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Abstract 

 

ABSTRACT 

Ville Huovinen 
Effects of obesity and resistance exercise on bone health studied with modern imaging 
methods 

University of Turku, Faculty of Medicine, Department of Radiology, University of Tur-
ku Doctoral Programme of Clinical Investigation 

Annales Universitatis Turkuensis. Painosalama Oy, 2017. 

Altered metabolic states, such as obesity and resistance exercise, may affect bone health 
either in a negative or positive manner. In clinical practice, bone health may be easily 
understood as a synonym for bone mineral density or osteoporosis, which is defined as a 
skeletal disorder resulting from decreased bone strength. In addition, bone glucose me-
tabolism and bone marrow adiposity may contribute to bone overall health status. 

The aims of this thesis were to investigate the effects of obesity and resistance exercise 
on bone glucose metabolism, bone marrow adiposity and bone mineral density using 
modern imaging methods, such as positron emission tomography, magnetic resonance 
imaging and quantitative computed tomography, in various study settings. It was found 
that obesity did not alter bone glucose metabolism or bone marrow adiposity. However, 
resistance exercise resulted in improved bone glucose metabolism and bone mineral 
density. 

In conclusion, resistance exercise, but not obesity, had an impact on bone health studied 
with modern imaging methods. The obtained results may offer new insights into quanti-
fication and into the follow-up of bone health during altered metabolic conditions. In 
addition, more individualized and accurately allocated lifestyle interventions may be 
administered in the treatment or prevention of diseases associated with obesity or insu-
lin resistance. 

 

Keywords: obesity, exercise, bone, positron emission tomography, magnetic resonance 
imaging, quantitative computed tomography 

 

 



Tiivistelmä 

 

TIIVISTELMÄ 

Ville Huovinen 
Ylipainon ja lihasvoimaharjoittelun vaikutus luun terveyteen tutkittuna modernien ku-
vantamismenetelmien avulla 

Turun yliopisto, Lääketieteellinen tiedekunta, Radiologia, Turun yliopiston kliininen 
tohtoriohjelma 

Turun yliopiston julkaisuja. Painosalama Oy, 2017. 

Aineenvaihduntaa muuntelevat fysiologiset tilat kuten lihavuus ja lihasvoimaharjoittelu 
voivat mahdollisesti vaikuttaa luun terveyteen joko negatiivisesti tai positiivisesti. Luun 
terveys kuitenkin ymmärretään usein vain synonyymina luuntiheydelle tai osteopo-
roosille, joka on luun alentuneesta lujuudesta johtuva sairaus. Luun terveyteen voi kui-
tenkin olla osallisena muitakin vähemmän tunnettuja potentiaalisia tekijöitä kuten luun 
sokeriaineenvaihdunta ja luuytimen rasvoittuminen.  

Väitöskirjan tarkoituksena oli tutkia lihavuuden ja lihasvoimaharjoittelun vaikutuksia 
luun sokeriaineenvaihduntaan, luuytimen rasvoittumiseen sekä luuntiheyteen modernien 
kuvantamismenetelmien kuten positroniemissiotomografian, magneettikuvauksen ja 
kvantitatiivisen tietokonetomografian avulla erilaisissa tutkimusasetelmissa. Tulosten 
mukaan lihavuudella ei ollut vaikutusta luun sokeriaineenvaihduntaan tai luuytimen 
rasvoittumiseen. Sen sijaan lihasvoimaharjoittelu näytti parantavan luun sokeriaineen-
vaihduntaa ja luuntiheyttä. 

Yhteenvetona voidaan siis todeta, että lihasvoimaharjoittelulla on positiivinen vaikutus 
luun terveyteen modernien kuvantamismenetelmien avulla tutkittuna. Sen sijaan liha-
vuudella ei ole siihen vaikutusta. Väitöskirjatutkimuksen tulokset voivat tuottaa uusia 
oivalluksia aineenvaihdunnallisiin häiriötiloihin liittyvässä luun terveyden määrittämi-
sessä ja seurannassa. Lisäksi tuloksia soveltaen voidaan suunnitella aiempaa yksilölli-
sempiä ja kohdistetumpia elämäntapainterventioita lihavuuteen ja insuliiniresistenssiin 
liittyvien luun häiriötilojen ehkäisyssä ja hoidossa. 

 

Avainsanat: lihavuus, liikunta, luu, positroniemissiotomografia, magneettikuvaus, kvan-
titatiivinen tietokonetomografia
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1 INTRODUCTION 

Bone health is a sweeping and informal term describing the wellbeing or fitness of 

bones as they contribute to the musculoskeletal system. Different characteristics such as 

age, gender, obesity and physical activity levels may affect bone health either in nega-

tive or positive manner (Office of the Surgeon General (US) 2004). In clinical practice, 

bone health is often understood as a synonym for bone mineral density (BMD) or oste-

oporosis, which is defined as a skeletal disorder resulting from decreased bone strength. 

Osteoporotic hip fracture has a significant negative effect on an individual’s quality of 

life. However, there may be other potential parameters contributing in the bone overall 

health. The parameters that are particularly focused on in this thesis include bone mar-

row glucose metabolism, bone marrow adiposity and BMD. 

 

The early imaging methods for assessing bone health were replaced with dual-energy X-

ray absorptiometry (DXA) in the late 1980s (Cullum, Ell & Ryder 1989). Computed 

tomography (CT) was introduced in 1973 for head scanning, but a couple of years later 

when whole-body scanners were emerging, its capability to study the skeleton was rec-

ognized (Kreel 1976). However, the use of quantitative CT (QCT) was eventually di-

minished because DXA was already widely used in majority of studies. In addition, 

DXA possessed lower radiation dose than QCT (Adams 2009). Nowadays, the use of 

QCT in musculoskeletal studies and the amount of CT scanners is increasing. 

 

Modern bone marrow imaging methods consist of magnetic resonance imaging (MRI) 

and positron emission tomography (PET). MRI offers supreme soft-tissue contrast, is 

non-ionizing and offers valuable applications such as spectroscopy, which can be used 

as an analytical tool identifying various chemical compounds, e.g., bone marrow fat 

(BMF), without destructing the sample. PET, on the other hand, is a novel non-invasive 

imaging method that produces information pertaining to physiological tissue function. 

Especially with fluorine-18 fluorodeoxyglucose (FDG), the most widely used tracer, 

tissue-specific glucose metabolism can be measured. 

 

The main aim of this thesis was to investigate the possible effects of obesity and physi-

cal exercise on bone health with modern imaging modalities. It was hypothesized that 

obesity negatively affects and physical exercise positively affects bone health. To ad-



12 Introduction 

 

dress this question, PET, MRI and QCT were used to assess bone marrow glucose me-

tabolism, bone marrow adiposity and BMD within prospective cohort studies and non-

randomized clinical trials (Studies I-IV). 
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2 REVIEW OF LITERATURE 

2.1 Bone 

2.1.1 Bone anatomy 

Human skeleton contains approximately 200 bones, which can roughly be categorized 

into long bones, short bones, flat bones and irregular bones. In this thesis’s review of 

the literature, I concentrate on the femur (long bone) and vertebral body (irregular 

bone). Simplified, long bones consist of a hollow shaft, diaphysis, cone-shaped metaph-

ysis below the growth plates and rounded epiphyses above the growth plates. Diaphysis 

of the long bone is mainly trabecular bone surrounded by thick cortical bone. Meta- and 

epiphyses of the long bones consists mainly of trabecular bone within bone marrow, 

which is surrounded by a thin layer of cortical bone (Figure 1). Irregular bones, for ex-

ample, vertebral bodies are composed of a thin layer of cortical bone surrounding the 

trabecular bone within bone marrow (Figure 2) (Moore KL 2006). 

 

Figure 1 Schematic anatomy of a long bone, e.g., tibia or femur. Illustration by V 
Huovinen 2016. 
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Figure 2 Schematic anatomy of a vertebral bone. Illustration by V Huovinen 2016. 

Cortical bone is solid tissue that consists of multiple microscopic columns, which are 

called osteons. Osteons are composed of concentric layers of bone resorptive osteoclasts 

and osteocytes as well as bone formatting osteoblasts (Clarke 2008). In the center of the 

osteon, the Haversian canal, running vertically, provides blood supply and nutrition for 

the bone cells. Osteons are connected via horizontally running Volkmann’s canals 

(Seeman 2013). The walls and interspaces of the osteons are formed by concentric la-

mellar bone in which collagen fibrils produced by osteoblasts are laid in altering orien-

tations compared to weaker woven bone in which collagen fibrils are laid in a disor-

ganized manner. Woven bone is normally produced rapidly by osteoblasts during condi-

tions with high bone turnover such as fracture healing (Fazzalari 2011). Lamellar and 

woven bones are composed of actual bone cells and bone extracellular matrix, which is 

mineralized by osteoblasts. A thin membrane called the periosteum surrounds the outer 

surface of cortical bone and its activity is important for bone growth and fracture repair. 

Endosteum, also a thin membrane, is located between the bone marrow and inner sur-

face of cortical bone (Clarke 2008). 

 

Connective tissue of bone marrow consists of the trabecular bone, which is an inter-

linked structure of bony plates and rods composed of osteons and lamellar bone. Soft 

marrow tissue, located in between tracebular bone, consists of yellow fatty marrow, red 

hematopoietic marrow, blood vessels and sinusoids (Hardouin, Pansini & Cortet 2014). 

The function and regulation of yellow fatty marrow is mainly unknown (Gimble, Nuttall 

2004), but, in short, these cells may act as an energy supply (Rosen, Bouxsein 2006) or 

have a function as a passive endocrine organ (Gimble et al. 1996). 
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Red hematopoietic marrow consists of differentiated hematopoietic stem cells (HSCs), 

hematopoietic progenitor and precursor cells and non-differentiated HSCs, and these 

cells constitute only a minority of the bone marrow microenviroment, also called as “the 

niche” (Challen et al. 2009) (Figure 3). One of the main functions of these pluripotent 

cells is to maintain a physiologically normal immune system by differentiating into a 

great variety of cells, e.g., red blood cells, a dozen types of lymphoid and myeloid white 

blood cells and osteoclasts. To maintain homeostasis of the hematopoietic system, these 

pluripotent cells respond to pathologic environmental signals, e.g., infection (Singh et 

al. 2008). In addition to HSCs, red marrow consists of differentiated and non-

differentiated mesenchymal stem cells (MSCs), which also constitute a minority of the 

bone marrow cells (Pittenger et al. 1999) that support HCSs (Pontikoglou et al. 2011). 

MSCs have a capability to differentiate into specialized cells, e.g., osteoblasts and adi-

pose tissue cells, through very convoluted and several stochastic autonomous cell pro-

cesses. Alternatively, differentiation can occur through signals from the bone microen-

viroment, and this is called “the niche theory” (Calvi, Link 2014). 
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Figure 3 Simplified bone marrow in “the niche”. MSCs differentiate into osteo-
blasts or adipocytes and their progenitors. Eventually osteoblasts end up 
trapped surrounded by connective tissue with trabecular bone and trans-
form into osteocytes that form a tentacle-like network connecting to other 
osteocytes and bone-lining osteoblasts. HSCs differentiate into red blood 
cells and their progenitors, a variety of white blood cells and their pro-
genitors and osteoclasts. Differentiation of MSCs and HSCs is regulated 
by a variety of biochemical factors such as adipokines and osteokines. 
Calcium, which aids orienteering of HSCs to the cells at the bone-lining, 
is produced by bone resorptive osteoclasts. Illustration by V Huovinen 
2016. MSC: mesenchymal stem cell. HSC: hematopoietic stem cell.  

2.1.2 Bone modeling and remodeling 

Bone modeling is a process where bone shape and size is changed in response to a me-

chanical or physiological stimulus such as growth (Clarke 2008), whereas bone remod-

eling is a process in which bone is renewed (Parfitt 2002). The main purpose of bone 

remodeling is to maintain bone mechanical strength by repairing bone microdamage and 
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sustaining mineral, e.g., calcium, homeostasis (Raggatt, Partridge 2010). During bone 

remodeling, new bone formation by osteoblasts and old bone resorption by osteoclasts 

are tightly coupled (Kylmaoja, Nakamura & Tuukkanen 2015). Remodeling is consid-

ered to be a cycle of four different consecutive stages consisting of: activation, resorp-

tion, reversal and formation (Parfitt 2002). During the activation process, osteoclast 

precursors are recruited from circulation. This is followed by the formation of the mul-

tinucleated preosteoclasts. These cells bind to the bone matrix via different receptors to 

form bone-resorbing zones beneath multinucleated osteoclasts. Bone is then resorbed by 

osteoclasts via secretion of hydrogen ions and a great variety of enzymes forming empty 

resorption cavities (Eriksen 1986). Phagocytic cells complete the resorption phase, 

which can last a couple of weeks (Delaisse 2014). In the reversal phase, bone resorption 

switches to bone formation. Resorption cavities are filled with a wide variety of cells 

including osteocytes and osteoblast precursors. Activation signals that end the bone re-

sorption and start the bone formation may include bone matrix-derived factors or a 

stretching gradient in the cavities (Smit, Burger & Huyghe 2002). The bone formation 

phase lasts approximately 4-6 months (Clarke 2008). During this phase, osteoblasts syn-

thesize connective tissue components such as collagen and regulate matrix mineralisa-

tion. Eventually osteoblasts become trapped within the synthesized matrix and trans-

form into osteocytes, which have an extensive tentacle-like network connecting them-

selves to other osteoblasts and osteocytes (Burger, Klein-Nulend & Smit 2003). The 

majority of the osteoblasts undergo apoptosis but some become bone-lining cells that 

maintain their ability to transform into osteoblasts upon exposure of stimuli, e.g., me-

chanical stress (Dobnig, Turner 1995). Osteon is the result of a remodeling cycle pro-

cess that resembles a similar composition to trabecular and cortical bone (Clarke 2008). 

2.1.3 Bone marrow fat (BMF) 

Bone marrow is the only place in human body where adipose tissue cells and other bone 

cells lie adjacently to each other (Devlin, Rosen 2015). This suggests a communication 

between these cells. The mean diameter of a bone marrow adipocyte is around 50 µm, 

and it contains big lipid vacuole of triglycerides consisting of saturated or unsaturated 

fatty acids (Hardouin, Pansini & Cortet 2014). These cells are interspersed within the 

hematopoietic tissue and, importantly, have the same MSC progenitor that can differen-

tiate into osteoblasts that eventually transform into an osteocyte (Van Damme et al. 
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2002, Calvi, Link 2014). In short, the complex differentiation of MSCs is regulated by 

chemical, physical and biochemical factors. These factors lead to the triggering of mi-

croenviromental cell signals including a variety of transcription factors. For example, 

the upregulation of Runx2 (runt-related transcription factor-2) may induce osteogenic 

differentiation, while upregulation of PPARγ (peroxisome proliferator-activating 

reseptor gamma) induces adipogenic differentiation (Chen et al. 2016).  

 

Mitochondria-moderate yellow BMF differs from mitochondria-sparse white subcuta-

neous and mitochondria-enriched brown adipose tissue (Krings et al. 2012). Brown adi-

pose tissue is known to be metabolically very active according to earlier PET-studies 

(Virtanen et al. 2009, Matsushita et al. 2014, Orava et al. 2013), while white subcutane-

ous adipose tissue (SAT) seems to be less metabolically active compared to visceral fat 

in healthy obese subjects (Viljanen et al. 2009). Unfortunately, no previous PET-studies 

that specifically target BMF have been conducted. Nonetheless, BMF, which is accu-

mulated in between the trabecular area of the bone diaphysis and epiphysis, has been 

considered as an intermediately metabolic active tissue in animal studies (Pagnotti, 

Styner 2016). This hypothesis is supported by the fact that BMF responds to systemic 

changes in energy metabolism, for example, in postmenopausal osteoporosis (Li et al. 

2011) and in patients with anorexia nervosa (Bredella et al. 2014), which is a condition 

of undernutrition associated with various physiological changes in the body including a 

decrease in subcutaneous and visceral fat depots (Misra, Klibanski 2013). In addition, 

BMF is increased in response to a high-fat diet, while running exercise suppresses this 

accumulation of BMF in mice (Styner et al. 2014). Moreover, BMF is related with sub-

cutaneous and body total fat amounts in postmenopausal women with and without 

T2DM (Baum et al. 2012) indicating a similar systemic regulation of these fat depots.  

 

Yellow BMF bears its name due to its yellowish appearance, which is caused by a mod-

erate number of cytoplasmic mitochondria. However, the precise function of yellow 

BMF is unknown. Yellow bone marrow is involved in thermogenesis because of its 

similar characteristics to brown adipose tissue (Krings et al. 2012). It may also act as a 

local energy supply for bone formation by storing and releasing triglycerides (Gimble, 

Nuttall 2004). From a secretory perspective, yellow bone marrow may act as a target 

endocrine organ secreting a variety of cytokines and hormones resulting in systemic 

consequences and local regulation in the bone marrow microenviroment (Greco, Lenzi 
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& Migliaccio 2015). Several data suggest an active role of BMF cells in their microen-

viroment by having a negative effect on osteoblasts by secreting saturated fatty acids 

(Rosen et al. 2009), favouring osteoclast differentiation of HSCs by expressing factors 

such as RANKL (receptor activator of nuclear factor kappa-B ligand) (Teitelbaum 2000). 

In addition, BMF cells may inhibit the HSC differentiation (Lecka-Czernik 2012) or act 

as a passive placeholder by occupying space not needed for hematopoiesis or bone for-

mation (Devlin, Rosen 2015). 

 

There is variation in BMF amount in a site-specific manner. At birth, bone marrow tis-

sue is mainly composed of red hematopoietic marrow (Proytcheva 2013). Conversion of 

red hematopoietic marrow to yellow fatty marrow takes place gradually during child-

hood and continues centripetally from the peripheral skeleton to the axial skeleton 

(Moore, Dawson 1990). For example, femoral bone marrow (FBM) contains only fat by 

the time of adulthood. However, vertebral bone marrow (VBM) contains approximately 

50 % yellow fatty marrow and 50 % red hematopoietic marrow by the time of adulthood 

(Machann, Stefan & Schick 2008). The ratio of fatty and hematopoietic marrow gradu-

ally increases with age (Liney et al. 2007). At old age, VBM fat content is at its highest 

(Rosen et al. 2009). Thus, BMF content correlates positively with age (Rosen et al. 

2009). However, some gender variation occurs. Younger men appear to have more 

VBM fat than women (Kugel et al. 2001), but elderly women tend to have slightly more 

VBM fat than men (Griffith et al. 2012). Interestingly, VBM fat content associates in-

versely with BMD (Schwartz et al. 2013), but a causal relationship of the association 

has been found to be controversial. Lecka-Czernik et al. found that bone loss is preced-

ed by increased BMF in mice (Lecka-Czernik et al. 2015). On the contrary, Li et al. 

found that the increase in BMF content was preceded by the decrease in BMD in rabbits 

with a setting of glucocorticoid-induced osteoporosis (Li et al. 2016). However, human 

studies have shown that aging (Okano et al. 1998) and marrow adiposity (Schwartz et 

al. 2013) have been linked with decreased BMD suggesting that an increase in BMF and 

a decrease in BMD is a mutual process. In addition, the finding that decrease in a BMD 

during menopause is corrected by estrogen administration supporting the theory of mu-

tual process (Gallagher 2001). 

 

Marrow adiposity arises via several mechanisms that activate intracellular pathways, 

which may eventually lead to having an impact on PPARγ receptor that promotes adi-
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pogenesis. In short, BMF is increased by physiological factors, e.g., age, gender, ana-

tomic location and mechanical unloading  (Sadie-Van Gijsen, Hough & Ferris 2013). 

Pathophysiological factors promoting BMF includes anorexia nervosa (Bredella et al. 

2014), T1DM (Kawai, de Paula & Rosen 2012) and pharmacological agents such as the 

long-term use of PPARγ agonists (thiazolidinediones) (Kawai, de Paula & Rosen 2012) 

or glucocorticoids (Hamrick, McGee-Lawrence & Frechette 2016). Persistence of exist-

ing BMF caused by different conditions varies, but, for example, anorexia nervosa-

induced increase in marrow adiposity is reversed with weight gain possibly due to die-

tary changes (Fazeli et al. 2012), but mechanical unloading-induced (Trudel et al. 2009) 

and diabetes-induced marrow adiposity are not easily reversed. This has led to suspi-

cions that there might be two types of BMF deposits, which are constitutive and regu-

lated (Devlin, Rosen 2015). 

 

Therapeutic implications targeted at BMF in order to promote differentiation of MSCs 

towards osteoblastogenesis are clinically relevant. Treatment of malignant diseases with 

chemotherapy or radiation during childhood results in increased skeletal fragility in later 

life (Wilson, Ness 2013). These patients usually have decreased BMD and increased 

BMF compared to age-matched controls (Georgiou, Hui & Xian 2012). In addition, 

T1DM is associated with decreased BMD with concomitantly increased BMF probably 

due to oxidative stress (Coe et al. 2011) or via increased PPARγ expression and activa-

tion (Botolin et al. 2005). Increased BMF saturation measured with 1H MRI spectrosco-

py is also related with osteoporosis and T2DM (Baum et al. 2012). Screening of the 

individuals at risk would prove to be a cost-effective means to identify the patients in 

need for anti-osteoporosis medication (Devlin, Rosen 2015). 

2.1.3.1 Obesity, exercise and BMF 

Obesity increases BMF by adipose tissue hyperplasia and hypertrophia (Rosen, Mac-

Dougald 2006), but no previous studies addressing the effect of obesity on BMF UI has 

been conducted. As earlier stated, there are three types of fat depots in the human body: 

white, brown and yellow adipocyte containing depots. Under healthy conditions, bone 

marrow adipocytes are classified as yellow that store lipids, produce adipokines and are 

responsive to the systemic energy balance via changes in fat volume (Krings et al. 

2012). However, obesity among other metabolic challenges such as aging and T2DM 
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drives the expression of the yellow adipocyte phenotype towards the white adipocyte 

phenotype. This movement may be caused by inflammation and has many negative con-

sequences on normal function of bone marrow such as blunted white blood cell produc-

tion that eventually leads to a compromised immune system (Adler, Kaushansky & Ru-

bin 2014). In addition, a link between body adiposity and chronic diseases indicates that 

bone marrow haematopoiesis does not working properly in obesity (van den Berg et al. 

2016). 

 

Exercise is known to have beneficial effects on systemic health before having an effect 

on body composition (Adler, Kaushansky & Rubin 2014). However, BMF is known to 

reduce after high-impact loading exercise in female athletes (Rantalainen et al. 2013) 

and in young children (Casazza et al. 2012). In animal studies, exercise reduces BMF 

with a simultaneous increase in bone quantity in both subjects with high-fat diet-

induced obesity as well as in lean controls (Styner et al. 2014). In addition, there is evi-

dence that bone marrow phenotype is preserved in obese animals without reducing sys-

temic adiposity (Styner et al. 2014) indicating that the protective effect of exercise on 

bone phenotype is caused by mechanical stimulation rather than changes in energy bal-

ance (Adler, Kaushansky & Rubin 2014). The effect of exercise or physical activity on 

BMF UI has not been earlier investigated. 

2.1.4 Bone marrow glucose uptake (GU) 

Bone marrow GU can be determined with positron emission tomography (PET), which 

is a non-invasive, functional imaging method to study physiologic, metabolic and ma-

lignant diseases and conditions. FDG is the most commonly radiotracer in oncologic 

PET-imaging and is transported in the cell via the same mechanism as glucose (Aras et 

al. 2014). Semi-quantitative GU in the bone marrow is usually modest (SUV < 3). 

However, semi-quantitative uptake values of the axial bone marrow in healthy condi-

tions are somewhat higher than uptake of peripheral bone marrow. This may be ex-

plained by the different distribution of red hematopoietic marrow and yellow fatty mar-

row (Fan et al. 2007). Red hematopoietic marrow is known to have a much higher up-

take value compared to yellow fatty marrow (Basu et al. 2007). In addition, uptake val-

ues of red hematopoietic marrow have been found to have a negative correlation with 

increasing age (Fan et al. 2007), but no differences between the male and female gender 
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in human studies have been found in the uptake of bone marrow (Fan et al. 2007). Axial 

bone marrow GU is normally lower than liver GU (Shreve, Anzai & Wahl 1999) but 

increases in pathological conditions such as bone marrow lymphoma (Adams et al. 

2014), leukemia (Arimoto et al. 2015) and multiple myeloma (Sachpekidis et al. 2015). 

2.1.4.1 Obesity, exercise and bone marrow GU 

Prenatal maternal obesity increases fetal insulin resistance (Catalano et al. 2009), which 

increases the risk of T2DM in female offspring (Eriksson et al. 2014, Mingrone et al. 

2008). The genetic background of the mother interacts with intrauterine programming, 

but this may be a less important factor determining health in later life than maternal 

obesity (Vaag et al. 2014). There were no previous studies investigating the effect of 

maternal obesity on bone marrow insulin-stimulated GU until the EU funded DORIAN 

project (Developmental ORIgins of healthy and unhealthy AgeiNg) was carried out in 

Turku and Helsinki during the years 2012 to 2014. The original purpose of this project 

was to study the long-term effect of prenatal maternal obesity on the health of the off-

spring (Iozzo et al. 2014). In first part of the study, Bucci et al. showed that whole-body 

and skeletal muscle insulin-stimulated GU is increased after resistance training regime 

in the offspring of obese mothers (OOM). 

 

There are no previous studies investigating the long-term effect of exercise on bone 

marrow GU. Isometric muscle exercise is known to acutely increase femoral bone GU 

(Heinonen et al. 2013). Moreover, the effect of exercise on skeletal muscle GU has been 

widely investigated and outcomes in these studies have been beneficial. Reichkendler et 

al. found that femoral skeletal muscle GU increased after 11-week aerobic exercise 

training in moderately obese and sedentary male subjects (Reichkendler et al. 2013). 

They also observed a decrease in SAT GU but not in intra-abdominal visceral adipose 

tissue. Hällsten et al. investigated skeletal muscle GU during isometric strength training 

in obese and non-obese males. Their main finding was that skeletal muscle GU is blunt-

ed due to insulin resistance but muscle mass compensates for this effect (Hallsten et al. 

2003). The same compensating effect of muscle has been also found in subjects with 

T1DM (Peltoniemi et al. 2001). Insulin-stimulated GU in skeletal muscle is known to 

correlate with exercise intensity (Heinonen et al. 2012). 
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2.1.5 Bone mineral density (BMD) and osteoporosis 

BMD is defined as bone mass per volume of bone (NIH Consensus Development Panel 

on Osteoporosis Prevention, Diagnosis, and Therapy 2001). Osteoporosis is defined as a 

skeletal disorder resulting from decreased bone strength, which is reported with T-score 

(number of standard deviations above or below the average BMD value for young 

healthy white women), Z-score (number of standard deviations above or below the av-

erage BMD for age and gender matched controls) or absolute BMD value (g/cm2 or 

mg/cm3). A T-score lower than -2.5 is considered a diagnostic score for osteoporosis 

measured with DXA from lumbar spine or hip (NIH Consensus Development Panel on 

Osteoporosis Prevention, Diagnosis, and Therapy 2001). The gold standard for measur-

ing BMD is dual X-ray absorptiometry (DXA) (NIH Consensus Development Panel on 

Osteoporosis Prevention, Diagnosis, and Therapy 2001). Other possible applications for 

measuring BMD are quantitative computed tomography (QCT) (Adams 2009) and qual-

itative ultrasound (Casciaro et al. 2015). 

 

A condition with decreased BMD is known as osteoporosis or osteopenia depending on 

the magnitude of bone loss. As BMD decreases, the risk for osteoporotic fractures in-

creases (Kanis 1994). Osteoporotic hip fracture has a tremendous negative effect on the 

quality of life. Approximately 1/3 of the hip fractures in over 75-year old women lead to 

death, approximately 1/3 lead to permanent nursing home replacement and approxi-

mately 1/3 regain their pre-fracture function level (NIH Consensus Development Panel 

on Osteoporosis Prevention, Diagnosis, and Therapy 2001). 

 

BMD declines with age and the most rapid decrease takes place right after menopause 

in women (Okano et al. 1998). In addition to age, female gender, estrogen deficiency, 

smoking, low BMI, a family history for osteoporosis, history of prior fracture, alcohol 

consumption, late menarche, early menopause and low endogenous estrogen levels are 

known risk factors for decreased BMD (Kanis et al. 2009, Sambrook, Cooper 2006). 

Normal handgrip strength and active exercise habits are predictors for high BMD (NIH 

Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy 

2001). As decreased BMD is the most common risk factor for osteoporotic fracture, 

other risk factors are also recognized. These are related to factors that increase the risk 

for falls (Kanis et al. 2013). The risk for osteoporotic fracture has been associated with 

history of falls, low physical function, low gait speed, decreased muscle strength, im-
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paired cognition, impaired vision and the presence of environmental hazards such as 

low illumination, doorsteps and throw rugs. In addition, residents of nursing homes and 

other long-term facilities are at risk for fracture probably because of high rates of de-

mentia and multiple medications (Kanis et al. 2000). 

2.1.5.1 Exercise and BMD 

The human skeleton is a metabolically active organ, which responds to mechanical 

stimulus by increasing or decreasing bone modelling and remodelling (Frost, Schonau 

2000). Exercise has been found to have a different effect on BMD regarding age, gen-

der, underlying pathologic conditions, type of the exercise (e.g. low and high-impact 

resistance training, endurance training or whole body vibration training), site of the 

BMD measurement (Karlsson, Rosengren 2012) and method of the BMD measurement. 

In this chapter, only the effect of moderate to high-impact resistance training on BMD 

of hip and vertebral body in elderly women is reviewed. 

 

The effect of resistance training on BMD in elderly women seems to vary among stud-

ies since some have found that BMD remains unchanged but other studies have found 

significant increases in BMD. For example, Bemben et al. found that resistance training, 

regardless of intensity and frequency, increases BMD of the proximal femur and spine 

(Bemben, Bemben 2011). On the contrary, Maddalozzo et al. did not find a significant 

increase in BMD in women after a 24-week high-intensity resistance training interven-

tion (Maddalozzo, Snow 2000). However, various meta-analyses addressing this matter 

have concluded that physical exercise seems to have a significant positive effect on 

BMD at different skeleton sites (Howe et al. 2011, Martyn-St James, Carroll 2006, 

Zhao, Zhao & Xu 2015, Hamilton, Swan & Jamal 2010). 

 

The precise mechanism behind the increasing effect of resistance training on BMD re-

mains unclear. High mechanical strains may stimulate site-specific osteogenesis (Hei-

nonen et al. 2002). This theory is supported by Marques et al. who suggested that the 

positive effect of exercise observed at total hip BMD may be related with the inclusion 

of movements, for example, hip abduction stimulating the gluteus muscles, which insert 

on the greater trochanter of the proximal femur (Marques et al. 2011). In addition, a 

positive correlation between muscle strength and bone mass has been found (Armamen-
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to-Villareal et al. 2014, Huh et al. 2014). Muscle-bone interaction may result in the pos-

itive BMD outcome, which may partly be explained by the spatially heterogeneous re-

sponse of bone to resistance training that targeted to different muscle groups (Lang et al. 

2014). Exercise can cause microdamage in bone (Luo et al. 2014), which may serve as a 

strengthening mechanism for bone. 

 

Exercise may also induce an osteogenic effect via bone mechanosensor activation. Me-

chanical stimuli induce bone cellular activity in osteocytes and osteoblasts, which 

communicate with each other through gap junctions (Donahue et al. 1995). Osteocytes 

are the mechanosensors in bone tissue (Clarke 2008) that coordinate the osteogenic re-

sponse to mechanical loading at least in part through the expression of sclerostin (Tu et 

al. 2012). Sclerostin is a soluble antagonist of the Wnt/β-catenin signaling pathway. It is 

secreted by osteocytes, and it regulates osteoblast activity and differentiation. It is also a 

negative regulator of bone mass (Clarke, Drake 2013). However, in some studies, scle-

rostin has been found to positively associate with BMD especially in postmenopausal 

women (Polyzos et al. 2012, Modder et al. 2011, He et al. 2014). 

2.2 In vivo imaging of bone  

2.2.1 Magnetic resonance imaging (MRI) 

MRI is the best non-invasive imaging method to study bone marrow due to its supreme 

soft-tissue contrast, spatial resolution and non-ionizing nature. The magnetic resonance 

principle is based on Larmor’s equation, which states that the nucleus resonance fre-

quency vo (Hz) is proportional to the static magnetic field Bo (T). γ is the gyromagnetic 

ratio, which is specific for each nucleus. For example, at a magnetic field of 1.5T, the 

Larmor frequency of a proton is 63.8 MHz. according to the Larmor equation: 

 

vo = γ / 2πBo 
 

To disturb the alignment of a proton located in the external magnetic field formed by 

MRI scanner, a burst of RF pulses is sent with the same frequency that the proton pos-

sesses. This leads to a decrease of longitudinal magnetization and an increase of the 
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transversal magnetization of the proton. When the RF pulse is switched off, the trans-

versal magnetization decreases, while longitudinal magnetization increases. The spiral-

ling motion of relaxing protons’ magnetic sum vector leads to MR signal that is used in 

the reconstruction of the MRI image. The longitudinal relaxation is described by a time 

constant of T1 and the transversal relaxation time is described by a time constant of T2 

that is specific to different tissues (Schild 2012). 

2.2.1.1 1H MR Spectroscopy 

1H MR spectroscopy is a non-invasive MRI imaging application that can be used in vivo 

to identify various chemical states of certain elements. It can be used to quantify fat 

amount and composition of different organs, e.g., bone marrow (Yeung et al. 2005). The 

basic principle of MR spectroscopy is that different nuclei have a different distribution 

of electrons leading to slightly different magnetic fields among the measured com-

pounds. Technically, the bone marrow frequency spectrum of fat and water peaks pro-

vide visualisation of the presence of fat and water content within the placed voxel al-

lowing expression of marrow adiposity in relation to water content (Figure 4). Triglyc-

eride properties, including the level of carbon chain saturation, can be investigated by 

assessing the ratios of fat resonances. Spectral analyses are performed on an MR system 

or with commercial packages (Hu, Kan 2013). 
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Figure 4 Axial magnetic resonance image of calf from study II. Voxel is placed on 
tibial bone marrow. Reprinted with permission from Study II. 

MR spectroscopy is performed with different pulse sequences. The two commonly used 

single-voxel approaches for assessing BMF are the Stimulated Echo Acquisition Mode 

(STEAM) (LeBlanc et al. 1999) and Point RESolved Spectroscopy (PRESS) pulse se-

quences (Kugel et al. 2001, Schick et al. 1994) with or without water suppression. 

STEAM uses a 90° refocusing pulse to collect the signal in a similar way than GE se-

quence. Shorter TEs are achieved with STEAM at the expense of less signal-to-noise. 

PRESS sequence refocuses the spins with a 180° radiofrequency pulse in a similar way 

to spin echo (Hesselink 2005). In a single-voxel method, a series of slice-selective radio 

frequency (RF) pulses excite a volume of interest (VOI). This is subsequently followed 

by data acquisition of a TE domain in the absence of spatial-encoding gradients. Spec-

troscopy voxels are bigger in size compared to voxels in regular MRI. Voxel volumes 

range from 5-20 ml. This is beneficial from a signal-to-noise ratio (SNR) perspective 

and increases detection sensitivity of small fat concentrations. However, voxel place-

ment requires accuracy to avoid adjacent tissues, for example, arteries and cortical bone 

(Hu, Kan 2013). 

 

To report the resonance frequency of measured nucleus, the use of a ppm chemical shift 

scale (Si, dimensionless parameter) is more practical than absolute frequency scale (Hz) 

because the value of external magnetic field Bo is not a constant. The chemical shift 

scale is calculated by the difference between vi (frequency of nuclei) and vref (reference 
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frequency), which is divided by vref. Vref is practically replaced by the spectrometer fre-

quency. 

 

Si = 106 (vi - vref ) / vref 

 

MR spectroscopy imaging results in a spectrum of signals that are placed on X- and Y-

axis (Figure 5). The X-axis describes the signal position in a frequency scale (Chemical 

shift scale, relative in ppm) and the Y-axis represents the signal intensity, which is di-

rectly proportional to proton amount that produces the signal. The common quantitative 

endpoint from spectral analysis is a T2-corrected fat-signal fraction computed as the 

sum of the areas under all quantifiable fat peaks divided by the sum of the water and fat 

peak areas (Hu, Kan 2013). MR spectroscopy can measure the spectrum from all known 

nuclei, which are able to absorb radiofrequency energy. In biomedical imaging, it is 

mainly focused on protons, carbon and phosphorus (Hajek, Dezortova 2008). 
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Figure 5  1H MR spectra of vertebral bone marrow from Study I. Water peak at 4.9 
ppm, main lipid peak at 1.1 ppm and smaller lipid peak at 2.0 ppm. Re-
sidual is depicted on top of the image. Reprinted with permission from 
Study I. 

In vivo MR spectroscopy usually uses N-acetylaspartate methyl signal (resonates at 2.02 

ppm) as the reference. The best separation of the spectrum signals is achieved by high-

est possible magnetic field. However, homogeneity is more important than the intensity 

of the magnetic field. Homogeneity of the magnetic field is characterized by the half-

width (full width of the half height) of the signal. In addition, SNR is another basic pa-

rameter, which characterizes the quality of the spectrum and tells how strong is signal 

compared to the noise. 

 

SNR = 2.5 · h / noise 
 

SNR = signal-to-noise ratio 
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noise = peak to peak distance in a range around 100 points without signals 

h = height of the signal 

2.5 = constant 

 

SNR is increased proportionally with the square number of the repetition of pulses se-

quences, which are also called acquisitions. The acquisition is the time needed for the 

measurement of one spectrum. SNR also increases with an increase in the size of VOI. 

Magnetic field homogeneity is a limiting factor, because it is more homogenous in 

small VOI compared to large VOI (Hajek, Dezortova 2008). 

 

Normal bone marrow spectrum of femoral diaphysis consists mainly of lipid peaks that 

are composed of triglycerides stored in adipocytes. In the fat spectrum, the olefinic, i.e., 

double bond, proton resonance (at 5.3 ppm) is well-resolved from other fat resonances 

(at 2.8–0.9 ppm). An intense water resonance (at 4.7 ppm) may, however, obscure the 

olefinic resonance from fat hampering analysis of fat composition (Yeung et al. 2005). 

Lundbom et al. have recently introduced a method using long TE 1H MR spectroscopy 

to assess fat unsaturation in tissues with an intense water resonance (Lundbom et al. 

2011). Usage of long TE suppresses the intense water resonance at 4.7 ppm resulting in 

a well-resolved olefinic resonance and a more accurate measurement of fat unsaturation. 

Recently, Troitskaia et al. also applied the long TE 1H MR spectroscopy method to de-

termine the unsaturation of BMF (Troitskaia, Fallone & Yahya 2013). Water content is 

usually less than 5 % compared to lipid peaks (Machann, Stefan & Schick 2008). 

 

The normal spectrum of VBM consists around half-half of fat and water-signals. The 

water signal is visible on 4.5-4.7 ppm and lipid signal is visible at 0.0-2.0 ppm (Ma-

chann, Stefan & Schick 2008). The relative water intensity is known to correlate with 

cellularity of the bone marrow (Ballon et al. 1991). 

 

The fat-to-water-ratio of VBM increases with age and is lower in women subjects com-

pared to male throughout the lifespan (Kugel et al. 2001). As stated earlier, hematopoi-

etic bone marrow consists of hematopoietic cells that produce majority of water signal 

and lipid cells that partly produce the fat signal. Hematological malignancies and lym-

phoma cause the fat-to-water-ratio decrease, which results from the pathological fat 

depletion of bone marrow by malignant cells and reactive stimulation (Kugel et al. 
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2001). Moreover, successful treatment with chemotherapy or bone marrow transplanta-

tion leads to increasing fat-to-water -ratio, which is caused by the destruction of malig-

nant tumour cells. In addition to bone marrow biopsy, 1H MR spectroscopy is an im-

portant tool in follow-up of the hematological malignancies (Machann, Stefan & Schick 

2008). However, the invasive nature limits the possible amounts of biopsies conducted. 

Moreover, a diminutive target area limits its use in controlling the therapeutic effects. 

The fat-to-water ratio of 1H MR spectroscopy and cellular findings of the bone marrow 

biopsy are known to have a high correlation (Ballon et al. 1991). 

2.2.1.2 In-phase and out-of-phase MRI 

In-phase and out-of-phase MRI (also known as chemical shift MR or opposed-phase 

imaging) can show small amounts of fat in tissues and may help to separate osteoporotic 

fractures from a neoplastic process (Ragab et al. 2009). However, in-phase and out-

phase MRI is more inaccurate in quantitation of fat compared to 1H MR spectroscopy. 

Potential advantages of in-phase and out-of-phase MRI compared to 1H MR spectrosco-

py are simpler post-processing and have shorter acquisition times (Ojanen et al. 2014). 

In-phase and out-of-phase imaging techniques rely on the fact that water and fat have 

different resonance frequencies (3.5 ppm or 222 Hz at 1.5T) (Ma 2008). When resonat-

ing is aligned, their signal is summed (in-phase). While they are out-of-phase, the mag-

netic moments of fat and water protons are subtracted with subsequent signal drop (Dis-

ler et al. 1997). Simple summation and subtraction of these images can yield water-only 

and fat-only images. Limitations of this technique include false negative results from fat 

containing metastases and false positive results from marrow fibrosis (Nouh, Eid 2015), 

sensitivity to external magnetic field inhomogeneity without proper phase correction 

(Ma 2008), increased scanning time leading to increased motion artefact and image 

blurring. A high correlation among results obtained with in-phase and out-of-phase MRI 

and 1H MR spectroscopy of VBM fat content has been observed in human subjects 

(Ojanen et al. 2014). 

 

Water and fat-signal can be derived after leaving out phase correction for the sake of 

simplicity (Schild 2012): 

 

SIin-phase = SIwater + SIfat 
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SIout-phase = SIwater - SIfat 

SIsum = (SIwater + SIfat) + (SIwater - SIfat) = 2SIwater 

SIdiff = (SIwater + SIfat) - (SIwater - SIfat) = 2SIfat 

 

SI = Signal intensity 

2.2.2 FDG-PET imaging 

A PET system detects paired gamma-radiation (high energy photons) that is emitted by 
18F radioligand bound to tracer. 18F is an unstable isotope with excess amount of protons 

in its nucleus. 8F isotope is not found in nature and thus have to be produced with cyclo-

tron. The widespread use of 18F isotope is based on its relatively long half-life (109 min) 

allowing long imaging protocols e.g., whole-body and production of the isotope in dif-

ferent facility than the actual PET-imaging takes place. The isotope undergoing positron 

decay emits a positron that travels in the tissue only few millimeters until it is annihilat-

ed with a nearby electron after losing all its kinetic energy. In annihilation, positrons 

and electrons are converted into two 511 keV photons travelling in opposite directions 

(equations). The PET system detects these photons in a certain period of time (frames) 

and are reconstructed into an image as spatial distribution of coincide annihilation 

events. Thus, the observed PET-image reconstruction reflects the spatial distribution of 

tracer radioactivity concentration over time. The spatial resolution of PET technique is 

limited and due to this limitation PET cameras are usually paired with CT or MRI to 

achieve excellent spatial resolution in combination with functional data of the tissue 

(Rudroff, Kindred & Kalliokoski 2015). The formula for positron decay: 

 
A

ZXN à AZ-1YN+1 + e+ + v 

e+ + e- à 2γ 

 
A = mass number 

Z = proton number 

N = neutron number 

e+ = positron  

e- = electron 
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γ = high energy photon 

v = neutrino 

 

FDG is the most used radiotracer to measure tissue-specific GU in physiological condi-

tions (Rudroff, Kindred & Kalliokoski 2015). In dynamic FDG-PET imaging, tracer 

kinetics in the tissue over time is imaged. After administration of FDG tracer, it eventu-

ally accumulates in the tissue cells. The tracer is transported through the cell membrane 

in a similar way than glucose. After transportation, FDG is phosphorylated preventing 

its re-transportation back into bloodstream. However, modeling is needed to convert the 

acquired PET data into a meaningful graphical interpretation. Gjedde–Patlak graphical 

analysis (Patlak, Blasberg 1985) can be used to quantitate the tracer influx rate Ki, 
which reflects the fractional rate of tracer phosphorylation in the target tissue. 

 

Ki = (k1 · k3/k2 + k3) 

 
k1 = transfer coefficient from vascular space into tissue 

k2 = initial clearance and efflux coefficient 

k3 = phosphorylation rate constant 

 

The Gjedde-Patlak graphical analysis assumes that the dephosphorylation rate K4 is 

zero, and the tracer is irreversibly trapped in the cell (Dhawan et al. 1989). The steady 

state of the tracer (FDG concentrations between compartments are in equilibrium) is 

achieved at certain time point after the tracer administration. Tracer plasma activity is 

high a certain time after the intravenous tracer administration and gradually decreases 

while tracer is transported into the target tissue. Data of arterialized plasma and regional 

time-activity curves (TAC) are plotted as a function of the normalized integral of plas-

ma FDG levels, and this function becomes linear after the steady state has been 

achieved. 

 

Ct(t)/P(t) = Ki [∫0 
t (P(t))dt]/P(t) + VB 

 

Ct(t) = tissue radioactivity level at timepoint t 

P(t) = plasma radioactivity level at timepoint t 
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Ki = influx rate of tracer 

VB = initial distribution of tracer volume in the tissue 

 

In steady state equation above can be expressed as a straight line 

 

y = Kix + VB 

 

Thus, the slope of the fit data Ki represents the transfer rate of FDG from plasma into 

tissue (Figure 6), and VB is the intercept of the fit line. To obtain rates of bone marrow 

GU (µmol/L · min), the transfer rate Ki of FDG is multiplied with plasma glucose levels 

and divided by the lumped constant (LC), which accounts for differences in the 

transport and phosphorylation of FDG and glucose (Phelps et al. 1979). LC is assumed 

to be 1.0 for bone marrow and is known to be 1.2 for skeletal muscle and 1.14 for adi-

pose tissue (Peltoniemi et al. 2000). The formula to calculate GU: 

 

GU = (Ki · [Glc]p)/LC 
 

Ki = influx rate of tracer 

[Glc]p = plasma glucose concentration 

LC = lumped constant 

 

Figure 6 Slope of the linear phase of femoral bone marrow from Study III. The 
influx rate Ki, depicts the amount of accumulated tracer in bone marrow 
in relation to tracer amount in plasma. In this case, the goodness of fit 
was r = 0.99. It expresses a line fit to measured points. 
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This thesis focuses mainly on femoral (peripheral) and vertebral (axial) bone marrow 

dynamic FDG-PET-imaging under hyperinsulinemic euglycemic clamp technique to 

standardize the insulin action and to quantify tissue-specific GU in relation to whole-

body GU. The basic physiological assumption is that diaphysis of FBM is composed 

mainly of fat as previously stated. It is also assumed that VBM is composed of variating 

ratios of hematopoietic and fat content that varies by gender and age as previously stat-

ed. There are few previous studies, excluding malignant or pathological conditions, fo-

cusing on dynamic FDG-PET imaging of bone marrow or BMF under insulin-

stimulated conditions. Dynamic FDG-PET is by far the only imaging method combined 

with hyperinsulinemic euglycemic clamp that can quantify site-specific GU of insulin 

sensitivity (DeFronzo, Tobin & Andres 1979). 

 

In clinical cases, the relative tracer uptake is usually of interest, e.g., in cancer diagno-

sis, static FDG-PET imaging can be used. It offers information on spatial distribution of 

administered tracer. FDG-tracer activity in the tissue is measured semi-quantitatively by 

drawing a region of interest (ROI) or volume of interest (VOI). The results are repre-

sented as standardized maximal uptake values (SUVmax) that is standardized PET quan-

tifier. The SUV is calculated by the tissue’s maximal radioactivity concentration 

(kBq/mL) at time T (CT) divided by injected tracer radioactivity dose in MBq that is 

divided by the subject weight in kilograms. 

2.2.3 Quantitative computed tomography (QCT) 

The gold standard technique in clinical use for assessing BMD is DXA (NIH Consensus 

Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy 2001). QCT is 

a CT imaging application technique to assess volumetric trabecular BMD of the spine 

with a calibration phantom to convert Hounsfield units (HU) into BMD values (Adams 

2009). As simplified principle, CT image is based on the linear X-ray absorption in tar-

get tissues. Bone tissue possesses a high atomic number, and thus, absorbs X-rays very 

efficiently. This results in bone appearing densely white on the image leading to having 

a higher HU number. To transform HU into BMD unit (g/cm2 or mg/cm3), a bone min-

eral calibration phantom is required in the field of view (Adams 2009). Calibration 

phantoms contain different concentrations of material that is composed of solid material 

such as hydroxyapatite. Conversion of HU into BMD is calculated from the regression 
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of attenuation and concentration of the calibration phantom (Adams 2009). The same 

calibration phantom must be used in longitudinal study scannings to achieve reliable 

results and good reproducibility (Engelke et al. 2008) 

 

Limitations of QCT include the fact that the WHO has defined osteoporosis as a T-score 

lower than -2.5 measured with DXA (Lewiecki et al. 2008), which means that formal 

diagnosis of osteoporosis cannot be made with QCT. However, the American College 

of Radiology has published guidelines for the performance of QCT in 2008. Due to the-

se guidelines, trabecular BMD values from 80 - 120 mg/cm3 are defined as osteopenic, 

and BMD values lower than 80 mg/cm3 are defined as osteoporotic (Felsenberg, Gowin 

1999, American College of Radiology 2008). In addition, radiation doses are higher 

when scanning central sites compared with DXA (3D QCT of spine L1-L2 ~1.5 mSv 

with voltage of 120 kV, current 100 mAs versus DXA of spine ~ 0.013 mSv versus an-

nual background radiation ~2.7 mSv) (Damilakis et al. 2010). 

 

CTXA (Computed Tomography X-Ray Absorptiometry) of the hip is a commercial ex-

tension of the classical DXA measurement using QCT. CTXA of the hip utilizes 3D 

volumetric projections to generate hip images that look similar generated by DXA. 

While DXA rely on dual-energy X-ray method, CTXA of the hip rely on the 3D ana-

tomical image (Figure 7) combined with the separation of soft tissue from surrounding 

bone. Both the CTXA and DXA of the hip provide the same information, which is re-

ported as total bone mass per projected area. In addition, excellent correlations between 

the results of CTXA of the hip and DXA of the hip have been observed (Cann et al. 

2014, Khoo et al. 2009). Precision error of total hip CTXA measurement have been re-

ported to be approximately 2 % and interobserved error approximately 1 % (Cann et al. 

2014). 
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Figure 7 Image of 3D rendered proximal femur with QCT Pro software with fem-
oral neck region of interest. Reprinted with permission from Study IV.
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3 AIMS OF THE STUDY 

I To study the differences in vertebral bone marrow glucose uptake and 

bone marrow fat amount between diabetic and healthy control experi-

mental animals and, in addition, whether vertebral bone marrow glucose 

uptake is associated with vertebral bone marrow adiposity (I) 

 

II To study whether current or early-onset obesity decreases bone marrow fat 

unsaturation in adolescent male and female subjects (II) 

 

III To investigate the role of prenatal maternal obesity in bone marrow insu-

lin-stimulated glucose uptake and to investigate whether 16-week re-

sistance training increases bone marrow insulin-stimulated glucose uptake 

in elderly female offspring of lean/normal-weight mothers and offspring 

of obese/overweight mothers (III) 

 

IV To test the effect of 16-week resistance training and accompanying one-

year follow-up on total hip bone mineral density and serum sclerostin in 

elderly female subjects with decreased muscle strength (IV) 
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4 MATERIALS AND METHODS 

Summary of the materials and methods is depicted in Table 1. 

Table 1  Summary of study designs, subjects, imaging methods and outcome vari-
ables of the original studies. OLM: offspring of lean/normal-weight 
mothers. OOM: offspring of obese/overweight mothers. VBM: vertebral 
bone marrow. FBM: femoral bone marrow. GU: glucose uptake. vBMF: 
vertebral bone marrow fat. tBMF: tibial bone marrow fat.  

Study Study design Subjects Age Imaging Outcome variable 
I Prospective 

cohort 
n=10 male pigs (5 
overweight diabetic, 5 
normal-weight control) 

7-9 months PET, MRI VBM GU, vBMF 

II Prospective 
cohort  

n=35 subjects (18 
normal-weight of 
which 2 male, 16 fe-
male and 17 over-
weight of which 9 
male, 8 female) 

15-27 years MRI tBMF UI 

III Non-
randomized 
clinical trial 

n=46 women (20 frail 
OLM, 17 frail OOM, 9 
non-frail OLM) 

68-78 years PET, MRI VBM and FBM 
GU, vBMF 

IV Non-
randomized 
clinical trial 

n=48 women (37 frail, 
11 non-frail controls) 

68-78 years QCT Total hip BMD 

 

4.1 Study designs 

In Study I (prospective cohort study), the difference in VBM GU and BMF content was 

assessed between diabetic and control groups. In addition, the association between 

VBM GU and BMF was tested in pooled population. VBM GU was measured with 

FDG-PET imaging, and BMF was assessed with 1H MR spectroscopy with in-phase and 

out-of-phase MRI and with biochemical TAG-analysis in 10 pigs. 

 

In Study II (prospective cohort study), the effect of current and early-onset obesity (be-

fore age of 7 years) on BMF UI of tibial diaphysis was studied with 1H MR spectrosco-

py in 35 adolescent subjects with varying BMI. 

 



40 Materials and methods 

 

The design of Study III is depicted in Figure 8. In Study III (interventional non-

randomized single blind study design), we investigated the role of maternal obesity in 

bone marrow GU. In addition, we studied the effect of 16-week resistance training in-

tervention on bone marrow GU with FDG-PET in 37 frail elderly female offspring with 

a known history of prenatal maternal obesity status. 9 non-frail age-and sex-matched 

controls were studied at baseline.  

 

Figure 8 Study design of Study III. Reprinted with permission from Study III. 

The study design of Study IV is depicted in Figure 9. In Study IV (interventional non-

randomized single blind study design with a follow-up), the effect of 16-week resistance 

training intervention on BMD and on serum sclerostin in 37 frail elderly female was 

assessed. 11 non-frail age- and sex-matched controls were studied at baseline. A subset 

of 25 subjects (19 intervention, 6 controls) was studied one year after the end of the 

intervention. Reprinted with permission from Study III. 
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Figure 9 Study design of Study IV. All the subjects who were not prescribed an 
anti-osteoporotic treatment other than calcium or vitamin D after the in-
tervention (32 from intervention group and 11 controls) were invited to a 
follow-up visit. Altogether 19 intervention and 6 control subjects partici-
pated this visit. Reprinted with permission from Study IV. 

In Studies III and IV, after the first study visit, the frail/interventional subjects under-

went an individualized four-month resistance training intervention three times a week, 

60 minutes per session under supervision of a trained, licensed physiotherapist for four 

months. Resistance training sessions started with a 10-minute warm-up using a cycle or 

elliptical ergometer. It proceeded with eight different resistance exercises targeting large 

muscle groups of the lower and upper body (leg presses, chest presses, seated rows, 

abdominal crunches, back extensions, seated leg extensions, seated leg curls and hip 

abductions). Subjects completed three sets of 8–15 repetitions at each station with a 

load that corresponded to 50–80 % of estimated 1 repetition maximum (RM). Progress 

in muscle strength was measured monthly, and the loads for the following month were 

adjusted as appropriate. Adherence (actualized individual exercise frequency per week 
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divided by maximum exercise amount per week) of the pooled population to exercise 

was 78.6 ± 10.8 %. 

4.2 Study subjects 

In Study I, altogether ten 7-9 old month pigs were included either in obese diabetic or 

control group based on their demographic profile. Animals were raised in animal facili-

ty of Biocity, Turku. Originally, diabetes had been induced to the diabetic group with 3-

day lasting administration of streptozotocin (dosage 50 mg/kg per day, Zanosar, Phar-

macia & Upjohn, MI, USA) at the age of 12 weeks. The diabetic group had also been 

fed with high fat diet for 6 months (basic fodder supplemented with 1.5 % cholesterol, 

15 % lard, 1.5 % sodium cholate, Pekoni 90, Suomen Rehu/Hankkija–Maatalous Oy, 

Hyvinkää, Finland). The control group had been fed with basic fodder without any sup-

plementation (Pekoni 90, Suomen Rehu/Hankkija–Maatalous Oy, Hyvinkää, Finland). 

 

In Study II, a random sub-group of altogether 35 subjects (18 normal-weight of which 2 

male, 16 female with current BMI < 25 kg/m2 and 17 overweight of which 9 male, 8 

female with current BMI > 25 kg/m2) were included in the study from 68 (18.6 %) eli-

gible study subjects consented from Children’s hospital patient registry during 2011-

2013 including altogether 366 patients fulfilling the inclusion criteria. Inclusion criteria 

for the overweight subjects were: 1) weight for-height ratio exceeding 60 % before age 

7 years, according to Finnish growth standards; 2) referral due to severe obesity to Chil-

dren's Hospital, Helsinki University Central Hospital, during childhood; 3) at the age of 

7 years living in the capital region of Helsinki and 4) aged between 15 and 27 years at 

the time of the study. For each overweight subject, an age- and sex matched normal-

weight control was selected from the population register. Sampling of controls was lim-

ited to the capital region of Helsinki. Exclusion criteria for the controls were obesity 

(weight-for-height ratio above 40 %) before the age of 10 years. In Study II, we also 

performed a second analysis by grouping the subjects based on their BMI by the age of 

7 years: 13 subjects developed severe obesity before age 7 years, while 22 were non-

obese at age 7 and were regarded as controls. 

 

In Studies III and IV, study subjects were recruited from Helsinki Birth Cohort Study II 

(HBCS II), which included 13345 subjects born during 1934 to 1944. The HBCS cohort 
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is a longitudinal study cohort with information of prenatal life through medical records 

of birth and child welfare clinics, and in addition, throughout the life span including for 

example, characteristic, metabolic and exercise data. The eligible study subjects were 

selected from a sub-cohort of 2003 subjects that had been thoroughly clinically charac-

terized throughout the years. Exclusion criteria for studies III and IV included diabetes 

requiring insulin treatment or measured plasma fasting glucose over 7 mmol/l measured 

at the last visit before enrolment. Individuals currently smoking and those with comor-

bidities influencing insulin sensitivity and contraindications for participating in an exer-

cise intervention (i.e., chronic atrial fibrillation and pacemaker) or an MRI study were 

also excluded. 

 

In Study III, altogether 46 study subjects aged 68-78 years (20 frail offspring of 

lean/normal-weight mothers (OLM), 17 frail offspring of obese/overweight mother 

(OOM), 9 OLM non-frail controls) were included in the study. Frailty is a syndrome 

that can be characterized by e.g. muscle weakness, exhaustion, unintentional weight-

loss and low physical activity (Abbatecola, Paolisso 2008) but our definiton of frailty 

was not multi-factorial and was based only on handgrip strength (Syddall et al. 2003). 

Frail OLM and OOM subjects belonged to the lower half of handgrip strength values 

and control OLM subjects belonged to the upper half of handgrip strength values, as 

measured from all HBCS participants in 2001–04. OLM had prenatal maternal BMI ≤ 

26.3 kg/m2 (lowest two quartiles of the entire population), and OOM had a prenatal ma-

ternal BMI ≥ 28.1 kg/m2 (highest quartile of the entire population). BMI of the partici-

pant’s mothers was measured prior to delivery. The BMI was calculated as weight (kg) 

divided by height squared (m2). 

 

In Study IV, altogether 48 study subjects (37 subjects with decreased handgrip strength, 

11 controls with normal handgrip strength) were included in the study. Inclusion criteria 

for the subjects with decreased handgrip strength were a handgrip strength value below 

the median value of all HBCS participants assessed between 2001 and 2004, age be-

tween 68-78 years, female gender and none of the exclusion criteria present. Inclusion 

criteria for the control subjects were handgrip strength values above the median value of 

all HBCS participants assessed between 2001 and 2004, age between 68-78 years, fe-

male gender and none of the exclusion criteria present. 
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4.3 MRI methods 

In Study I, a block of two to three adjacent thoracic vertebral bodies was extracted from 

the pigs. The MRI of the vertebral blocks was done using a 1.5-T MRI scanner (Gy-

roscan Intera CV Nova Dual, Philips Medical Systems, The Netherlands). Single voxel 
1H MR spectroscopic studies of the vertebrae of the pigs were obtained using the time 

of repetition (TR) of 5000 ms, time of echo (TE) of 25 ms. Voxel size was 13 mm x 15 

mm x 18 mm. The voxel was placed in the middle of the vertebral body avoiding hard 

cortical bone. The lipid ratio (peaks at 0.9 ppm, 1.3 ppm and 1.6 ppm) to water was 

measured. Spectra analysis was performed with LCModel (version 6.2–1 L) (Provench-

er 1993). The in-phase and out-of-phase MRI was performed in VBM at the spectrosco-

py using the same scanner in sagittal plane of the vertebrae of the pigs using the image 

parameters of TR of 120 ms, TE of 2.3 and 4.6 ms and slice thickness of 8 mm. 

 

Signal intensity (SI) was measured at a standard workstation (AW 3.1; GEMedical Sys-

tems). ROI had a shape of a rectangle, and they were drawn manually in the middle of 

two to three adjacent VBM cavity excluding the cortex. Average SI was calculated from 

the two to three separate SI of ROIs. Signal intensity index was calculated with the for-

mula: 

 

(SIin − SIout) / Siin (Borra et al. 2009) 

 

SIin = signal intensity measured with in-phase-image 

SIout = signal intensity measured with out-phase-image 

 

In Study II, the MRI experiment was performed on a 3.0T clinical imager (Siemens, 

Verio, Erlangen, Germany). In the supine position, the right calf was positioned and 

fixed in an 8-channel knee coil. Localizers were obtained in three planes and a stack of 

32 transaxial T1-weighted images (FOV 280 x 280 mm2; matrix 256 x 256; TE = 2.31 

ms; TR 240 ms; FA 70°; slice thickness 3 mm; slice gap 3.45 mm) were collected in the 

proximal tibial diaphysis covering the leg from the tibial tubercle 20 cm distally. A 7 

mm x 7 mm x 20 mm voxel was placed in the bone marrow of the proximal tibia and 

PRESS localization was used to collect long TE spectra with TR and TE of 4000 and 

200 ms, respectively. 
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The spectra were analyzed with jMRUI v3.0 software using AMARES algorithm  

(Vanhamme, van den Boogaart & Van Huffel 1997). Intensities of methylene (CH2), 

methyl (CH3) and olefinic (CH = CH) resonances were determined as previously de-

scribed (Lundbom et al. 2010). The unsaturation index (UI) was calculated as the per-

centage of the olefinic resonance intensity to total fat resonance intensity. 

 

UI = 100 · Iolefinic/(Iolefinic + Imethylene + Imethyl) 

 

UI = unsaturation index 

I = resonance intensity 

 

In Study III, 1H MR spectroscopy was performed on the bone marrow of the 10th thorac-

ic vertebral body. Typical acquisition parameters for the PRESS sequence were: TR/TE 

5000/25 ms, bandwidth 1 kHz, number of data points 2048, number of acquisitions 32, 

voxel size 15 mm x 18 mm x 15 mm. A single element of Sense Body coil was used for 

the signal reception. LCModel (version 6.3-0C, protocol “lipid-4” for lipid quantifica-

tion) (Provencher 1993) was used for the analysis of the spectra. Triglyceride signals 

from around 0.9 to around 2.0 ppm were considered as the "fat" signal because the wa-

ter signal overlapped the resonances around 5.3 ppm. Both fat and water resonance are-

as were corrected for the T2 relaxation effect using the T2 times (75.4 ms for fat and 

26.9 ms for water) measured by Kugel et al. (Kugel et al. 2001). T1 effects were consid-

ered to be negligible because of the long duration of the repetition. T2 corrections were 

performed using the equation SI = SI_0-TE/T2 where SI is the corrected and SI_0 the un-

corrected resonance area. The fat-fraction (Reeder, Hu & Sirlin 2012) was calculated by 

dividing the T2 corrected resonance area of fat by the sum of T2 corrected areas of wa-

ter and fat. 

4.4 PET methods 

In Study I, animals were studied under the fasting state. Pigs were anesthetized with 1.0 

g ketamine into the neck muscles before moving the pigs into the operating room. They 

were kept anesthetized with ketamine and pancuronium (total of 1.5 g and 40 mg) and 

mechanically ventilated via tracheal intubation with oxygen and normal room air during 
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the imaging. After the induction of anesthesia, peripheral catheters were placed in both 

ears and arterial catheter was placed in the right carotid artery. Saline was infused 

through the venous catheters and FDG-tracer (890 ± 180 MBq) was injected at the zero 

time point. 70 minutes after the injection of the tracer, the dynamic PET imaging of the 

upper abdomen (field of view included upper and lower thoracic vertebrae) was per-

formed lasting for 20 minutes with PET-scanner (hybrid PET/CT scanner Discovery 

VCT; General Electric, Milwaukee, WI, USA). Blood samples were drawn on a regular 

basis during the imaging in order to measure FDG-tracer concentration in circulation. 

 

The PET study design for Study III is depicted in Figure 10. Abdominal and thigh PET-

imaging was conducted with FDG after an overnight fasting state during hyperinsu-

linemic euglycemic clamp with a GE Advance PET-CT scanner (Discovery 690, Gen-

eral Electric (GE) Medical systems, Milwaukee, WI, USA). For Studies I and III, FDG 

was synthesized with a computer-controlled apparatus in accordance with a modified 

method described by Hamacher et al (Hamacher, Coenen & Stocklin 1986). After 90 

minutes of hyperinsulinemia, an FDG bolus (188 ± 10 MBq) was injected through the 

cannula on the left antecubital vein. Forty minutes after the injection, the upper abdo-

men and lumbar spine were imaged for 15 minutes and 55 minutes after the injection 

thigh area and diaphysis of the femoral bone were imaged for 15 minutes (frames, 5 x 

180 seconds). Hyperinsulinemic euglycemic clamp (1 mU/kg x min, Actrapid; Novo 

Nordisk) was performed as previously described (Nuutila et al. 1992), and the whole-

body GU (M-value) representing systemic insulin sensitivity was calculated from the 

glucose infusion rates during 60–120 minutes of the clamp. 

 

Figure 10 PET study design for Study III. 

In Studies I and III, PET image data was corrected for tissue attenuation, dead time and 

time decay. Reconstruction was made using standard algorithms in a 256 x 256 matrix. 



 Materials and methods 47 

 

PET image analysis was carried out with Carimas 2.6 (study I) and Carimas 2.7 (study 

III) software (Turku PET Centre, University of Turku, Turku, Finland). First, in Study I, 

to obtain time activity curves (TACs), volumes of interests (VOIs) shaped as cylinders 

were manually drawn into the marrow cavity of the two to three adjacent vertebral bod-

ies excluding the cortex. In Study III, VOIs were drawn on the diaphysis of the right 

FBM and on the VBM (L1-L2), excluding the cortex (Figure 11), on the psoas major 

muscle and on SAT of the hip. Second, the transfer rate of FDG from plasma into VOIs 

was calculated from TACs using Gjedde-Patlak graphical analysis (Patlak, Blasberg 

1985). Third, data of TACs was plotted as a function of the normalized integral of 

plasma FDG levels, and the function became linear after the steady state (plasma FDG 

levels entering the tissue are constant). Last, to obtain rates of bone marrow GU 

(µmol/L · min), the transfer rate of FDG was multiplied with plasma glucose levels di-

vided by the LC that was set to 1.0 for bone marrow, 1.2 for skeletal muscle and 1.14 

for SAT. 

 

Figure 11 Volumes of interest drawn on vertebral bone marrow (upper row) and 
femoral bone marrow (lower row) in PET-CT images. Reprinted with 
permission from Study III. 
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4.5 QCT and CT methods 

Hip CTXA from proximal femur in g/cm2 was assessed using QCT (Discovery 690, 

General Electric (GE) Medical systems, Milwaukee, WI, USA) with a resolution of 3.75 

mm. A region located between the superior level of the femoral head and inferior level 

of the lesser trochanter was imaged while the patient was in a supine position on the CT 

table. The CT values were converted to a BMD-scale using a solid calibration phantom 

(Mindways) that was placed under the subject during the imaging. All imaging was 

done at SFOV 500 mm, pitch 1.375, 120 kV and 79 mAs. Images were transferred to a 

QCT workstation and analyzed using the CTXA hip function version 4.2.3 of Mind-

ways QCT pro software (Mindways Software Inc., Austin, TX, USA). First, isolation 

and rotation of the hip were performed with a default threshold value of 100 mg/cm3 to 

isolate bone from soft tissue. The femoral neck axis was identified automatically with 

an algorithm in the QCT software. A rectangular-shaped femoral neck ROI with a 

thickness of 15 mm was used, and it was set in the femoral column resting on top of the 

trochanters excluding the femoral head (Figure 7). The distal extent line was set to the 

level of lesser trochanter. QCT Pro software assessed the trochanteric and intertrochan-

teric BMD automatically. 

 

For obtaining muscle masses, thigh CT images were semi-automatically co-registered to 

the whole-body MRI images and then measures were taken to select a 1.5 cm thick sec-

tion (1.6 cm mask in the imaging software) that was 5 cm distant (perpendicularly) from 

the pubic region (with right and left inguinal lines showed in coronal view). It followed 

the manual segmentation of the different muscle groups by drawing ROIs in the 5-6 

selected slices in the Carimas 2.7 software. The selected compartments were quadriceps, 

adductor magnus, hamstring and adductor longus muscles. After drawing the ROIs sur-

rounding the muscle groups, the muscle tissue volume on the CT image was segmented 

via Hounsfield Unit (HU) thresholding. A threshold of 0 to 100 HU was used. The dif-

ferent muscle group volumes were converted into masses using the skeletal muscle den-

sity (1.04 g/cm3). 
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4.6 Biochemical and clinical methods 

In Study I, the vertebral bone was crushed by pressure after dipping it into liquid nitro-

gen. The lipids were extracted from the crashed bone with chloroform:methanol (2:1 

v/v)  (Folch, Lees & Sloane Stanley 1957). Triplicate, consequent extractions were per-

formed to ensure complete extraction from the porous material. Triacylglycerols 

(TAGs) were isolated from the extracted lipids with prepacked Silica-columns (Hamil-

ton, Comai 1988). Fatty acid methyl esters were prepared from the isolated TAGs by 

the boron trifluoride method (Agren, Julkunen & Penttila 1992) and analyzed with gas 

chromatography (Shimadzu GC-2010 equipped with AOC-20i auto injector, flame ioni-

zation detector (Shimadzu corporation, Kyoto, Japan) and a wall-coated open-tubular 

column DB-23 (60 m x 0.2 mm i.d., liquid film 0.25 µm (Agilent technologies, J.W. 

Scientific, Santa Clara, CA, USA)). Splitless/split injection was used and the split was 

opened after 1 min. Triheptadecanoin and trinonadecanoin (Larodan AB, Malmö, Swe-

den) were used as internal standards. The TAG content in the samples was calculated by 

comparing the area of the internal standard to the total area of the sample peaks. The 

fatty acids were identified by comparing their retention times with those in external 

standards: Supelco 37 Component FAME Mix (Supelco, St. Louis, MO, USA) and 68D 

(Nu-Check-Prep, Elysian, MN, USA). 

 

In Study II, anthropometry including height, weight, and waist and hip circumferences 

was collected during the study visit. Weight was measured with a Seca digital scale 

(www.seca.com). Height was measured with a fast stadiometer connected to the scale. 

Waist circumference was measured with non-stretch narrow tape at between the ribs and 

the iliac crest. Hip circumference was measured at the level of the greater trochanters. 

Fasting blood samples were collected for glucose, insulin and HbA1c. Plasma fasting 

glucose was analyzed by a spectrophotometric hexokinase and a glucose-6-phosphate 

dehydrogenase assay (Gluko-quant glucose/hexokinase; Roche Diagnostics). Serum 

fasting insulin was measured with a time-resolved immunofluorometric assay (Perki-

nElmer Life Sciences). HOMA2-IR was calculated with the HOMA2 calculator 

(https://www.dtu.ox.ac.uk/homacalculator). Body composition was determined with 

dual-energy X-ray absorptiometry (DXA) (Lunar Prodigy, GE Medical Systems, Madi-

son, WI). Basal metabolic rate was calculated by the Harris-Benedict equation (Japur et 

al. 2009). 
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History of the Study II subjects’ physical activity was collected 12 months retrospec-

tively. The questionnaire consisted of supervised and unsupervised physical activity in 

leisure time and physical activity during school attendance. Total physical activity ex-

pressed as minutes per day was used. The subjects filled in the questionnaire before the 

study visit and reviewed it with one of the researchers during the study visit. Subjects 

used a pedometer (Omron Walking Style III, OMN, The Netherlands) for seven days. 

Height, weight and step length were assessed and set to the pedometer prior to the study 

period. Number of steps, travelled distance and energy expenditure were recorded.  

 

In Studies III and IV, clinical examination included sitting blood pressure from the left 

arm (Omron M3 HEM-7200-E2, OMN, The Netherlands) and measurements of waist 

and hip circumference between the ribs and the iliac crest and at the level of greater 

trochanters. In addition, weight, height and total body fat percentage were measured 

(Omron HBF-400-E, OMN, The Netherlands) and fasting serum insulin (automatized 

electro-chemiluminescence immunoassay, ECLIA; Cobas 8000, Roche Diagnostics 

GmbH, Mannheim, Germany) and fasting plasma glucose (glucose oxidase method, 

Analox GM9 Analyzer, Analox Instruments Ltd. London, U.K) were assessed. 

 

In Study IV, fasting serum samples drawn in the morning were collected at baseline and 

after the 16-week intervention. The third sample was collected at follow-up visit. Serum 

samples were stored as aliquots at –80°C. All samples were measured as duplicates and 

simultaneously at the end of the study. Serum sclerostin was measured with Sclerostin 

ELISA from Biomedica (Vienna, Austria) per manufacturer’s instructions. 

4.7 Statistical methods 

Statistical analyses were conducted with SPSS 17.00, 21.00 and 22.00 for Windows or 

MacOS (studies I-IV). A Shaphiro-Wilk test was performed to test data normality 

(Studies I-IV). If the data was not normally distributed, then logarithmic, square root or 

inverse transformations with or without reflection were performed (Studies I-II). Differ-

ences among categorical data were tested by using a chi-square test (Studies II-IV). Re-

sults are denoted as mean ± SD unless otherwise denoted (Studies I-IV). A p-value less 

than 0.05 was considered significant (Studies I-IV). 
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In Study I, differences between the healthy and diabetic pigs were tested with an inde-

pendent samples t-test or a Mann–Whitney U-test. Bivariate correlations were calculat-

ed using the Pearson correlation coefficient. 

 

In Study II, between-group differences were tested with independent samples t-test and 

ANCOVA when adjusting for possible confounders. Data were analyzed first in the 

overweight and normal-weight groups, as determined by the subjects' current BMI. 

Since some subjects with a history of early onset obesity had later achieved a normal 

weight, we subsequently analyzed the data also by determining the obese and control 

groups based on their weight status at the age of 7 years. Association of the bone mar-

row UI, a main outcome variable with other variables, was tested using a Pearson corre-

lation. 

 

In Study III, differences with groups at baseline were tested by using a parametric and 

non-parametric ANOVA. Differences between categorical data were tested by using a 

chi-square test. ANCOVA was used to adjust for the possible effect of handgrip 

strength at baseline. The effects of exercise between and within the groups were as-

sessed with repeated measures ANOVA as a linear mixed model with unstructured co-

variance structure. Bonferroni-adjusted p-values were used in pairwise comparisons 

between the time points. Associations of bone marrow insulin GU, the main outcome 

variable with other variables were tested with Spearman or Pearson correlation analysis. 

 

In Study IV, differences between the groups were tested with independent samples t-test 

or Mann-Whitney U-test if data was not normally distributed. Differences between pre-

intervention and post-intervention parameters were assessed with repeated measures 

ANOVA with unstructured covariance structure. Bonferroni adjusted p-values were 

used in pairwise comparisons between the time points. Associations of BMD, the main 

outcome variable with other variables, were tested using Spearman’s correlation. 
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5 RESULTS 

Summary about the effects of factors of interest on main outcome variables in Studies I-
IV are depicted in Table 2. 

Table 2 Summary about the effects of obesity/maternal obesity and exercise in-
tervention/recent physical activity on primary outcome variables. NA: 
not assessed. çè: no change. é: increases. VBM: vertebral bone mar-
row. FBM: femoral bone marrow. vBMF: vertebral bone marrow fat. 
tBMF: tibial bone marrow fat.  

 
Study Obesity (I, II)/Maternal obesity (III) Exercise (III, IV)/Physical activity (II) 
I VBM GU çè , vBMF çè NA 
II tBMF UI çè tBMF UI çè 
III VBM GU çè, FBM GU çè, 

vBMFçè 
VBM GU çè, FBM GU é, vBMF çè 

IV NA Total hip BMD é 

5.1 Association between VBM GU and VBM fat content (Study I) 

We found an inverse correlation between VBM GU and VBM fat content measured 

with 1H MR spectroscopy (r=-0.800, p < 0.01) as well as between VBM GU and VBM 

TAG assay (r=-0.846, p < 0.05) (Figure 12). A non-significant, but suggestive positive 

association in VBM fat content measured with 1H MR spectroscopy and VBM TAG 

assay was found (r=0.661, p=0.07). However, no association in VBM fat content meas-

ured with in-phase and out-of-phase MRI and VBM TAG assay was found (r=0.394, 

p=0.33). No association between VBM GU and VBM fat content measured with in-

phase and out-of-phase MRI was found (r=-0.823, p=0.11). Differences in weight 

(p=0.008) and serum fasting glucose (p=0.002) were found between diabetic and 

healthy pigs. No differences between the groups were observed in tissue-specific GU 

(VBM, skeletal muscle, SAT) or VBM fat content measured with 1H MR spectroscopy, 

in-phase and out-of-phase MRI or VBM TAG assay (Table 3). 
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Table 3 Characteristics of obese diabetic and healthy pigs 

 Diabetic (n=5) Healthy (n=5) p 
VBM GU (µmol/L·min) 19.3 ± 9.3 28.0 ± 17.0 0.22 
VBM GCR (mL/mL·min) 1.4 ± 0.7 6.4 ± 5.1 0.09 
Skeletal muscle GU (µmol/L·min) 9.5 ± 3.2 12.4 ± 4.3 0.26 
SAT GU (µmol/L·min) 5.2 ± 2.2 6.0 ± 5.2 0.75 
VBM fat content (%) 25.7 ± 3.9* 17.2 ± 7.4 0.12 
Signal intensity index  0.8 ± 0.1* 0.7 ± 0.2 0.45 
VBM TAG concentration (mg/g) 145.8 ± 37.9* 110.6 ± 46.2 0.29 
Weight (kg) 123.2 ± 9.4 78.8 ± 7.9 0.008 

Serum fasting glucose (mmol/L) 15.4 ± 4.1 5.8 ± 2.4 0.002 
* n=3 in diabetic group. Signal intensity index assessed with in-phase and out-of-phase 
MRI. VBM: vertebral bone marrow. GU: glucose uptake. GCR: glucose clearance rate. 
SAT: subcutaneous adipose tissue. TAG: triacylglyserol. Modified and reprinted with 
permission from Study I. 

 

Figure 12 Correlation analyses of VBM GU, VBM fat content and VBM TAG con-
centrations. A negative correlation between VBM GU and VBM fat con-
tent measured with 1H MR spectroscopy (Left). A negative correlation 
between VBM GU and VBM TAG concentration in pigs (Right). Healthy 
pigs are represented by black dots (n = 5) and obese diabetic pigs are rep-
resented by white dots (n = 3). VBM: vertebral bone marrow. GU: glu-
cose uptake. TAG: triacylglycerol. Reprinted with permission from study 
I. 

5.2 Effect of obesity BMF UI (Study II) 

BMI, total body fat, waist-to-hip -ratio, tissue fat, insulin and HOMA2-index were 

higher in overweight vs normal-weight group and subjects with early-onset obesity vs 

control group (Table 4). No differences were found in exercise habits (number of steps 

per days, distance travelled in km/days, energy expenditure in kcal/days, physical activi-
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ty min/days) between the groups. A significant correlation between BMF UI and age 

was found in the whole cohort (r=0.408, p=0.015) (Figure 13). No confounding factors 

were found between BMF UI and age. Gender was not a confounder as the main out-

come and confounders (UI, age, glucose, insulin, HOMA and PA) did not differ be-

tween males and females. We found no difference in BMF UI between overweight and 

normal-weight subjects. Furthermore, no difference was observed in BMF UI after di-

viding the subjects into obese and normal-weight control groups based on their weight 

status at the age of 7 years (Table 5). 

Table 4 Baseline characteristics of the Study II subjects 

 Overweight  
(n=17) 

Normal-
weight  
(n=18) 

p 

Subjects	  
with	  early-‐
onset	  obe-‐
sity	   
(n=13) 

Controls  
(n=22) p 

Age (years) 20.3 ± 2.8 20.6 ± 2.9 0.79 19.7 ± 2.7 20.9 ± 2.9 0.22 
Males (%) 53.0 11.0 0.01 53.8 18.2 0.045 
BMI (kg/m2) 34.9 ± 8.7 21.1 ± 2.4 <0.001 36.8  ± 9.1 22.5 ± 3.7 <0.001 
Waist-to-hip -
ratio 0.9 ± 0.1 0.7 ± 0.1 <0.001 0.9 ± 0.1 0.7 ± 0.1 <0.001 

Total body fat 
(kg) 41.8 ± 19.9 16.2 ± 5.2 <0.001 47.4 ± 19.2 17.6 ± 6.4 <0.001 

Tissue fat (%) 40.6 ± 11.0 28.8 ± 6.8 0.005 43.5 ± 9.4 29.2 ± 7.5 <0.001 
Fasting glucose 
(mmol/L) 5.3 ± 0.4 5.0 ± 0.4 0.08 5.2  ± 0.4 5.1 ± 0.4 0.74 

HbA1c 
(mmol/L) 32.2 ± 3.5 32.9 ± 2.1 0.45 32.5 ± 3.8 32.6 ± 2.2 0.91 

Insulin (mU/L) 14.6 ± 13.3 5.7 ± 3.1 0.04 17.9  ± 13.9 5.6  ± 3.0 <0.001 
HOMA2-index 1.86 ± 1.63 0.76 ± 0.42 0.04 2.27 ± 1.69 0.74 ± 0.40 <0.001 
Reprinted	  with	  permission	  from	  study	  II.	  

Table 5 BMF UI of the Study II subjects 

  Overweight  
(n=17) 

Normal-
weight  
(n=18) 

p 
Subjects with 
early-onset 
obesity (n=13) 

Controls  
(n=22) p 

UI (%) 9.4 ± 1.3 9.8 ± 1.5 0.43 9.6 ± 1.6 9.5 ± 1.3 0.85 
UI (%) (corrected for age, 
physical activity and gen-
der) 

9.3 ± 0.4 9.5 ± 0.4 0.70 9.7 ± 0.4 9.3 ± 0.3 0.44 

UI (%) (corrected for glu-
cose, physical activity and 
gender) 

9.4 ± 0.4 9.4 ± 0.4 0.97 9.6 ± 0.4 9.3 ± 0.3 0.68 

Results are denoted as parameter estimates ± standard error of mean. BMF: bone mar-
row fat. UI: unsaturation index. Reprinted with permission from study II. 
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Figure 13 Correlation between tibial BMF UI and age in the pooled data of 35 
Study II subjects. Inverse transformation with reflection was assessed for 
UI to obtain normal distribution. BMF: bone marrow fat. UI: unsatura-
tion index. Reprinted with permission from study II. 

5.3 Effects of obesity and exercise on bone marrow insulin-
stimulated GU (Study III) 

There were no differences in age, BMI, body fat %, systolic and diastolic blood pres-

sure, waist-hip ratio, plasma fasting glucose, serum fasting insulin, VBM fat content, 

whole body GU (M-value) or prevalence of T2D between control vs frail, control vs 

OLM, control vs OOM and OLM vs OOM (Table 6). No differences were found in tis-

sue-specific GU between OLM and OOM. After adjusting for muscle strength, no dif-

ferences in VBM GU, FBM GU, SAT GU or psoas GU between control vs frail, control 

vs OLM, control vs OOM or OLM vs OOM (Figure 14) were observed. VBM GU was 

approximately 100 % higher compared to FBM GU. FBM, but not VBM GU, correlated 

with whole-body GU in frails and controls combined (r=0.487, p=0.001). VBM GU 

associated inversely to VBM fat content in frails and controls combined (r=-0.411, 

p=0.03). 

 

No significant changes in anthropometric or biochemical characteristics were observed 

between or within the groups after resistance training intervention (Table 7). VBM fat 
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content remained unchanged. Resistance training increased FBM GU by 47 % 

(p=0.006) in OOM. Similarly, psoas GU (p=0.039) increased, while VBM and SAT GU 

remained unchanged after the intervention. In OLM, there were no significant changes 

in tissue-specific GU. Differences in exercise effects were found in FBM GU (p=0.022) 

and SAT GU (p=0.021) between OLM and OOM. VBM GU remained unchanged in 

both OOM and OLM (Figure 15). In OOM, the change in FBM GU correlated with 

change in whole body GU (r=0.601, p=0.039) but not with change in anthropometric 

characteristics or glycemic state indicators. In OLM, the change in FBM GU correlated 

with change in whole body GU (r=0.717, p=0.001). There was no correlation between 

change in VBM GU and change in whole body GU in OOM or OLM. 

Table 6 Anthropometric and biochemical characteristics of the Study III subjects 
at the baseline 

 Control (n =9) Frail (n=37) OLM (n=20) OOM (n=17) 

Age (years) 71.4 ± 3.1 71.9 ± 3.1 72.3 ± 2.6 71.5 ± 3.7 
BMI (kg/m2) 27.8 ± 4.2 27.2 ± 4.7 26.6 ± 4.8 27.9 ± 4.6 
Body fat % 40.1 ± 4.9 39.5 ± 5.9 38.6 ± 6.6 40.5 ± 4.9 
Systolic BP (mmHg) 156 ± 13 162 ± 16 161 ± 12 163 ± 19 
Diastolic BP (mmHg) 87 ± 11 90 ± 10 88 ± 10  93 ± 9 
Waist/hip ratio 0.90 ± 0.03 0.91 ± 0.05 0.91 ± 0.05 0.90 ± 0.04 
fP-glucose (mmol/L) 6.4 ± 0.4 6.0 ± 0.7 6.0 ± 0.7 5.9 ± 0.8 
fS-insulin (mU/L) 8.8 ± 3.6 8.5 ± 4.3 9.6 ± 3.7 9.4 ± 4.9 
Handgrip strength (kg)1 29.7 ± 2.6 17.7 ± 2.6* 17.2 ± 2.7* 18.2 ± 2.5* 
Maternal BMI (kg/m2) 23.8 ± 2.0 26.0 ± 3.7 22.9 ± 1.4 29.7 ± 1.6*† 
VBM fat content (%) 44.4 ± 6.6 a 43.8 ± 7.3 b 46.0 ± 7.0 c 42.2 ± 7.3 d 
M-value (µmol/(kg·min)) 22.3 ± 10.3 23.9 ± 10.6 26.5 ± 11.8 20.9 ± 8.3 
T2DM (subjects/%) 2 (22.2%) 4 (10.8%) 3 (15.0%) 1 (5.9%) 

Comparisons between control vs frail, control vs OLM, control vs OOM and OLM vs 
OOM are assessed. 1 Assessed in 2001-2004, * p < 0.001 vs control, † p < 0.001 vs 
OLM, a n=7, b n=21, c n=9, d n=12. OLM: offspring of lean/normal-weight mothers. 
OOM: offspring of obese/overweight mothers. VBM: vertebral bone marrow. T2DM: 
type 2 diabetes mellitus. Reprinted with permission from study III. 
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Figure 14 Tissue-specific GU of control, frail (OLM + OOM), OLM and OOM at 
baseline. There were no differences among the groups. OLM: offspring 
of lean/normal-weight mothers. OOM: offspring of obese/overweight 
mothers. Reprinted with permission from study III. 

Table 7 Baseline and postintervention characteristics of OLM and OOM 

 OLM   OOM   

 Baseline  
(n=20) 

Exercise  
(n=19) p Baseline  

(n=17) 
Exercise  
(n=16) p 

BMI (kg/m2) 26.6 ± 4.8 27.1 ± 4.7 0.55 27.9 ± 4.6 27.6 ± 4.8 0.96 
Body fat % 38.6 ± 6.6 38.8 ± 6.3 0.48 40.5 ± 4.9 39.8 ± 4.5 0.19 
Systolic BP (mmHg) 161 ± 12 154 ± 15 0.07 163 ± 19 158 ± 16 0.28 
Diastolic BP (mmHg) 88 ± 10 84 ± 11 0.14 93 ± 9 89 ± 9 0.21 
Waist/hip ratio 0.91 ± 0.05 0.89 ± 0.05 0.10 0.90 ± 0.04 0.88 ± 0.06 0.27 
fP-glucose (mmol/L) 6.0 ± 0.7 6.1 ± 0.7 0.44 5.9 ± 0.8 5.8 ± 0.6 0.66 
fS-insulin (mU/L) 9.6 ± 3.7 9.5 ± 4.1 0.79 9.4 ± 4.9 9.7 ± 5.6 0.32 
VBM fat content (%) 46.0 ± 7.0 a 44.4 ± 6.1 b 0.25 43.7 ± 7.2 c 43.0 ± 6.2 d 0.85 
a n=9, b n=17, c n=12, d n=12. OLM: offspring of lean/normal-weight mothers. OOM: 
offspring of obese/overweight mothers. BP: blood pressure. VBM: vertebral bone mar-
row. Reprinted with permission from Study III. 
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Figure 15 Tissue-specific GU at baseline and after the intervention in (left) OLM 
and (right) in OOM. There was no change in any tissue-specific GU after 
intervention in OLM. FBM GU (p=0.006**) and psoas muscle GU 
(p=0.039*) increased significantly after the intervention in OOM. GU: 
glucose uptake. OLM: offspring of lean/normal-weight mothers. OOM: 
offspring of obese/overweight mothers. FBM: femoral bone marrow. Re-
printed with permission from Study III. 

5.4 Effects of exercise on BMD and serum sclerostin (Study IV) 

Age, body mass index, waist to hip ratio, total body fat, supplemental vitamin D and 

calcium intake did not differ between the groups. 13.5 % of intervention subjects and 

27.3 % of control subjects had calcium or vitamin D supplements (p=NS). No differ-

ences were observed in the prevalence of an earlier diagnosis of osteoporosis or in the 

amount of subjects using current HRT. Total hip, femoral neck, trochanteric or intertro-

chanteric BMD did not differ between the groups. Quadriceps muscle mass was lower 

in the intervention group compared to controls (p=0.016). No differences in adductor 

longus, adductor magnus or hamstring muscle masses were found. Serum sclerostin was 

higher in the controls (p=0.037) (Table 8). 

 

Total hip BMD increased by 6 % (p=0.005) after resistance training (Figure 16). This 

was mainly induced by an increase in intertrochanteric area BMD (+10.7 %, p=0.001). 

Trochanteric and femoral neck BMD remained unchanged (p=NS). Serum sclerostin 

(p<0.001) increased (Table 9). One year after the end of the resistance training interven-
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tion, total hip BMD increased by 8.6 % (p<0.001) and serum sclerostin (p=0.045) de-

creased compared to post-intervention values. In controls, total hip BMD and serum 

sclerostin remained unchanged compared to pre-intervention values. 

 

Mean quadriceps muscle mass was increased after resistance training by 9.2 % 

(p=0.001) and adductor magnus muscle mass was increased by 4.4 % (p=0.012), as pre-

viously reported by Bucci et al. (Bucci et al. 2015). Increases in hamstring or adductor 

longus muscle masses were not observed. Muscle strength measured by mean RM8 in-

creased by 96 % during the seated row, 60 % during the leg press, 51 % during ab-

dominal crunches, 118 % during the chest press, 70 % during seated leg curls, 43 % 

during hip abduction and 69 % during back extensions after the resistance training in-

tervention (p<0.001 for all). No correlations were observed between the change in 

measured muscle group strength and BMD. BMI, total body fat percentage and waist-

to-hip ratio remained unchanged. 

 

An exercise diary of the leisure-time physical activity was kept by study subjects during 

the intervention and follow-up periods. Accordingly, the frequency of leisure-time 

physical activity per week was 5.3 ± 2.9 during the intervention and 5.2 ± 2.4 during the 

follow-up (p=0.50). The amount of leisure-time physical activity was 55.6 ± 32.1 

minutes per session during the intervention and 60.9 ± 32.2 minutes per session during 

the follow-up (p=0.19). 
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Table 8 Baseline characteristics of the Study IV subjects. 

  Control (n=11) Intervention (n= 37) p 
Age (years) 71.8 ± 2.9 71.9 ± 3.1 0.79 

Handgrip strength (kg)1 29.6 ± 2.5 17.7 ± 2.6 <0.001* 

Body mass index (kg/m2) 26.8 ± 4.4 27.2 ± 4.7 0.82 

Waist to hip ratio 0.89 ± 0.04 0.91 ± 0.05 0.44 

Total body fat (%) 38.8 ± 5.3 39.5 ± 5.9 0.73 
Earlier diagnosed osteoporosis (%) 9.1 13.5 0.70 
Current HRT (%) 9.1 8.1 0.92 
Total hip BMD (g/cm2) 0.740 ± 0.118 0.690 ± 0.115 0.26 
Femoral neck BMD (g/cm2) 0.724 ± 0.130 0.724 ± 0.174 0.87 
Trochanteric BMD (g/cm2) 0.657 ± 0.106 0.591 ± 0.111 0.09 
Intertrochanteric BMD (g/cm2) 0.890 ± 0.193 0.801 ± 0.173 0.15 
Quadriceps m. mass (g) 157.8 ± 22.0 140.5 ± 19.5 0.016* 
Adductor magnus m. mass (g) 100.0 ± 17.1 92.9 ± 16.2 0.22 
Hamstring m. mass (g) 52.4 ± 11.9 49.2 ± 11.2 0.42 
Adductor longus m. mass (g) 26.1 ± 6.4 25.2 ± 7.4 0.70 
Serum sclerostin (pmol/l) 74.9 ± 19.6 60.8 ± 17.9 0.037* 

1 Assessed in 2001-2004. Modified and reprinted with permission from Study IV. 
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Figure 16 Changes in total hip BMD during the study. Total hip BMD at baseline, 
after the 16-week resistance training and one year after the end of the re-
sistance training. Results are shown as estimated means with 95 % confi-
dence intervals. ** p < 0.01 baseline vs postintervention, *** p < 0.001 
postintervention vs one-year follow-up. aBMD: areal bone mineral densi-
ty. Reprinted with permission from Study IV. 

Table 9 Serum sclerostin concentrations at baseline, post-intervention and follow-
up visits 

 Intervention Controls 
 Baseline 

(n=37) 
Post 
(n=34) 

Follow-up 
(n=19) 

Baseline 
(n=11) 

Post 
 

Follow-up 
(n=6) 

Serum 
sclerostin 
(pmol/l) 

60.9 
[54.1;67.6] 

84.3 
[77.4;91.1]** 

69.5 
[60.4;78.7]* 

65.6 
[41.2;90.0] - 70.6  

[46.2;95.0] 

Results are denoted as estimated means with 95 % confidence intervals. ** p < 0.001 vs 
pre, * p=0.045 vs post. Modified and reprinted with permission from study IV. 
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6 DISCUSSION 

The primary purpose of this thesis was to achieve a better understanding of the possible 

negative effects exerted by obesity on bone health and whether exercise leads to favour-

able outcomes regarding bone health. The age distribution of the study subjects, param-

eters reflecting the bone health, modality of the imaging methods and type of obesity 

addressed varied greatly. The major outcomes in a connected order were first that BMF 

content or VBM GU uptake did not seem to differ between diabetic and healthy control 

experimental animals, but BMF content inversely associated with VBM GU in pooled 

data. Second, BMF unsaturation is not affected by current or early-onset obesity but is 

increased with age. Third, bone marrow insulin-stimulated GU is not affected by prena-

tal maternal obesity status, and FBM and VBM glucose metabolism reacts differently to 

a four-month resistance training intervention in elderly women according to their ma-

ternal obesity status. Lastly, BMD is increased after a four-month resistance training 

intervention, but the achieved increase in BMD is not sustained one year after the end of 

the intervention. 

6.1 BMF (Bone marrow fat) 

VBM fat content was determined in Studies I and III. Tibial BMF composition was as-

sessed in Study II. Various methods were used in different cohorts. In Study I, VBM fat 

was assessed with 1H MR spectroscopy in addition to in-phase and out-of-phase MRI, 

which was validated with a chemical TAG concentration assay of VBM blocks extract-

ed from the cadavers. However, no correlation between VBM in-phase and out-of-phase 

imaging and VBM TAG assay was found suggesting an insensitivity of in-phase and 

out-of-phase MRI to assess VBM fat content especially in low sample size populations. 

Nonetheless, in-phase and out-of-phase MRI have been previously used successfully in 

human studies in order to determine, for example, VBM fat content (Ojanen et al. 2014) 

and liver adiposity (Borra et al. 2009). Due to our validation findings in Study I, only 1H 

MR spectroscopy was used in Study III to assess VBM fat content. In Study I, there was 

a variation in the proportional amounts of fat content between the diabetic and healthy 

group measured with multiple methods (1H MR spectroscopy 67 %, TAG analysis 75 

%, in-phase and out-of-phase 88 %). In an earlier study using human subjects, VBM 

lipid peaks at 0.9-1.6 ppm and 2.0 ppm and water peak near 4.6 ppm were found (Liney 



 Discussion 63 

 

et al. 2007), and this was also the case in Study I. The discrepant results obtained with 
1H MR spectroscopy and TAG concentration assay may have been caused by a lipid 

peak near 2.0 ppm that was not included in the spectra analysis. Main lipid peaks be-

tween 0.9 and 1.6 ppm correspond to methylene protons from lipids and terminal me-

thyl protons in glycerols. Peaks near 2.0 ppm are assigned methylene protons α to the 

carboxyl in the glycerol chains (Jagannathan et al. 1998). Another possible error source 

may have been the fact that in the TAG assay, the whole vertebral bone block was 

crushed meaning that non-VBM triglycerides have also been included in the analysis 

leading to a higher fat amount found compared to the findings in the 1H MR spectrosco-

py results. 

 

In Study II, we investigated whether current or early-onset obesity affects the tibial 

BMF composition. Study subjects were male and female adolescents with a known his-

tory of early-onset obesity in addition to recent records of their physical activity and 

biochemical characteristics of their glycemic state. It was concluded that despite the 

body adiposity, current or childhood high body mass index does not affect BMF UI. 

This is in accordance with a recent study by Bredella et al (Bredella et al. 2014). They 

showed that no difference in BMF UI exists among young anorexia nervosa patients 

with different BMI. However, it seems that BMF unsaturation increases with age. This 

finding relates most likely to normal maturation of bone marrow during young adult-

hood, while red hematopoietic marrow is replaced with fatty marrow when also BMF 

content and fat cell size increases  (Moore, Dawson 1990). Thus, this finding was not 

interpreted as a sign of risk or pathologic condition. Moreover, Study II was the first to 

investigate the effect of physical activity on BMF UI. It was concluded that physical 

activity seems not to influence BMF composition, but within the Study II setting, the 

BMF amount was not determined. Nevertheless, previous studies investigating the ef-

fect of exercise on BMF amount has been conducted. Exercise decreases femoral BMF 

in young children (Casazza et al. 2012), tibial shaft BMF in young female athletes 

(Rantalainen et al. 2013) and femoral BMF in young female mice (Styner et al. 2014). 

Based on this, it seems that exercise reduces site-specific BMF amount at least in young 

subjects. However, in Study III, a decrease in VBM fat content was not observed after a 

four-month resistance training intervention in elderly females. This suggests that BMF 

reacts differently to exercise at different ages and probably in a site-specific manner. 
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VBM fat contents were around 20 % and 45 % in Studies I and III measured with 1H 

MR spectroscopy, respectively. This demonstrates great variability in proportionate of 

fat and hematopoietic marrow depending on the age and gender of the subject (Kugel et 

al. 2001) and possibly depending on subject species. In Study III, there was no differ-

ence in VBM fat content between the study groups at baseline indicating that maternal 

obesity is not related to VBM fat content. In both Studies I and III, PRESS sequences 

were used to assess VBM fat content, but studies using STEAM to measure T2 fat com-

ponent have also been conducted with quite similar results (LeBlanc et al. 1999). With 

different TE or TR, corrections for relaxation times, which were conducted in both 

Studies I and III, are necessary because due to shorter T2 of water than fat, increased T2 

may lead to an increased fat signal (Kugel et al. 2001). In Study II, a novel long TE 

method was used to measure BMF UI, which is not vulnerable to disturbances caused 

by water resonance peak (Lundbom et al. 2011, Troitskaia, Fallone & Yahya 2013). 

None of the acquired spectra in Study II had observable water resonance present indi-

cating that our results were not influenced by bone marrow water content. Previous 1H 

MR spectroscopy studies investigating VBM fat content have used short TE methods 

(Yeung et al. 2005, Patsch et al. 2013, Baum et al. 2012), which may have led to biased 

estimation of olefinic resonance while an intense water resonance is present. 

6.2 Bone marrow GU (Glucose uptake) 

Bone marrow GU was investigated in different settings of Studies I and II. Study I was 

a pilot study with a low sample size of experimental animals. It was conducted to define 

the role that VBM glucose metabolism plays in diabetes, which is a worldwide health 

problem (Shi, Hu 2014). In addition, because osteoporosis is prevalent in diabetes 

(Tuominen et al. 1999) and has been termed as “obesity of bone” (Rosen, Bouxsein 

2006), whether VBM glucose metabolism and VBM fat content are connected was de-

termined. It was concluded that VBM fat and VBM GU are inversely associated. This is 

in accordance with Study III’s results in which an inverse association was found be-

tween VBM fat content and VBM GU in elderly female subjects. One explanation to 

this finding may be that excess fat in the bone marrow niche inhibits bone marrow glu-

cose metabolism. Bone marrow is the only place in the human body where the actual 

bone cells and fat are adjacently located (Fazeli et al. 2013). A second possible explana-

tion could be that excess BMF replaces hematological cells resulting in blunted GU, 
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because it has been found that human adipose tissue depots tend to have low GU (Ng et 

al. 2012). Study I was conducted under a fasting state without insulin-stimulated condi-

tions, and thus diabetic pigs tended to have quite high serum fasting glucose values 

compared to controls. To exclude the effect of hyperglycemia on GU, the VBM glucose 

clearance rates (GCR) were defined. However, a similar inverse correlation was found 

between VBM fat content and VBM GCR excluding hyperglycemia as a potential con-

founding factor. 

 

Differences in VBM GU between obese diabetic and healthy pigs were not found in 

Study I. This led us to compare differences of site-specific GU (psoas muscle and SAT) 

between the groups to achieve a semi-quantitative measure for VBM GU. No differ-

ences were observed as found in an earlier study of obese and non-obese subjects (Vir-

tanen et al. 2002). Possible explanations on not finding any differences may include low 

statistical power or conducting the study under a fasting state without insulin-stimulated 

conditions. Nonetheless, in Study I, VBM possessed highest GU in diabetic and control 

group compared to other sites showing that VBM is a metabolically active organ. 

 

In Study I, VBM GU was approximately 2-times higher than skeletal muscle GU stud-

ied in pigs without an insulin-stimulated condition. In Study III, VBM GU was approx-

imately 1.5-times higher than skeletal muscle studied in elderly female subjects during 

hyperinsulinemic euglycemic clamp. According to Iozzo et al., site-specific GU values 

tend to be approximately 3-fold higher during hyperinsulinemia than in the fasting state 

(Iozzo et al. 2006). Post-hoc comparison of VBM GU results between Studies I and III 

revealed that insulin-stimulated GU values tend to be approximately 2-times higher 

compared to non-insulin-stimulated condition. Moreover, psoas muscle GU values tend 

to be 6-times higher under insulin-stimulated compared to non-insulin stimulated condi-

tions. However, in Study I, pigs were under anesthesia during the imaging which may 

partly, in addition to differences in study subjects, explain the differences in observed 

magnitudes of skeletal muscle GU between Studies I and III. 

 

In Study III, it was found that FBM but not VBM insulin-stimulated GU increases after 

four-month resistance training intervention only in OOM. Studies investigating long-

term effects of exercise on bone insulin sensitivity have not earlier been conducted. 

However, the effect of acute exercise has been found to increase femoral bone insulin 
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sensitivity in addition to femoral bone blood flow in young healthy male subjects (Hei-

nonen et al. 2014, Heinonen et al. 2013). In this study, the ROI included the bone cortex 

in addition to the bone marrow cavity that differed from ROI placement in Study III in 

which the ROI was drawn to cover only the bone marrow cavity excluding the cortex. 

In addition, the study was not conducted under insulin-stimulated conditions as in Study 

III, and the subjects were young males aged 24 ± 2.6 years meaning that FBM fat con-

tent probably differed between subjects in Study III and the study by Heinonen el al. 

(Heinonen et al. 2013). Different GU values resulted because it has been established 

that red bone marrow conversion to yellow bone marrow peaks at the age of 24 years 

(Moore, Dawson 1990). In Study III, the FBM blood flow was not assessed meaning 

that conclusions about the effect of long-term exercise on bone marrow blood flow can-

not be drawn. 

 

Considering the results of Study III, the most interesting question is why FBM insulin-

stimulated GU increased only in OOM but not in OLM. It may be that FBM in OOM 

contains more insulin-resistant fat than in OLM. Femoral BMF was not measured in 

Study III, and to our knowledge no studies investigating the effect of maternal obesity 

on femoral BMF have been conducted. Another explanation could be that mechanistic 

role for maternal obesity-induced offspring insulin resistance could be developmentally 

programmed physical inactivity or altered adipocyte metabolism leading to a different 

behaviour of FBM GU between OLM and OOM (Samuelsson et al. 2008). Interestingly, 

it was also found that FBM insulin-stimulated GU very closely follows whole-body GU. 

If insulin resistance has developed, it may likely be alleviated with exercise in a rela-

tively short time. The results in Study III highlight a novel role that FBM plays as a 

metabolically active fat depot. However, it remains unclear whether FBM GU would 

have increased after exercise regime in OOM and OLM combined. 

 

Results of Study III are in accordance with the results by Bucci et al. who found that 

with the same cohort, whole-body GU and skeletal muscle GU increase after a four-

month resistance training intervention (Bucci et al. 2016). Similar findings have been 

observed in obese sedentary young males in whom femoral skeletal muscle GU in-

creased approximately 30 % after 11 weeks of resistance training (Reichkendler et al. 

2013). In Study III, the increase of psoas muscle in OLM was approximately 20 % and 

in OOM approximately 50 %. The differences in the skeletal muscle GU increases may 
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possibly be linked with the fact that intramyocellular lipid content of the tibialis anterior 

muscle decreased in OOM approximately 25 %, while in OLM, the intramyocellular 

lipid content remained unchanged (Bucci et al. 2016). This may reflect the possibility 

that a decrease of insulin-resistant fat in skeletal muscle leads to a mutual increase in 

skeletal muscle insulin sensitivity. This was not the case considering VBM GU suggest-

ing that the mechanism behind the insulin-stimulated GU improvement is different be-

tween VBM and FBM or skeletal muscle. All in all, the results of Studies I and III sug-

gest that glucose metabolism of VBM and FBM are regulated differently. FBM seems 

to be insulin sensitive, while VBM appears to be insulin resistant. According to the re-

sults, VBM GU was 1.5–2 times higher than FBM GU, which could be at least partly 

explained by the relatively high proportion of metabolically very active hematopoietic 

red marrow in VBM. 

6.3 BMD (Bone mineral density) 

The effect of four-month resistance training on total hip BMD was studied with CTXA 

of QCT in Study IV. In addition, to study the long-term effect of resistance training on 

bone health, BMD was measured one year after the end of the intervention. Serum scle-

rostin concentration was assessed in parallel with BMD measurements. It was found 

that total hip BMD increased by 6 % after resistance training with a concomitant in-

crease in serum sclerostin concentration. One year after the end of the intervention, 

BMD and serum sclerostin decreased back to baseline levels. 

 

The increase in total hip BMD is in line with an earlier study in which BMD increased 3 

% after 16-week resistance training in young male and female subjects (Lang et al. 

2014). It may be that the BMD changes are a result of increased muscle strength 

through a spatially heterogenous response of bone to resistance training targeted to dif-

ferent muscle groups, such as hip abduction stimulating gluteus muscles inserting in the 

greater trochanter (Marques, Mota & Carvalho 2012). The increase in hip BMD was 

mainly located in the intertrochanteric area, which is the origin site of vastus muscles of 

quadriceps femoris. It was found in a study by Bucci et al. that the mass of this muscle 

group increased after exercise (Bucci et al. 2015). Ma et al. (Ma et al. 2014) studied the 

muscle-bone unit in subjects with varying BMD and found that in the subjects with os-

teopenia or osteoporosis, relatively larger muscle masses act on the weakened bones 
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independent of age, which, in other words, means that as BMD decreases abnormally, 

more bone than muscle is lost. On the other hand, a correlation between BMD and mus-

cle strength increase was not observed in Study IV. This may indicate that increased 

muscle mass resulted in increased mechanical strain on bone that stimulates site-specific 

osteogenesis through osteoblast and osteocyte activation. Osteocytes are the mecha-

nosensors in bone tissue (Clarke 2008) that coordinate the osteogenic response to me-

chanical loading at least in part through the expression of sclerostin (Tu et al. 2012). 

 

In addition to an increase in BMD, serum sclerostin paradoxically increased after a re-

sistance training regime, while a decrease was expected. Sclerostin is an osteocyte-

secreted soluble antagonist of the Wnt/β-catenin signaling pathway, which regulates 

osteoblast differentiation and activity and is a negative regulator of bone mass (Clarke, 

Drake 2013). A correlation between BMD and serum sclerostin was expected as in ear-

lier studies (Garnero et al. 2013, Modder et al. 2011, He et al. 2014). The strength of the 

associations found in earlier studies have been moderate with much larger sample sizes 

compared to Study IV in which the association was not found. It may be that a larger 

sample size is needed to find the correlation between BMD and serum sclerostin levels. 

Circulating sclerostin levels correlate closely with bone marrow sclerostin levels 

(Clarke, Drake 2013). However, it is not yet elucidated how well the changes in circu-

lating sclerostin reflect the changes in bone microenvironment. The sources of biologi-

cal variability are still unclear, and circulating sclerostin levels do not always correlate 

with observed BMD (Clarke, Drake 2013). Results that are consistent with found simul-

taneous increases in BMD and serum sclerostin in Study IV have earlier been observed 

by Polyzos et al. (Polyzos et al. 2012). They found that 6-month anti-osteoporotic 

treatment increased serum sclerostin levels in postmenopausal women, while a decrease 

was expected. Increased serum sclerostin levels found in Study IV may reflect the acti-

vation of sclerostin-synthesizing osteocytes (Clarke, Drake 2013) that may be caused by 

resistance training-induced mechanostimulation or bone microdamage (Luo et al. 2014). 

Thus, it is possible that exercise-induced effects on serum sclerostin levels are age- and 

sex-dependent and independent of BMD. 

 

Study IV was first to assess BMD at one year after the end of the exercise regime. Total 

hip BMD decreased approximately back to baseline levels. This finding highlights the 

importance of continuous supervised resistance exercise in BMD maintenance. Engelke 
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et al. found in their study design that hip BMD decreased significantly by 1 % at a one-

year timepoint in a control group without the history of previous exercise interventions 

(Engelke et al. 2006). In Study IV, the decrease in BMD was more rapid. The typical 

average BMD loss is 1.0-3.7 % per year in non-exercising postmenopausal women 

(Okano et al. 1998). Importantly, the expected decrease in BMD was not observed in 

non-exercising controls in Study IV, which may be a result of low statistical power 

within the control group. 

 

In clinical practice, the gold standard for measuring BMD is DXA. The effect of re-

sistance training on BMD is somewhat lower in earlier DXA studies (Bemben, Bemben 

2011, Marques et al. 2011) compared to the effect achieved in Study IV. The magnitude 

in BMD changes among these studies may be explained by differences in the intensity 

of resistance training interventions or in demographic profiles of subjects as well as in 

methodology, i.e., QCT and DXA combined with interobserver and intraobserver preci-

sion errors. In Study IV, interobserver measurement error was not determined. Intraob-

server error for CTXA of hip has been reported to be approximately 1.5 % (Li et al. 

2006), which is slightly better compared to DXA. To achieve high precision with DXA, 

experienced and preferably the same radiographer performing the setting of the patient 

for the imaging is needed. DXA and CTXA results of the hip have a highly positive 

correlation (Cann 1988, Khoo et al. 2009). A one reason QCT was used in Study IV 

originates from the design of Study III, including whole body PET imaging, which was 

the main imaging modality in that particular study. PET sessions consisting of dynamic 

brain, heart, abdomen and thigh imaging lasted approximately 3-4 hours. QCT imaging 

was effortlessly assessed simultaneously and thus excluding logistical and schedule 

problems during the study sessions. 

6.4 Strengths and limitations 

The studies in this thesis consist of three modern imaging modalities and three novel 

study settings in three different and unique cohorts. Study I was first to investigate the 

interplay between VBM fat and VBM functional glucose metabolism. In addition, VBM 

TAG analysis was performed to validate VBM in-phase and out-of-phase MRI. This 

would have not been easily achieved in human studies. Study II was first to evaluate 

fatty acid composition of BMF in a cohort of young adult subjects including overweight 
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and severely obese individuals. Although the sample size was small, it was calculated 

that a 15 % difference in BMF UI could be detected between the obese and normal-

weight subjects. Only a 4 % difference was found between these groups signifying that 

sample size was enough to conclude that no difference truly existed. 

 

Study III was conducted under insulin-stimulated conditions to assess whole-body insu-

lin sensitivity. This improved the validity and accuracy of the results. A strength of 

study III also was a unique HBCS II cohort that provided the possibility to study the 

effect of prenatal maternal obesity on glucose metabolism in the elderly offspring. 

Study IV was based on the same cohort than Study III without the conditions of mater-

nal obesity. OOM and OLM were pooled together to form a group with decreased mus-

cle strength to achieve a higher sample size. In addition, one may notice that the number 

of control subjects was higher than in Study III. This is explained by the fact that two 

control subjects in Study III were excluded because they were characterized as subjects 

with normal handgrip strength of OOM and not subjects with normal handgrip strength 

of OLM as the other controls. Thus, the number of controls in Study IV was 11 instead 

of nine as in Study III. 

 

The strengths of Study IV were a well-characterized study population and the assess-

ment of serum sclerostin simultaneously with high-quality CTXA hip BMD measure-

ments. The resistance training intervention was efficient, as muscle strength and muscle 

masses increased. This reflects the compliance, adherence and motivation achieved by 

the study population. In addition, subjects kept exercise diaries during the intervention 

and the follow-up period. No differences were found in the frequency or amount of lei-

sure-time physical activity between the intervention and follow-up period. This means 

that leisure-time physical activity did not probably influence the results. A major limita-

tion of Study IV was a relatively small sample size. Also, controls were not re-

examined after 16 weeks simultaneously with the intervention group, which may mean 

that a BMD gain of 6 % caused by technical issues cannot be completely ruled out. In 

addition, the follow-up consisted only of a subset of subjects, thus decreasing the statis-

tical power. There was no possibility to analyse cortical and trabecular BMD simultane-

ously due to lack of advanced research tools. An additional limitation was lack of in-

formation about the age of menarche, years after menopause, parity and previous HRT 

treatment of the study subjects, possibly influencing the validity of the results. 
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The intention of Study I was to do a small pilot study to investigate the interplay be-

tween VBM fat and VBM glucose metabolism as well as to validate in-phase and out-

of-phase MRI imaging of BMF. The original purpose of Study I was to investigate cor-

onary artery disease in diabetic and obese models. Thus, the model was an obese diabet-

ic model and not a true T2DM model because the insulin effect could have not been 

studied. In addition, only 8 samples were harvested, because Study I was conceived 

after the VBM samples were taken in conjunction to the study by Honka et al. (Honka et 

al. 2013). The low statistical power and the possible distortion of the interpretation of 

the results considering Study I was considered. However, the metabolically complicated 

condition in the diabetic group was observed including changes associated with diabe-

tes. The groups were combined to conduct the correlation analysis but if diabetes inter-

fered with the results, the correlation analysis would have been conducted separately. A 

limitation of Study II includes also a relatively low statistical power. In addition, male 

and female subjects were pooled. However, no differences were found between the 

characteristics of the male and female subjects justifying the pooling of these subjects. 

BMF UI was studied only at one time point. This prevented the investigation into possi-

ble changes in BMF UI in the longitudinal aspect of the study and studying the relation 

of BMF UI and BMI over time. 

 

Weaknesses of Study III included the fact that the study subjects were termed as frail 

subjects, although they should have been termed as subjects with decreased handgrip 

strength or “semi-frail” subjects. The definition of frailty was based only on handgrip 

strength that is a valid marker to identify frail subjects (Syddall et al. 2003). Moreover, 

frailty is associated with insulin resistance (Abbatecola, Paolisso 2008), but differences 

in whole-body or any tissue-specific insulin sensitivity were not found at baseline. 

However, differences may possibly have been found if the sample size was larger. 

Nonetheless, sample size was thought satisfactory in study design including imaging 

techniques resulting in relatively high but acceptable radiation exposure to the study 

subjects. One might also doubt the maternal obesity aspect, because the follow-up time 

was approximately 70-80 years without precise and continuous information on lifestyle 

habits or medical records. However, the HBCS cohort is a one of a kind cohort and suf-

ficiently wide amount of information is available. In addition, the absence of differences 

between OLM and OOM at baseline may be due to too small sample size or the fact that 
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the mothers were only moderately obese, which may originate from the lower preva-

lence of obesity during 1934 to 1944. During pregnancy, women gain weight very dif-

ferently, which means that pre-delivery BMI may possibly be misleading as a health 

outcome predictor. However, the outcomes refer to prenatal maternal BMI, since pre-

pregnancy BMI data is not available in the HBCS cohort. However, Eriksson et al. have 

found very substantial evidence in larger cohorts that prenatal maternal obesity truly 

exposes the offspring to cardiovascular disease and T2DM during the old age (Eriksson 

et al. 2014). One weakness in this study is that the control group was studied only at 

baseline, and hence it cannot be concluded how the resistance training intervention 

would have affected the tissue-specific and overall GU in controls. In addition, it must 

be pointed out that prenatal maternal BMI > 28.1 kg/m2, which was a definition for 

OOM subjects is only a cut-off value for highest quartile of the entire HBCS II popula-

tion and not a value for actual clinical significance.  

 

Study IV was the first of a kind to study the long-term effects of resistance training on 

BMD. One year after the end of the intervention, total hip BMD decreased back to base-

line levels. Type II error of methodological causes, for example, intraobserver precision 

error cannot be completely ruled out because of the lack of the proper interventional 

control group. A small control group had a normal muscle strength, which may be a 

flaw in study design. However, the control group was only used to validate interven-

tional group to possess decreased muscle strength, which phenotype appeared in de-

creased muscle mass and decreased handgrip strength. In conclusion, it is likely that the 

decrease in BMD was not caused by type II error over a one-year follow-up because a 

concomitant change was observed also in serum sclerostin reflecting the bone turnover. 

6.5 Clinical implications and future directions 

Diabetes is associated with increased risk for osteoporosis (Tuominen et al. 1999). In 

Study I, VBM GU was inversely associated with VBM fat. This result may give future 

insights into the pathogenesis, prevention and treatment of diabetes-induced osteoporo-

sis. Pharmacological interventions promoting osteoblastogenesis in detriment of adipo-

genesis could be possible target for decreasing bone related co-morbidity of this chronic 

disease. However, further studies are required to define the causal mechanisms. In addi-

tion to diabetes, obesity may have undiscovered negative consequences on bone health. 
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Based on the results in Studies I and II, these do not seem to manifest as altered VBM 

GU or BMF in experimental animals or altered BMF composition in adolescents. It also 

seems that change in BMF UI during aging may be coupled with normal maturation of 

bone marrow and not to be risk or sign of disease condition. 

 

Results of Study III showed that FBM is a metabolically active fat depot, and its glu-

cose metabolism is regulated differently from VBM. This difference may reflect the 

distinct ability of red hematopoietic cells and yellow fatty marrow cells to consume glu-

cose. In addition, resistance training increased FBM insulin-stimulated GU in OOM but 

not in OLM. This may reflect altered maternal obesity-induced bone marrow adipocyte 

metabolism. Implications of this finding are important, because they may offer new in-

sights into more individualised and provide more accurately allocated lifestyle interven-

tions in treating or preventing frailty of T2DM in subjects with known prenatal maternal 

obesity status. The findings of Study IV are valuable in providing new information re-

garding the production of sclerostin in response to exercise in older women. In addition, 

the findings in Study IV offer a new non-pharmacological aspect in treating decreased 

BMD in subjects with decreased muscle strength and probably thus having and implica-

tion in preventing osteoporotic fractures in correctly targeted patients. 

 

For future directions, an interplay between BMF content and composition, bone marrow 

glucose metabolism and BMD would be of great interest to study because factors, for 

example, exercise and obesity, may be important in the determination of healthy bone 

aging. 
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7 CONCLUSIONS 

The major conclusions of the work presented in this thesis may be summarized as fol-

lows 

 

1) Vertebral bone marrow fat is inversely associated with vertebral bone marrow glu-

cose uptake indicating that vertebral bone marrow glucose metabolism coupled with 

vertebral bone marrow fat content may impact diabetic-induced osteoporosis (I). 

 

2) Bone marrow fat unsaturation is not affected by current or early-onset obesity but 

increases with age reflecting the normal maturation of bone marrow and not a sign of 

risk or disease condition (II). 

 

3) Maternal obesity does not affect bone marrow insulin-stimulated glucose uptake in 

the elderly offspring. A reason not to find differences may be due to low sample size or 

the fact that subjects’ mothers were only moderately obese (BMI 29.7 kg/m2), which 

may originate from the lower prevalence of obesity during 1934 to 1944 (III).  

 

Femoral bone marrow insulin-stimulated glucose uptake increases, but vertebral bone 

marrow insulin-stimulated glucose uptake remains unchanged after a four-month re-

sistance training intervention in elderly women according to their maternal obesity sta-

tus. This highlights the novel role of femoral bone marrow plays as a metabolically ac-

tive fat depot (III). 

 

4) Bone mineral density is increased with a simultaneous decrease in serum selerostin 

after a four-month resistance training intervention in elderly female with decreased 

muscle strength. This highlights the importance of continuous resistance exercise in 

bone mineral density maintenance in addition to muscle strength maintenance (IV). 
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