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ABSTRACT

Investment decisions are especially crucial for an insurer with liabil-

ities defined by law, since in this situation the management can con-

trol only the asset side of the balance sheet. We present in this pa-

per a one-period diffusion model for assets and liabilities of a pension

insurer managing a statutory pension scheme subject to statutory sol-

vency constraints. By approximating probabilistic constraints suitably

with piecewise polynomial functions, we construct a performance func-

tion which incorporates both the insurer’s risk preferences and solvency

considerations, and derive the optimal control policy for assets using the

Hamilton–Jacobi–Bellman equation and the theory of forward–backward

stochastic differential equations. We discuss some properties of the op-

timal policy and illustrate the model with a simulation example. As a

special area of application we have in mind the Finnish statutory pen-

sion scheme.

Keywords: Asset–liability management; Monte Carlo simulation; Pen-
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tions
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1 INTRODUCTION

A pension insurance company managing a partly funded statutory pen-

sion scheme is responsible for investing some predetermined proportion

of received contributions profitably while the rest of these contributions

is used to finance current pensions on a pay-as-you-go basis. Excess

profits from investment of assets corresponding to funded part of pen-

sions may later be used to finance pensions in order to keep the con-

tribution rate within reasonable bounds. The current Finnish statutory

pension scheme is of this type.

As in a statutory scheme the company management has only re-

stricted possibilities to control the liability side of the balance sheet,

choosing a profitable and safe investment strategy is of crucial impor-

tance in controlling the financial status of the company. Safety in this

context refers to the insurer’s solvency position. Pension insurers’ activ-

ities are usually heavily regulated and their solvency position is subject

to public supervision: typically the insurer is required to hold a certain

solvency margin over and above the liabilities and investments in some

asset categories may be restricted or completely forbidden. If the insurer

does not satisfy the statutory solvency requirements or does not com-

ply with regulations, the supervising authorities may intervene, meaning

that in such a situation the management’s freedom to choose business

strategies will be restricted considerably.

Because of preceding considerations it would be of interest to deter-

mine an investment strategy which maximizes expected utility of returns

and simultaneously keeps the probability of ruin (i.e. an unacceptable

solvency position) on a reasonably low level. We present in this study

a simple diffusion model for assets and liabilities of a pension insur-

ance company and derive the optimal control policy with respect to a

performance function incorporating solvency considerations and the in-

vestor‘s risk preferences. This performance function is constructed using

an utility function to represent the insurer’s risk preferences and smooth
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approximations of probabilistic constraints to take the solvency position

into account. As a special area of application the Finnish pension scheme

is constantly kept in mind.

We consider separately two wealth processes: that of assets backing

the liabilities and that of assets corresponding to solvency margin. Our

goal is to control the ratios of these two monetary quantities to the mon-

etary value of liabilities in such a way that at the terminal time T the

value of assets backing liabilities exceeds the value of liabilities and the

value of assets corresponding to solvency margin exceeds the required

solvency margin with an acceptably high probability. This separation

is motivated by the fact that regulations tend to require considerable

amount of prudence from investment strategies of assets backing lia-

bilities, which makes attaining higher returns difficult. Thus the assets

corresponding to solvency margin offer a way to generate higher returns

by allowing more risky strategies for these assets. It is worth mentioning

that recently there has been much discussion in Finland about increasing

the proportion of stock investments in the pension insurers’ portfolios to

obtain higher returns in order to lessen the need to increase contribution

rates in the future.

In line with financial literature, we assume investment strategies to be

self-financing. In practice, both inflow and outflow of assets will occur:

there are yearly outflows in the form of bonuses given to the sponsors

and dividends paid to the shareholders, as well as monthly or quarterly

out- and inflows in the form of pension payments by the insurer and con-

tributions by the sponsors. We deal with these aspects by introducing

some additional stochastic fluctuation in the model to reflect the effect

of inflows and outflows during a one-year period and by setting the ter-

minal time T equal to one year. Decisions concerning distribution of

profits and allocation of remaining assets are then made at the end of

the period and these decisions determine the initial state of the insurer

at the beginning of the next period. Liabilities in pension insurance can

have a very long duration, and a planning horizon of some 20–30 years is
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not unreasonable. Our model can be used to determine the optimal pol-

icy for a single period at a time given the initial state. Decisions about

distribution of profits and asset allocation link then the different periods

together, and the effects of different rules determining the bonuses and

dividends can be investigated by simulations proceeding year by year. It

is useful to be able to compare the consequences of adopting different

rules concerning the distribution of profits, provided that the alternatives

to be investigated are chosen appropriately.

The contents of this study are as follows. In Section 2 the proposed

diffusion model is presented. In the next section we define the form of

our performance function as a sum of a certain utility function and an

additional cost function reflecting solvency considerations. In Section 4

we derive the general form of optimal control policy in terms of the value

function Φ using Hamilton–Jacobi–Bellman equation and obtain an ex-

pression for the value function Φ using the theory of forward–backward

stochastic differential equations. The behavior of the optimal strategy

and its implications for the applicability of the model are discussed in the

following section. In Section 6 we present a simple illustrative simula-

tion example. Concluding remarks are made in Section 7. For complete-

ness some details concerning the solution of a one-dimensional Cauchy

problem are presented in appendix A. Also, some details of Finnish sol-

vency regulations for pension insurers can be found in appendix B.
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2 PROPOSED MODEL FOR ASSETS AND LI-

ABILITIES

We consider the usual Black–Scholes type market consisting of a risky

asset S with a geometric Brownian motion price process

dS(t) = µS(t)dt + σS(t)dW (t)

with W (t) a standard Wiener process and a risk-free asset B with price

process

dB(t) = rB(t)dt,

where r is the risk-free rate of return. The monetary value of the in-

surance company’s total liabilities (the funded part of pensions) L(t) is

assumed to evolve as a geometric Brownian motion

dL(t) = νL(t)dt + γL(t)dŴ (t), (2.1)

where Ŵ (t) is a Wiener process independent of W (t). The drift ν need

not be directly based on the observed evolution of technical reserves; in-

stead, it may reflect the required return on technical reserves determined

by the regulator (technical interest rate). In the latter case parameter γ

reflects the uncertainty about the development of the technical interest

rate. The insurer has some initial wealth V (0), which is divided into

two parts: assets backing liabilities VL(0) and solvency margin VS(0).

Given an initial allocation (VL(0), VS(0)) and a terminal time T , the in-

vestment strategy consists of deciding the proportions of risky assets

(θL(t), θS(t)) ∈ [0, 1]2 for every t ∈ (0, T ]. Restriction θ ∈ [0, 1] is

natural as gearing the portfolio by short selling or borrowing is a very

risky activity and is in general forbidden for pension insurers, which are

expected to invest prudently. Both portfolios are assumed to be self-

financing. No inflows or outflows occur during the interval (0, T ] and no

transfers are made between the two portfolios.

In reality pension payments made to beneficiaries induce outflow of

assets and contributions received from sponsors in turn induce inflow
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of assets. These transactions occur usually monthly or quarterly. Thus

with terminal time T longer or equal to one year the self-financing as-

sumption is unrealistic. Even if outflows and inflows balance each other

on average, they will cause some fluctuations in the level of total asset

value. To incorporate this into our model without giving up the mathe-

matically convenient self-financing assumption we introduce as an addi-

tional source of uncertainty a Wiener process W̃ (t) affecting the value of

assets backing liabilities. With this addition stochastic differential equa-

tions for value processes of the assets backing liabilities and the assets

corresponding to solvency margin are

dVL(t) =
(
r − (r − µ)θL(t)

)
VL(t)dt+σθL(t)VL(t)dW (t)+σ̃VL(t)dW̃ (t),

(2.2)

and

dVS(t) =
(
r − (r − µ)θS(t)

)
VS(t)dt + σθS(t)VS(t)dW (t), (2.3)

respectively. We point out that investment strategy θL has no influence on

the dW̃ (t) term in equation 2.2. This stands to reason as the company’s

current investment policy can be expected to have no immediate effect

on outgoing pension payments or incoming contributions.

We set T = 1 and restrict our attention to determining the opti-

mal strategy for a given initial wealth and its allocation. Once this is

done, several different rules determining the distribution of profits and

allocation of remaining wealth at the end of a period can be tested and

compared by simulating the model period by period. Anticipated future

changes in economic environment can be taken into account by specify-

ing different parameter values for different periods. Expert knowledge is

needed in determining appropriate alternative rules to be considered and

in specification of model parameters.

The processes VL, VS and L constitute a 3-dimensional system. We

can reduce the dimension by considering instead of these money-valued

processes the ratios X := VL/L and Y := VS/L. Ratios of this type

are commonly used in analyzing insurance business (see Daykin et al.
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(1994)) and are in fact very suitable for our current needs, as statutory

solvency requirements often define the size of required solvency margin

as a specified proportion of the value of liabilities. In our model solvency

constraints can then be expressed in form X > 1 and Y > β, where β is

the required solvency margin as a proportion of liabilities.

Remark 2.1. Solvency requirements often attempt to take into account

the risk structure of an insurer’s asset portfolio and are dependent on

the composition of the portfolio. This is the case in the Finnish pension

scheme. In the example of Section 6 a prudent way to deal with this kind

of requirement is illustrated.

Derivation of explicit expressions for ratio processes X and Y is

straightforward, since the processes VL(t), VS(t) and L(t) are all of form

Z(t) = Z(0) exp

{∫ t

0

αZ(t)dt

}
M(t),

where Z is a generic notation for a stochastic process, αZ(t) is the drift

and M(t) = exp{ξB(t) − (1/2)ξT ξt} is an exponential martingale

with ξ being the diffusion matrix and B(t) the vector of driving Wiener

processes. Stochastic differential equations for X and Y are

dX =
(
r − (r − µ)θL − ν

)
Xdt+σθLXdW+σ̃XdW̃−γXdŴ , (2.4)

and

dY =
(
r − (r − µ)θS − ν

)
Y dt + σθSY dW − γY dŴ , (2.5)

respectively (in above equations argument t is omitted for brevity). These

equations determine a two-dimensional diffusion process with drift vec-

tor

b =
(
(r − (r − µ)θL − ν)X, (r − (r − µ)θS − ν)Y

)
(2.6)

and diffusion matrix

σ =

(
σθLX σ̃X −γX

σθSY 0 −γY

)
. (2.7)
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3 CONSTRUCTION OF PERFORMANCE FUNC-

TION

We assume that the risk preferences of the insurer can be represented by

a utility function U . Ideally we would like to maximize the expected util-

ity E[U(x)] of values of ratios X(T ) and Y (T ) subject to probabilistic

constraints

P
VL(0)(X(T ) > 1) ≥ α1 and P

VS(0)(Y (T ) > β) ≥ α2, (3.1)

where αi, i = 1, 2, are the required probabilities of acceptable solvency

position at time T . For a given initial allocation (VL(0), VS(0)) we have,

due to the no transfers assumption, two independent controls θL, θS . As

both ratios are required to satisfy their respective solvency requirements

on their own and there are often special regulatory restrictions on invest-

ment strategies for assets backing the liabilities, this separation feature

seems to be reasonable.

Our objective function and constraints are both concerned with the

behavior of the ratio processes at terminal time T . We incorporate the

constraints into the objective via a cost function and define the perfor-

mance function

Jθ(V (0)) = E
V (0) [F (X(T ), Y (T ))] , (3.2)

where F : R
2
+ → R is a function describing the utility of state (X(T ), Y (T ))

and incorporating in some way the effect of terminal solvency position.

The value function is defined as

Φ(V (0)) := sup
θ

Jθ(V (0)) = Jθ∗(V (0)), (3.3)

where θ∗ = (θL∗, θS∗) is the optimal control. The solvency set

G = [0, T ] × [1,∞) × [β,∞).

By the reasoning presented in the beginning of this section, it is natural

to assume that F is additive with respect to X and Y , i.e. F (x, y) =
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F1(x)+F2(y). Specifically, we assume F to be of form F = U(X(T ))+

U(Y (T )) + g(X(T )) + h(Y (T )), where U describes utility of terminal

ratios and g and h are related to solvency constraints. This is known in

economics as a separable utility function.

Our choice of utility function U is based on its risk aversion charac-

teristics and its compatibility with the functional form of optimal control

derived in Section 5. The choice U(x) = (1/a)xa, 0 < a < 1, gives

us some flexibility in choosing the degree of risk aversion by specifica-

tion of a. This is known as HARA-utility. Risk-aversion is reasonable,

as pension insurance companies are expected to invest prudently. When

a → 1, U approaches the risk-neutral linear utility. Additional func-

tions h and g are needed because constraints presented in equation 3.1

are difficult to handle due to lack of smoothness (though maybe not im-

possible, see remark 3.3). The basic idea is to construct well-behaving,

smooth functions h and g so that they “punish“ the company for un-

acceptable solvency positions by reducing total utility in a way which

creates incentives towards an acceptably safe strategy (in a probabilistic

sense).

As a starting point for constructing h and g, consider the constraints

determined by equation 3.1. A kind of Lagrange multiplier approach

presented in Øksendal (2003) offers a method for handling probabilistic

constraints of type

E
Z(0)[M(Z(T ))] = 0

on the terminal state of controlled process Z(t), where M is a contin-

uous function. Constraints given in equation 3.1 can be expressed as

expectations of indicator functions χ[β,∞):

E
V (0)[χ[β,∞)(X(T )) − α] = 0. (3.4)

However, χ[β,∞) is not continuous. However, it follows from the next

theorem that it can be approximated with arbitrary smoothness.

Theorem 3.1. Let 0 < r1 < r2. Then there exists a C∞ function f :
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R
n → [0, 1] such that f(x) = 1, if ‖ x ‖≤ r1, and f(x) = 0, if ‖ x ‖≥

r2.

Proof. Define g : R → R as follows: g(t) = 0, if t ≤ 0, and g(t) =

exp(−1/t), if t > 0. It is seen by induction that if t ∈ (0,∞), then for

each k ∈ N the kth derivative g(k)(t) = Pk(1/t) exp(−1/t), where Pk

is a kth degree polynomial. Then limt→0+ g(k)(t) = 0 for each k ∈ N

and thus g ∈ C∞. Define now a nonnegative C∞ function h by h(t) =

g(t − r2
1)g(r2

2 − t). This function is identically zero if t �∈ (r2
1, r

2
2). Thus

φ(t) =
∫ t

−∞ h(u)du is a C∞ function such that ψ(t) = 0 if t ≤ r2
1 and

ψ(t) is a constant c if t ≥ r2
2. Multiplying ψ with a suitable K > 0,

we may assume that c = 1. Now f0(x) := 1 − ψ(‖ x ‖2) is the desired

f .

Using the notation of the previous proof, the indicator χ[β,∞), β > 0, can

be approximated with arbitrary smoothness by choosing r1 < β < r2

and defining the approximation piecewise by fβ
r1,r2

(x) = f0(−x) if x ∈
(−∞, 2β − r1) and fβ

r1,r2
(x) = 1, otherwise.

For simplicity, we take r1 = r2 = n and use as an approximation

a piecewise determined C2 function fβ
n (x), which on the interval (β −

1/n, β + 1/n) is a polynomial and otherwise is equal to χ[β,∞). Lemma

3.2 says that if α < 1, we can by choosing a sufficiently large value of n

obtain a new constraint which is stronger than the original by replacing

the indicator with fβ
n and α with α+ εn < 1 in equation 3.4. This lemma

applies to any approximation which takes values in [0, 1] and vanishes

outside interval (β − 1/n, β + 1/n).

Lemma 3.2. There is n0 ∈ N such that if n ≥ n0, then

E
X(0)[fβ

n (X(T )) − α − εn] = 0 ⇒ E
X(0)[χ[β,∞)(X(T )) − α] ≥ 0.

Proof. For notational convenience we suppress the superscripts X(0) in

this proof (i.e. E
X(0) = E). Since X(T ) is the quotient of two lognormal

random variables, it is lognormally distributed and consequently has a
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bounded C∞ density gX(T ). Then

P (X(T ) ≥ β) = E[χ[β,∞)(X(T ))] =

∫
R+

χ[β,∞)(u)gX(T )(u)du.

On the other hand fβ
n = χ[β,∞) + χ[β−1/n,β)f

β
n − χ[β,β+1/n)(1 − fβ

n ) and

thus the expectation E[fβ
n (X(T ))] =

∫
R+

fβ
n (u)gX(T )(u)du equals

P(X(T ) ≥ β)+

∫
[β−1/n,β)

fβ
n (u)gX(T )(u)du−

∫
[β,β+1/n)

(1−fβ
n (u))gX(T )(u)du.

Because 0 ≤ fβ
n ≤ 1, it follows that with CT being the upper bound for

gX(T ) we have the inequalities

P(X(T ) ≥ β) − 2CT /n ≤ E[fβ
n (X(T ))] ≤ P(X(T ) ≥ β) + 2CT /n.

Then E[fβ
n (X(T ))] = α + εn implies that P(X(T ) ≥ β) ≥ α + εn −

2CT /n for any εn > 0 satisfying condition A: α+εn ≤ 1. This condition

is necessary, since E[fβ
n (X(T ))] ≤ 1. Choosing εn = 2CT /n, we get

P(X(T ) ≥ β) ≥ α. However, in order to satisfy condition A we must

have n ≥ 2CT /(1 − α) := n0.

Previous considerations suggest the following specification of F :

F (X, Y ) = (1/a1)X
a1 +(1/a2)Y

a2 +λ1(f
1(X)−α1)+λ2(f

2(Y )−α2),

(3.5)

with 0 < a1, a2 < 1, λ1, λ2 ∈ R and f 1 = f 1
n, f2 = fβ

m. Unfor-

tunately an explicit value for the upper bound CT used in the proof of

lemma 3.2 is hard to find analytically and simulations of the process

seem to indicate that for reasonable time spans CT > 2. For such values

of CT acceptable confidence levels (α ≥ 0.95) lead to large n0 values

(n0 ≥ 40). As will be seen in Section 5, a large value of n tends to make

investment strategy less prudent and decreases possibilities of achiev-

ing low ruin probabilities with reasonable initial allocations (naturally

with T fixed and initial wealth large enough, ruin probability will be low

for almost any investment strategy). So while increasing n makes the

approximation of the probabilistic constraint better, it will also at some
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point begin to make our investment policy myopic. As n values required

for satisfying the probabilistic constraints are too large, the question is,

whether choosing some smaller value of n can lead to a strategy which is

acceptably safe from a practical point of view. This can be investigated

with Monte Carlo simulations. The choice of n may be based on simu-

lation experiments after the other model parameters have been specified,

as it can be expected that reasonable n values to be investigated will be

relatively few in number. See the example of Section 6 for an illustration.

Remark 3.3. Concerning difficulties caused by discontinuous terminal

conditions we point out that recently in Zhang (2005) some results have

been obtained for a class of decoupled forward–backward stochastic dif-

ferential equations with discontinuous terminal data.
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4 OPTIMAL CONTROL AND VALUE FUNC-

TION

Optimal control policy θ∗ in terms of value function Φ is determined by

the generator

Lθ =
∂

∂t
+

2∑
i=1

bi
∂

∂xi

+
2∑

i,j=1

(σ σT )ij
∂2

∂xi∂xj

(4.1)

of the diffusion defined by equations 2.4 and 2.5. Coefficients b1 and b2

in equation 4.1 are as in equation 2.6 and σ is defined in equation 2.7.

Assuming sufficient regularity of value function Φ, most notably

finiteness and C2 smoothness in G0, see Øksendal (2003) for details,

the optimal control satisfies Hamilton–Jacobi–Bellman equation

supθ

{
Φt + (r − (r − µ)θL − ν)x1Φ1Φt + (r − (r − µ)θS − ν)x2Φ2+

+1
2
(σ2(θL)2 + σ̃2 + γ2)x2

1Φ11 + (σ2θLθS − γ2)x1x2Φ12+

+1
2
(σ2(θS)2 + γ2)x2

2Φ22

}
= 0.

(4.2)

Differentiation with respect to θL and θS and setting the obtained partial

derivatives equal to zero yields the necessary conditions for supremum{
(µ − r)Φ1 + σ2θLx1Φ11 + σ2θSx2Φ12 = 0

(µ − r)Φ2 + σ2θLx1Φ12 + σ2θSx2Φ22 = 0.

Solving this pair of equations gives the optimal control (θL∗, θS∗) in

terms of value function Φ:(
(r − µ)Φ2Φ12 + (µ − r)Φ1Φ22

x1σ2(Φ2
12 − Φ11Φ22)

,
(r − µ)Φ1Φ12 + (µ − r)Φ2Φ11

x2σ2(Φ2
12 − Φ11Φ22)

)
.

(4.3)

The general form of optimal control policy is defined by equation 4.3.

Our choice of performance function will determine the functional form

of value function Φ.

Next we derive an explicit expression for value function Φ. The cho-

sen approach is to form a system of forward–backward stochastic differ-

ential equations (fbsdes for short) by using the control problem’s adjoint
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equation as the backward equation and solve this system for the unique

adapted solution ((X,Y ), p,K) using the four step scheme presented in

Ma et al. (1994). Then the backward component p is the spatial gradient

of Φ and can be integrated to obtain the value function.

We consider first some results for general fbsdes. Let (Ω,F , P; {Ft})
be a filtered probability space, Wt a d-dimensional Wiener process and

Ft = σ{Ws ; 0 ≤ s ≤ t} augmented by the P-null sets in F . The general

form of a fbsde is

Xt = X0 +
∫ t

0
b(s,Xs, Ys, Zs)ds +

∫ t

0
σ(s,Xs, Ys, Zs)dWs

Yt = g(XT ) +
∫ T

t
b̂(s,Xs, Ys, Zs)ds +

∫ T

t
σ̂(s, Xs, Ys, Zs)dWs,

(4.4)

with Xt ∈ R
n being the forward component and Yt ∈ R

m the backward

component. We are interested in obtaining adapted solutions as defined

below.

Definition 4.1. A R
n×R

m×R
m×d-valued triple of processes (X, Y, Z) is

an adapted solution of fbsde 4.4 if it is {Ft}-adapted, square integrable

and satisfies equations 4.4 P-a.s.

It is the extra process Zt ∈ R
m×d which makes the existence of an

adapted solution possible. Solvability of a fbsde over an arbitrarily pre-

scribed time horizon T can be a fairly delicate matter: in Ma and Yong

(1995), the solvability problem is converted to a problem of finding the

nodal set of the viscosity solution to a certain Hamilton–Jacobi–Bellman

equation by first allowing Zt to be an adapted measure-valued process

and allowing the underlying probability space to change when necessary.

Fortunately, it can be shown that in our model the fbsde of interest

has a unique adapted solution. Unique means here and in the follow-

ing P-a.s. unique. The sde for the vector of controlled ratio processes

(X, Y ) is now the forward sde and the adjoint equation corresponding

to this controlled process is the backward sde. By a version of Pontrya-

gin’s maximum principle for It diffusions a control θ such that the corre-

sponding adjoint equation for controlled process X has a solution satis-

fying certain conditions is an optimal control (see Øksendal and Sulem
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(2005)). The forward sde is given in equations 2.4 and 2.5, and the ini-

tial condition is (X(0), Y (0)) = (X0, Y0). Denoting by ∂i the partial

derivative with respect to variable i, the adjoint equation is a linear bsde(
dp1(t)

dp2(t)

)
=

(
[ν − r − (µ − r)θL]p1(t) − ∂X [tr(KT σ)][
ν − r − (µ − r)θS

]
p2(t) − ∂Y [tr(KT σ)]

)
dt+KdW(t)

(4.5)

where K is an unknown matrix, σ is given in equation 2.7 and W =

(W, W̃ , Ŵ ). The terminal condition for the adjoint equation is p(T ) =

∇F (X(T ), Y (T )), and by the additivity assumption of Section 3, ∇F (x, y) =

(Dx[F1(x)], Dy[F2(y)]).

The drift vector in the adjoint equation can be simplified by perform-

ing the multiplication KT σ. The trace of the resulting matrix is (using

notation K = (kij))

k11σθLX + k21σθSY + k12σ̃X − γ(k13X + k23Y ),

which gives

∂X [tr(KT σ)] = k11σθL + k12σ̃ − γk13

and

∂Y [tr(KT σ)] = k21σθS − γk23.

Then the drift vector in equation 4.5 can be written as

b̂ :=

( [
ν − r − (µ − r)θL

]
p1(t) − k11σθL − k12σ̃ + γk13[

ν − r − (µ − r)θS
]
p2(t) − k21σθS + γk23

)
. (4.6)

We see that in our model the forward and backward equations are

decoupled, that is, the coefficients of the forward (resp. backward) sde

do not depend on process (p,K) (resp. (X, Y )). We may prove the exis-

tence of a unique adapted solution ((X, Y ), p,K) by proving separately

the existence of a unique adapted square integrable solution (X,Y ) of

the forward sde and the existence of a unique adapted square integrable

solution (p,K) of the bsde. Once the existence of a unique adapted

solution is established, we may apply the four step scheme to obtain a
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solution candidate. If this candidate is an adapted solution in the sense

of definition 4.1, it is then the desired solution.

In the following considerations ‖ · ‖ denotes for vectors x ∈ R
n the

usual Euclidean norm and for z ∈ R
n×d the norm defined by tr(zzT )1/2.

A standard theorem stated in Rogers and Williams (2000b) can be ap-

plied to obtain the existence and uniqueness of adapted solution to a

forward sde of form

X(t) = x +

∫ t

0

b(s,X(s))ds +

∫ t

0

σ(s, X(s))dW (s), (4.7)

where W (s) is a d-dimensional Wiener process.

Theorem 4.2 (It). Consider equation 4.7. If there exists K < ∞ such

that

‖ σ(t, x(t)) − σ(t, y(t)) ‖≤ K sup {‖ x(s) − y(s) ‖ : s ≤ t}

and

‖ b(t, x(t)) − b(t, y(t)) ‖≤ K sup {‖ x(s) − y(s) ‖ : s ≤ t}

for all t ≥ 0, x(s), y(s) ∈ R
n (Lipschitz condition), and if for each

T > 0 there is some CT such that

‖ σ(s, 0) ‖ + ‖ b(s, 0) ‖≤ CT

whenever s ≤ T , then there is exactly one (modulo indistinguishability)

square integrable semimartingale X(t) satisfying sde 4.7.

Since a semimartingale is always adapted (see Protter (2004) for

more information), the semimartingale X(t) of theorem 4.2 is the unique

adapted square integrable solution of equation 4.7. The forward sde de-

fined by equations 2.4 and 2.5 is of form 4.7 and satisfies the conditions

of theorem 4.2.

As our bsde is the familiar adjoint equation of stochastic control the-

ory, we restrict our attention to bsdes with σ̂(t, x, y, z) = z. We consider

the following bsde

Y (t) = ξ +

∫ T

t

f(s, Y (s), Z(s))ds +

∫ T

t

Z(s)dB(s), (4.8)
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where the driver f(s, y, z) is assumed to be continuous in (y, z) for al-

most all (y, z). Furthermore, we assume that there exist constants M > 0

and α ∈ [0, 1] such that for a.e. t ∈ [0, T ]

‖ f(t, y, z) ‖≤ M(1+ ‖ y ‖α + ‖ z ‖α), P-a.s.

Following Bahlali (2002), we make two definitions.

Definition 4.3. Suppose that there exists L > 0 such that for a.e. t ∈
[0, T ]

‖ f(t, y, z) − f(t, y
′
, z

′
) ‖≤ L(‖ y − y

′ ‖ + ‖ z − z
′ ‖), P-a.s.

Then we say that f is Lipschitz.

Definition 4.4. Suppose that for every N ∈ N there exists LN > 0 such

that for a.e. t ∈ [0, T ]

‖ f(t, y, z) − f(t, y
′
, z

′
) ‖≤ LN(‖ y − y

′ ‖ + ‖ z − z
′ ‖), P-a.s.

whenever ‖ y ‖≤ N , ‖ y
′ ‖≤ N , ‖ z ‖≤ N and ‖ z

′ ‖≤ N . Then we

say that f is locally Lipschitz.

Now we state a theorem proved in Bahlali (2002).

Theorem 4.5. Let f be locally Lipschitz and ξ be a square integrable

random variable. Assume that there exists L > 0 such that LN =

L +
√

log N . Then equation 4.8 has a unique adapted square integrable

solution.

This result for bsdes with a locally Lipschitz driver contains as a

special case bsdes with a Lipschitz driver. It follows from the mean

value theorem that an autonomous function with bounded derivatives is

Lipschitz. In our case the driver f(t, (X, Y ), p,K) = b̂(p, K) is au-

tonomous and linear in (p,K), which implies that it has bounded deriva-

tives in (p,K). Thus by theorem 4.5 the bsde defined by equation 4.5 has

a unique adapted square integrable solution, since the terminal condition

∇F (X, Y ) is square integrable.
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We have now verified the existence of a unique adapted solution

((X, Y ), p,K) to the fbsde defined by equations 2.4, 2.5 and 4.5. We

apply now the four step scheme to obtain a solution candidate.

Step 1. We define z : [0, T ] × R
2 × R

2 × R
2×3 → R

2×3 by

z(t, x, q, m) = −
(

m11 m12

m21 m22

)(
σθLx1 σ̃x1 −γx1

σθSx2 0 −γx2

)
.

Step 2. Using the function z obtained in step 1, we solve the following

two-dimensional parabolic system for u(t,x) = (u1(t, x1, x2), u
2(t, x1, x2)):

ui
t + Liui + b̂i (t,x, u, z(t,x, u, J(u))) = 0, i = 1, 2, (4.9)

where b̂i is the ith component of drift vector in 4.6, σ is the diffu-

sion matrix in 2.7, J(u) is the Jacobian of u and

Liv = (1/2)tr(H(v)σσT ) + b(t,x) · ∇xv

with b being the drift vector of the forward sde and H(v) being the

Hessian of v. We have thus a two-dimensional quasilinear Cauchy

problem defined by equation 4.9 and the terminal condition

u(T,x) = ∇F (x), x ∈ R
2, (4.10)

Because of additivity of F (x2, x2), we have actually two sepa-

rate terminal conditions u1(T,x) = Dx1F1(x1) and u2(T,x) =

Dx2F2(x2). If a solution of pde 4.9 is assumed to be of the form

v(t)w(x1, x2), then separation of variables and the superposition

principle yield that the general solution is
∫

ξ∈R
a(t, ξ)b(x1, x2, ξ)dξ,

with a(t, ξ) an exponential function of t. We see that matching

the terminal condition consisting of a finite number of terms dix
s
i ,

s ∈ R, is possible only if each of the b functions corresponding

to appropriate ξ values depends only on x1 or only on x2. Thus,

also for t < T ui is a function of xi only. Then we have two

one-dimensional quasilinear Cauchy problems of type

ut(t, x) + (1/2)Aix2uxx(t, x) + Bixux(t, x) + Ciu(t, x) = 0

u(T, x) = Fx(x), x ∈ R
2,

(4.11)
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where now the coefficients are

A1 = σ2(θL)2 + σ̃2 + γ2, B1 = r − ν + (µ − r)θL + σ2(θL)2 + σ̃2 + γ2,

C1 = ν − r − (µ − r)θL

for u1 and

A2 = σ2(θS)2 + γ2, B2 = r − ν + (µ − r)θS + σ2(θS)2 + γ2,

C2 = ν − r − (µ − r)θS

for u2. The pdes of these Cauchy problems can be solved by ap-

plying standard methods, i.e. separation of variables and superpo-

sition property (see Appendix A for details). The general solutions

are (in integral notation) of form

u(t, xi) =

∫
ξ∈K

ci
1,ξ exp

{−(Ci + ξ)t
} [

ci
2,ξx

m1(ξ)
i + ci

3,ξx
m2(ξ)
i

]
dξ,

(4.12)

where K = (−(Ai/2)(Bi/Ai − 1/2)2,∞) and m1(ξ), m2(ξ) are

roots of equation

m2 +
(
2Ai/Bi − 1

)
m − 2ξ/Ai = 0. (4.13)

This solution contains as a special case any series solution

u(t, xi) =
∑
ξ∈Ξ

ci
1,ξ exp

{−(Ci + ξ)t
} [

ci
2,ξx

m1(ξ)
i + ci

3,ξx
m2(ξ)
i

]
,

(4.14)

where Ξ is a set of discrete points in K. Now the Cauchy prob-

lem is readily solved if the boundary condition, determined by the

choice of performance function F (x), is of form
∑

s∈Si di
sx

s
i with

Si ⊂ R finite and di
s a constant for each s. Then we can for each

s ∈ Si choose such a value of ξ that m1(ξ) = s. Setting then

ci
3,ξ = 0, ci

1,ξ = exp{(Ci + ξ)T} and ci
2,ξ = di

s gives a function

ui(t, xi) such that it solves problem 4.11.

As our function Fi(xi) is the sum of an utility function (1/ai)xai

i

and a piecewise polynomial function h(xi) (or g(xi)), Dxi
[Fi(xi)]

is now of desired form if xi ∈ (β − 1/n, β + 1/n). Outside this
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interval h(xi) (g(xi)) is constant (meaning that di
s = 0 for all s ∈

Si \ {ai − 1}) and thus we have a boundary condition in which the

di
s coefficients are piecewise constant.

Step 3. Using u and z, we solve the fsde

X(t) = X0 +

∫ t

0

bmod(s,X(s))ds +

∫ t

0

σmod(s,X(s))dW (s),

where bmod(t, x) = b(t, x, u(t, x), z(t, x, u(t, x), ux(t, x))) and σmod(t, x) =

σ(t, x, u(t, x)). Since now b and σ are independent of u, this is

trivial and the solution (X(t), Y (t)) is




X0 exp
{∫ t

0
α(θL)ds + σθLW (t) + σ̃W̃ (t) − γŴ (t) − (1/2)

(
σ2(θL)2 + σ̃2 + γ2

)
t
}

Y0 exp
{∫ t

0
α(θS)ds + σθSW (t) − γŴ (t) − (1/2)

(
σ2(θS)2 + γ2

)
t
}

where α(θ) = r + (µ − r)θ − ν.

Step 4. Finally, we set (p1(t), p2(t))
T := (u1(t,X(t)), u2(t, Y (t)))T ,

which equals


 ∑ξ∈Ξ1

c1
1,ξ exp {−(C1 + ξ)t}

[
c1
2,ξX(t)m1

1(ξ) + c1
3,ξX(t)m1

2(ξ)
]

∑
ξ∈Ξ2

c2
1,ξ exp {−(C2 + ξ)t}

[
c2
2,ξY (t)m2

1(ξ) + c2
3,ξY (t)m2

2(ξ)
]

 ,

and K(t) := z(t, (X(t), Y (t)), u(t, (X(t), Y (t))), J(u(t, (X(t), Y (t)))))

with J(u) being the Jacobian of vector u. Taking now into account

the terminal conditions as outlined in Step 2 we may write p(t) in

a more explicit form

( ∑
s∈S1 exp {(C1 + ξ(s))(T − t)} d1

sX(t)s∑
s∈S2 exp {(C2 + ξ(s))(T − t)} d2

sY (t)s

)
,

where ξ(s) = (Ai/2) (s2 + 2s(Bi/Ai − 1/2)) with Ai and Bi as in

equation 4.11. Solution ((X(t), Y (t)), p(t), K(t)) is {Ft}-adapted

and square integrable and is consequently the unique adapted so-

lution in the sense of definition 4.1.
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We have thus obtained an explicit expression for the spatial gradient

of value function Φ. Integration of p yields

Φ(t,X, Y ) =
∑

s∈S1
(exp {(C1 + ξ(s))(T − t)} dsX(t)s+1) /(s + 1)+

+
∑

s∈S2
(exp {(C2 + ξ(s))(T − t)} dsY (t)s+1) /(s + 1).

(4.15)

With Φ defined as in equation 4.15, the expression for optimal control in

4.3 reduces to (
− (µ − r)Φ1

X(t)σ2Φ11

,− (µ − r)Φ2

Y (t)σ2Φ22

)
. (4.16)
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5 ON THE BEHAVIOR OF THE OPTIMAL STRAT-

EGY

Next we present some observations concerning the behavior of our op-

timal strategy. As our goal is a model which may offer some guidance

in making investment decisions in a normal situation where the partic-

ular insurer’s actions are not restricted by supervisors, we restrict our

attention to the solvency set G = [1,∞)× [β,∞). States outside G rep-

resent unacceptable solvency positions, which in real world require spe-

cial measures and are in this paper regarded as being outside the normal

course of events (even though insurers occasionally do end up insolvent).

From equations 4.16 and 4.15 we can see why polynomial constraints

approximating the probabilistic constraints 3.1 very accurately lead to

short-sighted strategies. If we denote

Pi := {s ∈ S : s �= ai − 1} ⊂ N,

hi(t) := exp {[Ci + ξ(ai − 1)](T − t)} and ki
j(t) := exp {[Ci + ξ(j)](T − t)},

the value function 4.15 can be written as

Φ(t, x, y) = h1(t)U(x)+h2(t)U(y)+λ1(g
1
n(t, x)−α1)+λ2(g

2
n(t, y)−α2),

(5.1)

with gi
n(t, x) =

∑
j∈Pi

ki
j(t)d

i
jx

j+1/(j + 1) and thus the optimal propor-

tions are of form

−(µ − r)
[
hi(t)U

′
(z) + λiDz[g

i
n(t, z)]

]
zσ2 [hi(t)U

′′(z) + λiD2
z [g

i
n(t, z)]]

, (5.2)

with i = 1, 2, z = x, y. It should be noted that gi
n(t, x) = gi

n(x)

is similarly piecewise determined as f i
n and is constant when Z(t) �∈

(β, β + 1/n) =: I i
n. When Z(t) ∈ [β + 1/n,∞) the function gi

n(Z(t))

will have no effect on the proportion of risky asset, as it is constant and

both the first and the second derivatives vanish. The time-dependent

functions hi(t) will also disappear. In this case the proportions of risky
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asset can be expressed as(
− (µ − r)U

′
(X(t))

σ2X(t)U ′′(X(t))
,− (µ − r)U

′
(Y (t))

σ2Y (t)U ′′(Y (t))

)
, (5.3)

and since utility U(x) = (1/a)xa has constant relative Arrow–Pratt risk

aversion A(x) = −xU
′′
(x)/U

′
(x) = 1 − a, this means that the propor-

tions are constant ((µ − r)/[σ2(1 − a1)], (µ − r)/[σ2(1 − a2)]). Hence,

the function gi
n has an effect on the optimal control only if the value of

the controlled process lies in the interval I i
n. As n increases, this interval

becomes thinner. In practical terms this means that we do not react to

adverse development until ruin is already imminent – at which point it

is probably too late. So if we want to have an investment strategy which

takes into account the obvious increase in insolvency risk as the value of

portfolio approaches the solvency border, we cannot have a very large

value of n.

But how exactly does the approximating constraint affect the optimal

proportion in the “reaction zone“, i.e. when Z(t) ∈ I i
n? This will depend

on λi and n. For fixed (t, x) the proportion of risky asset is a function of

λ:

M(λ) = −(µ − r)
[
h(t)U

′
(x) + λDx[g

i
n(t, x)]

]
xσ2
[
h(t)U ′′(x) + λD2

x[g
i
n(t, x)]

] =: −(µ − r)

σ2
N(λ).

(5.4)

In other words the optimal proportion is the risky asset’s Sharpe’s ratio

multiplied by (1/σ)N(λ) with N(λ) = −(a(t, x)λ+b(t, x)
)
/
(
c(t, x)λ+

d(t, x)
)
, where a(t, x) = Dx[g

i
n(t, x)], b(t, x) = h(t)U

′
(x), c(t, x) =

D2
x[g

i
n(t, x)] and d(t, x) = h(t)U

′′
(x).

A reasonable range for N(λ) is then [−σ2/(µ − r), 0], as this will

lead to a portfolio weight θ ∈ [0, 1]. The function N(λ) will have

an asymptote at the point λ = −d(t, x)/c(t, x) �= 0 and as λ → ∞,

N(λ) → a(t, x)/c(t, x). Thus choosing a large enough λ yields a con-

trol θ∗(t, x) which in the reaction zone behaves approximately as −[(µ−
r)/σ2][a(t, x)/c(t, x)]. Due to our choice of using a piecewise polyno-

mial approximation, we know that for x ∈ I i
n we have Dx[f

β
n (x)] ≥ 0
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and D2
x[f

β
n (x)] ≤ 0 and consequently gi

n(T, x) behaves similarly. It is

not obvious, however, that this property is in general preserved when

t < T , since functions ki
j(t) affect each term of gi

n(t, x) differently.
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6 AN ILLUSTRATIVE EXAMPLE

To illustrate the model presented above we consider a hypothetical sim-

ulation example incorporating in a simplified form some aspects of the

Finnish pension scheme. This example is meant to be an illustration and

determination of parameter values is consequently performed in a sim-

plistic fashion, relying mostly on the Finnish solvency regulations. In

Finnish regulations assets are divided into seven categories (I–VII) with

specified returns and standard deviations (see appendix B for numeri-

cal values). As an approximation we combine categories I–III into one

“risk-free“ portfolio using constant and equal weights for each category.

Similarly, we approximate the risky asset by combining categories IV–

VII.

The model parameters are assumed to be as follows:

µ = 0.10, which is approximately equal to the mean return of a portfo-

lio with equal proportions (1/4) invested in investment categories

IV, V, VI and VI.

σ = 0.15, which is approximately equal to the standard deviation of a

portfolio with equal proportions (1/4) invested in investment cate-

gories IV, V, VI and VI.

r = 0.03 is the risk-free interest rate (which is actually equal to the cur-

rent (2005) actuarial interest rate, which determines the minimum

level of technical interest rate in the Finnish pension scheme).

ν = 0.04 is the technical interest rate.

σ̃ = γ = 0.02, which are assumptions reflecting the fluctuations in the

value of asset portfolio caused by the stream of pension payments

and contributions (which are mainly determined by demographic

factors and wage development) on the other hand and the fluctu-

ation of the technical interest rate (which in the Finnish pension

scheme is determined semiannually by the Ministry of Social Af-

fairs and Health).
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(α1, α2) = (0.5, 1), which correspond to limits laid down in solvency

regulations.

(a1, a2) = (0.1, 0.95), which means that the insurer is assumed to be

quite risk-averse when investing assets backing technical reserves

even in a good solvency position, whereas for solvency margin

assets risk aversion is lesser.

Concerning these parameter value assumptions it should be noted that

using the insurer’s own assessments (based on market data, for exam-

ple) instead of values prescribed in regulations could be more sensible

from a practical point of view, as regulations will inevitably lag behind

reality and thus the parameter values given in regulations may not be

appropriate.

The solvency border in Finnish pension system is determined by the

insurer’s asset allocation. This can be taken into account in a prudent

way by calculating the maximal proportion of risky assets for the whole

asset portfolio and determining the value of the solvency border from

this. For this, we assume that the value of total assets is 1.5 times

the value of liabilities (which in the case of Finnish pension system

can be considered prudent, as currently for pension insurers a typical

value of this ratio is about 1.25). Now suppose that maximal percent-

age 100α1 % of assets backing the liabilities are invested in risky assets,

and that the proportion of risky assets in the solvency margin assets is

θS∗ = (µ − r)/[σ(1 − a2)]. Then the maximal proportion of risky as-

sets is (1/1.5)(α1 + 0.5θS∗) and in this example this equals 0.4979. The

solvency border is calculated from the formula

β = 0.90


−1.08

7∑
i=1

βimi + 1.98

√√√√ 7∑
i=1,j=1

βiβjsisjrij


 , (6.1)

where mi, si and rij are return of asset category i, standard deviation of

asset category i and correlation between categories i and j, respectively

(numerical values are given in Appendix B). βi is the proportion of assets

invested in category i. As an approximation, we calculate the returns
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S1, S2 and standard deviations M1, M2 of the two combined portfolios

defined in the beginning of this section and their correlation coefficient

R12. Plugging these into the modified formula for solvency border

β = 0.90


−1.08

2∑
i=1

βiMi + 1.98

√√√√ 2∑
i=1,j=1

βiβjSiSjRij


 (6.2)

yields β = 0.106.

We need to simulate a process of form

Xi(t) = Xi(0) exp
{
(µi − (1/2)σ i σ

T
i )t + σ i W (t)

}
,

i = 1, 2, with W (t) a three-dimensional driving Wiener process. A sim-

ulation of a continuous stochastic process must be based on generating

a discrete series of (pseudo)random shocks. For simplicity, we consider

in this presentation only discretizations with equidistant grid points. We

apply the following algorithm.

Step 1. Generate 3 series of N standard normal random numbers W 1,

W 2 and W 3 and define W := (W 1,W 2,W 3)T .

Step 2. Set ∆t := T/N and for i = 1, 2 set

Xi(tj) = Xi(tj−1) exp
{(

µi − (1/2)(σ iσ
T
i )
)
∆t + σT

i Wj

√
∆t
}

.

with tj = tj−1 + ∆t, j = 1, . . . , N and t0 = 0.

The value of N gives the number of discrete random shocks occurring

during the period [0, T ]. To obtain a satisfactory approximation the dis-

cretization should not be too crude, i.e. we must have a reasonably large

value of N . It should be noted that now both the drifts µi and diffusion

coefficients σik used in the algorithm when calculating the state at time tj

are functions of the portfolio weight θ(tj−1) and the state of the process

X(tj−1) at previous time point.

In reality, it is not possible to adjust the investment strategy contin-

uously. It is also obvious that for a discretization with a large number

N of grid points adjusting the portfolio at each time point tj will not be
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feasible. This necessitates a decision concerning a suitable re-balancing

period. For practical purposes a fixed length of re-balancing period may

be convenient, as the problem is then simplified to determination of the

optimal period length. A very long re-balancing period makes sustained

deviations from optimality possible, but on the other hand shortening the

period increases the transaction costs (in theory, for a diffusion process

continuous re-balancing with proportional transaction costs implies in-

finite transaction costs). In our model transaction costs are assumed to

be zero, as the assumption of negligible transaction costs may be a valid

approximation for pension insurers, as these are usually large investors.

Thus in this example the decision about re-balancing period is exogenous

and is taken as given in the model.

As was pointed out in Section 5, the values of coefficients λi, i =

1, 2, should be chosen large enough. Based on some simulation exper-

iments, it seems that the choice (λ1, λ2) = (10, 10) is appropriate as

increasing the values from these does not lead to significant changes in

results.

We take a time horizon of one year (T = 1) and set N = 250, cor-

responding roughly to one random shock per trading day. Re-balancing

is assumed to take place 25 times a year, which corresponds roughly to

re-balancing after every two weeks. Initial ratio of total wealth to liabil-

ities is 1.25 and initial ratio of assets corresponding to solvency margin

is 0.15. Asset allocation (θL(0), θS(0)) is assumed to be (0.3, 0.6). It

should be noted that if the state of the process is outside the solvency

region at some re-balancing point, the proportion of risky asset is set to

zero. The idea here is that an insolvent insurer is not allowed to take any

risks at all. Furthermore, since it is possible that the portfolio weight θ∗

given by the expression 5.4 may be outside [0, 1],we set θ = 0 if θ∗ < 0

and θ = 1, if θ∗ > 1.

We can now simulate the controlled process, if we specify the val-

ues of parameters n1 and n2. Figure 1 shows an example of a bundle

of 100 realizations of the controlled processes X and Y with n1 = 8,
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n2 = 3. To find the best values of parameters ni, we perform Monte
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Figure 1: A simulation of the controlled processes X(t) (left) and Y (t) (right)

with n1 = 8, n2 = 3 (100 realizations).

Carlo simulations with different values of ni. In Figure 2 the empirical

densities of the terminal values of assets backing the liabilities and as-

sets corresponding to solvency margin are plotted. These densities are

based on 100 simulations, each consisting of 100 realizations. It turns

out that the choices n1 = 8 and n2 = 6 seem to give good results in

terms of highest returns among simulations of 10000 realizations with

observed proportions of ruins smaller than 1 % for both processes. Al-

lowing the two processes to have different ni values makes sense also

from the point of view that the value of assets corresponding to solvency

margin is now initially about 1.5 times the required amount, whereas the

value of assets backing the liabilities is initially only 1.1 times the re-

quired amount. So it could be expected that the suitable width of the

reaction zone is not the same for both processes. The resulting Monte

Carlo estimates for terminal ratios are (1.10079, 0.15903), and their vari-

ances are (0.002597, 0.000552). Estimated actual returns on investment

are then 4.12 % for assets backing the liabilities and 10.27 % for sol-

vency margin. Estimates for variances of these returns are 0.00182 and

0.0261 and estimated probabilities of an unacceptable solvency position

are 0.0055 and 0.0042. An estimate of the upper limit for probability

of ruin (in the sense used in this model) is obtained by summation of

these estimates and in this case the estimate is 0.0096 < 0.01, which is
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acceptable if we consider a survival probability larger than 99 % to be

satisfactory. The estimated mean return for assets backing liabilities

1 1.1 1.2 1.3 1.4 X�T�
2
4
6
8
10
12

�

0.140.160.18 0.2 0.22 Y�T�

20

40

60

Figure 2: Empirical densities of the terminal values of controlled processes

X(t) and Y (t) based on 100 simulations of 100 realizations, with n1 = 8 and

n2 = 22.
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Figure 3: Simulations of 100 realizations of process X with n1 = 3, 8, 18, 24

(up left, up right, below left, below right).

achieves the required return determined by the technical interest rate and
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the simulations indicate that despite the considerable risk taken in the

investment of assets corresponding to solvency margin, the estimated

probability of ruin remains acceptably small. Moreover, our estimate for

the ruin probability is an upper limit based on the assumption that in-

solvencies of X and Y do not coincide, but actually it can be expected

that X and Y have a tendency to develop in the same direction and the

insolvencies of the processes do coincide.

Realization bundles of the X process with n1 = 3, 8, 18, 24 are

shown in Figure 3. It illustrates the obvious: increasing n1 first shrinks

the fluctuation range of the process as the approximating constraint tight-

ens, but at some point the reaction zone becomes “too thin“ and the pro-

portion of ruins increases again, approaching the situation with perfor-

mance function equal to U(X(T )).
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7 POSSIBILITIES FOR FUTURE RESEARCH

The model presented in preceding sections is useful in assessing the im-

pact of alternative profit distribution policies. After a set of possible

policy rules has been specified, the development of the insurer’s position

can be simulated year by year for each policy and the obtained results

can be compared. Expert views on future changes in economic environ-

ment can be incorporated in the model by specifying different parameter

values for different periods. However, for some other uses developing

different modifications of the model could be worthwhile. Some modifi-

cation possibilities are presented here as subjects for future research.

As the distribution of excess profits as dividends on one hand and as

bonuses on the other is a significant management decision, it would be of

interest to be able to determine a combined optimal investment strategy

and profit distribution policy. Our intention is to consider this problem in

future research and we discuss here briefly two possibilities for attacking

the problem.

One possibility would be to model dividend and bonus stream as a

singular control, which in the model might not be too difficult to handle

from a mathematical point of view. However, a potential difficulty in the

practical implementation of this kind of model is that in reality, dividends

and bonuses are paid yearly, whereas a singular control typically is a rule

for intervening (i.e. distributing profits) when the state of the controlled

process enters some specified region. In the present example this would

probably result into a rule where dividends are paid out only when the

reserves are sufficiently high.

Another possibility would be to apply standard backward dynamic

programming. That is, we would first specify a planning horizon N in

years, determine the set of possible states in terms of wealth VN−1 and

its allocation (V L
N−1, V

S
N−1) at the beginning of year N and obtain the

optimal strategy for each state using the simple model. Then we would

move to the beginning of year N − 1 and similarly determine the opti-
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mal strategies for each possible state taking into account the information

obtained in the previous step concerning year N . At this point we would

also decide the amounts of bonuses and dividends distributed at the end

of year N − 1. We would proceed in this way until the beginning of year

1, obtaining thus the optimal strategy. The problem with this approach

is that the set of possible states at each step is innumerably infinite and

has to be approximated in some way by a finite discrete set of states to

achieve a numerically computable problem. Question is, whether any

useful approximation leads to a problem of computationally manageable

size. In this approach, obtaining an analytical solution is extremely dif-

ficult, if possible at all.

The current model does not take into account transaction costs. This

could be remedied by also allowing the control of investments to be sin-

gular. However, this would complicate the model and would require a

decision to be made about whether to allow transfers of wealth between

solvency margin and assets backing the liabilities or not. Furthermore,

since pension insurers are usually large investors, it may not be too far

from reality to assume negligible transaction costs. Of course, especially

if investment takes place on a small market (such as that of Finland), the

implicit assumption made in the model that the insurer’s actions have no

influence on the asset prices may be too restrictive as well. In this case

the effect of insurer’s investment decisions on the asset prices should be

incorporated into the model.

With regard to specification of model’s parameters, expert views are

necessary to complement estimates obtained from historical data when

the environment is expected to change in the future, see Koivu et al.

(2005). If expert knowledge is to be incorporated in the model, the dy-

namic programming approach may be more flexible, as it is still possible

to specify different model parameters for each period if necessary. In the

singular control approach this is not possible.

By the so-called mutual fund theorems it may be argued that having

only two assets, a risk-free one and a risky one, is not too restrictive as
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asset classes can be combined into portfolios. However, from the point

of view of obtaining useful guidelines for investment strategy, it could

perhaps be desirable to have somewhat more than two assets. This is es-

pecially desirable if legal constraints for investment strategy are defined

in terms of upper limits for investments in some asset classes specified in

the regulations. For example, in Finnish insurance legislation the assets

in which a pension insurer may invest are divided into seven broad cate-

gories, and at least with respect to assets backing liabilities proportional

upper limits for investments exist.

While convenient from a mathematical point of view, geometric Brown-

ian motions are not a perfect model for asset prices, as they do not allow

jumps. Asset prices may sometimes behave in a way closely resembling

a discontinuous jump (bursting of a speculative bubble, for example),

and this aspect can be significant when assessing risk. Furthermore, sto-

chastic processes in insurance are often naturally jump processes, and

thus it might be useful to relax the assumption that the liabilities’ value

evolves as a geometric Brownian motion. These considerations would

suggest replacing geometric Brownian motions with more general geo-

metric Lvy processes. Such an extension is out of the scope of the present

study and is, therefore, left for future research.
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A SOLUTION OF THE ONE-DIMENSIONAL

CAUCHY PROBLEM

We wish to solve the Cauchy problem of equation 4.11. Suppose that the

solution of the pde is u(t, x) = A(t)B(x). Substituting this into the pde

and dividing by u one gets

A
′
(t)/A(t) + (A/2)x2B

′′
(x)/B(x) + BxB

′
(x)/B(x) = −C.

This can be separated into

A
′
(t)/A(t) = η and (A/2)x2B

′′
(x)/B(x) + BxB

′
(x)/B(x) = ξ,

where η + ξ = −C. Solution A(t) = c1 exp{ηt} is immediate, and the

equation for B(x) is in fact the familiar Cauchy differential equation,

which can be transformed via x = exp(s) into the Euler equation, which

has the solution

B(s) = c2 exp(m1s) + c3 exp(m2s)

with {m1,m2} = (1/2) − (B/A) ±√(B/A − 1/2)2 + 2ξ/A. Trans-

formation back to original variables yields three different solutions de-

pending on the values of mis. If m1 �= m2 and both are real, the so-

lution is B(x) = c2x
m1 + c3x

m2 . If m1 = m2 = m, the solution is

B(x) = c2x
m + c3x

m ln x. Because we now wish to match a bound-

ary condition consisting of terms of form dxs, s ∈ R, we are not in-

terested in the third case when m1,m2 ∈ C. This case corresponds to

ξ < −(A/2)(B/A − 1/2)2 ≤ 0.

Noting that η = −C − ξ, we have for ξ > −(A/2)(B/A− 1/2)2 the

solution

uξ(t, x) = c1,ξ exp{−(C + ξ)t}[c2,ξx
m1(ξ) + c3,ξx

m2(ξ)],

and any combination
∑

ξ∈Ξ uξ(t, x), with Ξ ⊂ (ξ < −(A/2)(B/A − 1/2)2,∞)

is also a solution by superposition principle.
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To match the boundary condition we must choose such ξs that

m1(ξ) = 1/2 − B/A +
√

(B/A − 1/2)2 + 2ξ/A = s (A.1)

for all s such that the boundary function has a term of form dxs. Equation

A.1 is equivalent to

ξ = (A/2)
(
s2 + 2s(B/A − 1/2)

)
.

For the solution to be of correct form, this expression must be larger than

or equal to −(A/2)(B/A − 1/2)2, that is,

(A/2)
(
s2 + 2s(B/A − 1/2)

) ≥ −(A/2)(B/A − 1/2)2.

This, however, is equivalent to (s + B/A − 1/2)2 ≥ 0, which is always

true, and so we can match terms of form dxs for any s ∈ R by choosing

the constants ci,ξ suitably.
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B INVESTMENT CATEGORIES IN FINNISH

REGULATIONS

In Finnish regulations concerning the calculation of solvency border for

pension insurers managing the statutory pension scheme the investments

are classified into seven categories, which are shortly described here:

I Short-term liabilities of reliable institutions (such as governments,

municipalities, and financial institutions subject to public supervi-

sion) and special loans to sponsors based on pension contributions.

II Euro-denominated bonds and long-term liabilities issued or guaran-

teed by institutions specified in (I) and certain homeowner property

financed by Finnish government.

III Other than euro-denominated bonds and long-term liabilities is-

sued or guaranteed by public institutions specified in (I), euro-

denominated bonds traded on an exchange or issued by traded

companies, short-term liabilities traded on an exchange or issued

by traded companies excluding short-term liabilities mentioned in

(I).

IV Other than euro-denominated bonds and long-term liabilities is-

sued or guaranteed by private institutions specified in (I) or traded

companies, other than euro-denominated traded bonds and several

types of property investments.

V All other property investments.

VI Traded stocks.

VII All other investments.

All investments in countries that are not members of the OECD belong

to category VII. For these categories the law specifies expected returns

(as excess returns with respect to the technical interest rate), standard

deviations and correlations according to Table 1. For more details see

Asetus työeläkevakuutusyhtiön vakavaraisuusrajan laskemisesta (1999)
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Group mi si rij

I 0.1 1.0 1 -0.1 -0.2 0 0 -0.1 -0.1

II 0.6 3.5 -0.1 1 0.4 -0.1 -0.1 0.1 0.1

III 0.6 4.4 -0.2 0.4 1 -0.1 -0.1 0.1 0.1

IV 3.7 8.2 0 -0.1 -0.1 1 0.7 0.3 0.3

V 3.7 15.0 0 -0.1 -0.1 0.7 1 0.3 0.3

VI 6.2 21.4 -0.1 0.1 0.1 0.3 0.3 1 0.7

VII 6.2 29.9 -0.1 0.1 0.1 0.3 0.3 0.7 1

Table 1: Excess returns (mi), standard deviations (si) and correlations (rij)

specified in Finnish solvency regulations for pension insurers.
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