
TURUN KAUPPAKORKEAKOULUN JULKAISUJA

PUBLICATIONS OF THE TURKU SCHOOL
OF ECONOMICS AND BUSINESS ADMINISTRATION

Luis Alvarez – Jukka Virtanen

A CERTAINTY EQUIVALENT
CHARACTERIZATION
OF A CLASS OF PERPETUAL
AMERICAN CONTINGENT
CLAIMS

Sarja Keskustelua ja raportteja/
Series Discussion and Working Papers
1:2005



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright  Luis Alvarez and Jukka Virtanen & Turku School of Economics and 
Business Administration  
 
 
ISBN 951-564-277-9 (nid.) 951-564-278-7 (PDF) 
ISSN 0357-4687 (nid.) 1459-7632 (PDF) 
UDK 519.216 
 519.246 
 519.856 
  
 
 

 
 
  
 Esa Print Tampere, Tampere 2005 



ABSTRACT

This paper analyzes the certainty equivalent deterministic characterization of
a class of stochastic valuations arising typically in studies considering irre-
versible investment in the presence of revenue and cost uncertainty. We demon-
strate that certainty equivalence can be attained by adjusting either the growth
rate of the underlying diffusions modelling the revenues and costs or by adjust-
ing the interest rate at which future cash flows are discounted. We also con-
sider the comparative static properties of these adjustments and demonstrate
that the sensitivity of the optimal policy with respect to changes in volatility is
a process-specific, and not a payoff-specific, property.





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 THE UNDERLYING STOCHASTIC DYNAMICS . . . . . . . . . 11

3 EXPLICIT ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . 21
3.1 THE EXCHANGE OPTION . . . . . . . . . . . . . . . . . . 21
3.2 RISK AVERSION AND INVESTMENT . . . . . . . . . . . 21
3.3 AN EXOTIC OPTION . . . . . . . . . . . . . . . . . . . . . 23

4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A PROOF OF LEMMA 2.1 . . . . . . . . . . . . . . . . . . . . . . . 29

B PROOF OF LEMMA 2.2 . . . . . . . . . . . . . . . . . . . . . . . 30

C PROOF OF LEMMA 2.3 . . . . . . . . . . . . . . . . . . . . . . . 31

D PROOF OF THEOREM 2.5 . . . . . . . . . . . . . . . . . . . . . 31





7

1 INTRODUCTION

In their seminal study, McDonald and Siegel (1986) considered the optimal
irreversible investment decision of a rationally managed firm facing both rev-
enue and cost uncertainty. Given the linearity of the exercise payoff accrued
from exercising the irreversible investment opportunity and the assumed flexi-
bility and perpetuity of the timing of the actual irreversible investment oppor-
tunity, they modelled the investment problem as an optimal stopping problem
of a two-dimensional geometric Brownian motion. They solved the problem
explicitly and proved that the optimal investment rule can be characterized as
a requirement that the benefit-cost ratio of the investment project has to ex-
ceed a critical threshold which is typically significantly greater than one and,
therefore, potentially very different from the standard net present value rule
suggesting that an investment opportunity should be exercised whenever ben-
efits exceed costs. McDonald and Siegel (1986) also consider the comparative
static properties of the optimal investment rule and established that increased
volatility increases the value of the investment opportunity and decelerates ra-
tional investment by expanding the continuation region where investment is
suboptimal.

Olsen and Stensdland (1992) extended the analysis of McDonald and Siegel
(1986) to a more general setting where the exercise payoff was assumed to
be linearly homogenous (but otherwise general) and the underlying dynamics
modelling the stochastically fluctuating prices and costs are characterized by
a n-dimensional geometric Brownian motion with potentially correlated driv-
ing Brownian motions. They demonstrated that, under the above mentioned
conditions, the value of the optimal investment strategy maintains both the
homogeneity and the convexity properties of the exercise payoff. As a con-
sequence of these findings, they were able to establish that the continuation
region where exercising the investment opportunity is suboptimal contains a
half-space characterized by a linear boundary with known coefficients repre-
senting the exercise thresholds of the associated two-dimensional McDonald
and Siegel-problems. Olsen and Stensland (1992) also demonstrated that for a
linear exercise payoff and a twice continuously differentiable value function,
increased volatility increases the value of the investment opportunity and post-
pones rational exercise by increasing the optimal boundary and, in this way,
expanding the continuation region.



Hu and Øksendal (1998) reconsidered the problems addressed in McDon-
ald and Siegel (1986) and Olsen and Stensdland (1992) and presented a rigor-
ous proof of the findings of McDonald and Siegel (1986) by relying on vari-
ational inequalities. They also extended the findings of Olsen and Stensdland
(1992) by proving that the stopping region is always contained in some half-
space. As a consequence of this observation, Hu and Øksendal (1998) were
able to establish a set of parametric conditions under which the optimal invest-
ment boundary can be actually characterized as the boundary of a half-space.

Along the lines of McDonald and Siegel (1986), we consider the valuation
of an investment opportunity in the presence of two stochastically fluctuat-
ing and potentially correlated geometric Brownian motions. However, for the
sake of generality and in order to extend the results by McDonald and Siegel
(1986), Olsen and Stensdland (1992), and Hu and Øksendal (1998) we assume
that the exercise payoff is homogenous of degree η and twice continuously
differentiable. This generalization is of interest since it permits the analysis of
the impact of risk aversion on the optimal irreversible investment policy in the
case where the utility function of the risk averse investor is of the HARA-type
(Merton, 1971). Instead of relying on variational inequalities, we tackle the
considered valuation by relying on a combination of stochastic calculus and
the classical theory of diffusions and present a certainty equivalent character-
ization of the considered class of valuations (Alvarez, 2004). More precisely,
we prove that under a considerably weak set of conditions the homogeneity
of the exercise payoff and the characterization of the underlying stochastically
fluctuating dynamics results into a solvable one-dimensional valuation which,
in turn, can be characterized in terms of the minimal excessive mappings for
the associated one-dimensional quotient processes. Put somewhat differently,
we state a set of conditions under which the two-dimensional optimal stopping
problem can be transformed into a standard solvable one-dimensional stop-
ping problem. Given this characterization, we are able to present a certainty
equivalent formulation of the considered two-dimensional stopping problem
in terms of an associated one-dimensional and deterministic timing problem,
which is adjusted to the risk of the underlying diffusions. We also analyze the
comparative static properties of both the value and exercise threshold of the
optimal investment policy and state a set of conditions under which increased
total volatility increases the value of the investment policy and decelerates in-
vestment by expanding the continuation region. In contrast to the findings by
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Olsen and Stensdland (1992), we find that the sign of the relationship between
increased volatility and the optimal policy does not generally depend on the
convexity or concavity of the exercise payoff. Thus, our results indicate that
the sensitivity of the optimal policy with respect to changes in the volatility of
the underlying diffusions is a process-specific, and not a payoff-specific, prop-
erty (Alvarez, 2003).

Our study proceeds as follows. In Section 2, we present the considered
class of two-dimensional stopping problems and state our main results on the
certainty equivalent characterization of the considered valuations and their sen-
sitivity with respect to changes in the volatility of the underlying diffusions. In
Section 3 we illustrate our general results explicitly in three examples. Finally,
we present some concluding comments in Section 4.
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2 THE UNDERLYING STOCHASTIC DYNAMICS

The main objective of this study is to consider how a class of valuations aris-
ing in the literature on irreversible decision making can be solved by rely-
ing on deterministic models adjusted to the risk of the underlying stochastic
value processes. In order to accomplish this task, assume that the underly-
ing two-dimensional value dynamics evolve on a complete filtered probability
space (Ω, P, {Ft}t≥0,F) according to the stochastic dynamics described by the
stochastic differential equations

dXt = µXtdt + σXtdWt, X0 = x ∈ R+, (2.1)

dYt = αYtdt + βYtdZt, Y0 = y ∈ R+, (2.2)

where µ, α ∈ R, σ, β ∈ R+ are exogenously given constants, and Wt and Zt are
potentially correlated Brownian motions satisfying the condition dWtdZt =

ρdt, ρ ∈ [−1, 1].
Given the above characterization of the underlying stochastic dynamics,

assume now that the mapping F : R2
+ �→ R is twice continuously differentiable

on R2
+, homogenous of degree η, and satisfies for all (x, y) ∈ R2

+ the condition

lim
t→∞ E

[
e−rtF (Xt, Yt)

]
= 0.

Given these assumptions, we now plan to consider the valuation

V (x, y) = sup
τ

E
[
e−rτF (Xτ , Yτ )

]
(2.3)

and to determine the stopping date τ ∗ at which this maximum is attained. Be-
fore proceeding in the analysis of the valuation, we first prove the following
result extending the previous findings arising in studies considering exchange
options and other contingent claims subject to linearly homogenous exercise
payoffs (Björk, 1996, 284–285).

Lemma 2.1. The optimal stopping problem (2.3) can be re-expressed as

V (x, y) = yη sup
τ

Ex/y

[
e−(r−δ(η))τF (Pτ , 1)

]
, (2.4)

where δ(η) = ηα+ 1
2
β2η(η−1) and the underlying process Pt evolves accord-

ing to the dynamics characterized by the stochastic differential equation

dPt = ξPtdt + σPtdWt − βPtdZt, P0 = x/y, (2.5)

11



where ξ = µ − α + (β2 − σβρ)(1 − η). Alternatively, the optimal stopping
problem (2.3) can also be re-expressed as

V (x, y) = xη sup
τ

Ey/x

[
e−(r−γ(η))τF (1, Qτ )

]
, (2.6)

where γ(η) = ηµ + 1
2
σ2η(η − 1) and the underlying process Qt evolves ac-

cording to the dynamics characterized by the stochastic differential equation

dQt = χQtdt + βQtdZt − σQtdWt, Q0 = y/x, (2.7)

where χ = α − µ + (σ2 − σβρ)(1 − η).

Proof. See Appendix A.

In accordance with the valuation of European contingent contracts with lin-
early homogeneous exercise payoffs, Lemma 2.1 demonstrates that the origi-
nal two-dimensional optimal stopping problem can be transformed into a stan-
dard one-dimensional optimal stopping problem by invoking Girsanovs the-
orem and the fact that the ratio between two geometric Brownian motions is
itself a geometric Brownian motion. An important implication of Lemma 2.1
is that if L : R2

+ �→ R+ is twice continuously differentiable, homogenous of
degree one, and r-excessive for the underlying diffusion (Xt, Yt) then L(Pt, 1)

is (r−δ(η))-excessive for the diffusion Pt and L(1, Qt) is (r−γ(η))-excessive
for the diffusion Qt.

Given the observations of Lemma 2.1, we now analyze the determination
of the value of the functionals

Gb(x, y) = yη
Ex/y

[
e−(r−δ(η))τbF (Pτb

, 1)
]

= yηF (b, 1)Ex/y

[
e−(r−δ(η))τb

]
,

(2.8)

and

Ha(x, y) = xη
Ey/x

[
e−(r−γ(η))τ̂aF (1, Qτ̂a)

]
= xηF (1, a)Ey/x

[
e−(r−γ(η))τ̂a

]
,

(2.9)

where τb = inf{t ≥ 0 : Pt = b} denotes the first hitting time of the diffusion
Pt to the state b ∈ R+ and τ̂a = inf{t ≥ 0 : Qt = a} denotes the first hitting
time of the diffusion Qt to the state a ∈ R+. Before presenting our general
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characterization of the functionals, we assume that r > max(δ(η), γ(η)) and
define the constants

ψ =
1

2
− ξ

θ2
+

√(
1

2
− ξ

θ2

)2

+
2(r − δ(η))

θ2
,

ϕ =
1

2
− ξ

θ2
−

√(
1

2
− ξ

θ2

)2

+
2(r − δ(η))

θ2
,

ϕ̂ = η − ψ, and ψ̂ = η − ϕ, where ξ = µ − α + (β2 − σβρ)(1 − η) and θ2 =

σ2 + β2 − 2σβρ. As intuitively is clear, ψ denotes the positive and ϕ denotes
the negative root of the quadratic characteristic equation 1

2
θ2a(a − 1) + ξa −

(r − δ(η)) = 0 and, in turn, ψ̂ denotes the positive and ϕ̂ denotes the negative
root of the quadratic characteristic equation 1

2
θ2a(a−1)+χa−(r−γ(η)) = 0,

where χ = α − µ + (σ2 − σβρ)(1 − η). We can now establish the following.

Lemma 2.2. Assume that r > max(δ(η), γ(η)). Then,

Gb(x, y) = H1/b(x, y) = yη−ψxψb−ψF (b, 1)

whenever x < yb and

Gb(x, y) = H1/b(x, y) = yη−ϕxϕb−ϕF (b, 1)

whenever x > yb.

Proof. See Appendix B.

Our main objective is to derive certainty equivalent characterizations for
the stochastic valuation problem (2.3) in terms of associated deterministic val-
uations. To this end, define the deterministic processes X̄t and Ȳt by the ordi-
nary differential equations

X̄ ′
t = µ̃X̄t, X̄0 = x

and
Ȳ ′

t = α̃Ȳt, Ȳ0 = y

where µ̃, α̃ are exogenously given constants. Given this characterization, con-
sider now the associated deterministic valuation

V̂ (x, y) = sup
t≥0

e−r̃tF (X̄t, Ȳt), (2.10)
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where r̃ ∈ R+ is an exogenously given discount rate. It is now a simple exer-
cise in ordinary calculus to demonstrate that

V̂ (x, y) = yη sup
t≥0

e−(r̃−α̃η)tF (P̄t, 1) = xη sup
t≥0

e−(r̃−µ̃η)tF (1, Q̄t),

where P̄t = (x/y)e(µ̃−α̃)t satisfies the ordinary differential equation P̄ ′
t = (µ̃−

α̃)P̄t and Q̄t = (y/x)e(α̃−µ̃)t satisfies the ordinary differential equation Q̄′
t =

(α̃ − µ̃)Q̄t. Given this observation, we now plan to analyze the determination
of the value of the functionals

Ĝb(x, y) = yηe−(r̃−α̃η)TbF (P̄Tb
, 1), (2.11)

Ĥa(x, y) = xηe−(r̃−µ̃η)T̂aF (1, Q̄T̂a
), (2.12)

where Tb = inf{t ≥ 0 : P̄t = b} denotes the first hitting time of the process
P̄t to the state b ∈ R+ and T̂a = inf{t ≥ 0 : Q̄t = a} denotes the first hitting
time of the process Q̄t to the state a ∈ R+. We can now establish the following
auxiliary lemma.

Lemma 2.3. (A) Assume that µ̃ > α̃, that r̃ > η max(α̃, µ̃), and that x < yb.
Then,

Ĝb(x, y) = Ĥ1/b(x, y) = yη−ζxζb−ζF (b, 1),

where ζ = (r̃ − α̃η)/(µ̃ − α̃).
(B) Assume that α̃ > µ̃, that r̃ > η max(α̃, µ̃), and that x > yb. Then,

Ĝb(x, y) = Ĥ1/b(x, y) = yη−ζxζb−ζF (b, 1),

where ζ = (r̃ − α̃η)/(µ̃ − α̃).

Proof. See Appendix C.

Along the lines of our previous findings on the functionals (2.8) and (2.9),
Lemma 2.3 presents an explicit characterization of the functionals (2.11) and
(2.12). A set of conditions under which the considered functionals coincide
and certainty equivalence holds is now summarized in the following.

Corollary 2.4. (A) Assume that r > max(δ(η), γ(η)), that r̃ > η max(α̃, µ̃),
that µ̃ > α̃, that (r̃ − ηα̃) = ψ(µ̃ − α̃), and that x < yb. Then, Ĝb(x, y) =

Gb(x, y) = H1/b(x, y) = Ĥ1/b(x, y).
(B) Assume that r > max(δ(η), γ(η)), that r̃ > η max(α̃, µ̃), that α̃ > µ̃,
that (r̃ − ηα̃) = ϕ(µ̃ − α̃), and that x > yb. Then, Ĝb(x, y) = Gb(x, y) =

H1/b(x, y) = Ĥ1/b(x, y).

14



Proof. The alleged result is a direct implication of Lemma 2.2 and Lemma
2.3.

Corollary 2.4 states a set of conditions under which the stochastic valua-
tions (2.8) can be expressed in terms of an associated deterministic valuation
(2.11). As we will later observe, this result plays a key role in the derivation
and subsequent analysis of the certainty equivalent formulation of the optimal
stopping problem (2.3). Before stating our main conclusions on that subject,
we first state a set of sufficient conditions under which the considered valuation
can be explicitly solved.

Theorem 2.5. (A) Assume that r > max(δ(η), γ(η)), that the mapping F (p, 1)

is non-decreasing as a function of p, that p−ψF (p, 1) attains a unique global
maximum at b∗ = argmax{p−ψF (p, 1)} and that Lψ(p) = p1−ϕFx(p, 1) −
ψp−ϕF (p, 1) is non-increasing on (b∗,∞). Then

V (x, y) = yη−ψxψ sup
py≥x

[
p−ψF (p, 1)

]
= yϕ̂xη−ϕ̂ sup

y≥qx

[
q−ϕ̂F (1, q)

]
(2.13)

which can be re-expressed as

V (x, y) =


F (x, y) x ≥ b∗y

Gb∗(x, y) x < b∗y
=


F (x, y) x ≥ b∗y

H1/b∗(x, y) x < b∗y.

(B) Assume that r > max(δ(η), γ(η)), that the mapping F (p, 1) is non-increasing
as a function of p, that p−ϕF (p, 1) attains a unique global maximum at b∗ =

argmax{p−ϕF (p, 1)} and that Lϕ(p) = p1−ψFx(p, 1) − ϕp−ψF (p, 1) is non-
increasing on (0, b̃). Then

V (x, y) = yη−ϕxϕ sup
py≤x

[
p−ϕF (p, 1)

]
= yψ̂xη−ψ̂ sup

y≤qx

[
q−ψ̂F (1, q)

]
(2.14)

which can be re-expressed as

V (x, y) =


Gb∗(x, y) x > b∗y

F (x, y) x ≤ b∗y
=


H1/b∗(x, y) x > b∗y

F (x, y) x ≤ b∗y.

Proof. See Appendix D.
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Theorem 2.5 states a set of general conditions under which an optimal ex-
ercise policy exists and is unique. Along the lines of the seminal study by
McDonald and Siegel (1986), Theorem 2.5 demonstrates that the optimal stop-
ping policy can be characterized in terms of first exit times of the associated
one-dimensional diffusions Pt and Qt from open intervals. It is worth noticing
that the characterization of the optimal exercise boundary can be interpreted in
terms of the general properties of homogenous mappings and Euler’s theorem
for homogenous functions. More precisely, since F (x, y) = yηF (x/y, 1) =

xηF (1, y/x) and ηF (x, y) = Fx(x, y)x + Fy(x, y)y the optimality condition
Fx(p

∗, 1)p∗ = ψF (p∗, 1) characterizing the optimal boundary in case (A) of
Theorem 2.5 can be alternatively expressed as Fy(1, q

∗)q∗ = (η−ψ)F (1, q∗) =

ϕ̂F (1, q∗). Similarly, the optimality condition Fx(p
∗, 1)p∗ = ϕF (p∗, 1) char-

acterizing the optimal boundary in case (B) of Theorem 2.5 can be alternatively
expressed as Fy(1, q

∗)q∗ = (η − ϕ)F (1, q∗) = ψ̂F (1, q∗).
A set of important implications of Theorem 2.5 characterizing the impact

of increased volatility on the optimal exercise thresholds is now summarized
in the following.

Corollary 2.6. The mappings Kθ(p) = pFx(p, 1)/ψ − F (p, 1) and K̂θ(p) =

pFx(p, 1)/ϕ − F (p, 1) satisfy the condition

∂Kθ

∂θ
(p) =

pFx(p, 1)

ψ

2(ψ − 1)

θ(ψ − ϕ)

∂K̂θ

∂θ
(p) =

pFx(p, 1)

ϕ

2(1 − ϕ)

θ(ψ − ϕ)
.

Hence, if the conditions of part (A) of Theorem 2.5 are satisfied and

r > (η − 1)(α +
1

2
β2η − β2 + σβρ) + µ (2.15)

then increased total volatility θ postpones rational exercise by increasing the
value of Kθ(p) and, therefore, by increasing the exercise threshold b∗. If the
conditions of part (B) of Theorem 2.5 are satisfied then increased total volatil-
ity θ postpones rational exercise by increasing the value of K̂θ(p) and, there-
fore, by decreasing the exercise threshold b∗.

Proof. Since θ2(ψ − 1)(1 − ϕ) = 2(r − δ(η) − ξ) the alleged result is a
straightforward implication of Theorem 2.5 and the inequalities

∂ψ

∂θ
=

2ψ(1 − ψ)

θ(ψ − ϕ)
< 0
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and
∂ϕ

∂θ
=

2ϕ(ϕ − 1)

θ(ψ − ϕ)
> 0.

Corollary 2.6 states that under the conditions of part (A) of Theorem 2.5
increased total volatility will decelerate rational investment by expanding the
continuation region where exercising the investment opportunity is suboptimal
whenever the condition (2.15) is satisfied (and, therefore, under which ψ > 1).
Interestingly, Corollary 2.6 states that under the conditions of part (B) of The-
orem 2.5 increased total volatility will always decelerate rational investment
independently of the relative size of the negative root ϕ. It is, however, worth
noticing that this observation does not necessarily imply that an increase in the
volatility coefficients σ or β would have a similar effect since the impact of
an increase in these factors naturally depends on the correlation structure of
the driving Brownian motions. More precisely, since ∂θ/∂σ = (σ − βρ)/θ,
∂θ/∂β = (β − σρ)/θ, and ∂θ/∂ρ = −σβ/θ we find that the impact of in-
creased volatility coefficients σ and β is ambiguous while increased correlation
will unambiguously accelerate investment. Moreover, it is also worth pointing
out that the results of Corollary 2.6 clearly indicate that the sign of the relation-
ship between increased volatility and the optimal investment policy is typically
a process-specific, and not a payoff-specific, property (Alvarez, 2003).

Our main result on the certainty equivalent formulation of the considered
class of infinitely-lived valuations is now summarized in the following.

Theorem 2.7. (A) Assume that µ̃ > α̃, that r̃ > η max(α̃, µ̃), and that (r̃ −
ηα̃) = ψ(µ̃ − α̃). Assume also that the conditions of part (A) of Theorem 2.5
are satisfied. Then V (x, y) = V̂ (x, y).
(B) Assume that α̃ > µ̃, that r̃ > η max(α̃, µ̃), and that (r̃ − ηα̃) = ϕ(µ̃ − α̃).
Assume also that the conditions of part (B) of Theorem 2.5 are satisfied. Then
V (x, y) = V̂ (x, y).

Proof. The alleged result is a direct implication of Theorem 2.5 and Corollary
2.4.

Theorem 2.7 states a certainty equivalent formulation of the optimal stop-
ping problem (2.3) in terms of the associated deterministic valuation (2.10).
One of the most important implications of Theorem 2.7 is that if µ̃ = µ and

17



α̃ = α then certainty equivalence can be attained by adjusting the discount rate
for risk according to the characterization

r̃ = ηα + ψ(µ − α)

in case (A) and according to the characterization

r̃ = ηα + ϕ(µ − α)

in case (B). Moreover, as was already indicated by our Corollary 2.6, we find
that the impact of an increase in σ, β, or the correlation coefficient ρ on the
risk adjusted discount rate is ambiguous in case (A) while an increase in the
correlation coefficient ρ unambiguously increases the risk adjusted discount
rate in case (B). More precisely,

∂r̃

∂σ
=

2ψ(1 − ψ)(µ − α)

θ2(ψ − ϕ)
(σ − βρ),

∂r̃

∂β
=

2ψ(1 − ψ)(µ − α)

θ2(ψ − ϕ)
(β − σρ)

in case (A) and

∂r̃

∂σ
=

2ϕ(ϕ − 1)(µ − α)

θ2(ψ − ϕ)
(σ − βρ),

∂r̃

∂β
=

2ϕ(ϕ − 1)(µ − α)

θ2(ψ − ϕ)
(β − σρ)

in case (B). The risk adjusted discount rate is explicitly illustrated as a function
of the volatility coefficient σ for various values of the correlation coefficient in
Figure 1 under the assumptions that η = 1, r = 0.045, α = 0.02, µ = 0.025,

and β = 0.05. In accordance with our findings, we find that when ρ = 50% the
risk-adjusted discount rate attains a global maximum at the point σ = ρβ =

0.025.
Alternatively, if the discount rate is not adjusted to the volatility of the un-

derlying processes, then according to our Theorem 2.7 certainty equivalence
can be attained only by adjusting either one (or both) of the growth rates of
the underlying diffusions. Consequently, the sensitivity of the required adjust-
ments satisfy the comparative statics

(ψ − η)
∂α̃

∂θ
− ψ

∂µ̃

∂θ
= (µ̃ − α̃)

∂ψ

∂θ

in case (A) of Theorem 2.7 and

(ϕ − η)
∂α̃

∂θ
− ϕ

∂µ̃

∂θ
= (µ̃ − α̃)

∂ϕ

∂θ
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Figure 1: The risk-adjusted discount rate as a function of σ

in case (B) of Theorem 2.7. The risk-adjusted growth rate µ̃ is illustrated as
a function of the volatility coefficient σ for various values of the correlation
coefficient in Figure 2 under the assumptions that η = 1, r = 0.045, α = α̃ =

0.02, µ = 0.025, and β = 0.05.
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Figure 2: The risk-adjusted growth rate as a function of σ
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3 EXPLICIT ILLUSTRATIONS

3.1 THE EXCHANGE OPTION

In order to illustrate our general results assume now that F (x, y) = x − y. It
is now a well known result that in this case if the condition r > max(µ, α) is
met, then (McDonald and Siegel, 1986; Olsen and Stensland, 1992; Hu and
Øksendal, 1998)

V (x, y) = y1−ψxψ sup
py≥x

[
p−ψ(p − 1)

]
=


x − y x ≥ b∗y

y1−ψxψb∗−ψ(b∗ − 1) x < b∗y,

where

b∗ =
ψ

ψ − 1
> 1

denotes the optimal boundary at which the process Xt/Yt should be optimally
stopped. Similarly, if r̃ > µ̃ > α̃ then

V̂ (x, y) = y1−ζxζ sup
py≥x

[
p−ζ(p − 1)

]
=


x − y x ≥ b̃y

y1−ζxζ b̃−ζ(b̃ − 1) x < b̃y,

where

b̃ =
ζ

ζ − 1
=

r̃ − α̃

r̃ − µ̃
> 1

denotes the optimal boundary at which the deterministic process X̄t/Ȳt should
be optimally stopped. Hence, as was indicated by our main theorem, we find
that in the present example V (x, y) = V̂ (x, y) as long as the conditions r̃ >

µ̃ > α̃, r > max(µ, α), and r̃ − α̃ = ψ(µ̃ − α̃) are satisfied.

3.2 RISK AVERSION AND INVESTMENT

In this subsection we reconsider the problem of the previous section by assum-
ing that the decision maker is risk averse. In order to describe risk aversion,
we assume that the utility function of the decision maker is of the standard
HARA-form U(x) = 1

κ
xκ, where κ ∈ (0, 1) is a known exogenously given

constant and 1 − κ measures the relative risk aversion of the decision maker.
Given these assumption, we now plan to investigate the problem (2.3) in the
case where F (x, y) = 1

κ
max(x−y, 0)κ. It is now clear that the exercise payoff
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is now homogenous of degree κ and, therefore, that our general findings apply.
Especially, we observe that

F (x, y) = yκ 1

κ
max(x/y − 1, 0)κ = xκ 1

κ
max(1 − y/x, 0)κ.

Now, assume that r > max(δ(κ), η(κ)). Then

V (x, y) =
yκ−ψxψ

κ
sup
py≥x

[
p−ψ max(p − 1, 0)κ

]

=




1
κ
(x − y)κ x ≥ b∗y

yκ−ψxψ

κ
b∗−ψ(b∗ − 1)κ x < b∗y,

where

b∗ =
ψ

ψ − κ
> 1

denotes the optimal threshold for the process Xt/Yt at which the value is opti-
mal. It is worth noticing that

∂b∗

∂θ
=

2κψ(ψ − 1)

θ(ψ − ϕ)(ψ − κ)2
� 0, ψ � 1

which demonstrates that the impact of increased volatility on the optimal ex-
ercise threshold is negative on the set κ < ψ < 1 and, therefore, that increased
total volatility needs not to decelerate investment under uncertainty and risk
aversion. Similarly, we observe that

∂b∗

∂κ
=

ψ

(ψ − κ)2
> 0

proving that increased relative risk aversion accelerates rational investment by
decreasing the optimal exercise threshold at which the investment opportunity
should be exercised (see Alvarez and Koskela (2004) for a similar result in the
one-dimensional setting).

When r̃ > κµ̃ > κα̃, we observe that

V̂ (x, y) =
yκ−ζxζ

κ
sup
py≥x

[
p−ζ max(p − 1, 0)κ

]

=




1
κ
(x − y)κ x ≥ b̃y

yκ−ζxζ

κ
b̃−ζ(b̃ − 1)κ x < b̃y,
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where

b̃ =
ζ

ζ − κ
=

r̃ − κα̃

r̃ − κµ̃
> 1

denotes the optimal threshold for the process X̄t/Ȳt at which the value is opti-
mal. Thus, as was indicated by our main theorem, V (x, y) = V̂ (x, y) as long
as the conditions r̃ > κµ̃ > κα̃, r > max(δ(κ), η(κ)), and r̃−κα̃ = ψ(µ̃− α̃)

are satisfied.

3.3 AN EXOTIC OPTION

In order to illustrate our results in a more general case, consider now a case
where the exercise payoff of the investment opportunity reads as

F (x, y) = pxκy1−κ − qx,

where κ ∈ (0, 1), p, q ∈ R+ are exogenously given known constants. It is clear
that F (x, y) is twice continuously differentiable and homogenous of degree
one. Moreover

F (x, y) = x
(
p(y/x)1−κ − q

)
.

Thus, whenever r > max(µ, α), we observe that

V (x, y) = x1−ψ̂yψ̂ sup
sx≥y

[
s−ψ̂(ps1−κ − q)

]

=


x (p(y/x)1−κ − q) y > s∗x

x1−ψ̂yψ̂s∗−ψ̂(ps∗1−κ − q) y ≤ s∗x,

(3.1)

where

s∗ =

(
qψ̂

p(ψ̂ + κ − 1)

) 1
1−κ

>

(
q

p

) 1
1−κ

denotes the optimal stopping threshold for the process Yt/Xt at which the value
is optimal. On the other hand, we can write as well that

V (x, y) = y1−ϕxϕ sup
uy≤x

[
u−ϕ(puκ − qu)

]

=


y1−ϕxϕu∗−ϕ(pu∗κ − qu∗) y ≤ (1/u∗)x

x (p(y/x)1−κ − q) y > (1/u∗)x

(3.2)
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where

u∗ =

(
q(ϕ − 1)

p(ϕ − κ)

) 1
κ−1

denotes the optimal stopping threshold for the process Xt/Yt at which the
value is optimal. Note that the condition ψ̂ = 1 − ϕ implies immediately that
s∗ = 1/u∗ and that the expressions (3.1) and (3.2) are the same. Thus, as was
indicated by our main theorem, it makes no difference whether one solves the
problem with respect to the quotient process Xt/Yt or Yt/Xt, the value of the
problem is the same in both cases.

Moreover, assume that r > µ̃ > α̃. Then

V̂ (x, y) = x1−ζyζ sup
sx≥y

[
s−ζ(ps1−κ − q)

]

=


x (p(y/x)1−κ − q) y > s̃x

x1−ζyζ s̃−ζ(ps̃1−κ − q) y ≤ s̃x,

where

s̃ =

(
qζ

p(ζ + κ − 1)

) 1
1−κ

=

(
q(r − α̃)

p(r − (kα̃ + µ̃(1 − κ)))

) 1
1−κ

>

(
q

p

) 1
1−κ

denotes the optimal stopping threshold for the process Ȳt/X̄t at which the value
is optimal. Hence we discover that in the present example V (x, y) = V̂ (x, y)

as long as the conditions r > µ̃ > α̃ and r − α̃ = ψ(µ̃ − α̃) are satisfied. This
discovery is consistent with our main theorem.
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4 CONCLUSIONS

In this paper we considered the certainty equivalent characterization of a class
of valuations arising typically in studies considering irreversible investment in
the presence of both cost and revenue uncertainty. Assuming that the under-
lying diffusions evolve according to a pair of potentially correlated geometric
Brownian motions and that the exercise payoff is homogenous of degree η was
shown to result under a set of conditions to a solvable one-dimensional valu-
ation which can be characterized in terms of the minimal excessive mappings
for the associated one-dimensional quotient processes. Given this characteri-
zation, we presented a certainty equivalent formulation of the considered func-
tionals and studied their comparative static properties and, especially, their
sensitivity with respect to changes in the volatilities of the underlying pro-
cesses.

Although assuming that the underlying processes evolve according to a pair
of potentially correlated geometric is not restrictive (at least from the point of
view of financial applications) the assumed homogeneity of the exercise payoff
rules out valuations subject to constant sunk costs and other similar factors re-
sulting into non-homogeneous payoff structures. Thus, a natural extension of
our analysis would be to assume a more general functional formulation of the
exercise payoff and consider certainty equivalence within such a framework.
Unfortunately, such analysis is out of the scope of this study and is, therefore,
left for future analysis.

Acknowledgements: The research of Luis H. R. Alvarez has been supported
by the Foundation for the Promotion of the Actuarial Profession, the Finnish
Insurance Society and the Research Unit of Economic Structures and Growth
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A PROOF OF LEMMA 2.1

Proof. The assumed homogeneity of the exercise payoff F (x, y) implies that
F (x, y) = yηF (x/y, 1) and, therefore, that

V (x, y) = sup
τ

E
P

[
e−rτY η

τ F (Xτ/Yτ , 1)
]
.

On the other hand, since Y η
t = yeδ(η)tMt, where δ(η) = ηα+ 1

2
β2η(η−1) and

Mt = eβηZt−β2η2t/2 is a positive exponential martingale, we can now define the
equivalent measure Q by the likelihood-ratio dQ/dP = Mt. This implies that

V (x, y) = yη sup
τ

E
Q

[
e−(r−δ(η))τF (Xτ/Yτ , 1)

]
,

where the processes Xt and Yt are characterized under the measure Q by the
stochastic differential equations

dXt = (µ + σβηρ)Xtdt + σXtdW̃t, X0 = x ∈ R+ (A.1)

dYt = (α + β2η)Ytdt + βYtdZ̃t, Y0 = y ∈ R+, (A.2)

where W̃t and Z̃t are Brownian motions defined under the equivalent measure
Q. The strong uniqueness of the solutions of the stochastic differential equa-
tions (A.1) and (A.2) now, in turn, imply that

V (x, y) = yη sup
τ

E
P

[
e−(r−δ(η))τF (X̃τ/Ỹτ , 1)

]
,

where

dX̃t = (µ + σβηρ)X̃tdt + σX̃tdWt, X̃0 = x ∈ R+ (A.3)

dỸt = (α + β2η)Ỹtdt + βỸtdZt, Ỹ0 = y ∈ R+. (A.4)

Finally, since the process Pt = X̃t/Ỹt satisfies the stochastic differential equa-
tion

dPt = ξPtdt + σPtdWt − βPtdZt, P0 = x/y,

where ξ = µ − α + (β2 − σβρ)(1 − η), we find that the optimal stopping
problem can be re-expressed as

V (x, y) = yη sup
τ

Ex/y

[
e−(r−δ(η))τF (Pτ , 1)

]
.

Proving the alternative representation (2.6) of the considered stochastic valua-
tion (2.3) is entirely analogous.
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B PROOF OF LEMMA 2.2

Proof. It is well-known from the literature on linear diffusions that the func-
tional

ub(p) = Ep

[
e−(r−δ(η))τb

]
where τb = inf{t ≥ 0 : Pt = b} denotes the first hitting time of the diffusion
Pt to the state b ∈ R+, can be expressed as ( Borodin and Salminen, 2002, 132)

ub(p) =


(p/b)ψ p ≤ b

(p/b)ϕ p ≥ b,

where ψ denotes the positive and ϕ the negative root of the quadratic charac-
teristic equation of the ordinary second order (Euler’s) differential equation

1

2
θ2p2u′′

b (p) + ξpu′
b(p) − (r − δ(η))ub(p) = 0.

On the other hand, the functional

ûa(q) = Eq

[
e−(r−γ(η))τ̂a

]

where τ̂a = inf{t ≥ 0 : Qt = a} denotes the first hitting time of the diffusion
Qt to the state a ∈ R+, can be expressed as (cf. Borodin and Salminen, 2002,
132)

ûa(q) =


(q/a)ψ̂ q ≤ a

(q/a)ϕ̂ q ≥ a,

where ψ̂ denotes the positive and ϕ̂ the negative root of the quadratic charac-
teristic equation of the ordinary second order (Euler’s) differential equation

1

2
θ2q2û′′

a(q) + χqû′
a(q) − (r − γ(η))ûa(q) = 0.

Since ϕ̂ = η−ψ and ψ̂ = η−ϕ, we notice that the homogeneity of the exercise
payoff implies that Gb(x, y) = yηF (b, 1)ub(x/y) = yηbηF (1, 1/b)ub(x/y) =

xηF (1, 1/b)û1/b(y/x) = H1/b(x, y). This completes the proof of the lemma.
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C PROOF OF LEMMA 2.3

Proof. (A) Since P̄t = pe(µ̃−α̃)t we find that if p < b then the condition µ̃ > α̃

implies that

Tb =
1

(µ̃ − α̃)
ln

(
b

p

)
< ∞.

Similarly, since Q̄t = qe(α̃−µ̃)t we find that if q > 1/b then the condition µ̃ > α̃

implies that

T̂1/b =
ln (bq)

(µ̃ − α̃)
< ∞.

Hence, we find that that if p < b then

vb(p) = e−(r̃−α̃η)Tb =

(
p

b

) r̃−α̃η
µ̃−α̃

.

and if q > 1/b then

v̂1/b(q) = e−(r̃−µ̃η)T̂1/b =

(
1

qb

) r̃−µ̃η
µ̃−α̃

Noticing that yηvb(x/y) = yη(x/(yb))ζ and xηv̂1/b(y/x) = xη(x/(yb))ζ−η,
where ζ = (r̃ − α̃η)/(µ̃− α̃), then proves the alleged result. Establishing part
(B) is entirely analogous.

D PROOF OF THEOREM 2.5

Proof. (A) Define the value function J : R+ �→ R+ as

J(p) = sup
τ

Ep

[
e−(r−δ(η))τF (Pτ , 1)

]
(D.1)

and denote the proposed value function as Jb∗(p). Since

Jb∗(p) = Ep

[
e−(r−δ(η))τ∗

F (Pτ∗, 1)
]
,

where τ ∗ = inf{t ≥ 0 : Pt ≥ b∗} denotes the first exit time of the underlying
diffusion Pt from the set (0, b∗), we immediately find that J(p) ≥ Jb∗(p).

To prove the opposite inequality, we first observe that the proposed value
function Jb∗(p) is continuously differentiable on R+, twice continuously dif-
ferentiable on R+\{b∗}. Moreover, it satisfies the conditions J ′′

b∗(b
∗−) =
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ψ(ψ − 1)b∗−2F (b∗, 1) < ∞, J ′′
b∗(b

∗+) = Fxx(b
∗+, 1) < ∞. The maxi-

mality of b∗ = argmax{p−ψF (p, 1)} implies that Jb∗(p) ≥ F (p, 1) for all
p ∈ R+. Moreover, since θ2p2J ′′

b∗(p)/2+(µ−α+(β2−σβρ)(1−η))pJ ′
b∗(p)−

(r − δ(η))Jb∗(p) = 0 on (0, b∗), the assumed monotonicity of the mapping
Lψ(p) = p1−ϕFx(p, 1) − ψp−ϕF (p, 1) (Salminen, 1985) on (b∗,∞) implies
that

L′
ψ(p) =

2

θ2
p−ϕ−1

[
1

2
θ2p2Fxx(p, 1) + ξpFx(p, 1) − (r − δ(η))F (p, 1)

]
≤ 0

for all p ∈ (b∗,∞). Hence 1
2
θ2p2J ′′

b∗(p) + ξpJ ′
b∗(p) − (r − δ(η))Jb∗(p) ≤ 0

for all p ∈ R+\{b∗}. Consequently, Jb∗(p) constitutes a (r − δ(η))-excessive
majorant of the payoff F (p, 1) for the process Pt. Since J(p) is the least of
these majorants, we find that Jb∗(p) ≥ J(p) and, therefore, that Jb∗(p) =

J(p). The rest of the alleged result follows from Lemma 2.1 and Lemma 2.2.
Establishing part (B) is entirely analogous.
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