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Abstract

Personalized medicine will revolutionize our capabilities to combat disease.
Working toward this goal, a fundamental task is the deciphering of genetic
variants that are predictive of complex diseases. Modern studies, in the form
of genome-wide association studies (GWAS) have afforded researchers with
the opportunity to reveal new genotype-phenotype relationships through the
extensive scanning of genetic variants. These studies typically contain over
half a million genetic features for thousands of individuals. Examining this
with methods other than univariate statistics is a challenging task requiring
advanced algorithms that are scalable to the genome-wide level. In the
future, next-generation sequencing studies (NGS) will contain an even larger
number of common and rare variants.

Machine learning-based feature selection algorithms have been shown to
have the ability to effectively create predictive models for various genotype-
phenotype relationships. This work explores the problem of selecting genetic
variant subsets that are the most predictive of complex disease phenotypes
through various feature selection methodologies, including filter, wrapper
and embedded algorithms. The examined machine learning algorithms were
demonstrated to not only be effective at predicting the disease phenotypes,
but also doing so efficiently through the use of computational shortcuts.
While much of the work was able to be run on high-end desktops, some work
was further extended so that it could be implemented on parallel computers
helping to assure that they will also scale to the NGS data sets.

Further, these studies analyzed the relationships between various feature
selection methods and demonstrated the need for careful testing when select-
ing an algorithm. It was shown that there is no universally optimal algorithm
for variant selection in GWAS, but rather methodologies need to be selected
based on the desired outcome, such as the number of features to be included
in the prediction model. It was also demonstrated that without proper model
validation, for example using nested cross-validation, the models can result
in overly-optimistic prediction accuracies and decreased generalization abil-
ity. It is through the implementation and application of machine learning
methods that one can extract predictive genotype–phenotype relationships
and biological insights from genetic data sets.
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Tiivistelmä

Yksilöllistetty lääketiede on mullistamassa mahdollisuutemme ymmärtää ja
paremmin hoitaa sairauksia. Yksilöllisen geneettisen vaihtelun vaikutuk-
sen tutkiminen on keskeinen osa tätä tavoitetta, ja keskeisessä roolissa ovat
uudet tekniikat, kuten koko genomin laajuinen geenivarianttien assosiaatio-
analyysi. Modernit geneettiset analyysit koostuvat tyypillisesti tuhansille
yksilöille kartoitetuista miljoonista geneettisestä piirteestä. Massiivisten
aineistojen analysoiminen perinteisillä data-analyysimenetelmillä on haas-
tavaa, ja seuraavan sukupolven sekvensointitekniikat tuottavat vielä jopa
paljon suurempia datamääriä.

Koneoppimiseen perustuvien piirteidenvalintamenetelmien käyttö on os-
oittautunut tehokkaaksi tavaksi luoda ennustavia malleja genotyyppien ja
fenotyyppien välisten vuorovaikutussuhteiden päättelemiseksi. Tämä väitös-
kirjatyö tarkastelee piirteidenvalintamenetelmien käyttöä erityisesti geeni-
varianttialijoukkojen ja monimutkaisten sairauksien välisten riippuvuuksien
tutkimisessa. Työssä kehitetyt menetelmät osoittautuivat sekä ennustuskyv-
yltään hyviksi että laskennallisesti niin tehokkaiksi, että suuri osa algorit-
meista voitiin ajaa jopa tavallisilla pöytätietokoneilla. Työssä esitellään
lisäksi rinnakkaislaskentaa hyödyntävä algoritmi, joka skaalautuu vielä huo-
mattavasti suuremmille datamäärille.

Tulokset osoittavat, ettei yksikään tarkastelluista piirteidenvalintamenet-
elmistä ole yleispätevä, vaan sopivin menetelmä pitää valita aina ratkaista-
vana olevan ongelman yksityiskohtaisten tavoitteiden perusteella. Hyvä es-
imerkki tästä on mallien ennustustarkkuuden ja valittujen piirteiden lukumä-
ärän välinen kompromissi. Työssä tuodaan lisäksi esiin tarkan koesuunnit-
telun ja menetelmien testauksen merkitys. Erityisesti mallin validointi es-
imerkiksi sisäkkäisen ristiinvalidoinnin avulla on tärkeätä, jotta menetelmän
ennustuskyky kyetään mittaamaan harhattomasti. Vain koneoppimismenete-
lmien huolellisen toteuttamisen ja soveltamisen avulla voidaan geneettisestä
datasta löytää sellaisia genotyyppien ja fenotyyppien välisiä riippuvuuksia,
jotka tuottavat uutta biologista näkemystä monimutkaisten sairauksien syn-
tyyn.
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Chapter 1

Introduction

With the advent of modern technology, humanity is experiencing an expo-
nential growth in the technology that affects our daily lives. Thanks to
modern medicine and the accompanying research, people are living longer,
more fulfilling lives. It is often taken for granted that 150 years ago, during
the American Civil War, modern medicine meant the amputation of limbs,
where the surgery was often more dangerous than the original wound. Since
that time, medicine has become revolutionized in a way that no one could
have ever imagined. The human genome has been mapped, affording us
the opportunity to predict human disorders years before their associated
symptoms manifest themselves. This is occurring due to the development
of methods of identifying the biological sources of various disorders while
requiring a minimal amount of time in the laboratory.

This genetic revolution started in the early 1900’s when Thomas Hunt
Morgan set up the Fly lab at Columbia University. By the 1920’s he had
determined that genes were actually heritable units and the DNA was lo-
cated on chromosomes. Refining the genetic model, in 1953 James Watson
and Francis Crick first suggested the double-helix model of DNA [93]. From
this point forward, the way that biological research is conducted has been
developing at an exponential rate, eventually resulting in efficient whole-
genome sequencing. Through this expanding technology, coupled with the
approximately 3 billion base pairs in the human genome [40], a scenario has
emerged in which researchers are unable to exhaustively search the entire
span of the genetic variant subsets and are faced with the conundrum of
how to effectively analyze this data.

Making the simple assumption that 99.9% of the human genome is shared
among any two individuals, this still leaves millions of distinct data points.
If one accounts for insertions and deletions in the human genome the rate
of variation can be even greater. There exists a wide acceptance of the
fact that common disorders are influenced through the differences that are
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observed in genetic variants [13, 47, 75]. Aggregation of this information
has become invaluable in the modern research on the influence of genetic
variations on various diseases. Modern day computational researchers are
mining this data in order to find links between the genetic variants and the
onset of various disorders and disease phenotypes [18, 59, 84, 96].

This data aggregation, as it is now being analyzed, is commonly con-
structed into various studies and cohorts that are known as genome-wide
association studies (GWAS). GWAS can be defined as a study composed of
common genetic variants, collected together and paired with various disease
outputs in an attempt to generate a correlation between variant subsets and
the phenotypic output [72]. As a result of the high levels of similarity be-
tween two individuals, GWAS studies have aimed at drastically decreasing
the number of base-pairs that must be subsequently analyzed through the
primary scanning of common variants with small effect sizes.

A number of feature selection methodologies exist which can be capa-
ble of addressing the problem of identifying meaningful feature subsets in
GWAS [27]. These methods work through the identification of those variants
which when selected both individually and through epistasis interactions,
provide informative feature subsets and high predictive performance. Vari-
ant subsets discovered through feature selection can extend beyond those
which are univariately significant and can therefore reveal hidden interac-
tions between multiple variants. As this tends to be implemented through
automated processes, it allows for the efficient analysis of millions of features
and their associated interactions in a finite period of time. Post-selection,
through the analysis of the results and their associated molecular pathways,
researchers are hoping to improve upon modern medical treatments and
eventually extend to personalized medicine.

1.1 Challenges in Genome-Wide Analyses

GWAS have become prominent partially due to the progression of technology
which has resulted in a reduction in genotyping costs. Further, a growth
in the scale of GWAS is clearly evident, with next-generation sequencing
studies now containing millions of genetic variants. This is a far cry from
the linkage studies that started in the 1980’s and contained only hundreds
of candidate genes [72]. GWAS are based on genotyping that is done via the
use of SNP arrays that typically genotype approximately 500,000 SNPs for
thousands of samples.

The SNP arrays are sourced from various technologies, two of the leading
ones being the Affymetrix and Illumina SNP arrays. These arrays are not
perfect and their quality is typically defined by the call rate which measures
the fraction of genotypes that are reported. Typically, if an array’s call
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rate fails to surpass a predefined quality control threshold the genotyping
will be repeated [14]. The genotypes are then called using various scoring
algorithms, such as the Bayesian Robust Linear Model with Mahalanobis
distance classifier (BRLMM) and CHIAMO algorithms [14]. Quality con-
trol procedures are then run to remove SNPs/samples with too high missing
rates, SNPs that depart from Hardy-Weinberg equilibrium and other met-
rics.

Imputation of GWAS studies is defined as the process of predicting geno-
types that are not observed or have been marked as missing in the original
study [53]. The imputation process is done through the use of a high-density
reference panel of haplotypes such as the 1000 Genomes Project [1] which is
used for determining the omitted variants. In silico experiments are the run
on these newer data sets which provide a number of advantages to researchers
such as: increased power to identify causal variants, high-resolution map-
ping and the ability to combine studies genotyped with different assays.
Population stratification can be further used to standardize the array data
for the subsequent analyses [71, 98].

A number of key challenges exist in using GWAS data to study com-
plex phenotypes. These include: the need for learning algorithms that can
incorporate both SNPs and conventional risk factors into singular models,
the selection of complex variant subsets that are explanatory of the output
and the biological interpretation of the resulting models [55]. While these
challenges represent the modeling difficulties that are faced when developing
models, additional problems are experienced in GWAS due to their limited
coverage of the human genome and the interpretation of associated variants
that are non-coding.

A particular drawback to GWAS has been their reliance on genotyping
common variants which may not hold the power to reveal the hidden heri-
tability in many complex diseases. As a result, a new generation of studies,
referred to as Next-Generation Sequencing (NGS) are being developed to
take advantage of rare variants that were once thought to lack an associa-
tion with the disease phenotypes [103]. While these studies are still emerging
from their infancy, researchers are starting to explore ways to improve upon
the results of standard GWAS to help explain a larger proportion of the
variance for these diseases [76]. GWAS have only revealed a proportion of
the missing heritability of many disorders and have started to be considered
as not robust enough to explain this deficit [22, 81].

NGS studies are eliminating the need to base results off of partial in-
formation allowing for more complete analysis between genetic variants and
the associated diseases [35]. GWAS screen common variants that are of-
ten in intronic chromosomal regions. In contrast NGS offers the ability to
look more closely at exonic regions, which more often code for functional
proteins. Researchers are thus starting to place a larger emphasis on NGS
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studies and have encountered promising results such as new disease-causing
mutations [8, 17, 44, 54, 76]. In the case of Belloni et al, the authors were
able to uncover a lung cancer mutational profile that could only be revealed
using NGS technologies [8]. Results such as these are proving that NGS
technologies are helping to bring the goal of personalized medicine closer to
reality.

This growth of technology and the associated information boom has gen-
erated a new problem, one often referred to as the curse of dimensionality.
With too much data at the disposal of analysts, the question remains; how
is one supposed to decipher this information in an efficient and intelligent
manner? The answer to this would help to develop solutions for some highly
complex problems that mankind has even been faced with such as: person-
alized medicine, disease prediction and medical genetics. Dealing with mod-
ern data sets that often range from billions to tens of billions of data points,
modern medicine has reached a stage in which it is no longer feasible to
conduct physical experiments for all hypotheses and a reliance on technol-
ogy has become both a necessity and accepted part of the research process.
Through the automation that is afforded through the use of machine learn-
ing, researchers can help to model a hypothesis’ outcome and then only test
those that are determined to maximize the likelihood of success.

A modeling challenge when analyzing genome-wide data sets refers to the
process of deciphering the complex interactions within the human genome,
determining the relationship among these seemingly disjoint genetic variants
and the utilization of this information to attempt to explain the missing
heritability that exists in many diseases [50, 100]. Interactions among the
genetic variants, known as epistasis, are essential to successfully generating
accurate models of complex diseases [59, 95]. However, the detection of
these interactions remains a difficult task due to the large number of feature
combinations that exists in a GWAS. Running an exhaustive search on large
data sets can be prohibitive for multi-variant searches as the problem has
an exponential number of subsets to examine [95].

Epistasis can be the result of more than two genetic variants, which can
create a computationally prohibitive problem. Additionally, a statistical
power problem exists in epistasis analyses. Due to the small effect size that
these interactions exhibit, their contribution on the outcome phenotype can
often be over-shadowed in traditional analyses that tend to make use of
only the most significant feature sets. To account for epistasis interactions
it is therefore necessary to look for selection algorithms capable of handling
such effects in their models. When reporting the algorithm results, the
measurement scale on which they are reported can have a significant impact
[97] and it is therefore necessary to provide results based on metrics that can
minimize the distortion of the results based on effects such as unbalanced
classes.
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In this thesis, the primary focus is on computational methodologies that
assist researchers in making sense of these massive data sets, often in the
form of genome-wide association studies, through the use of feature selection,
machine learning and model validation. During this process, emphasis was
placed on the scalability of the algorithms with respect to all dimensions
such as the number of features, samples and selected features. Their ability
to make efficient use of modern computing resources helps to ensure that
they can scale to the next-generation sequencing studies which can contain
millions of rare variants.

1.2 Aims of the Thesis

The overall aims of this thesis are to present both the computational feasibil-
ity of running advanced machine learning based, feature selection algorithms
on GWAS and to provide a procedural workflow in both an efficient and scal-
able manner that would prove to be implementable by most research groups,
regardless of their resources. Specifically, the main focus is on the imple-
mentation of wrapper feature selection methodologies on large scale data
sets, in a field where they are seldom used due to their traditionally high
computational complexities.

By implementing these complex algorithms on large scale data sets, the
aim was to show that not only were these algorithms feasible, but they
were able to provide new, biomedical results. These results would warrant
their use alongside more traditional techniques of analyzing data sets of
genome-wide scale, such as those methods based on univariate statistics.
Due to the high computational complexities of the analyzed techniques ver-
sus these more traditional implementations, it was necessary to spend time
addressing the adaptation of the algorithms to scalable, distributed systems,
demonstrating that if the correct resources are available, the methods will
scale even to the next-generation of genome analysis studies, assuring the
longevity of the work presented here.

In addition to algorithm development and implementation, another cru-
cial part of this thesis was to publish guidelines in peer-reviewed journals
to advocate to researchers the reasoning and necessity of exploring algo-
rithms that often falls out of the reach of general purpose analysis toolkits.
A common problem observed in publications is that they only make use of
methods available in existing implementations, regardless of their suitability
for data sets on a GWAS scale. Such use, when not on a pilot study, has the
potential to set back the field as it is easy to report that a non-optimally im-
plemented machine learning implementation is not suitable for use on large
scale studies. These applications may ignore the fact that there may be
existing fields of research in which other groups may have already demon-
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strated that they have adapted similar methods for problems of this type.
Due to this, it is only through the successful pairing of computer scientists,
medical researchers, bioinformaticians and mathematicians that will we be
able to solve these problems.

Utilizing only research from key fields will often lead to a lack of the
complete knowledge necessary to solve these problems. For that reason,
this thesis was conducted as a cross-research center effort with participating
researchers from the Department of Information Technology, University of
Turku, the Institute for Molecular Medicine Finland (FIMM) and the Car-
diovascular Risk in Young Finns Study (YFS). It was through the guidance
of researchers in these various institutions that we were able to generate
a set of methods that would aim to satisfy the requirements for a durable
algorithm that would hopefully prove useful to researchers who continue the
work after my completion with the work on the study.

Further, an overall theme of the work is that there is no universal method
for determining the variants that are the most associated with a particu-
lar disorder. As seen in Publication V [61], depending on the heritability
of a particular condition, different methodologies may present alternating
results. While wrappers are in a class of more computationally complex
methodologies, they have the potential to perform well (see e.g [55]). Their
use can result in overfitting and in highly genetic diseases may actually
underperform when compared to some more traditional two step implemen-
tations as demonstrated in Publication V. This is not to state that their use
should be ignored in real-world applications. As such, it is demonstrated
that it is not sufficient for researchers to ignore this class as too expensive
to run, and rather advocate the use of more in-depth algorithm compar-
isons before making declarations on the features associated with particular
diseases.

The work in Publication I [59] was done under the guidance of the Data
Mining and Modeling Group at the Turku Centre for Biotechnology in col-
laboration with the YFS. All other publications were conducted with the
Algorithmics and Computational Intelligence Group at the Department of
Information Technology, University of Turku.

The specific aims of the thesis are:

1. Variant Selection Nearly all of the work done in this thesis was focused
on the selection of genetic variants that are able to distinguish between the
various phenotypic output classes present in the implemented studies. These
feature selection methodologies were based on various techniques including:
filters, wrappers, embedded and hybrid methodologies. Through the use of
these assorted selection algorithms, it was aimed to demonstrate the ability
to efficiently and effectively identify those genetic variants that when their
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synergistic interactions with other polymorphisms were accounted for, could
better predict the class outcome than basic univariate methods.

For the various selection methods, a number of algorithms were explored.
These included but were not limited to: Information-Gain combined with a
Naive Bayes based wrapper (see Publication I), greedy Regularized Least-
Squares (RLS) based wrappers (see Publications II [67], III [58], V and
[60, 64]), and various embedded based methodologies, including Lasso and
Elastic Net (see Publication V). These methods exhibited a technological
progression from a pilot study in Publication I in which widely available
tools were used to those that required custom development to efficiently im-
plement computational shortcuts and caching. By following this progression,
the evolution of these methods in relation to one another can be observed.
Additionally, their continued ability to be implemented on larger studies
throughout the course of research demonstrates their scalability.

Considerable resources were spent towards the analysis, implementation
and advancement of the greedy RLS algorithm. The reasoning behind this
decision was that as a base it proved to be a highly efficient, yet underuti-
lized algorithm which was able to provide results that are comparable to
some of the leading methods. This performance was achieved in a fraction
of the time of comparable methods and provided interesting variant subsets
in the results. Due to these attributes, it was decided that this would be the
algorithm that would be implemented on large-scale, distributed systems
through the use of both OpenMP and MPI based implementations [58, 60].
In contrast to scaling filter-based feature selection methodologies, in which
each processor can calculate independently of the other processors in the
system, the use of a method that required caching and computational short-
cuts required applying significant attention to the network communications.

2. Machine Learning The use of machine learning in the context
of genetic association studies has remained relatively limited until recent
years. While variant selection can be implemented through a multitude of
methodologies, the aim here was to primarily make use of machine learn-
ing algorithms due to their ability to detect unknown variant interactions.
Through the automated training process that is wrapped around these tech-
niques during the variable selection phase, machine learning provided the
ability to conduct an automated training process in which it was possible to
rescale the effects of the various variable coefficients depending on the data
present. Due to the size of GWAS, this is an increasingly important step
to developing these models; since only looking at candidate gene sets has
the adverse effect of potentially not allowing the algorithm to maximize the
percentage of the variance that could be explained by the genotypes [67].

The implemented algorithms took on a number of forms that range from
straightforward methods that simply maintain the ability to generate an
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outcome prediction, to advanced methods that are capable of incorporating
feature selection within the learning model itself. This analysis on a variety
of techniques affords the ability to analyze the effect of variable selection
and whether there was an added benefit to various methodologies. It was
through the use of machine learning algorithms that we were able to im-
plement the algorithms capable of generating predictive models based on
GWAS data.

3. Model Validation Determining whether the generated model, from
either a machine learning methodology, or that combined with a feature se-
lection result will yield predictive results on an independent data set is vital
for the verification of the results. Due to the expense of generating GWAS
and the differences in their development, it is often difficult to obtain inde-
pendent data sets for model verification. Therefore, a significant effort was
paid towards the implementation of model-validation methodologies such as
nested cross-validation that would allow for more realistic estimates of the
real-world predictive capabilities of the developed models.

As producing these forms of model validation can significantly increase
the required computation time, algorithms were commonly utilized based on
their capacity for the efficient calculation of parts of the validation internally.
An example of this is the case of greedy RLS, which performs an internal
leave-one-out cross-validation while selecting the features. By efficiently
computing this in a single iteration it is possible to reduce the computational
overhead of the feature selection, making them more feasible on large-scale
data sets.

4. Scalability Significant effort was paid towards the scalability of the
algorithms. Developing algorithms which are only capable of being scaled to
the current GWAS would result in the method quickly becoming outdated
as the scale of these studies continues to increase. Further, it can currently
be observed in two-step methodologies which aim to reduce computational
costs by coupling advanced model selection methods with faster univariate
ones, that their use can potentially result in a loss of information. This can
lead to a failure to maximize the amount of the heritability or predictabil-
ity which can be explained by the genetic variants. More computationally
complex algorithms may provide alternative feature subsets that can poten-
tially explain some of this heritability, but require additional attention to
assure that they will scale to the GWAS and beyond. It is vital that new
algorithms being released to the GWAS community are capable of scaling
to the next-generation sequencing studies.

Adapting greedy RLS to distributed computers yielded results that helped
to confirm the algorithms capability to scale to larger studies, with its test
application being limited largely by the resources available. Further focus
was paid to its scalability in all dimensions, regardless of whether the new
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data set had an increased number of features, samples or selecting a larger
subset of features. This assured its suitability for a wide variety of use cases.
It was also important to demonstrate that before scaling the algorithm to a
parallel environment, every effort was made to minimize the running times
on a serial machine. The optimization included both computational and
memory efficient variation that allowed users to determine the method that
best works given their available resources.

1.3 Organization of the Thesis

This thesis’ main contribution to the academic community is in the five
original publications that were published previously in various journals and
and conference proceedings. Chapter 2 provides an overview of the machine
learning methodologies that were analyzed and implemented during the re-
search for this thesis. Additionally, it discusses feature selection method-
ologies, their implementations and applications to genetic studies. Further,
it briefly discusses some model-validation techniques. Chapter 3 provides
information on further scalability advances such as those based on paral-
lel computing. Chapter 4 summarizes the publications that make up this
dissertation. Finally, Chapter 5 provides a conclusion to thesis and a brief
insight into potential future applications.
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Chapter 2

Methods for Analyzing
GWAS data

2.1 Algorithmic Background

The ability to collect massive amounts of data has created an expanding need
for algorithms that can handle such studies. With cohorts now containing
millions of genetic variants and thousands of individuals, analysts are being
faced with the challenge of processing the data sets. While this does not
pose significant problems for straightforward techniques such as univariate
statistics which can be run in linear time, the use of advanced multivariate
algorithms is easily hindered when being implemented on studies of this
magnitude.

Older studies have been primarily implemented on either smaller sample
sizes, have been pre-filtered for variants that are the most statistically sig-
nificant with the outcome variable or consist of prior identified loci [21, 96].
In recent years, researchers have been working on the development of new
methods that are scalable to larger data sets [32, 67, 92]. The advent of
NGS data sets will require methods capable of both scalability and high
predictive performance.

2.2 Machine Learning

Machine learning (ML) is a field of study that aims to develop algorithms
capable of learning from data without the need to be explicitly programmed.
Acting as a cross-disciplinary field, it encompasses the work from mathemat-
ics, statistics and computer science. Acting as an automated methodology
for learning, ML has allowed for a new realm of problem sets to become
viable for analysis. Without the explicit need of programming the models,
researchers can be assisted by computers in the development process.
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This has allowed ML to be applied to a broad spectrum of projects.
From Google’s self-driving cars, to image recognition, commercial recom-
mendation engines and even biomedicine, it is becoming rare to find a high-
tech field that doesn’t encompass at least some aspects of this discipline.
Through image recognition, ML is helping cars to interpret whether the ob-
ject in front of them is a person or vehicle and how to react accordingly. In
businesses, recommendation engines are using methods such as collabora-
tive filtering to determine which products and services would most interest
a particular consumer, while in biomedicine researchers are able to analyze
problem sets that only a couple of years ago were considered not computa-
tionally feasible.

With modern GWAS consisting of billions of data points, it remains an
impossible task to explicitly define a set of rules that can explain the inter-
relationships between the genetic variants. Rather researchers are relying on
classification, regression and feature selection methodologies to help manage
the vast data sets and determine how to handle the individual variants in
terms of complex problems. This automated process aims to make sense of
the feature subsets, seek out both univariate and epistasis interactions along
with helping to group the resulting features into potential subsets that may
help researchers to analytically explain the results.

In GWAS, researchers typically deal with problems that can take on one
of two states, either regression or classification. Regression can be defined
as a statistical process of determining the relationship of an output to one
or more inputs and noting how changes in these independent variables will
cause subsequent changes in the output. Regression is widely used in studies
where the outcome variable can be considered to be continuous, such as the
case when considering blood pressure, an individual’s weight, cholesterol
levels, age, etc. Classification problems occur, for instance, when classifying
subjects into discrete categories such as the disease or non-diseased classes
based on their genetic profiles

2.2.1 Notation

The articles leading up to this dissertation are based primarily on determin-
ing the dichotomous class through the use of machine learning. This form
of prediction, in terms of GWAS can be formalized as follows. Let m and n
be the total number of individuals and features respectively. In supervised
learning the problem contains a set of input-output data pairs known as the
training set:

S = {(x1, y1), . . . , (xm, ym)} (2.1)

where x1, . . . ,xm ∈ Rn and y1, . . . , ym ∈ R. In addition we define y =
(y1, . . . , ym)

T
,X = (x1, . . . ,xm)

T ∈ Rm×n. In the above xi = (xi,1, . . . , xi,n)
T
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and i ∈ 1, . . . ,m. It is assumed that the training set is composed of indepen-
dent identically distributed (i.i.d) samples drawn from the same unknown
distribution of the data.

In supervised learning the goal is to infer a prediction function f : Rn →
R such that f can be applied to unseen data. A training algorithm is defined
as a mapping from the training set to the hypothesis set.

A : (Rn × R)m → F (2.2)

where F is the set of possible prediction functions. The algorithm in
(2.2) is a mapping from all possible training sets of all possible sizes to the
set of prediction functions. For relevance to the work that comprises this
dissertation, F is made up primarily of linear models.

2.2.2 Classifiers

When trying to use a classifier for predicting discrete output, the output
values are taken from a finite ordered set C = {c1, . . . , ck}, which can for
example represent different stages in disease progression. In the literature
this is referred to as ordinal classification [5]. A special case of this is when
there exists two classes, known as binary classification. This is typical when
one is trying to determine whether an individual is either a case or a control
for a particular disease phenotype. In this case we denote yi ∈ {−1, 1} where
−1 indicates subjects who have a negative outcome status and 1 represents
individuals who have a positive one.

In classification one can consider probabilistic models where the prob-
ability of y being categorized in a particular class is assigned a particular
value. For example, the probabilities of an instance being classified as a case
or a control can take on the probabilities P (1|x) and P (−1|x) respectively.
To determine the classification class, one method of adjusting the prediction
functions output to a discrete value is to apply a scoring function to convert
the score to a corresponding class.

f(x) =

{
1 P (1|x) > P (−1|x)
−1 otherwise

(2.3)

The model in (2.3) can be interpreted as if the probability of an instance
being classified as a case is greater than the probability of an instance being
classified as a control then classify as 1, otherwise it should be −1.

Näıve Bayes

While not a complex predictive function like the others utilized in this dis-
sertation, Näıve Bayes, is described here due to its implementation in Pub-
lication I. Näıve Bayes is a classifier assuming feature independence when
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conditioned on the class. Some of its main advantages are its simplicity and
computational efficiency which leads to its scalability to large data sets.

A Bayes predictor would generate the class predictions based on:

ŷ = arg max
c∈C

P (c|x) (2.4)

where P (c|x) is the posterior probability of a class c, given a feature vector
x. P (c|x) can be computed with the Bayes Theorem:

P (c|x) =
P (x|c)P (c)

P (x)
(2.5)

Here, P (x) does not affect (2.4) and hence it can be ignored. P (c) is the

prior probability of the class c based on the training data, e.g. P (c) = |Mc|
m ,

where Mc =
{
i|yi = c

}
. In Näıve Bayes it is assumed that the features are

mutually independent given the class. Therefore, P (x|c) = Πn
i=1P (xi|c). If

the feature values are binary then P (xi|c) is the number of times the feature
value xi has appeared in the training data belonging to class c divided by
the total number of training points in class c.

To determine which class to classify a particular instance, Näıve Bayes
makes use of the maximum likelihood for the available classes which can be
calculated through the application of Equation 2.6.

ŷ = arg max
c∈C

P (c)Πn
j=1P (xj |c) (2.6)

where xj refers to the jth feature of the data point x.
If a feature x is continuous, a commonly used approach is to assume it

Gaussianity and to estimate the corresponding density function via [33].

P (xj |c) =
1√

2πσj,c
e
−

(xj−µj,c)2

2σ2
j,c (2.7)

where µj,c and σ2
j,c are the mean and the variance of jth feature of the

training set in class c:

µj,c =
1

|Mc|
∑

i∈Mc

xi,j (2.8)

σ2
j,c =

1

|Mc| − 1

∑

i∈Mc

(xi,j − µj,c)2 (2.9)

Equations (2.8) and (2.9) can now be used to define the training algorithm
A in (2.2).

Some of the main advantages of Näıve Bayes are its scalability and rela-
tively good real-world performance, despite the simplicity of the algorithm
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[52, 59, 82, 94]. These characteristics lead it to remain a widely explored
algorithm that will have a strong potential to be applied to next-generation
sequencing studies in which the scalability of algorithms may become a pre-
dominant factor in their selection.

2.2.3 Regression

When dealing with y ∈ Rm such that y is continuous, the problem of pre-
dicting the output yi, based on the input xi is know as regression. The
relationship between the input and output is generalized by equation 2.10:

y = Xw + ε (2.10)

in which w are the coefficients assigned to x1, . . . , xn and the goal is to
minimize the error ε such that y ≈Xw.

To solve for this, the first step is to define an objective function as seen
in (2.11)

‖ε‖22 = (y −Xw)
T

(y −Xw) (2.11)

= y
T
y − 2w

T
X

T
y +w

T
X

T
Xw (2.12)

The minimum of ‖ε‖22 can be found from the zero point of the derivative.
The derivative with respect to w is:

∂

∂w
‖ε‖22 = −2X

T
y + 2X

T
Xw. (2.13)

Setting the derivative ∂
∂w‖ε‖22 = 0 and solving for (2.13) with the as-

sumption of X
T
X being full rank one gets

w = (X
T
X)−1X

T
y (2.14)

2.2.4 Regularization

The matrix (X
T
X) in 2.14 can become singular when there is a linear

dependence between the features. This makes it challenging to compute
w since the inverse of a singular matrix cannot be calculated. As (2.14)
becomes closer to singular, its sensitivity to random errors increases, which
results in an increase in the variance. This process of overfitting results in
the need to help reduce the overly-optimistic effect that can occur when
fitting models to training data.

To help account for this, users can apply regularization to the regression
model. Regularization applies a complexity factor to the loss penalty, result-
ing in larger penalizations for large coefficient values. By penalizing these
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coefficients, regularization aims to reduce overfitting and helps to develop
an algorithm that will better generalize to unseen data. Least squares can
be regularized in several different ways. The most common example is the
squared Eucledian norm of the vector ||w||22 which in the literature is known
as the ridge regularizer. The regularized least-squares problem becomes:

ŵ = arg min
w∈Rn

{(y −Xw)
T

(y −Xw) + λ||w||22} (2.15)

such that the regularization parameter λ > 0 and

‖w‖22 =

n∑

j=1

w2
j (2.16)

Referring back to the matrix algebra solution presented for regression,
this can extended to apply to RLS through the closed-form solution pre-
sented in equation 2.12.

w = (X
T
X + λI)−1X

T
y (2.17)

Through the regularization applied by λ, regression has increased capa-
bilities for handling multi-collinearity which is a primary concern in GWAS.
It is important to note that there exist other regularizers such as the 1-norm
which is discussed further in the feature selection subsections.

2.3 Scoring Metrics

A scoring metric is a way of measuring the ability of an algorithm to pre-
dict the output based on its input. Identification of the appropriate scoring
metric for a particular problem set is an important task when evaluating
feature selection methodologies [97]. A number of scoring metrics are com-
monly applied in learning studies. The final selection is dependent upon the
particular problem which is being analyzed. Regression and classification
problems often make use of different metrics as the structure of the output
has an affect on the appropriate technique. As an example, having single-
class output predictions can result in a very high accuracy but still be a poor
model. For this reason it is necessary to select models which are suitable for
the problem set.

Certain measures have the propensity to misrepresent the predictive
power of the model. As an example, a non-stratified data set with 90%
controls would be trivial to achieve a high accuracy. Rather, measures that
can account for class size differences, such as the Area Under the Receiver
Operating Characteristic Curve (AUC) would better represent the actual
performance of the model.
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Table 2.1 provides a brief overview of various scoring metrics. These
metrics are a partial list of those that are commonly applied in research.
For a more detailed description of many of these methods one can view the
supplementary materials of Publication V.

Metric Algorithm

Accuracy TP+TN
TP+TN+FP+FN

AUC 1
|m+||m−|

∑
j∈m+

∑
k∈m− g(ŷj − ŷk)

MSE
∑m
i=1(yi−ŷi)2

m

COD 1−
∑m
i=1(yi−ŷi)2∑m
i=1(yi−ȳ)2

χ2
∑ (O−E)2

E

Odds Ratio TP×TN
FP×FN

Fisher’s Exact Test (TP+FN)!(FP+TN)!(TP+FP )!(FN+TN)!
TP !FP !FN !TN !(TP+FP+FN+TN)!

Table 2.1: In this table TP, TN, FP and FN represent the number of true
positives, true negatives, false positives and false negatives respectively.
Here, g(x) is the Heaviside step function. O and E are the entries from
the observed and expected frequency tables. AUC is the area under the
receiver operating characteristic curve, MSE is the mean squared error and
COD is the coefficient of determination. m+ and m− are the index sets of
the data points whose correct output is positive and negative respectively.
ŷ and ȳ are the predicted and average values of y respectively.

2.4 Model Validation

Recent GWAS, such as those based on schizophrenia have demonstrated
great strides in the ability to identify over a third of the heritability of the
disease in the primary cohort, but the results did not generalize well on a
secondary, independent cohort [24]. Predictive models are often capable of
achieving good results on the data they were trained with, but the question
remains: how does this model perform on independent data that would be
reminiscent of real-world conditions? To address this question one can apply
so-called model validation techniques. The two main validation methods ex-
amined here are the use of independent data sets and cross-validation. These
methods are not mutually exclusive and it is not uncommon to see both of
these methods combined with one another to simultaneously perform both
model selection and validation. For example, cross-validation is often used
for feature and/or parameter/model selection, while the use of independent
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Figure 2.1: An example of how a set of points can be overfit by increasing
the degree of the polynomial. In this example, 30 points are generated along
a randomly chosen function. A polynomial is then fit to these points using
various degrees. It can be observed that as the number of degrees approaches
the number of random points the curve demonstrates overfitting. This is a
modification of the sample provided by Scikit on their website1.

data sets are used at the end of the selection process to test whether the
model is overfit to the training data. As described later in this section, we
chose to omit the use of bootstrapping in our publications.

An example of model overfitting can be seen in Figure 2.1, consisting of a
random set of 30 points from a polynomial plus random noise. A polynomial
model has been fit to these points, along with showing their true function
for varying numbers of degrees. The higher degree of the polynomial that is
used to fit the model, the smaller the error is. However, analyzing the fitted
model, it is apparent that the higher degree models would poorly generalize
to unseen data.

The use of independent data sets is trivial, but is important in deter-
mining whether the model has been overfit to the training data, meaning
that it will not likely generalize to unseen data. The concept behind this
method is to use a set of data that has not been examined during the model
construction and apply the trained prediction function from the training set
onto the independent data set. The prediction results of the generalization
on this new set are then recorded and evaluated. The main advantage to
this method is that it makes use of data that has had no influence on the
training of the model and thus can be assumed to provide a realistic estimate
of the model’s performance.

The selection of independent data sets can seem trivial, but it is impor-
tant to consider that population demographics may partially determine the

1http://scikit-learn.org/stable/auto_examples/model_selection/plot_

underfitting_overfitting.html
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performance on this data [86]. For example, comparing a study that comes
from an Asian cohort to a European cohort can reveal underlying genetic
differences that can reduce the reproducibility of the results. For this rea-
son, it is common for researchers to examine the population stratification
within the studies to assure that similar clusters are being compared. This
is meant to help assure that population differences will have minimal impact
on the final model.

Due to a limited number of samples in GWAS, it is also possible for
researchers to implement a hold-out set method in which a percentage of the
data set is removed before the model development and only used during the
testing phase. This method has the advantage of allowing researchers to have
a higher degree of confidence in the similarity of populations being examined,
though it is more prone to being affected by any experimental errors that
may exist in the data set. Additionally, as a portion of the population is
being removed, there is left a more limited data set in which to train the
model, hence affecting its generalizability. If possible it is recommended to
make use of independent data for model validation.

When developing models whose predictive performance needs to be as-
sessed, the most straightforward model validation implementation to help
alleviate overfitting is the use of training, validation and test sets (see Fig-
ure 2.2). In this model the data is initially split into separate subsets, one
is used for the training of the model and a validation set which is used to
optimize the performance of the training model. The percentage split that
is used to partition the data varies, though it is most common that the
training set is significantly larger than the validation set. Some common
splits include a 67%/33% and a 90%/10% split.

The test set is used for measuring how well the model generalizes to
data that is not observed during the training phase. This testing set ideally
comes from a data set that is external to the data set implemented in the
training/validation stages of the algorithm fitting. In GWAS this would be a
study conducted externally to the one from which the training set originates.
In the absence of external validation data, the original sample can be used
to generate the testing set, so long as this data is extracted prior to any
model fitting.

Bootstrapping is another validation method that is commonly used in
machine learning problems. It is primarily used for data sets in which the
sample size is small. It makes use of uniform random sampling with re-
placement of the training data to increase the amount of data available.
This provides a relatively accurate estimate of the sampling distribution for
the algorithm being analyzed. Bootstrapping has the advantage of com-
monly displaying a lower variance, but has a higher bias when compared to
cross-validation [19].
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Figure 2.2: An example of splitting a singular data set up into a training,
validation and testing data set. In the figure A represents the training data
set, B is the validation set and C is the testing set.

As stated by Kohavi in [37], bootstrapping has the significant risk of fail-
ing if the learning algorithm tends to memorize the training data such as can
potentially happen in the nearest neighbor-based methods. This is due to
the memorizer being able to remember the training data and then applying
this to a bootstrapped sample which can contain some of the same training
instances [37]. Therefore, the performance of bootstrapping can be highly
dependent on both the data and learning algorithm selected. As a result,
it is commonly used for measuring the uncertainty of a fixed model while
cross-validation is more often used for model selection. Since the contained
publications focused primarily on model selection, bootstrap validation tech-
niques were not explored.

2.4.1 Cross-Validation

Cross-validation can be described as the following [29]: Given a data set,
we split it up into k parts, training the model on k − 1 parts while the
remaining split is used as a testing set. In other words each of these folds
are used a single time as a test set, while the other k− 1 folds are combined
together to form a training set. This can interpreted as an indexing function
κ : {1, . . . ,m} 7→ {1, . . . , k}. Next, a fitted function f̂−κ(h)(x) can be defined
as the function with the hth fold removed from the data. The results of the
k models are then averaged together to generate an overall score for the
model.

CV =
1

k

k∑

h=1

S
((
yi
)
i∈Kh

,
(
f̂−κ(h)(xi)

)
i∈Kh

)
(2.18)

Where S is a scoring metric and Kh is the set of indicies contained in the
hth fold. Here (yi)i∈Kh is a vector of outputs in hth fold. Further, in cross-
validation researchers generally deal with two types of splits, stratified and
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unstratified. In the case of stratified cross-validation, the splits are arranged
in such a fashion so that the ratio of each class of the output in each fold is
approximately equal to the ratios that were present in the original data set.

Common implementations of k-fold cross validation are the 10-fold and
m folds, where m is the number of examples in the data set. The former
is commonly implemented due to its relatively low computational overhead
requirements as the model only needs to be trained k times. In the latter,
commonly known as leave-one-out cross-validation (LOOCV), when deal-
ing with relatively high sample size data sets a computational limitation
is confronted in which the problem may not be feasible to run that many
times.

An issue with LOOCV is that due to only a single sample being removed
at each step, there exists a very high correlation between the different folds
of the data set. As it is generally accepted that averaging the performance
of many highly correlated models will result in a relatively high variance, it
can be assumed that a LOOCV based estimate will have a higher variance
when compared with that of a traditional k-fold cross-validation. This does
not mean that the method should be ignored in the case of larger stud-
ies. Fortunately, there exists ML methods that are capable of producing an
exact value for the LOOCV model through only a single iteration by imple-
menting computational shortcuts [67, 68]. These shortcuts are what made it
possible to implement wrapper style feature selection on entire genome-wide
association studies.

Nested Cross-Validation

Selection bias [3] often exhibits itself when the cross-validation that is used
for the model building is the same CV that is used for calculating the error
estimate. To help avoid this pitfall it is recommended to use nested cross-
validation. Through this, a relatively unbiased estimate of the actual error
of the final model trained with the whole data set can be established [3, 90].

In order for CV to provide an unbiased estimate of the final model, it is
necessary that each of the learning phases including feature and parameter
selection are done within an inner-cv loop. The inner-cv is performed on
the training data during each round of the outer-cv by splitting it into k2

sub-folds, where k2 is the number of folds in the inner-cv. After evaluating
the performance with nested-cv, this model selection done during the inner-
cv can be performed over the entire data set to obtain a final model. An
example of nested cross-validation can be seen in Figure 2.3. In this figure
a traditional 3-fold cross-validation is being performed and, within each of
the three folds, a further 3-fold internal cross-validation is being performed
on the corresponding round’s training set to select the model parameters.

21



Figure 2.3: An example of 3-fold cross-validation with an extension to
demonstrate a 3-fold nested cross-validation. In k-fold cross-validation each
fold of the data is used for testing exactly once. When extended by nested
cross-validation, each of the training sets has a subsequent cross-validation
performed inside of it in order to select the model parameters/features. This
nested cross-validation is done on all of the training data in the external fold.

Examples of nested-cv’s use in GWAS can be seen in [36, 43, 61, 67]. The
requirement of additional cv testing can lead to impractical computation
times in studies where the cross-validation is expensive to compute [88].
This computational cost can increase even further as it is not uncommon
for researchers to repeat the procedure multiple times [39]. One potential
solution demonstrated in this thesis when dealing with data sets of scale
such as GWAS and NGS, is the use of scalable algorithm that can be speed
up through other techniques such as parallel computing (see Chapter 3).

2.5 Feature Selection

The information age has brought about a wealth of information that would
have previously been unthinkable. In research of large-scale scientific and Big
Data corporate data sets, researchers are clamoring to develop techniques
to mine through the data to find the components that are both directly
and indirectly related to the output. The understanding of the biological
components of disorders is necessary for the development of new and effective
treatments and therapies.
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It has been shown in prior publications that features that do not nec-
essarily pass the threshold for genome-wide significance, p < 5 × 10−8 [7],
can be used to help boost the performance of classifiers [38, 59, 96]. This
can lead to a speculation of whether filters are capable of capturing all of
the information contained within the human genome [59, 67, 96]. It can be
advantageous to also analyze whether the statistically significant features
can be complemented by other variants to explain a larger proportion of the
variability[59, 100, 101].

GWAS data creates a curse of dimensionality where n � m, which can
result in overly-complex models that fails to generalize to unseen data. To
efficiently determine the features which should be further examined, feature
selection can be applied. It is through feature selection that a marriage
between the methodologies of computational and biological researchers can
occur and more efficient development of medical treatments can start to be
produced.

Feature selection is the process of selecting those sets of variants which
are the most predictive of a particular outcome variable. In the case of
GWAS, this is primarily concerned with selecting the subset of variants that
are most predictive of the outcome variable, commonly either a case/control
qualitative phenotypes, or a quantitative one such as blood pressure.

Feature selection methods are commonly divided into three categories:
filter, wrapper and embedded methods (see e.g. [27, 79]). While each of
these methods has its own foundation it is very common for researchers to
make use of various combinations to help account for the shortcomings of
the various methods. However, not all approaches fall neatly into one of
these categories, certain algorithms may be considered both wrapper and
embedded methods depending on the viewpoint, and many approaches also
combine several different selection methods. Of interest to this paper is a
focus on algorithm development to start equalizing the playing field between
the methodologies, allowing singular algorithms to eliminate shortcomings
that were traditionally present.

In this work, the main division between the different approaches is es-
tablished. Filters are primarily implemented by computing univariate test
statistics for individual features, in order to evaluate their predictability for
a particular phenotype. The approach is easy to implement, scales to large
data sets and the results yield straightforward interpretations. However
the resulting predictive performance can be sub-optimal, since the approach
misses possible interactions between the features, and does not take into
account the properties of the used learning algorithm. Wrapper and embed-
ded methods allow addressing these problems, but at the cost of needing to
implement much more complicated algorithms, whose scaling to large data
set sizes is a challenging problem.
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2.5.1 Filter Methods

Filter feature selection is one of the most widely used methodologies for de-
termining the feature subsets for subsequent analysis and can act as both a
standalone selection technique or combined with others to assist in the pro-
cess of analyzing data sets of scale [59, 83, 96]. Traditional input-output rela-
tionships have been identified through the individual analysis of the feature
set to identify those that are statistically associated with the output through
the application of a univariate statistic, H (such as the mean squared error,
see T able 2.1), as seen in Algorithm 1. Here, H is iteratively applied to
the features-output pairs, (X:,1,y), . . . , (X:,n,y), where X:,j refers to the
jth column of the data matrix. They are examined individually to find the
one that has the highest association (lowest p-value) with the outcome la-
bels, y. The features which are selected for subsequent analysis are based
on either those features whose statistic surpass a particular threshold, the
top k features, or a combination of the two aforementioned methods. Those
features that are selected will then typically have either a learning algorithm
applied to them to train a predictive model [96] or may have a subsequent
feature selection run on them [59, 83].

Algorithm 1 Filter feature-selection

1: S ← ∅
2: for j ∈ {1, . . . , n} do
3: ej ← H(X:,j ,y)
4: if ej < e then . Compare error to pre-defined threshold
5: S ← S ∪ {j}
6: return S

Filters are highly scalable and can normally be done in O(Dn) time
where D is the complexity of computing H. The speed of computing filters
allows them to be applied to large data sets in a fraction of the time that
it takes to complete wrapper and embedded methods. PLINK (see [73])
can calculate the genotypic p-values for all features in a GWAS in a matter
of minutes. Their application can be further enhanced through the use
of multi-processor computers so that the feature scores can be computed
simultaneously. Due to these method’s characteristic of the selection process
being external to the applied learning model, the feature subset is easily
interpretable.

While filters-methods have shown to provide optimal results in some
studies in which there is known to be a strong statistical association between
the variants and the outcome labels (see Publication V), their application
is known to have the potential to fall short of their wrapper and embedded
counterparts [55, 59, 67]. For this reason their analysis should be comple-
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mented by more complex methodologies on a training set and only further
applied if their results remain optimal in the experiment. As they tend to
be based on univariate statistics, they often ignore the feature dependen-
cies that commonly exist through epistasis interactions in GWAS. This false
assumption of feature independence can lead to sub-optimal results [26].
Further, analyzing continuous-valued output with discrete inputs, applying
univariate filter methods is a complex task. A common way to handle this
can be to use algorithms such as those from the RefliefF family of methods
[77].

2.5.2 Wrapper Methods

Wrapper methods search through the power set of features for the subset
of variants which maximizes the estimated predictive power of the model.
This method uses the learning algorithm itself to search for the feature
subset, allowing the features to be selected based on how well they will work
with this algorithm, rather than performing a selection based on potentially
different criteria, as is the case with filter methods. In other words, the
features selected are classifier dependent.

Wrappers have been shown to be advantageous compared to filters be-
cause of their ability to detect interactions between features that normally
could not be identified through the use of univariate methods. Further, as
has been shown in Guyon et al., a variable that provides no useful informa-
tion on its own can provide information when taken into account with other
features [27]. This means that epistasis interactions among SNPs may cause
features that would be ignored during filter methods to create more suitable
feature subsets.

While the ability to examine large numbers of feature subsets can afford
the opportunity to maximize the performance of the learning algorithm, it
comes at a cost, such as high complexities and the strong possibility of over-
fitting to the training data, potentially limiting the generalizability of the
model. Moreover, wrappers do not make any assumption of prior knowl-
edge to the final feature set and it is therefore possible that features which
domain experts may be interested in are not included after the selection pro-
cess. Additionally, while redundant features may be likely to be excluded
from the final set (dependent on the algorithm used), this action may cause
useful information regarding features that map to particular genes and path-
ways of interest to be lost during the selection process. When sample sizes
are limited, redundancy in the training set does not definitively indicate
redundancy in the test set. If certain features are required to be included
in the final feature set, then alterations to the wrapper algorithm must be
manually made to force their inclusion.
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A standard wrapper algorithm works by combining three separate com-
ponents. The first is the learning algorithm, around which the feature selec-
tion is wrapped. This can in principle be any classification algorithm. The
method then uses a search algorithm to search over the varying feature sub-
sets, by deciding which features will be considered by the current iteration
as potential candidates. The fitness of these features is finally evaluated
through the use of a heuristic which estimates how well the analyzed SNP
subset is capable of predicting the correct phenotypes.

The use of wrappers requires the implementation of search heuristics,
which guide the selection process through the feature space. Search algo-
rithms are necessary for wrapper methods since even when dealing with
a seemingly low number of genetic variants there are an extremely large
number of feature subsets that can be analyzed. Given the current size of
GWAS, often containing hundreds of thousands to millions of variants, and
the exponential growth of exhaustive searches, this creates a computation-
ally impossible problem to solve.

To analyze the most basic form of wrapper-methods one can start with
a study of greedy forward selection. Algorithm 2 starts with S = ∅ and
iteratively selects one feature at a time until a predefined number of features,
k, has been selected. During this process, new features are only added to
the S and are never removed. In Algorithm 2 it can be observed that the
outermost loop inserts an additional feature into S, at each iteration until
the subset contains a predetermined number of features, k. During the inner
loop, the wrapper examines every variant that has not yet been selected
and computes the value of the heuristic H for the prior-selected features
combined with the new feature under consideration. Note that the heuristic
is now defined for pairs of feature subsets rather than individual features.
This can be represented by H(XS∪{i},y), where S ∪ {i} is the union of the
currently selected features, S, and a new feature i.

Algorithm 2 Greedy, forward feature selection

1: S ← ∅
2: while |S| < k do
3: e←∞
4: b← 0
5: for i ∈ {1, . . . , n}\S do
6: ei ← H(XS∪{i},y)
7: if ei < e then
8: e← ei
9: b← i

10: S ← S ∪ {b}
11: return S
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An implementation of Algorithm 2 has a complexity of O(knT (k,m)),
where k is the number of SNPs to be selected, m is the number of subjects,
n is the overall number of features and T (k,m) is the time required to train
H on k features and m training examples. While less efficient than filter
methods, wrappers are possible to run on the GWAS scale, but in order
to do so, they need to be coupled with computationally efficient classifiers
and shortcuts [66, 67]. One such example is greedy RLS which incorporates
a greedy forward search with leave-one-out cross-validation and regularized
least-squares regression, also known as ridge regression [65, 67]. This method
performs the feature selection in O(kmn) time.

A problem with forward-selection is that the addition of new features
may result in one or more of the prior selected features becoming redundant,
but provides no means of eliminating these variants. The advantage of
forward searches is that they are ideal in scenarios where the dimensionality
of the feature set are high.

A backward selection starts with the feature set S = {1, . . . , n}, itera-
tively removing a single feature at a time until the criteria for ending the
feature selection has been met (see Algorithm 3). While modifications can
be made, such as stopping the search once a predefined number of features
have been selected, here the simplest form of the algorithm is presented.
The drawback of backward elimination is its slowness with large GWAS
data sets. When using large feature sets, the algorithm is slow, as it must
constantly be retrained using a large feature set until only k features remain,
where k � n. On the other hand, backward selection has been shown to
produce better results than forward selection [41].

Algorithm 3 Greedy, backward feature selection

1: S ← {1, . . . , n}
2: while |S| > k do
3: e←∞
4: b← 0
5: for i ∈ S do
6: ei ← H(XS\{i},y)
7: if ei < e then
8: e← ei
9: b← i

10: S ← S\{b} . Remove the feature whose removal leads to the best
score

11: return S

These two methods can be augmented to create alternative search meth-
ods that will help to alleviate some of the drawbacks of forward searches.
Backtracking can be coupled with forward selection to allow for the algo-
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Figure 2.4: In this diagram, the prior selected features in forward selection
are blue and the currently selected feature is red. In backward selection and
exhaustive search the included features are red. Yellow and white nodes rep-
resent the features that were removed and those that were examined but not
selected, respectively. A represents the exhaustive search algorithm which
tests all feature subsets and selects the globally optimal one. B represents
an example of the backward search algorithm. The selection starts with
the complete set of all features and progressively removes the feature which
either improves the score the most or decreases the score the least. The
selection stops once a predetermined criteria has been satisfied. C is an ex-
ample of the forward, greedy search algorithm. The selection starts with the
empty set and progressively selects the feature which optimizes the scoring
metric. The selection stops once a predetermined criteria has been met. D
is an example of the forward search with backtracking. The algorithm starts
the same as C and removes features if that improves the score.
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rithm to go back and identify other potentially better search paths. An
example of this can be seen in Algorithm 4

Forward selection with backtrcking works in a similar manner to forward
selection, except that at each iteration it allows for the algorithm to search
the space of selected features to see if the removal of any variants will not
have a negative effect on the value of the scoring metric (see Figure 2.4D,
Algorithm 4). This is advantageous when the aforementioned methods are
not optimal, but the user is looking for a method capable of escaping local
minima. This method, known as backtracking is the process by which the
algorithm looks to remove unnecessary features after each selection of a new
feature. While backtracking adds computational costs to the algorithm, as
it requires a more thorough search of the feature space, it does so while
eliminating branches that ultimately will lead to inadequate solutions.

Algorithm 4 Forward selection with backtracking

1: S ← ∅
2: e←∞
3: repeat
4: b← 0
5: γ ← FALSE
6: for i ∈ {1, . . . , n}\S do
7: ei ← H(XS∪{i},y)
8: if ei < e then
9: e← ei

10: b← i
11: γ ← TRUE

12: if γ then
13: S ← S ∪ {b}
14: for j ∈ S do
15: ej ← H(XS\{j},y)
16: if ej < e then
17: S ← S\{j}
18: e← ej

19: until γ = FALSE
20: return S

2.5.3 Embedded Methods

With the recent popularity of algorithms such as Lasso and Elastic Net
[25, 38, 42, 84, 104], the field of feature selection is seeing a rise in the use
of embedded methods. Embedded methods often have the speed advantage
of filters while maintaining the relatively high predictive accuracies found
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in wrappers. The features are selected at the same time that the model is
trained [79], allowing for computational savings over wrapper based imple-
mentations. Like wrappers, the selected features are algorithm dependent
and they allow for feature dependencies to be modeled.

With embedded methods, the user has more limited control over the
feature selection process. Alterations such as changing the scoring metric
can require a redesign of the algorithm itself while wrappers and filters
can be applied with a number of different algorithms, each which may be
advantageous to a particular problem set.

Lasso

Known for both its speed and predictive performance, the least absolute
shrinkage and selection operator (Lasso) is a prime example of an embedded
feature selection algorithm. Similar to other regression-based methodologies,
Lasso generates a solution through the minimization of the sum of squares
error and augments this with the `1-norm. In contrast to the `2-norm, the
`1-norm forces a sparse solution [61, 87]. As it implements regularization,
similar to RLS-based methodologies, it helps to penalize overly optimistic
coefficients, reducing their affect on the output.

The objective function of Lasso is composed of a sum of squares, whose
model is augmented through the use of `1 as its regularizer:

m∑

i=1


yi −

n∑

j=1

Xi,jwj




2

+ λ‖w‖1 . (2.19)

In fact, looking at Equation 2.19, the only difference with RLS is that
while Lasso implements an `1 penalty via ||w||1, RLS implements an `2
penalty via ||w||22. While the overall equations appear similarly, it is impor-
tant to not that it is this part of the solution that results in a sparse solution
in the case of Lasso.

Through adjustments of the regularization parameter λ, the objective
function can control the penalty applied to the features. If one were to set
the value of λ = 0, the predicted value from the application of the objective
function, the model learned by Lasso is equivalent to the model learned by
linear regression. In other words, it can be expected that increasing λ will
lead to a smaller number of selected features. The `1 penalty also regularizes
in a similar way to the `2 regularizer in that it shrinks all coefficient values.

In Lasso, if two identical features exist, only a single one will be selected.
The feature that is selected is dependent on the ordering of the features, as
only the first one observed by the algorithm will remain. This can be prob-
lematic if a researcher’s aim is to identify features whose combination can
be accounted for by systems such as biological pathways. In this scenario,
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one would want to maximize the number of features that appear in any
given pathway to increase its enrichment score (see Publication IV [62]).
The effect of maintaining multiple correlated features is known as grouping.
Grouping can also be advantageous in the case when one of the selected
features may not be reproducible in independent data sets. To incorporate
grouping it is common to implement the Elastic Net.

Elastic Net

One important constraint that occurs in Lasso models is that due to the
nature of the convex optimization problem being solved, selecting a larger
number of features than there are training instances will cause a saturation
in the predictive performance and will lead to severely overfit models [104].
To help alleviate this issue as well as allowing for grouping, a method known
as Elastic Net has been proposed [104] and has been implemented on genetic
studies [2, 16].

In a similar manner as Lasso, Elastic Net is a regularization technique
which simultaneously applies a Lasso type feature selection with the `1-
norm and ridge regularization with the `2-norm. Thus, Elastic Net can be
considered as a trade-off between Lasso and RLS. The objective function of
Elastic Net is the following:

m∑

i=1


yi −

n∑

j=1

Xi,jwj




2

+ λ2‖w‖22 + λ1‖w‖1 (2.20)

where λ1 and λ2 are the `1 and the `2 regularization parameters respectively.

The added λ2 variable adds complexity to parameter selection that must
be conducted in order to effectively run the algorithm. This can be problem-
atic in large-scale data sets, where computing power is often already limited
in its ability to apply these methodologies to large-scale studies, however
the added running times are often not excessively prohibited. Rather, when
dealing with larger data sets a more limited evaluation of λ2 parameters
can be conducted. This limited parameter selection in which 0 ≤ λ2 ≤ 1
is possible due to Elastic Net’s nature to function between both RLS and
Lasso that when setting λ1 = 0 is equivalent to RLS, while setting λ2 = 0
yields a result equivalent to Lasso.

2.5.4 Greedy Regularized Least-Squares

While regularization of least-squares based regression can help to alleviate
the affect of large coefficients, greedy RLS, originally introduced in [65],
additionally implements a greedy forward feature selection with the LOOCV
heuristic (Algorithm 2). The computational efficiency of this is achieved via
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matrix algebraic shortcuts and caching of the preliminary results. This
allows the algorithm to be able to scale up to GWAS on modern, high-end
desktop computers.

The formulation of greedy RLS is lengthy and complex. Without re-
iterating much of the details in Publication II, the description would be
insufficient. Therefore, a concise overview is provided here and readers are
referenced to [65, 67] for a detailed algorithm. If readers are interested in
the space-efficient variation then they should specifically see Publication II.

Let us define

J(Z,u) = arg min
w∈Ra

{(u−Zw)
T

(u−Zw) + λ||w||22} (2.21)

where Z ∈ Ra×b and u ∈ Ra for some a, b ∈ N with a ≤ m and b ≤ n. Here
we use the symbols Z and u instead of X and y in order to stress that the
objective J(Z,u) is optimized not with respect to the whole training data
but with a modified set. That is, Z and u consist of only a subset of the
rows ofX and y due to the use of cross-validation and Z may consist of only
a subset of the columns of X due to the greedy subset selection. Recalling
that the values of the J can be expressed as:

w =(Z
T
Z + λI)−1Z

T
u (2.22)

=Z
T

(ZZ
T

+ λI)−1u (2.23)

where the second form follows the first due to the matrix inversion identities
[30].

A high-level overview of greedy RLS can be seen in Algorithm 5. This
does not include the computational shortcuts. In order to calculate both
the exact value of the LOOCV and updating the model with new features,
greedy RLS makes use of the Sherman-Morrison-Woodbury formula (see
[30]):

(A+ cvv
T

)−1 = A−1 −A−1v(c−1 + v
T
A−1v)−1v

T
A−1 (2.24)

where A ∈ Ra×a, v ∈ Ra, c ∈ R for some a ∈ N.
To accelerate the computation of LOOCV one can set A = Z

T
Z + λI,

v is a single input vector x and c = −1. That is, it is considerably cheaper
to update the previously trained model than to train it from scratch given
that (2.22) has already been computed. The Sherman-Morrison-Woodbury
formula can be used to remove the effect of one training example from the
form 2.22.

To test the effect of an extra feature one can use the Sherman-Morrison-
Woodbury formula to update the form 2.23 by setting A = ZZ

T
+λI, c = 1

and v = X:,j where j ∈ {1, . . . , n}\S.
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Algorithm 5 Greedy RLS Algorithm

1: S ← ∅
2: while |S| < k do
3: e←∞
4: b← 0
5: for j ∈ {1, . . . , n}\S do
6: for i ∈ {1, . . . ,m} do
7: w ← J(X{1,...,m}\{i},S∪{j},y{1,...,m}\{i})
8: ej ← ej + (yi −Xi,S∪{j}w)2

9: if ej < e then
10: e← ej
11: b← j

12: S ← S ∪ {b}
13: w ← J(X:,S ,y)
14: Update the cache matrices

15: return S

By taking advantage of (2.24) and the cached preliminary results in both
LOOCV and testing the effect of new features, lines 7-8 can be computed
in constant time and it takes O(mn) time to select each feature. Therefore,
since there are k rounds, the overall complexity of the whole algorithm is
only O(kmn).

The primary advantage of greedy RLS in respect to its application to
GWAS is its speed to calculate a wrapper-based feature selection in a reason-
able time period without the need for any prior filtering. The multi-target
variation of the algorithm has proved to be advantageous in other fields, re-
cently performing the best at Sub-challenge 3 of the recent Broad-DREAM
Gene Essentiality Prediction Challenge. Additionally, greedy RLS has later
been extended to multi-target prediction problems (see [56]).
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Chapter 3

Scalability of the Algorithms

3.1 Parallel Computing

While computers continue to progressively becoming more powerful, this
power is no longer being added solely into individual processors as it was
in the early 2000’s. Although the overall processing power of machines has
increased, this increase is accomplished through a combination of weaker
processors. Consequently, one has to resort to parallel programming in
order to take advantage of these new architectures. As of June 2015, with
DigitalOcean.com, a shared-memory 4-core machine with 8GB of memory
can be spawn for as low as $0.119 per hour or a single-core machine with
512MB of memory for $0.007 per hour. If a researcher is interested in
developing a large network of smaller machines, he/she can easily generate
a 100 processor machine for under $1.00 per hour.

A precursor to parallel programming is the assurance that the serial algo-
rithm has been optimized. Numerous efficient numerical packages exist, each
being capable of effectively performing scientific computations without run-
ning into problems with the high overhead. Packages such as Scipy/Numpy[34,
89], Lapack/Scalapack [4, 9] and R [74] all have the capabilities to handle
such calculations, minimizing the required overhead and thus decreasing
running times. Knowing the advantages of these different methods allows
for the efficient scalability of algorithms.

An understanding of memory requirements can further help to optimize
the data management in such a manner as to minimize the amount of space
required to run operations on entire GWAS. A simple example is that treat-
ing the data as type short int (assuming one is not using the expected real
values of the imputation), can reduce the required memory by 50% and 75%
when compared to storing the data as a float and as a double respectively.

Only a limited number of GWAS implementations and packages (see
e.g. [49, 70, 85, 102]) make use of any sort of parallel processing, despite
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Figure 3.1: The above diagram represents a typical shared memory machine,
in which a common set of memory is shared among multiple individual
processing units, connected by a shared bus.

the fact that GWAS are naturally paraellizable. Some of the reasons for the
lack of implementation likely stem from both a lack of knowledge on the
part of the researchers as well as the significant effort that is often required
to develop a parallel program when compared to a straight forward, serial
implementation. Development of a parallel program requires knowledge of
both computer architecture and advanced programming libraries.

Implementation of parallel computing on GWAS comes in a multitude
of manners. The most straightforward way would be to split the features
among the available processing units and then to have each processor cal-
culate the univariate statistics or other simple calculations for each of the
variants/combinations that are made available to it [85]. Those features
passing a particular threshold can then be selected.

3.1.1 Architecture

Two popular types of parallel systems are shared memory and distributed
memory machines. While both make use of multiple processors, they rely
on different architectures and programming paradigms. A shared memory
machine is one in which all processing units will have access to the same
core memory, as shown in Figure 3.1. The most basic example would be a
multi-core home computer, such as those using the Intel i7 processor. On
this type of machine cores a and b can both access the same regions of mem-
ory and update the information. This type of computing is highly efficient
as it generally allows for a lower level of network overhead which is com-
monly required when sharing data between distributed memory machines.
Additionally, programming on a shared memory system tends to be easier
than that of distributed memory machines.
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Figure 3.2: The above diagram represents a typical distributed memory
machine in which multiple individual processing units and their associated
memory units are connected by a common network.

In distributed memory systems, such as those shown in Figure 3.2, each
processing unit tends to have its own designated memory that the other
units are not able to access. However, their scale far exceeds that of shared-
memory architectures and can often range into the petaflops of processing
power with hundreds of thousands of processors. Programming for dis-
tributed memory machines is often done with languages such as the Mes-
sage Passing Interface, better known as MPI [6]. Combining both MPI and
OpenMP allows programs to make use of the computer’s architecture.

3.1.2 Strategy

In parallel computing, each processing unit computes a fraction of the overall
number of calculations, namely those that pertain to the features that have
been assigned to it. The results of these calculations can then be broadcasted
or sent directly to the other processing units if they require them (e.g. Single
Program Multiple Data also known as SPMD). Alternatively, this message
can be sent to a master processor who uses this data to determine and
distribute new tasks to the slaves (e.g. master-slave) [15]. Other paradigms
exists, but fall outside of the scope of this work so are not discussed here.
The determination of which paradigm to use will often be dependent on a
number of factors including the algorithm being implemented, the number
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of processors being used and how often communication is required. An
example of these paradigms can be seen in Figure 3.3.

Figure 3.3: A is an example of the master-slave paradigm in which a master
distributes work loads to the slaves. The slaves complete the tasks and
then return the results to the master. The master then can either end
the program or distribute new tasks to the slaves. B is an example of
SPMD in which the problem is decomposed into smaller problems which are
simultaneously solved. The data is first distributed among the n processors.
After the processors have solved their respective problems they can either
communicate their results to other processors to determine their next step or
the results can be collected. In the figure, the double-ended arrows indicate
communication between neighboring processors.

The efficiency of a parallel program is typically evaluated with metrics
that measure the performance with relation to the number of processing
units being utilized. The first method known as the speedup is defined for
p processors by:
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Sp =
T1

Tp
(3.1)

where T1 and Tp are the execution times on a single processing unit of the
fastest known serial algorithm and when applied to the parallel program
using p processors respectively. Ideally, Sp = p which would indicate that
doubling the number of processors would double the speedup.

The efficiency of the program when using p processors is defined as:

Ep =
T1

pTp
(3.2)

=
Sp
p

(3.3)

In an ideal scenario Ep = 1 which indicates perfect scalability of the algo-
rithm. Obtaining a value of E > 1 is known as superlinear speedup, which
while rare is known to happen. A scenario in which this would be feasible
is when a sequential algorithm would not be able to load the entire data set
into memory on a single processor. When running on additional processing
units, more memory can become available leading to efficient caching of the
data resulting in a performance boost.

3.1.3 Application

Wrapper-based feature selections have traditionally been computationally
prohibitive which may generate an interest in parallel implementations. The
primary challenge in these algorithms is how to share the data between the
different processing units, as the value of the previously selected feature will
have an affect on the calculated values of all of features at the next iteration.
Additionally, the wrapper methods that have been shown to be able to scale
to GWAS (e.g. greedy RLS) require excessive caching and recalculation
of the cache after each iteration. To parallelize such algorithms, a system
would have to be developed that could handle such cache matrices, while
keeping them in sync and allowing for communication among the processors.

An overview of parallelized greedy RLS is outlined in Algorithm 6. The
algorithm provides identical results to the original form of greedy RLS, pre-
sented in Chapter 2, but rather starts on p processing units. Further it
has both global (S) and processor specific feature sets (Sp). S maintains
the list of the selected features at each iteration and Sp are the features on
processing unit p which are in S. The algorithm then continues in a sim-
ilar fashion as greedy RLS, except that each processing unit calculates its
locally optimal feature at each iteration (lines 7-13). Once a locally optimal
feature has been selected, these are then compared by the master processor
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which selects a globally optimal one (lines 14-18). The processing unit which
originally selected the optimal feature then broadcasts its part of the cache
matrix to all other processors (lines 19-22). All processing units then update
their local caches based on the previously broadcasted vector (line 23). A
more in-depth overview of the algorithm is described in Publication III.

Algorithm 6 Parallel Greedy RLS Algorithm

1: S ← ∅
2: Sp ← ∅
3: Np ⊂ {1, . . . , n}
4: while |S| < k do
5: e←∞
6: bp ← 0
7: for j ∈ Np\Sp do
8: for i ∈ {1, . . . ,m} do
9: w ← J(X{1,...,m}\{i},Sp∪{j},y{1,...,m}\{i})

10: ej ← ej + (yi −Xi,Sp∪{j}w)2

11: if ej < e then
12: e← ej
13: bp ← j

14: if rank = 0 then
15: Gather from all processes ep, bp
16: q ← argmini ei
17: Broadcast process index q to all processes
18: S ← S ∪ {bq}
19: if rank = q then
20: Sp ← Sp ∪ {bp}
21: Broadcast X:,bq and the relevant parts of the local cache
22: matrices to all cores
23: Update the cache matrices on all p

24: wS ← J(X:,S ,y)
25: return wS ,S

Not all feature selection methodologies can be parallelized in their orig-
inal form. Lasso trained with cyclic coordinate descent is an example in
which parallelization is traditionally done over the samples. This can be
inefficient when the number of variables exceeds the number of samples.
Thus, parallelization would require the data to be split in a non-optimal
manner and most implementations make use of stochastic coordinate de-
scent rather than cyclic coordinate descent. This has the potential to create
a complex scenario, such as the need for the use of Shotgun (see [11]) or
Coloring-based (see [80]) parallel methods. It has been shown that in Shot-
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gun, having correlated features can lead to divergence in the scenario where
too many features are updated simultaneously [11]. This increases the prob-
lem complexity when compared to the exact solution of greedy RLS.
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Chapter 4

Summary of the Thesis Work

4.1 Contributions

This dissertation is composed of a total of five original, peer-reviewed re-
search publications that are referred to as Publications I-V. These works
follow a general theme of genetic feature selection/complex disease predic-
tion and progress from one work to another. While the papers are not
direct extensions of each other, significant effort was made to maintain the
consistent theme. The forums in which they were submitted were selected
as to maximize their wide accessibility by the research community and to
guarantee that the methods and their findings were available freely to the
public. This is an essential aspect of assuring that all researchers will have
the ability to continue on extensions to both the algorithms and applications
of the methods.

4.1.1 Genetic Variants and Their Interactions in the Predic-
tion of Increased Pre-Clinical Carotid Atherosclerosis:
The Cardiovascular Risk in Young Finns Study

Publication I in this dissertation was based on a collaboration with the YFS.
The study is an on-going, population-based, follow-up study that followed a
group of Finnish individuals from childhood until adulthood. It started in
1980 as a multi-center research project which sampled individuals from five
university hospitals in Finland. The five locations were Turku, Tampere,
Helsinki, Kuopio and Oulu. When the study began in 1980 there were 3,596
subjects who were aged between 3 and 18 years of age. Follow-ups with the
patients were conducted at various time points during which time various
clinical and/or genetic measurements were taken from the cohort subjects.
This particular study utilized the data from the 2001 and 2007 follow-up
periods, during which there were 2,283 and 2,204 subjects respectively who
remained in the study.
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The particular phenotypic trait that was of interest was the carotid
artery’s intima-media thickness (IMT). The IMT was selected as the out-
come variable to be explored due to it’s known association with the onset of
cardiovascular disease [46, 63]. In addition to the IMT, various clinical mea-
surements including but not limited to HDL cholesterol, LDL cholesterol,
total cholesterol, BMI, systolic and diastolic blood pressure, waist circum-
ference, triglycerides, ApoA1, ApoB, age, sex and smoking habits were mea-
sured. This was then complemented by a genetic analysis of single-nucleotide
polymorphisms that were reasonably expected to have some relationship to
cardiovascular disease.

As missing data can have adverse affect on machine learning methodolo-
gies, and this project was started without a particular algorithm that was
going to be implemented, the data set was first adjusted so that it consisted
of a complete set of genetic data. A predefined set of 17 genetic variants
was identified by the clinical heads of the study that were of particular in-
terest due to their notation in similar studies as having a potential link to
cardiovascular disease. Genetic variants and individuals with missing data
were then removed from the study in such a manner so as to attempt to
maximize the size of the data set. The resulting data set had 1,027 and 813
individuals in 2001 and 2007 respectively. The final study also contained
108 SNPs and 13 conventional risk factors (CRFs).

The study started through the demonstration that while several CRFs
were statistically significant in both the 2001 and 2007 studies, they were
not significant in predicting the IMT progression, which was calculated by
subtracting the 2001 IMT value from the 2007 value. This was important
since determining if an individual currently has a particular prognosis is
trivial, but generating a prediction regarding their future disease status can
be complex.

The goals of this study were numerous. While the main task was to
generate a prediction of the IMT, an equally important task was to exam-
ine which features were being selected since this could help lead clinicians
towards candidate variants for future studies which may have additional
complex phenotypic associations. To do this, various feature combination
models were analyzed including the CRFs and the 17 prior identified SNPs,
the conventional risk factors alone, the significant SNPs combined with the
CRFs and a two-step feature selection based methodology which automati-
cally selected the relevant SNPs and CRFs. Each of these various data sets
was tested for 2001, 2007 and the progression.

During the study it quickly became apparent that due to the nature
of the IMT, in which a vast majority of the individuals are not considered
to be at risk, we were posed with a problem of class distributions that
would be heavily skewed towards the controls. Combined with the small
size of the data set and even more limited class sizes when taking into
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account the various cross-validation folds, a different methodology needed
to be implemented to compose the case and control sets. This was done
by gradually increasing the class-sizes of both the low-risk and high-risk
individuals based on the top and bottom percentage of IMT values. For this
study five different quantile points with ranges of 5-25% at 5% intervals were
implemented. In other words, anywhere between 10-50% of the data set was
used with the cases and controls stratified. The high-risk individuals were
adjusted into a unified class, in which they were considered the cases and in a
similar fashion the low-risk individuals were pooled into a singular, low-risk
class. These classes were then used as a binary classification problem.

As this study was considered to be a pilot study of the feasibility of ap-
plying machine learning-based feature selection methodologies to data sets
combining both genetic data and CRFs, the goal was for the development
of a methodology that would potentially scale to entire GWAS. When ini-
tially deciding on which machine learning technique to implement, this was
strongly taken into account and due to Näıve Baye’s ability to perform well
in the test studies, along with its scalability and lack of a need for complex
parameter selections it was chosen as the candidate method for the study.
To help reduce the computational run-time of the program an Information
Gain based filter was first applied to the data to reduce the number of
associated variants and CRFs to the top 40. A best-first search strategy,
combined with a backwards selection and cross-validation was then used
to develop the final set of variants. This process was repeated over all of
the various quantile points and for the different outcomes that were being
examined. One difference between the outcomes was that when trying to
predict both the 2007 and the IMT progression class labels only the CRFs
that were measured in 2001 were used. This helped us to examine whether
the particular selected variants were indicative of not only the current risk
level but also the future risk level based on current characteristics.

Positive 10-fold CV predictions based on the AUC were achieved, with a
demonstration that an increase in the AUC could be achieved for the 2001,
2007 and IMT progression studies. It was additionally shown that these
scores were capable of surpassing the results that were achievable when
using the CRFs alone. This demonstrated that through the use of the ge-
netic variants combined with the CRFs, the predictive performance could
be significantly improved. Similar patterns were also noticed in the IMT
progression experiments. As expected, increasing the size of the quantile
groups generally reduced the performance.

As testing on independent data is the gold standard of model-validation.
The originally discarded data was mined to search for additional instances
that could be utilized to generate an independent test set. This recycling
of the discarded data was a valid contribution as it demonstrated that after
running a feature selection that utilized only a fraction of the original data
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set, an independent data set of a similar scale could be composed of these
instances which would otherwise have been lost. The same IMT thresholds
that were used in the main study were used for splitting the independent
data set into the various quantile groups.

While a decreased predictive performance was noted on the independent
data set, this performance loss was relatively limited and helped to confirm
the results from the first part. As an additional step, the effect of slight
adjustments to the quantile group cutoff points and their affect on the results
was examined. This demonstrated that while the arbitrary selected cut-off
points for the various cohort sizes could perform well, adjustments could
help to further boost the performance. Finally, the selected features were
analyzed and an analysis based on the epistatic interactions between the
features were examined. This helped to affirm that the selected features
were in fact interesting candidates and warranted further investigation into
their underlying biology.

This study gave a solid foundation on which the research could be contin-
ued and expanded upon. The base methodology was implemented through
generic means (in this case Weka [28]), though future methods would make
use of more complex and custom programs. A major contribution of this
study was the demonstration that machine-learning based feature selection
of genetic variants could outperform traditional CRF based analyses. Fur-
ther, it was shown that machine learning approaches could improve beyond
p-value based filter methods. These findings help to support the theory that
researchers need to look at rare variants in order to explain the heritability
of complex disorders. Through the base developed during this work, the
future research, while not as biologically oriented would prove to address
many of the computational issues that were discovered during this scaled
down feasibility study.

4.1.2 Wrapper-based selection of genetic features in genome-
wide association studies through fast matrix opera-
tions

Publication II was the first study during this dissertation in which an entire
GWAS was utilized as a data set. Its main purpose was to examine the feasi-
bility of scaling up wrapper-based machine learning methodologies to GWAS
scale without the need for any pre-filtering of the features. This was done
while implementing a methodology that made use of valid practices such as
implementation of nested cross-validation to help better estimate the true
predictive performance of the final trained model. An application was made
to the Wellcome Trust Case Control Consortium’s (WTCCC) Hypertension
data set combined with the UK National Blood Services control set [14].
From this it was concluded that wrappers have the potential to be readily
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applied to GWAS and are in fact not too computationally inefficient when
applied with intelligent caching and matrix shortcuts. Further, based on the
predictive performance, it was shown that wrappers are a viable option to
be run simultaneously with other analysis methodologies.

The methodology implemented in Publication I is relatively common
in GWAS feature selection papers [45, 96], where a filter is first applied
to reduce the sample space, followed by some variation of either a machine-
learning or feature selection methodology to provide the final data set and/or
predictions. While this is a valid methodology that has proved successful,
it is exposed to the potential loss of information due to drawback of the
use univariate statistics. As previously discussed, these methods are not
always particularly suited towards selecting features in which there may exist
complex epistasis interactions among the genetic variants. By demonstrating
that it would be computationally feasible to eliminate the univariate statistic
filter and then run a wrapper feature selection over an entire GWAS, we
aimed to help expose the research field to more advanced methods that may
detect relationships that could explain some of the heritability that often
remains hidden in these studies. It should be made clear that while one
of the primary goals was to demonstrate methods that could provide good
predictive power, it was not to meant to imply that the investigated methods
could universally outperform other methods.

Tapio Pahikkala et al. designed greedy RLS in [65]. My contribution to
this work was in adjustments and application of the algorithm to GWAS. In
conjunction with the group we were able to adapt and implement the method
greedy RLS [65] to the WTCCC Hypertension control set combined with the
UK National Blood Service’s (NBS) set of controls. After applying standard
QC filters to the study the resulting data set contained 3,410 individuals and
404,452 SNPs.

Analyses on greedy RLS’s ability to be implemented as a GWAS-wrapper
feature selection methodology was done to not only examine its ability to se-
lect features on the current set, but also to test for its scalability to larger sets
that would prove to be more computationally intensive. This undertaking
resulted in two different versions of greedy RLS being examined, a space-
efficient variation which was dependent on the number of features selected
with an approximate performance of O(min(k2mn, km2n)) and the ordinary
implementation with a complexity of O(kmn). While it was demonstrated
that significant speedups could be obtained using the original implementa-
tion, this came at the cost of having to store four copies of the data matrix
in memory.

Assuming that a typical GWAS contains 500,000 SNPs and 3,000 sub-
jects, researchers are left analyzing a data set consisting of approximately
1.5 billion data points. Considering that the SNPs can be represented as
an integer value consuming 4 bytes, this would require approximately 6GB
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of data for a single copy of the data set. This is prohibitive when also ac-
counting for the cache matrices that are used and require other data storage
types. This can quickly grow as the size of GWAS increases, resulting in the
need for space-efficient variations, even though these methods have a higher
computational cost. Despite these requirements, the fast implementation
was able to perform a wrapper-based feature selection on a nested, three-
fold cross-validation, selecting the top 50 features for each fold in under 26
minutes on a high-end desktop machine. This helped to bring the feasibility
of large-scale machine-learning, feature selection on GWAS to all groups,
regardless of their access to high-end clusters.

The results of the wrapper-based feature selection was compared to
both traditional two-step feature selection methodologies that made use of
a Fisher’s Exact Test filter combined with a wrapper step and one in which
the statistically significant features were analyzed in the order of their sig-
nificance and RLS applied on top of these in the same order. A performance
gain in the AUC of approximately 0.04 was gained through the use of only
greedy RLS, helping to enforce the theory that wrappers are capable of out-
performing other methodologies, though coming at a higher computational
cost. Additionally, through a literature review-based analysis of the selected
features, it was shown that greedy RLS was able to select both SNPs that
were supported by previous studies as well as a series of new potential can-
didates.

As commonly seen in GWAS, SVMs tend to be industry leaders in terms
of their frequent use. While they have provided good results, their computa-
tional complexities often made them prohibitive for running in conjunction
with wrapper based feature selection methodologies. This was examined by
demonstrating that the linear-kernel in LibSVM was not capable of perform-
ing large scale wrappers on GWAS. While the provided implementations
were done as an example case of what is often seen (implementations of
pre-built packages such as e1071 in R and Weka), it does provide a compar-
ison which was intended to inspire other researchers of the need to examine
machine-learning research to identify new methods which may be capable
of solving their problems while not limiting the problem search space.

Through this article it was aimed to introduce new methods capable of
performing the wrapper-equivalent feature selection on entire GWAS on a
high-end, readily available desktop machine. This analysis was not only able
to provide both computationally and space-efficient variations, but demon-
strate their performance on real-world data sets. It was also useful in demon-
strating that a performance gain could be obtained on an entire GWAS data
set when implementing a wrapper based methodology compared to p-value
based and two stage feature selection. This is not to say that wrappers
will always outperform other methodologies, but rather that they have the
potential of making them a candidate methodology for modern GWAS.
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4.1.3 Parallel Feature Selection for Regularized Least-Squares

Consistent with one of this dissertation’s underlying themes, Publication III
directly applies to the scalability of machine-learning based feature selection
(namely, greedy RLS) toward the next-generation sequencing-based GWAS
which will be larger and contain rare variants. These data sets will provide
a new host of computational issues, which if left unaddressed will leave
even more limited discovery methodologies then are currently implemented
on the current GWAS scale. By containing tens of millions of variants and
thousands of examples, these cohorts will be so massive that it is not feasible
to assume that they can be run on desktop machines. As was demonstrated
in Publication II, even data sets of the current GWAS scale require enormous
amounts of memory just to read in the data.

To address this concern, researchers will have to start to focus on mod-
ern computing technologies such as parallel and cloud computing to gain
enough memory and computational power to process these massive data
sets. Without these technologies, it is plausible that researchers will fail
to apply methods capable of creating complex models that are necessary
to explain much of the missing heritability in these studies. In order to
move beyond the univariate algorithms, the current set of feature selection
methodologies will need to be adapted to the aforementioned technologies
so that they remain accurate, scalable and efficient enough for widespread
use.

To address this scenario Publication III aimed to demonstrate that greedy
RLS is a particularly well suited method for GWAS studies due to its scal-
ability to large number of processors. The algorithm was decomposed to its
core elements and rebuilt in a distributed manner so that the fundamental
processes of analyzing the genetic variants could be efficiently distributed
among the processors. In this implementation, a single processor acted as
the master which generated a number of sub-problems that are distributed
among the other assigned processors.

In this particular situation, each processor selects a locally optimal fea-
ture and its associated performance and feature information are sent back
to the master for a determination of the globally optimal feature for this
particular iteration. Once a globally optimal feature had been determined
by the master, the processor which has the corresponding feature contained
in its data partition then extracts and broadcasts the necessary cache data
from the particular processor to all other processes. This is done so that
they can update their locally stored caches accordingly and continue to se-
lect features in accordance with the original algorithm. In this particular
setup, static-load balancing was utilized allowing the master processor to
contain its own data partition and conducted the same computations as the
other processor. While this procedure could have been equally done with

49



broadcasts between the processes in a purely SPMD manner, initial tests
indicated no additional speedup from this alternative implementation.

While feature selection parallelization can be trivial if no intra-process
communication is required, a complex step was decomposing greedy RLS
into its core computations to determine how to effectively split up the cache
matrix. This splitting had to be done in such a manner so that each core
was able to not only calculate its respective locally optimal feature, but
did so while staying in sync with the cache matrices that were disjoint and
stored on the other distributed processes. As a globally optimal feature was
required to be selected after each iteration of the loop, all processes had to
wait until all other units had completed their feature selection so that the
results could be compared. Upon receiving the broadcasted caching matrix
slice, each individual process would then update the caches for their local
features according to Algorithm 1 in Publication III.

This method was tested on the WTCCC Type 1 Diabetes (T1D) data
set combined with the NBS controls, along with an artificial sample data
set. It was run under a wide variety of scenarios that were aimed at testing
its scalability with respect to the number of features, number of examples
and the selected subset size. These scenarios were analyzed for varying
number of cores (from 1 to 128), by doubling the number of processing
units between each test. It was demonstrated that the parallel greedy RLS
algorithm was able to attain high levels of speedup and efficiency, indicating
that the algorithm is suitable for larger scale testing. When testing on large
numbers of cores, the running times decreased to such a level that they
started to become monopolized by the start-up costs, likely explaining the
decreases in speedup and efficiency at these points (Figure 3 in Publication
III).

On the WTCCC T1D data set, the top 14 features on the entire study
were selected. This number was determined after running a nested cross-
validation over three external folds, with an inner-LOOCV conducted by
greedy RLS and selecting the optimal point in this process. Of the selected
features, 11 out of the 14 were able to be shown to have a possible association
with the disease or to be located in the MHC region, an area of the human
genome known to be associated with T1D [12, 57]

Through the ability to calculate entire wrapper-based GWAS feature
selections in only a matter of tens of seconds to minutes (depending on the
data set size, number of processors and only including post-preprocessing
analysis), this article demonstrated the ability for greedy RLS to act as an
implementable tool for both modern day GWAS and the next-generation
sequencing studies that are starting to emerge. It provided the algorithms
necessary to conduct such experiments while still demonstrating its potential
on real-word studies. In addition to the research, it also acted as a tool for
promoting the need to analyze these studies in conjunction with computer
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scientists who have the know-how to adapt the current technologies to create
synergistic research that will help to identify those variants that have thus
far remained hidden in current research.

4.1.4 Genetic variants and their interactions in disease risk
prediction - machine learning and network perspec-
tives

Publishing research does not guarantee awareness of the work and due to the
often limited scope of an individual’s work it is often necessary to analyze the
work in relation to follow-up research that may have been conducted. In or-
der to analyze the current field of genetic interactions and to raise awareness
of our group’s work in machine-learning based feature selection of GWAS,
Publication IV, a perspective article in BioData Mining was published with
a look into network interactions and their potential to help further explain
the genetic basis of T1D.

While traditional studies have often relied on univariate statistical meth-
ods to filter down the input data set that would be analyzed, this has the
unfortunate effect of potentially filtering out relevant genetic variants. Var-
ious epistatic interactions among these features may help to explain some
of the missing heritability that is often seen in GWAS and similar studies
[50, 51]. In Publications I and II the ability to identify SNPs which were
able to help to explain some of the variance found in the phenotypic pre-
dictions were examined. However, as seen in Publication II, not all of the
SNPs would be able to mapped to references in established research.

Identifying SNPs that have not been previously associated with a par-
ticular disease has the potential to act as a positive result since it can be
assessed as the algorithms ability to distinguish new, potential epistatic
interactions that cannot be determined through univariate studies. Pub-
lication IV pointed out that the SNPs themselves are not necessarily the
interacting factor with the output, but rather it can be through synergistic
interactions with molecular pathways that may lead to the phenotypic out-
comes. Additionally, as has been shown in microarray based studies, there
may be only a limited overlap between the various studies, while still allow-
ing for a greater union when considering the molecular pathways [48]. To
analyze the usability of molecular pathways for explaining feature subsets,
we examined the selected features from greedy RLS applied to a well known
GWAS.

Further, through the analysis of the selected variants individually, syner-
gistically and via their associated molecular pathways, it was demonstrated
in Publication IV that it is possible to verify both the selection of genetic
variants that were previously known to be associated with the disease in
combination with newly selected features. While the computational model
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validation aimed at confirming the predictive power of the results, this was
coupled with an analytic justification of the selected variants. This analysis
demonstrated that the methods implemented were capable of selecting new
feature subsets that could warrant further experimental investigation.

Figure 4.1: An example of the molecular networks that were determined to
be involved in the onset of type 1 diabetes via a feature selection conducted
with greedy RLS combined with features that were prior selected in an-
other research group’s publication [20]. The molecular pathways may help
to explain why studies selecting different variants may still provide similar
predictive results. The figure is taken from Publication IV.

Using greedy RLS, a set of features selected from the WTCCC’s Type
1 Diabetes (T1D) data set combined with the UK National Blood Services’
(NBS) controls were selected. The SNPs were mapped to their respective
genes using the DAVID web service [31]. DAVID is a software tool that per-
forms gene set enrichment analysis to identify biological pathways and gene
ontologies that are significantly overrepresented in the study when compared
to a background set. The mapped genes from the web service were extended
with a set of previously selected genes from another work [20]. This com-
bined aggregation of genes was analyzed in DAVID to get the resulting set
of significant pathways which were mapped in relation to one another based
on their overlapping genetic components (Figure 4.1). These molecular in-
teractions can in turn be used as a priori information for predictive models.
This may help to lead to more effective filtering techniques which can make
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more informed decisions regarding which features to remove if analyzing the
data via multi-stage feature selection.

Networks such as those seen in Figure 4.1 can help further the under-
standing of their associated disease phenotypes due to their ability to help
explain complex interactions that may occur between larger groups of vari-
ants that would not normally be examined during initial analyses. Models
may be able to more effectively be applied to the individual pathways, com-
plemented by an ensemble of multiple machine-learning based applications.
Additionally, models of this sort may help reveal additional variants not de-
tected by feature selection algorithms, complementing the model and may
help to increase its predictive accuracy.

The article continues by discussing principles of machine learning, model
selection and model validation and how to avoid pitfalls that can result in
information leaks and bias the final results. Through additional analysis on
the metric curves from Publication II, it was concluded that simply applying
model validation methodologies such as CV can be affected by overfitting
and results in overly optimistic conclusions. When testing, it was illustrated
that the error in the training set continually decreased as the CV becomes
part of the training algorithm itself (see Figure 1 in Publication IV).

4.1.5 Regularized Machine Learning in the Genetic Predic-
tion of Complex Traits

Having spent a significant amount of time and resources toward the analysis
of two-step feature selections and greedy RLS, its scalability, parallelization
and the application to GWAS, the final survey in this dissertation, Pub-
lication V, was meant to address the underlying fact that there is not a
universally optimal method. Rather, each method will tend to have spe-
cific characteristics that while making it appropriate for certain tasks, will
similarly make it sub-optimal when applied to different problem sets.

A growing class of machine learning methodologies is the embedded class,
which has the potential to combine the speed of filters with the accuracy
of wrappers. Within this class of algorithms, the methods, such as Lasso
and Elastic Net, tend to conduct the feature selection within the learning
algorithm itself. These techniques have experienced an increase in their
implementation on GWAS due to their speed, simplicity and performance
[16, 38, 91, 99]. Their performance has demonstrated the ability to outper-
form standard linear models [38] and their implementation is widely available
in numerous publicly available software packages [23, 69].

Publication V made use of the WTCCC T1D and a second yeast cross
data set [10]. These were analyzed through the application of a number
machine learning and modeling techniques to demonstrate that while nu-
merous methods may be capable of performing well they all contain their
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own characteristics that may make them better suited for different studies.
Since T1D has been previously shown to have high AUC’s when applying
machine learning methodologies [96], it is no surprise that many of our meth-
ods performed well. However, the characteristics of the selected features is
what is of higher interest. It was observed that methods such as greedy RLS
actually performed slightly worse than embedded methods (Elastic Net and
Lasso) and the top performing method was actually a filter feature selection
that combined a χ2 feature selection with a `2 regularized Logistic Regres-
sion. However, this required a far greater number of features than greedy
RLS. Ultimately, this can be interpreted as a possible sign that methods
such as greedy RLS, while not always performing optimally in terms of the
performance of the scoring metric, may in fact select features, whose inter-
actions with one another may solve some of the missing heritability that has
been identified in certain diseases.

It was also interesting to note the relatively good performance that was
achieved through the use of embedded methods. This is important since the
predictive results, combined with the simplicity of their implementations
may make them suitable methods for many researchers who do not neces-
sarily have the advanced training that is necessary to properly tune many
of the other algorithms. While tuning for these methods is required, their
widespread use has led to the development of algorithmic functions that are
capable of performing an analysis on a widespread set of tuning parameters
with minimal interaction from the user [69].

The performance of the embedded methods outperformed greedy RLS
in both data sets, but did so with a larger number of selected features.
However, it was noted that while the performance of the embedded methods
was quite good, it is difficult to come up with a prediction of their running
times on other data sets due to their reliance on convergence of a solution
that is often based on coordinate-descent. This form of running time, that
is reliant on the data set being implemented on, may result in impractical
running times if implemented on next-generation sequencing studies. While
there is the potential that they will arrive at a solution in a relatively small
number of steps, this cannot be guaranteed, which may result in researchers
having to either rely on approximations of the solutions, and/or examining
other methods simultaneously.

It was also noted that the filter feature selection in the yeast-cross un-
derperformed all of the other methods. While it was indicative that it may
eventually catch up with the other methods, the spread between the algo-
rithm’s performance was so large, that any performance gain would poten-
tially be the result of many false positives. This is an ideal example of how
different methods may outperform others depending on the study being an-
alyzed. Their is no universally optimal method and for this reason we need
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to adapt the current methods to be both fast enough and accurate enough
to warrant their use in a wide variety of studies.

Through the comparison of multiple methods in different studies (both
regression and classification problems) we were able to examine the perfor-
mance of various feature selection methodologies in a multitude of settings.
It was interesting to see that in some scenarios, the simplest methods may
outperform more complex ones, but do so through the selection of a much
higher number of features. In other scenarios, similar filter based selec-
tion methodologies, severely underperformed their wrapper and embedded
counterparts. Through these results and others that analyzed both the
performance and selection characteristics we were able to demonstrate the
lack of a universally optimal feature selection methodology and the need
to often test a wide variety of techniques on a sample data set in order to
select the final methodology that will be implemented. Of similar impor-
tance, was the observation that while some methods may have performed
slightly worse based on the predictive performance, their ability to do so
with a much smaller number of features warrants their further examination.
Because of their potentially unique feature sets, their selection may reveal
added insight also into the disease biology. This ability of greedy RLS to
perform well with relatively small feature sets is highly applicable to many
fields such as personalized medicine. This is due to the problem setup in
which a minimal set of sufficiently predictive features is being identified.
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Chapter 5

Conclusion

Modern science has unleashed a vast amount of information about varying
topics from medical science to search engine optimization. This data has
come at the cost of high-processing power and is on such a scale that explicit
programming of accompanying models is not a feasible task. In the field of
bioscience and personalized medicine the advent of genome-wide association
studies and next-generation sequencing have provided a prospective insight
into the capabilities of this data if processed correctly. Due to both their size
and complexity it has become a difficult task to account for the exponential
amount of genetic interactions that can occur between the genetic variants
and to develop models that will maximize the heritability and predictability
explained by these inputs.

To develop predictive algorithms researchers have started to implement
machine learning based methodologies to these studies in an attempt to ex-
tract relevant data, while improving upon traditional univariate approaches
[38, 59, 67, 78, 84, 96]. Through implementations of various classifiers and
regressors, a steady improvement upon the predictive accuracy has been
noted [59, 96]. This improvement comes at both increased computational
costs and complexities of the algorithms involved. Further, as seen in Pub-
lications II and III, scaling these methods to the GWAS is a difficult task
that often requires the use of optimized algorithms or the use of large-scale
parallel machines. By combining the aforementioned methods, it is feasible
to scale even these complex algorithms to NGS studies.

The thesis is based primarily on the application and scalability of ma-
chine learning based feature selection to both select relevant genetic variants
and generate predictions for disease onset in a variety of cardio-metabolic
disorders from cardiovascular disease [59] to Type 1 Diabetes [58, 61, 62].
The papers have been published in an approximate progression starting with
an exploratory pilot study (see Publication I), to a proof of concept paper
demonstrating the scalability of greedy RLS to entire GWAS (see Publica-
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tion II), to the development, implementation and analysis of parallel versions
(see Publication III), network integration (see Publication IV), finally to a
cross-method analysis of machine learning methodologies in genetic disease
prediction (see Publication V). Through the course of these studies, ideas
were developed, presented, applied, altered and analyzed. While new feasi-
ble methods were presented, it was equally important to demonstrate that
there is no universally optimal method for analyzing GWAS.

This lack of a universally optimal method is vital to continued develop-
ment of the field. It is when researchers base a new study’s methodologies
completely on the work of an alternative researcher without using the same
data sets that suboptimal results are likely to present themselves. There are
a multitude of factors that are influential on an algorithm’s performance and
while a method may outperform others in a particular data set, as seen in
Publication V, this is not an indication that it will perform the same in other
studies. It is only through the careful analysis and model validation that
researchers can make determinations on which methods should be applied
for the final analysis.

Being useful today, but essential tomorrow has been an underlying theme
to this thesis. As GWAS start to dissipate and NGS become the new wave
of studies that aim to correct the flaws in GWAS [17, 103] that include
having too small sample sizes and inadequate SNP coverage, researchers are
approaching problems that are rapidly increasing in computational com-
plexity, especially when attempting analyses more complex than univariate
statistics. For this reason, the methods presented here are intended to be a
useful resource for these studies. While they are applicable to GWAS, pre-
senting algorithms whose computational complexity is hindered by modern
data sets would only yield an unnecessary method in future studies. The
work here is aimed at staying relevant for future studies as well.

5.1 Future Directions

While GWAS have revealed numerous meaningful genotype-phenotype re-
lationships, they are readily being replaced by next-generation sequencing
studies which aim at including rare variants and correcting other issues in
GWAS. These studies will be larger than GWAS, while simultaneously pos-
ing a problem of how to decipher the complex relationships between the
rare genetic variants and the disease phenotypes. This will require algo-
rithms that are both scalable and capable of detecting complex epistasis
interactions among the genetic variants.

The publications contained in this dissertation were meant to provide a
framework on which others could build. By developing and adapting algo-
rithms capable of feature selection on the large scale, it was aimed that this
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work would remain relevant for researchers continuing in the field. These
methods were not meant to be all-inclusive and rather were supposed to act
as a base which could be expanded upon. An example would be the incor-
poration of pathway analysis during the feature selection stage. This would
allow the knowledge of systems biologists to complement that of computer
scientists. These types of advanced feature selection methodologies that
make use of external annotation data would help control the false positive
rates commonly seen in these studies and hopefully help to increase the
generalization of the work, but come at a large increase in computational
costs.

Further, as computer technologies advance, a new wave of computational
methods will start to emerge in genetic research. Cloud computing has
allowed for the rapid decrease in computational costs while increasing the
work flow. With algorithms based on methods similar to the parallel one
presented here it is likely that we will see a new wave of programs that aim
to use more advanced search methodologies on NGS studies. However, this
will need to come with an increased acceptance of commercial applications
such as Mahout, through which the use of the Hadoop framework is capable
of making use of these cloud technologies. Researchers should contribute
their algorithms directly into these types of frameworks assuring that the
research community and commercial industries as a whole may help them
grow. Building algorithms from scratch is necessary for research, but we
should make use of leading technologies to assure that our work will remain
utilized and expanded upon.

Eventually, the aggregation of these genetic studies and the associated
algorithms will help to create personalized medicine. This assures that
medicines can be tailored for a specific individual, reducing side effects and
increasing their effectiveness. The treatments for diseases would be specific
for the affected individual and based on their individual genetic footprint.
Further, it is hoped that disease risks would be identified at much earlier
ages so that individuals could be more in control of the environmental fac-
tors that affect the onset. These advancements will not come immediately
and it is only through the effort of countless individuals that medicine will
eventually reach the pinnacle of personalize medicine.
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Abstract

The relative contribution of genetic risk factors to the progression of subclinical atherosclerosis is poorly understood. It is
likely that multiple variants are implicated in the development of atherosclerosis, but the subtle genotypic and phenotypic
differences are beyond the reach of the conventional case-control designs and the statistical significance testing procedures
being used in most association studies. Our objective here was to investigate whether an alternative approach—in which
common disorders are treated as quantitative phenotypes that are continuously distributed over a population—can reveal
predictive insights into the early atherosclerosis, as assessed using ultrasound imaging-based quantitative measurement of
carotid artery intima-media thickness (IMT). Using our population-based follow-up study of atherosclerosis precursors as a
basis for sampling subjects with gradually increasing IMT levels, we searched for such subsets of genetic variants and their
interactions that are the most predictive of the various risk classes, rather than using exclusively those variants meeting a
stringent level of statistical significance. The area under the receiver operating characteristic curve (AUC) was used to
evaluate the predictive value of the variants, and cross-validation was used to assess how well the predictive models will
generalize to other subsets of subjects. By means of our predictive modeling framework with machine learning-based SNP
selection, we could improve the prediction of the extreme classes of atherosclerosis risk and progression over a 6-year
period (average AUC 0.844 and 0.761), compared to that of using conventional cardiovascular risk factors alone (average
AUC 0.741 and 0.629), or when combined with the statistically significant variants (average AUC 0.762 and 0.651). The
predictive accuracy remained relatively high in an independent validation set of subjects (average decrease of 0.043). These
results demonstrate that the modeling framework can utilize the ‘‘gray zone’’ of genetic variation in the classification of
subjects with different degrees of risk of developing atherosclerosis.

Citation: Okser S, Lehtimäki T, Elo LL, Mononen N, Peltonen N, et al. (2010) Genetic Variants and Their Interactions in the Prediction of Increased Pre-Clinical
Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study. PLoS Genet 6(9): e1001146. doi:10.1371/journal.pgen.1001146

Editor: Nicholas J. Schork, University of California San Diego and The Scripps Research Institute, United States of America

Received December 18, 2009; Accepted September 1, 2010; Published September 30, 2010

Copyright: � 2010 Okser et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was financially supported by the Academy of Finland (grants 77841, 117832, 117941, 201888, 120569, 133227, 127575, 121584, 126925), the
Social Insurance Institution of Finland, Turku University Foundation, Kuopio, Tampere and Turku University Hospital Medical Funds, Emil Aaltonen Foundation,
Juho Vainio Foundation, Finnish Foundation of Cardiovascular Research and Finnish Cultural Foundation. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tero.aittokallio@utu.fi

. These authors contributed equally to this work.

Introduction

A major challenge of medical genetics is to determine an

optimal set of genetic markers, typically in the form of single

nucleotide polymorphisms (SNP), which when combined together

with conventional risk factors, could be used in individual level risk

prediction, classification and clinical decision-making. However,

genome-wide association studies (GWAS) have demonstrated that

the ubiquitous heritability of most common disorders is due to

multiple SNPs of small effect size and even an aggregate of these

effects is not yet predictive enough for clinical utility [1]. It has

therefore been suggested that the traditional case-control studies,

which focus on qualitative phenotypes such as diagnosed cases

versus controls, could be complemented by population-based

cohort studies, which profile quantitative clinical phenotypes and

how they change over time in individuals who are representative of
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the general population. Consequently, certain common disorders

may be interpreted as being the extremes of the quantitative

phenotypes that are continuously distributed over the population

[1]. Comparing various ranges of the low and high extremes of

such quantitative traits, rather than dichotomizing the same

distribution exclusively into cases and controls, can offer the means

to increase the statistical power of the variants [2–5], uncover

molecular pathways and networks behind various subtypes and

progression stages [6], and eventually even help to improve the

early diagnosis, treatment and prevention of the most extreme

cases. The objective here was to systematically investigate the

potential of this extreme selection strategy to provide predictive

insights into the early development of atherosclerosis, using the

carotid IMT as a quantitative phenotype and our unique

population-based follow-up study of atherosclerosis precursors as

a basis for sub-sampling of subjects with increasing disease risk.

Atherosclerosis is a common disorder which develops due to the

complex interplay of various genetic and environmental factors,

most of which are still poorly understood. It is known that

conventional cardiovascular risk factors, such as obesity, elevated

blood pressure and high low-density lipoprotein (LDL) cholesterol

levels, play an important role in the risk of its progression into

severe clinical manifestations, for instance, coronary heart disease

(CHD) [7,8]. Recently, a number of genetic risk markers that

associate with coronary disease outcomes and serum lipid

concentrations have also been identified in case-control settings

[9–21]. However, the relative contribution of genetic variation to

the early stages of the cardiovascular disease remains unclear.

From the experimental design point of view, the subtle inter-

individual phenotypic variability makes it difficult to prognosticate

clear-cut cases and controls in a pre-clinical setting, thereby

limiting the capability of the cross-sectional case-control designs in

distinguishing the variants associated with an increased progres-

sion risk from the background variability. An additional challenge

is that even in the absence of significant single-marker effects,

multiple genetic markers from distinct molecular pathways may

act synergistically when combined, leading to different atheroscle-

rosis phenotypes. Confounding inter-individual variation and

interactions across the genetic and conventional risk factors can

also mask the phenotypic variation, especially when studying

composite phenotypes such as LDL-cholesterol levels [22].

Therefore, a well-defined quantitative measurement that reflects

the full spectrum of the disease progression is needed, together

with an efficient computational approach, to systematically

explore the genotype-phenotype relationships across different

development stages of atherosclerosis.

Measurement of the carotid artery intima-media thickness

(IMT) is an established, intermediate phenotype of atherosclerosis

that has been used, for instance, to investigate the development of

pre-clinical atherosclerosis [23,24], and to predict the onset of

future cardiovascular events, such as myocardial infraction and

stroke [25–27]. It can be measured non-invasively through the use

of ultrasound imaging in large populations of healthy subjects,

without the biases related to clinically diagnosed cases and controls

[28], making it an ideal quantitative measurement for stratifying

subjects into various risk classes. However, comparisons of such

risk classes using statistical significance testing procedures that

consider only one SNP at a time may yield sub-optimal findings

when exploring the genotype-specific effects of large number of

SNPs, given that these modest phenotypic effects are likely to be

characterized by substantial genetic heterogeneity among multiple

variants [29–31]. Accordingly, it has been argued that the statistics

being used to identify variants that are significantly associated with

the disease risk - typically odds ratios or p-values for association -

are not the most appropriate means for evaluating the predictive

or clinical value of the genetic profiles [32,33]. For example, the

individual SNPs with the strongest statistical support in coronary

artery disease-related case-control studies seem to have only a

minor, if any, role in predicting carotid IMT or its progression,

when compared to the conventional risk factors [34,35]. In fact,

these susceptibility variants are able to provide only a marginal

and inconsistent improvement even in the discrimination of the

CHD cases or prediction of cardiovascular events [36–41], thus

hindering the value of these ‘top hits’ for diagnostic prediction.

Moreover, additional challenges stem from the identification of

gene-gene and gene-environment interactions, which are thought

to be profoundly important in the development of many complex

diseases [29,30,42].

In the present analysis from the Young Finns Study, we took a

more holistic approach towards revealing the contribution of

genetic variation to the early progression of atherosclerosis. The

approach was based on a stratified sampling and comparison of

the increasing risk classes from our longitudinal population cohort.

Rather than using the conventional single-SNP statistical signif-

icance testing in the identification of risk-modifying variants and

their interactions, we explicitly searched for those subsets of SNPs

that are the most predictive of the increasing risk classes by means

of a predictive modeling framework using a machine learning-

based SNP-subset selection procedure. The predictive approach

was used here to mine those associations that did not necessary

meet the stringent levels of statistical significance at the level of

individual SNPs, yet still having significant contribution to the

combined predictive power at the level of SNP-subsets. In

particular, we addressed the following questions: (i) whether the

genetic variants can improve the prediction accuracy of IMT-

based risk classes beyond that obtained with conventional risk

factors; (ii) which variants are the most predictive of the subjects

that show extreme IMT levels either at the baseline or in the

follow-up study, or progression over the 6-year period; (iii) whether

the predictive SNP-panels also include other variants than those

Author Summary

Although cardiovascular events, such as myocardial
infarction and stroke, usually occur at later ages, it is
known that the atherogenic process begins much earlier in
life. Detection of subclinical atherosclerosis would there-
fore offer the means to identify individuals who are at
increased risk of developing cardiovascular events. What
remains unclear is the relative contribution of genetic
variation to the development of the early stages of
atherosclerosis. To address this question, we searched for
combinations of both genetic and clinical determinants
that are the most predictive of the progression of
subclinical carotid atherosclerosis in a sample of 1,027
young adults, aged between 24–39 years, from the Finnish
general population (The Cardiovascular Risk in Young
Finns Study). We demonstrate here, for the first time in a
population-based follow-up study, a predictive relation-
ship between individual’s genotypic variation and early
signs of atherosclerosis, which cannot be explained by
conventional cardiovascular risk factors, such as obesity
and elevated blood pressure levels. The predictive
modeling framework facilitates the usability of genetic
information by identifying informative panels of variants,
along with conventional risk factors, which may prove to
be useful in early detection and management of athero-
sclerosis. The clinical implications of these findings remain
to be studied.

Genetic Variants Predictive of Atherosclerosis
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risk markers identified in the previous case-control association

studies; and (iv) whether the machine learning-based SNP selection

can provide variants with increased predictive power compared to

the SNPs with the greatest statistical significance in the present

study population. We also illustrate how the predictive modeling

framework can be employed to identify epistasis interactions

among genetic variants that are related to the disease progression.

Finally, as the first step toward elucidating functional mechanisms

behind the genetic variants and their interactions, we also mapped

the biological pathways and processes that underlie those variants

most predictive of the extreme progression cases.

Results

The baseline study cohort in 2001 was comprised of 1,027

subjects from the Finnish general population, aged 24–39 years,

with complete data including both the ultrasound-based imaging

of the carotid IMT and the blood sample-based genotyping of the

candidate SNPs (see Table S1); of these subjects, 813 also

participated in the 2007 follow-up study of the IMT progression

(see Materials and Methods for details). The relative contribution

of the SNPs to the individual IMT levels was evaluated by means

of a predictive modeling framework, in which the study subjects

were first divided into gradually increasing low-risk and high-risk

classes according to the quantile points, say (1-q) and q, of their

pooled IMT distribution (q ranges from 5% to 25%; see Figure 1).

A non-linear Bayesian classifier was implemented here as the

predictive model (see Materials and Methods for details). Using

both the genetic and conventional risk factors collected in the

baseline study in 2001 as predictor variables, we determined the

most predictive risk factor combinations separately for both the

2001 and 2007 IMT risk classes, as well as the IMT progression

between 2001 and 2007. For a comparison, the most significant

genetic variants were determined using single-SNP statistical

testing for the same risk classes. The area under the receiver

operating characteristic curve (AUC), with cross-validation, was

used to evaluate the predictive value of the different factor

combinations, followed by independent validation set-based

assessment of how well the predictive models can generalize to

independent sets of subjects.

Clinical characteristics of the study subjects
The quantitative distributions of the levels of IMT and its

progression over the 6-year period are shown in Figure 1. The IMT

levels in the study population showed a slightly positive-skewed

enrichment of subjects with higher IMT values indicating an

increased risk of atherosclerosis (Figure 1A). There was a significant

difference in the IMT distributions between the 2001 and 2007

follow-up studies (Kolmogorov-Smirnov D = 0.234, p,0.001). As

expected, the majority of the conventional risk factors measured in

2001, including age, sex and BMI, were strongly correlated with the

Figure 1. Distributions of intima-media thickness (IMT) of the study subjects. (A) IMT levels in the baseline and follow-up studies in 2001
and 2007, respectively. (B) IMT changes from 2001 to 2007. The age-stratified distributions depict the baseline age groups of 24–30 and 33–39 years
(Younger and Older subjects), as well as their combined distribution (All subjects). The vertical lines indicate the representative 15% and 85% quantile
points (q) that divide the subjects into two risk groups: the low-risk class (subjects with the lowest q% of IMT levels or changes) and the high-risk class
(subjects with the highest q% of IMT levels or changes).
doi:10.1371/journal.pgen.1001146.g001
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IMT levels both in the 2001 and 2007 studies (Table 1). However,

only two risk factors, waist circumference and apolipoprotein B

(ApoB), correlated with the IMT progression (the 2007-2001

change). In particular, even if the age was the most significant

correlate of the IMT levels in 2001 and 2007, its linear explanatory

power turned out to be insignificant for the IMT progression.

Accordingly, the distributions of the IMT progression were similar

in the groups of younger and older subjects (D = 0.0791, p.0.10;

Figure 1B). To keep the non-linear prediction problem as general as

possible, the age-groups and sexes were pooled into a single

continuous distribution; however, all the predictive models were

adjusted for the baseline conventional risk factors (Table 1). This

enabled us to examine, for instance, the added contribution of

genetic variation to the IMT progression not explained by the

variation in the conventional cardiovascular risk factors.

Prediction of baseline IMT using genetic variants
To assess whether the genetic variants can increase the

prediction accuracy of the risk classes beyond that obtained with

the conventional risk factors alone, we used the predictive

modeling framework with a machine learning-based SNP

selection. The predictive risk factor combinations selected using

this procedure were able to significantly improve the prediction of

the subjects across the spectrum of low-risk and high-risk classes in

2001 (Figure 2A), when compared to using the conventional risk

factors (CRFs) either alone or combined with those SNPs that

were significantly associated with the low- and high-risk differences

in the study subjects (the significances of the SNPs are detailed in

Table S2). Interestingly, the panel of genetic risk markers

established in the previous case-control association studies alone

had a predictive power similar to that of a random classifier

(average AUC 0.489), and these SNPs could not improve the

prediction of the IMT risk classes over and above of the

conventional risk factors (Established SNPs and CRFs; Figure 2).

As expected, the predictive accuracy gradually decreased when

moving from 5% to 25% quantile level, as the risk classes became

phenotypically more heterogeneous in terms of the quantitative

IMT-levels (see Figure 1A). The variants most predictive of the

subjects with 15% of the lowest and highest IMT-levels in 2001 are

listed in Table 2, together with their gene annotation information

and the single-SNP statistical and predictive powers.

Prediction of follow-up IMT using genetic variants
The predictive power of the genetic variants that were selected

using the machine learning-based procedure increased further

when predicting the risk classes in the 2007 follow-up, even if the

genetic and conventional risk factors collected in only the baseline

study were used as predictors (Figure 2B). This result can partly be

attributed to the progression of the disease condition over the six

years in a part of the study subjects (see Figure 1A). In particular,

the classes of the most extreme levels of the IMT could be

predicted with reasonably high accuracy also using single-SNP

statistical testing, whereas the panel of established SNPs either

with or without the conventional risk factors again showed much

poorer performance (Figure 2B). These results suggest that the

genetic variants, especially those that were identified using the

machine learning-based SNP selection (see Table 3), can encode

significant information according to which it is possible to predict

subjects who will belong to different risk classes later in their lives

with accuracies beyond that obtained with the conventional risk

factors. We note that the baseline 2001 IMT-level was not used in

the reported results when predicting the 2007 risk classes;

however, in the case when the baseline IMT-level was used as

an additional predictor, the prediction accuracies became very

close to perfect discrimination (AUC ranged from 0.920 to 0.999).

This shows that the non-linear modeling approach could learn also

the significant linear correlation between the 2001 and 2007 IMT-

levels (r = 0.582; Table S3).

Genetic variants predisposing to IMT progression
We next searched explicitly for those factors that are most

predictive of the subjects who show extreme progression in their

Table 1. The baseline characteristics in 2001 along with their correlations with the 2007 level and progression of intima-media
thickness (IMT).

Conventional Risk Factor* Mean (SD) IMT 2001 IMT 2007 IMT Progression

r{ p{ r{ p{ r{ p{

Sex (% women) 55.3 0.132 ,0.001 0.195 ,0.001 0.086 NS

Age in 2001 (years) 31.7 (4.92) 0.290 ,0.001 0.301 ,0.001 0.041 NS

BMI (kg/m2) 25.2 (4.38) 0.152 ,0.001 0.188 ,0.001 0.094 NS

Waist circumference (mm) 84.0 (12.0) 0.189 ,0.001 0.260 ,0.001 0.133 0.006

Systolic blood pressure (mmHg) 117 (13.2) 0.180 ,0.001 0.158 ,0.001 0.044 NS

Diastolic blood pressure (mmHg) 70.6 (10.5) 0.220 ,0.001 0.160 ,0.001 20.020 NS

Total cholesterol (mmol/L) 5.17 (0.99) 0.113 0.011 0.155 ,0.001 0.082 NS

LDL cholesterol (mmol/L) 3.28 (0.86) 0.126 0.002 0.166 ,0.001 0.087 NS

HDL cholesterol (mmol/L) 1.29 (0.32) 20.037 NS 20.107 NS 20.089 NS

Triglycerides (mmol/L) 1.35 (0.86) 0.047 NS 0.131 0.007 0.099 NS

ApoA1 (g/L) 1.49 (0.26) 20.052 NS 20.085 NS 20.039 NS

ApoB (g/L) 1.06 (0.27) 0.110 0.016 0.195 ,0.001 0.138 0.003

Smoking (% subjects) 22.8 0.049 NS 0.007 NS 20.011 NS

*The characteristics in 2001 were used as potential confounding risk factors in predictive models.
{Pearson correlation coefficient (r-value) was calculated using the risk factors collected in 2001.
{Statistical significance (Bonferroni corrected p-value) is from the t-distribution with n-2 df (n = 1,027 in 2001 and n = 813 in 2007); NS, non-significant.
doi:10.1371/journal.pgen.1001146.t001

Genetic Variants Predictive of Atherosclerosis

PLoS Genetics | www.plosgenetics.org 4 September 2010 | Volume 6 | Issue 9 | e1001146



IMT-levels between the two follow-up studies. When applying the

machine learning-based procedure to prediction of the subjects

with increasing changes in their IMT-levels between the study

years 2001 and 2007, the selected SNPs could again systematically

increase the predictive power across all the progression risk classes,

compared to the accuracy obtained with the conventional risk

factors either alone or when combined with the panels of variants

identified in the previous case-control studies or in the present

study population using single-SNP statistical testing (Figure 2C). In

this case, however, the prediction accuracies were not anymore

monotonically decreasing functions of the quantile point (q). In

particular, the 10% risk class was found to be problematic, which

could be due to the particular IMT cutoff values used in its

quantitative definition. Interestingly, the SNP set most predictive

of the IMT progression contained a relatively large number of

variants with modest contributions to the predictive power; of

these variants, only one was among the established markers

identified in the previous case-control studies (Table 4). Even if the

IMT progression proved relatively difficult to predict, the many

novel markers support the potential and added value of genetic

variation, especially when evaluating susceptibility to the most

extreme progression risk class (q = 5%).

Epistasis interactions between the predictive variants
To identify candidate epistasis (or synergistic) interactions

between the genetic risk factors, we searched for such pairs of

genetic variants that led to the largest drop in the prediction

accuracy when removed together from the set of predictive SNPs,

relative to the drop resulting from removing either of the variants

separately. As a feasibility study, we explored the particular SNP

set which was found to be highly predictive of the subjects with the

most extreme IMT progression from 2001 to 2007 (Figure 2C,

q = 5%). When investigating a specific variant (rs2516839) in the

upstream stimulatory factor 1 (USF1), a known regulator of the

transcription of several cardiovascular-related genes, we identified

a number of potential genetic interaction partners of USF1

(Figure 3), including formin 2 (FMN2, rs17672135), protein

tyrosine phosphatase, non-receptor type 22 (PTPN22, rs2476601),

hepatic triglyceride lipase (LIPC, rs1800588), and arachidonate 5-

lipoxygenase-activating protein (ALOX5AP, rs17222814). It is

interesting to note that each of these candidate gene-gene

interactions originated from different biological processes, indi-

cating that the disease progression and phenotypic heterogeneity is

likely due to genetic alterations within multiple molecular

pathways (Table S4). Such interactions and pathways may serve

as basis for more detailed further studies of the molecular

mechanisms and disease networks that predispose to such excess

levels of the IMT-progression that can lead to clinical cardiovas-

cular events in the future.

Evaluation on independent and randomized subject sets
To further explore the generalization capability of the prediction

models estimated and evaluated on the current study subjects, we

constructed a separate validation set consisting of those subjects who

Figure 2. Prediction accuracy as a function of increasing risk
classes. The accuracy was defined using the area under the receiver
operating characteristic curve (AUC), and the risk classes using the
quantile points (5–25%). (A) Prediction of the baseline IMT risk classes in
2001 when using the conventional risk factors either alone, or when
combined with the panel of 17 SNPs associated in previous studies with

cardiovascular morbidity (Established SNPs), with those SNPs that are
significantly associated with the low- and high-risk classes (Significant
SNPs), or with the most predictive SNPs identified using the machine
learning-based approach (Predictive SNPs). (B) Prediction of the follow-
up IMT risk classes in 2007 using the baseline conventional and genetic
risk factors measured in 2001. (C) Prediction of the IMT progression risk
classes when using the baseline conventional and genetic risk factors
measured in 2001 (the same as in (A,B)).
doi:10.1371/journal.pgen.1001146.g002
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were filtered out in the initial subject selection because of missing

data, but had a complete set of those SNPs identified for the

particular risk class (see Figure S1). These new subjects were then

split into the classes of ‘low-risk’ and ‘high-risk’ based on the exact

same IMT-cutoff values that were used in the original subjects. In

general, the results in the independent validation set scaled as

expected (Figure 4). Even if the prediction of the new subject classes

using those SNPs identified in the original dataset led to decreased

prediction accuracies (average decrease in AUC was 0.043), their

prediction capability was shown to extend beyond the original

subjects, especially for the extreme 5% IMT cases, whereas the 10%

risk class again showed poorer performance. A part of the decreased

accuracy can be attributed to the sensitivity of the extreme selection

strategy to the particular IMT quantile cut-offs being used (the

dotted trace). We also repeated the same model building and

evaluation framework for randomized datasets, in which subjects

Table 2. The single nucleotide polymorphisms (SNPs) predictive of the subjects with 15% lowest and highest IMT levels in 2001.

SNP ID* (rs number) Gene symbol (HGNC name) SNP location (Chr region) Significance{ (p-value) Predictive power{ (%AUC)

rs2073658 USF1 1q23.3 0.70 11.8

rs1205 CRP 1q23.2 0.02 10.6

rs805305 DDAH2 6p21.33 0.38 9.68

rs3890182 ABCA1 9q31.1 0.81 7.53

rs6929137 C6orf97 6q25.1 0.10 7.53

rs4073307 IGSF1 Xq26.1 0.71 6.45

rs693 APOB 2p24.1 0.53 6.45

rs3130340 INTERGENIC 6p21.32 0.11 6.45

rs599839 PSRC1 1p13.3 0.10 6.45

rs754523 INTERGENIC 2p24.1 1.00 5.38

rs1143634 IL1B 2q13 0.51 5.38

rs4404254 ICOS 2q33.2 0.16 4.30

rs2548861 WWOX 16q23.1 0.14 4.30

rs2553268 WRN 8p12 0.15 3.23

rs4937100 IL18 11q23.1 0.22 2.15

rs2516839 USF1 1q23.3 0.13 2.15

*The SNPs identified also in the previous case-control association studies [9–21] are boldfaced.
{The corrected p-values larger than one were truncated to unity.
{The SNPs are arranged according to their contribution to the overall prediction accuracy (AUC).
doi:10.1371/journal.pgen.1001146.t002

Table 3. The single nucleotide polymorphisms (SNPs) predictive of the subjects with 15% lowest and highest IMT levels in 2007.

SNP ID* (rs number) Gene symbol (HGNC name) SNP location (Chr region) Significance{ (p-value) Predictive power{ (%AUC)

rs17672135 FMN2 1q43 0.41 17.5

rs9941339 CDH13 16q24.2-q24.3 0.75 8.75

rs2548861 WWOX 16q23.1 0.14 8.75

rs9939609 FTO 16q12.2 0.69 7.50

rs693 APOB 2p24.1 0.53 7.50

rs17222814 ALOX5AP 13q12.3 0.89 7.50

rs1041981 LTA 6p21.33 1.00 7.50

rs9551963 ALOX5AP 13q12.3 0.64 6.25

rs7524102 INTERGENIC 1p36.12 0.77 5.00

rs2516839 USF1 1q23.3 0.13 5.00

rs2301880 WNK1 12p13.33 1.00 5.00

rs7759938 INTERGENIC 6q21 0.12 3.75

rs9479055 C6orf97 6q25.1 0.40 3.75

rs3130340 INTERGENIC 6p21.32 0.11 3.75

rs2553268 WRN 8p12 0.15 2.50

*The SNPs identified also in the previous case-control association studies [9–21] are boldfaced.
{The corrected p-values larger than one were truncated to unity.
{The SNPs are arranged according to their contribution to the overall prediction accuracy (AUC).
doi:10.1371/journal.pgen.1001146.t003
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Table 4. The single nucleotide polymorphisms (SNPs) predictive of the subjects with 15% lowest and highest IMT changes from
2001 to 2007.

SNP ID* (rs number) Gene symbol (HGNC name) SNP location (Chr region) Significance{ (p-value) Predictive power{ (%AUC)

rs2073658 USF1 1q23.3 0.70 9.40

rs9479055 C6orf97 6qs25.1 0.40 8.55

rs17672135 FMN2 1q43 0.41 8.55

rs9687339 MAST4 5q12.3 0.93 7.69

rs1042713 ADRB2 5q33.1 0.48 7.69

rs2301880 WNK1 12p13.33 1.00 6.84

rs3130340 INTERGENIC 6p21.32 0.11 6.84

rs2476601 PTPN22 1p13.2 0.44 5.13

rs11898505 SPTBN1 2p16.2 0.27 5.13

rs3798220 LPA 6q25.3 1.00 5.13

rs10172036 ICOS 2q33.2 0.52 5.13

rs2820037 INTERGENIC 1q43 0.66 4.27

rs2234693 ESR1 6q25.1 0.74 3.42

rs1800896 IL10 1q32.1 0.71 3.42

rs17222814 ALOX5AP 13q12.3 0.89 3.42

rs1801274 FCGR2A 1q23.3 0.75 2.56

rs854560 PON1 7q21.3 0.81 1.71

rs10246939 TAS2R38 7q34 0.80 1.71

rs9594738 INTERGENIC 13q14.11 0.58 1.71

rs1799983 NOS3 7q36.1 0.06 0.855

rs1256049 ESR2 14q23.2 0.46 0.855

*The SNPs identified also in the previous case-control association studies [9–21] are boldfaced.
{The corrected p-values larger than one were truncated to unity.
{The SNPs are arranged according to their contribution to the overall prediction accuracy (AUC).
doi:10.1371/journal.pgen.1001146.t004

Figure 3. Candidate interaction partners of a variant in USF1 (rs2516839). The candidate SNP-SNP interactions were searched among the
variants predictive of the extreme IMT progression (see Table S4). The interaction score for a SNP-pair (x,y) is Px,y{ PxzPy

� �
, depicting the combined

contribution of the SNP-pair to the predictive power (Px,y), relative to that of the individual SNPs’ contributions (Px and Py). The predictive power
was assessed in terms of how much the AUC value changed when the particular SNP or SNP-pair was deleted from the subset of variants. The Gene
ID was used as a SNP identifier, where available; otherwise, the rs ID was used instead.
doi:10.1371/journal.pgen.1001146.g003
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were divided into the low- and high-risk classes at random. This

resulted in random prediction accuracies (average AUC 0.496),

indicating that the high accuracies obtained with the predictive

models were not by chance alone (Figure 4). Based on these results,

independent and randomized subject sets were found to be useful

for controlling the degree of overfitting, even when cross-validation

is used in the model building.

Discussion

The present results demonstrate a predictive relationship between

an individual’s genotypic variation and early signs of atherosclerosis

along with its progression over a 6-year period in our population-

based longitudinal follow-up study. The relationship was much

stronger with the variants identified using the machine learning-

based approach compared to the variants identified using single-

locus statistical hypothesis testing procedures either in the present

study population or in the previous case-control association studies of

clinically manifesting CHD [9–21]. This latter finding is in line with

a recent observation that the genetic scores, constructed from

individual SNPs that met the genome-wide level of statistical

significance in earlier GWASs, could not improve the prediction of

cardiovascular risk after adjustment for conventional cardiovascular

risk factors [41]. Similar observations have been made in the context

of other diseases when using such a ‘bottom-up’ approach to building

discrimination models [33]. In the present study, rather than

exclusively using only those variants with the lowest p-values for

association, we took here an alternative ‘top-down’ approach to

predictive modeling by explicitly searching for all of the genetic and

conventional risk factors that positively contribute to the prediction

power. It was surprising to note that, among the most predictive

variants, there was only a single statistically significant SNP in the

present cohort (see Table 2, Table 3, Table 4), supporting the idea

that many of the predictive associations are detected much lower

down on the ranked list of hits compared to the top hits with the

highest statistical support [43]. Ignoring such ‘gray zone’ variants is

likely to result in missing an important proportion of the quantitative

variation in heritability [44]. The proposed predictive modeling

framework therefore complements the statistical class comparison

procedures traditionally used during the discovery phase.

We used our longitudinal cohort data of carotid atherosclerosis

precursors to implement a class prediction model, with the specific

aim to build a multivariate discrimination function, or a classifier

[45], which can accurately predict the risk class of a new subject on

the basis of a panel of key variants. Sampling of the subjects with

increasing carotid IMT levels from our follow-up study provided us

with the unique opportunity to investigate the genetic variants

contributing to the present and future atherosclerosis risk.

Evaluation of the genetic variants predictive of the 2001 IMT risk

classes was used here to set a baseline for the prediction accuracies

and for the corresponding SNP panels. Medically, it is perhaps most

interesting to evaluate the ability to predict the future IMT risk

classes as well as the progression of the IMT levels over the time.

The determination of the future atherosclerosis risk is analogous to

predicting the 2007 IMT risk classes based on the data reflecting the

2001 baseline genetic variants and confounding risk factors. The

IMT progression (i.e., difference between the 2007 and 2001 IMT

levels) is relevant in that even though an individual may not be

considered to be in the risk group in 2007, the rate of change in the

IMT levels between the evaluation years is large enough to warrant

the subject as still being regarded as being at higher risk. The group

with extreme IMT progression therefore represents the set of

subjects who would be potential candidates for primary prevention

in order to offset their likelihood of developing carotid atheroscle-

rosis in the future. The full set of the SNP-panels predictive of the

IMT-levels in the 2001 and 2007 studies, as well as of its relative

progression from 2001 to 2007, are listed and characterized in

Table S1. The genetic interactions between those variants that were

highly predictive of the extreme IMT-progression are further

discussed in Text S2.

Those SNPs that were found to be the most predictive of the

15% risk classes of IMT-levels and progression (Table 2, Table 3,

Table 4) can be interpreted on the basis of a prior knowledge

(Table S5). Most of the SNPs and corresponding genes have

earlier been associated with cardiovascular disease risk factors such

as low serum HDL-cholesterol and high serum LDL-cholesterol,

triglycerides, lipoprotein(a) and apolipoprotein B concentrations

(i.e., APOB, LPA, WWOX, ABCA1, USF1, PSRC1, ADRB2),

inflammation, inflammatory and immunological factors such as

serum CRP and interleukin levels (i.e., CRP, IL18, IL1B, LTA,

ALOX5AP, IL10, ICOS, PTPN22), blood pressure, hemodynam-

ics as well as serum asymmetric dimethyl arginine concentrations

(DDAH2, WRN, WNK1, CDH13, NOS3), obesity, BMI,

metabolic syndrome (FTO, ADRB2), and lipoprotein oxidation

(PON1). Most of these SNPs are also linked to different

cardiovascular traits, such as coronary artery disease, coronary

artery calcification and atherosclerosis plaque areas, myocardial

infarction, sudden cardiac death, stroke, as well as having

phenotypic relationships with subclinical atherosclerotic traits

such as carotid IMT (ESR1, APOB, PON1, USF1, ALOX5AP,

ESR2, IL10, FCGR2A). Such associations have been found either

alone or by interaction with other genes and clinical or

Figure 4. Prediction accuracies on independent and random-
ized subject sets. The accuracy was defined using the area under the
receiver operating characteristic curve (AUC), and the risk classes using
the quantile points (5%–25%). The prediction accuracies were evaluated
for the baseline IMT risk classes in the independent dataset, in
comparison with the cross-validated accuracies obtained in the original
dataset using the same IMT thresholds, conventional risk factors and
the most predictive SNPs identified with the machine learning-based
procedure in the original subject set. The dotted trace shows the effect
of deleting those subjects whose IMT level was the same or close to the
quantile cut-off value (,0.02 difference in IMT). The randomized
datasets were generated by first dividing the original set of subjects
into the low- and high-risk classes at random, independent of their IMT-
levels, and then repeating the same randomization process 100 times
for each of the risk classes. The average AUC level for the various risk
classes is reported. None of the 500 randomized datasets produced
prediction accuracy higher than that obtained using the most
predictive SNPs identified in the original set of subjects.
doi:10.1371/journal.pgen.1001146.g004
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environmental factors, including diabetes mellitus and use of

alcohol or smoking [46,47]. There were also novel IMT-related

SNP candidates, earlier associated with bone density (C6orf97 and

some intergenic SNPs), revealing possible mechanistic links to

bone mineral and calcium metabolism. It is known that

morphogenetic proteins and vascular calcification are activated

in advanced atherosclerotic plaques [48–50]. On the basis of the

present results, the same seems to hold true already in the sub-

clinical stage of carotid atherosclerosis.

Limitations of the study and future developments
As with any association study that evaluates the contribution of a

large number of candidate variants to a given phenotype, the

question of how well the results will generalize to other study

populations remains to be studied. This is a potential limitation in all

SNP studies regardless of whether the class comparison or class

prediction approach is being applied. It is known that associations

identified in one population using the single-SNP statistical

hypothesis testing procedures may not be detected in other

populations in part due to the p-values being affected by the

confounding factors [29,51]. Measures which directly evaluate the

predictive value of multiple factors, such as AUC-values, can

overcome some of these limitations but are not without caveats

[32,33,52]. Unlike many other class prediction studies that have

used the AUC to assess the discrimination accuracy within the given

cases and control subjects only, here we used cross-validation both

when selecting coherent subsets of the most predictive variants,

through feature selection, as well as when evaluating their

prediction accuracy, as compared to the subsets of the most

significant SNPs. Cross-validation was necessary to avoid a selection

bias, which can lead to over-optimistic prediction results and the

reporting of a large number of over-fitted genetic variants [45,53].

The final evaluation of the panels of SNPs was done using an

independent subject set to confirm that the reported models also

generalize to other sub-populations beyond those used in the initial

model estimation and validation. Testing on an independent dataset

can also help to resolve any biases that may exist due to the fact that

the cross-validation folds are far from independent of one another.

In common with many other SNP-studies, our main objective

here was to find out those variants that are the most predictive of

the atherosclerosis risk and progression in our follow-up study.

When the aim is to obtain high prediction accuracies, the rules for

including factors in the discrimination model are different from

those when searching for the strongest statistical associations [54].

However, regardless of whether the discoveries come from

statistical significance testing or from machine learning-based

SNP-selection, the selected variants need to be carefully validated

in further studies [55]. These two complementary approaches

have also been combined, by building prediction models based

exclusively on statistically significant SNPs, but this combined

approach has been shown to result in poor classification accuracies

[33]. In fact, reasonable increases in the prediction accuracies are

often obtained only after including hundreds of top variants,

depending on the complexity of the disease phenotype and

whether or not cross-validation is utilized [32,38,39]. When the

aim is class prediction, we believe it is better to make use of those

methods that are specifically designed for optimal prediction,

together with stringent feature selection and cross-validation, to

output modest number of highly predictive and reliable variants

for further study [45]. Further evaluation of the prediction power

on independent and randomized subject sets was also found to be

useful for controlling the degree of over-fitting, as shown in

Figure 4, even when systematic cross-validation schemes are being

used in the model building process [56,57].

It was interesting to note here that the simple naı̈ve Bayes

classifier performed well in the prediction of the atherosclerosis risk.

The conditional independence assumption behind this probabilistic

prediction model results in the nominal predictive probabilities that

are often unrealistic, in the sense of being very close to either zero or

one. Therefore, we followed the standard practice and chose the

class with the highest posterior probability. Despite this simplifying

assumption, the naı̈ve Bayes classifier generally provided the best

prediction results across the various risk classes, compared to other

classification models, such as Bayes Nets, Support Vector Machines,

or Random Forest (see Text S1 for their comparison). Moreover,

because of its simplicity, the naı̈ve Bayes classifier is also

computationally more efficient than the other, more complex

prediction models, enabling its usage in GWAS meta-analyses as

well. These observations are in line with previous works, which have

shown that the naı̈ve Bayes classifier can perform well even in the

case when there are strong dependencies in the dataset [58–60]. In

particular, it has proven to be effective in the context of the IMT-

phenotype and in SNP-data [61,62]. Standard filtering procedures,

such as those based on the Hardy-Weinberg equilibrium, and other

quality control measures implemented during the genotyping can

result in severe restrictions on the joint distribution of alleles,

enabling them to appear independent of one another, further

explaining the good performance of the naı̈ve Bayes classifier.

However, other efficient SNP-subset selection methods that go

beyond the single-SNP testing, such as those based on penalized

maximum-likelihood approach [63], or different filter-wrapper

machine learning approaches [31], could be used in the generic

modeling framework.

While previous studies have identified sex-related differences in

the cardiovascular disease incidence and genetic risk factors [64],

the objective of the present study was to demonstrate that a

common panel of genetic risk factors can already improve the

prediction of subclinical carotid atherosclerosis risk and progres-

sion in a general population of young adults. Therefore, we did not

stratify the subjects on the basis of any of the conventional risk

factors, including sex or age, but the subjects were combined into a

single distribution (Figure 1). In the future studies, however, it is

possible to divide the heterogeneous population into more

homogeneous sub-samples to investigate the relationship between

the genetic and conventional risk factors in more controlled

settings. Further, pathway and network analyses of such sub-

sample-specific genetic variants and their interactions could reveal

also underlying similarities or differences in the biological

processes and genetic networks [6]. We have previously shown

that sub-sampling-based automated procedures can help to detect

hidden subject sub-groups that present with similar genetic profiles

in genome-wide studies and which may associate with divergent

clinical outcomes [65]. An automated subject grouping combined

with the predictive modeling framework introduced in the present

study could offer possibilities to start developing personalized

approaches that make the most of genetic variation together with

clinical data to predict individual susceptibility to the initiation and

progression of carotid atherosclerosis and other complex diseases.

Such experimental-computational approaches may prove to have

also clinical utility in the early detection and management of sub-

clinical atherosclerosis and other quantitative disorders.

Materials and Methods

Subject selection
The Cardiovascular Risk in Young Finns Study is an on-going

population-based follow-up study of atherosclerosis precursors

from childhood to adulthood [66]. The multi-center study has
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been carried out in five university hospitals across Finland (Turku,

Tampere, Helsinki, Kuopio and Oulu). The baseline cross-

sectional study in 1980 included a total of 3,596 children and

adolescents, aged between 3–18 years, who were randomly chosen

from the national population register [67]. Since then, follow-up

studies have been conducted in 1983, 1986, 2001 and 2007, in

which the conventional risk factor data have systematically been

collected from the individuals participating in those studies. In the

two most recent follow-ups in 2001 and 2007, which were used in

the present analysis, a total of 2,283 and 2,204 participants were

re-examined, comprising the age groups of 24, 27, 30, 33, 36, 39

years and 30, 33, 36, 39, 42, 45 years, respectively; out of these, a

total of 1,828 subjects participated both in the 2001 and 2007

follow-up studies [68]. The subjects involved in the cohort

provided written consent to be included in the study approved

by local ethics committees.

The study cohort for the present analysis was comprised of those

subjects who took part in both the ultrasound and the genotyping

studies in 2001. The carotid artery intima-media thickness (IMT)

was measured from 1,809 subjects in both of the follow-up studies.

Genotyping of single nucleotide polymorphisms (SNPs) was based

on the DNA collected in 2001. The candidate gene approach was

used to explore potentially interesting relationships between

several known SNPs and clinical traits. Subjects who had missing

values either in their IMT or SNP data in the year 2001 or 2007

were excluded from the present analysis, in order to eliminate their

potentially adverse effects on both the reported prediction

accuracies and on the selected genetic variants. Due to such

stringent subject selection criteria (see Figure S1), the complete

data matrices from n = 1,027 subjects were used in the search of

genetic variants (SNP sets) that are predictive of the atherosclerosis

(indexed by IMT) at baseline (2001); of these, n = 813 had

complete data also in the follow-up study (2007), and could be

used when searching for variants predictive of IMT progression

(the change from 2001 to 2007).

Clinical characteristics
In the present analysis, we used the conventional risk factor data

from the 2001 follow-up study. The physical examination

consisted of the measurement of height, weight, systolic and

diastolic blood pressure, and waist circumference [66]. The body

mass index (BMI) was calculated by dividing the patients’ weight

in kilograms by the square of their height in meters. Waist

circumference was recorded as the average of two measurements

with an accuracy of 0.1 cm. Blood pressure was measured at least

three times with a random zero sphygmomanometer, and the

average of the three readouts of systolic and diastolic blood

pressure was recorded. Lifestyle risk factors, such as smoking, were

examined with questionnaires; the subjects who smoked daily were

regarded as smokers. For the assessment of serum lipoprotein

levels, venous blood samples were drawn after an overnight fast

and the serum was separated, aliquoted and stored at 270uC until

analysis. Standard enzymatic methods were used for recording the

levels of serum total cholesterol, HDL-cholesterol, and LDL-

cholesterol, as well as the concentrations of serum triglycerides,

apolipoprotein A1 (ApoA1) and B (ApoB) [67,68].

Genotyping studies
Genomic DNA was extracted from peripheral blood leukocytes

with a commercially available kit (Qiagen Inc., Valencia, CA).

The DNA samples collected during the 2001 follow-up study were

genotyped as described previously [66,69]. In the present analysis,

we included the panel of 17 SNPs with the highest single-SNP

statistical significance in the recent GWASs identifying variants for

CHD outcomes and serum lipids [9–21], as well as a number of

other candidate SNPs listed in the first phase of the international

pooling project of cardiovascular cohorts [70]. A total of 108 SNPs

with complete genotyping data in the selected subjects were

considered here in the predictive modeling; these SNPs are

generally related to serum lipid and lipoprotein metabolism,

oxidation, cellular lipid metabolism, inflammation, immunological

system, cell signaling, cell migration, cell growth, homocystein

metabolisms, cellular adhesion and blood coagulation (see Table

S1 for the full list of SNPs together with information on their gene

annotation and chromosomal location, as well as on associated

phenotypes available from previous studies).

Ultrasound imaging
Ultrasound studies were performed using Sequoia 512 ultra-

sound mainframes (Acuson Inc., Mountain View, CA, USA), with

13.0 MHz linear array transducers. Exactly the same scanning

protocol was used both in 2001 and 2007 studies, as previously

described [23]. Briefly, carotid IMT was measured on the

posterior (far) wall of the left carotid artery. At least four

measurements were taken 10 mm proximal to the bifurcation,

and the average of the readouts was recorded. The digitally stored

scans were manually analyzed by the same reader both in 2001

and 2007 blinded to the subjects’ characteristics. The between-visit

coefficient of variation of such IMT measurements was 6.4%, as

estimated between two visits that were three months apart [23].

Since the IMT correlates with the risk of atherosclerosis

progression and subsequent cardiovascular events [23–27], it was

used here for stratifying the subjects into gradually increasing risk

classes. Being non-invasive in its nature, this measurement can be

justified in large populations of healthy subjects, without biases

related clinically diagnosed cases and controls [28], making it a

convenient quantitative phenotype of atherosclerosis in popula-

tion-based follow-up studies. The quantitative IMT measurement

suffers from a degree of measurement error, which can lead to

regression to the mean (Figure S2).

Predictive modeling
The relative contribution of the conventional and genetic risk

factors to the individual IMT levels was investigated by means of a

predictive modeling framework, similar to that which we and

others have used before [61,62]. Briefly, the study subjects were

first divided into several risk classes according to their IMT levels.

Based on the concept of extreme selection strategy [1–3], the

quantile points, say (1-q) and q, of the IMT distribution were used

to define the low and high risk classes, respectively (see Figure 1).

The prediction of whether a subject belongs to the high-risk (Hq) or

low-risk (Lq) class was done on the basis of his or her individual

SNP data (S1, …, Sl), whereas clinical characteristics, smoking

habits, sex and age were used as confounding risk factors (C1,

…,Cm). A probabilistic prediction model, the so-called naı̈ve Bayes

classifier, was used here because of its low computational cost and

good performance in previous studies [61,62,71]. Mathematically,

the predictive classifier can be formulated as a conditional

probability of observing the true class R (either Hq or Lq) given

the genetic and confounding risk factors (the predictors P):

p R Pjð Þ~K p Rð Þ P
l

i~1
p Si Rjð Þ P

m

j~1
p Cj Rj
� �

, ð1Þ

where K is a scaling factor independent of the risk class R. The a

priori probabilities p Rð Þ were set to the number of training samples

in the low and high classes [71], and for numeric risk factors, the
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training algorithm estimates the densities p x Rjð Þ using Gaussian

distributions [72] (see Text S1 for more details). The subjects in

the test material were then classified by choosing the risk class with

the highest posterior probability in Eqn (1). The predictive power of

different risk factor combinations was assessed with the k-fold

cross-validation procedure, in which the given sample was divided

into k distinct subsets of equal sizes, each of which in turn was used

as a validation set, to assess how well the results will generalize to

new sets of subjects, while the remaining sub-samples were used in

the initial training of the prediction model [71]. The final

prediction accuracy was reported as the average over the k

validation rounds (here k = 10; see Figure S3).

Selection of predictive variants
The selection of predictive genetic and conventional risk factors

was performed in two-steps, with the aim of identifying a minimal

set of informative features for predicting the different risk classes

(see Figure S3). The SNP selection was done using a machine-

learning-based procedure, similar to the ‘filter-wrapper’ method

[73]. The filtering phase starts from the full set of SNPs and uses

an entropy-based information gain measure to reduce the high-

dimensional search space to the subset of most informative genetic

and conventional risk factors (here 40), which could subsequently

be traversed thoroughly in the next phase of selection. In the

wrapper phase, the best first-based iterative search-and-evaluate

algorithm was used to further improve this subset by excluding

those factors with least predictive power, using backward search

direction, while the backtracking option allows for escaping from

local optima [71]. The predictive power of the selected factor

combinations was assessed using the naı̈ve Bayes classifier, run

with a 5-fold cross-validation to avoid potential selection bias, and

the final prediction accuracy was evaluated using external 10-fold

cross-validation (see Figure S3). The predictive modeling and risk

factor selection was carried out with the Weka data mining

platform (version 3.7; University of Waikato, New Zealand) [71].

Assessment of prediction accuracy
The predictive accuracy of the classifiers, constructed using

either the p-value-based selection of the most significant SNPs or

the machine-learning-based selection of the most predictive SNP-

sets, was assessed using the receiver operating characteristic (ROC)

analyses; ROC curves characterize the relative trade-off between

true positive rate (sensitivity) and false positive rate (1 – specificity)

of a classifier over the whole range of discrimination thresholds

[32,33,71]. The overall accuracy of a classifier was summarized

using the area under the ROC curve (AUC) measure; for an ideal

classifier, AUC = 1, whereas a random classifier obtains an

AUC = 0.5 on average [52,61,71]. The relative predictive power

of each individual SNP or SNP-SNP interaction was assessed in

terms of the change in AUC level when the particular SNP (say x)

or the SNP-pair (x,y) was deleted from the selected set of variants

(denoted by Px and Px,y, respectively). The interaction score for

detecting epistasis effects was defined as Px,y{ PxzPy

� �
,

resembling additive definition of genetic interactions based on

single and double-deletion experiments in model organisms [74].

The AUC-values were calculated using the Weka platform

(version 3.7; University of Waikato, New Zealand) [71].

Statistical procedures
The level of statistical association of single SNPs with the IMT-

classes was assessed by determining the genotypic probabilities

(p-values), on the basis of the 263 contingency matrix that contains

the counts of the three genotypes among the low-risk and high-risk

subjects [75]. Computationally efficient calculation of the exact

p-values for each individual SNP was carried out with the

ExactFDR software [76]. The Pearson correlation coefficient was

used to assess the linear association between the various

conventional risk factors and IMT-levels or changes. These p-

values were adjusted for multiple testing using the Bonferroni

correction. Although it is known that this correction may be

conservative, especially when the test statistics are dependent, it

provides an effective means for ensuring that the findings deemed

most significant are not by chance alone when many hypotheses

are being tested simultaneously. Differences in the distributions of

the IMT-levels or changes between sub-populations were assessed

using the Kolmogorov-Smirnov D-statistic, which is based on the

maximal vertical distance between the two distributions. The

statistical analyses were carried out with the SPSS Statistics

software (version 17.0; SPSS Inc., Chicago, IL, USA) and with the

statistical computing platform R (http://www.rproject.org/).

Supporting Information

Figure S1 The selection of the subjects and SNPs for the original

dataset and for the independent validation set from the

Cardiovascular Risk in Young Finns Study cohort. The white

entries represent missing data points and their corresponding

SNPs and subjects were removed by the final dataset which is

represented by the completely shaded box on the upper left hand

corner. The first inclusion criterion for the subjects was that they

must have complete data for the set of 17 variants that have

previously been associated with cardiovascular events (Established

SNPs, the yellow submatrix). After that, the set of SNPs was

extended gradually, to incorporate as many subjects as possible

with complete SNP data. This selection procedure resulted in a

sub-matrix of 1027 subjects and 108 SNPs that were used here

when searching for the variants predictive of the severity and

progression of sub-clinical atherosclerosis (Candidate SNPs, the

blue submatrix). In order to create the independent validation

dataset, the set of patients who were not part of the original 1027

subject subset were searched for those individuals who had

complete data for all of the SNPs involved in a particular

predictive model (Predictive SNPs). The number of patients, n, in

each of the independent sets varied according to the particular risk

class the validation set was created in relation to (n = 103, 222, 300,

351 and 423, for the 5%–25% risk classes, respectively).

Found at: doi:10.1371/journal.pgen.1001146.s001 (0.17 MB PDF)

Figure S2 Scatter plots of the IMT levels (A) in 2001 and 2007,

and (B) with 2001 and the change in value between 2001 and

2007, both fitted with their respective linear correlation models

(black lines). The plots are marked with two sets of vertical lines

indicating the numerical IMT cutoff values used to select the 5%

(red solid lines) and 15% (blue dashed lines) extreme quantiles and

to split the subjects into the low-risk and high-risk classes.

Although regression to the mean is observed, as was expected, it

can be seen that the 15% extreme value class contains both

increasing and decreasing IMT values, making it a unique

situation in which the classifier must try to predict different IMT

change directions within individual risk classes.

Found at: doi:10.1371/journal.pgen.1001146.s002 (0.53 MB PDF)

Figure S3 Schematic illustration summarizing the model

building and evaluation procedure. Implementation and evalua-

tion of the machine learning-based feature selection algorithm,

compared to using the single-SNP p-values (the right-hand track).

The aim of the algorithm was to select the subset of genetic factors

(SNPs) and conventional risk factors (CRFs) from the filtered

dataset that were the best predictors of the risk classes, determined
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separately for 2001 and 2007 IMT levels (two follow-up points), as

well as for its progression between 2001 and 2007 (IMT

progression). The low-risk and high-risk were defined based on

the gradually increasing quantiles of the pooled IMT distribution

(q ranges from 5% to 25%). The most significant SNPs,

determined using single-SNP statistical testing for the same risk

classes, were used as a reference SNP selection approach in the

evaluations.

Found at: doi:10.1371/journal.pgen.1001146.s003 (0.12 MB PDF)

Table S1 The SNPs explored in the present study, together with

information on their gene annotation and chromosomal location

(from the dbSNP database), and on associated phenotypes as

available from the existing studies (listed in references). Established

SNPs refer to those 17 variants identified in the previous CHD

case-control association studies. The other columns indicate

whether the SNPs were considered predictive of the various

IMT risk classes.

Found at: doi:10.1371/journal.pgen.1001146.s004 (0.10 MB

XLS)

Table S2 The statistical significance (p-value) calculated for each

of the individual SNPs, depicting their degree of association with

the various IMT risk classes in 2001, 2007, and with the IMT

changes from 2001 to 2007.

Found at: doi:10.1371/journal.pgen.1001146.s005 (0.08 MB

XLS)

Table S3 Pairwise correlations between the conventional risk

factors and with the IMT levels in 2001, 2007, and progression

from 2001 to 2007.

Found at: doi:10.1371/journal.pgen.1001146.s006 (0.05 MB

XLS)

Table S4 Molecular pathways and biological processes of the

genetic variants predictive of the most extreme 5% IMT change

from 2001 to 2007.

Found at: doi:10.1371/journal.pgen.1001146.s007 (0.04 MB

XLS)

Table S5 The interpretation of the SNPs most predictive of the

15% IMT risk classes in 2001, 2007, and of its progression from

2001 to 2007.

Found at: doi:10.1371/journal.pgen.1001146.s008 (0.04 MB

XLS)

Text S1 Details of how Weka platform was used in the

prediction studies.

Found at: doi:10.1371/journal.pgen.1001146.s009 (0.24 MB PDF)

Text S2 Supporting discussion text.

Found at: doi:10.1371/journal.pgen.1001146.s010 (0.05 MB PDF)
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Abstract

Background: Through the wealth of information contained within them, genome-wide association studies (GWAS)
have the potential to provide researchers with a systematic means of associating genetic variants with a wide variety
of disease phenotypes. Due to the limitations of approaches that have analyzed single variants one at a time, it has
been proposed that the genetic basis of these disorders could be determined through detailed analysis of the genetic
variants themselves and in conjunction with one another. The construction of models that account for these subsets
of variants requires methodologies that generate predictions based on the total risk of a particular group of
polymorphisms. However, due to the excessive number of variants, constructing these types of models has so far
been computationally infeasible.

Results: We have implemented an algorithm, known as greedy RLS, that we use to perform the first known wrapper-
based feature selection on the genome-wide level. The running time of greedy RLS grows linearly in the number of
training examples, the number of features in the original data set, and the number of selected features. This speed is
achieved through computational short-cuts based on matrix calculus. Since the memory consumption in present-day
computers can form an even tighter bottleneck than running time, we also developed a space efficient variation of
greedy RLS which trades running time for memory. These approaches are then compared to traditional wrapper-
based feature selection implementations based on support vector machines (SVM) to reveal the relative speed-up and
to assess the feasibility of the new algorithm. As a proof of concept, we apply greedy RLS to the Hypertension – UK
National Blood Service WTCCC dataset and select the most predictive variants using 3-fold external cross-validation in
less than 26 minutes on a high-end desktop. On this dataset, we also show that greedy RLS has a better classification
performance on independent test data than a classifier trained using features selected by a statistical p-value-based
filter, which is currently the most popular approach for constructing predictive models in GWAS.

Conclusions: Greedy RLS is the first known implementation of a machine learning based method with the capability
to conduct a wrapper-based feature selection on an entire GWAS containing several thousand examples and over
400,000 variants. In our experiments, greedy RLS selected a highly predictive subset of genetic variants in a fraction of
the time spent by wrapper-based selection methods used together with SVM classifiers. The proposed algorithms are
freely available as part of the RLScore software library at http://users.utu.fi/aatapa/RLScore/.
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Background
The common goal of genome-wide association studies
(GWAS) is the identification of genetic loci that can help
to discriminate an individual’s susceptibility to various
common disorders. Identification of genetic features that
are highly predictive of an individual’s disease status
would facilitate the development of methods for deter-
mining both an individual’s risk of developing a clinical
condition along with the possibility of new treatment
options such as personalized medicine [1-5]. In the case of
GWAS, the common genetic marker of interest is the sin-
gle nucleotide polymorphism (SNP). It is widely theorized
that complex diseases can be predicted before an individ-
ual has been found to have a clinical manifestation of a
particular disorder [4,6,7]. The creation of more accurate
disease risk detection techniques will ideally assist clin-
icians in the development of new medicines in addition
to determining which individuals are in a greater need of
receiving expensive preventative treatments, while allow-
ing those who are at a low risk to avoid undergoing
potentially superfluous medical care.

While numerous genetic loci have been prior identi-
fied through standard SNP analyses, the results of these
studies have only provided a limited explanation regard-
ing an individual’s disease status [3,5,7-9]. Contrary to
the current knowledge of synergistic interactions amongst
genetic variants, traditional GWAS, through the use of
single-SNP association testing, have implemented anal-
ysis methodologies that ignore the epistasis interactions
between the genetic loci [3,7,10-12]. While it has been
prior demonstrated that the heritability of most disorders
is the result of numerous complex interactions between
multiple SNPs, the aggregate of the effects of these mark-
ers still provides a clinically insufficient prediction of
the disease status [10,13]. To account for these variant
interactions, association studies have begun to implement
various machine learning-based approaches to incorpo-
rate the complex epistasis pattern effects [3,7,14-16]. In
contrast to conventional statistical methods, machine
learning algorithms tend to place a larger emphasis on
prediction making and how the values of a particular
variant contribute to the effect of other markers, making
them ideal for developing predictive strategies in genetic
association studies.

In typical GWAS, the problems under study are mod-
eled as binary classification tasks. Examples are labeled
either as cases or controls for a particular disease, with
the cases representing those individuals who have the dis-
ease and the controls those who are free of the disease. In
recent years, methods of selecting the most relevant vari-
ants to prediction of a disease, known as feature selection,
have begun to gain prominence in bioinformatics studies
[7,17-20]. Two common feature selection methodologies
are commonly presented, filter and wrapper methods

[17,18]. In filter methods, the selection is done as a pre-
processing step before learning by computing univariate
statistics on feature-by-feature basis. The approach is
computationally efficient, but the methods are not able
to take into account the dependencies between the vari-
ants, or the properties of the learning algorithm which
is subsequently trained on the features. This can lead to
suboptimal predictive performance.

Delving deeper into feature selection, we consider the
wrapper model, in which the features are selected through
interaction with a classifier training method [21]. The
selection consists of a search over the power set of fea-
tures. For each examined feature set, a classifier is trained,
and some scoring measure, which estimates its general-
ization error, is used to evaluate the quality of the con-
sidered feature set. Measuring the feature set quality on
the training set is known to have a high risk of over-
fitting, and hence other estimates, such as those based
on cross-validation (CV) [22,23], have been proposed as
more reliable alternatives (see e.g. [21]). Since the size
of the search space grows exponentially with the num-
ber of features, testing all feature subsets is infeasible.
Rather, wrapper methods typically use search heuristics,
such as greedy forward or backward selection, or genetic
algorithms, to find locally optimal solutions. The wrapper
methods have been demonstrated to have the potential
to achieve better predictive performance than the filter
approach [7,18,24,25], but this increase in performance is
accompanied by increased computation times. This is due
to the property of the wrapper methods that they require
re-training a classification algorithm for each search step
and each round of CV.

A number of studies related to the use of wrapper-based
feature selection and the implementation of classifiers on
biological markers haven been published, with the major-
ity of the work dealing with the problem of gene selection
from DNA microarray data. One of the most successful
classifier learning algorithms in this domain has been the
support vector machine (SVM) [26]. Proposed approaches
include the combination of SVM classification with pre-
filtering of features [27,28], wrapper based methods
[29-31], as well as embedded methods that incorporate
feature selection within the SVM training algorithm, such
as the recursive feature selection method [32]. These pre-
vious approaches have been mostly proposed for and
tested on small scale learning problems, where the num-
ber of training examples ranges in at most hundreds, and
the number of features in thousands. However, it is not
straightforward to extend these methods to GWAS prob-
lems, where the training set sizes range in thousands and
feature set sizes in hundreds of thousands or even mil-
lions. From a scalability perspective, SVMs are actually
not a particularly suitable choice as a building block for
constructing feature selection methods, since the method
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has to be re-trained from scratch for each tested feature
set, and for each round of CV. This can lead to unfeasible
computational costs on large and high-dimensional data
sets. Due to this reason, previous studies on implement-
ing SVMs on GWAS have required pre-filtering of the data
[3,20,33]. The same problem naturally applies also to most
other classifier training methods.

Regularized least-squares (RLS), also known as the
least-squares support vector machine (LS-SVM), and
ridge regression, among other names, is a learning algo-
rithm similar to SVMs [34-40]. Numerous comparisons
of the SVM and RLS classifier can be found in the lit-
erature (see e.g. [37,40-43]), the results showing that
typically there is little to no difference in classification
performance between the two methods. However, for the
purposes of wrapper based feature selection, RLS has
one major advantage over SVMs, namely that RLS has
a closed form solution that can be expressed in terms
of matrix operations. This in turn allows the develop-
ment of computational shortcuts, which allow re-using
the results of previous computations when making minor
changes to the learning problem. The existence of a fast
leave-one-out (LOO) CV shortcut is a classical result [44],
that has recently been extended to arbitrarily sized folds
[45]. Similar shortcuts can be developed for operations
where features are added to the, or left out of the train-
ing set, and the resulting classification model is updated
accordingly. Such shortcuts have been used to derive RLS-
based wrapper selection methods for gene selection from
microarray data [19,46-48]. However, the previously pro-
posed methods did not fully utilize the possibilities of
matrix algebra for speeding up the computations, making
them still unsuitable for very large data sets, such as those
encountered in GWAS.

In the present work, we have developed and imple-
mented the first wrapper-based feature selection method
capable of performing feature selection on the entire span
of SNPs available in a typical GWAS, without the neces-
sity for pre-filtering to reduce the number of attributes.
The method is based on the greedy RLS algorithm [49],
which uses computational shortcuts to speed up greedy
forward selection with LOO error as the selection cri-
terion. Greedy RLS yields equivalent results to the most
efficient of the previously proposed methods for wrap-
per based feature selection with RLS, called the low-rank
updated LS-SVM method [48], while having lower com-
putational complexity. Namely, the running time of greedy
RLS grows linearly in the number of training examples,
the number of features in the original data set, and the
number of selected features. This is in contrast to the
low-rank updated LS-SVM that scales quadratically with
respect to the number of training data points. Further,
we propose a space-efficient variation of greedy RLS that
trades speed for decreased memory consumption. The

method is efficient enough to perform feature selection
on GWAS data with hundreds of thousands of SNPs and
thousands of data points on a high-end desktop machine.
As a case study, we were able to implement the method on
the Wellcome Trust Case-Control Consortium (WTCCC)
Hypertension (HT) dataset combined with the National
Blood Service (NBS) controls samples, obtaining a highly
discriminant classification on independent test data.

Related works
There exists a number of prior works in applying machine
learning based method to GWAS studies. For instance,
it was demonstrated that when SVMs are applied to the
results of filter based feature selection, high area under
the curve (AUC) values in the detection of Type 1 Dia-
betes (T1D) can be obtained [3]. More specifically, it was
shown that through the use of a filter method, in which
they selected only those features with significance values
of less than pre-selected thresholds, they could outper-
form logistic regression methods. The paper made the
discerning observation that using only more statistically
significant markers in disease prediction actually causes a
loss of information and thus a decrease in AUC [3]. Such
statistical p-value based filtering has also been shown
to result in sub-optimal prediction performance in other
studies [2,50,51].

Previously, we have shown that in a population based
candidate SNP study, a combined filter-wrapper approach
allowed for an accurate prediction of the onset of carotid
atherosclerosis on independent test data [7]. While the
accuracy of the wrapper-based methods was demon-
strated on a small subsample of available SNPs, the
method would not scale to unfiltered SNP sets. Also other
approaches, such as dimensionality reduction, have been
applied, but they were not able to scale to an entire
GWAS either [52]. Moreover, LASSO-based feature selec-
tion methods have been used, but only on a filtered-subset
rather than an entire GWAS [12,53]. Furthermore, several
other works have also addressed the issue of the com-
putational feasibility of implementing machine learning
algorithms on entire GWAS but have reported the same
conclusion, that at the moment it was not practical to use
such methods without extensive pre-filtering [15,54-56].

To conclude, the above mentioned works tend to make
use of various filters to initially reduce the total num-
ber of features to a number in which computationally
non-optimized algorithms can be applied. Most works
tend to filter the final number of SNPs being analyzed
to the tens of thousands. While such methods are often
sufficient for analyzing GWAS datasets, our aim here
is to show that it is computationally feasible to imple-
ment wrapper methods on entire GWAS scale with a
large number of training examples and all of the avail-
able features. This, in turn, can lead to discovering models
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with increased predictive performance, as is shown in our
experiments.

Methods
Preliminaries
Let us start by making the assumption that the task being
solved is a binary classification problem. We are supplied
with a training set of m examples, each having n real-
valued features, as well as a class label denoting whether
the example belongs to the positive or to the negative
class. In the case of GWAS, the features are representative
of the number of minor alleles present in a particular SNP
(either 0, 1 or 2, representing the minor allele count), the
examples represent each individuals data in a particular
study and the class label is the disease status of a particu-
lar example, with the positive class representing those who
have the disease and the negative class indicative of those
without the disease. Our goal is to select an informative
subset of the features, based on which we can construct
an accurate classifier for predicting the class labels of new,
unseen test examples.

Next, we introduce some matrix notation. Let Rm and
Rn×m denote the sets of real-valued column vectors and
n × m-matrices, respectively. To denote real valued matri-
ces and vectors we use bold capital letters and bold lower
case letters, respectively. Moreover, index sets are denoted
with calligraphic capital letters. By denoting Mi, M:,j, and
Mi,j, we refer to the ith row, jth column, and (i, j)th entry
of the matrix M ∈ Rn×m, respectively. Similarly, for index
sets R ⊆ {1, . . . , n} and L ⊆ {1, . . . , m}, we denote the
submatrices of M having their rows indexed by R, the
columns by L, and the rows by R and columns by L as
MR, M:,L, and MR,L, respectively. We use an analogous
notation also for column vectors, that is, vi refers to the
ith entry of the vector v.

Let X ∈ Rn×m be a matrix containing the whole fea-
ture representation of the examples in the training set,
where n is the total number of features and m is the num-
ber of training examples. The (i, j)th entry of X contains
the value of the ith feature in the jth training example.
Note that while we here define X to be real-valued, in
GWAS the data can usually be stored in an integer-valued
matrix, which is much more memory efficient. The mem-
ory issues concerning the data types are discussed more in
detail below. Moreover, let y ∈ Rm be a vector containing
the labels of the training examples. In binary classification
tasks, we restrict the labels to be either 1 or −1, indicating
whether the data point belongs to the positive or negative
class, respectively.

In this paper, we consider linear predictors of type

f (x) = wTxS , (1)

where w is the |S|-dimensional vector representation of
the learned predictor and xS can be considered as a

mapping of the data point x into |S|-dimensional fea-
ture space.a Note that the vector w only contains entries
corresponding to the features indexed by S . The rest of
the features of the data points are not used in the pre-
diction phase. The computational complexity of making
predictions with (1) and the space complexity of the pre-
dictor are both O(|S|) provided that the feature vector
representation xS for the data point x is given.

Wrapper-based feature selection
In wrapper-based feature selection, the most commonly
used search heuristic is greedy forward selection in which
one feature is added at a time to the set of selected fea-
tures, but features are never removed from the set. A
pseudo code of a greedy forward selection that searches
feature sets up to size k, is presented in Algorithm 1. In the
algorithm description, the outermost loop adds one fea-
ture at a time into the set of selected features S until the
size of the set has reached the desired number of selected
features k. The inner loop goes through every feature that
has not yet been added into the set of selected features
and, for each of those, computes the value of the heuris-
tic H for the set including the feature under consideration
and the current set of selected features. With H(XR, y),
we denote the value of the heuristic obtained with a data
matrix XR and a label vector y. In the end of the algo-
rithm description, t(XS , y) denotes the black-box training
procedure which takes a data matrix and a label vector as
input and returns a vector representation of the learned
predictor w.

Algorithm 1 Wrapper-based feature selection
1: S ← ∅
2: while |S| < k do
3: e ← ∞
4: b ← 0
5: for i ∈ {1, . . . , n} \ S do
6: R ← S ∪ {i}
7: ei ← H(XR, y)

8: if ei < e then
9: e ← ei

10: b ← i
11: S ← S ∪ {b}
12: w ← t(XS , y)

Using the training set error as a selection heuristic is
known to be unreliable due to overfitting, and therefore it
has been proposed to measure the quality of feature sets
with CV [57]. The CV approach can be formalized as fol-
lows. Let C = {1, . . . , m} denote the indices of the training
instances. In CV, we have a set H = {H1, . . . , HN } of hold-
out sets, where N ∈ N is the number of rounds in CV and
Hi ⊆ C. In the most popular form of N-fold CV, the hold-
out sets are mutually disjoint, that is, Hi ∩ Hj = ∅ when
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i 	= j. Now, given a performance measure l, the average
performance over the CV rounds is computed as

L(X, y) =
∑

H∈H

l
(
fH(X:,H), yH

)
,

where fH is a predictor which is trained with the exam-
ples indexed by H = C \ H, and X:,H and yH contain,
respectively, the features and the labels of the examples
indexed by H. Leave-one-out (LOO) CV is an extreme
form of N-fold CV in which every hold-out set is of size
one and every training example is held out at a time, that
is, N = m.

Since the outer and inner loops in Algorithm 1 have k
and n rounds, respectively, the computational complexity
of the wrapper based greedy forward selection is O(knH),
where H is the complexity of calculating the value of the
heuristic for feature sets of size up to k. For example, if we
use LOO error as a heuristic and the LOO calculation is
wrapped around a black-box training algorithm, the time
complexity of the heuristic is usually m times the com-
plexity of the training method. This is often infeasible in
practice. Fortunately, as it is widely known in literature,
computational short-cuts enabling the calculation of the
LOO error without needing to retrain the predictor from
scratch exist for many machine learning methods (see e.g.
[23]).

The selection of the performance measure l used in the
CV heuristics may also have an effect on the computation
time. The performance measure can be selected to be the
same as the one we aim to maximize in the first place but
it may also make sense to use approximations in order to
speed up the feature selection process. For example, while
the computation of AUC requires O(m log(m)) floating
point operations, the mean squared error can be com-
puted in a linear time. These complexities are, of course,
usually negligible compared to the training complexities
of the learning methods. However, this is not the case for
the greedy RLS method as we will show below.

Support vector machines and regularized least squares
A large class of machine learning algorithms can be for-
mulated as the following regularized risk minimization
problem [58]:

w∗ = argmin
w∈R|S|

{
l
(
(XS)Tw, y

)
+ λwTw

}
, (2)

where the first term is the empirical risk measuring how
well w fits the training data, wTw is the quadratic regular-
izer measuring the complexity of the considered hypoth-
esis, λ > 0 is a parameter, and l : Rm × Rm �→[ 0, ∞)

is a convex loss function measuring how well a predicted
and true label match. The regularized risk minimization
framework (2) can be extended to non-linear learning and

structured data by means of the kernel trick [59], however
this is not necessary for the considerations in this paper.

The hinge loss, defined as

l
(
(XS)Tw, y

)
=

m∑
i=1

max
(

1 − yi((XS)Tw)i, 0
)

, (3)

leads to the soft margin Support Vector Machine (SVM)
problemb [26], when inserted into equation (2).

The squared loss, defined as

l
(
(XS)Tw, y

)
=

(
(XS)Tw − y

)T (
(XS)Tw − y

)
, (4)

leads to the Regularized Least-Squares (RLS) problem
[34-40].

Greedy regularized least-squares
We next recall the description of greedy RLS, our lin-
ear time algorithm for greedy forward selection for RLS
with LOO criterion, which was introduced by us in [49].
A detailed pseudo code of greedy RLS is presented in
Algorithm 2.

Algorithm 2 Greedy RLS
1: a ← λ−1y
2: a ← λ−1y
3: C ← λ−1XT

4: S ← ∅
5: while |S| < k do
6: e ← ∞
7: b ← 0
8: for i ∈ {1, . . . , n} \ S do
9: u ← C:,i(1 + XiC:,i)−1

10: ã ← a − u(Xia)

11: ei ← 0
12: for j ∈ {1, . . . , m}
13: d̃j ← dj − ujCj,i
14: p ← yj − (d̃j)−1ãj
15: ei ← ei + (p − yj)2

16: if ei < e then
17: e ← ei
18: b ← i
19: u ← C:,b(1 + XbC:,b)

−1

20: a ← a − u(Xba)

21: for j ∈ {1, . . . , m} do
22: dj ← dj − ujCj,b
23: C ← C − u(XbC)

24: S ← S ∪ {b}
25: w ← XSa

First, we consider finding a solution for the regulariza-
tion problem (2) with the squared loss (4) for a fixed set of
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features S :

argmin
w∈R|S|

{(
(XS)Tw − y

)T (
(XS)Tw − y

)
+ λwTw

}
.

(5)

By setting the derivative of (5) with respect to w to zero,
we get

w = (XS(XS)T + λI)−1XSy (6)
= XS((XS)TXS + λI)−1y, (7)

where I is the identity matrix and the second equality is
due to the well-known matrix inversion identities (see e.g.
[60]).

Before continuing, we introduce some extra notation.
Let

G = ((XS)TXS + λI)−1. (8)

While the matrix G is only implicitly used by the algo-
rithms we present below, it is nevertheless a central
concept in the following considerations. Moreover, let

a = Gy,
d = diag(G),
C = GXT, (9)

where diag(G) denotes a vector that consist of the diago-
nal entries of G. In the literature, the entries of the vector
a ∈ Rm are often called the dual variables, because the
solutions of (5) can be equivalently expressed as w = XSa,
as can be observed from (7).

Next, we consider a well-known efficient approach for
evaluating the LOO performance of a trained RLS predic-
tor (see e.g. [23,61]). Provided that we have the vectors a
and d available, the LOO prediction for the jth training
example can be obtained in constant number of floating
point operations from

yj − (dj)
−1aj. (10)

We note that (10) can be further generalized to hold-out
sets larger than one (see e.g. [45]).

In order to take advantage of the computational short-
cuts, greedy RLS maintains the current set of selected
features S ⊆ {1, . . . , n}, the vectors a, d ∈ Rm and the
matrix C ∈ Rm×n. In the initialization phase of the greedy
RLS algorithm (lines 1-4 in Algorithm 2) the set of selected
features is empty, and hence the values of a, d, and C are
initialized to λ−1y, λ−11, and λ−1XT, respectively, where
1 ∈ Rm is a vector having every entry equal to 1.

The middle loop of Algorithm 2 traverses through the
set of n − |S| available features and selects the one whose
addition decreases the LOO error the most. The inner-
most loop computes the LOO error for RLS trained with
features S ∪ {i} with formula (10). For this purpose,

the vectors a and d must be modified so that the effect of
the ith feature is removed. In addition, when the best fea-
ture is found, it is permanently added into S after which
the vectors a and d as well as the matrix C are updated.
Since the definitions of a, d, and C all involve the matrix
G, we first consider how the feature additions affect it. We
observe that G corresponding to the feature set S ∪{i} can
be written as

G̃ = ((XS)TXS + (Xi)
TXi + λI)−1 (11)

= G − uXiG, (12)

where

u = C:,i(1 + XiC:,i)
−1. (13)

The equality (12) is due to the well-known Sherman-
Morrison-Woodbury formula (see e.g. [60]). Accordingly,
the vector ã corresponding to S ∪ {i} can be written as

ã = (G − uXiG)y
= a − u(Xia), (14)

the jth entry of d̃ as

d̃j = (G − uXiG)j,j

= (G − u(C:,i)
T)j,j

= dj − ujCj,i, (15)

and the cache matrix C as

C − u(XiC).

By going through the matrix operations in the pseudo
code of greedy RLS in Algorithm 2, it is easy to verify that
the computational complexity of the whole algorithm is
O(kmn), that is, the complexity is linear in the number
of examples, features, and selected features. Considering
this in the context of the analysis of wrapper-based feature
selection presented above, this means that the time spent
for the selection heuristic is O(m), which is far better than
the approaches in which a black-box training algorithm is
retrained from scratch each time a new feature is selected.

Space efficient variation
The computational efficiency of greedy RLS is sufficient
to allow its use on large scale data sets such as those
occurring in GWAS. However, the memory consumption
may become a bottleneck, because greedy RLS keeps the
matrices X ∈ Rn×m and C ∈ Rm×n constantly in mem-
ory. In GWAS, the data matrix X usually contains only
integer-valued entries, and one byte per entry is sufficient
for storage. In contrast, the matrix C consists of real num-
bers which are in most systems stored with at least four
bytes per entry.

In this section, we present a variation of greedy RLS
which spends less memory when dealing with large data
sets. Namely, the proposed variation avoids storing the
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cache matrix C in memory, and hence the memory con-
sumption is dominated by storing the matrix X. The
savings can be significant if the training data is integer
valued, such as in SNP datasets.

The pseudo code of this variation is given in Algorithm
3. Next, we describe its main differences with Algorithm 2
and analyze its computational complexity and memory
consumption in detail. Formally, let

r = min(m, |S|)
and let

XS = U�VT

be the economy-size (see e.g. [62]) singular value decom-
position (SVD) of XS , where U ∈ R|S|×r and V ∈ Rm×r

contain the left and the right singular vectors of X, respec-
tively, and � ∈ Rr×r is a diagonal matrix containing the
corresponding singular values. Note that XS has at most
r nonzero singular values. Since we use the economy-size
SVD, where we only need to store those singular vectors
that correspond to the nonzero singular values, the size
of the matrices U and V is determined by r. The com-
putational complexity of the economy-size SVD of XS
is O(min(m2|S|, m|S|2)) (see e.g. [62]). Substituting the
decomposed data matrix into (8), we get

G = (XTX + λI)−1

= (V�TUTU�VT + λI)−1

= (V�T�VT + λI)−1

= V((�T� + λI)−1 − λ−1I)VT + λ−1I
= V�VT + λ−1I,

where

� = (�T� + λI)−1 − λ−1I

and the dimensions of the identity matrices are either r×r
or m × m depending on the context. Note that inverting
�T� + λI requires only O(r) time, because it is a diago-
nal matrix. Now, the ith column of the matrix C can be
written as

c = V(�(VT(Xi)
T)) + λ−1(Xi)

T (16)

which can be computed in O(mr) time.

Algorithm 3 Space Efficient Greedy RLS
1: a ← λ−1y
2: d ← λ−11
3: S ← ∅
4: V ← 0
5: � ← 0
6: while |S| < k do
7: e ← ∞
8: b ← 0
9: for i ∈ {1, . . . , n} \ S do

10: c ← V(�(VT(Xi)T)) + λ−1(Xi)T

11: u ← c(1 + Xic)−1

12: ã ← a − u(Xia)

13: ei ← 0
14: for j ∈ {1, . . . , m} do
15: d̃j ← dj − ujcj
16: p ← yj − (d̃j)−1ãj
17: ei ← ei + (yj − p)2

18: if ei < e then
19: e ← ei
20: b ← i
21: c ← V(�(VT(Xb)

T)) + λ−1(Xb)
T

22: u ← c(1 + Xbc)−1

23: a ← a − uXba)

24: for j ∈ {1, . . . , m} do
25: dj ← dj − ujcj
26: �, VT ← SVD(XS)

27: � ← (�T� + λI)−1 − λ−1I
28: S ← S ∪ {b}
29: w ← XSa

If k is the number of features that will be selected,
SVD has to be computed k times, resulting in com-
plexity O(min(k3m, k2m2)). The computation of (16)
is performed O(kn) times resulting in a complexity
O(min(k2mn, km2n)), which dominates the overall com-
putational complexity of this variation. Since storing and
updating the cache matrix C is not required in Algorithm
3, the memory consumption is dominated by the data
matrix X, which can, in the context of GWAS data, be
stored as an array of integers. In addition, computing and
storing the right singular vectors requires a real valued
matrix of size m × r. However, this has a negligible mem-
ory consumption unless both k and m are close to n, which
is usually not the case in GWAS. To conclude, in GWAS
experiments, the memory consumption of Algorithm 3 is
about one fifth of that of Algorithm 2 because it avoids
storing C that requires four bytes of memory per entry
whereas X requires only one. The timing comparison of
the space efficient model when compared with the normal
greedy RLS can be seen in Figure 1.

Results and discussion
In the experiments, we first demonstrate the scalability
of the greedy RLS method to large-scale GWAS learn-
ing. As a point of comparison, we present runtimes for
a wrapper-based selection for an SVM classifier to which
we refer as SVM-wrapper. The greedy RLS algorithm was
implemented in C++ to allow for minimal overhead with
regards to looping over large datasets and to allow efficient
future adaptations of the code, such as parallelization to
take advantage of both shared and distributed memory
systems. The space-efficient version of the greedy RLS
method was implemented in Python, in order to make
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use of its well established numerical analysis packages for
computing the required singular value decompositions.
For the SVM-wrapper, we chose to use the LibSVM in
Weka 3.7.3 [63,64] and LibSVM in the e1071 package in
R [65-67]. This choice was made because these environ-
ments have been commonly used in other studies that
have attempted to solve similar problems, and since the
LibSVM package itself is known to be one of the most
efficient existing SVM implementations. The scalability
experiments were run on randomly sampled subsets of
the WTCCC HT-NBS dataset [1]. The predictive perfor-
mance of greedy RLS is demonstrated on an independent
test set, and the biological relevance of the results are
briefly analyzed.

Scalability experiments
In the scalability experiment, the number of training
examples was held fixed at 1,000, but the number of fea-
tures was incrementally increased. The considered feature
set sizes were 10, 100, 1,000, 10,000, 100,000, 250,000
and 500,000. All methods implemented greedy, wrapper-
based selections. The number of selected features was
set to 10. By definition, greedy RLS uses LOO-CV as
the selection criterion. We used the less computationally
demanding 10-fold CV for the SVM-wrappers, because
of the high computational costs of performing LOO for
SVMs. The selection criterion for the individual features
in the dataset was based on the root mean squared error
(RMSE). The choice was made for computational rea-
sons, since computing RMSE can be done in linear time,
whereas computing the more commonly used AUC mea-
sure has O(m log(m)) complexity due to a required sorting
operation. RMSE as a selection criterion can be expected
to work well as long as the class distributions are not very
imbalanced (see e.g. [68]).

In Figure 1, we present the run-time comparisons of
the two proposed variations of greedy RLS. As expected
from the theory presented in the Methods section, along
with the speed advantages of C++ over Python, the fast
implementation turned out to be orders of magnitude
faster than the space-efficient version. This performance
increase comes at a cost requiring higher memory usage,
hence making it infeasible to run the basic greedy RLS
on the GWAS containing a very large number of train-
ing examples. For these scenarios it would be necessary to
implement the space-efficient variation.

From the runtimes in Figure 2 it can be ascertained
that other than greedy RLS, the current, commonly used
algorithms for wrapper-based methods are not computa-
tionally efficient enough to scale up to entire GWAS. The
R implementation of the SVM-wrapper took over 5 hours
to select 10 features out of 10, 000 and at 100, 000 features
the run had to be terminated early since it exceeded the
pre-determined cut-off time of 24 hours. In the commonly
used Weka environment, the approach scaled worse with
the program not being able to complete the selection in
a 24 hour period for the dataset consisting of 10, 000 fea-
tures. In contrast, greedy RLS computed the selection
process even on 500, 000 features in 1 minute while the
space-efficient greedy RLS performed the feature selec-
tion process on the same dataset in under 24 minutes (see
Figure 2).

Generalization Capability
In addition to the run time comparisons, we also con-
ducted a sample run on the entire WTCCC HT-NBS
dataset to predict an individual’s risk for hypertension and
to investigate whether greedy RLS can accurately discrim-
inate between the risk classes on an independent test set.
In order to reduce the variance of the results, we adopt
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the so-called nested CV approach (see e.g. [69-71]), in
which an external CV is used for estimating the general-
ization capability of the learned models and an internal
CV for assessing the quality of feature sets separately dur-
ing each round of the external CV. First, the whole dataset
was divided into three equally sized folds. Each of the
three folds were used as a test set one at a time, while the
remaining two were used to form a training set. Finally, the
results of these three external CV rounds were averaged.
The internal selection process itself with the LOO-CV cri-
terion was run on the training sets, and up to 50 features
were selected. The test folds were used only for computing
the final test results for the models obtained after running
the whole feature selection process.

In Figure 3, we present the leave-one-out cross-
validated mean squared errors on the training sets in
the three external CV rounds, used as the selection

criterion by greedy RLS. The three selection criterion
curves behave quite similarly, even if the corresponding
training sets overlap with each other only by half of their
size. The curves are monotonically decreasing, which is
to be expected, as it is very likely that the selection cri-
terion overfits due to the excessive number of available
features to choose from (see e.g. [69] for further discus-
sion). Clearly, they are not trustworthy in assessing the
true prediction performance of the learned models. A
separate test fold is thus necessary for this purpose.

During each round of the external CV, after the selec-
tion process has been performed for a number of features
ranging from 1 to 50, the AUCs of the learned models are
evaluated on the independent test fold that was not seen
during the selection (a.k.a nested CV). The results aver-
aged over the three test folds are presented in Figure 4.
At first the AUC keeps increasing with the number of
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overfits to the training folds during the selection process.
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Figure 4 Comparison of feature selection approaches in terms of predictive accuracy. The prediction performances of the models learned by
greedy RLS were assessed using area under the ROC curve (AUC), averaged over the three folds of an external CV. On each round of the external CV,
the training set on which the features are selected consisted of 2/3, and the independent test set on which the prediction performance is measured,
1/3 of the 3, 410 subjects, with a stratified training/test split. The graph also displays the individual SNP AUCs for each of the variants selected by
greedy RLS. Further, results are depicted for a p-value based filtering in which the top k most significant features were selected. We also present a
curve that displays the results for the hybrid method in which greedy RLS runs on the top k features ranked according to their p-values. Finally, we
present a random permutation on the class labels and running greedy RLS on this randomized dataset.

selected features reaching its peak 0.84 AUC at 15 fea-
tures, after which it starts decreasing. The result demon-
strates that the selection process must be stopped early
enough in order to avoid overfitting. Note that as observed
from the Figure 3, the leave-one-out error does not pro-
vide a reliable criterion for determining the stopping point
due to its use in the feature selection process. Rather, the
AUC observed on an independent test fold not used dur-
ing selection can be used to determine the number of
features to select.

We compared the prediction performance of greedy
RLS to that of two commonly used approaches in GWAS,
which are both based on training a classifier on fea-
ture sets selected through filtering [3,7,18]. The reference
methods start by using p-value based filtering to rank the
features. The p-values were computed on the training sets
using PLINK, based on Fisher’s exact test on a 3x2 contin-
gency table of the genotypes. The filter approach is based
on training a RLS classifier directly on the top k features
having the smallest p-values. The second approach is a
hybrid method, where the filters are first used to select 50
features with the smallest p-values and then greedy RLS
is used to select k features from this set of pre-filtered
features afterwards. The baseline results are based on the
same three-fold CV setting as the results of greedy RLS.

As expected, the first feature selected by all of the
approaches was the same since the LOO error employed
by the greedy RLS as a selection criterion does not consid-
erably differ from the statistical tests when computed for
a single feature. Afterwards, however, greedy RLS begins
to outperform the baseline methods, as the filter-based

and hybrid approaches tend to select features that may
be highly correlated with the already selected features.
From Figure 4 it can be noted that while the performance
of the hybrid method on the test set performs similarly
to that of greedy RLS for the first couple of features, it
relatively quickly begins to level off around 0.77 AUC,
peaking at 0.78, below that of greedy RLS’s maximum. In
contrast, the filter method requires considerably more fea-
tures before its prediction performance gets close to 0.77,
peaking at 0.80 before beginning to decline. The results
indicate that through the use of wrapper based feature
selection, it is possible to identify sets of features that
have the capacity to outperform those selected by filter or
hybrid methods. The total time to select the top features
over the three folds of the external CV was approximately
26 minutes.

To measure the performance of the selected variants in
a single-feature association analysis, the individual AUC
of each of the 50 selected features was computed (see
Figure 4). It can be observed that most of the single-
feature AUCs are close to a random level. The maximal
AUC (0.63) occurs for the first selected variant. This lack
of power for the majority of the selected SNPs to dis-
tinguish between cases and controls would lead to the
conclusion that the selected variants individually are not
associated with the disease. On the contrary, when the
combined phenotypic effect of these variants is taken into
account with the RLS algorithm, much more accurate
models can be trained.

To demonstrate that the experimental setup was imple-
mented correctly, so that there is no information leak
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between the training and test data, we conducted a fea-
ture selection based on a random permutation of the
class labels. The data and the training/test set splits were
identical to those used in the original run, with the only
difference being that the class labels in the dataset were
randomly permuted prior to running the experiments.
The top fifty features were then selected as before and
the resulting AUC of the trained classifier implemented
on the test set was recorded. As expected, the random-
ized class labels run resulted in random AUCs regardless
of the number of features that were selected (see Figure 4),
indicating that the results of a random labeling can not
generalize beyond the original data, whereas the original
SNPs have a greater ability to make accurate predictions
on independent datasets.

Feature selection results
The application of machine learning algorithms to com-
plex GWAS datasets is not a trivial task, and there are
numerous factors that can strongly alter the result in such
settings. Without a solid understanding of the methodolo-
gies, it is very easy for researchers to come to incorrect
conclusions about the results presented to them. Addi-
tionally, these methods can be heavily affected by any
quality control procedures that are implemented. We
show here that a number of the selected features are linked
to prior identified factors in other published manuscripts.
However, wrapper-based approaches are prone to select-
ing features that have unforeseen epistatic interactions
amongst them and it can therefore be expected that not
all of the selected features will be present in the literature.
As such, while certain variants with known phenotypes
[72-74], such as blood pressure, can be expected to be
selected, as with any GWAS, it is likely that previously
unidentified SNPs may also demonstrate disease associa-
tions.

To study the cellular mechanisms behind the selected
variants, we mapped the top selected features identified
by greedy RLS run on the entire cohort. To map the phe-
notypes we conducted a literary review of the SNPs and
genes that are located within 20,000 base-pairs based on
results from the dbSNP database [75]. The number of fea-
tures to be analyzed, 15, was determined by the point at
which the maximal AUC was obtained from the nested
CV, as explained in the previous section. Of the fifteen
variants, five have been identified in other publications
to have either known or possible links (through gene
mapping) to hypertension and related phenotypes (see
Table 1): HTR3B (two variants), MIR378D1, rs10771657,
SCOC.

Variants with interesting mappings included
MIR378D1, HTR3B, SCOC and rs10771657. MIR378D1,
better known as microRNA 378d-1, is a gene located
on chromosome 4 which is involved in the function

Table 1 Variants selected by the greedy RLS algorithm
SNP Gene Chromosome Position

rs7837736 Intergenic 8 15296703

rs1908465 Intergenic 8 15308433

rs17116117 HTR3B 11 113801591

rs10843660 Intergenic 12 30368457

rs17667894 MIR17HG 13 92014309

rs17116145 HTR3B 11 113804326

rs10771657 Intergenic 12 30359294

rs17459885 Intergenic 12 30360879

rs16837871 MIR378D1 4 5941112

rs7691494 C4orf50 4 5942649

rs6588810 ASMT X 1753118

rs11005510 Intergenic 10 58532989

rs6840033 SCOC 4 141228861

rs10499044 Intergenic 6 107141295

rs2798360 LOC100422737 6 107148473

The list of the top 15 selected features on the entire cohort. The first column
represents the SNP identifier. The second column indicates which gene the
particular SNP is mapped to, or if it can not be mapped to any gene then it is
marked as an intergenic sequence. The third and fourth columns are the
chromosome number and base-pairs location of the SNP, respectively.

of microRNA-378. It has been shown previously that
mircoRNA-378 promotes angiogenesis through its over-
expression and targeting of Sufu-associated pathways
[76]. Angiogenesis, the process of new blood-vessels
growing from existing ones, is associated with hyper-
tension in [77]. Also, SCOC (short coiled-coil protein)
has been significantly associated with hypertension [78].
HTR3B was previously identified as having a possible link
to the control of blood pressure in rats, through its central
influence on the sympathoinhibitory mechanism [74,79].
While this study focused on rats, it provides enough
evidence to warrant HTR3B as being a candidate for
examination in human-based GWAS studies. Similarly,
rs10771657 was examined in other studies and identified
as having a statistical association towards pulmonary
function, a trait related to hypertension [80].

Nine out of the top fifteen selected features were also
among the fifty features with the lowest p-values. As
already discussed in previous section, the filter methods
tend to select features that are correlated with each other,
and therefore some of the features among the ones with
the lowest p-values will not be selected by greedy RLS
because of their redundancy with the previously selected
features. Moreover, in contrast to the filter methods, all
the features selected by greedy RLS may not be very
informative individually but will be helpful for construct-
ing a predictor when used together with other genetic
features. We therefore believe that there is a strong pos-
sibility that the genetic features selected by greedy RLS
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are linked to the underlying biology, even if all of their
disease-associations have not yet been established.

Materials
Study cohort
For building and testing the model we examined data
from the Wellcome Trust Case-Control Consortium’s
(WTCCC) study cohorts along with the set of controls
from the UK National Blood Service Control Group
(NBS). WTCCC is a group of 50 UK-based research
groups whose aim is to better understand patterns
amongst the genetic variants and their relation to disease
onset [1].

From the WTCCC data cohorts we chose to examine
a single case study, the Hypertension (HT) dataset in
conjunction with the NBS controls set [1]. The original
dataset consisted of 3,501 individuals and 500,568 SNPs
distributed across 23 chromosomes that were originally
sequenced with the Affymetrix 500k chip. From this set,
91 individuals and 30,956 SNPs were removed based on
the exclusion lists for the associated datasets [1]. This
reduced set was further filtered in PLINK based on stan-
dard quality control procedures including implementing
filters that excluded features that failed the Hardy-
Weinberg equilibrium in the controls with a threshold of
P < 1 × 10−3, a minor allele frequency of 1%, a missing
rate of 5%, along with a filter eliminating individuals who
were missing data from more than 5% of SNPs [2,3,81-85].
After this quality control the dataset incorporated 3,410
individuals and 404,452 SNPs. As the aim of this study
was to test the feasibility of the proposed algorithm,
rather than the suitability of the selected features, we
omitted advanced filtering methodologies such as popu-
lation stratification or the adjustment of call rates to more
conservative values.

Data treatment
The RLS and SVM based methods require, that the fea-
tures are encoded as numerical values. The SNP data that
was used in the runs were 0, 1 and 2 corresponding to the
minor allele count for the genetic feature, representing the
major allele homozygote, the heterozygote and the minor
allele homozygote respectively. For the scalability exper-
iment, the runs used 1,000 examples and 10, 100, 1,000,
10,000, 100,000, 250,000 and 500,000 features. The file for-
mats used for the data input were ARFF, binary and binary
file formats for Weka, R and greedy RLS respectively.

Conclusions
This paper is a proof-of-concept of wrapper methods
being able to scale up to entire GWAS and having the
capacity to perform better than the traditional filter or
hybrid methods. Thorough consideration of the effects of
different quality control procedures on the results, and

biological validation of the found feature sets falls out-
side the scope of this study. The greedy RLS algorithm
is the first known method that has been successfully
used to perform a wrapper-based feature selection on an
entire GWAS. This novel approach created a solution for
an important problem, providing highly accurate results.
Both the computational complexity analysis and practi-
cal scalability experiments demonstrate that the method
scales well to large datasets. One critical question that
remains is, what is the optimum number of features to
select in such as study. While there is no definitive answer,
our results indicate that even a small number of features
may provide accurate prediction models.

The scalability of greedy RLS was compared to that of
SVM-based wrapper methods, namely LibSVM in both
the e1071 library in R and through a command line inter-
face with the Weka software package. We demonstrate
that unlike the proposed method, the other publicly avail-
able methods have too high computational runtimes to
be suitable for GWAS data sets. This is not to say that
there do not exist other equally valid machine learn-
ing algorithms that could handle this task. However, our
work is the first known implementation of wrapper based
selection that has been demonstrated to scale to entire
genome scans in GWAS. Machine learning-based fea-
ture selection is a powerful tool, capable of discovering
unknown relationships amongst feature subsets. How-
ever, researchers need to account for the computational
complexities involved in scaling the wrapper-based fea-
ture selection methods up to GWAS. Implementation of
wrapper approaches through the use of the learning algo-
rithm as a black box inside the wrapper is simply not
feasible on GWAS scale. Rather, one needs to know how
to optimally implement the procedure in order to re-use
computations done at different search steps and round of
cross-validation. Embedding of the computations is the
central key to allowing greedy RLS to scale to GWAS.

Endnotes
aIn the literature, the formula of the linear predictors often
also contain a bias term. Here, we assume that if such a
bias is used, it will be realized by using an extra constant
valued feature in the data points.
bThe method is often presented in the literature as an
alternative, but equivalent formulation as a constrained
optimization problem.
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24. Inza I, Larrañaga P, Blanco R, Cerrolaza AJ: Filter versus wrapper gene
selection approaches in DNA microarray domains. Artif Intell Med
2004, 31(2):91–103.

25. Moore JH, Asselbergs FW, Williams SM: Bioinformatics challenges for
genome-wide association studies. Bioinformatics 2010,
26(4):445–455.

26. Vapnik VN: The Nature of Statistical Learning Theory. New York:
Springer-Verlag New York Inc.; 1995.

27. Ben-Dor A, Bruhn L, Friedman N, Nachman I, Schummer M, Yakhini Z:
Tissue classification with gene expression profiles. J Comput Biol
2000, 7(3-4):559–583.

28. Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D:
Support vector machine classification and validation of cancer
tissue samples using microarray expression data. Bioinformatics 2000,
16(10):906–914.

29. Peng S, Xu Q, Ling XB, Peng X, Du W, Chen L: Molecular classification of
cancer types from microarray data using the combination of genetic
algorithms and support vector machines. FEBS Lett 2003,
555(2):358–362 .

30. Huerta EB, Duval B, Hao JK: A hybrid GA/SVM approach for gene
selection and classification of microarray data. In EvoWorkshops 2006,
LNCS 3907. Berlin, Heidelberg, Germany: Springer; 2006:34–44.

31. Duval B, Hao JK: Advances in metaheuristics for gene selection and
classification of microarray data. Brief Bioinf 2010, 11:127–141.

32. Guyon I, Weston J, Barnhill S, Vapnik V: Gene selection for cancer
classification using support vector machines. Mach Learn 2002,
46(1-3):389–422.

33. Liu Q, Yang J, Chen Z, Yang MQ, Sung A, Huang X: Supervised
learning-based tagSNP selection for genome-wide disease
classifications. BMC Genomics 2008, 9(Suppl 1):S6.

34. Hoerl AE, Kennard RW: Ridge regression: biased estimation for
nonorthogonal problems. Technometrics 1970, 12:55–67.



Pahikkala et al. Algorithms for Molecular Biology 2012, 7:11 Page 14 of 15
http://www.almob.org/content/7/1/11

35. Poggio T, Girosi F: Networks for approximation and learning. Proc IEEE
1990, 78(9).

36. Saunders C, Gammerman A, Vovk V: Ridge regression learning
algorithm in dual variables. In Proceedings of the Fifteenth International
Conference on Machine Learning (ICML 1998). San Francisco: Morgan
Kaufmann Publishers Inc.; 1998:515–521.

37. Suykens JAK, Vandewalle J: Least squares support vector machine
classifiers. Neural Process Lett 1999, 9(3):293–300.

38. Suykens J, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J: Least
Squares Support Vector Machines. Singapore: World Scientific Pub Co.; 2002.

39. Rifkin R, Yeo G, Poggio T: Regularized least-squares classification. In
Advances in Learning Theory: Methods, Model and Applications, Volume 190
of NATO Science Series III: Computer and System Sciences. Edited by Suykens
J, Horvath G, Basu S, Micchelli C, Vandewalle J. Amsterdam: IOS Press;
2003:131–154.

40. Poggio T, Smale S: The mathematics of learning: dealing with data.
Not Am Math Soc (AMS) 2003, 50(5):537–544.

41. Fung G, Mangasarian OL: Proximal support vector machine classifiers.
In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD 2001). New York: ACM;
2001:77–86.

42. Rifkin R: Everything Old Is New Again: A Fresh Look at Historical
Approaches in Machine Learning. PhD thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts, USA 2002.

43. Zhang P, Peng J: SVM vs regularized least squares classification. In
Proceedings of the 17th International Conference on Pattern Recognition
(ICPR 2004). Edited by Kittler J, Petrou M, Nixon M. Washington: IEEE
Computer Society; 2004:176–179.

44. Vapnik V: Estimation of Dependences Based on Empirical Data. New York:
Springer; 1982.

45. Pahikkala T, Boberg J, Salakoski T: Fast n-Fold cross-validation for
regularized least-squares. In Proceedings of the Ninth Scandinavian
Conference on Artificial Intelligence (SCAI 2006). Edited by Honkela T, Raiko
T, Kortela J, Valpola H. Otamedia: Espoo; 2006:83–90.

46. Daemen A, Gevaert O, Ojeda F, Debucquoy A, Suykens J, Sempoux C,
Machiels JP, Haustermans K, De Moor B: A kernel-based integration of
genome-wide data for clinical decision support. Genome Med 2009,
1(4):39.

47. Chen PC, Huang SY, Chen W, Hsiao C: A new regularized least squares
support vector regression for gene selection. BMC Bioinf 2009,
10:44.

48. Ojeda F, Suykens JA, Moor BD: Low rank updated LS-SVM classifiers for
fast variable selection. Neural Networks 2008, 21(2–3):437–449.

49. Pahikkala T, Airola A, Salakoski T: Speeding up greedy forward
selection for regularized least-squares. In Proceedings of The Ninth
International Conference on Machine Learning and Applications (ICMLA
2010). Edited by Draghici S, Khoshgoftaar TM, Palade V, Pedrycz W, Wani
MA, Zhu X: IEEE Computer Society; 2010.
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Abstract

A central challenge in systems biology and medical genetics is to understand how
interactions among genetic loci contribute to complex phenotypic traits and human
diseases. While most studies have so far relied on statistical modeling and
association testing procedures, machine learning and predictive modeling
approaches are increasingly being applied to mining genotype-phenotype
relationships, also among those associations that do not necessarily meet statistical
significance at the level of individual variants, yet still contributing to the combined
predictive power at the level of variant panels. Network-based analysis of genetic
variants and their interaction partners is another emerging trend by which to explore
how sub-network level features contribute to complex disease processes and related
phenotypes. In this review, we describe the basic concepts and algorithms behind
machine learning-based genetic feature selection approaches, their potential benefits
and limitations in genome-wide setting, and how physical or genetic interaction
networks could be used as a priori information for providing improved predictive
power and mechanistic insights into the disease networks. These developments are
geared toward explaining a part of the missing heritability, and when combined
with individual genomic profiling, such systems medicine approaches may also
provide a principled means for tailoring personalized treatment strategies in the
future.

Introduction
Most disease phenotypes are genetically complex, with contributions from combinations

of genetic variation in different loci. A major challenge of medical genetics is to deter-

mine a set of genetic markers, which when combined together with conventional risk

factors could be used in predicting an individual's susceptibility to developing various

complex disorders. The recent advances and wide availability of genetic technologies,

such as those based on genome-wide association (GWA) and next-generation sequencing

(NGS), have allowed for the in-depth analysis of the variation contained in the human

genome. In particular, these technologies are enabling the investigation of the genetic

architecture of complex diseases, with the aim of constructing more accurate disease risk

prediction models that would eventually facilitate effective approaches to personalized

prevention and treatment alternatives for many diseases [1,2]. While GWA studies have

successfully identified hundreds of genetic variants that are associated with complex
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human diseases and other traits [3-6], most variants identified so far using mainly statis-

tical association testing approaches only capture a small portion of the heritability and

even an aggregate of these effects is often not predictive enough for clinical utility, leaving

open the question of what may explain the remaining or ‘missing heritability’ [7].

Suggested explanations include, for instance, contributions from rare and structural

variants, genotype–environment and gene-gene interactions and sample stratification, or

simply that complex traits truly are affected by thousands of variants of small effect size

[8,9]. The relative contributions of these and other factors remain poorly understood,

which is hindering the development of improved models for disease risk assessment.

Given the multi-factorial nature of complex diseases, many authors have reiterated

the concept of interactions among genetic loci, so-called epistatic interactions, as one

of the major factors contributing to the missing heritability [9,10]. Epistatic genetic

interactions between or within genes are thought to be profoundly important in the de-

velopment of many complex diseases, but these interactions are often beyond the reach

of the conventional single-variant association testing procedures [11-14]. There exist

also increasingly complex interactions between genetic variants and environmental

factors that may contribute to the disease risk on an individualized basis. Consequently,

it has been argued that we should move away from the traditional ’one variant at a

time’ approach toward a more holistic, network-centric approaches, which take into ac-

count the complexity of the genotype-phenotype relationships characterized by mul-

tiple gene-gene and gene-environment interactions [15,16]. Although the conventional

statistical significance testing procedures have successfully identified several susceptibil-

ity loci, it has become clear that many of the true disease associations may be much

lower down on the ranked list of hits, compared to the top hits with the most statistical

support [4,17,18]. Ignoring the potential risk variants in this ‘gray zone’ of genetic infor-

mation is likely to result in models that are missing an important proportion of the

quantitative variation in heritability. Therefore, it may be that most of the heritability is

hidden rather than missing, but has not previously been detected because the individual

effects are too small to pass the stringent significance filters used in many studies, yet

still having significant contribution to the predictive power at the level of variant or

subject subsets, or when combined with non-genetic risk factors.

Here, we discuss how computational machine learning approaches can utilize hidden

interactions among panels of the genetic and other risk factors, predictive of the indi-

vidual disease risk by means of implementing genetic feature selection procedures and

network-guided predictive models. In contrast to the conventional population-level as-

sociation testing, which often detect only a few variants with statistical support beyond

the genome-wide significance level (e.g. p < 10-8), machine learning algorithms place

special emphasis on maximizing the predictive accuracy at the level of individual

subjects. The goal of feature selection is to identify such a panel of genetic and other

risk factors, which result in a model that optimally predicts the phenotypic response

variables, either the class labels in case-control classification (e.g. disease vs. healthy),

or quantitative phenotypes in regression problems (e.g. height prediction). While epi-

static genetic interactions may easily end up being averaged out in statistical association

models, machine learning-based predictive modeling can also take into account those

individual effects that are dependent on interactions with other variants or environ-

mental exposures, making these models convenient for developing predictive strategies
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for multi-factorial diseases. Indeed, it has been shown that single-locus p-value-based

selection strategies for constructing prediction models may lead to sub-optimal predic-

tion accuracies [17]. In another example, hundreds of genetic markers, many of which

did not originally meet the genome-wide level of statistical significance, were combined

into a predictive model of type 1 diabetes risk [18]. Even though diabetes is known to

involve many biological pathways, the large number of variants required may partly be

attributed also to the selection of variants based solely on their individual p-values,

which does not take into account any gene-gene interactions.

While machine learning-based computational approaches may provide a convenient

framework for making use of the whole spectrum of genetic information when

predicting an individual’s risk of developing a disease, these developments are still in

their very early stages. Implementation of highly scalable computational algorithms for

genetic feature selection is a key for making these frameworks effective enough for

mining data from current GWA studies, in which more than a million genetic variants

are assayed in thousands of individuals, not to mention the emerging data from NGS

studies, such as the 1000 Genomes project [19]. Recent improvements in constructing

accurate and scalable machine learning-based predictive models will be discussed in

Section 2. Another pressing problem inherent in every machine learning application is

the challenge of how to evaluate the predictive capability of the constructed models, in

order to avoid stating over-optimistic prediction results [20]. Model validation

approaches are described in Section 3. One approach to reducing the massive search

spaces and computational complexities is to use additional biological information in

the model construction process. There are already several successful examples of how

to make use of physical protein interaction networks when mining data from GWA

studies in the search of, for instance, regulatory models [16], epistatic interactions [21],

or disease genes [22]. In Section 4, we take the next step of network level analysis of

genetic variants and review recent data mining solutions capable of systematically util-

izing functional information from the interaction networks as a priori information

when building disease prediction models. Finally, in Section 5, we will list some current

challenges and possibilities as future directions toward improved understanding of indi-

vidual predisposition to genetically complex diseases such as cancers.

Selection of genetic risk factors for machine learning-based prediction
models
Rather surprisingly, the use of machine learning method in the context of genome-wide

data on genetic variants has yielded a relatively limited number of studies until the very

recent years (for a systematic literature review, see [20]), compared to the large number

of machine learning studies on other types of genomic datasets, especially genome-

wide gene expression profiles. Further, the combination of predictive modeling and

advanced feature selection algorithms have been implemented in an even more

restricted set of studies, even though these have generally yielded quite positive results

[15,23]. Indeed, many studies have demonstrated that the use of feature selection

approaches are capable of improving the prediction results beyond that when the same

model is implemented on features selected solely through prior knowledge of the dis-

ease or on those genetic variants which reach genome-wide statistical significance
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[18,23-25]. However, it is relatively challenging to extract the predictive signal from the

high-dimensional datasets originating from GWA or NGS studies, due to a number of

experimental and computational issues, many of which are different from those faced

when using data from microarray gene expression profiling. Further, in order to

construct accurate and reliable predictive models of complex phenotypes based on

genome-wide profiles of genetic variants, it is essential to have an understanding of

how to identify predictive features both individually and in groups of variant subsets,

and how different feature selection approaches can deal with issues such as epistatic

interactions and high-dimensional datasets [15]. Feature selection methods in machine

learning can broadly be divided into filter, wrapper and embedded methods. This

categorization is not strict, and each of the approaches has its own advantages and

disadvantages which are, in turn, very problem dependent. Next, we briefly describe

each feature selection category and consider some representative examples of each.

Filter methods

Filter methods for genetic feature selection are the most common in GWA studies due

to the simplicity of their implementation, low computational complexity, and the

human interpretability of the results. In their simplest form, filter methods calculate a

univariate test statistic separately for each genetic feature, and the features are then

ranked based on the observed statistic values. The highest ranked features form the

final set of selected features, on which a predictive model may be subsequently trained.

The number of features to be selected is either decided in advance or determined by a

pre-defined significance threshold for the test statistic. Several well-known statistical

tests have been used in GWA studies, including the Fisher’s exact test and Armitage

trend test [26-28], and an increasing number of statistical approaches are being

developed for rare variants and the NGS data [29-31]. Since this feature selection ap-

proach requires only a single pass through the whole data, single-locus filters can be

straightforwardly applied to even the largest genome sequencing datasets. Along with

the multiple testing problem, the primary drawback of the single-locus filter methods is

that they do not take account of the interactions between the features, which may lead

to selection of both false positives, such as redundant loci, and false negatives due to

epistasis interactions between or within loci [12,13,15]. More advanced filter methods

can also select specific risk variant combinations that are associated with a disease risk.

For instance, multifactor dimensionality reduction (MDR) is a non-parametric method

that can detect statistically significant genetic interactions among two or more loci in

the absence of any marginal effects, even in relatively small sample sizes [32]. While

proved to be useful for association testing, however, it has been argued that the

statistics being used to identify variants or their combinations, typically p-values for

disease risk association, are perhaps not the most appropriate means for evaluating the

predictive or clinical value of the genetic profiles [33].

Wrapper methods

Wrapper methods consist of three components: a search algorithm for systematically

traversing through the space of all possible feature subsets, a scoring function for evalu-

ating the predictive accuracy of the feature subsets, and the learning algorithm around
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which the feature selection procedure is wrapped [34]. Since the size of the power set

of the features grows exponentially with the number of genetic variants screened (say

n), testing all the feature subsets (2n) is computationally infeasible (n is on the order of

a million in a typical GWA study and much larger in NGS studies). Therefore, one

must resort in practice to local search methods that do not guarantee finding the opti-

mal subset but, nevertheless, usually lead to good local optima. For example, the greedy

forward selection adds one feature at a time to the set of selected features after

checking which of the remaining features would improve the value of the scoring func-

tion the most. Thus, the whole data set is traversed through once for each selected fea-

ture. To avoid getting trapped in poor local optima during the search in the complex

and high-dimensional genetic landscapes, modified local search strategies can be

utilized, including the backtracking option or several variations of evolutionary

algorithms. The most popular scoring functions used with wrapper methods are the

prediction error on the training set, a separate validation set, or cross-validation error.

The feature selection can be in principle wrapped around any learning method, but it is

beneficial if the method can be efficiently trained or if the already learned model can be

efficiently updated. Indeed, for some learning methods, such as regularized least-squares

(RLS), the search process can be considerably accelerated with computational short-cuts

for scoring function evaluation [23]. These inbuilt short-cuts bring the methods closer to

the next category of the selection methods, namely the embedded ones.

Embedded methods

Embedded methods have the feature selection mechanism built into the training algo-

rithm itself [35], that is, the predictive models they produce tend to depend only on a

subset of the original features. Perhaps the most well-known embedded method is

LASSO (least absolute shrinkage and selection operator), which is also recently being

applied to a larger number of GWA studies [20,25,36-38]. While only a few machine

learning approaches, in fact, allow for scaling-up to the genome-wide level, this has

been made possible in LASSO by the recently developed model training algorithms,

such as those based on the coordinate descent methods, which are computationally

very efficient. The problem setup resembles the wrapper approach in the sense that

there is an objective function for which one performs a stochastic search, such as cyclic

or stochastic coordinate descent, in order to find a global optimum. Basically, the

search algorithm goes through each feature at a time, and updates the corresponding

coefficient in the linear model under construction. The objective function consists of a

scoring metric such as the mean squared error (MSE) on the training data and a

regularization term that favors sparse linear models, that is, it tends to push the search

algorithm towards such models that have only a few nonzero parameters. Typically, co-

ordinate descent passes through the whole data set only a couple of times before con-

vergence, but the number of passes depends on the properties of the data, the desired

sparsity level, and the other possible hyperparameters. Wrappers and embedded

methods are known to have the ability to produce better results than filter methods in

many applications [23,25,39], but if not implemented correctly, they can easily lead to

the models failing to generalize beyond the training data, underscoring the importance

of rigid evaluation of the prediction models.
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The importance of evaluation of the predictive models for complex
phenotypes
One of the main challenges in feature selection is the accurate estimation of the predic-

tion performance of the machine learning models on new samples unseen at the

training phase, especially in settings in which the data is high-dimensional and the

number of labeled training data is relatively small. Given the massive dimensionality of

modern GWAS and NGS studies, it is in fact not very hard to find genetic features that

can almost perfectly fit to a small training set but fail to generalize to unseen data, a

phenomenon known as model overfitting. Therefore, the models learned from genetic

data should always be tested on independent data not used for training the model. In

case the number of labeled data is small, one must resort to cross-validation

techniques that repeatedly split the data into training and test sets, and the predictive

accuracy is reported as an average over the test folds. In many applications of genomic

predictors, there are a number of examples of the so-called selection bias [40], mean-

ing that the cross-validation is used to estimate the performance of the learning algo-

rithm only, but not the preliminary feature selection done on the whole data, therefore

leading to information leak and grossly over-optimistic results. Further, if cross-

validation is used for selecting the hyper-parameters of the learning algorithm or for

feature selection, this needs to be done within an internal cross-validation loop, separ-

ately during each round of an outer cross-validation loop [40-43]. This two-level tech-

nique is sometimes referred to as the nested cross-validation [42,44]. An example

demonstrating the behavior of a cross-validation error when it is used as a selection cri-

terion with greedy forward selection is presented in Figure 1. The error curve that con-

stantly decreases as a function of the number of selected features clearly indicates that

the cross-validation becomes a part of the training algorithm itself in the inner loop,

and therefore it cannot be trusted as a measure of true prediction performance for

unseen data.

The evaluation of the predictive power is important also when considering predictive

models constructed on the basis on statistical significant variants. For instance, there

are numerous observations showing that the increases in the proportion of variance

explained by significant variants does not go hand in hand with improved genetic pre-

diction of disease risk. For instance, when using statistical modeling on the single

training sample only, a panel of thousands of non-significant variants collectively could

capture over one-third of the heritability for schizophrenia, but the same panel only

explained a few percent of disease susceptibility in another replication cohort [8]. Simi-

larly, while the statistical explanation power of the genetic variation in human height

could be substantially increased by considering increasing number of common variants

in a single population sample [45], the proportion of variance accounted for in other

independent samples was much smaller [46]. These examples underscore the import-

ance of rigid validation of the predictive accuracy of the models based on genetic

profiles. While external cross-validation is a valid option, it is not free of any study-

specific factors. For example, if there is a problem during the genotyping phase, it will

appear also in any training and test data splits. These errors, stemming from problems

during the experimental design and/or quality control have led for the need to re-

evaluate the established methods and use caution when claiming replication [47]. The

recommended option for truly validating the generalizability of predictive risk models
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is to make use of a large enough set of independent samples in which there is no over-

lap between the examined cohorts [48]. However, here one should consider whether

the aim is to validate the predictive model itself (e.g. using external cross-validation or

independent validation samples), or the predictive variants selected by the model (repli-

cation of the model construction or its application to separate cohorts) [49].

Through the development of better model validation techniques and unbiased exam-

ination of all feature subsets in genome-wide scale, we are likely to continuously im-

prove the accuracy of the predictive models and increase their reproducibility on

independent population samples. A challenge here is that differences in the population

genetic structure, attributable to confounding factors such as the ethnicity or ancestry

of the subjects, may result in highly heterogeneous datasets with a number of hidden

subject sub-groups, which may associate with divergent disease phenotypes and

therefore cause an increased false-positive rates [50]. Related to this, while there are

comparisons among various feature selection methods and predictive modeling

frameworks on individual cohorts [23,24,27], there is not yet any definitive results

whether one method will universally lead to optimal results in other subject cohorts or

populations. Such confounding variability should also be taken into account in the

model construction and evaluation, perhaps in some form of population stratified

cross-validation. Failure to replicate a genetic association should not only be considered

as a negative result, as it may also provide important clues about genetic architecture

among study populations or genetic interactions among risk variants [51]. When

Figure 1 The figure illustrates how the external and internal cross-validation results behave as
functions of the number of selected features. The external-cross validation consists of three training/test
splits. The wrapper-based feature selection method, greedy RLS [23], is separately run during each round of
the external cross-validation. Greedy RLS, in turn, employs an internal leave-one-out cross-validation on the
training set for scoring the feature set candidates. The red curve depicts the mean values over these
internal cross-validation errors. As can be easily observed from the blue curve, this internal cross-validation
MSE used for the model training keeps constantly improving, which is expected, because the internal cross-
validation quickly overfits to the training data when it is used as a selection measure. The blue curve
depicts the area under curve (AUC) on the test data, held out during the external cross-validation round,
that is, data completely unseen during the internal cross-validation and feature selection process. In
contrast to the red curve, the blue curve starts to level off soon after the number of selected variants
reaches around 10, indicating that adding extra features is not beneficial anymore even if the internal
scoring function keeps improving. The green curve depicts the AUC of the RLS model trained using
features selected by single-locus p-value based filter method, Fisher’s exact test, which is run with the same
external training/test split as the greedy selection method. Similarly to the blue curve, the green one also
stops improving soon after a relatively small set of features has been selected. The data used in the
experiments is the Wellcome Trust Case Controls Consortium (WTCCC) Hypertension dataset combined
with the UK National Blood Services’ controls.
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epistasis interactions are involved, then it is likely that simple methods, such as single-

locus filters, will not alone be able to provide most optimal results, while in extremely

large datasets, wrapper methods may pose computational limitations if combined with

complex prediction models. Finally, even though the improvements obtained by the

machine learning wrappers, compared to those from the traditional p-value based

filters, may seem quite modest (e.g. Figure 1), it may turn out that even slight

improvements in the predictive accuracy can result in significant clinical benefits.

Moreover, it is argued that the modest predictive improvements may be further

aggregated through pathway and network-level analyses of the selected variants.

Molecular networks as a prior information for constructing predictive models
Even in the absence of significant single-locus marginal effects, multiple genetic loci

from a number of molecular pathways may act synergistically and lead to disease

phenotype when combined. Therefore, it has become popular to map the genetic loci

identified in GWA or NGS studies to established biological pathways in order to eluci-

date the potential cellular mechanisms behind the observed genetic and phenotypic

variation. There exist a wide variety of tools and guidelines on how to implement such

pathway analyses in the context of genetic association studies [52-56]. Building on

approaches originally developed in the context of microarray gene expression

experiments, the common theme in the pathway analysis approaches is that they exam-

ine whether a group of related loci in the same biological pathway are jointly associated

with a trait of interest. In line with the observations in microarray gene expression

studies, it has been shown that in those cases where there is only a modest overlap in

the variant or gene-level findings between different studies, due to factors such as

differences in the genetic structure, the pathway-level associations may be much more

reproducible even between different study populations [57-60]. These findings support

the concept that individuals with the same disease phenotype may have marked inter-

individual genetic heterogeneity in the sense that their disease predisposing variants

may lie in distinct loci within the same or related pathways [14]. Machine learning-

based predictive models constructed upon gene expression profiling have already

shown the benefits of using pathway activities as features in terms of improved classifi-

cation accuracy, compared to those models that consider merely individual gene ex-

pression levels [61]. It has also been demonstrated in the context of GWA datasets that

pathway analysis can provide not only mechanistic insights but also improved discrim-

ination power using tailored statistical data mining techniques, such as HyperLasso

[62] or so-called pathways of distinction analysis (PoDA) [63].

A limitation of constructing predictive models for a disease merely on the basis of

established pathways is that these models may become biased toward already known

biological processes, thereby potentially missing novel yet causal mechanisms predictive

of the disease risk [64]. It may also not be so straightforward to infer the set of

pathways that should be included in the model building process, in the absence of any

a priori knowledge. Perhaps more importantly, statistical analysis of separate biological

pathways or distinct gene sets undermines the effect of pathway cross-talk behind dis-

ease development, in which multiple genetic variants from distinct molecular pathways

show synergistic contribution to the disease phenotype. In practice, the regulatory
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relationships behind many phenotypes are determined by complex and highly

interconnected networks of physical and functional interplay between a multitude of

pathway components [16]. As an example, we constructed a network representation for

variants predictive of type 1 diabetes risk, which illustrate a selected portion of the

number of pathways and their relationships that may be predictive of the disease onset

(Figure 2). Given such high degree of interconnectivity, not only between the genetic

variants but also among the implicated pathways, it is not surprising that the first ma-

chine learning frameworks for explicitly accounting epistatic gene-gene interactions

have focused mostly on measures from information theory, such as those based on

additive models, information gain, conditional entropy, or mutual information

[24,65-67]. These models treat pairwise genetic interactions in a way that closely

resembles the classic definition of epistasis, involving single and double-deletion

experiments in model organisms [68]. However, even if allowing computationally effi-

cient exploration of genetic interactions, a posteriori detection and heuristic search

schemes cannot guarantee that the detected pairs of genetic risk factors will eventually

be the most essential ones for the improved predictive power among all the possible

variant combinations.

Toward more systematic network-centric analysis of genetic variants on a genome-

wide scale, molecular interaction networks can be used as a priori information in the

predictive models, in the form e.g. filters or integrators, with the aim of either reducing

Figure 2 Sample network visualization constructed for type 1 diabetes. The risk variants were selected
using the greedy RLS on the WTCCC type 1 diabetes GWAS data and the UK National Blood Services’
controls, extended with those genes selected in another work [62]. The biological processes and pathways
were then mapped using DAVID [112,113], and the network visualization was done with the Enrichment
Map plugin for Cytoscape [114,115]. The nodes represent pathways and the edges are the amount of
overlap between the members of the pathways. The visualized network represents a selected sub-network
of complex interconnections and cross-talks between a number of pathways, including MHC-related
processes and other biological pathways associated with diabetes phenotypes. The pathways were
identified initially using DAVID, with the criteria that they demonstrate enrichment when compared to the
genome-wide background. The retrieved pathways were subsequently filtered in Cytoscape through the
Enrichment Map plugin using the false-discovery rate and overlap coefficient to filter out
non-significant pathways.

Okser et al. BioData Mining 2013, 6:5 Page 9 of 16
http://www.biodatamining.org/content/6/1/5



the massive size of the search space in the variant selection process or boosting the

signal-to-noise ratio through external knowledge incorporated in terms of physical or

functional molecular networks [69,70]. Network graphs provide a convenient mathem-

atical framework for modeling, integrating and mining high-dimensional genomic

datasets, in which to present the relationships among genetic loci, genes and diseases

[64,69-72]. Successful examples of combining individual-level gene expression

measurements with background networks of physical interactions between proteins

and transcription factor targets have demonstrated that it is possible to identify and

make use of disease-specific sub-networks, so-called modules, in order to reduce both

the number of false positives and negatives, caused by factors such as technical vari-

ability and genetic heterogeneity, respectively, as well as to improve individual-level

prediction of clinical outcomes, such as cancer metastasis or survival time [64,73-75].

There are also studies in the context of GWA datasets, which motivate the use of net-

work connectivity structures, such as sub-network modules or highly-connected net-

work hubs [22,64,76-78], as aggregate features in the disease prediction models.

However, what has been largely missing is a systematic approach that could combine

network topology as a priori information when constructing predictive models. Re-

cently, a particularly interesting approach was introduced as a principled method that

uses genetic algorithms guided by the structure of a given gene interaction network to

discover small groups of connected variants, which are jointly associated with a disease

outcome on a genome-wide scale [79]. Combined with more efficient, wrapper-type of

search algorithms, such network-guides feature selection approaches could be scaled-

up in the future to enable extracting also larger sub-networks with improved predict-

ive capability.

Future directions: lessons from model organisms and individualized medicine
Given the rather modest progress made so far in pursuing the expensive and subopti-

mal route of current drug discovery, there has been much interest lately in moving to-

wards personalized medicine strategies [80,81]. Another major paradigm shift in

disease treatment is moving away from the traditional 'one target, one drug' strategy to-

wards the so-called network pharmacology, a novel paradigm which provides more

global understanding of the mechanisms behind disease processed and drug action by

considering drug targets in their context of biological networks and pathways [82].

These emerging paradigms can offer holistic information on disease networks and drug

responses, with the aim of identifying more effective drug targets and their

combinations tailored for individualized treatment strategies. A prime challenge in

developing such strategies is to understand how genes function as interaction networks

to carry out and regulate cellular processes, and how perturbations in these cellular

networks cause certain phenotypes, such as human diseases, in some individuals, but

not in the others. There has been active research in model organisms addressing the

question why disease causing mutations do not cause the disease in all individuals [14].

Recent studies in yeast Saccharomyces cerevisiae, worm Caenorhabditis elegans, and fly

Drosophila melanogaster have demonstrated the importance of incorporating functional

genetic interaction partners of the mutated genes in the prediction of phenotypic vari-

ation and mutational outcomes at an individual level [83-85]. Pilot studies in human
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trials have also suggested that personal genomic approaches, such as those based on

GWA or NGS studies, may indeed yield useful and clinically relevant information for

individual patients [1,2]. However, a number of experimental, modeling and computa-

tional challenges have to be solved before the promises of personalized medicine can

be translated into routine clinical practice [5,81,86].

From the experimental point of view, the whole-genome sequencing efforts will en-

able us to delve deeper into the individual genomes by elucidating the role of low-

frequency variants in the genetic architecture of complex diseases. The sequencing

efforts, such as the 1000 Genomes project [10], are also being used to subsequently ex-

tend the coverage of the existing GWA datasets by means of imputation methods and

population-specific reference haplotypes [87,88]. However, while the emerging shift

from population-level common variants toward individual-level rare or even personal

variants holds great promise for medical research, it also represents with unique model-

ing challenges; in particular, the traditional statistical modeling frameworks that were

developed under settings where the number of study samples greatly exceeds the num-

ber of study variables may not to be ideally suited for the personalized medicine

settings, in which the individuals and disease subtypes are stratified into increasingly

smaller subgroups [89]. Although machine learning methods are better targeted at

individual-level prediction making, the feature selection methods would also benefit

from more stratified options, for instance, in terms of enabling phenotype-specific gen-

etic features, rather than assuming that all subjects share the same panel of predictive

genotypes. Also, since the binary disease outcomes, typically in the form of case or con-

trol dichotomy, may not provide the most reliable study phenotypes, the predictive

modeling frameworks might become more successful for predicting quantitative pheno-

typic traits [90-92]. This also raises related modeling questions, such as how to encode

imputed variants (e.g. expected or most likely genotype), how to treat missing data (ex-

clude or impute), or how to model the variants and their interactions (multiplicative,

additive, recessive or dominant models) [90-94]; these all may have an important effect

on the prediction performance, especially in the presence of epistatic interactions at an

individual level.

From the computational perspective, the ever increasing sizes of the raw NGS and

imputed GWA datasets pose great challenges to the computational algorithms. For in-

stance, while systematic genetic mappings in model organisms have revealed wide-

spread genetic interactions within individual species [85,95-97], epistasis interactions

have remained extremely difficult to identify on a global scale in human populations.

This can be attributed to the vast number of potential interaction partners, along with

complex genotype-phenotype relationships and their individual-level differences.

Improvements in computational performance have recently been obtained through ef-

fective usage of computer hardware, for instance, through graphics processing units,

Cloud-based computing environments, or multithread parallelization, when exploring

genetic variants or their interactions in GWA studies [98-101]. Furthermore, since the

memory consumption in the high-dimensional NGS applications can form even a

tighter bottleneck than the running time, there is also a need to develop space-efficient

implementations, which trade running time for decreased memory consumption [23].

Lessons from model organisms, such as yeast, have also demonstrated that data inte-

gration between complementary screening approaches, either functional or physical
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assays, can reveal novel genetic interactions and their modular organization which have

gone undetected by any of the individual approaches alone [95,96,102]. Also, integrating

diverse phenotypic readouts facilitates genetic interaction screens [103], and Bayesian

models have been shown especially useful for making use of multiple traits, gene-gene or

gene-environment interactions in disease risk prediction [104]. Finally, visualization

algorithms that can capture the hierarchical modularity of the physical and functional

interaction networks may help reveal interesting biological patterns and relationships

within the data, such as pathway components and biological processes, which can be fur-

ther investigated by follow-up computational and/or experimental analyses [105].

Better understanding of the general design principles underlying genetic interaction

networks in model organisms can provide important insights into the relationships be-

tween genotype and phenotype, toward better understanding and treating also complex

human diseases, such as cancers. Cancer phenotypes are known to arise and develop

from various genetic alterations, and therefore the same therapy often results in differ-

ent treatment responses. Moreover, the underlying genetic heterogeneity results in

alterations within multiple molecular pathways, which lead to various cancer phenotypes

and make most tumors resistant to single agents. Cancer sequencing efforts, such as The

Cancer Genome Atlas (TCGA), are systematically characterizing the structural basis of

cancer, by identifying the genomic mutations associated with each cancer type. These

efforts have revealed tremendous inter-individual mutational and phenotypic heterogen-

eity, which renders it difficult to translate the genetic information into clinically actionable

individualized treatment strategies [106-108]. Therefore, integrating the structural gen-

omic information with systematic functional assessment of genes for their contribution to

genetic dependencies and cancer vulnerabilities, such as oncogenic addictions or synthetic

lethalities [109,110], is likely needed for providing more comprehensive insight into the

molecular mechanisms and pathways behind specific cancer types and for improving their

prevention, diagnosis and treatment [106,111]. Machine learning-based predictive model-

ing approaches are well-powered to make the most of the exciting functional and genetic

screens toward revealing hidden genetic variants and their interactions behind cancer and

other complex phenotypes. When combined with network analyses, these integrated

systems medicine approaches may offer the possibility to identify key players and their

relationships responsible for multi-factorial behavior in disease networks, with many diag-

nostic, prognostic and pharmaceutical applications.
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Overview

Compared to univariate analysis of genome-wide association

(GWA) studies, machine learning–based models have been shown

to provide improved means of learning such multilocus panels of

genetic variants and their interactions that are most predictive of

complex phenotypic traits. Many applications of predictive

modeling rely on effective variable selection, often implemented

through model regularization, which penalizes the model com-

plexity and enables predictions in individuals outside of the

training dataset. However, the different regularization approaches

may also lead to considerable differences, especially in the number

of genetic variants needed for maximal predictive accuracy, as

illustrated here in examples from both disease classification and

quantitative trait prediction. We also highlight the potential pitfalls

of the regularized machine learning models, related to issues such

as model overfitting to the training data, which may lead to over-

optimistic prediction results, as well as identifiability of the

predictive variants, which is important in many medical applica-

tions. While genetic risk prediction for human diseases is used as a

motivating use case, we argue that these models are also widely

applicable in nonhuman applications, such as animal and plant

breeding, where accurate genotype-to-phenotype modeling is

needed. Finally, we discuss some key future advances, open

questions and challenges in this developing field, when moving

toward low-frequency variants and cross-phenotype interactions.

Introduction

Supervised machine learning aims at constructing a genotype–

phenotype model by learning such genetic patterns from a labeled

set of training examples that will also provide accurate phenotypic

predictions in new cases with similar genetic background. Such

predictive models are increasingly being applied to the mining of

panels of genetic variants, environmental, or other nongenetic

factors in the prediction of various complex traits and disease

phenotypes [1–8]. These studies are providing increasing evidence

in support of the idea that machine learning provides a

complementary view into the analysis of high-dimensional genetic

datasets as compared to standard statistical association testing

approaches. In contrast to identifying variants explaining most of

the phenotypic variation at the population level, supervised

machine learning models aim to maximize the predictive (or

generalization) power at the level of individuals, hence providing

exciting opportunities for e.g., individualized risk prediction based

on personal genetic profiles [9–11]. Machine learning models can

also deal with genetic interactions, which are known to play an

important role in the development and treatment of many

complex diseases [12–16], but are often missed by single-locus

association tests [17]. Even in the absence of significant single-loci

marginal effects, multilocus panels from distinct molecular

pathways may provide synergistic contribution to the prediction

power, thereby revealing part of such hidden heritability compo-

nent that has remained missing because of too small marginal

effects to pass the stringent genome-wide significance filters [18].

Multivariate modeling approaches have already been shown to

provide improved insights into genetic mechanisms and the

interaction networks behind many complex traits, including

atherosclerosis, coronary heart disease, and lipid levels, which

would have gone undetected using the standard univariate

modeling [2,19–22]. However, machine learning models also

come with inherent pitfalls, such as increased computational

complexity and the risk for model overfitting, which must be

understood in order to avoid reporting unrealistic prediction

models or over-optimistic prediction results.

We argue here that many medical applications of machine

learning models in genetic disease risk prediction rely essentially

on two factors: effective model regularization and rigorous model

validation. We demonstrate the effects of these factors using

representative examples from the literature as well as illustrative

case examples. This review is not meant to be a comprehensive

survey of all predictive modeling approaches, but we focus on

regularized machine learning models, which enforces constraints

on the complexity of the learned models so that they would ignore

irrelevant patterns in the training examples. Simple risk allele

counting or other multilocus risk models that do not incorporate

any model parameters to be learned are outside the scope of this

review; in fact, such simplistic models that assume independent

variants may lead to suboptimal prediction performance in the

presence of either direct or indirect interactions through epistasis

effects or linkage disequilibrium, respectively [23,24]. Perhaps the

simplest models considered here as learning approaches are those

based on weighted risk allele summaries [23,25]. However, even

with such basic risk models intended for predictive purposes, it is
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important to learn the model parameters (e.g., select the variants

and determine their weights) based on training data only;

otherwise there is a severe risk of model overfitting, i.e., models

not being capable of generalizing to new samples [5]. Represen-

tative examples of how model learning and regularization

approaches address the overfitting problem are briefly summa-

rized in Box 1, while those readers interested in their implemen-

tation details are referred to the accompanying Text S1. We

Figure 1. Performance of regularized machine learning models. Upper panel: Behavior of the learning approaches in terms of their predictive
accuracy (y-axis) as a function of the number of selected variants (x-axis). Differences can be attributed to the genotypic and phenotypic
heterogeneity as well as genotyping density and quality. (A) The area under the receiver operating characteristic curve (AUC) for the prediction of
Type 1 diabetes (T1D) cases in SNP data from WTCCC [118], representing ca. one million genetic features and ca. 5,000 individuals in a case-control
setup. (B) Coefficient of determination (R2) for the prediction of a continuous trait (Tunicamycin) in SNP data from a cross between two yeast strains
(Y2C) [44], representing ca. 12,000 variants and ca. 1,000 segregants in a controlled laboratory setup. The peak prediction accuracy/number of most
predictive variants are listed in the legend. The model validation was implemented using nested 3-fold cross-validation (CV) [5]. Prior to any analysis
being done, the data was split into three folds. On each outer round of CV, two of the folds were combined forming a training set, and the remaining
one was used as an independent test set. On each round, all feature and parameter selection was done using a further internal 3-fold CV on the
training set, and the predictive performance of the learned models was evaluated on the independent test set. The final performance estimates were
calculated as the average over these three iterations of the experiment. In learning approaches where internal CV was not needed to select model
parameters (e.g., log odds), this is equivalent to a standard 3-fold CV. T1D data: the L2-regularized (ridge) regression was based on selecting the top
500 variants according to the x2 filter. For wrappers, we used our greedy L2-regularized least squares (RLS) implementation [30], while the embedded
methods, Lasso, Elastic Net and L1-logistic regression, were implemented through the Scikit-Learn [119], interpolated across various regularization
parameters up to the maximal number of variants (500 or 1,000). As a baseline model, we implemented a log odds-ratio weighted sum of the minor
allele dosage in the 500 selected variants within each individual [25]. Y2C: the filter method was based on the top 1,000 variants selected according to
R2, followed by L2-regularization within greedy RLS using nested CV. As a baseline model, we implemented a greedy version of least squares (LS),
which is similar to the stepwise forward regression used in the original work [44]; the greedy LS differs from the greedy RLS in terms that it
implements regularization through optimization of L0 norm instead of L2. It was noted that the greedy LS method drops around the point where the
number of selected variants exceeds the number training examples (here, 400). Lower panel: Overlap in the genetic features selected by the different
approaches. (C) The numbers of selected variants within the major histocompatibility complex (MHC) are shown in parentheses for the T1D data. (D)
The overlap among then maximally predictive variants in the Y2C data. Note: these results should be considered merely as illustrative examples.
Differing results may be obtained when other prediction models are implemented in other genetic datasets or other prediction applications.
doi:10.1371/journal.pgen.1004754.g001
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Box 1. Synthesis of Learning Models for
Genetic Risk Prediction

The aim of risk models is to capture in a mathematical form
the patterns in the genetic and non-genetic data most
important for the prediction of disease susceptibility. The
first step in model building involves choosing the
functional form of the model (e.g., linear or nonlinear),
and then making use of a given training data to determine
the adjustable parameters of the model (e.g., a subset of
variants, their weights, and other model parameters). While
it is often sufficient for a statistical model to enable high
enough explanatory power in the discovery material,
without being overly complicated, a predictive model is
also required to generalize to unseen cases.
One consideration in the model construction is how to
encode the genotypic measurements using genotype
models, such as the dominant, recessive, multiplicative,
or additive model, each implying different assumptions
about the genetic effects in the data [79]. Categorical
variables 0, 1, and 2 are typically used for treating genetic
predictor variables (e.g., minor allele dosage), while
numeric values are required for continuous risk factors
(e.g., blood pressure). Expected posterior probabilities of
the genotypes can also be used, especially for imputed
genotypes. Transforming the genotype categories into
three binary features is an alternative way to deal with
missing values without imputation (used in the T1D
example; see Text S1 for details).
Statistical or machine learning models identify statistical or
predictive interactions, respectively, rather than biological
interactions between or within variants [12,80]. While
nonlinear models may better capture complex genetic
interactions [7,81], linear models are easier to interpret and
provide a scalable option for performing supervised
selection of multilocus variant panels at the genome-wide
scale [3]. In linear models, genetic interactions are modeled
implicitly by selecting such variant combinations that
together are predictive of the phenotype, rather than
considering pairwise gene–gene relationships explicitly.
Formally, trait yi to be predicted for an individual i is
modeled as a linear combination of the individual’s
predictor variables xij:

yi~w0z
Xp

j~1

wjxij i~1,2, . . . ,n: ð1Þ

Here, the weights wj are assumed constant across the n
individuals, w0 is the bias offset term and p indicates the
number of predictors discovered in the training data. In its
basic form, Eq. 1 can be used for modeling continuous
traits y (linear regression). For case-control classification,
the binary dependent variable y is often transformed using
a logistic loss function, which models the probability of a
case class given a genotype profile and other risk factor
covariates x (logistic regression). It has been shown that
the logistic regression and naı̈ve Bayes risk models are
mathematically very closely related in the context of
genetic risk prediction [81].
Model regularization refers to the technique of controlling
the model complexity, with the aim of preventing over-
fitting the model to the training data, and hence to
improve its generalization capability to new samples.
Classical regularization approaches rely on explicit penal-
ization of the model complexity through penalty terms

such as L1 and L2 norms for model weights (Figure 2A).
Together with the squared loss function (Figure 2B), which
is often used to measure the fit between the observed yi

and estimated ŷyi phenotypes (Eq.1), these functional
norms give rise to the optimization problem used in
various types of linear genetic risk prediction models:

Squared loss L1 penalty L2 penalty

Xn

i~1

yi{ŷyið Þ2zl1

Xp

j~1

wj

�� ��zl2

Xp

j~1

w2
j :

ð2Þ

Ridge regression is the special case of Eq. 2, in which
l1~0, and the regularization parameter l2 is used to
shrink the variable weights toward zero to prevent any
particular variable from having too large effect on the
model. However, the use of L2 penalty alone tends to favor
models that depend on all the variables. In Lasso, l2~0,
and through adjusting the regularization parameter l1, it is
possible to favor sparse models with only a few nonzero
weights, leading to variable selection within the model
fitting [82]. The Elastic Net model makes use of both
penalty terms L1 and L2 to select also correlated features
[83]; for instance, groups of variants within a pathway that
together contribute to the predictive accuracy.
Methods such as Lasso and Elastic Net are traditionally
known as embedded models, since the feature selection is
embedded into the learning algorithm itself [5]. These
methods select the features simultaneously and therefore
do not provide the user with a direct control over the
number of variables to be selected in the final prediction
model, although heuristics based on absolute weights and
other tuning criterion can be used for ranking the variables
[24,84]. In contrast, wrapper models enable the user to
preset the number of features in the final model. However,
due to the exponentially increasing size of the genetic
search spaces, in practice one must resort to local search
methods, such as greedy feature selection implemented
e.g., in L2-RLS wrappers [30].
The wrapper and embedded methods are not distinct
classes of algorithms. Scalable wrappers often incorporate
elements of embedded methods to guarantee computa-
tional efficacy. For instance, RLS shares similar properties
with Lasso and linear variants of SVMs. The accompanying
Text S1 describes interrelationships between different
learning models in terms of their norms and loss functions
(Figure 2), including squared loss (RLS, Lasso and Elastic
Net), logistic loss (logistic regression) and hinge loss
(SVMs). It also presents a generic optimization framework
that implements some of the most efficient methods
currently available for genome-wide data. There are also
other implementations available, including Mendel [85],
HyperLasso [86] and SparSNP [87], gpu-lasso [88], and
PUMA [89].
In addition to the classical regularization approaches,
where an explicit model complexity penalization term is
included in the optimization problem (Eq. 2), alternative
strategies have been developed for avoiding overfitting.
Among the most popular ones are ensemble learning,
implemented e.g., in the popular Random Forests (RF)
algorithm [90–92], as well as in the Bayesian modeling
approaches, where probabilistic prior distributions on the
model parameters are used for the shrinkage and
regularization purposes [93–95]. Other approaches are
based on the ensemble of models composed of varying
number of features [96], bagging or boosting and various
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specifically promote here the use of such regularized machine

learning models that are scalable to the entire genome-wide scale,

often based on linear models, which are easy to interpret and also

enable straightforward variable selection. Genome-scale ap-

proaches avoid the need of relying on two-stage approaches [26],

which apply standard statistical procedures to reduce the number

of variants, since such prefiltering may miss predictive interactions

across loci and therefore lead to reduced predictive performance

[8,24,25,27,28].

Preview: Selection of Genetic Variants into the
Predictive Models

A recent perspective article gave an excellent overview of the

common concepts and potential pitfalls when making predictions

of complex phenotypes using genotypic data [28]; however, one of

the key components in the construction of predictive models—

variant selection—was ignored in this and many other previous

works. In the context of machine learning, a method known as

feature selection is commonly implemented to identify the subset of

variants having most predictive power for the particular pheno-

typic trait. The aims of feature selection include the reduction of

the dimensionality of the genetic search space, excluding

correlated variants without independent contribution to the

prediction, and facilitating the implementation of the final

prediction model, for instance, in clinical setup. Three main types

of feature selection methods have traditionally been considered in

the context of genetic predictors: filters, wrappers, and embedded

methods (Box 1). These methods have different characteristics in

terms of their computational complexities, potential to detect joint

effects between variants, and whether the feature selection is done

explicitly in the optimization process or implicitly through model

regularization, which make them more or less suitable for different

application cases [5–8].

A class of widely used filter approaches includes the standard

multilocus genetic risk models, where the risk alleles and their

weights are determined through single-locus statistical tests, such

as odds–ratio, x2, or Fisher’s exact text (so-called weighted risk

scores). While such standard models have provided relatively good

predictive accuracies, as assessed using simulation studies or

hypothetical effect size distributions [29], we argue here that it

makes sense to use machine learning both for selecting the subsets

of the most predictive genetic features as well as training the final

prediction model using regularized learning approaches [5,30].

The recent work of Chatterjee et al., where they estimated the

effect size distributions for various quantitative and disease traits,

highlighted the benefits gained from more holistic models that

make use of the whole spectrum of genetic variation toward

improving the predictive power of the genetic risk prediction

models [31]. By design, the performance of any prediction model

will depend on the sample size of the training set, as well as

heritability of the disease trait, its underlying genetic architecture,

and whether there is additional information available such as

family history [29–33].

Representative Examples of Supervised Predictive
Modeling Studies

Predictive modeling can be treated either as a classification

problem (e.g., disease prediction in a case-control setting) or as a

regression formulation (e.g., prediction of height in a general

population cohort). Regardless of the problem formulation,

however, the critical issue is how to guarantee that the model

estimated in the training sample enables generalization power on

search-based algorithms [3]. From the theoretical view-
point, however, all of these learning approaches can be
considered as different types of regularization approaches
[97–100].
Whereas classical, univariate filter methods evaluate the
relevance of each genetic feature independently of the
others, more advanced multivariate filters have also been
proposed, including the Relief family of approaches
[101]. The main advantage of the multivariate filters over
the univariate ones is that they can detect complex
relationships between multiple genetic features and also
yield smaller feature sets with less redundancy. Results
from the ReliefF runs can also be aggregated, similar to
ensemble learning, to yield more robust variant rankings
and identification of gene–gene interactions [102].
However, multivariate filters also have specific limita-
tions, such that their selection criteria are not directly
connected to the generalization capability of the final
prediction model, which may lead to suboptimal results
[103].
Even advanced machine learning methodologies have
been shown to be negatively affected by the presence
of population stratification, leading to either false
positives or false negative detections. To avoid the
need to cluster the data into smaller substrata accord-
ing to population structures, learning machines can be
complemented by information of such substructures
extracted using feature extraction methods, such as
EIGENSTRAT, PCA, or MDS [104]. Lasso has been
extended to account for population structures through
linear mixed models [105], which are gaining much
popularity in association studies [106]. Machine learn-
ing methods enable also the detection of population
substructures, for instance, by learning ensembles of
decision trees that are capable of accurately predicting
individual’s subcontinental ancestry [107].
Linkage disequilibrium (LD) tends to lead to the selection of
highly correlated genetic features when using unpenalized
modeling approaches [24]. A simple strategy is to select
SNPs in linkage equilibrium, but this cannot distinguish the
functionally relevant variants from the nonfunctional ones.
Alternative approaches have revised, for instance, the tree-
building process or importance measure calculation in RF
[108], or replaced the univariate split functions by
nonlinear multivariate split functions of contiguous SNPs,
modeled as decision trees, to better account for SNP
correlations [109]. Penalization strategies, such as ridge
regression, Lasso and RLS, allow the model to avoid
placing too much weight on potentially overfit variables in
the presence of LD, which can lead to improved selection
of causal variants [110,111].
Finally, whole-genome prediction (WGP) models fit all of
the genotyped variants of the genetic data onto ridge
regression type of linear models, such as genomic best
linear unbiased prediction (GBLUP) or its variants
[34,112]. WGP approach has been widely used in animal
and plant breeding applications [113–115] and, with
recent improvements, increasingly also in human genet-
ics [116,117]. However, imperfect LD between markers
and the causal loci can impose suboptimal prediction
accuracy of WGP, especially when analyzing unrelated
individuals, but this can be improved through variable
selection or other model regularization approaches [61].
Moreover, due to the lack of direct control for the
number of variants, WGP approaches are not optimal for
those applications in which the size of the genotyped
variant panel is limited.
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new sets of individuals using appropriate learning models and

regularization approaches. Another important issue is how to

evaluate and quantify the predictive performance of these models

using procedures such as cross validation (CV) and statistics such

as the area under the curve (AUC) or coefficient of determination

(R2) (Text S1). These factors are next highlighted using

representative examples from the recent literature [1–4,34,35],

where various machine learning models have been implemented to

gain insights and prediction capability beyond that obtained using

standard statistical analyses of single nucleotide polymorphism

(SNP) data.

In one of the first machine learning applications, Wei et al.

showed that support vector machines (SVM) and L2-regularized

(ridge) logistic regression enabled construction of a highly

predictive risk model for type 1 diabetes (T1D) using less than

500 variants that passed a relatively stringent prefiltering threshold

(p,1025) on a case-control GWA dataset [1]. In contrast, relying

merely on a collection of known T1D susceptibility loci led to poor

performance in the predictive setting. More specifically, when the

predictive accuracy was evaluated in terms of within-study 5-fold

CV, they obtained extremely good prediction power (AUC close

to 0.9). However, it is known that simple CV may lead to over-

optimistic results due to information leakage between the two

stages of the feature selection process [5]. Indeed, when the

predictive models were evaluated using totally independent

validation cohort, the between-study performance dropped

drastically (AUC 0.84 for SVM) [1], highlighting the importance

of independent samples in the model validation.

Recently, Wei et al. made use of larger sample sizes (.10,000

individuals), using variant data from 15 European countries for

risk prediction of Crohn’s disease (CD) and ulcerative colitis (UC)

[4]. They applied a custom Immunochip that provides a more

comprehensive catalog of both common variants and certain rare

variants missed in the first generation of GWA studies. Using a

relatively liberal threshold (p,1024), they preselected around

10,000 variants and applied regularized logistic regression with L1

penalty for sparse genetic risk modeling. In an independent

validation set from the meta-analysis cohort, the predictive models

achieved the best prediction performance reported for CD and

UC (AUCs of 0.86 and 0.83, respectively) so far. In contrast, the

simple odds–ratio-weighted genetic risk model showed relatively

poor results (AUC of 0.730 and 0.685, respectively). The study also

confirmed the projections from previous works [31–33], suggesting

that predictive accuracy is highly dependent on the sample sizes

and the spectrum of variants included in the model, in addition to

the heritability of the disease trait.

The final example comes from the regression formulation. With

the aim to explain a part of the missing heritability of height, Yang

et al. [34] went beyond the two-stage approach and fit a simple

linear regression model to all directly genotyped 294,831 variants

that passed their quality control. Using such a whole genome

prediction (WGP) approach, without any variant selection, the

authors were able to explain 45% of the phenotypic variation in

height in a cohort of approximately 4,000 European descents.

Similarly high R2 values were also confirmed in another study [35]

where the WGP approach was trained in an European cohort;

however, R2 values dropped dramatically when the fitted model

was applied to an independent validation dataset using 10-fold CV

(R2 ranging around 0.2, depending on the number of variants and

whether familial information was used) [35]. These studies

highlight the risk of overfitting to the training sample when no

feature selection or model regularization is used in the model

construction.

Prediction Performance Using Examples of Model
Regularization

To illustrate the similarities and differences in their behavior, we

ran a number of common regularization approaches on two

example datasets (Figure 1). In both datasets, the two embedded

methods, Lasso and Elastic Net, showed strikingly similar

prediction behavior, but needed a larger number of variants for

their peak performance, compared to the greedy regularized least-

squares (RLS) wrapper, which peaked much earlier but resulted in

Figure 2. Penalty terms and loss functions. (A) Penalty terms: L0-norm imposes the most explicit constraint on the model complexity as it
effectively counts the number of nonzero entries in the model parameter vector. While it is possible to train prediction models with L0-penalty using,
e.g., greedy or other types of discrete optimization methods, the problem becomes mathematically challenging due to the nonconvexity of the
constraint, especially when other than the squared loss function is used. The convexity of the L1 and L2 norms makes them easier for the optimization.
While the L2 norm has good regularization properties, it must be used together with either L0 or L1 norms to perform feature selection. (B) Loss
functions: The plain classification error is difficult to minimize due to its nonconvex and discontinuous nature, and therefore one often resorts to its
better behaving surrogates, including the hinge loss used with SVMs, the cross-entropy used with logistic regression, or the squared error used with
regularized least-squares classification and regression. These surrogates in turn differ both in their quality of approximating the classification error
and in terms of the optimization machinery they can be minimized with (Text S1).
doi:10.1371/journal.pgen.1004754.g002
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lower prediction accuracy. As was expected, the top performance

of the L2-regularized logistic (ridge) regression required a very

large number of features, while showing reduced accuracy at a

lower number of variants. Surprisingly, the popular L1-penalized

logistic model showed slightly suboptimal performance; although

its peak performance was similar to that of greedy RLS, it required

a much larger number of variants in these datasets. We note that

the relative behavior of these methods may well change in other

genetic datasets and applications. In line with the previous results

in CD and UC cases [4], the simple log odds-weighted risk model

also showed poor results in the T1D case. While for some other

traits such accuracies would be considered excellent, the high

heritability and dependence on the human leukocyte antigen

(HLA) region often leads to higher predictive performance for

T1D [1]. However, these accuracies are better than expected for a

sample of this size if the standard, nonmachine learning,

multilocus genetic models were utilized in the risk prediction [28].

The relatively small overlap in the selected features highlights

an interesting point that the models tend to select different panels

of variants while achieving rather similar prediction performance

(Figure 1C, D), suggesting that the selected variants may provide

complementary views of the genetic mechanisms behind the

phenotypes. In the T1D case, for instance, most of the variants

selected by the L2-logistic and greedy RLS were from the major

histocompatibility complex (MHC) region (95% and 67%,

respectively), in line with the previous studies [1,4], whereas Lasso

also selected novel variants mostly outside the MHC region (15%),

which may provide complementary information for the risk

assessment. This difference is likely due to its embedded nature;

Lasso selects variants simultaneously, rather than one at a time,

which often requires further optimization in applications where

the size of the variant panel is limited. As expected, the univariate

filters tend to select larger numbers of correlated features, since

they cannot consider interactions with already selected variants. At

the other extreme, greedy RLS selects relatively uncorrelated

variants while the embedded methods lie in between. These

example cases suggest that there is no golden rule for feature

selection, but that the model should be selected based on the

characteristics of the data and goals of the genetic application (e.g.,

whether small number of variants is preferred over the overall

predictive accuracy).

Perspective: Current Challenges and Emerging
Developments

While rare variants have been proposed as one explanation for

the missing heritability [36,37], there has been a divergence of

opinion over whether rare variants of large effect or common

variants of small effect are contributing most to the phenotypic

variability [38]. It has been suggested that incorporating low-

frequency or rare variants will make the disease risk prediction

increasingly more accurate [4,28,29,31]. However, recent reports

have shown only incremental impact of rare variants on disease

susceptibility and prediction of complex diseases, as evaluated at the

population level using either simulated data [39] or by sequencing of

known risk variants for autoimmune disease traits [40]. We believe

that a more systematic investigation of the variants across portions

of the allelic spectrum will likely contribute to explaining more of the

missing heritability. While the presented machine learning

algorithms easily scale to a GWA level, the emerging sequencing

data, either from genotype imputation or whole-exome and genome

profiling, are posing new technical challenges, where parallelization

and cloud technologies for distributed memory and high-perfor-

mance computing will become increasingly important. Placing the

focus on individual-level predictions should help also with the low-

frequency variants shared only by a small portion of the individuals.

For instance, selection of the most robust variants was shown to

improve various prediction models, especially when the variants are

poorly tagged or have low minor allele frequency (MAF) [41]. Since

most rare variants are highly population-specific, it may be

necessary to borrow prior biological information from shared

regulatory regions, genes, or pathways, similar to the recent

collapsing methods for rare association analyses [42]. However,

improved model regularization options that allow more flexibility

and sparsity in the selected panels of variants across various

subgroups of individuals will likely be needed to deal with the rare

variants and to account for population stratification. Regularization

methods based on sparse group Lasso, for instance, can be extended

to rare variants and pathway-driven variant selection [22,43].

It has been argued that, even with increasingly large-scale and

dense genomic data, genetic prediction alone may still not reach the

accuracy regarded as clinically informative for the population at

large [18]. High-quality and controlled genetic data from model

organisms will likely give the first estimates on how much

sequencing data can really add to the predictive accuracy of

complex phenotypes [44,45]. Lessons from model organisms have

already shown that additional information originating from

environmental and stochastic factors, as well as from phenotypic

robustness and transgenerational effects, will be necessary for

accurate predictions at an individual level [46–48]. In particular,

gene expression should prove especially useful, since such interme-

diate phenotype captures both genetic and nongenetic contributions

to phenotypic variation [49]. For instance, epigenetic gene

expression variability of genetic interaction partners plays an

important role in explaining complex regulatory relationships,

characterized using concepts such as ‘‘epigenetic epistasis’’ [50] or

‘‘eQTL epistasis’’ [51]. Although modeling of gene expression

variability poses some technical challenges, similar to those already

encountered when modeling GWA datasets [52,53], incorporating

such continuous features into the disease prediction models should

be relatively straightforward. Adding the nongenetic information

will likely be instrumental when going toward less heritable diseases,

such as some cancer subtypes, which traditionally have been

challenging to predict using standard GWA approaches

[29,32,33,54–56]. Finally, including family medical history and

other clinical data from electronic health records should improve

the personal risk assessment models, as well as provide guidance on

lifestyle changes for those currently healthy individuals that have

increased genetic risk for the disease susceptibility [57,58].

An interesting question under debate is how many genetic

features should be incorporated into the prediction models

[3,28,31,59,60]. Although the WGP methods have been success-

fully applied in animal and plant breeding applications [61], these

are not suitable for applications in which the number of genetic

markers is constrained. In embedded models, the number of

features to be selected is often dependent on the regularization

parameter. However, in the current Lasso and Elastic Net

implementations, the user cannot explicitly specify the number

of variants to be included in the final model, but the selection of

final predictors often requires further grid searches or other tuning

options. Such lack of direct control over the size of the variant

panel may be an important practical consideration in medical

applications, where the size of the variant panel is often associated

with an additional cost, for instance, in disease screening

applications, or when the goal is to select a few of the variants

for follow-up experimentation, for instance, using functional

assays. Greedy feature selection offers full control to the user

and often leads to smaller panels of predictive, uncorrelated
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variants, which may be beneficial when the size of clinical assay is

limited. However, the trade-off is a slight drop in the overall

predictive accuracy (Figure 1), indicating that more in-depth and

effective wrapper selection strategies need to be implemented.

There are also other strategies to reduce the dimensionality of

genetic feature spaces using data transformations, such as principal

components analysis (PCA), multidimensional scaling (MDS),

partial least squares (PLS), or discrete wavelet transformation

(DWT), which may in some cases lead to improved predictive

accuracy [62]. However, rather than selecting combinations of

transformed features, feature selection on the original variant

space offers directly actionable modeling outcomes, such as a

selected set of predictive genetic loci for follow-up applications and

experimentation.

We envision a number of future directions for improvements in

disease risk prediction. One exciting development involves model-

ing of cross-phenotype interactions (pleiotropy). Many genetic

variants are associated with multiple disease phenotypes, particu-

larly across autoimmune diseases, cancers, and neuropsychiatric

disorders [63]. Statistical approaches have been suggested for

making use of the complementary information from multiple

phenotypes to gain power to detect small effects that would have

been missed if tested individually [64–65]. Bayesian learning

approaches seem particularly fitting for multivariate modeling of

pleiotropic associations, especially for the lower-frequency variants

where shared genetic features across individuals for any single

phenotype become increasingly rare [66–71]. We expect that

regularized machine learning models will also prove useful when

translating the subtle multivariant–multiphenotype relationships

into genetic risk prediction models. Modeling studies in yeast have

already shown that multiple phenotypic measurements enable

mapping of genetic interaction networks with distinct biological

processes across pathways [72]. Networks of genetic and/or physical

interactions may therefore serve as useful prior information for the

prediction models to move from variant-level features towards

pathway-level features [5,73–75]. Using such functional relation-

ships to assemble or collapse higher-level predictive features might

better account for the interindividual genetic variation at the lower

end of variant frequency. For instance, predictive subnetwork

modules could enable more robust personalized medicine strategies

by allowing that individuals with the same disease phenotype may

show interindividual genetic heterogeneity in the sense that their

disease predisposing variants may lie in distinct loci within the

shared pathways. Such advances will rely on the next generation of

machine learning models that can effectively deal with the

complexity arising from massive number of interactions between

rare and common genetic and nongenetic factors [76–78].

Conclusions

The current evidence contradicts the idea of a universally optimal

model across datasets and prediction applications; rather, the model

should be selected based on whether one is trying to achieve a

maximally predictive model without restricting the number or type of

variants, or whether the goal is to build a sufficiently predictive model

with a limited number of genetic and nongenetic features. This

highlights the importance of feature selection as a key component in

the construction of prediction models, whether it is done explicitly in

the optimization process (e.g., wrappers) or implicitly through the

model regularization (embedded models). One common finding is

that those variants not meeting the stringent genome-wide signifi-

cance levels may also contribute to the predictive signals when

combined in the multilocus prediction modes [2,4,24,25,27,28,

31,33]. Another consensus point is that regularized models often

outperform their unregularized counterparts [24], which was also

supported by our example results (Figure 1).

Regardless of the model used, however, careful evaluation of its

generalizability is critical for prediction applications. We encourage

using systematic and unbiased procedures, such as nested CV, for the

selection of genetic variables and other model parameters and for the

evaluation of the generalization performance of the model. The final

model construction and feature selection should be performed on the

complete set of samples using standard CV options. However, the

eventual predictive power must be assessed by implementing the final

model on a sufficiently large, representative, and independent test set

in order to avoid reporting over-optimistic prediction results. The

model evaluation also depends on the application case; for instance, if

the aim is to carry out disease screening in Finland, then a relatively

large Finnish population sample should be used both in the model

construction and validation.

Genetic risk prediction through supervised machine learning

models goes beyond the single-locus association testing with the

complex disease phenotypes. The main objective of regularized

learning approaches is to find the most predictive combinations of

variants, the functional roles of which must to be validated using

follow-up experimentation. However, it is likely that predictive

power is linked to the underlying biological mechanisms and even

causality, but whether this comes through the selected variants and

their interactions, or via synthetic associations or other nondirect

relationships needs to be evaluated mechanistically. Genotype–

phenotype modeling is a highly challenging problem, but we

believe that through appropriate implementation and application

of the supervised machine learning methods, such as those

presented here, increasingly predictive relationships and biological

understanding will be extracted from the current and emerging

genetic and phenotypic datasets.

Supporting Information

Text S1 Implementation details for a range of regularized

machine learning models.

(PDF)
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Implementation details of regularized machine learning models
This work aims to infer a model for making predictions for the disease class status through the use of
supervised machine learning and feature selection techniques [1–4]. We assume that we are given a training
set of m examples, each consisting of an n-dimensional feature vector, representing the SNP data and an
associated outcome label. The aim of supervised learning is to infer a model from the training data that
would allow predicting the labels for new data, for which only the features data is provided. Formally, we
define the training set T = {(X1,:, y1), . . . , (Xm,:, ym)}, where yi 2 Rm. By X 2 Rm⇥n we denote a data
matrix containing the feature vectors as rows and by y we denote the m-dimensional vector containing all
the training set labels. By Xi,: we denote the i:th row, and by X:,i the i:th column of X. Our aim is to learn
a prediction function h : Rn ! y such that for new input-output pairs (x, y) it holds true that h(x) ⇡ y.

Based on the choice of y we can recover a variety of di↵erent supervised learning settings. In binary
classification, typically encoded as y 2 [�1, 1], we have two possible classes called the positive and the
negative class. This is the standard way for modeling case-control studies where individuals belong to one of
two classes based on whether they have a disease or not. In settings where there is a natural ordering over
the classes, for example when the classes represent di↵erent stages of a disease in progression, the problem
is known as ordinal regression. Finally, when y 2 R, we are presented with the problem of regression, where
the aim is to learn to predict a real-valued variable, such as individual’s blood pressure or weight.

In practice the model h is often implemented using one or several real-valued prediction functions f :
Rn ! R. This is natural for regression, while binary classification may be implemented as a decision rule,
for example it can defined by a transformation h : R! {�1, 1} such that

h(q) =

⇢
1, if q > t
�1, if q  t

.

Here, one may as a default set t = 0 when aiming to minimize the misclassification cost, or choose some
other threshold value when the misclassification costs between the two classes are known to be asymmetric.

Filter Methods for Genetic Feature Selection
The simplest form of feature selection that is commonly applied to GWAS is known as filter methods. Filters
make use of the intrinsic properties of an individual’s genetic variants to determine the bearing of the feature
on the phenotype [5]. When features are selected by filter methods, the set of genetic variants are evaluated
individually with a test statistic to determine their predictability for a particular phenotype. Let S denote
the set of selected features, and P(X:,i, y) the value of some univariate statistic, that computes the error
obtained when using the ith feature, whose value for all training examples is contained in X:,i, for predicting
the corresponding labels contained in y. It can be assumed that a lower value for the statistic means better
predictive power, as we can usually define simple transformations for statistics that do not behave this
way (i.e. use 1-accuracy as an error measure instead of using accuracy). A number of studies have shown
that filters were able to provide predictive results for their respective datasets [3, 6]. Some studies have
coupled these filters with more advanced methods such as wrappers [2, 7]. These studies collectively argue
that through the intelligent use of these algorithms researchers can help to explain a larger portion of the
heritability of complex diseases and help to find more causal variants for these phenotypes.

Algorithm 1 presents the general pseudocode for the filter method. Those SNPs for which the value of
the statistic is below a certain threshold are selected. Further, one may restrict the method to selecting only
the top k variants, in which case the features need to be ranked by sorting the computed values. Running
algorithm 1 can be implemented highly e�ciently, as they require only a single pass through the data.
In practice, standard GWAS analysis software such as PLINK [8] are capable of calculating single-locus
statistical associations for entire GWAS in only a matter of minutes.
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Algorithm 1 Filter-based feature selection

1: S  ; . The set of selected features
2: for i 2 {1, . . . , n} do
3: ✏i  P(X:,i, y) . Calculate the value of the statistic P
4: if ✏i < ✏t then . Select the feature if the value is below threshold ✏t
5: S  S [ {i}
6: return S

There are a number of commonly used filters and which method to use is a subject of determination as to
what provides the most meaningful results for a particular study. In case-control studies, a common analysis
is to test the hypothesis of no-association between the SNP’s values in cases and controls, represented in
a 2 ⇥ 3 matrix (see Table 1). This matrix contains the counts of the three genotypes in the di↵erent sub-
groups. A less computationally intensive method is to treat the contingency table as 2 ⇥ 2 in which the
entries represent the count of the total number of the allele possibilities in cases and controls (see Table 2).

AA Aa aa Total
Cases z1 z2 z3 R1

Controls z4 z5 z6 R2

Total C0 C1 C2 N

Table 1: Example of 2x3 genotypic table

A a Total
Cases 2z1 + z2 2z3 + z2 2R1

Controls 2z4 + z5 2z6 + z5 2R2

Total 2C0 + C1 C1 + 2C2 2N

Table 2: Example of 2x2 observed genotypic table

A a
Cases R1(2C0 + C1)/N R1(C1 + 2C2)/N

Controls R2(2C0 + C1)/N R2(C1 + 2C2)/N

Table 3: Example of 2x2 expected genotypic table

Given that the tables contain r rows and c columns, with Ri and Cj denoting the sums of the entries of
row i and column j, respectively, the p-value for Fisher’s Exact Test can be calculated with an application
of the following equation [9].

p =

Qr
b=1 Rb!

Qc
d=1 Cd!

N !
Qc⇥r

i=1 zi

. (1)

Similar to Fisher’s Exact test, one can also use the �2 test statistic to calculate the association between
individual SNPs and the correct class labels. Based on the observed genotypes in Table 2 and the expected
ones in Table 3, the test statistic can be computed with (r � 1)(c� 1) degrees of freedom:

�2 =
rX

i=1

cX

j=1

(Obsij � Expij)
2

Expij

Another commonly used metric is known as the odds ratio (OR) which measures the association of
a variable on the class labels. This measure indicates how likely a given class label will be based on an
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observed genotype compared to the likelihood of that same label without the appearance of the particular
genotype [10]. Using Table 2 we can define the allele count based OR:

OR =
(2z1 + z2)(2z6 + z5)

(2z3 + z2)(2z4 + z5)

If the OR = 1, it can be assumed that there is no association between the genotype and the disease. A
value of OR > 1 represents that allele A increases the risk of the disease and an OR < 1 means that the
occurrence of the disease is less likely.

Coordinate Descent Optimization for Feature Selection

With wrapper and embedded feature selection, we refer to methods for which the selection process is opti-
mized for a particular learning algorithm. In traditional wrapper methods, feature selection is implemented
as a meta-algorithm that performs feature selection as a search over the power set of features, and the
learning algorithm is used as a black-box subroutine that evaluates the quality of di↵erent feature sets.
Embedded methods on the other hand incorporate feature selection within a particular machine learning
algorithm, for example by changing the objective function optimized so that it favors sparsity in addition to
prediction performance. Wrapper methods can be considered as more general, whereas embedded methods
are typically more e�cient as they allow algorithm specific optimizations in implementing the methods. It is
not always possible to draw clear distinctions between these two classes of approaches, as a specific optimized
realizations of the general wrapper framework may in many cases be considered as embedded algorithms, as
is the case for example the greedy RLS method considered later in this section.

We next present an optimization framework for wrapper and embedded methods, under which various
types of feature selection methods can be conveniently considered. The linear models considered in the
framework can be written as

f(x) = xTw + b (2)

where w = (w1, . . . , wn)T is a vector of model parameters, b is the bias and x = (x1, . . . , xn)T is a vector
containing the feature values of a datum. Typically the bias term b is implemented by appending to each
feature vector x a constant valued feature x0 = 1, so that we may define w0 = b, as this simplifies the
notation. When dealing with this data representation, we assume that the feature selection algorithms always
automatically select the feature corresponding to the bias term. Thus, the model (2) will be subsequently
written without the bias term.

The training algorithms for learning the above considered types of linear models can be expressed as a
following optimization problem:

argmin
w2Rn

Pm
i=1 L (f(Xi,:), yi) (3)

subject to C(w) ,

where L is a loss function indicating how the prediction obtained for the ith training example fits to its label,
and C is a constraint function. One of the most well-known and most widely used constraint functions is
the so-called quadratic (or ridge) regularizer

C(w) ⌘ kwk22 < r, (4)

where r 2 R+. Constraining the norms of the models is traditionally used for finding a balance between
fitting the model to the training data and the complexity of the model. However, this constraint alone tends
to favor models that depend on all features.

One of the simplest sparsity enforcing constraints is the one setting a hard limit on the number of features
the model can depend on, that is, on the number of nonzero entries in the model vector w, known in the
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literature as the zero norm kwk0 = |{i | wi 6= 0}| of the model vector. This can be formally expressed as
follows:

C(w) ⌘ kwk0  k, (5)

where k 2 N is a user given limit which the number of features must not exceed. The discrete and non-convex
nature of the constraint (5) makes its direct optimization challenging, and one must resort to combinatorial
optimization techniques, such as discrete searches over the space of all feature subsets. In the literature,
the methods are often referred to as wrapper-based feature selection methods, which originate from the idea
of retraining a model from scratch for each step of the search process. Namely, the search algorithm is
”wrapped” around a base training algorithm that outputs a new model for each tested subset of features.
This can be very slow in practice due to the size of the search space growing exponentially in the number of
features and due to the slow training speed of the base learning algorithms. As we will show below in more
detail, the large search space can be countered by designing smart search heuristics and the training speed
can be accelerated by taking advantage of the models trained during the previous iterations of the search
algorithm. An extra benefit of the direct search of feature subsets is that, instead of optimizing the training
error, one can also optimize more sophisticated objectives, such as the leave-one-out cross-validation error
for which some learning algorithms have easy to optimize closed-form solutions.

One of the oldest computationally e�cient algorithms for directly optimizing the least-squares loss with
the discrete constraint (5) are the so-called greedy least squares (GLS) methods, also known as orthogonal
matching pursuit [11]. Another typical example of a direct optimization approach is the greedy RLS algo-
rithm proposed by us [12]. It uses both (4) and (5) simultaneously to constrain the space of the models,
leave-one-out cross-validation as a search heuristic and combinatorial search as an optimization method.

Algorithm 2 Greedy coordinate descent

1: S  ;
2: while |S| < k do
3: b, r  argminb2{1,...,n}\S,r2R J(w + reb)
4: S  S [ {b}
5: w  w + reb

6: return S

This type of approaches can be conveniently considered under the framework of coordinate descent
methods. Coordinate descent (see e.g. [13]) fixes all entries of the vector except one and updates its value
so that the value of the objective function will be reduced. A greedy coordinate descent is illustrated in
Algorithm 2. The algorithm starts from an initial set of features that can be an empty set as in greedy forward
selection and other similar approaches. During each iteration the algorithm prepares a set of candidate feature
sets that usually di↵er only slightly from the current set of selected features. The candidates cover all subsets
that have one extra feature in addition to the features already selected. Next, the algorithm selects from the
candidates the one that is optimal with respect to the function to be optimized and subsequently updates
the model according to the new set of selected features. The algorithm stops when a predefined number of
features k have been selected, or based on other varying criteria, such as the identification of an optima.

Instead of directly optimizing the hard constraint of type (5), an alternative approach is to approximate
it with an easier to optimize proxy function, such as the so-called 1-norm of the model vector

C(w) ⌘ kwk1  r. (6)

Unlike the 2-norm based constraint (4) this tends to favor sparse models depending only on a subset of the
original features, and unlike (5), this is a convex and continuous constraint. Combined with a convex loss
function, the corresponding optimization problem is considerably easier to solve than those with discrete
non-convex constraints due to the objective function having a global optimum easily searchable with the
powerful family of convex optimization methods.
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Algorithm 3 Cyclic coordinate descent

1: while not converged do
2: for j = 1, . . . , n do
3: wj  wj + argminr2R J(w + rej)

The methods resorting to the convex approximation constraint (6), are usually called the embedded
methods, since the feature selection mechanism can be considered to be built into the training algorithm
itself. While there is a long history of various convex optimization methods being applied for training the
embedded methods, currently the most popular ones are coordinate descent algorithms due to their simplicity
and computational e�ciency.

In this case, cyclic coordinate descent may be applied for minimizing the objective function (see Figure 1).
The method repeats coordinate descent steps for each coe�cient in the model vector at a time in a cyclic
fashion, until the solution has converged or if a pre-defined maximum number of passes through the whole
data has been performed. The idea is illustrated in Algorithm 3, where J denotes the constrained objective
function and ej is the jth standard basis vector of Rn (e.g. the jth element of ej is 1 while the other entries
are zero).

The most well-known algorithm involving the constraint (6) is known as Lasso or basis pursuit in the fields
of machine learning and signal processing, respectively. Elastic Net is a variation of Lasso that simultaneously
uses both (4) and (6). Lasso and Elastic Net are both least-squares regression methods but `1-regularization
has also been employed together with other loss functions such as the logistic loss for binary classification.
There has recently been growing sectors of research that have made use of embedded methods, primarily
Lasso and similar `1-based methods, for the development of predictive models [4, 14–18].

A

B

Figure 1: Example of coordinate descent starting from A and searching for the minimum B of a convex
function.

Learning Algorithms
Let us denote p = f(x) = hx, wi, thus

@p

@wj
= xj .

Then by chain rule for any loss function

@L(p, y)

@wj
=

@L(p, y)

@p

@p

@wj
= xj

@L(p, y)

@p
.
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From these we can define the derivatives needed for finding the coordinate descent step directions for a
number of loss functions (see table 4)1. Based on these and the various regularizers listed in Table 5 we
can construct a number of well-known machine learning algorithms, as seen in Table 6. Note that, while
the zero-norm is not di↵erentiable, the corresponding constraint is still satisfied with the greedy coordinate
descent based training methods. Di↵erent algorithms vary on their respective computational complexities
(see table 7).

Name L(p, y) @L(p,y)
@p

Squared (p� y)2 2(p� y)

Logistic log(1 + e�yp) �y
1+eyp

Hinge max(0, 1� yp) 0 if y � 1, �y else

Table 4: Common loss functions

Name ⌦(w) @⌦(w)
@wi

`0 kwk0 –

`1 kwk1 sign(wj)

`2 kwk22 2wj

Table 5: Common regularizers

Method S L H `1 `2 `0 R/C Ref.
Lasso • • R [19]

Elastic Net • • • R [20]
`1 Logistic • • C [21]
`2 Logistic • • C [22]
`1 SVM • • C [23]
SVM • • C [24]
OLS • R [25]

Greedy RLS • • • R [12]
Ridge Reg • • R [26]

GLS • • R [11]

Table 6: Construction of various methods based on di↵erent loss functions and regularizers. S, L and H stand
for squared loss, logistic loss and hinge loss, respectively. R/C denotes whether the method is a (R)egression
or a (C)lassification method only, all the regression methods can also be used for classification. OLS stands
for ordinary least squares and Ridge Reg for ridge regression. GLS represents greedy least squares. These
methods may also be known by other names in the literature, for example ridge regression is also known as
regularized least squares.

1To be exact, the hinge loss and `1 norm are not di↵erentiable everywhere, for these we provide subderivatives.
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Method Complexity
Greedy RLS O(kmn)

Filter O(mn)
Cyclic Coordinate Descent O(mnD)
Greedy Coordinate Descent O(kmn)

Table 7: Computational complexities of various feature selection methodologies. Here D represents the
number of iterations necessary for the algorithm to cycle through until convergence. This is a data dependent
variable and will vary depending on the study examined.

Examples in genetic prediction of complex traits
Next, we consider representative examples of implementations of the previously considered optimization
framework, such that allow feature selection and can scale to entire GWAS without the need for pre-filtering.
Greedy least squares (GLS) [11], minimizes the squared loss with a zero-norm constraint, e.g. the number of
nonzero features is restricted. A straightforward approach for training GLS is to use the greedy coordinate
descent (see Algorithm 2), which greedily selects one feature at a time and updates the model accordingly,
until the number of features determined by the constraint is selected. The method is very simple to implement
and the greedy search steps can be accelerated by caching the results from previous iterations. Accordingly,
the computational complexity is only linear with respect to the number of features, data and the constraint
(Table 7). The squared loss for m data will become zero at the latest after m linearly independent features
has been selected, and hence GLS cannot be used to select more than that.

Greedy RLS [12] is similar to GLS except that it uses a combination of zero- and two-norm constraints
and the it is trained with greedy coordinate descent that optimizes the leave-one-out cross-validation error
rather than a traditional type of objective function. That is, the method yields identical results to running
a traditional greedy forward feature selection wrapper on quadratically regularized least-squares (RLS) (e.g.
ridge regression), but does so with computational shortcuts that are similar to those used in embedded
methods. Formally, the selection heuristic H is the leave-one-out cross-validation error measured on RLS
trained with features S [ {j}. Formally, it can be expressed as

H(S [ {j}) =

mX

i=1

⇣
Xi,:w

(i) � yi

⌘2

, (7)

where w(i) is the RLS model trained with the whole training dataset except the ith datum and using the
features indexed by S [ {j}, that is, the minimizer of

X

h 6=i

�
Xh,S[{j}w � yh

�2
+ �kwk22.

Despite the use of leave-one-out based selection heuristic, the running time of Greedy RLS is analogous to
that of GLS, it scales linearly with respect to the number of features selected, the total number of features
and the number of examples.

The class of feature selection methods based on `1-norm regularization incorporates a wide variety of
methods. Here we focus primarily on Lasso and the Elastic Net method, but other variations can be obtained
simply by changing the loss function. The objective function that Lasso minimizes is [20]:

mX

i=1

(yi �Xiw)
2

+ �kwk1 . (8)

The number of features selected by Lasso and the running time of the algorithm are dependent on the value
of the regularization parameter �. The larger is the value, the smaller both the number of features being
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selected and the number of iterations until convergence tend to be. However, unlike the methods directly
optimizing the `0-norm, the dependence for Lasso is indirect in the sense that one can not tell exactly
how many features will get selected with a given parameter value before training the model or how many
iterations will be required, as both of them are very much dependent on the data. Similarly to GLS, Lasso is
only good for selecting less than m features [20], which may be problematic in GWAS where there is often a
small e↵ect size for the individual variants and large numbers of SNPs may be necessary to produce suitable
models. The use of cross-validation for selecting the value of � can make the problem even worse, since part
of the data must be reserved for validating the parameter values.

The method known as Elastic Net avoids the above-described drawback of Lasso to some extent. It
represents a continuum between the Lasso and ridge regression methods, with the method acting as Lasso
when �1 > 0 and �2 = 0 and as ridge regression when �1 = 0 and �2 > 0. In (9), the quadratic component
removes the limitation of the number of selected variables with Lasso, it encourages grouping and helps
to stabilize the `1 regularization [20]. As mentioned in [20], this means that the Elastic Net is a more
viable solution for methods making use of grouping e↵ects. By grouping we mean the e↵ect of correlated
features having a similar e↵ect on the model, which might be a useful method in applications such as in
pathway analysis. Zou et al. calls the equation (1 � ↵)kwk1 + ↵kwk22 the Elastic Net penalty, where
↵ = �2/(�2 + �1) [20].

mX

i=1

(yi �Xiw)
2

+ �2kwk22 + �1kwk1 (9)

Having the capability to fluctuate between Lasso and ridge regression a↵ords the opportunity to provide both
sparse solutions while, allowing for the shrinkage necessary for the model to not overfit the training data.
Additionally, as it can be trained through the use of e�cient optimization techniques such as coordinate
descent, it potentially does not su↵er from as high run times as wrapper methods. This does not mean that
Elastic Net will not lead to universally better results than other leading algorithms, as the suitability of the
method can depend on the applied search function and the dataset used.

Method Implementations for the Experiments

In order to examine their practical performance on common datasets, representative examples of machine
learning methods were implemented on two SNP studies. The first experiment used WTCCC-T1D cases,
combined with the UK National Blood Service and the 1958 Birth Cohort’s control sets [27]. We implemented
quality control procedures to filter based on having a MAF (5%), missing rate (1%), HWE (0.001), the
genotype quality score (Chiamo value of 0.9) and exclusion lists provided by the WTCCC. This resulted
in a set of 1,915 cases and 2,871 controls. The genotypes were encoded in the prediction models as binary
genetic features through a genotype model which transforms each minor allele dosage (represented by 0,1,2)
into three binary features: 0!(1,0,0), 1! (0,1,0), 2! (0,0,1), NA! (0,0,0). This resulted in 986,331 binary
genetic features in the T1D case, tripling the dataset size and memory requirements, while allowing the
models to deal with missing genotype data (NA).

The second experiment involved a genetic cross between two yeast strains (Y2C), originally used to
estimate the e↵ect of epistasis on missing heritability of various quantitative yeast traits under highly-
controlled laboratory conditions [28]. This dataset consisted of 1,008 segregants, 30,594 SNPs and 46 traits.
We randomly selected one of the traits (Tunicamycin), but note that the Y2C data could be used to model
genetic interactions also across multiple quantitative traits (pleiotropy, see Discussion). The only quality
control procedure that we implemented was to remove those individuals with missing values for the particular
trait. The original genotype data was adjusted so that variants sharing the same genotype across all of the
segregants were merged, resulting in a set of 11,623 genetic features. Since the haploid dataset contains only
two genotypic values (R and B), the genotypes were encoded by binary features (1 and 0).

For the case-control T1D data, we implemented a standard �2–based filter, by first selecting the top
500 variants according to their association p-values for each of the external folds, followed by L2-regularized
(ridge) regression. For wrappers, we used our greedy L2-regularized least squares (RLS) implementation [1],
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while for embedded methods, Lasso, Elastic Net and L1-penalized logistic regression, were implemented
through the Scikit-Learn package [29]. As a baseline reference method, we used the log odds-ratio weighted
polygenic model [30], implemented as a weighted sum of the minor allele dosage in the 500 selected variants
within each individual. For the quantitative Y2C data, we compared the performance of the greedy RLS,
Lasso and Elastic Nets to a filter method, which selected the top 1,000 variants based on R2, and then
optimized the L2-regularization parameter for RLS using nested CV. As a baseline method, we implemented
a greedy version of least squares (LS), as this represents a model that is theoretically similar to the stepwise
forward regression used in the original work [28]; greedy LS di↵ers from the greedy RLS in terms that it
implements regularization through optimization of L0 norm instead of L2 norm used in RLS.

Due to the large amount of processing power and memory needed for performing GWAS-scale experi-
ments, a supercomputer at CSC - Finland’s IT Center for Computer Science was used. The Hippu server is
composed of a pair of HP ProLiant DL580 G7’s and a pair of HP ProLiant DL785 G5s. The machine has
an Rpeak of 1280 Gflop/s, and the two G7 servers have a total of 2 TB of memory while the two G5 servers
have a total of 1 TB of memory. Additionally, the G7s are equipped with a total of eight 8-core Intel Xeon
processors and the G5’s have a total of 16 quad-core AMD Opteron processors.

As expected, filters have the lowest running times as they simply calculate a test statistic over all features.
While greedy RLS tends to be fast when selecting a small amount of features, the cyclic coordinate descent
based Lasso and Elastic Net implementations are more e�cient when selecting a large amount of features.
The main computational bottleneck, however, results from the need to select the hyperparameters of the
learners. Selecting the `2-regularization parameter for greedy RLS and Elastic Net requires training the
methods K-times for each tested parameter value, when K-fold cross-validation is used to select the param-
eter value. Further, when using a `1-regularizer for controlling the amount of selected features, such as is the
case for Lasso and Elastic Net, a grid of parameters needs to be tested. Finally, if we do not have separate
test sets, selecting parameters and evaluating test performance requires nested cross-validation, where inner
cross-validation is used for parameter selection and outer-cv for performance evaluation. Combining nested
cross-validation with parameter grid searches results in a combinatorial explosion that results in running
times that are measured in days (e.g. Lasso), or weeks (Elastic Net and greedy RLS). This problem can be
alleviated by using smaller or sparser parameter grids, small amount of folds or simpler heuristics for pa-
rameter selection. For example, for greedy RLS one may estimate the regularization parameters based on a
filtered subset of the data and still provide a reasonable estimate. This allows selecting the hyperparameters
in a matter of minutes.

Computational Validation of Predictive Accuracy
As the models become increasingly complex, their prediction errors decrease with the number of selected
variants and other model parameters, which capture increasing details of the training data. However, this
is true only to a certain extent for independent test data; while increasing complexity first allows for more
accurate modeling, the test set error begins later to increase as the complexity of the model is no longer
improving the generalization power [31]. Such model overfitting necessitates the use of a careful model
validation, even after model regularization. Since the use of the same dataset during both the model
construction and model validation may lead to a severe selection bias [32] resulting in overoptimistic estimates
of predictive accuracy, separate validation data is needed.

A straightforward validation option is to apply the trained model onto an independent set of samples,
which has not been examined during the whole model construction process. However, in addition to leading
to a smaller proportion of training data, perhaps a↵ecting the model generalizability, a within-study hold-
out validation is prone to being e↵ected by any experimental errors that may exist in the particular study.
Between-study evaluation is a valid option in case such replication samples are available, especially if the
model is intended to generalize beyond the genetic background of the training subjects; otherwise, population
stratification methods may be needed to make the population structures more comparable [33].

Especially when limited numbers of samples are available, some type of cross-validation (CV) is frequently
used to evaluate the predictive performance [1, 34]. In the simple K-fold CV, the sample is randomly
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partitioned into K subsamples of equal size; the model is first trained on K-1 subsamples and then validated
on the remaining sample (Figure 2). This process is repeated K times and an average over the K folds is
used as an estimate of the predictive performance. Stratified CV guarantees that the phenotypic e↵ect is
similar in each fold; in disease classification, for instance, each fold contains approximately equal proportions
of cases and controls. Further, when one needs to use CV both for parameter selection (including feature
selection) and for estimating the accuracy of the learned model, the CV procedure should be nested. That
is, on each round of CV (outer CV), where the data is split into a training set consisting of K � 1 folds and
the test set formed from the remaining fold, one performs also CV on this training set (inner CV) in order
to select the learner parameters (see Figure 2). Such procedures can provide performance estimates free
of a selection bias [31, 35]. After this estimate has been computed, the final model construction or feature
selection can be performed on all the available data combined in order to use all the information available.
In the two examples cases considered here the performance evaluation was implemented using nested 3-fold
CV.

Validation Train Train Train Train

Train Validation Train Train Train

Train Train Validation Train Train

Train Train Train Validation Train

Train Train Train Train Validation

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold

Sp
lit

Validation

Train

Train

Train

Train

Fold

Sp
lit

Figure 2: Organization of the standard cross-validation (left) and nested cross-validation (right) in terms of
splitting the genetic data into the training and validation folds.

One of the most commonly reported metrics for quantifying the performance in the case-control setting
is the area under the receiver operating characteristic curve (AUC). While having some specific caveats,
the AUC has the advantage over many other metrics of being invariant to unbalanced settings, where the
number of cases (m+) and controls (m�) is drastically di↵erent [1, 33, 36–38]. The AUC corresponds to the
probability that the predicted phenotype of a randomly selected case (ŷ+

i ) will be ranked higher than that
of a randomly selected control (ŷ�

j ). In its most basic formulation [39], the AUC can be summarized as

AUC =
1

m+m�

m+X

j=1

m�X

k=1

g(ŷ+
j � ŷ�

k ) (10)

where g(x) = 0, 0.5 and 1 if x < 0, x = 0 and x > 0, respectively. For an ideal classifier, AUC = 1,
whereas a random classifier obtains an AUC = 0.5 on average. The AUC is closely related to the Mann-
Whitney test statistic. While being useful in many applications, any single summary metric cannot capture
all of the di↵erent tradeo↵s in the predictive modeling. For instance, the true positive rate (sensitivity) is
often more important in clinical applications than the false positive rate (1-specificity). The partial AUC
can be used in such applications to integrate the sensitivity levels of a model up to a specified specificity
cut-o↵.

In regression problems, the predictive accuracy for a continuous trait is often evaluated in terms of the
coe�cient of determination (R2). This metric corresponds to the proportion of the phenotypic variance
explained by the genetic model. Using squared errors between the observed yi and predicted ŷi phenotypes,
R2s is formally defined by the ratio of the variance accounted for by the model fitted to the training set
relative to the variance of the phenotypic trait in the validation sample:

R2 = 1�
Pm

i=1(yi � ŷi)
2

Pm
i=1(yi � ȳ)2

(11)
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Here, ȳ is the mean of the phenotypic trait over all the m individuals. Higher values of R2 indicate
larger portion of explained variance and hence a more predictive model. R2 is also related to the estimated
heritability (h2), which corresponds to the proportion of phenotypic variance explained by true genetic
values in the base population; however, since R2 ignores inbreeding, relationships between individuals and
estimation errors, it cannot be used as a consistent estimate of heritability [40].
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