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1 INTRODUCTION

1.1 Financial risksin the 21% century

The recent growth of the risk-management industry can be traced directly to the
increased volatility of the financial markets since the early 1970s. This increased
volatility first became apparent in the currency markets after the collapse of the Bretton
Woods Agreement, when the fixed exchange rate system broke down in 1971, leading
to flexible and volatile exchange rates. This development was soon followed by interest
rates and commodity prices (Simons 1996; Jorion 2007, 4-5). Figures 1 and 2 below
depict some examples of these movements in exchange rates and interest rates during
the past 30 years.

Figure 1 plots the development of USD exchange rate to GBP (Great Britain Pound)
and to JPY (Japanese Yen) starting from September 1978 to October 2007. The
exchange rates are rebased to 100 at the starting date to fit the both time series in the
same chart. Increased volatility in the late 1970s and throughout the 1980s can clearly
be observed in Figure 1. Further examination of Figure 1 also reveals that volatility
seems to dampen since the mid 1990s, especially in the USD to GBP time series. In
between this time, the dollar has reached dizzying heights, such asin 1984 against GBP,
just to fall to unpredicted lows, asis the case for the moment against euro (not presented
in figure 1), in the process creating wild swings in the competitive advantage of nations
—and nightmares for unhedged firms.
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Figure 1 Movements in exchange rates (1978-2007)
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Figure 2 Movementsin 3 month U.S. Treasury rate (1976-2007)

Figure 2 illustrates the development of 3 month U.S. Treasury rate from January
1976 to October 2007. An extremely volatile era can also be observed in this time series
of bond prices starting from the late 1970s and lasting until the early 1980s, reflecting
the inflationary pressures spreading throughout the U.S. economy. In October 1979, the
Federal Reserve Bank forcefully attempted to squash inflation. Interest rates
immediately shot up, became more volatile, and led to a sustained appreciation of the
dollar (Jorion 2007, 6). Reflecting the impacts of this interest rate volatility, the largest
bank failure in the U.S., Continental 1linois, was witnessed at this era. Poor interest rate
risk management attributed to Continental eventually failing in 1984 and it was the
subject of an expensive government bailout (Hull 2007, 22). In figure 2 it can also be
seen how much interest rates can fluctuate over time. In this monthly data for about 30
years the 3 month U.S. Treasury rate ranges from a minimum of 0,86% to as high as
15,52%. These seasons of high volatility in the market variables since the 1970s spurred
new emphasis on financial risk management.

In addition to this unleashed volatility, firms generally have become more sensitive
to movements in financial variables. Prior to the 1970s, banks were heavily regulated or
comfortably cartelized in most industrial countries. Industrial corporations were mainly
selling in domestic markets, and therefore not too concerned about exchange rate
movements. This all changed with deregulation and globalization. The 1970s witnessed
a worldwide movement towards market-oriented policies and deregulation of financial
markets. As a result of deregulation, financial institutions were forced to be more
competitive and became more vulnerable to financial risks. As globalization became a
popular buzzword, barriers to international trade and investments were lowered. As a
result, firms had to recognize the truly global nature of competition and in the process
they became more exposed to a greater variety of financial risks (Jorion 2007, 7).

This above described development created the need for new financial instruments
and tools for risk management. Technological development, in both physical equipment
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and financial theory, made it possible for derivates to answer this call. Derivatives
markets provide an essential mechanism to exchange financial risks, since they allow
risks to be transferred to those best able to bear them. As a result the 1980s witnessed a
surge in the size of the derivatives markets. However, derivatives are not a God-given
solution to all our problems concerning the management of financial risks. The
development of progressively complex derivatives instruments has made it more
difficult to understand these instruments and if the risks embedded in them are not
controlled and understood properly, derivatives possess the potential to increase risks
exponentially — rather than to reduce them. This can be witnessed in the highly
publicized derivatives disasters in the 1990s and 2000s. Companies, such as Orange
County, Metallgesellschaft and Bearings Bank, just to name a few, suffered great losses
in derivatives trading. Many presentations on these disasters have been written (for a
comprehensive description see e.g. Partnoy 1999) and as a conclusion it can be said that
these big losses were not simply due to derivatives, but due to criminal acts, lack of
supervision and poor risk management. It is clear that derivatives played an important
part in al this, but it cannot be said that they were in the leading role (Jorion 2007, 10,
15, xxii).

Spurred into action, financial institutions and regulators focused on finding new
reliable risk measurement techniques to address these problems. This is when they
turned to value at risk (VaR), an easy-to-understand method for quantifying market risk.

1.2 Brief introduction to value at risk and rise of the method

What is this value at risk then that has caused so much commotion among regulators,
practitioners and scholars? Basically the VaR concept is concerned with market risk, but
it is also applicable to other types of financial risk as well, namely credit risk and
operational risk (see e.g. Basel Committee 2005). Tsay (2005, 287—288) conveniently
defines VaR as a “single estimate of the amount by which an institution’s position in a
risk category could decline due to general market movements during a given holding
period”. At the heart of producing this kind of estimate is the probability distribution
function (PDF) of the position’s return. There are various approaches to producing and
estimating this distribution. We can, for example, use the empirical distribution itself or
try to fit some kind of parametric distribution, such as the normal distribution or the
Student-t distribution, to the data and estimate its parameters. Y et another aternative is
to concentrate directly on the tails of the distribution and to model the tail behaviour of
the distribution parametrically, rather than modelling the whole distribution. Hence,
there are numerous approaches to calculating VaR. The most popular of these amongst
practitioners have been historical simulation (HS) (nonparametric), variance-covariance
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(VC) (parametric), and Monte-Carlo simulation (MC) (parametric) approaches. Only
recently the extreme value theory (EVT) approach for calculating VaR (parametric or
semiparametric) has gained increased interest in academic fronts. Practitioners,
however, have shown only limited interest in building models based on this particular
approach (see e.g. Rogachev 2007). An approach is referred to as parametric if it
involves estimating the parameters of a certain probability distribution.

To better illustrate the concepts embodied in this brief definition of VaR by Tsay
presented above, Hull (2007, 196) is quoted: “ When using the value-at-risk measure we
are interested in making a statement of the following form: We are X percent certain
that we will not lose more than V dollarsin the next N days.” In this case the variable V
is the VaR of the portfolio and it is determined by a single point of the estimated
distribution. The other two parameters in the quotation above are X, which denotes the
confidence level (i.e. the coverage probability) and N, which denotes the time horizon
(i.e. the holding period). In other words, VaR is the loss corresponding to the (100—X)th
percentile of the distribution of the change in the value of the portfolio over the next N
days. For example, if the coverage probability (X%) is specified to be 95%, then the
VaR is the fifth percentile (or 0,05 quantile) of the estimated distribution for the
portfolio return N days hence. In this case with a continuous distribution, there is
exactly a 5% probability that the actual observed return will fall below the fifth
percentile (Sullivan, Stoumbos & Brooks 2007, 324). In this thesis the mnemonic o is
used to describe the probability of VaR being exceeded, i.e. a = 1 — X. Figure 3 below
illustrates these parameters involved in determining the VaR for a portfolio. In this case
the return distribution of the portfolio is assumed to be normal, hence the Gaussian
shape of the distribution. X once again denotes the coverage probability. One thing
clearly pointed out by figure 3 is that VaR only measures possible losses, not gains.
Hence, when a long (short) position is assumed we concentrate on the left (right) tail of
the distribution.

X%

a = (100 — X)%

Loss VaR Gain

Figure 3 Simple illustration of value at risk with normal distribution
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A practical example of these parameters involved in VaR calculation is given by the
Amendment of 1996 by the Basel Committee (1996b), which dictates VaR of banks
trading books to be calculated using a 10-day holding period (N=10) and 99%
confidence level (X=99). This means that it focuses on the possible loss over a 10-day
period that is expected to be exceeded only 1% of the time under normal market
conditions. The capital that Basel Committee requires banks to hold is this VaR
measure times k (with an adjustment for what are termed as specific risks). This
multiplicative factor k ranges from 3 to 4, depending on the performance of the bank’s
model in so called backtests. Furthermore, the Basel Committee does not specify a
particular VaR model that should be used in market risk calculations. Hence, banks
have the liberty of choosing aVaR model that best suits their needs.

Value at risk first received wide representation in July 1993 in the Group of Thirty
(G-30) report (1993). The Group of Thirty is a consultative group of top bankers,
financiers and academics from leading industrial nations. This landmark report
recommends guidelines for managing derivatives and in particular it advices to value
positions using market prices and to asses financial risks with VaR. Other financial and
regulatory communities in addition have recognized the potential in VaR, and set the
scene for its dispersal. For instance, the Bank for International Settlements Fisher
report (1994) urged financial intermediaries to disclose measures of value at risk
publicly. The Derivatives Policy Group, affiliated with six large U.S. securities firms,
has also advocated the use of VaR models in their Framework for Voluntary Oversight
(1995) as an important way to measure market risk. The introduction of the RiskMetrics
database compiled by J.P. Morgan in 1994 is perhaps the most notable private sector
initiative to pave the way for the popularization of VaR. Essentially, RiskMetrics
represents an elaborate variance-covariance matrix of risk and correlation measures that
evolve through time. To produce their own VaR measures, users need computer
software to integrate the RiskMetrics database with their own asset positions.

However, perhaps the most significant breakthrough for VaR in the banking sector
occurred when it was proposed by the Basel Committee on Banking Supervision (1995)
to be used as a method to measure banks market risks when determining their
regulatory minimum capital requirements. This Basel Committee’s amendment saw
daylight in 1996 and it was the first time banks were allowed to use their own risk
measurement models to determine their capital charge. This decision stemmed from the
recognition that many banks had developed sophisticated in-house risk management
systems based on VaR that were in many cases far more complex than regulators could
ever dictate.

Furthermore, the European Union (2006) has passed legidation, the Capital
Requirements Directive (CRD), comprising Directive 2006/48/EC and Directive
2006/49/EC, that will require the regulatory capital for securities firms to be calculated
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in asimilar manner that for banks. Another initiative by the European Union, Solvency
I, is likely to lead to the capital for insurance companies in Europe being calculated in a
broadly similar way to that for banks. VaR is therefore becoming, and with hastening
speed, the industry standard for measuring risk in the financial sector.

1.3 Previousresearch on value at risk methods

Since the first appearance of value at risk its performance has been under serious
examination in a myriad of academic studies. The performance of VaR methodology
per se has not been under scrutiny as the emphasis of these studies has been on the
relative performance of various VaR approaches (VC, HS, MC etc.). Generally these
studies differ in terms of tested VaR models, time span and composition of data, and
implemented comparison methods. Next, a genera characterisation of these studies and
their results is given to offer perspectives on possible areas that still may need further
studying in this field. This presentation is not by any means exhaustive due to the vast
number of papers covering thistopic.

In the late 1990s and early 2000s, when VaR still was a relatively new concept, the
vast majority of these examinations on VaR models performance studied different
variations of the variance-covariance approach, sometimes accompanied by a simple
historical simulation method (see e.g. Hendricks 1996; Jackson & Perraudin 1998;
Wong, Cheng & Wong 2003). Using different variations of the variance-covariance
method basically means that different models — such as EWMA, ARCH or GARCH —
are used in estimating the volatility parameter (standard deviation) for the return
distribution, in attempt to compensate for the much too fast decay of the tails in the
Gaussian distribution. Therefore, comparing different approaches of the variance-
covariance method usually boils down to volatility estimation. As a general conclusion
from these studies it can be said that the variance-covariance approaches that
incorporate time varying volatility, especially ARCH and GARCH, consistently fail to
meet the Basel backtesting criteria, and are outperformed by a smple historical
simulation method. However, previous studies on volatility forecasting, such as Baillie
and Bollerslev (1992), Brooks (1998) and Taylor (1999), have concluded that GARCH-
based models tend to have better performance in forecasting volatility than other time
series models. In light of this fact, the poor performance of GARCH-based variance-
covariance VaR models might appear somewhat surprising. The reasoning behind this
poor performance is that these VaR models lead to satisfactory quantile estimates once a
disaster has aready hit the system. This means that GARCH-type models are suitable in
signalling the continuation of a high risk regime, but what we are actually after is a
model that predicts the occurrence of extreme events.
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Eventually, the simple HS method was also extended to incorporate various volatility
models (see Hull & White 1998 and Boudoukh, Richardson & Whitelaw 1998) and the
VC approach no longer was the only VaR approach with the ability to handle time-
varying volatility. Empirical comparisons showed that the performance of this extension
to historical simulation was superior to smple historical simulation (and thus also in
many cases superior to VC as well). Therefore, for quite some time the available VaR
methods for practitioners were VC (with different distributions and volatility models),
HS (with or without volatility updating) and MC. The MC approach per se has not
gained a lot of interest in academic studies as it produces similar results to the VC
method when linear positions are used.

The popularity of the variance-covariance VaR approach among practitioners and
researchers stems mainly from its intuitive appeal and simplicity. However, most
conventional variance-covariance approach models and some nonparametric
distributions, mainly the historically simulated distribution, failed in capturing some
rare events that took place in emerging financial markets over the last decade. This
inadequacy has led researchers to model directly the tail behaviour of the return
distribution parametrically rather than the whole distribution. This extreme value theory
approach to VaR has been under serious research recently and its performance against
other VaR approaches has also been tested. For instance, Longin (2000) and Bekiros
and Georgoutsos (2005) report results according to which at very high confidence levels
the EV T-based methodology produces more accurate forecasts of extreme losses than
VC and HS methods. Furthermore, the results indicate that the VC and HS methods
under- and over-predict losses, respectively.

Recently, papers that rather conclusively compare the performance of various VaR
approaches and extensions have emerged. Kalyvas and Sfetsos (2006), for example,
compare the performance of VC, HS, HS with volatility updating, and EVT VaR
approaches. Adopting the Basel Committee’ s backtesting scheme they conclude that the
EVT model performs superiorly to the other models in this particular case as it produces
the least amount of violations. Similarly Bao, Lee and Saltoglu (2006) comprehensively
compare the performance of 16 different VaR models and conclude that some of the
models based on extreme value theory perform well under turbulent periods, whereas
the more conventional approaches (VC, HS and MC) are unable to adapt to this unusual
market situation. However, they find that most VaR models generally appear to behave
similarly during tranquil periods.
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14  Objectiveof thethesis

As described above, during a short span of time numerous papers have studied various
aspects of VaR methodology. The recent research in this field has progressed so rapidly
that comparing the relative predictive performance of different VaR models has not yet
been fully matched. This thesis contributes to this particular problem by comparing the
predictive performance of various traditional and novel VaR models from different
aspects, providing valuable information for risk practitoners and regulators.

The variance-covariance and historical simulation approaches are currently the most
widely adopted methods for calculating VaR (see e.g. Rogachev 2007). The popularity
of the RiskMetrics approach of J.P. Morgan (1996), originally introduced in 1994,
probably constitutes a great deal of the popularity of the variance-covariance approach
as it fals under this particular category. The number of Monte Carlo adopters can be
expected to rise as computers become more powerful and less expensive. None of the
banks in Rogachev’'s (2007) survey reported using models based on the extreme value
theory, which is probably due to the method's novelty and difficulties in harnessing it
for practical use. Nevertheless, as the EVT approach has showed promising results in
previous studies it is a natural object of further examination.

To offer a comprehensive picture of the predictive ability of various value at risk
models this thesis studies several VaR approaches and their extensions. As the variance-
covariance approach with normal distribution and EWMA volatility, namely the
RiskMetrics 1994 approach (see J.P. Morgan 1996), is probably the most widely
adopted VaR model it is chosen to serve as a benchmark for the other models.
Additional VaR models, which are compared against this benchmark, fall under the
categories of VC, HS, MC and EVT. Besides considering the standard forms of these
approaches, extensions and variations to the standard methods, presented in previous
literature, are considered. Essentially these variations entail filtering the return series in
guestion in different ways and checking if this enhances the model’s performance. A
nearly endless number of different variations to these models could be achieved through
modelling the conditional variance s with avariety of volatility models. In light of the
fact that VaR essentially is a quantile of some distribution, various volatility models are
not included in this thesis, and instead it focuses on the return distribution. Gonzalez-
Rivera, Lee and Mishra (2004) and Hansen and Lunde (2005) found that some simple
volatility models often perform as well as more complex models which offers support to
this choice. Furthermore, according to Alexander (2001, 64) the majority of
practitioners do not use GARCH models at all, and if they do it isin arelatively basic
form. Therefore, only a simple GARCH(1,1) model and EWMA for the RiskMetrics
approach are considered for conditional variance s in this thesis. Table 1 below
summarizes the approaches, denotations and distributions implemented in this thesis.
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Tablel Value at risk models and denotations used in thisthesis
Approach Denotation Distribution used in this thesis
Variance-covariance VC Normal distribution
Historical ssimulation HS Historical distribution
Monte Carlo simulation MC Monte Carlo distribution
Extreme value theory (EVT) GPD Generalized Pareto distribution
Notes:

(1) Thistable defines the denotations and the distributions used in thisthesis.

(2) In this thesis the implemented extreme value theory approach is based on the generalized
Pareto distribution and, thus, this particular model isreferred to as GPD. When referring
more generally to the extreme value theory the denotation EVT isimplemented (compare
e.g. tables1 and 4).

(3) These approaches are all calculated with a range of variations that are presented in latter
parts of the thesis.

These approaches and their variations are presented in more detail in latter parts of
the thesis. As can be seen in table 1 the generalized Pareto distribution is chosen to
represent the extreme value theory approach in this thesis. Alternative EVT
distributions (and approaches) also exist but the generalized Patreto distribution can be
regarded as the most modern EVT approach and it is therefore applied. As mentioned
above, extreme value theory approaches are scarcely adopted by financial institutions
and therefore the comparison of this particular approach with the approaches currently
adopted by financial institutions has an interesting feature: if the extreme value theory
approach performs superiorly to the other approaches then practical adopters of VaR
models should seriously consider updating the theoretical backgrounds of their current
models (VC, HSand MC).

The ultimate objective of the thesis is to evaluate the predictive ability of these VaR
approaches and their variations during an out-of-sample period in order to gain insights
into which models are most appropriate for financial institutions to use as their in-house
models. This evaluation of models is based on their accuracy, size of the estimates and
bunching of exceptions. Accuracy is evaluated via empirical coverage probability, for
which confidence limits are generated by the likelihood ratio test dtatistic for
unconditional coverage (Kupiec 1995). Size of the VaR estimatess is evaluated by the
predictive quantile loss function of Koenker and Basset (1978). Finally, bunching is
evaluated by observing the quantile loss plots produced by this quantile loss function.
Eventually, these tests will enable for ranking the models into preferential order.
Preferred models can be found within all the models and within approaches, to see, for
example, if variations within a certain approach are advantageous. The suitability of the
different approaches to rea-life surroundings is also given some consideration as
introduction to each of these approaches is given.
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15 Data

One of the objectives of this thesis is to compare the predictive ability of VaR models
on before, during and after market crisis periods. This is the main driver for the choice
of data. The impacts of market crises are most pronounced and simultaneous for stock
indices, making them a natural source of data for this particular examination. The
bursting of the so called technology bubble in 2000 is chosen to represent market crisis
in this thesis and, therefore, the examined market indices are chosen in a way that they
all were impacted by this crisis relatively simultaneously but with different intensity,
allowing for the division of the time series into distinct periods reflecting prevailing
market conditions. Following these criteria the different approaches and possible
variations to VaR modelling are applied to the stock markets of four different
economies. Namely, the used stock indices are S&P 500 Composite (United States),
CDAX General ‘Kurs (Germany), HEX General (Finland), and India BSE National
(India), all retrieved from the Thomson Financial database. The S&P 500 and CDAX
General are chosen to represent developed stock markets, whereas the OMX Helsinki
and BSE National represent emerging markets. This choice grants the opportunity of
observing the performance of different VaR models in different market contexts. To be
more precise, it is expected that especially the emerging market time series do not
behave normally and exhibit some degree of skewness and kurtosis. That is, their
probability distributions might not be symmetric and exhibit more extreme realisations
than expected according to the normal distribution.

The data comprises daily closing prices of these indices starting from 1.1.1988. As
mentioned the performance of the models is evaluated during three two-year out-of-
sample periods. before the bursting of the so called technology bubble in 2000
(representing normal market conditions), during the market crisis period caused by this
speculative bubble bursting (representing market crisis period), and after the markets
had settled from this shock (representing normal market conditions). Thus, insights into
the performance of the tested VaR models under different market conditions can be
gained. Though two of these periods represent normal market conditions VaR models
are expected to perform divergently during these particular periods. This is due to the
fact that the predictions of VaR models in the after crisis period are to some extent
affected by the crisis period, whereas the before crisis period was preceded by a less
turbulent period, presumably leading to more conservative VaR predictions (see
appendices 1 and 2 for the market indices’ price and return series). The three evaluation
periods are presented in table 2 below.
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Table 2 Three evaluation periods
Period 1 Period 2 Period 3
(before crisis) (during crisis) (after crisis)
Out-of-sampleperiod  1.1.1997-31.12.1998  1.1.2000-31.12.2001 1.1.2003-31.12.2004
(samplelenght) P~ 504 P~ 504 P~ 504
In-sample period 1.1.1988-31.12.1996  1.1.1988-31.12.1999 1.1.1988-31.12.2002
(sample length) R~ 2268 R~ 3024 R~ 3780

There are marginal differences in the lenths of these out-of-sample and in-sample
periods for each index due to e.g. national holidays and data availability. Hence, the
numbers presented in table 2 are not exact. The primary reason for the data starting as
early asin 1.1.1988 is due to the fact that the EVT approach requires a relatively long
time series to produce satisfactory quantile estimates. The sample for each index
consists of total T observations and it is split into an in-sample part of size R and an out-
of-sample part (evaluation period) of size P so that T = R + P. For these samples a
rolling window scheme is implemented. That is, the (t — R)th one-step-ahead VaR
prediction is based on observationst —R throught— 1, wheret=R+1,...,T.

1.6 Methodology and methods

The established accounting research methodologies can be classified under conceptual,
nomothetical, decision-oriented and action-oriented approaches (Kasanen, Lukka &
Siitonen 1993). This thesis is empirical and descriptive by nature as conclusions are
deducted from empirical results, thus implying that this thesis follows the nomothetical
reseach approach.

The predictions of each VaR model under scrutiny are generated assuming a long
position in each of the indices with two of the most common confidence levels
implemented by practitioners in market risk VaR calculation, i.e. X = 99% and X = 95%,
which translates to o = 0,01 and a = 0,05, respectively. The predictive performance of
different VaR models is compared against actual outcomes of the market variables and
competing models' results. Testing how well the VaR model would have performed in
the past is referred to as backtesting. The models in this thesis are backtested during
three out-of-sample periods (i.e. before, during and after market crisis) using three
different evaluation criteria: empirical coverage probability, predictive quantile loss and
bunching of violations. The test statistic on the statistical significance of the empirical
coverage probability is based on Kupiec (1995) and the predictive quantile loss function
is based on Koenker and Basset (1978). Finally, bunching of violations is examined by
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observing the plots produced by the predictive quantile loss function separately for each
VaR model and stock index.

1.7 Structureof thethess

The remainder of thisthesis is structured as follows. Section 2 provides the reader with
the appropriate tools to understand the methods and concepts used in latter parts of the
thesis when actual VaR estimates are generated. Section 2 begins by contemplating the
concept of risk and presents how risks are typically classified. After this, the statistical
concepts included in measuring risk and time-varying volatility are presented. A
discussion on the statistical behaviour of actual asset returns concludes section 2.

Section 3 opens with a more detailed description of the VaR measure, its parameters
and additional features included in VaR modelling. After this, the most common VaR
approaches (VC, HS, MC and EVT) and their advantages and disadvantages are
introduced. A description of the possible extensions to the standard versions of these
approaches is also given. The approaches and variations that are actually calculated in
the empirical part of this thesis are discussed in more detail. Section 3 concludes with a
comparison of different VaR approaches assumptions and abilities. Section 4
introduces the comparison methods implemented in this thesis and section 5 continues
with presentation of the data and research results. Conclusions are given at the end of
section 5. Section 6 summarizes the thesis.
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2 RISKSAND THE ART OF MEASUREMENT

2.1 Nature of risk

2.1.1 Concept of risk and financial risks

If one were to ask people on their concepts of risk, one presumably would receive as
many varying answers as the number of people interviewed. The term risk is typically
associated with the volatility of unexpected outcomes, and especially with the negative
outcomes, that is losses. This one sided view of risk only as a possibility of losses is
rather common among executives, as can be seen, for example, from the interviews
carried out by Kasanen, Lundstrom, Puttonen and Veijola (1996, 55). However, in
financial theory risk is not only understood as the possibility of losses, but as the
possibility of gains as well. Therefore, the results of exposing to risk can be either
negative or postive. The key point of risk is the present uncertainty about outcomes in
the future. When talking about financial risks, this volatility of unexpected outcomes
usually refersto the volatility of the value of assets or liabilities of interest (Jorion 2007,
3).

Truth of the matter is that when doing business there are risks everywhere: we cannot
anticipate with certainty which turmoil affects our calculations, or what price we will
get from our products, and so forth. Examples of factors that cause risk in everyday
business are natural hazards, strikes, interest rate movements, competitors investments
and exchange rate movements (Kasanen et. al. 1996). These various types of risks that
face firms can be broadly classified into business and nonbusiness risks. Business risks
are those which the firm willingly assumes to create a competitive advantage and add
value for shareholders. Exposure to business risk in different ways creates the core
competency of all business activity. Other risks, over which a firm has no control, can
be classified as nonbusiness risks. These include strategic risks which result from
fundamental shifts in the economy or political environment. These nonbusiness risks are
difficult to hedge, except by diversifying across business lines and countries (Jorion
2007, 3-4).

Finally, financial risks can be defined as those which relate to possible losses in
financial markets. Financial risks are traditionally classified into four categories. (1)
market risk, (2) credit risk, (3) operational risk and (4) liquidity risk. In some
applications a fifth class of financial risksisalso considered: (5) model risk. Market risk
(or pricerisk) is the risk of a change in the market price. Credit risk originates from the
fact that counterparties may be unable or unwilling to fulfil their contractual obligations.
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A change in the credit rating of a bond issuer can be also viewed as credit risk.
Operational risks are in general defined as risks arising from human and technical errors
or accidents. These include frauds, inadequate controls, problems in back-office
operations and so forth. Liquidity risk refers to not being able to sell or buy the
necessary amount due to lack of buyers or sellers. Last, model risk arises when risks are
measured and priced using a flawed mathematical model (Kahra 2007; Jorion 2007, 22—
27; Knupfer & Puttonen 2004, 183-185).

However, thisis just a one way of classifying financial risks, and hence some of the
categories presented here might be missing or some additional categories might be
presented in other context. A comprehensive and detailed description of different types
of financial risksis given in Basel Committee’ s (1994) Risk Management Guidelines for
Derivatives. Table 3 below depicts the above presented categorization of financial risks.
In table 3 market risks are further divided into (1.1) interest rate risk, (1.2) exchange
raterisk, (1.3) equity risk, and (1.4) commodity risk. These market risks are discussed in
more detail in the next subsection.

Table 3 Financial risks and market risks
Financial risks Some causes of financial risks
(1) Market risk Market prices change in unexpected ways
(1.1) Interest rate risk Interest rates change
(1.2) Exchange rate risk Exchange rates change
(1.3) Equity risk Equity prices change
(1.4) Commaodity risk Commodity prices change
(2) Credit risk Changein credit rating or counterparty defaults
(3) Operational risk Human errors and accidents
(4) Liquidity risk Markets do not function perfectly
(5) Model risk Used models and assumptions are not perfect

2.1.2 Market risks and volatility in market variables

Market risk arises from movements inthe level of volatility of market prices. Generally,
there are four types of financial market risks: interest rate risk, exchange rate risk,
equity risk, and commodity risk, as presented in table 3 above. This classification of
market risks simply represents the classification of market variables into their respective
asset classes. Losses that can be attributed to market risk can occur through a
combination of two factors: the volatility in the underlying financial variable and the
exposure to this source of risk. Whereas firms have no control over the volatility of
financial variables, they can alter their exposure to these risks, for instance, trough
derivatives. (Jorion 2007, 22—23; 82—85; Hull 2007, 18-19).
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Volatility in the market variables, that is market risk, is measured by the standard
deviation of unexpected outcomes, or sigma (o), also called volatility. This has been the
case since Markowitz' s first published his pioneering article Portfolio Selection (1952),
which was one of the first attempts to understand the trade-off between risk and
expected return. Later Sharpe (1964) and others carried the Markowitz's analysis a
stage further by developing what is known as the capital asset pricing model. Thisis a
relationship between expected return and what is termed systematic risk. In 1976 Ross
developed arbitrage pricing theory — an extension of the capital asset pricing model to
the situation where there are several sources of systematic risk. The key insights of
these researchers have had a profound effect on the way market risks are analyzed and
quantified, and ultimately all these extensions entail measures of volatility in some
form.

Measurements of linear exposure to movements in underlying risk variables on the
other hand appear everywhere under different disguises, depending on the market risk
category in question. In the fixed income market, exposure to movements in interest
ratesis called duration, whereas in the stock market this exposure to market movements
is called systematic risk, or beta (f). In derivatives markets the exposure to movements
in the value of the underlying asset is called delta (A). Nonlinear exposure is measured
by higher order derivatives, such as convexity and gamma (I') in the fixed income and
derivatives markets, respectively (Jorion 2007, 76—77). The emphasis of thisthesisis on
measuring volatility rather than exposure, and therefore measurements of exposure are
not covered extensively.

Section 1 argued that the new emphasis on risk management was partly spurred by
increased volatility in the financial markets. Figures 1 and 2 plotted the price
movements of some chosen financial variables. These graphs, however, described
movements in the level of these financial variables, and therefore give only an indirect
view of risk. Risk can be measured more precisely by short-term volatility, which in
turn is plotted in Figures 4 and 5, for the same variables as in Figures 1 and 2. Figure 6
in turn plots the short-term volatility for the S& P 500 Composite index from June 1974
to October 2007. Figures 4, 5 and 6 demonstrate the standard deviation of trailing 12-
month logarithmic price changes, calculated from monthly data and expressed in
percent per annum.
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Figure 6 Volatility in S& P 500 Composite index (1975-2007)
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In Figure 4 an elevated season of volatility can be observed for USD to GBP
exchange rate, garting from mid 1980s and lasting until mid 1990s. For the USD to JPY
exchange rate shorter periods of elevated volatility can be observed. The volatility of
these exchange rates, ranging from five to twenty percent, is still rather low if compared
with the volatility of 3 months U.S. Treasury rate (Figure 5), which ranges up to a
maximum of 56,8 percent. Figure 5 also confirms that the volatility of the 3 month U.S.
Treasury rate increased sharply after 1979. After this sudden increase the volatility also
seems to remain in the elevated level for quite some time. The measure of risk seemsto
fluctuate over time in away that periods of elevated volatility seem to be followed by
periods of elevated volatility and periods of low volatility seem to be followed by
periods of low volatility. This begs the question if risk truly is unstable over time, or
whether these patterns are due to the estimation method used and just reflect “noise” in
the data. This important question concerning the true nature of volatility is further
discussed in upcoming parts of the thesis.

Finally, Figure 6 measures risk in the U.S. stock market from June 1974 to October
2007. Notable peaks in volatility can be observed in October 1974, when U.S. stocks
went up by 17 percent after three large consecutive drops, and during the October 1987
crash, when U.S. equities lost 20 percent of their value. Therefore volatility occurs
because of large unexpected price changes, whether positive or negative. This
symmetrical treatment is logical because participants in these markets can be long or
short, domestic or foreign, consumers or producers. Overall the volatility of financial
markets creates risks and opportunities that must be measured and controlled properly
(Jorion 2007, 79). The next subsection tackles the issue of measuring risk and return
from observed market prices.

2.2 Measuringrisk and return

2.2.1 Probability distribution function and its parameters

Value at risk, and its variance-covariance approach to be more specific, is at the end of
the financial theory continuum that originates from Markowitz's portfolio theory.
Therefore, the basic concepts on which VaR is build up on were laid out as early as
1952 by Markowitz in his seminal work Portfolio Selection. Since then, volatility has
been associated with risk and determining the level of volatility has become an
important part of portfolio and risk management. This subsection introduces the basics
of probability theory, which are needed to study random returns — and ultimately value
at risk.
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As mentioned above, risk can generally be defined as the uncertainty of outcomes.
This is best measured in terms of probability distribution functions. Therefore this
subsection begins by illustrating how probability distributions are created. Suppose x is
arandom quantity that can take on any one of a finite number of specific values, say, x;,
where i = 1, 2,..., n. Assume further that associated with each possible x;, there is a
probability p; that represents the relative chance of an occurrence of x. The p’s satisfy
> pi= 1land p; >0 for each i. Each p; can be thought of as the relative frequency with
which x; would occur if an experiment of observing x were repeated infinitely. The
quantity x, characterized in this way before its value is known, is called a random
variable (Luenberger 1998, 141; Jorion 2007, 80).

It is common to display the probabilities associated with a random variable
graphically as a density. The possible values of x are indicated on the horizontal axis,
and the height of the line a a point represents the probability of that point. An example
is shown in Figure 7a below. Figure 7a illustrates the density corresponding to the
outcome of aroll of a dice, where six possibilities all have a probability of 1/6. If the
outcome variable can take any real value in an interval as, for example, the rate of return
on an investment, a probability density function f(x) describes the probability. The
probability that the variable’s value will lie in any segment of the line is equal to the
area of the vertical region bounded by this segment and the density function
(Luenberger 1998, 141-142). Figure 7b below depicts an example of this case.

Py (a) Py (b)
1/6 -

i
-

Figure7 Some examples of probability distributions

The probability distribution can usefully be characterized by two central variables: its
mean and its spread. If an investor would be immune to risk, he or she would only
concentrate on maximizing the expected value E(x) of the portfolio, often termed as
mean value. The expected value of a random variable x is just the average value
obtained by regarding the probabilities of unexpected outcomes as frequencies. In other
words, it is the weighted sum of all possible values of x, each weighted by its
probability of occurrence. In the case of a finite number of possibilities, expected value
is defined as
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E(X) = m= 8§ p, X 2.1

i=1

where p; is the probability of x; occurring. For convenience E(X) is often denoted by u
(Luenberger 1998, 142; Jorion 2007, 81). In the case of a continuous variable, such as
the rate of return on an investment or the variable in Figure 7b, that has the probability
density function f(x), expected value is defined as (Jorion 2007, 83)

¥

E(X) = m= §yxf (X)dx (2.2)

The expected value provides a useful summary of the probabilistic nature of the
random variable. However, typically one wants, in addition, to have a measure of the
possible dispersion of outcomes around the mean. This is in general measured by the
variance, defined as the weighted sum of squared deviations around the mean. In
general, for any random variable x, the variance of x for discrete and continuous random
variables are defined respectively as

var(9 =52 = El(x- m?]= 4 p,(x - ny 23)
var(x) =s? = i‘jx- m? f (x)dx (2.4)

In mathematical expressions, variance is represented by symbol ¢ thus o® = var(x).
Variance is measured in units of x squared and thus is not directly comparable with
mean. Therefore, the square root of variance is frequently used, denoted by ¢ and
referred to as standard deviation. Hence, we can derive ¢ easily from o as s = \/? .In
financial context the term volatility often refers to standard deviation, which is also the
case in this thesis. Volatility has the same units as the mean and therefore is a useful
measure of how much the variable is likely to deviate from its expected value
(Luenberger 1998, 143; Jorion 2007, 81-83).

Mean and variance are the first two central moments, which describe the location and
spread of the distribution. For completeness, two other central moments should also be
introduced. Skewness, which describes departures from symmetry, and kurtosis, which
describes the degree of flatness of a distribution, can be defined respectively as

é¥\ 3 l] 3
g=egx- m f(x)dxy/s (2.5)
ey a
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Negative skewness indicates that the distribution has long left tail and hence entails
large negative values. A kurtosis coefficient greater than 3 indicates that the tails decay
less quickly than for the normal distribution. This would imply a greater likelihood of
large values, positive or negative. For normal distribution, which can be fully described
by its first two moments, skewnessis 0 and kurtosis 3. Hence, the degree of flatness of a
distribution is often also measured by excess kurtosis, which is defined as 6 — 3. These
measures can be used as quick check on whether the sample distribution is close to
normal (Jorion 2007, 86-87).

It should also be mentioned here, that in the case of two or more random variables,
their mutual linear dependency can be measured by covariance. Estimating the
covariance matrix of a portfolio is at the heart of producing VaR estimates when
portfolios include several assets. However, this particular thesis concentrates on
evaluating different VaR methods performance, and to do this it is not necessary to
estimate covariance matrixes. Thisisdue to the fact that the VaR methods' performance
can be evaluated calculating the VaR figures using a portfolio consisting only of a
single asset. Introducing more assets to the underlying portfolio would not make the
results derived from this thesis any more robust — it would only make the calculations
heavier. It is worth noting, however, that in the upcoming sections, when estimation of
variance is discussed the introduced concepts can easily be extended to cover
covariance as well.

2.2.2 Estimating moments from data

When market risk is measured, to reach an estimate for market risk VaR and for other
purposes as well, the rate of return on a financial asset is the random variable that we
are interested in. It can be described by its probability distribution function, as explained
above. Rates of return, however, are not directly observable from the market. Therefore
we need to transform the price data into return data. Usually price data are recorded on
daily frequency but databases for higher frequency data are also available as electronic
storing of data has developed. Between the available high frequency databases it might
be worth mentioning the Olsen and Associates database comprising all the bid and ask
guotes of the foreign exchange market collected from information vendors since 1986
and the Trade and Quote (TAQ) database, which comprises all the trades and quotes
related to all the securities listed inthe New Y ork Stock Exchange.
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The transformation of price data into return data can be done as follows. Define T—
(T>t) asthe time horizon, which can be of any length, and Sasthe price of a security. In
this case the arithmetic, or discrete, and the geometric, or continuously compounded,
rate of return can be defined respectively as

_(5-9) -
. S (2.7)
e = INE2=1n(S,) - In(S) (2.8)

S o

if it is assumed that there are no interim payments, such as dividends, during time T—.
The use of geometric returns, sometimes also referred to as logarithmic returns, instead
of arithmetic returns has two advantages. First, geometric returns may be economically
more meaningful, since if they are assumed to be normally distributed, then the prices
are lognormally distributed which leads to nonnegative prices. This is not the case if
arithmetic returns were used. The second advantage of using geometric returns is that
they easily allow extensions into multiple periods. For instance, the geometric returnry 3
from period 1 to 3 can be decomposed as

Ing IngSZ ;+ Ing—_ =rtr, (2.9

Still, in many situations the differences between the two returns are minimal when price
changes are relatively small. However, significant differences may occur in markets
with large moves, such as emerging markets, or when the time horizon is long, such as
years (Jorion 200, 93-95; Luenberger 1998, 301; Hull 2007, 240-241). This thesis
implements geometric (logarithmic) returnsin its calculations.

In practice, the distribution of rates of return is usually estimated over a number of
previous periods, such as days, months or years, assuming that all observations are
identically and independently distributed (i.i.d.). If nisthe number of observations, the
firss moment x (mean), the second moment o° (variance), the third moment »
(skewness), and the fourth moment ¢ (kurtosis) can be measured from return data
respectively as (Luenberger 1998, 214-217; Tsay 2005, 11)

mzia r (2.10)
Nz
$? :ié (r.- m? (2.11)
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2.2.3 Estimating time-varying volatility

When looking more closely into the graphs presented in the beginning of this section
(Figures 4, 5 and 6), it appears as risk changes in a predictable manner over time. This
can be seen as volatility clusters, or groups, in the time series; high observations of
volatility appear to be followed by high observations and low observations seem to be
followed by low observations. This perception has important implications for risk
management, since when we are calculating value at risk through parametric methods,
we are most interested in the current level of volatility (and correlations as well). Thisis
because we are estimating possible changes in the value of a portfolio over a short
period of time. Hence, this subsection introduces some ways in which estimates of
current level of volatility can be produced from historical data by different time series
models that capture time variation in volatility. Correlations are also of great interest to
risk managers when calculating VaR, but their modelling is not necessary for the
research problem in question. Therefore, correlations are not discussed in this thesis per
se. However, it is worth noting that the concepts on volatility modelling that are
introduced here could easily be extended to cover correlations as well.

A widely employed method for estimating unconditional volatility isto use a moving
window of fixed length and equally weight each of the observations in the window. The
term unconditional refers to the fact that this estimation method assumes that the return
distribution does not change over time. Hence, the variation in the volatility estimates
produced by this method can only be attributed to sampling errors. For instance a
typical length to be used is 20 trading days (about a calendar month) or 60 trading days
(about three calendar months). This fixed size data window is then rolled through time,
each day adding a new return and taking off the oldest return. Assuming that returns r;
over n days are observed, this volatility estimate is constructed from a moving average
(MA) as

2 (2.14)

Qo

1
Stz =
n

i=1

The term historic volatility is also applied to statistical forecasts that are based on
equally weighted moving averages (Alexander 2001, 49-52; Jorion 2007, 222). The
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focus here is on raw returns r; rather than returns around the mean, r; — x. This is so
because for most financial time series, ignoring expected returns over very short time
intervals makes little difference for volatility estimates. Hence, for analysing daily
financial series it has become standard to base variances on squared returns (see e.g.
Figlewski 1997; Alexander & Leigh 1997). This mean exclusion is further discussed in
upcoming parts of the thesis, especially in the context of absolute and relative VaR.

This volatility model, while simple to implement, has some serious drawbacks. First,
it ignores the dynamic ordering of observations: recent information receives the same
weight as older observations in the window that may no longer be relevant. Further, the
effect of alarge return affectsthe MA estimate of volatility for the time that is chosen as
the time window. Also, this approach leaves wholly unanswered the optimal choice of
the length of moving window (Jorion 2007, 222—223).

Due to the deficiencies of the MA method, volatility estimation has moved towards
conditional volatility models that put more weight on recent information. The first such
model was the generalized autoregressive conditional heteroskedastic (GARCH) model
suggested by Engle (1982) and Bollerdev (1986). Heteroskedastic refers to the fact that
the underlying returns are not identically distributed over time, hence variance also
changes as time passes by.

The GARCH model assumes that the variance of returns follows a predictable
process. The conditional variance depends on the latest innovation, ri;, but also on the
previous conditional variance, S 1. Define S{ as the conditional variance, using
information up to time t—1, and ri; as the previous day’'s return. The simplest such
model isthe GARCH(1,1) process, defined as

si=gN¥N+axi +bxs?, (2.15)

where V is the long-run average variance rate, y, a and f are the weights assigned to V,
r’, and Siy, respectively. yV is usually set as w for the purposes of estimating the
parameters. For a stable GARCH(1,1) process it is required that o + f < 1. Otherwise
the weight assigned to the long-term variance rate would be negative (Hull 2006, 465—
466; Jorion 2007, 223-224).

The exponentially weighted moving average (EWMA) model is particular case of the

MA model, where weights assigned to observations decrease exponentially as we move
back trough time. It is also a particular case of the GARCH(1,1) model, where g =0,

a=1-/,and b =/ .Theformulafor EWMA thereforeis

si=1x?2,+@- )=}, (2.16)
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where the parameter 1 is called the decay factor and must be less than unity. This isthe
approach that J. P. Morgan's (1996) RiskMetrics uses for estimating volatilities and
correlations. It uses decay factors of 0,94 and 0,97 for dally and monthly data,
respectively (Jorion 2007, 230-232; Hull 2006, 463-465).*

If exponentially weighted moving averages are used correctly they can produce much
more reasonable estimates of short-term volatility than equally weighted moving
averages. In fact in some cases an exponentially weighted moving average model might
even be preferred to a more sophisticated GARCH models. This might be the case
particularly for very short-term forecasts. For longer-term forecasts, required for
instance for pricing options, GARCH models are preferable due to their mean-reversal
property, as EWMA models are not mean reverting (Alexander 2001, 49-116).

More complex volatility models — that account for additional factors, such as
leverage — could be constructed. See e.g. Nelson (1991); Engle & Ng (1993); Zakoian
(1994); and Sentana (1995). However, as mentioned earlier, this thesis concentrates on
the return distribution and uses only these above mentioned simple volatility models to
make one-step-ahead volatility forecasts. This choice is backed up by the findings of
Gonzdlez-Rivera et a. (2004) and Hansen and Lunde (2005), who found that simple
volatility models often perform as well as more complex ones, especially when making
one-step-ahead predictions for relatively short time intervals. Furthermore, according to
Alexander (2001, 64) the maority of practitioners do not use GARCH models at all,
and if they do it isin arelatively basic form.

2.3 Statistical behaviour of actual asset retur ns

2.3.1 Pioneering research and theoretical background

The quantitative modelling of financial markets started in 1900, when a French
mathematician Louis Bachelier wrote his pioneering Ph.D. Thesis with the title Théorie
de la Spéculation (reprinted in Cootner 1964). In proposing the normal distribution as a
model of price variations, Bachelier seemed to have been the first scientiss who
formulated a testable hypothesis on the statistical behaviour of financial data.

! In fact, RiskMetrics no longer is a part of J.P. Morgan and it now functions as an individual company.
Furthermore, RiskMetrics Group has only recently upgraded the foundations of its VaR prinsiples and
they no longer rly on EWMA for their volatility estimates. Their updated approach utilizes a volatility
forecast derived from a long memory autoregressive conditional heteroskedastic (LM-ARCH) process,
and a distribution that accurately captures fat tails for the residual's (see RiskMetrics Group 2006). This
approach is beyond the scope of thisthess, and therefore when referring to the RiskMetrics approach this
thesis particularly refersto the original RiskMetrics 1994 approach (see J.P. Morgan 1996).
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Although it turned out later that the normal distribution can usually be
overwhelmingly rejected by explicit statistical tests, due to its familiarity it is still often
used in theoretical work as well as by market practitioners. Theoretically, the appeal of
the Gaussian stems, of course, in finance like in other fields, from its simplicity and its
stability under addition property: i.e. the Gaussian distribution is the limit distribution
for sums of independent and identically distributed (i.i.d.) random variables, as proved
by P. L. Laplace in the central limit theorem (Jorion 2007, 84). This property, in fact,
comes into play quite naturally when dealing with financial prices; the most easily
available data, price changes on a daily frequency, can be considered as the sums of a
multitude of smaller increments on the intra-day level. If it is reasonable to assume that
these high-frequency variations are i.i.d. random variables, then the central limit law
should apply to price changes of a lower frequency and it, then, seems natura to
postulate that their distribution approaches a Gaussian shape.

The economic reasoning for the i.i.d. assumption for price changes can be supported
by the so-called efficient market hypothesis (EMH), originally formulated in the 1960s
(Fama 1970). A market is said to be efficient if all the information is instantly processed
when it reaches the market and it is immediately reflected in a new value of prices of
the assets traded. The EMH was for a long time the only available theoretical
background to the statistical behaviour of asset prices. It states that, at any point in time,
asset prices should reflect the discounted expected stream of earnings from holding the
underlying asset. In this case, price changes come about by arrival of some new items of
information about future dividends which changes the rationally computed expectations
of future prices and dividends. Of course, such information continuously hits the
market; one can, for instance, think of such elementary items like weather or climatic
events affecting output in certain industries, political changes as well as any kind of
firm specific events. According to the EMH, the entirety of all these factors would
explain the history of price changes. Therefore, the news arrival process governs the
characteristics of the distribution of price increments. As news should be events that are
independent of the preceding ones, the ‘independence’ part of the i.i.d. assumption can
immediately be justified by the above considerations. If we are prepared to accept the
second part as well (identical distributions), we end up with the central limit law for
low-frequency price changes as the aggregate of high-frequency ones.

2.3.2 Mandebrot’s stable distribution hypothesis and alternative models

During the 1960s and 1970s, the above picture underwent some changes: first, it has

been found that price increments themselves are less suitable for statistical analysis than
relative changes. One, therefore, routinely transforms the raw time series of prices into
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returns, as described in above sections, for gtatistical analysis. A second and more
important modification was brought about by Mandelbrot’s (1963) and Fama s (1965)
finding that daily returns are decisively nonnormal. In fact, standard tests for normality
usually reject their null hypothesis a extremely high levels of significance. Since then,
most empirical research into the datistical properties of asset returns has found
systematic deviations from normality, namely excess kurtosis and left-skewness
(Simons 1996). For this reason, a number of alternative models have been proposed
with the am of explaining the empirical evidence of the ‘fat tails and the time
fluctuations of the second moment, i.e. variance, of price changes.

Giving up normality, but maintaining stability under aggregation, Mandelbrot (1963)
proposed the Lévy dable digtribution as an aternative model. Under this new
hypothesis on the distribution of returns, relative price changes would have no finite
second and higher moments and prices would follow a Lévy stable process, which is a
stochastic process obeying a generalized central limit theorem under time aggregation.
Stability means that, the sum of two independent stochastic processes, both
characterized by the same Lévy stable process, is itself a stochastic process
characterized by a Lévy distribution. Besides their desirable stability property, the Lévy
distributions are also in harmony with the usual visual appearance of the empirical
distribution of returns. they posses more probability mass in their tails and center than
the Gaussian (i.e. they are leptokurtic). Unfortunately, the stable Lévy distributions lack
an analytical closed form solution and can only be characterized by their characteristic
function. Furthermore, at the time of publication of Mandelbrot’s and Fama’'s papers,
amost no satistical method was known for estimating the parameters and testing
goodness-of-fit of the Lévy distributions. Nevertheless, Mandelbrot’s argument
appeared so convincing, that a number of researchers accepted the hypothesis on Lévy
stable distributions without further testing. At the same time, Mandelbrot’s hypothesis
was questioned by others on the basis cleverly designed tests for stability-under-
addition itself (Lux & Ausloos 2002, 377).

For more than 25 years, these two strands of research coexisted in the literature and
the issue of the appropriate distributional assumptions remained basically undecided.
However, from a practical point of view, a number of alternative, more easily tractable
statistical models have also been proposed, athough they lack a strong theoretical
foundation. Only a few of them are mentioned here emphasizing the broad spectrum of
distributions that have been proposed: (1) a model where a geometric diffusive
behaviour is superimposed to Poissonian jumps (Merton 1976; Friedman & Laibson
1989); (2) the Student’s t-distribution as a fat tailed distribution with finite higher
moments (Blattberg & Gonedes 1974); (3) mixtures of normal distributions with
different means and variances (Kon 1984; Tucker & Bond 1988); and (4) hyperbolic
distributions (Eberlein & Keller 1995).
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2.3.3 Influence of the statistical theory of extremes

This huge variety of distributional forms makes it hard to find universal laws in the
statistical behaviour of financial prices. Starting in the early 1990s, a new type of
analysis has appeared in empirical finance that, in fact, highlights typical features by
abstracting from a specific distributional shape. This strand of literature took up a
proposal by DuMouchel (1983) to concentrate on the behaviour of the tails instead of
trying to fit the entire distribution. This approach is particularly of interest for VaR
analysis, since modelling extreme events, i.e. the tails, is exactly what VaR is after. The
theoretical background to this research program is provided by statistical extreme value
theory (laid out, for example, in the following textbooks: Berlant, Teugels & Vynckier
1996; and Reiss & Thomas 1997).

The key result in extreme value theory was proved by Gnedenko in 1943, which
concerns the properties of the tails of a wide range of different probability distributions.
This classification of the behaviour in the distributions outer parts is derived from the
classification of the extrema (minima or maxima). Namely, it can be shown that the
limiting distribution of the extrema converges to the generalized extreme value (GEV)
distribution of von Mises (1936) and Jenkinson (1955) which has the representation of

F(x) = expl- @+xx/ b)) 2.17)

where f is a scale parameter (# > 0) and ¢ is a shape parameter. Further, the variable a
= 1/¢ is referred to as the tail index. This limiting distribution (eg. 2.17) encompasses
three types of limiting distributions of Gnedenko (1943): i.e. the Gumbel, Fréchet and
Weibull families. The (left) tail of the distribution declines exponentially for the
Gumbel family (¢ — 0), by a power function for the Fréchet family (¢ > 0), and is finite
for the Weibull family (¢ < 0). For risk management we are mainly interested in the
Fréchet family that includes stable and Studen-t distributions. The Gumbel family
consists of thin-tailed distributions such as the normal and the lognormal distributions.
A variety of estimators have been developed for the tail index o or & Estimation of
this quantity for the tail shape alone is favourable over an overall fit of the empirical
distribution for a number of reasons:. first, it gives an indication of the type of behaviour
in the outer parts, therefore, may allow us to exclude a number of candidate processes
from the outset. For example, an estimate of ¢ significantly different from zero would
simultaneously imply rejection of the normal, mixtures of normals as well as diffusion-
jump processes, as they all lack the required behaviour of large returns. Second, in
financial applications, one is often more interested in extreme realizations (crash risks)
than in the exact shape of minor fluctuations. Furthermore, the choice of a particular
overall model already restricts the results that can be found for the tail behaviour. For
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instance, the choice of the Lévy distributions always implies that tails are assumed to be
extremely heavy and redtricts the tail index to the region a < 2 (¢ > 0,5) (Lux & Ausloos
2002, 380).

The majority of studies applied maximum likelihood estimators for the tail index a or
¢ Dueto its simplicity, the Hill tail index estimator (Hill 1975) has become the standard
work tool in most studies of tail behaviour of economic data. The Hill estimate is
obtained by maximization of the likelihood of the relevant tail function conditional on
the chosen size of the ‘tail’. The results from a large body of research in this area has
yielded astonishingly uniform behaviour for data from different markets in that one
usualy finds a tail index a (&) in the range of 2,5 (0,4) to about 4 (0,25). Examples
include Jansen and de Vries (1991); Longin (1996); Loretan and Phillips (1994); Lux
(1996); and Lux (1998). This conveniently allows for the rejection of the hypothesis of
Lévy stable processes governing price changes, as they would require fora <2, as
mentioned above. This has important implications for risk management, since the GEV
has a property that the kth moment E(X) of x is infinite for k > o (Hull 2007, 225).
Therefore, the possibility of infinite variance — which would complicate the important
task of risk estimation significantly — can be rejected. This conclusion on the finiteness
of the second moment has a degp consequence on the stability of the return PDF. The
finiteness of the second moment and the independence of successive returns imply that
the central limit theorem asymptotically applies. Hence, the form expected for the return
PDF must be Gaussian for very long time horizons. We then have two regions — at short
time horizons we observe leptokurtic distributions whereas at long time horizons we
expect a Gaussian distribution (Mantegna & Stanley 2002, 367). The application of the
extreme value theory for VaR analysis is further discussed in section 3 of the thesis.

2.3.4 Stochastic processes governing price dynamics

Among the important areas of researchers dealing with financial and economic systems,
one concerns the complete statistical characterization of the stochastic process of price
changes of afinancial asset. Several studies have been performed that focus on different
aspects of the analyzed stochastic process, e.g. the shape of the distribution of price
changes, as discussed in the section above. Therefore, the underlying research problem,
when studying return distributions, is to model the stochastic process that prices follow
and which essentially generates the return distribution. This is still an active area, and
attempts are ongoing to develop the most satisfactory stochastic model describing all
the features encountered in empirical analyses. The knowledge of the statistical
properties of price dynamics in financial markets is fundamental, since it is necessary
for any theoretical modelling aiming to obtain a rational price for a derivative product
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(Hull 2006) and it is the starting point of any valuation of risk associated with financial
position (Duffie & Pan 1997). In VaR analysis the stochastic process of price changesis
the key element in performing credible Monte Carlo simulations. In spite of this
importance, the modelling of such variable is still rather inconclusive.

Bachelier's original proposal of Gaussian distributed prices was soon replaced by a
model in which stock prices are log-normally distributed, i.e. stock prices are
performing a geometric Brownian motion (GBM). In a geometric Brownian motion, the
differences of the logarithms of prices are Gaussian distributed. This model is known to
provide only a first approximation of what is observed in real data, but it still remains,
until today, the most widely assumed model for the stochastic process governing asset
prices (Hull 2006, 270). Geometric Brownian motion is, for example, assumed by the
most commonly used options pricing model, the Black-Scholes (or Black-Scholes-
Merton) model (Black & Scholes 1973; Merton 1973). Geometric Brownian motion can
be described in its continuous form for stock price Sas

dS = nSdt + sz (2.18)

d—QS = nut + sdz (2.19)
where the variable u is the expected rate of return for the stock (i.e. the drift parameter),
o is its volatility, and dz is a Wiener process (i.e. increments dz are independent and
normally distributed with mean zero and variance dt) (Alexander 2001, 21; Hull 2006,
265-271). The geometric Brownian motion produces a log-normal distribution for the
prices, and a Gaussian distribution for the price changes. Hence, it cannot account for
the leptokurtic (fat tailed) distributions observed in actual data. Theorists and
practitioners are aware of this fact, and that the Black-Scholes model needs correction in
its application, meaning that the problem of which stochastic process describes the
changes in the logarithm of price changes in financial markets is still an open one.
Nevertheless, in the absence of a better model for price dynamics, the geometric
Brownian motion remains as the most popular, and it is also the one applied in this
thesis, in its discrete time form.

A number of alternative models to the geometric Brownian motion have been
proposed with the aim of explaining (1) the empirical evidence that the tails of
measured distributions are fatter than expected for a geometric Brownian motion; and
(2) the time fluctuations of the second moment of price changes. Geometric Brownian
motion assumes that prices change continuously in a way that produces a lognormal
distribution for the price at any future time. There are, though, many alternative
processes that can be assumed. One possibility is to retain the property that the asset
price changes continuously, but assume a process other than geometric Brownian
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motion, such as the Lévy process (Mandelbrot 1963). Another alternative is to overlay
continuous asset price changes with jumps. Yet another aternative is to assume a
process where all the asset price changes that take place are jumps. A model where
stock prices change continuously is known as diffusion model, whereas a model where
this process is overlaid with jumps is known as a mixed-jump-diffusion model. Further, a
model where all stock price changes are jumps is known as a pure jump model (Hull
2006, 562). Examples of these models are the constant elasticity variance (CEV) model
(Cox & Ross 1976), Merton’'s (1976) mixed jump-diffusion model, and the variance-
gamma model (Madan, Carr & Chang 1998), respectively. Even though these suggested
alternative models are (to some extent) able to produce the features observed in actual
data, none of them has been convincing enough to entirely supersede geometric
Brownian motion in practice.

2.4 Factorsunderlying value at risk

When calculating value at risk, first one needs to decide which risks one desires to
measure with VaR. The most common risks measured with VaR are market risks, as is
the case in this thesis. Market risk can be defined as risk arising from movements in the
level of volatility of market prices, i.e. assets prices change unpredictably. A traditional
measure of market risk, since the influential work of Markowitz (1952), has been
volatility. VaR, and its VC approach to be more precise, can be seen as an extension to
only using volatility as a measure of market risk. To be more precise, it combines
volatility with a chosen probability to arrive at a new measure for market risk, i.e. VaR.
More generally, VaR represents a single point on the estimated return distribution, and
volatility — or other parameters depending on the assumed distribution for that matter —
can be used in estimating this particular point.

For the above given reason, in order to reach VaR estimates one needs an estimate of
the current level of volatility (or other parameters) of one’'s portfolio (or of the assets in
one's portfolio). To measure the level of volatility (parameters of distribution), in order
to generate an estimate of the return distribution, one, first, needs to transform the
directly observable price data into return data. Usually the transformation is executed in
a way that produces logarithmic returns for observation. Logarithmic returns are
generated by the differences of logarithms of market prices (see equation (2.8)). From
this transformed data, volatility can be calculated using a moving average of fixed
length (see equation (2.14)).

However, from several studies it appears that the second moment (volatility)
fluctuates over time (see e.g. figures 4, 5 and 6). This fluctuation is generated by
heteroskedastic return distributions, i.e. not identical return distributions. For this
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reason, econometric models, such as EWMA and GARCH, that are able to capture this
time-varying volatility have been developed (see e.g. Engle 1982; Bollerslev 1986).
One cannot stress enough the importance of correctly estimating the current level of
volatility in VaR estimation when using the normality assumption.

The quantitative modeling of financial markets can be seen to have started in 1900
with Bachelier's seminal Ph.D. Thesis Theorié de la Spéculation. Since the 1960s,
another distinctive feature of financial variables, besides the above mentioned time
fluctuations in the second moment of price changes, has been identified. To be more
precise, daily returns have been discovered to be decisively nonnormal. These observed
deviations from normality have been excess kurtosis and negative skewness. These
stylized features in financial data can be explained by two alternative viewpoints: (1)
the underlying distribution in fact is normal, but time-varying volatility causes us to
observe leptokurtic distributions at short time horizons, and (2) the underlying
distribution is not normal and rather follows an alternative distribution. Both of these
explanations might carry some truth in them, but profound answers are yet to be
discovered.

A new type of analysis in empirical finance has emerged since the early 1990s that
concentrates on the behavior of the tails of the return distribution instead of trying to fit
the entire distribution. This extreme value theory approach has been successful in
explaining the tail behavior of a multitude of financial data. Further, results from this
strand of research have made it possible to exclude a number of candidate distributions
proposed as alternatives to the normal distribution. It has, for example, in many cases
allowed for the rejection of using Lévy distributions as proposed by Mandelbrot (1963).
As the EVT appears theoretically robust method for modeling the tails of financial
return distributions, it opens a new interesting avenue from which to approach value at
risk.
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3 VALUE AT RISK APPROACHES

3.1 Valueat risk measure

3.1.1 Universal definition of value at risk and related terminology

The basic intuition behind value at risk (VaR) was laid out in section 1.2 of the thesis.
Now, this section turns to a more formal definition of VaR. As explained earlier, VaR
summarizes conveniently in asingle, easy to understand number the downside risk of an
ingtitution due to financial market variables. To be more precise, VaR gives an estimate
of the expected maximum loss over a target horizon within a given confidence interval
(Jorion 2007, 105-106). Alternatively, from the viewpoint of a regulatory committee,
VaR can be defined as the minimal loss under extraordinary market circumstances
(Tsay 2005, 288). Both definitions will lead to the same VaR measure, even though the
concepts appear somewhat different. Value at risk is mainly concerned with market risk,
as is the case with this particular thesis, but the concept is applicable to credit and
operational risk aswell (see e.g. Basel Committee on Banking Supervision 2005). Value
at risk figures can be obtained through various approaches to modelling the return
distribution — variance-covariance, historical smulation, Monte Carlo simulation, and
extreme value theory approaches being the most popular ones. A detailed description of
each of these approaches will be given in upcoming parts of the thesis.

In what follows, VaR is defined under a probabilistic framework. This definition
applies universally for any distribution, discrete or continuous, fat- or thin-tailed, and it
is not affected by the choice of VaR approach. Suppose that at the time index t we are
interested in the risk of a financial position for the next period. Let AS(t, t + 1) be the
change in the value of the assets in the financial position from time t tot + 1. This
guantity is measured in currency units and is a random variable at the time index t.
Denote the cumulative distribution function (CDF) of AS(t, t + 1) by F¢(X). In this case
VaR for along position over the time horizon (t, t + 1) with probability o can be defined
as (Tsay 2005, 288; Jorion 2007, 109)

a = Pr[DS(t,t +1) £VaR] = F, (VaR) (3.1)

Since the holder of a long financial position suffers a loss when ASt, t + 1) < O, the
VaR defined in equation (3.1) typically assumes a negative value when o is small. The
negative sign signifies a loss. From the definition, the probability that the holder would
encounter a loss greater or equal to VaR over thetime horizon (t, t + 1) isa. Hence, 1 —
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o here signifies the confidence level X used in determining VaR (see Figure 3).
Alternatively, VaR can be interpreted as follows. With probability X, the potential loss
encountered by the holder of the financial position over the time horizon (t, t + 1) isless
than or equal to VaR.

The previous definition shows that VaR is concerned with tail behaviour of the
cumulative distribution function (CDF) F(x). For along position, the left tail of F(X) is
important. Y et a short position focuses on the right tail of Fi(x). However, the definition
of VaR in equation (3.1) continues to apply to a short position if one uses the
distribution of —AS(t, t + 1). Therefore, it suffices to discuss methods of VaR calculation
using a long position (Tsay 2005, 289).

For any univariate CDF F¢(x) and probability «, such that a | (0, 1), the quantity
q, (@) =inf{X{F, (X)® a}is called the ath quantile of Fy(x), where inf denotes the
smallest real number satisfying Fi(x) > a. If the CDF F(x) of equation (3.1) is known,
then VaR is simply its ath quantile (i.e. VaR; = g«(«)). The CDF is unknown in practice,
however. The different methods for calculating VaR are essentially concerned with
estimation of the CDF and its quantile, especially the tail behaviour of the CDF.

Alternatively, in equation (3.1), if ASt, t + 1) is divided by the asset price S (or
considering the differences of logarithms of prices) a percentage form for value at risk is
reached. Then equation (3.1) transformsto

a = Prr, £VaR%] = F, (VaR%) (3.2)

and daily returns r; of financial asset prices can be used directly. In this theoretical
context, VaR in its percentage form is more informative than the currency unit form,
and therefore this thesis implements the definition in equation (3.2) for VaR.
Henceforward, VaR refers to the percentage form of VaR, as defined by equation (3.2).
Now suppose that r; follows the stochastic process (see section 2 for discussion on
stochastic prcesses)

h=wt+ée=wt oy (3.3)

where i = E(ry), s7= E(€&7) and z has the conditional distribution function G¢(2). In this

case VaR can be estimated by inverting the distribution function

VaR (@) =q,(a)=F "(@)=m +s.G*(a) (3.4)

Hence, a VaR model involves the specification of F.(¥, or i, S7, G(} (Bao et al.
2006). In practical applications, calculation of VaR involves several factors (Tsay 2005,
289): (1) the probability of interest a, such asa = 0,01 or & = 0,05; (2) the time horizon,
which might be set by a regulatory committee, such as 1 day or 10 days; (3) the
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frequency of the data, which may not be the same as the time horizon; and (4) the CDF
Fi(x) or its quantiles. The next subsection will consider the first two of these factors, (1)
and (2). After that time aggregation in value at risk calculations is discussed (3). Finally,
different methods for estimating the CDF give rise to different approaches to VaR
calculation (4). These different approaches are further considered in their respective
upcoming subsections.

The terminology and classifications related to these approaches is rather inconclusive
and many variations coexist in literature. Table 4 below offers some clarification to this
terminology. The first mentioned terms are the ones applied in this thesis, and the ones
inside the parentheses represent their alternatives. The denotations for the approaches
are also included in thistable.

Table4 Terminology referring to different VaR approaches

Terminology referring to different VaR approaches Denotation
Variance-covariance (delta-normal, normal, parametric) VvC
Historical simulation (nonparametric, quantile estimation, empirical density) HS
Monte Carlo simulation (stochastic simulation) MC
Extreme value theory (depends on the applied EVT distribution and method) EVT
Notes:

(2) In thisthesis the implemented extreme value theory approach is based on the generalized
Pareto distribution and, thus, this particular model isreferred to as GPD. When referring
more generally to the extreme value theory the denotation EVT isimplemented (compare
e.g. tables1 and 4).

(2) In some casesthe EVT approach is considered as an extension to the HS approach

(3) Theterm conventional VaR method refersto ssmple VC, HS and MC methods.

(4) VC and MC methods ar e sometimes collectively referred to as model-building approach

3.1.2 Usesof value at risk and choice of factors

Two central factors are to be considered when calculating VaR: the length of the
holding horizon and the confidence level (Hull 2007, 202-206). In general, VaR will
increase with either a longer holding horizon or a greater confidence level. VaR can
potentially be used for three alternative purposes. as a benchmark measure, as a
potential loss measure, or in defining equity capital (Jorion 2007, 116-119). The choice
of these factors should depend on the use of the VaR number. The first, most general,
use of VaR is simply to provide a companywide yardstick to compare risks across
different markets. For this purpose, the choice of the confidence level and horizon does
not matter much as long as consistency is maintained throughout divisions and over
time.
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Another application of VaR isto give abroad idea of the worst loss an ingtitution can
incur. If thisisthe case, the horizon should be determined by the nature of the portfolio.
A first interpretation is that the horizon is defined by the liquidation period. This refers
to the time it would take to liquidate the entire portfolio. For this reason commercial
banks currently report their trading VaR over a daily horizon because of the liquidity
and rapid turnover of their portfolios. On the contrary, investment portfolios, such as
pension funds generally invest in less liquid assets and adjust their risk exposures only
slowly, which is why a one month horizon is generally chosen for investment purposes.
A related interpretation is that the horizon represents the time required to hedge market
risks. An opposite view to the one presented above is that the horizon corresponds to the
period over which the portfolio remains relatively constant. Since VaR assumes that the
portfolio’s composition does not change during the horizon, this measure gradually
loses significance as horizon extends. However, perhaps the main reason for banks to
use adaily VaR isthat thisis consistent with their daily profit and loss (P&L) measures.
This allows an easy comparison between the daily VaR and the subsequent P&L
number. Still, for this application, the choice of the confidence level is rather arbitrary.
It should be recognized that VVaR does not describe the worst possible loss but israther a
probabilistic measure that should be exceeded with some frequency (Jorion 2007, 116).

The third possible use of VaR is for setting up a capital cushion for the institution.
This being the case the choice of the factorsis crucial. If the VaR figure is used directly
for this purpose, a loss exceeding the VaR would wipe out the entire equity capital,
leading to bankruptcy. For this application of VaR the choice of the confidence level
should reflect the degree of risk aversion of the company and the costs of a loss
exceeding VaR, and at the same time, the choice of the time horizon should correspond
to the time required for corrective actions as losses start to develop (Jorion 2007, 117).
To illustrate, assume that an institution determines its risk profile by targeting a
particular credit rating. The expected default rate can then be converted directly into a
confidence level. Higher credit ratings should lead to lead to higher VaR confidence
levels. For instance, according to Moody’s default rate estimates a Baa rated company
has a 0,20% change of defaulting within the next year. To maintain Baa rating, an
institution should carry enough capital to cover its annual VaR at the 99,80 percent
confidence level (Hull 2007, 258).

It should also be mentioned here that the choice of the considered factors is
important for backtesting considerations as well. Model backtesting involves systematic
comparisons of VaR estimates with the subsequently realized returns in an attempt to
detect biases in the reported VaR figures (Hull 2007, 208) (backtesting is further
described in section 4 of the thesis). Longer horizons reduce the number of independent
observations and thus the power of the tests. For example, using a one day horizon
trandates into having 252 observations per year, but in the case of atwo week horizon
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the number of observations reduces to 26. Likewise, the choice of the confidence level
should be such that it leads to powerful tests. For instance, a 95 percent confidence level
should lead to losses worst than the VaR figure in 1 day out of 20. On the other hand,
choosing a 99 percent confidence level we would have to wait, on average, 100 days to
confirm that the model conforms to reality. Hence, for backtesting purposes, the
confidence level and the holding period should be kept within reasonable limits (Jorion
2007, 119-120).

3.1.3 Time aggregation

Computing VaR requires the definition of a holding period over which to measure
unfavourable outcomes, as discussed above. This period may be set in terms of hours,
days, or weeks. To be able to compare risk across different time horizons, a trandation
method is needed. This problem is known as time aggregation in econometrics (Jorion
2007, 97).

Suppose daily data, which is the most easily available alternative in most cases, are
observed, from which VaR figure is obtained. Using higher frequency (daily) data is
generally more efficient since it uses more available information. The investment
horizon, however, may be 3 months, two weeks as set out by the Basel Committee for
market risk (Basel Committee on Banking Supervision 1995), or something else
depending on the application of VaR. Thus, the distribution for daily data must be
transformed into a distribution over a longer time horizon. If returns are uncorrelated
over time, in other words follow a Martingale process, this transformation is
straightforward.

The assumption of uncorrelated returns over successive periods is consistent with the
efficient market hypothesis (Fama 1970), where the current price includes all the
relevant information concerning the particular asset. Thus, all price changes must be due
to news that, by definition, cannot be anticipated and therefore must be uncorrelated
over time. Hence prices follow a Martingale process, which means that our best guess
for the price of an instrument tomorrow, is its price today (Hull 2006, 594-595). Put
mathematically in terms of returns: E(ri1) = E(ry). In addition, if returns are assumed to
be identically distributed over time, both the requirements for independently and
identically distributed (i.i.d.) variable are fulfilled. Under these assumptions the
expected return over n days is n times the expected return over one day, and likewise for
the variance. Both the expected return and the variance increase linearly with time. The
volatility, in contrast, grows with the square root of time (Jorion 2007, 98-99). These
results can conveniently be used in transforming the VaR for a time horizon of one day
into atime horizon of longer periods. This is done by the formula: N-day VaR = 1-day
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VaR x +/N . This formulais exactly true when the changes in the value of the portfolio
on successive days have independent identical normal distributions with zero mean
(Hull 2007, 203). This time aggregation method is also accepted by the Basel
Committee (1995) as it explicitly states that the ten-day 99% VaR can be calculated
using the one-day VaR times J10. Hence, it suffices to concentrate only on the
calculation of the one-day VaR for market risk in thisthesis.

This assumption of i.i.d. returns is often made in risk management, but it may not be
appropriate for some thinly traded markets. The worry is that when markets are
trending, the risk over a longer period may be much higher than from a simple
extrapolation of daily risk. This is due to autocorrelation between successive returns. In
this case, the variance over n periods can be written as

sz(n+2(n- Or+2(n- 2)r? +...+2(1)r”'1) (3.5

When markets are trending the correlation coefficient p is positive, which leads to
higher variance than in the case of uncorrelated variable (i.i.d.). Hence, risk managers
should be careful when assuming independent returns when aggregating VaR to
different time horizons (Hull 2007, 204; Jorion 2007, 99-101).

3.1.4 Absolute and relative value at risk

It should be noted, that since the volatility grows with the square root of time and the
mean linearly with time, the mean will dominate the volatility over long horizons.
However, over short horizons, such as one day, volatility dominates. This provides a
rationale for focusing on VaR measures (and volatility models) that ignore expected
returns. Fixing the expected return at zero might seem an unconventional statistical
procedure, but the estimation error associated with badly determined mean estimates in
relatively small samples may reduce the efficiency of the estimated volatilities (Jackson
& Perraudin 1998, 261).

When mean p is fixed at zero and expected returns are normal the calculation of VaR
is referred to as absolute VaR. Stated in other words, this assumption considers that our
portfolio will not yield any returns. This approach makes perfect sense when dealing
with highly liquid trading books that are revalued daily. There are many rationales
behind this mean-zero framework. From a theoretical standpoint, the mean is computed
by summing the logarithmic returns (i.e. the difference in logarithms of prices). Since
the logarithmic returns are the differences in logarithms of prices and these returns are
summed as they are sampled, they all cancel out, except for the first and last price,
which is then divided by the number of samples minus one. From this, it is fairly
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obvious that in most cases dealing daily sampling will result in a rather small mean,
compared with the volatility. From a modelling standpoint, this has various
consequences. (1) the computation of volatility o (volatility and correlations that are fed
into the model are mean zero volatilities and correlations); (2) the simulation process (a
relative diffusion, but with zero drift); and (3) the final VaR which does not take into
account the portfolio mean returns. This produces a very neat and consistent model for
analyzing risks over very short horizons, such as one day. However, if the investment
horizon extends beyond ten days (two weeks) the use of relative VaR should be
considered (Fan, Wei & Xu 2004).

Relative VaR — instead of assuming that the position’s mean is zero — incorporates
computation of the mean of the portfolio into volatility estimation and VVaR calculation.
Therefore, instead of assuming risk as pure volatility, it incorporates the expected
returns into the equation. Usually, when discussing relative VaR, the emphasis is on the
mean expected return of the portfolio from which scaled volatility is deducted in order
to obtain VaR. However, mean inclusion affects all the same parts of the VaR
computation as mean zero assumption (points (1) to (3) above). The most problematic
part in using relative VaR is obtaining a reliable estimate for the expected return u, as
previoudy discussed. As absolute VaR makes perfect sense for traders who mark-to-
market positions daily, relative VaR is ideally suited for individual investors, portfolio
managers and corporations who rebalance positions weekly, monthly or quarterly (Fan
et a. 2004).

With respect to this mean exclusion, this thesis follows the conventions set out by
practical implementers of VaR models. That is, all the models are calculated in the

absolute VaR framework as described above, except for the MC model’s simulation

1 o

process, where the drift parameter, i.e. mean, is estimated by :n—lain:lri . This

means that all volatility estimates are mean-zero volatilities, i.e. u is set at zero, and all
the VaR estimates do not take into account mean returns.

3.1.5 Coherence of value at risk measure

Value at risk is certainly not the only measure besides volatility proposed for
guantifying market risk. Early examples of alternative risk measures are e.g. Roy (1952)
and Baumol (1963). More recently, a proposal on the desirable properties for risk
measures for capital adequacy purposes (Artzner, Delbaen, Eber & Heath 1999) has
spurred the development of a number of novel risk measures attempting to satisfy these
properties. These four properties of any acceptable risk measure p : X — R are (Artzner
et a. 1999):



49

(@ Postive homogeneity: p(ix) = Ap(x) for dl random variables x and all positive
real numbers 1.

(b) Subadditivity: p(x +y) < p(X) + p(y) for all random variable x and y; It can be
proved that any positively homogenous functional p, is convex if and only if it
is subadditive.

(c) Monotonicity: x <y implies p(x) < p(y) for al random variables.

(d) Trangtional invariance: p(X + ro) = p(X) — a for al random variables x and real
numbers a, and risk free ratesro.

If p satisfies all these properties, then it is said that p is a coherent risk measure. These
properties can be interpreted for a portfolio as follows. Postive homogeneity means that
changing the size of a portfolio by factor 4 while keeping the relative amounts of
different items in the portfolio the same should result in the risk measure being
multiplied by A. Subadditivity requires that the risk measure for two portfolios after they
have been merged should not be greater than the sum of the their risk measures before
they were merged. Monotonicity property statesthat if a portfolio has lower returns than
another portfolio in every state of the world, its risk measure should be greater. Finally,
trandlation invariance means that if an amount of 4 is added to a portfolio, its risk
measure should go down by A (Hull 2007, 199).

The homogeneity, monotonicity, and trnaslation invariance conditions are
straightforward, given that the risk measure is the amount of cash needed to be added to
the portfolio to make its risk acceptable. The subadditivity condition states that
diversification helps reduce risks. If the opposite was true, in order to decrease risk, it
could be convenient to split up a company into different distinct divisions. From the
regulatory point of view this would allow to reduce capital requirements. Artzner et al.
(1999) show that the quantile-based VaR measure does not always satisfy this
subadditivity condition, and therefore cannot be regarded as coherent measure of risk.
This notion has inspired a wealth of criticism towards VaR, and the development of
other risk measures satisfying this and all the other conditions. For an introduction to
these alternative coherent risk measures and criticism towards VaR see e.g. Granger
(2002) and Szegt (2005).

An example of an alternative risk measure, satisfying all four conditions above and
therefore referred to as coherent, is given by conditional VaR (or expected shortfall).
Risk measures can generally be characterized by the weights they assign to quantiles of
the loss distribution. Value at risk gives a 100% weighting to the ath quantile and zero
to other quantiles. Conditional VaR, on the other hand, is determined as the expected
loss conditional on exceeding the ath quantile (or VaR), when we are concentrating on
the right tail of the distribution. It therefore gives equal weights to all quantiles greater
than the ath quantile and zero weight to al quantiles below the ath quantile. Further, it
can be shown that arisk measure is coherent if the weight assigned to the ath quantile of
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the loss distribution is a nondecreasing function of a. As expected shortfall satisfies this
condition, it is a coherent measure of risk (see e.g. Hull 2007, 201).

Despite the presented criticism and alternative coherent risk measures, VaR has been
able to hold its own. This is mainly because it has been chosen as an industry standard
by the regulators, and the fact that the advantages of VaR supersede its disadvantages
(Stahl 2005). Namely, the simplicity of VaR surpasses the usual arguments against
VaR, i.e. financial markets time series are not usually normally or log-normally
distributed and exhibit fat tails. The modern argument against VaR is that it is not
coherent, as it does not satisfy the subadditivity property. This, however, is the case
only with portfolios that do not have elliptic probability distribution functions (Jorion
2007, 114). In these cases, VaR, of course, is not a proper risk measure and some
coherent risk measure is required. Still, with most common portfolios, and return
distributions, it can be said that VaR provides a simple and adequately accurate measure
of risk.

3.2 Variance-covariance approach

3.2.1 Basicprinciples

The most simple and intuitive way to calculate value at risk is to assume that the return
distribution belongsto a parametric family, such as the normal distribution, the Student-
t distribution, the generalized error distribution (Nelson 1991), the exponential
generalized beta distribution (Wang, Fawson, Barret & McDonad 2001), the stable
Paretian distribution (Mittnik, Paolella & Rachev 2002) and the mixture of normal
distributions (Venkatraman 1997). This assumption can be made if the dependence
structure of the return series r; can be fully described by the first two conditional
moments (Bao et al. 2006, 102). Out of numerous parametric distributions, the normal
distribution is by far the most commonly used, due to its simplicity and convenience.
Hence, the term variance-covariance approach, or parametric approach, in most cases
refers to using the normal distribution. When implementing this approach, the VaR
figure can be derived directly from the portfolio standard deviation using a
multiplicative factor that depends on the confidence level X = 1 — a. Therefore VaR(«)
is estimated by inverting the distribution function

VaR(a)=m +s,G'(a) (3.6)
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When normality is assumed, G(®) isthe standard normal distribution function F (®) so
that F*(0,01) =-2,326 and F '(0,05)=- 1645 (Bao et a. 2006, 105). These figures

can be obtained by turning to tables of the cumulative standard normal distribution
function or using the inverse function of standard normal distribution found in statistical
programs.

As it can be seen, this approach is solely based on the estimate of the variance
(variance-covariance matrix) of asset returns, using historical time series to calculate
their standard deviations (and correlations) (Simons 1996, 6). To illustrate, using a 99%
confidence level (o = 0,01) and the normality assumption, VaR in equation (3.6) smply
reducesto

VaR (0,01) = m - 2,326s, (3.7)

and one only needs to estimate the parameters u: (mean) and o (volatility). In addition,
if the usual assumption of mean exclusion in risk management is made, the only
required parameter is volatility. This approach is referred to as absolute VaR. Assuming
other digtributions than the normal for the price variations will entail different values for
G () and naturally for VaR as well. The main assumption of the parametric VaR is
that the distributions of asset returns follow a certain distribution that can completely be
described by its parameters. In the case of the normal distribution, this means that the
variance-covariance matrix (and mean) completely describes the return distribution
(Simons 1996, 7).

3.2.2 Extensionsto variance-covariance approach

As can be seen above, by far the most significant advantage of the VC approach is its
simplicity. However, this simplicity comes at a price. As discussed earlier, empirical
studies on the statistical behaviour of asset returns have systematically found significant
deviations from normality. This raises the question how redlistic the normality
assumption of the variance-covariance approach is and how much it distorts the
estimated VaR figures. For some portfolios, that are large and well diversified, the fit is
quite good, but certainly not for portfolios with heavy option components and exposures
to asmall number of financial risks (Jorion 2007, 111). This is the main disadvantage of
the variance-covariance approach, i.e. that the normal distribution does not adequately
approximate the actual distribution of profits and losses. In the case of asymmetrical
return distributions — as is the case with option, loan and credit portfolios (see e.g.
Szeg6 2005, 7) — the approximation error due to nonlinearities can be reduced by using
delta-gamma, delta-gamma-delta and the so-called Cornish-Fisher expansion methods
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(see e.g. Jorion 2007, 255-257; Hull 2007, 244-248). These extensions, however,
exacerbate the computation of VaR noticeably and other approaches, such as historical
simulation and Monte Carlo simulation, offer a more direct route to VaR. The most
noticeable advantage of the simple variance-covariance method is its speed and
simplicity, but with the above mentioned extensions this advantage is lost, and turning
to other approaches makes sense.

The other reason for the inadequacy of the variance-covariance method with normal
distribution — even if the underlying return distribution is sufficiently symmetrical —is
that the tails of the normal distribution decay much too fast compared to what is
observed in actual data, i.e. actual financial data universally seems to exhibit excess
kurtosis. This much too fast decay of the tails of the normal distribution can be
compensated for in two ways pertaining to the VC approach. First, another distribution,
that possesses fatter tails than the normal distribution, can be assumed. Examples of
these ‘heavy tailed’ distributions are the Student-t and the generalized error distribution
(see e.g. Jorion 2007, 87-88). These alternative distributions, however, lack in strong
theoretical foundation, as discussed in section 2.3.2. Hence, their use is questionable to
some extent. Second, the conditional variance can be estimated by various volatility
models, such as the family of GARCH models, to allow for the volatility to fluctuate
over time in the VC approach (Bekiros et al. 2005, 227). This approach is based on the
view that the distribution of returns, and therefore volatility, changes through time. Asa
result, in times of higher volatility, a stationary model could view large observations as
outliers, when they are really drawn from a distribution that temporarily has a greater
dispersion (Jorion 2007, 221). In practice, both of these explanations carry some truth in
them.

As the focus of this thesis is on other approaches than the VC approach, some
alternatives of this particular approach are till calculated to offer perspective. This
thesis applies the VC approach with normal distribution and the volatility parameter
estimated by equally weighted moving average MA, GARCH(1,1) and EWMA. The
MA estimate is estimated as presented in equation (2.14), i.e. the mean is assumed to be
zero. The EWMA volatility is estimated in a way that the VaR figures produced by this
approach conform to the ones produced by the RiskMetrics 1994 approach (see J. P.
Morgan 1996, 236). This RiskMetrics approach is used as a benchmark for all the other
models in this thesis. A further extension to the VC approach, following the ideas of
Hull and White (1998) and Barone-Adesi, Giannopoulos and V osper (2002), referred to
as ‘filtering’, is also implemented in this thesis. This means applying the standard VC
approach to y; = riay, the filtered return series using a time-varying volatility model (see
e.g. Alexander 2001, 97). Time-varying volatility is estimated by GARCH(1,1) for the
purposes of filtering r; (see appendix 3 for the estimated GARCH(1,1) processes). Table
5 below lists these variations implemented in this thesis and their mnemonics.
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Table5 Variance-covariance VaR models and mnemonics
Distribution Volatility Return series Mnemonic
Normal EWMA(0,94) re RiskMetrics
Normal MA(250) re VC
Normal GARCH(1,2) Iy VC(GARCH)
Normal GARCH(1,1) Vi VC*
Notes:

(2) All the modelsin thisthesisthat are applied to thefiltered return seriesy: = ri /oy are
denoted by asterisk *. Filtering the return seriesis based on the ideas of Hull and White
(1998) and Barone-Adesi et al. (2002).

(2) All these extensions to the VC approach are calculated in the mean-zero, i.e. absolute
VaR, framework.

(3) MA(250) refersto the fact that MA is estimated using the past 250 days' observations,
which is also the minimum length of data required by the Basel Committee (1996b).

(4) EWMA(0,94) refersto using a decay factor 4 of 0,94 when estimating EWMA, which
corresponds to the approach introduced by J.P. Morgan (1996).

3.3 Historical smulation approach

3.3.1 Basicprinciples

The simplicity and convenience of the normal distribution are powerful inducements for
its use in VaR analysis, but this does not necessarily make its use appropriate for the
reasons given in the previous section. Fortunately, it is possible to calculate VaR
without resorting to the assumption of normality (or other distinct parametric
distribution for that matter), by using a simple historical simulation method. The only
assumption that this approach makes is that the empirical distribution continues to hold
within the prediction period (Tsay 2005, 298; Simons 1996, 8).

This approach simply entails finding the lowest returns in the real historical data.
Assuming that the distribution of return in the prediction period is the same as in the
sample period, one can use the empirical quantile of the returns r; to calculate VaR. Let
ri, ..., rn bethereturns of a portfolio in the sample period. The order statistics of the
sample are these observations arranged in increasing order. Here the notation

Moy E gy EX0E T,

is used to denote the arrangement and refer to r as the ith order satistic of the sample.
In particular, r(y is the sample minimum and r, the sample maximum.
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Assume that the returns are independent and identically distributed random variables
that have a continuous distribution with probability density function (PDF) f(x) and
cumulative probability density function (CDF) F(x). Then the following asymptotic
result from the statistical literature (see e.g. Cox & Hinkley 1974) for the order statistic
ray, where | = na with O < a < 1, can be used to determine VaR. Let g(a) be the ath
quantile of F(X), that is, g(a) = F*(«). Assume that the PDF f(x) is not zero a q(a).
Then the order statistic r is asymptotically normal with mean q(«) and variance a(1-
a)/[nf(g(a))]. That is,

al-a) 9 _
o éq( @y 5
Based on this result, one can use r(y to estimate the quantile q(a), where | = na. In
practice, the probability of interest o may not satisfy that na is a positive integer. In this
case, one can use a ssimple interpolation to obtain quantile estimates. More specifically,
for noninteger na, let 1, and |, represent the two neighboring positive integers such that
l1 < na <l,. Define a; = Ii/ n, n representing the size of the sample. Thisyields a; < a <
o. Therefore the quantile g(«), i.e. VaR(«), can be estimated by (Tsay 2005, 299)

A a, - a-a
d(a) =—2 Foy + : ) (3.9
a,-a, a,-a,

An extremely simple illustration of HS, using the past 100 daily observations and a
99% confidence level, would simply entail finding the lowest observation (na =
0,01*100 = 1) to obtain next day’'s VaR. As 1 is an integer, there is no need for
interpolation (eg. 3.9) in this case. A one-day time horizon and a 99% confidence level
are those typically used for a market risk VaR calculation. 250 to 750 days of datais a
popular choice for the number of days of data used, which is taken as a reasonable
tradeoff between precision and nonstationarity (Hull 2007, 217; Jorion 2007, 265). As
always, the choice of length of the sample period reflects a trade-off between using
longer and shorter sample sizes. Longer intervals increase the accuracy of estimates but
can use irrelevant data, thereby missing important changes in the underlying process
(Jorion 2007, 263).

The HS method has a number of advantages over the VC method. Firg, it makes no
explicit assumptions about the volatilities of returns and the covariances between them.
Second, it makes no assumptions about the shape of the distributions themselves. In
particular, it makes no assumption of normality (Simons 1996, 8). Furthermore, the HS
method is relatively simple to implement if historical data have been collected in-house
for daily marking-to-market. The same data can then be stored to be later reused in
estimating VaR. The HS method also deals directly with the choice of horizon for
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measuring VaR: returns are simply measured over intervals that correspond to the
length of the horizon. For instance, to obtain a monthly VaR, the user would reconstruct
historical monthly portfolio returns over, say the last five years. The daily VaR can also
be multiplied by the sgquare root of time to obtain longer holding periods (Hull 2007,
220), but the first mentioned time aggregation method is theoretically more robust.
Perhaps the most important advantage of HS is that it can account for fat tails and,
because it does not rely on valuation models, it is not prone to model risk. The method
is intuitive, robust and perhaps the most widely used method to compute VaR (Jorion
2001, 223).

On the other hand, the HS method has a number of drawbacks. Firgt, it assumes that
the distribution of the return r; remains unchanged from the sample period to the
prediction period. Given that VaR is mainly concerned with tail probability, this
assumption implies that the predicted loss cannot be greater than that of the historical
loss. This is definitely not the case in practice. Further, this assumption implies that the
distribution remains stationary trough time, and therefore the simple HS method will
miss situations with temporarily elevated volatility (Jorion 2007, 265). Second, for
extreme quantiles (i.e. when « is close to zero or unity), the empirical quantiles are not
efficient estimates of the theoretical quantiles (Tsay 2005, 300). In fact, the VC method
provides much more efficient estimates in terms of sampling error than the HS method
(see e.g. Jorion 2007, 124-128). This problem of inefficient estimates in conjunction
with the HS method can, though, be alleviated by an econometric sampling method
called bootstrapping, laid out for example in Tsay (2005).

The HS method also entails some practical problems in addition to the theoretical
problems given above. Firgt, it assumes that a sufficient history of price changes is
available. Some assets may have short histories, or there may not even be a record of an
asset’s history (Jorion 2007, 265). The approach also leaves wholly unanswered the
optimal choice of the moving window that is used as the sample period. As longer
sample periods lead to more efficient quantile estimates — as can be seen for example
from equation (3.8) — they might entail events that are no longer relevant or are
unrepresentative of the immediate future. Further, when using long samples, the method
is also unable to distinguish between high and low volatility periods and as a result it
might generate inaccurate estimates (Bekiros et al. 2005, 227). Then again, short
samples lead to more inefficient estimates and may omit important events, meaning that
the tails will neither be well represented. A final drawback is that the method quickly
becomes cumbersome for large portfolios with complicated structures (Jorion 2007,
265). Many of these problems related to the HS method can though be solved or
alleviated by various extensions to the method. The next subsection considers these
extensions.
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3.3.2 Extensonsto historical simulation approach

The basic historical simulation approach assumes that each day in the past is given
equal weight. More formally, if n day-to-day changes are used, each of them receives a
weight of 1/n. Boudoukh, Richardson and Whitelaw (1998) suggest that more recent
observations should be given more weight because they are more reflective of current
volatilities and current macroeconomic variables. The natural weighting scheme to use
is one where weights decline exponentially. Suppose we are now at the end of day n.
The weight assigned to the change in the portfolio value betweenday n—iandn—i + 1
is A times that assigned to the change between day n—i + 1and n—i + 2. In order for
the weights to add up to 1, the weight given to the change betweenday n—i andn—i +
lis
/'"*@- 1)
= ) (3.10)
i-/"
where n is the number of days. As A approaches 1, this weighting scheme approaches to
the basic HS approach, where all observations are given a weight of 1/n. VaR is then
computed by ranking the observations from the worst outcome to the best. Starting from
the worgt outcome, weights are summed until the required quantile of the distribution is
reached. The best value for A can be obtained by experimenting which value backtests
best. An illustration of applying this hybrid (combination of the HS and RiskMetrics)
method is given in Boudoukh et al. (1998). This extension solves the problems related
to the optimal size of the sample period, since it is not really necessary to disregard old
observations as we move forward in time because they are given very little weight.
Empirical results in Boudoukh et al. (1998) show significant improvement in statistical
performance of this hybrid approach to ssmple HS, and this improvement is most
pronounced for fat-tailed data series.

The assumption of stationarity of the return distribution in HS can be relaxed by
incorporating volatility updating into the HS approach. Barone-Adesi, Giannopoulos
and Vosper (2002), and Hull and White (1998) suggest a way in which a volatility
updating scheme, such as EWMA or GARCH(1,1) can be used in parallel with the HS
approach. Suppose that the daily volatility for a particular market variable estimated at
the end of day i — 1 is g;. This is an estimate of the daily volatility between the end of
day i — 1 and the end of day i. Suppose it is now day n. The current estimate of the
volatility of the market variable is on+1. This applies to the time period between today
and tomorrow, which is the time period over which VaR is being calculated.

Suppose that ons1 IS twice ;. This means that we estimate the daily volatility of a
particular market variable to be twice as great today as on day i — 1. This means that we
expect to see changes between today and tomorrow that are twice as big as between day
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i —1 and i. When carrying out the historical simulation and creating a sample of what
could happen between today and tomorrow based on what happened between day i — 1
and day i, it therefore makes sense to multiply the latter by 2. In general, when this
approach is used, the value of a market variable S under the ith scenario becomes

s, S..*(§ -SS—l)Snﬂ/Si (3.11)

Each market variable is handled in the same way. This approach takes account of
volatility changes in a natural and intuitive way and produces VaR estimates that
incorporate more current information. The VaR estimates can be greater than any of the
higtorical losses that would have occurred for our current portfolio on the days we
consider. Hull and White (1998) produce evidence using exchange rates and stock
indices to show that this approach is superior to traditional historical simulation and to
the exponential weighting scheme of Boudoukh et al (1998). More complicated models
could be developed where observations are adjusted for the latest information on
correlations as well as for the latest information on volatilities (other models than
EWMA or a simple GARCH). A comparison of the approach of Barone-Adesi et al.
with alternative risk measurement methods is in Pritsker (2000).

The bootstrap method is yet another variation to the basic HS approach. It involves
creating a set of changes in the portfolio value based on historical movements in market
variables in the usual way. We then sample with replacement from these changes to
create many new similar data sets. From these new data sets we then aggregate a new
VaR figure, which usually contains less variance, and is therefore more accurate, than
estimates produced by unbootstrapped HS methods (Tsay 2005, 192).

The implemented methods in this thesis for the HS approach are: the traditional
approach to HS, using a moving window of 250 days, HS with GARCH(1,1) volatility
incorporated by the method suggested by Hull and White (1998); and the traditional HS
method implemented to the filtered return series y; = r¢ /ot (See e.g. Jorion 2007, 265).
No bootstrapping method is implemented in this thesis. Table 6 below lists these
implemented variations to the HS method and their denotations.
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Table 6 Historical simulation VaR models and mnemonics
Distribution Volatility Return series Mnemonic
Historical distribution N/A re HS
Historical distribution GARCH(1,2) re HS(GARCH)
Historical distribution GARCH(1,1) Vi HS*
Notes:

(1) The HY{GARCH) mode uses the volatility updating scheme suggested by Hull and White
(1998), whereas the HS* model can be seen as a simplification of this method (see Jorion
2007, 265).

(2) Common choisesfor the window length in smple HS are between 250 and 750 days.This
Thesis applies a window of 250 days based on the observations of Brooks and Persand
(2002, 91) and to align the HS approach with the VC approach in this thess.

(3) No bootsrapping methods are implemented in these HS models.

(4) These HS methods areimplemented in the mean-zero framework (i.e. absolute VaR).

3.4 Monte Carlo simulation approach

3.4.1 Basicprinciples

Monte Carlo (MC) analysis is a powerful method for calculating VaR. It can account for
awide range of exposures and risks, including nonlinear price risk and volatility risk. It
is flexible enough to incorporate variation in volatility, fat tails, and extreme scenarios.
Simulations generate the entire return distribution, not just one quantile, and can be used
to examine, for instance, the expected loss beyond particular VaR. MC simulation can
also incorporate the passage of time, which will create structural changes in the
portfolio. This includes the time decay of options; the daily settlement of fixed, floating,
or contractually specified cash flows; or the effect of prespecified trading or hedging
strategies (Jorion 2007, 267).

The Monte Carlo simulation method for computing VaR is twofold. First, the
stochastic process, and its parameters, that governs the dynamics of price changes of
financial variables in question needs to be specified. Second, this process is used to
generate the probability distribution for price changes AS, from which a certain quantile
contingent upon the confidence level, i.e. VaR, can be estimated (Hull 2007, 248-249;
Jorion 2007, 265-266).

Stochagtic processes are discussed in more detail in the end of section 2 of the thesis.
A popular, smple stochastic process is the geometric Brownian motion (see eq. 2.20),
which is the one assumed for price changes in this thesis. The solution to this stochastic
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differential equation is § :Soexp?ém- %sfﬁ +5,2 2 See Brodie and Glasserman
a

(1998). Thus simulating S amounts to smulating z. Since we are predicting one-step
ahead VaR, this can be written as

=S, expggnp —s +stzt_ (3.12)

where z is simulated from a standard normal distribution (i.e. normal distribution with
mean zero and standard deviation of one). It is done N times, from which the empirical
ath quantile for ry = log(S / S-1) is estimated. The MC method is thus similar to the HS
method, except that the hypothetical changes in prices AS for a asset i are created by
random draws from a prespesified stochastic process instead of sampled from historical
data. In this thesis N is set at 5000, which is a sufficient nhumber of simulations to
produce satisfactory VaR estimates.

The biggest drawback of this approach is its computational time, because a large
number of scenarios have to be generated. If 1000 sample paths are generated with a
portfolio of 1000 assets, the total number of valuations amounts to 1 million. There are
though proposed methods that limit the number of portfolio valuations, such as
Jamshidian and Zhu (1996). Nevertheless, this method is most expensive to implement
in terms of infrastructure and intellectual development (Jorion 2007, 267). Another
evident weakness of the method is model risk. As MC relies on specific stochastic
processes for the underlying risk factors as well as pricing models for instruments, such
as options and mortgages, it is subject to the risk that these models are incomplete.
Further, as historical correlations are used to maintain the multivariate properties of the
risk factors when generating scenarios in MC. During market crises, when most
correlations tend to increase rapidly, a MC system is likely to underestimate the
possible losses (Barone-Adesi, Giannopoulos & Vosper 2002, 33).

3.4.2 Extensionsto Monte Carlo simulation approach

When Monte Carlo ssimulation is used, there are ways of extending the approach so that
market variables are no longer assumed to be normal. One possibility is to assume that
the variables have a multivariate t-distribution, by simulating z in equation (3.12) from
Student’s t-distribution. As this distribution entails more probability mass in its tails
than the normal, this has the effect of giving higher value to the probability that extreme
values for the variables occur, which ultimately leads to higher VaR estimates (Hull
2007, 249-250). Numerous alternative distributions (and stochastic processes) could
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also be assumed for the price changes but, as discussed in section 2 of the thesis, these
aternatives lack pure theoretical foundations. Hence, their use is somewhat
guestionable even if they might appropriately fit in the data.

For this reason, no other process, than the geometric Brownian motion, is assumed
for the price changes in this thesis. Yet, two aternative approaches to MC simulation
using geometric Brownian motion (and hence making the normality assumption) are
implemented in this thesis. for the first model the volatility parameter for simulation
purposes is estimated in traditional methods by an MA (250) model, and for the second
model volatility is estimated by GARCH(1,1). These VaR models are referred to asMC
and MC(GARCH), respectively. Both of these models are calculated in the mean-zero

(i.e. absolute VaR) framework, except for the simulation processes where 4 is estimated

by m :ilé_n_lri , Where n is set at 500. For the simulation process 5000 sample
n- =

paths are generated to produce stabile enough VaR forecasts.
3.5 Extremevaluetheory approach

3.5.1 Evolution of theory

All the previous methods estimate the quantiles using information from the whole
distribution. Alternatively, since the quantiles at 1% or 5% are ‘extreme’ values for a
distribution, we can focus on modelling the tails directly, which brings usto the extreme
value theory (Bao et al. 2006, 107). The EVT-based methods for tail estimation are
attractive because they rely on sound statistical theory that offers a parametric form for
the tail of adistribution (Bekiros et al. 2005, 212).

The methods for applying the extreme value theory have undergone some changes
along the years. Primarily, the EVT theory was developed by examining the limiting
distribution of the sub-sample minima (or maxima). Sub-sample minima are achieved
by dividing the whole sample into multiple non-overlapping sub-samples and finding
their minimum values. Under the independent assumption, this limiting distribution of
the normalized minimum is the generalized extreme value (GEV) distribution of
Jenkinson (1955). It encompasses three types of limiting distributions of Gnedenko
(1943); i.e. Gumbel, Frétchet, and Weibull families. For a more comprehensive
treatment of this EVT method, see Embrechts, Klupperberg and Mikosch (1997). This
method, referred to as Block Maxima (BM), however, encounters some difficulties
when used for VaR calculation. First, the choice of subperiod length is not clearly
defined. Second, the approach is unconditional and, hence, does not take into
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consideration effects of other explanatory variables (Tsay 2005, 318). To overcome
these difficulties, a modern approach to EVT has been proposed in the statistical
literature; see Davidson and Smith (1990) and Smith (1989). Instead of focusing on the
extremes (minimum or maximum), the new approach focuses on exceedances of the
measurement over some high threshold and the times at which the exceedances occur.
Thus, this new approach is referred to as peaks over threshold (POT), and it isthe EVT
method applied in thisthesis.

According to the POT method, we fix a low threshold u and look at all exceedances
of r; over this threshold. The choise between high and low threshold depends on which
tall (right or left) of the distribution is of interest to us. To be consistent with the rest of
the thesis, a low threshold is chosen (i.e. u < 0). Namely, supposing that F(r) is the
cumulative distribution for the variable r and u is avalue of r in the left hand tail of the
digtribution. The probability that r lies between u —y and u (y > 0) is F(u) — F(u —y).
The probability that r exceeds u is F(u). Define F,(y) as the probability that r lies
between u—y and u conditional onr < u. Thisis

_FU)-F-y)
F.(y) = FQ) (3.13)

The variable F,(y) defines the left tail of the probability distribution. It isthe cumulative
probability distribution for the amount by which r exceeds u given that it exceeds u
(Hull 2007, 224).

Balkema and de Haan (1974) and Pickands (1975) studied the asymptotic
behaviour of these threshold exceedances and proved for a large class of the underlying
distribution Fy(y) that its limiting distribution, as the threshold is raised, is the
Generalized Pareto distribution (GPD) which is given by

G,,(y) =1- gi x%% (3.14)

where £ is the shape parameter and £ is the scale parameter. The shape parameter ¢
defines the heaviness of the tail. These parameters can be estimated from data by
maximum-likelihood methods or by estimators developed by Hill (1975) and Pickands
(2975). (Maximum-likelihood methods are applied in this thesis) Essentially all the
common continuous distributions of statistics belong to this class of distributions. For
instance, the case ¢ > 0, known as hyperbolic decline, corresponds to heavy-tailed
distributions, such as the Pareto, Student’s, etc. The case ¢ — 0, known as exponential
decline, corresponds to distributions like the normal or the lognormal whose tails decay
exponentially. The short-tailed distributions with finite endpoints, such as the uniform
beta, correspond to the case & < 0. For most financial data £ is positive and in the range
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of 0,25 to 0,4 (Hull 2007, 224-225; Lux & Ausloos 2002, 379; Bekiros et al. 2005,
212).

3.5.2 Estimating value at risk via extreme value theory

This subsection now discusses how the above presented results can be used in
estimating VaRs. Letri, i =1, ..., ny, bethe sample of returns exceeding the threshold
u, with its size being n,. If those n, exceedances are assumed to be identically and
independently distributed (i.i.d.) with an exact GPD distribution then the maximum
likelihood estimates of the GPD parameters ¢ and S are consistent and asymptotically
normal as n, — oo provided that & > —1/2 (Smith 1987). Using the maximum-likelihood
estimators of these parameters, VaR with confidence level X = 1 — «, can then be
derived as (see appendix 2 for the entire derivation)

1oy,

Var@) =u- 2a- Sﬁ%a : (3.15)
e

x
m)@m\
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As mentioned, this EVT method was developed under the i.i.d. assumption on seriesin
guestion. The theory has, however, been extended to serially dependent observations
provided that the dependence is weak. See Berman (1964) and L eadbetter, Lindgren and
Rootzén (1983). Hence, EVT digtributions could be directly applicable to return series
that have long as well short memory (Bao et a. 2006, 103).

An important issue in implementing the POT approach is how to choose the
threshold u. For example, if we are interested in the 5% quantile, then the chosen u must
be greater than q(0,05). This thesis follows Neftci (2000) and implements the empirical
10% quantile for u. The choice of the optimal threshold is a delicate issue since it is
confronted with a bias-variance trade-off. If too low threshold is chosen, estimates
might be biased because the limit theorems do not apply anymore while high thresholds
generate estimates with high standard errors due to the limited number of observations.
Alternative methods for choosing the u entail using the plot of the sample mean excess
function (MEF) (see e.g. Tsay 2005, 320-321; and Embrechts et al. 1997), or
aternatively one might estimate the threshold value u to decide which extremes are
really extremes (see Gonzalo & Olmo 2004).

This thesis implements the more modern peaks over threshold EVT method, rather
than the block maxima method, for calculating VaR estimates, which leads to using the
generalized Pareto digtribution. The threshold level is chosen as the 10% empirical
guantile, following Neftci (2000). As the EVT was developed under the i.i.d.
assumption — though later it has been extended to weakly dependent series as well —
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‘filtering’ the return series might prove useful (see e.g. Alexander 2001, 97). Thus,
besides applying the generalized Pareto distribution to the return series r;, denoted by
GPD, it isalso applied to the filtered return series y; = r /oy, denoted by GPD*.

3.6 Comparison of different approaches assumptions and abilities

VaR models play akey role in the risk management of today’s financial ingtitutions. A
number of VaR models are in use and all of them have the same aim, to measure the
size of potential future losses as a predetermined level of probability. There are a variety
of approaches used by VaR models to estimate the potential losses. Models differ, in
fact, in the way they calculate the density function of future profits and losses of current
positions, as well as on the assumptions they rely on.

Linear VaR models, basically meaning the VC approach and its extensions such as
the RiskMetrics, impose strong assumptions about the underlying data. For instance, the
density function of daily return follows a theoretical distribution (usually normal) and
has constant mean and variance. The empirical evidence about the distributional
properties of speculative price changes provides evidence against these assumptions,
e.g. Kendall (1953) and Mandelbrot (1963). Risk managers have also seen their daily
portfolio’s profits and losses to be much larger than those predicted by the normal
distribution. Embrechts et al. (1997) and Longin (2000) propose the use of extreme
value theory (EVT) to overcome the last problem. Unfortunately, this approach is
unsuitable in general for portfolios of derivatives, where losses may be limited by
contractual terms. As an example, the maximum loss on an option spread (see e.g. Hull
2006, 225-234) is bounded by the difference between the two strike prices.

The VC VaR method has two additional major limitations. It linearises derivative
positions and it does not take into account expiring contracts (Barone-Adesi et al. 2002,
33). These shortcomings may result in large biases, particularly for longer VaR horizons
and for portfolios weighed with short out-of-the-money options. Therefore this
approach is often used for investment portfolios. (It is after all closely related to the
popular Markowitz mean-variance method of portfolio analysis.) It is less commonly
used for calculating the VaR for the trading operations of a financial institution. Thisis
because financial institutions like to maintain their deltas with respect to market
variables close to zero (Hull 2007, 251). To overcome the problems of linearising
derivative positions and to account for expiring contracts, risk managers look at
simulation techniques (HS and MC). Pathways are simulated for scenarios for linear
positions, interest rate factors and currency exchange rates and are then used to value all
positions for each scenario. The VaR is then estimated from the distribution (e.g. the 1%
percentile) of the simulated portfolio values.
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Monte Carlo simulation is widely used by financial institutions around the globe.
Nevertheless, this method can attract severe criticism. Namely, the generation of the
scenarios is based on random numbers drawn from a theoretical distribution, often
normal. Such a distribution not only does it not conform with the empirical distribution
of most asset returns, but it also limits the losses to around three or four standard
deviations when a very large number of simulation runs is carried out. To put this into
perspective, as large as twenty standard deviations movement has been witnessed in
actual financial data, when the S&P index lost 20% of its value on October 19, 1987
(Jorion 2007, 358).

Recognizing the fact that most asset returns cannot be adequately described by a
theoretical distribution, an increasing number of financial ingtitutions are using
historical simulation, where each historical observation forms a possible scenario, see
Butler and Schachter (1998). A number of scenarios are generated and in each of them
all current positions are priced. The resulting portfolio is more realistic since it is based
on the empirical distribution of risk factors.

HS has still some serious drawbacks. Long time series of data are required to include
extreme market conditions. The fact that asset risks are changing all the time is ignored.
Historical returns are used as if they were i.i.d. random numbers. A consequence of this
usage is that during highly volatile market conditions HS underestimates risk, as
documented for example by Vlaar (2000). To remedy this problem Hull and White
(1998) and Barone-Adesi et al. (2002) suggest to draw random standardized returns
from the portfolio’s historical sample and scale these returns by the current level of
volatility. This method generates the complete distribution of the current portfolio’s
profits and losses including the effects of volatility changes, overcoming limitations of
most current VaR models. Table 7 below briefly summarizes the main benefits and
disadvantages of each presented VaR approach.

Table7 Main advantages and disadvantages of VaR approaches
Approach  Nonlinear instruments Advantages Disadvantages
VvC To some extent Speed, simplicity Unaccuracy
HS Yes No specific distribution Strong i.i.d. assumption
MC Yes Versatility Model risk, heaviness
EVT No Allowsfor 'fat tails  (Strong) i.i.d. assumption

In table 7 a certain approach’s ability to handle nonlinear instrumentsis reported in a
separate column as this issue is of great importance when selecting the appropriate VaR
approach for one's portfolio. Though the VC approach is simple it is not able to handle
nonlinear instrumets satisfactorily. This often leads to its dismissal when choosing
among VaR models. The EVT approach is theoretically more appealing than the VC
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approach but it also lacks suitability for portfolios of derivatives. Besides this the EVT
approach also relies heavily on i.i.d. returns which can be somewhat questionable as one
usually observes clustering in the second moment. However, the theory has been
extended to serially dependent observations provided that the dependence is weak,
hence the brackets in table 7 in EVT’ s disadvantages. These facts considered the HS
and MC models would seem most appealing. The MC approach is versatile enough to
be suitable for portfolios of derivatives but it fill relies on a theoretical distribution for
creating its scenarios. Besides relying on a theoretical distribution the MC approach is
also rather heavy to implement and it is prone to model risk. The HS approach on the
other hand does not rely on theoretical distributions as it implements the empirical
distribution itself. This, however, comes at a cost as a straightforward implementation
of the empirical distribution directly states that one assumes returns to be independent
and identically distributed. Suggestions to remedy this problem have, however, been
made and with the above considerations these suggested extensions to historical
simulation would seem very appealing.
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4 COMPARISON METHODSFOR VALUE AT RISK MODELS

4.1 Backtesting procedures with exception rates

4.1.1 Empirical coverage probability

Whatever the methodology used for calculating VaR, an important reality check is
backtesting. This involves testing how well the VaR estimates would have performed in
the past (Hull 2006, 450). An alternative method for testing VaR models is known as
stress testing, which involves estimating how the portfolio and VaR model would have
performed under extreme market moves (Hull 2007, 212). As backtesting provides a
consigtent framework for evaluating the performance of different VaR models, it is
implemented in this thesis in order to discriminate amongst alternative VaR models. It
is worth noting, however, that the chosen out-of-sample period in this particular thesis
encompasses a market crisis period (see table 2 and appendix 1). Hence, the aspect of
stresstesting is also addressed in this thesis.

There are a number of theoretical and empirical studies on (backtesting) techniques
for evaluating VaR models, such as Kupiec (1995), Crnkovic and Drachman (1995),
Jackson, Maude and Perraudin (1997), Lopez (1998) and Christofferson (1998). The
Basel Committee (1996a) has also given its own guidelines for backtesting. The
majority of these methods concentrate on the days when the actual portfolio change
exceedsthe VaR estimate. These violations are referred to as exceptions.

There are a few attributes which are desirable for VaR estimates, but there is no
direct way of observing whether the estimates are precise. However, a number of
different indirect measurements will, together, create a picture of their precision
(Boudoukh et al. 1998). The first desirable attribute is unbiasedness, i.e. a requirement
that the estimates are accurate. This property requires that the VaR estimate is the a%
tail. Verification of this property can be done by considering the number of exceptions.
Suppose that the time horizon is one day and the confidence limit is X. If the VaR
model under consideration is accurate (unbiased), the probability of the VaR estimate
being exceeded on any given day isa = 1 — X. Suppose that we look at atotal of P days
(length of the out-of-sample period) and we have defined an indicator function ly(a),
which receives the value of 1 if an exception occurs and zero otherwise. Now we can

observe the days that VaR limit is exceeded, by m = élmh(a), (see table 2 for

definitions of R and T) from which we can derive the empirical coverage probability
(i.e. theviolation rate) as (Hull 2007, 208)
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Thisempirical coverage probability &, can be compared with the chosen probability
of loss a, i.e. its nominal value. The model that gives VaR forecasts with &, closest to

its nominal value is the preferred model. In addition, this thesis implements a powerful

statistical likelihood ratio test for coverage probability, suggested by Kupiec (1995) to
obtain significance levels for the acceptance or rejection of a,. Thus, the relevant null

hypothesis is Ho: a4, =a, against the alternative Hy: a,! a. As the number of

exceptions follows a binomial digtribution the likelihood ratio test statistic for
unconditional coverage (LR,) is constructed as

LR, =-2In(@- a)*™a™)+2In(1- 4,)>"@,)") (4.2)

where the maximum likelihood estimator of &, can be obtained from equation (4.1).

This test statistic should follow a chi-square distribution with one degree of freedom.
The null hypothesis Hy is accepted whenever LR is Satistically insignificant as values
for the test statistic are high for either very low or very high numbers of exceptions.
There is exactly a 5% probability that the value of a chi-square variable with one degree
of freedom will be greater than 3,84. Therefore, it follows that at 5% significance level
the VaR model should be rejected, based on biasedness, whenever the expression in
eguation (4.2) receives avalue greater than 3,84.

4.1.2 Basel Committee' s guidelinesfor backtesting

The Basel Committee (19964) has also announced its own framework for backtesting in
the Amendment of 1996, and it requires for banks' VaR models to be backtested. Banks
should use both actual and hypothetical changes in the daily profit and loss (P&L) to
test a one-day VaR model that has a confidence level of 99%. The use of actual and
hypothetical changes makes different assumptions on the portfolio composition during
the holding period considered. First, comparing the VaR with the hypothetical change in
the portfolio value is calculated on the assumption that the composition of the portfolio
remains unchanged during this time period. The other method is to compare VaR to the
actual change in the value of the portfolio during this time period. VaR itself is
invariably calculated on the assumption that the portfolio will remain unchanged during
the holding period, and ergo the former comparison based on hypothetical changes is
more logical. However, it is the actual changes in the portfolio value that risk
management is ultimately interested in. The backtesting procedures in this thesis
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conform to both of these definitions, as the composition of our portfolio does not
change during the holding period (portfolios under scrutiny consist only of a single asset
and therefore their composition cannot change).

Basel Committee’s approach includes a requirement that banks will suffer increases
in their capital requirements if, over a twelve-month period (250 trading days) using a
rolling window of 60 days, their VaR models under-predict the number of losses
exceeding the 1% cut-off point, i.e. under-predict the number of exceptions. If a bank’s
VaR model has generated zero to four exceptions, it is said to be in the Green Zone; if
fiveto ning, it isin the Yellow Zone; and if there are more than ten exceptions, it isin
the Red Zone. Capital requirements for banks whose models are in the Yellow or Red
Zone will be increased by regulators by setting a higher multiplicative factor k for the
capital requirement (see section 1.2). Table 8 below illustrates the relationship between
the number of exceptions and the multiplicative factor k.

Table 8 Determination of the multiplicative factor
Zone Number of exceptions Multiplicative factor k Significance level
Green 0 3 <0,05
Green 1-4 3 0,278-0,380
Yellow 5 34 0,162
Yellow 6 3,5 0,059
Yellow 7 3,65 0,019
Yellow 8 3,75 0,005
Yellow 9 3,85 0,001
Red >10 4 <0,000

From table 8 it can be observed that the multiplicative factor k ranges from a
minimum of 3 to a maximum of 4 as the number of exceptions increases. Thisis a high
inducement for banks to develop VaR models that produce unbiased VaR estimates.
However, it is worth noting that this assessment method required by the Basel
Committee does not account for bunching of the exceptions, nor size of the VaR
estimates. These particular aspects will be addressed in the upcoming subsections.
Further, the Basel method clearly favors models that overestimate rather than
underestimate value at risk. This can be seen by applying the equation (4.2) to these
Basel parameters to determine the confidence limits the Basel Committee is implicitly
using for its decision to accept or reject a model. These confidence limits are reported in
column four of table 8. For example, with the Basel backtesting scheme (250-day
window) models exhibiting 7 or more, or zero exceptions should be rejected at 5%
significance level according to equation (4.2). The Basel Committee, however, imposes
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no penalty on models that exhibit zero exceptions (and therefore overestimate VaR) and
places them in the Green Zone.

This thesis does not per se implement the backtesing scheme proposed by the Basel
Committee (1996a) but, as can be seen from the above considerations, using the
empirical coverage probability and likelihhod ratio test satistic for unconditional
coverage capture the same aspects of VaR precision as the Basel Committee's proposal.
Ergo, the results of this thesis, based on these two criteria, are comparable to those
studies on VaR models predictive performance that rely on the Basel Committee's
proposal.

4.2 Size of the estimates and quantile loss function

4.2.1 Sizeof value at risk estimates

The above mentioned backtesting procedures concentrate on how well a given model’s
empirical coverage probability conforms to its theoretical value (accuracy). This aspect
does not, however, take fully into account the effects of the size of the VaR estimates.
Intuitively, in a search for an optimal model we are seeking to minimize our VaR
estimates — to minimize our capital charge — without jeopardizing the accuracy of our
estimates — so that we are sufficiently prepared for the occurrences of extreme losses.

This aspect can simply be taken into consideration by calculating the average size of
the VaR estimates during the forecast period (out-of-sample period). This criterion used
alone, however, might mislead into preferring models that severely under-predict VaR.
Therefore, it has to be used as a supplementary measure for model precision — accuracy
being the primary comparison criterion. Thisisdue to the fact that the lower the average
VaR compared to other models, the more exceptions we expect to observe, and vice
versa. However, if two models perform similarly in terms of coverage probability, we
can discriminate between them by preferring the model that produces lower VaR
estimates. This simple method of using average size of VaR estimates can, however, be
extended to take into account additional perspectives included in VaR estimation by
considering distinct loss functions, as proposed e.g. by Zielinski (2005). This desirable
feature is discussed in the next subsection.
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4.2.2 Predictive quantile loss function

In the context of estimating VaR, underestimating a quantile, i.e. VaR, is less desirable
than overestimating it, since underestimation might lead to higher capital charges, poor
capital allocation decisions and potentially even risks company survival. This suggests
measuring the error of estimation by an asymmetric loss function (Zielinski 2005).
Thus, this thesis implements an asymmetric quantile loss function, or check function,
Q(a), suggested by Koenker and Basset (1978) (for introduction and examples see
Koenker and Hallock 2001), in comparing the predictive ability of various VaR models.
This expected loss of gi(a) for agiven a is given by

Q@) =E(a - @) - a(a)) (4.3)

and it can provide a measure of lack-of-fit of a VaR model. The expected check
function Q(«) can be evaluated from the VaR forecasts by

G@=2 &la- @) - 4@) 4.4)

t=R+1

where P is the length of the forecast period (out-of-sample period) and ¢ (a) is
estimated by FY(a) = +$,G; () as discussed in section 3. A further inspection of
equations (4.3) and (4.4) indicates that a higher weight of (1 — a) is given to the loss
whenever an exception occurs and a lower wight of o whenever there occurs no
exception. Therefore, this loss function is asymmetric, as it prefers the case of no
violations, and accounts for the fact that underestimating VaR is less desirable than
overestimating it.

To see how this measure works it can be decomposed into two parts: | o — Iy(e) | and
| re — (@) | . The first part makes the function assymtrecis as descreibed above. The
second part |ry — qe)| can be thought to measures the forecst error of the VaR
estimate as it is the difference between the actual return and the VaR estimate. Note,
however, that this term cannot be defined as pure forecast error as VaR attempts to
predict a ceratain quantile of the returns distribution, not actual returns. This latter part
can also be seen to reflect the average size of the VaR estimates as higher VaR
estimates are further away from the center of the return distribution where most of the
probability mass is located, hence making this part of equation (4.3) higher for those
modelsthat generate higher VaR estimates on average.

The interpretation of this measure is similar to using the average size of the VaR
estimates as a model choice criterion. More precisely, a model that gives the VaR
forecasts §, (@) with the minimum value of QP (@) isthe preferred model. If two VaR
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models yield the &ameép (@), then the one that gives a more accurate empirical
coverage probability, i.e. &, closest to its nominal value a, is the preferred model.

4.3 Bunching of exceptions

Unbiasedness and size alone are insufficient benchmarks for adequate VaR estimates.
To see this, consider the case of a VaR estimate which is constant trough time, but also
highly precise unconditionally (i.e. achieves an average VaR probability which is close
to a). To the extent that tail probability is cyclical — due to fluctuations in the second
moment — the occurrences of violations of the VaR estimate will be bunched up. Thisis
avery undesirable property, since VaR models are required dynamic updating which is
sensitive to market conditions (Boudoukh et a. 1998, 8).

Consequently, the third attribute which is controlled is that exceptions do not bunch
up. If daily portfolio changes are independent, exceptions should be spread evenly
through the period used for backtesting. In practice, they are often bunched together,
suggesting that losses on successive days are not independent. This requires that a VaR
estimate should increase as the tail of the distribution rises. If alarge return is observed
today, the VaR should rise to make the probability of another tail event exactly a
tomorrow. In terms of the indicator variable 1y(a), this essentially requires that it isi.i.d.
This requirement is similar to saying that the VaR estimate should provide a filter to
transform a serially dependent return volatility and tail probability into a serially
independent 1(a) series (Boudoukh et al. 1998).

One way of assessing the extent of this serial dependence (autocorrelation) is to
check for autocorrelation at any lag in the Ii(a) time series (see e.g. Ljung & Box 1978).
This method, however, quickly becomes cumbersome when lots of data are used as
multiple time series and lags should be checked. Alternatively, one might use specific
test gatistics designed for capturing this serial dependence in violations to ease ones
effort. Probably the most widely adopted such statistics are Christoffersen’s (1998)
likelihood ratio test statistics for independence and conditional coverage (LRing and
LR, respectively). These tests are based on the null hypothesis that the probability of
an exception occurring is independent on what happened the previous day. More
precisely, the likelihood ratio test statistic for independence is defined as

LRind - 2|n((l_ ép)(TooTlo) (a"P)(Tan) )+ 2|n((l_ aO)Too aOTm (l' al)Tlo alTn) (45)
Tij measures the number of days in which state j occurred while it was at i the previous

day, and o; denotes the probability of observing an exception conditional on state j the
previous day. If indicators (i, j) are assigned to O if VaR is not exceeded and 1
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otherwise, then the maximum likelihood estimates of o and a; are given by (Toz / (Too +
To1)) and (T11 / (T1o + Tu1)), respectively. If an exception is independent of previous
day’s conditions then LRi,q should not be statistically significant. LRing follows a chi-
square distribution with one degree of freedom.

Further, an additional test of conditional coverage can be constructed by combining
the tests for unconditional coverage and independence, i.e. equations (4.2) and (4.5)
(Christofferson 1998) which allows for the simultaneous examination of biasedness and
bunching. Thus, this likelihood ratio for conditional coverage follows a chi-square
distribution with two degrees of freedom and is constructed as

LR =LRe + LRy (4.6)

However, as can be seen from the definition and null hypotheses of these LR
statistics (for independence and conditional coverage) it is clear that they are only
designed to secure that not too many exceptions occur on consecutive days. That is,
though they are relatively powerful statistical tests, they sill only capture seraial
dependence at only one single lag which clearly is not adequate for the purposes of this
thesis.

Therefore, in this case neither of these methods is preferable and an alternative
approach isimplemented. That is, clustering of the exceptions is addressed by observing
the out-of-sample quantile loss plots, based on equation (4.3), from which bunching (at
multiple lags) is relatively easy to detect. To see this, let us consider, for example, the
case of a = 0,05 with a given time index t. In this case the loss value in equation (4.3)
corresponds to

10,955, - G, (a)| if r.<q(a)
}0,05>1rt - §.(a)| if r>g(@)

Hence, alarger weight 0,95 is given to the forecast error (i.e. the difference between the
estimate and actual outcome) when a violation occurs and a smaller weight 0,05 if there
occurs no violation. This causes spikes in the plots whenever a violation occurs which
makes it relatively easy to discover possible bunching of the exceptions. In the plots
higher spikes indicate larger violations. This method, however, does not offer a direct
answer to what is acceptable degree of bunching but it still allows for a sensible
comparison of clustering across models.
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4.4 1mplemented comparison methods

This thesis evaluates one-step-ahead (one day) predictive ability of various VaR models
during three out-of-sample periods (see table 2) based on their accuracy, size of
estimates and bunching of exceptions. The models predictions are generated using two
of the most commonly implemented confidence levels in market risk VaR calculation,
i.e. X = 95% and X = 99%. The corresponding probabilities of loss are therefore a =
0,05 and o = 0,01, respectively. Most VaR models are expected to perform better the
closer the estimated quantile is to the mean of the distribution. Hence, divergent results
are expected when using different confidence levels.

In this thesis models accuracy is evaluated via empirical coverage probability, for
which confidence limits are generated by a relatively powerful likelihood ratio test
statistic for unconditional coverage (LRyc) proposed by Kupiec (1995). Size of the VaR
estimatess is evaluated by a predictive quantile loss function of Koenker and Basset
(1978) which is able to capture the important property that underestimating VaR is less
desireable than overestimating it. Finally, possible bunching of the exceptions is
addressed by observing the plots produced by the quantile loss function from which
clustering is relatively easy to detect. These evaluation methods are distinctively
implemented for each of the three out-of-sample periods (before, during and after
market crisis) to derive conclusions on the performance of the tested VaR models in
different market circumstances. The results for these comparison criteria are reported in
the next section of the thesis.
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5 DATAAND RESULTS

5.1 Description of the data

This thesis applies different approaches to value at risk modelling, summarized in table
9 below, to the stock markets of four different economies. The data for the stock indices
are retrieved from Thomson Financia database. Indices under examination are the S& P
500 Composite (United States), CDAX General ‘Kurs' (Germany), HEX General
(Finland), and India BSE National (India) (see appendix 1 for the indices' time series).?
The return series of each index is given by the log difference of these price series.
Henceforth, these indices are referred to by the names of their respective countries, i.e.
United States, Germany, Finland and India. The data comprises daily closing prices of
these indices from 1.1.1988 to 31.12.2004. This whole sample consisting of T
observations is split into an in-sample period of size R and an out-of-sample period of
size P so that T = R + P. For these samples a rolling window scheme is implemented.
That is, the (t — R)th one-step-ahead VaR prediction is based on observationst — R
throught—1, wheret=R+1,...,T.

Table9 Summary of implemented VaR models
Distribution Normal Historical Monte Carlo Pareto
VaR Model VC HS MC GPD
VC* HS* N/A GPD*
VC(GARCH) HS(GARCH) MC(GARCH) N/A
Benchmark RiskMetrics
Notes:

(1) Seesection 3 for a complete description of these VaR models.

(2) Variance-covariance (VC), historical simulation (HS), Monte Carlo simulation (MC) and
an extreme val ue theory approach that utilizes the generalized Pareto distribution (GPD).

(3) All the modelsin thisthesisthat are applied to thefiltered return seriesy: = ri /oy are
denoted by asterisk *.

The entire out-of-sample period is further divided into three two-year out-of-sample
evaluation periods according to market circumstances. These periods are referred to as
before, during and after market crisis periods (see table 2 for an exact definition of these
periods). More precisely, these periods represent market conditions before the bursting
of the so called technology bubble in 2000 (representing norma market conditions),

2 Datastream mnemonics (entity keys) for these particular indices are S& PCOMP (10003), CDAXGNI
(1900001545), HEXINDX (1000004651, and IBOMBSE (1000004256), respectively.
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during the market crisis period caused by this speculative bubble bursting (representing
market crisis period), and after the markets had settled from this shock (representing
normal market conditions). The indices for this thesis were chosen in a way that they
were all impacted by this crisis relatively simultaneously but with different intensity,
allowing for the division of the time series into these distinct periods. Thus, insights into
the performance of the tested VaR models under different market conditions can be
gained. While two of these periods represent normal market conditions, VaR models are
expected to perform divergently during these particular periods. This is due to the fact
that the predictions of VaR models in the after crisis period are to some extent affected
by the crisis period, whereas the before crisis period was preceded by a less turbulent
period which should lead to more conservative VaR predictions.

The choice of these indices was further driven, besides the requirement that they all
were simultaneously impacted by the market crisis of 2000, by another factor. That is,
the United States and Germany were chosen to represent developed stock markets,
whereas Finland and India represent emerging markets.® This choice grants the
opportunity of observing the performance of different VaR models in different market
contexts. To be more precise, it is expected that especially the emerging market time
series do not behave normally and exhibit some degree of skewness and kurtosis. To
revise whether these expectations carry some thruth in them, summary statistics for the
whole sample period of each index are provided in table 10 below.

Table 10 Summary statistics, whole sample period (1.1.1988-31.12.2004)

Index Mean St. dev Skewness  Excesskurtosis JB statistic
United States 0,00036 0,010 **%_.0,232 ***4 335 **%3426,20
Germany 0,00024 0,012 **%_.0,401 ***5 205 **%*4939,20
Finland 0,00037 0,018 **%_.0,425 ***8 504 *%%12968,20
India 0,00072 0,018 **%.0,110 **% G 226 ***6015,10

Notes: (1) The J B (Jarque-Bera) statistic is asymptotically distributed as a y“(2) under the
null of normality (Jarque & Bera 1987).
(2) See Shedecor and Cochran (1980, 78) for statistical tests of skewness and kurtosis.
(3) *** Sgnificant at the 1 percent level.

As anticipated, the results in table 10 suggest that the series are strongly nonnormal.
All are significantly leptokurtic (i.e. exhibit positive excess kurtosis, wich indicates

% In genera, markets that are perceived as most developed and therefore less risky are referred to as
devel oped markets, whereas markets where “ politics matters at least as much as economics to the to the
markets’ (Bremmer, 2005) can be characterized as emerging markets. In this thesis the division between
these two concepts is, above al, based on stock market volatility. Hence, the United States and Germany
fall under the category of developed markets, and Finland and India under the category of emerging
markets.



76

heavier tails and a higher peak than for the normal distribution) and skewed to the left
(i.e. exhibit more negative than positive returns). The Jarque-Bera (1987) satistical test
of normality also indicates that all the series are significantly nonnormal. Furthermore,
table 10 supports the view that United States and Germany can be classified as
developed stock markets, and Finland and India as emerging stock markets, as the
former group exhibits less deviations from normality than the latter based on the Jarque-
Bera statistic. This view is also supported by the fact that standard deviation and
kurtosis for the stock markets defined as developed are less than for the markets defined
as emerging. To further study the behaviour of these series during the three out-of-
sample periods (before, during and after market crisis) summary statistics covering each
of these periods is provided in table 11 below.

Table 11 Summary statistics, three evaluation periods

Index (Period) Mean St. dev Skewness  Excess kurtosis J B dtatistic
United States (1) 0,00097 0,012 ***-0,653 ***5,870 ***786,55
United States (2)  -0,00048 0,014 0,009 ***1,534 ***50,03
United States (3) 0,00063 0,009 ***0,059 *x%1,254 ***33,36
Germany (1) 0,00092 0,014 ***-0,846 ***2,932 ***238,37
Germany (2) -0,00066 0,015 ***-0,175 ***0,930 ***20,81
Germany (3) 0,00069 0,014 0,030 ***2411 ***123,55
Finland (1) 0,00161 0,018 ***-0,432 ***3,891 ***330,31
Finland (2) -0,00101 0,034 ***-0,344 ***2,809 ***174,22
Finland (3) 0,00015 0,015 ***-0,794 ***5,536 ***696,48
India (1) -0,00001 0,017 ***-0,075 ***2,529 ***130,81
India (2) -0,00105 0,022 ***-0,377 ***1,117 ***37,67
India (3) 0,00153 0,015 ***-1,280 ***10,582 ***2479,19
Notes:

(1) The J B (Jarque-Bera) statistic is asymptotically distributed as a *(2) under the null of
normality (Jarque & Bera 1978).
(2) See Snedecor and Cochran (1980, 78) for statistical tests of skewness and kurtoss.

(3) *** Sgnificant at the 1 percent level.
(4) Periods 1, 2 and 3 refer to before, during and after market crisis periods, respectively.
Seetable 2 for specific period definitions.

The summary statistics in table 11 support the splitting of these indices into the
periods presented in table 2 as all the series have higher standard deviations during the
defined crisis period (period 2) than before (period 1) or after (period 3) this period.
This difference is most prononunced for the emerging markets time series. The division
is also supported by the visual appearance of these time series (see appendix 1).
Furthermore, as this thesis assumes a long position in the chosen indices, and they all
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trend downwards during the crisis period (see means during period 2 in table 11 and
appendix 1 for visual confirmation) it seems natural to postulate the period spanning
1.1.2000-31.12.2001 as the crisis period. In this subperiod examination, presented in
table 11, all the indices still exhibit significant deviations from normality except for the
fact that United States during the crisis period and Germany during the after crisis
period do not appear to be statistically significantly skewed. These examinations of the
data indicate that these indices can plausibly be divided into three out-of-sample
evaluation periods — and that VaR models relying on normality might severely
underpredict the actual quantiles as all the time series considered exhibit significant
excess kurtosis.

5.2 Presentation of the research results

5.2.1 Tail coverage probability

Accuracy of the VaR models is measured with empirical coverage probability in this
thesis, as described in section 4. Accuracy is evaluated during three out-of-sample
periods (tables 12-14) in order to compare the potential changes in risk forecast
precision across different market conditions.

Table 12 below presents the results for empirical coverage probability for the pre-
crisis period (period 1). As shown in table 12 with o = 0,05 the conventional
RiskMetrics model produces satisfactory forecasts. In fact, it is the only model that
produces satisfactory forecasts across all countries according to the likelihood ratio test
statistic for unconditional coverage (denoted by ** in table 12). For most countries the
predicted coverage probability is close to the nominal coverage, and for the United
States and Finland RiskMetrics also produces the most accurate forecasts (presented in
bold font). All the models perform rather well across all countries, except for the HS
model that systematically seems to overpredict coverage probability (and therefore
underpredicts VaR) and the GPD* model that, on the contrary, underpredicts tail
probability (and therefore overpredicts VaR). Bear in mind that overpredicting VaR is
more desireable than underpredicting it as too low VaR predictions may lead to higher
capital charges imposed by regulators or even risk company survival. Most models
seem to overpredict tail probability for United States, Germany and Finland, except for
the EVT based models (GPD and GPD*). On the contrary, most models underpredict
tail probability for India. This underprediction is most severe for the GPD* model that
causes no single violation to occur during period 1.
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Table 12 Empirical coverage probability (%), period 1 (1.1.1997-31.12.1998)
Probability Model United States Germany Finland India
5% RiskMetrics **479 **5,21 **541 **511

VC **5,32 8,42 8,22 **470
VC(GARCH) **5 36 7,62 **5,81 **470
VC* **479 **5,21 **5,21 2,66
HS 7,85 9,22 8,82 **573
HS(GARCH) **65,13 **7 01 **6,01 2,86
HS* **5,13 **7 01 **5,01 2,86
MC **5,51 9,62 8,82 **470
MC(GARCH) **5,32 8,42 7,41 **4 91
GPD **3 64 **501 321 **532
GPD* 2,49 **3 41 321 0,00
1% RiskMetrics 2,49 2,81 **1,80 2,25
VC 2,30 421 341 2,04
VC(GARCH) 2,87 3,01 2,61 **1.64
VC* 2,30 2,40 2,20 **1,02
HS 2,11 2,00 3,01 2,25
HS(GARCH) **1 53 **1.60 2,00 **1,02
HS* **1 53 **1.60 2,00 **1,02
MC 2,68 421 3,61 2,25
MC(GARCH) 3,26 3,81 2,81 **1.43
GPD **134 **0,60 **0,60 **1,02
GPD* **0,57 0,20 **(,80 0,00
Notes:

(1) Seeequation (4.1) for empirical coverage probability.
(2) The best model in terms of empirical coverage probability is presented in bold font for
each index.
(3) ** denotesinsignificance at 5% level according to Kupiec's (1995) likelihood ratio test
statistic for unconditional coverage (equation 4.2). A satisfactory modd is insignificant.

During the pre-crisis period with o = 0,01, the risk forecasts of RiskMetrics are less
satisfactory than with a = 0,05, but only the GPD model beats RiskMetrics across all
countries. HS(GARCH) and HS* also perform well. Only the EVT based models are
able to improve their performance as the confidence level is raised from 95% to 99%
which is in accordance with expectations as the purpose of these particular VaR models
is to provide accurate forecasts for extreme quantiles. With o = 0,01 underprediction of
VaR, that was also observed with a = 0,05 for United States, Germany and Finland, is
rather obvious across all countries. Only GPD and GPD* occasionally overpredict VaR
at this probability level. Overall, no model appears to be particularly superior to
RiskMetrics, which works reasonably well for both a = 0,05 and a = 0,01 during the
pre-crisis period.
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Table 13 below presents corresponding results for the crisis period (period 2). The
observed findings are surprisingly similar to those during the before crisis period. With
o.= 0,05 al models perform rather similarly as in the pre-crisis period and it can be said
that most models' performance has even improved to some extent. There still exists
some overprediction of coverage probability for Germany but these results are not
notably different from those obtained during period 1. RiskMetrics again produces
rather satisfactory coverage and it is only beaten by the HS, HS(GARCH), HS* and
GPD models. All models besides the GPD* work rather suitably during the crisis period
with a = 0,05.

Table 13 Empirical coverage probability (%), period 2 (1.1.2000-31.12.2001)

Probability Model United States Germany Finland India
5% RiskMetrics **6,67 7,71 **4,60 **6,22
VC **5,29 7,31 **4,60 **6,83
VC(GARCH) **6,27 8,89 **4.80 **5,82
VC* **5,10 7,51 **3,40 **5,62
HS **5,49 **6,92 **5,80 **6,02
HS(GARCH) **5,10 **5,03 **4.20 **5,82
HS **5,10 **5,03 **4.20 **5,82
MC **5,69 7,31 **5,20 7,03
MC(GARCH) **6,08 8,70 **5,00 **6,02
GPD **4,12 **3,75 **3,60 **6,63
GPD* 1,96 7,31 1,80 **4,82
1% RiskMetrics **1,96 **1,19 2,00 2,81
VC **1,57 2,57 2,20 3,01
VC(GARCH) **1,76 **0,99 2,40 2,61
VC* **1,37 **0,99 **1,20 2,41
HS **1,76 2,17 2,20 2,21
HS(GARCH) **1,57 **0,99 **1,20 **1,41
HS **1,57 **0,99 **1,20 **1,41
MC **1,76 2,57 2,20 3,01
MC(GARCH) **1,57 **1,19 2,40 3,01
GPD **1,18 **0,79 2,00 **1,61
GPD* **(,59 **1,78 **0,80 **1,20
Notes:

(1) Seeequation (4.1) for empirical coverage probability.

(2) The best model in terms of empirical coverage probability is presented in bold font for
each index.

(3) ** denotesinsignificance at 5% level according to Kupiec's (1995) likelihood ratio test
statistic for unconditional coverage (equation 4.2). A satisfactory modd is insignificant.
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With o = 0,01 the results are as well rather similar to those in the before crisis period.
Some differences can though be noticed. As most models significantly overpredicted
coverage probability during the before crisis period, this overprediction, though it still
rather universally exists, no longer is as significant during the crisis period. Therefore, it
appears that the VaR models have rather adequately been able to adjust to the changes
in market conditions. Best performers during period 2 with o« = 0,01 are the
HS(GARCH), HS* and GPD* models, but it cannot be said that RiskMetrics
performance is insufficient. Overall, during the crisis period RiskMetrics works rather
well with = 0,05 and « = 0,01 and its performance is best challenged by the VC*,
HS(GARCH), HS* and GPD models.

Corresponding results for the post-crisis period are presented in table 14 below. With
a = 0,05 the RiskMetrics model again produces satisfactory risk predictions across all
countries. Only the HS(GARCH) and HS* models are able to match this performance.
The VC* model also produces rather satisfactory estimates during the after crisis period
with o = 0,05. Furthermore, the remainder of the models appear to significantly
underpredict tail probability (i.e. overpredict VaR) during period 3. Exactly the opposite
was observed for periods 1 and 2. Therefore, it seems that the predictions of these VaR
models are to some extent influensed by the preceeding turbulent period. That is, these
models adjust their VaR predictions upwards during the crisis period but as a more
tranquil risk regime is reached their reactions are not as dynamic downwards as they
were upwards.

With o = 0,01 the RiskMetrics model is also able to produce satisfactory results
across all countries, and no other model is able to match this. Most models still perform
well but not just as well as the RiskMetrics model. Closest challengers of RiskMetrics
are VC(GARCH), VC*, HS(GARCH), HS*, MC(GARCH), GPD and GPD*. The
underprediction of coverage probability, that was observed with o = 0,05, can also be
observed with a = 0,01. As mentioned, this probably is due to the fact that the crisis
period causes the VaR predictions to be somewhat conservative during the after crisis
period. This overprediction of VaR is, however, not as apparent with o = 0,01 as it was
with a = 0,05. Overall, with a = 0,05 and o = 0,01 the RiskMetrics performs best during
period 3 in terms of coverage probability and its performance is best challenged by the
HS(GARCH) and HS* models. The VC* model also performs rather well on this period
with both probability levels. Before drawing more comprehensive conclusions on the
overall performance of these various VaR models, i.e. the aggregate performance
covering all out-of-sample periods, attention is first paid to other comparison criteria, as
described in section 4.
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Table 14 Empirical coverage probability (%), period 3 (1.1.2003—-31.12.2004)
Probability Model United States Germany Finland India
5% RiskMetrics **4,16 *%4,90 **4,37 **3,78

VC 2,18 2,75 1,59 *%6,18
VC(GARCH) 2,38 **4,12 2,38 2,79
VC* **4,16 **4,51 2,78 **4,58
HS 2,77 1,96 2,38 7,17
HS(GARCH) **4 55 **471 **4 56 **6,37
HS* **4 55 **4 51 **4 56 **6,37
MC 2,38 1,96 1,39 **6,37
MC(GARCH) 2,38 **3 92 2,38 2,79
GPD 0,99 1,96 0,60 1,39
GPD* **475 9,22 1,19 1,99
1% RiskMetrics **0,79 **1,76 **0,79 **1,79
VC 0,00 **(,39 **0,79 2,39
VC(GARCH) 0,20 **1,18 **0,60 **1,39
VC* 0,20 **1 57 **0,79 **1,79
HS **(,59 0,20 **0,79 2,19
HS(GARCH) **(0,59 **1 37 **(,99 1,99
HS* **(,59 **1 37 **(,99 1,99
MC 0,20 0,20 **0,79 2,59
MC(GARCH) 0,00 **(,98 **(,60 **1 59
GPD **(,40 0,20 **(,40 **(,40
GPD* **(,40 5,49 **0,60 **1 59
Notes:

(1) Seeequation (4.1) for empirical coverage probability.
(2) The best model in terms of empirical coverage probability is presented in boldface for
each index.
(3) ** denotesinsignificance at 5% level according to Kupiec's (1995) likelihood ratio test
statistic for unconditional coverage (equation 4.2). A satisfactory modd is insignificant.

5.2.2 Predictive quantileloss

In addition to measuring the accuracy of value at risk estimates by empirical coverage
probability this thesis also considers additional perspectives of VaR models' precision.
To account for the asymmetric nature of VaR forecasting and average size of the VaR
estimates, a quintile loss function, as described in section 4, is implemented. Tables 15—
17 present the out-of-sample average quantile loss values QP(O,OS) and QP(O,Ol) as

defined in equation (4.4) for the before, during and after crisis periods. The best model
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in terms of Q,(a) (i.e. the model with the smallestQ,(a)) is indicated in bold font in

the tables for each country and for each «.

Table 15 below presents the results for the average quantile loss values for the pre-
crisis period (period 1). As shown in table 15 with a = 0,05 RiskMetrics produces the
smallest (i.e. the best) quantile loss values for Germany and India. In the United States
and Finland RiskMetrics' performance is beaten by several models but the differences
between models are only marginal. The only notable differences on period 1 with o =
0,05 can be observed in India where the average quantile loss values of GPD* are much
higher than for most models. As GPD* produced no violations during this period (see
table 12) it can be deduced that its VaR predictions are much too high. VC*,
HS(GARCH) and HS* models' performance is also rather poor in this particular case.

Table 15 Predictive quantile loss (%), period 1 (1.1.1997-31.12.1998)

Probability Model United States Germany Finland India
5% RiskMetrics 0,148 0,170 0,206 0,192
VC 0,143 0,184 0,222 0,196
VC(GARCH) 0,145 0,173 0,205 0,193
VC* 0,149 0,171 0,202 0,288
HS 0,147 0,188 0,224 0,196
HS(GARCH) 0,149 0,174 0,203 0,285
HS 0,149 0,174 0,203 0,286
MC 0,144 0,187 0,226 0,196
MC(GARCH) 0,146 0,176 0,208 0,194
GPD 0,142 0,180 0,217 0,193
GPD* 0,165 0,175 0,207 0,563
1% RiskMetrics 0,054 0,053 0,064 0,063
VC 0,054 0,070 0,079 0,070
VC(GARCH) 0,054 0,060 0,067 0,061
VC* 0,051 0,052 0,061 0,084
HS 0,053 0,059 0,073 0,069
HS(GARCH) 0,050 0,051 0,061 0,087
HS 0,050 0,051 0,061 0,087
MC 0,056 0,073 0,081 0,069
MC(GARCH) 0,056 0,063 0,070 0,060
GPD 0,047 0,050 0,066 0,062
GPD* 0,051 0,053 0,060 0,174
Notes:

(1) Seeequation (4.4) for predictive quantile loss.
(2) The best model in terms of predictive quantile loss is presented in bold font for each index
and for each a (i.e. the model with the smallest out-of-sample average quantile |0ss).
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During the pre-crisis period with a = 0,01 the results are very similar to those with «
= 0,05. RiskMetrics no longer produces the best results in terms of average quantile loss
inany country but it is not far behind from the best models' performance. Differencesin
model performance are still rather margina with the same exceptions as with a = 0,05,
i.e. the GPD* model is clearly the worst model and VC*, HS(GARCH) and HS* do
somewhat worse than the rest of the models. Particularly the GPD model seems to
perform rather well with o = 0,01 as it produces the best estimates in two countries out
of four (United States and Germany). Overall, in the pre-crisis period with o = 0,05 and
o.= 0,01 RiskMetrics is among the best models when measured by average quantile loss
and no considerable differnces between models average quantile losses are observed.
The only remarkable difference is for Indiawhere GPD* performs much worse than the
remaining models.

Table 16 below presents corresponding results for the crisis period (period 2). Once
again, no substantial disparities can be observed between models with both o = 0,05 and
a = 0,01. RiskMetrics is chosen as the best model only once, compared to twice in the
pre-crisis period, but its average quantile losses are very close to those of the best
performers. The only rather poor performance compared to other models in terms of
average quantile loss can be observed in Finland for GPD* where it produces a 0,06%
higher average quantile loss than the penultimate performer (HS) with a = 0,05. This
difference is not as obvious with o = 0,01. Furthermore, GPD* produces very similar
results as the other models in the remaining countries. In addition it is chosen as the best
model in India with a = 0,05. When looking at table 16 with a = 0,01 the GPD model
clearly stands out as it is chosen as the best model three times out of four. Nevertheless,
other models are not far behind GPD.

A comparinson of the results for the pre-crisis (table 15) and during crisis (table 16)
periods shows that the average quantile loss values have risen in the crisis period for the
emerging markets, whereas no remarkable difference can be observed for the developed
markets. This indicates that the impacts of the market crisis have been more severe for
Finland and India, making it even more difficult to forecast risks in these countries.
Then again, the market crisis appears to have had no remarkable impact on the risk
forecasts in United States and Germany measured in terms of predictive quantile loss.
Thisindicates that the market crisis period was less turbulent in the developed countries
than in the emerging countries. The summary statistics in table 11 verify this
observation.



Table 16 Predictive quantile loss (%), period 2 (1.1.2000-31.12.2001)

Probability Model United States Germany Finland India
5% RiskMetrics 0,154 0,159 0,395 0,256
VC 0,150 0,169 0,398 0,271
VC(GARCH) 0,153 0,150 0,405 0,253
VC* 0,154 0,148 0,422 0,252
HS 0,150 0,167 0,403 0,279
HS(GARCH) 0,156 0,148 0,406 0,256
HS 0,156 0,148 0,406 0,256
MC 0,150 0,169 0,403 0,273
MC(GARCH) 0,153 0,151 0,408 0,254
GPD 0,150 0,164 0,396 0,270
GPD* 0,167 0,157 0,486 0,246
1% RiskMetrics 0,050 0,040 0,134 0,082
VC 0,048 0,052 0,160 0,082
VC(GARCH) 0,050 0,038 0,150 0,076
VC* 0,050 0,039 0,150 0,075
HS 0,049 0,053 0,144 0,078
HS(GARCH) 0,051 0,039 0,150 0,073
HS 0,051 0,039 0,150 0,073
MC 0,048 0,053 0,162 0,083
MC(GARCH) 0,050 0,038 0,153 0,076
GPD 0,047 0,050 0,132 0,067
GPD* 0,055 0,044 0,169 0,071
Notes:

(1) Seeequation (4.4) for predictive quantile loss.
(2) The best model in terms of predictive quantile loss is presented in bold font for each index
and for each a (i.e. the model with the smallest out-of-sample average quantile |0ss).

Table 17 in turn presents the average quantile loss values for the after crisis period.
With both probability levels (a = 0,05 and a = 0,01) RiskMetrics is chosen twice as the
best model and its values are also very close to the best performers in the other
countries in terms of average quantile loss. Once again, as in the previous periods,
differences among models are small. Only GPD appears to produce somewhat larger
values than the other models, especially with a = 0,05. With a = 0,01 this difference,
however, diminishes. Overall, RiskMetrics performance is good in the after crisis
period and no single model can be said to be superior to it in terms of average quantile
loss.
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Table 17 Predictive quantile loss (%), period 3 (1.1.2003-31.12.2004)

Probability Model United States Germany Finland India
5% RiskMetrics 0,093 0,146 0,175 0,173
VC 0,103 0,161 0,189 0,194
VC(GARCH) 0,095 0,147 0,182 0,180
VC* 0,094 0,146 0,178 0,178
HS 0,100 0,163 0,184 0,195
HS(GARCH) 0,094 0,147 0,175 0,179
HS 0,094 0,147 0,175 0,179
MC 0,103 0,162 0,191 0,196
MC(GARCH) 0,095 0,146 0,184 0,179
GPD 0,119 0,187 0,251 0,238
GPD* 0,092 0,156 0,197 0,211
1% RiskMetrics 0,022 0,040 0,065 0,065
VC 0,027 0,042 0,066 0,073
VC(GARCH) 0,024 0,038 0,066 0,064
VC* 0,023 0,039 0,065 0,067
HS 0,026 0,042 0,069 0,074
HS(GARCH) 0,023 0,039 0,065 0,066
HS 0,023 0,039 0,065 0,066
MC 0,028 0,042 0,067 0,074
MC(GARCH) 0,024 0,038 0,066 0,064
GPD 0,032 0,051 0,078 0,078
GPD* 0,025 0,064 0,076 0,070
Notes:

(1) Seeequation (4.4) for predictive quantile loss.
(2) The best model in terms of predictive quantile loss is presented in bold font for each index
and for each a (i.e. the model with the smallest out-of-sample average quantile |0ss).

In the post-crisis period the average quantile loss values are once again higher for the
emerging markets (Finland and India) than for the developed markets (United States
and Germany). The same observation was made during the two previous periods as
well. Therefore, it appears that defining Finland and India as emerging markets and
United States and Germany as developed markets is well justified. Further, this
indicates that risk forecasting is more difficult in the emerging market context. As there
appeared no significant differences among different models performance in terms of
average quantile loss values, despite few minor exceptions, these results still provide
important information for the analysis as a whole. Comparing the quantile loss values
across the three periods unveils interesting information about the overall performance of
these VaR models.
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For the developed markets the average quantile loss values are of the same
magnitude for periods 1 and 2, but the after crisis values are considerably lower. For the
emerging markets the lowest values are also produced in the after crisis period, but
periods 1 and 2 also differ in their results. That is, the crisis period produces the highest
values, whereas the pre-crisis values lie inbetween the values of the crisis and after
crisis periods. For the developed markets this indicates that the VaR models adapt to the
high risk regime rather well (or alternatively the crisis period is not turbulent enough to
cause difficulties in risk forecasting in the developed markets). On the contrary, in the
emerging markets the crisis period causes poor performance in terms of average
quantile loss, indicating that VaR models are not fully able to adapt to this high risk
regime. Recall that (poor) performance in terms of average quantile loss is a constituent
of two separate factors. (high) number of exceptions and (high) forecast errors (see
equation (4.4)). Therefore, by combining the results of tables 12—14 and 15-17 it can be
seen whether models’ poor performance in terms of average quantile loss is due to high
number of exceptions, high forecast errors, or both. For Finland this dissection reveals
that models poor performance during the crisis period is mostly due to high forecast
errors, whereas for India the both factors (high number of exceptions and high forecast
errors) appear to be contributing to this poor performance (tables 13 and 16). Further,
this dissection also reveals that the good performance of the models in the post-crisis
period may be due to low number of exceptions rather than low forecast errors. Before
drawing final conclusions on the overall performance of VaR models yet another
important factor in value at risk models performance evaluation is considered: serial
dependence of violations.

5.2.3 Serial dependence of violations

The third desireable feature of VaR forecasts under inspection in this thesis is serial
dependence of exceptions (i.e. violations). As described in section 4, there are multiple
ways of examining this possible bunching of the exceptions. One might check for
autocorrelation at multiple lags in the indicator functions, I(«), time series or
alternatively use specific test statistics designed to capture this time dependence, such as
the likelihood ratio test gatistics for independence and conditional coverage. However,
as mentioned in the previous section, checking for autocorrelation a multiple lags
quickly becomes cumbersome when lots of data are used and the LR statistics are only
able to capture one lag in their calculations. Therefore, in this case, neither of these
methods is preferable and an alternative approach is implemented. That is, bunching of
the exceptions is addressed by observing the out-of-sample quantile loss plots, from
which bunching (at any lag) isrelatively easy to detect.
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Appendices 5-7 plot the out-of-sample loss values with « = 0,05 for the United
Statesevery timet =R+ 1, ..., T. Thisis the summand of the out-of-sample average
loss QP (a) inequation (4.4). The figures with a = 0,01 deliver largely the same results
and are therefore suppressed for the sake of space. Furthermore, the figures for the other
countries (Germany, Finland and India) exhibit similar features as for the United States
and are also suppressed. Note that a larger weight 0,95 is given to the loss when a
violation occurs and thus when there is a violation the loss value increases
simultaneously generating a spike in the plots. Therefore, the spikes in the plots in
appendices 57 represent violations making it relatively easy to observe possible
clustering of exceptions.

An overall observation of these plots reveals that in most cases the VaR models
generate large loss values (i.e. large spikes in the plots) at the same times, whereas
moderate loss values (i.e. a violation occurs but the forecast error is not that large,
perceived as small spikesin the plots) are not that universal across all models. Consider,
for example, the risk forecasts for the United States on period 1 (appendix 5). All VaR
models exhibit two large spikes during this period at the same times, whereas the
smaller spikes are not observed for every model. A closer look also reveals that even if
a spike occursit is not of the same magnitude for each model. Naturally, a smaller spike
is preferable as it indicates that even though a violation occurred the forecast error was
not that large. Overall, the plots in appendices 5-7 indicate that the VaR models behave
rather similarly in terms of when violations actually occur.

To address the issue of bunching observing these plots, episodes where many spikes
occur within a small amount of time are identified. Even though conclusions cannot be
made on what is an acceptable degree of bunching this ill allows for a sensible
comparison across models (i.e. is this bunching observed across all models or are some
models able filter possible autocorrelation in the second moment?). As a = 0,05 for all
the plots in appendices 5-16 one would expect to observe around 25 evenly spread
violations per plot. Episodes of significant bunching can be observed at least in
appendices 5 and 6. In most cases, when bunching is identified for one VaR model it is
also present for the rest of the models (see e.g. the second half of 1998 in appendix 5).
Only the magnitude of this bunching varies across models (compare e.g. HS and GPD*
models at the end of 1998 in appendix 5). However, occasions where some models
exhibit bunching and others do not are rather scarce. In appendices 5-7 such incidents
can be identified in the favour of EVT models in appendix 6 (at the beginning and end
of 2000). As mentioned these differences, however, are rare and do not alow for
systematic discrimination among the studied VaR models based on their ability to filter
serial dependence from the second moment of the return series. Next, given the above
findings, overall performance of the tested VaR models across all three out-of-sample
periods is considered.



88

5.2.4 Overall performance

The above presented findings suggest using empirical coverage probability as the
primary comparison criteria for model choice (as it showed most variation in models
performance, not to mention it measures the same aspect of model performance as the
Basel Committee’'s framework) and average quantile loss (as it measures a slightly
different aspect of model performance and showed sufficient differences between
models to alow for their sensible ordering). No significant differences were observed in
models’ performance in terms of ability to filter the serial dependence in the second
moment. Therefore, bunching of exceptions as a comparison criteria is dropped out
from the remaining analysis. Hence, concluding remarks are given considering the
combined performance of models during all three out-of-sample periods in terms of tail
coverage and quantile loss. First, each approach (and the models pertaining to this
particular approach) is bencmarked against the RiskMetrics model. After this, the
overall best VaR models are identified and thoroughly examined, separately for a =
0,05 and o = 0,01.

First, the models within the variance-covariance approach (VC, VC(GARCH) and
VC*) are benchmarked against the RiskMetrics model. Note that RiskMetrics also
pertains to the variance-covariance approach, and hence differences between these
models are simply due to differences in volatility estimation (as all the VC models in
this thesis are built upon the normality assumption). With o = 0,05 the RiskMetrics
model performs satisfactorily 11 times out of 12 during all three periods according to
Kupiec's (1995) likelihood ratio test gatistic for unconditional coverage (tables 12-14).
The corresponding results are 6, 7 and 9 times for the VC, VC(GARCH) and VC*,
respectively. The overall average quantile loss for RiskMetrics is 2,27% compared to
2,38%, 2,28% and 2,38% for VC, VC(GARCH) and VC*, respectively (tables 15-17).
Therefore, it seems that none of the considered VC models is able to match
RiskMetrics performance with o = 0,05 as it produces the most satisfactory tail
coverage and lowest average quantile loss. Out of the considered VC models
(RiskMetrics excluded) VC* appears most appealing. Further, this indicates that
filtering the retuns series might prove to be a useful within the VC approach as
VC(GARCH) and VC* implement the same GARCH(1,1) volatility model but in
different manner. With a = 0,01 RiskMetrics produces satisfactory tail estimates 7 times
out of 12 (tables 12-14) and 0,73% average quantile loss (tables 15-17). VC,
VC(GARCH) and VC* produce 3, 6 and 7 satisfactory tail estimates and 0,82%, 0,75%
and 0,76% average quantile losses, respectively. Therefore, with a = 0,01 it seems that
RiskMetrics still dominates but it is closely challenged by VC(GARCH) and VC*.
Overall, it is obvious that the simple VC model performs the poorest proving that
extensions to this simple model are useful. Out of the two considered extensions
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filtering (VC*) appears somewhat more useful than a straightforward implementation of
avolatility model (VC(GARCH)). Still, neither of these extensions performs as well as
RiskMetrics.

Next, the models within the historical simulation approach (HS, HS(GARCH) and
HS*) are benchmarked against RiskMetrics. With a = 0,05 the HS, HS(GARCH) and
HS* models produce 5, 11 and 11 satisfactory tail estimates out of 12 and average
quantile losses of 2,40%, 2,37% and 2,37%, respectively. The corresponding results for
RiskMetrics were 11 and 2,27%. Hence, HS(GARCH) and HS* match RiskMetrics
performance in terms of tail coverage but are somewhat inferior in terms of average
guantile loss. This difference, however, is very small. With o = 0,01 the HS,
HS(GARCH) and HS* models generate 3, 10 and 10 satisfactory tail estimates out of
12, compared to 7 by RiskMetrics, and 0,79%, 0,76% and 0,76% average quantile
losses, compared tro 0,73% by RiskMetrics. Therefore, it seems that with o = 0,01 the
HS(GARCH) and HS* models beat RiskMetrics in terms of tail coverage but not in
terms of average quantile loss. Differences in average quantile losses are only marginal
and, hence, it can be concluded that HS(GARCH) and HS* are superior to RiskMetrics.
Overall, the simple HS model performs the worst in terms of both tail coverage and
average quantile loss and seems inferior to RiskMetrics. HS's performance, however,
can be improved by incorporating volatility updating into the model. This thesis
considers two distinct approaches, HS(GARCH) and HS*, to alow for volatility
updating within the HS approach. These extension appear useful and perform as well as
the RiskMetrics model with o = 0,05 and even beat its performance with a = 0,01.
Between these two methods allowing for volatility updating within the HS approach no
winner can be identified as the results produced by these two models (HS(GARCH) and
HS*) are almost identical. The HS* model, however, is more simple in terms of
required programming, hence tilting the scale towards its benefit.

This thesis considered two models within the Monte Carlo simulation approach: the
simple Monte Carlo simulation (with normal distribution and historic volatility) and an
extension which utilizes GARCH(1,1) in its volatililty estimates. Both of these models
were estimated in mean-zero framework, except for the drift parameter in the stochastic
simulation process for which mean was estimated by historic average. Therefore, it
would be expected that the estimates of MC and MC(GARCH) would not differ much
from those of the VC and VC(GARCH) as they both rely heavily on the normality
assumption. With o = 0,05 MC and MC(GARCH) produce 5 and 6 times satisfactory
tall coverage out of 12, according to Kupiec's (1995) likelihhod ratio for unconditional
coverage, and 2,40% and 2,30% average quantile losses, respectively. As expected,
these results are very close to those of VC and VC(GARCH). Corresponding results for
RiskMetrics were 11 and 2,27%. Therefore, it seems that MC(GARCH) beats MC, but
it is no match for RiskMetrics. With o = 0,01 the MC and MC(GARCH) models



90

produce 2 and 6 satisfactory tail estimates and 0,84% and 0,76% average quantile
losses, respectively. These results, once again, are very close to those of the VC and
VC(GARCH) models and no match for RiskMetrics (7 and 0,73%). Therefore, overall,
it seems that the Monte Carlo simulation VaR method (MC) can be enhanced by
implementing GARCH(1,1) instead of equally weighted moving average (i.e. historic)
volatility. This extension, however, cannot match the performance of RiskMetrics.

Finally, the models within the extreme value theory approach (GPD and GPD*) are
benchmarked against RiskMetrics. While both of these models implement the
generalized Pareto distribution to account for the heavy tails of the retutn distribution
the GPD* is implemented on the filtered return series and GPD directly on the return
series. With a = 0,05 GPD and GPD* produce 7 and 3 times out of 12 satisfactory tail
coverage and 2,51% and 2,82% averge quantile losses, respectively. Analogous results
for RiskMetrics were 11 and 2,27%. Therefore, neither of these models is able to
challenge RiskMetrics with o = 0,05. With o = 0,01 GPD and GPD* produce 10 and 9
satisfactory tail estimates and average quantile losses of 0,76% and 0,91%, respectively,
compared to 7 and 0,73% by RiskMetrics. Thus, both GPD and GPD* beat RiskMetrics
in terms of tail coverage but not in terms of average quantile loss. The difference in
average quantile loss between GPD and RiskMetrics is only marginal but GPD*’s
average quantile loss is noticeably higher than GPD’s and RiskMetrics'. Therefore,
though GPD* is able to beat RiskMetrics in terms of tail coverage with a = 0,01 it does
not prove to be a useful extension as it does not perform better than simple GPD.
Overall, filtering does not appear useful in the context of EVT based VaR models as
GPD* is outperformed by GPD. Further, GPD appears to seriously challenge
RiskMetrics as the VaR confidence level is raised: with a = 0,05 RiskMetrics still
performs better but with « = 0,01 GPD already dominates. Next, attention is turned to
those models that were perceived as best in the above considerations.

5.2.5 Further inspection of superlative models

Most satisfactory models with a« = 0,05 were identified among RiskMetrics (11
satisfactory tail forecasts out of 12), HS(GARCH) (11), HS* (11) and VC* (9). While
RiskMetrics produced the lowest average quantile loss, no significant differences could
be observed in these models average quantile losses. To further examine the behaviour
of these models, figure 8 below plots these models out-of-sample VaR forecasts. The
results of HS(GARCH) and HS* ae so indiginguishable that HS(GARCH) is
suppressed from figure 8 and HS* can be seen to represent both HS* and HS(GARCH).
Further, as all periods and countries deliver largely similar results only forecasts for the
United States during period 1 are presented in figure 8 for the sake of space.
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Figure 8 Superlative VaR models out-of-sample forecasts, a = 0,05, period 1
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Figure 8 shows that the best models with o = 0,05 (i.e. RiskMetrics, HS(GARCH),
HS* and VC*) behave in a rather similar manner. On a more tranquil period they all
give quite low tail estimates and when a spike in the losses occurs they all react
simultaneously to this. There are though some minor differences in how strong the
models react to large negative returns. RiskMetrics appears to be somewhat more
conservative in its reactions than HS(GARCH), HS* and VC*. This difference,
however, is barely noticeable. Overall, it appears that there are no fundamental
disparities in the way that these models react to returns and create their forecasts with o
= 0,05. As RiskMetrics and VC* are built upon the normality assumption with time-
varying volatility (EWMA and GARCH(1,1) it seems that this combination and its
assumptions are sufficient for estimating the loss that is not expected to be exceeded
95% of the time, i.e. the 0,05 quantile. The empirical distribution with time-varying
volatility (HS(GARCH) and HS*) also appears very appealing for VaR forecasts at this
confidence level.

To see whether the best models with o = 0,01 also exhibit similar features, the
superlative models with this particular confidence level are examined next. Most
satisfactory models with o = 0,01 were identified among HS(GARCH) (10 satisfactory
tail forecasts out of 12), HS* (10) and GPD (10). These three models also generated the
same average quantile loss values (0,76%). While GPD* also performed well (9
satisfactory tail forecasts out of 12) it did not perform better than GPD and therefore
was not considered as a prominent extension. Figure 9 below plots the out-of-sample
forecasts of these VaR models for the United States with o = 0,01 during period 1, while
periods 2 and 3 deliver largely similar results and are thus suppressed. The results of
HS(GARCH) and HS* are once again so indistinguishable that HS* represents both of
these models. Further, though RiskMetrics was not among the best performers with o =
0,01 (7 satisfactory tail forecasts out of 12) it is stil plotted in figure 9 as it represents
the benchmark model in thisthesis.



92

Figure 9 Superlative VaR models’ out-of-sample forecasts, a = 0,01, period 1
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Figure 9 reveals that RiskMetrics probably does not perform as well as the best
models with « = 0,01 because it generates too low VaR estimatess HS* (and
HS(GARCH)) and GPD amost universally produce higher VaR estimates than
RiskMetrics. Therefore, it appears that the normality assumption, even if coupled with
time-varying volatility, is not reasonable when estimating the loss that is expected to be
exceeded only 99% of the time (i.e. the 0,01 quantile of the return distribution). Other
distributions and methods appear to be more accurate with such extreme quantiles. In
this case the generalized Pareto distribution (GPD) and empirical distribution coupled
with volatility updating (HS(GARCH) and HS*) produce most satisfactory estimates of
the 0,01 quantile. Another interesting feature revealed by figure 9 is the divergent
behaviour of GPD compared to HS* and RiskMetrics: it produces much more stable and
generally higher VaR forecasts than its competing models. This, of course, is merely a
reflection of the assumptions underlying GPD VaR approach, as it basically assumes a
stable distribution that does not change over time.

5.2.6 Robustness of the results

Robustness checks with different length out-of-sample periods were conducted to verify
the robustness of the above presented results to varying (before, during and after crisis)
period explications. Different two- and three-year periods defined as the before, during
and after crisis periods delivered largely the same results as the above presented results
with period definitions according to table 2. Results from one-year out-of-sample
periods were too volatile to alow for a sensible division of the data into periods
reflecting prevailing market conditions.
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5.3 Conclusions

With respect to periods of turmoil, represented in this thesis by the technology boom
and its collapse at the turn of the millennium, and risk measurement by Value at Risk
this thsesis provides evidence that in the precence of turbulence most VaR models tend
to react rather satisfactorily to this elevated risk regime. However, when the turbulence
is extensive enough some VaR models experinse difficulties in risk forecasting. This
can be seen in differing average quantile loss values for emerging markets (Finland and
India) between the before and after crisis periods. Similar deductions could not,
however, be made when utilizing empirical coverage probability as performance
measure. Results concerning VaR models performance on a tranquil period that is
preceded by aturbulent period indicate that the preceeding turbulence causes significant
lag effects on risk forecasts, therefore causing most VaR models to overpredict risks.
This suggests that while most VaR models react swiftly to regimes of higher risk,
reactions to low risk regimes are not as expeditious. This, of course, is not a severe
problem as overpredicting risk in VaR setting is not as fatal as underpredicting risk.
Nevertheless, testing VaR model predictive performance under even more severe
market crisis periods might offer more insightful information on VaR models ability to
perform satisfactorily under serious turbulence.

With respect to predictive performance of different VaR approaches and their
extensions the results can be described as follows. The considered extensions — filtering
the returns series or possibly a more direct utilization of GARCH(1,1) volatility process
— were discovered to be advantageous within all approaches with one exception. More
precisely, the extreme value theory where the generalized Pareto distribution is applied
directly on the return series outperformed applying the generalized Pareto distribution
on the filtered return series. Within the variance-covariance VaR approach filtering
appeared somewhat more useful than a straightforward implementation of
GARCH(1,1). still, neither of these extensions to the variance-covariance approach
outperformed RiskMetrics, the benchmark model in this thesis. Within the historical
simulation VaR approach filtering the return series and an alternative method that
allows for volatility updating in the historical simulation approach were found to be
equally advantageous. Further, both of these extensions matched RiskMetrics
performance with a = 0,05 and even outperformed it with o = 0,01. Within the Monte
Carlo simulation VaR approach a straightforward utilization of GARCH(1,1) proved
advantageous but not even with this extension could the Monte Carlo simulation
approach challenge RiskMetrics. Finally, the extreme value theory approach to VaR
was implemented by the generalized Pareto distribution. As mentioned, filtering did not
prove advantageous for this particular approach, but the simple approach was found to
outperform RiskMetrics with o = 0,01.
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The superlative models with a = 0,05 were identified among RiskMetrics,
HS(GARCH), HS* and VC*, and no single model appeared to outperform the
benchmark model (RiskMetrics). Thus, it appears that with moderate VaR confidence
levels (i.e. eg. 0,05) RiskMetrics is a respectable choice to base ones VaR framework
on. Alternatilvely one could consider building one’s VaR models according to historical
simulation with filtering or volatility updating (HS* or HS(GARCH), or filtered
variance covariance approach (VC*). When considering more extreme confidence
levels (i.e. e.g. 0,01 asrequired e.g. by the Basel Committee for measuring market risk)
the above picture undergoes some changes. RiskMetrics no longer appears as a
conceivable foundation for one’s VaR model. Alternative models appear to produce
more accurate risk predictions. Specifically, with « = 0,01 the HS(GARCH), HS* and
GPD models perform superiorly to this benchmark. This implies that the normality
assumption gradually loses its accuracy and usability as VaR confidence level is raised,
thus making other approaches more appealing.

These findings are in line with extant studies that have showed that extensions to the
HS approach (filtering and volatility updating) outperform the simple HS approach and
approaches within the VC family (Hull & White 1998; Barone-Ades et al. 2002). This
thesis contributes to these extant studies by validating this outperformace of extended
HS against awider variety of VaR models with two distinct confidence levels (a = 0,05
and a = 0,01) and data that include a crisis period. Further, the finding on the
prominence of the extreme value theory approach with high confidence levels isalso in
line with extant studies. This thesis contributes by considering a wide variety of
competing models and data that include a crisis period. Also, it has been very common
in previous studies to implement the Basel backtesting scheme (see e.g. Kalyvas &
Sfetsos 2006) and, thus, this thesis contributes by considering alternative approaches in
verifying VaR models predictive performance. Especially the good performance of the
EVT approach in the Basel backtesting framework can be driven by on average higher
VaR forecasts, as this framework only penalizes for underpredictions of VaR. Thus,
verifying the EVT approaches performance with alternative performance measures
offers important confirming information.

The prominence of the GPD model still has to be interpreted with some caution. As
this thesis and previous studies have shown, the forecasts of the extreme value theory
VaR approach are on average more conservative than those of alternative approaches.
Thus, before implementing it for market risk measurement, one has to thoroughly
examine the effectiveness of this method by determining whether the lower
multiplicative factor for capital requirements is counter-balanced by this conservatism
exhibited in its VaR forecasts. In fact, it seems that this aspect has been considered by
financial institutions and deters them from implementing approaches based on the
extreme value theory (see e.g. Rogachev 2007).



95

The impacts of the market crisis period on risk forecasting performance of the
considered VaR models were not as strong as might have been anticipated. Thus, further
studies covering periods of even more extensive turbulence — such as the Asian
financial crisis of 1997-1998 or the Sub-prime crisis of 2007-2008 — might provide
interesting (and deviating) results from those of this thesis. Nevertheless, this thesis
showed some evidence on deviating performance between VaR models contingent upon
market conditions. Thus, it might prove useful to consider regime-switching VaR
models that are based on regime-switching Markov processes (Tsay 2005, 588-594;
Guidolin & Timmermann, 2004; Li & Lin, 2004). Further, the validity of the results
gained from this thesis could be tested on portfolios containing nonlinear instruments,
thus emphasisng the adaptability of different VaR approaches. Also, extending the study
into a multivariate setting might unveil some important issues that might complicate the
adaptation of the VaR modelstested in this thesis into red life portfolios.
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6 SUMMARY

As the financial markets have continuously become more volatile and complex, reliable
risk measurement techniques are required to properly address the increased risks. Value
at Risk (VaR) provides an easy-to-understand method for quantifting market risk and,
thus, it has become the industry standard for the financial sector. The triumphal march
of VaR can, to some extent, be attributed J. P. Morgan, that was one of the first
exponents of VaR as it released its RiskMetrics database in 1994, and the Basel
Committee, that explicitly allowed for VaR to be used in determining banks minimum
capital requirements since 1996. Despite the criticism that VaR has received, mainly
based on the fact that VaR is not a coherent measure of risk, it still continues to gain
ground on other sectors besides the financial as well.

During a short span of time a number of papers have studied various aspects of VaR
methodology. The recent research in this field has progressed so rapidly that comparing
the relative predictive performance of various traditional and novel VaR models has not
yet been fully matched. This thesis contributes to this particular problem by
bechmarking the predictive performance of various VaR models within the variance-
covariance, historical simulation, Monte Carlo simulation and extreme value theory
approaches to the RiskMetrics model, thus providing valuable informations for risk
practitioners and regulators. The out-of-sample period is chosen in a way that it
encompasses a market crisis period — the bursting of the technology bubble at the turn
of the millennium. Hence, this thesis also contributes by examining the effects of
market turbulence on risk forecasting precison by VaR models. Furthermore, the
comparison methods for discriminating among various VaR models in this thesis
(empirical coverage probability, predictive quantile loss and clustering of violations) are
more thorough than the backtesting framework suggested by the Basel Committee, thus
completing the results of extant studies that solely rely on the Basel framework.

Within the tested VaR models this thesis considers three different distributions — the
normal, empirical and generalized Pareto distributions — as their use can robustly be
rationalized. Thus, distributions such as the Student’s-t that lack strong theoretical
foundations are excluded from this thesis. With respect to volatility modelling, an
extremely important component in VaR calculation, this thesis also applies rather strict
restrictions. to be included in this thesis a volatility model is required to be simple and
tractable enough to be available and within the grasp of risk practitioners. Hence, this
thesis only considers equally and exponentially weighted moving averages (EQMA and
EWMA) and the simplest model within the GARCH family: GARCH(1,1).

Given these restrictions alternative VaR models are constructed and out-of-sample
tests are conducted on three periods between 1997 and 2004, more specifically on
before, during and after crisis periods, utilizing data from four national stock indices
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that were all impacted by the chosen market crisis relatively simultaneously. The
selected stock indices are S&P 500 Composite (United States), CDAX General
(Germany), HEX Geneeral (Finland) and BSE National (India). Furthermore, the United
States and Germany were chosen to represent developed markets, whereas Finland and
India proxy for emerging markets. This conveniently allows for observing the
performance of VaR modelsin different market contexts.

The results of this thesis with respect to periods of turmoil and risk measurement via
Value at Risk indicate that while most VaR models react swiftly to high risk regimes,
reactions to low risk regimes are not as expeditious. This, of course, is not a severe
problem as overpredicting risk in VaR setting is not as fatal as underpredicting risk.
With respect to predictive performance of different VaR models the results can be
described as follows. With 95% VaR confidence level no single model appeared to
outperform the benchmark model, RiskMetrics. However, as the VaR confidence level
was raised to 99% three models were found to clearly outperform RiskMetrics. These
particular models were historical simulation with volatility updating or filtered return
series and an extreme value theory based model utilizing the generalized Pareto
distribution. This indicates that the normality assumption, made for example by the
RiskMetrics model, gradually loses its accuracy and usability as VaR confidence level
is raised, thus making other VaR approaches, such as extensions to the historical
simulation or extreme value distributions, more appealing. In general, the considered
extensions in this thesis were found to be efficient compared against the basic versions
of these VaR approaches. However, with the three above mentioned exceptions, these
extensions hardly ever were found to outperform the RiskMetrics model.

The significance of the information provided by this thesis is most pronounced for
financial institutions that are contemplating between different VaR approaches and
models. In addition, companies on other industries that are interested in market risk
measurement, for example companies whose performance is highly dependent on the
price development of certain raw materials, might also find the information provided by
this thesis very useful. Whether it is an entirely new risk measurement system or an
update to an existing system, the results of this thesis offer guidelines for choosing
among various competing VaR models. However, the results of this thesis have to be
interpreted with some caution: the results were derived in a univariate setting (single
asset portfolios), which hardly ever is the case in real life. Therefore, trying to
implement some of the models tested in this thesis into real life portfolios, consisting
possibly of hundreds or even thousands of assets, might unveil some unanticipated
problems. Thus, it would be useful to test the validity and applicability of the gained
results in a multivariate setting (multiple asset portfolios). Furthermore, it might also
prove useful to try to reproduce the results of this thesis with portfolios containing
derivatives, thus emphasizing the ability of different VaR approaches to handle
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nonlinear instruments. Nevertheless, these restrictions considered, the results of this
thesis still offer valuable information for risk practitioners and regulators concerning the
predictive performance of various competing VaR models.
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MARKET INDICES TIME SERIES
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APPENDIX 4 DERIVATION OF GPD VAR

To be consistent with the rest of the thesis, the GPD VaR is derived concentrating on
the left tail of the return distribution. Accordingly, alow threshold u (u < 0) is fixed and
all exceedancesy over u are of interest inthis approach (i.e. r; = u—y;). The distribution
of excess values is given by

Pr(r >u- Wir <u):F(u)-F(Fu()u- y),y>0 (A1)

Balkema and de Haan (1974) and Pickands (1975) showed that the asymptotic form of
Prr>u-y|r<u)is

G(y) =1- gi %% (A2

where S isthe scale parameter and & isthe shape parameter, and > 0, 1 — &/ > 0. This
is known as the generalized Pareto distribution (CDF) with density (PDF)

A/ x-1

mw——?~—— (A.3)

b g

For {r}",, & and B can be estimated by maximizing ©) ™ a(y,), where {y,}", is the

sample of exceedances over the threshold u. Denote the maximum likelihood estimators
of Sand f by x and b, respectively. Then combining (A.1) and (A.2)

Flu-y) _ wo (A4)
F(u) b g |

which gives, if F(u) is estimated by n,/n,

Jx
n

e
=
3

'I'I)
G>|é >

Ql--1-0;

(A.5)

or equivalently for r <u,

x(u- r)Ol/X
= A.6
"= n é b EJ (9
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|mmediately the ath quantile (i.e. G(a)= VaR) can be estimated by setting F(r) =a
and hence
b& an, 5

d@)=u- =%- g—a;
X en g

(A7)

Q- -O:
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QLOSSPLOTS, USA, PERIOD 1, a = 0,05
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