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4 Abstract 

Mehdi Farshchian

Roles of novel biomarkers in progression of cutaneous squamous cell carcinoma

Department of Dermatology and Venereology, University of Turku; MediCity Research 
Laboratory, University of Turku; University of Turku Doctoral Programme of Clinical 
Investigation (CLIDP) and The National Graduate School of Clinical Investigation 
(CLIGS), Finland

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin 
cancer. The incidence of cSCC is increasing worldwide due to lifestyle changes such as 
recreational exposure to sunlight and the aging of the population. Because of an emerging 
need for molecular markers for the progression of cSCC, we set our goal to characterize 
three distinct novel markers overexpressed in cSCC cells.

Our results identified overexpression of serpin peptidase inhibitor clade A member 
1 (SerpinA1), EphB2 and absent in melanoma 2 (AIM2) in cSCC cell lines compared 
with normal human epidermal keratinocytes (NHEKs). Immunohistochemical analysis 
of SerpinA1, EphB2 and AIM2 revealed abundant tumor cell-specific expression of 
cytoplasmic SerpinA1 and AIM2 and cytoplasmic and membranous EphB2 in cSCC 
tumors in vivo. The staining intensity of SerpinA1, EphB2 and AIM2 was significantly 
stronger in cSCC as compared with carcinoma in situ (cSCCIS) and actinic keratosis 
(AK). Tumor cell-associated SerpinA1 and EphB2 was noted in chemically induced 
mouse skin SCC, and the staining intensity was stronger in mouse cSCCs than in 
untreated skin. AIM2 staining intensity was significantly more abundant in cSCC of 
organ transplant recipients (OTR) than in sporadic cSCC in vivo. EphB2 knockdown 
resulted in inhibition of migration in cSCC cells. In addition, knockdown of EphB2 and 
AIM2 was found to inhibit the proliferation and invasion of cSCC cells and to delay 
the growth and vascularization of cSCC xenografts in vivo. Altogether, these findings 
identify SerpinA1 as a novel biomarker for cSCC. In addition, characterization of the 
roles of EphB2 and AIM2 in the progression of cSCC was implicated them as possible 
therapeutic targets for the treatment of cSCC particularly in unresectable and metastatic 
tumors. 

Keywords: cutaneous squamous cell carcinoma, SerpinA1, EphB2, AIM2, matrix 
metalloproteinase
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Mehdi Farshchian

Ihon levyepiteelisyövän kehittymiseen liittyvät uudet merkkitekijät 

Iho- ja sukupuolitautioppi, Kliininen laitos, Lääketieteellinen tiedekunta, Turun 
yliopisto; MediCity tutkimuslaboratorio, Turun yliopisto; Turun yliopiston kliininen 
tohtoriohjelma (TKT) ja Valtakunnallinen kliininen tutkijakoulu (VKTK), Suomi

TIIVISTELMÄ

Keratinosyyttiperäinen ihon okasolusyöpä on yleisin metastasoituva ihosyöpä. Sen 
ilmaantuvuus kasvaa maailmanlaajuisesti elintapojen muutoksen kuten auringonvalolle 
altistumisen sekä väestön ikääntymisen takia. Tarvitaankin uusia merkkitekijöitä tämän 
syövän etenemisen ennustamiseksi. Työssämme löysimme kolme uutta merkkitekijää ja 
selvitimme niiden roolia ihon okasolusyövässä.

Havaitsimme, että seriiniproteaasin estäjä A1 (SerpinA1), EphB2 ja absent in 
melanoma 2 (AIM2)  ovat voimakkaasti koholla ihon okasolusyövästä eristetyissä 
solulinjoissa verrattuna ihmisen normaaleihin epidermaalisiin keratinosyytteihin. 
Tämän ohella havaitsimme immunohistokemiallisessa analyysissä SerpinA1:n, EphB2:n 
ja AIM2:n ilmentyvän spesifisti kasvaimen soluissa sekä ilmentyvän merkitsevästi 
enemmän okasolusyövissä verrattuna in situ karsinoomaan ja aktiiniseen keratoosiin 
in vivo. Lisäksi SerpinA1:n ja EphB2:n havaittiin olevan yliekspressoituja hiiren 
ihoon kemiallisesti aiheutetussa okasolusyövässä. AIM2:n värjäytymisintensiteetti oli 
merkitsevästi voimakkaampi elinsiirtopotilaista peräisin olevissa ihon okasolusyövissä 
kuin sporadisissa okasolusyövissä. EphB2:n hiljentäminen esti merkitsevästi 
okasolusyövästä eristettyjen solujen migraatiota. Lisäksi EphB2:n ja AIM2:n 
hiljentäminen syöpäsoluissa vähensi merkitsevästi solujen jakaantumista ja invaasiota 
sekä tuumorien vaskularisaatiota ja kasvua xenograftimallissa in vivo. Yhdessä nämä 
havainnot antavat aiheen otaksua, että SerpinA1 voisi toimia merkkitekijänä  ihon 
okasolusyövässä. Lisäksi havaitsimme, että EphB2:lla ja AIM2:lla on tärkeä rooli 
ihon okasolusyövän kehittymisessä, joten ne voisivat mahdollisesti toimia uusina 
hoidon kohteina erityisesti metastaattisten ja vaikeasti kirurgisesti poistettavien ihon 
okasolusyöpien hoidossa. 

Avainsanat: ihon oksasolusyöpä, SerpinA1, EphB2, AIM2, matriksin metalloproteinaasi
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AAT Alpha-1-antitrypsin

ADAM A disintegrin and metalloproteinase

AIM2 Absent in melanoma 2

AK Actinic keratosis

ASC Apoptosis-associated speck-like protein containing a caspase 
recruitment domain

BCC Basal cell carcinoma

Bcl-2 B-cell lymphoma 2

COX2 Cyclo-oxygenase-2 

cSCC Cutaneous squamous cell carcinoma

cSCCIS Cutaneous squamous cell carcinoma in situ

DMBA 7, 12-dimethylbenz [α] anthracene

DMEM Dulbecco’s modified Eagle’s medium

ECM Extracellular matrix

EGFR Epidermal growth factor receptor

Eph Erythropoietin-producing hepatocellular

ERK1/2 Extracellular signal-regulated kinase 1/2

FU Fluorouracil

HPV Human papillomavirus

Hras Harvey rat sarcoma virus oncogene

IFI16 Interferon -inducible protein 16

IFIX Interferon -inducible protein X

IFN Interferon

IHC Immunohistochemistry

IP Immunoprecipitation

IPA Ingenuity Pathway Analysis

MAPK Mitogen activated protein kinase
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MMP Matrix metalloproteinase

MNDA Myeloid nuclear differentiation antigen

MT1-MMP Membrane type-1 matrix metalloproteinase

NHEK Normal human epidermal keratinocyte 

NMSC Non-melanoma skin cancer

NLR Nod-like receptor

NSLC Non-small cell lung cancer

OTR Organ transplant recipient

PKC δ	 Protein kinase C delta

PYD Pyrin domain

qRT-PCR Quantitative real-time PCR

RDEB Recessive dystrophic epidermolysis bullosa

RIG-1 Retinoic acid-inducible gene 1

RLR RIG-1-like receptor

RTK Receptor tyrosine kinase

SAM Sterile alpha motif

SDS-PAGE  Sodium dodecyl sulphate polyacrylamide gel electrophoresis

SCC Squamous cell carcinoma

SCID Severe combined immunodeficient

SerpinA1 Serpin peptidase inhibitor clade A member 1 protein

SERPINA1 Serpin peptidase inhibitor clade A member 1 gene

siRNA Small interfering RNA

Srcasm Src-activating and signaling molecule

TIMP Tissue inhibitor of metalloproteinase 
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TPA 12-O-tetradecanoylphorbol-13-acetate

TMA Tissue microarray

UV Ultraviolet
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1. INTRODUCTION

Cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC), collectively 
referred to as non-melanoma skin cancer (NMSC), are by far the most common types 
of the human cancers in the Caucasian population. The incidence of cSCC is increasing 
worldwide making it the most common form of metastatic skin cancer. 

Ultraviolet (UV) radiation and cumulative lifetime sun exposure, immunosuppression, 
human papillomavirus (HPV) infection and chronic ulcers are among the most important 
risk factors for the development of cSCC. 

Surgical excision is the treatment of choice for primary cSCC. Destructive modalities 
and topical treatments are other therapeutic alternatives in the treatment of primary cSCC. 
However, treatment options for advanced, recurrent, unresectable and metastatic cSCCs 
are limited. Screening and diagnosis of cSCC at the early stages of tumor progression is 
potentially lifesaving. Patients with metastatic tumor who fail surgery and chemotherapy 
have a poor prognosis. 

New molecular markers as prognostic parameters would be useful for early diagnosis, 
and to predict the progression of actinic keratosis (AK) and cSCC in situ (cSCCIS) to 
invasive cSCC. In this study three distinct markers serpin peptidase inhibitor clade A 
member 1 (SerpinA1), EphB2 and absent in melanoma 2 (AIM2) have been studied 
in cSCC. In addition, the role of EphB2 receptor tyrosine kinase and AIM2 in the 
progression and invasion of cSCC was examined in cSCC cells in culture and in cSCCs 
in vivo.
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2. REVIEW OF THE LITERATURE 

2.1 Structure and physiology of skin

Skin is the largest organ of our body and consists of three layers: the epidermis, dermis 
and subcutaneous fat. The epidermal and dermal layers are separated by a basement 
membrane (Figure 1). Apocrine units, hair follicles, sebaceous glands, sweat glands 
and arrector pili muscles are the main adnexal structures of the skin. In the epidermal 
layer most of the cells are keratinocytes (95%) at different differentiation states. 
Melanocytes, Merkel cells and Langerhans cells form the rest of cell population. The 
epidermal layers from the innermost layers form as follows: stratum basale (basal 
layer), stratum spinosum (squamous layer), stratum granulosum (granular layer) and 
stratum corneum (cornified layer) (Menon, 2002). The main component of the dermis 
is the extracellular matrix (ECM) consisting of collagen, glycosaminoglycans and 
elastin. Collagen type I is the most abundant collagen in the dermis. Collagen type 
I and III are both present in papillary and reticular dermis and their reduction due to 
the exposure to the UV light is one of the possible mechanisms for photoaging. Type 
VII collagen forms the major structural component of anchoring fibrils (Sakai et al, 
1986). In addition, the dermal layer contains neurons, blood and lymphatic vessels 
and most of the skin adnexal structures (Menon, 2002). The subcutaneous fat consists 
of lipocytes, nerves and blood vessels. Skin serves as structural and functional barrier 
between the inside of the body and outside environment. It serves both as a physical 
barrier and chemical/biochemical barrier, which protects the body against exogenous 

Figure 1. Structure of the human skin.
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organisms. In addition, skin plays other important roles such as regulation of the body 
temperature, vitamin D metabolism and protecting against dehydration (Proksch et al, 
2008).

2.2 Cutaneous squamous cell carcinoma (cSCC)

2.2.1 Risk factors and pathogenesis of cSCC

Non-melanoma skin cancers, including BCC and SCC, are the most common types of 
malignancies in the Caucasian population. cSCC is the second most common type of 
cutaneous malignancy and accounts for 20 percent of skin cancers (Alam & Ratner, 
2001). cSCC is the most common metastatic skin cancer in the Caucasian population 
(Lim & South, 2014; Rogers et al, 2010). Exposure to solar UV radiation is the most 
common cause of cSCC (Alam & Ratner, 2001). Part of the epidermis protection against 
UV-induced DNA damage is provided by the melanocytes (Böhm et al, 2005). The risk 
of cSCC is markedly higher among individuals with a fair skin type, who live in the 
regions with high amount of UV radiation and occupations that require working outside 
many hours per day (Alam & Ratner, 2001). In addition, aging of the population and 
increased recreational exposure to UV light have notably increased the incidence of cSCC 
(Salasche, 2000). UVB radiation is the major risk factor and UVA augments the risk (Alam 
& Ratner, 2001; Salasche, 2000). UVB induces mutation of tumor protein 53 (TP53) 
tumor suppressor gene, resulting in irreversible inactivation of the tumor suppressor 
feature of the protein, which is potentially an important genetic event in the development 
of cSCC (Ratushny et al, 2012). UV radiation induces apoptosis in keratinocytes with 
one mutation in TP53. However, additional TP53 inactivation renders the keratinocytes 
resistant to apoptosis and consequently uncontrolled proliferation, which is the early 
event in the progression of AK to cSCCIS and invasive cSCC (Figure 2) (Alam & 
Ratner, 2001; Boukamp, 2005; Madan et al, 2010). In addition, chronic exposure to UV 
light damages epidermal cells, resulting in the activation of inflammatory pathways such 
as NFκB, releasing of cyclo-oxygenase-2 (COX-2) and immunosuppression due to the 
changes in T-cell subsets as a result of cytokine dysregulation (Aggarwal et al, 2009; 
Berman & Cockerell, 2013). Loss-of-function mutation of NOTCH1 is an early event in 
the progression of cSCC (South et al, 2014). The Ras mutation, especially Hras, is one of 
the key oncogenes in the development of cSCC (Boukamp, 2005; Pierceall et al, 1991; 
Spencer et al, 1995). However, ras mutation alone is not sufficient for the malignant 
transformation of the keratinocytes (Ratushny et al, 2012). In addition, c-myc, bcl-2, 
STAT-3, p63-FGFR2, ROS-induced PI3K/AKT-mTOR, Wnt/β-catenin, Shh/Gli1-3 and 
TGF-β-related signaling and PDGF-C pathway are the other known signaling pathways 
involved in the progression of cSCC (Lim & South, 2014; Ratushny et al, 2012).
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Besides UV radiation, chronic ulcers, immunosuppression and HPV infection are the 
other risk factors for the development of cSCC (Kivisaari & Kähäri, 2013). In addition, 
similar to other malignancies, chronic inflammation and activation of inflammatory 
pathways are linked to tumorigenesis potential of cSCC and the progression of AK 
to cSCCIS and invasive cSCC (Ratushny et al, 2012) (Table 1). Furthermore, the 
inflammatory microenvironment is known as one of the possible mechanisms being used 
by cSCC tumor to protect the tumor against the immune system (Hofbauer et al, 2010).

Table 1. Risk factors for the development of cSCC. (Modified from Madan, 2010; Kivisaari and 
Kähäri, 2013)

Exposure to UV light
Fair skin type
Chronic ulcer 
Chronic inflammation
Immunosuppression
Organ transplantation
Ionizing radiation
Chemical carcinogenesis
Human papilloma virus
AK and cSCCIS
Tobacco smoking
Arsenic
Occupational factors

Figure 2. Common molecular features involved in development of AK, cSCCIS and cSCC. 
(Modified from Alam and Ratner, 2001; Boukamp, 2005; Ratushny, 2012)
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2.2.2 Clinical features and progression of cSCC

The premalignant form of the cSCC, AK is known as the most common premalignant 
lesion of the skin. The lesion usually appears on the sun-exposed area of the body, such 
as face and back of the hands, manifests as skin-colored to reddish-brown scaly macules, 
papules or plaques. It is usually superficial, hard, indurated and has an elevated base with 
the size of few millimeters up to 2 centimeters. The surface of the lesion is covered by an 
adherent scale, but sometime it is shiny and smooth. At the early stages, the AK lesions 
are more palpable, but they may not be seen easily (Alam & Ratner, 2001; James et al, 
2011; Madan et al, 2010; Stockfleth et al, 2011). The rate of AK progression to invasive 
cSCC is between 0.025 and 16 percent (approximately 10%), which usually takes place 
within two years. The risk is 100 fold higher in immunosuppressed patients (Fuchs & 
Marmur, 2007; Stockfleth et al, 2011).

If left untreated, the size of the lesion increases slowly and it develops to cSCCIS. The 
size of the cSCCIS increases gradually and becomes ulcerated and develops to cSCC, 
which invades the underlying layers. A diameter of >1cm, induration and inflammation, 
bleeding, ulceration, rapid increase in the size of the lesion and erythema are among the 
major clinical criteria for the progression of AK and cSCCIS to invasive cSCC. cSCC 
manifests itself as an enlarging papule or nodule or flat ulcer with a raised border, which 
becomes ulcerated, necrotic or keratoacanthoma-like (James et al, 2011; Stockfleth et al, 
2011). Histopathological examination of the lesion is the gold standard for the diagnosis 
of cSCC (Madan et al, 2010).

2.2.3 Histopathology of cSCC

The premalignant lesion, AK presents with focal parakeratosis and thickening of epidermis 
(Figure 3). In the epidermis, there is loss of arrangement of normal orderly stratified 
accompanying with atypia of keratinocytes. The basal cells are mainly dysplastic (Figure 
3). The grade of the intraepidermal keratinocyte atypia is classified as mild (AK I), 
moderate (AK II) or severe (AK III). Atypical keratinocytes are in basal and suprabasal 
layer in grade I. In grade II, atypical keratinocytes spread to the lower two-thirds of the 
epidermis, whereas in grade III, atypia occurs in full thickness through the epidermis. In 
the dermal layer, there is infiltration of inflammatory cells (James et al, 1978; Stockfleth 
et al, 2011). In cSCCIS the full epidermis is involved (Figure 3). The epidermal layer 
shows impairment in maturation and looks disorganized. Mitotic cells, multinuclear 
keratinocytes and dyskeratotic cells can be seen in epidermal layer. However, the border 
between epidermal and dermal layer (basement membrane) is intact (James et al, 2011).

cSCC is presented with a nest of atypical keratinocytes derived from epidermal 
keratinocytes invading into the dermis (Figure 3). The tumor cells have a large nucleus 
and eosinophilic cytoplasm. In addition, based on differentiation of the tumor, the area of 
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keratinization and keratin pearl formation can been seen. Using a subjective assessment 
cSCCs are classified into poorly, moderately and well-differentiated tumors (Figure 3). 
Well-differentiated cSCC manifests minimal pleomorphism and abundant keratinization 
presenting as keratin pearls. Poorly differentiated tumors are characterized by a high level of 
pleomorphism and nuclear atypia and very little or no nodular aggregates of keratinocytes 
(keratin pearls) (Dinehart et al, 1997; Lim & South, 2014; Stratigos et al, 2014).

2.2.4 Treatment of cSCC

Currently, there are limited tools available for prediction of which AK lesions will 
rapidly progress to invasive and metastatic cSCC. Therefore, all AKs should be treated. 

Figure 3. Histology of AK, cSCCIS and cSCC. Hyperkeratosis and thickening of the epidermis 
in AK, full epidermal layer involvement with mitotic cells in cSCCIS, keratin pearl 
formation in well-differentiated cSCC and invasive edges of moderately differentiated 
cSCC. Photographs by Mehdi Farshchian and Markku Kallajoki (Department of 
Pathology, University of Turku). (Scale bar = 100µM)
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The treatment options for the AK lesions are ablative procedures such as curettage, 
cryosurgery, excision and laser ablation and topical treatment with 5-fluorouracil (5-
FU), diclofenac, imiquimod or ingenol mebutate (Lebwohl et al, 2012; Stratigos et al, 
2014).

The principal treatment of the primary cSCC is treating the lesion in the early stages 
and preventing the recurrence of the tumor. The treatment of choice for the localized, 
low-risk tumors developed among AK and cSCCIS is destructive modalities such as 
cryotherapy, phototherapy and electrodessication and curettage as well as topical 
treatment with 5-FU, imiquimod, ingenol mebutate, diclofenac and chemical peels 
(Stratigos et al, 2014). These treatment modalities have as high as a 96 percent five-year 
control rate in the patients with low risk cSCC (Franco et al, 2013). The primary treatment 
for the cSCC tumors is surgical excision with a sufficient clear margin (4-5 mm for well-
defined low risk lesions smaller than 2 cm and 6-10 mm for the lesions with more than 
2 cm diameter or high risk lesions). Histological verification of the excised tumor can 
be done after performing the surgery or at the time of excision (Mohs micrographic 
surgery). Surgical excision is always prioritized over local destructive therapy unless 
the patient refuses the surgery or if there is any contraindication (Stratigos et al, 2014). 
Radiotherapy could be considered as an alternative therapeutic option for the patients 
with cSCC. However, it should be used with caution in patients with large tumors and 
immunosuppressed patients. In addition, a long list of contraindications and side effects 
such as age of the patient and location of the tumor apply to this treatment modality. 
Accordingly, radiotherapy should be considered only in patients with inoperable lesions 
and the ones who are poor candidates for the surgery (Parikh et al, 2014; Stratigos et al, 
2014). Adjuvant radiotherapy should be taken into account in perineural involvement of 
cSCC and for the lesions, which cannot be excised with the free margin.

Although examination of the sentinel lymph node is beneficial for the early diagnosis 
of the metastatic cSCC (Parikh et al, 2014), there is no evidence supporting its value 
for the therapy and prognosis of the tumor (Stratigos et al, 2014). Surgical treatment, 
radiotherapy alone or together with chemotherapy and electrochemotherapy using 
bleomycin and cisplatin are the therapeutic modalities for the invasive metastatic SCC. 
Methotrexate, cisplatin, 5-FU, doxorubicin and bleomycin are the reported systemic 
chemotherapy drugs used for the treatment of metastatic cSCC (LeBoeuf & Schmults, 
2011; Parikh et al, 2014). However, benefits of the chemotherapy should outweigh the 
toxicity and side effects of the treatment. Epidermal growth factor receptor (EGFR) is 
upregulated in metastatic and advanced SCC (Maubec et al, 2011; Toll et al, 2010) and 
its expression is associated with poor prognosis (Maubec et al, 2005). Targeting EGFR 
has been examined for the treatment of invasive and metastatic SCC. EGFR inhibitors 
have been developed both as small molecules TK inhibitors (erlotinib and gefitinib) and 
a monoclonal antibody (cetuximab), which is currently being used for the treatment of 
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metastatic head and neck SCC (Liu & Colegio, 2013; Stratigos et al, 2014). However, 
the effect of EGFR inhibitors in metastatic cSCC is under investigation in clinical trials.

2.2.5 Prognosis of cSCC

Although the prognosis of primary cSCC is favorable in the majority of cases (5-year 
cure rate of approximately 90%), the prognosis is poor for the metastatic tumors (Rogers 
et al, 2010). A recurrence rate of 4.6 percent, a lymph node involvement rate of 3.7 
percent and disease-specific death of 2.1 percent have been reported in 10-year follow-
up of primary cSCC (Schmults et al, 2013; Stratigos et al, 2014). Early diagnosis and 
treatment of AK, cSCCIS and primary cSCC lesions is the best strategy to prevent 
progression of the lesions toward invasive and metastatic cSCC. As the most metastatic 
form of skin cancer, the five-year metastatic rate of cSCC is approximately three to five 
percent (Madan et al, 2010; Ratushny et al, 2012; Stratigos et al, 2014). Regional lymph 
nodes (85%) are the major target organs for metastatic cSCC followed by metastasis to 
lung, liver, brain and bones (Stratigos et al, 2014). The size of the lesion (>2 cm), site of 
the lesion (lip, ear), deep infiltrating tumors, immunosuppression, history of radiation, 
histopathological features, poor differentiation, perineural invasion and lymph node 
involvement are among the most important indicators of the metastasis and recurrence of 
cSCC which requires routine close follow-up and examination of the patients (Alam & 
Ratner, 2001; Madan et al, 2010; Stratigos et al, 2014). Moreover, incomplete resection 
of the tumor is one of the main risk factors for the recurrence of cSCC. Ultrasound 
of the lymph nodes should be performed every three months in patients with local 
metastatic cSCC. In high risk patients, such as immunosuppressed patients and patients 
with multiple cSCC, regular follow-up is recommended every six months (Stratigos et 
al, 2014).

2.2.6 Recessive dystrophic epidermis bullosa (RDEB)-associated cSCC

Epidermolysis bullosa (EB) is a rare heterogeneous genetic disorder that manifests 
itself as blisters at the site of minor physical trauma, chronic wounds and erosions. The 
inherited EB is categorized as intraepidermal (EB simplex), junctional and dystrophic 
or dermolytic (Fine et al, 2008). The level of the epidermal separation can be detected 
by electron microscopy and immunofluorescent studies. In recessive dystrophic EB, the 
cleavage takes place in the deep layer (sublamina) (Bruckner-Tuderman et al, 1989). 
Dystrophic EB is due to the mutations in collagen type VII gene (COL7A1) (Uitto et al, 
1994).

Patients with recessive dystrophic EB (RDEB) are at great risk for highly aggressive 
cSCC (Venugopal & Murrell, 2010). In contrast to the UV-induced sporadic cSCC, in 
RDEB patients, non-UV-induced aggressive cSCC is highly metastatic and is the main 
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cause of death in these patients (Rodeck & Uitto, 2007; Venugopal & Murrell, 2010). 
In RDEB patients the cumulative risk of developing cSCC until the age 55 years is 90.1 
percent. cSCC in EB patients has been reported in the patients as early as age 12 years 
(Kawasaki et al, 2003). cSCC develops mainly at the region of chronic wounds and 
chronic skin scars (Venugopal & Murrell, 2010). Despite the fact that RDEB-associated 
SCCs spread and metastasize quickly, the primary lesions have the histopathological 
features of the well-differentiated lesions (McGrath et al, 1992). Due to the invasive and 
metastatic nature of the cSCC in RDEB patients, routine monitoring and diagnosis of 
the lesions in the early stages would be crucial (Venugopal & Murrell, 2010). Prompt 
excision of the primary cSCC with a sufficient and clear margin is the principle for 
treatment of RDEB patients (Saxena et al, 2006).

2.2.7 cSCC in immunosuppressed patients

Immunosuppression due to immunosuppressive medications after organ transplantation 
is associated with a markedly higher risk of cSCC (65-250 times) than the general 
population (Euvrard et al, 2003; Tessari et al, 2010). In contrast to the general 
population, SCC is more common than BCC (5:1) in immunosuppressed patients 
(Euvrard et al, 2003; Wisgerhof et al, 2009; Zamanian & Farshchian, 2007). In 
immunosuppressed patients, almost 40 percent of the AK lesions develop to cSCC 
compared with a 10 percent risk in immunocompetent patients (Stockfleth et al, 2011). 
In addition, cSCCs developed in immunosuppressed patients have more aggressive 
properties and are associated with a higher rate of recurrence, metastasis (5-10 folds) 
and mortality (Euvrard et al, 2003; Hameetman et al, 2013; Stratigos et al, 2014). 
As in immunocompetent patients, in immunosuppressed patients UV-induced TP53 
mutation takes place in the early stages of AK development to cSCC. However, the 
mutations occur more frequently in immunosuppressed patients (de Graaf et al, 2008). 
Loss of immune surveillance and HPV are two other risk factors known to play an 
important role in the development of cSCC in immunosuppressed patients (Stratigos 
et al, 2014). Among several HPV types, the role that Beta-PV plays in the progression 
of cSCC in immunosuppressed patients has been documented (Genders et al, 2015; 
Hofbauer et al, 2010). Beta-PV has been suggested as a marker for the prediction of 
cSCC development in organ transplant recipients (OTRs) (Genders et al, 2015). Apart 
from the effect of immunosuppressive drugs on the impairment of the immune system, 
reducing defense against the neoplasm and chronic inflammation, they promote 
progression of cSCC by increasing the level of TGFβ and VEGF (Hofbauer et al, 
2010). Furthermore, activation of NFκB and TNF pathways has been identified in AK 
lesions as precursors of cSCC in immunosuppressed OTRs (Hameetman et al, 2013). 
With an average of eight years, the risk of cSCC increases over time following organ 
transplantation (Harwood et al, 2013). Among OTRs, heart, lung and kidney recipients 
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have the highest risk of developing cSCC (Krynitz et al, 2013). Pain sensation by the 
patient is one of the important warning signals for the development of cSCC in OTRs 
(Bouwes Bavinck et al, 2014). Patient education, close regular skin examination (every 
6 months) and prompt treatment are the principles of the prevention and management 
of cSCC in immunosuppressed patients (Stratigos et al, 2014).

2.3 Proteinases in cSCC

2.3.1 Matrix metalloproteinases in skin cancer progression

Matrix metalloproteinases (MMPs) consist of a zinc-dependent family of 
endopeptidases responsible for degradation of ECM (Khokha et al, 2013). In humans, 
MMPs have 23 members that are categorized into subclasses such as: gelatinases, 
collagenases, stromelysins, and transmembrane (Klein & Bischoff, 2011; Nissinen & 
Kähäri, 2014). Collagenases (MMP-1, -8, and -13), which cleave collagen I, II and III, 
are involved in different physiologic and pathologic conditions (Ala-aho & Kähäri, 
2005; Nissinen & Kähäri, 2014). MMPs are known to play a critical role in different 
physiological processes such as embryonal development, tissue remodeling, wound 
repair, organogenesis, host defense, homoeostasis and inflammation (Gialeli et al, 
2011; Nissinen & Kähäri, 2014). In addition, MMPs are involved in the pathogenesis 
of several diseases with an increased turnover of ECM, e.g., osteoarthritis, rheumatoid 
arthritis, autoimmune blister diseases, periodontitis and photoaging (Ala-aho & 
Kähäri, 2005; Kähäri & Saarialho-Kere, 1997).

Increasing evidence implicates the role of MMPs in cancer progression (Kessenbrock 
et al, 2015). Cleavage of the ECM by MMPs produced by stromal cells is the key 
mechanism for the invasion of the tumor cells (Ala-aho & Kähäri, 2005). In benign 
tumors the basement membrane remains intact. However, invasive and metastatic cells 
secrete proteolytic enzymes, such as MMPs, to dissolve the basement membrane and 
ECM, which makes it possible for the tumor cells to invade into the adjacent stromal 
tissue. As the next step in tumor metastasis, tumor cells recruit these proteinases to 
distribute in ECM. Once the tumors cells enter the blood or lymphatic circulation and 
migrate to the distant tissues, they produce MMPs to cleave the basement membrane and 
ECM of the target tissue (Ala-aho & Kähäri, 2005; Gialeli et al, 2011; Kessenbrock et al, 
2015). In addition, MMPs regulate chemokines and cytokines and inflammation and this 
way may promote cancer cell progression (Nissinen & Kähäri, 2014)

Several MMPs, such as MMP-1, -2, -3, -7, -9 and -13 are upregulated in primary 
and metastatic tumors. In addition, expression of different MMPs is associated with 
tumor progression, metastasis and poor prognosis (Deryugina & Quigley, 2006). MMP-
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1 (collagenase-1) is secreted by the stromal fibroblasts or tumor cells and cleaves 
collagen type I, II, III, VII, and X, aggrecan, fibronectin, serine peptidase inhibitors 
(α1-antitrypsin, α1-antichymotrypsin) and other elements of the ECM (Ala-aho & 
Kähäri, 2005). In addition, the role that MMP-1 plays in tumor cell proliferation and 
angiogenesis has been proposed (Gialeli et al, 2011). MMP-1 expression is linked with 
poor prognosis of several malignancies such as esophageal cancer and colorectal cancer 
(Johansson et al, 2000).

MMP-13 (collagenase-3) promotes invasion of the tumors by ECM degradation. In 
addition, expression of MMP-13 is associated with epithelial to mesenchymal transition 
(EMT) resulting in downregulation of cell adhesion, which enables the epithelial cells 
to migrate and may this way enhance the migration capacity (Gialeli et al, 2011; Polyak 
& Weinberg, 2009). MMP-13 cleaves collagen I, II, III, IV, IX, X, and XIV, fibronectin, 
laminin, aggrecan, osteonectin, and versican and other ECM components (Ala-aho 
& Kähäri, 2005). MMP-13 expression is correlated with the invasive and metastatic 
phenotype of breast carcinoma (Zhang et al, 2008), melanoma (Airola et al, 1999) and 
head and neck SCC (Johansson et al, 1997). An elevated risk of recurrence has been 
observed in prostate cancer, which has a high expression level of MMP-13 (Escaff et al, 
2010). In head and neck SCC, MMP-13 is expressed in large and locally invasive tumors 
(Stokes et al, 2010). Expression of MMP-13 is absent in premalignant skin lesions and 
normal skin (Airola et al, 1997; Vaalamo et al, 1997).

In contrast to other collagenases, MMP-8 (collagenase-2) has a dual role both as 
tumor-promoting and tumor-protective in different stages of tumor progression. 
Overexpression of MMP-8 is associated with decreased metastatic potential of breast 
cancer cells (Decock et al, 2008). Its protective role has been also identified in SCC of 
the tongue (Korpi et al, 2008). On the other hand, expression of MMP-8 is associated 
with the progression of ovarian cancer (Stadlmann et al, 2003).

Based on the key role that MMPs play in tumor progression, many inhibitors have 
been developed for the treatment of different malignancies. Although several inhibitors 
targeting MMPs can inhibit the metastatic and invasive potential of cancer cells, in 
clinical trials, their effect on the patients’ survival has not been promising to date (Hadler-
Olsen et al, 2013). The main drawback of the first MMP inhibitors developed, such 
as Batimastat and its derivatives Marimastat was their effect across a broad spectrum, 
which causes severe side effects (Steward & Thomas, 2000). The development of the 
inhibitors, which bind to the specific MMPs, is an enormous challenge, because the 
structure of the active zone of the MMPs is very similar to each other (Hadler-Olsen 
et al, 2013). In addition, the fluctuating role of MMPs in malignancies, both as tumor 
suppressor or promoter, could be one of the possible explanations for the failure of MMP 
inhibitors in the treatment of cancer (Vilen et al, 2013).
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2.3.2 Serine proteinase inhibitors in skin cancer

The superfamily of serine protease inhibitors (serpins) is the largest family of protease 
inhibitors described in humans. With the size of 350-500 amino acids, serpins are 
considered as large size molecules compared with other protease inhibitors. Serpins are 
involved in different biological processes e.g., inflammation and complement activation, 
angiogenesis, apoptosis, ECM maintenance and remodeling, sperm development, renal 
development, and prohormone conversion. In addition, the key role that many serpins 
play in fibrinolytic cascades and clotting has been identified (Silverman et al, 2001). 
Human serpins are classified into two largest clades of the 36 serpins: extracellular 
molecules ‘clade A’ and intracellular serpins ‘clade B’ (Law et al, 2006; Silverman et 
al, 2001). Most of the serpins have inhibitory functions (27 out of 36) (Table 2) (Law et 
al, 2006; Rawlings et al, 2014). In clade A, SerpinA1 and SerpinA3 are inflammatory 
response inhibitory molecules. Other molecules in clade A have different physiological 
roles such as transportation of the hormones (SerpinA6 and A7) and regulation of 
blood pressure (SerpinA8) (Table 2) (Law et al, 2006; Silverman et al, 2001). Clade B 
molecules are inhibitors of activity of cytotoxic apoptotic proteases (SerpinB6 and B9), 
papain-like cysteine proteases (SerpinB3) (Law et al, 2006) or have a tumor suppressor 
role (SerpinB5) (Zou et al, 1994) (Table 2).

Serpin peptidase inhibitor clade A member 1 (SerpinA1), also known as α1-proteinase 
inhibitor or α1-antitrypsin (AAT), is an inhibitor of neutrophil elastase. SerpinA1 also 
inhibits plasminogen activator, trypsin, chymotrypsin, plasmin and thrombin (Law et al, 
2006; Silverman et al, 2001). SerpinA1 protein is produced in the liver and distributed in 
the body via blood circulation. The main function of the SerpinA1 is to inhibit neutrophil 
elastase and results in the protection of the lung from damages cause by proteolysis. 
Mutations in SERPINA1 cause ΑAΤ deficiency, which is an autosomal dominant disease 
defined as two inherited deficiencies at the locus coding ΑAΤ (Silverman & Sandhaus, 
2009). ΑAΤ deficiency is a fetal genetic disorder particularly in people with European 
ancestry (Silverman et al, 1989). The mutations alter the structure of the molecule and 
it is consequently unable to be secreted into the blood. The accumulation of the AAT in 
the liver causes severe liver damage. On the other hand, lack of AAT in the lung causes 
alveolar septal destruction, which may progress to emphysema due to the proteolytic 
damages (Brantly et al, 1988; Silverman et al, 1989).

Serpin peptidase clade A member 3 (SerpinA3), also known as α1-antichymotrypsin 
(ACT), is another member of the serpin superfamily with clinical importance. SerpinA3 
is an inflammatory response molecule that inhibits mast cell chymase and neutrophil 
cathepsin G (Law et al, 2006; Silverman et al, 2001). The presence of SerpinA3 in brain 
amyloid deposits of the patients with Alzheimer’s disease is well documented. Although 
the exact role of the SerpinA3 in the pathogenesis of the disease is not clearly known, it 
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seems that SerpinA3 enhances the fibril formation in these patients and may affect the 
process of the disease (Abraham et al, 1988; Kamboh et al, 2006). 

Cumulative evidence has revealed an elevated expression of serpins in certain 
malignancies. The level of SerpinB3 (squamous cell carcinoma antigen 1, SCCA1) has 
been used as a serum marker for the advanced stages of the SCC of lung, head and neck, 
cervix and esophagus for many years (Silverman et al, 2004). In addition, expression of 
SCCA indicates poor prognosis in cervical carcinoma (Duk et al, 1996). SerpinB5 has 
a tumor suppressor role, because it inhibits cell motility and angiogenesis and induces 
apoptosis (Silverman et al, 2004). This notion is supported with the inhibition of invasion 
of breast cancer cell lines by induction of the SerpinB5 expression (Sheng et al, 1996). 
Thus, loss of SerpinB5 expression is associated with poor prognosis of patients with 
breast carcinoma. On the other hand, SerpinB5’s role in different tumors seems to be 
a double-edged sword, because elevated expression of SerpinB5 has been reported in 
colon (Song et al, 2002) and prostate carcinoma (Zou et al, 2002). The expression of 
SerpinB6, the other member of the clade B, markedly increases during differentiation 

Table 2. Function of human clade A and B serpins.

Clade Serpin Protease target or function

A

SerpinA1 Inhibition of neutrophil elastase, cathepsin G, thrombin, plasmin
SerpinA3 Inhibition of cathepsin G
SerpinA4 Inhibition of kallikrein
SerpinA5 inhibition of active protein C
SerpinA6 Non-inhibitory; cortisol binding globulin
SerpinA7 Non-inhibitory; thyroxine binding globulin of serum

SerpinA8 Non-inhibitory; amino-terminal cleavage by the protease renin results in 
release of the decapeptide angiotensin I

SerpinA9 Maintenance of naive B cells
SerpinA10 Inhibition of activated coagulation factor X and XI
SerpinA12 Insulin-sensitizing adipocytokine

B

SerpinB1 Inhibition of neutrophil elastase, cathepsin G
SerpinB2 Inhibition of urokinase-type plasminogen activator
SerpinB3 Inhibition of cathepsins L, G, S and K
SerpinB4 Inhibition of cathepsins G and chymase

SerpinB5 Non-inhibitory; inhibition of metastasis through uncharacterized 
mechanism

SerpinB6 Inhibition of cathepsin G and thrombin
SerpinB7 Megakaryocyte maturation
SerpinB8 Inhibition of furin
SerpinB9 Inhibition of granzyme B and elastase
SerpinB10 Inhibition of thrombin and trypsin
SerpinB12 Inhibition of trypsin and plasmin
SerpinB13 Inhibition of cathepsins L and K

(Modified from Law et al., 2006 and Rawlings et al., 2014)
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of keratinocytes, but its exact role in epidermis remains undetermined (Silverman et al, 
2004). 

2.3.3 SerpinA1 and SerpinA3 in cancer 

SerpinA1 expression is associated with invasive and the metastatic potential of lung 
cancer cells (Higashiyama et al, 1992; Zelvyte et al, 2004), colorectal (Karashima et 
al, 1990), gastric carcinoma (Tahara et al, 1984), papillary thyroid cancer (Jarzab et al, 
2005; Poblete et al, 1996) and prostate cancer (El-Akawi et al, 2008). In esophageal 
squamous dysplasia, SerpinA1 expression is associated with progression of the tumor 
(Joshi et al, 2006). Another piece of evidence supporting the role that SerpinA1 plays in 
the progression of SCC has been reported in oral mucosal SCC (Shirasuna et al, 1987). 
In addition, SerpinA1 has been identified as a biomarker in bladder cancer (Rosser et al, 
2014) and insulinoma (de Sa et al, 2007). Furthermore, expression of SerpinA3 has been 
documented in several malignancies such as gastric cancer (Allgayer et al, 1998), cancer 
of salivary glands (Chomette et al, 1991) and lung adenocarcinoma (Higashiyama et 
al, 1995). In rat hepatoma cells, SerpinA3 was found to inhibit apoptosis (Emoto et al, 
1998). SerpinA3 has been observed to inversely correlate with survival of melanoma 
patients (stage III) (Wang et al). In endometrial cancer cells, SerpinA3 promotes tumor 
cell growth via ERK1/2 and AKT signaling pathways (Yang et al, 2014). In addition, 
co-expression of SerpinA1 and SerpinA3 has been observed in HLA-positive cervical 
carcinoma and their expression was linked with poor prognosis (Kloth et al, 2008). 

2.4 Eph/ephrin tyrosine kinases family in cSCC

2.4.1 Activation and signaling of Eph/ephrin family

Tyrosine kinases are currently categorized into non-receptor and receptor types based on 
their structure (Fantl et al, 1993). Receptor tyrosine kinases (RTKs) are transmembrane 
proteins with a ligand-binding domain and an intracellular part, which have a tyrosine 
kinase domain. If the ligand is unavailable, the RTKs are inactive and unphosphorylated. 
Binding of the ligand to the extracellular domain of the receptor results in the clustering 
of the receptor, activation and autophosphorylation of a regulatory tyrosine and 
consequently internalization of intracellular domain by endocytosis (Lisabeth et al, 
2013; Schlessinger, 2000). The roles of RTKs in many biological processes such as 
controlling of cell proliferation, apoptosis, survival and differentiation have been well 
documented (Wilkinson, 2001).

Erythropoietin-producing hepatocellular (Eph) receptors represent the largest family 
of receptor tyrosine kinases (Pasquale, 2008; Pasquale, 2010). Based on their structures 
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and ligand-binding affinities, the human Eph receptors and ligands (ephrins) are divided 
into A and B subgroups (Himanen & Nikolov, 2003; Nikolov et al, 2013; Pasquale, 2010). 
Ephrin-A ligands (5 member), which are glycosylphosphatidylinositol (GPI)-linked, 
promiscuously bind to the EphA receptors (9 members) and transmembrane ephrin-B 
ligands (3 members) promiscuously bind to EphB receptors (5 members) (Pasquale, 
2005). Exceptionally, ephrin-A5 can interact with EphB2 in addition to A-type receptors 
and all ephrin-B ligands can bind to EphA4 (Figure 4) (Himanen & Nikolov, 2003; 
Pasquale, 2004; Pasquale, 2005). The EphB4 receptor has a high affinity to bind to the 
ephrin-B2 ligand (Pasquale, 2010). Eph receptors have an intracellular and extracellular 
region. The intracellular part has a kinase and sterile alpha motif (SAM) domain. The 
extracellular part has an ephrin-binding domain, fibronectin domain and an EGF-like 
motif (Pasquale, 2005).

Because both receptor and ligand are anchored to the membrane, cell-cell contact 
is required for their interaction. Upon binding to their cognate receptor, both receptors 
and ligands can transduce signals into the cell resulting in a bidirectional reverse and 
forward signaling. Therefore, as a unique characteristic of Eph/ephrin signaling, both 
Eph receptors and ligands simultaneously act as ligands and receptors between neighbor 
cells (Figure 5) (Himanen, 2012; Merlos-Suarez & Batlle, 2008; Surawska et al, 2004). 
The forward signal is due to the activation of the Eph tyrosine kinase domain and the 
reverse signal is related to the Src tyrosine kinase and other tyrosine kinases (Gu & Park, 
2001; Matsuoka et al, 2005; Miao et al, 2005; Pasquale, 2008). In addition, ephrin-B 
ligands and many of the Eph receptors have a PDZ domain-binding region that is crucial 

Figure 4. Interactions of Eph receptors and ephrin ligands. (* possible ligands for EphB2 
receptor) (Modified from Wilkinson, 2001)
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for their physiological role (Egea & Klein, 2007; Pasquale, 2008). Interaction of the 
receptor and ligand may take place between the cell membrane of two different cells (in 
trans), which is an activating signal, or it may take place between receptors and ligands 
located on the same cell (in cis), which fails to induce any signaling (Arvanitis & Davy, 
2008; Pasquale, 2005). The next stage is tetramerization of the receptors and ligands, 
which induces activation of the signal and forms large clusters (Himanen et al, 2004; 
Pasquale, 2005; Smith et al, 2004). Once Eph/ephrin signaling is activated, it induces 
activation of several downstream signaling pathways. Activation of Eph/ephrin signaling 
leads to activation of integrins, Src, P21 activated kinase, MAPK pathway, Abl, Rac, 
G-protein pathway and several other downstream signaling pathways (Gucciardo et al, 
2014; Lackmann & Boyd, 2008; Pasquale, 2008; Pitulescu & Adams, 2010; Poliakov et 
al, 2008). 

Eph/ephrins were first discovered as axon guidance molecules in the development of 
the central nerve system (CNS) (Flanagan & Vanderhaeghen, 1998; Kullander & Klein, 
2002) and their roles in other biological process were identified afterwards. Eph receptor 
and ephrin ligands are expressed in almost all cells of all tissues of the embryo and 
Eph/ephrin signaling is involved in several embryonic developmental processes such 

Figure 5. EphB2/ephrin signaling 
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as skeletal and cardiovascular development (Kullander & Klein, 2002; Palmer & Klein, 
2003; Pasquale, 2005). They play an important role in cell-cell interaction and junction, 
cell movement and migration, cell repulsion, actin cytoskeleton and cell differentiation, 
proliferation and survival (Egea & Klein, 2007; Pasquale, 2008). Aside from enrollment 
in the development of CNS, their role in the immune system, stem cells, bone, platelet 
aggregation and thrombus formation has been documented (Arvanitis & Davy, 2008; 
Himanen et al, 2007; Prevost et al, 2005). Eph/ephrin signaling contributes to several 
physiological processes in adults, e.g., memory and learning (Gerlai, 2002) and regulation 
of the insulin secretion (Konstantinova et al, 2007). Bone remodeling disorders have 
been reported in the patients with Eph/ephrin signaling deficiency or mutation (Davy 
et al, 2006). In addition, the role of Eph receptors in the organization of the intestinal 
villus and crypts in a model of EphB2 knockout mice has been demonstrated (Batlle et 
al, 2002). 

2.4.2 Eph/ephrin signaling in skin

The expression of certain Eph receptor and ephrins is upregulated in normal skin and 
their role in the regulation of epidermal homeostasis by balancing between proliferation 
and death of keratinocytes has been documented (Hafner et al, 2006; Lin et al, 2012). In 
the epidermal layer, ephrin-A1 is expressed in the deeper layer (stratum basale), whereas 
EphA1, EphA2 and EphA4 are expressed in all epidermal layers particularly suprabasal 
layer, which are more differentiated (Perez White & Getsios, 2014). The expression 
of EphA2 receptor in epithelial cells is regulated with E-cadherin (Miura et al, 2009; 
Orsulic & Kemler, 2000). Ligand targeting of EphA2 receptor promotes differentiation 
and adhesion of the epidermal keratinocytes via overexpression of desmoglein 1 (Lin 
et al, 2010). In human epidermal keratinocytes, EphB2, acting as a ligand, triggers 
reverse signaling in vitro and consequently promotes epidermal differentiation (Walsh 
& Blumenberg, 2012). Eph receptor and ephrins regulate differentiation, migration and 
adhesion of epidermal keratinocytes, and have been implicated in the pathogenesis of 
psoriasis (Gordon et al, 2013; Lin et al, 2012; Walsh & Blumenberg, 2012).

2.4.3 The Eph/ephrin family in cancer progression

Eph/ephrins are highly expressed and involved in a variety of embryonic developmental 
processes. However, the expression of the most of the Eph/ephrins is relatively low in 
the majority of normal adult tissues (Hafner et al, 2004). Alteration of expression of 
several Eph receptors (Table 3) and ephrins (Table 4) have been implicated in different 
malignancies (Ireton & Chen, 2005; Nakada et al, 2004; Noren & Pasquale, 2004).  
However, the role of Eph/ephrin signaling in cancer progression appears to be complex. 
There are plenty of mechanisms implicated in the tumorigenic role of the Eph receptor 
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and ephrins e.g., hypoxia, cytokines and oncogenic signaling pathways (Pasquale, 2008). 
Depending on the cancer cells, Eph/ephrin signaling recruits different pathways to 
promote or inhibit tumor progression. Jak/Stat (Lai et al, 2004) and Akt/PI3K (Carpenter 
& Cantley, 1996) pathways, as downstream pathways of Eph receptors, regulate cell 
proliferation, growth and migration. In colorectal cancer, EphB expression is regulated 
through the Wnt/β-catenin/Tcf pathway (Pasquale, 2008). In addition, the Abl-cyclin D1 
pathway is the known pathway that EphB2 receptor uses to mediate cell proliferation 
and invasion in colon cancer cells (Genander et al, 2009). There is overwhelming 
evidence that the expression of Eph receptors is lost in colorectal cancer suggesting a 
tumor suppressor role for Eph receptors in these malignancies (Batlle et al, 2005; Guo et 
al, 2006a; Jubb et al, 2005). The possible mechanism for the downregulation of the Eph 
receptors in colon cancer is induction of hypoxia. Hypoxia-inducible factor-1 has a high 
affinity for nuclear β-catenin and can silence target genes by competing with Tcf (Kaidi 
et al, 2007; Pasquale, 2008). In glioma cells, EphB2/R-Ras signaling is contributed to 
the invasion of the tumor (Nakada et al, 2005). Eph receptors (EphB4) regulate the 
migration of the tumor cells through RhoA GTPase in melanoma (Lisle et al, 2013; Parri 
et al, 2009; Yang et al, 2006).

Table 3. Examples of Eph receptors with prognostic significance in various cancer types.

Expression Eph receptor Cancer type Prognostic indication

Upregulated

EphA2

NSCL Poor survival
Hepatocellular carcinoma Poor survival
Epithelial ovarian Poor survival
Endometrial Poor survival
Breast Poor survival
Glioma Poor survival
Prostate Poor differentiation

EphA3 Gastric Poor survival
Colorectal Poor survival

EphA4 Gastric Poor survival
EphA7 Glioblastoma Poor survival
EphB3 NSCL Increased metastasis

EphB4

Bladder Poor differentiation
Ovarian Poor survival
Head and neck SCC Lymph node metastasis
Prostate Increased Gleason score

Downregulated

EphA1 Colorectal Poor survival
EphA5 Breast Lymph node metastasis
EphA7 Prostate Increased Gleason score
EphB2 Colorectal Poor differentiation

(Modified from Lisle et al., 2013)
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Upregulation of EphA2 expression has been observed in prostate cancer (Walker-
Daniels et al, 1999; Zeng et al, 2003), breast cancer (Zelinski et al, 2001), glioblastoma 
(Wykosky & Debinski, 2008) and melanoma (Udayakumar et al, 2011), and the receptor 
has been used as a target for cancer therapy (Tandon et al, 2011). In human breast 
carcinoma cells, cleavage of EphA2 by MT1-MMP promotes cell invasion and cell-
cell repulsion (Sugiyama et al, 2013). Eph receptors, ephrin-A ligands and integrin α3 
interact with each other and co-localize on the membrane of glioblastoma cells (Makarov 
et al, 2013). Expression of EphB4 has been observed in breast cancer (Berclaz et al, 
1996). Elevated expression of EphB2 receptor has been previously reported in some 
malignancies, e.g., hepatocellular carcinoma, colorectal cancer, renal carcinoma (Hafner 
et al, 2004), neuroblastoma (Tang et al, 2001), gastrointestinal cancers (Lugli et al, 2005), 
ovarian cancer and lung cancer (Surawska et al, 2004). In glioblastoma, expression 
of EphB2 receptor and ephrin-B2 ligand is associated with invasive phenotype of the 
tumor (Nakada et al, 2010; Nakada et al, 2004). In contrast, as mentioned previously, 
the activation of EphB receptor suppresses growth of colorectal cancer (Batlle et al, 
2005) and elevated expression of EphB2 receptor is associated with longer survival 
(Jubb et al, 2005). Soluble EphA7 has been noted to display tumor suppressor function 
in follicular lymphoma in vivo (Oricchio et al, 2011). In addition, silencing and mutation 
of Eph receptors have been described in some malignancies (Merlos-Suarez & Batlle, 
2008). Loss-of-function mutations, occurring mostly in the A9 track in exon 17, has 
been identified in prostate cancer (Huusko et al, 2004), colorectal cancer (Alazzouzi et 
al, 2005) and gastric cancer (Davalos et al, 2007).

Table 4. Examples of ephrin ligands with prognostic significance in various cancer types.

Expression ephrin ligand Cancer type Prognostic indication

Upregulated

ephrin-A1

Melanoma Poor survival

Gastric adenocarcinoma Increased lymph node metas-
tasis

Hepatocellular carcinoma Biomarker
Ovarian Poor survival

ephrin-A4 Osteosarcoma Poor survival
ephrin-A5 Ovarian Poor survival

ephrin-B2
Glioma Poor survival
Ovarian Poor survival
Uterine cervical Poor survival

Downregulated
ephrin-A1 Glioma Poor prognosis

Prostate Increased Gleason score

ephrin-A5 Prostate Decreased survival
Chondrosarcoma Higher clinical grade

(Modified from Lisle et al., 2013)
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2.4.4 Eph/ephrin signaling in skin cancer

The role of certain Eph receptors has been examined in skin cancer. Ablation of EphA2 
also known as epithelial cell receptor protein kinase (Lindberg & Hunter, 1990) in a 
homozygous knockout model of chemically induced mouse skin resulted in tumor 
progression (Guo et al, 2006b). These findings suggest that EphA2 serves as tumor 
suppressor in epidermal keratinocytes. In human normal skin, the expression level of 
EphA3, EphA8, EphB2 and ephrin-A2 is very low. Furthermore, downregulation of 
EphA1 expression has been observed in human non-melanoma skin cancer (Hafner et 
al, 2006). 

2.5 Absent in melanoma 2 (AIM2) in cSCC

2.5.1 The AIM2 inflammasome

There is increasing evidence that chronic inflammation is associated with different types 
of malignancies (Coussens & Werb, 2002). Besides the role of skin as a barrier, innate 
and adaptive immune systems work together to protect the body against exogenous 
organisms. The innate immune system is mainly responsible for initiating the primary 
response (Lamkanfi & Dixit, 2014). The major issue in the process of immune system 
is the discrimination between host cells and pathogens. This relies on the sensing of the 
pathogen-associated molecular patterns (PAMPs) such as part of microbial cell wall, 
nucleic acids and secretion system by pattern recognition receptors (PRRs) found in 
innate immune cells (Lamkanfi & Dixit, 2014). PAMPs are unique molecular structures 
for the microorganisms and absent in host cells. The lack of a PAMP signature protects 
the host cells from being targeted by immune system activation (Dowling & O’Neill, 
2012; Khare et al, 2010). PRRs are categorized into sensor and phagocytic PRRs. Sensor 
PRRs such as AIM2, membrane-bound Toll-like receptors (TLRs), Nod-like receptors 
(NLR) and RIG-1-like receptor (RLRs) bind to PAMPs and initiate the signals resulting 
in activation of inflammatory signaling pathways (Khare et al, 2010).  PRRs can also be 
activated by damage-associated molecular patterns (DAMPS) released from damaged 
host cells (Kolb et al, 2014; Lamkanfi & Dixit, 2014). 

The human IFN-inducible genes comprise AIM2, IFIX (Interferon (IFN)-inducible 
protein X), IFI16 (IFN-inducible protein 16) and MNDA (myeloid nuclear differentiation 
antigen) (Choubey et al, 2010; Ludlow et al, 2005). IFN-inducible family members encode 
for hematopoietic IFN-inducible nuclear protein with a unique repeat of 200 amino acid 
(HIN-200) (Choubey et al, 2010; Ludlow et al, 2005). DNA-binding HIN-200 domain 
of the AIM2 serves as a sensor for cytosolic double-strand DNA (dsDNA) from viruses 
such as cytomegalovirus and vaccinia, intracellular bacteria and host cells (Lamkanfi 
& Dixit, 2014; Ponomareva et al, 2013; Rathinam et al, 2010; Schroder & Tschopp, 
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2010). After sensing cytosolic dsDNA, AIM2 forms an inflammasome using apoptosis-
associated speck-like protein containing a caspase recruitment domain (ASC), which is 
necessary for the activation of pro-caspase-1 (Ponomareva et al, 2013). Activation of 
AIM2 inflammasome in macrophages promotes maturation and secretion of cytokines 
such as IL-1β and IL-18 through activation of caspase-1 (Figure 6) (Lamkanfi & Dixit, 
2014; Schroder & Tschopp, 2010). AIM2 is involved in the pathogenesis of autoimmune 
disorders such as systemic lupus erythematosus due to the generation of autoantibodies 
against the host cells (Lamkanfi & Dixit, 2014; Panchanathan et al, 2011). However, no 
association between AIM2 expression and severity of the disease has been documented 
(Kimkong et al, 2009). 

2.5.2 AIM2 in skin 

AIM2 expression is very low in epidermal keratinocytes (de Koning et al, 2012; 
Dombrowski et al, 2011). However, increased expression of AIM2 has been observed 
in allergic and inflammatory diseases of the skin such as urticaria, atopic and contact 
dermatitis (de Koning et al, 2012; Masters, 2013). In addition, in psoriatic lesions, 
keratinocytes express a high level of AIM2 (de Koning et al, 2012; Dombrowski et al, 
2011). Unlike in healthy skin, where cytosolic DNA cannot be detected, in psoriatic 
lesions AIM2 senses cytosolic DNA in keratinocytes resulting in activation of 
inflammasome (Dombrowski et al, 2011). Activation of AIM2 inflammasome triggers 

Figure 6. Schematic model of DNA sensing and AIM2 inflammasome activation. ASC, 
apoptosis-associated speck-like protein containing a caspase recruitment domain; 
HIN, hematopoietic IFN-inducible nuclear protein; PYD, pyrin domain. (Modified 
from Choubey, 2012; Ponomareva et al., 2013; Vanaja et al., 2015)
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activation of caspase-1, which cleaves IL-1β to the active form (Stutz et al, 2009). IL-1β 
pathway activation is a known phenomenon in the pathogenesis of psoriasis (Nestle et al, 
2009; Renne et al, 2010). Furthermore, HPV 16 induces AIM2 inflammasome activation 
in epidermal keratinocytes (Reinholz et al, 2013). 

2.5.3 AIM2 in cancer

In addition to its principal role in the activation of inflammatory responses as part of the 
innate immunity system, a number of recent studies proposed the role of AIM2 in cancer 
progression (Kolb et al, 2014). However, depending on the tumor type the activation 
of inflammasome plays different and sometimes controversial roles (Kolb et al, 2014). 
Besides cancer cells, the tumor microenvironment includes immune cells responsible for 
secreting different chemokines and cytokines that are known to play important roles in 
mediating tumor progression and metastasis (Kolb et al, 2014). AIM2 was first identified 
in spleen, blood leukocytes and small intestine with a sequence with high similarity 
to IFI16 and MNDA and was named based on the lack of expression in malignant 
melanoma cell lines (DeYoung et al, 1997). In a mouse model of breast cancer, AIM2 
expression was found to suppress the proliferation of the cancer cells (Chen et al, 2006). 
Caspase-1-mediated cell death as the result of AIM2 inflammasome activation has been 
suggested to act as the possible mechanism for the induction of cell senescence by AIM2 
(Fernandes-Alnemri et al, 2009; Hornung et al, 2009). 
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3. AIMS OF THE STUDY

At present, no specific molecular markers for cSCC are available and there is an 
emerging need to identify novel molecular markers for the progression of cSCC. The 
general purpose of this study was to identify and characterize novel biomarkers for 
the progression and invasion of cSCC and to understand their regulation during the 
progression of the tumor.

The specific aims included:

1. To characterize SerpinA1 (AAT) as a biomarker for the progression of cSCC.

2. To examine the functional roles of EphB2 in cSCC both in cultured cells and in
cSCC tumors in a xenograft model.

3. To explore the functional roles of AIM2 in cSCC cells in culture and in cSCC
tumors in a xenograft model.
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4. MATERIALS AND METHODS

4.1 Study approval

Approval for the use of archival tissue specimens and the collection of normal skin 
and cSCC tissues was obtained from the Ethics Committee of the Hospital District 
of Southwest Finland, Turku, Finland (Approval numbers: 187/4/2006; 138/2007). 
The study was performed in accordance with the Declaration of Helsinki. Prior to the 
surgery, each patient gave their written informed consent for obtaining normal human 
epidermal keratinocytes and cSCC cell lines and tumors. The experiments with mice 
(used in study I, II and III) were approved by the State Provincial Office of Southern 
Finland and conducted according to institutional guidelines (Approval numbers: 
ESAVI/8181/04.10.07/2012; ESLH-2007-09159/Ym-23). 

4.2 Cell culture

4.2.1 Normal human epidermal keratinocytes (NHEK) (I, II, III)

NHEK cultures (n=9) (NHEK 42, NHEK 45B, NHEK 51, NHEK 52, NHEK 59, 
NHEK 64, NHEK 65, NHEK 70, NHEK 74) were established from the normal skin 
of patients undergoing surgery for mammoplasty at Turku University Hospital, 
Turku, Finland. In addition, one NHEK (NHEK PC) was purchased from PromoCell. 
Keratinocytes were cultured in Keratinocyte Basal Medium 2 (KBM®-2) supplemented 
with SingleQuots®.

4.2.2 Human cSCC cell lines (I, II, III)

Primary (n=5) and metastatic (n=3) human cSCC cell lines were established from 
surgically removed SCCs of skin at the Department of Otorhinolaryngology, Turku 
University Hospital (Table 5). cSCC cells were cultured in DMEM supplemented with 6 
nmol/l glutamine, non-essential amino acids and 10% fetal calf serum (FCS). All cSCC 
cell lines were sent to DDC Medical (Fairfield, OH) to verify their authenticity by short 
tandem repeat (STR) profiling.
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Table 5. Location and metastatic status of cSCC cell lines.

SCC cell line Location Primary/metastatic 
UT-SCC12A Skin of the nose Primary
UT-SCC91 Skin of the nose Primary
UT-SCC118 Face Primary
UT-SCC105 Face Primary
UT-SCC111 Face Primary
UT-SCC7 Temporal skin Metastatic
UT-SCC115 Auricle Metastatic
UT-SCC59A Temporal skin, Metastatic

4.2.3 HaCaT and Ha-ras-transformed tumorigenic HaCaT cell lines (I)

Immortalized nontumorigenic human epidermal keratinocyte-derived cell line, HaCaT 
(Boukamp et al, 1988) and Ha-ras-transformed tumorigenic HaCaT cell lines A5, II4, 
and RT3 (Boukamp et al, 1990) were a kind gift from Dr. Norbert E. Fusenig (Deutsches 
Krebsforschungszentrum, Heidelberg, Germany) (Table 6). HaCaT and Ha-ras-
transformed HaCaT cell lines were cultured in DMEM with 10% FCS. G418 (200 µg/
ml) was added to the medium of the Ha-ras-transformed HaCaT cell lines.

Table 6. Characteristics of HaCaT and Ha-ras-transformed tumorigenic HaCaT cell lines 
(Mueller et al, 2001).

Cell line Characteristics

HaCaT Immortalized nontumorigenic human epidermal 
keratinocyte-derived cell line

Ha-ras-
transformed 
HaCaT cell lines

A5 Forms benign tumorigenic tumors in vivo
II4 Forms malignant invasive tumors in vivo

RT3 Forms metastatic tumors in vivo

4.3 Expression profiling (I, II, III)

4.3.1 Microarray-based gene expression profiling (Affymetrix) (I, II, III)

Gene expression profiling was performed to compare expression of different genes in 
NHEKs (n=5) and primary (n=5) and metastatic (n=3) cSCC cell lines using U133 Plus 
2.0 GeneChip (Affymetrix Inc) at Finnish Microarray and Sequencing Centre, Turku 
Center for Biotechnology, Turku, Finland. Normalization of the arrays was performed 
using the RMA assay, Chipster software. Gene expression profile after EphB2 knockdown 
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was performed with RNAs derived from cSCC cell lines (n=3) 72 hours after EphB2 or 
control siRNA transfection using Human Genome U219 Array Plate. Gene expression 
analysis was then subjected to Ingenuity Pathway Analysis (IPA) software (Ingenuity 
Systems) for pathway analysis. P<0.05 and fold change (log2)>0.75 were used as 
thresholds for analysis. 

4.3.2 RNA sequencing (II, III)

Next generation sequencing was performed for RNAs derived from NHEK (n=4) 
and primary (n=5) and metastatic (n=3) cSCC according to the Whole Transcriptome 
Analysis Kit procedure (SOLiD™) at the Finnish Microarray and Sequencing Centre, 
Turku Center for Biotechnology, Turku, Finland. The samples were processed with 
the SOLiD 3Plus instrument with 35bp read length. The data were normalized using 
quantile-to-quantile adjustment (R/Bioconductor package edgR).

RNA sequencing after AIM2 knockdown was performed with RNAs derived from 
cSCC cell lines (n=3) 72 hours after AIM2 or control siRNA transfection using Illumina 
RNA-sequencing at Turku Center for Biotechnology. The samples were sequenced 
with the HiSeq2500 instrument using single-end sequencing chemistry with 50bp read 
length and were aligned against the human reference genome (hg19 assembly). Pathway 
analysis was performed with IPA analysis as mentioned above.

4.4 Quantitative real-time PCR (qRT- PCR) (I, II, III)

Culture media of the cells were changed to serum-free 24 hours before RNA extraction.  
Total RNA was isolated from cultured cells and tissue samples using RNAeasy kit 
(Qiagen) by using manufacturer’s instructions. cDNA was reverse transcribed from 1 
µg RNA using reverse transcriptase M-MLV RNase H minus reverse transcriptase and 
random hexamers (Promega). qRT- PCR was performed to determine the expression 
level of human SERPINA1 and SERPINA3 and murine SERPINA1 (study I), human 
EPHB2, EFNB2 (Study II) and AIM2 (Study III) using Applied Biosystems 7900HT Fast 
qRT-PCR System as previously described (Junttila et al, 2007a). The specific primers 
and probes have been described in study I, II and III.

4.5 Immunofluorescence staining of cSCC cells (II, III)

Immunofluorescence staining was performed to examine the amount of EphB2 receptor 
and ephrin-B2 ligand on the cell surface of the NHEK and cSCC cell lines. cSCC cell 
lines and NHEKs were labeled with goat anti-EphB2 antibody (R&D Systems) and rabbit 
anti-ephrin-B2 antibody (Santa Cruz). As secondary antibodies highly cross-adsorbed 
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Alexa Fluor® 633 donkey anti-goat IgG (H+L) and Alexa Fluor® 568 goat anti-rabbit 
IgG (H+L) (both from Invitrogen) were used and nuclei were visualized with Hoechst 
(H3570; Invitrogen). The cells were mounted in Mowiol-DABCO (Sigma-Aldrich) and 
observed with Zeiss LSM510 META confocal microscope (Carl Zeiss). For detection of 
AIM2, cells were permeabilized with 0.1% Triton X-100 and labeled with mouse anti-
AIM2 antibody (Abnova).

4.6 Western blot analysis (I, II, III)

Equal amount of heat denatured conditioned media or cell lysates were separated by 
10% SDS-PAGE gel and transferred to nitrocellulose membrane. The membranes were 
incubated with primary antibodies (Table 7) following a corresponding secondary 
antibody and visualized using ECL kit (Amersham). Equal protein loading was 
ensured by reprobing with a monoclonal mouse anti-human anti-tissue inhibitor of 
metalloproteinase-1 antibody (anti-TIMP1) or monoclonal anti-β-actin (AC-15). 

Table 7. Antibodies used in immunoblotting.

Antigen Product number Source Used in
SerpinA1 A0012 DAKO I
β-actin A1978 Sigma-Aldrich I, II, III
p-Creb 9191 Cell Signaling Tech. I
p-ERK1/2 9101 Cell Signaling Tech. I
EphB2 AF467 R&D II
AIM2 H00009447-B01P Abnova III
MT1-MMP IM42L Calbiochem II
Anti-p-Tyr 05-321 Millipore II
MMP-1 AB8105 Chemicon II, III
MMP-13 IM64L Calbiochem II, III
TIMP1 IM32 Calbiochem II, III

4.7 Analysis of the cell surface proteins (II)

To analyze the expression level of the EphB2 on the cell surface of NHEKs (n=3) 
and cSCC cell lines (n=4), cell cultures were biotinylated (EZ-Link Sulfo-NHS-LC-
Biotin, 21335; Pierce Biotechnology) and biotinylated proteins were immobilized with 
streptavidin beads (Streptavidin Sepharose HighTM Performance, 17-5113-01; GE 
Healthcare Life Sciences). After the washing steps, cell surface proteins were eluted 
from the streptavidin beads and analyzed with immunoblotting using the anti-EphB2 
antibody. MT1-MMP was used as marker for equal loading.



40 Materials and Methods 

4.8 Immunoprecipitation of phosphorylated EphB2 (II)

Activation of the EphB2 receptor with soluble ephrin-B2-Fc ligand was performed as 
described previously (Chaudhari et al, 2007). Briefly, the conditioned medium of cSCC 
cells was changed to serum-free 24 hours prior to the experiment. The cells were then 
incubated with recombinant ephrin-B2-Fc (0.05 µM) (R&D Systems) for 5, 10, 30 and 
180 minutes and harvested using lysis buffer (1 mM Tris-HCL pH 7.4, 0.5 mM EDTA, 
Triton® X-100 Sigma-Aldrich) containing protease inhibitors (Roche Complete; Roche 
Diagnostic), phosphatase and kinase inhibitors (1 mM Na3VO4, 10 mM Na4P2O7 and 
0.5 M NaF). For immunoprecipitation of EphB2, anti-EphB2 antibody (3 µg) was added 
to the washed protein G agarose bead slurry (Invitrogen). After one hour incubation, 
EphB2 was precipitated by adding equivalent amounts of cell lysate protein (1500 µg) 
to the reaction mixture and incubated in room temperature for 1 hour. Precipitates were 
collected by pulsing the agarose beads and eluted by adding 60 µl of the 2× Laemmli 
buffer (Tris-HCl buffer 126 mM, Glycerol 20%, SDS 4%, Bromophenol blue 0.02% and 
1 M DTT).

4.9 Human tissue samples (I, II, III)

4.9.1 cSCC tumors and normal skin (II, III)

cSCC tumors (n=6) (SCC12, SCC18, SCC19, SCC36, SCC41 and SCC58) were 
obtained from the Turku University Hospital after surgery of primary tumors. Normal 
skin samples (n=11) (MAM55, MAM59, MAM62, MAM66, MAM76, Epid3, Epid4, 
Epid5, skin44, NormE and NormO) were collected after mammoplasty surgery. 

4.9.2 Tissue microarrays (TMA) (I, II, III)

All human tissues of normal skin from non-sun-exposed area, AK, cSCCIS and UV-
induced cSCC were collected from archives of the Department of Pathology, Turku 
University Hospital, Turku, Finland. Recessive dystrophic epidermolysis bullosa 
(RDEB)-associated cSCC tissue samples were obtained by international collaboration 
(Table 8).

TMAs were generated using a manual tissue arrayer (Beecher Instruments, Sun 
Prairie, WI, USA) by making a 1.5-3 mm punched cores from the donor paraffin 
embedded blocks. Prior to punch each paraffin block, the selected area was reexamined 
by an expert pathologist (M.K). 
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4.9.3 Tissues from OTR patients (III)

Whole sections of AK (n=58), cSCCIS (n=59) and cSCC (n=57) of the OTR patients 
were obtained from organ transplant recipients (Table 8) by collaboration with Leiden 
University Medical Center, Leiden, the Netherlands.

Table 8. Number of human normal skin, AK, cSCCIS, cSCC and RDEB-cSCC tissue sections 
used in study I, II, and III.

Study Type of sections Normal skin AK cSCCIS cSCC RDEB-cSCC
I TMA - 36 29 71 12
II TMA 12 69 56 68 -
III TMA 15 71 60 81 -
III (OTR patients) Whole section - 58 59 57 -

4.10 Chemically induced mouse skin SCC (I, II)

Normal (n=5), acetone treated (n=2), hyperplastic skin (n=6) and SCC (n=19) samples 
were collected from skin of FVB/N HanHsd mice (maintained at the Laboratory Animal 
Center, University of Oulu). Mouse skin carcinogenesis was induced, as previously 
described (Brideau et al, 2007). Briefly, one dose of 100 µg of 7,12-dimethylbenz [α] 
anthracene (DMBA) in 100 µl of acetone was administered topically on the shaved 
mouse dorsal skin, followed by weekly 12-O-tetradecanoylphorbol-13-acetate (TPA) 
treatments for 20 weeks period in order to induce cSCC tumors. The skin of the mouse 
was treated with 5 µg of TPA in 100 µl of acetone four times at two day intervals in 
order to induce hyperplasia. The control mice were treated the same way with the 
vehicle (acetone). Mice were sacrificed at week 32 or at an earlier time-point if tumors 
were large, had features of invasive carcinomas or had the diameter of more than 10 
mm. About one out of 10 benign papillomas progressed to malignant SCCs in this 
model. 

4.11 Immunohistochemistry (IHC) (I, II, III)

IHC of the human TMAs (5 µm thick) was performed using an automated immunostaining 
device (Ventana Medical Systems SA, Illkirch, CEDEX, France). Human sections 
obtained from OTR patients, mouse cSCC tumors and mouse control tissue samples 
were analyzed as whole sections. The primary antibodies (Table 9) were detected using 
the Ventana ultraView Universal DAB detection kit and the Ventana amplification kit 
(Ventana Medical Systems SA, Illkrich, France). Images were taken from each slide 
using light microscopy (Olympus BX60) and semiquantitative analysis was performed 
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independently by two observers. Staining of the normal liver tissue, colorectal carcinoma 
and normal colon tissue was used as a positive control for strong positive staining for 
SerpinA1, EphB2 and AIM2, respectively.

Table 9. Antibodies used in IHC.

Antigen Product number Source Used in
SerpinA1 A0012 (polyclonal) DAKO I
EphB2 AF467 (polyclonal) R&D Systems II
AIM2 HPA031365 (polyclonal) Sigma III

4.12 Functional analysis

4.12.1 Knockdown with siRNA (II, III)

In order to knockdown EphB2 or AIM2, cSCC cells were transfected with small 
interfering RNAs (siRNA) (Qiagen) using the silentFectTM Lipid Reagent (BIO-RAD). 
The following sequences were targeted:

EPHB2 siRNA: 5’-CCGAGAGGACCTCGTCTACAA-3’ 

AIM2 siRNA: 5’-CCCGAAGATCAACACGCTTCA-3’

Control siRNA: 5’-AAT TCT CCG AAC GTG TCA CGT-3’

4.12.2 Cell viability assay (II, III)

cSCC cell lines were first cultured on 10 cm dishes and transfected with control siRNA, 
EphB2 siRNA (study II) or AIM2 siRNA (75nM)  (study III) as described above. Six 
hours after the transfection cells were trypsinized and 10,000 cells/well were seeded 
on 96-well plates in a final volume of 100 µl of serum-free DMEM. The number of 
viable cells was determined by CellTiter 96® Non-Radioactive Cell Proliferation 
Assay (Promega) or WST1 assay (Roche Diagnostics) according to the manufactures’ 
instructions.

4.12.3 Cell invasion assay (II, III)

Invasion assay was performed as described previously (Ala-aho et al, 2004). cSCC cell 
lines were cultured in 6 cm dishes and transfected with EphB2 siRNA  (75nM) (study 
II), AIM2 siRNA (study III) or control siRNA (75nM) as mentioned above. Twenty-four 
hours after the transfection the cells were seeded on ThinCert™ tissue culture inserts (8.0 
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mm pore size) coated with collagen type I (Advanced Biomatrix, Fremont, CA, USA) 
0.2 M NaOH-HEPES (pH 7.4) and 5×DMEM. After 48 hours, nuclei were visualized by 
Hoechst 33342 (Invitrogen) and counted. 

Cell invasion assay following activation of EphB2 receptor with ephrin-B2-Fc 
treatment was performed the same way after incubation of cSCC cells with ephrin-B2-
Fc (0.05 µM) for 5 minutes.

4.12.4 Cell migration assay (II)

Cell motility assay was performed as described previously (Walsh & Blumenberg, 
2012). Briefly, cSCC cells were first transfected with EphB2 siRNA (75nM) as described 
above, and incubated for 48 hours at 37°C. To inhibit cell proliferation, cells were treated 
with 2 mM hydroxyurea (Sigma Aldrich) in DMEM with 10% FCS for 6 hours at 37°C 
(Riihilä et al, 2014). A pipet tip was used to create a scratch of the cell monolayer and 
incubation was continued in DMEM with 1% FCS and 0.5 mM hydroxyurea for 24 
hours. Live cell imaging was performed with Zeiss Axiovert 200M inverted microscope 
(Carl Zeiss). ORCA 1394 ERG camera with a 10× objective was used to capture images 
every 10 minutes for 24 hours (Axiovision Release 4.8) and quantitation of the images 
was performed with Image J (NIH) (Schneider et al, 2012). 

4.13 Human cSCC xenograft model (II, III)

To characterize the effects of EphB2 (study II) and AIM2 (study III) knockdown on the 
growth of the cSCC tumors in vivo, cSCC xenograft tumor was established as previously 
described (Junttila et al, 2007b). cSCC cell lines (UT-SCC7) were first transfected with 
control and EphB2 or AIM2 siRNA (75nm). Seventy-two hours after the transfection a 
suspension of the cells (5 × 106) were injected subcutaneously into the back of the SCID 
mice (n=7-8 for each group). The size of the tumors were measured frequently and tumor 
volumes were calculated using the formula V= π4/3((L+W)/4). Hematoxylin and eosin 
(H&E), Ki-67 (Dako) and CD34 (Santa Cruz) stainings were performed after excision 
of the tumors.

4.14 Statistical analysis (I, II, and III)

Statistical analysis between groups was performed by Student’s t-test, and Mann-
Whitney U-test. Statistical analysis of the IHC results was performed using χ2-test and 
Fisher’s exact test.
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5. RESULTS

5.1 Identification of SerpinA1 as a biomarker for cSCC (I)

5.1.1 Upregulation of SERPINA1 in cSCC cells

Elevated expression level of SERPINA1 has been previously reported in some 
malignancies such as cervical carcinoma (Kloth et al, 2008), esophageal squamous 
dysplasia (Joshi et al, 2006), and squamous carcinoma of the oral cavity (Shirasuna et 
al, 1987). 

Here, microarray-based gene expression profiling of the entire serpin family was 
performed in NHEKs (n=5) and primary (n=5) and metastatic (n=3) cSCC cells (I, 
Figure 1A). High expression levels of several serpin family members such as SERPINA1, 
A3, B5, B6, E1, E2 and H1 were noted in primary and metastatic cSCC cell lines. The 
results of the analysis showed significant upregulation of SERPINA1 and SERPINA3 in 
cSCC cell lines compared with NHEKs. In addition, qRT-PCR was performed to verify 
the results of the microarray analysis. The results revealed significant upregulation of 
SERPINA1 in cSCC cells compared with NHEKs. In contrast, no significant difference 
was observed in mRNA expression level of SERPINA3 between NHEKs and cSCC cells 
(I, Figure 1B).

To examine SerpinA1 production in cSCC cell lines and NHEKs, western blot analysis 
of the conditioned media was performed. Specific bands corresponding to SerpinA1 
were noted in all cSCC cell lines, whereas only in one out of five NHEKs, production of 
SerpinA1 was observed (I, Figure 2A).

5.1.2 Regulation of SerpinA1 in cSCC cells

One of the histologic characteristics of the cSCC environment is the infiltration of 
inflammatory cells and cytokines in the tumor environment (Alam & Ratner, 2001; 
Madan et al, 2010; Rogers et al, 2010). The effects of different cytokines and growth 
factors on the expression of SerpinA1 were characterized. The results revealed that 
SerpinA1 expression is induced by EGF, TNF-α, IFN-γ and IL-1β. This finding was 
confirmed with western blot analysis (I, Figure 3A and B). Furthermore, the regulation of 
SerpinA1 expression by p38 MAPKs and ERK1/2 was analyzed. Treatment of the cSCC 
cell lines with SB203580 (inhibitor of p38α and p38β MAPKs) potently inhibited the 
expression of SerpinA1. As cSCC cell lines do not express p38β	(Junttila et al, 2007a), 
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it can be concluded that SerpinA1 expression in cSCC cells is regulated by p38α MAPK 
(I, Figure 3C).

5.1.3 SerpinA1 expression correlates with malignant transformation of the epider-
mal keratinocytes

To characterize the association of SerpinA1 expression with the malignant transformation 
of keratinocytes, we analyzed the expression of SerpinA1 in HaCaT, an immortalized 
nontumorigenic human epidermal keratinocyte-derived cell line and three Ha-ras-
transformed tumorigenic HaCaT cell lines (A5, II4, and RT3) representing different 
stages of tumor progression (Boukamp et al, 1988; Boukamp et al, 1990; Mueller et al, 
2001). Specifically, A5 is a benign tumorigenic cell line, II4 forms malignant invasive 
tumors and RT3 cells form metastatic tumors in vivo (Mueller et al, 2001). The highest 
SerpinA1 expression was detected in RT3 and the lowest expression level was noted 
in non-tumorigenic HaCaT cells, which had inactivation of both alleles of p53 tumor 
suppressor. The expression of SerpinA1 was noted to increase when the cells were 
transformed from non-tumorigenic HaCaT cells to A5, II4 and RT3 (I, Figure 2B). Based 
on these findings, induction of SerpinA1 can be considered as a marker for the malignant 
transformation of normal epidermal keratinocytes to the aggressive and metastatic cSCC.

5.1.4 Expression of SerpinA1 correlates with tumor progression in vivo

To study the expression of SerpinA1 in vivo, IHC analysis of human TMAs consisting 
of AK lesions (n=36), cSCCIS (n=29) and UV-induced sporadic cSCCs (n=71) was 
performed (I, Figure 4). Semiquantitative analysis was performed to assess the SerpinA1 
staining intensity in AK, cSCCIS and sporadic SCC tumors. Because SerpinA1 protein 
is produced in the liver and enters the blood circulation, it is abundantly present in tumor 
stroma. For that reason, only SerpinA1 staining in epidermal layer and tumor cells was 
considered for the analysis. According to the semiquantitative analysis, the majority of 
AK lesions (33 out of 36 samples) had negative (-) or weak (+) staining. In cSCCIS, 
weak or negative SerpinA1 staining was noted in 26 out of 29 tissues. SerpinA1 staining 
was significantly stronger in sporadic cSCC compared with cSCCIS and AK (P=0.001). 
Moderate (++) or strong (+++) cytoplasmic staining for SerpinA1 was noted in the 
tumor cells in 33 of 71 cSCC tumors (I, Table 1). The expression of SerpinA1 was 
also examined in RDEB-associated cSCC as an aggressive form of cSCC. Significantly 
stronger SerpinA1 staining was observed in all RDEB-associated cSCCs compared with 
sporadic cSCCs (P=0.002).

To further characterize the expression of SerpinA1 in vivo, a well-characterized 
model of chemically induced mouse skin carcinogenesis was employed (Abel et 
al, 2009; Brideau et al, 2007) and stained with an antibody against SerpinA1 (I, 
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Figure 5). In the epidermal layer of normal skin and vehicle treated mouse skin 
SerpinA1 staining was negative. In TPA-treated hyperplastic epidermis, only weak 
SerpinA1 staining was detected. In mouse cSCC, moderate  and strong staining 
was noted in the majority of the tumors (11 out of 17 samples) and the staining 
was significantly stronger when compared with non-malignant lesions (P=0.002) 
(I, Table 2). Overexpression of SERPINA1 in chemically induced mouse skin SCC 
compared with TPA-treated and untreated mouse skin was verified at the mRNA 
level by qRT-PCR analysis of the RNAs that were derived from the tumors. These 
findings indicate that SerpinA1 could serve as a biomarker for the progression of 
cSCC in vivo.

5.2 EphB2 promotes progression of cSCC (II)

5.2.1 Upregulation of EphB2 in cSCC cells and tumors 

Elevated expression of EPH receptors and EFN ligands has been previously shown in 
certain malignancies (Lugli et al, 2005; Tang et al, 2001; Wykosky et al, 2005; Zelinski et 
al, 2001). Here, the expression of entire EPH receptor and EFN family in primary (n=5) 
and metastatic (n=3) cSCC cell lines and NHEKs (n=5) was analyzed using microarray-
based gene expression profiling.

The results of the microarray analysis revealed upregulation of EPHB2 and EPHA4 
in primary and metastatic cSCC cell lines compared with NHEKs (II, Figure 1A). In 
addition, next generation sequencing analysis confirmed specific upregulation of EPHB2 
mRNA in cSCC cells as compared with NHEKs (II, Figure 1B). The results of the 
microarray analysis and RNA sequencing identified EPHB2 as the only EPH significantly 
upregulated (P<0.05) in cSCC cell lines compared to NHEKs. Overexpression of 
EPHB2 in cSCC cell lines compared to NHEKs was verified by qRT-PCR (II, Figure 
1C). Furthermore, qRT-PCR revealed upregulation of EPHB2 in cSCC tumors (n=6) 
compared to normal skin (n=7) (II, Figure 1D).

Western blot analysis was performed to quantify the level of EphB2 production in 
cSCC cell lines and NHEKs. Specific bands corresponding to EphB2 receptor were 
noted in cell lysates of all cSCC cell lines, whereas EphB2 protein level was very low in 
NHEKs (II, Figure 1E). 

Because receptor tyrosine kinases are transmembrane proteins (Schlessinger, 2000), 
the expression of EphB2 receptor on the cell surface of cSCC cell lines and NHEKs was 
examined using western blot analysis of the biotinylated cell surface proteins pulled 
down with avidin. Markedly more EphB2 was noted on the cell surface of the cSCC cells 
when compared with NHEKs (II, Figure 1F). In addition, immunofluorescence staining 
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revealed more abundant EphB2 on the cell surface of the cSCC cells when compared 
with NHEKs. Co-localization and clustering of the EphB2 receptor and ephrin-B2 
ligand on the cell surface of cSCC was noted, whereas no clustering was noted on the 
cell surface of the NHEKs (II, Figure 1G).

5.2.2 Overexpression of EphB2 in human cSCC tumors in vivo 

To examine the expression of EphB2 in vivo, TMAs generated from an archive of normal 
skin (n=12), AK (n=69), cSCCIS (n=56) and UV-induced cSCCs (n=68) were stained 
with anti-EphB2 antibody (II, Figure 2).

Positive tumor cell-specific EphB2 staining was noted in cell surface or cytoplasm of 
invasive cSCC and cSCCIS. The staining intensity was stronger in SCCIS and invasive 
cSCC compared with AK and normal skin (II, Figure 2A-F). Semiquantitative analysis 
of the EphB2 staining intensity revealed weak (+) and negative staining in the epidermal 
layer of the normal skin and AK lesions. Moderate (++) staining intensity was noted in 
19 percent of cSCCIS and in invasive cSCC, 24 percent of the samples had moderate 
or strong (+++) EphB2 staining. Statistical analysis of the staining intensity revealed 
significantly stronger EphB2 staining in cSCCIS and invasive cSCC compared with AK 
and normal skin as a group (P<0.001) (II, Figure 2G). 

5.2.3 Expression of EphB2 in chemically induced mouse cSCC

To further examine the expression of EphB2 in vivo, the paraffin tissues of normal mouse 
skin (n=5), vehicle-treated (n=2), hyperplastic mouse skin (TPA treated) (n=6) and mouse 
cSCCs (DMBA-TPA treated) (n=19) were stained with EphB2 antibody (II, Figure 3). 
Semiquantitative analysis of the staining intensity revealed moderate or strong EphB2 
staining in 95 percent of mouse cSCC tumors. In hyperplastic mouse skin induced by 
TPA treatment, weak EphB2 staining was observed in 83 percent of samples. In vehicle-
treated or untreated mouse skin, the EphB2 staining was absent in the epidermal layer 
of majority of the samples (86%) (II, Figure 3A-F). Staining intensity was significantly 
stronger in mouse skin SCCs than in nonmalignant lesions as a group (P< 0.001) (II, 
Figure 3G).

5.2.4 Gene expression profile alteration in cSCC cells after EphB2 knockdown 

To explore the molecular mechanisms of EphB2 in cSCC cells, microarray-based gene 
expression profile analysis was performed after knockdown of EphB2 receptor in cSCC 
cells using specific siRNA (II, Figure 4A). Gene expression profiling was then subjected 
to IPA software (Thomas & Bonchev, 2010). 
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Differentially expressed genes after EphB2 knockdown were significantly 
associated with the biofunction categories cell death, cellular movement, cell-to-cell 
signaling and interactions and cellular growth and proliferation (II, Figure 4B). Cell 
viability, invasion of tumor cells, migration of tumor cells, migration of cells and 
cell movement were the top biofunctions significantly downregulated after EphB2 
knockdown based on regulation z-score. Functional classification of the 100 most 
upregulated and downregulated genes after EphB2 knockdown identified enzymes as 
the largest specific group (20%) and peptidases as the second largest group (11%) of 
downregulated genes ( Figure 7).

All together 2460 probe sets were differentially regulated after EphB2 knockdown (II, 
Figure 4C). MMP1 and MMP13 were among the most downregulated genes significantly 
regulated after EphB2 knockdown (II, Figure 4C and D). In addition, analysis of the 
molecular networks using IPA revealed involvement of MMP-1 and MMP-13 expression 
in significantly downregulated biofunctions invasion of tumor cells (II, Supplementary 
Figure S1), migration of tumor cells (II, Supplementary Figure S2), migration of cells, 
cell movement and cell viability.

Figure 7. The gene expression profiles of cSCC cells after EphB2 knockdown were compared 
with control cultures. 100 most upregulated and downregulated genes were classified 
based on molecular function.
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5.2.5 EphB2 knockdown inhibits proliferation and migration of cSCC cells 

To elucidate the functional role of EphB2 in the progression of cSCC cells, cell 
proliferation assays were performed after EphB2 knockdown. EphB2 knockdown 
significantly reduced the number of viable cSCC cell lines (II, Figure 5A). Migration 
assay was conducted 48 hours after transfection of the cSCC cells with control or EphB2 
siRNA. In the control group, the scratch wound was healed 24 hours after making the 
scratch, whereas analysis of the cell migration with time-lapse microscopy showed 
significant inhibition of the directional migration in skin SCC cell lines transfected with 
EphB2 siRNA (II, Figure 5B and C).

5.2.6 EphB2 regulates invasion, and expression of invasion-related MMPs (MMP-1 
and MMP-13) in cSCC cells

Analysis of the invasion of cSCC cells into collagen revealed significantly reduced 
invasion of the cells through collagen following EphB2 knockdown (II, Figure 5D). As 
mentioned above, the results of the gene expression profiling revealed downregulation 
of MMP1 and MMP13, two members of the MMP family promote invasion of the 
cSCC cells (Ala-aho et al, 2004). Here, the protein expression of MMP-1 and MMP-13 
following EphB2 knockdown was examined. EphB2 knockdown was noted to markedly 
inhibit production of MMP-1 and MMP-13 in cSCC cells lines (II, Figure 5E). 

To get further insights into the role that the EphB2 receptor plays in the invasion 
of cSCC cells and regulation of MMPs, soluble ephrin-B2-Fc was used to induce 
activation of endogenous EphB2 (Chaudhari et al, 2007).  Immunoprecipitation with 
EphB2 antibody followed by blotting against anti-p-Tyr showed activation of the 
receptor already 10 minutes after adding the soluble ligand (II, Figure 5F). Activation of 
EphB2 signaling by a soluble EphB2 ligand, ephrin-B2-Fc, induced invasion of cSCC 
cells through collagen (II, Figure 5G). In addition, EphB2 receptor activation induced 
production of MMP-1 and MMP-13 in cSCC cells (II, Figure 5H and Supplementary 
Figure S3). These findings identify the role that EphB2 plays in invasion, and regulation 
of the invasion related MMPs, MMP-1 and MMP-13.

5.2.7 EphB2 knockdown inhibits growth of human cSCC xenografts in vivo

To characterize the role of EphB2 receptor in growth of cSCC tumors in vivo, cSCC 
xenograft was established by injecting skin SCC cells into the back of SCID mice 
subcutaneously. cSCC cells were transfected with control or EphB2 siRNA 72 hours 
before the injection. Examination of the tumor size at different time-points revealed a 
significant delay in the growth of the tumors established with EphB2 siRNA transfected 
cells compared with control tumors (II, Figure 6A). In addition, IHC staining of the 
extracted tumors revealed significantly lower numbers of proliferating tumor cells (Ki-
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67-positive) in EphB2 siRNA transfected tumors compared with tumors established 
from cells transfected with control siRNA (II, Figure 6B and C). To study the role of 
EphB2 in tumor vascularization in vivo, cSCC xenografts were stained with anti-CD34 
antibody, which served as a vascular endothelial cell marker. IHC analysis revealed 
a significantly reduced number of CD34-positive blood vessels in EphB2 knockdown 
tumors compared with control xenografts (II, Figure 6B and D). These findings indicate 
the role of EphB2 in growth and vascularization of the cSCC tumors in vivo.

5.3 AIM2 promotes progression of cSCC (III)

5.3.1 Upregulation of AIM2 in cSCC cell lines and tumors

Expression of AIM2 has been reported in certain malignancies (Chen et al, 2006). Analysis 
of the expression of IFN-inducible family genes using microarray-based gene expression 
profiling revealed upregulation of AIM2, IFI16 and IFX in primary and metastatic cell 
lines compared with NHEKs (III, Figure 1A). Upregulation of AIM2 and IFI16 was also 
noted with RNA sequencing of the cSCC cell lines and NHEKs (III, Figure 1B). The 
results of both analyses showed low expression of AIM2 in NHEKs and overexpression 
of AIM2 in cSCC cell lines (III, Figure 1A and B). Significant upregulation of AIM2 
mRNA in cSCC cell lines compared to NHEKs was verified by qRT-PCR (III, Figure 
1C). In addition, elevated mRNA expression of AIM2 was noted in cSCC tumors when 
compared to normal skin samples (III, Figure 1D). Western blot analysis of the total cell 
lysates revealed more AIM2 production in cSCC cell lines compared to NHEKs (III, 
Figure 1E). In addition, immunofluorescence staining showed more AIM2 labeling in 
cSCC cells when compared with NHEKs (III, Figure 1F). 

5.3.2 Tumor cell-specific overexpression of AIM2 in cSCC tumors in vivo

Expression of AIM2 in vivo was examined by IHC staining of TMAs consisting of 
normal skin (n=15), AK (n=71), cSCCIS (n=60) and sporadic cSCCs (n=81) (III, Figure 
2A-H). Tumor cell-specific AIM2 staining was detected in the cytoplasm and perinuclear 
region of cSCC tumor cells. In cSCC tumors, staining intensity was strong (+++) (38%) 
or moderate (49%). AIM2 staining intensity was mainly moderate (++) in cSCCIS. Most 
AK samples (69%) were weakly positive (+) for AIM2. In normal skin, staining intensity 
was absent (-) (67%) or weak (+) (33%). Semiquantitative analysis of the AIM2 staining 
intensity revealed abundant AIM2 staining in sporadic cSCC compared with cSCCIS, 
AK and normal skin (III, Figure 2I). These results indicate that AIM2 expression is 
increased in progression of AK to cSCC in vivo.
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5.3.3 Tumor cell-specific overexpression of AIM2 in cSCC of OTR patients

Immunosuppressed patients are at a higher risk of developing a more aggressive type of 
cSCC (Hameetman et al, 2013). Expression of AIM2 was examined in whole sections 
of AK (n=58), cSCCIS (n=59) and cSCC (n=57) of OTR patients (III, Figure 3A-
H). Positive tumor cell-specific AIM2 staining was detected in the cytoplasm and the 
perinuclear region of all cSCCs tumors of OTR patients examined. Staining intensity was 
in general stronger in cSCC compared to AK and cSCCIS. Semiquantitative analysis of 
the AIM2 staining revealed strong (+++) AIM2 staining (51%) in the majority of cSCC 
tumors. In cSCCIS, most of the samples had moderate (49%) or weak (36%) staining 
and strong staining was noted in small number of samples (7%). In AK lesions, AIM2 
staining was either absent (53%) or weak (38%). In general AIM2 staining intensity was 
significantly more abundant in cSCC of OTR patients compared to cSCCIS and AK 
(III, Figure 3I). Interestingly, AIM2 staining was significantly stronger in cSCC of OTR 
patients compared to sporadic cSCC (P=0.0038).

5.3.4 AIM2 knockdown inhibits proliferation and invasion of cSCC cell lines

To study the functional role of AIM2 in cSCC cell lines, AIM2 was knockeddown 
using specific siRNA (III, Figure 5A). AIM2 knockdown potently inhibited the 
viability of cSCC cell lines 24, 48 and 72 hours after the transfection (III, Figure 5B). 
In addition, AIM2 knockdown significantly inhibited invasion of the cSCC cell lines 
through collagen (III, Figure 5C). Interestingly, AIM2 knockdown was noted to inhibit 
production of two invasion related MMPs, MMP-1 and MMP-13 (III, Figure 5D). 
These findings indicate the role of AIM2 in the regulation of proliferation and invasion 
of cSCC cells in culture.

5.3.5 Alteration of gene expression profile in cSCC after AIM2 knockdown

To gain an overview of the molecular mechanism of AIM2, RNA-sequencing was 
performed after knockdown of cSCC cell lines (n=3) with specific AIM2 siRNA and 
the results of gene expression analysis were subjected to IPA. Analysis of the genes 
significantly regulated following AIM2 knockdown revealed a significant upregulation 
of biofunctions related to cell death and apoptosis after AIM2 knockdown, whereas 
biofunction M phase of the cell cycle category was significantly downregulated (III, 
Supplementary Table S1). Expression of CDK1 as part of M phase biofunction was 
noted to be markedly decreased following AIM2 knockdown. Interestingly CDK1, 
cyclin A and cyclin B were significantly downregulated in network Cell Cycle, Cellular 
Assembly and Organization, DNA Replication, Recombination, and Repair, as one of the 
top networks regulated (score=24) after AIM2 knockdown (III, Supplementary Figure 
S1). In addition, cyclin A was among the top genes significantly downregulated after 
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AIM2 knockdown. Inhibition of viability of cSCC cells after AIM2 knockdown can be 
explained by downregulation of the cyclin A and B and CDK1.

5.3.6 AIM2 knockdown inhibits growth of human cSCC xenograft tumors in vivo

To characterize the role of AIM2 in growth of cSCC tumors in vivo, cSCC xenografts 
were established by injection of cSCC cell lines subcutaneously into the back of SCID 
mice. Seventy-two hours before injection, cSCC cells were transfected with control or 
AIM2 siRNA. Measuring the size of the xenograft tumors revealed a significant delay 
in growth of the tumors established from cSCC cells transfected with AIM2 siRNA 
compared to control tumors (III, Figure 6A and B). Staining of the tumors with a Ki-
67 proliferation marker showed a significant reduction in number of proliferating 
cells following AIM2 knockdown (III, Figure 6B and C). Analysis of the blood vessel 
formation using CD34 as a vascular endothelial marker revealed a significantly reduced 
density of CD34-positive blood vessels in AIM2 knockdown tumors compared to the 
control siRNA xenografts (III, Figure 6B and D). The results of this in vivo experiment 
indicate the role of AIM2 in cSCC tumor growth and vascularization in a xenograft 
model.
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6. DISCUSSION

6.1 Biomarkers for cSCC

Non-melanoma skin cancer, including BCC and SCC, is the most common malignancy 
in the Caucasian population (Diepgen & Mahler, 2002; Kwa et al, 1992). cSCC is known 
as the second most common skin cancer among Caucasians (Johnson et al, 1992). The 
incidence of cSCC is increasing due to lifestyle changes such as voluntary and recreational 
exposure to the sunlight and aging of the population (Alam & Ratner, 2001; Housman et 
al, 2003; Rogers et al, 2010). Exposure to UV radiation is the greatest risk factor for cSCC 
(Alam & Ratner, 2001). With a high tendency for metastasis and recurrence, cSCC is the 
most common metastatic skin cancer (Brantsch et al, 2008; Czarnecki et al, 1994) and 
this cancer causes a great economic and medical burden on the health system (Geller & 
Swetter, 2012; Kivisaari & Kähäri, 2013; Rogers et al, 2010; Tinghog et al, 2008). Thus, 
diagnosis of cSCC at the early stages is potentially lifesaving. In addition, screening is 
necessary to identify the recurrence of the tumors and the tumors that are more aggressive 
and require further treatment modalities (Utikal et al, 2007). The anatomic location of the 
tumor, size of the tumor, invasion depth, rapid growth of the tumor, history of radiotherapy, 
tumor differentiation, immunosuppression, chronic ulcer and histologic type of tumor are 
among the known prognostic risk factors for metastasis and recurrence of cSCC (Alam & 
Ratner, 2001; Kivisaari & Kähäri, 2013; Lohmann & Solomon, 2001; Petter & Haustein, 
2000; Stratigos et al, 2014; Utikal et al, 2007).

So far only few biomarkers for the progression of cSCC have been identified. STAT3 
is a regulator of cell movement. The phosphorylated form of STAT3 is more prominently 
expressed in poorly differentiated cSCC than in well-differentiated tumors. In addition, 
expression of p-STAT3 is associated with tumor invasion and metastasis (Suiqing et al, 2005). 
The other known biomarker for cSCC is the E-cadherin molecule. Decreased expression 
of E-cadherin may be a sign of regional lymph node involvement in patients with cSCC 
(Koseki et al, 1999). Furthermore, the expression of E-cadherin was decreased in well-
differentiated cSCC tumors in an IHC analysis (Koseki et al, 1999). Ets-1 is a transcription 
factor involved in the regulation of different genes linked with angiogenesis and matrix 
remodeling such as MMPs (Behrens et al, 2001; Liotta & Stetler-Stevenson, 1990; Naito et 
al, 2002; Westermarck et al, 1997). Ets-1, in turn, is upregulated in poorly differentiated and 
metastatic cSCCs compared with well-differentiated tumors and has been suggested as a 
marker for invasive tumors (Keehn et al, 2004). In SCC of the vulva, MMP-7, -9 and -12 are 
upregulated in less-differentiated tumors (Kerkelä et al, 2002). Expression of MMP-12 in 
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macrophages has been identified as a prognostic marker for SCC of the vulva (Kerkelä et al, 
2002). MMP-13 (collagenase-3) is expressed in SCC of the head and neck (Johansson et al, 
1997). In SCC of the skin, MMP-13 has been detected in the epithelial tumor front (Airola 
et al, 1997) and is associated with the invasive capacity and growth of the tumor (Ala-aho 
et al, 2004). Epithelial expression of MMP-7, -12 and -13 have been identified as markers 
for distinguishing benign chronic wounds from cSCCs arising from chronic ulcers (Impola 
et al, 2005). MMP-19 is expressed in hyperproliferative keratinocytes but disappears in 
invasive cSCC (Impola et al, 2005). In addition, abundant expression of MMP-12 has been 
detected in cSCC and the expression has been shown to correlate with tumor aggressiveness 
(Kerkelä et al, 2000). In an IHC analysis of RDEB-associated cSCC as an aggressive form 
of SCC (South & O’Toole, 2010), MMP-7 is specifically expressed in RDEB-associated 
cSCCs with significantly stronger staining intensity compared to sporadic cSCC (Kivisaari 
et al, 2008). Furthermore, abundant expression of MMP-13 has been noted in RDEB-
associated cSCC (Kivisaari et al, 2008).

This current work has mainly focused on the identification and characterization of 
novel biomarkers for growth and progression of cSCC. State-of-the-art methods were 
used to identify novel genes that may play an important role in initiation and progression 
of cSCC. As the first step, microarray-based gene expression profiling and RNA 
sequencing were performed to identify an array of new genes differentially expressed in 
cSCC cells as compared to NHEKs. The mRNA expression level of selected genes was 
validated by qRT-PCR and the protein levels were analyzed by western blot analysis. 
A large panel that consisted of normal skin, AK, cSCCIS, sporadic cSCC and RDEB-
associated cSCC, chemically induced mouse cSCC, as well as AK, cSCCIS and cSCC 
of OTR patients was created to study the expression of the genes of interest in vivo. The 
role of the selected genes in the progression of cSCC was further elucidated by analysis 
of the migration, invasion and proliferation of the cSCC cells. Furthermore, a xenograft 
model of cSCC was established to examine the growth of cSCC tumors in vivo.

6.2 SerpinA1 as a biomarker for progression of cSCC

SERPINA1 that codes for AAT belongs to the serpin family, which is the largest and most 
abundant member of protease inhibitors in humans. Serpins are secreted in plasma and play 
an important role in regulation of biological activities such as coagulation (anti-thrombin III), 
complement system (C1-inhibitor), inflammation (α1-antichymotrypsin) and fibrinolytic 
system (plasminogen activator inhibitor-1) (Kummer et al, 2004; Law et al, 2006; Silverman 
et al, 2001). The most important function of SerpinA1 is to inhibit neutrophil elastase through 
an irreversible inhibition by covalent binding (Carrell & Lomas, 2002; Silverman et al, 2001). 
Besides neutrophil elastase, SerpinA1 can inhibit other proteases such as chymotrypsin and 
trypsin (Beatty et al, 1980; Kuiperij et al, 2009). High expression of SerpinA1 has recently 
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been identified in various malignancies. In bladder cancer, the expression of SerpinA1 
increases the risk of tumor progression and is associated with late stage bladder cancer (Linden 
et al, 2013; Zhang et al, 2014). In addition, the urine level of AAT has been identified as a 
specific and sensitive biomarker for invasive bladder cancer (Linden et al, 2012). In gastric 
cancer, SerpinA1 expression has emerged as a biomarker for poor prognosis (Kwon et al, 
2014). Microarray-based meta-analysis of papillary thyroid carcinomas revealed SerpinA1 
as a reliable diagnostic biomarker with a high sensitivity and specificity (Vierlinger et al, 
2011).  Moreover, SerpinA1 has been previously identified as a biomarker for the diagnosis 
of insulinoma (de Sa et al, 2007) and thyroid cancer (Griffith et al, 2006). 

As mentioned previously, so far there is no reliable biomarker available for the 
early diagnosis and prevention of cSCC tumor metastasis and morbidity. Therefore, 
there is a great need for identification of novel diagnostic tools for the progression of 
cSCC. In study I, in an effort to identify novel biomarker for the progression of cSCC, 
a gene expression profile of the entire serpin family in primary and metastatic cSCC 
and NHEKs was conducted. The expression of SERPINA1 was significantly higher in 
primary and metastatic cSCC cell lines compared to NHEKs. qRT-PCR was used to 
validate the overexpression of SERPINA1 in cSCC cell lines compared to NHEKs. The 
other member of the serpin superfamily, SerpinA3, has been previously described as 
a biomarker in some malignancies such as colorectal adenocarcinoma (Dimberg et al, 
2011). Although SERPINA3 expression was upregulated in cSCC cells lines compared to 
NHEKs by microarray analysis, this notion was not observed with qRT-PCR. Therefore, 
it was considered to be of value to further examine SerpinA1 production in cSCC cells. 
Analysis of the SerpinA1 protein level markedly revealed more SerpinA1 production 
in all cSCC cell lines compared to NHEKs. The expression level of SerpinA1 in vivo 
was examined by IHC analysis of the TMAs generated from paraffin embedded tissue 
blocks (Idikio, 2011; Kononen et al, 1998; Torhorst et al, 2001). Conventional IHC 
analysis of the tissue sections is time-consuming and there exists a need for a large 
section of the tissue and a larger amount of the antibody. In addition, TMA blocks have 
enabled us to examine a large number of tumors. Thereby, in order to save time and 
resources, human TMAs were generated from wide variety of normal skin, AK, cSCCIS, 
sporadic cSCC and RDEB-associated cSCC tumors. The results of the IHC analysis of 
the TMAs revealed tumor cell-specific SerpinA1 expression in sporadic cSCCs. In UV-
independent RDEB-associated cSCC (Fine et al, 2009), as the one of the most aggressive 
form of cSCC (South & O’Toole, 2010), strong SerpinA1 staining in the tumor area was 
noted. In AK and cSCCIS, SerpinA1 staining was absent or weak in the majority of the 
samples. Accordingly, it was hypothesized that SerpinA1 staining intensity is correlated 
with the malignant transformation of cSCC in vivo. 

To further elucidate the role of SerpinA1 as a biomarker for progression of cSCC in 
culture, SERPINA1 expression was analyzed in HaCaT immortalized nontumorigenic 
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keratinocyte cell lines and Ha-ras-transformed HaCaT cell lines represent different stages 
of cSCC tumor progression (Mueller et al, 2001). While SERPINA1 expression was very 
low in HaCaT cell lines, the highest mRNA expression level of SERPINA1 was noticed in 
RT3 cell lines, which form metastatic tumors in vivo. A low expression level of SERPINA1 
in HaCaT cell lines with UV-typic mutations in both p53 alleles (Boukamp et al, 1995) 
and high expression level of SERPINA1 in Ha-ras-transformed HaCaT cell lines implies 
the fact that besides p53 inactivation, ras transformation is essential for expression of 
SERPINA1. This notion was further supported with analysis of SerpinA1 expression in 
chemically induced mouse cSCC (Abel et al, 2009; Ward et al, 1986). As the primary target 
for the early stages of the tumor progression, activating Hras mutations in the epidermis 
can be noted in epidermal layer three to four weeks after treatment with DMBA (Nelson 
et al, 1992). Abundant SerpinA1 staining in the tumor area of chemically induced mouse 
cSCC and a lack of staining in normal skin and vehicle-treated skin further emphasized 
the correlation of SerpinA1 expression with malignant transformation of epidermal 
keratinocytes and its putative role as a biomarker for the progression of cSCC. 

The possible role for SerpinA1 in cSCC progression remains to be studied, but 
inhibition of natural killer cells (Laine et al, 1990), inhibition of caspase-3 activation 
and consequently an antiapoptotic effect in lung endothelial cells (Petrache et al, 2006) 
and induction of cancer cell proliferation by C-terminal 26-residue peptide of SerpinA1 
(Congote & Temmel, 2004; Zelvyte et al, 2004) are among the proposed mechanisms. 

6.3 Upregulation of EphB2 in cSCC cells in culture and in vivo

Eph receptors and ephrins play a critical role in many normal biological processes and 
in the pathogenesis of different diseases (Pasquale, 2010). The role of Eph receptors and 
ephrin ligands in cancer is complex (Pasquale, 2010). Eph and ephrin are upregulated 
in some malignancies and their expression is associated with cancer progression and 
poor prognosis (Brantley-Sieders et al, 2008; Easty & Bennett, 2000; Landen et al, 
2005; Li et al, 2014; Wykosky & Debinski, 2008; Zhuang et al, 2010). On the other 
hand, Eph receptors and ephrins have a tumor suppressor role in certain cancer cell 
lines and tumors (Batlle et al, 2005; Merlos-Suarez & Batlle, 2008; Noren et al, 2006; 
Noren & Pasquale, 2007). Furthermore, certain Eph receptors and ephrin ligands such 
as EphB2 play a dual role both as tumorigenic or tumor suppressor depending on 
the tumor type (Guo et al, 2006a; Huusko et al, 2004). In chemically induced mouse 
cSCC, the EphA2 receptor has been recognized to have a tumor suppressor role as loss 
of EphA2 expression has been shown to increase the proliferation of the tumor cells 
(Guo et al, 2006b). However, the role of the EphB2 receptor in progression of cSCC 
has not been analyzed previously.
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In study II the expression profile of the entire EPH and EFN family was examined. 
EPHB2 was identified as the only receptor significantly upregulated in primary and 
metastatic cSCC cell lines compared to NHEKs in both microarray-based gene expression 
profiling and RNA sequencing. In addition, upregulation of EPHB2 was observed in 
cSCC tumors compared to normal skin. Western blot analysis of the cell surface proteins 
showed markedly more EphB2 receptor on the cell surface of the cSCC cells compared 
to NHEKs. As mentioned previously, Eph receptors and ligands cluster upon activation 
of the signal between neighbor cells (Himanen et al, 2004). In addition, independent of 
the ligand, Eph receptors can form cluster and activate on the cell surface (Nikolov et 
al, 2013). In Study II, co-localization of the EphB2 receptor and ephrin-B2 ligand in 
cell-cell contact sites and clustering of the EphB2 receptor was observed in cSCC cells. 

6.4 Overexpression of EphB2 by tumor cells in vivo

IHC analysis of the human TMAs was performed to examine the expression of EphB2 
in vivo. Tumor cell-associated staining for EphB2 was noted to be significantly stronger 
in cSCCIS and sporadic cSCC than in AK and normal skin. As another supporting piece 
of evidence for the in vivo expression of EphB2, analysis of the EphB2 in chemically 
induced mouse cSCC revealed abundant tumor cell-associated staining in DMBA-TPA 
induced mouse skin cSCC, whereas the EphB2 staining was weak or absent in control 
sections. The EphB2 labeling was detected on the cell surface but predominantly in the 
cytoplasm of tumor cells. Cumulative evidence favors the idea that the full-length Eph/
ephrin complex protein is internalized upon activation via an endocytosis process (Mann 
et al, 2003; Marston et al, 2003; Pasquale, 2005; Zimmer et al, 2003). This could explain 
the cytoplasmic localization of the EphB2 receptor observed in different tumors such as 
breast (Wu et al, 2004) and ovarian carcinoma (Wu et al, 2006) in vivo.

6.5 EphB2 regulates proliferation, migration and invasion of cSCC cell lines

In study II, EphB2 knockdown was noted to inhibit viability of cSCC cell lines. Inhibition 
of viability of cSCC cell lines by EphB2 knockdown could be through inhibition of ERK1/2 
MAPK known as the downstream signaling of EphB2 (Figure 8) (Pasquale, 2010). EphB2 
knockdown was shown to significantly inhibit the directional migration of the cSCC cell 
lines recorded by time-lapse microscopy. It is known that Eph signaling can mediate cell 
contact-dependent repulsion that can guide directional migration of the cells (Lin et al, 
2008; Poliakov et al, 2004). Accordingly, it can be hypothesized that the inhibition of the 
cell repulsion due to knockdown of EphB2 is the possible mechanism for the inhibition of 
the directional migration in cSCC cells. Besides, migration of the tumor cells came up as 
one of the top biofunctions in pathway analysis performed following EphB2 knockdown. 
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EphB2 knockdown potently inhibited invasion of cSCC cell lines through collagen. 
In addition, pathway analysis revealed the association of significantly downregulated 
genes with the top biofunction invasion of the tumor cells. Interestingly, analysis of the 
expression profile in cSCC cells after EphB2 knockdown revealed MMP1 and MMP13 
among the most downregulated genes. MMP-13 promotes invasion of cSCC cells and 
growth of cSCC in vivo (Ala-aho et al, 2004) and its expression in head and neck SCCs 
correlates with local invasion (Stokes et al, 2010). It is known that the expression of 
MMP-1 (Westermarck et al, 1998) and MMP-13 (Ravanti et al, 1999) is regulated by p38 
MAPK. Furthermore, the activation of the EphB/ephrinB signaling induces activation of 
p38 MAPK signaling (Cao et al, 2008). Accordingly, it could be proposed that EphB2 
regulates expression of MMP-1 and MMP-13 and consequently invasion of the cSCC 
cells through p38 MAPK activation (Figure 8). This notion was further supported by 
activation of EphB2 receptor with ephrin-B2-Fc ligand (Chaudhari et al, 2007; Salvucci 

Figure 8. Proposed signaling pathways for the regulation of invasion and proliferation by Eph/
ephin signaling in cSCC cells.
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et al, 2006), which induced production of MMP-1 and MMP-13 and invasion of the 
cSCC cells through collagen in study II.

6.6 EphB2 regulates the growth of cSCC tumor in a human cSCC xeno-
graft model

In study II, invasive cSCC cell lines were implanted subcutaneously into the back of SCID 
mice. SCID mice were first established more than three decades ago with the induction 
of the homozygous mutation that severely impairs lymphopoiesis in mice (Bosma et 
al, 1983). Although the immune system, mediated by T cell and B cell lymphocytes, is 
impaired in SCID mice (Bosma et al, 1983), the complement system activity and natural 
killer cells are still intact in these animal models (Greiner et al, 1995; Shultz et al, 1995) 
This model has been widely used to study the growth of human tumor cells in an in vivo 
environment. Knockdown of EphB2 potently delayed the growth of cSCC xenografts. 
In addition, the number of proliferating cells was significantly reduced in the tumors 
established from EphB2 knockdown cSCC cell lines compared to control xenografts. 
Given the fact that blood vessels formation is an essential part of tumor growth, the 
tumor vasculature of the xenografts was examined with a CD34 vascular endothelial 
marker (Hirahashi et al, 2009; Schem et al, 2013). EphB2 knockdown potently inhibited 
vascularization of cSCC tumors which demonstrates the role that EphB2 plays in cSCC 
tumor angiogenesis.

6.7 Upregulation of AIM2 in cSCC cells and tumors

The association of chronic inflammation and innate immunity and malignancies has 
been well documented (Aggarwal et al, 2006; Coussens & Werb, 2002). Inflammation 
is a risk factor for the development of cSCC and patient with chronic inflammatory skin 
diseases such as lichen sclerosus have higher risk of developing cSCC (Alam & Ratner, 
2001; Ratushny et al, 2012). Recently, there has been an increasing interest on studying 
the role that AIM2 plays as part of innate immunity in different cancers. However, the 
exact role of AIM2 as a tumor suppressor or oncogene remains unclear. AIM2 has been 
reported to have a protective role against colorectal cancer progression and a lack of 
AIM2 expression is associated with the relapse of cancer, progression of the cancer, 
shorter survival and metastasis (Dihlmann et al, 2014). AIM2 overexpression has been 
shown to suppress proliferation of breast cancer cells in vitro and growth of the tumors 
in a mouse model (Chen et al, 2006). An elevated expression level of AIM2 in senescent 
epithelial prostate cells is associated with increased production of IL-1β resulting in 
development of benign prostatic hyperplasia (Ponomareva et al, 2013). However, the 
mRNA expression level of AIM2 has been shown to be significantly lower in prostate 
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cancer cells (Ponomareva et al, 2013). On the other hand, overexpression of AIM2 
promotes growth of oral SCC cells in the absence of functional p53 (Kondo et al, 2012) 
and AIM2 is strongly expressed in primary cSCC and melanoma tumors and weakly 
present in poorly differentiated and metastatic tumors (de Koning et al, 2014). In study 
III, overexpression of AIM2 in cSCC cells was observed when compared to NHEKs. In 
addition, the mRNA expression level of AIM2 was shown to be significantly upregulated 
in cSCC tumors as compared to normal skin.

6.8 Overexpression of AIM2 by tumor cells in sporadic cSCC and cSCC 
of OTR patients in vivo

In study III, examination of AIM2 expression in TMAs of normal skin, AK, cSCCIS 
and sporadic SCC revealed tumor cell-specific AIM2 expression in sporadic cSCC 
tumors and AIM2 staining intensity was more abundant in sporadic cSCC compared to 
cSCCIS, AK and normal skin. In addition, the analysis of AIM2 in vivo was extended to 
the large panel of AK, cSCCIS and cSCC tissue sections obtained from OTR patients. 
The risk of developing AK (250 times) and cSCC (100 times) is markedly higher 
in immunosuppressed patients compared to immunocompetent patients (Stockfleth et 
al, 2011). In addition, cSCCs developed in immunosuppressed patients have more 
aggressive behavior and a higher metastatic rate (Euvrard et al, 2003; Hameetman 
et al, 2013). Apart from more abundant AIM2 expression in cSCC of OTR patients 
compared to cSCCIS and AK lesions, AIM2 staining was significantly stronger in 
cSCC of OTR patients compared to sporadic cSCCs. These findings suggest the 
association of AIM2 expression with cSCC tumor progression in vivo, particularly in 
cSCC of OTR patients.

6.9 AIM2 knockdown inhibits proliferation and invasion of cSCC cells

Although the expression of AIM2 in certain malignancies has been recently studied, 
little is known about the role that AIM2 plays in tumor progression. In study III, AIM2 
knockdown with specific siRNA inhibited the viability of cSCC cells. This finding is in 
accordance with the inhibition of the growth of oral SCC cells following downregulation 
of AIM2 (Kondo et al, 2012). In addition, the inhibitory effect of AIM2 knockdown on 
the viability of cSCC cells was supported by pathway analysis of the RNA sequencing 
data following AIM2 knockdown. Analysis of the gene expression profile following 
AIM2 knockdown revealed significant downregulation of biofunction M phase of the 
cell cycle category and upregulation of the genes associated with biofunctions related to 
cell death and apoptosis. In addition, cell cycle-related genes CDK1, cyclin A and cyclin 
B were significantly downregulated after AIM2 knockdown (Figure 9).
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Tumor cells recruit certain innate immune system chemokines and cytokines for the 
invasion and metastasis (Coussens & Werb, 2002). In colorectal cancer, restoration of 
AIM2 has been shown to stimulate invasion of the colorectal cancer cells through a 
matrix-coated membrane (Patsos et al, 2010). In the present study it was shown that 
AIM2 knockdown inhibited invasion of the cSCC cells through collagen. In addition, 
these results provide evidence for the first time that AIM2 is involved in the regulation 
of MMP-1 and -13, two metalloproteinases associated with cancer invasion (Figure 9) 
(Ala-aho & Kähäri, 2005). IL-1β has been shown to regulate expression of MMP-13 
and -1 via the ERK and NFκB pathways (Fan et al, 2006), which could be the possible 
mechanism for the regulation of the expression of MMP-1 and -13 by AIM2.

6.10 AIM2 knockdown suppresses the growth and vascularization of hu-
man cSCC xenografts in vivo

In study III, in an attempt to analyze the role of AIM2 in growth of cSCC tumors in vivo, 
cSCC xenografts were established. The previous findings on the role that AIM2 plays 
in the progression of cSCC in study III was further strengthened by observation of a 
potent delay in the growth of cSCC tumors established from AIM2 knockdown cSCC 
cells compared to the tumors established from the cells transfected with control siRNA. 
Accordingly, the number of proliferating tumor cells was significantly lower in AIM2 

Figure 9. Proposed model for AIM2 activation and regulation of inflammation, proliferation and 
invasion in cSCC cells.
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knockdown tumors than in control tumors. In addition, we found for the first time that 
AIM2 knockdown inhibits tumor angiogenesis. These results identified the important 
role of AIM2 in vascularization and growth of cSCC xenografts in vivo. On the basis 
of the knowledge available on the role of chronic inflammation and in particular IL-1, a 
product of AIM2 inflammasome activation in tumor progression (Drexler et al, 2012), we 
can hypothesize that AIM2 drives the progression of cSCC by activation of interleukins 
and cytokines. These findings provide evidence for the role of AIM2 as part of innate 
immune system in the growth and progression of cSCC.
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7. SUMMARY AND CONCLUSIONS

The current work was planned to identify novel biomarkers for the growth and progression 
of cSCC. As the most common metastatic form of the cutaneous malignancy, cSCC has 
a risk of metastasis and invasion if left untreated. In addition, early detection of the 
tumor is invaluable in the patients with high risk of cSCC such as immunosuppressed 
patients. Furthermore, these biomarkers could serve as therapeutic targets particularly 
in the patients with metastatic and unresectable lesions. This thesis project was mainly 
established on the extensive gene expression profiling of the primary and metastatic 
cSCC cells and NHEKs.

We found that SERPINA1, which codes for ΑAΤ, is upregulated in cSCC cells 
compared to NHEKs. IHC analysis of the TMAs, consisting of a large panel of normal 
skin, AK, cSCCIS, sporadic cSCC and RDEB-associated cSCC, revealed a strong tumor 
cell-associated labeling of SerpinA1 in sporadic cSCC and RDEB-associated SCC. In 
addition, the expression of SerpinA1 is correlated with the malignant transformation of 
epidermal keratinocytes in cell culture and the progression of cSCC in vivo.  

Given the fact that the role that Eph receptors and ephrin ligands play in different 
malignancies is complex, part of this thesis work was focused on investigating the role 
of Eph/ephrin in cSCC. EPHB2 gained our attention in this study, because it revealed 
a significant upregulation in cSCC cells compared to NHEKs both in microarray-based 
gene expression profiling and next generation sequencing. Further analysis by qRT-PCR 
verified markedly overexpression of EPHB2 in cSCC cells and tumors. EphB2 staining 
was significantly stronger in cSCC and cSCCIS compared to AK and normal skin. 
Furthermore, EphB2 knockdown inhibited growth of the cSCC in a xenograft model. 
EphB2 knockdown was shown to inhibit proliferation, migration and invasion of cSCC 
cell lines. Inhibition of invasion related MMPs, MMP-1 and MMP-13 as a result of 
EphB2 knockdown could be the possible mechanism for the inhibition of the invasion 
of cSCC cells.

Because inflammation is involved in the development of cSCC, as the third part of this 
thesis project, the role of AIM2 in the progression of cSCC was analyzed. Overexpression 
of AIM2 was observed in cSCC cell lines and tumors when compared with NHEKs and 
normal skin, respectively. Tumor cell-specific AIM2 labeling was detected in sporadic 
cSCC and cSCC of the OTR patients. In addition, AIM2 knockdown was shown to inhibit 
proliferation and invasion of cSCC cell lines and delay the growth and vascularization 
of cSCC tumors in a xenograft model, which indicates the role that innate immunity and 
inflammation plays in the progression of cSCC.
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In conclusion, the current work revealed novel biomarkers for the progression of 
cSCC. SerpinA1 level can be used as a simple way to diagnose cSCC in early stages. 
The findings on the role of EphB2 and AIM2 in the progression of cSCC identified them 
as attractive therapeutic targets for cSCC. This may open new horizons for the treatment 
of cSCC, especially metastatic and unresectable tumors. AIM2, in particular, could be a 
novel therapeutic target for cSCC in immunosuppressed patients.
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