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Preface

The fourth RuFiDiM conference, Russian-Finnish Symposium on Discrete Mathematics,
took place in Turku in May, from 16th til 19th, 2017. This meeting was organized as a
part of research activities between Steklov Institute of Mathematics of St. Petersburg
and Department of Mathematics and Statistics of University of Turku. The goal of the
conference series is to increase cooperation between Finnish and Russian mathematicians
in discrete mathematics, but the symposium is open for a broader international audience.
In the present event there were contributions from 10 different nations.

RuFiDiM 2017 consisted of six invited talks and 25 contributed presentations. The
invited speakers were Volker Diekert (University of Stuttgart), Alexandr Kostochka (Univer-
sity of Illinois at Urbana-Champaign), Alexei Miasnikov (Stevens institute of Technology),
Igor Potapov (University of Liverpool), Aleksi Saarela (University of Turku) and Jouko
Väänänen (University of Helsinki). The program was chosen by the international pro-
gram committee. Abstracts or extended abstracts of the lectures are presented in these
preproceedings.

The organizers are grateful to the supporters of the symposium: Magnus Ehrnrooth
Foundation, Turku University Foundation, Finnish Academy of Sciences (Mathematics
Fund), and the University of Turku and Turku Centre for Computer Science.

Turku and St. Petersburg, April 2017

Juhani Karhumäki, Yuri Matiyasevich, Aleksi Saarela
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Volker Diekert

Part I

Invited lectures
Solving equations in free partially commutative
monoids: developments over the past 20 years

Volker Diekert

Formale Methoden der Informatik, Universität Stuttgart, Germany

Abstract
Abstract. The topic WordEquation describes an exciting and active research field
in discrete mathematics and combinatorics on words. Classical results by Makanin
showed that the satisfiability problem for equations is decidable in free monoids
(resp. free groups). Since then there have been two main directions: first, improve (or
determine) its complexity, and second, relate the problem to the (existential) theory
in a larger class of monoids or groups.

The focus in this note is on free partially commutative monoids and groups. The
satisfiability problem for equations in trace monoids was shown to be decidable by
Matiyasevich in 1996 and published in 1997. Since then, over the past twenty years
there was considerable progress. For example, today we know that the full solution
set of a given word equation over a trace monoid forms an EDT0L language and that
an effective description as an EDT0L language can be constructed in quasi-linear
space. Moreover, the results hold also for free partially commutative groups.

Survey
Trace monoids are used in computer science as a basic algebraic structure to model
concurrency. This goes back to pioneering work of Keller [12] and Mazurkiewicz [17]. The
latter paper also coined the term trace monoid to denote a finitely generated free partially
commutative monoid. In combinatorics, trace monoids were investigated even earlier in
connection with MacMahon’s Master Theorem [2]. Free partially commutative groups are
known as RAAGs (right-angled Artin groups), see [24] for the recent interest in RAAGs.
Still another notation for RAAG is graph group [9]. This notation reflects that the setting
for a free partially commutative monoid (resp. group) is given by an undirected graph
(Γ, I). The vertices a ∈ Γ are the generators and one adds a defining relation ab = ba
whenever ab ∈ I is an edge. In the following M(Γ, I) = Γ∗/ {ab = ba | ab ∈ I} denotes a
trace monoid and G(Γ, I) = F (Γ)/ {ab = ba | ab ∈ I} denotes a graph group where F (Γ)
is a free group over Γ and Γ is finite. In order to study equations over groups we assume
that Γ is equipped with an involution. For a set, this is a mapping x 7→ x such that x = x,
for a monoid we additionally demand that xy = y x. In the following, we assume that a
generating set Γ is endowed with an involution. This is no restriction, since the identity is
an involution on every set, but the notation of free group differs slightly from the standard
one: F (Γ) becomes Γ∗/ {aa = 1 | a ∈ Γ}. Such groups are called specular in [1] because
there are elements of order 2 (if Γ has self-involuting elements).

An equation (over a monoid with involution M which is generated by some set Γ) is
a pair (U, V ), frequently written as U = V , where U, V are words in (Γ ∪ X )∗. Here, X
a set of variables. A solution of U = V is a of variables by elements in M such that the
resulting equation becomes an identity in M .

The satisfiability problem for free monoids and groups was solved affirmatively by
Makanin in his seminal papers [14, 15]. It took twenty years from [14] when in 1997
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Matiyasevich published his solution to the satisfiability problem in trace monoids, [16, 7].
His strategy was based on an induction on the size of commutation relations (that is the size
of I) and a reduction to solve word equations with regular constraints. A problem which
was already solved positively in the Habilitation thesis of Schulz [22] thereby generalizing
[14]. The extension of Schulz’s method to graph groups G(Γ, I) did not work directly. A
first step was to show that the satisfiability problem for equations with rational constraints
in free groups is decidable [5]. The other obstacle was not the group structure, but the
involution. More precisely, “cet obscur objet du désir” was a normal form for traces which
respects the involution. Once the desired object was found, known techniques in trace
theory did the rest: the satisfiability was shown to be decidable for trace monoids with
involution (and hence also for graph groups) in [8].

The next step beyond satisfiability is to look for an algorithmic description of all
solutions. In the case of free groups such a description was given by Razborov [21]. His
description became known as a Makanin-Razborov diagram, a major tool in the positive
solution of Tarski’s conjectures about the elementary theory in free groups [13, 23]. Using
sophisticated arguments from geometric and combinatorial group theory a generalization
of Razborov-Makanin diagrams to graph groups was established by [3], but no algorithmic
description of all solutions was known for trace monoids.

Clearly, the complexity of the problems is of interest, too. Makanin’s algorithms were
famous for the difficulty of the termination proof and also for the extremely high complexity.
A breakthrough on the complexity was obtained by Plandowski and Rytter [20], who
recognized compression as a key tool for solving word equations. Indeed, Plandowski showed
via compression that the satisfiability problem for word equations is in PSPACE [18]. It
took more than a decade before Jeż lowered the complexity down to NSPACE(n log n)
in [10]. (Very recently, Jeż proved NSPACE(n): the set of solvable word equations is
context-sensitve [11].) More importantly, his “recompression technique”, simplified all
existing proofs for solving word equations; and it provided an effective representation of
all solutions. A similar representation was given earlier by Plandowski [19]. The technique
of Jeż is based on two simple rules: compress large powers aλ and pairs ab into fresh
letters. Here, a, b denote letters which occur in a given solution of an equation. Reading
the process backwards the process can be described by applying endomorphisms of a
free monoid over an extended alphabet defined by aλ 7→ aλ resp. c 7→ ab and leaving all
other letters invariant. This observation led to a remarkable structural property of the
full solution set of equations in trace monoids and graph groups: they are EDT0L. As a
corollary, it is decidable whether or not a given equation has at least one, finitely many or
infinitely many solutions in NSPACE(n log n), see [4] for the special case of free monoids
and free groups; and see [6] for its generalization to partial commutation.

References
[1] V. Berthé, C. D. Felice, V. Delecroix, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, and

G. Rindone. Specular sets. In F. Manea and D. Nowotka, editors, Combinatorics on Words
- 10th International Conference, WORDS 2015, Kiel, Germany, September 14-17, 2015,
Proceedings, volume 9304 of Lecture Notes in Computer Science, pages 210–222. Springer,
2015.

[2] P. Cartier and D. Foata. Problèmes combinatoires de commutation et réarrangements.
Number 85 in Lecture Notes in Mathematics. Springer-Verlag, Heidelberg, 1969.

[3] M. Casals and I. Kazachkov. On systems of equations over partially commutative groups.
Memoirs Amer. Math. Soc., 212:1–153, 2011.
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[4] L. Ciobanu, V. Diekert, and M. Elder. Solution sets for equations over free groups are EDT0L
languages. International Journal of Algebra and Computation, 26:843–886, 2016. Conference
abstract in ICALP 2015, LNCS 9135 with full version on ArXiv e-prints: abs/1502.03426.

[5] V. Diekert, C. Gutiérrez, and Ch. Hagenah. The existential theory of equations with rational
constraints in free groups is PSPACE-complete. Information and Computation, 202:105–140,
2005. Conference version in STACS 2001, LNCS 2010, 170–182, 2004.
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Alexandr Kostochka

Recent results on disjoint and longest cycles in
graphs

Alexandr Kostochka

The goal of the talk is to discuss recent refinements of some results on cycle structure of
graphs from the sixties.

Let V≥t(G) (respectively, V≤t(G)) denote the set of vertices in G of degree at least
(respectively, at most) t. Dirac and Erdős in 1963 extended the Corrádi-Hajnal Theorem
as follows: If k ≥ 3 and G is a graph with |V≥2k(G)| − |V≤2k−2(G)| ≥ k2 + 2k − 4,
then G has k disjoint cycles. They also showed a series of examples of graphs G with
|V≥2k(G)| − |V≤2k−2(G)| = 2k − 1 that do not have k disjoint cycles.

We show that each graph G with |V≥2k(G)| − |V≤2k−2(G)| ≥ 3k has k disjoint cycles.
This is sharp if we do not impose restrictions on |V (G)|. We also show that if |V (G)| ≥ 19k,
then the result holds with 2k instead of 3k. This is joint work with Kierstead and McConvey.

The theorems of Erdős and Gallai from 1959 on the most edges in n-vertex graphs that
do not have paths/cycles with at least k vertices were sharpened later by Faudree and
Schelp, Woodall, and Kopylov. Let h(n, k, a) =

(
k−a

2

)
+ a(n− k + a). The strongest result

(by Kopylov) was: if t ≥ 2, k ∈ {2t+ 1, 2t+ 2}, n ≥ k, and G is an n-vertex 2-connected
graph with at least max{h(n, k, 2), h(n, k, t)} edges, then G contains a cycle of length at
least k, unless G = Hn,k,t := Kn − E(Kn−t). We prove stability versions of these results.
In particular, if k ≥ 3 is odd, n ≥ k and the number of edges in an n-vertex 2-connected
graph G with no cycle of length at least k is greater than max{h(n, k, 3), h(n, k, t− 1)},
then G is a subgraph of Hn,k,t or of Hn,k,2. This is joint work with Füredi, Luo and
Verstraëte.
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Non-commutative discrete optimization:
geometry, compression, and complexity

Alexei Miasnikov
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Igor Potapov

Decision problems in matrix semigroups:
limitations and algorithms

Igor Potapov

Department of Computer Science, University of Liverpool, Email: potapov@liverpool.ac.uk.

Matrices and matrix products play a crucial role in a representation and analysis
of various computational processes [6, 12, 13]. However, many simply formulated and
elementary problems for matrices are inherently difficult to solve even in dimension two,
and most of these problems become undecidable in general starting from dimension three
or four [1, 2, 4, 6, 7, 14]. Let us given a finite set of square matrices (known as a generator)
which is forming a multiplicative semigroup S. The classical computational problems for
matrix semigroups are:

• Membership (Decide whether a given matrix M belong to a semigroup S) and two
special cases such as: Identity (i.e. if M is the identity matrix) and Mortality (i.e. if
M is the zero matrix) problems

• Vector reachability (Decide for a given vectors u and v whether exist a matrix M in
S such that M · u = v)

• Scalar reachability (Decide for a given vectors u, v and a scalar L whether exist a
matrix M in S such that u ·M · v=L)

• Freeness (Decide whether every matrix product in S is unique, i.e. whether it is a
code) and some variants of the freeness such as finite freeness problem, the recurrent
matrix problem, the unique

• factorizability problem, vector freeness problem, vector ambiguity problems, etc.

The undecidability proofs in matrix semigroups are mainly based on various techniques
and methods for embedding universal computations into matrix products. The case of
dimension two is the most intriguing since there is some evidence that if these problems
are undecidable, then this cannot be proved directly using previously known constructions.
Due to a severe lack of methods and techniques the status of decision problems for 2× 2
matrices (like membership, vector reachability, freeness) is remaining to be a long standing
open problem not only for matrices over algebraic, complex, rational numbers but also for
integer matrices.

Recently, a new approach of translating numerical problems of 2x2 integer matrices
into variety of combinatorial and computational problems on words and automata over
group alphabet and studying their transformations as specific rewriting systems [8, 9] have
led to a few results on decidability and complexity for some subclasses:

• The membership problem for 2x2 nonsingular integer matrices is decidable [16]. The
algorithm relies on a translation of numerical problems on matrices into combinatorial
problems on words. It also makes use of some algebraic properties of well-known
subgroups of GL(2, Z) and various new techniques and constructions that help
to convert matrix equations into the emptiness problem for intersection of regular
languages.

• The Identity problem in SL(2,Z) is NP-complete [5, 3]. Our NP algorithm is based on
various new techniques that allow us to operate with compressed word representations
of matrices without explicit exponential expansion.
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• The vector reachability problem over a finitely generated semigroup of matrices from
SL(2,Z) and the point to point reachability (over rational numbers) for fractional
linear transformations, where associated matrices are from SL(2,Z) are decidable
[15].

Finally our new techniques have been applied to show that the freeness problem is
co-NP-hard [11] as well as to study the complexity of other freeness problems such as
finite freeness problem, the recurrent matrix problem, the unique factorizability problem,
vector freeness problem, vector ambiguity problems, etc [10].

References
[1] Paul Bell and Igor Potapov. On undecidability bounds for matrix decision problems. Theoretical

Computer Science, 391(1-2):3–13, 2008.
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Springer Berlin Heidelberg, 2012.
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Aleksi Saarela

Studying Word Equations
by Geometric and Algebraic Methods

Aleksi Saarela

Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland
amsaar@utu.fi

We discuss two well-known questions on word equations, two methods for analyzing them,
and the possible connections between these topics.

The first question we are interested in concerns equations of the form

xk0 = xk1 · · ·xkn, (1)

where x0, . . . , xn are words and k is a positive integer. A simple example would be
(ababa)k = (ab)kak(ba)k, which holds for k ∈ {1, 2}, but not for any larger k. These
equations and their generalizations are connected to many topics: Pumping properties
of formal languages, test sets, Sturmian words, and constructions of large independent
systems of word equations. They seem like simple equations with a lot of structure, but
some simple questions about them have been open for a long time. Specifically, if (1) holds
for three positive values of k, does this imply that the words x0, . . . , xn commute, that
is, xixj = xjxi for all i, j? In some form, this question has been open for at least about
two decades. A special case appeared in an article by Hakala and Kortelainen [4]. Since
then, there have been many articles and partial results, see, e.g., the article by Holub [5].
Recently, the question was finally answered by Saarela [10], so we have the following
theorem.

Theorem 1. Let x0, . . . , xn be words. If xk0 = xk1 · · ·xkn for three positive integers k, then
the words x0, . . . , xn commute.

Let us now outline the ideas behind the proof. We can assume that our alphabet Γ is
a subset of R (this is not a restriction; we can assign numerical values to the letters in any
way we like, as long as no two letters get the same value). This allows us to define Σ(w) to
be the sum of the letters of a word w ∈ Γ∗, that is, if w = a1 · · · an and a1, . . . , an ∈ Γ, then
Σ(w) = a1 + · · ·+ an. Words w such that Σ(w) = 0 are called zero-sum words. The prefix
sum word of w is the word psw(w) = b1 · · · bn, where bi = Σ(a1 · · · ai) for all i. The word
w can be represented as a plane curve by connecting the points (0, 0), (1, b1), . . . , (n, bn).
The properties of this curve can then be studied, leading to a geometric way of analyzing
words.

Theorem 1 can be proved by first normalizing the alphabet so that x0 becomes a
zero-sum word. If all xi are zero-sum, we can compress them by writing them as products of
minimal zero-sum words. After compression and normalization (possibly repeated several
times), either the words xi are unary, which is a trivial case, or x0 is zero-sum but at least
one xi is not, in which case we can analyze the curves of the xk0 and xk1 · · ·xkn and see that
they can be equal for at most two values of k. This leads to a proof of Theorem 1.

The second question we are interested in is the following: For a given n, what is the
maximal size of an independent system of constant-free word equations on n variables?
It is known that every system of word equations is equivalent to a finite subsystem
and, consequently, every independent system is finite. This is known as Ehrenfeucht’s
compactness property. It was conjectured by Ehrenfeucht in a language theoretic setting,
formulated in terms of word equations by Culik and Karhumäki [2], and proved by Albert
and Lawrence [1] and independently by Guba [3]. If n > 2, no finite upper bound for the
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size of independent systems is known. The largest known independent systems have size
Θ(n4) [7]. The difference between the best known lower and upper bounds is particularly
striking in the case of three variables: The largest known independent systems consist of
just three equations, but it is not even known whether there exists a constant c such that
every independent system has size c or less.

There have been some recent advances regarding this topic. The first nontrivial upper
bound was proved by Saarela [9]: The size of an independent system on three variables is
at most quadratic with respect to the length of the shortest equation in the system. This
bound was improved to a linear one by Holub and Žemlička [6]. A logarithmic bound was
proved by Nowotka and Saarela [8]. The first two results can be generalized for more than
three variables if the assumption of independence is replaced by a stronger variation. The
third result, on the other hand, is specific to the case of three variables.

Ehrenfeucht’s compactness property can be proved by using polynomials and Hilbert’s
basis theorem. Also the proofs in [9] and [6] are based on polynomials. If we keep the
assumption that letters are numbers, then a word a0 · · · an can be represented by the
polynomial a0 + a1X + · · ·+ anX

n. Studying these polynomials, together with using linear
algebra over the field of rational functions and over the field of real numbers, leads to
results about independent systems of word equations.

There are also some potential connections between the topics we have presented. For
example, the sizes of independent systems of three-variable word equations could possibly
be studied by using the geometric method. On the other hand, zero-sum words and prefix
sum words could be studied by using the algebraic method.
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On the logic of dependence and independence
Jouko Väänänen

I will give a quick introduction to team semantics i.e. semantics in which meaning of
formulas is defined relative to a set of valuations rather than relative to a single valuation.
I use this semantics in the context of propositional logic and describe a hierarchy of
extensions of classical propositional logic obtained by adding distinguished relations
between propositional atoms, such as dependence, inclusion and independence. I give
semantic characterizations as well as complete axiomatizations of several such extensions,
and will also list some open problems. This is joint work with Fan Yang.
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Abstract

In this paper we consider known results on decision problems for finitely generated
semigroups and rational sets of regular languages and prove some statements on
various topics. In particular, we prove undecidability of the equivalence problem
for rational set of finite languages, automaticity of finitely generated semigroups of
factorial languages, and provide an algorithm for automatic presentation construction
in case of regular factorial languages. We also discuss possible applications of rational
sets of regular languages.

1 Introduction
Regular languages and finite automata are among basic concepts of computer science.
Most decision problems for regular languages are effectively decidable and corresponding
algorithms are widely used in software and hardware applications. In this paper we consider
decision problems for finite or infinite sets of regular languages. This paper has a threefold
purpose: we collect known result on this topic, prove some new statements, and formulate
questions for future research.

The main object of this paper is the rational set of regular languages. Let us consider
a finite set of regular languages over some alphabet. As regular languages are closed under
concatenation, which is an associative operation, the set of all finite concatenations of
elements of this finite set forms a (finitely generated) semigroup. A set of regular languages
is called rational, if it is a rational subset of a finitely generated semigroup of languages.
Rational sets can be effectively presented by means of regular language substitutions. Let
ϕ : ∆→ Reg(Σ) be a regular language substitution, where Σ and ∆ are finite alphabets,
and Reg(Σ) stands for the set of all regular languages over Σ. We can extend ϕ to words
in a natural way: ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ ∆+. Every regular language K in ∆
defines a rational set of languages R = {ϕ(w) | w ∈ K}.

There are two kinds of problems addressed in this paper. First, we consider decision
problems such as checking membership of a regular language in a given set, checking the
finiteness of a rational set defined by the given representation, checking the equivalence of
two rational sets, or checking minimality of a representation. The second kind of problems
is related to the word problem for semigroups of regular languages and motivated by the
following question. Given a regular language substitution ϕ : ∆→ Reg(Σ) and two words
u, v ∈ ∆+ one can decides that u = v by checking the equivalence of non-deterministic finite
automata ϕ(u) and ϕ(v). The question is: Is it possible to precompute some information
for the given substitution ϕ, such that subsequent word equivalences can be efficiently
processed? This leads us to the notion of an automatic presentation of a semigroup of
regular languages.
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Automatic semigroups are finitely generated semigroups such that multiplication by
generators is realized by finite automata (formal definition presented in the next section).
Many naturally appearing semigroups, e.g. finitely generated subsemigroups of a free
semigroup are automatic [9]. If an automatic structure of a semigroup is given, then word
equivalence u = v may be checked in quadratic time with respect to the length of u and v.
Note, that complexity does not depend on number of states of corresponding automata,
so an automatic structure for the semigroup associated with a language substitute ϕ is
a basis for efficient equivalence checks. It is not known whether semigroups of regular
languages are automatic or not. We prove autmaticity in case of factorial languages.

The layout of the paper is the following. In the next section we introduce the notation.
In Section 3 basic decision problems for rational sets of regular languages are described.
The structure of finitely generated semigroups is considered in Section 4. In particular, we
prove that semigroups of factorial languages are automatic. Applications of rational sets
of regular languages in such areas as database systems, cryptography, and software testing
frameworks are briefly discussed in Section 5. The list of open questions concludes the
paper.

2 Definitions and Notation
Let Reg(Σ) denote the set of all regular languages over alphabet Σ. As regular languages
are closed under concatenation by definition and concatenation is an associative operation
the set (Reg(Σ), ·) forms a semigroup. In the sequel we will only consider semigroups with
concatenation as a product and this operation will not be explicitly denoted. Every finite
set V ⊂ Reg(Σ) defines a (finitely generated) subsemigroup 〈V 〉 of Reg(Σ). Let ∆ be a
fresh alphabet such as |∆| = |V | and ϕ : ∆→ Reg(Σ) be a regular language substitution
defined as ϕ(δi) 7→ Vi. We can extend ϕ to a homomorphism between ∆+ and 〈V 〉 in a
natural way: ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ ∆+. We call a set of regular languages over Σ
rational if it is a rational subset of a finitely generated subsemigroup of Reg(Σ). Thus, any
rational set of regular languages may be represented as a pair (K,ϕ), where K ∈ Reg(∆)
and ϕ : ∆+ → Reg(Σ).

We now define automatic semigroups [9]. Let S be a semigroup, A be a finite set, L be
a regular language over A, and ψ : A+ → S be a homomorphism with ψ(L) = S. The pair
(A,L) is called an automatic structure for S if

1. L= = {(u, v) | u, v ∈ L,ψ(u) = ψ(v)} is regular;

2. La = {(u, v) | u, v ∈ L,ψ(ua) = ψ(v)} is regular for each a ∈ A.

A semigroup S is called automatic if it has an automatic structure (A,L) for some A
and L. Let us note that a semigroup may have an automatic structure with respect to
one generating set, but not with respect to another. It is also known that an automatic
semigroup S always has an automatic structure (A,L) such that L is the set of unique
normal forms, i.e. ψ(u) 6= ψ(v) for all u, v ∈ L.

If an automatic structure of a semigroup is given, then word equivalence u = v may
be checked by the following procedure. First, find two words n(u), n(v) ∈ L such that
ψ(u) = ψ(n(u)) and ψ(v) = ψ(n(v)). Let u = a1 . . . ak ∈ A+. The word n(u) can be
found as follows. Find a word n(a1) ∈ L using the automaton La1 : the pair (ε, n(a1))
is in La1 . Then find the pair (n(a1), n(a1a2)) is in La2 , and so on. We have u = v iff
(n(u), n(v)) ∈ L= (or just n(u) = n(v), if L is the set of unique normal forms).
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3 Decision Problems for Rational Sets
One can consider various subclasses of rational sets of languages, e.g., sets of finite
languages, factorial languages, or subclasses of regular languages. In this section we
consider the general case.

3.1 Membership and Approximation of Languages
Let R = (K,ϕ) be a rational set of regular languages over Σ and L ∈ Reg(Σ). The
membership problem for R and L is the set {w ∈ K | ϕ(w) = L}. By approximation of
a language L by R we mean some subset A ⊆ K such that the language L̃ =

⋃
w∈A

ϕ(w)

satisfies either L̃ ⊆ L (approximation from below), or L ⊆ L̃ (approximation from above).
Membership of a language L in a semigroup or rational set of languages is a non-trivial

question only if the empty word ε belongs to some of the generators. Otherwise, one can
establish an upper bound for the length of a decomposition (word w such that ϕ(w) = L)
using lengths of shortest words in L and the generators.

Theorem 1 (Calvanese et al. [7], K. Hashiguchi [13]). Let ϕ : ∆+ → Reg(Σ) be a regular
language substitution. For any regular language L ⊆ Σ∗ the maximal rewriting

Mϕ(L) = {w ∈ ∆+ | ϕ(w) ⊆ L}

is a regular language over ∆.

This theorem states that the maximal approximation from below of a language is
regular. The approximation is called exact if

⋃
w∈M

ϕ(w) = L.

The regularity of the membership problem for a semigroup of regular languages is a
simple corollary from Theorem 1 and Higman’s lemma.

Theorem 2. Let ϕ : ∆+ → Reg(Σ) be a regular language substitution and w be a word in
∆+. The membership problem

[w] = {u ∈ ∆+ | ϕ(u) = ϕ(w)}

is a regular language over ∆.

Proof. Let w = δi1 . . . δim be a word over ∆, A ⊆ ∆, and ∆0 = {δ ∈ ∆ | ε ∈ ϕ(δ)}. By
E(w,A) we denote the regular language (A∗δi1A

∗δi2 . . . A
∗δimA

∗ ∩Mϕ(ϕ(w)).
For every u ∈ ∆+ and v ∈ E(u,∆0) we have ϕ(u) = ϕ(v). Indeed, let δ ∈ ∆0. Consider

the word v = u1δu2, where u1, u2 ∈ ∆∗ and u = u1u2. We have

ϕ(u) ⊆ ϕ(v) ⊆ ϕ(u).

The first inclusion is due to ε ∈ ϕ(δ) while the second one follows from the definition of
the language E(u,∆0).

By Theorem 1 the set Mϕ(w) = {u ∈ ∆+ | ϕ(u) ⊆ ϕ(w)} is regular. Clearly, [w] ⊆
Mϕ(w). We prove now that there exists a finite subset F ⊆ [w] satisfying

[w] =
⋃
u∈F

E(u,∆0).

Note that if u is a scattered subword of v then E(v,∆0) ⊆ E(u,∆0), so without loss
of generality we may assume that if the language F contains a word v then it does not
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contain subwords of v. The finiteness of F follows immediately from Higman’s lemma
which states that in every infinite sequence {ui}i>1 of words over a finite alphabet there
exist indices i and j, such that ui is a scattered subword of uj .

As a trivial corollary we have

Theorem 3. The membership problem for rational set R = (K,ϕ) is a regular language.

Finding a minimal approximation of L from above, as a natural counterpart to the
maximal approximation of Theorem 1, is nontrivial. Let R be a semigroup, i.e. K = ∆+.
The set ∆+ may be represented as a disjoint union of three regular languages: RC = Mϕ(L),
RI = {w ∈ ∆+ | ϕ(w) ∩ L 6= ∅}, and E = ∆+ \ (RI ∪ RI). Minimal approximation of
L by R from above is the union of RC and some subset of RI . In general, there exists
infinitely many languages R ( RI such that ϕ(R) = ϕ(RI). One can propose an algorithm
to construct a minimal representation in the spirit of Theorem 2 where a random word w
is drawn form RI and the set RI replaced by RI \ [w], but the finiteness of this procedure
is not guaranteed. To the best of our knowledge, no algorithm for construction of minimal
approximation is known.

3.2 Equivalence and Inclusion
Equivalence and inclusion problems for rational sets of finite languages are undecidable
due to the following Theorem.

Theorem 4. The problem of checking equivalence of two rational sets of finite languages
is undecidable.

Proof. The proof is based on a reduction to the equivalence problem of finite substitutions.
Let ϕ1 and ϕ2 be finite substitutions, i.e. homomorphisms between ∆+ and semigroups of
finite languages. The equivalence problem of finite substitutions on a regular language L
asks for an algorithm to check that

ϕ1(w) = ϕ2(w) for all w ∈ L.

It is known that this is undecidable[19] for L = xy∗z.
Let ∆ = {x1, y1, z1, x2, y2, z2}, ϕ be a finite substitution, and rational setsR1 = (K1, ϕ)

and R2 = (K2, ϕ) are given by languages K1 = x1y
∗
1z1 and K2 = x2y

∗
2z2.

Rational sets R1 and R2 are equal if and only if finite substitutions ϕ1 and ϕ2

(induced by ϕ in a natural way) are equal on the language xy∗z. If ϕ1(xz) = ϕ2(xz) and
ϕ1(xyz) = ϕ2(xyz), then by considering the length of the longest word in the image ϕ(w),
we have that for all k 6= m⇒ ϕ1(xykz) 6= ϕ2(xymz) for all k,m > 1.

Let us note, that the inclusion problem is obviously decidable for finitely generated
semigroups of regular languages. It is sufficient to check membership of all generators of
one semigroup in another. It could be interesting to establish decidability of equivalence
of a rational set and a semigroup.

3.3 Properties of a Representation
A rational set of regular languages may be represented in infinitely many ways, in general.
One representation could be more appropriate than another. Let us call a representation
R = (K,ϕ) K-minimal if for every K ′ ⊂ K the set R′ = (K ′, ϕ) is a proper subset of R,
and ∆-minimal if for every representation (K ′, ϕ′) of R inequality |∆′| < |∆| holds.

Theorem 5. It is undecidable whether or not given representation (K,ϕ) is K-minimal.
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Proof. Trivially follows from undecidability of checking that given set of regular languages
forms a code in the monoid of languages [18].

In [1] it was shown that for a given semigroup S = (∆+, ϕ) one can find a representation
with minimal number of generators. The search space for generators consists of all possible
intersections of maximal factors of given generators, i.e. intersections of factors of {ϕ(δ) |
δ ∈ ∆}. Let us recall that a language F is called a maximal factor of L if there exists a
natural number m such that F is a component of some maximal solution to the equation
L = X1 . . . Xm. In the case of general rational set R = (K,ϕ) the ∆-minimal set of
generators for corresponding semigroup S = (∆+, ϕ) may not be minimal for R. For
example, if K = (δ1δ2)+ then the set can be represented using single generator.

Theorem 6. There exists an algorithm that computes a ∆-minimal representation for a
given rational set R = (K,ϕ).

Sketch. Consider the sequence of finite sets F1, F2, . . . defined as Fn = {ϕ(w) | w ∈
K ∧ |w| 6 n}. Every ∆-minimal representation for R is a representation for all sets in
this sequence. Using the technique of maximal factors it is possible to compute the finite
set of ∆-minimal representation for any set Fn. There exist number N , that depends on
the number of states of finite automata representing K, such that for every n > N every
∆-minimal representation of Fn is a ∆-minimal representation of R.

Let us note, that representation of rational sets may me used as a description complexity
measure of finite set of languages. Given a complexity measure C of regular languages, e.g.
state complexity of corresponding deterministic automata, we can define complexity of a
regular language substitution ϕ as C(ϕ) =

∑
δ∈∆ C(ϕ(δ)). The complexity of a finite set

F = {L1, . . . , Ln} of regular languages may be defined as

C(F) = min
ϕ,R1,...,Rn

(
C(ϕ) +

n∑
i=1

C(Ri)

)
,

where minimum is taken over all languages Ri ⊂ ∆∗ such that ∪w∈Riϕ(w) = Li. Informally,
we are looking for a set of regular languages, a basis, such that every element in F can
be represented in terms of the basis and the total complexity of both the basis and
representation languages is minimal.

3.4 Closure Properties
Closure properties for rational sets of regular languages were investigated in [16]. It was
shown that rational sets are closed under:

concatenation R1 · R2 = {L1 · L2 | L1 ∈ R1, L2 ∈ R2},
Kleene star R∗ = {R ∪R · R ∪ . . . | L ∈ R}, and
union R1 ∪R2 = {L | L ∈ R1 ∨ L ∈ R2}.

These results follow immediately from the closure properties of regular languages. For
example, if R = (K,ϕ), then R∗ can be represented as (K∗, ϕ).

Rational sets of regular languages are not closed under the complement. If we consider
the set of all languages over the same alphabet, then non-closure follows from the cardinality
argument. If the complement is defined as ¬R = Reg(Σ) \ R, then one should note that
every rational set contains finitely many prime languages, while the complement contains
infinitely many prime languages.

Closure under intersection is left open in [16]. It is not clear whether or not emptiness
of intersection is decidable.
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4 Automaticity of Some Classes of Semigroups of Reg-
ular Languages

A semigroup S may be defined in a number of ways. For example, a multiplication table,
or an algorithm that efficiently computes the product of semigroup elements, may be
given (this is exactly how we defined finitely generated semigroups of regular languages
above). Alternatively, a set of defining relations may be given (we refer the reader to [17]
for the general result on semigroup theory). Let us consider a semigroup S generated by
languages

x = (a+ b)∗a, y = ε+ a+ b, and z = b∗

over Σ = {a, b} and construct a presentation for it. First of all, note that the language
z is a star, so zk = zp for all k, p > 1. Second, since x is the set of all words over Σ
that end with the letter a and both y and z contain the empty word we have equations
(y + z)kx = x. Finally, the language xz = (a+ b)∗ab∗ is the set of all words over Σ that
contain at least one letter a, so we have a relations x(yz)kzyp = xz for all k, p > 0. The
semigroup S satisfies no other relations. Thus, the semigroup S has a presentation

〈x, y, z | yx = x, zx = x, z2 = z, xzy = xz, xykz = xz (k > 1)〉.

Checking equivalence of two words u, v ∈ {x, y, z}+ of a semigroup defined by a regular
language substitution leads to equivalence check of two NFAs. The complexity of the word
problem for semigroup given by a presentation depends on words length. If the semigroup
has a “nice” presentation then the equivalence may be checked more efficiently.

While it is well known that the word problem for finitely presented semigroups is
undecidable in general, there exist classes of semigroups that have efficiently solvable word
problem. Two examples are rational semigroups [20] and automatic semigroups [9]. In
both cases the word problem can be solved by the means of finite automata. For rational
semigroups the set of all equal words is recognized by a (two-tape) finite automaton.
Automatic semigroups are finitely generated semigroups with rational cross-section (set of
unique normal forms, i.e. L ⊆ ∆+ such that S = ϕ(L) and ϕ(u) 6= ϕ(v) for all u, v ∈ L)
such that multiplication by each generator is recognized by a finite automaton (the precise
definition is presented in the next section). The set of such automata is known as automatic
structure. Having such automatic presentation the word problem is solvable in linear time
for rational semigroups and in quadratic time for automatic semigroups. Let us note that
rational semigroups form a proper subclass of automatic semigroups [14].

There are two fundamental questions that should be answered:

• What is the structure of finitely generated semigroups of regular languages? Are
they automatic? and

• If it is known that a semigroup defined by a finite set of regular languages is automatic,
is it possible to construct a corresponding automatic structure algorithmically?

It is clear that semigroups of regular languages have some specific properties that are
induces in some way by structure of automata corresponding to semigroup generators. In
particular, in [2] the authors considered finiteness conditions for semigroups of regular
languages. It was found that a finitely generated semigroup S = 〈V1, . . . , Vk〉 is finite if and
only if for every set of non-repeating indexes {i1, . . . , im} (m 6 k) there exists a natural
number p such that (Vi1 · . . . · Vim)p = (Vi1 · . . . · Vim)p+1. In contrast, the semigroup given
by presentation S = 〈∆ | x2 = x3 for all x ∈ ∆+〉 is infinite if |∆| > 2 [6]. It is also known
that finitely generated commutative semigroups of regular languages over a one letter
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alphabet are rational [3], but there exist commutative finitely presented semigroups that
are not automatic [15].

In this section we prove that semigroups of factorial languages are automatic and
provide an algorithm for building an automatic presentation in case of regular factorial
languages.

4.1 Non-rationality of Semigroups of Regular Languages
Theorem 7. Let ϕ : ∆+ → Reg(Σ) be a regular language substitution. The set

Ker(ϕ) = {(u, v) | u, v ∈ ∆+ ϕ(u) = ϕ(v)}

is not an effectively constructable regular language.

Proof. We show that if the set Ker(ϕ) is regular then the equivalence problem for a rational
set of regular languages, i.e. the problem to decide whether or not two given rational sets
R1 = (K1, ϕ) and R2 = (K2, ϕ) are equal as sets of languages over Σ, is decidable.

For a given regular language K ∈ ∆∗ by K let us denote the closure of K with respect
to ϕ:

K = ϕ−1(ϕ(K)) = {u ∈ ∆+ | ∃v ∈ K ϕ(u) = ϕ(v)}.
The equality R1 = R2 holds if and only if K1 = K2. Now, suppose that the set Ker(ϕ) is
regular, i.e. there exists a finite automaton M that recognizes this language. By standard
direct product construction of automata M and K we construct the automaton that
recognizes the language {v ∈ ∆+ | ∃u ∈ K (u, v) ∈ Ker(ϕ)}. Thus, if Ker(ϕ) is regular
then so is K for every regular language K ∈ ∆∗ and equality of rational set is decidable.

We have a contradiction with Theorem 4, so the set Ker(ϕ) is not regular in general.
We can not state that Ker(ϕ) is not regular because it is possible that K is regular

but not constructable.

4.2 Factorial Languages
A language is called factorial if it is closed under taking factors of its elements, i.e. w ∈ L
implies v ∈ L for all v such that w = αvβ where α, β ∈ Σ∗. It is clear that factorial
languages are closed under concatenation. A factorial language L is called indecomposable
if L = XY implies L = X or L = Y for all factorial languages. A decomposition of
non-empty factorial language L to factorial languages L = L1 . . . Lk is called canonical if
for all i = 1, . . . , k languages Li are non-empty and indecomposable, and for any factorial
language L′i ⊂ Li we have L 6= L1 . . . Li−1L

′
iLi . . . Lk. Canonical decomposition of L = {ε}

contains only one component L1 = {ε}. The canonical decomposition of L is denoted as L.
Canonical decompositions were studied in [5, 10, 4]. It was found that a canonical

decomposition of each factorial language exists and unique, and all entries in the canonical
decomposition of regular factorial language are also regular. The proof of uniqueness
of decomposition is non-constructive if arbitrary factorial languages are considered. For
regular languages canonical decompositions can be computed. In order to describe how
canonical decompositions change under concatenation we need additional notation. For
factorial language L let Π(L) = {a ∈ Σ | La ⊆ L}, and Λ(L) = {a ∈ Σ | aL ⊆ L}. For a
subset Λ ⊆ Σ and factorial language A define LΛ(A) as a factorial closure of the language
A \ ΛA. Similarly, RΛ(A) denotes the factorial closure of A \AΛ.

Theorem 8 ([10]). Let A and B be factorial languages with A = A1 . . . Ak and B =
B1 . . . Bm. Denote Π = Π(A) and Λ = Λ(B). Then the canonical decomposition of the
concatenation AB can be found as follows:
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1. If Λ \Π 6= ∅ and Π \ Λ 6= ∅, then AB = A ·B.

2. If Λ = Π and Ak 6= Λ∗, B1 6= Λ∗, then AB = A ·B.

3. If Λ = Π and Ak = Λ∗, then AB = A1 . . . Ak−1B. Symmetrically, if Λ = Π and
B1 = Λ∗, then AB = AB2 . . . Bm.

4. If Π ( Λ, then AB = RΛ(A) ·B. Symmetrically, if Λ ( Π, then AB = A · LΠ(B).

In order to prove automaticity of semigroups of factorial languages we first choose
appropriate set of generators, and then show that the set of canonical decompositions
forms a regular language and multiplication can be performed by finite automata.

Let us denote by F(L) the set of languages in the canonical decomposition L. For any
set of factorial languages L by F(L) denote the set of all possible factors of canonical
decompositions of L members, i.e. F(L) =

⋃
L∈L
F(L).

Lemma 9. Let S be a finitely generated semigroup of factorial languages. The set F(S)
is finite.

Proof. According to Theorem 8 new languages only emerge in case 4. It is clear that for
any factorial language A and Λ1,Λ2 ⊂ Λ the equality RΛ1

(RΛ2
(A)) = RΛ2

(RΛ1
(A)) =

RΛ1∪Λ2
(A) holds, so the canonical decompositions of these languages coinside. Similarly,

LΠ1
and LΠ2

do commute, as well as RΛ and LΠ.
Let the semigroup S be generated by a regular language substitution ϕ : ∆+ → Reg(Σ)

and consider a word w = pδs in ∆∗δ∆∗. Let δ occur in w only once. The language ϕ(δ)
generates some elements into the canonical decomposition of ϕ(w) but these elements are
completely defined by Π(ϕ(p)) and Λ(ϕ(s)), that are just some subsets of Σ. So, due to
finiteness of the alphabet Σ, every semigroup generator yields only finitely many factors
of canonical decompositions.

The set F(S) will be the set of generators for automatic structure of a semigroup S.
By F (S) let us denote a finite alphabet such that |F | = |F(S)|.

Lemma 10. Let S be a finitely generated semigroup of factorial languages. The set of
canonical decompositions is a regular language over F (S).

Sketch. Let S be generated by a regular language substitution ϕ : G+ → Reg(Σ). For
each generator g ∈ G and all possible subsets Π,Λ ⊆ Σ construct F -words corresponding
to canonical decompositions RΛ(LΠ(ϕ(g))).

Given a generator g ∈ G and two subsets Π,Λ ⊆ Σ we can construct a regular expression
that describes the language N ⊆ F ∗gF∗ such that substitution of RΛ(LΠ(ϕ(g))) instead
of g in any word from N gives a canonical decomposition. This is possible because the set
of G-words satisfying Λ(ϕ(w)) = Λ is regular (factorial languages contain the empty word,
so Λ(A1 . . . Ak) equals to Λ(Ai), where i is the maximal index such that Λ(Aj) ⊆ Λ(Ai)
for all j < i). Similarly, the set of words satisfying Π(ϕ(w)) = Π is regular. Constructed
G-words may be replaced with corresponding F -words because there are only finitely
many possible subsets of Σ.

We turn now to semigroup product operation. Let A = A1 · · ·Ak. In [10] it was shown
that the canonical decomposition of A′ = RΛ(A) can be obtained by deleting {ε} entries
from the decomposition A′ = A′1 · · ·A′k, where languages A′k are obtained by the following
procedure. Starting from Λk = Λ for all i from k to 1:

A′i = RΛi(Ai) and Λi−1 = Λ(A′i), if Ai 6⊆ Λ∗i ;
A′i = {ε} and Λi−1 = Λi, otherwise.
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A symmetric procedure is defined for decomposition A′ = LΠ(A).
Let us consider an automaton A recognizing the language Lg for some semigroup

generator g (a factorial language that is not necessarily in F(S)). This automaton syn-
chronously reads pair of words (u, v) (each time it reads one letter of the first and second
words) where both u and v are F -words representing canonical decompositions of some
languages, and it should verify that v is the canonical decomposition of ϕ(ug). This can
clearly be done because the only thing that A should track if two words become different
is the set of possible subsets of Σ that can produce such changes. Due to finiteness of Σ
the semigroup multiplication can be verified by a finite automaton. Summing up, we can
state the following.

Theorem 11. Finitely generated semigroups of factorial languages are automatic.

Let us note that the described construction relies on possibility of construction a
canonical decomposition of factorial language. Although it is always exists, an algorithm
for construction of such decomposition is only known for regular factorial languages
(elements of decomposition are recognized by subautomata of an automaton recognizing
the language).

5 Applications
Rational sets and finitely generated semigroups of regular or finite languages appear in such
applications as database query processing, cryptography, and software testing frameworks.
In this section we briefly identify these applications.

5.1 Semistructured Databases
Let us illustrate possible applications of the decision problems considered in this paper in
the context of view based query processing in semistructured databases.

The problem of view based query processing plays an important role in many database
applications, including information integration, query optimization, mobile computing and
data warehousing. In its general form, the problem is stated as follows. Given a query
over database schema and a set of materialized views over the same schema (i.e. a set of
queries with precomputed answers – view extensions), is it possible to answer the newly
arrived query using answers to the views? This question has been intensively studied for
various data models and different assumptions on views semantic (e.g., [12, 11, 8, 21]). The
main approaches to view based query processing are query rewriting and query answering
(see [12] for a survey). In query rewriting approach, given a query Q and a set of views V
one should construct a rewriting R such that Q(D) = R ◦V(D) for each database instance
D. As V(D) are assumed known, the query rewriting R can be thought as an algorithm
that describes how result of the query can be computed from the views.

In semistructured databases a query, in its simplest form, may be considered as a
regular language over appropriate alphabet and query rewriting as a concatenation of
given views. In these settings every set of views V defines a semigroup of queries that can
be answered using that views. This is a semigroup of regular languages and a query can
be answered if and only if its regular language belongs to the semigroup generated by V.
Further, one can define additional restrictions on the structure of admissible rewriting. For
example, one could eliminate rewritings that use some sequence of views concatenations.
If such restrictions are stated as a regular language, then the set of admissible rewritings
is rational set of languages and query rewriting coincides with the membership problem
for rational set of languages.
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The above mentioned examples lead to the membership problem for rational sets of
regular languages. Given two sets of views, say V1 and V2, can we compare these sets by
their expressive power? For example, is it true that every query answered by V1 can be
answered by V2? This is an inclusion problem.

Further, two rewritings are equivalent if they define the same language. Such query
equivalence is clearly decidable because there exists an algorithm that can construct finite
automata representing two concatenations and equivalence of finite automata is decidable.
Nevertheless, the complexity of this straightforward algorithm grows exponentially with
respect to both the number of states of automata representing members of V and the
length of concatenations (this is because concatenation yields nondeterministic automata
(NFA) and equivalence check of NFAs is P-space complete). The question is: Given a set
V of regular languages can we precompute some information that can speed up subsequent
equivalence checks? This leads us to the notion of an automatic presentation of a semigroup
of regular languages.

5.2 Cryptography
Algorithms for checking membership in a rational set have relatively high upper bounds.
One of the key components is the limitedness property of distance automata, which is
doubly exponential with respect to the number of states in the input automata. One can
construct a public key cryptosystem on top of language factorization, more precisely, on
rational subset membership problem for a finitely generated semigroup of regular languages.
The ciphertext for a single bit of a message is a finite automaton, which represents zero
or one depending on its rational subset membership. The membership problem may be
considered as a generalization of the finite power property of a regular language and the
only known solution is based on PSAPCE-complete problem of testing limitedness of
distance automata.

An intruder should factorize the language using limitedness property of some distance
automaton, while the intendant recipient could use additional information to speed up
the processing, e.g. automatic presentation of finitely generated subsemigroup of a free
semigroup.

5.3 Software Testing
In [16] the authors state that rational sets of regular languages, including the finite
languages, form a theoretical basis for a query-driven program testing paradigm coverage
specification language FQL. A program is represented as a directed graph, control-flow
automaton, with edges marked by assignment operators, function calls, functions returns
and some other operators. Alphabet Σ consists of these graph labels. Each language over
Σ constitutes a test goal. During the analysis of the program one needs to construct test
cases that cover all important properties of the program. This question corresponds to
inclusion problems of rational sets, that was proved to be undecidable in case of finite
languages.

6 Open Problems
As a possible direction of future research we consider the following.

• Emptiness of intersection for semigroups and rational sets of finite or arbitrary
regular languages.
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• Construct an example of semigroup such that Ker(ϕ) is not regular.

• Computability of minimal upper approximation of a regular language by elements of
a semigroup or a rational set of languages.

• Establish automaticity of semigroups of finite languages.
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Abstract

Analysis techniques of concurrent and distributed systems that are grounded on the
behavioural relations have become popular recently. Relational structures consisting
of systems events and relations on them generalize many well-known behavioral
models for concurrency and are helpful in dealing with topics like the specification
of priorities, error recovery, treatment of simultaneity, etc. It is widely accepted
that space-time concurrency axioms (including K-density, N -density, etc.) allow
avoiding inconsistency between syntactic and semantic representations of concurrent
processes and excluding unreasonable processes represented by the concurrent models.
The intention of this paper is to generalize concurrency axioms and study their
interrelations in the framework of the class of relational structures with distinct,
irreflexive relations on countable sets of systems events.

1 Introduction
Causality (precedence), concurrency (independence), and conflict (mutual exclusion) are
the most fundamental behavioral relations between actions in concurrent and distributed
systems. To describe and analyse these and other relations, a variety of behavioral process
models were put forward in concurrency theory, among them are causal nets, partial order
sets, occurrence nets, event structures, relational structures, etc. It is worth stressing
that analysis techniques of concurrent and distributed systems that are grounded on the
behavioural relations have become popular recently [24].

Causal nets [21] model system behaviors by occurrences of conditions (local states)
and by occurrences of events (actions) which are partially ordered. The partial order is
interpreted as a kind of causal dependency relation. Also, causal nets are endowed with a
symmetric, but in general non-transitive, concurrency relation –– absence of the causality.
Partial order sets (posets) [5] do not discriminate between conditions and events. Models
with partial order based causality are useful in treating topics like fairness, confusion, etc.

Event structures, first defined in [28], consist of a set of events, together with a causality
relation (presented as a partial order) and symmetric conflict relation, which satisfy the
principles of finite causes and forward hereditary conflict, respectively. Two events that
are neither in the causality relation nor in conflict relation are considered to be concurrent.
As shown in [20], there is a close connection between this type of event structures and
occurrence nets — causal nets extended by adding forward hereditary conflict. In the
literature, several modifications and generalisations of the original definition of event
structures can be found, often depending on the domain of application [7, 10, 19, 29]. In
some of the modifications (e.g., in [6, 14, 22]), the conflict relations are not necessarily
symmetric, allowing for, amongst other things, the description of weak causality.
∗This work is supported in part by DFG (project CAVER, grant BE 1267/14-1)
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It is known that some aspects of concurrent behavior (e.g., the specification of priorities,
error recovery, treatment of simultaneity, etc.) are to some extent problematic to be dealt
with using only partially ordered causality based models. One way to cope with the
problems is to utilize the model of a so called relational structure — a set of elements
(systems events) with a number of different kind relations on it. The authors of the papers
[12, 13, 15, 16] have proposed and carefully studied a subclass of the model where general
causal concurrent behavior is represented by a pair of relations instead just one, as in
the standard partial order approach. Depending on the assumptions and goals for the
chosen model of concurrency, the pair of the relations are interpreted in two versions:
either as partially ordered causality and irreflexive weak causality (not in general a partial
order) or as a symmetric and irreflexive mutex relation (non-simultaneity) and irreflexive
weak causality (herewith, the relations may not be completely distinct). The approaches
allow modeling and studying concurrency at different levels of consideration: from abstract
behavioral observations such as step sequence executions to system level models such as
elementary Petri nets and their generalizations with inhibitor arcs and mutex arcs.

We next draw the attention to the fact that in contrast to the standard physical
theories which model systems by the continuum, Petri proposed concurrent structures
(with causal nets as a special case thereof) as a combinatorial representation of a space-time.
In the structures, notions corresponding to the relativistic concepts of world line and
causal cone can be defined by means of concurrency and causal dependence relations,
respectively. As a result, the density notion of the continuum model can be replaced
by several properties — so called concurrency axioms (including K-density, N -density,
etc.). K-density is based on the idea that at any time instant, any sequential subprocess
of a concurrent structure must be in some state or changing its state. N -density can
be viewed as a sort of local density. Furthermore, it has turned out that concurrency
axioms allow avoiding inconsistency between syntactic and semantic representations of
concurrent processes and excluding unreasonable processes represented by the concurrent
structures. The power and limitations of concurrency axioms in the context of causal
nets [3, 4] and posets [5, 8, 21] were widely studied to get a better understanding of the
connections of causality and concurrency relations between systems events. In contrast
to these treatments, the authors of the paper [18] dealt with causality and concurrency
on cyclic processes represented by net models which do not require an underlying partial
order of causality. In the setting of event structures, modifications of concurrency axioms
and their interrelations were studied in [25, 26]. The paper [11] formulated conditions
under which the coincidence between some generalizations of concurrency axioms and
K-density occurs in the framework of occurrence nets. In more recent work (see [1, 2]
among other), algebraic and orthomodular lattices were generated from occurrence nets
with and without forward conflicts. Also, an alternative characterization of K-density is
given on the basis of a relation between maximal sets of pairwise causally related elements
and closed sets w.r.t. a closure operator, defined starting from the concurrency relation.

This paper is a component to the paper [27] where further generalizations of K-density
were defined and sufficient conditions for their interrelations and characterizations in term
of closed sets w.r.t. a closure operator, defined from an arbitrary symmetric relation, were
formulated, in the context of relational structures. Here, we intend to extend classical
results concerning the relationships between K- and N -density to their generalizations
and modifications, in the framework of the class of relational structures with distinct,
irreflexive relations on countable sets of elements (systems events).
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2 Relational Structures
In this section, we define a model of relational structures and its properties. Before doing
so, we need auxiliary notions and notations which will be useful throughout the text.

Given a set X and a relation R ⊆ X ×X,

• R is cyclic iff there exists a sequence of distinct elements x1, . . . , xk ∈ X (k > 1)
such that xj R xj+1 (1 ≤ j ≤ k − 1) and xk R x1,

• R is acyclic iff it is not cyclic,

• R is asymmetric iff (x R x′)⇒ ¬(x′ R x), for all x, x′ ∈ X,

• R is antisymmetric iff (x R x′) ∧ (x 6= x′)⇒ ¬(x′ R x), for all x, x′ ∈ X,

• R is symmetric iff (x R x′) ⇐⇒ (x′ R x), for all x, x′ ∈ X,

• R is transitive iff (x R x′) ∧ (x′ R x′′)⇒ (x R x′′), for all x, x′, x′′ ∈ X,

• R is irreflexive iff ¬(x R x), for all x ∈ X,

• Rα = R ∪ idX (the reflexive closure of R),

• Rβ = R ∪R−1 (the symmetric closure of R),

• Rγ = Rβ ∪ idX (the reflexive and symmetric closure of R),

• Rδ = (R \ idX) \ (R \ idX)2 (the irreflexive, intransitive relation), if R is a transitive
relation, and Rδ = R, otherwise,

Notice that a relation is asymmetric iff it is both antisymmetric and irreflexive; a transitive
relation is asymmetric iff it is irreflexive; if a relation R is irreflexive and transitive, then
it is acyclic and antisymmetric, i.e. a (strict) partial order, and, moreover, Rδ is the
immediate predecessor relation. Given elements x1, x2 ∈ X, and subsets A ⊆ X ′ ⊆ X, let
[x1 R x2] = {x ∈ X | x1 R

α x Rα x2}, RA = {x′ ∈ X | ∃x ∈ A : (x′ Rα x)}, and A is a
(maximal) R-clique of X ′ iff A is a (maximal) set containing only pairwise R∪ idX′ -related
elements of X ′.

Definition 1. A relational structure is a tuple S = (E, V1, . . . , Vn) (n ≥ 1), where

• E is a countable set of elements,

• V1, . . . , Vn ⊆ E × E are irreflexive relations such that

–
⋃

1≤i≤n V
β
i = (E × E) \ idE , where idE is identity on E,

– V βi ∩ V
β
j = ∅, for all 1 ≤ i 6= j ≤ n.

From now on, we shall use P , Q, and R to denote the unions of the form
⋃
i∈V Vi and

call them connectives of S. Here, V ⊆ {i | 1 ≤ i ≤ n}.

Example 2. A simple example of a relational structure with four relations is shown in
Fig. 1. Assume that V1 is an irreflexive and transitive relation (a strict partial order),
V2 is an asymmetric relation, and V3 and V4 are irreflexive and symmetric relations.
We can interpret the relation V1 as causality dependence, V2 as asymmetric conflict
[22, 6], V3 as synchronous concurrency (simultaneity), and V4 as asynchronous concurrency
(independence).
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S1 :

e1 e3

e2 e4

V1 :

V2 :

V3 :

V4 :

Figure 1:

Clearly, any poset (causal net) can be represented by a relational structure with two
relations corresponding to causality (partial order) and concurrency (absence of partial
order). Furthermore, any Winskel’s prime event structure (occurrence net) with forward
hereditary conflict [20] and Boudol and Castellani’s flow event structure with forward
and backward non-hereditary conflict [7] can be seen as a relational structure with three
relations, one of them (causality) is transitive, and the other two (concurrency and conflict)
are symmetric, whereas any Boldan et al’s asymmetric event structure [6] with distinct
causality and conflict — as a relational structure with an asymetric relation corresponding
to asymmetric conflict.

Consider two auxiliary properties of relational structures which will be useful in further
considerations. We shall call a relational structure S with its connectives P and Q:

• P -transitive (P -irreflexive, P -symmetric, respectively) iff P is transitive (irreflexive,
symmetric, respectively);

• P -finite iff any P -clique of E is finite;

• 5PQ-free iff there are no distinct elements e1, e2, and e3 in E such that
e1 P

β e2 Q
β e3 R

β e1, where R =
⋃

1≤i≤n Vi \ (P ∪Q).

Lemma 3. Given connectives P ⊆ Q ⊆ R of a relational structure S and a maximal
R-clique Ẽ of E, any maximal P -clique E′ of Ẽ is a maximal P -clique of any maximal
Q-clique E′′ of Ẽ, if E′ ⊆ E′′, and, moreover, at least one such the maximal Q-clique
exists.

Lemma 4. Given distinct connectives P ∪Q ⊆ R of a 5PQ-free relational structure S
and a maximal R-clique Ẽ of E, any maximal P -clique of any maximal P ∪Q-clique of Ẽ
is a maximal P -clique of Ẽ.

3 Concurrency Axioms
In order to get a better understanding of the interaction of causality and concurrency,
Petri [21] introduced the notion of K-density requiring non-empty intersections of maximal
w.r.t. causality sets with maximal w.r.t. concurrency sets, in the context of causal nets. In
[17], a direct analog of K-density under the name of L-density was proposed on acyclic
nets with causality and symmetric hereditary conflict relations. Another analog under the
name of R-density in the context of maximal w.r.t. concurrency and conflict substructures
of event structures was dealt with in the paper [25]. In the framework of occurrence nets,
a generalization of K-density called M -density in the paper [17] demand intersections
of maximal w.r.t. causality and concurrency subnets with maximal w.r.t. causality and
conflict subnets, to be maximal w.r.t. causality sets. Extensions of the concept ofM -density
to substructures being maximal w.r.t. different combinations of causality, concurrency, and
conflict of event structures were put forward in the paper [26]. The author of [11] formulated
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conditions under which K-density and B-density, requiring non-empty intersections of
maximal w.r.t causality and conflict subnet with maximal w.r.t. concurrency sets, coincide,
in the framework of occurrence nets. Our aim in this section is to give and study a single
uniform definition generalizing K-density and its above-mentioned modifications, in the
setting of relational structures.

Definition 5. Given a relational structure S and a maximal (P ∪Q)-clique Ẽ of E,

• Ẽ is KPQ-dense iff for any maximal P -clique E′ of Ẽ and for any maximal Q-clique
E′′ of Ẽ, E′ ∩ E′′ is a (unique) maximal (P ∩Q)-clique of Ẽ,

• S is KPQ-dense iff any maximal (P ∪Q)-clique Ẽ of E is KPQ-dense.

Clearly, K-density (L-density, R-density, B-density, M -density, respectively) of
a Winskel’s prime event structure is KV1,V2

-density (KV1,V3
-density, KV2,V3

-density,
KV1∪V3,V2

-density, KV1∪V2,V1∪V3
-density, respectively) of the corresponding relational

structure with V1 being partial order causality, V2 — symmetric concurrency, and V3 —
symmetric conflict.

Theorem 6. Given a relational structure S and its distinct connectives P , Q, and R,

(i) S is KPQ-dense, 5PR- and 5QR-free, and P - or Q-finite =⇒ S is KP̃ Q̃-dense,

(ii) S is KPQ-dense ⇐= S is KP̃ Q̃-dense, 5PQ-free, and P - or Q or R-finite,

where P̃ = (P ∪R) and Q̃ = (Q ∪R).

Proof. Notice that E 6= ∅, as the connectives under consideration are distinct.
(i) Suppose a contrary, i.e. S is notKP̃ Q̃-dense. Then, there exists a maximal (P∪Q∪R)-

clique Ẽ of E with a maximal (P ∪R)-clique E1 and a maximal (Q ∪R)-clique E2 such
that A = E1 ∩E2 is not a maximal (P ∩Q)-clique of Ẽ. Let B = E1 \A and C = E2 \A.
Clearly, B ∩ C = ∅. Due to the maximality of E1 and E2, it holds that B 6= ∅ and C 6= ∅.
Consider two auxiliary

Lemma A. Given a maximal P -clique B′ ⊆ B of E1 and a maximal Q-clique C ′ ⊆ C
of E2, there is b̃ ∈ B′ and c̃ ∈ C ′ such that b̃ Rβ c̃.

Lemma B. Given a P -clique B′ ⊆ B of E1 and a Q-clique C ′ ⊆ C of E2 such that
A ∪ {e} is an R-clique of Ẽ forall e ∈ B′ ∪ C ′, it holds:

(a) ∃b ∈ B′ such that C ′ ∪ {b} is a Q-clique of Ẽ =⇒
∃c̃ ∈ C \ C ′ such that b P β c̃, and, moreover, A ∪ {c̃} is an R-clique of Ẽ;

(b) ∃c ∈ C ′ such that B′ ∪ {c} is a P -clique of Ẽ =⇒
∃b̃ ∈ B \B′ such that c Qβ b̃, and, moreover, A ∪ {b̃} is an R-clique of Ẽ.

Suppose that A is a maximal R-clique of E1 or E2. By Lemma 4 and 5PR- and
5QR-freeness of S, A is a maximal R-clique of Ẽ, contradicting our assumption. So, A
is not a maximal R-clique of E1 and E2. Then, there is b1 ∈ B such that A ∪ {b1} is
an R-clique of E1. As {b1} is a P -clique of E1 and {b1} ∪ ∅ is a Q-clique of Ẽ, there is
c1 ∈ C \ ∅ such that b1 P β c1 and A ∪ {c1} is R-clique of E2, by Lemma B(a). As {b1} is
a P -clique of E1 and {b1} ∪ {c1} is a P -clique of Ẽ, then there is b2 ∈ B \ {b1} such that
c1 Q

β b2 and A ∪ {b2} is R-clique of E1, by Lemma B(b). Again, as {c1} is a Q-clique
of E2 and {b2} ∪ {c1} is a Q-clique of Ẽ, there is c2 ∈ C \ {c1} such that b2 P β c2 and
A ∪ {c1} is R-clique of E2, by Lemma B(a). Due to 5PR-freeness and 5QR-freeness of S,
we get that b1 P βb2 and c1 Qβc2. Two cases are admissible.
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1. ∃bi (i ≤ 2) : c2 Q
β bi. A P -clique {b1, b2} of E1 can be extended to a maximal

P -clique B′ of E1 (B′ ⊆ B), and a Q-clique {c1, c2} of E2 can be extended to a
maximal Q-clique C ′ of E2 (C ′ ⊆ C). By Lemma A, there is b3 ∈ B′ and c̃3 ∈ C ′ such
that b3 Rβ c̃3. Due to 5PR-freeness of S, we get that c1 Qβ b3 Qβ c2 and A ∪ {b3}
is R-clique of E1. Moreover, by 5PR-freeness of S, we get that b1 P β c̃3 P β b2 and
A ∪ {c̃3} is R-clique of E2.

Since {b3}∪{c1, c2} is a Q-clique of Ẽ, there is c3 ∈ C\{c1, c2} such that b3 P β c3 and
A∪{c3} is R-clique of E2, due to Lemma B(a). By5PR-freeness of S, c1 Qβ c3 Qβ c2,
and, moreover, ¬(c2 R

β b1). Also, c̃3 Rβ c3.

2. ∀bi (i ≤ 2) : c2 P
β bi. Since {b1, b2}∪{c2} is a P -clique of Ẽ, there is b3 ∈ B\{b1, b2}

such that c2 Qβ b3 and A ∪ {b3} is R-clique of E1, by Lemma B(b). Due to 5PR-
freeness of S, we get that b1 P β b3 P β b2, and, moreover, ¬(b3 R

β c1). Two cases
are admissible.

(a) ∃ci (i < 3) : b3 P β ci. A P -clique {b1, b2, b3} of E1 can be extended to a
maximal P -clique B′ of E1, and a Q-clique {c1, c2} of E2 can be extended to a
maximal Q-clique C ′ of E2. By Lemma A, there is c3 ∈ C ′ and b̃4 ∈ B′ such
that c3 Rβ b̃4. Due to 5PR-freeness of S, we get that b1 P β c3 P

β b2 and
A ∪ {c3} is R-clique of E2, A ∪ {b̃4} is R-clique of E1.

(b) ∀ci (i < 3) : b3 Qβ ci. As {b3} ∪ {c1, c2} is a Q-clique of Ẽ, there is c3 ∈
C \ {c1, c2} such that b3 P β c3 and A ∪ {c3} is R-clique of E2, due to Lemma
B(a). By 5PR-freeness of S, we get that c1 Qβ c3 Qβ c2.

By repeating infinitely many times the above reasonings, we get an infinite P -clique
b1, b2, . . . and an infinite Q-clique c1, c2, . . . of Ẽ, contradicting to either P - or Q-finiteness,
respectively, of S.

(ii) Suppose a contrary, i.e. S is not KPQ-dense. (Notice that P 6= ∅ 6= Q.) Then,
there exists a maximal (P ∪Q)-clique Ê of E with a maximal P -clique B and a maximal
Q-clique C such that B ∩ C is not a maximal (P ∩ Q)-clique of Ê. Hence, B ∩ C = ∅,
because P and Q are distinct connectives. Consider an auxiliary

Lemma C. ∀b ∈ B ∃c ∈ C : b P β c and ∀c ∈ C ∃b ∈ B : c Qβ b.
By Lemma 3, there exists a maximal (P ∪Q∪R)-clique Ẽ of E such that Ê is a maximal

P ∪Q-clique of Ẽ. As S is 5PQ-free, B is a maximal P -clique and C is a maximal Q-clique
of Ẽ, due to Lemma 4. According to Lemma 3, there exists a maximal (P ∪R)-clique E1 of
Ẽ, such that B is a maximal P -clique of E1, and a maximal (Q ∪R)-clique E2 of Ẽ, such
that C is a maximal Q-clique of E2. Notice that E1 6= B and E2 6= C. As S is KP̃ Q̃-dense,
A = E1 ∩ E2 is a maximal R-clique of Ẽ. By Lemma 3, A is a maximal R-clique of E1

and E2. Suppose that either A ∩B 6= ∅ or A ∩ C 6= ∅. Due to Lemma C, this implies that
either for b ∈ A∩B ⊆ E2 there exists c ∈ C such that b P β c, or for c ∈ A∩C ⊆ E1 there
exists b ∈ B such that c Qβ b, respectively, contradicting either to E2 being a maximal
(Q ∪R)-clique of Ẽ or to E1 being a maximal (P ∪R)-clique of Ẽ, respectively, because
the connectives P , Q, and R are distinct. Therefore, A ∩B = ∅ and A ∩ C = ∅.

As E 6= ∅ and B is a maximal P -clique of Ẽ, B 6= ∅. Take b1 ∈ B. Due to Lemma B,
we get the following: for b1 there exists c1 ∈ C such that b1 P β c1, because B ∩C = ∅; for
c1 there exists a1 ∈ A such that c1 Qβ a1, because A ∩ C = ∅; for a1 there exists b2 ∈ B
such that a1 R

β b2, because A ∩ B = ∅. By repeating infinitely many times the above
reasonings, we get infinite sequences of elements b1, b2, . . . from B, c1, c2, . . . from C, and
a1, a2, . . . from A such that bi P β ci Qβ ai Rβ bi+1 (i ≥ 1). As Ẽ is 5PQ-free, we have:
bi P

β aj , if i ≤ j; bi Rβ aj , if i > j; bi P β cj , if i ≤ j; bi Qβ cj , if i > j; ai Rβ cj , if i < j;
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ai Q
β cj , if i ≥ j (i, j ≥ 1). Then, i 6= j ⇒ bi 6= bj , ai 6= aj , ci 6= cj (i, j ≥ 1), because

P , Q, and R are distinct connectives. So, we get a contradiction to either P - or Q- or
R-finiteness of S.

Example 7. Consider the relational structures S2–S5, with the transitive relation V ′

and the symmetric relations V ′′ and V ′′′, shown in Fig. 2. It is easy to check that
S2 = (E2, V

′, V ′′, V ′′′) is KV ′′V ′′′-dense, 5V ′V ′′-free, KṼ ′′Ṽ ′′′-dense, and finite, where
Ṽ ′′ = V ′ ∪ V ′′ and Ṽ ′′′ = V ′ ∪ V ′′′. It is not difficult to verify that the relational
structure S3 = (E3, V

′, V ′′, V ′′′) is KV ′′V ′′′-dense and finite but neither 5V ′V ′′′-free,
because e1 V

′ e4 V
′′ e5 V

′′′ e1, nor KṼ ′′Ṽ ′′′-dense, because in E3 the intersection of the
maximal Ṽ ′′-clique {e5, e4, e7} with the maximal Ṽ ′′′-clique {e1, e4, e7} is not a maximal V ′-
clique, where Ṽ ′′ = V ′∪V ′′, Ṽ ′′′ = V ′∪V ′′′. The relational structure S4 = (E4, V

′, V ′′, V ′′′)
is 5V ′V ′′-free and finite but neither KV ′V ′′′-dense, because in the maximal (V ′ ∪ V ′′′)-
clique Ẽ′ = {e1, e2, e3, e4} of E4 the intersection of the maximal V ′-clique {e1, e4} with
the maximal V ′′′-clique {e2, e3} is empty, nor KṼ ′Ṽ ′′′-dense, because the intersection of
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maximal Ṽ ′-clique {e1, e4, e5} with maximal Ṽ ′′′-clique {e2, e3, e5} of E4 is not a maximal
V ′′-clique of E4. It is not difficult to make sure that S5 = (E5, V

′, V ′′, V ′′′) is KṼ ′Ṽ ′′-
dense but neither 5V ′V ′′-free nor finite, where Ṽ ′ = V ′ ∪ V ′′′ and Ṽ ′′ = V ′′ ∪ V ′′′. It is
straightforward to demonstrate that the maximal V ′V ′′-clique {b1, b2, b3, . . . , c1, c2, c3, . . .}
of E5 is not KV ′V ′′-dense. Hence, S5 is not KV ′V ′′-dense.

We now move to weaker versions of K-density, namely K-crossing and N -density first
defined and studied in the context of causal nets and posets (see [3, 5, 21] among other).
K-crossing is known as a property requiring non-empty intersections of maximal w.r.t.
causality sets with causal predecessors and successors of the events in maximal w.r.t.
concurrency sets. A poset is called N -dense iff every (four-element) N -shaped subposet
can be extended to an K-dense subposet by adding element. We also need some kinds
of discreteness and combinatorics notions making for establishing relationships between
the above-mentioned concurrency axioms. Define these properties in the framework of
relational structures.

Definition 8. Given a relational structure S and a maximal (P ∪Q)-clique Ẽ of E,

• Ẽ is KPQ-crossing iff for any maximal P -clique E′ of Ẽ and for any maximal Q-clique
E′′ of Ẽ, E′ ∩ PE′′ 6= ∅ and E′ ∩ E′′P 6= ∅;

• Ẽ is NPQ-dense iff for all distinct elements e0, e1, e2, e3 ∈ Ẽ, if (e0 P
β e1 Q

β e2),
(e0 Q

β e3 P
β e2), (e0 P

β e2), and (e3 Q
β e1) then ∃e ∈ Ẽ such that {e, e0, e2} is a

P -clique and {e, e3, e1} is a Q-clique of Ẽ;

• Ẽ is PQ-combinatorial iff | [e1 P e2] ∩ E′ | <∞, for some maximal P -clique E′ of
Ẽ and for all e1, e2 ∈ Ẽ;

• Ẽ is PQ-discrete iff | [e1 P e2] ∩ E′ | <∞, for all maximal P -cliques E′ of Ẽ and
for all e1, e2 ∈ Ẽ;

• S is KPQ-crossing (NPQ-dense, PQ-combinatorial, PQ-discrete, respectively) iff any
maximal (P ∪ Q)-clique Ẽ of E is KPQ-crossing (NPQ-dense, PQ-combinatorial,
PQ-discrete, respectively).

Proposition 9. Given a P -transitive, PQ-combinatorial, and NPQ-dense relational struc-
ture S with distinct connectives P and Q,

S is KPQ-dense ⇐⇒ S is PQ-discrete and KPQ-crossing.

Proof. (⇒) Obviously, S is KPQ-crossing. Take an arbitrary maximal (P ∪Q)-clique
Ẽ of E. As P is transitive and irreflexive and, moreover, Qγ is symmetric, Ẽ may be
considered as a poset. The remaining reasonings follow the lines of those in the proofs of
Proposition 4.1 and Theorem 4.5 of [23].

(⇐) Suppose a contrary, i.e. S is not KPQ-dense. Then, there exists a maximal (P ∪Q)-
clique Ẽ of E with a maximal P -clique A and a maximal Q-clique B such that their
intersection is not a maximal (P ∩Q)-clique of Ẽ. Since P and Q are distinct, it holds
that A∩B = ∅. Due to KPQ-crossing of Ẽ, we get A′ = A∩PB 6= ∅ and A′′ = A∩BP 6= ∅.
Notice that A = A′ ∪ A′′, otherwise there is some a ∈ A such that a 6∈PB and a 6∈ BP ,
and, hence, a Qβb, for all b ∈ B, i.e. a ∈ B. From P -transitivity of S and distinctness of
P and Q, it follows that (a′ P a′′), for all a′ ∈ A′ and a′′ ∈ A′′. By PQ-discreteness of S,
there exists a maximal w.r.t. P element a′ in A′ and minimal w.r.t. P element a′′ in A′′,
i.e. a′ P δ a′′. Clearly, we can find b′ and b′′ from B such that a′ P b′ and b′′ P a′′. Due
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to P -transitivity of S and b′ Qγ b′′, we get ¬(a′ P β b′′), ¬(b′ P β a′′), and b′ 6= b′′. Hence,
a′ Qβ b′′ and b′ Qβ a′′, contradicting NPQ-density of Ẽ.

Theorem 10. Given a relational structure with distinct connectives P and Q,

(i) S is KPQ-dense =⇒ S is NPQ-dense,

(ii) S is KPQ-dense ⇐= S is NPQ-dense, PQ-combinatorial, P -transitive, and Q-finite.

Proof. (i) Let Ẽ be an arbitrary maximal (P ∪Q)-clique of E. Take distinct elements
e0, e1, e2, e3 of Ẽ such that e0 P β e1 Qβ e2 P β e3 Qβ e0 P β e2, and e3 Qβ e1. In Ẽ,
extend the P -clique {e0, e2} and Q-clique {e1, e3} to a maximal P -clique A and maximal
Q-clique B, respectively. Due to Ẽ being KPQ-dense, these cliques are to intersect in some
maximal (P ∩Q)-clique of Ẽ, containing the only element e because P and Q are distinct
connectives. Hence, {e0, e2, e} is a P -clique of Ẽ and {e1, e3, e} is a Q-clique of Ẽ. So, Ẽ
is NPQ-dense.

(ii) Suppose a contrary, i.e. S is not KPQ-dense. Then, there exists a maximal (P ∪Q)-
clique Ẽ of E with a maximal P -clique B and maximal Q-clique C such that their
intersection is not a maximal (P ∩Q)-clique of Ẽ. Since P and Q are distinct, it holds
that B ∩ C = ∅. As S is P -transitive, P -irreflexive, and, moreover, Qγ-symmetric, we
can apply Theorem 3.7 of [23] to get that Ẽ is PQ-discrete. Then, either B ∩P C = ∅
or B ∩ CP = ∅, according to Proposition 9. Since C is a maximal Q-clique of Ẽ, it holds
that Ẽ ⊆ PC ∪ CP . Then, we have either B ⊆ (CP \ C) or B ⊆ (PC \ C), respectively.
As S is PQ-discrete and Q-finite, there exists either the minimal w.r.t. P element b′ ∈ B
such that c′ P b′ for some c′ ∈ C or maximal w.r.t. P element b′′ ∈ B such that b′′ P c′′

for some c′′ ∈ C, respectively. Since B ⊆ (CP \ C) or B ⊆ (PC \ C), respectively, either
b′ ∈ B is the minimal w.r.t. P element of B or b′′ ∈ B is the maximal w.r.t. P element
of B. Hence, by P -transitivity of S, for all b̃ ∈ B, it holds that either c′ P b̃ or b̃ P c′′,
respectively. We get a contradiction to the maximality of the P -clique B of Ẽ.

Example 11. Consider the relational structures S6–S11 depicted in Fig. 3.
It is easy to check that S6 = (E6, V ′, V ′′), with the transitive relation V ′, is finite,

KV ′V ′′-dense (hence, KV ′V ′′-crossing), NV ′V ′′-dense, and V ′V ′′-discrete (hence, V ′V ′′-
combinatorial).

In the relational structure S7 = (E7, V
′, V ′′, V ′′′), V ′ = {(xi, xj) | 0 ≤ i < j}

∪{(xi, yj) | 0 ≤ i, j} ∪{(xi, zj), (zj , yi) | 0 ≤ i, 1 ≤ j, i ≤ j} is a transitive relation
and V ′′ = {(zj , xi), (zj , yi), (zj , zi), (xi, zj), (yi, zj), (zi, zj) | 1 ≤ j, j < i} and V ′′′ =
{(z0, xi), (z0, yi), (xi, z0), (yi, z0) | 0 ≤ i} ∪{(z0, zi) | 0 < i} are symmetric relations. It
is not difficult to make sure that S7 is KV ′V ′′′-dense (hence, KV ′V ′′′-crossing) but not
V ′V ′′′-combinatorial (hence, not V ′V ′′′-discrete) because a maximal (V ′ ∪ V ′′′)-clique
{xi | 0 ≤ i} ∪ {yi | 0 ≤ i} ∪ {z0} is not V ′V ′′′-combinatorial (hence, not V ′V ′′′-discrete).

It is straightforward to demonstrate that the relational structure S8 = (E8, V ′,
V ′′), with the transitive relation V ′ and symmetric relation V ′′, is V ′V ′′-discrete (hence,
V ′V ′′-combinatorial) and NV ′V ′′ -dense but not KV ′V ′′ -crossing (hence, not KV ′V ′′ -dense)
because in the maximal (V ′ ∪ V ′′)-clique Ẽ = {e1, e2, . . .} of S8 the intersection of its
maximal V ′-clique E′ = {e2·k+1 | k ≥ 0} with its maximal V ′′-clique E′′ = E′′V

′
= {e2·k |

k ≥ 1} is empty.
It is not difficult to verify that S9 = (E9, V ′, V ′′, V ′′′), with the transitive relation

V ′ and symmetric relation V ′′′, is finite, KV ′V ′′′-crossing, and V ′V ′′′-discrete. However,
S9 is not NV ′V ′′′-dense because in the maximal (V ′ ∪ V ′′′)-clique Ẽ = {e2, e3, e4, e5,
e7, e8, e9, e10} of E9 there are distinct elements e2, e3, e4, and e5 such that (e2 V

′β e3
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V ′′′β e4), (e2 V
′′′β e5 V

′β e4), (e2 V
′β e4), and (e5 V

′′′β e3) but there is no e ∈ Ẽ such
that {e2, e4, e} is a V ′-clique and {e3, e5, e} is a V ′′′-clique of Ẽ. Furthermore, S9 is not
KV ′V ′′′-dense because in the maximal (V ′ ∪ V ′′′)-clique Ẽ the intersection its maximal
V ′-clique {e2, e4, e7, e10} with its maximal V ′′′-clique {e3, e5, e9} is empty.

Consider the relational structure S10 = (E10, V
′, V ′′), with the non-transitive relation

V ′ and symmetric relation V ′′. It is easy to check that S10 is NV ′V ′′-dense and KV ′V ′′-
crossing but not KV ′V ′′ -dense because in the maximal (V ′∪V ′′)-clique Ẽ = {e1, e2, . . .} of
E10 the intersection of its maximal V ′-clique {e2·k+1 | k ≥ 0} with its maximal V ′′-clique
{e2·k | k ≥ 1} is empty.

It is straightforward to show that the relational structure S11 = (E11, V ′, V ′′, V ′′′),
with the non-transitive and non-symmetric relation V ′ and symmetric relation V ′′, is
finite, NV ′V ′′ -dense, KV ′V ′′ -crossing but not KV ′V ′′ -dense because in E11 the intersection
of its maximal V ′-clique {e2, e3, e5} with its maximal V ′′-clique {e1, e4, e6} is empty.
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Much attention has been paid to studying random graphs in connection with the wide
use of these models for the description of the structure and dynamics of different complex
networks, such as the Internet, social, transport and telecommunication networks (see
e.g. [1], [2]). One of the most commonly used kinds of random graphs is the configuration
model introduced in [3]. Observations of real networks showed ([1], [4]) that their topology
could be adequately represented by configuration graphs with the vertex degrees being
independently identically distributed random variables following the distribution:

P{ξ ≥ k} = h(k)k−τ , k = 1, 2, . . . , (1)

where ξ is the degree of any vertex and h(k) is a slowly varying function.
We consider a random graph consisting ofN vertices and let random variables ξ1, . . . , ξN

be equal to the degrees of vertices with numbers 1, . . . , N. The vertex degree is the number
of its semiedges, i.e. edges for which adjacent vertices are not yet determined. All of
semiedges are numbered in an arbitrary order. The sum of vertex degrees in a graph has
to be even, and if the sum ξ1 + · · ·+ ξN is odd we add an auxiliary vertex with degree
one. The graph is constructed by joing all the semiedges pairwise equiprobably to form
edges. Because pairing is done without restrictions, multiple edges and loops can appear.

There are many papers where the results describing the limit behaviour of configuration
graphs were obtained. The authors of [4] are sure that the function h(k) in (1) does not
influence limit results, and that to study the configuration graph one can replace h(k)
with the constant 1, then the random variable equal to the vertex degree has the following
distribution:

pk = P{ξ = k} = k−τ − (k + 1)−τ , k = 1, 2, . . . , τ > 0. (2)

The analysis of conditional random graphs under the condition ξ1 + · · ·+ ξN = n was
for the first time carried out in [5]. Such conditional graphs can be useful for modeling
of networks for which we can estimate the number of communications. They are useful
also for studying networks without conditions on the number of links by averaging the
results of conditional graphs with respect to the distribution of the sum of degrees. The
technique of obtaining results in [5] is based on so called generalized allocation scheme
proposed by V.F.Kolchin [6], [7].

In [8], an analogue of the generalized allocation scheme is suggested for solving proba-
bilistic problems of combinatorial nature with a bounded number of elements. The paper
[9] deals with conditional random graphs under the natural assumption ξ1 + · · ·+ ξN ≤ n.
The limit distributions of some numerical characteristics of such conditional configuration
graphs were obtained there.

Recently, there appeared papers arguing that as the network size grows vertex degree
distributions of corresponding graphs may became random. In this work we assume that
the vertex degrees follow the distribution (2) under the condition that the parameter τ is
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a random variable uniformly distributed on the interval [a, b], 1 < a < b <∞. Then, using
(2) we can show that random variables ξ1, . . . , ξN are distributed according to the law

p1 = P{ξi = 1} = 1− 1

(b− a) ln 2

(
1

2a
− 1

2b

)
,

pk = P{ξi = k} =
1

(b− a) ln k

(
1

ka
− 1

kb

)
− (3)

− 1

(b− a) ln(k + 1)

(
1

(k + 1)a
− 1

(k + 1)
b

)
,

where k = 2, 3, . . . ; i = 1, 2, . . . , N. We consider the subset of random graph realizations
with a bounded total sum of vertex degrees: ξ1 + . . .+ ξN ≤ n. Denote by η1, . . . , ηN the
random variables equal to the degrees of vertices in such a conditional random graph. It is
evident that these random variables are dependent, and for natural k1, . . . , kN such that
k1 + . . .+ kN ≤ n

P{η1 = k1, . . . , ηN = kN} = P{ξ1 = k1, . . . , ξN = kN |ξ1 + . . .+ ξN ≤ n}. (4)

We denote by µr the number of vertices with degree r. The equation (4) means that for
the random variables ξ1, . . . , ξN and η1, . . . , ηN the analogue of the generalized allocation
scheme is valid and we can apply the known properties of this scheme to study conditional
random graphs. This way we obtained the limit distributions of µr under various types of
behaviour of the parameters N,n, r.

We introduce the following notations

m = Eξ1, σ2 = Dξ1, H(x) =

∞∑
k=2

1

kx ln k
.

The next theorems are proved.

Theorem 1. Let N →∞, r is a fixed positive integer and one of the following conditions
is satisfied:

1. a > 2, (n−Nm)/(σ
√
N)→∞;

2. a = 2, (n−Nm)/
√
N ln lnN ≥ −C > −∞;

3. 1 < a < 2, (n−N(b− a+H(a)−H(b))/(b− a))(N/ lnN)−1/a ≥ −C > −∞,

where C is a positive constant. Then

P{µr = k} =
e−u

2/2(1 + o(1))√
2πNpr(1− pr)

for nonnegative integers k uniformly with respect to u = (k−Npr)/
√
Npr(1− pr) lies in

any fixed finite interval.

Theorem 2. Let N, r →∞, N(ra+1 ln r)−1 →∞ and one of the following conditions is
satisfied:

1. a > 2, (n−Nm)/(σ
√
N) ≥ −C > −∞;
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2. a = 2, (n−Nm)/
√
N ln lnN ≥ −C > −∞;

3. 1 < a < 2, (n−N(b− a+H(a)−H(b))/(b− a))(N/ lnN)−1/a ≥ −C > −∞,

where C is a positive constant. Then

P{µr = k} =
e−u

2/2(1 + o(1))√
2πNpr(1− pr)

for nonnegative integers k uniformly with respect to u = (k −Npr)/
√
Npr(1− pr) lies in

any fixed finite interval.

Theorem 3. Let N, r →∞ and one of the following conditions is satisfied:

1. a > 2, (n−Nm)/(σ
√
N) ≥ −C > −∞;

2. a = 2, (n−Nm)/
√
N ln lnN ≥ −C > −∞;

3. 1 < a < 2, (n−N(b− a+H(a)−H(b))/(b− a))(N/ lnN)−1/a ≥ −C > −∞,

where C is a positive constant. Then

P{µr = k} =
(Npr)

k

k!
e−Npr (1 + o(1))

for nonnegative integers k uniformly with respect to u = (k−Npr)/
√
Npr lies in any fixed

finite interval.
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1 Introduction
A hypergraph is a pair (V,E), where V is a finite set whose elements are called vertices
and E is a family of subsets of V , called edges. A hypergraph is n-uniform if every edge
has size n. A vertex 2-coloring of a hypergraph (V,E) is a map π : V → {1, 2}.

The discrepancy of a coloring is the maximum over all edges of the difference between
the number of vertices of two colors in the edge. The discrepancy of a hypergraph is the
minimum discrepancy of a coloring of this hypergraph. Let f(n) be the minimal number
of edges in an n-uniform hypergraph (all edges have size n) having positive discrepancy.

Obviously, if 2 - n then f(n) = 1; if 2|n but 4 - n then f(n) = 3. Erdős and Sős asked
whether f(n) is bounded or not. N. Alon, D. J. Kleitman, C. Pomerance, M. Saks and P.
Seymour [1] proved the following Theorem, showing in particular that f(n) is unbounded.

Theorem 1. Let n be an integer such that 4 |n. Then

c1
log snd(n/2)

log log snd(n/2)
≤ f(n) ≤ c2

log3 snd(n/2)

log log snd(n/2)
, (1)

where snd(x) stands for the least positive integer that does not divide x.

To prove the upper bound they introduced several quanties. Let M denote the set of
all matrices M with entries in {0, 1} such that the equation Mx = e has exactly one
nonnegative solution (here e stands for the vector with all entries equal to 1). This unique
solution is denoted xM . Let d(M) be the least integer such that d(M)xM is integral and
let yM = d(M)xM . For each positive integer n, let t(n) be the least r such that there
exists a matrix M ∈M with r rows such that d(M) = n (obviously, t(n) ≤ n+ 1 because
d(In+1) = n, where In+1 is the (n+ 1)× (n+ 1) identity matrix). The upper bound in (1)
follows from the inequality f(n) ≤ t(m) for such m that

⌊
n
m

⌋
is odd.

Then N. Alon and V. H. Vũ [2] showed that t(m) ≤ (2 + o(1)) logm
log logm for infinitely

many m. However they marked that trueness of inequality t(m) ≤ c logm for arbitrary m
is not clear.

Our main result is the following

Theorem 2. Let n be a positive integer number. Then

f(n) ≤ c log snd(n). (2)

for some constant c > 0.

The main idea of the proof is to find a matrix with determinant snd(n) and small
entries satisfying some additional technical properties.
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2 Examples

Example 3. Let us consider the matrix A =

(
3 5
1 8

)
and suppose that n is not divisible

on detA = 19. Consider the system

Ax =

(
2n

2n+ t

)
. (3)

It has the solution if and only if 19 | 4n + 3t i. e. t has prescribed residue modulo
19. Since n is not divisible on 19, t is not equal to zero modulo 19. So one can choose
−19 < t < 19 such that t has prescribed residue modulo 19 and t is odd.

Let us construct an n-uniform hypergraph H with positive discrepancy. Let (a, b) be
the solution of (3); note that a, b are positive and tend to ∞ with n. Consider disjoint
vertex sets A1, . . . , A3 of size a and B1, . . . , B8 of size b. If t < 0, then consider a vertex
set T of size |t| disjoint with all sets Ai, Bj ; if t > 0 let T be a t-vertex subset of B1. Let
C be a set B1 ∪ T if t > 0, otherwise C := B1 \ T . The edges of H are listed:

A1 ∪A2 ∪A3 ∪B1 ∪B2 ∪B3 ∪B4 ∪B5

A1 ∪A2 ∪A3 ∪B1 ∪B2 ∪B3 ∪B4 ∪B6

A1 ∪A2 ∪A3 ∪B1 ∪B2 ∪B3 ∪B4 ∪B7

A1 ∪A2 ∪A3 ∪B1 ∪B2 ∪B3 ∪B4 ∪B8

A1 ∪A2 ∪A3 ∪B2 ∪B3 ∪B4 ∪B5 ∪B8

A1 ∪A2 ∪A3 ∪B1 ∪B3 ∪B4 ∪B5 ∪B8

A1 ∪A2 ∪A3 ∪B1 ∪B2 ∪B4 ∪B5 ∪B8

A1 ∪A2 ∪A3 ∪B1 ∪B2 ∪B3 ∪B5 ∪B8

A1 ∪ C ∪B2 ∪B3 ∪B4 ∪B5 ∪B6 ∪B7 ∪B8

A2 ∪ C ∪B2 ∪B3 ∪B4 ∪B5 ∪B6 ∪B7 ∪B8

A3 ∪ C ∪B2 ∪B3 ∪B4 ∪B5 ∪B6 ∪B7 ∪B8.

Obviously, if H has a coloring with discrepancy 0, then d(B5) = d(B6), where d(X) is
the difference between blue and red verticed in X, because the second edge can be reached
by replacing B5 on B6 in the first edge. Similarly one can deduce that d(Ai) = d(Aj) and
d(Bi) = d(Bj) for all pairs i, j. So one can put k := d(Ai), l := d(Bi). Because of the first
edge we have 3k + 5l = 0. Obviously, k and l are odd numbers, so the minimal solution is
k = 5, l = −3 (or k = −5, l = 3 which is the same because of red-blue symmetry). But
then the last edge gives |k + 8l| ≤ |t| which contradicts with |k + 8l| ≥ 19 > |t|.

So we got an example if 19 - n of an n-uniform hypergraph with 11 edges and positive
discrepancy.
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3 Proofs
Proof of Theorem 2. Let us denote snd(n) by q. We should construct a hypergraph with
at most c log q edges and positive discrepancy. Take m such that 2m − 1 6 q 6 2m+1 − 2.
Then

q − (2m − 1) =

m−1∑
i=0

εi2
i for some εi ∈ {0, 1},

therefore

q =

m−1∑
i=0

ηi2
i, where ηi = 1 + εi ∈ {1, 2}.

Assume that q is odd. Consider m vectors in Zm:

v0 = (η0, . . . , ηm−1),

vi = (η0, . . . , ηi−2, ηi−1 + 2, ηi − 1, ηi+1, . . . , ηm−1) for i = 1, . . . ,m− 1.

Note that the vector u = (1, 2, . . . , 2m−1) satisfies a system of linear equations

〈vi, u〉 = q; i = 0, . . . ,m− 1.

Choose odd δ ∈ (−q, q) such that x0 := n+ηm−1δ
q is integer. Define

xi := 2ix0 for i = 1, . . . ,m− 2; xm−1 := 2m−1x0 − δ,

then the vector x = (x0, . . . , xm−1) satisfies 〈vi, x〉 = n for i = 1, . . . ,m− 2, 〈vm−1, x〉 =
n+ δ.

In the case q = 2m > 8 we have n ≡ 2m−1 (mod q) and η0 = 2, η1 = · · · = ηm−1 = 1.
Choose x = (x0, . . . , xm−1) so that 〈v1, x〉 = 〈vm−1, x〉 = n + 1 and 〈vi, x〉 = n for

i = 0, 2, 3, . . . ,m− 2. The solution is given by

x0 :=
n+ 2m−1

q
; x1 := 2x0−1; xi := 2i−1x1 for i = 2, . . . ,m−2; xm−1 := 2m−2x1−1.

Now let us construct a hypergraph in the following way: for i = 1, . . .m let us take 4
sets Aji (j = 1, . . . , 4) of vertices of size xi such that all the sets Aji are disjoint. Let the
edge e0 be the union of Aji over 1 ≤ i ≤ m and 1 ≤ j ≤ ηi. By the choice of xi and ηi we
have |e0| = n. Then we add an edge ⋃

1≤j≤ηi for i 6=k
j∈R for i=k

Aij

for every k and for every R ⊂ [4] such that |R| = ηk. Clearly there are at most 6m such
edges. Finally, for every 1 ≤ k ≤ m− 1 we add the edge⋃

1≤j≤ηi for i 6=k,k−1

1≤j≤ηi+2 for i=k−1

1≤j≤ηi−1 for i=k

Aij .

Summing up we have hypergraph with at most 7m edges; at most 2 of them have size
not equals to n. Let us correct this edges in the simpliest way: if an edge has size less
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than n then we add arbitrary vertices; if an edge has size more than n then we exclude
arbitrary vertices.

Suppose that our hypergraph has discrepancy 0, so it has a proper coloring π. For every
set Aji denote by d(Aji ) the difference between the numbers of red and blue vertices of π in
Aji . Obviously, d(Aj1i ) = d(Aj2i ) because there are edges e1, e2 such that e1∆e2 = Aj1i ∪A

j2
i .

So we may write di instead of d(Aji ).
If q is odd then the vector d = (d0, . . . , dm−1) satisfies

〈vi, d〉 = 0 for i = 0, 1, . . . ,m− 2 and 〈vm−1, d〉 = s

for some odd s ∈ (−q, q). It implies that

di = 2id0 for i = 0, . . . ,m− 2; dm−1 = 2m−1d0 − s; 0 =
∑

ηidi = d0q − ηm−1s,

but this fails modulo q. A contradiction. In the case q = 2m we get a similar contradiction,
as (2m−1 − 1)± 1 is not divisible by 2m.

Thus we get a hypergraph on at most 7m = O(log q) edges with positive discrepancy,
the claim is proven.
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Using of cyclotomic classes to construct sequences, which are called cyclotomic sequences,
is an important method for sequence design. The linear complexity LC of a sequence
is an important parameter in its evaluation as a key stream cipher for cryptographic
applications [1]. It may be defined as the length of the shortest linear feedback-shift register
that can generate the sequence. The linear complexity of above-mentioned sequences over
the finite field of order two was investigated in a lot of articles. Recently, series of papers
have examined the linear complexity of cyclotomic sequences over the finite field GF (q)
where q ≥ 3 is a prime number. In particular, the linear complexity of Legendre sequences
over the finite field of any order was studied in [7]. Investigating the cyclic codes, C.Ding
studied the linear complexity of the series of cyclotomic sequences of order four. Further,
the linear complexity of Hall’s sextic residue sequences over the finite field of odd prime
order was investigated in [3, 4]. In this paper, we derive the linear complexity of a number
of balanced cyclotomic sequences of order six over GF (q). In conclusion we give a remark
about cyclic codes which could be constructed using the cyclotomic classes of order six.

1 Preliminaries
First, we briefly repeat some of the basic definitions and general information. Let p be
a prime of the form p ≡ 1 (mod 6), and let g be a primitive root modulo p. Then the
non-zero integers mod p can be partitioned into 6 cosets Hi, 0 ≤ i ≤ 5, each containing
(p−1)/6 elements, such that H0 contains the 6th power residues mod p, and the remaining
Hi are formed from giH0, where the arithmetic is that of Zp. Here and hereafter a mod p
denotes the least nonnegative integer that is congruent to a modulo p. Cosets Hi are
also called the cyclotomic classes of order 6 with respect to p [1]. We have the following
partition

Zp = H0 ∪ · · · ∪H5 ∪ {0}.
Define a sequence {si} with period p as

si =

{
1, if i mod p ∈ H0 ∪H1 ∪H2,

0, else.
(1)

Here we regard it as a sequence over the finite field GF (q) of order q where q is an odd
prime, not equal to p. The field GF (q) we identify with the set of integers {0, 1, . . . , q− 1}.

It is a familiar fact that if {si} is a sequence of period p, then the linear complexity
LC of this sequence is defined by

LC = p− deg gcd
(
xp − 1, S(x)

)
, (2)

where S(x) = s0 + s1x+ ...+ sp−1x
p−1 [1].

Let α be a primitive pth root of unity in the extension of GF (q). Then by Blahut’s
theorem

LC = p− |{v | S(αv), v = 0, 1, . . . , p− 1}|. (3)
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So, in order to find the linear complexity of {si} it is sufficient to find the roots of
S(x) in the set {αv, v = 0, 1, . . . , p − 1}. To that end, let us introduce the subsidiary
polynomials S6(x) =

∑
i∈H0

xi and S3(x) =
∑
i∈H0∪H3

xi (here S3(x) is the polynomial of
the characteristic sequence of cubic residues modulo p). The properties of the polynomial
S6(x) were investigated in [3]. In particular, we have that S6(αv) = S6(αg

k

) for all v ∈
Hk, k = 0, 1, . . . , 5. So, from our definition it follows that

S(αv) = S6(αg
k

) + S6(αg
k+1

) + S6(αg
k+2

) for all v ∈ Hk, k = 0, 1, . . . , 5. (4)

Hence, by (3), we obtain

LC = p− |{k| S(αg
k

) = 0, k = 0, . . . , 5}|(p− 1)/6−∆, (5)

where
∆ =

{
1, if S(1) = 0,
0, if S(1) 6= 0.

Besides, since 1 + α+ . . .+ αp−1 = 0, it follows that

S3(α) + S3(αg) + S3(αg
2

) = −1 and S(αg
k

) + S(αg
k+3

) = −1. (6)

In conclusion of the section, we list some preliminary results required to prove our
theorem. If p ≡ 1(mod 3) then 4p can be expressed as 4p = L2 + 27M2;L ≡ 1(mod 3).

Lemma 1. ([6]) Let 4p = L2 + 27M2;L ≡ 1 (mod 3). Then S3(α), S3(αθ), S3(αθ
2

) are
roots of the polynomial

z3 + z2 − p− 1

3
z − 3p+ Lp− 1

27
.

Denote by (i, j)6, i, j ∈ Z cyclotomic numbers of order 6 [4]. The following statement
was proved in [6] (see, also [3]).

Lemma 2. Let j, k = 0, . . . , 5. Then

S6(αg
j

)S6(αg
k

) =

5∑
f=0

(k − j, f)6S6(αg
f

) + δ,

where

δ =

{
(p− 1)/6, if j = k and p ≡ 1 (mod 12) or |j − k| = 3 and p ≡ 7 (mod 12),

0, otherwise.

2 The linear complexity of a sequence

First of all, we find the equation for the values S(αg
k

), k = 0, . . . , 5. By (4) we see

S(αg
k

)2 =
(
S6(αg

k

) + S6(αg
k+1

) + S6(αg
k+2

)
)2

. Thus, we can use Lemma 2 in this case.
The formulae for computing cyclotomic numbers of order six are well-known [4]. Let indg2
be a discreet logarithm to the base g of 2. Applying them and Lemma 2 we obtain the
following statement.

Lemma 3. Let {si} be defined by (1) and 4p = L2 + 27M2;L ≡ 1 (mod 3). Then
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1. S(αg
k

)2 + S(αg
k

) = M
(
S3(αg

k+2

)− S3(αg
k

)
)
− (p+ 1)/4 for p ≡ 7 (mod 12) and

S(αg
k

)2 + S(αg
k

) = M
(
S3(αg

k

)− S3(αg
k+2

)
)

+ (p − 1)/4 for p ≡ 1 (mod 12) if
indg2 ≡ 0 (mod 3).

2. S(αg
k

)2 + S(αg
k

) = M
(
S3(αg

k+1

)− S3(αg
k

)
)
− (p+ 1)/4 for p ≡ 7 (mod 12) and

S(αg
k

)2 + S(αg
k

) = M
(
S3(αg

k

)− S3(αg
k+1

)
)

+ (p − 1)/4 for p ≡ 1 (mod 12), if
indg2 ≡ 1 (mod 3).

3. S(αg
k

)2 +S(αg
k

) = M
(
S3(αg

k+2

)− S3(αg
k+1

)
)
− (p+1)/4 for p ≡ 7 (mod 12) and

S(αg
k

)2 + S(αg
k

) = M
(
S3(αg

k+1

)− S3(αg
k+2

)
)

+ (p− 1)/4 for p ≡ 1 (mod 12), if
indg2 ≡ 2 (mod 3).

Before we give the main result of this section, we establish the following lemma for a
particular case when q = 3.

Lemma 4. Let {si} be defined by (1), 4p = L2 + 27M2;L ≡ 1 (mod 3), and let q = 3.
Then the linear complexity of {si} equals

LC =

{
(p− 1)/2, if p ≡ 1 (mod 12) and M ≡ 0 (mod 3),

p− 1, else.

Proof. First of all, we note that S(1) = 0 here.
Let p ≡ 1 (mod 12). Suppose that there exists j : 1 ≤ j < p such that S(αj) = 0;

then j ∈ Hk for 0 ≤ k ≤ 5, and by Lemma 3 we see that M = 0 over GF (3) or
S3(αg

k

) = S3(αg
f

) where f = k + 1 or f = k + 2. By Lemma 1 the latest equality is
impossible for M 6= 0 and q = 3.

Let p ≡ 1 (mod 12) and M ≡ 0 (mod 3). Then by Lemma 3 we have that S(αg
k

)2 +

S(αg
k

) = 0 for k = 0, . . . , 5. The conclusion of Lemma 4 in this case then follows from (5)
and (6).

The statement of this lemma for p ≡ 7 (mod 12) can be proved similarly.

Theorem 5. Let {si} be defined by (1), 4p = L2 + 27M2;L ≡ 1 (mod 3). Then:
(i) LC = (p− 1)/2 if p ≡ 1 (mod q), p ≡ 1 (mod 12) and M ≡ 0 (mod q).
(ii) LC = (p+ 1)/2 if p ≡ −1 (mod q), p ≡ 7 (mod 12) and M ≡ 0 (mod q).
(iii) LC = 2(p + 1)/3 if L ≡ 0 (mod q) and p ≡ −9 (mod q), p ≡ 7 (mod 12) or

p ≡ 9 (mod q), p ≡ 1 (mod 12).
(iv) L ≥ 5(p− 1)/6 in other cases.

Proof. The statement of this theorem for q = 3 follows from Lemma 4. Like that, we
assume that q > 3.

We consider only the first case. Suppose LC = (p− 1)/2; then by (5) we see S(1) = 0

and the polynomial S(x) have three roots in the set {αgk , k = 0, . . . , 5}. Since S(1) = 0, it
follows that p ≡ 1 (mod q). Then by Lemma 3 and (6) we obtain that M ≡ 0 (mod q)

or S3(α) = S3(αg) = S3(αg
2

) = −1/3. By Lemma 1 the latest equality is impossible for
M 6≡ 0 (mod q).

Let p ≡ 1 (mod 12) and M ≡ 0 (mod q). Then by Lemma 3 we have that S(αg
k

)2 +

S(αg
k

) = 0 for k = 0, . . . , 5. The conclusion of this theorem in the this case then follows
from (5) and (6).

The other statements of Theorem 5 can be proved similarly, but in a slightly more
complicated way.
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The results of direct computing of the linear complexity by Berlekamp-Massey algorithm
for 3 ≤ q ≤ 23, 5 ≤ p ≤ 20000 confirm the results of Theorem 5.

3 Notes about the cyclic codes
An [n, k] linear code C over GF (q) is a linear subspace of GF (q)n with dimension k. A
code C is called cyclic if c = (c0, c1, . . . , cn−1) ∈ C implies (cn−1, c0, c1, . . . , cn−2) ∈ C. As
a subclass of linear codes, cyclic codes have applications in consumer electronics, data
storage systems, and communication systems as they have efficient encoding and decoding
algorithms [2].

We may identify each vector (c0, c1, . . . , cn−1) ∈ GF (q)n with c0+c1x+· · ·+cn−2x
n−2+

cn−1x
n−1 ∈ GF (q)[x]/(xn − 1). It is a familiar fact that for every cyclic code C of length

n over GF (q), there is a unique monic polynomial g(x) ∈ GF (q)[x] of the smallest degree
such that C = (g(x)), where (g(x)) is an principal ideal of the ring GF (q)[x]/(xn − 1).
This polynomial g(x) is called the generator polynomial of C.

The cyclotomic classes can be also used to construct cyclic codes [2]. Let I be any
nonempty subset of {0, 1, . . . , 5}, D =

⋃
k∈I Hk and D(x) =

∑
i∈D x

i. The cyclic code
over GF (q) with generator polynomial g(x) = gcd(xp − 1, D(x)) is called the cyclic code
of the set D, where the arithmetic is that of GF (q) and is denoted by CGF (q)(D) [2].

It is well-known that k = n−deg g(x). So, by (2) we have that k = LC, where LC is the
linear complexity of the characteristic sequence h(D) of D. Note that the correspondence
between h(D) and D(x) is one-to-one. Thus, Theorem 5 defines parameters of cyclic codes
[p, k] for D = H0 ∪H1 ∪H2.

This method can be useful for to derive the linear complexity of other cyclotomic
sequences or to determine a dimension of other cyclic codes. For example, if p = A2 + 3B2

and D = H0 ∪H1 then the cyclic code CGF (2)(D) has parameters [p, k] where

k =


(p− 1)/3, if B ≡ 0 (mod 12),

2(p− 1)/3, if B ≡ 6 (mod 12),

p− 1, if B 6≡ 0 (mod 6).
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Abstract

An automaton is synchronizing if there exists a word that sends all states of
the automaton to a single state. A coloring of a digraph with a fixed out-degree
k is a distribution of k labels over the edges resulting in a deterministic finite
automaton. The famous road coloring theorem states that every primitive digraph
has a synchronizing coloring. We give an overview of recent results and conjectures
related to this theorem.

Introduction Let A = (Q,Σ, δ) be a finite deterministic complete automaton with an
alphabet Σ, a set of states Q and a transition function δ. The automaton A is synchronizing
if there exist a word u and a state p such that for every state q ∈ Q we have q ·u = p, where
q · u denotes the image of q under the action of u. Any such word u is called synchronizing
(or reset) word for A . The length of the shortest synchronizing word rt(A ) is called the
reset threshold of A . Synchronizing automata naturally appear in algebra, coding theory,
industrial automation, discrete dynamical systems, etc. A brief survey of the theory of
synchronizing automata may be found in [16].

Two fundamental problems about synchronizing automata that were intensively in-
vestigated in the last decades are the Černý conjecture and the road coloring problem.
The former states that the reset threshold of an n-state automaton is at most (n− 1)2 [6].
Despite intensive research efforts it remains open for already half a century. The latter
problem states a certain connection between primitive digraphs and synchronizing au-
tomata, which we will explain shortly, and was resolved by Trahtman [15] after crucial
insight by Culik, Karhumäki, and Kari [7]. We will describe recent results concerning
potential generalizations of the road coloring theorem and related problems.

The road coloring theorem The underlying digraph G(A ) of an automaton A is a
digraph with Q as the set of vertices, and for each u ∈ Q, x ∈ Σ there is an edge
(u, u · x). We allow loops and multiple edges, thus G(A ) has a fixed out-degree equal to
the cardinality of the alphabet Σ, i.e., G(A ) is a |Σ|-out-regular digraph.

Vice versa, given a digraph G with a fixed out-degree k and a finite alphabet Σ with
k letters, we can obtain a deterministic finite automaton by distributing the letters of
Σ over the edges of G. Any automaton obtained in this way is called a coloring of G. A
digraph is primitive if there exists a number t such that for any two vertices u and v there
exists a path from u to v of length exactly t. An automaton is strongly connected if its
underlying digraph is strongly connected.

Theorem 1 (Road Coloring Theorem [15]). A strongly connected digraph G with a fixed
out-degree k has a synchronizing coloring if and only if it is primitive.

The origin of the terminology is as follows. A digraph G represents a network of one-way
roads. A coloring of G defines labels of the roads that can be perceived by drivers. If the
coloring is synchronizing then the drivers who are unaware of their current location have
the following strategy to relocate themselves: they can simply follow roads labeled by a
synchronizing word and their final position will be well defined.
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There exists an algorithm working in O(kn2) time that finds a synchronizing coloring
of an aperiodic digraph [2].

Although the road coloring theorem gives an answer for a principal connection between
digraphs and synchronizing automata, there are still many basic quantitative questions
that remain unanswered.

How many colorings are synchronizing? The synchronizing ratio of a k-out-regular
digraph G is the number of synchronizing colorings divided by the total number of colorings.
Note that a coloring is a mapping from the set of edges to Σ with parallel edges being
distinguished. Thus, the total number of colorings of a k-out-regular digraph with n states
is always (k!)n. The road coloring theorem can be restated as follows: the synchronizing
ratio of a digraph G is greater than zero if and only if G is primitive. In order to derive more
precise bounds depending on n, k, a series of computational experiments was performed
in [9]. Based on the results obtained for small values of n, k the following conjecture was
formulated:

Conjecture 2 ([9]). The minimum value of the synchronizing ratio among all k-out-
regular primitive digraphs with n vertices is equal to k−1

k , except for the case k = 2 and
n = 6 when it is equal to 30

64 .

For k = 2, the conjecture has been verified for n ≥ 10 vertices. Surprisingly, but the
conjectured lower bound does not depend on n. It was also shown that it can be achieved:

Theorem 3 ([9]). There is a 2-out-regular digraph with 6 states and the synchronizing
ratio 30

64 . Moreover, for every n > 3 and k ≥ 2 there is a k-out-regular digraph with n
vertices and the synchronizing ratio k−1

k .

This result can easily be extended to the cases n = 2 and n = 3.
For the moment, the conjecture is widely open. In a special class of digraphs a non-

trivial lower bound on the synchronizing ratio was obtained in [8] using linear algebraic
approach. We will require a few definitions to state the main results. We will denote
the adjacency matrix of a primitive digraph G by A(G). Perron-Frobenius theorem [10,
Chapter 8] implies existence of entrywise positive eigenvector ~v of A(G) associated with
the unique largest eigenvalue k, which we will simply call the eigenvector of G. The vector
~v can also be seen as the unique stationary distribution of the Markov chain associated
with G by assigning the probability 1

k for each of the outgoing edges. Let Q = {1, . . . , n}
be the set of vertices of G. We will say that the vector ~v is partitionable if there exists a
partition of ~v into blocks of equal weight b, i.e., a partition Q1, . . . , Q` of Q with ` > 1
such that

∑
i∈Q1

~v[i] = . . . =
∑
i∈Q` ~v[i] = b. We say that the partition Q1, . . . , Q` of ~v

into blocks of weight b is unique if for every partition Q′1, . . . , Q′` of weight b there exists a
permutation of 1, . . . , ` such that Qi = Q′σ(i) for all i. We will denote by G(~v) the set of
digraphs with the eigenvector ~v.

Theorem 4 ([8]). If all partitions of the eigenvector ~v are unique and their number is
equal to s, then the synchronizing ratio of every k-out-regular digraph in G(~v) is at least
k−s
k .

Note that for s = 0, 1 the digraphs under consideration satisfy Conjecture 2.
Another interesting observation related to the set of attainable synchronizing ratios by

digraphs with given n, k was made in [9]. Note that the synchronizing ratio is necessarily
divisible by k!, but even with this restriction not every value seems to be attainable:

Conjecture 5 ([9]). For every k and g ≥ 1, for n large enough there are at least g gaps
in the distribution of the number of synchronizing colorings of k-out-regular digraphs with
n vertices.
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As a first step towards a solution of this conjecture a series of specific examples were
constructed:

Theorem 6 ([9]). For every integers d ≥ 1 and n ≥ 3d there is a k-out-regular digraph
with n vertices and the synchronizing ratio 1− 1

kd
.

What is the average number of synchronizing colorings? We say that a digraph
G is totally synchronizing if its synchronizing ratio is equal to 1, i.e., every coloring is
synchronizing. Based on the computational experiments performed in [9] the following
surprising conjecture was formulated:

Conjecture 7 ([9]). For every k ≥ 2, the fraction of totally synchronizing digraphs among
all k-out-regular primitive digraphs with n vertices tends to 1 as n goes to infinity.

This conjecture can be seen as future refinement of a recent non-trivial theorem stating
that a random (at least binary) automaton is synchronizing with high probability [3, 11].

A large class of totally synchronizing digraphs was presented in [8]:

Theorem 8 ([8]). An entrywise positive integer vector ~v is not partitionable if and only
if all digraphs from G(~v) are totally synchronizing.

Moreover, relying on this theorem a stronger version of Conjecture 7 was formulated:

Conjecture 9 ([8]). The eigenvector of a random primitive k-out-regular digraph with n
vertices is not partitionable with probability 1 as n goes to infinity.

The interesting feature of Conjecture 9 is that the statement does not involve synchro-
nizing automata at all.

Despite the fact that road coloring problem gained a lot of attention, the following
computational complexity questions remain open:

Problem 10. Given a k-out-regular digraph G with n vertices, what is the computational
complexity of checking whether G is totally synchronizing?

Problem 11. Given a k-out-regular digraph G with n vertices, what is the computational
complexity of computing the synchronizing ratio?

What are the reset thresholds of synchronizing colorings? A variety of questions
related to optimization of the reset threshold among synchronizing colorings of a given
digraph was addressed in the literature.

Conjecture 12 (Hybrid Černý–Road Coloring Problem [1]). Every primitive k-out-
regular digraph with n vertices has a synchronizing coloring with the reset threshold at
most n2 − 3n+ 3.

The conjectured bound cannot be lower, since for every n there is a digraph with n
vertices such that all of its colorings are isomorphic and their reset threshold is equal
to n2 − 3n+ 3 [1]. The following series of partial results concerning this conjecture was
obtained.

Theorem 13 ([14]). Every primitive k-out-regular digraph without multiple edges con-
taining a proper prime length cycle admits a synchronizing coloring with the threshold at
most (n− 1)2.
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Theorem 14 ([4]). Every primitive k-out-regular digraph without multiple edges and
containing a simple cycle of prime length p < n admits a synchronizing coloring with the
threshold at most (2p− 1)(n− 1). Moreover, in the case p = 2 with multiple edges allowed,
there exists a synchronizing coloring with a synchronizing word of length at most 5(n− 1).

Theorem 15 ([5]). Every primitive Hamiltonian digraph has a coloring with the reset
threshold at most 2n2 − 4n+ 1− 2(n− 1) ln n

2 .

In the series of papers [12, 13, 17] a significant effort was put into establishing the
computational complexity of finding synchronizing colorings with small reset thresholds
leading to the following theorem:

Theorem 16 ([17]). Let k, ` be fixed positive integers. The problem of checking whether a
given k-out-regular digraph G has a synchronizing coloring with the reset threshold at most
` is NP-complete for ` ≥ 4 and k ≥ 2, and solvable in polynomial time in all the other
cases.

Surprisingly, but a similar problem of checking whether a given digraph has a coloring
synchronized by a very short fixed word, e.g. aba, is also NP -complete:

Theorem 17 ([18]). Let Σ = {a, b} and w ∈ Σ+. The problem of checking whether a
given 2-out-regular digraph G has a coloring synchronized by w is NP-complete if w is not
equal to a`, b`, a`b, b`a for ` ≥ 1, otherwise, it is solvable in polynomial time.
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Abstract.

In 2009 Akelbek and Kirkland defined the scrambling index of a nonnegative primitive
matrix A, denoted by k(A), which is the smallest positive integer k such that any two
rows of Ak have at least one positive element in coincident position. They also obtained
an upper bound on scrambling index (see [1]). Scrambling index is closely related with
well-known Dobrushin or delta coefficient, denoted by τ1(·), which has applications, in
particular, to the theory of Markov chains and finite automata (see, for example, [2], [3]).

Due to the correspondence between matrices and directed graphs one can define the
notion of scrambling index for primitive digraph G (denoted by k(G)).

For vertices u, v of a digraph G the notation u l−→ v is used to indicate that there is a
directed walk of the length l from u to v. If digraphs G1 and G2 are isomorphic, then we
denote it as G1

∼= G2.
It is easy to see that the definition of scrambling index can be extended without changes

to a wider class of directed graphs.

Definition 1. A scrambling index of a directed graph G with the set of vertices V (G) is
the smallest positive integer k, such that for all vertices a, b ∈ V (G) there exists a vertex
v ∈ V (G) : a

k−→ v, b
k−→ v. We denote this number by k(G). If there is no such k, we say

that k(G) = 0.

A characterization for class of digraphs with k(G) 6= 0 is presented below.

Theorem 2. For an arbitrary digraph G the following conditions are equivalent:

1. k(G) 6= 0.

2. There exists a primitive subgraph G1 of G such that for all v ∈ V (G) there exists
w ∈ V (G1) for which there exists a directed walk from v to w in G.

Define two important examples of digraphs.

Definition 3. 1) Wielandt digraph Wn, n > 2, is the digraph with the vertex set
V = {1, 2, . . . , n} and edge set E = {(1, 2), (2, 3), . . . , (n− 1, n), (n, 1)} ∪ {(n− 1, 1)}.

2) Digraph Hn, n > 3, is the digraph with the vertex set V = {1, 2, . . . , n} and edge
set E = {(i, i+ 1) | 1 6 i 6 n− 2} ∪ {(n− 1, 1), (n− 2, 1), (n, n− 1)}.

Akelbek and Kirkland in paper [1] have proved the following theorem.

Theorem 4 (see [1], Theorem 3.18). Let D be a primitive digraph of order n > 2. Then

k(D) 6

⌈
(n− 1)2 + 1

2

⌉
.

If n > 3 then equality holds if and only if D ∼= Wn.
∗The work is partially financially supported by the grant RSF 16-11-10075
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The purpose of this report is to generalize this result to the non-primitive case, to
discuss upper bounds on scrambling index, depending on digraph parameters, and to
investigate boundary cases.

Here is a helpful criterion of digraph primitivity.

Theorem 5 (see [4], Theorem 3.2.1). Digraph G is primitive if and only if G is strongly
connected and k(G) 6= 0.

This criterion implies that it is reasonable to consider only not strongly connected
digraphs. Following these considerations, we introduce the definition of digraph partition.

Definition 6. We say that G have a (G1→G2) - partition, if G1 and G2 are subgraphs of
the digraph G, sets of vertices of which are non-intersect and provide a partition of V (G)
(i. e.V (G1)∩V (G2) = ∅, V (G1)∪V (G2) = V (G)), moreover each edge e = (v1, v2) ∈ E(G)
satisfies the following condition: either e ∈ E(G1), or e ∈ E(G2), or v1 ∈ V (G1), v2 ∈
V (G2).

From geometrical point of view it means that G is partitioned into two non-intersecting
components (G1 and G2), connected with only edges from G1 to G2. Our technique uses
the following

Lemma 7. Let G,G1, G2 be arbitrary digraphs and G have a (G1→G2)-partition. Assume
that k(G) 6= 0. Then k(G2) 6= 0 and k(G) 6 k(G2) + |G1|, where |G1| is the order of
digraph G1.

In particular, the following result, which is the generalization of Theorem 4, has been
obtained.

Theorem 8. 1) Let G be a not strongly connected digraph of order n > 3. Then

k(G) 6 1 +

⌈
(n− 2)2 + 1

2

⌉
.

If n > 4, then equality holds if and only if G ∼= Hn.
2) Let G be an arbitrary digraph of order n > 3. Then

k(G) 6

⌈
(n− 1)2 + 1

2

⌉
.

Equality holds if and only if G ∼= Wn.

Definition 9. We say that a map T preserves the value l (l > 0) of the scrambling index
if for all A ∈ Mn(B) the condition k(A) = l implies that k(T (A)) = l. We say that T
preserves the scrambling index if it preserves all values l > 0.

Mentioned results give us some information about maps acting on the matrix space
over Boolean semiring B and preserving the scrambling index. Essentially, we got the
following result:

Theorem 10. Let T : Mn(B)→Mn(B) (n > 3) be a linear operator which preserves the
scrambling index, then T is bijective.

Furthermore, we obtain a complete characterization of all linear bijective scrambling
index preservers over arbitrary antinegative semiring with 1 and without zero divisors.
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Theorem 11. Let S be an antinegative semiring with 1 and without zero divisors, n > 3
and T : Mn(S )→Mn(S ) be a (left) linear map preserving scrambling index. Then there
exists a permutation matrix P and a matrix B ∈Mn(S ), with no zero elements, such that

T (A) = PT(A ◦B)P (1)

for an arbitrary matrix A ∈Mn(S ). Conversely, each map in the form (1) is the linear
map preserving scrambling index.

Here A ◦B denotes the Hadamard or Schur (elementwise) product.
In the talk we also discuss similar results related to linear maps preserving some values

of the scrambling index:

Theorem 12. Let n > 3 and T : Mn(B)→Mn(B) be a map. Then T is additive bijective
map, which preserves the value 1 of the scrambling index, if and only if there exist
permutation matrices P and Q, such that

T (A) = PAQ.

Theorem 13. Let n > 3 and T : Mn(B)→Mn(B) be a map. Then T is additive bijective
map, which preserves the value 0 of the scrambling index, if and only if there exists a
permutation matrix P , such that

T (A) = PTAP.
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The concept of a resolving set was introduced independently by Slater [11] and Harary and
Melter [7]. This concept emerges naturally from many diverse areas such as coin weighing
problem [1], network discovery and verification [2], and robot navigation [9]. For other
recent developments, see [6, 3, 5]. Resolving sets are also related to identifying codes and
locating dominating sets which are widely studied — see the list in the web-site [10] for
papers on these topics.

Consider a connected, finite, simple, and undirected graph G with vertices V and edges
E. Let S be a subset of V . When we think of S as an ordered set (s1, s2, . . . , s|S|), we
can try to locate an another vertex set X with the distance array

DS(X) = (d(s1, X), d(s2, X), . . . , d(s|S|, X)),

where d(si, X) = min
x∈X

d(si, x) is the shortest distance from si to some vertex of X.

Definition 1. The set S is an `-resolving set (or `-set resolving set) of G = (V,E), where
` ≤ |V |, if for every pair of subsets X and Y , with |X| ≤ ` and |Y | ≤ `, we have

DS(X) 6= DS(Y ).

In other words, an `-resolving set can locate up to ` vertices at the same time. Let
a surveillance network be modelled by a graph. When we place sensors to the vertices
corresponding to the elements of an `-resolving set S, the sensors can locate up to `
intruders by sending signals to measure the distance.

Every graph has an `-resolving set for any ` ≤ |V |, since V is always such a set. We
can simply check which elements of DV (X) are 0 and we have located all elements of X.
Therefore the existence of resolving sets is not of interest but the size of them is. We denote
with β`(G) the `-set-metric dimension of G, which is the smallest possible cardinality of
an `-resolving set of G. An `-set-metric basis is an `-resolving set that is of cardinality
β`(G).

There has been a lot of research on what values β`(G) gets with different graphs for
` = 1. For example Khuller, Raghavachari & Rosenfeld proved in 1996 [9] that β1(G) = 1
if and only if G is a path and that for a d-dimensional grid graph β1(G) = d. Chartrand
et al. proved in 2000 [6] that for an n-vertex graph β1(G) = n − 1 if and only if G is a
complete graph. They also gave characterisations for all n-vertex graphs with β1(G) = n−2.
Resolving several objects has been studied recently in [8]. There the two-dimensional grid
graph and the binary hypercube are considered.

Let us denote the path of n vertices by Pn. It was shown in [8] that for the Cartesian
product Pm�Pn of two paths we have

β2(Pm�Pn) = min{m,n}+ 2.

Earlier, it was proven by Khuller et al. [9] that

β1(Pm�Pn) = 2.

If two vertices x and y are adjacent, we denote x ∼ y. Let us denote the strong product
of two graphs G = (V,E) and H = (V ′, E′) by G �H, that is, it has as the vertex set
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Figure 1: The 9× 6 king grid P9 � P6. The black vertices form a 1-set-metric basis for the
graph.

the Cartesian product V × V ′ and there is an edge between (u1, u2) and (v1, v2) if one of
the following three conditions hold: 1) u1 = v1 and u2 ∼ v2, 2) u1 ∼ v1 and u2 = v2 or 3)
u1 ∼ v1 and u2 ∼ v2. In this paper, we consider the king grid Pm � Pn. This graph has
been studied for related topics, see, for example [4].

The king grid is basically a two-dimensional grid graph with diagonal edges in addition
to vertical and horizontal ones (see Figure 1). As such, it mimics the movement of the
king on a chess board.

The vertices of a king grid can be thought as N × N lattice points. We can give
each vertex two coordinates and write the set of vertices of an m × n king grid as
{(i, j) | i = 1, . . . ,m, j = 1, . . . , n}. Now the distance between the vertices u = (u1, u2)
and v = (v1, v2) is d(u, v) = max{|u1 − v1|, |u2 − v2|}.

To ease notations, we define the ith column for i ∈ [1,m] as Ci = {(i, j)| j = 1, . . . , n}.
A section is the union of consecutive columns:

Cji =

j⋃
k=i

Ck.

We denote with Sr(u) = {v ∈ V | d(u, v) = r} the set of vertices that are at the distance
of r from the vertex u. Note that if r 6= r′, then Sr(u) ∩ Sr′(u) = ∅.

For completeness, we first give the following result from [12].

Theorem 2. Let Pm � Pm be an m×m king grid with 2 ≤ m. Then

β1(Pm � Pm) = 3.

Sketch of proof. The greatest distance between any two vertices is m− 1. Therefore each
element of DS(X) has m possible values. If |S| = k, then there are mk possible distance
arrays. Since ` = 1 no distance array can have more than one zero. Since there are only
m2−1 acceptable distance arrays of length two but m2 vertices, we have β1(Pm�Pm) ≥ 3.

If S is a subset of V that contains any three of the graph’s corner vertices, it is a
1-resolving set of Pm � Pm. Therefore β1(Pm � Pm) = 3.
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The next result considers the 1-set-metric dimension for any king grid. In [12],
Rodríquez-Velázquez et al. gave a construction giving β1(Pn�Pm) ≤ dn+m−2

n−1 e. They also
presented a conjecture that this upper bound is optimal for any integers n and m such
that 2 ≤ n < m. This was recently proved by Barragán-Ramírez and Rodríquez-Velázquez
in [13]. They used the diameter and bipartiteness of graphs. In this paper, we present a
direct and simple proof.

Theorem 3. Let Pm � Pn be an m× n king grid with 2 ≤ n < m. Then

β1(Pm � Pn) =

⌈
n+m− 2

n− 1

⌉
.

Sketch of proof. Assume that S is a 1-resolving set.
Let first n be even. Each (n− 1)×n-section Ci+n−2

i contains at least one element of S.
Indeed, otherwise we would have D(a) = D(b) for a = (i+ n−2

2 , n2 ) and b = (i+ n−2
2 , n2 + 1)

— for illustration see Figure 2(i). Moreover, in the both ends of the king grid, the n× n-
sections have |Cn1 ∩ S| ≥ 2 and |Cmm−(n−1) ∩ S| ≥ 2 (it is easy to see that one element of S
is not enough). Let first m ≥ 2n. Now let us partition the m× n king grid as follows (see
Figure 3). Take first the two n× n-sections at the both ends of the grid and then divide
the middle section into as many disjoint (n− 1)×n-sections as possible (there are at most
n− 2 leftover columns outside the sections, in the figure there is one column marked by
gray vertices). Now the observations above give |S| ≥ 2 + 2 + bm−2n

n−1 c, which equals the
conjectured lower bound. In the case n < m < 2n, it is easy to show that |S| ≥ 3.

Figure 2: (i) The section Ci+n−2
i illustrated for n = 6 and the vertices a and b, (ii) The

section Ci+n−2
i for n = 7 and the vertex (i− 1, 1) is the black vertex.

Figure 3: The partition for n = 4 and m = 12.
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The case for n odd goes similarly. Just notice that now the (n− 1)× n-section Ci+n−2
i

can be empty of the elements of S, but in that case the neighbouring columns Ci−1 on
the left and Ci+n−1 on the right contain both at least two elements of S (see Figure 2(ii)).
Indeed, suppose that the section Ci+n−2

i is empty. This implies that (i− 1, 1) belongs to
S, since otherwise D(x) = D(y) for x = (i+ n−3

2 , n+1
2 ) and y = (i+ n−3

2 , n+1
2 + 1). In the

same way, the vertex (i− 1, n) belongs to S. Similarly we can show that (i+ n− 1, 1) and
(i+m− 1, n) belong to S. Therefore, it is easy to show that in average there is at least
one element of S in each of the (n− 1)× n-section. For more details, see [14].

When ` = 2, the vertices at the frame of the king grid can "hide" behind its neighbour
closer to the center. Therefore all vertices at the frame of the grid must be in any 2-resolving
set, and it turns out that this condition is sufficient.

Theorem 4. Let Pm � Pn be an m× n king grid with 2 ≤ n ≤ m. Then

β2(Pm � Pn) = 2m+ 2n− 4.

Sketch of proof. Let u = (u1, u2) be a vertex at the frame of the graph i.e. u1 ∈ {1,m}
or u2 ∈ {1, n}.

Assume that u2 = 1. Let v = (v1, v2) 6= u and u′ = (u1, 2). Now d(u, v) = max{|u1 −
v1|, |1 − v2|} and d(u′, v) = max{|u1 − v1|, |2 − v2|}. If v2 = 1, then |u1 − v1| ≥ 1,
since v 6= u. Now d(u, v) = d(u′, v). If v2 ≥ 2, then |2 − v2| < |1 − v2| and therefore
d(u, v) ≥ d(u′, v).

Let S be a 2-resolving set of Pm � Pn and assume that u /∈ S. Consider two vertex
sets A = {u′} and B = {u, u′}. Now DS(A) = DS(B) since no vertex of S can be closer
to u than u′ as we saw above. Therefore u ∈ S.

The other cases are handled similarly, namely u1 = 1, u1 = m, and u2 = n.
This shows that all vertices at the frame of the graph must be included in the resolving

set. With some effort one can show that these vertices indeed form a 2-resolving set
[14].

When ` ≥ 3, we cannot leave any vertex out of the `-resolving set. If we do, we can
always find two sets of vertices that have the same distance array.

Theorem 5. Let Pm � Pn be an m× n king grid with 2 ≤ n ≤ m. Then

β≥3(Pm � Pn) = mn.

Proof. In Theorem 4 we saw that the vertices at the frame of the graph must be included
in any 2-resolving set. Therefore they must also be in any 3-resolving set. If n = 2 or
m = 2, all vertices are at the frame of the graph and the claim holds.

Let S be a 3-resolving set of Pm�Pn where 2 < n ≤ m. Assume that u = (u1, u2) /∈ S
where u1 ∈ [2,m− 1] and u2 ∈ [2, n− 1]. Let v = (u1 − 1, u2) and w = (u1 + 1, u2).

Assume that there is a vertex s = (s1, s2) ∈ S such that d(s, u) < d(s, v) and
d(s, u) < d(s, w).

• If s1 = u1, then d(s, u) < d(s, v) implies that |s2 − u2| ≤ |s1 − u1| = 0 and therefore
s2 = u2. Now s = u but this is a contradiction, since u /∈ S.

• If s1 < u1, then s1 − u1 < 0 and therefore |s1 − u1 + 1| < |s1 − u1|. In fact
|s1 − u1 + 1| = |s1 − u1| − 1. Since d(s, u) < d(s, v),

max{|s1 − u1|, |s2 − u2|} < max{|s1 − u1 + 1|, |s2 − u2|}.
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Now |s2 − u2| < |s1 − u1|, because otherwise d(s, u) = |s2 − u2| = d(s, v). But
now |s2 − u2| ≤ |s1 − u1| − 1 = |s1 − u1 + 1|, and therefore d(s, u) = |s1 − u1| >
|s1 − u1 + 1| = d(s, v), which is a contradiction.

• If s1 > u1, we can just replace v and |s1 − u1 + 1| with w and |s1 − u1 − 1| in the
previous case.

Therefore, every s ∈ S is as close or closer to either v or w than u. But now DS(A) =
DS(B), where A = {v, w} and B = {u, v, w}. Therefore S cannot be a 3-resolving set if it
does not include all vertices of the graph.
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1 Introduction
Sensor networks are systems designed for environmental monitoring. Various location
detection systems such as fire alarm and surveillance systems can be viewed as examples
of sensor networks. For location detection, a sensor can be placed in any location of the
network. The sensor monitors its neighbourhood (including the location of the sensor
itself) and reports possible irregularities such as a fire or an intruder in the neighbouring
locations. Based on the reports of the sensors, a central controller attempts to determine
the location of a possible irregularity in the network. Usually, the aim is to minimize the
number of sensors in the network. More explanation regarding location detection in sensor
networks can be found in [4, 12, 15].

A sensor network can be modeled as a simple, undirected and connected graph
G = (V,E) as follows: the set of vertices V of the graph represents the locations of
the network and the edge set E of the graph represents the connections between the
locations. In other words, a sensor can be placed in each vertex of the graph and the sensor
placed in the vertex u monitors u itself and the vertices neighbouring u. In what follows,
we present some basic terminology and notation regarding graphs. The open neighbourhood
of u ∈ V consists of the vertices adjacent to u and it is denoted by N(u). The closed
neighbourhood of u is defined as N [u] = {u}∪N(u). A nonempty subset C of V is called a
code and the elements of the code are called codewords. In this paper, the code C (usually)
represents the set of locations where the sensors have been placed on. For the set of sensors
monitoring a vertex u ∈ V , we use the following notation:

I(G,C;u) = I(C;u) = I(u) = N [u] ∩ C.

We call I(u) the identifying set (or the I-set) of u. The notation of identifying set can
also be generalized for a subset U of V as follows:

I(G,C;U) = I(C;U) = I(U) =
⋃
u∈U

I(C;u).

As stated above, a sensor u ∈ V reports that an irregularity has been detected if
there is (at least) one in the closed neighbourhood N [u]. In what follows, we divide into
two different situations depending on the capability of a sensor to distinguish whether
the irregularity has been spotted in the location of the sensor itself or in its (open)
neighbourhood. More precisely, we have the following two cases:

(i) In the first case, we assume that a sensor u ∈ V reports 1 if the there is an irregularity
in N [u], and otherwise it reports 0.

∗Research supported by the University of Turku Graduate School (UTUGS).
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(ii) In the second case, we assume that a sensor u ∈ V reports 2 if there is an irregularity
in u, it reports 1 if there is one in N(u) and no irregularities in u, and otherwise it
reports 0.

Assume first that the sensors work as in (i). Notice then that if the sensors in the code
C are located in such places that I(C;u) is nonempty and unique for all u ∈ V , then
an irregularity in the network can be located by comparing I(C;u) to identifying sets of
other vertices. This leads to the following definition of identifying codes, which were first
introduced by Karpovsky et al. in [11]. For various papers regarding identification and
related problems, we refer to the online bibliography [13].

Definition 1. A code C ⊆ V is identifying in G if for all distinct u, v ∈ V we have
I(C;u) 6= ∅ and

I(C;u) 6= I(C; v).

An identifying code C in a finite graph G with the smallest cardinality is called optimal
and the number of codewords in an optimal identifying code is denoted by γID(G).

Let C be an identifying code in G. By the definition, the identifying code C works
correctly if there is simultaneously at most one irregularity in the network. However, using
the identifying code C, we cannot locate or even detect more than one irregularity in the
network. Indeed, there might exist vertices u, v1, v2 ∈ V such that I(C;u) = I(C; {v1, v2}).
If now the sensors in I(C;u) output 1 and all the other sensors output 0, then it is deduced
that the irregularity is in u. However, as the irregularities could also be in v1 and v2, we
might determine a false location and more disturbingly not even notice that something is
wrong. To overcome this problem, in [7], so called self-identifying codes, which are able
to locate one irregularity and detect multiple ones, were introduced. (Notice that in the
original paper self-identifying codes are called 1+-identifying.) The formal definition of
self-identifying codes is given as follows.

Definition 2. A code C ⊆ V is called self-identifying in G if the code C is identifying in
G and for all u ∈ V and U ⊆ V such that |U | ≥ 2 we have

I(C;u) 6= I(C;U).

A self-identifying code C in a finite graph G with the smallest cardinality is called optimal
and the number of codewords in an optimal self-identifying code is denoted by γSID(G).

In addition to [7], self-identifying codes have also been previously discussed in [9, 10].
In these papers, two useful characterizations have been presented for self-identifying codes.
These characterizations are presented in the following theorem.

Theorem 3 ([7, 9, 10]). Let C be a code in G. Then the following statements are equivalent:

(i) The code C is self-identifying in G.

(ii) For all distinct u, v ∈ V , we have I(C;u) \ I(C; v) 6= ∅.

(iii) For all u ∈ V , we have I(C;u) 6= ∅ and⋂
c∈I(C;u)

N [c] = {u}.
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As stated earlier, self-identifying codes can locate one irregularity and detect multiple
ones. Besides that, the characterization (iii) of the previous theorem also gives another
useful property for self-identifying codes. Namely, the location of an irregularity can
be determined without comparison to other identifying sets, since for all u ∈ V the
neighbourhoods of the codewords in I(u) intersect uniquely in u.

So far, we have discussed the case where it is assumed that each sensor outputs 1 or
0 depending on whether there is an irregularity in the neighbourhood or not. In what
follows, we now focus on the case (ii) where a sensor can also distinguish if the irregularity
is on the location of the sensor itself. Then notice that if the sensors in the code C are
located in such places that I(C;u) is nonempty and unique for all u ∈ V \ C, then an
irregularity in the network can be located by comparing I(C;u) to identifying sets of other
non-codewords. Indeed, we do not have to worry about vertices in C as an irregularity
in such locations is immediately determined by a sensor outputting 2. This leads to the
following definition of locating-dominating codes (or sets), which were first introduced by
Slater in [14, 16, 17].

Definition 4. A code C ⊆ V is locating-dominating in G if for all distinct u, v ∈ V \ C
we have I(C;u) 6= ∅ and

I(C;u) 6= I(C; v).

A locating-dominating code C in a finite graph G with the smallest cardinality is called
optimal and the number of codewords in an optimal locating-dominating code is denoted
by γLD(G).

Comparing the definitions of identifying and locating-dominating codes, we immediately
notice their apparent similarities; in the case of identification we require that the identifying
sets I(u) are unique for all vertices and in the case of location-domination the same is
required for non-codewords. Therefore, as self-identifying codes are a natural specialization
of regular identifying codes, it is obvious to consider if something similar could be done for
locating-dominating codes. Indeed, the characterizations of Theorem 3 gives two natural
ways to define new types of locating-dominating codes with similar kind of beneficial
properties as self-identifying codes have over regular identifying codes. The definitions of
these codes are given as follows.

Definition 5. A code C ⊆ V is self-locating-dominating in G if for all u ∈ V \C we have
I(C;u) 6= ∅ and ⋂

c∈I(C;u)

N [c] = {u}.

A self-locating-dominating code C in a finite graph G with the smallest cardinality is
called optimal and the number of codewords in an optimal self-locating-dominating code
is denoted by γSLD(G).

Definition 6. A code C ⊆ V is solid-locating-dominating in G if for all distinct u, v ∈ V \C
we have

I(C;u) \ I(C; v) 6= ∅.

A solid-locating-dominating code C in a finite graph G with the smallest cardinality is
called optimal and the number of codewords in an optimal solid-locating-dominating code
is denoted by γDLD(G).

In the following theorem, we present characterizations for self-locating-dominating
and solid-locating-dominating codes. Comparing these characterizations to the original
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definitions of the codes, the differences of the codes become apparent. In particular, it
immediate that each self-locating-dominating code is also a solid-locating-dominating
code.

Theorem 7. We have the following characterizations:

(i) A code C ⊆ V is self-locating-dominating if and only if for all distinct u ∈ V \ C
and v ∈ V we have

I(C;u) \ I(C; v) 6= ∅.

(ii) A code C ⊆ V is solid-locating-dominating if and only if for all u ∈ V \ C we have ⋂
c∈I(C;u)

N [c]

 \ C = {u}.

As discussed earlier, self-identifying codes have benefits over regular identifying codes;
they detect more than one irregularity and locate one irregularity without comparison
to other identifying sets. In what follows, we study the same properties concerning self-
locating-dominating and solid-locating-dominating codes:

• Let us begin by considering the ability to locate an irregularity without comparison to
other identifying sets. For self-locating-dominating codes, this property immediately
follows from the definition. Analogously, the property is obtained for solid-locating-
dominating codes by Theorem 7(ii).

• It can also be shown that if C is a self-locating-dominating code in G, then it
can detect if there are multiple irregularities. On the other hand, solid-locating-
dominating codes may have problems detecting multiple irregularities if they can
happen in locations with sensors.

In the paper, our main focus is on the new types of locating-dominating codes. However,
we also present some results for regular locating-dominating codes. In Section 2, we consider
the different types of locating-dominating codes in the Cartesian product of two complete
graphs, which is sometimes also called the rook’s graph. Furthermore, in the rook’s graphs,
we obtain optimal codes for regular location-domination, self-location-domination and solid-
location-domination. In Section 3, we consider similar problems in the binary Hamming
space (or hypercube) Fn, where n is a positive integer. In particular, we present an infinite
family of optimal self-locating-dominating codes and construct regular locating-dominating
codes with the smallest known cardinalities; especially proving that 309 ≤ γLD(F11) ≤ 320.

2 Location-domination in the rook’s graphs
In this section, we consider the different locating-dominating codes in the Cartesian
product of two complete graphs. The Cartesian product of graphs G1 = (V1, E1) and
G2 = (V2, E2) is G1�G2 = (V1 × V2, E) where (x, y)(x′, y′) ∈ E if and only if x = x′

and yy′ ∈ E2 or y = y′ and xx′ ∈ E1. If Kn and Km are two complete graphs of
order n and m, respectively, then Kn�Km is known as rook’s graph and can be viewed
as a chess board with m rows and n columns. The closed neighbourhood of a vertex
is determined by the movement of a rook in chess. We denote V (Kn) = {x1, . . . , xn},
V (Km) = {y1, . . . , ym} and kth row with Rk = {(xi, yk) | i = 1, . . . , n, 1 ≤ k ≤ m} (resp.
hth column Ph = {(xh, yi) | i = 1, . . . ,m, 1 ≤ k ≤ n}).
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Previously identification in rook’s graphs has been studied in [6] and [5] and self-
identification in [9] and [10]. In what follows, we are going to find optimal locating-
dominating, self-locating-dominating and solid-locating-dominating codes in the rook’s
graphs. In the following theorem, we first begin by considering self-locating-dominating
codes.

Theorem 8. Let G = Kn�Km be a rook’s graph with m ≥ n ≥ 1. We have

γSLD(G) =


m, m ≥ 2n, or n = 1,

2n, 2n > m > n ≥ 2,

2n− 1, m = n > 2,

4, n = m = 2.

In the following theorem, we will see that optimal solid-locating-dominating codes are
mostly of the same size as optimal self-locating-dominating codes. However, this is only
a superficial similarity. Actually, the structures of solid-locating-dominating codes vary
more and there are more of them. For example, code R1 ∪ P1 is an optimal solid-locating-
dominating code when n = m but it is not a self-locating-dominating code.

Theorem 9. Let G = Kn�Km be a rook’s graph with m ≥ n ≥ 1. We have

γDLD(G) =


m, m ≥ 2n ≥ 4 or n = 2,

2n, 2n > m > n > 2,

2n− 1, m = n > 2,

m− 1, n = 1.

Finally, in the following theorem, we present optimal bounds for locating-dominating
codes in the rook’s graphs.

Theorem 10. Let G = Kn�Km be a rook’s graph with m ≥ n ≥ 1. We have

γLD(G) =

{
m− 1, m ≥ 2n,⌈

2n+2m
3

⌉
− 1, n ≤ m ≤ 2n− 1.

Remark 11. In a forthcoming paper, we will discuss codes for location in graphs which
are Cartesian products of several cliques. In particular, we will show that the conjecture
of Goddard and Wash [5, Conjecture 4.3] concerning the cardinality of identifying codes
in Kn�Kn�Kn does not hold.

3 Location-domination in the binary Hamming spaces
In this section, we consider self-locating-dominating and solid locating-dominating codes
in binary Hamming spaces of length n. A binary Hamming space of length n is a graph
with the vertex set Fn = {0, 1}n, and two vertices have an edge between them if they
differ in exactly one coordinate. Vertices of Fn are called words. The distance d(x, y) is the
number of coordinates where words x and y differ. The minimum distance of code C is
min{d(c1, c2) | c1, c2 ∈ C}. The sizes of optimal self-locating-dominating and solid-locating-
dominating codes in Fn are denoted by γSLD(Fn) = γSLD(n) and γDLD(Fn) = γDLD(n),
respectively.

In what follows, we first concentrate on the case of self-locating-dominating codes.
In particular, we present an infinite family of optimal self-locating-dominating codes in
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binary Hamming spaces. This result is based on the following theorem, where we give a
characterization for self-locating-dominating codes. The characterization is based on the
fact that if a non-codeword has at least three codewords in its I-set, then no other word
can have those same codewords in its I-set.

Theorem 12. A code C is a self-locating-dominating code in Fn if and only if for each
non-codeword w we have |I(w)| ≥ 3.

Compare this characterization to an analogous result for self-identifying codes presented
in [7]: a code C is self-identifying in Fn if and only if for each x ∈ Fn we have |I(C;x)| ≥ 3.
With the characterization of Theorem 12 we form a lower bound for self-locating-dominating
codes.

Theorem 13. Let n ≥ 3. We have

γSLD(n) ≥
⌈

3 · 2n

n+ 3

⌉
.

The following cardinalities of optimal self-locating-dominating codes in Fn are gained
with constructions based on linear code similar to the well-known Hamming codes.

Theorem 14. Let n and k be positive integers such that n = 3(2k − 1). Then we have

γSLD(n) = 23(2k−1)−k.

Let C ⊆ Fn and D ⊆ Fm be codes. Then the direct sum of C and D is defined
as C ⊕ D = {(x, y) | x ∈ C, y ∈ D}. In the following theorem, it is shown that new
self-locating-dominating codes can be formed from known ones using a direct sum.

Theorem 15. Let C ⊆ Fn be a self-locating-dominating code. Then D = C ⊕ F is also a
self-locating-dominating code.

Let us then concentrate on solid-locating-dominating codes. We will first give a lower
bound such that its ratio to 2 2n

n+1 approaches 1 as n tends to infinity. After that we will
give an infinite sequence of solid-locating-dominating codes with the same limit. When
we compare the sizes of optimal self-locating-dominating and solid-locating-dominating
codes we see from Theorems 13 and 14 that optimal solid-locating-dominating codes are
essentially smaller. In the following theorem, we first give a lower bound for solid-locating-
dominating codes.

Theorem 16. Let n be an integer such that n ≥ 5. Then we have

γDLD(n) ≥
⌈(

1 +
n− 1

n2 + n+ 2

)
2n+1

n+ 1

⌉
.

In the following remark, we briefly compare the previously obtained lower bound to
one for locating-dominating codes locating multiple irregularities.

Remark 17. In this paper, we have mainly studied locating-dominating codes which
can locate one and detect multiple irregularities. Previously, in [8], so called (1,≤ l)-
locating-dominating codes of type B ((1,≤ l)-LDB codes for short), which can locate
multiple irregularities, have been studied. In [8, Theorem 5], the lower bound

⌈
2n+1

n+1

⌉
for

(1,≤ 2)-LDB codes has been achieved. Since it can be shown that every (1,≤ 2)-LDB
code is also a solid-locating-dominating code, our lower bound in Theorem 16 improves
the lower bound for (1,≤ 2)-LDB codes in Hamming spaces.
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Let us define the covering radius of C as R(C) = maxx∈Fn minc∈C{d(x, c) | x ∈ Fn, c ∈
C}. When n ≥ 5, the lower bound in Theorem 16 is attained by choosing as codewords all
codewords and their neighbours of a code with covering radius two and minimum distance
five. Unfortunately, codes like this are only known when n = 5 [2, Theorem 11.2.2]. Using
this code, the following theorem is obtained.

Theorem 18. We have γDLD(5) = 12.

In general, solid-locating-dominating codes can be constructed from codes with covering
radius two.

Theorem 19. Let D ⊆ Fn be a code with R(D) = 2. Then

C = {c ∈ Fn | c ∈ N [d], d ∈ D}

is a solid-locating-dominating code.

In [2, Theorem 4.5.8], Struik has constructed an infinite sequence of codes with covering
radius two such that we can build on top of it such a sequence of solid-locating-dominating
codes that they converge to our lower bound.

Theorem 20. There exists such a sequence of solid-locating-dominating codes (Cn)∞n=1

that
lim
n→∞

|Cn|
2 2n

n+1

= 1.

Using direct sum, we can construct new solid-locating-dominating codes from existing
ones in a similar fashion as with self-locating-dominating codes.

Theorem 21. Let C ⊆ Fn be a solid-locating-dominating code. Then D = C ⊕ F is also a
solid-locating-dominating code.

Above, we have discussed self-locating-dominating and solid-locating-dominating codes
in binary Hamming spaces. In what follows, we briefly consider regular locating-dominating
codes. In particular, for certain lengths, we provide locating-dominating codes with the
smallest known cardinalities. Previously, locating-dominating codes in Fn have been
considered, for example, in [3, 8]. For future considerations, we first define the mapping
π : Fn → F as follows:

π(u) =

{
0, if u has an even number of ones;
1, otherwise.

Then, in the following theorem, we introduce a novel approach for constructing new
locating-dominating codes based on known (suitable) identifying codes.

Theorem 22. Let C be an identifying code in Fn such that |I(C;u)| ≥ 2 for all u ∈ Fn\C.
Then

D = {(π(u), u, u+ c) | u ∈ Fn, c ∈ C}
is a locating-dominating code in F2n+1.

The best known upper bounds on γLD(Fn) for 1 ≤ n ≤ 10 have been presented
in [3, Table 3]. For lengths n > 10, the smallest known locating-dominating codes are
actually identifying codes. (Recall that by the definitions any identifying code is also
locating-dominating.) The currently best known upper bounds on γID(Fn) can be found
in [1]. In the following corollary, we present locating-dominating codes in Fn with the
smallest known cardinalities for the lengths n = 11 and n = 17. These constructions
significantly improve on the known upper bounds γLD(F11) ≤ γID(F11) ≤ 352 and
γLD(F17) ≤ γID(F17) ≤ 18558.

71



Ville Junnila, Tero Laihonen, Tuomo Lehtilä

Corollary 23. We have γLD(F11) ≤ 320 and γLD(F17) ≤ 16384.

With the help of the following theorem, which has been shown in [8, Theorem 7], we
can construct new improved locating-dominating codes from codes attained in Corollary
23.

Theorem 24 ([8]). If C ⊆ Fn is a locating-dominating code, then C ⊕ F is also a
locating-dominating code.

The smallest currently known upper bounds for locating-dominating codes of lengths
n = 12 and n = 18 are 684 and 35604 respectively [1].

Corollary 25. We have γLD(F12) ≤ 640 and γLD(F18) ≤ 32768.

In [8, Theorem 15], a lower bound, which is currently the best known, for γLD(Fn)
has been presented. Applying the lower bound on the lengths n = 11, n = 12, n = 17
and n = 18, we obtain that γLD(F11) ≥ 309, γLD(F12) ≥ 576, γLD(F17) ≥ 13676 and
γLD(F18) ≥ 26006. Thus, comparing the lower bounds to the constructions of the previous
corollaries, we can state the obtained codes are rather small.
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1 Introduction
Let G = (V,E) be a simple, undirected graph with the vertex set V and the edge set E.
Let N [u] denote the closed neighbourhood of a vertex u ∈ V . A nonempty subset C ⊆ V
is called a code, and its elements are called codewords. The I-set (or the identifier) of u is
defined as

I(u) = I(G,C;u) = N [u] ∩ C.

Let C be a code in G. A vertex u ∈ V is covered or dominated by a codeword of C if
the identifying set I(u) is nonempty. The code C is dominating in G if all the vertices of
V is covered by a codeword of C, i.e., |I(u)| ≥ 1 for all u ∈ V . The code C is identifying
in G if C is dominating and for all distinct u, v ∈ V we have

I(u) 6= I(v).

The definition of identifying codes is due to Karpovsky et al. [14], and the original
motivation for studying such codes comes from fault diagnosis in multiprocessor systems.
The concept of locating-dominating codes is closely related to the one of identifying
codes. We say that the code is locating-dominating in G if C is dominating and for all
distinct u, v ∈ V \ C we have I(u) 6= I(v). The definition of locating-dominating codes
was introduced by Slater [17, 19, 20]. For the extensive literature on these codes consult
[15]. A code C ⊆ V is self-identifying in G = (V,E) if for all vertices u ∈ V we have⋂

c∈I(u)

N [c] = {u}.

Self-identifying codes are discussed in [9, 11, 12]. An identifying, locating-dominating
or self-identifying code with the smallest cardinality in a given finite graph G is called
optimal. The number of codewords in an optimal identifying and locating-dominating code
in a finite graph G is denoted by γID(G), γLD(G) and γSID(G), respectively.

In this paper, we focus on studying these codes in so called circulant graphs. Let
n and d1, . . . , dk be positive integers such that for all i, di ≤ n

2 . The circulant graph
Cn(d1, d2, . . . , dk) is defined as follows: the vertex set is Zn = {0, 1, . . . , n − 1} and the
neighbourhood of a vertex u ∈ Zn is

N [u] = {u, u± d1, u± d2, . . . , u± dk},

where the calculations are done modulo n. Previously, in [1, 3, 5, 7, 10, 16, 18, 21],
identifying and locating-dominating codes have been studied in the circulant graphs
Cn(1, 2, . . . , r) (r ∈ Z, r ≥ 1), which can also be viewed as power graphs of cycles of length
∗Supported by the ANR-14-CE25-0006 project of the French National Research Agency
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n. Recently, in [6], Ghebleh and Niepel studied identification and location-domination in
Cn(1, 3). They obtained the following results:

d4n/11e ≤ γID(Cn(1, 3)) ≤ d4n/11e+ 1 and dn/3e ≤ γLD(Cn(1, 3)) ≤ dn/3e+ 1.

In this paper, we give lower bounds on values of γLD(G) and γSID(G) for the circulant
graphs Cn(1, d− 1, d, d+ 1) with d > 3 and give code constructions attaining these bounds
for infinitely many values of parameters n and d. Moreover, we a give lower bound on
γID(Cn(1, d− 1, d, d+ 1)) and we construct a family of identifying codes whose cardinality
approaches the lower bound as n tends to infinity. In addition, we give optimal values for
self-identifying codes in the circulant graph Cn(1, n/2) when n is even.

2 Lower bounds using an infinite grid
Let us first present the definition of the infinite king grid K. Its vertex set is V = Z2. The
edges of the infinite king grid K are defined in such a way that the closed neighbourhood
of u = (x, y) ∈ Z2 is

N [u] = {(x′, y′) ∈ Z2 | max{|x− x′|, |y − y′|} ≤ 1}.

For estimating the sizes of infinite codes, we need a way to measure them in the grid. For
this purpose, we first denote

Qm = {(x, y) ∈ Z2 | |x| ≤ m, |y| ≤ m},

where m is a positive integer. The density of a code C ⊆ Z2 is then defined as

D(C) = lim sup
m→∞

|C ∩Qm|
|Qm|

.

For a finite nonempty set S ⊆ V in a graph G = (V,E), the (local) density of a code
C ⊆ V in S is defined as |S ∩ C|/|S|.

Analogously to finite graphs, an identifying, locating-dominating and self-identifying
code with the smallest possible density in the infinite king grid is called optimal. The
densities of optimal codes have been intensively studied and all the exact values are known.
The optimal densities can be found in Table 1 together with the references to the papers,
where the results have been presented.

density reference
ID 2/9 [2, 4]
LD 1/5 [8]

self-ID 1/3 [9]

Table 1: The densities of optimal identifying (ID), locating-dominating (LD) and self-
identifying (self-ID) codes in the king grid K.

In the following theorem, we present the connection between identifying, locating-
dominating and self-identifying codes in the infinite king grid and the circulant graphs
Cn(1, d− 1, d, d+ 1).

Theorem 1. Let n, d and k be positive integers such that d ≥ 3. If C is an identifying
code in Cn(1, d− 1, d, d+ 1) with k codewords, then there exists an identifying code in the
infinite king grid K with density k/n. Analogous results also hold for locating-dominating
and self-identifying codes.
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In the following corollary, we give lower bounds for codes in the circulant graphs
Cn(1, d− 1, d, d+ 1). In Section 3, we show that the lower bounds can be attained with
locating-dominating and self-identifying codes and that there exists an infinite family of
identifying codes approaching the lower bound.

Corollary 2. Let n and d be positive integers such that d ≥ 3 and G = Cn(1, d−1, d, d+1).
Then we have

γLD(G) ≥
⌈n

5

⌉
, γID(G) ≥

⌈
2n

9

⌉
and γSID(G) ≥

⌈n
3

⌉
.

3 Optimal constructions
In the following theorem, we give optimal locating-dominating codes in the circulant
graph Cn(1, d− 1, d, d+ 1). Furthermore, we give an infinite sequence of identifying codes
approaching the lower bound in Corollary 2.

Theorem 3. (i) For d ≡ 8 (mod 10), d ≥ 8, n ≥ 4d+ 6 and n ≡ 0 (mod 10), we have

γLD(Cn(1, d− 1, d, d+ 1)) =
n

5
.

(ii) There is a sequence of identifying codes (Ck)∞k=1 in the circulant graphs Cn(1, d−
1, d, d+ 1) with

lim
k→∞

|Ck|
n

=
2

9
.

In the next theorem, we will show that the bound on self-identifying codes in Corollary
2 can be reached.

Theorem 4. If d ≡ 1 (mod 3), n ≥ 3d+ 5 and n ≡ 0 (mod 3), then

γSID(Cn(1, d− 1, d, d+ 1)) =
n

3
.

In the following theorem, we give optimal self-identifying codes for Cn(1, n/2) for n
even.

Proposition 5. Let k ≥ 5. The optimal cardinality of self-identifying code in C2k(1, k) is
as follows:

γSID(C2k(1, k)) =



⌈
4
k

3

⌉
if k ≡ 0 (mod 3) or k ≡ 1 (mod 3)

⌈
4
k

3

⌉
+ 1 if k ≡ 2 (mod 3)

.

It is natural to study also other circulant graphs. For optimal codes in circulant graphs
Cn(1, d) and Cn(1, d− 1, d), see [13].
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Connected and contractible sets of vertices of a
3-connected graph

Dmitri Karpov

Basic definitions
Before introducing our results let us recall main definitions that we need. We consider
undirected graphs without loops and multiple edges and use standard notation.

For a graph G we denote the set of its vertices by V (G) and the set of its edges by
E(G). We use notation v(G) for the number of vertices of G.

We denote the degree of a vertex x in the graph G by dG(x).
Let NG(w) denote the neighbourhood of a vertex w ∈ V (G) (i.e. the set of all vertices

of the graph G, adjacent to w).
For a set of vertices U ⊂ V (G) we denote by G(U) the induced subgraph of the graph

G on the set U .
A set U ⊂ V (G) is connected, if the graph G(U) is connected.

Definition 1. 1) Let R ⊂ V (G). We denote by G−R the graph obtained from G upon
deleting all vertices of the set R and all edges incident to vertices of R. The set R is a
cutset, if the graph G−R is disconnected.

2) A graph G is k-connected, if |V (G)| > k and G has no cutset of size less than k.

Introduction and main results
Consider a 2-connected graph G on n vertices, let n1, n2 be positive integers with n1 +n2 =
n. It is rather clear, that there exists a decomposition of the vertex set of G into two
disjoint connected sets V1 and V2, such that |V1| = n1, |V2| = n2. (The proof of this fact
is an easy exercise on blocks and a kind of mathematical folklore.)

E.Györi [1] in 1976, and L. Lovász [2] in 1977 have independently proved the following
beautiful and strong theorem, that generalizes the above fact to k ≥ 2.

Theorem 2. (E.Györi, L. Lovász.) Let G be a k-connected graph on n vertices, v1, . . . , vk ∈
V (G) and positive integers n1, . . . , nk be such that

∑k
i=1 ni = n. Then there exists a

decomposition of the vertex set of G into connected sets V1 3 v1, . . . , Vk 3 vk, such that
|Vi| = ni for all i ∈ {1, 2, . . . , k}.

Does there exist a natural condition on graphs of connectivity less than k, that provides
a decomposition of its vertex set into k connected subsets of any given sizes?

Let’s begin with a counterexample showing that there exist (k − 1)-connected graphs
which cannot have such decompositions for all admissible sizes of sets.

Consider a graph G having a cutset T of size k−1. Let G−T has connected components
W1, . . . ,Wm, where m ≥ k + 1. Let’s try to divide G into disjoint connected sets V1, . . . ,
Vk. Only k − 1 sets of V1, . . . , Vk can contain vertices of T . Hence, at least one set Vi is a
subset of a component Wj . Let all components have the same size p ≥ 2. The G cannot
be divided into k connected sets of sizes more than p. However, the size

v(G) = mp+ (k − 1) > k(p+ 1)

78



Dmitri V.Karpov

can be presented as a sum of k integers which are at least p+ 1.
For connected graphs, we have a classic but strong instrument to study graph’s structure

— blocks and cutpoints. Let’s recall the definitions.

Definition 3. Let G be a connected graph.
A vertex a ∈ V (G) is a cutpoint of G, if the graph G− a is disconnected.
A block of the graph G is a maximal up to inclusion subgraph, having no cutpoints.
The interior Int(B) of a block B is the set of all its vertices which are not cutpoints of

G.

The structure of mutual disposition of blocks and cutpoints of a connected graph can
be described by the tree of blocks and cutpoints (see [8]). Recall, that the tree of blocks and
cutpoints of a graph G is a bipartite graph. Vertices of the first partition are all cutpoints
a1, . . . , an of the graph G, vertices of the second partition are all blocks B1, . . . , Bm of the
graph G. Vertices ai and Bj are adjacent if and only if ai ∈ V (Bj). It is easy to prove,
that this graph is a tree, all leaves of which correspond to blocks (which are called pendant
blocks).

A trivial consequence of Györi-Lovász Theorem for 2-connected graphs is the following.

Corollary 4. Let G be a 2-connected graph on n vertices, having exactly two pendant
blocks B1 and B2. Let v1 ∈ Int(B1), v2 ∈ Int(B2) and positive integers n1 and n2 be
such that n1 + n2 = n. Then there exists a decomposition of the vertex set of G into two
connected sets V1 3 v1 and V2 3 v2, such that |V1| = n1, |V2| = n2.

It is rather surprising, that for decomposition into 3 connected sets we can prove a more
strong and natural result. The condition which provides the existence of decomposition
naturally follows from the above counterexample.

Theorem 5. (D.Karpov, 2017.) Let G be a 2-connected graph on n vertices, such that
any its 2-vertex cutset splits G into at most 3 connected components. Let positive integers
n1, n2 and n3 be such that n1 + n2 + n3 = n. Then there exists a decomposition of the
vertex set of G into connected sets V1, V2 and V3, such that |Vi| = ni for all i ∈ {1, 2, 3}.

Definition 6. A graph G is a subdivision of a graph 0,0,1H, if G can be obtained from
H by several operations of substituting an edge by a simple path, which interior consists
of new vertices. New vertices are distinct and do not belong to V (H) (see figure).

H
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bc

bc

bc

bc
b

b

b

b

b
bc
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bc

bc

bc
bc

bc
bc

bc bc bc

G

Figure 1: A graph H and its subdivision G

Subdivision of a graph is a construction often used in graph theory. The following
statement is a particular case of Theorem 5.

Corollary 7. Let G be a subdivision of a 3-connected graph and positive integers n1, n2,
n3 be such that n1 + n2 + n3 = v(G). Then there exists a decomposition of V (G) into
connected sets V1, V2, V3, such that |Vi| = ni for all i ∈ {1, 2, 3}.

Let’s formulate as a conjecture a generalization of Theorem 5 for graphs of greater
connectivity.
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Conjecture 8. Let G be a (k − 1)–connected graph on n vertices, such that any its
(k − 1)-vertex cutset splits G into at most k connected components. Let positive integers
n1, . . . , nk be such that

∑k
i=1 ni = n. Then there exists a decomposition of the vertex set

of G into connected sets V1, . . . , Vk, such that |Vi| = ni for all i ∈ {1, 2, . . . , k}.

Let’s recall one more conjecture on decomposition of the vertex set of a 3-connected
graph. It was stated in 1994 by McCuaig and Ota [6] and mentioned in Mader’s survey on
connectivity [4].

Definition 9. Let G be a 3-connected graph. A set W ⊂ V (G) is contractible, if the
graph G(W ) is connected and the graph G−W is 2-connected.

Conjecture 10. Let m ∈ N. Then there exists an integer n such that every 3-connected
graph G on at least n vertices has a contractible set of m vertices.

For m = 1 this statement is clear, for m = 2 it is rather easy and well-known (it was
proved by Tutte). The case m = 3 was proved by authors of this conjecture [6], the case
m = 4 was proved by M.Kriesell [7]. For any m ≥ 5 Conjecture 10 is neither proved nor
disproved now.

Our next theorem suggests a new statement on large contractible sets in 3-connected
graphs.

Theorem 11. (D.Karpov, 2017.) Let m ≥ 5 be a positive integer and G be a 3-
connected graph on at least 2m+ 1 vertices. Then G has a contractible set W , such that
m ≤ |W | ≤ 2m− 4.

A particular case of this theorem for m = 4 is the following.

Corollary 12. A 3-connected graph on n ≥ 11 vertices has a contractible set of 5 or 6
vertices.

Note, that the analog of conjecture 10 for graphs of greater connectivity fails. It was
proved by Mader [5], that for k ≥ 4 there exist k-connected graphs of any size having
no contractible set of given size m. Moreover, one can construct a k-connected graph
having no set W of size k (not necessary connected!) such that the graph G − W is
(k − 1)-connected.
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Abstract
We consider quantum, nondterministic and probabilistic versions of known com-

putational model Ordered Read-k-times Branching Programs or Ordered Binary
Decision Diagrams with repeated test (k-QOBDD, k-NOBDD and k-POBDD). We
show width hierarchy for complexity classes of Boolean function computed by these
models and discuss relation between different variants of k-OBDD.

Keywords: quantum computing, quantum OBDD, OBDD, Branching programs,
quantum vs classical, quantum models, hierarchy, computational complexity, proba-
bilistic OBDD, nondeterministic OBDD

1 Introduction
Branching programs are one of the well known models of computation. These models have
been shown useful in a variety of domains, such as hardware verification, model checking,
and other CAD applications (see for example the book by I. Wegener [Weg00]). It is known
that the class of Boolean functions computed by polynomial size branching programs
coincide with the class of functions computed by non-uniform log-space machines.

One of important restrictive branching programs are oblivious read once branching
programs, also known as Ordered Binary Decision Diagrams (OBDD) [Weg00]. It is a
good model of data streaming algorithms. These algorithms are actively used in industry,
because of rapidly increasing of size of data which should be processed by programs. Since
a length of an OBDD is at most linear (in the length of the input), the main complexity
measure is “width”, analog of size for automata. And it can be seen as nonuniform automata
(see for example [AG05]).

In the last decades quantum model of OBDD came into play [AGK01], [NHK00], [SS05],
[Sau06]. The topic of read-k-times quantum model of OBDD (k-QOBDD) has been under
a lot of intererst lately. k-QOBDD can be explored from automata point of view. And
in that case we can found good algorithms for two way quantum classical automata in
paper [AW02] of Ambainis and Watrous. Other automata models, that have relation with
k-QOBDD are restart and reset quantum automata [YS10].

One of the interesting questions, which has been explored is hierarchy of complexity
classes for classical and quantum k-OBDDs. These models have two main characteristics
of complexity: number of layers (k) and width. Hierarchy for numbers of layers was
investigated in papers [BSSW98], [Kha16], [KK], [AKK17]

On the other hand, there are only few work on width hierarchy. For example, width
hierarchy for deterministic k-OBDD is presented in [Kha15]. Width hierarchies for classical
and quantum 1-OBDDs are discussed in [AGKY14], [AGKY16], [KK].
∗Partially supported by ERC Advanced Grant MQC. The work is performed according to the Russian

Government Program of Competitive Growth of Kazan Federal University
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In this paper we prove width hierarchy for nondeterministic, probabilistic k-OBDD
and quantum k-OBDD with natural order of input bits. We considered sub linear width
and hierarchies based on results and lower bounds from [AK13], [Kha16], [AKK17].

The paper is organized in following way. In Section 2 we present definitions. Section 3
contains Hierarchy results for classical models and Section 4 for quantum one. We discuss
relation between different models in Section 5.

2 Preliminaries
Ordered read ones Branching Programs (OBDD) are well known model for Boolean
functions computation. As general source different models of branching programs we give
the book by I. Wegener [Weg00].

A branching program over a set X of n Boolean variables is a directed acyclic graph
with two distinguished nodes s (a source node) and t (a sink node). We denote such
program Ps,t or just P . Each inner node v of P is associated with a variable x ∈ X.
Deterministic P has exactly two outgoing edges labeled x = 0 and x = 1 respectively for
such node v.

The program P computes the Boolean function f(X) (f : {0, 1}n → {0, 1}) as follows:
for each σ ∈ {0, 1}n we let f(σ) = 1 if and only if there exists at least one s − t path
(called accepting path for σ) such that all edges along this path are consistent with σ.

A branching program is leveled if the nodes can be partitioned into levels V1, . . . , V`
and a level V`+1 such that the nodes in V`+1 are the sink nodes, nodes in each level Vj
with j ≤ ` have outgoing edges only to nodes in the next level Vj+1. For a leveled Ps,t the
source node s is a node from the first level V1 of nodes and the sink node t is a node from
the last level V`+1.

The width w(P ) of a leveled branching program P is the maximum of number of nodes
in levels of P , i.e., w(P ) = max1≤j≤` |Vj |. The size of branching program P is a number
of nodes of program P .

A leveled branching program is called oblivious if all inner nodes of one level are labeled
by the same variable. A branching program is called read once if each variable is tested
on each path only once. An oblivious leveled read once branching program is also called
Ordered Binary Decision Diagram (OBDD). OBDD P reads variables in its individual
order π = (j1, . . . , jn), π(i) = ji, π−1(j) is position of j in permutation π. We call π(P )
the order of P . Let us denote natural order as id = (1, . . . , n). Sometimes we will use
notation id-OBDD P , it means that π(P ) = id. Let width(f) = minP w(P ) for OBDD P
which computes f and id−width(f) is the same but for id-OBDD.

The Branching program P is called k-OBDD if it consists from k layers, where i-
th (1 ≤ i ≤ k) layer P i of P is an OBDD. Let πi be an order of P i, 1 ≤ i ≤ k and
π1 = · · · = πk = π. We call order π(P ) = π the order of P .

Nondeterministic OBDD (NOBDD) is nondeterministic counterpart of OBDD. Proba-
bilistic OBDD (POBDD) can have more than two edges for node, and choose one of them
using probabilistic mechanism. POBDD P computes Boolean function f with bounded
error 0.5− ε if probability of right answer is at least 0.5 + ε.

Let us discuss a definition of quantum OBDD (QOBDD). It is given in different terms,
but it is straightforward to see that it is equivalent, see [AGK+05], [AGK01] for more
details.

For a given n > 0, a quantum OBDD P of width w, defined on {0, 1}n, is a 4-tuple
P = (T, |ψ〉0, Accept, π), where

• T = {Tj : 1 ≤ j ≤ n and Tj = (G0
j , G

1
j )} are ordered pairs of (left) unitary matrices
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representing the transitions applied at the j-th step, where G0
j or G1

j , determined by
the corresponding input bit.

• |ψ〉0 is initial vector from w-dimensional Hilbert space over field of complex numbers.
|ψ〉0 = |q0〉 where q0 corresponds to the initial node.

• Accept ⊂ {1, . . . , w} is accepting nodes.

• π is a permutation of {1, . . . , n} defining the order of testing the input bits.

For any given input σ ∈ {0, 1}n, the computation of P on σ can be traced by a vector
from w-dimensional Hilbert space over field of complex numbers. The initial one is |ψ〉0.
In each step j, 1 ≤ j ≤ n, the input bit xπ(j) is tested and then the corresponding unitary
operator is applied: |ψ〉j = G

xπ(j)

j (|ψ〉j−1), where |ψ〉j−1 and |ψ〉j represent the state of
the system after the (j − 1)-th and j-th steps, respectively, where 1 ≤ j ≤ n.

In the end of computation program P measure qubits. The accepting (return 1)
probability Praccept(σ) of Pn on input σ is Praccept(ν) =

∑
i∈Accept v

2
i ., for |ψ〉n =

(v1, . . . , vw). We say that a function f is computed by P with bounded error if there exists
an ε ∈ (0, 1

2 ] such that P accepts all inputs from f−1(1) with a probability at least 1
2 + ε

and Pn accepts all inputs from f−1(0) with a probability at most 1
2 − ε. We can say that

error probability is 1
2 − ε.

Let k-QOBDDw be a set of Boolean functions which can be computed by bounded
error k-QOBDDs of width w. k-id-QOBDDw is same for bounded error k-QOBDDs with
order id = (1, . . . , n). k-NOBDDw and k-POBDDw is similar classes for k-NOBDD and
bounded error k-POBDD.

3 Width Hierarchies on Classical k-OBDD
Firstly, let us discuss required definitions.

Let π = (XA, XB) be a partition of the set X into two parts XA and XB = X\XA.
Below we will use equivalent notations f(X) and f(XA, XB). Let f |ρ be a subfunction
of f , where ρ is mapping ρ : XA → {0, 1}|XA|. Function f |ρ is obtained from f by
applying ρ. Let Nπ(f) be number of different subfunctions with respect to partition π.
Let Θ(n) be the set of all permutations of {1, . . . , n}. Let partition π(θ, u) = (XA, XB) =
({xj1 , . . . , xju}, {xju+1

, . . . , xjn}), for permutation θ = (j1, . . . , jn) ∈ Θ(n), 1 < u < n.
We denote Π(θ) = {π(θ, u) : 1 < u < n}. Let Nθ(f) = maxπ∈Π(θ)N

π(f), N(f) =

minθ∈Θ(n)N
θ(f).

Secondly, let us present existing lower bounds for nondeterministic and probabilistic
k-OBDDs.

Lemma 1 ([AK13]). Let function f(X) is computed by k-OBDD P of width w, then
N(f) ≤ w(k−1)w+1.

Lemma 2 ([Kha16]). Let function f(X) is computed by k-NOBDD P of width w, then

N(f) ≤ 2w
(

(k−1)w+1
)
.

Lemma 3 ([Kha16]). Let function f(X) be computed by bounded error k-POBDD P of
width w, then

N(f) ≤ (C1k(C2 + log2 w + log2 k))
(k+1)w2

for some constants C1 and C2.
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Thirdly, let us define Shuffled Address Function (SAFk,w) from [Kha15] based on
definition of well known Pointer Jumping Function, see [BSSW98], [NW91].

Definition 4 (Shuffled Address Function). Let us define Boolean function SAFk,w(X) :
{0, 1}n → {0, 1} for integer k = k(n) and w = w(n) such that

2kw(2w + dlog ke+ dlog 2we) < n. (1)

We divide input variables to 2kw blocks. There are dn/(2kw)e = a variables in each block.
After that we divide each block to address and value variables. First dlog ke+ dlog 2we
variables of block are address and other a− dlog ke+ dlog 2we = b variables of block are
value.

We call xp0, . . . , x
p
b−1 value variables of p-th block and yp0 , . . . , y

p
dlog ke+dlog 2we are address

variables, for p ∈ {0, . . . , 2kw − 1}.
Boolean function SAFk,w(X) is iterative process based on definition of following six

functions:
Function AdrK : {0, 1}n × {0, . . . , 2kw − 1} → {0, . . . , k − 1} obtains firsts part of

block’s address. This block will be used only in step of iteration which number is computed
using this function:

AdrK(X, p) =

dlog ke−1∑
j=0

ypj · 2
j(mod k).

Function AdrW : {0, 1}n × {0, . . . , 2kw − 1} → {0, . . . , 2w − 1} obtains second part of
block’s address. It is the address of block within one step of iteration:

AdrW (X, p) =

dlog 2we−1∑
j=0

ypj+dlog ke · 2
j(mod 2w).

Function Ind : {0, 1}n × {0, . . . , 2w − 1} × {0, . . . , k − 1} → {0, . . . , 2kw − 1} obtains
number of block by number of step and address within this step of iteration:

Ind(X, i, t) =

 p, where p is minimal number of block such that
AdrK(X, p) = t and AdrW (X, p) = i,

−1, if there are no such p.

Function V al : {0, 1}n × {0, . . . , 2w− 1} × {1, . . . , k} → {−1, . . . , w− 1} obtains value
of block which have address i within t-th step of iteration:

V al(X, i, t) =

{ ∑b−1
j=0 x

p
j (mod w), where p = Ind(X, i, t), for p ≥ 0,

−1, if Ind(X, i, t) < 0.

Two functions Step1 and Step2 obtain value of t-th step of iteration. Function Step1 :
{0, 1}n × {0, . . . , k − 1} → {−1, w . . . , 2w − 1} obtains base for value of step of iteration:

Step1(X, t) =

 −1, if Step2(X, t− 1) = −1,
0, if t = −1,
V al(X,Step2(X, t− 1), t) + w, otherwise.

Function Step2 : {0, 1}n × {0, . . . , k − 1} → {−1, . . . , w − 1} obtain value of t-th step
of iteration:
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Step2(X, t) =

 −1, if Step1(X, t) = −1,
0, if t = −1
V al(X,Step1(X, t), t), otherwise.

Note that address of current block is computed on previous step.
Result of Boolean function SAFk,w(X) is computed by following way:

SAFk,w(X) =

{
0, if Step2(X, k − 1) ≤ 0,
1, otherwise.

Let us discuss complexity properties of the function:

Lemma 5 ([Kha15]). For integer k = k(n), w = w(n) and Boolean function SAFk,w,
such that inequality (1) holds, the following statement is right: N(SAFk,w) ≥ w(k−1)(w−2).

Lemma 6 ([Kha15]). There is 2k-OBDD P of width 3w + 1 which computes SAFk,w

Let us present Lemma 5 in more useful form:

Corollary 7. For integer k = k(n), w = w(n) and Boolean function SAFk,w, such that
inequality (1) holds, the following statement is right: N(SAFk,w) ≥ wkw/6.

3.1 Hierarchy Results for Classical Models
Hierarchy for deterministic OBDD is already known:

Theorem 8 ([Kha15]). For integer k = k(n), w = w(n) such that 2kw(2w + dlog ke +
dlog 2we) < n, k ≥ 2, w ≥ 64 we have k-OBDDbw/16c−3 ( k-OBDDw.

Let us discuss hierarchies for nondeterministic and probabilistic models.

Theorem 9. For w ≥ 8 we have k−NOBDD√w/2 (k−NOBDD3w+1

Proof. It is clear that k−NOBDD√w/2 ⊆k−NOBDD3w+1. Let us proof inequality
of these classes. By Lemma 6 we have SAFk,w ∈ 2k-NOBDD3w+1. Let us show that
SAFk,w /∈ 2k-NOBDD√w/2.

N(SAFk,w)

2
√
w/2(1+(2k−1)

√
w/2)

≥

≥ wkw/6

2
√
w/2(1+(2k−1)

√
w/2)

=

= 2
kw
6 logw−

√
w
2 −

1
4w(2k−1) =

= 2
√
w
2 ( k

√
w

3 logw−1−k
√
w+
√
w
2 ) =

= 2
√
w
2 ( k

√
w

3 (logw−3)+
√
w
2 −1) > 1

Therefore SAFk,w 6∈ 2k-OBDD√w/2, due to Lemma 2.
And k−NOBDD√w/2 6=k−NOBDD3w+1 �

Theorem 10. For
√
w/(log2 k log2 w) ≥ 1 we have

k−POBDD√w/(log2 k log2 w) (k−POBDD3w+1
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Proof. It is clear that k−POBDD√w/(log2 k log2 w) ⊆k−POBDD3w+1. Let us proof
inequality of these classes. By Lemma 6 we have SAFk,w ∈ 2k-POBDD3w+1. Let us show
that SAFk,w /∈ 2k-POBDD√w/(log2 k log2 w).

N(SAFk,w)

(C1k(C2 + 0.5 log2 w − log2 log2 k − log2 log2 w + log2 k))
(2k+1)w/(log2 k log2 w)2

≥

≥ wkw/6

(C1k(C2 + 0.5 log2 w − log2 log2 k − log2 log2 w + log2 k))
(2k+1)w/(log2 k log2 w)2

=

= 2
kw
6 logw−((2k+1)w/(log2 k log2 w)2) log(C1k(C2+0.5 log2 w−log2 log2 k−log2 log2 w+log2 k)) ≥

≥ 2kw((logw)/6)−(1/(log2 k log2 w)2) log(C1k(C2+0.5 log2 w−log2 log2 k−log2 log2 w+log2 k)) > 1

Therefore SAFk,w 6∈k−POBDD√w/(log2 k log2 w), due to Lemma 3.
And k−POBDD√w/(log2 k log2 w) 6=k−POBDD3w+1 �

4 Width Hierarchies for Quantum k-OBDD
Let us present existing lower bound for k-OBDDs.

Lemma 11 ([AKK17]). Let function f(X) is computed by bounded error k-QOBDD P of
width w, then Nπ(f) ≤ wC·(kw)2 for some C = const.

Then let us discuss Boolean function Matrix Xor Pointer Jumping, which complexity
property allow to show hierarchy.

Definition 12. Firstly, let us present version of PJ function which works with integer
numbers. Let VA, VB be two disjoint sets (of vertices) with |VA| = |VB | = d and V = VA∪VB
. Let FA = {fA : VA → VB}, FB = {fB : VB → VA} and f = (fA, fB) : V → V defined
by f(v) = fA(v), if v ∈ VA and f = fB(v), v ∈ VB. For each j ≥ 0 define f (j)(v) by
f (0)(v) = v , f (j+1)(v) = f(f (j)(v)). Let v0 ∈ VA. The functions we will be interested in
computing is gk,d : FA × FB → V defined by gk,d(fA, fB) = f (k)(v0).

Definition of Matrix XOR Pointer Jumping function looks like Pointer Jumping
function.

Firstly, we introduce definition of MatrixPJ2k,d function. Let us consider functions
fA,1, fA,2, · · · fA,k ∈ FA and fB,1, fB,2, · · · fB,k ∈ FB .

On iteration j + 1 function f (j+1)(v) = fj+1(f (j)(v)), where

fi(v) =

{
fA,d i2 e(v) if i is odd
fB,d i2 e(v) if i is even

.

MatrixPJ2k,d(fA,1, fA,2, · · · fA,k, fB,1, fB,2, · · · fB,k) = f (k)(v0).
Secondly, we add XOR-part to MatrixPJ2k,d (note it XMPJ2k,d). Here we take

f (j+1)(v) = fj+1(f (j)(v))⊕ f (j−1)(v), for j ≥ 0
Finally, we consider boolean version of these functions. Boolean function PJt,n :

{0, 1}n → {0, 1} is boolean version of gk,d, where we encode fA in a binary string using
d log d bits and do it with fB as well. The result of function is parity of binary representation
of result vertex.
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In respect to boolean MXPJ2k,d function we encode functions in input in following
order fA,1, . . . , fA,k, fB,1, . . . , fB,k. Let us describe process of computation on Figure 1.
Function fA,i is encoded by ai,1, · · · ai,d, for i ∈ {1 · · · k}. And fB,i is encoded by bi,1, · · · bi,d,
for i ∈ {1 · · · k}. Typically, we will assume that v0 = 0.

Figure 1: Boolean function XMPJk,d

Next we discuss complexity properties of MXPJ2k,d.

Lemma 13 ([AKK17]). For kd log d = o(n) following is right: N id(MXPJ2k,d) ≥
dbd/3−1c(k−3)

Lemma 14 ([AKK17]). There is exact k-id-QOBDD P of width d2 which computes
MXPJ2k,d.

Let us present Lemma 13 in more useful form:

Corollary 15. For integer k = k(n), w = w(n), kd log d = o(n) and Boolean function
MXPJ2k,d, the following statement is right: N id(MXPJ2k,d) ≥ ddk/16

4.1 Hierarchy Results for Quantum Models
Now we can prove hierarchy results for k-QOBDDs .

Theorem 16. We have k-id-QOBDD√
d/C1k

( k-id-QOBDDd2 for some C1 = const .

Proof. It is clear that k-id-QOBDD√
d/C1k

⊆ k-id-QOBDDd2 . Let us proof inequality
of these classes.

Due to Lemma 14, MXPJ2k,d ∈ k-id-QOBDDd2 . Let us show that MXPJ2k,d /∈ k-
id-QOBDD√

d/Ck
.

N id(MXPJ2k,d)√
d/C1k

C(k
√
d/C1k)2

≥

≥ ddk/16√
d/C1k

C(k
√
d/C1k)2

=

= 2
dk
16 log d−C(k

√
d/C1k)2 log

√
d/C1k =

= 2
k
16

(
d log d− 16Ckd

2C1k
log d/C1k

)
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Let C1 = 8C for C from Lemma 11, then we have

N id(MXPJ2k,d)√
d/C1k

C(k
√
d/C1k)2

≥ 2
k
16 logC1k > 1.

Therefore MXPJ2k,d /∈ k-id-QOBDD√
d/Ck

, due to Lemma 11.
And k-id-QOBDD√

d/C1k
6= k-id-QOBDDd2 . �

5 Discussion on Relation Between Models
You can see some existing discussion between models in [AKK17], [AGKY16], [AGK+05],
[Gai15], [GY17], [IKY17]. Here we will present some relations on fixed k.

Relation between models follows from Theorems 9, 10:

Theorem 17. There are Boolean function f , such that:
f ∈ k-OBDD3w+1,k−NOBDD3w+1,k−POBDD3w+1;
f 6∈ k-OBDDbw/16c−3,k−NOBDD√w/2,k−POBDD√w/(log2 k log2 w)

Let us compare classical models and quantum models. Firstly, let us discuss classical
complexity properties of MXPJ2k,d function.

Lemma 18. There is k-id-OBDD P of width d2 which computes MXPJ2k,d.

Proof. Let us construct such k-id-OBDD P .
By the definition of functionMXPJ2k,d input separated into 2dk blocks by t = dlog2 de

bits. Blocks encode integers ai1, ai2 · · · aid for i ∈ {1, · · · k} in the first part of input; and
bi1, bi2 · · · bid for i ∈ {1, · · · k} in the second part (see Figure 1). Let elements of block
representing aij be Xi,j = (xi,j0 , . . . , xi,jt−1) for i ∈ {1, · · · k}, j ∈ {1, · · · d} and elements of
block representing bij be Y i,j = (yi,j0 , . . . , yi,jt−1) for i ∈ {1, · · · k}, j ∈ {1, · · · d}

Let us discuss i-th layer. On the first level we have d2 nodes, each of them corresponds
to pair (u, v), for u, v ∈ 0, . . . , d− 1 for storing f (2i−3) and f (2i−2). At first P skips all
blocks except xi,f

(2i−2)

. Then it will compute XOR of bits of the block and u of pair.
In the end of the block P leads node corresponding to (f (2i−1), f (2i−2)). After that the
program skip all other blocks of first part and all blocks of first part except yi,f

(2i−1)

. Then
it computes XOR with of bits of the block and v of pair. In the end of the block P leads
node corresponding to (f (2i−1), f (2i)).

On the last layer after computing f (2k), all nodes which XOR result is 1 leads 1-sink.
�

Lemma 19. MXPJ2k,d 6∈ k-id-OBDDd/32.

Proof. Let us apply Lemma 1

MXPJ2k,d

(d/32)(k−1)d/32+1
≥ ddk/16

(d/r)(k−1)d/32+1
≥

≥ 2
kd
16 log d−2 log(d/32)kd/(32) = 2kd( log d

16 −2(log d−5)/32) > 1

Therefore MXPJ2k,d 6∈ k-id-OBDDw/32, due to Lemma 1. �
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Lemma 20. MXPJ2k,d 6∈ k-id-NOBDD√
(d log d)/33

.

Proof. Let us apply Lemma 2. Let r =
√

33d/ log d

MXPJ2k,d

2((k−1)d/r+1)d/r
≥ ddk/16

2((k−1)d/r+1)d/r
≥

≥ 2
kd
16 log d−2(kd/r)d/r = 2kd( log d

16 −2d/r2) > 1

Therefore MXPJ2k,d 6∈ k-id-NOBDD√
(d log d)/33

, due to Lemma 2. �

Lemma 21. MXPJ2k,d 6∈ k-id-POBDD√
d/ log k

.

Proof. Let us apply Lemma 3. Let r =
√
d/ log k

MXPJ2k,d

(C1k(C2 + log2 d− log2 r + log2 k))
(k+1)d2/r2

≥

≥ ddk/16

(C1k(C2 + log2 d− log2 r + log2 k))
(k+1)d2/r2

≥

≥ 2
kd
16 log d−2(kd2/r2)(C3+log2 k+log2(C2+log2 d+log2 k)) =

= 22kd( log d
32 −d(C3+log2 k+log2(C2+log2 d+log2 k))/r2) > 1

Therefore MXPJ2k,d 6∈ k-id-POBDDd/ log k, due to Lemma 3. �

Then base on these lemmas we can get following result:

Theorem 22. There is Boolean function f , such that:
f ∈ k-id-OBDDd2 , k-id-NOBDDd2 , k-id-POBDDd2 , k-id-QOBDDd2 ;
f 6∈ k-OBDDbd/32c−3, k-id-NOBDD√

(d log d)/33
, k-id-POBDD√

d/ log k
, k-id-

QOBDD√
d/C1k
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Aggregating individual preferences of electors on a set of candidates (alternatives) is an
important problem in social choice theory. Simple majority rule is the most natural way to
determine a binary relation on the set of alternatives [12]. For any pair of the candidates,
a winner is the one who collects more than half of votes, otherwise a draw is declared. The
Condorcet paradox lies in the fact that in the case of two or more alternatives the group
binary relation through the majority rule may not be transitive. It means that there is
no maximal element (Condorcet winner) even if a personal preference of each voter is
transitive. Thereby, in the voting problem the concept of a maximal element requires a
generalization.

Simple majority rule defines a dominance relation which is usually presented in the
form of an adjacency matrix H with values of zeros, units and one half that match wins,
losses or draws in the case of pairwise comparisons. A weak tournament T is the set of m
alternatives A = {a1, . . . , am} and the dominance relation on this set, which is determined
by the adjacency matrix, i. e., T = (A,H). The weak tournament without ties is simply
denoted as the tournament. Formally, assume that H(a, a) = 0, a ∈ A. Note that the
dominance relation is complete and reflexive, but not transitive.

A rule S(T ) which determines a nonempty subset of winners in the weak tournament
is called a tournament solution. A tournament ranking procedure aims at assigning ranks
from 1 to m to all alternatives. Note that such ranking can be non strict. Any tournament
ranking procedure determines the certain tournament solution in a natural way, by choosing
the candidates with the highest ranks.

We say that a candidate a dominates b if H(a, b) = 1. The dominion of the candidate a
is denoted by D(a) = {b : H(a, b) = 1}. On the contrary, the dominators of the candidate
a is denoted by D(a) = {b : H(a, b) = 0}. We say that the candidate a covers b if
D(a) ⊇ D(b), D(a) ⊆ D(b), and H(a, b) = 1. The covering relation is transitive, reflexive
and asymmetric, but not complete.

The uncovered set UC(T ) consists of all uncovered alternatives [2, 4, 7, 14, 15]. For the
uncovered set UC we can also calculate the second-order uncovered set UC(UC) = UC2,
and so on, up to the smallest set UC∞, which is known as the iterated uncovered set.

The minimal covering set MC(T ) is an inclusion-minimal subset MC ⊆ A, such that
any candidate a /∈MC is covered in the set MC ∪ {a}, i. e., a /∈ UC(MC ∪ a,H) (see [5,
11]). The Banks set BA(T ) ⊆ A consists of maximal elements of all inclusion-maximal
transitive subsets of alternatives [1, 2].

There exist a method (maximal lottery) of probabilistic determining winners in the
tournament which is based on noncooperative game theory. In this method a zero-sum
game with the payoff matrix G = H − Ht is considered. Corresponding tournament
solution, the bipartisan set BP (T ), is defined as a support of the unique Nash equilibrium
in mixed strategies [6, 10, 11].

It is well-known that in any tournament BP ⊂ MC ⊂ UC∞ ⊂ UC, as well as
BA ⊂ UC. To learn more about tournament solutions you can in the recently published
book [3].
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As a particular example we consider a tournament where there are m = 5 candidates
and the adjacency matrix has the following form.

The adjacency matrix in Example 1.

a b c d e
a 0 1 1 1
b 1 0 0 1
c 0 1 1 0
d 0 1 0 1
e 0 0 1 0

In this example the candidate a covers e, so the uncovered set equals UC = {a, b, c, d}.
In the subtournament {a, b, c, d} the candidate c covers d, thus, the iterated uncovered set
and the minimal covering set are the same,MC = UC∞ = {a, b, c}. The inclusion-maximal
transitive subsets of alternatives are acd, ade, aec, bae, cdb, dbe, hence, the Banks set
equals BA = {a, b, c, d}.

We propose to apply cooperative game theory for the ranking of alternatives in a weak
tournament. In papers [8, 9] we use the Shapley value. Define the value of the characteristic
function v(K) for the cooperative game as the guaranteed payoff in the constant-sum
game of the coalition K ⊆ A against the counter coalition A \K by the formula

v(K) = max
a∈K

min
b∈A\K

H(a, b), K ⊆ A, v(∅) = 0, v(A) = 1.

From the definition it follows that in the case of a weak tournament the ch. f. v is
non-negative and monotonic, that is 0 ≤ v(S) ≤ v(K) ≤ 1 for any S ⊆ K ⊆ A. Moreover,
in the case of a tournament it takes the values 0 or 1, and is superadditive, that is
v(S) + v(K) ≤ v(S ∪K) for any S ∩K = ∅. Calculate the ch. f. v for all 2m − 1 subsets of
alternatives in example 1.

The characteristic function v in Example 1.

K ∅ a b c d e ab ac ad ae bc bd be cd ce de
v 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

abc abd abe acd ace ade bcd bce bde cde
1 1 1 1 1 0 1 0 0 0

abcd abce abde acde bcde
1 1 1 1 1

The excess for the coalition K ⊆ A = {a1, . . . , am} denotes by e(x,K) = v(K) −∑
ai∈K xi, where x = (x1, . . . , xm) is the imputation such that xi ≥ 0 for any candidate

ai ∈ A, and
∑m
i=1 xi = v(A) = 1. The vector e(x) = (e(x,K))K⊆A includes all 2m − 1

excesses. The nucleolus is the imputation which provides a minimum of the vector of
excesses (see [13]). The nucleolus support is the tournament solution NU(A,H) = {a ∈
A : Na > 0}. Denote by RN(T ) the tournament ranking procedure which sequentially
calculates the nucleolus for the candidates with zero scores. In example 1 the nucleolus
support is strictly contained in the Banks set, {a, b, c} = NU(T )  BA(T ) = {a, b, c, d}.

The ranking in Example 1.

a b c d e ranking
RN 1/3 1/3 1/3 0 0 a = b = c > d > e

- - - 1 0
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Theorem 1. For every tournament (without ties), the ranking of alternatives according
to the nucleolus N(T ) for the characteristic function v, satisfies:
1) Nb = 0 for any candidate b/∈UC.
2) The nucleolus does not depend on covered alternatives, i. e., N = N(UC∞).
3) The support of the nucleolus is a refinement of the iterated uncovered set, NU ⊂ UC∞.
4) There exists a tournament T , where NU(T )  MC(T ).
5) There exists a tournament T , where NU(T )  BA(T ).
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Random graphs are widely used for modeling of the topology and dynamics of complex
networks such as the Internet, social and telecommunication networks (see, e.g. [1, 2]).
Observations of real networks showed [1, 3, 4] that vertex degrees of such graphs can be
considered to be independent identically distributed random variables following the power-
law distribution. Thus, one of the most appropriate graphs for modeling the networks
are so called configuration graphs [5] with random independent vertex degrees. Let ξ
be a random variable equal to any vertex degree. This random variable takes natural
values equal to the number of vertex semiedges, i.e. edges for which adjacent vertices are
not yet specified. All of the semiedges are numbered in an arbitrary order. The sum of
vertex degrees of any configuration graph has to be even, otherwise one extra semiedge is
added to an equiprobably chosen vertex. Graph construction is completed by joining all
semiedges one to another pairwise equiprobably to form edges.

In [4] the authors showed that in the considered graph models the distribution of the
random variable ξ can be defined as follows:

P{ξ = k} = k−τ − (k + 1)−τ , (1)

where k = 1, 2, . . . , τ > 0. It has been noted in many papers that for real networks the
parameter τ can be regarded to be fixed and lying in the interval (1, 2) (see, e.g. [1, 2, 3, 4]).
But in some problems, as has been shown by our recent results [6, 7], models with the
parameter τ > 2 are not without interest.

There are also models where the vertex degree distribution parameter can change
with an increase in the number of graph vertices or even have a random behaviour [8].
Let N be the number of graph vertices. In [9] the dynamics of the degree structure of a
configuration graph with vertex degree distribution (1) was considered for the case where
N →∞ and the parameter τ is a random variable uniformly distributed on the interval
[a, b], 0 < a < b < ∞. However, it is more natural to suppose that the distribution of
the parameter τ on a finite interval is unimodal. In this work we assume that τ has a
truncated gamma distribution on the interval [a, b] with the distribution parameters (2, λ).
The choice of the parameter α = 2 of the distribution ensures unimodality. The density of
this distribution is as follows:

fλ(x) =
λ2xe−λx

F2,λ(b)− F2,λ(a)
, x ∈ [a, b], (2)

where F2,λ(a), F2,λ(b) are the values of the gamma distribution function with the parame-
ters 2 and λ at the points a and b, respectively.

The main goal of this paper is to study the robustness of such configuration graphs to
destructive influences under the condition that graph evolution takes place in a random
environment. This means that vertex degrees follow the distribution (1), where values
of the parameter τ are determined separately for each vertex from the distribution with
the density (2). Let us note that using the equations (1) and (2) we can average the
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distribution of the random variable ξ and deduce that

P{ξ = k} =
λ2

F2,λ(b)− F2,λ(a)

b∫
a

xe−λx(e−x ln k − e−x ln (k+1))dx, (3)

where k = 1, 2, . . . . It is obvious that to study the dynamics of graphs where all vertex
degrees have the distribution (3) is much easier as opposed to a random environment.
Therefore we have a problem to compare the robustness of configuration graphs in these
two cases. This will allow to obtain the conditions under which the study of random graphs
in a random environment can be substituted by the study of graphs with vertex degree
distribution (3).

We consider two cases of destructive influences: random and targeted. In the case of a
random breakdown equiprobably chosen vertices are removed from the graph one after
another with all the incident edges. In the case of a targeted attack vertices with the
highest degrees are removed sequentially.

It is well known [4] that if the parameter τ ∈ (1, 2), then the configuration graph
has the only giant connected component which size is proportional to N . As N → ∞,
the size of any other connected component is infinitesimal compared to the size of the
giant component. If τ > 2, then the graph does not have a giant component, but even
in this case the largest component contains far more vertices than any other connected
component. Let η be the percentage of vertices in the largest connected component and
r be the percentage of vertices removed from the graph. We obtained the dependencies
of η on r and λ. In [6] we proposed a criterion of graph destruction. Let us consider a
graph to be in destroyed state if the following event occurred: A : {η ≤ 2η2}, where η2

is the percentage of vertices in the second-sized connected component. Let us denote by
p = P{A} the probability of the event A. Regression dependencies of p on r and λ were
found.

The main methods of the study were simulation modelling and methods of screening
of significant variables in regression problems.

The obtained dependencies for η and p in the two cases of graph destruction process are
given below. In these models we use the following notations: ξ ∼ F [a, b] means that vertex
degrees follow the distribution (3) defined on the interval [a, b], τ ∼ G[a, b] means that the
destruction takes place in the conditions of random environment. Graph destructions were
simulated for graphs sized from 1000 to 10000 vertices, the parameter 0.3 ≤ λ ≤ 2.5 and
the three intervals [a, b]: (1, 2), (1, 3] and [2, 3]. Power-law configuration graphs with the
parameter τ ∈ (1, 2) are considered to be a good representation of the AS-level Internet
topology [3, 4]. Graphs with the parameter τ ∈ [2, 3] are useful for the studies of forest
fire models [6, 7] and the interval (1, 3] was chosen as a generalization.
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Thus, in the case of random breakdowns the following regression models were obtained:

τ ∼ G(1, 2) : η = 78.12− 1.11r,

p = −0.72− 0.045λ+ 0.00036r2,

ξ ∼ F (1, 2) : η = 78.07− 1.11r,

p = −0.7− 0.035λ+ 0.00035r2,

τ ∼ G[2, 3] : η = 23.4 + 0.51λ− 3.21r0.51,

p = 0.088− 0.077λ+ 0.0017r1.6,

ξ ∼ F [2, 3] : η = 23.04 + 0.52λ− 3.03r0.52,

p = 0.086− 0.075λ+ 0.0016r1.62,

τ ∼ G(1, 3] : η = 60.74 + 5.35λ− 0.96r,

p = −0.55− 0.08λ+ 0.00035r2,

ξ ∼ F (1, 3] : η = 60.9 + 5.74λ− 0.98r,

p = −0.5− 0.087λ+ 0.00034r2.

Determination coefficients R2 of all the above models are no less than 0.92. The values
of r in the models for the probability of graph destruction p are limited as follows:
44.75 + 1.34λ ≤ r ≤ 69.1 + 0.89λ for τ ∼ G(1, 2), 44.74 + 1.1λ ≤ r ≤ 69.6 + 0.7λ for ξ ∼
F (1, 2), −6.5+6.9λ ≤ r ≤ 50.8+2.57λ for τ ∼ G[2, 3], −6.13+6.6λ1.2 ≤ r ≤ 50.35+2.35λ
for ξ ∼ F [2, 3], 40+2.6λ ≤ r ≤ 66.5+1.6λ for τ ∼ G(1, 3] and 38.5+3λ ≤ r ≤ 66.45+1.8λ
for ξ ∼ F (1, 3] with R2 = 0.99 for all the models. It is clear that for the out-of-limits
values of r the probability p = 0 when r is below the lower limit and p = 1 when r is
above the upper limit. The same is true for corresponding models given below.
As for the process of targeted attack on vertices with the highest degrees the regression
models were as follows:

τ ∼ G(1, 2) : η = 52.37− 7.22r − 7.74 ln r,

p = −0.08− 0.08λ+ 0.084r1.61,

ξ ∼ F (1, 2) : η = 52.15− 7.23r − 7.8 ln r,

p = −0.1− 0.09λ+ 0.095r1.54,

τ ∼ G[2, 3] : η = −3.8 + 1.4λ+ 3.6r − 5.6 ln r,

p = 1.21− 0.11λ+ 0.35 ln r,

ξ ∼ F [2, 3] : η = −3.35 + 1.44λ+ 3r − 5.4 ln r,

p = 1.24− 0.13λ+ 0.36 ln r,

τ ∼ G(1, 3] : η = 26.8 + 10.6λ− 7.2r − 8.7 ln r,

p = 0.003− 0.28λ+ 0.34r0.98,

ξ ∼ F (1, 3] : η = 26.2 + 10.6λ− 6.9r − 8.8 ln r,

p = −0.034− 0.3λ+ 0.4r0.92

with determination coefficients R2 being no less than 0.93 and the following limits of r in
models for p: 1.04 + 0.44λ ≤ r ≤ 4.8 + 0.22λ for τ ∼ G(1, 2), 1.1 + 0.5λ ≤ r ≤ 4.9 + 0.25λ
for ξ ∼ F (1, 2), 0.03 + 0.02λ ≤ r ≤ 0.57 + 0.17λ for τ ∼ G[2, 3], 0.03 + 0.02λ ≤ r ≤
0.54 + 0.18λ1.5 for ξ ∼ F [2, 3], −0.024 + 0.86λ ≤ r ≤ 2.98 + 0.86λ for τ ∼ G(1, 3] and
0.03 + 0.84λ ≤ r ≤ 2.8 + 0.9λ for ξ ∼ F (1, 3], where R2 = 0.99 for all models.
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The results of this work show that the patterns describing the destruction process in
a random environment and a model with the vertex degree distribution (3) are practi-
cally identical. This means that the study of graph destruction processes in a random
environment can be replaced by a simpler case with averaged vertex degree distribution,
which, in fact, requires less computational time. Let us also note that on the interval (1, 2)
the fraction of vertices in the giant component depends only on the fraction of removed
vertices r and does not depend on the parameter λ.

The study is supported by the Russian Foundation for Basic Research, grant 16-01-
00005.

References
[1] Durrett R. Random Graph Dynamics. Cambridge: Cambridge Univ. Press. 2007.

[2] Hofstad R. Random Graphs and Complex Networks. Univ. of Technology. 2011. Vol. 1.
http://www.win.tue.nl/∼rhofstad/NotesRGCN.pdf

[3] Faloutsos C., Faloutsos P., Faloutsos M. On power-law relationships of the Internet topology.
Computer Communications Rev. 1999. Vol. 29, pp. 251-262.

[4] Reittu H., Norros I. On the power-law random graph model of massive data networks.
Performance Evaluation. 2004. Vol. 55, pp. 3-23.

[5] Bollobas B. A probabilistic proof of an asymptotic formula for the number of labelled regular
graphs. Eur. J. Comb. 1980. Vol. 1, pp. 311-316.

[6] Leri M., Pavlov Y. Power-law random graphs’ robustness: link saving and forest fire model.
Austrian Journal of Statistics. 2014. Vol. 43, iss. 4, pp. 229-236.

[7] Leri M., Pavlov Y. Forest fire models on configuration random graphs. Fundamenta Infor-
maticae. 2016. Vol. 145, iss. 3, pp. 313-322.

[8] Biaconi G., Barabasi A.-L. Bose-Einstein condensation in complex networks. Physical Review
Letters. 2001. Vol. 86, iss. 24, pp. 5632-5635.

[9] Pavlov Y. On random graphs in random environment. Computer Data Analysis and Modeling:
Proceedings of the XI International Conference. Minsk, Publishing centre of BSU. 2016.
Pp. 177-180.

99



Marina Maslennikova, Emanuele Rodaro

Trim Strongly Connected Synchronizing
Automata and Ideal Languages∗

Marina Maslennikova1 Emanuele Rodaro2

1 Ural Federal University, Ekaterinburg, Russia
2 Dipartimento di Matematica, Politecnico di Milano, Milano, Italy
maslennikova.marina@gmail.com, emanuele.rodaro@fc.up.pt

Introduction
Let A = 〈Q,Σ, δ〉 be a deterministic finite automaton (DFA), where Q is the state set, Σ
stands for the input alphabet, and δ : Q× Σ→ Q is the totally defined transition function
defining the action of the letters in Σ on Q. Let L[A ] denote the language accepted by A .
In what follows we will consider only languages which are regular, thus we will drop the
term “regular”.

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a word w ∈ Σ∗ whose
action leaves the automaton in one particular state no matter at which state in Q it is
applied, i.e. δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any word with this property is said to be
reset for the DFA A . By Syn(A ) we denote the set of all reset words of A . For a brief
introduction to the theory of synchronizing automata we refer the reader to the survey [7].

Recently in a series of papers [3, 2, 6] a language theoretic approach to the study
of synchronizing automata has been developed. Recall that a language I ⊆ Σ∗ is called
a two-sided ideal (or simply an ideal) if I is non-empty and Σ∗IΣ∗ ⊆ I. Synchronizing
automata can be considered as a special representation of ideal languages. The complexity
of such a representation is measured by the reset complexity rc(I) which is the minimal
possible number of states in a synchronizing automaton A such that Syn(A ) = I for
a given ideal I. In [3] it has been shown that representation of an ideal language by
means of a minimal synchronizing automaton can be exponentially more succinct than its
“traditional” representation via minimal automaton recognizing this language.

In this language theoretic approach to synchronizing automata, strongly connected
synchronizing automata play an important role. Recall that a DFA is called strongly
connected if for each pair of different states (p, q) there exists a word mapping p to
q. It is interesting to find out whether for every regular ideal language there exists a
strongly connected synchronizing automaton whose set of reset words is equal to a given
language. Indeed, while the minimal automaton recognizing an ideal language I is always
a synchronizing automaton with a unique sink state (i.e. a state fixed by all letters),
finding examples of strongly connected synchronizing automata A with Syn(A ) = I is a
non-trivial task. In [6] it is proved that such strongly connected automaton exists for every
ideal over alphabet of size at least two. The construction itself is non-trivial and rather
technical. Therefore, the importance of the studies of issues like finding more effective
constructions of the smallest strongly connected synchronizing automaton for an ideal
language is evident. Questions concerning the size of such automaton were considered
in [1, 2].
∗This work was supported by the Russian Foundation for Basic Research, grant no. 16-01-00795,

the Ministry of Education and Science of the Russian Federation, project no. 1.3253.2017, and the
Competitiveness Enhancement Program of Ural Federal University.
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Main results
In [4] strongly connected synchronizing automata have been characterized via homomorphic
images of automata belonging to a particular class L(Σ). The class L(Σ) is formed by
all the trim automata A = 〈Q,Σ, δ, q0, {q0}〉 such that L[A ] = w−1Σ∗w for some word
w ∈ Σ∗. Recall that a DFA A = 〈Q,Σ, δ, q0, F 〉 is called trim whenever it does not contain
any state that cannot be reached from the initial state, or state from which no final state
can be reached. In the present work we strengthen results of [4, 6].

Theorem 1. Let I be an ideal regular language over at least binary alphabet. For any
word w ∈ I of minimum length, there is a DFA B ∈ L(Σ) with L[B] = w−1Σ∗w and

Σ∗wΣ∗ ⊆ Syn(B) = I.

The improvement of [4] lies in a consequent analysis of B which is taken from that
paper. In [4] it has been stated that the inclusion Syn(B) ⊆ I can be guaranteed. However,
this statement did not provide any new information about classes of automata where
the minimal strongly connected synchronizing DFA for I could be found. In the present
research we show that the equality Syn(B) = I holds true. Furthermore, it implies that for
every ideal language I over Σ one may construct a strongly connected trim DFA B from
L(Σ) for which I serves as the language of reset words. The last argument strengthens
the result of [6], where just the existence of a strongly connected synchronizing DFA for a
given ideal language has been proved.

Further we initiate the study of structural properties of B. Let us note that the
construction of B from Theorem 1 is based on a strongly connected synchronizing DFA
A such that Syn(A ) = I. We prove that the resulting automaton B possesses at most∑
i |δ(Q,wi)| states, where Q is the state set of A , δ stands for the transition function, wi

denotes the prefix of w of length i. This upper bound is shown ro be tight. For instance, if
we take I = Σ≥n (the set of all words of length at least n), then A and B coincide and,
furthermore, |Q| = 2n.

Now it would be interesting to find an algorithm to construct a DFA from L(Σ),
for which given language I serves as the language of reset words, without applying the
construction of some strongly connected synchronizing DFA for I. Therefore, a deeper
understanding of the structure of automata from the class L(Σ) is a crucial point.

Every DFA from L(Σ) recognizes w−1Σ∗w for some w. We describe precisely the set
of all minimal reset words for the minimal DFA Aw recognizing w−1Σ∗w. Let |w| denote
the length of w. Since the case |w| ≤ 2 is trivial, one may suppose that |w| > 2. It turns
out that u is a minimal reset word for Aw if and only if u shares one of the following
properties:

1) u is a prefix of w but u does not appear in w as an inner factor or proper suffix;
2) u is not a factor of w and |u| ≤ |w|.
Since the set of all minimal reset words for Aw is finite, we have that Syn(Aw) is a

finitely generated ideal language, i.e. Syn(Aw) = Σ∗UΣ∗ for some finite set U ⊆ Σ∗. Such
languages have already been viewed as languages of reset words of synchronizing automata
in [5]. In the present paper we reveal that the construction of Aw may be used in order
to build a strongly connected DFA from L(Σ) for which given finitely generated ideal
language serves as the language of reset words. Furthermore, the procedure of constructing
the corresponding automaton for some w may be more effective than the general algorithm
building a strongly connected synchronizing DFA for a finitely generated ideal from [1].
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Abstract

Commonly in network analysis an undirected graph (network) is represented by
its adjacency matrix, and while the latter may have an enormous order. We show
that in many cases instead of the adjacency matrix a much smaller matrix (referred
as type adjacency matrix) may be used. We introduce notions of the types of nodes
of graph and of the type adjacency matrix, propose an algorithm for division of the
set of nodes into types. We study properties of the type adjacency matrix and some
of its applications in the social and economic network analysis.

Keywords: undirected graph, network, type of node, centrality, growth of network,
production, knowledge, externality, network game, Nash equilibrium, network formation.

1 Introduction
Commonly in network analysis and its economic and social applications an undirected
graph (network) is represented by its adjacency matrix, A. A drawback of the adjacency
matrix is that it can have an enormous size, and this may trouble working with graphs
possessing big size but simple structure. For example, for the star graph with ν peripheral
nodes the adjacency matrix is of size (ν + 1)× (ν + 1), and this matrix, by itself, does not
rely on the simple structure of the graph.

This drawback may be somehow rectified if another kind of matrix, referred further as
type adjacency matrix, T, is used. The type adjacency matrix usually has much smaller size
in comparison with the adjacency matrix and reflects important features of the structure
of the graph in an aggregate form. For example, for the str graph the type adjacency
matrix has the size 2× 2, independently on the number of peripheral nodes. Due to the
small size, the type adjacency matrix can considerably simplify the network analysis.

The presence of the type adjacency matrix corresponds to the fact that the set of the
nodes of undirected graph can be divided into disjoint subsets (types) in such way that
each node of definite type has definite numbers of neighbors (adjacent nodes) of each type.
We will consider such division with the minimal possible number of types.

For example, for the network shown in Figure 1, whose adjacency matrix is

A =


0 1 1 1 1
1 0 1 1 0
1 1 0 0 1
1 1 0 0 1
1 0 1 1 0

 ,

the set of nodes is divided into two types: the 1st type consists of node 1, and the 2nd type
includes nodes 2, 3, 4, 5 (see Figure 2). The 1st type node is adjacent to 0 first-type nodes

103



Vladimir Matveenko, Alexei Korolev

Figure 1: Graph with 5× 5 adjacency matrix.

Figure 2: Division of the set of nodes into two types.

and to 4 second-type nodes, while each 2nd type node is adjacent to 1 first-type node and
2 second-type nodes. These numbers of neighbors of different types can be written in form
of the type adjacency matrix:

T =

(
0 4
1 2

)
.

We will see that in many respects the type adjacency matrix may serve as a substitute
for the adjacency matrix.

In the present paper we provide a definition of the types of nodes and the type adjacency
matrix, propose an algorithm for division of the set of nodes into types and construction
of the type adjacency matrix, and study its properties and some of its applications.

2 Types of nodes
Let G be undirected graph (network) of order n and A be its adjacency matrix. Let us
remind that A is n × n matrix such that aij = aji = 1 if in the graph there is an edge
connecting nodes i and j, and aij = aji = 0 otherwise; aii = 0 for all i = 1, 2, . . . , n.

The concept of types of nodes may be explained informally in the following way. The
nodes of graph can be colored in S colors in such way that each node of color j has a
definite number li(j) of neighbors of color i (for each i = 1, 2, . . . , S).

More formally, the set of nodes of graph may be decomposed into minimal number
S of disjoint classes j = 1, 2, . . . , S in such way that any node belonging class j has li(j)
neighbors from class i (for i = 1, 2, . . . S). The classes will be referred as types of nodes.
Type j is characterized by vector l(j) = (l1(j); l2(j); . . . ; lS(j)), where li(j) is the number
of neighbors in class i for each node of class j.
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2.1 Type adjacency matrix
Let the graph have S types of nodes. We construct a S × S-matrix T in the following way.
The first row of this matrix is the row vector l(1), the second row is l(2), ..., the S-th row
is l(S):

T =


l(1)
l(2)
. . .
l(S)

 =


l1(1) l2(1) . . . lS(1)
l1(2) l2(2) . . . lS(2)
. . . . . . . . . . . .
l1(S) l2(S) . . . lS(S)

 .

This matrix will be referred as type adjacency matrix of the graph. Our type adjacency
matrix T is the same as, in spectral graph theory, a quotient matrix for the symmetric
matrix A (e.g. [6], [2]).

Figures 3 and 4 provide an example of two graphs which have the same size and the
same distribution of degrees, but different typology. Their type adjacency matrices are,
correspondingly, (

0 2
2 1

)
,

(
1 1
1 2

)
.

Later we will see that there exist graphs of different size, but with the same typology.

Figure 3: Graph with l(1) = (0; 2), l(2) = (2; 1).

Figure 4: Graph with l(1) = (1; 1), l(2) = (1; 2).

2.2 Algorithm
Let us describe an algorithm of subdivision of the set of nodes of undirected graph into
types. Let s be a current number of subsets of subdivision. Initially s = 1.

Iteration of the algorithm. Consider nodes of the first subset. If all of them have the
same numbers of neighbors in each subset 1, 2, . . . , s, then the first subset is not changed.
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Figure 5: Start of the algorithm: s = 1.

Figure 6: Result of the first iteration: s = 2.

In the opposite case, we divide the first subset into new subsets in such way that all nodes
of each new subset have the same numbers of neighbors in subsets.

We proceed in precisely same way with the second, the third, . . . , the s-th subset. If on
the present iteration the number of subsets s has not changed, then the algorithm finishes
its work. If s has increased, then the new iteration starts.

The number of subsets s does not decrease in process of the algorithm. Since s is
bounded from above by the number n of nodes in the graph, the algorithm converges. It
is clear that the algorithm divides the set of nodes into the minimal possible number of
classes.

Example. Let us apply the algorithm to the graph depicted in Figure 2. Initially s = 1,
all nodes constitute the same one set (Figure 5).

After the first iteration we obtain the division corresponding to degrees, depicted in
Figure 6. Then, on the first step of the second iteration, we obtain the division depicted
in Figure 7. On the second step of the second iteration we obtain the division shown in
Figure 8.

On the third iteration nothing changes, and the algorithm stops.

Figure 7: The first step of the second iteration: s = 3.
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Figure 8: The second step of the second iteration: s = 4.

We have obtained a subdivision of the set of nodes of the graph into four types which
are characterized by the vectors of numbers of neighbors:

l(1) = (1; 2; 1; 0), l(2) = (1; 0; 1; 1), l(3) = (1; 2; 0; 1), l(4) = (0; 2; 1; 0).

The corresponding type adjacency matrix is

T =


l(1)
l(2)
l(3)
l(4)

 =


1 2 1 0
1 0 1 1
1 2 0 1
0 2 1 0

 .

2.3 Relation to modular division
Our subdivision of the set of nodes of graph into types is a generalization of the modular
aggregation of Allouch [1]. Allouch [1] defines module as a subset of nodes, such that each
node in a module has the same neighbors. It can be seen that each division into modules
is a division into types, but not the opposite.

3 Some applications of the type adjacency matrix in
network analysis

3.1 Numbers of routes
It is known that each element akij of the k-th power of the adjacency matrix, Ak, is equal
to the number of the k-step routes between nodes i and j. In a parallel way, each element
tkij of the k-th power of the type adjacency matrix, Tk, shows the number of the k-step
routes between any i-th type node and all j-th type nodes.

E.g., for the graph shown in Figure 1 the 3rd power of the adjacency matrix,

A3 =


8 8 8 8 8
8 4 8 8 4
8 8 4 4 8
8 8 4 4 8
8 4 8 8 4

 ,

shows that in the graph there are 8 three-step routes from node 3 to node 2 and 4 three-step
routes from node 3 to node 4. The same graph is characterized by the type adjacency
matrix

T =

(
0 4
1 2

)
.
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Matrix T shows, in particular, that the degree of the 1st type node is 0 + 4 = 4, and the
degree of any 2nd type node is 1 + 2 = 3. The 3rd power, e.g.,

T3 =

(
8 32
8 24

)
,

shows that in the graph there are 24 three-step routes from each 2nd type node to all 2nd

type nodes.

3.2 Centrality measures
Network analysis uses various centrality measures, among them degree centrality, Katz-
Boncicz centralities [12],[4], eigenvector centrality, and α- centrality [5].

The degree centrality of the node (or of each node of the type) may be calculated in a
similar way by use of either the adjacency matrix, A, or the type adjacency matrix T:

CD(i) =

∑n
j=1 aij

n− 1
, (1)

CD (̃i) =

∑S
j=1 t̃ij
n− 1

,

where ĩ is the type of node i.
Let us remind how the numbers of routes are used in calculation of the Katz-Bonacich

centrality measures. Katz [12] and Bonacich [4] propose to use in definition of centrality
measure not the degree of node i, as in formula (1), but the total discounted number of
routes outgoing from the node i. All such routes are accounted for, and the longer the route
is (the more is its length, k), the smaller discounting multiplier, αk (where 0 < α < 1), it
receives in calculation of the discounted number of routes.

Because, as was already mentioned, the number of the k-step routes is an element of
the power of adjacency matrix, Ak, the total discounted number of the routes between
nodes i and j (where i 6= j) is equal to

mij =

∞∑
k=1

αkakij .

Assuming for the sake of simplicity of further calculation that there is a fictitious zero-length
route from node i to itself, one obtains the formula

m̄ii =

∞∑
k=0

αkakij .

Using the notation for the identity matrix, I = (αA)0, one comes to the formula for
the matrix of the total discounted numbers of routes between pairs of nodes:

M̄ =

∞∑
k=0

(αA)k = (I− αA)−1.

The total discounted number of routes between node i and all possible nodes j, called
sometimes (e.g. [8]) Bonacich centrality of node i, is

CB(i) =

n∑
j=1

m̄ij .
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The vector of the Bonacich centrality measures for nodes is

CB =


CB(1)
CB(2)
. . .

CB(n)

 = M̄ · 1 = (I− αA)−1 · 1,

where 1 is the vector of all ones.
We have seen, that in this version of the formula for Bonacich centralities an unwanted

1 enters the measure for each node – it is the number of fictitious “zero-length” routes
which was added for the sake of simplicity of calculation. Some authors, to improve this
“fault”, do subtract these unwanted units; then the formula turns into

CK = ((I− αA)−1 − I) · 1.

This version is often referred as Katz centrality. Both versions are met in the literature,
often under similar names, what commonly puzzles readers.

Since only the summary numbers of the routes from node i (but not the numbers of
routes to particular nodes) are needed in calculation of both Katz-Bonacich centrality
measures, the type adjacency matrix, T, can be, naturally, used instead of the adjacency
matrix, A.

The total discounted number of routes from any node of type i to all nodes of type j
(where i, j = 1, 2, . . . , S; i 6= j) is equal to

m̃ij =

∞∑
k=1

αktkij .

A fictitious “zero-length” route is interpreted now as a route from a node of type i to
nodes of the same type. Accounting for this route, we obtain the following formula for the
discounted number of routes from any node of type i to all nodes of the same type:

¯̃mii =

∞∑
k=0

αktkij ,

Hence, the Bonacich centrality measure of any node of type i is equal to

C̃B(i) =

S∑
j=1

¯̃mij .

If node i0 is of type i, then CB(i0) = C̃B(i). We come to the formula for the matrix of
summary discounted numbers of routes between any nodes of type i and all nodes of type
j (i, j = 1, 2, . . . , S):

¯̃M =

∞∑
k=0

(αT)k = (Ĩ− αT)−1,

where Ĩ is the S × S unit matrix.
The vector of Bonacich centralities for types is

C̃B =


C̃B(1)

C̃B(2)
. . .

C̃B(S)

 = ¯̃M · 1̃ = (̃I− αT)−1 · 1̃,
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where ¯̃M, Ĩ,T are S × S-matrices, and 1̃ is the S-vector of all ones. Correspondingly, the
vector of Katz centralities for types is

C̃K = ((Ĩ− αT)−1 − Ĩ)1̃.

As an example, let us calculate the vector of Bonacich centralities for the star graph
with ν peripheral nodes. The type adjacency matrix is

T =

(
0 ν
1 0

)
,

hence,

(̃I− αT) =

(
1 −αν
−α 1

)
,

(̃I− αT)−1 =
1

1− α2ν

(
1 αν
α 1

)
,

C̃B = (̃I− αT)−1 · 1̃ =
1

1− α2ν
(1 + αν; 1 + α)

T
.

The positive values of centralities are received under values of parameter α sufficiently
small in comparison with the size of the star:

α <
1√
ν
.

In other words, the parameter α has to be lower than the inverse of the Frobenius eigenvalue
of matrix T.

We see that the Bonacich centrality of the center of the star is (1 + αν)/(1 + α) times
higher than the Bonacich centrality of the peripheral node. If α→ 1/

√
ν, i.e. if α converges

to the inverse of the Frobenius eigenvalue, the ratio of the Bonacich centralities of the
center and the periphery converges to

√
ν, i.e. to the ratio of their eigenvalue centralities.

The following two theorems show that the type adjacency matrix T may be used instead
of the adjacency matrix A for calculation of eigenvalue centralities and α− centralities.

Let the first type have n1 nodes, the second type have n2 nodes, ..., the S-th type have
nS nodes, so that

n = n1 + n2 + . . .+ nS .

Let the nodes of graph G be numbered in the following way. The nodes of the first type
are numbered from 1 to n1, the nodes of the second type – from n1 + 1 to n1 + n2, ..., the
nodes of the S-th type – from n1 + n2 + . . .+ nS−1 + 1 to n.

Theorem 1. 1. Let λ be an eigenvalue of the type adjacency matrix T and g̃ be corre-
sponding eigenvector

g̃ = (β1;β2; . . . ;βS)T .

Then λ is also an eigenvalue of the adjacency matrix A and the corresponding eigenvector
is

g = (β1;β1; . . . ;β1;β2;β2; . . . ;β2; . . . ;βS ;βS ; . . . ;βS)T

(where βi is repeated ni times; i = 1, 2, . . . , S)).
2. Let λ∗ be the Frobenius eigenvalue of matrix T. Then λ∗ is also the Frobenius

eigenvalue of matrix A.
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Proof. 1. For any i = 1, 2, . . . , S we have for i-th row of matrix T:

β1l1(i) + β2l2(i) + . . .+ βSlS(i) = λβi.

Then for any i = 1, 2, . . . , S and j = 1, 2, . . . , ni we obtain for the (n1+n2+. . .+ni−1+j)-th
row of matrix A the equality

β1 + β1 + . . .+ β1︸ ︷︷ ︸
l1(i)

+β2 + β2 + . . .+ β2︸ ︷︷ ︸
l2(i)

+ . . .+ βS + βS + . . .+ βS︸ ︷︷ ︸
lS(i)

= λβi.

2. Assume that the Frobenius eigenvalue of matrix A is µ 6= λ∗. The first part of the
theorem implies that µ > λ∗. Let e be the Frobenius eigenvector of matrix A, and ê be
the vector constructed in the following way. Each of the first n1 components of vector
ê is equal to the maximum of the first n1 components of vector e; each of the next n2

components of ê is equal to the maximum of the corresponding n2 components of e;. . . ;
each of the last nS components of ê is equal to the maximum of the last nS components
of e. Let f̂ be the S-vector corresponding to ê (i.e. i-th component of f̂ (i = 1, 2, . . . , S )
is equal to the maximum of ni corresponding components of e). Evidently,

Aê ≥ µê.

Correspondingly,
Tf̂ ≥ µf̂ . (2)

But, according to the Perron-Frobenius theorem, since λ∗ is the Frobenius eigenvalue, (2)
implies that λ∗ ≥ µ. Contradiction!

Theorem 2. Let A be adjacency matrix, T be type adjacency matrix, α be any number,
ẽ = (e1; e2; . . . ; eS)T be any S-vector and let the matrix Ĩ + αT be invertible. Then the
matrix I + αA is also invertible. Let κ be the S-vector of α-centralities,

κ = (Ĩ + αT)−1ẽ. (3)

Let e be the n-vector, n1 first components of which are equal to the component e1; n2

following components are equal to e2; ...; the last nS components are equal to eS. Let k be
the n-vector of α-centralities,

k = (I + αA)−1e. (4)

Then the first n1 components of vector k are equal to κ1; the next n2 components are equal
to κ2; ...; the last nS components are equal to κS.

Proof. The system of equations (3) is equivalent to

κ+ αTκ = ẽ. (5)

Writing the system (5) for individual components, we obtain

κi = α(l1(i)κ1 + l2(i)κ2 + . . .+ lS(i)κS) = ẽi, (6)

where i = 1, 2, . . . , S. But for each i equation (6) coincides with each of the equations with
numbers from n1 + n2 + . . .+ ni−1 + 1 until n1 + n2 + . . .+ ni of the system

k + αAk = e,

which is equivalent to system (4). The invertibility of the matrix I + αA follows from
invertibility of the matrix Ĩ + T.
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Figure 9: Graph with 2 peripheral components (c = 2).

3.3 Growth of a core-periphery network
The graph shown in Figure 9 has the following structure: the central node (type 2), two
symmetric peripheral components (with nodes of types 3 and 4) and a node close to the
center (type 1). This graph can be described either by the adjacency matrix M of order 8
or by the type adjacency matrix of order 4:

T =


0 1 0 0
1 0 2 0
0 1 0 2
0 0 1 1

 .

Any of matrices M and T can be used for calculation of the eigenvector centralities
(which are approximately proportional to 0.25, 0.61, 0.61, 0.43 for the types 1, 2, 3, 4,
correspondingly).

Now, let the number of symmetric peripheral components, c, increase (Figure 10). The
type adjacency matrix becomes

T(c) =


0 1 0 0
1 0 c 0
0 1 0 2
0 0 1 1

 .

Despite the increase of the order of the adjacency matrix, (3c+ 2)× (3c+ 2), the order
of the type adjacency matrix, 4× 4, does not change; moreover, the only element which
changes in the type adjacency matrix is c = l3(2) – the number of the 3rd type nodes.

Below we list the eigenvectors of the type adjacency matrices with the numbers of
peripheral components c = 2, 3, 4, 5, 6.

x(2) =


1

2.44
2.44
1.72

 ,x(3) =


1

2.67
1.96
1.22

 ,x(4) =


1

2.82
1.71
0.96

 ,x(5) =


1

2.96
1.54
0.79

 ,x(6) =


1

3.07
1.43
0.68

 .

It is interesting to observe how the eigenvector centrality of the center (type 2) increases
with respect to c, and how at the same time the relative centrality of type 1 (which is a
neighbor of the center) increases in relation not only to type 4 but even to type 3. The
type adjacency matrix T allows a simple and visible analysis without any increase in the
order of the matrix.
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Figure 10: Graph with 4 peripheral components (c = 4).

Theorem 3. With increase of c, if the eigenvector centrality of the 1st type node is taken
constant equal to 1, then the centrality of the 2nd type node increases slower than

√
c and

goes to infinity; the centrality of each 3rd type node decreases and converges to 1; the
centrality of each 4th type node decreases faster than 1/

√
c and converges to 0.

Proof. The characteristic equation of the matrix T is

(λ− 1)[λ3 − (c+ 3)λ− 2] = 0.

To the eigenvalue λ = 1 the eigenvector (1, 1, 0,−1/2)T corresponds. The equation for
other three eigenvalues is

λ3 − (c+ 3)λ− 2 = 0. (7)

This equation is of the form
λ3 + 3pλ+ 2q = 0,

where
p = −c+ 3

3
, q = −1.

Since the discriminant is

D = q2 + p3 = 1− (c+ 3)3

27
< 0

(because c ≥ 2), the equation has three real roots:

λ1 = −2rcos
φ

3
, λ2 = 2rcos

π − φ
3

, λ3 = 2r
π + φ

3
,

where r = ±
√
|p| = ±

√
(c+ 3)/3 (the sign of r is chosen to coincide with the sign of q);

the angle φ is determined by the relation

cosφ =
q

r3
=

(
3

c+ 3

)3/2

.

Under c = 2 : φ = arccos (3/5)
3/2 ≈ 1.087. With increase in c the angle φ also increases

and limc→∞ φ = π/2. Thus, of the three roots of the equation, only the first one is positive:

λ1 = 2

√
c+ 3

3
cos

(
1

3
arccos

(
3

c+ 3

)3/2
)
. (8)

113



Vladimir Matveenko, Alexei Korolev

Under c = 2:

λ1 = 2

√
5

3
cos

(
1

3
arccos

(
3

5

) 3
2

)
≈ 2.414 > 1;

with increase in c the value λ1 also increases and limc→∞ λ1 = +∞. Thus, under any c
the Frobenius eigenvalue of matrix T(c) is given by (8). Let us find the general form of the
dependence of the coordinates of the eigenvectors corresponding the eigenvalues obtained
from equation (7). The eigenvector is defined by the equation

T(c)X = λX,

or, in coordinate form: 
λx1 = x2,

x1 + cx3 = λx2,

x2 + 2x4 = λx3,

x3 + (1− λ)x4 = 0.

Solving these system of equations and using the fact that λ 6= 1, we find the eigenvector
corresponding to the eigenvalue λ:

X =

(
1, λ,

λ2 − 1

c
,
λ+ 1

c

)T
.

If λ is given by (7), then the components of the vector X are the values of eigenvector
centrality of the nodes of the corresponding types. This implies the demanded result.

4 Game equilibria in a model of production and exter-
nalities in network

One more field of application of the type adjacency matrix is analysis of game equilibria
in economic networks. An example is the network model of production with knowledge
externalities [14], [15].

Behavior of agents in a network structure is defined in much by actions of their
neighbors or by information received from them. Network economics and network games
theory consider questions of network formation, spreading of information in networks,
positive and negative externalities, complementarity and substitutability of activities (see
reviews [9], [7], [10]). Externalities, i.e. influence of other agents which does not go through
the price mechanism, possess properties of public goods and are not fully paid. Positive
externalities, and among them externalities of knowledge and human capital, spring up
both in processes of production [16], [13] and consumption [3], and it is important to
account for them in economic and sociological analysis, forecasting, and mechanism design.

Matveenko and Korolev [14], [15] continue the line of research of Nash equilibria
in networks in presence of positive externalities and introduce several new elements
in comparison to the previous literature. Firstly, production externalities are studied;
agents’ efforts have meaning of investments, in particular, investments into knowledge.
The presence of production block allows to interpret game-theoretic concepts of strategic
complementarity (supermodularity) and strategic substitutability (submodularity) as,
correspondingly, absence and presence of productivity and to analyse these concepts within
the same model.
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Secondly, the model, for the first time in the network literature, uses the notion of
the Jacobian production externality [11], [16], [13] in definition of the concept of game
equilibrium. The essence of this notion is that any agent makes her decision staying in
a particular environment which depends on actions produced by the agent herself and
by her neighbors in network. When making her decision, the agent considers the state of
the environment as exogenous; this means that the agent does not take into account that
her actions can directly influence the state of the environment. As a simplest example,
imagine a game equilibrium in a collective of smokers and non-smokers. A smoker, when
making in equilibrium a decision to continue or to give up smoking, makes it staying in an
environment relating already to her smoking.

The third novation of the model is the use of dynamic approach. Essentially, the model
is a network generalization of the simple two-period model of endogenous growth and
knowledge externalities of Romer [16].

We will see that an important place in the model is played by the typology of nodes
described above. The typology defines behavior of agents in equilibrium and allows to
consider a possibility of transplantation of equilibrium among networks of different size
but the same typology.

4.1 Description of the model
There is an undirected graph (network), G, with n nodes i = 1, 2, . . . , n; each node
represents an agent. In time period 1 each agent i possesses endowment e of good and
can use it partly (or wholly) for consumption in the 1st period, c1i , and partly (or wholly)
for investment into knowledge, ki. The investment is immediately transformed into the
stock of knowledge and is used in production of good for consumption in the 2nd period,
c2i . Agent’s preferences are described by quadratic utility function

U(c1i , c
2
i ) = c1i (e− ac1i ) + dc2i ,

where a is a satiation coefficient; d > 0. It is assumed that under c1i ∈ [0, e] the utility
increases in c1i . These assumptions imply that 0 < a < 1/2. The production in node i is
described by function

F (ki,Ki) = gkiKi (g > 0),

which depends on the state of knowledge, ki, and the environment, Ki. The environment,
by definition, is the sum of investments of the agent herself and her neighbors (the agents
in the adjacent nodes of the graph, j ∈ N(i)).

Since increase in each of the parameters d and g promotes increase in the 2nd period
consumption, we denote dg = b and talk about parameter b as a productivity. We assume
b > a. If b > 2a we say that productivity presents, and if b < 2a we say that productivity
absents.

Let us consider the following game. Players are the agents i = 1, 2, . . . , n. Strategies
of player i are her feasible volumes of investment, ki ∈ [0, e]. Nash equilibrium with
externalities (for shortness, equilibrium is a profile of players’ strategies, k∗1 , k∗2 , . . . , k∗n,
such that each k∗i solves the agent’s problem:

max
ci1,c

i
2,ki

U(c1i , c
2
i )

s.t.
c1i ≤ e− ki,

c2i ≤ F (ki,Ki),
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c1i ≥ 0, c2i ≥ 0, ki ≥ 0,

given Ki = k∗i + K̃i, where K̃i = Σj∈N(i)k
∗
j is the sum of investments by the player i’s

neighbors in the network. If k∗i ∈ (0, e), i = 1, 2, . . . , n, the equilibrium is called inner.
The first order conditions imply (see details in [14], [15]) that the inner equilibrium

(when it exists given values of parameters) is uniquely defined by the system of equations

(b− 2a)k + bAk = e(1− 2a)1,

where k = (k1, k2, . . . , kn)T , A is the adjacency matrix of graph G, 1 is the vector of all
ones. It follows that

k∗ = (I− αA−1)ẽ,

where α = b/(2a− b), ẽ = [e(1− 2a)/(b− 2a)]1. Thus, agents’ strategies are defined by
their α-centralities in the network.

4.2 Usage of the type adjacency matrix in analysis of game equi-
libria

An alternative way to find the inner equilibrium is by use of the type adjacency matrix.
We have

(b− 2a)k̂ + bTk̂ = e(1− 2a)1̂, (9)

where k̂ = (k̂1, k̂2, . . . , k̂s)
T is the vector of investments by types, 1̂ is the S-vector with

all ones. This implies
k̂∗ = (̂I− αT−1)ê,

where α = b/(2a− b), ê = [e(1− 2a)/(b− 2a)]1̂.
In the inner equilibrium (which is unique) all agents of the same type use the same

strategy, i.e. make the same investment (defined by the α-centrality of the type). Moreover,
if two networks are characterized by the same type adjacency matrix T, then their inner
equilibria do coincide, in the sense that agents in the nodes of the same type make the
same investment.

Thus, the characterization of the inner equilibrium in terms of the types of nodes
is especially important because it shows a possibility of transplantation of the inner
equilibrium from one network into another network with different size but the same
typology.

For example, in Figure 11 three graphs are shown which have different sizes but the
same typology: the type adjacency matrix is

T =

(
1 2
2 0

)
.

Transplantation of equilibrium among these graphs is possible.
Generally, let there be two types of nodes characterized by the type adjacency matrix

T =

(
s1 s2

t1 t2

)
.

Then (9) implies the system of linear equations{
(b− 2a+ s1b)k1 + s2bk2 = e(1− 2a),

t1bk1 + (b− 2a+ t2b)k2 = e(1− 2a),
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Figure 11: Three graphs with the same typology.

where k1, k2 are investments of the types. The solution of the system is the pair

k1 =
e(1− 2a)[b− 2a+ (t2 − s2)b

(b− 2a)2 + (s1 + t2)(b− 2a)b+ (s1t2 − t1s2)b2
, (10)

k2 =
e(1− 2a)[b− 2a+ (s1 − t1)b

(b− 2a)2 + (s1 + t2)(b− 2a)b+ (s1t2 − t1s2)b2
, (11)

If 0 < ki < e, i = 1, 2, then the values k1, k2 define the inner equilibrium of the game.
Here we limit ourselves by several examples of the networks with two types of nodes.
For the chain of four nodes (with the order of types: 2–1–1–2) the type adjacency

matrix is
T =

(
1 1
1 0

)
.

Formulas (10)-(11) take the form

k1 =
2ae(1− 2a)

6ab− 4a2 − b2
,

k2 =
e(1− 2a)(2a− b)

6ab− 4a2 − b2
.

The conditions of inner equilibrium 0 < ki < e, i = 1, 2 are fulfilled under absence of
productivity (b < 2a.)

A generalization of the previous case is a fan, i.e. a dyad to each node of which a
bundle of ν hanging nodes is adjoined. The type adjacency matrix of the fan is

T =

(
1 ν
1 0

)
.

An important example of network with two types of nodes is the star network; let us
remind that its type adjacency matrix is

T =

(
0 ν
1 0

)
.

Equations (9)-(10) turn into

k1 =
e(1− 2a)[(ν − 1)b+ 2a]

νb2 − (b− 2a)2
,
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k2 =
2ea(1− 2a)

νb2 − (b− 2a)2
.

The pair k1, k2 defines inner equilibrium if 0 < ki < e, i = 1, 2, i.e. if
νb2 − (b− 2a)2 > 0,

νb2 − (b− 2a)2 > (1− 2a)[(ν − 1)b+ 2a],

νb2 − (b− 2a)2 > 2a(1− 2a).

The third and the first inequalities follow from the second one, and the latter is fulfilled
for all ν if b+ 2a > 1 and b > (−6a+ 1 +

√
36a2 − 4a+ 1)/2.

The following proposition identifies agents interested in growth of the star network.

Theorem 4. In star network, if the number of peripheral nodes, ν , increases, then
knowledge and utility in the central node decrease under absence of productivity, but
increase under presence of productivity. Knowledge and utility in each peripheral node
always decrease.

Proof. Derivative of k1 in ν (if ν is considered as a continuous variable) is

2bae(1− 2a)(b− 2a)

[(b− 2a)2 − νb2]2
.

Hence, knowledge in the central node decreases in ν if b < 2a and increases if b > 2a. It
is directly seen that k2 decreases in ν. According to Theorem 2.2 in [15], utility increases
in knowledge.
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Abstract

A graph G is critically 3-connected if G is 3-connected and G− v isn’t 3-connected for
any v ∈ V (G).

It was proved in [2] that every critically 3-connected graph contains at least two vertices
of degree 3. Some generalizations of this result for k-connected graphs could be found
in [1, 3, 6]. In [2, 3] some examples of critically 3-connected graphs with exactly two
vertices of degree 3 were presented. In this paper we describe all such graphs.

1 Some general facts
Let G(V,E) be a critically 3-connected graph and u, v ∈ V are only two vertices of G of
degree 3. We use following notations.

Mi(G) = {S | S ⊂ V ∪ E, |S| = 3, |S ∩ E| = i and graph G− S is disconnected},

M(G) = ∪3
i=1 Mi(G) and

M+(G) = ∪3
i=0 Mi(G). We say that S is a cut if S ∈ M(G) and we say that S is a

cutset if S ∈M0(G). It’s obvious that any vertex of G is contained contains in at least
one cutset.

For any cut S ∈M(G) we denote V0(S) = S ∩ V and V (S) — the set of all vertices
which are contained in S or incident to an edge from S. We say that a set S ∈M+(G) is
maximal if it’s impossible to change some vertex x ∈ S for an edge xy, such that the set
(S \ {x}) ∪ {xy} is a cut. The set of all maximal cuts and cutsets we denote M∗(G).

Lemma 1. Any cutset S ∈M0(G) divides G into exactly two components.

It’s easy to see that any cut S ∈ M(G) divides G into exactly two components too.
Let S ∈ M+(G) and H ′1, H

′
2 be connectivity components of G − S. Then we denote

Hi = H ′i ∪ V0(S), Ti = Hi ∩ V (S) (i ∈ {1, 2}). We say that T1, T2 are borders of S and
H1, H2 are parts of S-decomposition of G. We denote Part(S) = {H1, H2}.

Lemma 2. Let S ∈M0(G), x ∈ S and d(x) = 3. Then S don’t contain a vertex, adjacent
with x.

2 The case of adjacent vertices of degree 3
Let u, v be adjacent vertices of degree 3. Then lets delete an edge uv. It’s easy to see that
graph G− uv is 2-connected graph in which any vertex except for u, v are critical. In this
case we use the construction of decomposition tree [4] (see also [5]).
∗Supported by the Government of the Russian Federation (grant 14.Z50.31.0030)
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Theorem 3. 1) The decomposition tree BT(G) is a chain, which terminal parts are
triangles. One of this triangles contains u and another contains v.

2) All blocks in BT(G) are K4 and all cycles are C3 or C4 (cycles on 3 and 4 vertices
respectively).

3) Lets call two parts in BT(G) neighboring if they have a common adjacent cutset in
BT(G). Then C4 can be neighboring only with K4 and C3 can be neighboring with K4 or
C3. Moreover, the terminal triangles can be neighboring only with K4’s.

4) Let x ∈ V \{u, v}. Then x can be contained in 2 or 3 parts, this parts are consecutive
and if there are 3 such parts, then the middle of them is a triangle.

5) If two K4’s are neighboring in BT(G), than two vertices of they common cutset
could be adjacent or not adjacent. In all other case two vertices of a cutset in BT(G) are
adjacent.

Corollary 4. At that case we have ∆(G) ≤ 6 (∆(G) is the maximum degree of graph
vertices).

Figure 1: critically 3-connected graph with two adjacent vertices of degree 3.

An example of a such graph you can find on a picture 1.

3 The case of not adjacent vertices of degree 3
In this case we describe the structure of the graph G in terms of the set M∗(G).

Lemma 5. Let S, T ∈M∗(G). Then |S ∩ T | ≤ 1.

Corollary 6. All but perhaps one vertices of T are contained in the same part of H ∈
Part(S).

In this case we say that T belongs to H.

Theorem 7. 1) We can denote all sets from M∗(G) by S1, . . . , Sm and denote Part(Si) =
{Li, Ri}, such that for all i < j the set Si belongs to Lj and Sj belongs to Ri.

2) In that notations we can without lost of generality say that u ∈ L1 ⊂ L2 ⊂ . . . ⊂ Lm
and R1 ⊃ R2 ⊃ . . . ⊃ Rm 3 v.

Lets consider two consecutive sets Si and Si+1 from our sequence. Let Pi and Qi+1

are borders of Ri and Li+1 respectively. Now there are two different cases: sets Si and
Si+1 can have or haven’t a common edge.

Theorem 8. Let Si ∩ Si+1 = {xy}, where x ∈ Qi+1 and y ∈ Pi. Then we have two
possibilities.

1. Ri ∩ Li+1 = Pi ∩Qi+1 = {a, b} and ab ∈ E.
2. Ri ∩ Li+1 = {a, b, c, d}, where Pi = {a, c, y}, Qi+1 = {b, d, x} and ab, ad, cb, cd ∈ E.
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Figure 2: critically 3-connected graph with two non-adjacent vertices of degree 3.

Theorem 9. Let Si and Si+1 haven’t common edges (but may have a common vertex).
Then Ri ∩ Li+1 = Pi ∪Qi+1, |Pi ∩Qi+1| ≤ 1 and |Ri ∩ Li+1| ≥ 5.

Edge structure of subgraph in all this cases could be easily described.

Corollary 10. At that case we have ∆(G) ≤ 10.

An example of a such graph you can find on a picture 2.
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Abstract

The second author introduced with I. Törmä a two-player word-building game [Playing
with Subshifts, Fund. Inform. 132 (2014), 131–152]. The game has a predetermined
(possibly finite) choice sequence α1, α2, . . . of integers such that on round n the
player A chooses a subset Sn of size αn of some fixed finite alphabet and the player
B picks a letter from the set Sn. The outcome is determined by whether the word
obtained by concatenating the letters B picked lies in a prescribed target set X (a
win for player A) or not (a win for player B).

The winning shift W (X) of a subshift X is defined as the set of choice sequences
for which A has a winning strategy when the target set is the language of X. The
winning shift W (X) mirrors some properties of X. For instance, W (X) and X have
the same factor complexity. In this paper, we completely describe the winning shifts
of subshifts generated by the generalized Thue-Morse substitutions and show that
they have a substitutive structure. We show how the description can be used to
derive their factor complexity functions.

Keywords: two-player game, winning shift, factor complexity, generalized thue-morse word

1 Introduction
In the paper [8], the second author introduced with I. Törmä a two-player word-building
game. The two players, Alice and Bob, agree on a finite alphabet S, a target set X of
words over S, game length n ∈ N ∪ {N}, and a choice sequence α1α2 · · ·αn (a word) of
integers in {1, 2, . . . , |S|}n. On the round j of the game, 1 ≤ j ≤ n, Alice first chooses a
subset Sj of S of size αj and then Bob picks a letter aj from the subset Sj . During the
game, Alice and Bob thus together build the word a1a2 · · · an (finite or infinite). If this
built word is in the target set X, then Alice wins, otherwise Bob does. In other words,
Alice aims to build a valid word of X while her adversary Bob attempts to introduce a
forbidden word.

In studying games of this sort, it would be typical to fix a choice sequence and see
what conditions on X guarantee the existence of a winning strategy for one of the players.
The work of [8] adopts the opposite point of view: fix a set X and see for which choice
sequences Alice has a winning strategy. This set of choice sequences, dubbed as the winning
set W (X) of X, turns out to be a very interesting object. First of all, if X is a subshift,
then W (X), now called the winning shift of X, is also a subshift, and the set of factors
of W (X) of length k is exactly the winning set of factors of X of length k. Actually the
winning set W (X) inherits many properties of X. For instance, if X is a regular language,
so is W (X), and if X computable, then so is W (X). The most interesting result, which
sparked the research in this paper, is the fact that the sets X and W (X) have the same
cardinality so, for a subshift X, the winning shift W (X) has the same entropy and factor
complexity function as X. Now the winning setW (X) is in a sense simpler than X because
it is downward closed: if any letter of a choice sequence in W (X) is downgraded to a
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smaller letter, then the resulting word is still in W (X). The winning set W (X) is thus a
rearrangement of X to a downward closed set. Indeed, the winning set can be significantly
simpler: for instance, the winning set of a Sturmian subshift is the subshift over {1, 2}
whose words contain exactly one letter 2. Overall, the winning set of X is not just some
obscure set loosely related to X but a related object that mirrors properties of X.

Descriptions of the winning shifts for particular subshifts remain largely unknown.
In this work, we provide such descriptions for the winning shifts of subshifts generated
by generalized Thue-Morse substitutions. Let b ≥ 2, m ≥ 1, and σi be the substitution
defined by σi(k) = k1i−1. The generalized Thue-Morse substitution ϕb,m is the uniform
substitution defined by

ϕb,m(k) = k(k + 1)(k + 2) · · · (k + (b− 1)),

for k ∈ {0, 1, . . . ,m− 1}, where the letters are intepreted modulo m. The result is that
all choice sequences in the language Lb,m of the winning shift W (ϕb,m) of ϕb,m that
have length at least 2b + 1 are obtained from shorter choice sequences by substitution.
Namely, if α is in Lb,m ending with a letter that is greater than 1 such that |α| > 2b, then
α = σi(�)σb(w)a for �wa ∈ Lb,m, where � and a are letters and 1 ≤ i ≤ b. Further, the
words in Lb,m of length at most 2b admit a compact description.

The structure of the winning shift of ϕb,m is quite easy to comprehend, and we apply our
results to give a simple derivation of the first difference function of the subshift generated
by ϕb,m. This function can in turn be used to derive the factor complexity function. Š.
Starosta has derived these functions previously with methods related to so-called G-rich
words [7].

2 Notation and Preliminary Results

2.1 Standard Definitions
Here we briefly define word-combinatorial notions; further details are found in, e.g., [5]. An
alphabet S is a nonempty finite set of letters, and we denote by S∗ the set of finite words
over S. The set of words over S of length n is denoted by Sn, and by S≤n we denote the
set of words over S with length at most n. Infinite words over S are sequences in SN. The
length of a finite word w is denoted by |w|, and the empty word ε is the unique word of
length 0. Suppose that w is a word (finite or infinite) such that w = uzv for some words
u, z, and v. Then we say that z is a factor of w. If u = ε (respectively v = ε), then we
call the factor z a prefix (respectively suffix) of w. If u = ε and z 6= w, then z is a proper
prefix of w; similarly we define a proper suffix of w. We say that z occurs at position |u|
of w; the position |u| is an occurrence of the factor z. Thus we index letters from 0. The
word ∂i,j(w), where i+ j ≤ |w|, is obtained from the word w by deleting i letters from
the beginning and j letters from the end. An infinite word is ultimately periodic if it is of
the form uvvv · · · ; otherwise it is aperiodic.

A subshift X is a subset of SN defined by some set F of forbidden words:

X = {w ∈ SN : no word of F occurs in w}.

We denote by LX(n) the set of words of length n occurring in words of X and define the
language L(X) of X as the set

⋃
n∈N LX(n). The subshift X is uniquely defined by its

language. The function f defined by letting f(n) = |LX(n)| is called the factor complexity
function of X, and it counts the number of words of length n in the language of X. We
define the first difference function ∆ by setting ∆(n) = f(n) − f(n − 1) and ∆(0) = 1.
This function measures the growth of the factor complexity function.
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A function τ : S∗ → S∗ is a called a substitution if τ(uv) = τ(u)τ(v) for all u, v ∈ S∗.
In this paper, we typically select S = {0, 1, . . . , |S| − 1}. If τ(s) has the same length for
every s ∈ S, then we say that τ is uniform. We call the images of letters, the words τ(s),
τ -images. Consider the language L defined as the set⋃

s∈S
{w ∈ S∗ : w occurs in τn(s) for some n ≥ 0}

consisting of the factors of the words obtainable by applying τ repeatedly to the letters of
S. Let

L(τ) = {w ∈ L : there exists arbitrarily long words u and v such that uwv ∈ L}.

The subshift generated by τ is simply the subshift with the language L(τ) (i.e., we forbid
the complement of L(τ)). The substitution τ is primitive if there is an integer n such
that τn(s) contains all letters of S for every s ∈ S. The substitution τ is aperiodic if the
subshift generated by τ does not contain ultimately periodic infinite words. We assume
that all substitutions considered are aperiodic.

We say that a word w in L(τ) admits an interpretation (a0 · · · an+1, i, j) for letters
a0, . . ., an+1 by τ if w = ∂i,j(τ(a0 · · · an+1)), 0 ≤ i < |τ(a0)|, 0 ≤ j < |τ(an+1)|, and
a0 · · · an+1 ∈ L(τ). The word a0 · · · an+1 is called an ancestor of the word w. We say that
(u1, u2) is a synchronization point of w (for τ) if w = u1u2 and whenever v1wv2 = τ(z) for
some z ∈ L(τ) and some words v1 and v2, then v1u1 = τ(t1) and u2v2 = τ(t2) for some
words t1 and t2 such that z = t1t2. We say that τ has synchronization delay L if every
word in L(τ) of length at least L has at least one synchronization point and L is minimal.

Let τ be a uniform substitution of length M with synchronization delay L. Let w in
L(τ) be a word such that |w| ≥ L. Suppose that w has an ancestor z, so that w = ∂i,j(τ(z))
with 0 ≤ i, j < M . While w might have several ancestors, the uniformity of τ and the
fact that w has at least one synchronization point ensure that the numbers i and j are
independent of the chosen ancestor z. In fact, the positions i and j mark a synchronization
point of w. All in all, the number i uniquely identifies the positions of w where the τ -images
of the letters of any ancestor of w begin at, and we say that w has decomposition i mod M .

2.2 Word Games
Next we define precisely the word game in which two players, Alice and Bob, build a
finite or infinite word. A word game is a quadruple (S, n,X, α), where S is an alphabet,
n ∈ N ∪ {N}, the target set X is a subset of Sn, and the choice sequence α is a word of
length n over the alphabet {1, 2, . . . , |S|}. It does not matter if the target set X contains
words of distinct lengths, we may use X ∩ Sn in place of X; this will always be clear from
context.

Denote by G the word game (S, n,X, α), and write α = α1 · · ·αn for letters αi. During
the round i, 1 ≤ i ≤ n, of this game, first Alice chooses a subset Si of S of size αi. Then
Bob picks a letter ai from the set Si. After n rounds have taken place, Alice and Bob
have together built a word a1a2 · · · an. If a1a2 · · · an ∈ X, then Alice wins the game G and
otherwise Bob does. An example is provided at the beginning of the next section, and
more examples are found in [8].

Alice’s strategy for G is a function s : S≤i → 2S that specifies which subset she should
choose next given the word of length i constructed so far. Similarly we define Bob’s strategy
as a partial function s : S≤i×2S → S specifying which letter Bob should pick given the word
constructed so far and the subset chosen by Alice. Let sA and sB respectively be Alice’s
strategy and Bob’s strategy for the game G. The play p(G, sA, sB) of the strategy pair
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(sA, sB) is the word a1a2 · · · an defined inductively by ai+1 = sB(a1 · · · ai, sA(a1 · · · ai))
with a1 · · · a0 = ε. We say that Alice’s strategy s is winning if p(G, s, sB) ∈ X for all
Bob’s strategies sB (Alice wins no matter how Bob plays). Analogously Bob’s strategy
s is winning if p(G, sA, s) /∈ X for all Alice’s strategies sA. If n ∈ N or X is a closed set
in the product topology of SN (in particular, if X is a subshift), then a winning strategy
always exists for one of the players [4]. In this paper, we consider Bob’s strategies only
indirectly. Thus whenever we talk about a winning strategy we mean that it is Alice’s
winning strategy. Similarly by a winning play we mean a play by a strategy pair (sA, sB)
where sA is Alice’s winning strategy.

Like mentioned in the introduction, we are interested in the choice sequences for which
Alice has a winning strategy. Given a subset X of Sn, where n ∈ N ∪ {N}, we define the
winning set W (X) of X as the set

{α ∈ {1, . . . , |S|}n : Alice has a winning strategy for the word game (S, n,X, α)}.

We often omit the alphabet S, it will be clear from the context. For a language X ⊆ S∗,
we set

W (X) =
⋃
n∈N

W (X ∩ Sn)

and call also this set the winning set of X. If n = N and X is a subshift, then we call
W (X) the winning shift of X; if the subshift X is generated by a substitution τ , then we
denote its winning shift by W (τ). Indeed, in [8, Proposition 3.4], the following result was
proven.

Proposition 1. If X is a subshift, then W (X) is a subshift and L(W (X)) = W (L(X)).

We abuse notation and write W (X) for L(W (X)), it is always clear from context
whether we consider finite words or infinite words. In addition, we have the following
observation.

Lemma 2. Let X and Y be sets containing words of equal length. If X ⊆ Y , then
W (X) ⊆W (Y ).

Proof. Alice’s winning strategy for a word game with target set X and choice sequence in
W (X) is sufficient as it is for her to win in the game with the same choice sequence and
target set Y .

We endow the alphabet {1, . . . , |S|} with the natural order 1 < 2 < . . . < |S|. Suppose
that u and v are words over this alphabet (finite or infinite), and write u = u0 · · ·un−1

and v = v0 · · · vm−1 for letters ui, vi. Then u ≤ v if and only if n = m and ui ≤ vi for
i = 0, . . . , n− 1. The winning set W (X) is downward closed with respect to this partial
ordering: if u ≤ v and v ∈W (X), then u ∈W (X). This is simply because downgrading a
letter from the choice sequence only makes Bob’s chances of winning slimmer.

Observe that the winning strategies for finite choice sequences ending with the letter 1
are just trivial extensions of winning strategies of shorter choice sequences ending with a
letter greater than 1. Thus we define a finite choice sequence ending with 1 to be reducible
and a choice sequence that is not reducible to simply be nonreducible. The infinite words of
the winning shift W (X) are obtainable from nonreducible choice sequences by appending
infinitely many letters 1 and by taking closure. A rule of thumb for the rest of the paper is
that to describe the structure of the winning sets it is enough to study only nonreducible
choice sequences.

Finally, we need the next proposition [8, Proposition 5.7] that motivates the presented
results.
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n n n
1 � 9 �11111112 17 �1111111111111112
2 �2 10 �111111112 18 �11111111111111112

�211111112 �21111111111111112
3 �12 11 �1111111112 19 �111111111111111112

�1211111112 �121111111111111112
4 �112 12 �11111111112 20 �1111111111111111112
�212 �11211111112 �1121111111111111112

5 �1112 13 �111111111112 21 �11111111111111111112
�111211111112 �11121111111111111112

6 �11112 14 �1111111111112 22 �111111111111111111112
�21112 �111121111111111111112

7 �111112 15 �11111111111112 23 �1111111111111111111112
�121112 �1111121111111111111112

8 �1111112 16 �111111111111112 24 �11111111111111111111112
�11111121111111111111112

Table 1: The nonreducible choice sequences of the winning shift of the Thue-Morse
substitution for lengths 1 to 24. The letter � can be substituted by both of the letters 1
and 2.

Proposition 3. If n ∈ N and X ⊆ Sn, then |W (X)| = |X|.

We note that a subset W of {0, 1}n can be interpreted as a family of subsets of
{1, 2, . . . , n} (a so-called set system) by considering a word w ∈ {0, 1}n as the characteristic
function of a subset. Proposition 3 has been proven in relation to set systems in [2].

3 Winning Shifts of Generalized Thue-Morse Substitu-
tions

In this section, we describe the winning shifts of generalized Thue-Morse substitutions.
Before giving the results in full generality, we look at the winning shift of the Thue-Morse
word and explain our ideas through examples.

Let τ be the Thue-Morse substitution: τ(0) = 01, τ(1) = 10. The substitution τ is
uniform and primitive, and it is readily proven that it is aperiodic. With an exhaustive
search, it is easily established that its synchronization delay is 4 (see also Lemma 5). The
fixed point at 0 is the famous Thue-Morse word, which is overlap-free (i.e., it does not
contain a factor of the form auaua for a word u and a letter a). For more details on the
substitution τ , see for example [6, Section 2.2].

In Table 1, we list nonreducible choice sequences of W (τ) for lengths 1 to 24.1 For the
1Remember that reducible choice sequences of length n are obtained by padding shorter nonreducible

choice sequences with the letter 1.
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Figure 1: Winning strategies for Alice for the choice sequences 2212 and 21211121 in the
case of the Thue-Morse substitution.

choice sequence 2212, Alice has the following winning strategy:

ε 7→ {0, 1},
0, 1 7→ {0, 1},

00, 10 7→ {1},
01, 11 7→ {0},

001, 101, 010, 110 7→ {0, 1},

the other arguments being irrelevant. This strategy is depicted in Figure 1 as a strategy
tree.

Table 1 contains many patterns. By Proposition 3, the number of nonreducible choice
sequences of length n is counted by the first difference function ∆(n). Based on the
data, it seems that ∆(n) ∈ {2, 4} for all n ≥ 1 and ∆(n) = 4 only if n = 2k + ` + 1 for
k ≥ 1 and 1 ≤ ` ≤ 2k−1. This is of course readily observed when looking at the factor
complexity function; here we see much more: the rule described next confirms the preceding
observations.

We observe that a choice sequence α in the winning shift always seems to contain at
most three occurrences of 2. Moreover, if α contains exactly three occurrences of 2, then
the distance between the two final occurrences is 2k − 1 for some k ≥ 1, and the middle
occurrence is preceded by at most 2k−1 occurrences of the letter 1. The rule seems to be
the following. If n = 3 · 2k + 2, then the only nonreducible choice sequence of length n (up
to the difference at the very beginning) is �13·2k2. Then the number of 1s increases until
there are 2k+2 − 1 of them. Next a third occurrence of 2 can be introduced: the choice
sequences of length 2k+2 + 2 are �212k+2−12 and �12k+2

2 (the former choice sequence
downgraded). Then the number of 1s before the second to last occurrence of 2 starts to
grow one by one until the choice sequences considered are of length 3 · 2k+1 + 1, and then
the pattern repeats. The observed rule suggests that nonreducible choice sequences of
W (τ) of lengths 2k + 2 to 3 · 2k + 1 are related to nonreducible choice sequences of lengths
2k+1 + 2 to 3 · 2k+1 + 1. Indeed, these choice sequences look identical: the latter ones are
just “blown up” by a factor of 2. Since the morphism τ also “blows up” words by a factor
of 2, we proceed to look at τ -images of the strategy trees of short choice sequences.

Consider the strategy tree for the choice sequence 2212 depicted in Figure 1. Substitute
all letters of this tree with τ while preserving the branch structure to obtain the right tree
of Figure 1. The obtained strategy tree gives a winning strategy for Alice in a word game
with choice sequence 21211121. Let us next give an intuitive explanation for the strategy
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from Alice’s point of view. Alice can beat Bob in the word game with choice sequence
21211121 by imagining that she plays the word game with choice sequence 2212, for which
she has a winning strategy. On her first turn, Alice lets Bob choose between 0 and 1. Since
Alice wins this game of length 1, Alice can also win the game of length 2 with choice
sequence 21 played on the τ -images τ(0) and τ(1) (choice sequence 11 is also possible but
less interesting). Continuing, Alice lets Bob again choose between 0 and 1. The win on
this play of length 2 ensures Alice winning the game of length 4 with choice sequence 2121
played on the τ -images τ(00), τ(01), τ(10), τ(11). Next, Alice gives Bob only one choice to
ensure a win, so Bob, having no options, loses in the game of length 6 with choice sequence
212111 played on the respective τ -images. Overall, we see that the short winning strategy
for the choice sequence 2212 enables Alice to always win the game with choice sequence
21211121. This longer choice sequence is constructed in such a way that all occasions of
Bob having a real choice (branches of the strategy tree) correspond to Bob having a choice
of two letters in the shorter game with choice sequence 2212; Alice just imagines playing a
short game with choice sequence 2212 filling the suffixes of the τ -images by not letting
Bob choose. Alice’s method can indeed be viewed as a branch-preserving substitution of
the strategy tree.

The method described above does not explain if it is possible for Alice to obtain a
winning strategy for, e.g., the choice sequence 2211121 from some shorter winning strategy.
Let us see how she could do this. Alice again imagines playing the winning strategy of
the word game with choice sequence 2212 using her winning strategy of Figure 1. Now,
however, during the first turn Alice lets Bob pick a suffix of length 1 of the τ -images of
the letters 0 and 1 (which Bob is allowed to play on the first turn of the shorter game).
Continuing as above, the played word will be a suffix of a word played in the word game
with choice sequence 21211121 and a suffix of a τ -image of a word played in the word
game with choice sequence 2212. Therefore also 2211121 ∈W (τ). Similarly the play on the
τ -images does not have to complete the final image, the play can be restricted to a proper
prefix of the τ -images. In this particular case of the Thue-Morse substitution, it is easy to
be convinced that all long enough winning strategies are obtainable by substitution by
working out some example desubstitutions on strategy trees.

Not only are Alice’s winning strategies substitutible and desubstitutible, but the
language of the winning shift itself has a substitutive structure. Let σ be a substitution
defined by σ(1) = 11 and σ(2) = 21, and let �w2 be a nonreducible choice sequence in
W (τ) for a letter �. The result is that the words �σ(w)2 and σ(�w)2 are in W (τ) and that
all nonreducible choice sequences of length at least 5 are obtained in this manner. Thus in
our particular example it is sufficient to know all nonreducible choice sequences of W (τ)
of length at most 4 to completely describe W (τ).

Next, we define the generalized Thue-Morse substitutions and describe their winning
shifts, which are similar to that of the Thue-Morse substitution. Moreover, we state how
the structure of the winning shifts can be used to derive known formulas for their factor
complexity functions. For more on generalized Thue-Morse words, see e.g. [1].

Let sb(n) denote the sum of digits in the base-b representation of the integer n. For
b ≥ 2 and m ≥ 1, the generalized Thue-Morse word tb,m is defined as the infinite word
whose letter at position n equals sb(n) mod m. It is straightforward to prove that tb,m is
the fixed point, beginning with the letter 0, of the primitive substitution ϕb,m defined by

ϕb,m(k) = k(k + 1)(k + 2) · · · (k + (b− 1)),

for k ∈ {0, 1, . . . ,m − 1}, where the letters are intepreted modulo m. The word tb,m is
ultimately periodic if and only if b ≡ 1 (mod m) [1]. We make the assumption that tb,m
is aperiodic.
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Figure 2: The subtree of Alice’s winning strategy after Bob has chosen k in the game with
choice sequence �1`21b−12.

To clarify the notation, from now on we assume that letters are elements of the group
Zm, so that we can naturally add letters. Moreover, we keep b and m fixed and simply
write ϕ for ϕb,m.

Let π : Zm → Zm denote the permutation defined by setting π(k) = k+ b− 1. In other
words, the permutation π maps k to the final letter of the word ϕ(k). We set q to be the
order of π, that is, the least positive integer such that q(b− 1) ≡ 0 (mod m).

To describe the winning shift W (ϕ) of ϕ, it is crucial to know words of L(ϕ) of length
2 and 3. The next two lemmas are respectively proven in [7] and [3].

Lemma 4. We have

• Lϕ(2) = {πi(k − 1)k : k ∈ Zm, 0 ≤ i < q} and

• Lϕ(3) = {πi(k − 1)k(k + 1): k ∈ Zm, 0 ≤ i < q} ∪ {(k − 1)kπ−i(k + 1): k ∈ Zm, 0 ≤
i < q}.

Lemma 5. The substitution ϕ has synchronization delay 2b.

Let σi : {1, 2, . . . , |S|}∗ → {1, 2, . . . , |S|}∗ be the substitution defined by σi(k) = k1i−1

for k ∈ {1, 2, . . . , |S|}. It can be proved that every strategy tree of a winning strategy
for a choice sequence in W (ϕ) that has length at least 2b + 1 (is greater than the
synchronization delay) is desubstitutible. It follows, just as in the example case of the
Thue-Morse substitution, that all long enough choice sequences in W (ϕ) are of the form
σi(�)σb(w)a, where �wa ∈W (ϕ) for letters � and a and 1 ≤ i ≤ b.

Next we describe the choice sequences of length at most 2b.

Proposition 6. Let α in W (ϕ) be a nonreducible choice sequence of length n.

(i) If 2 ≤ n ≤ b+ 1, then α = �1n−2a with � ∈ {1, . . . ,m} and a ∈ {2, . . . , q}.

(ii) If b + 2 ≤ n ≤ 2b, then α = �1n−2a or α = �1`21b−12 with � ∈ {1, . . . ,m} and
a ∈ {2, . . . , q}.

Proof. Consider first the case 2 ≤ n ≤ b+ 1. Write α = �ur with letters � and r, and let
w be a winning play in the game with choice sequence α. First we argue that the prefix
of w of length n − 1 is of the form k(k + 1) · · · (k + n − 2) for some k ∈ Zm, that is, it
equals ϕn−1,m(k). If this were not the case, then this prefix equals xijy for some words
x and y and letters i and j such that j 6= i + 1. Thus w has decomposition |xi| mod b.
Since w is a winning play, Bob cannot choose inside a ϕ-image, and it must thus be that
|jy| is a positive multiple of b. This is impossible as now |α| > |xijy| ≥ b + 1. Due to
the restricted form of the prefix of w of length n− 1, we see that Bob cannot make any
choices between his first and last turns, so α = �1n−2r. Suppose for a contradiction that
r > q. Now Bob can pick a letter c such that c /∈ {πi(k + n − 1) : 0 ≤ i < q}. It follows
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that π−1(k + n − 2)c is an ancestor of the played word ϕn−1,m(k)c. This is however a
contradiction with Lemma 4. Therefore r ≤ q. It is now clear that any word of the form
�1n−2r with � ∈ {1, . . . ,m} and r ∈ {2, . . . , q} is in W (ϕ): after Bob has chosen k, Alice
forces him to play ϕn−1,m(k) after which she lets him choose among the q letters c such
that π−1(k + n− 2)c is in Lϕ(2).

Suppose then that b+ 2 ≤ n ≤ 2b. If α contains exactly two letters that are greater
than 1, one at the beginning and one at the end, then α must again be of the form �1n−2a
with � ∈ {1, . . . ,m} and a ∈ {2, . . . , q} (after Bob has chosen k, Alice forces him to play
ϕn−b−1(k)ϕ(π−1(k + n− b− 2) + 1) after which she lets him choose among the q letters c
such that π−1(k + n− b− 2)(π−1(k + n− b− 2) + 1)c ∈ L(ϕ); see Lemma 4). Otherwise
write α = �urvs with letters �, r, and s such that r, s > 1, and let w again be a winning
play in the game with choice sequence α. Analogous to the arguments of the preceding
paragraph, we see that |α| > |�urv| ≥ 2b+ 1 unless the prefix of w of length |u|+ 1 is of
the form ϕ|u|+1,m(k) for some k ∈ Zm. Again, we have u = 1|u| and, further, v = 1b−1.
Assume for a contradiction that r ≥ 3. After |u|+ 1 rounds Bob can choose a letter c such
that c /∈ {k + |u|+ 1, π−1(k + |u|) + 1}. Clearly the word played so far has decomposition
|u|+ 1 mod b, so during her next b − 1 turns Alice must let Bob complete the ϕ-image
beginning with c. During his final turn Bob can pick a letter d such that d 6= c+1. It follows
that the played word has the word π−1(k+ |u|)cd as an ancestor. This contradicts Lemma
4, so r = 2. The preceding arguments also show that w must have ϕ|u|+1,m(k)(k + |u|+ 1)
or ϕ|u|+1,m(k)(π−1(k + |u|) + 1) as a prefix. Let us consider the former case. Since Bob
wins if he can choose inside a ϕ-image, Alice must now force Bob to play ϕn−1,m(k) to
ensure that the word played so far has multiple ancestors. If s ≥ 3, then as his ultimate
move Bob can pick a letter c such that c /∈ {k + n− 1, π−1(k + n− 2) + 1}. Then w has
unique ancestor π−1(k + n− 2− b)π−1(k + n− 2)c. Our assumption that b 6= 1 implies
by Lemma 4 that π−1(k + n − 2) + 1 = c, which is impossible by the choice of c. Thus
s = 2, that is, α = �1|u|21b−12. It is now straightforward to derive a winning strategy for
Alice for any � ∈ {1, . . . ,m}. The subtree of length n− 1 of such a strategy is depicted in
Figure 2; it is readily verified that the corresponding strategy is winning for Alice using
Lemma 4. The claim follows.

By substituting the nonreducible choice sequences of Proposition 6, we have a complete
description of W (ϕ).

Corollary 7. Consider nonreducible choice sequences α of W (ϕ) of length n.

(i) If 2 ≤ n ≤ b+ 1, then α = �1n−2a with � ∈ {1, . . . ,m} and a ∈ {2, . . . , q}.

(ii) If n = bk+1 + ` + 1 with k ≥ 0, 1 ≤ ` ≤ bk+1 − bk, then α = �1n−2a or α =

�1`−121b
k+1−12 with � ∈ {1, . . . ,m} and a ∈ {2, . . . , q}.

(iii) If n = 2bk+1 − bk + ` + 1 with k ≥ 0, 1 ≤ ` ≤ bk+2 − 2bk+1 + bk, then α = �1n−2a
with � ∈ {1, . . . ,m} and a ∈ {2, . . . , q}.

Corollary 7 implies that for n ≥ 2 the first difference function ∆(n) for tb,m takes only
two values: (q − 1)m and qm. Using induction, we can derive the values of ∆(n) and C(n)
(the factor complexity function of tb,m) for any n ≥ 1; see Table 2. These functions have
been derived by Š. Starosta with other methods [7].

4 Concluding Remarks
In this paper, we presented a description of the winning shift of a generalized Thue-Morse
substitution. Results similar to those presented hold in a more general setting. If we

131



Jarkko Peltomäki, Ville Salo

n ∆(n) C(n)

1 m− 1 m

2 ≤ n ≤ b+ 1 (q − 1)m qm(n− 1)−m(n− 2)

bk+1 + `+ 1
qm qm(n− 1)−m(bk+1 − bk)

k ≥ 0, 1 ≤ ` ≤ bk+1 − bk

2bk+1 − bk + `+ 1
(q − 1)m qm(n− 1)−m(bk+1 − bk + `)

k ≥ 0, 1 ≤ ` ≤ bk+2 − 2bk+1 + bk

Table 2: The values of the first difference function ∆(n) and the factor complexity function
C(n) of the generalized Thue-Morse word tb,m.

consider a uniform substitution that is marked2, then desubstituting long enough winning
strategies is still possible. In this more general setting, long enough nonreducible choice
sequences are essentially obtained by substitution, even though their precise form seems
to elude precise description.
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Abstract

We consider a dynamic, discrete-time, game model where the players use a
common resource and have different criteria to optimize. Furthermore, the situation
with incomplete information, namely when the players’ planning horizons are different
and random, is considered. A new approach to construct cooperative equlibrium in
dynamic multicriteria games is constructed.
Keywords: dynamic games, multicriteria games, Nash bargaining solution, random planning
horizons.

1 Introduction
Mathematical models involving more than one objective seem more adherent to real
problems. Often players have more than one goal which are usually not comparable. These
situations are typical for game-theoretic models in economic and ecology. Models with
random planning horizons in exploitation processes are most appropriate for describing
reality: external random factors can cause a game breach and the participants know
nothing about them a priori.

In this paper we consider a dynamic, discrete-time, game model where the players use a
common resource and have different criteria to optimize. First, we construct a multicriteria
Nash equilibrium using the approach presented in [3]. Then, we find a multicriteria
cooperative equilibrium as a solution of a Nash bargaining scheme with the multicriteria
Nash equilibrium playing the role of status quo points.

2 Dynamic Multicriteria Game with Random Horizons
Consider a bicriteria dynamic game with two participants in discrete time. The players
exploit a common resource and both wish to optimize two different criteria. The state
dynamics is in the form

xt+1 = εxt − u1t − u2t , x0 = x , (1)

where xt ≥ 0 is the population size at time t ≥ 0, ε ≥ 1 denotes the natural birth rate,
and uit ≥ 0 gives the catch of player i at time t, i = 1, 2.

Each player has two goals to optimize, they wish to maximize their profit from selling
fish and minimize their catching cost. Suppose that the market price of the resource differs
for both players, but their costs are identical and depend on both of players catches.
∗This work was supported by the Russian Science Foundation, project no. 17-11-0107 and the Russian

Foundation for Basic Research, projects no. 16-01-00183_a and 16-41-100062 p_a.
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We explore a model in which the players possess heterogeneous planning horizons. By
assumption, the players stop joint exploitation at random time steps: external stochastic
processes can cause a game breach.

Suppose that players 1 and 2 harvest the fish stock during n1 and n2 steps, respec-
tively. Here n1 represents a discrete random variable taking values {1, . . . , n} with the
corresponding probabilities {θ1, . . . , θn}. Similarly, n2 is a discrete random variable with
the value set and the probabilities {ω1, . . . , ωn}. We assume that the planning horizons
are independent. Therefore, during the time period [0, n1] or [0, n2] the players harvest
the same stock, and the problem consists in evaluating their optimal strategies.

The payoffs of the players are determined via the expectation operator:

J1
1 = E

{ n1∑
t=1

δtp1u1tI{n1≤n2} +
( n2∑
t=1

δtp1u1t +

n1∑
t=n2+1

δtp1u
a
1t

)
I{n1>n2}

}
=

=

n∑
n1=1

θn1

[ n∑
n2=n1

ωn2

n1∑
t=1

δtp1u1t+

n1−1∑
n2=1

ωn2

( n2∑
t=1

δtp1u1t+

n1∑
t=n2+1

δtp1u
a
1t)
)]
, (2)

J1
2 = E

{ n2∑
t=1

δtp2u2tI{n2≤n1} +
( n1∑
t=1

δtp2u2t +

n2∑
t=n1+1

δtp2u
a
2t

)
I{n2>n1}

}
=

=

n∑
n2=1

ωn2

[ n∑
n1=n2

θn1

n2∑
t=1

δtp2u2t+

n2−1∑
n1=1

θn1

( n1∑
t=1

δtp2u2t+

n2∑
t=n1+1

δtp2u
a
2t)
)]
, (3)

where, for i = 1, 2, pi ≥ 0 is the market price of the resource for player i, δ ∈ (0, 1) denotes
the discount, uait specifies the strategy of player i when its partner leaves the game.

And for the second criteria we suppose that if the player harvests the stock alone, then
there is no cost, hence

J2
1 = E

{
−

n1∑
t=1

δtmu1tu2tI{n1≤n2} −
n2∑
t=1

δtmu1tu2tI{n1>n2}

}
=

= −
n∑

n1=1

θn1

[ n∑
n2=n1

ωn2

n1∑
t=1

δtmu1tu2t +

n1−1∑
n2=1

ωn2

n2∑
t=1

δtmu1tu2t

]
, (4)

J2
2 = E

{
−

n2∑
t=1

δtmu1tu2tI{n2≤n1} −
n1∑
t=1

δtmu1tu2tI{n2>n1}

}
=

= −
n∑

n2=1

ωn2

[ n∑
n1=n2

θn1

n2∑
t=1

δtmu1tu2t +

n2−1∑
n1=1

θn1

n1∑
t=1

δtmu1tu2t

]
, (5)

where m ≥ 0 indicates the catching cost and δ ∈ (0, 1) denotes the discount factor.
First, we construct a multicriteria Nash equilibrium V jNi (τ, x) as step τ occurs, i, j =

1, 2, using the approach presented in [3].

Proposition 1. The multicriteria Nash equilibrium payoffs in the problem (1)–(5) have
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the form

V 1N
i (n− k, x) = δn−kpiγ

N
in−kx+ piP

n−k+1
n−k (ε− γN1n−k − γN2n−k)x ·

·[δn−k+1γNin−k+1 +

n−1∑
j=n−k+2

δjγNij

j−2∏
l=n−k+2

P l+1
l (ε− γN1l − γN2l )] +

+

k∑
l=1

Pn−ln−kCin−lV
l
i (ni) , i = 1, 2, (6)

where

V l1 (n1) =

n∑
n1=n−l+1

θn1δ
n1p1u

a
1n1

, V l2 (n2) =

n∑
n2=n−l+1

ωn2δ
n2p2u

a
2n2

,

P τ+1
τ =

n∑
l=τ+1

ωl

n∑
l=τ

ωl

n∑
l=τ+1

θl

n∑
l=τ

θl

, C1τ =
ωτ
n∑
l=τ

ωl

1
n∑
l=τ

θl

, C2τ =
θτ
n∑
l=τ

θl

1
n∑
l=τ

ωl

.

V 2N
i (n− k, x) = −δn−kmγN1n−kγN2n−kx2 + Pn−k+1

n−k (ε− γN1n−k − γN2n−k)2x2 ·

·[−δn−k+1mγN1n−k+1γ
N
2n−k+1 −

n−2∑
j=n−k+1

δj+1mγN1j+1γ
N
2j+1(ε− γN1j − γN2j)2 ·

·
j∏

l=n−k+1

P l+1
l +A

j∏
l=n−2

P l+1
l (ε− γN1l − γN2j)2Pnn−1(ε− γN1n1

− γN2n1
)], i = 1, 2. (7)

The multicriteria Nash equilibrium strategies are related by

γN2n−k =
2Pn−k+1

n−k δn−k+1mγN1n−k+1γ
N
2n−k+1(p1 − p2) + ε(K1

n−k −K2
n−k)

−δn−kmp2 −K1
n−k −K2

n−k
+

+γN1n−k
−δn−kmp1 −K1

n−k −K2
n−k

−δn−kmp2 −K1
n−k −K2

n−k
, (8)

where

Ki
n−k=2Api

n∏
l=k

P ln−l(−δn−kmγNin−k+1−
n−1∑
l=k+1

l∏
j=n−l

P jj−1mδ
n−lγNil+1(ε−γN1l−γN2l )−

−
n−1∏

j=n−k+1

P j+1
j A(ε− γN1j − γN2j), i = 1, 2, A = −mδ

n(ε2 − 1)

4
.

The strategy of player 1 at the last step (the quantity γN1n−1) is evaluated through one
of the first-order optimality conditions.

Then, we find a multicriteria cooperative equilibrium as a solution of a Nash bargaining
scheme with the multicriteria Nash equilibrium playing the role of status quo points [1].
So, to construct the cooperative strategies it is required to solve the problem

(V 1c
1 (1, x) + V 1c

2 (1, x)− V 1N
1 (1, x)− V 1N

2 (1, x)) ·
(V 2c

1 (1, x) + V 2c
2 (1, x)− V 2N

1 (1, x)− V 2N
2 (1, x))→ max

uc1t,u
c
2t

, (9)
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where V jci (τ, x) are the cooperative payoffs as step τ occurs and V jNi (τ, x) are the nonco-
operative payoffs (6), (7) (i, j = 1, 2).
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Abstract

We study extremal and algorithmic questions of subset synchronization in mono-
tonic automata. We show that several synchronization problems that are hard in
general automata can be solved in polynomial time in monotonic automata, even
without knowing a linear order of the states preserved by the transitions. We provide
asymptotically tight lower and upper bounds on the maximum length of a shortest
word synchronizing a subset of states in monotonic automata. We prove that the
Finite Automata Intersection problem is NP-hard for monotonic weakly acyclic
automata over a three-letter alphabet, and the problem of computing the rank of
a subset of states is NP-hard to approximate within a factor of 9

8
− ε for any ε > 0

for the same class of automata. Finally, we give a simple necessary and sufficient
condition when a strongly connected digraph with a selected subset of vertices can
be transformed into a deterministic automaton where the corresponding subset of
states is synchronizing.

1 Introduction
Let A = (Q,Σ, δ) be a deterministic finite automaton (which we further simply call an
automaton), where Q is the set of its states, Σ is a finite alphabet and δ : Q× Σ→ Q is
a transition function. Note that our definition of automata does not include initial and
accepting states. An automaton is called synchronizing if there exists a word that maps
every its state to some fixed state q ∈ Q. Synchronizing automata play an important
role in manufacturing, coding theory and biocomputing and model systems that can be
controlled without knowing their actual state [Vol08].

A set S ⊆ Q of states of an automaton A = (Q,Σ, δ) is called synchronizing if there
exists a word w ∈ Σ∗ and a state q ∈ Q such that the word w maps each state s ∈ S to
the state q. The word w is said to synchronize the set S. It follows from the definition that
an automaton is synchronizing if and only if the set Q of all its states is synchronizing.

An automaton A = (Q,Σ, δ) is monotonic if there is a linear order ≤ of its states
such that for each x ∈ Σ if q1 ≤ q2 then δ(q1, x) ≤ δ(q2, x). In this case we say that the
transitions of the automaton preserve, or respect this order. Monotonic automata play
an important role in the part-orienting process in manufacturing [AV04]. Once an order
q1, . . . , qn of the states is fixed, we denote [qi, qj ] = {q` | i ≤ ` ≤ j}, and minS, maxS as
the minimum and maximum states of S ⊆ Q with respect to the order.

An automaton A = (Q,Σ, δ) is called weakly acyclic if there exists an order of its
states q1, . . . , qn such that if δ(qi, x) = qj for some x ∈ Σ, then i ≤ j. Note that a
monotonic automaton does not have to be weakly acyclic, and vice versa. Both weakly
acyclic and monotonic automata present proper subclasses of a widely studied class of
aperiodic automata [Vol08]. An automaton is called strongly connected if any its state can
be mapped to any other state by some word. An automaton is called orientable, if there
exists a cyclic order of its states that is preserved by all transitions of the automaton
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(see [Vol08] for the discussion of this definition). Each monotonic automaton is obviously
orientable.

Synchronizing automata model devices that can be reset to some particular state
without having any information about their current state. Automata with a synchronizing
set of states model devices that can be reset to a particular state with some partial
information about the current state, namely when it is known that the current state belongs
to a synchronizing subset of states. Checking whether an automaton is synchronizing can
be performed in polynomial time [Vol08], but checking whether a given subset of states in
an automaton is synchronizing (the Sync Set problem) is a PSPACE-complete problem
in binary strongly connected automata [Vor16], and a NP-complete problem in binary
weakly acyclic automata [Ryz17].

Eppstein [Epp90] provides a polynomial algorithm for the Sync Set problem, as well
as for some other problems, in orientable automata. However, proposed algorithms assume
that a cyclic order of the states preserved by transitions is known. Since the problem
of recognizing monotonic (respectively, orientable) automata is NP-complete [Szy15], a
linear (respectively, cyclic) order preserved by the transitions of an automaton cannot
be computed in polynomial time unless P = NP. Thus, we should avoid using this order
explicitly in algorithms, so we have to investigate other structural properties of monotonic
automata. As shown in this paper, several synchronization problems are still solvable in
polynomial time in monotonic automata without knowing an order of states preserved by
the transitions.

If an automaton (or a subset of its states) is synchronizing, it is reasonable to find a
shortest word synchronizing it. A lot of effort was put into the investigation of this problem,
both from extremal and algorithmic point of view. It is known that any synchronizing
n-state automaton can be synchronized by a word of length n3−n

6 [Pin83], and the
famous Černý conjecture states that the length of such word is at most (n− 1)2 [Vol08].
Approximating the length of a shortest word synchronizing a n-state automaton within a
factor of O(n1−ε) for any ε > 0 in polynomial time is impossible unless P = NP [GS15].

For words synchronizing a subset of states, the situation is quite different. It is known
that the length of a shortest word synchronizing a subset of states in a binary strongly
connected automaton can be exponential in the number of states of the automaton [Vor16].
In weakly acyclic automata, there is a quadratic upper bound on the length of such words,
but approximating this length is still a hard problem [Ryz17]. For orientable n-state
automata, a tight n2 − 2n + 1 bound on the length of a shortest word synchronizing a
subset of states is known [Epp90].

Given an automaton A = (Q,Σ, δ), the rank of a word w ∈ Σ∗ with respect to a set
S ⊆ Q is the size of the image of S under the mapping defined by w in A, i.e., the number
|{δ(s, w) | s ∈ S}|. The rank of an automaton (respectively, of a subset of states) is the
minimum among the ranks of all words w ∈ Σ∗ with respect to the whole set Q of states
of the automaton (respectively, to the subset of states). It follows from the definition that
a set of states has rank 1 if and only if it is synchronizing. A state in an automaton is a
sink state if all letters map this state to itself.

For n-state monotonic automata of rank at most r, Ananichev and Volkov [AV04] show
an upper bound of n−r on the length of a shortest word of rank at most r, and also provide
bounds on the length of a shortest word of interval rank at most r. Shcherbak [Shc06]
continues the investigation of words of bounded interval rank in monotonic automata.
Ananichev [Ana05] provides bounds on the length of a shortest word of rank 0 in partial
monotonic automata of rank 0.

In this paper, we study both extremal and algorithmic questions of subset synchroniza-
tion in monotonic automata. In Section 2, we provide structural results about synchronizing
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sets of states in monotonic automata and give algorithmic consequences of this results.
In Section 3, we provide lower and upper bounds on the maximum length of shortest
words synchronizing a subset of states in monotonic automata. In Section 4, we provide
NP-hardness and inapproximability of several problems related to subset synchronization
in weakly acyclic monotonic automata over a three-letter alphabet. In Section 5 we give
necessary and sufficient conditions when a strongly connected digraph can be colored
resulting in an automaton with a pre-defined synchronizing set.

2 Structure of Synchronizing Sets
Let A be an automaton, and S be a subset of its states. In general, if any two states in S
can be synchronized (i.e., form a synchronizing set), S does not necessarily have to be
synchronizing, as it is shown by the following theorem.

Theorem 1. For any positive integer k0, there exists a binary weakly acyclic automaton
A and a subset S of its states such that |S| ≥ k0, each pair of states in S in synchronizing,
but the rank of S equals |S| − 1.

Proof. Consider the following automaton A = (Q, {0, 1}, δ). Let S = {s1, . . . , sk}. Let
k = 2` for an integer number `, and let bin(i) be a word which is equal to the binary
representation of i of length ` (possibly with zeros at the beginning). We introduce new
states ti, pi for 1 ≤ i ≤ k, a state f , and new intermediate states in Q as following. For
each si, 1 ≤ i ≤ k, consider a construction sending si to f for a word bin(i), and to ti
otherwise (such a construction has k+ 1 state). For each ti, consider the same construction
sending ti to f for a word bin(i), and to pi otherwise. For each i, define both transitions
from pi as self-loops. Define both transitions from f as self-loops.

In this construction, each word applied after a word of length 2` obviously has no
effect. Consider a word w of length 2`, w = w1w2, where both w1 and w2 have length `. If
w1 = w2, then the image of S under the mapping defined by w has size k. Otherwise, w
synchronizes two states si and sj with bin(i) = w1 and bin(j) = w2 and maps all other
states to different states. Thus, the rank of S equals k − 1.

The size of the whole automaton is O(|S|(log |S|)2), thus S can be large comparing to
the size of the whole set of states in the automaton.

Since the Sync Set problem is PSPACE-complete in strongly connected automata,
pairwise synchronization of states in a subset does not imply that this subset is synchro-
nizing for this class of automata unless P = PSPACE. Thus, it is reasonable to ask the
following question.

Question 2. How large can be the rank of a subset of states in a strongly connected
automaton such that each pair of states in this subset can be synchronized?

For the rest of section, fix a monotonic automaton A = (Q,Σ, δ), and let q1, . . . , qn be
an order of its states preserved by all transitions.

Theorem 3. Let S ⊆ Q be a subset of states of A. Then S is synchronizing if and only if
any two states in S can be synchronized.

Proof. Obviously, any subset of a synchronizing set is synchronizing.
In the other direction, if any two states in S can be synchronized, then the minimal state

q` = minS and the maximal state qr = maxS in S can be synchronized by a word w ∈ Σ∗.
Let q = δ(q`, w) = δ(qr, w). Then the interval [q`, qr] = {q`, . . . , qr} is synchronized by w,
because each state of [q`, qr] is mapped to the interval [δ(q`, w), δ(qr, w)] = {q}, since A is
monotonic. Thus, S ⊆ [q`, qr] is synchronizing.
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Theorem 4. The problem of checking whether a given set S is synchronizing can be solved
in polynomial time for monotonic automata.

Proof. By Theorem 3 it is enough to check that each pair of states in S can be synchronized,
which can be done by solving the reachability problem in the subautomaton of the power
automaton, build on all 2-element and 1-element subsets of Q [Vol08].

Theorem 5. A shortest word synchronizing a given subset S of states can be found in
polynomial time for monotonic automata.

Proof. Consider the following algorithm. For each pair of states, find a shortest word
synchronizing this pair. This can be done by solving the shortest path problem in the
subautomaton of the power automaton, build on all 2-element and 1-element subsets of Q
[Vol08]. Let W be the set of all such words that synchronize S. Output the shortest word
in W .

By an argument similar to the proof of Theorem 3, any shortest word synchronizing
{minS,maxS} is a shortest word synchronizing S, thus the algorithm is optimal. Since
there are

(|S|
2

)
pairs of states, the algorithm is polynomial.

Define the synchronizing graph G(A) of an automaton A = (Q,Σ, δ) as following.
The set of vertices of G(A) is Q. Two vertices are adjacent in G if and only if the two
corresponding states can be synchronized.

The following fact follows from the proof of Theorem 3 in [Ryz16] and shows that in
general the structure of synchronization graphs can be very complicated.

Theorem 6. Each graph is an induced subgraph of a synchronization graph of some binary
weakly acyclic automaton.

However, synchronizing graphs of monotonic automata are very special. An interval
graph is the intersection graph of a set of intervals of a line.

Theorem 7. Synchronization graphs of monotonic automata are interval graphs.

Proof. For each state q ∈ Q in A, consider the set Sq of all such states q′ that q and q′ can
be synchronized. It follows from the proof of Theorem 3 that each maximal (by inclusion)
synchronizing set is an interval [qi, qj ] for some qi, qj . Thus, each set Sq form an interval,
which is the union of all intervals that are maximal synchronizing sets containing q.

Observe that two states can be synchronized if and only if the corresponding intervals
intersect. Thus, we obtain that the synchronization graph of A is the intersection graph of
the constructed set of intervals.

Theorem 7 implies the following.

Theorem 8. A synchronizing subset of states of maximum size can be found in polynomial
time in monotonic automata.

Proof. By Theorem 3, synchronizing sets in monotonic automata correspond to cliques
(complete subgraphs) in their synchronization graph. By Theorem 7, synchronization
graphs of monotonic automata are interval. A clique of maximum size can be found in
polynomial time in interval graphs [Gol04].

The problem of finding a synchronizing subset of states of maximum size in general
automata is PSPACE-complete [Ryz16]. Türker and Yenigün [TY15] study a variation of
this problem, which is to find a set of states of maximum size that can be mapped by some
word to a subset of a given set of states in a given monotonic automaton. They reduce the
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N-Queens Puzzle problem [BS09] to this problem to prove its NP-hardness. However,
their proof is unclear, since in the presented reduction the input has size O(logN), and
the output size is polynomial in N .

3 Shortest Words Synchronizing a Subset of States
The length of a shortest word synchronizing a n-state monotonic automaton is at most n−1
[AV04]. In this section we investigate a more general question of bounding the length of a
shortest word synchronizing a subset of states in a n-state synchronizing automaton.

Theorem 9. Let S be a synchronizing set of states in a monotonic n-state automaton A.
Then for n ≥ 3 the length of a shortest word synchronizing S is at most (n−1)2

4 .

Proof. Let A = (Q,Σ, δ), and {q1, . . . , qn} be an order of the states preserved by all
transitions of A. Define q` = minS, qr = maxS. We can assume that S can be mapped
only to states in [q`, qr]. Indeed, assume without loss of generality that qi, i < `, is a
state such that S can be mapped to qi. Note that for the states qi ≤ qj ≤ qk ≤ qt, if qk
can be mapped to qi, and qt can be mapped to qj , then qt can be mapped to a state
q′ ≤ qi, because A is monotonic. Thus, S can be synchronized by applying only letters
that map consecutive images of its states to states with smaller indexes and a shortest
word synchronizing S has length at most n− 1.

Now we can assume that S can be mapped only to states in [q`, qr]. This means that S
can be mapped to a subinterval [qi, qj ] of [q`, qr], and no state outside [qi, qj ] is reachable
from any state of [qi, qj ]. If both q` and qr are mapped to states inside [qi, qj ], they can be
synchronized by applying a word of length at most j − i, for example by applying only
letters mapping the consecutive images of qr to states with smaller indexes.

Suppose now that w = w1 . . . wm is a shortest word synchronizing S. Consider the
sequence of pairs (ti, si) = (δ(q`, w1 . . . wi), δ(qr, w1 . . . wi)), i = 1, 2, . . . ,m.

As w is a shortest word synchronizing S, and synchronization of S is equivalent to
synchronization of {q`, qr}, no pair appears in this sequence twice, and the only pair with
equal components is (sm, tm). Further, for each k, 1 ≤ k ≤ m, δ(q`, w1 . . . wk) ≤ qi ≤ qj ≤
δ(qr, w1 . . . wk). Thus, the maximum length of w is reached when qi = qj (since after both
images are in [qi, qj ] the remaining length of a synchronizing word is at most j − i) and is
at most (i− 1)(n− i) ≤ (n−1)2

4 .

The bound is almost tight for monotonic automata over a three-letter alphabet as
shown by the following example.

Theorem 10. For each m ≥ 1, there exist a (2m+ 3)-state monotonic automaton A over
a three-letter alphabet, which has a subset S of states, such that the length of a shortest
word synchronizing S is m2 + 1.

Proof. Consider the following monotonic automaton A = (Q,Σ, δ), Q = {q1, . . . , q2m+3}.
Let Σ = {0, 1, 2}. Let states q1, qm+2 and q2m+3 be sink states. For every state qi,
2 ≤ i ≤ m + 1, we set δ(qi, 0) = qi+1, δ(qi, 1) = qi, δ(qi, 2) = q1. For every state qi,
m + 4 ≤ i ≤ 2m + 2, we set δ(qi, 0) = q2m+3, δ(qi, 1) = qi−1, δ(qi, 2) = qi. Finally we
define δ(qm+3, 0) = q2m+2, δ(qm+3, 1) = qm+3, δ(qm+3, 2) = qm+2. See Figure 1 for an
illustration of the construction.

All transitions of A respect the order q1, . . . , q2m+3, so A is monotonic. Let us show
that the shortest word synchronizing the set S = {q2, qm+3} is w = (01m−1)m2. Let S′ be
a set of states such that qi, qj ∈ S′, 2 ≤ i ≤ m+ 1, m+ 3 ≤ j ≤ 2m+ 2. The set S′ can
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Figure 1: The automaton providing a lower bound for subset synchronization in monotonic
automata over a three-letter alphabet. Solid arrows represent transitions for the letter
0, dashed – for the letter 1, dotted – for the letter 2. The states q1, qm+2, q2m+3 are sink
states, self-loops are omitted.

be mapped only to qm+2, because A is monotonic. Hence if any state of S′ is mapped by
a word to q1 or to q2m+3, then this word cannot synchronize S′.

We start with the set S = {q2, qm+3}. There is only one letter 0 that does not map
the state q2 to q1 or the state qm+3 to q2m+3, and maps S not to itself. Indeed, 1 maps
q2 to q2 and qm+3 to qm+3, and 2 maps q2 to q1. Thus, any shortest synchronizing word
can start only with 0. Consider now the set {δ(q2, 0), δ(qm+3, 0)} = {q3, q2m+2}. There is
only letter 1 that does not map the state q3 to q1, or q2m+2 to q2m+3 and maps this set
not to itself. Indeed, 0 maps q2m+2 to q2m+3 and 2 maps q3 to q1. So the second letter of
the shortest synchronizing word can only be 1. By a similar reasoning (at each step there
is exactly one letter that maps a pair of states not to itself and does not map the states
to the sink states q1 and q2m+3), we deduce that any shortest synchronizing word has to
begin with (01m−1)m and it is easy too see that (01m−1)m2 synchronizes S. Thus, w is a
shortest word synchronizing S, and its length is m2 + 1.

For a n-state automaton, the lower bound on the length of a shortest word in this
theorem is (n−3)2

4 + 1, which is very close to the lower bound (n−1)2

4 from Theorem 9.
By taking q2 and qm+3 as initial states in two equal copies of the automaton in the

proof of Theorem 10, and taking qm+2 as the only accepting state in both copies, we
obtain the following result.

Corollary 11. A shortest word accepted by two (2m+ 3)-state monotonic automata can
have length m2 + 1.

For binary monotonic automata, our lower bound is slightly smaller, but still quadratic.

Theorem 12. For each m ≥ 1, there exist a (4m+3)-state binary monotonic automaton A,
which has a subset S of states such that the length of a shortest word synchronizing S is
at least m2.

Proof. Consider the following automaton A = (Q,Σ, δ) with Q = {q1, . . . , q4m+3}, Σ =
{0, 1}. Define δ as following. Set q1, q2m+2, q4m+3 to be sink states. Define δ(qi, 1) = qi−1

for all i 6= 1, 2m + 2, 4m + 3. For each i, 2 ≤ i ≤ m + 1, define δ(qi, 0) = qi+m, and for
each i, m + 2 ≤ i ≤ 2m + 1, define δ(qi, 0) = q2m+2. For each i, 2m + 3 ≤ i ≤ 3m + 3,
define δ(qi, 0) = qm+i−1, and for each i, 3m + 4 ≤ i ≤ 4m + 2, define δ(qi, 0) = q4m+3.
The defined binary automaton is monotonic, since all its transitions respect the order
q1, . . . , q4m+3. See Figure 2 for an example of the construction.

Define S = {qm+2, q4m+2}. Let us prove that a shortest word synchronizing S has
length at least m2.

The set S can only be mapped to q2m+2, since it is a sink state between minS and
maxS. Thus, no synchronizing word maps any state of S to q1 or q4m+3. Consider now an
interval [qi, qj ] for 2 ≤ i ≤ m+ 1, 2m+ 3 ≤ j ≤ 4m+ 2 and note that applying 0 reduces
its length by 1 (or maps its right end to q4m+3), and applying 1 maps its ends to the ends
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Figure 2: The automaton providing a lower bound for subset synchronization in binary
monotonic automata. Dashed arrows represent transitions for the letter 0, solid – for the
letter 1. The states q1, q2m+2, q4m+3 are sink states. The picture is divided into two parts
because of its width.

of another interval of this form with the same length (or maps its left end to q1). The
maximal length of a segment of this form that allows its left end to be mapped to q2m+2 is
2m+ 1, so before any end of the interval is mapped to q2m+2, the letter 0 has to be applied
at least m times. Each application of 0 moves the right end of the intervals m− 1 states
to the right, so each application of 0 requires m − 1 applications of 1 so that 0 can be
applied one more time. Thus, the word mapping S to q2m+2 has length at least m2. Note
that S can be synchronized by a word w = (1m−10)m12m of length |w| = m2 + 2m.

For a n-state binary monotonic automaton we get a lower bound of (n−3)2

16 from this
theorem.

4 Complexity Results
In this section, we obtain complexity results for several problems related to subset synchro-
nization in monotonic automata. We improve Eppstein’s construction [Epp90] to make it
suitable for monotonic automata. We shall need the following NP-complete SAT problem
[Sip12].

SAT
Input: A set X of n boolean variables and a set C of m clauses;
Output: Yes if there exists an assignment of values to the variables in X such that
all clauses in C are satisfied, No otherwise.

Provided a set X of boolean variables x1, . . . , xn and a clause cj , construct the following
automaton Aj = (Q,Σ, δ). Take

Q = {q1, . . . , qn+1} ∪ {q′2, . . . , q′n} ∪ {s, t}.

Let Σ = {0, 1, r}. Define the transition function δ as following. For each i, 1 ≤ i ≤ n,
map a state qi to q′i+1 (or to t if i = n) by a letter x ∈ {0, 1} if the assignment xi = x
satisfies cj , and to qi+1 otherwise. For each i, 2 ≤ i ≤ n − 1, set δ(q′i, x) = δ(q′i+1, x)
for x ∈ {0, 1}. Set δ(q′n, x) = t for x ∈ {0, 1}. Define transitions from t for letters 0, 1
as self-loops. Finally, define δ(q, r) = s for q ∈ Q \ {t}, δ(t, r) = t. See Figure 3 for an
example.

Note that Aj is monotonic, since it respects the order

s, q1, q2, q
′
2, q3, q

′
3, . . . , qn, q

′
n, qn+1, t.

It is also weakly acyclic, since its underlying digraph has no simple cycles of length at
least 2.
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Figure 3: The automaton Aj for a clause cj = (x1 ∨ x3 ∨ x4). Dotted arrows represent
transitions for the letter r.

Also, provided the number of variables n, construct an automaton T = (QT ,Σ, δT )
as following. Take QT = {a, p1, . . . , pn+1, b}, Σ = {0, 1, r}. Define δ(pi, x) = pi+1 for each
i, 1 ≤ i ≤ n, and x ∈ {0, 1}, and δ(pn+1, x) = b for x ∈ {0, 1}. Define also δ(a, x) = a
and δ(b, x) = b for each x ∈ Σ, and δ(pi, r) = a for 1 ≤ i ≤ n + 1. See Figure 4 for an
example. This automaton is monotonic, since it respects the order a, p1, . . . , pn+1, b, and
it is obviously weakly acyclic.

Figure 4: The automaton T for n = 4 variables. Dotted arrows represent transitions for
the letter r.

First, we prove NP-completeness of the following problem.
Finite Automata Intersection
Input: Automata A1, . . . , Ak (with input and accepting states);
Output: Yes if there is a word which is accepted by all automata, No otherwise.

This problem is PSPACE-complete for general automata [Koz77], and NP-complete
for binary weakly acyclic automata [Ryz17].

Theorem 13. The Finite Automata Intersection problem is NP-complete for mono-
tonic weakly acyclic automata over a three-letter alphabet.

Proof. The fact that the problem is in NP follows from the fact that Finite Automata
Intersection for weakly acyclic automata is in NP [Ryz17].

To prove hardness, we reduce the SAT problem. For each clause cj ∈ C, construct an
automaton Aj , and set q1 as its initial state and t as its only accepting state. Construct
also the automaton T with initial state p1 and accepting state a.

We claim that C is satisfiable if and only if all automata {Aj | cj ∈ C} ∪ {T} accept
a common word w. Indeed, assume that there is a common word accepted by all these
automata. Then none of the first n letters of this word can be r, otherwise all automata
Aj are mapped to s, which is a non-accepting sink state. The next letter has to be r,
otherwise T is mapped to b, which is a non-accepting sink state. But that means that in
each Aj , the set q1 is mapped by a n-letter word z1 . . . zn to the accepting state t. Thus,
by construction, the assignment xi = zi satisfies all clauses in C.

By the same reasoning, if the assignment xi = zi, 1 ≤ i ≤ n, satisfies all clauses in C,
then z1 . . . znr is a word accepted by all automata.
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Now we switch to a related Set Rank problem.
Set Rank
Input: An automaton A and a set S of its states;
Output: The rank of S.

This problem is hard to approximate for binary weakly acyclic automata [Ryz17]. To
get inapproximability results for monotonic automata, we use the following problem.

Max-3SAT
Input: A set X of n boolean variables and a set C of m 3-term clauses;
Output: The maximum number of clauses that can be simultaneously satisfied by
some assignment of values to the variables.

This problem cannot be approximated in polynomial time within a factor of 8
7 − ε for

any ε > 0 unless P = NP [Hås01].

Theorem 14. The Set Rank problem cannot be approximated in polynomial time within
a factor of 9

8 − ε for any ε > 0 in monotonic weakly acyclic automata over a three-letter
alphabet unless P = NP.

Proof. We reduce the Max-3SAT problem. For each clause cj ∈ C, construct an automaton
Aj . Construct also m copies of the automaton T , denoted Tj , 1 ≤ j ≤ m. Define an
automaton A with the set of states which is the union of all sets of states of {Aj , Tj | 1 ≤
j ≤ m}, alphabet Σ and transition functions defined in all constructed automata. For each
j, identify the state t in Aj with the state a in Tj . Take S to be the set of states q1 from
each automaton Aj . The constructed automaton is monotonic and weakly acyclic.

If h is the minimum number of clauses in C that are not satisfied by an assignment,
the set S has rank m+h. Indeed, consider an assignment xi = zi, 1 ≤ i ≤ n, not satisfying
exactly h clauses in C. Then the word z1 . . . znr has rank m+ h with respect to S.

In the other direction, let w be a word of minimum rank with respect to the set S. If
any of the first n letters of w is r, then q1 in each Ai is mapped to s in the corresponding
automaton, and thus w has rank 2m with respect to S. The same is true if (n+ 1)st letter
of w is not r, because then p1 in each Ti is mapped to b in the corresponding automaton.
If first n letters z1, . . . , zn of w are not r, and the next letter is r, then the assignment
xi = zi does not satisfy exactly h′ clauses, where m+ h′ is the rank of the word w with
respect to S. For the word of minimum rank, we get the required equality.

It is NP-hard to decide between (i) all clauses in C are satisfiable and (ii) at most 7
8m

clauses in C can be satisfied by an assignment [Hås01]. In the case (i), the rank of S is
m, in the case (ii) it is at least m+ 1

8m. Since it is NP-hard to decide between this two
options, we get ( 9

8 − ε)-inapproximability for any ε > 0.

By using an argument similar to the proof of Theorem 14, we can show inapproximability
of the maximization version of Finite Automata Intersection (where we are asked to
find a maximum number of automata accepting a common word). Indeed, take m copies of
T together with the set {Aj | cj ∈ C} as the input of Finite Automata Intersection
and reduce Max-3SAT to it (input and accepting states are assigned according to the
construction in Theorem 13). Then the maximum number of automata accepting a common
word is m + g, where g is the maximum number of simultaneously satisfied clauses in
C, since all copies of T have to accept this word. Thus it is NP-hard to decide between
(i) all 2m automata accept a common word and (ii) at most m+ 7

8m automata accept a
common word, and we get the following result.

Theorem 15. The maximization version of the Finite Automata Intersection
problem cannot be approximated in polynomial time within a factor of 16

15 − ε for any ε > 0
in monotonic weakly acyclic automata over a three-letter alphabet unless P = NP.
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Question 16. What is the complexity of the mentioned problems for binary monotonic
automata? Are the problems discussed in this section in NP for monotonic automata?

We note that it does not matter in the provided reductions whether a linear order
preserved by all transitions is known or not.

5 Subset Road Coloring
The famous Road Coloring problem is formulated as following. Given a strongly connected
digraph with all vertices of equal out-degree k, is it possible to find a coloring of its arcs
with letters of alphabet Σ, |Σ| = k, resulting in a synchronizing deterministic automaton.
This problem was stated in 1977 by Adler, Goodwyn and Weiss [AGW77] and solved in
2007 by Trahtman [Tra09]. A natural generalization of this problem is to find a coloring
of a strongly connected digraph turning it into a deterministic automaton where a given
subset of states is synchronizing. We introduce the problem formally and show that its
solution is a consequence of [BP14]. In particular, the problem of deciding whether such a
coloring exists is solvable in polynomial time.

Let G = (V,E) be a strongly connected digraph such that each its vertex has out-degree
k. A coloring of G with letters from alphabet Σ, |Σ| = k, is a function assigning each arc
of G a letter from Σ, such that for each vertex, each pair of arcs outgoing from it achieves
different letters. We say that a coloring synchronizes S ⊆ V in G if S is a synchronizing
set in the resulting automaton.

If the greatest common divisor of the lengths of all cycles of G is `, the set V can
be partitioned into sets V1, . . . , V` in such a way that if (v, u) is an arc of G, then
v ∈ Vi, u ∈ Vi+1 or v ∈ V`, u ∈ V1 [Fri90]. Moreover, such partition is unique.

Theorem 17. An strongly connected digraph G with vertices of equal out-degree has a
coloring synchronizing a set S ⊆ V if and only if S ⊆ Vi for some i.

Proof. Obviously, if two vertices of S belong to distinct sets Vi and Vj , S can not be
synchronized. Assume that S ⊆ Vi for some i. As proved in [BP14], there exists a coloring
of G such that the resulting automaton A has rank `. In this coloring each Vj , 1 ≤ j ≤ `,
is a synchronizing set, since no two states from two different sets Vp, Vt, p 6= t, can be
synchronized and A has rank `. Hence, S ⊆ Vi is also a synchronizing set.

According to this theorem, checking whether there exists such a coloring can be
performed in polynomial time. Construction of this coloring can be done in polynomial
time using the algorithm from [BP14].
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1 Introduction
In this paper we study a variant of the Post’s Correspondence Problem (PCP) called the
bi-infinite Post’s Correspondence Problem (ZPCP). It is well known that the PCP can
be stated using morphisms over free monoids. Therefore, we give the following formal
definition for the ZPCP:

Problem. Given two morphisms h, g : A∗ → B∗, determine whether or not there exists a
bi-infinite word ω : Z→ A such that h(ω) = g(ω).

Equality of the images of bi-infinite words is defined in the following way: h(ω) = g(ω)
if and only if there is a constant k ∈ Z such that h(ω)(i) = g(ω)(i+ k) for all positions
i ∈ Z.

Undecidability of ZPCP was originally proved by Ruohonen in [4] using undecidability
in linearly bounded automata (LBA). Here we give an outline of a new simpler proof of
undecidability. Our proof is simpler because 1) it uses the word problem of the special
type of semi-Thue systems in the reduction, and, 2) we have a fixed word in the beginning
which is reduced to the instance of the PCP.

In the proof of our main result we reduce ZPCP to the circular word problem for
deterministic semi-Thue systems. The undecidability of the circular word problem was
proved in [3] by constructing a reversible semi-Thue system where all steps of the derivation
were remembered in the words of the derivation. We will give a more straightforward
construction for the circular word problem (for B-deterministic semi-Thue systems) using
the halting problem of deterministic Turing machines.

2 Semi-Thue System
In the proof of our main result we are using a special type of semi-Thue systems that
are called B-deterministic. The construction of our system TM is made to replicate
the computation of a deterministic Turing machineM by adding re-writing rules that
correspond to the transition function of the machine.

A computation in a semi-Thue system is called cyclic if started from some word w it will
return to w after some finite number of derivation steps. From our construction it follows
that the system has a cyclic computation started from the configuration corresponding to
the empty input if and only if the machine halts when started on the blank tape. Thus
it is undecidable whether or not TM has a cyclic computation started from the initial
configuration, and we have the following lemma:

Lemma. The circular word problem is undecidable for deterministic semi-Thue systems.
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3 The Main Result
The proof of the following theorem uses an idea of Claus [1], where the basic reduction
form word problem to PCP is given, and the modification of [1] by Halava and Harju [2]
for the undecidability of the (one-way) infinite PCP.

Theorem. The ZPCP is undecidable.

Proof. We give here only the idea of the proof:
To prove the undecidability of ZPCP we construct an instance (h, g) of ZPCP and claim

that the instance has a solution if and only if TM has a cyclic computation. We construct
our instance (h, g) of ZPCP using the rules of TM. The idea behind the construction is to
have morphisms that simulate the derivation (see [1]): if there is a derivation xuy −→TM xvy
with a rule t = (u, v), then g(xty) = xuy and h(xty) = xvy. Furthermore, we will have
the images of h and g desynchronized with different symbols.

Our morphisms will be h, g : ({a1, a2, b1, b2, a1, a2, b1, b2,#,#,#1,#2} ∪ RM)∗ →
{a, b, d, e, f,#}∗ given by the table

h g
x1 dxd xee, x ∈ {a, b}
x2 ddx xee, x ∈ {a, b}
ti d−1ld2(vi) re2(ui), ti 6∈ {t0, th}
t0 d−1ld2(v0) re2(u0)e−2f3

th dre2(vh)e−2ff re2(uh)
# dd#d #ee
x1 xee xdd, x ∈ {a, b}
x2 exe xdd, x ∈ {a, b}
ti e−2le2(vi)e rd2(ui), ti 6∈ {t0, th}
t0 e−2le2(v0)e rd2(u0)d−2f3

th rd2(vh)d−2f rd2(uh)

# e#ee #dd
#1 f#ee #ee
#2 ff#d #dd

To eventually obtain a matching situation we introduce overlined copies of the con-
figurations whose images under the morphisms are still desynchronized with different
symbols but the symbols are now inverted. This "trick" leaves out the possible trivial
solutions which appear in the construction for infinite PCP in [2]. Because of the nature
of ZPCP we need not worry about the local matching of the images. By having the same
configurations overlined and unoverlined has the effect that these configurations will be
desynchronized with the same symbols. The matching will be acquired by shifting either
image by a constant k such that the images of overlined words are matched with the
images of corresponding words that are not overlined. The size of k depends on the length
of the (cyclic) derivation in TM as well as the lengths of the words in the derivation.

The main point in the proof is that the two different desynchronizing symbols force
the solutions to alternate between symbols that are overlined and ones that are not.
The morphisms are constructed in a way that transitioning from unoverlined symbols
to overlined symbols forces the configuration corresponding to the initial configuration
(again corresponding to a Turing machine’s empty tape) of our system TM to appear in
the solution.

By the forms of h and g we will then have a solution ω to our instance if there is a
cyclic computation in TM. Conversely from the fact that the initial configuration appears
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in the solution ω we can deduce that again by the forms of h and g all of the configurations
reached from the initial configuration using a finite number of derivation steps must appear
in ω and that the computation must be cyclic.

Our result then follows from the fact that it is undecidable whether or not there is a
cyclic computation in TM started on the initial configuration.
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Abstract

This report details the reasons for and our experience of applying the relation-
and order-theoretical methods to quantifying the feasibility of solving precedence-
constrained traveling salesman problem instances (TSP-PC; also known as SOP,
sequential ordering problem) through dynamic programming (DP) or a DP-derived
heuristic called “restricted DP.” Its primary contribution is (a) a computation of
width, density, and transitive reduction for the orders corresponding to the TSP-PC
instances from the well-known TSPLIB benchmark instances library and (b) time
and space complexity estimates for exact DP and restricted DP solutions of the
general TSP-PC. In view of width-derived complexity estimates for TSP-PC, we have
determined which open TSPLIB problem would lend itself better to being closed by
means of DP: we have closed the long-standing ry48p.3.sop.

Introduction
The well-known Traveling Salesman Problem (TSP) consists of visiting several points,
typically called “cities,” once and once only, in a way that minimizes the total cost, the cost
function being defined on pairs of cities and mostly interpreted as the distance between
them; for a relatively recent general reference, see [21]. There are several minor variations
in its statement, mostly concerning whether it is mandated to return to the starting point
(“closed,” or rather, “ordinary” TSP) or not (open TSP), or if there is a mandatory exit
point in addition to the starting point (Shortest Hamiltonian Chain Problem, [12]); we
consider the latter variety, with fixed starting point and end point, and we refer to all
these varieties as “TSP” indiscriminately.

We consider TSP on a complete graph, or rather, eschew the graph-theoretic issues
altogether. Then, the problem reduces to finding an optimal route—a permutation of the
cities’ indices. In precedence-constrained TSP (TSP-PC)1, these permutations are further
restricted by a certain partial order P on the cities—only the permutations that express
linear extensions of P are accepted as feasible solutions, which diminishes the DP state
space cardinality, making DP solutions feasible for certain “highly constrained” problems
even if they have relatively many cities (compared with the ordinary TSP), and there is a
problem of determining whether a given problem instance is “highly constrained” or not.

A hands-on approach would be to run exact DP on a problem and then see whether it
will exhaust the available memory; however, the perk of DP is the ability to determine at
least some estimate of memory usage a priory. Admittedly, memory usage is also a curse
of plain exact DP; however, in present state of the relation between processing power and
memory size in computers, it is our experience that if a given problem instance will “fit,”
it can be solved in reasonable time. This experience is substantiated by the fact that the
time complexity of DP is polynomially related to its space complexity, which we will show

1Also known as Sequential Ordering Problem (SOP), see the terminological note in [31].
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below. We are not aware of any direct studies of time or space complexity for TSP-PC
except [19, 31], however, the results for a precedence-constrained scheduling problem from
the seminal paper [37] are broadly applicable to the case, the only difference being in the
definition of a DP state; we build upon them.

A DP solution’s feasibility is effectively dictated by the given problem instance’s state
space cardinality—all states, along with their values, must be stored to obtain the optimal
route, hence the desire to estimate it without explicitly generating all the states, which,
since the quantity of states is bounded by the number of ideals of P multiplied by the
width w(P ), hinges on determining the width and, preferably, obtaining a partition of P
into chains, which is known [37] to yield an upper bound on the number of ideals of P .

For all TSP-PC (also known as SOP) instances of the well-known TSPLIB library,
we determined the width and the transitive reduction of the corresponding order rela-
tion, and—successfully—used it to determine which open problem would lend itself
better to being closed by means of DP: we closed the long-standing ry48p.3.sop—
it took about 125GB of RAM and 1 3

4 hours of computation time to verify that the
upper bound 19894 reached by [17] and [28] is in fact the optimal value, attained
by the route (0, 21, 10, 14, 16, 42, 29, 36, 5, 43, 30, 39, 15, 40, 4, 41, 47, 38, 20, 46, 32, 45, 35,
26, 18, 27, 22, 2, 13, 24, 12, 31, 23, 9, 44, 34, 3, 25, 1, 28, 33, 11, 19, 6, 17, 37, 8, 7, 48), which may
or may not be the only optimal one.

DP is not, in general, a typical method in solving TSP-PC and its generalizations:
to the best of the author’s knowledge, it has not been attempted since 1992 [5] with
exceptions in [3], which dealt with a particular case, TSP-PC on a line, and the works
by A.G. Chentsov and his students and co-authors (precedence constrained problems
were first considered circa 2004 [8]), including the author. The most recent research in
solving benchmark TSP-PC instances was based on a branch-and-bound scheme that
used multivalued decision diagrams [13], a custom branch-and-bound scheme [36, 28],
and—state of the art for TSPLIB instances—a branch-and-cut scheme [17].

1 TSP-PC Statement

1.1 Preliminaries
We denote equality by definition by the symbol ,, write unordered pairs of objects in curly
braces {a, b} and ordered pairs in parentheses (a, b). Longer ordered tuples are written
either in parentheses, e.g., (a1, . . . , ak), or in “sequence notation,” (ai)

k
i=1.

The ⊂ symbol is understood in the non-strict sense—it does not necessarily denote a
proper subset. All subsets of a set K are denoted by P(K); all nonempty subsets of K are
denoted by P ′(K). Set-valued functions are referred to as “operators.”

As usual, N denotes the set of all natural numbers, and p, q ,
{
i ∈ N

∣∣ (p ≤ i)∧(i ≤ q)
}

for all natural p and q; note that this is still well-defined in the case q > p, and the resulting
set is empty.

The set of all permutations of elements of a set K is denoted by (bi)[K]; permutations
themselves are generally denoted by lowercase Greek letters and, for a permutation
α ∈ (bi)[K], the element of K that is indexed by i in the permutation is denoted by αi,
while α−1

k denotes the index of the element k ∈ K. In the TSP context, permutations will
be referred to as “routes,” interpreted as the sequence the cities are visited in between the
special depot and the terminal (defined below).
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1.2 “Geometry”
We consider a Hamiltonian Chain-like problem (see [12]), where both the starting point
and the terminal point are explicitly specified.

The starting point (also depot or base) is denoted by 0. Let n ∈ N denote the number
of cities to be visited, then, 1, n denotes the set of all “proper” cities. The end point (also
terminal) is denoted by t , n+ 1; designations t and n+ 1 are interchangeable and one
or another will be used where appropriate. We generally do not distinguish between cities
and their indices.

The cost of moving between the cities is expressed through the cost function c,
c : 0, n× 1, n+ 1→ R. The cost c(a, b) measures the expense incurred in traveling from a
to b, and the lower the total cost the better.

The total, or aggregated cost, is defined over a route,

C[α] , c(0, α1)⊕ c(α1, α2)⊕ . . .⊕ c(αn−1, αn)⊕ (αn, t); (1)

it is the cost as aggregated over the route α by a suitable aggregation operation ⊕ : R×R→
R.

To prove the forward DP recurrence relation (e.g [22, 37]), we impose on the aggregation
operation the properties of being non-decreasing in its first argument,

∀x, y, z ∈ R
(
x ≥ y

)
→
(
(x⊕ z) ≥ (y ⊕ z)

)
,

and being left-associative,

∀x, y, z ∈ R
(
x⊕ y ⊕ z

)
=
(
(x⊕ y)⊕ z

)
.

For the backward DP recurrence relation (e.g. [2, 7]) to give valid results, the aggregation
operation should be non-decreasing in its second argument and right-associative.

These properties are satisfied by the common arithmetic + aggregation, as in the
ordinary TSP, but also by the max or “bottleneck” aggregation characteristic of Bottleneck
TSP (see [21, Ch. 15]). For a proof of (backwards) DP recurrence relation for a generalized2

TSP-PC “with abstract aggregation,” refer to [35].

1.3 Precedence Constraints
Precedence constraints are specified by means of a strict partial order P ,

(
1, n,<P

)
.

We will not generally distinguish between the order P and its order relation <P and use
the term “order” for both. If a <P b, then it is assumed that a must be visited before b.
The incomparability relation of P is denoted by ‖; if a ‖ b, then, any ordering thereof is
feasible.

Along with the order [37], precedence constraints are known to be specified by a directed
acyclic graph [16] or well-founded binary relation [7]; in case of finite number of cities, all
three representations are equivalent since a covering relation determines the ordering [18,
p. 6, Lemma 1]; see also the digraph interpretation [1].

The set of feasible routes is defined as follows:

A ,
{
α ∈ (bi)[1, n]

∣∣∣∀a, b ∈ 1, n
(
a <P b

)
→
(
α−1(a) < α−1(b)

)}
. (2)

And the problem is to find the least-cost feasible route:

C[α] −−−→
α∈A

min. (TSP-PC)

2cities are grouped into clusters or megalopolises, see [21, Ch. 13]; sometimes this generalization is also
called international TSP
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We will also need the notions of order-theoretic minimal and maximal elements in a
set K ∈ P(1, n) in view of the partial order P . The definitions of the operators selecting
them follow [34, Def. 2.1.5, 2.3.2],

Max[K] , {m ∈ K | ∀k ∈ K(m ≥P k) ∨ (m ‖ k)}; (3)

Min[K] , {m ∈ K | ∀k ∈ K(m ≤P k) ∨ (m ‖ k)}. (4)

2 Dynamic Programming for TSP-PC
Dynamic programming is essentially about decomposing the complete problem into a set
of smaller subproblems, the DP states, to the point of the downright trivial requiring to
optimally walk from the base through a single city, which serve as the initial conditions.
However, in view of precedence constraints, not every subset of 1, n can form a feasible
“task set.”

2.1 Feasible task sets
A set I ⊂ 1, n is considered feasible if it may be ordered “in accordance” with <P , that is,
if it is an order-theoretic ideal (down-set) [14, §1.27]; hereinafter we omit the designation
“order-theoretic” and call such sets ideals3 or feasible (task) sets. Let us gather all ideals
into the family

I ,
{
I ∈ P

(
1, n
) ∣∣∣ ∀i ∈ I ∀j ∈ 1, n

(
j <P i

)
→
(
j ∈ I

)}
(5)

and stratify it by the ideals’ cardinality, ∀k ∈ 0, n Ik , {I ∈ I | |I| = k}. Note that the
empty set is (trivially) an ideal as well.

To define the state space, we first establish the bottom-up connection between the ideals
of neighboring cardinality by means of a feasible expansion operator E : I \1, n→ P ′(1, n),

E[I] , {m ∈ 1, n \ I | I ∪ {m} ∈ I}; (6)

note that the operator E, in fact, selects the minimal elements of 1, n \ I (see (4)). Let us
prove it in the form of the following characterization theorem.

Theorem 1. For all I ∈ I \ 1, n and m ∈ 1, n \ I, the following conditions are equivalent:

(i) I ∪ {m} ∈ I;

(ii) m ∈ Min
[
1, n \ I

]
.

Proof. Let us start with the implication (i)→(ii). Fix I ∈ I \ 1, n and m ∈ 1, n \ I such
that I ∪ {m} ∈ I. Suppose m /∈ Min

[
1, n \ I

]
. Then, there must be another element that

is less than it, ∃m′ ∈ 1, n \ I : (m′ 6= m) ∧ (m′ ≤P m). Since m′ /∈ I ∪ {m} and m′ ≤P m,
the set I ∪ {m} is not an ideal, which contradicts the assumption that it is, which proves
(i)→(ii).

Let us now prove the converse, (ii)→(i). Fix an ideal I ∈ I \1, n and m ∈ Min
[
1, n\ I

]
;

suppose I∪{m} is not an ideal. Since I is an ideal by definition, there must existm′ ∈ 1, n\I
such that (m′ 6= m)∧(m′ ≤P m). However, the second conjunct contradicts the assumption
that m ∈ Min

[
1, n \ I

]
; this proves (ii)→(i), and completes the theorem.

3Note that it is equally possible to use the dual “filter” (coideal, up-set, etc.) formulation and the
backwards DP procedure of [2, 7].
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The top-down connection is better expressed through a different operator, I : I \{∅} →
P(1, n)

I[I] ,
{
m ∈ I

∣∣∣ I \ {m} ∈ I};

It has a similar characterization to E,

Theorem 2. For all I ∈ I \ {∅}, the following conditions are equivalent:

(i) I \ {m} ∈ I;

(ii) m ∈ Max[I].

Proof. The proof is very similar to that of Theorem 1; we omit it.
Compared with [7], our usage of I is similar to its definition [7, Eq. 2.2.28]; however, the

definition and the characterization are effectively reversed; also, we use the order-theoretic
language in contrast with the one based on well-founded relations, and primarily deal with
order ideals instead of order filters.

We should also note that the characterization of the feasible expansion operator E
provides a means of generating all the order ideals starting with the trivial empty one.
This generation procedure is not unlike that of [24] and is said [23] to have, in the general
case, the complexity of O(n2) · |I|—quadratic in the number of ideals—however, it was
developed as a dual to the top-down ideal (or rather, filter) generation specified in e.g. [9].

2.2 Dynamic programming states and recurrence procedure
A dynamic programming state is an ordered pair of the form (K,x), where K is the set of
the cities already visited (the task set) after exiting from the depot 0, while x ∈ 1, n+ 1\ I
denotes the city the agent is currently in. The set of all (feasible—only the feasible ones
are considered below) states is defined in the following way:

S ,
{

(∅, x) ∈ {∅} × 1, n
∣∣∣ ∀a ∈ 1, n \ {x}

(
x <P a

)
∨
(
x ‖ a

)}
∪{

(I, x) ∈ I × 1, n
∣∣∣ (I ∈ I) ∧ (x ∈ E[I]

)}
∪
{(

1, n, t
)}

;
(7)

let us also stratify them by task set cardinality, Sk , {(K,x) ∈ S | |K| = k}. Each such
state set is called a state space layer, and the layers with neighboring cardinality of task
sets can be said to “inherit” both the top-down and bottom-up connections that the task
sets possess. In view of the mentioned connections, let us say that a state s′ = (K ′, x′)
covers a state s = (K,x) if

(
K ∪ {x} = K ′

)
.

Note that there are two special layers, S0, the states in which exist to specify the initial
conditions, and Sn, which denotes the “complete” problem (all cities visited).

The states’ value—the optimal cost—is defined as follows:

v(K,x) ,

{
c(0, x), K = ∅;

min
α∈AK

{
c(0, α1)⊕ . . .⊕ c(α|K|−1, α|K|)⊕ c(α|K|, x)

}
, otherwise;

here, AK denotes the feasible routes over K, which are defined similarly to (2), and can
be viewed as prefixes of certain routes from A.

The Bellman function (the recurrence relation) describes the cost of a state through
the values of the states it covers, BF(I, x) , mine∈I[I]

{
v(I \ {e}, e) ⊕ c(e, x)

}
; and the

validity of the dynamic programming is nothing but the fact that a state’s Bellman function
actually matches its value—except for those in S0, for which the former makes no sense.
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Theorem 3. For all (I, x) ∈ S \ S0, we have

v(I, x) = BF(I, x) = min
e∈I[I]

{
v(I \ {e}, e)⊕ c(e, x)

}
. (BF)

We omit the proof of this theorem in view of space constraints; it is similar to that of
[35] except for (a) notation, (b) direction, (c) generality.

An optimal route—the solution—may then be recovered by means of a top-down search:
first find the city αn that achieves the minimum in (BF) for v(1, n, t). Then, αn−1 will be
the city that achieves the minimum in (BF) for v(1, n \ {αn}), and so on.

Theorem 3 guarantees that this search will be successful, and it is bound to take much
less time than the whole procedure of generating the ideals and states and calculating the
Bellman function.

Note that there may be multiple optimal routes, and it is possible to list them by
“branching” on each αk where more than one city achieves the minimum in (BF). However,
unless ⊕ is strictly increasing in its first argument, some (but never all) of the optimal
routes may be overlooked since they would not satisfy the principle of optimality as
expressed in (BF), see [26, Ch. 9].

This procedure can be made a little less time-consuming by “remembering” the best
(feasible) state as the state space is traversed in course of calculating the Bellman function
(bottom-up) and memoizing the routing decisions (the cities that achieve the minimum
in (BF)) for each state; such memoization was proposed in, e.g., [24, 26]. However, in
dynamic programming for TSP-like problems, it is mostly space, not time that is the
limiting factor; thus, memoization of routing decisions may actually limit the maximum
dimensions of problems solvable on a given computer.

2.3 Restricted DP
The Restricted DP heuristic was first proposed in [25] for Time-Dependent TSP (the
travel cost function depends on the number of cities already visited, etc.), then used as
a “heuristic framework” for a family of vehicle routing problems (VRP) [20]. It was also
applied to Sequence-Dependent Precedence Constrained Bottleneck Generalized TSP [31]
and TSP-PC by the author.

It is effectively a generalization of the nearest neighbor algorithm: instead of retaining
the whole layer Si, it only retains H,H ∈ N, best, and generates the next layer based on
those retained. Thus, as H increases, it approaches exact DP. It always produces an upper
bound on the optimal value of the problem—clearly, if not all (covered) states are taken
into account, the value of minimum in (BF) does not decrease.

The main features of this heuristic are the following:

• it always produces a feasible solution

• its time and space complexities are polynomial with respect to H and n

• its easy to implement based on an existing exact dynamic programming solution
code base

3 Time and Space Complexity of DP for TSP-PC

3.1 Exact DP
Let us start with space complexity—the number of DP states.
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Proposition 4. |S| ≤ w|I|, where w is the width of P—the cardinality of the maximal
(by inclusion) antichain in P .

Proof. Recall (7) that the states are composed of ideals and “interfaces,” the latter
depending on the ideal through (6). This operator picks the minimal elements of the
corresponding set, and the minimal elements of any set clearly form an antichain.

Note that it is generally hard to enumerate all the order ideals: there is a bijection
between the set of all order ideals and all antichains: an antichain A uniquely determines
its principal ideal

↓A =
{
i ∈ 1, n

∣∣∃a ∈ A : i <P a
}

;

the inverse direction is covered by order-theoretic maximum, the operator I. The problem
of enumerating all antichains is known[29] to be #P -hard, hence the need to estimate it
(see [37] for estimates). However, in many specific classes of orders, it is much easier; [37]
is a very good reference. For example, the precedence constraints that arise in the problem
of routing the tool in CNC sheet cutting machines (see e.g. [11]) form a forest (indegree is
at most 1), the ideals of which can be enumerated in at most square of the number of
vertices (cities) [32].

And now for the time complexity:

Proposition 5. The time complexity of an exact DP solution for TSP-PC is at most
O(tBFwn

2|S|), where tBF denotes the time it takes to compute v(I \ {e}, e) ⊕ c(e, x) in
(BF).

Proof. To solve the problem, each state s ∈ S must first be generated. For each ideal it
takes at most O(n2) to generate both its “successors” (ideals that contain the elements of
this ideal and some other city) and the states that correspond to it—it is the complexity
of (6) [23]4, a simple set-theoretic method; note that there exist better (e.g. logarithmic in
the number of ideals) algorithms for generating the ideals, see [6, Appendix A.2.2]; to the
best of the author’s knowledge, there were no attempts to use them in DP for TSP-like
problems.

After the state is generated, (BF) must be calculated for it. Since the image of the
operator I is an antichain (the set of maximal elements of the ideal), one tests at most w
elements to determine the value of the Bellman function, and each such “test” takes tBF

by definition.
Having constructed the Bellman function, we must now “recover” the optimal solution

through it. The recovery consists of repeatedly testing whether it was indeed (K,x) ∈ S|K|
that achieved the minimum in v(K ∪ {x}, y), (K ∪ {x}, y) ∈ S|K|+1—in the worst case,
the same as recomputing (BF) without generating either the states or the ideals, hence, it
does not modify the order of time complexity.

The time complexity is evidently polynomially dependent on the number of states.
Note that the inclusion of tBF is important for practical considerations—depending

on the cost functions and the aggregation operation, it may make a difference. Very
involved and laborious (and requiring a floating-point-valued computer implementation)
cost functions and aggregation operations may be present e.g. in CNC tool routing problems
[11] and in problems of decommissioning a nuclear power generation unit [9]. The time tBF

also depends on the kind of data structure used to store the values of the Bellman function.
4see “The Lawler Approach” in [23]
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3.2 Restricted DP
Proposition 6. The number of states in Restricted DP heuristic solution is less than or
equal to B(n+ 1).

Proof. Evident in view of definition: there are (n+ 1) state space layers, each has at most
B states.

Proposition 7. The time complexity of Restricted DP heuristic is O(tBFwn
3B).

Proof. Similar to the exact case.

3.3 Estimating the number of ideals
The papers by G. Steiner [37, 38] appear to still be the best reference on the matter, and
the best general and “analytical” (in the same papers, a statistical study was also made)
estimates are as follows:

The lower bound on the number of ideals is 2w + n− w [38, p. 286].
The upper bound, obtained by applying the arithmetic mean–geometric mean inequality

to the number of ideals in the parallel composition of a chain partition of P , where the
latter, by Dilworth’s theorem [15], has to contain at least w chains, is

(
n+w
w

)w [38, p. 286].
Naturally, one would like to tighten the given bounds. The mentioned upper bound

is clearly made less tight by the use of the inequality. By abstaining from the use of the
inequality, we come to the bound based on a chain partition of the given order. Since for
most orders the chain partition is not unique, there arises a natural question of optimal
chain partition:

Problem 8. Given a partial order P = (1, n,<P ), find its chain partition C∗ =
k⊔
i=1

C∗i

that minimizes
k∏
i=1

|C∗i + 1|, where k ≤ n and
⊔

denotes the disjoint set union.

3.4 Determining order-theoretic characteristics
The transitive reduction was determined by relation-theoretic means [33] through a
composition of the initial relation with its transitive closure[4, p. 121]; the latter was
obtained through the Roy–Warshall algorithm [33, § 3.2.8] in its functional programming
form, adapted from [4]. Note that in TSPLIB the relations describing precedence constraints
are required to be transitively closed, however, it is not always the case—some authors
prefer the “assembly language” of well-founded relations, e.g., [9].

The width was obtained through maximal matching in an auxiliary bipartite poset (see
[37, p. 107] for a brief description or [6, § 4.5] for a complete one, including proof), which
was computed by means of the Haskell Data.Graph.MaxBipartiteMatching library.

One also has to mention the partial order density. It is intended as a measure of the
order’s “restrictivity,” and is defined as follows (see e.g. [38]):

d(P ) =
| ≤P |

n(n− 1)/2
,

that is, it is the cardinality of the given order relation divided by the cardinality of the
corresponding linear order. It is still used in the papers dealing with TSP-PC, for example,
in [27, 28], although in [37, 38] it was proved that there exist high-density (e.g. 0.75) classes
of partial orders with an exponential in n number of ideals and low-density (less than
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0.25) classes with only a polynomial in n number of ideals. Thus, if a simple normalized
“restrictivity” index is required, it is arguably better to take the relation between the
number of cities and the width, wn .

Table 3.4 presents the results. The still unsolved instance names are written in boldface.
The recently closed ry48p.3.sop is italicized. The columns are as follows:

• n is the number of “proper” cities (not counting the base and the terminal)

• “RED.” is the cardinality of the partial order’s transitive reduction

• “CL.” is the cardinality of the partial order relation (“transitve closure”)

• “LOG_S-LB” is the base 2 logarithm of the “lower”5 bound on the number of states,
w(2w − n+ w)

• “LOG_S-UB” is the base 2 logarithm of the upper bound on the number of states,
w
(
n+w
w

)w.
The “LOG_S-LB” and “LOG_S-UB” columns offer a practical means of estimating the

feasibility of solving a given problem through exact DP: recall that 1 Gigabyte is 230 bytes.
If the “lower” bound surpasses 240 (“1 Terabyte”), it is clearly impractical to attempt the
solution while if the upper bound is about the same, it should be reasonable to try.

Everything was encoded in Haskell. Sets were rendered as sorted lists of the built-in
Int type. Computation time was not rigorously measured; for most instances, computation
time could be characterized as “instant”; bigger instances took something on the order of
few minutes. The base 2 logarithms for the upper and “lower” bounds on the number of
states were calculated in MS Excel, then rounded up to one digit.

4 Concluding remarks
We were able to compute the transitive reduction, width, and width-based upper and “lower”
bounds on the number of DP states for the well-known TSP-PC benchmark instances
(TSPLIB SOP [30]), which lead to a successful identification of the unsolved instance
that should lend itself to a solution by exact DP—ry48p.3.sop, and solve it we did; the
known upper bound 19894 was proved to be precise. The computed parameter values are
presented in Table. 3.4. Haskell proved to be adequate means of expression for this sort of
algorithms.

4.1 Future work directions
There are four main directions. The first one is to try and use the height or other order-
theoretic statistics to get better and tighter bounds. One could also try to find the optimal
method of chain partitioning, or, at least, see how does any chain partition compare with
the pure width-based estimate. Finally, harnessing the best ideal generators (see the note
on “Enumeration of D(P )” in [6, Appendix A.2]), it may be possible to obtain the ideal
and state quantities through sheer brute force.

The second is to increase the domain of research by processing other notable TSP-PC
instance libraries (e.g. SOPLIB [27]).

5it is not, strictly speaking, a lower bound on the number of states since there may be less than w
states with the same ideal; however, it is was deemed more informative of the true lower bound than the
one that would assume that there is only one state per each ideal
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Table 1: Analysis of TSP-PC instances from TSPLIB
NAME n RED. CL. DENSITY WIDTH LOG_S-LB LOG_S-UB
br17.10.sop 16 10 15 0.12 10 13.4 17.2
br17.12.sop 16 12 22 0.18 9 12.2 16.5
ESC07.sop 7 6 7 0.33 5 7.5 8.7
ESC11.sop 11 3 5 0.09 9 12.2 13.6
ESC12.sop 12 7 11 0.17 10 13.4 14.7
ESC25.sop 25 9 11 0.04 19 23.3 27.3
ESC47.sop 47 10 32 0.03 41 46.4 50.6
ESC63.sop 63 95 233 0.12 53 58.8 65.7
ESC78.sop 78 77 283 0.09 32 37.1 62.1
ft53.1.sop 52 12 12 0.01 42 47.4 54.3
ft53.2.sop 52 25 30 0.02 34 39.1 50.7
ft53.3.sop 52 48 217 0.16 24 28.6 44.5
ft53.4.sop 52 63 759 0.57 13 16.8 33.9
ft70.1.sop 69 17 17 0.01 55 60.8 70.3
ft70.2.sop 69 35 48 0.02 44 49.5 65.4
ft70.3.sop 69 68 215 0.09 35 40.2 60.2
ft70.4.sop 69 86 1325 0.56 16 20.1 42.6
kro124p.1.sop 99 25 33 0.01 78 84.3 98.5
kro124p.2.sop 99 49 68 0.01 65 71.1 92.9
kro124p.3.sop 99 97 266 0.05 43 48.5 79.6
kro124p.4.sop 99 131 2305 0.48 22 26.5 58.6
p43.1.sop 42 9 11 0.01 36 41.2 45.4
p43.2.sop 42 20 34 0.04 26 30.8 40.8
p43.3.sop 42 37 96 0.11 21 25.4 37.7
p43.4.sop 42 50 496 0.58 13 16.8 30.8
prob.100.sop 98 41 41 0.01 57 62.9 88.1
prob42.sop 40 10 19 0.02 34 39.1 43.3
rbg048a.sop 48 192 447 0.40 32 37.1 47.4
rbg050c.sop 50 256 508 0.41 31 36 48
rbg109a.sop 109 622 5329 0.91 12 15.7 43.6
rbg150a.sop 150 952 10334 0.92 13 16.8 51.2
rbg174b.sop 174 1113 13955 0.93 22 26.5 73.9
rbg253a.sop 253 1721 30181 0.95 22 26.5 84.7
rbg323a.sop 323 2412 48202 0.93 47 52.6 145.5
rbg341a.sop 341 2542 54303 0.94 33 38.1 120.7
rbg358a.sop 358 3239 56536 0.88 55 60.8 165.8
rbg378a.sop 378 3069 63585 0.89 55 60.8 169.6
ry48p.1.sop 47 11 12 0.01 37 42.3 49
ry48p.2.sop 47 23 26 0.02 29 33.9 45.2
ry48p.3.sop 47 42 132 0.12 19 23.3 38.4
ry48p.4.sop 47 58 596 0.55 12 15.6 31.2
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The third is to attempt to estimate the number of ideals of fixed cardinality; to the
best of the author’s knowledge, for general posets, no nontrivial estimates are known, there
is only Wild’s enumeration algorithm [39]. The latter estimates will allow to account for
swapping from RAM to hard disks, which could allow to resolve slightly more complicated
problems—the limiting factor will be not the whole number of states but only the number of
states of two most populous neighboring state space layers. Another possible improvement
from this knowledge might be a redistribution of “degrees of freedom” in restricted DP:
for H > w2, some “allocated states” are wasted on e.g. layer S1, which could never have
more than w2 states; the remainder of its quota could be better spent on more populous
layers. This leads to two possible approaches: (a) append the unused quota to that of the
next layer (b) redistribute it a priori, giving more to the more populous layers.

The fourth is to quantify the maximum possible performance gain from the distributed
parallel computations scheme for dynamic programming [10]. Although this scheme is
formulated in the optimal control theory terms, it effectively boils down to an independent
computation of (BF) for the states of some layer Sk, k < n (in [10], k = n− 1), the results
of which are used by the master node to complete the computation all the way to Sn.
Evidently, the greater k, the more benefit of dynamic programming versus exhaustive
search is lost (for some states, (BF) is recomputed many times), however, small k will
not provide the desired distribution of effort. The degree of “intersection” between the
states covered by members of Sk is clearly dependent on the partial order that defines the
precedence constraints.
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Regularity of the maximal distance minimizers
Yana Teplitskaya

Abstract
We study the properties of sets Σ which are the solutions of the maximal dis-

tance minimizer problem, id est of sets having the minimal length (one-dimensional
Hausdorff measure) over the class of closed connected sets Σ ⊂ R2 satisfying the
inequality maxy∈M dist (y,Σ) ≤ r for a given compact set M ⊂ R2 and some given
r > 0. Such sets play the role of the shortest possible pipelines arriving at a distance
at most r to every point of M , where M is the set of customers of the pipeline.

In this work it is proved that each maximal distance minimizer is a union of finite
number of curves, having one-sided tangent lines at each point. Moreover the angle
between these lines at each point of a maximal distance minimizer is greater or equal
to 2π/3. It shows that a maximal distance minimizer is isotopic to a finite Steiner
tree even for a “bad” compact M , which differs it from a solution of the Steiner
problem (an example of a Steiner tree with an infinite number of branching points
can be find in [9]). Also we classify the behavior of a minimizer in a neighbourhood
of any point of Σ.

In fact, all the results are proved for more general class of local minimizer, i. e.
sets which are optimal in any neighbourhood of its arbitrary point.

For a given compact set M ⊂ R2 consider the functional

FM (Σ) := sup
y∈M

dist (y,Σ),

where Σ is a subset of R2 and dist (y,Σ) stands for the Euclidean distance between y and
Σ (naturally, FM (∅) := +∞). The quantity FM (Σ) will be called the energy of Σ. Consider
the class of closed connected sets Σ ⊂ R2 satisfying FM (Σ) ≤ r for some r > 0. We
are interested in the properties of sets of the minimal length (one-dimensional Hausdorff
measure) H1(Σ) over the mentioned class. Such sets will be further called minimizers.
They can be viewed as the shortest possible pipelines arriving at a distance at most r to
every point of M which in this case is considered as the set of customers of the pipeline.

It is proven (in fact, even in the general n-dimensional case M ⊂ Rn; see [6] for the
rigorous statement and details) that the set OPT ∗∞(M) of minimizers (for all r > 0) is
nonempty and coincides with the set OPT∞(M) of solutions of the dual problem: minimize
FM over all closed connected sets Σ ⊂ R2 with prescribed bound on the total length
H1(Σ) ≤ l, thus the solutions are called minimizers of maximal distance. It is known
also that for each minimizer of positive length its energy is equal to r. If one minimizes
maximum or average distance functional over discrete sets with an a priori restriction
on the number of connected components (rather than over connected one-dimensional
sets) one gets another class of closely related problems known as k-center problem and
k-median problem (see e.g. [4, 10, 11] as well as [1, 2] and references therein).

Note that Σ is compact because Σ ⊂ Br(convM), where convM is the convex hull of
M . Some basic properties of minimizers for the problem mentioned above in n-dimensional
case (like the absence of loops and Ahlfors regularity) have been proven in [7]. Further,
in [6] the following characterization of minimizers has been studied. Let Bρ(x) be the open
ball of radius ρ centered at a point x, and let Bρ(M) be the open ρ-neighborhood of M
i.e.

Bρ(M) :=
⋃
x∈M

Bρ(x).

Further, we introduce
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Definition 1. A point x ∈ Σ is called energetic, if for all ρ > 0 one has

FM (Σ \Bρ(x)) > FM (Σ).

Denote the set of all energetic points of Σ by GΣ.
Let us consider a minimizer Σ with energy r = FM (Σ) (the subset of OPT ∗∞(M) of

minimizers with energy r will be further denoted by OPT ∗∞(M, r)). Then the set Σ can
be split into three disjoint subsets:

Σ = EΣ tXΣ t SΣ,

where XΣ ⊂ GΣ is the set of isolated energetic points (i.e. every x ∈ XΣ is energetic and
there is a ρ > 0 possibly depending on x such that Bρ(x) ∩GΣ = {x}), EΣ := GΣ \XΣ

is the set of non isolated energetic points and SΣ := Σ \GΣ is the set of non energetic
points also called Steiner part. In [6] the following assertions have been proven:

(a) For every point x ∈ GΣ there exists a point Qx ∈M (may be not unique) such that
dist (x,Qx) = r and Br(Qx) ∩ Σ = ∅. If XΣ is not finite, the limit points of XΣ

belong to EΣ.

(b) For all x ∈ SΣ there exists an ε > 0 such that SΣ ∩Bε(x) is either a segment or a
regular tripod, i.e. the union of three segments with an endpoint in x and relative
angles of 2π/3. If a point x ∈ SΣ is a center of a regular tripod, then it called a
Steiner point (or a branching point) of Σ.

Also, as Σ is connected closed set of finite length, at almost every point of Σ there
exists a tangent line.

The main result is the following.

Theorem 2. Let Σ be a maximal distance minimizer for a compact set M ⊂ R2. Then

• Σ is a union of a finite number of curves;

• the angle between each tangent rays at every point of Σ is greater or equal to 2π/3.

The Theorem implies that set with countable many branching points can not be a
maximal distance minimizer. Note that it is not true for the Steiner problem; one can find
the example in the work [9].

1 Notation
Definition 3. We say that an order of a point x in the set Σ is equal to n (and write
ord xΣ = n), if there exists such ε0 = ε0(x) > 0, that for every open set U containing x
and with diamU < ε0, the capacity of the intersection #(∂U ∩Σ) is greater or equal to n,
and for each ε < ε0 there exists such open set V 3 x that diamV < ε and #(∂V ∩Σ) = n.

Note that connectivity of Σ in nontrivial case implies a positive order ord xΣ for each
point x ∈ Σ.

Definition 4. We will call by an arc ˘]ax] ⊂ Σ a continuous injective image of a segment
]0, 1].

Definition 5. Let x ∈ Σ. We say that a ray (ax] is a tangent ray of the set Σ at the
point (vertex) x, if there exists a consequence of points xk ∈ Σ such that xk → x and
∠xkxa→ 0.
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Definition 6. Let x ∈ Σ. We say that a ray (ax] is an energetic edge of a set Σ at the
point (vertex) x, if there exists a consequence of energetic points xk ∈ GΣ such that
xk → x and ∠xkxa→ 0.

Definition 7. We say that a line (ax) is a tangent line to a set Σ at the point x, if for
each consequence of points xk ∈ Σ such that xk → x holds ∠((xkx)(ax))→ 0.

Definition 8. We say that a ray (ax] is one-sided tangent line to a set Σ at the point x,
if for each consequence of points xk ∈ Σ such that xk → x holds ∠xkxa→ 0.

1.1 Steiner problem
The Steiner problem which has several different but more or less equivalent formulations,
is that of finding a set S with minimal length (one-dimensional Hausdorff measure H1(S))
such that S ∪ A is connected, where A is a given compact subset of a given complete
metric space X.

Namely, defined

Ntw (A) := {S ⊂ X : S ∪A is connected}

one has to find an element of Ntw (A) with minimal H1-length.
If S is a solution (in the case when X is proper and connected a solution exists [8]) to

the Steiner problem for a given set A, then S̄ is called a Steiner tree for the set A (or a
Steiner tree connecting the set A, or just a Steiner set). It has been proven in [8] that in
the case H1(S) < +∞ the following properties hold:

1. S contains no loops (homeomorphic images of S1);

2. S \ A has at most countably many connected components, and each of the latter
has strictly positive length;

3. the closure of every connected component of S \A is a topological tree with endpoints
on A and with at most one endpoint belonging to each connected component of A.

From now on we will consider the Steiner problem in the case when the ambient space
X is the Euclidean plane R2. Then

4. S \A consists of line segments (this follows from the result of [8] stating that away
from the data Steiner tree is an embedded graph consisting of geodesic segments);

5. the angle between two segments adjacent to the same vertex is greater or equal to
2π/3 [5].

6. Let us call a Steiner (or branching) point such a point of S̄ that does not belong to
A and which is not an interior point of a segment of S.

The degree (in the graph theoretic sense) of a Steiner point x is equal to 3. In this
case the angle between any pair of segments adjacent to x is equal to 2π/3 (see [5]).
Such figure is called regular tripod.

7. It is well-known that for A = {x1, x2, x3} ⊂ R2 there is unique solution of the Steiner
problem. We denote it by St(x1, x2, x3).
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We will say that a set S ∈ Ntw (A) is a locally minimal network for the given set A if
for an arbitrary point x ∈ S \A there exists a neighbourhood U 3 x such that S̄ ∩ U is a
Steiner tree for S̄ ∩ ∂U . If a neighbourhood of a point x ∈ S̄ is a regular tripod then it is
called Steiner point.

A locally minimal network satisfies all the properties of a Steiner tree mentioned above
except the first one (see [8, 5]).

2 Classification of local behavior of Σ. Examples
In this section we will show some examples of maximal distance minimizers.

We have proved the

Theorem 9 (Classification theorem). 1. For x ∈ SΣ, there exists such ε > 0 that
Σ ∩Bε(x) coincides with one of two sets:

(a) a segment (in this case an order of the point x is equal to 2);

(b) a regular tripod (in this case an orger of the point x is equal to 3).

2. For x ∈ XΣ, there exists such ε > 0 that Σ ∩Bε(x) coincides with one of two sets:

(a) a segment with an end at x (in this case an order of the point x is equal to 1);

(b) a union of two segments with common end at x and an angle greater or equal
to 2π/3 between them (in this case an order of the point x is equal to 2).

3. For x ∈ EΣ there exists such ε > 0 that Σ ∩Bε(x) coincides with one of two sets:

(a) an arc with an end at x having in this point a one-sided tangent line (in this
case an order of the point x is equal to 1). Herewith x can

i. be a limit of points from XΣ;
ii. not be a limit of points from XΣ.

(b) a union of two arcs with a common end at the point x, having in this point the
one-sided tangent lines with angle greater or equal to 2π/3 between them (in
this case an order of the point x is equal to 2). Herewith the point x can have

i. one energetic edge;
ii. two energetic edges.

Usually it is not easy to proof that a certain set is a minimizer. At the picture 6 the
set M is a circle of radius R > r. The set Σ, depicted at this picture is a union of an arc
of the circumference of radius R− r and two segments tangent to this circumference. The
proof of the fact that set Σ is a minimizer with R > 5r one can find in the work [3].

Note that if M is a finite set of points there is an easy criterion: a connected set Σ is a
minimizer for a set M and a number r > 0, if the inequality H1(Σ) ≤ H1(St(M))− r]M
holds, where ]M is a cardinality of elements of set M , and St(M) is an arbitrary Steiner
set for M . It is easy to show that strong inequality can not be true.

We will show the examples for each option. At the pictures given sets M are drawn by
green color, energetic points of minimizer Σ by red color, remaining points of Σ by violet.

1. x ∈ SΣ

(a) Σ ∩Bε(x) is a segment. Point S at the Pic. 6, 1, 2, 3, 4.

(b) Σ ∩Bε(x) is a regular tripod. Point F at the Pic. 3.
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Figure 1: An example when M := {A,B,C}, Σ = [DE] ∪ [EH]. Point E belongs to XΣ

and has an order 2. The angle ∠DEH is equal to 2π/3.

Figure 2: An example when M is a set of two points of the line (DG) and a countable
many points of a line parallel to (DG); Σ = [DG]. Point G is a limit of points XΣ and
belongs to EΣ.

Figure 3: An example where M := {A,B,C}, Σ is a tripod.
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Figure 4: An example where M := {A,B,C}, Σ = [DE] ∪ [EG]. Point E belongs to XΣ

and has an order 2. An angle ∠DEH is greater than 2π/3.

Figure 5: An example when M := ∂Br([AG]), Σ = [AG]. Point G ∈ EΣ and ordGΣ = 1.

Figure 6: An example when M = ∂BR(O), where R > 4.98r.
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2. x ∈ XΣ

(a) Σ ∩Bε(x) is a segment with an end at x. Point D at the Pic. 6, 1, 2, 3, 4.

(b) Σ ∩ Bε(x) is a union of two segments with common end at x and an angle
greater between them (point E at the picture Pic. 4) or equal (point E at the
picture Pic. 1) to 2π/3 between them.

3. x ∈ EΣ

(a) Σ ∩ Bε(x) is an arc with an end at x (a point G at the picture Pic. 2, 5).
Herewith x can

i. be a limit of points from XΣ (point G at the Pic. 2);
ii. not be a limit of points from XΣ (point G at the Pic. 5).

(b) Σ ∩ Bε(x) is a union of two arcs with a common end at the point x, having
in this point the one-sided tangent lines with angle greater or equal to 2π/3
between them (points H1 at Pic. 6 and H2 at Pic. 6, 5). Herewith the point x
can have

i. one energetic edge (point H1 at Pic. 6);
ii. two energetic edges (point H2 at Pic. 6, 5).
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Abstract

Typical treatises on propositional and predicate logic do not tell how to deal with
undefined expressions, such as division by zero. However, there seems to be a sound
(albeit inexplicit) reasoning system that addresses undefined expressions, because
equations and inequations involving them are routinely solved in schools and univer-
sities without running into fundamental inconsistencies. In this study we discover
this school logic and formalize its semantics. The need to do so arose when develop-
ing software that gives students feedback on every reasoning step of their solution,
instead of just telling whether the roots that they finally report are the correct
roots. The problem of undefined expressions has been addressed in computer science.
However, school logic proves different from those approaches. School logic is based
on a Kleene-style third “undefined” truth value and the treatment of “⇒” and “⇔”
not as propositional operators but as reasoning operators.

1 Introduction
To discuss the motivation of this study, it is useful to first consider an example. It illustrates
the use of the symbols “⇒” and “⇔” when solving equations and inequations in Finnish
schools in the 1970s. They denote logical implication and logical equivalence, respectively.
The same kind of reasoning is used also today, but without writing these symbols. We
assume that the set R of real numbers is used.

√
x+
√
x+ 1 =

√
2x+ 1 compute square of both sides

⇒ x+ 2
√
x
√
x+ 1 + x+ 1 = 2x+ 1 move x and x+ 1 to the right

⇔ 2
√
x
√
x+ 1 = 0 divide by 2, compute square

⇒ x(x+ 1) = 0 a product is 0 iff a factor is 0
⇔ x = 0 ∨ x+ 1 = 0 move 1 to the right
⇔ x = 0 ∨ x = −1

Because some reasoning steps used implication instead of equivalence, it is necessary to
check the obtained values of x. When assigned in the place of x, 0 makes the original
equation hold, so x = 0 is a valid root to the equation. On the other hand, x = −1 makes
both sides of the original equation undefined, so it is not a valid root. Therefore, as was
taught in Finnish schools, we conclude

√
x+
√
x+ 1 =

√
2x+ 1 ⇔ x = 0 .

When this conclusion is instantiated with x = −1, we get
√
−1 +

√
−1 + 1 =

√
2 · (−1) + 1 ⇔ −1 = 0 ,

that is, √
−1 + 0 =

√
−1 ⇔ −1 = 0 .
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(We refrain from simplifying
√
−1+0 to

√
−1 because

√
−1 is undefined, and until Section 2

we do not know whether f + 0 may be simplified to f also when f is undefined.) We have
concluded that a particular claim involving undefined expressions (that is,

√
−1+0 =

√
−1)

is logically equivalent to a false claim (−1 = 0).
This conclusion cannot be expressed in traditional binary propositional and predicate

logic that are taught in courses on logic in schools and universities, because they do not
have machinery for talking about undefined expressions. What is more, in traditional logic
we may reason that if ϕ⇔ ψ, then ¬ϕ⇔ ¬ψ. When applied to the above conclusion it
yields

¬(
√
−1 + 0 =

√
−1) ⇔ ¬(−1 = 0) .

Let T denote “true”. If we assume further that ¬(f = g) ⇔ f 6= g also with undefined
expressions, we get √

−1 + 0 6=
√
−1 ⇔ T ,

which seems counterintuitive indeed.
Fortunately, this is not how logic is used in Finnish schools. Therefore, the logic that is

used in Finnish schools — which we will call school logic from now on — is not precisely
the same as the traditional binary propositional and predicate logic. School logic is implicit
in the sense that while it is the logic that is actually used, it is not explicitly taught.

The difference arises with undefined expressions. They are frequent in high school and
elementary university mathematics. Just to mention a few examples: n

√
x when n is even

and x is negative, xy when y = 0, log x when x ≤ 0, limx→0 sin 1
x , min(∅), max(R), and

the direction of the null vector.
School logic is apparently sound and consistent, because, if properly used, it seems

to never lead to an incorrect conclusion. When a wrong conclusion is obtained, it can be
traced to an error in reasoning. For instance, assume that the above example is modified
as follows:

√
x+
√
x+ 1 =

√
2x+ 1 both sides are non-negative

⇔ (
√
x+
√
x+ 1)2 = (

√
2x+ 1)2 like before

⇔ 2
√
x
√
x+ 1 = 0 a product is 0 iff a factor is 0

⇔ 2 = 0 ∨
√
x = 0 ∨

√
x+ 1 = 0 solve x

⇔ x = 0 ∨ x = −1

Now −1 was incorrectly obtained as a root to the equation. This is because the rule “a
product is 0 iff a factor is 0” is incorrect. The correct rule is “a product is 0 iff a factor is 0
and all factors are defined ”. It yields correctly

2
√
x
√
x+ 1 = 0

⇔ (2 = 0 ∨
√
x = 0 ∨

√
x+ 1 = 0) ∧ T ∧ x ≥ 0 ∧ x ≥ −1

⇔ (x = 0 ∨ x = −1) ∧ x ≥ 0
⇔ x = 0

In this study we try to recognize the semantics and some rules of school logic. Because
school logic is not the same as the traditional logic, at least some traditional law must
be rejected either in the domain of discourse (e.g., we might reject ∀x : x + 0 = x), in
the logic (e.g., we might reject ϕ ∨ ¬ϕ⇔ T), or both. We want this to only happen with
undefined expressions.

By the nature of our endeavour, many (but not all!) of our arguments are “soft”:
instead of formal proofs we present examples that try to reveal how students and teachers
think. This method suffers from the problem that while an example yielding a clearly
unacceptable result provides evidence that school logic does not work like that, there
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is the risk that the opposite design choice also leads to unacceptable consequences that
we did not see. Our faith on that we have recognized the right semantics is based on
extended experience with the use of school logic and on the fact that our semantics have
been successfully implemented in the MathCheck tool mentioned below, where they have
worked well so far.

The problem with undefined expressions is ubiquitous in computer science, both in
programming (e.g., indexing an array out of bounds), formal specification (like program-
ming), and theoretical computer science (e.g., the result of a computation that does not
terminate). As a consequence, many computer scientists have made it clear how they deal
with them. We will discuss some approaches in this study. They will prove different from
school logic in one or more important aspects.

The need to formalize school logic arose in the development of the MathCheck tool [7].1
Its purpose is to give students feedback on their solutions to elementary mathematics
problems. For instance, if the student computes

√
x2 − 6x+ 9 =

√
(x− 3)2 = x − 3,

MathCheck accepts the first “=” but refutes the second with a counter-example such as
x = 0 where the left hand side yields a positive and the right hand side a negative value.
The problem with undefined expressions first arose with such examples as x

x = 1 and
1
x2 > 0. Later on, MathCheck was made able to check solutions to equations using “⇔”
and “⇒” similarly to towards the beginning of this section (provided that the teacher has
given the correct roots to MathCheck). To do that, it was necessary to make MathCheck
obey the semantics of school logic, making it necessary to find out the semantics.

In Section 2, we reject the idea of treating undefined as a value in the domain of
discourse. The next section tells how MathCheck deals with undefined expressions in
relation chains such as x

√
x√
x

= x > 0. Section 4 discusses two computer science approaches
and introduces the undefined truth value. Based on Kleene’s ideas [4, 1], we prove in
Section 5 that the language of school logic disallows writing a unary predicate that yields
T if and only if its argument is undefined. The syntax and semantics of “⇔” and “⇒” are
given in Section 6. The topic of Section 7 is reasoning in school logic. Among other things,
the result in Section 5 proves important regarding why school logic works well. It also
turns out that in many cases, the issue of undefined expressions does not affect reasoning.
Section 8 briefly summarizes how and why school logic works.

2 Undefined Value in the Domain
A rather widely used approach is to make all expressions denote total functions by adding
an extra element to the domain of discourse, and use the traditional logic. This element
is often called bottom or bot and denoted with ⊥. When ⊥ appears as an argument of a
function that normally yields a value in the domain of discourse, the function yields ⊥.
Functions that map to truth values (that is, predicates) always yield F (that is, false) or T
(that is, true).

This approach yields, among other things, the intuitively acceptable result
√
−1 6= 1.

It also yields
√
−1 = 1

0 , because
√
−1 = ⊥ = 1

0 . In the case of our running example, it
yields

√
−1 +

√
−1 + 1 = ⊥ + 0 = ⊥ and

√
2 · (−1) + 1 =

√
−1 = ⊥. So this approach

deems −1 and even −2 as roots to
√
x+
√
x+ 1 =

√
2x+ 1, which is against our goal.

More generally, let x0 ∈ R and f and g be expressions on x. We now justify that if
any subexpression of f(x0) is undefined, then f(x0) must be undefined. This is because
otherwise f(x0) would yield some real number a, so x = x0 would be an undesired root to
the equation f(x) = a. Furthermore, if f(x0) or g(x0) is undefined, then f(x0) = g(x0),

1http://math.tut.fi/mathcheck/ (This talk: . . . /mathcheck/logic.html)
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f(x0) < g(x0), f(x0) ≥ g(x0), and so on must not hold, because otherwise x = x0 would
be a root to the (in)equation f(x) = g(x), f(x) < g(x), f(x) ≥ g(x), or so on.

Because neither f(x0) < g(x0) nor f(x0) ≥ g(x0) holds, we must either reject the
familiar law x < y ⇔ ¬(x ≥ y), or make comparisons involving an undefined value yield
neither the F nor the T of traditional logic. The default behaviour of the “not-a-number”
value of floating point arithmetic [2] (almost) conforms to the first option. Most (but
not all!) arithmetic operations involving a not-a-number yield a not-a-number. Each
comparison involving at least one not-a-number yields F. Indeed, the recommended way
to test whether x holds a not-a-number is to check whether x = x yields F. This implies
that both

√
−1 = 0 and

√
−1 6= 0 yield false.

With the first option, unary predicates would be partitioned to those that yield F
when the argument is undefined, and those that yield T. If ϕ(x) belongs to one class, then
¬ϕ(x) belongs to the opposite class. We find this distinction artificial. It is also clumsy,
because one would have to be careful with whether a comparison is within the scope of an
odd or even number of negations. Therefore, we choose to keep the law and reject binary
logic. We also keep the law x 6= y ⇔ ¬(x = y).

In the remainder of this study we obey the convention that if an expression maps to
the domain of discourse and any of its subexpressions is undefined, then the expression as
a whole is undefined. We denote the undefined result with the symbol ⊥ but do not treat ⊥
as a value in the domain. In particular, we have neither ⊥ = ⊥ nor ⊥ 6= ⊥.

That is, each expression f on k variables is interpreted as denoting a total function
(D ∪ {⊥})k 7→ D ∪ {⊥} such that f(. . . ,⊥, . . .) yields ⊥. However, the interpretation of
f = g and f 6= g when f or g yields ⊥ is non-standard. It will be described in Section 4.

3 Arithmetic Relation Chains in MathCheck
The first version of MathCheck was only capable of checking equality and inequality chains,
such as the following:

1

x2 + a(a− 2x)
=

1

(x− a)2
> 0

MathCheck checks such chains by trying a number of different instantiations (also known
as bindings), that is, combinations of values of the variables that occur in the chain. In
our example, x = a = 0 is among them. So MathCheck reports that the second relation
“>” fails, because x = a = 0 makes its left hand side undefined and right hand side 0.
Although x = a = 0 makes both sides of the first relation “=” undefined, MathCheck does
not report an error there, for the reason discussed very soon. If “assume x 6= a;” is added
to the front of the chain, MathCheck reports no errors.

In school mathematics, it is common to not specify when an equality or inequality is
defined, if both of its sides are undefined with the same instantiations. For example, we
usually write “tanx = sin x

cos x ” instead of “if x is not of the form π
2 + nπ where n ∈ Z, then

tanx = sin x
cos x ”. Finding out when an expression is undefined may require non-trivial work,

as is the case with 1
x2+x+1 . When solving equations, it is usually unnecessary, because it

is sufficient and easier to find a superset of the roots without worrying about undefined
expressions, and finally check which ones among them are valid roots to the original
equation, similarly to our example in Section 1. (It is necessary with typical inequations
and, for instance, (

√
x)2 = x. Some teachers tell the students to always do it, instead of

only doing it when the superset is too big to check.)
Therefore, only if the following hold, MathCheck reports an error saying that one side

of an equality or inequality is undefined: the opposite side is defined, the instantiation
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in question has not been ruled out by an assume clause, and MathCheck happens to
detect the problem. We mentioned the latter because MathCheck only tries to find most
errors instead of all errors. Finding all errors is often difficult or even uncomputable.
MathCheck is currently good in finding errors with an interval of counter-examples such
as
√

(3x− 100)(3x− 101) ≥ 0, to which it gives the counter-example x = 167
5 ≈ 33.4.

However, it is not good in finding errors with a finite or countably infinite number of
counter-examples, such as x+3

x+3 = 1.
Before attempting to refute an (in)equality by finding a counter-example, MathCheck

tries to prove it correct using simple rules such as 0f = 0. However, MathCheck must
not (and does not) reason 0

√
x = 0 without an assume clause that rules out the negative

values of x. This is implemented by treating each expression as a total function from a
subset of Rk to R, where k is the number of variables that occur in the (in)equality chain
and its optional assume clause. (For simplicity, we ignore here the fact that MathCheck
also has integer variables.) The domain of the function is where the expression is defined,
intersected with the contents of the assume clause. The assume clause must be always
defined, in the sense discussed in Section 4.

In other words, f < g in the scope of the assume clause ϕ is interpreted as

(domf ∧ domg ∧ ϕ ∧ f < g) ∨ ¬ϕ ∨ (¬domf ∧ ¬domg) ,

where undefined propositional values are treated as will be explained in Section 4, and
dom... is a predicate that tells when . . . is defined. It is obtained recursively via such rules
as domf/g ⇔ domf ∧ domg ∧ g 6= 0. A similar claim also holds for the other five relations
“≤”, “=”, “ 6=”, “≥”, and “>”.

Application of 0f = 0 as a rewrite rule from left to right is treated as universally legal.
However, when it is applied to 0

√
x, the resulting 0 has the domain x ≥ 0 (unless the

assume clause restricts it further). We denote it with 0 : {x ∈ R | x ≥ 0} 7→ R. MathCheck
does not treat it as the same as the function R 7→ R whose value is the constant 0, because
of different domains. We denote the latter with 0 : {x ∈ R | T} 7→ R or 0 : R 7→ R.

This means that in the case of 0
√
x = 0 without any assume clause, the proof stage

of MathCheck transforms the left hand side to 0 : {x ∈ R | x ≥ 0} 7→ R. It is not the
same as the right hand side, which is 0 : R 7→ R. This makes MathCheck enter the
counter-example seeking stage, reporting an error after trying a negative value for x. In
the case of “assume x > 0; 0

√
x = 0”, the proof stage of MathCheck transforms the left

hand side to 0 : {x ∈ R | x > 0 ∧ x ≥ 0} 7→ R and optimizes it to 0 : {x ∈ R | x > 0} 7→ R.
Because also the right hand side is 0 : {x ∈ R | x > 0} 7→ R, MathCheck recognizes them
as the same function and considers the equality proven. (A potential topic for future
development is to make MathCheck to try to find an instantiation that is in the domain of
one but not of the other side of an (in)equality, when it failed to prove that the domains
are the same but also failed to find a counter-example to the (in)equation. This is not
trivial, because the domains are represented as logical expressions, such as x2 + x+ 1 6= 0.)

This treatment of undefined expressions has been working well. However, when features
involving similar reasoning as in Section 1 were added to MathCheck, the problem of
undefined expressions emerged again. Consider 11

√
|x|+ 1 = 25 − x. A natural step

towards solving it is (x < 0 ∧ 11
√

1− x = 25− x) ∨ (x ≥ 0 ∧ 11
√
x+ 1 = 25− x). This

rules out the idea of using a domain where everything is defined, because x = 3 is a root
to the original equation but not in the domain of 11

√
1− x.
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4 The Undefined Truth Value
In the remainder of this study, “Q” denotes any of “<”, “≤”, “=”, “ 6=”, “≥”, and “>”.
Consider the axiom that says that every non-zero real number has an inverse:

∀x 6= 0 : x · 1

x
= 1 .

This formulation uses a so-called bounded quantifier of the form ∀x Q f : ϕ, where x is
a variable, f is an expression (also called term in logic parlance), and ϕ is a formula.
By definition, it is an abbreviation of ∀x : x Q f → ϕ, where “→” is the implication in
traditional logic. Therefore, written out in full, the axiom is

∀x : x 6= 0→ x · 1

x
= 1 .

By usual laws of logic, it is equivalent to

∀x : x · 1

x
= 1 ∨ x = 0 .

By the definition of the universal quantifier, it means that x · 1
x = 1 ∨ x = 0 holds for

every x ∈ R. For each x ∈ R \ {0} it yields T ∨ F, which is unproblematic. On the other
hand, for x = 0 it yields 0 · 1

0 = 1 ∨ T, which is an undefined logical expression. Intuitively,
the original formulation says that the part after the “ :” must not be evaluated when x = 0.
However, unwinding the definition of bounded quantifiers reveals that it is evaluated.

Vienna Development Method (VDM) [3] is a formal specification method that uses
logic and set theory concepts for the specification, design, and implementation of software.
According to [3, Sect. 3.3], undefined expressions are interpreted as never yielding a
value. This is natural to computer scientists, because a program may fail to terminate.
For instance, division of a natural number by a natural number can be implemented as
repeated subtraction. Then division by zero yields an infinite loop.

In VDM, binary Boolean operators are treated as if both arguments were evaluated
simultaneously. If the result that comes first suffices to determine the result of the operation,
then the evaluation of the other argument is aborted. For instance, x 6= 0 → x · 1

x = 1
yields T when x = 0, because 0 6= 0 yields eventually F and both F→ F and F→ T yield T.
So the never-ending evaluation of 0 · 1

0 = 1 is aborted and T is returned as the result. On
the other hand, 1

0 = 2
0 ∨

1
0 6=

2
0 does not yield any truth value, because neither argument

of the disjunction terminates.
On [3, p. 70–71], the following truth tables are given and called the logic of partial

functions. Because the usage of “⇒” and “⇔” in VDM is the same as the usage of “→”
and “↔” in MathCheck and different from the usage of “⇒” and “⇔” in MathCheck and
school logic, we have replaced “→” for “⇒” and “↔” for “⇔”. We have also replaced F for
false, T for true, and U for ∗.

∧ F U T
F F F F
U F U U
T F U T

∨ F U T
F F U T
U U U T
T T T T

¬
F T
U U
T F

→ F U T
F T T T
U U U T
T F U T

↔ F U T
F T U F
U U U U
T F U T

According to [3], “In these tables, the absence of a value is marked by ∗; but there is
no sense in which this is a new value — it is just a reminder that no value is available.”
The present authors disagree with not calling it a value, but do appreciate the intuition
behind this statement. Indeed, every entry in the tables that corresponds to one or two U
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arguments can be obtained by trying both F and T in the place of the U. If the result can
be both F and T, then U is written in the table, otherwise the unique result is written in
the table. If both arguments are U, then all four combinations (F,F), (F,T), (T,F), and
(T,T) are tried. Entries that correspond to only non-U arguments have the traditional
value. The tables match Kleene’s ternary logic KS

3 [4, 1].
It is easy to check from the above truth tables that ϕ↔ ψ denotes the same function

as (ϕ→ ψ)∧ (ψ → ϕ). Similarly, ϕ→ ψ denotes the same as ¬ϕ∨ψ and ϕ∨ψ denotes the
same as ¬(¬ϕ ∧ ¬ψ). So, as in traditional binary logic, “∧” and “¬” suffice as elementary
operators. However, unlike traditional logic, not all functions from truth values to truth
values can be constructed. We will see in the next section that the function notU cannot
be constructed such that notU(U) yields F and notU(F) and notU(T) yield T.

On the other hand, for any expression f on the real number variables x1, . . . , xk, it is
possible to write a predicate domf on the same variables that yields T when f is defined
and F otherwise. It is obtained recursively via such rules as domf/g ⇔ domf ∧domg∧g 6= 0.
When g is undefined, this yields F thanks to domg, although g 6= 0 yields U. For each
variable symbol xi we have domxi ⇔ T. This has been implemented in MathCheck, as a
part of the approach discussed in Section 3.

This is extended to predicates by defining domfQg as domf ∧ domg , dom¬ϕ as
domϕ , and domϕ∧ψ as (domϕ ∧ domψ) ∨ (domϕ ∧¬ϕ) ∨ (domψ ∧¬ψ) . This does not
contradict the unconstructibility of notU, because domϕ is not {F,U,T} 7→ {F,U,T} but
Rk 7→ {F,U,T} for some k ∈ N. That is, although domϕ(x1, . . . , xk) can be constructed,
it usually cannot be represented in the form ξ(ϕ(x1, . . . , xk)) for some ξ.

This approach facilitates formulae that say “if a claim is defined, return its truth value,
otherwise return F” and “if a claim is defined, return its truth value, otherwise return T”:

domf ∧ domg ∧ f Q g ¬domf ∨ ¬domg ∨ f Q g

The latter can also be written as domf ∧ domg → f Q g. Unlike in Section 2, the truth
value of ϕ(⊥) is not determined by the parity of the number of negation operators, but on
the user’s choice to use one, the other, or neither of the above two options.

We will use the above truth tables and dom in the rest of this study. When we say that a
formula holds, we mean that it yields T. An arithmetic relation f Q g yields U if and only
if f or g is undefined.

The Z formal specification method has adopted a subtly different convention [6, p. 40–
41]: “If one or both of E1 and E2 are undefined, then we say that the predicates E1 = E2

and E1 ∈ E2 are undetermined : we do not know whether they are true or false. This does
not mean that the predicates have some intermediate status in which they are ‘neither
true nor false’, simply that we have chosen not to say whether they are true or not.”
The text continues by presenting and discussing the formulae x ∈ domf ∧ f(x) = y and
x ∈ domf ⇒ f(x) = y, which are essentially the same as what we gave above.

The subtle difference is that while an undefined predicate invocation such as 1
0 = 2

0
yields neither F nor T in VDM, in Z it yields one of them but it is not known which one.
VDM uses a ternary logic, but Z uses the traditional binary logic [6, p. 69]. So the law of
the excluded middle holds in Z, implying that 1

0 = 2
0 ∨¬( 1

0 = 2
0 )⇔ T in Z but not in VDM.

However, the intention is clearly that this kind of formulae should not be written, where a
potentially undefined expression is not guarded by “x ∈ domf ∧ ” or “x ∈ domf ⇒ ”. So
from the point of view of the intended use of Z and VDM, this difference does not matter.

In Section 1 we concluded that in school logic,
√
x+
√
x+ 1 =

√
2x+ 1 ⇔ x = 0 .
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In VDM, this logical equivalence is not true. Indeed, it yields no truth value, because its
left hand side and thus the equivalence as a whole yields no truth value with negative
values of x. In Z, the truth value of this logical equivalence is not known, because the
truth value of its left hand side is not known for negative values of x. Both in VDM and
Z, the intention is that the claim is written as

x ≥ 0 ∧
√
x+
√
x+ 1 =

√
2x+ 1 ⇔ x = 0 .

This formulation is true in both.
However, from the point of view of school logic, this formulation suffers from the

problem that it looks like x ≥ 0 was part of the original question, although it was not. If
the original question were “find the positive values of x such that

√
x+
√
x+ 1 =

√
2x+ 1”,

then it would be natural to express the (in this case non-existent) roots to the equation as

x > 0 ∧
√
x+
√
x+ 1 =

√
2x+ 1 ⇔ F .

Similarly, x ≥ 0 ∧ . . . makes it look like the original question were “find the non-negative
. . . ”.

Furthermore, as was mentioned in Section 3, finding out the domain in an explicit form
is usually unnecessary work, because it suffices to solve the equation using “⇒” at places
and finally check which of the obtained tentative roots indeed are roots. The tentative
roots and the results of their checking could be represented in VDM and Z as

x = 0 ∧ x 6= −1 ∧
√
x+
√
x+ 1 =

√
2x+ 1 ⇔ x = 0 .

However, without knowing why this notation is used, it would seem odd. Definitely it is
not what is done in Finnish schools.

The following expresses the intention clearly:

dom√x+
√
x+1 ∧ dom√2x+1 ∧

√
x+
√
x+ 1 =

√
2x+ 1 ⇔ x = 0 .

Unfortunately, it is clumsy, as it requires writing each side of the equation twice. It would
be better if the restriction to the domains were inherent in the notation, without having
to be explicitly stated. That is, we want to interpret

√
x+
√
x+ 1 =

√
2x+ 1 ⇔ x = 0

as saying that among those values of x that make both sides of the equation defined, 0 is
the only root.

MathCheck uses the “undefined” truth value U and the truth tables in this section,
but, as will be explained in Section 6, treats “⇒” and “⇔” differently from VDM and Z.
So in MathCheck, 0 · 1

0 = 1 ∨ 0 = 0 yields U ∨ T yields T. Furthermore, 1
0 = 2

0 and even
1
0 = 1

0 ∨ ¬( 1
0 = 1

0 ) yield U in MathCheck.
MathCheck uses precise rational number arithmetic when it can, and otherwise a

representation consisting of two double-precision floating point values such that the
precise value is between them. The representation also allows expressing the possibility
that the value is undefined. For instance, on some computer the lower bound to the
value of sin2 1 + cos2 1− 1 is approximately −10−15 and the upper bound approximately
9 · 10−16. Consequently, the value of

√
sin2 1 + cos2 1− 1 is undefined or between 0 and

approximately 3 · 10−8. So the comparison
√

sin2 1 + cos2 1− 1 > 0 may yield any truth
value. For this reason, the truth value data type of MathCheck can represent any non-empty
combination of F, U, and T. In this sense, MathCheck has both the unknown truth value
(the combination of all three) and three partially known truth values (the combinations of
any two) as distinct from the undefined truth value.
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5 Regularity
In this section we present an extension of a result by Kleene [1, Lemma 1.32].

We first define ∀x : ϕ in the obvious way: if any x ∈ R makes ϕ yield F, then ∀x : ϕ
yields F; otherwise, if any x ∈ R makes ϕ yield U, then ∀x : ϕ yields U; otherwise ∀x : ϕ
yields T. Then ∃x : ϕ is defined as ¬∀x : ¬ϕ.

When an argument to a predicate is undefined, we denote it with ⊥.

Definition 1. The 0-ary predicates F, U, and T are regular. A function ϕ : {F,U,T} 7→
{F,U,T} is regular if and only if either ϕ(F), ϕ(U), and ϕ(T) yield the same result (that
is, ϕ(x) is a constant) or ϕ(U) yields U. Let D denote the domain of discourse. A predicate
ϕ : D ∪ {⊥} 7→ {F,U,T} is regular if and only if either ϕ(x) yields the same result for all
x ∈ D ∪ {⊥} or ϕ(⊥) yields U. A k-ary predicate with k > 1 is regular if and only if every
unary predicate obtainable from it by fixing all but one arguments is regular.

The predicate notU in Section 4 is not regular. The following theorem implies its
unconstructibility.

Theorem 2. If ϕ maps to {F,U,T} and has been constructed only using arithmetic
operators, “<”, “≤”, “=”, “ 6=”, “≥”, “>”, F, U, T, “∧”, “∨”, “¬”, “→”, “↔”, “∀”, and “∃”,
then it is regular.

Proof. An expression with no free variables denotes either F, U, or T, so the denoted
predicate is regular. The case of expressions with two or more free variables follows
immediately from the case with one free variable. From now on we assume that the
expression has precisely one free variable x. It is either real-valued extended with ⊥, or
truth-valued.

Arithmetic operators can only occur within subexpressions of the form f(x) Q g(x).
Assume that x occurs in f(x). If x is ⊥, then f(x) is ⊥ and f(x) Q g(x) yields U. Similar
reasoning applies if x occurs in g(x). So f(x) Q g(x) is regular.

If ϕ(x) is regular, then also ¬ϕ(x) is, because ¬U yields U and the negation of a
constant predicate is a constant predicate.

Assume that also ψ(x) is regular. If ϕ(x) yields F for every x or ψ(x) does so, then
ϕ(x)∧ψ(x) yields F for every x. If both ϕ(x) and ψ(x) yield T for every x, then ϕ(x)∧ψ(x)
yields T for every x. In the remaining case, when x is ⊥ or U, one of them yields U and the
other yields U or T, so also ϕ(x) ∧ ψ(x) yields U. We conclude that ϕ(x) ∧ ψ(x) is regular.

Assume that ϕ(y, x) is regular, where y is a real-valued variable. If there is y ∈ R such
that ϕ(y, x) yields F for every x, then ∀y : ϕ(y, x) yields F for every x. If ϕ(y, x) yields T
for every y ∈ R and x, then ∀y : ϕ(y, x) yields T for every x. In the remaining case, when
x is ⊥ or U and y ∈ R, ϕ(y, x) yields U or T, and U is obtained with at least one y ∈ R.
So also ∀y : ϕ(y, x) yields U. We conclude that ∀y : ϕ(y, x) is regular.

Because the remaining propositional operators and “∃” can be constructed from “¬”,
“∧”, and “∀”, also they only yield regular predicates.

6 The Syntax and Semantics of “⇒” and “⇔”
In VDM and Z, ϕ⇒ ψ and ϕ⇔ ψ are logical operations that obey similar syntactic rules
as ϕ∧ψ and, given the truth values of ϕ and ψ, yield a truth value. The following table is
given on page 4 in [3], and the following grammar on page 69 in [6]. The latter remarks
“These connectives are shown in decreasing order of binding power; the connective ⇒
associates to the right, and the other binary ones associate to the left.” We failed to find
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out how “⇒” associates in VDM, but examples such as E1 ⇒ (E2 ⇒ E3) on page 298
suggest that not to the right. For the other binary operators the direction of associativity
does not matter, because they are associative.

operator read as priority
¬ not highest
∧ and
∨ or
⇒ implies
⇔ is equivalent to lowest

Predicate ::= ¬ Predicate
| Predicate ∧ Predicate
| Predicate ∨ Predicate
| Predicate ⇒ Predicate
| Predicate ⇔ Predicate

In school logic and MathCheck (and also often in universities), ϕ ⇒ ψ and ϕ ⇔ ψ
are not like that. Instead, they are reasoning steps that obey similar syntactic rules as
x ≤ y and are either valid or invalid. VDM-like implication and equivalence are written
as “→” and “↔” in MathCheck. Their precedences are like in VDM and Z, but also “→”
associates to the left. As a grammar,

Reasoning ::=
Predicate ⇒ Predicate

| Predicate ⇔ Predicate
| Reasoning ⇒ Predicate
| Reasoning ⇔ Predicate

Predicate ::= Atom
| ¬ Predicate
| Predicate ∧ Atom
| Predicate ∨ Atom
| Predicate → Atom
| Predicate ↔ Atom

That “⇔” is different from “↔” is clearly seen by considering

2x− 6 = 0 ⇔ 2x = 6 and 2x− 6 = 0 ⇔ 2x = 6 ⇔ x = 3 .

Both are valid reasonings. Furthermore, using the truth table in Section 4, 2x − 6 = 0
↔ 2x = 6 yields T for every x ∈ R. On the other hand, applying similar syntactic rules
to 2x − 6 = 0 ↔ 2x = 6 ↔ x = 3 as with “∧”, when x 6= 3 we get F ↔ F ↔ F, that is,
(F↔ F)↔ F yielding T↔ F yielding F. So it does not yield T for every x ∈ R.

There is also the difference that “⇒” and “⇔” are often interpreted relative to a
context. For instance, 2x + |x| = (x − 7)2 + 3 may be split to two cases, x < 0 and
x ≥ 0. If “⇔” is interpreted relative to the context, the former can be solved by reasoning
2x− x = (x− 7)2 + 3 ⇔ x = (x− 7)2 + 3 ⇔ F, because x < 0 and (x− 7)2 + 3 > 0. If the
interpretation were not relative to the context, x = (x− 7)2 + 3⇒ F would be incorrect
because 15±

√
17

2 are counter-examples, so we would lack handy notation.
When “⇔” and “↔” are used as distinct symbols in binary logic, the usual convention

is that ϕ1 ⇔ ϕ2 ⇔ . . . ⇔ ϕn is valid if and only if for each 1 ≤ i < n and for each
instantiation allowed by the context, ϕi ↔ ϕi+1 holds. Also “⇒” may appear in the chain,
then ϕi → ϕi+1 must hold. In the case of “⇒” and n = 2, this can be thought of as the
Modus Ponens rule.

Unfortunately, things are more complicated with our ternary logic. For instance,
1
x + 1 > 1 ⇒ 1

x > 0 should be valid, because both sides are defined for the same values of
x, the claim holds for those values of x, and our goal is, to the extent possible, to liberate
the user from the obligation to explicitly write the domains. However, 1

x + 1 > 1 → 1
x > 0

yields U, not T, when x = 0. This cannot be sorted out by considering ϕ⇒ ψ valid if and
only if for every instantiation allowed by the context, ϕ→ ψ yields U or T, because then
both x < 0 ⇒

√
x < 0 and

√
x < 0 ⇒ x ≥ 0 would be treated as valid, yielding x < 0 ⇒

x ≥ 0 as valid by the transitivity of “⇒”.
The semantics of “⇒” and “⇔” in MathCheck and school logic can be derived from the

following four easily acceptable principles from traditional logic (with the adaptation that
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the third principle mentions U and instantiation with undefined expressions is allowed),
together with one example of what we want to achieve:

1. ϕ⇔ ψ if and only if ϕ⇒ ψ and ψ ⇒ ϕ.

2. If ϕ⇒ ψ and ψ ⇒ ξ, then ϕ⇒ ξ.

3. ϕ ⇒ ψ if and only if for every instantiation x̄ of the variables that occur in ϕ or
ψ that is allowed by the context, we have ϕ(x̄) ⇒ ψ(x̄), where ϕ(x̄) ∈ {F,U,T}
denotes the truth value of ϕ with the instantiation x̄, and similarly with ψ.

4. F⇒ F, F⇒ T, and T⇒ T, but not T⇒ F.

5. 1
x = 1

x ⇔ x 6= 0.

Theorem 3. The five principles above lead to the following validity tables.

⇒ F U T
F
√ √ √

U
√ √ √

T − −
√

⇔ F U T
F
√ √

−
U
√ √

−
T − −

√

Proof. By (3), it suffices to investigate the cases where ϕ and ψ are among F, U, and T.
The corners of the table for “⇒” are given by (4). Assigning x = 0 in (5) yields U⇔ F.
From it (1) yields U⇒ F and F⇒ U. From them (2) implies U⇒ U. Furthermore, U⇒ F,
F⇒ T, and (2) yield U⇒ T. Finally, T⇒ U is not valid, because if we assume that it is
valid, then we get T⇒ U⇒ F, contradicting (4). The table for “⇔” follows by (1).

That is, an implication is invalid if and only if there is an instantiation that makes
its left hand side true and its right hand side either false or undefined. This approach
is similar to the not-a-number in Section 2 in that undefined is eventually treated as
equivalent to false. However, it is converted to false at the level of reasoning steps, not at
the level of predicates. At the level of predicates it is represented via the undefined truth
value. This protects it from being transformed to true, if the undefined relation is in the
scope of negation.

Consider x = 0 ⇒ ¬( 1
x 6= 0) ⇒ 1

x = 0, for instance. Both in the logic of the not-a-
number and in the logic of MathCheck, it yields F ⇒ ¬T ⇒ F when x 6= 0 (where ¬T
is F). When x = 0 it yields T ⇒ ¬F ⇒ F with the not-a-number (where ¬F is T) and
T⇒ ¬U⇒ U with MathCheck (where ¬U is U). So the first implication is valid and the
second is invalid with the not-a-number, and the other way round with MathCheck. We
find the MathCheck convention more natural, because it keeps the law f 6= g ⇔ ¬(f = g)
universally valid, and does not treat ¬( 1

0 6= 0) as true.
Perhaps the most surprising detail is that U ⇒ F is valid in MathCheck and school

logic. It cannot be avoided, because we want roots to an equation to be expressible as
f(x) = g(x) ⇔ x = x1 ∨ · · · ∨ x = xn without having to explicitly restrict the left hand
side to its domain. It is different from the behaviour of “→” in both Kleene’s KS

3 and
Łukasiewicz’s ternary logic L3 [5, 1], where U→ F yields U. It contradicts the intuitive
idea that undefined is between false and true. Therefore, MathCheck and school logic
reject that idea.

We have 1
x 6= 0⇔ x 6= 0 and in particular 1

0 6= 0⇔ F, which almost — but only almost
— says that 1

0 = 0, which cannot be accepted. According to the validity table of “⇔”, when
one of ϕ and ψ is U and the other is F, then ϕ ⇔ ψ does not yield ¬ϕ ⇔ ¬ψ. So the
incorrect conclusion 1

0 = 0 ⇔ T is not obtained. Each claim of the form 1
0 = x, 1

0 6= x,
1
0 < x, and so on is equivalent to F, but so is also each of their negations.
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The claim that ϕ yields T can be written both as ϕ and as ϕ⇔ T. Similarly, ¬ϕ and
¬ϕ⇔ T express that ϕ yields F. On the other hand, ϕ⇔ F expresses that ϕ yields either
F or U. That ϕ yields U can be expressed as ϕ ∨ ¬ϕ⇔ U and as ϕ ∨ ¬ϕ⇔ F. We saw in
Section 5 that it cannot be expressed as a function that inputs the truth value of ϕ and is
only constructed using the five propositional operators.

7 Reasoning in School Logic
In Section 4 the predicates domf and domϕ were introduced that yield T when the
expression f and the truth-valued function ϕ are defined, and F otherwise. The only way
to violate ϕ⇒ ψ is that, for some instantiation allowed by the context, ϕ yields T and ψ
yields either U or F, that is, ϕ∧ (¬domψ ∨¬ψ) holds. Consequently, ϕ⇒ ψ is valid if and
only if ¬domϕ ∨ ¬ϕ ∨ ψ holds for every allowed instantiation. That is,

ϕ⇒ ψ is valid if and only if (domϕ ∧ ϕ)→ ψ holds
for every instantiation that is allowed by the context.

The predicates ϕ ∧ (¬domψ ∨ ¬ψ) and ¬domϕ ∨ ¬ϕ ∨ ψ illustrate that the law of the
excluded middle has been replaced by ¬ϕ ∨ ¬domϕ ∨ ϕ. Therefore, the opposite of ϕ is
¬domϕ ∨ ¬ϕ, which is not necessarily ¬ϕ.

If a predicate never yields U, let us call it Boolean. Some examples are domϕ, domϕ∧ϕ,
and ¬domϕ ∨ ϕ. Logically equivalent Boolean sub-formulae can be replaced by each other,
that is, if ϕ and ψ are Boolean and ϕ ⇔ ψ, then ζ(ϕ) ⇔ ζ(ψ). Replacement is not
necessarily correct with non-Boolean sub-formulae, because F⇔ U is valid but ¬F⇔ ¬U
is invalid.

The truth and validity tables in the previous sections also yield

ϕ ⇔ domϕ ∧ ϕ and domϕ ⇔ ϕ ∨ ¬ϕ .

Because domϕ ∧ ϕ is Boolean, the first law can often be used to reduce a reasoning task
into binary logic. To illustrate this, we prove that the following three yield each other:

ϕ ⇒ ψ
domϕ ∧ ϕ ⇒ domψ ∧ ψ

¬domψ ∨ ¬ψ ⇒ ¬domϕ ∨ ¬ϕ

The second can be derived from the first using the above-mentioned law twice: domϕ ∧ ϕ
⇔ ϕ ⇒ ψ ⇔ domψ ∧ψ. The first can be derived from the second in a similar fashion. The
law of contrapositive of binary logic says that ϕ ⇒ ψ if and only if ¬ψ ⇒ ¬ϕ. Because
both sides of the second are Boolean, this law can be applied to it. Together with De
Morgan’s law it yields the third. The second can be similarly derived from the third.

The above result presents a variant of the law of contrapositive that holds in school
logic, but requires explicitly writing the domains. We now derive a result that often allows
dropping the domains. Assume that ϕ⇒ ψ and domψ ⇒ domϕ. We have already proven
¬ψ ⇒ domψ, ¬ψ⇒¬domϕ∨¬ϕ, and ¬ϕ⇒ domϕ. These yield ¬ψ⇒ domϕ∧(¬domϕ∨¬ϕ)
⇔ domϕ ∧ ¬ϕ ⇔ ¬ϕ. We got the following.

If ϕ⇒ ψ and domψ ⇒ domϕ, then ¬ψ ⇒ ¬ϕ.

This means that when ϕ and ψ have the same domain, the binary logic law of contrapositive
can be used as such.

In traditional logic, universal quantification can be removed by replacing any expression
for the instances of the quantified variable (under certain rules that protect against name
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clashes). That is, if f is an expression that obeys the rules, then (∀x : ϕ(x)) ⇒ ϕ(f).
In school logic, this is replaced by (∀x : ϕ(x)) ⇒ domf → ϕ(f), which is equivalent to
(∀x : ϕ(x)) ⇒ ¬domf ∨ ϕ(f). For instance, if f =

√
x, the law ∀y : y − y = 0 yields

x ≥ 0→
√
x−
√
x = 0 and thus does not yield the incorrect result

√
−1−

√
−1 = 0. The

law ∀y : y 6= 0→ y
y = 1 yields x ≥ 0→ (

√
x 6= 0→

√
x√
x

= 1), that is, x > 0→
√
x√
x

= 1.
This means that the axioms of real numbers and many definitions (such as the definition

of “≤” in terms of “<” and “=”) retain their traditional form, but their use in reasoning
is changed. Going through all the cases is beyond the scope of this study, but let us
investigate the case of applying an equational law. Before presenting the theorems, let us
discuss an example.

Assume that when solving an equation on x, we have concluded that
√
x√
x

= 1∧ x = −3.
The law y

y = 1 holds for every non-zero real number y, that is, y 6= 0→ y
y = 1 yields T for

every real number y. Nevertheless, it would be incorrect to reason
√
x√
x

= 1 ∧ x = −3 ⇔
1 = 1 ∧ x = −3 ⇔ x = −3. We will see that using “⇒” in the place of the first “⇔” would
be correct. Also

√
x√
x

= 1 ∧ x = −3 ⇔ x ≥ 0 ∧
√
x 6= 0 ∧ 1 = 1 ∧ x = −3 is correct, where

x ≥ 0 expresses the domain of
√
x and

√
x 6= 0 expresses the domain of the division.

The theorem considers the application of a law of the form ξ(y)→ f(y) = g(y), where
f(y) and g(y) are expressions and ξ(y) is a predicate on variable y. Often ξ(y) is just T.
The law can be written also as ¬ξ(y) ∨ f(y) = g(y). In the example above, f(y) is y

y , g(y)

is 1, and ξ(y) is y 6= 0. The law is applied to a predicate of the form ϕ(f(h)), where h is
an expression. In the example, h is

√
x, f(h) is

√
x√
x
, and ϕ(y) is y = 1 ∧ x = −3.

Please notice that the variable y occurs in y − y but not in 0, although both express
the same function (the constant function 0 : R 7→ R).

Theorem 4. Let y be a variable on R∪{⊥}, f(y), g(y), and h(y) be real-valued (potentially
undefined) expressions such that y occurs in f(y), and ξ(y) and ϕ(y) be predicates. If
ξ(y)→ f(y) = g(y), ϕ(⊥) yields F or U, and domf(y) → ξ(y), then

ϕ(f(h)) ⇔ domf(h) ∧ ϕ(g(h)) ⇔ (domf(h) ∨ ¬domg(h)) ∧ ϕ(g(h)) .

Proof. If domf(h) yields F, then f(h) yields ⊥, ϕ(f(h)) yields F or U, the middle formula
yields F, and the right hand side reduces to ¬domg(h) ∧ ϕ(g(h)). The latter is F if g(h) is
defined and F or U otherwise. The equivalences hold, because none of the three yields T.

Otherwise domf(h) yields T, implying ξ(h). Because f(h) is defined and y occurs
in f(y), also h is defined, that is, domh yields T. The law ξ(y) → f(y) = g(y) yields
domh → (ξ(h)→ f(h) = g(h)) which yields f(h) = g(h). So domf(h) yields T and ϕ(f(h))
yields the same as ϕ(g(h)), giving the claim.

Thanks to regularity (please see Theorem 2), the only way in which ϕ(y) can fail the
assumption in Theorem 4 is to yield T for every y. In that case it is legal and easier to
replace T for ϕ(f(h)) instead of g(h) for f(h). The condition domf(y) → ξ(y) tends to hold,
because often the task of ξ(y) is only to filter out the situations where f(y) is undefined,
so ξ(y) is domf(y). This is the case with y 6= 0 → y

y = 1 and y ≥ 0 → (
√
y)2 = y, for

instance. This means that Theorem 4 is widely applicable.
If f(y) and g(y) have the same domain, then Theorem 4 lets to reason simply ϕ(f(h))⇔

ϕ(g(h)), analogously to Section 3. Otherwise it suffices to also require domf(h) (or any
predicate that is between domf(h) and domf(h) ∨¬domg(h)) on the right hand side. In our
example, the theorem yields

√
x√
x

= 1 ∧ x = −3 ⇔ x ≥ 0 ∧
√
x 6= 0 ∧ 1 = 1 ∧ x = −3.

Another option is to simply ignore the issue of undefined expressions while solving
the equation, and finally check the obtained tentative roots. Often Theorem 4 gives the
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permission to reason ϕ(f(h))⇒ ϕ(g(h)). In our example, it yields 1 = 1 ∧ x = −3. Then
−3 is a tentative root that fails the check.

The importance of the assumption on ϕ(y) in Theorem 4 is seen by letting f(y) be
y− y, g(y) be 0, h be 1

0 , ξ(y) be T, and ϕ(y) yield T when y is undefined and F otherwise.
Then ϕ(f(h)) yields T but ϕ(g(h)) yields F. Without the requirement that y occurs in
f(y), the choice f(y) is 0, g(y) is y − y, h(y) is 1

0 , ξ(y) is T, and ϕ(y) is y = 0 would yield
0 = 0 ⇔ 1

0 −
1
0 = 0.

The next theorem gives more instances where “⇒” can be used.

Theorem 5. Let y be a variable on R∪{⊥}, f(y), g(y), and h(y) be real-valued (potentially
undefined) expressions, and ξ(y) and ϕ(y) be predicates. Assume that ξ(y)→ f(y) = g(y).
Then

ϕ(f(h)) ⇒ ϕ(g(h)) ∨ ¬ξ(h) ∨ ¬domh (1)
domh ∧ (ξ(h) ∨ ¬domξ(h)) ∧ ϕ(f(h)) ⇒ ϕ(g(h)) (2)

Assume, furthermore, that y occurs in f(y). If y occurs in g(y) or ϕ(y) is regular, then

ϕ(f(h)) ⇒ ϕ(g(h)) ∨ ¬ξ(h) (3)
(ξ(h) ∨ ¬domξ(h)) ∧ ϕ(f(h)) ⇒ ϕ(g(h)) (4)

Proof. If ϕ(f(h)) yields F or U, then the claims clearly hold. If ξ(h) yields F, then ¬ξ(h)
yields T and ¬domξ(h) yields F, thus the claims hold again. So from now on, let ϕ(f(h))
yield T and ξ(h) yield U or T.

If h is defined, then the law ¬ξ(y) ∨ f(y) = g(y) can be applied with y = h. Because
¬ξ(h) yields F or U and the law yields T, we have f(h) = g(h) (which entails that f(h)
and g(h) are both defined). So ϕ(g(h)) yields the same as ϕ(f(h)), that is, T, making the
claims hold.

In the remaining case, ϕ(f(h)) yields T, ξ(h) yields U or T, and h is undefined, that is,
domh yields F. In (1) and (2), the claim follows immediately from the value of domh. The
cases (3) and (4) remain.

If y occurs both in f(y) and g(y), then f(h) and g(h) are undefined because h is
undefined. Therefore, ϕ(g(h)) yields the same as ϕ(f(h)), that is, T. So the claims hold.

If y occurs in f(y) and ϕ(y) is regular, then f(h) is undefined and ϕ(f(h)) yields either
U or the same as ϕ(g(h)). In both cases the claim is immediately obtained.

In (3) and (4), the importance of the regularity assumption and the assumption that y
occurs in f(y), are seen by the counter-examples that were used after Theorem 4 for a
similar purpose.

8 Conclusions
The roots to x+

√
x = 2

√
x are x = 0 and x = 1. We explicated a logic where this can be

expressed as x+
√
x = 2

√
x ⇔ x = 0 ∨ x = 1. When x = −1, then x = 0 ∨ x = 1 is F, but

x+
√
x = 2

√
x is a comparison of two undefined expressions. To make x+

√
x = 2

√
x ⇔

x = 0 ∨ x = 1 valid also when x = −1, we adopted the principle that at the level of “⇒”
and “⇔”, undefined claims are equivalent to false claims.

This principle cannot be implemented by making each predicate yield F on an undefined
argument, because if ϕ(x) is such a predicate, then ¬ϕ(x) is not although it is a predicate.
This problem was solved by employing a third truth value U similarly to Kleene’s KS

3 . It
is its own negation, and it is equated to F only at the level of “⇒” and “⇔”.
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An aspect of this approach is that negation, conjunction, and so on cannot be applied
to “⇒” and “⇔”. Unlike “¬”, “∧”, and so on, they are not treated as operators that yield a
ternary truth value but as binary relations on ternary truth values. Their result could be
thought of as a traditional binary truth value, but to avoid confusion, we did not use that
parlance and instead said that ϕ⇒ ψ is or is not a valid reasoning step. There are related
ternary truth value -yielding operators “→” and “↔”, and ϕ⇒ ψ is valid if and only if
(domϕ ∧ ϕ) → ψ yields T for every instantiation that is allowed by the context, where
domϕ yields F when ϕ yields U and T otherwise. Similarly to f < g ≤ h in arithmetic,
sequences such as ϕ⇒ ψ ⇔ ξ are interpreted as saying that both ϕ⇒ ψ and ψ ⇔ ξ are
valid. This is unlike ϕ→ ψ ↔ ξ, which is interpreted similarly to f−g+h as (ϕ→ ψ)↔ ξ.

Although developing a full-fledged reasoning system for school logic was beyond the
scope of this study, we did analyse the application of (perhaps guarded) equational laws
f(y) = g(y). Among other things, it turned out that if f(y) and g(y) are undefined for
the same arguments (which is often the case), then the law can be applied similarly to
traditional logic. This result depends on the fact that not all functions on ternary truth
values can be constructed only using “¬”, “∧”, and so on. In particular, no ϕ(x) can be
constructed such that it yields T if and only if x is U.

We believe that this logic is what mathematicians implicitly use when reasoning in
real number arithmetic.
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