
APPswe-PS1dE9 mouse 1 6 4.7 

C57 mouse 2 5 ; 4 4.8 ; 6.9 

PA-mApoE-NL 
[18F]treg-curcumin  

Tg 2576 mouse 1 17 1.7 

C57 mouse 1 13 1.7 

Curc-mApoE-NL 
[18F]treg-curcumin 

APPswe-PS1dE9 mouse 1 5 7.5 

C57 mouse 1 4 7.2 



 Materials and Methods 55 

 

4.2.4. Ex vivo animal studies (II-IV) 

Animals used for ex vivo biodistribution studies of tracers are listed in Table 4.3. The 

animals were anesthetized briefly and the tracer administered via a tail vein. Five to 60 

min after tracer injection, the animals were sacrificed by CO2 inhalation (II) and by 

cardiac puncture under deep isoflurane anesthesia (III, IV). The brain and other organs of 

interest were dissected, weighed, and evaluated for radioactivity. The measured 

radioactivity was corrected for decay, organ weight, and background radiation, and 

expressed as the percent of injected dose per gram of tissue (%ID/g) or standard uptake 

values (SUVs). The brains were frozen, cut into cryosections, and air dried. The 

distribution of radioactivity in the brain sections was detected by digital autoradiography. 

The Aβ plaque pattern in the brain sections was identified by thioflavin S staining. 

Anatomical features were detected in the brain sections by hematoxylin and eosin (HE) 

staining.  

Table 4.3. Animals used for preclinical ex vivo evaluation of tracers in studies II-IV. 

Study Tracers Animal strain n Age 

[mo] 

Injected dose 

[MBq] 

II [11C]PIB Sprague Dawley rat 19 3 32 ± 8 

[18F]Flutemetamol Sprague Dawley rat 18 3 36 ± 7 

III 
[18F]Treg-curcumin  

Sprague Dawley rat 1 3 34.4 

C57BL/6N mouse 1 3 9.8 

IV [18F]DAG  FVB/N mouse 2 2-3 3.3 ; 2.5  

PA-[18F]NL 
FVB/N mouse 2 2-3 3.7 ; 4.6 

APP23 mouse 1 26 5.9 

Curc-[18F]NL 
APPswe-PS1dE9 mouse 2 6 6.8 ; 4.7 

C57 mouse 2 4 6.9 ; 4.8 

PA-mApoE-[18F]NL 
FVB/N mouse 3 2-3 4.8 ± 0.6 

APP23 mouse 2 26 5.4 ; 7.1 

Curc-mApoE-[18F]NL 
APPswe-PS1dE9 mouse 1 6 4.7 

C57 mouse 2 5 ; 4 4.8; 6.9 

PA-mApoE-NL 
[18F]treg-curcumin 

2576 mouse 1 17 1.7 

C57 mouse 1 13 1.7 

Curc-mApoE-NL 
[18F]treg-curcumin 

APPswe-PS1dE9 mouse 1 5 7.5 

C57 mouse 1 4 7.2 
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4.3. Statistical analyses (I-IV) 

Mean values were calculated from the individual measurements and expressed at a 

precision of one standard deviation (mean ± SD). Saturation binding analyses were 

performed using GraphPad Prism, version 2.01 (GraphPad Software, San Diego, CA, 

USA). 
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5. RESULTS 

5.1. Tracer synthesis  

5.1.1. Synthesis of [18F]S1P3-receptor ligand (I) 

The [18F]S1P3 receptor ligand was synthesized using the 19F/18F isotope exchange 

reaction. A high temperature was needed to start the reaction. A long reaction time at a 

high temperature increased the RCC (as well as the RCY) and SA until precursor 

degradation, which limited this increase. Increasing the amount of precursor also 

increased the RCC but simultaneously decreased the SA (Figure 5.1A and 5.1C.). The 

initial 18F-activity had only a minor impact on the SA (Figure 5.1D.). The best RCY was 

achieved with moderately low initial 18F-activity (Figure 5.1B.). Starting with 2 µmol of 

precursor and 30 GBq of initial 18F-activity, the [18F]S1P3 tracer was purified from the 

reaction mixture after heating at 190˚C for 20 min. The average RCY for the [18F]S1P3 

tracer was 1.0 ± 0.5%, the SA was 0.36 ± 0.19 GBq/µmol, and the RCP exceeded 98% 

(EOB, n = 16). 

 Figure 5.1. The amount of precursor is presented as a function of radiochemical 

conversion (A) and specific activity (C) using a reaction time of 15 min. Initial 18F-

activity as a function of radiochemical yield (B) and specific activity (D) using a reaction 

time of 20 min. All syntheses were performed at 190˚C. Values at 30 GBq are average 

values (n=16) from the production of [18F]S1P3 receptor ligand. Modified from the 

original publication I. 

A

C

B

D
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5.1.2. Synthesis of [11C]PIB and [18F]flutemetamol (II) 

[11C]PIB was synthesized using [11C]methyl triflate produced from [11C]carbon dioxide. 

The SA of [11C]PIB was 50 ± 11 GBq/µmol and the RCP more than 95% (EOS, n=13). 

[18F]Flutemetamol was produced using nucleophilic 18F-fluorination. The average SA of 

[18F]flutemetamol was more than 1 TBq/µmol and the RCP exceeded 98% (EOS, n=10). 

5.1.3. [18F]Treg-curcumin (III) 

[18F]Treg-curcumin was synthesized using a one-pot, two-step synthesis. After 

radiofluorination of the tosyl precursor, the RCY of 2-[2-(2-azidoethoxy)ethoxy]ethyl 

[18F]fluoride was 77 ± 10% (EOB, n = 9). Without intermediate purification, a click-

reaction was performed using in situ prepared Cu(I) as the catalyst for the reaction. The 

non-optimized RCY of [18F]treg-curcumin was 21 ± 11% (EOS), the RCP was more than 

99.3%, and the SA higher than 1 TBq/µmol (EOS, n = 9). 

5.1.4. Synthesis of [18F]nanoliposomes (IV) 

[18F]DAG was produced using nucleophilic 18F-fluorination of the mesyl precursor. 

Synthesis time was approximately 45 min. The RCY of [18F]DAG was 18 ± 9% (EOB), 

the SA more than 1 TBq/µmol, and the RCP exceeded 95% (EOS, n = 18).  

Functionalized [18F]nanoliposomes (Table 5.1.) were produced using thin film hydration, 

extrusion, and purification. 18F-fluorine was introduced into the liposomes using 

[18F]DAG or [18F]treg-curcumin. [18F]Nanoliposomes were further functionalized with 

mApoE. The functionalization had no effect on the RCP. No other analysis was performed 

after mApoE functionalization. 
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Table 5.1. The radioactivity concentration (RAC), radiochemical purity (RCP), lipid 

concentration, hydrodynamic diameter (dH), polydispersity index (PdI), zeta (ζ) 

potential, and isoelectric point (pHIEP) of liposomes. The ζ potential and isoelectric point 

were measured for liposomes prepared in water solution. All measurements were made 

at 25˚C. Modified from the original publication IV.  

Liposome n RAC  

 [MBq/ml] 

RCP  

[%] 

c(lipids) 

 [µmol/l] 

dH  

[nm] 

PdI ζ-potential 

[mV] 

pHIEP 

PA-[18F]NL 10 160 ± 110  > 95 11 ± 6 133 ± 22 0.12 

-75.2 ± 1.4 

 

2.0 

 
PA-NL 
[18F]treg-
curcumin  

1 10.3 > 99 30 263 0.32 

Curc-
[18F]NL  

3 130 ± 120 > 96 18 ± 3 237 ± 3 0.39 

-73.4 ± 1.7 

 

2.5 

 Curc-NL 
[18F]treg-
curcumin 

1 56 >98 8 390 0.40 

 

5.2. Preclinical evaluation of Aβ tracers (I, III) 

5.2.1. In vitro binding studies (II, III) 

In vitro binding studies were performed using postmortem brain cryosections from 

transgenic AD and WT mice to evaluate the binding of tracer to fibrillar Aβ. The binding 

of [18F]treg-curcumin in APP23 mouse brain sections and histochemical staining 

indicated that the Aβ plaque patterns were compatible with [18F]treg-curcumin binding. 

With [11C]PIB and [18F]flutemetamol, the binding of tracers in Tg2576 mouse brain 

sections was comparable to the histochemical staining of Aβ plaques. In all cases, tracers 

binding Aβ in AD mouse brain sections were displaced by adding non-radioactive PIB to 

the incubation solution. Displacement with PIB was successful and did not change the 

binding of these tracers in the white matter. The high IC50 (100 µM) of PIB determined 

for fibrillar Aβ using [18F]treg-curcumin suggests that the binding site of [18F]treg-

curcumin is not strictly associated with the high-affinity binding site of PIB. The non-

specific uptake in the AD mouse brain was low with [11C]PIB and [18F]treg-curcumin but 

relatively high with [18F]flutemetamol. 
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5.2.2. Biodistribution studies (II, III) 

The biodistribution of tracers in rats and mice was studied using in vivo and ex vivo 

methods. The in vivo studies showed that [11C]PIB and [18F]flutemetamol rapidly entered 

the rodent brain, whereas only minor brain uptake was seen with [18F]treg-curcumin, even 

in APP23 mice. Ex vivo digital autoradiography of Tg2576 mice revealed that [11C]PIB 

and [18F]flutemetamol bind to Aβ plaques in the brain. Non-specific binding to the white 

matter was relatively high with [18F]flutemetamol but low with [11C]PIB. With [18F]treg-

curcumin, accumulation in the rodent brain was observed only in the ventricles. 

The peripheral biodistribution of [18F]treg-curcumin and [18F]flutemetamol had a similar 

profile in rodents. Both tracers rapidly cleared from the blood and exhibited immediate 

uptake into the liver. At a later phase, high and persistent accumulation of the tracers was 

observed in the intestine. 

5.3. Preclinical evaluation of [18F]nanoliposomes (IV) 

The in vivo and ex vivo biodistribution of liposomal [18F]treg-curcumin revealed that 

these liposomal formulations were not successful in vivo, and the biodistribution results 

were similar to those of [18F]treg-curcumin in study III. 

The in vivo and ex vivo biodistribution of [18F]DAG-labeled liposomes in mice varied 

between individuals, but no difference was seen between transgenic AD mice and control 

WT mice. Functionalization affected the liposome biodistribution. In blood, high amounts 

of PA- and Curc-[18F]NLs were found 60 min after injection. The lung uptake of PA-

mApoE- and Curc-mApoE-[18F]NLs was high compared to the uptake of PA- and Curc-

[18F]NLs or [18F]DAG. Liver uptake was highest with PA-mApoE- and Curc-mApoE-

[18F]NLs. With all [18F]liposomes, the total radioactivity in the mouse brain was low.  

With all [18F]DAG-labeled liposomes, radioactive “hot spots” were observed in the ex 

vivo autoradiography images of mouse brain sections. The radioactive distribution did 

not match the thioflavine-positive Aβ plaque pattern in the AD mouse brain, indicating 

that when these liposomes pass the BBB, 60 min is too short a time for these liposomes 

to reach the Aβ plaques in the brain. HE staining of adjacent brain sections revealed 

normal brain morphology indicating that these liposomes do not cause acute neurotoxicity 

in the mouse brain. 
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6. DISCUSSION 

6.1. Synthesis of PET tracers 

Nucleophilic 18F-fluorination is a widely used method to introduce 18F-fluorine into PET 

precursor molecules. In this thesis, 18F-labeling was achieved using nucleophilic 18F-

fluorination with different synthetic approaches and leaving groups. The 18F-fluorination 

strategy affected the RCY and SA of the tracers. 

6.1.1. Aromatic nucleophilic 18F-fluorination synthesis (I and II) 

In aromatic 18F-fluorination reactions, 18F-fluoride substituted a nitro group on the aryl 

ring (study II) or 19F/18F isotope exchange was used (study I). Previous studies have 

demonstrated that the structure of the precursor compound and substituents in the benzene 

ring can accelerate the reaction kinetics, though they more often reduce the reaction rate 

(Cacace et al., 1982, Attina et al., 1983, Cai et al., 2008, Blom et al., 2009, Shen et al., 

2009, Malik et al., 2011). To some extent the substituent-induced reaction rate decline 

can be compensated by elevating the reaction temperature in order to increase the reaction 

yield as several studies have shown (Babich et al., 1996, Ryzhikov et al., 2004, Al-Labadi 

et al., 2006, Blom et al., 2009, Wagner et al., 2009). Thus, 18F-fluorination reactions of 

[18F]flutemetamol (study II) and [18F]S1P3 receptor ligand (study I) were performed under 

harsh conditions with elevated temperature. 

In study I, the increase in reaction temperature could not fully compensate for the 

reduction in reactivity caused by the complicated structure of the [18F]S1P3 precursor, 

particularly the large substituent at the para position of the 1,2-difluorobenzene ring; thus, 

the RCY remained low in this synthesis. Earlier studies showed that direct 19F/18F isotope 

exchange in large aromatic compounds is challenging and, therefore, 19F/18F isotope 

exchange reactions are usually used for 18F-fluorination of aromatic small molecules that 

have only a few substituents in the aromatic ring (Langer et al., 2003a, Langer et al., 

2003b, Ryzhikov et al., 2004, Al-Labadi et al., 2006, Wagner et al., 2009, Blom et al., 

2009). 

An extended reaction time increased the RCC of [18F]S1P3 receptor ligand, but the high 

reaction temperature caused heat-induced degradation of the precursor and [18F]S1P3 

tracer; eventually, this degradation limits the increase in RCY. Surprisingly, high initial 
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18F-activity also decreased the RCC of the [18F]S1P3 receptor ligand. A high reaction 

temperature and radioactivity concentration of the reaction solution caused radiolysis and 

poor RCC for the [18F]S1P3 receptor ligand. 

In the 19F/18F isotope exchange reaction of [18F]S1P3 receptor ligand, the amount of 

precursor affected the RCC. High RCC was achieved using high amounts of precursor, 

whereas low amounts of precursor yielded small amounts of [18F]S1P3 receptor ligand. 

The effect of the amount of precursor on RCY has been reported in several 19F/18F isotope 

exchange reaction studies (Cacace et al., 1982, Al-Labdi et al., 2006, Blom et al., 2009, 

Malik et al., 2011).  

Of note, as expected from isotopic exchange reactions, the SA of the resulting labeled 

species remained low, due to the fact that the precursor and the labeled compound are the 

same chemical entity. These values are, however, in the range of those obtained for other 

[18F]tracers produced by 19F/18F isotope exchange (Table 2.2, Babich et al., 1996, Langer 

et al., 2003a, Langer et al., 2003b, Blom et al., 2009). Interestingly, in our reaction the 

initial 18F-activity had only a slight impact on the SA of the [18F]S1P3 receptor ligand.  

[18F]Flutemetamol (study II) was produced using aromatic nucleophilic 18F-fluorination. 

The initial 18F-activity was produced with high SA (Solin et al., 1989), and the reaction 

mixture did not contain a source of 19F-fluoride. Thus, the SA of the synthesized 

[18F]flutemetamol was also high. 

6.1.2. Aliphatic nucleophilic 18F-fluorination synthesis (III and IV) 

In aliphatic 18F-fluorination of [18F]treg-curcumin (study III) and [18F]DAG tosyl (study 

IV), 18F-fluorine was attached to the end of the ethylene oxide chain. Tosyl and mesyl 

groups are good leaving groups and easy to substitute with 18F-fluoride; therefore, a 

moderate reaction temperature and short reaction time were sufficient to achieve good 

RCY and high SA of the 18F-labeled product. 

[18F]Treg-curcumin was synthesized using a one-pot synthesis with nucleophilic 18F-

fluorination and copper(I)-catalyzed click chemistry. In this reaction, only a small amount 

of copper was used and the reaction mixture was subsequently purified by preparative 

HPLC. Thus, the cytotoxicity of copper was not anticipated to be a major problem. The 

click-reaction was performed at room temperature to preserve [18F]treg-curcumin from 
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degradation. During synthesis, the combination of alcohol and ascorbic acid stabilized 

and decreased the oxidative decomposition and radiolysis of [18F]treg-curcumin. Thus, 

[18F]treg-curcumin was synthesized with high RCP and RCY. The high RCP of [18F]treg-

curcumin was maintained for up to 6 hours when it was kept in the formulation solution. 

However, the chemical purity of [18F]treg-curcumin was poor due to closely eluting non-

radioactive curcumin derivatives in preparative HPLC, which could not be properly 

separated from the desired labeled species. High SA values were achieved. 

6.1.3. Synthesis of 18F-labeled nanoliposomes (IV) 

[18F]Nanoliposomes were produced using two different labeling methods. In the first 

approach, [18F]DAG was incorporated in the core lipid of the liposome; in the second 

approach, [18F]treg-curcumin was encapsulated inside the liposome. In both approaches, 

18F-labeling was done before liposome synthesis and, therefore, high RCY of the 18F-

labeling process were required. 

Incorporation of 18F-activity into the liposomes using [18F]DAG was straightforward, as 

[18F]DAG mixed well with the other lipids. The spontaneously formed liposomes 

incorporated [18F]DAG relatively well as measured by the total radioactivity of the 

liposomes. Good 18F incorporation has also been reported in other studies that used a 

similar labeling approaches (Malik et al., 2007, Emmetiere et al., 2013). The RCY was 

higher when [18F]DAG was used as the 18F-fluorination compound for liposomes than 

when [18F]treg-curcumin was encapsulated inside the liposomes. Spontaneously formed 

liposomes can encapsulate only a small fraction of the [18F]treg-curcumin present in the 

rehydration solution. With [18F]treg-curcumin, liposomal incorporation also depends on 

the lipid content and size of the liposomes. Encapsulation of [18F]treg-curcumin was more 

effective with Curc-NLs than with PA-NLs. This difference may originate from repulsion 

or attraction between [18F]treg-curcumin and lipids or size of liposomes. A low 

encapsulating efficiency was reported in other studies in which a PET tracer was 

encapsulated inside liposomes (Hatakana et al., 2010, Medina et al., 2011, Benezra et al., 

2012). 

Thin film hydration is a simple and robust method for producing liposomes and easy to 

adapt for different methodologies because the technique has only two steps: evaporation 

and hydration. Thin film hydration was used in study IV to produce [18F]nanoliposomes 
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for preliminary animal studies. Of note, a more refined method would be required for 

large-scale liposome synthesis. Reproducibility of the thin film hydration method was not 

good, as seen in the varying lipid and radioactivity concentrations, especially in [18F]treg-

curcumin encapsulation. More refined methods (Buboltz and Feigenson, 1999, Otake et 

al., 2001, Pons et al., 1993, Zhigaltsev et al., 2012) may lead to more controlled and 

reproducible liposome sizes. Such refined methods require more advanced equipment and 

automation, not available in our lab during execution of the experiments.  

[18F]Liposome analysis revealed that liposomes stabilized the radioactive compounds, 

and no radiolysis of [18F]DAG or [18F]treg-curcumin was observed. Radioactivity did not 

cause liposome destruction, as observed in the particle size analysis. All of the prepared 

liposomes were anionic with high ζ potential, indicating that these liposomes should be 

relatively stable in water solutions. [18F]Treg-curcumin encapsulation increases the 

hydrodynamic size of the liposomes, which may be the result of the large size of [18F]treg-

curcumin. Although mApoE may change the surface properties, previous studies have 

shown that mApoE on the surface of liposomes does not significantly affect the size or ζ 

potential of liposomes (Re et al., 2011, Taylor et al., 2011). The hydrodynamic diameter 

or ζ potential of mApoE-functionalized liposomes was not measured. 

6.2. Preclinical evaluation of tracers (II-IV) 

6.2.1. Preclinical evaluation of [18F]flutemetamol and [18F]treg-curcumin (II, III) 

Several tracers have been developed for Aβ imaging in AD research and diagnostics 

(Rowe and Villemagne, 2013). In this thesis, two potential 18F-labeled tracers are 

presented for Aβ plaque imaging, [18F]flutemetamol (study II) and [18F]treg-curcumin 

(study III). Both of these 18F-labeled tracers were evaluated in healthy rodents and 

transgenic mouse models of AD. 

The structures of [18F]flutemetamol and the curcumin-like moiety of [18F]treg-curcumin 

match the properties important for BBB penetration and Aβ plaque binding 

(Balasubramanian, 2006, Reinke and Gestwicki, 2007, Wu et al., 2008, Begum et al., 

2008, Reinke and Gestwicki, 2011). Both of these tracers have a planar structure with 

double bond conjugations through the center of the compound that bridge two aromatic 

rings. Similar conjugation through the center of the molecule is also observed in other Aβ 

tracers, such as [11C]PIB, [18F]AZD4694, [18F]florbetaben, and [18F]florbetapir. In 
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[18F]treg-curcumin, the distance between the two phenyl rings is longer than in 

[18F]flutemetamol and other potential Aβ tracers, but this longer linker should also be 

more favorable for Aβ plaque binding (Balasubramanian, 2006, Reinke and Gestwicki, 

2007, Begum et al., 2008). To further enhance the Aβ binding properties of [18F]treg-

curcumin, the pyrazole ring has been used to create an enol form arrangement, which is 

the predominant configuration of curcumin in Aβ binding (Balasubramanian, 2006, 

Reinke and Gestwicki, 2007, Yanagisawa et al., 2010). In [18F]flutemetamol, the N-

methyl group of aniline forms hydrogen bonds with the hydrophobic pocket of Aβ, 

enhancing binding capacity (Lockhart et al., 2005, Wu et al., 2008). 

[18F]Flutemetamol and [18F]treg-curcumin both bind strongly to the Aβ plaques of 

transgenic mouse brain in vitro. The non-specific binding of [18F]flutemetamol is 

relatively high due to its lipophilicity, whereas the non-specific binding of [18F]treg-

curcumin was surprisingly low, as the calculated logP (ClogP 3.0) of [18F]treg-curcumin 

suggests high lipophilicity. Both [18F]flutemetamol and [18F]treg-curcumin were 

displaced when an excess of PIB was added to the incubation solution. The results of the 

displacement study of [18F]treg-curcumin suggest that the binding sites of [18F]treg-

curcumin and PIB are not exactly the same. Structure-activity relationship studies also 

confirmed that PIB and curcumin share one Aβ binding site, but both of these compounds 

have at least one binding site of their own (Reinke and Gestwicki, 2007). The conclusion 

of the in vitro studies is that both [18F]flutemetamol and [18F]treg-curcumin have suitable 

binding behavior in vitro for preclinical Aβ imaging. 

In vivo and ex vivo studies showed that [18F]flutemetamol has suitable kinetics for 

preclinical PET imaging; it penetrates the BBB fast and washes out from the rodent brain 

relatively quickly. The addition of fluorine to the thioflavine-based structure increased 

the lipophilicity, as shown in ex vivo rat brain sections in study II. The ElogD for 

flutemetamol is 3.2, which is much higher than the measured logP of 1.2 for [11C]PIB 

(Mathis et al., 2003b, Juréus et al., 2010). A high non-specific binding of 

[18F]flutemetamol has been observed in preclinical in vivo studies; this leads to a 

decreased sensitivity, hampering potential utilization for Aβ imaging (Snellman et al., 

2014). 
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 [18F]flutemetamol showed higher accumulation in transgenic AD mouse brain than in 

age-matched wild-type mouse brain. [18F]flutemetamol binding in transgenic AD mouse 

brain was dependent on the animal model (Snellman et al., 2014). Similar observations 

have been made with [11C]PIB (Klunk et al., 2005, Toyama et al., 2005, Maeda et al., 

2007, Snellman et al., 2013).  

In vivo and ex vivo studies of [18F]treg-curcumin revealed low penetration of the BBB in 

rodents. The small amount of 18F-activity observed in vivo in PET imaging of mouse 

brains after [18F]treg-curcumin administration was localized in the ventricles. The low 

brain uptake is surprising, because The ClogP of [18F]treg-curcumin (ClogP 3.0) is within 

the optimal range for BBB penetration (Levin, 1980, Pardridge, 2012). Similar logP 

values have been measured for other Aβ-[18F]tracers (Agdeppa et al., 2001, Zhang et al., 

2005, Juréus et al., 2010, Cai et al., 2011, Lee et al., 2011). Of note, the curcumin-like 

moiety of [18F]treg-curcumin is similar to the curcumin derivative CBN-001. Both of 

these compounds have a pyrazole ring that replaces the dicarbonyl structure of curcumin, 

but CBN-001 has a phenyl ring as a substituent in the pyrazole ring. CBN-001 can pass 

the BBB in rodents (Maher at al., 2010), suggesting that the substituted pyrazole structure 

does not inhibit BBB penetration. A fluoropegylated tail can be found in several 

compounds, such as the fluoropegylated curcumin derivatives and stilbene analogs 

[18F]florbetaben and [18F]florbetapir, and all these compounds penetrate the BBB in 

rodents (Zhang et al., 2005, Ruy et al., 2006, Lee et al., 2011, Swahn et al., 2012, 

Rominger et al., 2013). The molecular weight of [18F]treg-curcumin is higher than that of 

related compounds (Zhang et al., 2005, Ruy et al., 2006, Lee et al., 2011, Swahn et al., 

2012, Rominger et al., 2013), and it is in the range considered to limit passage across the 

BBB (Levin, 1980, Pardridge, 2012). In conclusion, observations of the molecular 

structure suggest an inability of [18F]treg-curcumin to penetrate the BBB due to high 

molecular weight and the large non-aromatic group attached to the pyrazole ring. 

6.2.2. Preclinical evaluation of [18F]nanoliposomes (IV) 

Some variation in [18F]nanoliposome biodistribution was observed between individual 

mice. In biodistribution studies, the same radioactive dose was injected into the mice; 

therefore, injected liposome volumes and masses were different. High liposome masses 

induce RES easier leading to fast clearance from the blood (Moghimi et al., 2001). 
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The preclinical evaluation of liposomes encapsulating [18F]treg-curcumin showed that 

these liposomes were not useful in mice. The [18F]treg-curcumin solution inside the 

liposome contained approximately 10 % ethanol, which may degrade the liposome core 

or cause liposomal leakage. The position of [18F]treg-curcumin on the liposome was not 

thoroughly characterized, and [18F]treg-curcumin may not have been encapsulated 

completely inside the liposome; rather, it may have been bound to the surface of the 

liposomes by electrostatic interaction or hydrogen bonding. These interactions may be 

strong enough to hold [18F]treg-curcumin on the surface of the liposome during the 

purification protocol, but after administration into the body [18F]treg-curcumin may 

detach from the liposomes.  

In mice, the biodistribution of [18F]DAG was different from [18F]DAG-labeled liposomes. 

The functional groups of [18F]liposomes affect the biodistribution. High 18F-activity was 

observed in the blood one hour after the injection of PA- and Curc-[18F]NLs, indicating 

that these liposomes are relatively stable in vivo. The mApoE-functionalized 

[18F]liposomes accumulated mainly in the lungs. In addition to the BBB, the lungs also 

express LDL receptors (Yao et al., 2012), which may explain the high retention of 

mApoE-functionalized [18F]liposomes in the lungs. These mApoE-functionalized 

[18F]liposomes also had higher uptake in the liver than PA- and Curc-[18F]NLs, whereas 

low 18F-activity was observed in the blood. Although previous studies reported that 

mApoE functionalization did not notably increase the hydrodynamic diameter or ζ 

potential of mApoE-functionalized liposomes (Re et al., 2011, Taylor et al., 2011), the 

biodistribution results suggest that PA- and Curc-mApoE-[18F]NLs may be larger or form 

agglomerates which induce RES activation (Allen and Chonn, 1987, Levchenko et al., 

2002, Li and Huang, 2008). High accumulation in the liver, spleen, lungs, and kidneys 

has also been observed with other PET-liposomes (Marik et al., 2007, Urakami et al., 

2007, Devaraj et al., 2009). 

Biodistribution studies and ex vivo mouse brain autoradiography studies have shown that 

only a small fraction of the total radioactivity accumulates in the brain one hour after 

[18F]liposome injection. The mApoE functionalization increased [18F]liposome brain-to-

blood ratios but the fast metabolism of these [18F]liposomes limited the [18F]liposome 

accumulation in the brain. In the AD mouse brain, the distribution of 18F-radioactivity did 

not match the Aβ plaques seen in the thioflavine-stained sections. In a previous study with 
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the 200-nm liposomes it was shown that liposomes distribute slowly in the rat brain 

(MacKay et al., 2005) which suggests that also [18F]liposomes need more than one hour 

to reach their targets. 

6.3. Utility of tracers 

In studies I-IV, new 18F-labeled PET tracers [18F]flutemetamol, [18F]S1P3 receptor ligand, 

and [18F]curcumin derivative, as well as four functionalized [18F]nanoliposomes, were 

introduced for preclinical studies of AD. All of these compounds might be used to study 

the pathology and treatment of AD and other diseases. Collected information can benefit 

the pharmaceutical industry and clinics in the development of new drugs and more 

accurate diagnostic methods. 

In study I, a [18F]S1P3 receptor ligand was synthesized for S1P3 receptor studies. This 

labeling method was used for preclinical applications starting with approximately 10 GBq 

of initial 18F-activity and 2 µmol of precursor. The preclinical evaluation of the [18F]S1P3 

receptor ligand reveals the suitability of the [18F]S1P3 receptor ligand for S1P3 receptor 

imaging if the low SA of [18F]S1P3 tracer enables the use of this tracer. For further studies, 

the development of an alternative 18F-synthesis route will be beneficial because it could 

increase the SA of this [18F]S1P3 receptor ligand. If preclinical evaluation proves that the 

[18F]S1P3 receptor ligand has a specific affinity towards the S1P3 receptor, it will allow 

the study of the involvement of S1P3 receptor in the formation and progression of AD and 

other CNS disorders, as well as cardiovascular diseases in which S1PRs are involved. 

[18F]Flutemetamol had promising properties as a preclinical PET tracer (study II), and 

since then [18F]flutemetamol has been studied for preclinical imaging in several AD 

mouse models (Snellman et al., 2014). [18F]Flutemetamol is an 18F-fluorine derivative of 

PIB that shares the same drawbacks as PIB. Both of these tracers can only be used for 

animal imaging studies in certain transgenic AD mouse models (Klunk et al., 2005, 

Toyama et al., 2005, Maeda et al., 2007, Snellman et al., 2013, Snellman et al., 2014). 

[18F]Flutemetamol has also had promising results in clinical studies and is one of the 

potential new 18F-tracers for Aβ PET imaging in humans (Rowe and Villemagne, 2013). 

The importance of the reaction conditions and reagents used for synthesis was observed 

during the synthesis of [18F]treg-curcumin (study III). By carefully choosing the reaction, 

purification, and formulation conditions, the chemical and radiolytic decomposition of 
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[18F]treg-curcumin was inhibited. These observations can be utilized when new curcumin 

derivatives are synthesized. In vitro studies of [18F]treg-curcumin revealed that [18F]treg-

curcumin has very high and specific binding towards Aβ plaques. Thus, curcumin 

derivatives should be studied further as potential tracers for Aβ imaging. Good 

pharmacokinetic properties of [18F]treg-curcumin combined with high Aβ binding show 

that this tracer and its derivatives could be appropriate probes for peripheral plaque 

imaging. 

Nanoliposomes are the focus of drug delivery studies and imaging agent research studies 

(Lammers et al., 2010, Liu and Welch, 2012, Allen and Cullis, 2013, Lai et al., 2013, Qin 

et al., 2013). In this thesis, two different approaches are presented that can be utilized for 

pharmacokinetic studies of functionalized nanoliposomes. Although the functional 

groups targeted Aβ and aimed to enhance BBB penetration, the developed synthesis 

approaches allow the functional group to be changed easily. These approaches can be 

utilized to study the effects of the functional group on the pharmacokinetics of the 

liposome. With the second approach, the encapsulation efficiency of the functionalized 

liposomes can be studied, as well as the in vivo stability of the encapsulated liposomes. 

Both of these synthetic approaches can be used in studies of various liposome 

applications. 

6.4. Future aspects 

AD is one of the leading disease among elderly people in Western countries. Currently, 

no curative treatment is available for AD. Thus, as the number of elderly people increases, 

WHO predicts that there will be approximately 115 million AD patient in the world by 

the year 2050 which means that the number of AD patient will increase 225% in next 40 

years (Duthey, 2013). 

The Aβ cascade is one of the leading AD pathophysiology hypotheses. Several PET 

tracers have been developed for Aβ imaging in AD (Nordberg et al., 2010, Rowe and 

Villemagne, 2013). With the help of new imaging tracers, such as [18F]flutemetamol, new 

information on the progression of AD and distribution of Aβ can be obtained. However, 

the ultimate question has not been answered – what triggers the Aβ cascade? 

To answer this question, more information is needed from the earlier stages of the Aβ 

cascade. To gather this information, new PET tracers with specific binding towards Aβ 
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oligomers are needed. As seen in study III and other studies (Ruy et al., 2006, Cai et al., 

2011, Lee et al., 2011), the curcumin derivatives have high Aβ plaque binding. Curcumin 

has also been shown to bind Aβ peptides and oligomers (Yang et al., 2005, Begum et al., 

2008). The next step may be to develop a tracer that binds Aβ before plaques are formed. 

Curcumin derivatives may be good candidates for this purpose. By gathering knowledge 

on the early stages of the Aβ cascade, new potential drug targets can be found that may 

prevent the progression of AD. 

Yet, AD is not all about Aβ. As Dr. Alzheimer discovered in 1906, neurofibrillary tangles 

are also among the Aβ plaques in the AD brain. These neurofibrillary tangles are formed 

by phosphorylation of tau protein, and the events related to this phenomenon are called 

the tau cascade. Currently, [18F]FDDNP is a tracer used for neurofibrillary tangle imaging 

(Kepe et al., 2013). In addition, new PET tracers are in the development phase for imaging 

studies of the tau cascade (Shao et al., 2012, Harada et al., 2013, Hashimoto et al., 2014, 

Villemagna et al., 2014). The tau and Aβ cascades have been speculated to be linked 

together (Karran et al., 2011), so studying both of these cascades is important to find the 

factors that ultimately trigger AD. 

In addition to the Aβ and tau cascades, several other pathogenetic mechanisms have been 

related to AD (Nordberg et al., 2010, Serrano-Pozo et al., 2011). Various studies have 

been performed to study AD-related neuroinflammation (March, 2014, Villemagne and 

Okamura, 2014, Zimmer et al., 2014). Most of these PET studies aimed at imaging the 

translocator protein (TSPO), but tracers for new inflammation targets are also currently 

under development (March, 2014, Villemagne and Okamura, 2014, Zimmer et al., 2014). 

The S1P3 receptor has also been associated with the inflammation processes. By studying 

the involvement of the S1P3 receptor in the inflammation processes, new AD drug targets 

may be discovered. 

In recent years, multimodality imaging has been of interest to researchers. PET/CT and 

PET/MR scanners are currently in use, but no multimodality imaging agents are available. 

Nanoparticles have a large surface-to-volume ratio and can be used as a platform for 

multimodality agents by functionalizing these particles with several different functional 

groups. A few attempts have already been made to create nanoparticle-based 

multimodality agents (Devaraj et al., 2009, Abou et al., 2013, Li et al., 2012) and the 

research around this subject is ongoing. Because liposomes are biocompatible and easy 
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to prepare, modify, and functionalize they are suitable platform for multimodality 

imaging agents and thus the liposome research has also expand from the medicinal sector 

to the imaging sector. 
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7. CONCLUSIONS 

The major conclusions of the work presented in this thesis are: 

1. [18F]S1P3 receptor ligand can be synthesized through the 19F/18F isotope exchange 

reaction. During synthesis development, the yield of the [18F]S1P3 receptor ligand 

was observed to be in proportion to the amount of precursor and inversely 

proportional to the initial 18F-activity. The SA of [18F]S1P3 receptor ligand 

decreases in proportion to the amount of precursor, whereas the initial 18F-activity 

had only a slight effect on the SA of the radiotracer. 

2. [18F]Flutemetamol can be produced using the aromatic 18F-fluorination reaction 

with high SA. Preclinical evaluation in experimental animals showed that 

[18F]flutemetamol binds to the Aβ plaques in transgenic AD mice in vitro and is a 

suitable Aβ tracer for preclinical imaging. 

3. [18F]Treg-curcumin can be synthesized in a two-step reaction using aliphatic 

nucleophilic 18F-fluorination and a click reaction. The reaction and purification 

conditions impact the yield and RCP. Therefore, moderate heat over a short period 

of time was used for nucleophilic 18F-fluorination, and the click reaction was 

performed at room temperature. Radiolysis and oxidation of [18F]treg-curcumin 

can be inhibited by alcohol and ascorbic acid in the purification and formulation 

solutions. [18F]Treg-curcumin, which was produced with good RCY, high SA, 

and high RCP, binds Aβ in the transgenic AD mouse brain in vitro but has low 

penetration of the BBB in mice and rats. 

4. Functionalized [18F]nanoliposomes can be produced using two different 18F-

fluorination approaches, thin film hydration, and extrusion. In the first 18F-

fluorination approach, [18F]DAG, the core lipid of nanoliposomes was 

synthesized using nucleophilic 18F-fluorination. In the second approach, [18F]treg-

curcumin was encapsulated inside the nanoliposome. Preclinical evaluation of 

functionalized [18F]nanoliposomes in experimental animals showed that the 

functional group affected the biodistribution of the nanoliposome. 

Monofunctionalized [18F]nanoliposomes were found in the blood 60 min after 

injection, but mApoE-[18F]nanoliposomes accumulated in the lungs. The total 
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brain uptake of all [18F]nanoliposomes was low. The in vivo stability of [18F]treg-

curcumin liposomes was low.  
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