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ABSTRACT

We consider a class of stochastic impulse control probldrsear diffusions
arising in studies considering the determination of opkiciadend policies
and in studies analyzing the optimal management of ren@wakburces. We
derive a set of weak conditions guaranteeing both the existand uniqueness
of the optimal policy and its value by relying on a combinataf the classical
theory of diffusions, stochastic calculus, and ordinarglmear programming
techniques. We also analyze two associated stochastiot@nbblems and
establish a general ordering for both the values and theinaneplues of the
considered stochastic control problems.
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1 INTRODUCTION

A stochastic impulse control policy can typically be chagaized by two fac-
tors: the random dates at which the considered policies areisgd and the
size of the applied policies. This characterization natyiradicates that the
timing and the size of an impulse control are factors whichlwasseparately
studied depending on the precise nature of the consideasied af applications.
For example, in most forest economic applications of steth@npulse con-
trol the implemented impulse size is typically exogenougWen through the
exogenously determined generic initial state at which tledging stochastic
process is restarted after the forest has been harvesteddsexample, 3, 4,
5, 6, 26, and 27). On the other hand, most capital theoreticasid flow man-
agement applications of impulse control are based on madatse both the
timing and the size of an admissible impulse policy have teibriltaneously
determined (see, for example, 7, 8, 13, 19, 24; see also lanfaxcellent
survey on stochastic impulse control applications in fiednGiven the appli-
cability of stochastic impulse control it is not surprisitingit the mathematical
analysis of such problems is well-established (see, for gi@nil, 12, 15,
18, 20, 22; see also 9 for a seminal textbook on quasi-vanatiinequali-

ties and impulse control). In most cases the analysis ofrtipiise control

problem is based on a combination of dynamic programminignigcies and
quasi-variational inequalities. Even though that appnaacgeneral and ap-
plies in the multidimensional case as well, it typically fésinto functional

inequalities which, depending on the nature of the constipreblem, may
be relatively difficult to analyze and in that way difficult itaterpret in terms
of the particular application.

Given the arguments mentioned above, we consider in this stethss of
stochastic impulse control problems where the decision miake to choose
both the timing and the size of the optimal policy affectihg dynamics of
the underlying linear time-homogenous diffusion procesd®. generalize the
analysis of the study 7 in two ways. First, instead of relyamga simple linear
and state-independent exercise payoff, we introduce adégendent and po-
tentially non-linear cash flow term measuring the revenue #ocrued from
continuing operation (in forest economics this flow ternycally interpreted
as the flow of returns accrued from amenity services; cf. Fjis €xtension
is of interest, since as our analysis clearly demonstraiabe presence of a
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state-dependent and potentially non-linear cash flow ramngtconcavity re-

qguirements are needed in order to guarantee both the ecéstéenl uniqgueness
of an optimal policy (which is in sharp contrast with the findirgf the linear

state-independent exercise payoff case studied in 7).n8eooorder to model

the potential imperfect controllability of the underlyistpchastic dynamics,
we also consider situations where an arbitrary admissiblelsepmay result

into a jJump discontinuity which is either greater or smalleart the size of

the actual impulse (such configurations typically arise wdels considering

either the effects of taxation or the effects of financiattidns on rational

cash flow management). Although this imperfection is modedle a linear

function of the applied impulse control policy, it has a pnofid impact on

both the optimal policy and its value since it affects theurezd rate of return

and, therefore, the marginal value of the optimal policy inoa-linear way

(put somewhat differently, the linearly modelled imperfecthas an nonlinear
impact on the associated boundary value problems).

Instead of analyzing the considered class of stochastialsepcontrol
problems directly via dynamic programming techniques amakgvariational
inequalities, we follow the approach introduced in 3 and 4 frsdl derive
an associated class of iteratively defined Markovian fametis modelling the
value accrued from applying a potentially suboptimal ststic impulse con-
trol policy characterized by a sequence of constant-sizguliises exerted ev-
ery time the underlying diffusion hits a predetermined aadstant exercise
threshold. By relying on standard nonlinear programmimftejues we state
the ordinary first order necessary conditions charactegithie exercise thresh-
old and impulse size maximizing the value of the associalk@ssaf Marko-
vian functionals. We then present a set of relatively wealeht conditions
under which an optimal pair satisfying the necessary camtitiexists and is
unique and under which this solution actually characterizgb the size of
the optimal impulse and the threshold at which the irrevégiolicy should
be optimally exerted. In accordance with these observatiwwashen find that
given the policy mentioned above the iteratively defined hdaian functional
actually constitutes the value of the optimal stochastigulse control.

We also consider two associated stochastic control prablgramely, a
singular stochastic control and an optimal stopping probland analyze the
boundary value problem connecting these values. As inéljtiis clear, we
find that the value of the associated singular stochastitraqoroblem domi-
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nates the value of the stochastic impulse control problenchyim turn, domi-
nates the value of the associated optimal stopping proldkemmewhat surpris-
ingly, we also find that the same ordering is satisfied by thgmalvalues as
well. More precisely, we establish the marginal value of trepemted singu-
lar stochastic control problem dominates the marginalevalluthe stochastic
impulse control problem which, in turn, dominates the mabwalue of the
associated optimal stopping problem. Thus, our resuleneiihe findings of 7
by demonstrating that the positivity of the relationshipAzen the (marginal)
value and the flexibility of the admissible policy is satidfi@so in the pres-
ence of a state-dependent and potentially non-linear cash th economic
terms, our findings unambiguously prove that increaseaypdixibility does
not only increase the value of the optimal admissible pplicglso increases
the rate at which this value grows.

The contents of this study are as follows. In section two wegmethe
considered class of stochastic impulse control problemsettion three we
then state a set of auxiliary results and analyze the twocaded stochastic
control problems. In section four we then analyze the comsdistochastic
impulse control problem and state our main results. Finally results are
explicitly illustrated in section five in a model based on getric Brownian
motion.






2 THE IMPULSE CONTROL PROBLEM

2.1 GENERAL SETUP

It is our purpose in this study to analyze a class of stochastpulse con-
trol problems of linear diffusions arising in many financeaid economical
applications of stochastic control theory. In order to aspbsh this task, let
(Q, F,{F:}+>0, P) denote a complete filtered probability space satisfying the
usual conditions and assume that the dynamics of the umagrtpntrolled
diffusion process are given by the generalizéddtjuation

t t
Xy =o+ [ u(XDds+ [ o(xnaw, - Y 6G 0<t<n @)
0 0

T <t

where > 0 is exogenously given constanf, = inf{t > 0| X} < 0} de-
notes the possibly finite first exit date from the state-sfacef the controlled
diffusion process and : R, — R ando : R, — R, are known sufficiently
smooth mappings (at least continuous) guaranteeing teteexie of a solution
for the stochastic differential equation

dX; = p(Xy)dt + o(Xy)dW,,  Xo = =, (2.2)

characterizing the dynamics of the underlying diffusiorthe absence of in-
terventions (cf. 10, pp. 46—-47). Itis at this point worth drapizing that the
parameter can be interpreted as a measure of ithperfect controllability
of the underlying stochastic dynamics, since an arbitraiyiasible impulse
results into a jump discontinuity which is either greaterraafler than the size
of the actual impulse whenever# 1. As in 22, an impulse control for the
system (2.1) is a potentially infinite joint sequence: { (71, )}, N < oo,
where{r; }&_, denotes an increasing sequencephtopping times for which
1 > 0 and{¢}4_, denotes a sequence of non-negative impulses exerted at
the corresponding intervention datés,}_,, respectively. We denote a3
the class of admissible impulse contrelsind assume that, — 7} almost
surely for ally € YV andx € R.. Furthermore, in line with most financial
and economical applications, we assume that the upper bousda natural
and the lower boundary is either natural, exit or regular for the controlled
diffusion in the absence of interventions. Whenevas regular forX,, it is
assumed to be killing (in line with the concept of liquidafioAs usually, we
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denote as ,
1, d d

the differential operator associated with the underlyirftudion .X;.

2.2 THE IMPULSE CONTROL PROBLEM

Given the stochastic dynamics in (2.1) and the assumpticesepted above
on the dynamics of the controlled system, definegkpected cumulative net
present value of the revenues from the present up to a paligntifinite future
as

7o N
J(z) = E, [/0 e "m(XY)ds + Z e "N — )|, (2.3)
k=1

where\ > 0 is an exogenously given constant> 0 is a known constant
measuring a lump-sum sunk cost associated with the irrdéergolicy, and
7 : Ry — R, IS a given continuous, non-decreasing and non-negative map
ping measuring theevenue flow accrued from continuing the operatidhis
type of objective functional arise frequently in studiesisidering rational
cash flow management (optimal dividend policy) and in stsidiensidering
the rational harvesting of renewable resources.
Given the definition of/” (z) we plan to study the stochastic impulse con-

trol problem

Ve(z) =sup JY(z), x € Ry (2.4)

vey

and to determine an admissible impulse controffor which the maximum
JV (x) = V() is attained for al: € R,. In order to proceed in the analysis
of the considered class of stochastic control problems, wedstablish the
following verification theorem.

Lemma 2.1. Assume that there is a mappidg : R, — R, satisfying the
conditions

(@) (R,m)(x) — F(x) is r-subharmonic for the diffusioX’;, and

(b) F(x) satisfies for allz € R, the inequality

F(z) > sup [A(—c+ F(z— B¢)]. (2.5)
BCE0,]
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Then,F(z) > V.(x) forall z € R,.

Proof. Let v € V be an admissible stochastic impulse control. S{Gg;cn

IS an increasing sequence of stopping times, we first obskat¢ite assumed

r-subharmonicity of the mappingz,=)(z) — F'(z) implies that
E [e_m+1 ((Rem)(X2,, ) = P(X2,, ) |Fy| >

™ ((Rem)(X7) = F(XY)).

Applying Dynkin’s theorem to the mappindz,=)(z) now yields

(2.6)

B e (Rym) (X2, I ] = e 7 (Rom) (X))

Ti+1-
_E]__Tj/ e TS (Xz/)d

implying that inequality (2.6) can be re-expressed as
Tj+1—
e—rTjF<X7l_/j> —Fk [ —rT]+1F(X1/ )|f7.]] Z Eij / e s (Xu)d

T+1
J

Taking expectations and invoking the tower property of chodal expecta-
tions then yields

Tj+1—
E, [e T F(X2)| — B, [e 0 F(XY, )] > Ex/ e (XY)ds.
Letting 7, = 0, summing terms from = 0to j = n A N, and applying the
nonnegativity of the mapping'(z) results in

nAN

2 B PO ) - PO LB [T s

Since X, = X, _ — (¢; for any admissible strategy anfd(x) satisfies the
quasi-variational inequality’(x) > supgeep ) [N — ¢+ F'(x — 3¢)] for all
€ R, we find that

F(z) > E,

TnAN+1— nAN
/ e "m(XY)ds + Z e "(AG — o) .
0

j=1
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Lettingn — oo and invoking dominated convergence then finally implies tha

Ty N
/ ’ e m(XY)ds + Z e "(A —¢)
0

j=1
Since this inequality is valid for any admissible impulseatrol, it has to be
valid for the optimal as well from which the alleged result doits. ]

F(z) > E,

Lemma 2.1 states a set of considerably weak sufficient camditiwhich
can be applied in the verification of the optimality of a vahtained by ap-
plying an admissible policy. An interesting implication oféitoma 2.1 stating
a set of more easily applicable sufficient conditions is nammharized in the
following.

Corollary 2.2. Assume that the mappifg: R, — R, satisfies the conditions
F € CY(R,)NC?*(R,\D), whereD is a set of measure zero aftf (r+) < oo
for all z € D. Assume also that(z) satisfies the quasi-variational inequality
(2.5) for allz € R, and the variational inequalityAF')(z) —rF'(z)+m(x) <
Oforall x € D. Then,F(x) > V.(x) forall x € R,.

Proof. As was established in Theorem D.1. in 23 (pp. 315-318) the tiondi
of our corollary guarantee that there a sequefiEg}:® , of mappingsk,, €
C?*(R,) such that

() F, — F uniformly on compact subsets Bf , asn — oo;
(i) (AF,) —rF, — (AF) — rF uniformly on compact subsets &f, \D,
asn — oo;
(i) {(AF,) —rF,}>, islocally bounded o, .

Applying Itd’s theorem to the mappin@, =) — e "*A,(x), whereA, (z) =
((R,m)(x) — F,(x)), taking expectations, and reordering terms yields

Ti+1—

() =Bl mna, e, - [ e AR

J

— rFu (X)) + m(XY))ds

7.

Lettingn — oo, applying Fatou’s theorem, and invoking the variational in
equality(AF)(x) — rF(z) + n(z) < 0 then yields

7,

]

The alleged result now follows from Lemma 2.1. O

e (Rem)(X5)=F(XE)) 2 B e 7 (Rem) (X7, ) = F(XE,, )

Tj4+1— Tj+1—
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3 AUXILIARY RESULTS

3.1 SOME ASSOCIATED FUNCTIONALS

Denote as’ (R ) the class of measurable mappinfs R, — R satisfying
the uniform integrability condition

e[ o]

wherer, = inf{t > 0 | X; < 0} denotes the first, potentially infinite, exit
date for the uncontrolled diffusiol; from the state-spade, . Given the class
L1(Ry), define for arbitraryf € L£;(R.) the resolvent functionalR, f) :
R, — R measuring the expected cumulative present value of the feash
f(Xy) from the present up to the first liquidation dateas

(R,f)(z) = E, { /O ! e‘“f(Xs)ds} -

It is a well-known fact from the literature on linear diffus®that the expected
cumulative present value of a cash flgwe £,(R, ) can be rewritten as

o0

(Rf)(w) = B (o) [ ) oy )dy+B0w) [ ol)f (),

’ (3.1)
where is the increasing ang is the decreasing fundamental solution of the
ordinary second-order linear differential equatiofu) = ru defined on the
domain of the characteristic operator of the diffusion(see 10 pp. 18-20 for
a throughout characterization of the associated fundaahsolutions and the
Green function of a linear diffusion),

— o) - 5@

denotes the constant (with respect to the scale) Wronskianmd@ant,

eED

denotes the density of the scale functi®wof the diffusion.X; and

2
o?(x)S'(x)
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denotes the density of the speed measuie the diffusion.X;.
Define now the mapping : R, — R measuring the rate at which the total
revenues are appreciating as

0(x) = Br(x) + Ap(x), (3.2)
wherep(x) = u(x) — ra measures the net appreciation rate of the under-
lying controlled diffusionX;. Throughout this study we will assume that
7, p € L1(Ry), therefore als® € £,(R). Consider now the expected cumu-
lative present valuéR,.0)(z). By invoking the Greenian representation (3.1),
differentiating the equation sidewise and dividing sidewv#é the termy)’(x)
we find out that

(R.0)'(x) / : [T :
_ e dy + B / 0(y)m! (1)dy.
() zb’ m’(y)dy - e)oy)m (y)dy
Now ordinary dlfferentlatlon yields

d {(R 0)'(x )} _#L(az),

dr | ¢'(x) (@)y"(x)
where the functional : R, — R is defined as
—r/ Y(y y)dy — 0(x )z,g;

The functionall. will prove to be the key ingredient when determining optimal
policies in all the considered stochastic control problefitse next lemma will
shed light on some of the useful properties of the functidnahder reasonable
assumptions on the mappifg

Lemma 3.1. Assume, that there exists a statec R, for which the function
g is increasing on the interval, z*) and decreasing on the intervat*, co).
Moreover, assume thdt < lim,|(0(x) < oo and thatlim, ., 6(z) < 0.
Then there exists a unique state= argmin{(R,0) (x)/¢'(z)} € (z*, 00)
satisfying the conditiod.(z) = 0.

Proof. Forz > = > x* we have that

L) - o) = <y>9< >m’<y dy - (r)sﬁ* (r)S'Ex

D] 0V | 0@ ()
J r () S)

\_/\_/




proving thatL is monotonously increasing gi*, co). In the same manner,
we see that whenever< x < z*

1 O(x) ¢'(x)  0(2) ¥'(2)
;[ /¢ () (y)dy = r S’(x)+ r S'(z)
@HW()

r S'(z)

showing thatl is monotonously decreasing 6o x*).

Since the boundanyis assumed to be natural, exit or killing, we see imme-
diately thatlim, o L(z) < 0. Moreover, the assumed monotonicity properties
of the mappindg(z) implies that

<0

)=r [ sty 0 5D
V) 0 )
=0 ”swm*) s«oﬂ‘ s ="

On the basis of the assumptions on the mapgiigs evident that there exists
a stater, € (z*,00) such thatd(zy) = 0. Moreover,d(z) > 0 whenever
z € (0, x). Hence, the proved monotonicity é{x) and the inequality

L(xg) = r/ Y(y (y)dy >0
prove that there is a unique statec (z*, co) such thatl.(z) = 0. ]

Along with the functional’, two additional functionals will be of great im-
portance in the subsequent study of the considered stachastrol problems.
These functionals, which are now denoted/askR, — RandJ : R, — R,
are defined as

B(R,m) (x) — A

V' ()

I(x) =

and as
J(x) = B(Rym)(z) — Ax — I(z)(x).
However, as we are about to establish, the key properties o thastionals

I andJ are dictated by the behavior &f the behavior of which is again, by
definition, dictated by. First note that sincg € £;(R) the expression

S il L o5




holds. On the other hand, since (cf. 3, Lemma 2.1)

o) =22 [ [ owstm s - 0]

we have that

L5 -5

Consequently, we discover that

, d [B(R.m) (x)— ) (x)
Ie) = dx[ V' (x) ] dx{ [ }
25 (x)

=—L(x

= P

In other words, the fact whether the functiordals increasing or decreasing

is dictated by the sign of the value of the functiordal Secondly, ordinary
differentiation yields

whenz = :J:

VII/\

J' () = —(x)'(x ) = 0, whenz

/\II\/

hencelL dictates also the monotonicity properties.of Finally, invoking the
Greenian representation of the resolv@Rir)(x), we discover that

=505y O+ (55 <)
S'(x)

= o [ ewetm wydy

5’2_ =V /1/’

(cf. 7, Lemma 3.3). To close the subsection, we present a ledatamin-
ing the boundary properties of the functionéland.J under assumptions of
Lemma 3.1 on the mappirty

since

Lemma 3.2. Assume that the conditions of lemma 3.1 are satisfied. Then
limy o J(z) > 0, limg o I(z) > 0, lim, o J(2) = —o0 andlim, ., I(z) <
0.

18



Proof. We have shown that

v [ vwewm

If 0 is attainable, ther/(0) = 0, sincelim, |, g"g > 0. On the other hand, if

J(x) =

0 is unattainable, thelim, |, % = 0. In this case, invoking L'Hospitals rule
yields

) s )
1;%1 o) = 1‘”0 % [%} lxlo rp(x)m/(x) lwio r =0

To prove the alleged behavior dfat infinity, note that

lim ¢( )0(y)m' (y)dy = —oo

Tr—00

and thaflim,_, Zgi = 00. Thus

lim J(z) = lim b@) = —00
T—00 T—00

We showed in the Lemma 3.1 that the statkes in the interval(z*, co),
i.e. wheref is monotonously decreasing. Hence for z, we have that

B L e
= Z<i>[r S(@) " r (s'é) @)]*B / Dly
~ ?Eg@ﬂ? / D(y)dy.

whereD(y) := ¢(y)8(y)m’(y). By letting z tend to infinity in the inequality
above, we discover that

lim I(x) <0,
sincelim, . S’E ; 0. The propertylim, o () > 0 is still left to prove. In
order to prove this, observe that the conditigm) > () implies that
(R,0) (x) V(@)
——>] .
) = e
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By continuity, this means that

BV yigy 13y LD

lim

20 S'(z) a0 o S(x)

hencelim, o(R,0)'(x) > 0. Now the desired result

follows, sincey’(z) > 0. ]

3.2 THE ASSOCIATED SINGULAR CONTROL PROBLEM

Before proceeding to the analysis of the stochastic impedserol problem,
we first consider an associated singular stochastic contobllggm and illus-
trate how the two stochastic control problems are connedtedrder to ac-
complish this task, consider the associated controllefisidn processX/?
described oR, by the generalizeddtstochastic differential equation

dX7? = W(XP)dt + o(X7?)dW, — BdZ,, X¢ = «, (3.3)

where the process; is anadmissible (bounded variation) contraheaning
a non-negative, non-decreasing, right-continuous @fd-adapted process.
We denote the class of such processed and assume that ando satisfy
the same regularity conditions as in the impulse controkcaSiven these
assumptions, we will next consider the associated singutaragroblem

K(z) =supE,
ZeA

/O e (w(X7)ds + )\dZs>] | (3.4)

wherer? = inf{t > 0 | X7 < 0} denotes the first exit date of the controlled
diffusion fromR,. It is worth observing that applying the generalized It
theorem to the linear mapping— Az /g yields

A
E, / e PNz, = +E / p(X7)ds — E, {e”NEXTZN }

wherery = 7Z AN Ainf{t > 0 | X7 > N} is an almost surely finite stopping
time. The non-negativity of the controlled process themltedy letting NV
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tend to infinity and invoking monotone convergence to thejiradity

Az +sup E, i e_TSH(XSZ)dS] : (3.5)
ZeA 0

K(x) < g1

It is clear that if the implemented admissible policy sadisfthe condition
limy_. E, [e7"XZ ] = 0 then the inequality (3.5) becomes an equality.
In that case the value of the optimal policy can be decompaseda part
measuring the value of the instantaneous liquidation pa@md the expected
cumulative present value of the future revenues accrued frastponing the
immediate liquidation of the underlying process.

In the next lemma we will establish the value and the optimaicpdbr
the problem (3.4). These results will later turn out to be wisefthe analysis
of the impulse control problem (2.4) as well.

Lemma 3.3. Assume, that the conditions of the Lemma 3.1 are met. Then
optimal singular stochastic control reads as

. {(a;f;ﬁ t=0 6)
L(t,T) t>0,

where the threshold@ € (z*, co) is the unique root of the first-order condition
L(z) = 0. Moreover, the value of the optimal policy reads as

-1 )\ @

K =1 (Ao +22) g 3.7)
(Rom)(x) = B~ (@)Y (x) @

implying that the marginal value of the optimal policy can beregped as

A — B(R,7)' (y)

(V3
=

A\
=

K'(x) = (R, (x) + "¢/ (x) sup [

y>x V'(y)
Ve > (3.8)
i {mm'(x) ~FEW ) v <

Proof. Denote the proposed value functionfds(x). It is clear that/(,(x) <
K(z), sinceK,(z) is attained by applying the admissible local time push (i.e.
reflection atz) policy (3.6). In order to establish the opposite ineqyalie

21



first observe that the proposed value function is twice cootisly differen-
tiable onR .. Moreover, ordinary differentiation yields that

EE o
5 V) (Uw) ~ 1@)] @ <

Since the stater is the global minimum of the functional, we find that
K)(x) > A\g~! forall z € R... Finally, we also find that

-1 ~ ~
(AR () — 7y (a) + () = {B )=o) e =
0 r <.
Since the state is attained on the set wheées strictly decreasing, we find
that (AK,)(z) — rK,(x) + n(z) < 0 for all z € Ry. Thus, the proposed
value functionk,(x) satisfies the conditions of Lemma 1 in 1 and, therefore,
K,(x) > K(z) forall x € Ry. ]

Lemma 3.3 states a set of weak conditions under which the a$sddin-
gular stochastic control problem (3.4) is solvable. A sehtd#resting compara-
tive static results implied by Lemma 3.3 are now summaripetie following.

Corollary 3.4. Assume that the conditions of Lemma 3.3 are satisfied. Then

(i) the valueK (x) and the marginal valué{’(x) of the optimal policy are
decreasing functions of the parameter

(il) the valueK (x) and the marginal valué(’(z) of the optimal policy are
increasing functions of the parametgr

(i) the optimal exercise thresholglis an increasing mapping of the param-
eter 5 and a decreasing mapping of the parameXer

Proof. (i) Denote the value associated with the parameteais K;(z), 1 =
1,2. It is now clear from the proof of Lemma 3.3 thai,(z) satisfies the
sufficient variational inequalitieSA Ks) (z) —r Ko (x)+7(z) < 0andKj(z) >
APy > N/py forall z € R,. Hence,Ky(z) > Ky(z) forall z € Ry. In
order to establish thak’}(x) > Kj(z) we observe that the mapping —
B(R,m) (x))/(BY'(x)) is a decreasing function of the parameidrom which
the alleged result follows by invoking the representatio8)3 Proving part
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(i) is entirely analogous. It remains to consider the s@nsi of the optimal
exercise threshold with respect to parametric changes. To this end, consider
the mapping

L(z, A\ B) =7 /Ox D) (B (y) + Ap(y))m/ (y)dy — (Br(x) + A’)(@)g:g;'

If 6, > [, then

Er. 0 0) = L d ) = (3= ) |1 [ wyeto)m )y - w(a) 7

<0

since
: , V() v'(0)
[ pwm@m @y — () G < @) G <0

by the assumed monotonicity and non-negativityr0f). Therefore, ifz; de-
notes the optimal exercise threshold associated withh = 1, 2, we observe
that0 = L(2, )\, 31) < L(&1, \, 2) which, in turn, implies thati; > 2.
Establishing that is a decreasing mapping of the parametes entirely anal-
ogous. O

Corollary 3.4 characterizes the impact of parametric ckarm the value,
the marginal value and the optimal exercise threshold aftaeersible policy.
We observe that an increase (indecreases both the value and the marginal
value of the optimal policy and, therefore, postpones egerby increasing
the optimal exercise threshold. The contrary happens whepdhameten
increases. An interesting implication of these comparatigc results is that
parametric changes are neutral (i.e. do not affect the apsrercise threshold
7) as long as the ratiad/ is held constant.

It is worth emphasizing that the value (3.7) of the optimagsilar stochas-
tic control can be re-expressed as

(3.9)
(Rym)(x) — B~ (2)(x)

As we will notice in the subsequent analysis, (3.9) is closelsted to the
value of the considered impulse control problem. Morea®nur next lemma
indicates, the value (3.9) has an interesting maximaliopprty summarized

Ko {51 (\z + J(2)) 2 i z
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in the following lemma extending the results obtained in 7 m@del subject
to a linear exercise payoff payoff.

Lemma 3.5. Define the continuously differentiable mappitig R — R, as

Hir.y) = B (A + J (y)) x>y
| (Rym)(x) = B~ (y)(x) =<y

and assume that the conditions of the Lemma 3.3 are met. Kheh =
H(z,2) > H(x,y) and K'(z) = H,(z,z) > H,(x,y) forall (z,y) € Ry X
R\ {2}. Moreover,H,(z,y) < 0, for all (z,y) € R} X (Z,00).

Proof. Assume first, thay > z. Then we find that

BH(I(E) = J(y) t<y<uz
H(z,2)—H(z,y) =< 87 o+ I(y)(z) + J(2)) — (Rym)(z) 2<z<y
p=Y(x) (I(y) — 1(2)) T < i <uy.

We have shown earlier as a consequence of Lemma 3.1 that
T = argmin{/(x)} = argmax{.J(z)}.

Therefore,I(y) — I(z) > 0 andJ(z) — J(y) > O forally # z. Con-
sider now the differencé/ (x,z) — H(x,y) on the intervalz,y). SinceJ is
monotonously decreasing on the interjaloo), we find that

O+ I(y)e(x) + J(2)) = (Rem)(2)

(
e+ 1)) + (@) — (Rem)(2)
—ﬁ Y(a) (I(y) — 1(x) > 0.

This observation proves thdf (z,z) > H(x,y) for all x € R, whenever
y > z. In order to verify the second case assume nowghatz. In that case

BHI(E) = T () y<i<w
H(z,&)=H(z,y) = § (Rym)(x) = B~ (Aw = I(@)yp(x) = J(y)) y<a<i
Bl(x) (I(y) — 1(2)) r<y<I.
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By relying on similar arguments as above we find that it sufftcesonsider
the differenced (z, ) — H(x, y) on the intervaly, z). Again the monotonicity
of J implies that

(Rym)(x) = 57 (Ao — I(@)ib(2) — T (1))

(Rym)(2) = 67 (Ao — I(@)i(x) — J (@)

8- ¢@M(@—I@D>U

Consequently, we find thdf (z, 2) — H(z,y) > 0forall (z,y) € R, x R \
{z}. Establishing that{,(x,z) — H,(x,y) > 0 forall (z,y) € R, xR\ {z}

is completely analogous. It remains yet to show thgtz,y) < 0 for all
(z,y) € Ry x (Z,00). Ordinary differentiation yields that

)T () x>y
Hite) = {ﬂl¢<x>l(y) r<y.

Vv

This quantity is negative, sincéis monotonously decreasing ¢f, co). This
completes the proof of the lemma. O

Lemma 3.5 shows that the value of the associated singuldragbc con-
trol problem does not only dominate but also grows faster #mnother solu-
tion of the associated free boundary value problem (see & smimilar obser-
vation in a model subject to a linear exercise payoff)

Au)(x) —ru(z) + m(z) =0, z<y
d(@)= N8, >y
This result is of interest since it emphasizes the role oflthebility of the ad-
missible policy as the main determinant of both the actulalevand its growth
rate. As we will later observe, it is these variational inegiediwhich relate

the considered stochastic impulse control problem to bwlassociated singu-
lar stochastic control problem and to the associated opstopping problem.

3.3 THE ASSOCIATED OPTIMAL STOPPING PROBLEM

Let X; be the diffusion evolving o®, according to the ordinarydtstochastic
differential equation (2.2) and assume that the infinitesicoefficients: and
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o satisfy the same regularity conditions as in the impulsdrobonase. Given
these assumptions, consider the corresponding optimabisigp problem

G.(z) = sup E, [/ e " r(Xg)ds +e T (A3TIX, — o) |, (3.10)
T<T0 0

wherec > 0 is an arbitrary constant andis an arbitraryF;-stopping time

satisfying the constraint < 7, stating that the stopping time problem is de-

fined up to the first date the underlying diffusion exits framstate-space. .

Along the lines indicated by (3.5) we find by applying Dynkin’stiiem to the

mappingr — Az /[ — c that

A
ch:—x—c+—supE/ s) + Ber
(z) 3 5 sup )ds
demonstrating how the value of the optimal policy can in t@se be decom-
posed into the sum of the immediate exercise payoff and e eeercise pre-
mium. The next lemma will present a substantially deep @iatiip between
the associated singular control and the associated opstmabing problem.

Lemma 3.6. Assume, that the conditions of Lemma 3.3 are met and:thai.
ThenK(z) > G.(r) and K'(x) > G'.(x), where

Ay — B(R,m)(y) — Be

Ge(r) = (R,m)(z) + ﬁ_1¢(x) sup

y>z z/;(y)
B Bz —c x> Z, (3.11)
(B (2) = B (z)Y(z) < T,

denotes the value of the optimal stopping problemandenoting the optimal
stopping threshold, is the unique root of the equatign.) = —c.

Proof. In order to establish (3.11), denote asthe unique interior state at
which 6(xy) = 0. Since

@ = [ oo

d [4'(z)
dx [S’(x)J g

we find that

o~
<
3
=
\o¥
&
I
=
8
IA
8
[en)



Sincelim, o %J(x) > 0, we consequently discover thdtz) > 0 when-
everz € (0,z9). On the other hand, we proved in the Lemma 3.2 that
lim, .., J(z) = —oco. Together with the monotonicity properties &f this
demonstrates that there exists an unique state ! (R_) at which the con-
dition J(z.) = —f(c s satisfied. Moreover, ordinary differentiation yields

d [)\a: — B(R,m)(x) — ﬁc} _ (=)
dx () ()

which in turn implies that

(J(z) + fc),

Az — B(R,m)(x) — ﬁc}
() '

Given these observations, denote the proposed value fanasié.. ().
Since

T = argmax{

Go(r) =E, Vo e m(Xo)ds + T (AT - C)l |

where7 = inf{t > 0| X; > z.}, we find thatG.(z) < G.(z). On the
other hand, we also observe that the proposed value fur@ti@ﬂ IS continu-
ously differentiable ok, twice continuously differentiable ah, \ {z.} and
satisfies the variational mequalltym{rG (2) — (AG)(x) — (), Ge(z) —
A3~z + ¢} = 0. Thus,G.(z) > G.(z), which finally implies thaiG,(z) =
Ge(x).
In order to prove thaf{(x) > G.(z), observe that the value of the asso-

ciated singular control problem satisfies the variationafuality(AK)(z) —
rK(x) 4+ n(z) < 0 and the inequality

K(z) = Mg 'z + ¢ > 7' J (min(z, )) > 0.

Thus, K (x) satisfies the sufficient variational inequalities guareimtg that
K(x) > G.(x). The inequalityK’(z) > G.(z) is now a straightforward
consequence of (3.8) and Lemma 3.5 O

Lemma 3.6 states a set of conditions under which the assdoatanal
stopping problem is solvable. Interestingly, we find thahltbe value and the
marginal value of the optimal timing policy are smaller thiaa value and the
marginal value of the associated singular stochastic abptoblem, respec-
tively. A set of interesting comparative static results lieg by Lemma 3.6
are now summarized in the following.

27



Corollary 3.7. Assume that the conditions of Lemma 3.6 are satisfied. Then

(i) the valueGG.(x) is a decreasing function of both the parametaand the
sunk cost and an increasing function of the parameter

(i) the optimal exercise thresholg. is an increasing mapping of both the
parameter and the sunk cost and a decreasing mapping of the pa-
rameter\.

Proof. The claim of part (i) of our corollary follow directly from ghdefinition
of the exercise payoff. Thus, it is sufficient to consider sleasitivity of the
optimal threshold:. to changes in eithex, 3, or c. To this end, consider the

mapping

V()
S'(x)

Haxﬁmw=Aﬂmmwmw+xmeﬂw@+ﬂc

and denote ag.(3;) the optimal exercise threshold associated with the param-
eters;. If 31 > (3 then

V()
S'(x)

iwxm@—mmxwazwrwgM@wM@W@@+c

> 0

which implies that = L(z.(31), \, 61, ¢) > L(Z.(51), \, B2, ¢) and, therefore,
thatz.(31) > z.(52). The analysis of the impact of changes in eith@r c on
the optimal exercise threshold is entirely analogous. O

Corollary 3.7 extends the findings of Corollary 3.4 to thesprg example.
More precisely, we observe that an increases postpones rational exercise
by expanding the continuation region where stopping is stilba The op-
posite is shown to happen wharincreases. Interestingly, we again find that
parametric changes are neutral (i.e. do not affect the aperercise threshold
z.) as long as the ratia /3 is held constant. Moreover, as intuitively is clear,
our findings indicate that increased sunk costs decreasaline and postpone
rational exercise by expanding the continuation region.
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4 OPTIMAL IMPULSE CONTROL POLICY

4.1 NECESSARY CONDITIONS

The stochastic impulse control problems of type (2.4) apcally tackled
by relying on either dynamic programming techniques or oasgvariational
inequalities. In this study, we plan to adopt an alternatippraach which
yields more tangible and easily interpretable conditiongte optimality of
the control policy. Instead of considering the class of dih&sible impulse
controls at once, we restrict our attention to the subdlags, } of admissible
impulse controls characterized by the sequence of intépretimes i =

0, 0 = inf{t > 7/ ,|X/ > y} and the sequence of interventio}s =
C+ (x—vy)", forallk > 1. Thatis, we restrict our attention interest to control
policies consisting of sequence of constant-sized imgulseh the exception
of the initial impulse which depends on the initial state) réa@ every time
the underlying diffusion hits a predetermined, constamr@se threshold.
Given this class of admissible impulse controls, define theevB,. : R, — R
accrued from applying the impulse contig} ) asF.(x) = Jc(c,y)(m)_ Since
X+ = X,— — B¢ for all k£ and the controlled diffusion evolves as the linear
diffusion X; between any two successive intervention dates, we obserive tha
for all x < y, the value satisfies the functional relation (a so-catlathing
present value formulatign

Fo) =B, | ["emn()ds + e (A (X, = (5= Q) — e+ Fly = 60)]

’ 4.1)
wherer, = inf{t > 0| X; > y}. Invoking the strong Markov property of
diffusions now implies that the valug.(x) can be represented as

Ry =80+ Mz —y+()—c x>y
Fo(z) = ¥(x)
(Rym)(2) + (A — ¢ = (Rym)(y) + Fely = BQ) 5y < Y-
(4.2)

First of all, note that lettingr tend toy in (4.2) yields thevalue-matching
condition F.(y) = F.(y — 6¢) + A( — ¢ which can be re-expressed in the
more familiar formF.(y — 5¢) + A( = F.(y) + ¢ stating thathe value of the
investment opportunity has to coincide with its full costs{loption value +
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sunk cost) On the other hand, by lettingtend toy — 5¢ yields

Y)Rem)y = 50) + N — e = (Rim) ()] by = ) 4 5
() = ¥y = A0 o

Now, inserting (4.3) into (4.2) implies that that the valua t& expressed as

Fc(?/_/BC) =

F.(z)= {(RTW)(?J —B) +h(Cy)Yy =)+ AN —y+() —c 2>y

(Rem) () + h(C y)Y(x) x <y,
(4.4)
where the mapping : R — R is defined as
h’(C; y) _ (RTT{-)(y - HC) B (Rrﬂ-)(y) + >\C - C. (45)

U(y) — vy — BC)

In order to prove the existence and uniqueness of the opiinmallse con-
trol policy, we will consider the ordinary inequality constrad non-linear pro-
gramming problem

sup (Rym)(y — B¢) — (Rym)(y) + A — ¢
Bcefoyl, U(y) — vy — 5C) '

yeRy

(4.6)

To ease up the subsequent analysis, introduce a linear elodngriables: let
z =y — (¢ Thus¢ = 37 !(y — 2). Since the parametet is assumed to be
positive, the programming problem (4.6) can now be re-writte

sup (RHT)(Z) - (RﬂT)(y) + /\ﬁ—l(y . Z) .
z€[0,y], U(y) —(2) :

yeRy

(4.7)

If an interior pair maximizing the mapping and, therefore, satisfying the
problem (4.7) exists, denote the value associated to thispé*(z). To ex-
press the same in a more accurate manner, if an interiof giaiy’) satisfying
the problem (4.7) exists, define the mapp#jg: R — R as

F(z) = {(Rrﬂ)(zz) + h(zE y () + Uz, gt 25— x>y ws)

(Rym) () + h(zZ y)v(x) T < Yo,

wherel(z,y,z) = Mz —y — 37 (y — 2)). Sinceh is a differentiable func-
tion, itis clear that if an interior paifz}, ) satisfying the problem (4.7) exists,
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then this pair satisfies the ordinary necessary first-ormiadidions%(z;‘, yh) =

g—;(zj,y:) = 0. More precisely, if a an optimal pair exists, it must satitfg

conditions

(W(yz) —¥(22) A8~ = (Bym) (y2)) = (22, yo)¥' ()
(W(y2) — (20)) A8~ = (Bemr)'(20)) = (22, yi)¥'(22),
wherer(z,y) = (R,7)(z) — (R.7)(y) + A\~ (y — 2z) — c. This yields imme-
diately the condition
A= B(Rm)(z2) A= B(R7) ()
¥'(2) V)

Using the notation introduced in the subsection 3.1, thisb@arewritten as

(4.9)

I(y:) —1(z) = 0. (4.10)
On the other hand, since
V=) _ (Rem)(z0) — A8
U(yz) — () r(zp,ys)
we find by invoking condition (4.10), reordering terms that
[B(Rm)(ye) — 1(y2)(ye) — Myel = [B(Rem) (27) — 1(20)d(20) — Azl] = —=fe.

Again, with the notation from the subsection 3.1, this can @essed as

J(ye) = J(z2) = —Pe. (4.11)

The conditions (4.10) and (4.11) are standard necessarpfaesr conditions
for the existence of the solution of the problem (4.7). Intiegt subsection,
we will use the results derived in the subsection 3.1 in ordprage that under
the assumptions Lemma 3.1 there indeed existsiqueinterior pair(z}, ;)
satisfying the algebraic equations (4.10) and (4.11). phisthen induces an
uniquesolution (¢}, ) for the non-linear programming problem (4.6).

4.2 EXISTENCE AND SUFFICIENCY

Having presented a set of necessary conditions for the oliynoé the con-
sidered subclass of admissible stochastic impulse caentna@ now establish a
set of weak conditions under which the necessary conditiad®)4nd (4.11)
have indeed a unique solution.
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Lemma 4.1. Assume that the conditions of Lemma 3.1 are met. Then there
exists an unique interior paitz;, y) for which the necessary conditio(# 10)
and(4.11)are satisfied.

Proof. Existence. Define the mappings : (0,%] — (J(0),J(&)] andJ :
(#,00) — (—o0, J(1)) as restrictions of the mappingand the mapping :

R — R ask(x) = x — fe. By virtue of the properties of, it is clear that
both of the mappings and./ are continuous and buectwe Now, define the
mappingg : (0,4) — (§(2),9(0)) asg(z) = (J o ko J7')(z). By the
definitions of J, J andk, we observe thaf is well-defined. Moreover, the
mappingy is continuous and bijective as a composition of continuous a
bijective mappings. Finally, sincg(z) = J'(J(z) — 3c), we find that the
equation/(y(z)) — J(z) = —fc holds for allz € (0, z].

Analogously to the notation used above, define the mapping®, ] —
[[(#),1(0)) and] : (&, 00) — (I(&),1(0)) as restrictions of the mapping
Define the mapping” : (1(2), 1(0)) — (1(j(#)), 1(5(0))) asY (z) = (I ' o
go ])( ). Since0 < B¢ < oo andJ is decreasing, we discover thiti) =
J7H(J(&)—=Be) > J(J(2)) = &andj(0) = J(J(0)—Fe) < T (—fe) <
oo. Firstly, these findings guarantee thatis well-defined. Moreover, these
same findings coupled with Lemma 3.2 imply that

A A

(T@@), 1@O)) € (1@). 1)) ], < (1().0) < (1), 1(0)).

In other words, we discover that the imageofis strictly included in the
domain ofY. This observation coupled with the fact thgtis continuous
and bijective leads us to the conclusion that the mappirtas a fixed point.
In other words, there exists a state € (0,4), for which I(z*) = I(z*) =
1(j(z%)) = I(§(z*)). Moreover, since* € (0, ], the equation/(g(z*)) —
J(z*) = —pc also holds. These observations complete the first part of the
proof.

UniquenessAssume, thatz*, (z*)) is a solution for the conditions (4.10)
and (4.11). Due to the Lemma 3.2, we know that there exist sudhta s
€ (0,z) that(z) < 0 for all x € (&,00). By virtue of this observation,
define the mapping : (#,2) — (&,00) asg(z) = (I o I71)(z). Using
the same arguments as with the mappingve find thaty is well-defined,
continuous, bijective and that the equatibiy(z)) — I(z) = 0 holds for all

z € (T,1).
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Consider now the slopes of the implicit curvé@j(z)) — I(z) = 0 and
J(y(z)) — J(2) = —pc at the point(z*, y(2*)). Standard differentiation yields
that

since by assumptiofe*, y(z*)) = (2*,9(z*)). This computation proves the
uniqueness of the solution. O

Lemma 4.1 demonstrates that the conditions of Lemma 3.1udfieient
for both the existence and uniqueness of a solution for theajly highly
nonlinear necessary conditions (4.10) and (4.11). It ighvpointing out that
since the existence result of Lemma 4.1 is based on a fixed aigument, the
existence of a potentially optimal pair is guaranteed foomsaerably broad
class of problems. Given the results of Lemma 4.1, we are nowsitipn to
state our main result on the optimal stochastic impulserobpblicy and its
value.

Theorem 4.2. Assume, that the conditions of Lemma 3.1 are satisfied. Then,
the unique optimal impulse control policyus = v .. Moreover, the value
of the optimal impulse control policy reads as

Bz + J(yp)) T >y

(4.12)
(Rym)(x) = B~ (yh)(x) = <y

Ve(r) = Fi(x) = {

Proof. Denote the proposed value function E8(z). Since the policy de-
scribed above is admissible, it is clear th&{(x) < V.(x). To prove the oppo-
site, we first observe thaf? € C1(R,)NC?(R, \ {y;}) and that/?" (y:+) =
0 < |(Rem)"(y2) — B I(2)0"(u2)| = [VP"(y;=)| < oo, meaning that
the proposed value functioli? is stochasticallyC?(R, ). Moreover, byr-
harmonicity ofy we have that(A — r)V?)(z) + n(x) = 0 on (0,y}). For
x € (yF,00), we have((A — r)VP)(z) + w(x) = 0(z) —r3~1J(y}). However,
since 5
I'(z) = 2@ @) [rJ(z) — 0(x)],

and I(z) is non-decreasing ofy, ), we find thatd(z) < r3~'J(z) on
(y%, 00). Consequently, we find that for all € (y, o) we have that(A4 —
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VP (x)+7(z) <rB71(J(x) — J(y})) <0, sinceJ(x) in non-increasing on
(y:,00). Hence((A — r)VP)(z) + m(x) < Oforall z € Ry \ {y}}.

Our next task is to show that the proposed valif¢x) satisfies the quasi-
variational inequality

Vi(z) = sup [VP(z—BC)+ A —
BCE[0,2]

for all z € R,.. Note, that this quasi-variational inequality can be writéen
well in the form

VP(z) = 87 (Ax — Be) + sup [VP(y) — AB™'yl.

y€[0,z]

Define now the mappingd : R, — R as

A(z) = V(x) = 87 (A\x — Be) — sup [V2(y) — A8y

y€[0,z]
Since
)\ -1 > *
‘/Cp/(x) — 61 / x — yc
B A+ () (I(x) — I(y: = BC))) @ <y,
and/(z) is decreasing of0, y*), we observe that

VP(y* — *) )\ —1/ % * .
sup [VP(y) — g7 ly] = {chgic) } féc}lx B e — BEC) i iy;k - gg*

y€[0,]

This implies that

0 x>y
Alz) = § (Rom)(z) — I(yp)w(x) = A8 e — J(yk) =€ (yi — B, yk)
c r <y:— B¢,

Sincelim, ;- A(z) = 0 and A'(z) = (R,7)(z) — I(y})Y'(z) — A3~ =
V(x)(I(x) — I(y¥)) < 0, we find thatA(x ) > 0on (y: — B¢, yk); hence
A(z) > 0forall z € R,

Finally, given the continuity of the proposed value funotand the fact that
the state-spac#), i) of the controlled diffusionX} is bounded, we observe
thatE, [e™""VP(XY)] | 0forallz € Ry ast — oo. ThusV;'(z) > V?(z) and
V= V(e - D
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Theorem 4.2 demonstrates that the admissible poficy v . isindeed
optimal andF(x) is the value of the optimal policy whenever the conditions
of Lemma 3.1 are satisfied. This observation is of interestesit emphasizes
the role of the mapping(x) as the principal determinant of both the existence
and uniqueness of an optimal policy. It is worth noticingtttiee conditions
are considerably weak since no concavity assumptions atgreelcand only
the monotonicity and continuity properties of the mappftig) are required
for guaranteeing the validity of the results of Theorem ©2r main charac-
terization of the impact of the flexibility of the applied poy on the values
and the marginal values of the considered stochastic dgnblems are now
summarized in the following (cf. 7 for a similar observatiarihe linear payoff
case).

Corollary 4.3. Assume, that the conditions of the Lemma 4.1 are met. Then
K(z) 2 Ve(z) =2 Ge(z) and K'(z) = V/(z) = Gi()
forall x € R,. Moreoverz. > y* > z forall ¢ > 0.

Proof. Inequality K(x) > V.(z) follows directly from Lemma 3.5 and the
representation (4.12). On the other hand, as was establisttad proof of
Lemma 4.2, the value functidri.(z) is continuously differentiable on whole of
R, twice continuously differentiable dk, \ {y}} and satisfies the variational
inequality (AV,)(z) — 7V.(z) + n(z) < 0forallz € R, \ {y’}. Moreover,
since

Vo(z) > sup [\ —c+ Vi(z — B¢)] > A\ 'w —¢,
BC<z

we observe thalt.(z) satisfies the sufficient variational inequalities guarante
ing thatV.(z) > G.(z).
It is clear from the proof of the Lemma 4.1, th#t> 2. Moreover, since

0 < Vi(z) — Go(x) = B Y(x) (I(Ze) — I(y)))

for all x € (0, min(y}, z.)) and both of the thresholds. andy* are attained
on the set wheré(z) is non-decreasing, we discover that> .

It remains to establish th&t’(z) > V!(z) > G.(x). Again, the inequality
K'(z) > V!(z) follows directly from Lemma 3.5. Since. > y! > z, we find
that

Ve(z) = Gilw) = {

B (y: = BE) Yo <z <
B l(x)I(z,) — I(x)] v <z <ZT. 0w <y’ <Ze.
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Consequently, we find thaf/(z) — G..(x) > 0 since both of the thresholdg
andz, are attained on the set whefér) is non-decreasing. ]

Corollary 4.3 extends the results of Lemma 3.6 to the presasg¢. As
intuitively is clear, we find that increased flexibility inases the value of the
optimal decision. Interestingly, Corollary 4.3 also derstoates that increased
flexibility increases the marginal value of the optimal pglas well. Hence,
we observe that increased flexibility does not only increbsevalues of opti-
mal policies, it also increases the rate at which these valemcreasing.

Having studied the existence and uniqueness of an optimailgagontrol
policy, we now plan to analyze the comparative static progedf the optimal
policy and its value. In accordance with our earlier finding€orollary 3.4
and Corollary 3.7 we can now establish the following

Corollary 4.4. Assume that the conditions of Lemma 3.1 are satisfied. Then
the valueV,(x) is a decreasing function of both the parameteand the sunk
costc and an increasing function of the parameter

Proof. Denote ad/. ,,(x) the value of the optimal policy associated with the
parameter\;, : = 1,2, and assume that; > \,. It is now clear from the
proof of Theorem 4.2 that the valdé ,, (=) satisfies the variational inequality
(AVer ) () =1V, (v)+7(x) < Oforallz € Ry \{y;,, }, wherey: , denotes
the optimal exercise threshold associated with the parameteMoreover,
sinceV, ), (z) satisfies also the sufficient quasi-variational inequality

A
Vir(a) 2 sup [V, 0) + e =) =
y€[0,z] ﬁ
A2
> sup |Ven(y) +—(z—y)| —c
y€[0,x] 6
we find thatV, \, (x) > V., (x). Proving thall.(x) is a decreasing function of
both the parametet and the sunk costis entirely analogous. Ol

Corollary 4.4 summarizes the impact of parametric changethe value
of the optimal policy. Unfortunately, it is difficult to chasterize explic-
itly the impact of parametric changes in eitheror 5 on the optimal exer-
cise boundary and the optimal generic initial statg — 3¢*. Fortunately,
the impact of changes in the sunk cestan be explicitly characterized by
studying the behavior of the implicit curvdsy’) — I(yf — 5¢F) = 0 and
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J(yr) — J(y: — B¢E) = —pe. Implicit differentiation of these curves with
respect ta: together with the the relatiof’(z) = —v(z)I’(x) yield the con-
ditions

dys —5G) s <0  (413)

de Iy — B¢ [0 (ys — B¢) — ¥(yr)]

and

dye p

de I'(y) W (ys — B¢) —v(ys)]
In other words, the optimal threshal¢i decreases, the regeneration sigte-
B¢ increases and, therefore, the optimal impu$edecreases as the fixed
intervention cost decreases. This observation is intuitively clear, sinee th
proof of Lemma 4.1 implies thdim, , y = 2 andlim. o (¥ = 0. Moreover,
by continuity of the increasing fundamental solutiptz), we discover that

> 0. (4.14)

lim,jp % = oo andlim.p % = —co. Finally, by ordinary differentiation we
find that

d‘/c —IJ/ *\ dye > o*

—(x) = I y )

de =B () (yo) G v <y:

Summarizing, we formulate the following lemma charactegaime impact of
the transaction coston the value of the optimal policy (see, for example, 22
for a similar observation).

Lemma 4.5. Assume, that the conditions of Lemma 4.1 are met. Tdieh—
B¢ /de < 0, dyf/de > 0, andd(/dc > 0. Moreover,lim.cy! = z,

lim.|o ¢} = 0, lim,|o djf = 00, lim,| ddcc = —o0 and
Cqv,
lcll%l P () = —0 (4.15)

forall x € R,.
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5 ILLUSTRATION:
CONTROLLED GEOMETRIC BROWNIAN MOTION

In order to illustrate our results explicitly, we now assurhattthe underly-
ing controlled geometric Brownian motion evolves accordmghe dynamics
characterized by the stochastic differential equation

t t
X;’:x+/uX§ds+/UXS”dWS—Zﬁgf,OgthO”, (5.1)

0 0 <t
wherep, > 0 ando > 0 are exogenously determined known parameters. For
the sake of the finiteness of the value of the considered astictcontrol prob-
lems, we assume that> p, that is, that the discount rate dominates the ex-
pected per capita growth rate of the controlled GBM. It is welbwn that in
this case the fundamental solutions read as) = =" andy(z) = ¢, where

and

Given the considered controlled process, we now assume thagwknue
flow accrued from continuing operation readsrés) = x“, wherea € (0, 1).
Hence, we observe thétr) = 5z — (r — p) Az implying that the conditions
of Lemma 3.1 are satisfied and

x* = argmax{f(x)} = (%) v :

Moreover, standard integration implies th&t.7)(z) = 2*/(r — 6(«)), where
§(a) = ap + oala —1)/2.
The value of the optimal singular stochastic control potegds as
Mo — &)+ 1 (39 + 23 x> 3
= {ﬁ(a;a_ | 1 TA(A g:i”‘) T\F . (5.2)
iy (30— way) (B 2 <

where the optimal thresholtireads as

= () -(azg) e
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Since
96 20(¢—1)
oo ok —¢)

we immediately find that
0F (1—¢)0‘/“‘“) v 99
a—9¢ (a— )2 00

P
Hence, we find that increased volatility increases the optittmadshold at
which the irreversible policy should be exercised. Morepstandard differ-
entiation also yields that

>0

0.

0z T q 0z T

%:7(1—a)ﬁ >0 an 52_7(1—04»\ <0
demonstrating along the lines of our Corollary 3.4 that tpénoal exercise
threshold is an increasing function of the parametand a decreasing func-
tion of the parametex. The optimal exercise boundary is illustrated as a func-
tion of the underlying volatility in Figure 1 fog = 0.9,1, 1.1 under the as-

sumption thai = 0.045, 4 = 0.025, « = 0.5, and )\ = 10.
X(o)

8

7

0.05 0.1 0.15 0.2 0.25

Figure 1: The optimal exercise boundariy)

The value of the associated optimal stopping problem resads a
G() {gazc T > T, (5.3)
c €T = IO‘ )\ _ f? = K _ .
oty T (Bxc T e@) C) (;) T < Lo
where the optimal stopping boundary > z is the unique root of the equation

o (k= 1)(r — 5(04)))\1: ke(r —o(a)) _
’ B(k — «) L— 0
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The optimal exercise boundafy. is illustrated as a function of the underly-
ing volatility in Figure 2 forg = 0.9,1, 1.1 under the assumption that=
0.045, 4 = 0.025,a = 0.5,¢ = 1, and )\ = 10.

Xe(o)
50

45
40
35
30
25

20 o
0 005 01 015 02 025 03

Figure 2: The optimal exercise boundary(o)

The value of the considered stochastic impulse controllprobeads as

A * 1 (m—a)yé‘“ A, % *
A + _ + 3Yc T > c
Vi(z) = 5 ) ve) n(f; 5o T )K Y (5.4)
o — 2 (s - a) (2) e <u
(r=é(a)) & \r=b(a)  B7¢) \ye ¢
where the optimal impulse threshajfland generic initial state® = y* — 3(*
are the unique roots of the optimality conditions

aBye"" =2 = (r = d(a) My = =)

and

Bk —a)(ye" = 22%) = A(r = 6(a))(k = D(yz — 22) = —kB(r — d(a))c.
Unfortunately, solving these non-linear equations exyics difficult (if pos-
sible at all). Hence, we illustrate numerically the optima¢mexse threshold
v, the optimal impulse’, the ratio(* /v, and the optimal generic initial state
ys — (¢ in Table 1 under the assumption that= 0.045, x = 0.025,a =
0.5,c=1,06=1,and\ = 10.

Table 1: The optimal impulse control policy under the asstimngthat
r=0.045, 0 = 0.025,a = 0.5,c = 1,4 = 1, and\ = 10.

o 001 005 01 015 02 0.25
y: | 9.697 10.168 11.443 13.196 15.222 17.399
* 15215 5511 6.319 7.447 8780 10.252
C/y* | 0.5377 0.5420 0.5522 0.5643 0.5768 0.5892
yr— (| 4.482 4656 5.124 5749 6.443 7.147
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Table 1 clearly indicates that increased volatility does ardy increase the
optimal threshold at which the impulse policy is irrevergibkercised. It si-
multaneously increases both the size of the optimal polmay e optimal
generic initial state. This result is of interest from tharpaf view of risk
management since it clearly demonstrates that increadatlity will result
both into a larger but less frequent dividend strategy ardgel generic initial
capital protecting the rationally managed corporatiomffature unfavorable
yet uncertain events (i.e. a larger capital buffer). It moalvorth emphasizing
that our results indicate that the dividend-capital-rgtigy; is also an increas-
ing function of volatility. Consequently, even though tlapital buffersy’ — ¢
increase as volatility increases, the ratio between theelsiind the optimal
capital decreases as volatility increases.

In order to analyze numerically the impact of a change in theame-
ter 3 on the risk sensitivity of the optimal impulse policy nunoatdly illus-
trated in Table 2 under the assumption that= 0.045, 4 = 0.025,a =
0.5,¢c = 1,6 = 1.1, and A = 10 and in Table 3 under the assumption that
r =0.045, 1 = 0.025,ac = 0.5,¢c = 1,6 = 0.9, and\ = 10. Along the lines
of our previous findings on both the associated optimal stmpproblem and
the associated singular stochastic control problem, ooremical illustrations
seem to indicate that the optimal variables are increassngirections of the
parameted and decreasing as functions of the parameter

Table 2: The optimal impulse control policy under the asstimnghat
r=0.045, 1 =0.025,aa = 0.5,c= 1,6 = 1.1, and )\ = 10.

o 0.01 0.05 0.1 0.15 0.2 0.25
yr 11.562 12.122 13.641 15.727 18.138 20.725
M 6.091 6.437 7.382 8.699 10.257 11.977
Cr/yx 10.5268 0.5310 0.5412 0.5532 0.5655 0.5779
yr— (x| 5471 5685 6.259 7.027 7.881 8.747
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Table 3: The optimal impulse control policy under the asstionghat
r=0.045, 0 = 0.025,aa = 0.5,c= 1,5 = 0.9, and )\ = 10.

o 0.01  0.05 0.1 0.15 0.2
yr 7.989 8377 9.429 10.876 12.55
o 4.394 4.643 5323 6.272 7.394 8.635
Cr/yr | 0.55 0.5542 0.5646 0.5767 0.5892 0.6017

yr—(*3.595 3734 4.106 4.604 5.155 5.715

0.25
14.35
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