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Abstract

Ontology matching is an important task when data from multiple data sources is
integrated. Problems of ontology matching have been studied widely in the research
literature and many different solutions and approaches have been proposed also
in commercial software tools. In this survey, well-known approaches of ontology
matching, and its subtype schema matching, are reviewed and compared. The aim
of this report is to summarize the knowledge about the state-of-the-art solutions
from the research literature, discuss how the methods work on different application
domains, and analyze pros and cons of different open source and academic tools in
the commercial world.
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1 Introduction

Modern society depends on the access to a wide range of information. However, a
direct data access is not usually sufficient to make the data usable because different
data sources contain heterogeneous data. Wide variety of data formats creates an
interoperability problem that needs to be solved in order to enable practical data
utilization. The interoperability problems caused by distributed data sources are
well-known, but not all of the known issues have been solved comprehensively. This
paper examines ontology matching1, which are common tasks to integrate data from
multiple heterogeneous sources.

A Schema is a definition that formally represents construction of data structures,
defines data constraints, and states valid data structures and values [1]. XML schema
and database schema are examples of schemas. Schemas contain elements that
are called schema elements. One schema element typically describes one column
in database. When data sources are combined, schema elements are used by a
matching task. Ontologies enable unambiguous identification of elements in opaque
heterogeneous data sources and relationships between these elements. Ontology
matching is the process of determining correspondences between concepts. Ontology
matching tools have generally been developed to operate on data source schemas. A
subset of ontology matching using schemas can also be called schema matching [2,
3]. The remaining text of this survey uses ontology matching as an umbrella term
and schema matching when matching is done particularly with schemas.

Ontology matching is a basic, but critical task of generating correspondence
mappings for semantically equal elements between ontologies [4]. Ontology match-
ing is typically used when data is physically or virtually combined from multiple
heterogeneous and distributed data sources. Typically in data source integrations,
data structure schemas are matched pair wisely by using a target schema or inter-
mediate schemas that are combined at the end. Ontology matching is an important
step in data source integration tools, data warehouses and reporting systems, which
all typically rely on multiple data sources.

Currently, ontology matching requires manual user assistance via graphical user
interfaces, which can be seen as the easiest way to perform ontology matching when
the application only uses a couple of data sources. However, when the number
of data sources increase, the task becomes time consuming. A diverse range of ap-
proaches that try to automate the ontology matching have been proposed to alleviate
the issues of manual work requirements. Most currently available matching tools try
to find semantic, structural or linguistic correspondences between schema elements
of the data sources, but there is no single method that has been proven to work in
all application domains.

1 http://www.ontologymatching.org/
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During the past few decades, many diverse approaches and methods to ontology
matching have been proposed in e.g. [5, 6, 7, 8, 9, 10, 11]. Literature reviews of
schema matching ([4, 12, 13]) and ontology matching ([14, 2]) has also been published
on multiple occasions in the past. A taxonomy used to group matchers in this paper
is combined from other surveys to enable easier comparisons between this survey
and the previous taxonomies. The query phrase used was:

"ontology matching" OR "schema matching" OR "ontology alignment"

All of the literature queries were conducted in February 2015 using ACM2, IEE-
Explore3 and CiteSeerX4. Other sources (e.g. Google Scholar5) were also used when
it was necessery to find more information from specific subject.

This survey introduces general properties of current matching techniques, up-
dates the knowledge about the state-of-the-art methods, and makes new discoveries.
The paper analyzes pros and cons of different methods and discusses what ap-
plications different methods have in the commercial world. In section 2 different
approaches to ontology matching are introduced. Section 3 reviews a wide range of
state-of-the-art matcher and section 4 compares and analyzes approaches reviewed
in section 3 and presents conclusions.

2 https://dl.acm.org/
3 http://ieeexplore.ieee.org/Xplore/home.jsp
4 http://citeseerx.ist.psu.edu/
5 https://scholar.google.fi/
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2 Approaches and methods to
ontology matching

Many different solutions have been proposed to ontology matching, because ontology
matching is a critical and time consuming task. Nevertheless, all of the problems of
ontology matching have not been solved and there is no single method that works
well in all situations. Therefore, most of the developed matchers are combinations of
multiple approaches and are hence called complex matchers. Complex matcher can
be further divided into two groups, hybrid and composite matchers, depending on how
the results of elementary matchers are combined. If the elementary matchers are
used one after another in a sequence, the matcher is called hybrid matcher. However,
if the elementary matchers are used parallel and their results are combined at the
end, the matcher is called composite matcher. Hybrid approaches and composite
approaches both use the contribution of each elementary matcher. Each elementary
matcher in a complex matcher typically returns relatedness value, called semantic
distance, which is used to calculate a weighted sum. By comparing the weighted
sums to predefined threshold values, the matches of elements are determined. The
threshold values can usually be adjusted by the user.

When methods for data integration projects are selected, input and output pro-
cessing methods need to be considered [4]. Different schema and ontology matching
methods vary greatly on what they can take as an input. Some methods, for exam-
ple, only work with database models, such as ER models (Entity-Relationship model,
used to describe data and its relations), while some algorithms only support XML
files. The input given to the schema matcher is an important aspect of schema and
ontology matching process, because it determines what kind of structures can be
used by the matching algorithms. When schema or ontology matching methods are
chosen by their processing properties, one important question is whether exact or
approximated matches are required. The difference between the exact and approx-
imated method is that the approximated method stops after one match is found,
whereas the exact method tries to find all matching elements. In some cases, when
processing speed is important, approximated matches can be sufficient. However,
as mapping is usually done once per set of schemas or ontologies, more accurate
matches can be produced because processing time is not that critical. Depending on
the use case, it has to be considered if a matching method can use external aids such
as different thesauri. The thesauri data base size or the need for Internet connection
can cause limitations.

Schema and ontology matching approaches can be divided into two main groups
as shown in figure 1. The first group are methods that compute matches in element-
level and the second group are methods that compute matches in structure-level [13].
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Figure 1: Taxonomy of ontology and schema matching.

In the element-level, matches are computed by determining which elements match
between two schemas or ontologies. As examples, column’s name, description field’s
value, type similarity, or linguistic feature can be used for elemental-level matching.
Structure-level matching focuses on combinations of elements that usually appear
together in the schema or in the ontology. However, structure-level approaches can
also use hierarchies to compute matches. In this survey, methods are first divided into
element-level and structure-level and then into smaller groups for finer granularity
taxonomy.

2.1 Element-level approaches

In element-level approaches, schemas or ontologies are matched by analyzing mean-
ing and content of the elements. Because matching is done by ignoring relations
of elements with each other, element-level approaches are especially useful when
matching schemas or ontologies that are opaque or data about the schemas or on-
tologies is incomplete [4]. The two main ways to implement element-level approaches
are language-based matching and constraint-based matching.

2.1.1 Language-based matching

Language-based matching, sometimes called linguistic matching, uses names and
text properties to find semantical matches between schemas or ontologies. The
simplest form of language-based matching is to use element names or descrip-
tions. If the names or descriptions of two elements match fully or partially (e.g.
CName→CustomerName), the elements are usually semantically equal. Advanced
methods use synonyms, hypernyms or similarity algorithms such as Soundex ([15])
to analyze how words sound. Edit distances ([16]), which calculate how many edits
are needed to make two words equal or natural language processing techniques ([9,
8]) can also be used to improve matching. Additional methods that can be used in
ontology matching can be found from approximate string matching papers (e.g. [16]).

Using synonyms (words that mean exactly or nearly the same, e.g. dog and
hound) and hypernyms (is-a relations, e.g. dog is an animal) can be an efficient
way to solve simple matching problems, but these methods require the usage of
thesauri or dictionaries which can be a problem when Internet connection is not
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available. Words that are equal, but have different meanings are called homonyms.
The homonyms are a problem because they create false matches. The issue of
false matches can be alleviated by using supplementary methods such as structure-
level approaches or constraint-based matching. Problematic cases also appear when
multiple match candidates are found. As an example, address matches for both home
address and business address. The problems of multiple matches are easy to solve
with manual interaction from a user, but hard to solve automatically. One solution
to automatic multi matching is to use supervised learning to teach recognition of
true matches (e.g. [5]).

Figure 2: An example of Soudex algorithm’s process

A more advanced way to use language-based matching is to use Soundex or edit
distance. Soundex is a phonetic algorithm that uses sounds, as pronounced in En-
glish, to encode words into one letter and three numbers. Soundex algorithm works
in three steps (figure 2). The first step is to take the first letter and remove all vocals
and the letters h and w. The second step is to replace the remaining consonants
with the corresponding values. The third and final step is to trim the encoded string
iteratively until it is one character and three numbers long. Trailing zeros are added
if necessary. The Soundex algorithm can be used as a supplementary method, be-
cause the method is very error-prone. It has been reported that only about 30% of
matches are correct with the Soundex method [15]. Due to unreliability, many im-
provements over the original Soundex method have been introduced in subsequent
phonetic algorithms.

It is often necessary to use additional techniques from natural language process-
ing when language-based matching is used because basic forms of words appear
infrequently. The most popular operations of natural language processing tech-
niques are tokenization, lemmatization, and elimination [4]. In tokenization, words
are split into tokens by adding punctuations and blank characters to words. The
tokens can then be matched. Lemmatization is used to find basic forms of words to
avoid problems caused by words that are in plural form. Elimination is a technique
that removes articles, prepositions, conjunctions or otherwise useless parts of data
elements.
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Figure 3: Example of Levenshtein distance.

Edit distances is another useful language-based matching method [16]. One pop-
ular algorithm that uses edit distances is the Levenshtein distance algorithm which
measures the difference between two strings. The difference is calculated by de-
termining the minimum number of single-character edits (insertions, deletions and
substitutions) that are required to transform two words equal [16]. However, methods
that use edit distances have problems to handle short words. As an example the
word cat has edit distance of 3 to dog, but the words are not likely that match with
each other. Another example is shown in figure 3 where the edit distance between
kittens and sitting is calculated. First the algorithm uses deletion to remove s from
kittens. Secondly, substitution is used to replace first k with s and then e with i.
Thirdly, insertion is used to insert g at the end. It requires four modification to
transform kittens into sitting which means that the edit distance between the two is
four.. Both the Soundex method and edit distances perform poorly alone, but are
beneficial as supplementary methods when using structural-level approaches.

2.1.2 Constraint-based matching

Constraint-based matching uses internal structures of schemas and ontologies to com-
pute matches. The internal structures can be definitions of elements (data types),
uniqueness of attributes (also known as cardinality), and foreign or primary keys.
The constraint-based matching can be used to narrow down the list of possible
matches in situations where schemas or ontologies are so opaque that the utilization
of direct approaches are difficult. The use of constraint-based approach typically
leads to multiple matches and therefore these methods should not be used alone.
However, the constraint-based matching methods are useful when they are used to-
gether with other algorithms. If multiple possible match candidates are found, the
correct match can be determined by examining value ranges or data types.

Data types and range comparison of values are one way to match schemas and
ontologies by using constraint-based matching. If multiple match candidates are
found, the amount of candidates can be reduced by checking data types. If the
datatype of one element is integer while the datatype of the second is char, the
two elements are not likely to be a match. However, small variations in data types
can be misleading. If two matched elements have different precisions, ranges, or
lengths, constraint-based matching might not find the match. The problem can be
partially solved by using statistical analysis. By calculating means or other statistical
measures, matching elements can be found regardless of small variances.

6
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2.2 Structure-level approaches

Structure-level approaches match elements by finding similarities in structure-level [17,
18]. While element-level approaches ignore relations and only focuses on the actual
elements, methods using structure-level approaches try to find relationships by ana-
lyzing relations that the single elements and the element groups have. One popular
method is to analyze parent-children relationships (e.g. [8]). After potential matching
structures have been found by using element-level algorithms, the matches can be
confirmed with linguistic matching, constraint-based matching, or other supplemen-
tary techniques. The most popular choices to implement structure-level approaches
are taxonomy-based algorithms, repositories of structures and model-based algo-
rithms [4].

Figure 4: Two simple examples of two schemas. Database tables are presented as
circles.

Taxonomy-based algorithms, also known as graph-based algorithms, use special-
ization relations of the elements. The first step is to construct taxonomy graphs by
using hierarchical is-a links. After that similar elements are identified from the graph
by comparing positions along paths. If two elements have similar parents, they are
identified as possible matches. The possible matches can be further analyzed with
supplementary techniques. For example, in figure 4, address and addr are identified
as a possible match because both elements have a parent called customer.

Model-based algorithms focus on semantic interpretations of schemas and ontolo-
gies and try to solve the matching problem with formal semantics [8]. One commonly
used reasoning technique is Boolean satisfiability that is also known as propositional
satisfiability or SAT (abbreviation of the word satisfiability). In the Boolean satisfia-
bility method, graphs are translated into a propositional formula that typically has
form: Axioms → rel(context1, context2). The propositional formula is a statement
expression that results Boolean values, which are used in matching. The problem
with Boolean satisfiability method is that the algorithm cannot handle binary pred-
icates due to the limitations of propositional language used for codifying matching
problems [4].

Repositories of structures can be used to improve the quality of matching results
[19]. The repository structure stores previously computed matches. When new
matches are identified, the matching results are first compared to stored matches
in the repository. The stored matches do not necessarily have to be exact. In most
cases it is sufficient that structures are partially matching because data sources have
differences and complete matches are rare. By using the repository, the number of
false matches can be reduced and the matching results can be made more accurate.
To ensure computational efficiency, repository structures should not scan the whole
repository to identify matches. Suggested alternatives to accelerate finding potential
matches from the repository are to use names of root elements, number of nodes, or
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maximal path length [4].
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3 Academic and open source
tools and algorithms

In this section different academic and open source tools and algorithms are reviewed.
Reviewed tools were chosen from other surveys and newest articles. Criteria was that
a chosen tool had to be referenced in at least two latest articles to be relevant enough.
Tools in this section are divided into two groups: those that are ontology matching
tools and those that are purely schema matching tools.

3.1 Ontology matching tools and algorithms

AgreementMaker1 is an ontology-based matching tool that has an extensible and
modular architecture [11]. The tool has a multi-purpose user interface which helps
to evaluate matching results. The AgreementMaker tool is meant to be a generic
solution to a wide range of application domains. The built-in algorithms work in two
steps. The first step computes similarity scores while the second step aligns elements
based on the results from the first step. As an example, labels, comments, instances
and structures are used for the computation.

Anchor-PROMPT [20] is an extension of PROMPT [21], also known as SMART.
Anchor-PROMPT is an ontology merging and matching tool that combines multiple
matching methods to one hybrid matcher. The method inputs two ontologies in
graph form and computes matches by using a set of linguistic-based methods such as
edit distance [20]. The algorithm also refines matches by analyzing similar positions
on the graph and appearance frequencies.

Automatic Semantic Matching of Ontologies with Verification (ASMOV)
is an automatic ontology-based matching tool [22]. The tool target is to integrate
bioinformatical data and the algorithm works in two steps. The first step calculates
similarity scores and the second step verifies the matches that are computed in the
first step. The first step uses multiple language-based (e.g. Levenshtein distance)
and structure-based methods (e.g. weighted sum of the range similarities). Multiple
similarity scores are computed and summed together by using weighted average.
ASMOV is able to use several thesauri depending on the application domain.

Falcon2 is an automatic ontology-based matching tool that uses divide-and-
conquer approach [23]. The Falcon tool is designed for matching large ontologies
that consists of thousands of entities. The matching algorithm that the Falcon tool
uses has three phases. The first phase is to partition ontologies into small clusters

1 http://agreementmaker.org/
2 http://ws.nju.edu.cn/falcon-ao/
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based on structures. The second phase is to match blocks that are constructed from
the clusters and the last phase is to discover matches. Falcon uses a greedy selection
algorithm to discovering matches.

Naïve Ontology Mapping (NOM) [24] and its successor Quick Ontology
Mapping (QOM) [25] are matching systems that combine multiple elementary
matchers. The NOM and QOM tools have similarities to the COMA tool as they all
offer a platform for matching tools with extendable libraries. NOM and QOM work
on ontology-level by using sibling concepts (elements that are considered siblings)
and sub-concepts (parent-child relations).

Owl Lite Aligner (OLA)3 uses all ontology components including classes, prop-
erties, names and constraints [26]. OLA is based on a family of distance based al-
gorithms which analyze the distances between two elements of the input structures.
The OLA algorithm iterates until no improvements are produced. Elements that
have short distances are considered as matches. The OLA solution considers the
matching problem as an optimization problem.

3.2 Schema matching tools and algorithms

Artemis is a module designed to be used with data source mediator system called
MOMIS [27]. The basic idea behind the Artemis module is to calculate affinity
values for the name and structure using a thesaurus. Affinity based methods analyze
elements and define affinity values for the elements. The affinity value identifies
semantic relationships between the elements. Artemis calculates affinity from names
and structures and combines the affinity values into global affinity coefficient. After
that, hierarchical clustering produces affinity tree where match candidates are then
selected. In the last phase elements belonging to a candidate cluster are unified into
a global view.

Clio is a semi-automatic schema matcher developed under IBM Research [28].
The used matching algorithm works in two phases [15]. In the first phase suitable
schema reader is used to read a schema and to translate it into an internal repre-
sentation. After that a correspondence algorithm is used to identify elements that
match together. Clio is designed to be modular which allows adding and removing
plug-ins to alter schema matching results. The Clio tool has also a graphical user
interface to correct and augment correspondences.

Cupid is a mapping tool that discovers mappings between schema elements
based on their names, data types, constraints, and schema structures [9]. Cupid
matcher has been developed to be a general-purpose solution that tries to combine
the pros of different matchers. The Cupid tool uses automated linguistic-based
matching, works in both element-level and structure-level, uses internal structures,
and exploits keys and constraints. The matching process works in three phases. The
first phase is called linguistic matching where names and data types are matched
with the help of thesaurus. The second phase is called structural matching. In the
structural matching phase elements are matched based on their similarity. In third
phase, final alignments are chosen.

COMA (Combination of Matching Algorithms)4 is a schema matching sys-
tem platform that does schema matching by reusing results from previous match
operations and by combining results from multiple matchers [10, 19, 29]. The

3 http://ola.gforge.inria.fr/
4 http://dbs.uni-leipzig.de/Research/coma.html
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COMA tool is distributed with a library of matching algorithms, a framework for
combining results, and a platform for evaluating the effectiveness of the different
matchers. COMA supports multiple schema types such as XML schemas and re-
lational schemas, and the tool can be extended by including libraries. The COMA
system represents schemas as directed acyclic graphs where elements are represented
by graph nodes. The match operations take two schemas as input and output the
matched pairs and corresponding similarity values. If the results contain multiple
matches, the final matching choice can be selected automatically or it can be left for
user to decide.

Duplicate-based Matching of Schemas (DUMAS)5 is an instance-based match-
ing tool that compares names of the elements, properties of the underlying data in-
stances, and the structure in which the elements are contained [30]. Usually instance-
based methods are said to be working vertically, meaning that elements are analyzed
and matched individually column vise. DUMAS, however, works horizontally by try-
ing to find duplicate rows or tuples. Once few duplicates have been found, matching
elements are deduced from matching values.

Line Segment Detector (LSD) is a multi-strategy matching tool that uses machine-
learning techniques to find schema mappings semi-automatically [31, 6]. The system
trains itself from semantic mappings of training sets that the user generates from
data sources. The user input and the data sources are then used to train a set of
learners. LSD uses multiple learners, because each learner uses different types of
methods to focus on schemas or the element data. LSD uses XML as source data
format and DTD (Document Type Definition, used to define document types) as
schema data format. In LSD, schema matching problem is defined as a problem of
matching the target schema and the source schemas. It has been reported that LSD
can obtain accuracy of 71-92% [31].

The functionality of the LSD system consists of two phases. The first phase is
training where user manually specifies the initial element mappings. Here, data is
extracted and the training examples are created to the learners. The output from
the first phase is the internal classification models for learners. In the second phase,
which is the actual matching, data from the source is extracted, learners are applied,
and constraint handler is used to output the target schema. If the mapping results
do not satisfy the user, feedback can be given and a new set of training mappings is
produced for the LSD algorithm.

OpenII Harmony6 is a schema matching tool that combines multiple language-
based matching algorithms and a graphical user interface [32]. Processed schemas
are first translated into a canonical graph representation and then linguistic pre-
processing is applied (e.g., tokenization, stop-word removal, and stemming) before
match computation starts. Multiple matching algorithms are used to vote whether
the two elements are matching. The OpenII Harmony tool is designed to be used
with large schemas and it can efficiently handle schemas of 104 elements. OpenII
Harmony differs from other language-based tools as it can also analyze textual doc-
umentation of the elements. Quality of the matching results can be increased with
the help of human input via graphical interface.

SemInt (Semantic Integrator) is a tool for identifying attribute correspondences
in heterogeneous databases using neural networks [5, 33, 34]. The SemInt method

5 http://hpi.de/naumann/projects/repeatability/algorithms/dumas-duplicate-based-matching-of-
schemas.html

6 http://openii.sourceforge.net/index.php?act=tools&page=harmony
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matches schema elements by using a classifier to categorize the elements accord-
ing to descriptions and values, and then using a neural network to do the actual
matching. SemInt does not use pre-programmed knowledge and the knowledge is
learned from meta-data of schemas that makes the method more adjustable to new
situations. The data clusters used to train the neural network are discovered by
using self-organizing map ([35]) and statistical analysis to categorize elements based
on mean of fields, variance, coefficient of variation, or groupings of numeric fields.
After the elements have been classified in to clusters, back-propagation learning al-
gorithms are used to train the neural network to determine similar matching cases
in the future.

Similarity Flooding is a versatile graph-based matching algorithm [7]. The al-
gorithm takes two graphs as input and maps corresponding nodes of the graphs as
output. The algorithm is based on the assumption that if any of the two elements in
given models are identified as similar, then the similarity of their adjacent elements
should be increased. Algorithm manipulates Open Information Model7 (OIM) spec-
ification with an iterative fixed-point computation which means that from iteration
to iteration the depth is increased and a similarity measure is computed until the
fix-point is reached. Similarity flooding method uses a language-based method that
compares prefixes and suffixes of the elements to compute initial matching. After the
initial mapping algorithm is computed, iterative phase is started where similarities
are compared. As the result, an alignment between the nodes of input graphs is
produced. The similarity flooding algorithm is semi-automatic as it expects the user
to verify and adjust the results

S-Match8 is a semantic matching algorithm that uses a treelike structure to
match nodes [8, 36]. Matches are determined by analyzing meanings of elements
rather than the labels. The meanings are typically codified into propositional for-
mulas from names of elements. The S-Match tool is designed to be highly modular
hybrid matcher where elementary matcher can be easily configured depending on
the use case. The used matching methods are mainly based on element-level ap-
proach, but some structure-level plug-ins are contained in the S-Match library.

7 http://sqlmag.com/database-administration/open-information-model
8 http://semanticmatching.org/s-match.html
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4 Discussion

Ontology matching is a critical task in many application domains that allows com-
bining data from multiple heterogeneous data sources. In this survey different ap-
proaches, methods, tools and algorithms for ontology matching have been surveyed.
In this section pros and cons of different approaches in the most typical application
domains are discussed. Also future research directions are presented.

Name Approaches Input types Available online
Anchor-PROMPT Ontology-based No
AgreementMaker Ontology-based XML, RDFS, OWL,

N3
Yes

Artemis Language-based Relational, OO, ER No
ASMOV Ontology-based OWL No
Clio Semantic translation Relational and semi-

structured (e.g. XML
and DTD)

No

COMA Element-level,
structure-level

XML, relational Yes

Cupid Element-level,
structure-level

XML, relational No

DUMAS Element-level,
duplicate-based

CSV files Yes

Falcon Ontology-based RDFS, OWL Yes
LSD Element-level,

structure-level
XML No

NOM and QOM Ontology-based RDF, OWL models No
OLA Ontology-based Yes
OpenII Harmony Language-based XML Schema, SQL

DDL, OWL, Excel
spreadsheets

Yes

SemInt Constraint-based Relational, files No
Similarity Flooding Language-based,

graph-based
Directed labeled
graphs

No

S-Match Language-based Tree-like structures,
e.g., XML

Yes

Table 1: Summary of the reviewed matching tools. The table contains information of
used matching approaches, accepted input types and whether an implementation of
the tool is publicly available.

All of the reviewed matching tools are summarized in the table 4.1. It became
clear that many of the academically developed matching tools are no longer active as
most of them were developed over ten years ago. However, the algorithms presented
in the early academic matching tools have contributed to the development of the
next generation matching tools that are more dynamic and can be extended with
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plug-ins.
The lack of product-like commercial matching tools can be due to the fact that

companies who combine multiple data sources develop own matching tools in-house
or use outsourced developer. Companies specialized in data integrations currently
develop case-specific solutions which are time consuming. However, as most of the
projects are billed based on the used working hours, the used time is not an issue
for the data integration company, but customers project costs increase. Commer-
cially available data integration tools were not studied in this survey as in-depth
information about the tools was not available.

Even though the problem of implementing efficient ontology matching is difficult
to solve, a wide range of solutions has been presented during the past couple of
decades. In the past, the ontology matching problem was solved with application
specific approaches, but nowaday more generic and dynamic methods are being
developed.

The two most obvious application domains that need ontology matching are data
warehouses and E-commerce. The need for data integrations first appeared when
data warehouses became popular in the 1990s. Data warehouses are repositories
where data from several sources is combined, stored, and typically revision con-
trolled for better usability. Once all the data is stored in the same server, the need
for multiple connections becomes obsolete and data access times become shorter.
Ontology matching is useful in the combination phase of building data warehouses
as matched data can be described in various ways. Semantics of the elements is
important when data is integrated into data warehouses, because source data often
uses different data types and need to be combined into one representation. In ad-
dition, structure-level approaches and methods using constraints and data types are
useful with data warehouses as data type transformations are easy to implement in
these methods. Structure-level approaches seem to be most effective because even
though data elements may have different naming conventions, the data is most likely
structured similarly.

E-commerce is more recent application area of ontology matching than data
warehouses. During the last ten years the number of messages traveling between
companies has increased exponentially. Nowadays companies frequently send and
receive information describing, e.g., transactions from trading partners and subcon-
tractors. Used syntax and data formats vary greatly between different data systems
and companies. The most used data types are EDI (electronic data interchange) and
XML. However, custom message structures are also quite popular, which increases
the need for automatic converters. The number of elements in one message can be
so large that manual message matching takes a lot of time. The amount of different
data structures and how to normalize and harmonize messages together are the two
main challenges in creating automatic matching tools for E-commerce. Tools for this
kind of matching would require a graphical user interface as manual modifications
are inevitable. The best approach for E-commerce seems to be to use element-level
matching of structures where individual elements may have variations but the field
names of the structures are typically similar.

Most of the studied tools used multiple element-level matching approaches and
language-based matching methods in one form or another. For the future work we
will most likely focus on structure-level approaches. The usage of structure reposi-
tories combined with neural networks and learning algorithms is also an interesting
development direction as it is less studied.
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