
ANNALES UNIVERSITATIS TURKUENSIS
M

atti Heikkonen
E 23

Matti Heikkonen

ESSAYS ON LATENT 
FACTOR MODELS IN FINANCE

TURUN YLIOPISTON JULKAISUJA –  ANNALES UNIVERSITATIS TURKUENSIS
Sarja - ser. E osa  - tom. 23 | Oeconomica | Turku 2018

ISBN 978-951-29-7119-0 (PRINT)
ISBN 978-951-29-7120-6 (PDF)

ISSN 2343-3159 (Painettu/Print) | ISSN 2343-3167 (Verkkojulkaisu/Online) 

Pa
in

op
aik

ka
, T

ur
ku

 , F
in

lan
d 

 20
18



TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS
Sarja - ser. E osa - tom. 23 | Oeconomica | Turku 2018

Matti Heikkonen

ESSAYS ON LATENT  
FACTOR MODELS IN FINANCE



Supervised by

Professor Luis Alvarez Esteban 
Turku School of Economics 
Finland

Professor Mika Vaihekoski 
Turku School of Economics 
Finland

Reviewed by

Professor Erik Lindström 
Lund University 
Sweden

Professor Pentti Saikkonen 
University of Helsinki 
Finland

The originality of this thesis has been checked in accordance with the University of Turku quality 
assurance system using the Turnitin OriginalityCheck service.

ISBN 978-951-29-7119-0 (PRINT)
ISBN 978-951-29-7120-6 (PDF)
ISSN 2343-3159 (Painettu/Print)
ISSN 2343-3167 (Verkkojulkaisu/Online)
Painosalama Oy - Turku, Finland 2018

University of Turku 

Turku School of Economics
Department of Accounting and Finance 
Subject - Quantitative Methods in Management 
Doctoral Programme of Turku School of Economics

Custos

Professor Luis Alvarez Esteban 
Turku School of Economics 
Finland

Opponent

Professor Erik Lindström 
Lund University 
Sweden



ABSTRACT

This dissertation considers the application of latent factor models to financial
risk management and asset pricing. The purpose is to provide solutions for
modelling and forecasting the dynamics of asset prices, and to evaluate the per-
formance of the proposed models using empirical data. The applications of the
models analysed in the individual research papers vary from risk measurement
to arbitrage free term structure modelling, with risk management being com-
mon financial theme as the asset pricing models also provide a framework for
hedging.

In the first article I consider forecasting Value-at-Risk using models in which
the observed stock returns are assumed to be affine functions of independent
GARCH-type processes. The models are estimated using various Independent
Component Analysis algorithms, and the obtained forecasts are compared with
alternative estimates. The empirical results reveal that while most of the tested
estimation approaches result in good forecasts under calm market conditions,
their behavior during a financial crisis can vary considerably. Estimators based
on high order moments or cumulants fared particularly badly, which is likely
explained by their sensitivity to outliers.

In the second article I consider a discrete time affine Gaussian model for the
joint dynamics of Overnight Indexed Swap rates and Interbank Offered Rates. I
present a computationally fast way for estimating the model using least squares
regressions. The model is evaluated using European interest rate data, and the
results show that it is able to achieve a close and relatively stable fit during
challenging market conditions.

The third article considers a quadratic multiple curve models for spot rates.
As a special case of the general I derive a multiple curve extensions to the arbi-
trage free Nelson-Siegel model. The models are estimated using the quadratic
Kalman filter under that assumption that the spreads are driven by factors related
to liquidity and credit risk.

Keywords: finance, risk management, time series, financial econometrics, asset
pricing, term structure models





TIIVISTELMÄ

Tämä väitöskirja tutkii latentteihin faktoreihin perustuvien mallien sovelluksia
riskienhallinnassa ja rahoitusinstrumenttien hinnoittelussa. Tarkoituksena on
tarjota menetelmiä hintojen ennustamiseen sekä niiden dynamiikan mallintami-
seen, ja testata esitettyjä malleja empiirisen aineiston avulla. Artikkeleissa kä-
siteltävät mallien sovellukset vaihtelevat riskimittojen estimoinnista arbitraasit-
tomiin korkojen aikarakennemalleihin, riskienhallinnan ollessa yhdistävänä ra-
hoitukseen liittyvänä tekijänä.

Ensimmäisessä artikkelissa tarkastelen Value-at-Risk-riskimitan ennusta-
mista käyttäen malleja, joissa havaittujen osaketuottojen oletetaan muodostuvan
riippumattomien GARCH-prosessien affiineina muunnoksina. Mallit estimoi-
daan käyttäen itsenäisten komponenttien analyysiin perustuvia algoritmeja, ja
malleja verrataan vaihtoehtoisiin menetelmiin ennusteiden perusteella. Empii-
riset tulokset osoittavat, että vaikka suurin osa testatuista menetelmistä kykenee
tuottamaan luotettavia ennusteita vakaissa markkinaolosuhteissa, niin kriisien
aikana niiden suorituskyvyssä voi ilmetä olennaisia eroja. Erityisesti korkean
asteen momentteihin ja kumulantteihin perustuvat menetelmät suoriutuivat hu-
onosti, mikä johtunee kyseisten menetelmien herkkyydestä poikkeaville havai-
nnoille.

Toisessa artikkelissa tarkastelen diskreettiaikaista affiinia Gaussista mallia
euriborkorkojen ja yön yli lainojen korkojen yhteisvaihtelulle, sekä esitän las-
kennallisesti nopean keinon mallin estimoimiseksi pienimmän neliösumman
menetelmän avulla. Korkomallia testataan eurooppalaisen aineiston avulla, ja
tulokset osoittavat mallin suoriutuvan hyvin vaihtelevissa markkinaolosuhteissa.

Kolmannessa artikkelissa tarkastelen kvadraattista jatkuva-aikaista usean
korkokäyrän mallia. Mallin erityistapauksena johdetaan usean korkokäyrän
laajennus arbitraasittomaan Nelson-Siegel -malliin. Mallin empiirisessä sovel-
luksessa EURIBOR ja yön yli lainojen korkojen erotuksen oletetaan johtuvan
likviditeetti- ja luottoriskistä. Estimointi suoritetaan kvadraattisen Kalman filt-
terin avulla.

Asiasanat: rahoitus, aikasarja-analyysi, ekonometria, riskienhallinta, korot
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1 INTRODUCTORY NOTES

1.1 Motivation

Models have an important role in finance, as they not only help to understand,
but also shape the behavior of the financial markets (MacKenzie, 2008). The
practical applications of financial models cover a variety of topics from risk ma-
nagement to the pricing of financial assets and entire companies. The field is
in a constant state of flux as advances in mathematics and statistics are applied
to old problems, or events in the financial markets reveal flaws in existing mo-
dels. The experiences of the last decade have been particularly consequential,
because the financial markets have been under turmoil as a result of the financial
crisis of 2007-2008, and the Great Recession and the European debt crisis that
followed it. The crises revealed flaws in risk management practices and caused
two notable shifts in the fixed income markets as the behavior of the Interbank
Offered Rates (IBORs) changed fundamentally and the overall level of interest
rates dropped to unprecedented levels.

Before the crisis the IBORs and Overnight Indexed Swap (OIS) rates were
practically indistinguishable from each other and they were seen as representing
essentially the same risk free rate. Thus it was generally accepted that financial
instruments related to the two rates could be modeled separately from each ot-
her, with IBORs as the risk free discount rates in standard models for pricing
IBOR derivatives (see e.g. Brace, Gatarek and Musiela, 1997). When the the-
oretical problems in this approach were noted in an article published a mere
month before the regime shift, the issue was viewed as a trivial matter (Henrard,
2007, 2010). At the start of the financial crisis the IBORs began to diverge from
the OIS rates, as it became obvious that lending to banks was not free of risks.
The emergence of spreads, which peaked at over 100 basis points in the euro
area, forced the market to adopt a so called multiple curve approached based
on OIS discounting for the valuation of IBOR based derivatives, which has mo-
tivated research on term structure models consistent with the new regime (see
e.g. Kijima, Tanaka and Wong, 2009; Bianchetti and Carlicchi, 2011; Filipović
and Trolle, 2017). During the Great Recession that followed the financial crisis,
interest rates started falling and the focus of research on term structure models
switched to the so called zero lower bound and how interest rates would behave
near it (Kim and Singleton, 2012). Eventually the European markets, however,
showed that the nominal interest rates can fall below zero.

These significant changes in the financial markets have made it necessary for
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modern pricing models to not only be able to accommodate a discount rate that
is different from the underlying IBORs, but also negative IBORs. Considering
how previously fundamental assumptions about the properties of interest rates
have turned out to be wrong, it can be considered prudent to approach the new
modeling challenge without making superfluous assumptions. The approach
chosen in this dissertation is based on latent factors models that make it pos-
sible to circumvent the need to identify in advance all factors affecting certain
economic phenomena.

Latent factor models in different forms have also found a place in risk ma-
nagement. Independent Component Analysis (ICA) has been of a particular
interest in the risk measurement due to promising empirical results (see e.g.
Wu, Yu and Li, 2006; Chen, Härdle and Spokoiny, 2007) and the implied trac-
tability. The development of new ICA algorithms, such as gFOBI and gJADE
(García-Ferrer, González-Prieto and Peña, 2011; Matilainen, Nordhausen and
Oja, 2015), specifically for time series applications has opened new possibili-
ties for financial modeling, but also raises questions as the performance of the
algorithms might vary under different market conditions.

1.2 Research objectives, methodology and structure

This dissertation considers the application of latent factor models to financial
risk management and asset pricing. The purpose is to provide solutions for
modeling and forecasting the dynamics of asset prices, and to evaluate the per-
formance of the proposed models using empirical data. The applications of the
models vary in the individual research papers from risk measurement to arbi-
trage free term structure models, with risk management being common financial
theme as the asset pricing models also provide a framework for hedging.

The methods I have chosen to use for extracting the latent variables can be
classified into two main categories. In the first two essays I utilize a two-step
approach to estimation, where I first extract the latent factors using either ICA
or principal component analysis (PCA) and then estimate the remaining model
parameters separately using the extracted factors. The third essay utilizes a
variant of the Kalman filter to simultaneously estimate the latent factors and all
of the model parameters via quasi-maximum likelihood estimation.

The first essay evaluates different approaches for forecasting market risk, i.e.
the changes in the value of a portfolio or a financial instrument that are caused
by changes in the underlying factors (McNeil, Frey and Embrechts, 2015). The
main focus is on comparing the performance of Value-at-Risk (VaR) estimates
based on recently developed ICA algorithms to those provided by benchmark
methods such as extreme value theory. The empirical results show how well the
different forecasting methods function under varying market conditions.
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The last two essays consider the dynamics of interest rates in a multiple curve
framework. Both essays rely on no-arbitrage theory in order to ensure consis-
tent pricing of financial instruments over the entire term structure. The proposed
term structure models can be considered to belong to the affine class of mo-
dels, as an quadratic term structure model can be expressed as an affine model
by augmenting it with pseudo factors (Cheng and Scaillet, 2007). Considering
polynomial models of higher order would be unnecessary, as Filipović (2002)
showed that affine and quadratic models are the only consistent polynomial term
structure models under reasonable conditions.

In the second essay of this dissertation, and the first one on interest rate mo-
dels, I propose a tractable affine Gaussian models for the joint dynamics of
EURIBORs and OIS rates. I also provide a new and computationally efficient
method for estimating the multiple curve models in a time series setting by ex-
tending the work of Adrian, Crump and Moench (2013) that covered the single
curve setting. The related empirical analysis shows how well the model fits the
data and provides information about the dynamics of the interest rates and the
market price of risk during the Financial Crisis and in the years that followed it.

The third article considers a quadratic multiple curve model for spot rates.
As a special case of the general model I derive a multiple curve extensions to
the arbitrage free Nelson-Siegel model of Christensen, Diebold and Rudebusch
(2011). The models are estimated using the quadratic Kalman filter under the
assumption that spreads are driven by factors related to liquidity and credit risk.

The data used in the empirical analysis comes from multiple sources. The
stock returns are part of the widely used datasets professor Kenneth French has
formed based on data from CRSP and made available on his website. The data
on Overnight Indexed Swaps, EURIBOR, Forward Rates and Credit Default
Swaps come from Thomson Reuters Datastream. The datasets on German go-
vernment bond and Pfandbrief yields are published by the Bundesbank on their
website. I also utilized survey data published by the European Central Bank.
Each essay describes the relevant data in more detail.

The code for the models and their estimation was written mainly in R and
Julia. The use of multiple different programming languages was necessary due
to the slowness of native R code. In particular, the estimation of continuous time
interest rate models using quasi maximum likelihood estimation via Kalman
filtering was found to be time consuming, when a good starting value was not
available. Some of the ICA algorithms, as is described in more detail in the first
article of this dissertation, were implemented using code provided by Markus
Matilainen and Klaus Nordhausen.

The first part of the dissertation consists of the introduction, which proceeds
as follows. Section 2 considers the general theory of factor models in finance,
and provides the theoretical basis for the applications in asset pricing and risk
management. Section 3 considers the estimation of latent factor models and



16

provides an overview of the methods used in this dissertation. The extended
summaries of the included articles are provided in Section 4. The articles are in
the second part of the dissertation.

As the primary focus is on finance and financial econometrics, I will gloss
over some of the more technical details, which are covered in standard refe-
rence texts on the subject. More specifically, in the context of this dissertation
arbitrage free models are also assumed to fulfil the no-free-lunch-with-vanishing
risk condition (see e.g. Delbaen and Schachermayer, 1994). Similarly I will not
explicitly check the Novikov-condition.
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2 ON FACTOR MODELS IN FINANCE

2.1 Asset Pricing and the Dynamics of the Risk Factors

In financial and economic modelling it is common to explain the dynamics of
phenomena using a limited number of fundamental factors. In the capital asset
pricing model (CAPM) of Treynor (1962), Sharpe (1964), Lintner (1965) and
Mossin (1966) the common risk factor was market risk. The arbitrage pricing
theory (APT) of Ross (1976) generalized CAPM into a multiple factor frame-
work for pricing assets, but the general theory left the identity of the underlying
factors open. Multiple comprehensive textbooks have been written on the sub-
ject, and for a thorough treatment of the classical asset pricing theory motivated
by economics and utility theory I refer to Cochrane (2005). The approach adop-
ted in this dissertation, however, is based on the no-arbitrage condition without
making direct assumptions about the forms of the utility functions of the market
participants. The focus is on the dynamics of the asset prices and the risk factors
that affect them.

Let the physical probability space, i.e. the probability space under which
observations of the data are made, be defined by the triple (Ω,F ,P, {Ft}t≥0),
where the filtration Ft denotes the information generated by the factors Xτ on
the interval τ ∈ [0, t]. When the modelled value Yt, e.g. stock returns, interest
rates or the price of a zero coupon bond, is assumed to be given by a factor
model, it means that Yt is a function of the underlying n-vector risk factors Xt.
In empirical applications this means that the relation between the Xt and Yt can
be formulated as

Yt = F(Xt, t) +ηt,

where F is a suitable function and ηt accounts for the pricing errors in term
structure models or idiosyncratic risk in excess stock returns. In purely theore-
tical work the errors are usually excluded.

Affine factor models are probably the most common class of factor models
utilized in empirical research on finance, and the first two articles of this disser-
tation follow this approach for specifying the models. The third article of this
doctoral dissertation considers a quadratic model for yields. It should, however,
be noted that quadratic models of the form

Yt = A + B′Xt + X′tCXt +ηt,

where A ∈ R, B ∈ Rn and C ∈ Mn,n(R), can be reformulated as affine models
(see e.g. Cheng and Scaillet, 2007) by defining pseudo-factors Zt = vech(XtX′t )
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and stating the model in terms of the augmented vector of factors X̃ =
(
Z′t ,X

′
t
)′.

The main benefit of the quadratic specification is its parsimony compared to an
equivalent affine model.

In the models I consider, Xt is assumed to be a stationary or covariance sta-
tionary ergodic Markov process (see e.g. Ethier and Kurtz, 2009) under P. The
first two articles consider discrete time models, where the conditional dynamics
of the risk factors can be written in the general form

Xt = µt +ΦtXt−1 +Σtεt,

where µt is a vector and Φt is a square matrix. When µt, Φt and Σt are assumed
to be constants and εt is assumed to be independent and identically normally
distributed, the dynamics of Xt are given by a Gaussian vector autoregressive
process of the first order. This is the case in the affine Gaussian multiple yield
curve model of the second article.

Allowing Σt to vary as a function of time and the past values of Xt permits
conditional heteroscedasticity, which is useful in the modeling of many financial
time series, e.g. stock returns, but it complicates the estimation of the model.
A tractable special case is obtained when the individual components of Xt are
assumed to be independent of each other. In the ICA models analyzed in the
first essay of this dissertation, I consider the case where the individual factors
have dynamics of the form

xi,t = µi +φixi,t−1 +σi,tεi,t,

where ei,t is an i.i.d. process with unit volatility and expectation of zero, and σi,t

follows a GARCH(1,1) process

σ2
i,t = αi,0 +αi,1

(
σi,t−1εi,t−1

)2
+βi,1σ

2
i,t−1

or a GJR(1,1) (Glosten, Jagannathan and Runkle, 1993) process

σ2
i,t = αi,0 +αi,1(σi,t−1εi,t−1)2 +βi,1σ

2
i,t−1 +γi1σi,t−1εi,t−1≤0(σi,t−1εi,t−1)2,

where αi,0 > 0, αi,1 ≥ 0, βi,1 ≥ 0 and αi,1 + γi ≥ 0 in order to ensure that the
variance is positive. The GJR model differs from GARCH by permitting the
signs of the innovations to affect the dynamics of conditional volatility. Thus
for example negative shocks can have a bigger effect on market volatility than
positive shocks.

The continuous time formulation of the state space vector most commonly
used in finance, when jumps are not included, is of the form

dXt = µ(Xt, t)dt +σ(Xt, t)dWt,

where Wt is a standard Brownian motion, µ(Xt, t) is an n-vector and σ(Xt, t) is
an n× k matrix such that a solution to the equation exists. This class of state
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vectors covers for example the affine term structure models of Duffie and Kan
(1996), and for a comprehensive analysis of the properties of affine processes I
refer to Duffie, Filipović and Schachermayer (2003). For the purposes of this
dissertation, it is sufficient to consider the multivariate Ornstein-Uhlenbeck dif-
fusion, which is obtained when σ is a constant and µ is an affine function of Xt.
It has the useful property that discrete time observations of the diffusion follow
a VAR(1) process.

The dynamics of the risk factors affect the prices of financial assets, and in
many practical applications it is important to ensure that the models produce ar-
bitrage free prices. This can be achieved by using the Fundamental Theorem of
Asset Pricing that was introduced by Harrison and Kreps (1979) and Harrison
and Pliska (1981), and later generalized among others by Delbaen and Scha-
chermayer (1994, 1998). In the chosen approach the prices are derived under
the pricing measure Q that is equivalent to P, i.e. P(A) = 0⇔ Q(A) = 0. The
Radon-Nikodym derivative, dQ/dP, between the two probability measures is
related to market price of risk.

Theorem (Fundamental Theorem of Asset Pricing). Consider a market model
consisting of the price processes P0,t,P1,t, . . . ,PN,t on the time interval [0,T ],
where it is assumed that the the numeraire process fulfills the condition P0,t > 0
for all t ≥ 0 almost surely under the probability measure P. The model is said
to be arbitrage free if and only if there exists a martingale measure Q ∼ P such
that the processes

P0,t

P0,t
,
P1,t

P0,t
, . . . ,

PN,t

P0,t

are local martingales underQ. The measureQ is unique if and only if the market
model is complete.

Typically a so called bank account process growing at the risk free rate is
chosen as the numeraire, and its value at time zero is fixed as one. Denote the
time t value of a bank account process growing at the continuous risk free rate
by B(t) = exp

(∫ t
0 rsds

)
and the time t price of a zero coupon bond paying one

unit of money at time T by P(t,T ). The arbitrage free price of the zero coupon
bond at time 0 is then defined as

P(0,T ) = EQt

[
1

B(0,T )

]
= EQt

[
e−

∫ T
0 rsds

]
,

where P(T,T ) = B(0,0) = 1. The prices of many common derivatives such as
futures, swaps and European options can be solved similarly by calculating the
risk neutral expectation of the discounted amount paid in the future at time T .

It is important to notice that while the Fundamental Theorem of Asset Pri-
cing makes it convenient to formulate theoretical pricing models under the pri-
cing measure Q, the observations of market prices will still be made under the
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physical measure P. Due to this the dynamics of the asset prices and the state
variables driving them have to be known under both probability measures in or-
der to make econometric analysis possible. Given the continuous time dynamics
of Xt considered above, the pricing measure Q can be defined on FT as

dQ
dP

= e
∫ T
0 λ′(Xτ)dWP

τ −
1
2

∫ T
0 ‖λ(Xτ)‖2dτ,

where λ(Xτ) is the market price of risk that satisfies the usual condition

EP
[
e
∫ T
0 λ′(Xτ)dWP

τ −
1
2

∫ T
0 ‖λ(Xτ)‖2dτ

]
= 1.

WQ
t , the Wiener process under Q, is related to WP

t by the Girsanov transforma-
tion dWQ

t = dWP
t −λ(Xt)dt.

When the market is incomplete, there are several possible martingale measu-
res, and equivalently several possible specifications for the market price of risk.
In term structure modelling it is common to circumvent this issue by fixing a
specific parametrization for the market price of risk (see e.g. Dai and Singleton,
2000; Duffee, 2002; Cheridito, Filipović and Kimmel, 2007). The determina-
tion of the market price of risk is an empirical problem, not a theoretical one, as
the actual martingale measure Q is chosen by the market (Björk, 2004). Assu-
ming a particular structure for the market price of risk is thus equivalent with an
assumption about the preferences of the market.

2.2 Financial risk measurement

Risk measurement is an essential part of financial risk management, as it makes
it possible for financial institutions to prepare for adverse outcomes by indica-
ting the amount of capital necessary to hold as a buffer against potential losses
(McNeil et al., 2015). In the case of market risk, the focus is on measuring
losses caused by changes in the asset prices.

Consider a portfolio consisting of N assets with time t prices P1,t, . . . ,PN,t in
amounts n1, . . . ,nN . The value of the portfolio is given by

Vp,t = n1P1,t + . . .+ nNPN,t.

Assuming that the assets don’t pay dividends and the composition of the portfo-
lio remains unchanged, the change in portfolio value between times t and t + 1
is given by

Vp,t+1−Vp,t = n1
(
P1,t+1−P1,t

)
+ . . .+ nN

(
PN,t+1−PN,t

)
or in terms of returns as

rp,t+1 = w1r1,t+1 + . . .+ wNrN,t+1,
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where wi = niP1,t/Vp,t and ri,t+1 = Pi,t+1/Pi,t − 1. The market risk of this port-
folio over one period is measured as function of the probability distribution
Frp,t(x) = P(rp,t ≤ x). The functions used for measuring the risk are known as
risk measures. Among the most commonly used risk measures are volatility,
which was used as the basis of the modern portfolio theory of Markowitz (1952),
and value-at-risk (VaR), which was originally developed at J.P. Morgan and was
later adopted as the basis of capital requirements in the Basel accords.

Given some confidence level α ∈ (0,1), the VaR of the portfolio considered
above is defined as

VaRα = − inf
{
x ∈ R : P(rp,t < x) ≥ 1−α,

}
= − inf

{
x ∈ R : Frp,t(x) ≥ 1−α

}
,

where minus sign turns the obtained value positive, as losses are in the left
tail of the return distribution. The obtained value is a quantile, and it can be
interpreted as the maximum loss that is not exceeded at probability α during the
forecasting period. However, it provides no information about the magnitude
of losses when the VaR level is exceeded, which happens at probability (1−α).
Due to this, VaR is neither a subadditive nor a coherent risk measure in the
sense of Artzner, Delbaen, Eber and Heath (1999). Despite this drawback, VaR
can be a useful tool, because it is easy to interpret, the related estimates are
straightforward to test empirically using any method suitable for the evaluation
of quantile forecasts (see e.g. Kupiec, 1995; Christoffersen, 1998), and coherent
risk measures such as expected shortfall can be approximated by using VaR
estimates calculated at multiple different levels.

Above, I considered the case where the portfolio returns are expressed as a
linear function of simple asset returns. If the simple stock returns are assumed to
be affine functions of risk factors, as is typical in the asset pricing literature when
working with monthly data, aggregation on portfolio level is relatively simple as
the portfolio returns themselves will be affine in the same factors. The simple re-
turns, however, are more complicated than logarithmic returns to aggregate over
time, whereby compromises, such as the utilization of approximations, have to
be made no matter which approach is chosen.

In the first article I use logarithmic returns, and utilize a first order Taylor
approximation centered around zero in the estimation of VaR. In the context of
financial modeling the first and second order Taylor approximations are usually
known as the delta and delta-gamma approximation (see e.g. Britten-Jones and
Schaefer, 1999). They can be used to generalize the modeling approach I utili-
zed in the aforementioned article into so called non-linear portfolios that contain
derivatives or other financial instruments, whose prices are non-linear functions
of the underlying risk factors.

If the risk factors Xt+1 are normally distributed conditional on the informa-
tion set Ft available at time t, the delta and gamma-approximation can be used to
calculate estimates of VaR or other risk measures for time t + 1 in a straightfor-
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ward way, as the approximation will have a normal or non-central chi-squared
distribution conditional on Ft. In other cases alternative approaches, such as
Monte Carlo simulations or saddlepoint approximations (see e.g. Lugannani and
Rice, 1980; Broda and Paolella, 2009) are usually utilized in order to estimate
the risk measure. If Xt is an affine function of independent random variables
whose distributions are known, then the delta approximation can be used to ea-
sily calculate the approximate characteristic function of the losses, and a Fourier
transform can be used to obtain the density function.
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3 ON THE ESTIMATION OF LATENT FACTOR
MODELS

Estimation of the proposed models forms a fundamental part of this dissertation,
as it is necessary in order to evaluate their performance based on empirical data.
While it is possible to estimate some latent factor models without estimating
the underlying factors, e.g. by using moment based estimators, I have elected
to only use methods that also give estimates of the underlying factors. The
estimation approaches considered can be classified into two categories. The
first category consists of two-step estimation approaches, where at first the latent
state variables are extracted from the data using principal component analysis
(PCA) or independent component analysis (ICA) and in the second step the
rest of the model parameter estimated. In the second approach all of the model
parameters and the latent factor are estimated simultaneously using a quasi-
maximum likelihood estimator that utilizes the Kalman filter.

3.1 Principal Component Analysis and Independent Component Analy-
sis

PCA and ICA are blind source separation methods that are closely related to
each other. ICA can be considered to be an extension of PCA (Comon, 1994),
and PCA is commonly used as the first step in ICA algorithms for dimension
reduction, if necessary, and pre-whitening the data. PCA was independently de-
veloped by Pearson (1901) and Hotelling (1933). The basic idea of the method
is to transform a set of observations into a set of linearly uncorrelated factors
known as principal components. It can also be used for dimension reduction, as
the principal components are ordered based on the share of the variance in the
observations they explain, with the first component having the largest explana-
tory power.

Let Xt denote observations made of a stationary random vector at time t that
have zero empirical mean. Let X̂ = (X1, . . . ,XT )′ be a T × n data matrix, and
let w(i), i = 1, . . . ,n, be a loading vector of dimension n. The first principal
component u(1) is given by

u(1) = X̂w(1),

where the loadings satisfy

w(1) = argmax
‖w‖=1

‖X̂w‖2.
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A similar procedure can be used to solve solve the kth principal component after
subtracting the preceding k−1 from the observations:

X̂k = X̂−
k−1∑
i=1

u(i)w′(i) = X̂−
k−1∑
i=1

X̂w(i)w′(i)

w(k) = arg max‖w‖=1‖X̂kw‖2.

PCA is inherently connected to the spectral decomposition. This can be seen
by considering the sample covariance matrix Σ̂ of the observed variables X̂,
which is proportional to X̂′X̂. Since the covariance matrix is symmetric, it is
orthogonally diagonalizable

Σ̂ = V∆V ′,

where the matrix ∆ = diag(λ1, . . . ,λn)′ has the eigenvalues of Σ̂ as its diagonal
elements in descending order, i.e. λ1 ≥ λ2 ≥ . . . ,≥ λn ≥ 0, and V is an orthogonal
matrix, i.e. V′V = VV′ = I, with the eigenvectors of Σ̂ as its column vectors. It
can be shown that the matrix of principal components can be expressed as

U =
(
u(1), . . . ,u(n)

)
= X̂V,

and the empirical covariance matrix of the principal components is proportional
to ∆. While the spectral decomposition provides an elegant way for presen-
ting the properties of the principal components, it is numerically preferable to
calculate the components using the singular value decomposition from the raw
data.

ICA is based on the assumption that the observed values Xt are a linear com-
bination of independent components st that can’t be observed directly. When
there is no noise, the system can thus be written as

Xt = Ast, t = 1, . . . ,T

where the components of the random vector st denote the underlying factors,
which are assumed to be stationary, and one can assume without loss of gene-
rality that E(st) = 0 and Cov(st) = I. ICA algorithms seeks to estimate both the
mixing matrix A and st using only the observations Xt. The scale of the compo-
nents is effectively identified for estimation purposes by the assumption about
the covariance matrix, but neither the ordering nor the signs of the components
can be uniquely identified.

Where PCA utilizes only second order conditions, which are suitable for
separating Gaussian random variables, ICA algorithms can utilize more com-
plex conditions, such as negentropy in the case of fastICA (Hyvärinen and Oja,
1997). ICA algorithms require that at most one of the components of st is nor-
mally distributed, but in the applications I consider this is non-restrictive, be-
cause the presence of a time varying volatility means that the components will
be at most conditionally normal.
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It should be noted that when the extracted factors are utilized in an affine
financial model, there is practically no difference between using principal com-
ponents and independent components as they both span the same vector space
and all differences in the results will be explained by the factors that were left
out. ICA can however be preferable to PCA, if one is either interested in the
extracted factors themselves or uses them in a non-linear model. I explore the
latter case in the first article incorporated in this dissertation, where I model the
underlying factors as GARCH-processes.

3.2 The Kalman Filter

The Kalman (1960) filter and its extensions, which were famously incorporated
in the navigation system of the Apollo Project (see e.g. Grewal and Andrews
(2010)), have become popular tools for estimating latent factor models in mul-
tiple fields. The use of Kalman filtering in economics was pioneered by Athans
(1974), Chong and Cheng (1975) and Burmeister and Wall (1982), and it has
been adopted as one of the most commonly used methods for estimating affine
term structure models (see e.g. Duffee and Stanton, 2012). The general pro-
perties and applications of the Kalman filter have been considered in numerous
books and articles, and I refer to Jazwinski (1970), Harvey (1990) and Hamilton
(1994) for a more detailed analysis.

The focus of this section is on the linear Kalman filter, but it also gives suf-
ficient insight into the quadratic Kalman filter (Monfort, Renne and Roussellet,
2015), which is based on the transformation of a quadratic system into a li-
near one via the introduction of additional factors. Other extensions such as the
unscentend Kalman filter (Julier and Uhlmann, 1997; Wan and Van Der Merwe,
2000) have also been applied to the estimation of term structure models (see e.g.
Christoffersen, Dorion, Jacobs and Karoui, 2014; Filipović and Trolle, 2017),
but they are not relevant for the purposes of this dissertation, as I only apply
the Kalman filter to the estimation of a quadratic model, whereby the quadratic
Kalman filter is the most sensible choice.

I will proceed by describing a linear state space model and explaining how the
Kalman filter can be applied to it. Finally, I will describe how the filter can be
utilized in maximum likelihood estimation. The maximum likelihood estimator
is exact in the case of linear Gaussian models, and can be used as a consistent
and asymptotically normal quasi-maximum likelihood estimator provided that
sufficient conditions, such as those described in Theorem 2 of Watson (1989),
apply.

Let Yt denote an n-dimensional vector of variables observed at time t =

1, . . . ,T , and similarly let Xt denote a state vector of dimension m. In clas-
sical Kalman filtering it is assumed that the state space can be written as or
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approximated by the equations

Xt+1 = F0,t + F1,tXt + vt+1;

Yt+1 = H0,t + H1,tXt+1 + wt+1;

E [vt] = 0, E
[
v′tvτ

]
=

{
Qt, t = τ

0, t , τ
;

E [wt] = 0, E
[
w′twτ

]
=

{
Rt, t = τ

0, t , τ
,

where the deterministic system matrices F0,t,F1,t,Qt,H0,t,H1,t,Rt are of dimen-
sion m×1,m×m,m×m,n×1,n×m and n×n, and the innovations vt and wt are
assumed to be uncorrelated for all lags. The filtering proceeds by recursively
using estimated values of the state variables Xt to predict Xt+1 and Yt+1 and their
covariances, and then using the observed value of Yt+1 to update the predictions.
The recursion is initialized using the unconditional expectation and covariance
matrix of Xt, i.e. E[Xt] = X̂0|0 and E[(Xt−E[Xt]) (Xt−E[Xt])′]) = P0|0.

During each iteration the estimated value X̂t|t is used alongside the matrices
F0t, F1t and Qt to make one period ahead predictions of Xt+1 and the associated
mean squared error matrix conditional on the observed past values of Yt, Yt =

(Y′t , . . . ,Y
′
1). The predictions are given by the equations

X̂t+1|t = E
[
Xt+1|Yt

]
= F0 + F1X̂t|t

Pt+1|t = E
[(

Xt+1− X̂t+1|t
) (

Xt+1− X̂t+1|t
)′]

= F1Pt|tF′1 + Qt,

The one period ahead predictions of Yt+1 and the associated mean squared error
matrix are calculated similarly using the predicted values X̂t+1|t as

Ŷt+1|t = E
[
Yt+1|Yt

]
= H0 + H1X̂t+1|t

Vt+1|t = E
[(

Yt+1− Ŷt+1|t
) (

Yt+1− Ŷt+1|t
)′]

= H1Pt+1|tH′1 + Rt,

which are then used to calculate the prediction error et+1 = Yt+1− Ŷt+1|t. Finally
the state vector and its covariance matrix are updated using the equations

X̂t+1|t+1 = E
[
Xt+1|Yt−1

]
= X̂t+1|t + Pt+1|tH′1V−1

t+1|tet+1

Pt+1|t+1 = E
[(

Xt+1− X̂t+1|t+1
) (

Xt+1− X̂t+1|t+1
)′]

= Pt+1|t−Pt+1|tH′1V−1
t+1|tH1Pt+1|t

Assuming that vt and wt are normally distributed, the log-likelihood function
is given by

T∑
t=1

log f (et,Vt|t−1)
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where

f (et,Vt|t−1) = −
1
2

(
n log(2π) + log

∣∣∣Vt|t−1
∣∣∣+ e′tV

−1
t|t−1et

)
.

In the setting considered in my third article, the matrices Fi,t and Hi,t are
functions of the unknown model parameters. As is typical to continuous time
affine and quadratic interest rate models, at least parts of the matrices will be
obtained as numerical solutions to a system of ordinary differential equations.
Due to this, I have to rely on numerical derivatives in the optimization of the
likelihood function and in the analysis of the asymptotic behaviour of the para-
meter estimates.

Numerical estimation of high order derivatives can be unreliable. Therefore
the estimates of asymptotic covariance matrices in this dissertation will be ba-
sed on first order numerical derivatives when the Kalman filter is used. Let
f (et,Vt|t−1; θ̂) be the value of the conditional likelihood function conditioned on
the parameter values θ̂. The estimator of the asymptotic covariance matrix of
the estimated model parameters θ̂ is then given by

Âvar(θ̂) =

 T∑
t=1

s(et,Vt|t−1; θ̂)s(et,Vt|t−1; θ̂)′

−1

,

where

s(et,Vt|t−1;θ) =
∂ log f (et,Vt|t−1;θ)

∂θ
.
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4 SUMMARIES OF THE INCLUDED ESSAYS

(1) Market Risk Forecasting with Independent Component Analysis

In the first essay I consider forecasting VaR for a portfolio of stocks by using
ICA to model the dependence structure. I assume that that the vector of asset
returns can be written as

xt = Ast,

where A is a square mixing matrix and st is a vector of independent random
variables. Furthermore, I assume that each component si,t can be written as

si,t = µi,t +σi,tεi,t.

where µi,t and σi,t are functions of t and past values of εi,t and si,t, and εi,t is an
i.i.d. random process with volatility of one and expected value of zero. In other
words, si,t is adapted to the filtration Ft = σ

(
si,τ, τ < t

)
. Thus the xt and st can

be expressed as

st = µt +Σtεt,

xt = µ(x)
t + Atεt

where Σt = diag(σ1,t, . . . ,σn,t),µ
(x)
t = Aµt and At = AΣt.

I estimate the model in two steps. In the first step I use ICA-algorithms,
i.e. PCA, fastICA (Hyvärinen and Oja, 1997), gFOBI or gJADE (García-Ferrer
et al., 2011; Matilainen et al., 2015) to estimate Â and ŝt = Â−1xt. In the second
step I estimate µi,t and σi,t from ŝt by fitting suitable models. Following previ-
ous research on financial time series, I chose to use AR-GARCH and AR-GJR
processes for this purpose.

The empirical performance of the different models is tested using data on
daily American stock returns covering the years 2000-2014. VaR forecasts for
the ICA based models are obtained via Monte Carlo simulations. The ICA esti-
mates are compared with filtered extreme value theory based estimates (McNeil
and Frey, 2000). PCA is used as a baseline for the ICA models in order to
test whether the use of more complicated algorithms is warranted. The results
show that under normal market conditions all the different approaches perform
relatively well, with the fastICA seeming to slightly outperform the other ICA
algorithms. During the Financial Crisis of 2007-2008 the behavior of the mo-
dels however changed, and all of the tested model were rejected by the coverage
ratio tests. The gFOBI and gJADE based approaches performed particularly
badly during this period, which was likely caused by their sensitivity to outliers.
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(2) Affine Multiple Curve Modelling via Least Squares Regressions

I propose an affine Gaussian multiple curve model for the term structure of in-
terest rates, and extend the estimation approach of (Adrian et al., 2013) into the
multiple curve framework. The OIS rates are used as risk free rates that follow
the no-arbitrage condition. EURIBORs are not treated as traded instruments
and thus they do not follow the no-arbitrage condition, but the derivative instru-
ments such as forward agreements and swaps that have EURIBOR rate as the
underlying instrument are priced using arbitrage free formulas. I primarily use
principal components extracted from yields as the risk factors, but also consider
the case where they are augmented with a proxy related to liquidity risk.

In the model I assume that under the physical probability measure the risk
factors follow a VAR(1) process P of the form

Xt+1 = µ+ΦXt + vt+1, vt+1|Xt ∼ N(0,Σ).

The arbitrage free price of a risk free bond with maturity n at time t by P(n)
t is

given by

P(n)
t = EPt

[
Mt+1P(n−1)

t+1

]
= exp

(
An + B′nXt

)
,

where the pricing kernel Mt+1 is assumed to be of the exponentially affine form

Mt+1 = exp(−rt−
1
2
λ′tλt−λ

′
tΣ
−1/2vt+1).

The continuously compounded risk free rate is denoted by rt = − ln P(1)
t , i.e.

the risk free bank account process B(t, t +n) = e
∑n−1

i=0 rt+i is used as the numeraire.
The market price of risk is assumed to be of the essentially affine form of Duffee
(2002)

λt = Σ−1/2(λ0 +λ1Xt).

EURIBORs are modeled via tenor specific artificial bonds that are also assu-
med to be exponentially affine functions of the risk factors:

P̃(δ)
t = eÃδ+B̃′δXt .

I derive explicit pricing formulas for futures and swaps based on arbitrage free
pricing theory, and show how to estimate the model using least squares regres-
sions. The performance of the model is demonstrated using euro area interest
rate data covering the years 2006-2015. The results show that the model is able
to explain most of the market dynamics in the analysed OIS, EURIBOR and
EURIBOR FRA rates.
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(3) Credit Liquidity and the Term Structure of Interest Rates

I consider a quadratic multiple curve model for the term structures of interest
rates, where OIS rates are considered as representing the risk free rate and IBOR
related instruments trade at a spread to them. The risk factors are assumed to
follow a multivariate Ornstein-Uhlenbeck diffusion under both the risk neutral
probability measure Q and the physical probability measure P:

dXt = (µQ + KQXt)dt +ΣdWQ
t

dXt = (µP + KPXt)dt +ΣdWP
t ,

where µQ and KQ can be parametrized independently of µP and KP.
The dynamics OIS rates and IBORs are defined via the prices of risk free zero

coupon bonds P(t, τ) and artificial zero coupon bonds P̃(t, τ), which are driven
by the spot rate rt and the spot spread st:

rt = α+β′Xt + X′t ΨXt

st = αs +β′sXt + X′t ΨsXt,

where Ψ and Ψs are symmetric positive-semidefinite matrices. Zero coupon
bond prices given by

P(t, τ) = EQt
[
e−

∫ t+τ
t rτdτ

]
= eA(τ)+B(τ)′Xt+X′t C(τ)Xt

P̃(t, τ) = EQt
[
e−

∫ t+τ
t rτ+sτdτ

]
= eÃ(τ)+B̃(τ)′Xt+X′t C̃(τ)Xt ,

where A(τ),B(τ),C(τ), Ã(τ), B̃(τ) and C̃(τ) are the solutions to a system of or-
dinary differential equations. The price of the artificial bonds are related to the
EURIBOR rate of tenor δ through the equation 1 + δL(t, t + δ) = 1/P̃(t, δ). As a
special case of the proposed model I provide a multiple curve extension of the
arbitrage free Nelson-Siegel model, which avoids some of the problems typi-
cally encountered in the maximum likelihood estimation of more general affine
models (see e.g. Hamilton and Wu, 2012).

The models are estimated by quasi maximum likelihood estimation via the
quadratic Kalman filter (Monfort et al., 2015) on the basis of European data
covering the years 2009-2014. In the empirical part of the study I assume that
the spreads are driven by credit and liquidity risk. The results imply that these
factors also affect the risk free rates under the physical probability measure.
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Duffie, D. – Filipović, D. – Schachermayer, W. (2003) Affine processes and ap-
plications in finance. The Annals of Applied Probability, Vol. 13 (3),
984–1053.

Duffie, D. – Kan, R. (1996) A yield-factor model of interest rates. Mathematical
Finance, Vol. 6 (4), 379–406.

Ethier, S. N. – Kurtz, T. G. (2009) Markov processes: characterization and
convergence, Vol. 282. John Wiley & Sons, Hoboken, New Jersey.
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Abstract

Over the recent years there has been increasing interest in the ap-
plication of independent component analysis (ICA) to the model-
ling of financial time series. This article evaluates the performance
of different ICA methods in forecasting daily Value-at-Risk (VaR)
estimates for stock portfolios with time varying volatilities and ex-
pected returns. ICA is used to estimate latent factors from loga-
rithmic returns, and the dynamics of said factors are modelled using
as AR-GARCH or AR-GJR processes. We find that ICA based met-
hods perform well under normal market conditions and are able to
give accurate VaR forecasts at both asset and portfolio level. The
results also highlight the importance of the chosen back testing pe-
riod because structural breaks and outliers in the data, such as those
observed during the financial crisis of 2007-2008, can have a more
significant effect on some ICA-algorithms than others.

KEYWORDS: market risk, backtesting, risk management, FOBI,
JADE, independent component analysis

1 INTRODUCTION

Market risk modelling and the estimation of risk measures such as Value at
Risk (VaR) have received increased attention due to the recent financial crisis.
Despite extensive research and methodological advances, forecasting VaR has
turned out to be challenging, since asset returns do not follow a multivariate
normal distribution and they typically exhibit time varying volatilities. The ty-
pically high dimensionality of portfolios adds to the problems inherent to the
risk forecasting process.
∗ Department of Accounting and Finance, Turku School of Economics, University of Turku. I thank
Hannu Oja, Klaus Nordhausen, Markus Matilainen, Luis Alvarez and everyone, who participated in the
Joint Applied Mathematics and Statistics Seminars at the University of Turku in 2015 for comments.
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Multiple different approaches to forecasting VaR have been developed and
proposed in the existing literature. GARCH-models (Bollerslev, 1986) and their
variations have been used to make corrections for conditional heteroskedasti-
city. Similarly, a plethora of different approaches such as extreme value theory
(McNeil and Frey, 2000) have been used for modelling the probability distribu-
tion of losses, and there have been extensive comparisons of different estima-
tion methods; see for example Hull and White (1998), Engle and Manganelli
(2004), Kuester, Mittnik and Paolella (2006), Mancini and Trojani (2011), San-
tos, Nogales and Ruiz (2013). The performance of models has typically varied
depending on the market conditions of the test period.

This article focuses on the application of independent component analysis
(ICA) methods in the estimation of financial risk measures. The methodologi-
cal choice is motivated by the search for a tractable model, which is capable of
accounting for dependencies and non-normality in a data set exhibiting autocor-
relations and conditional heteroskedasticity. The ICA approach is based on the
assumption that the observed data is formed as a linear combination of latent
independent factors. This assumption allows us to estimate the model in two
steps: first ICA will be used to extract the underlying factors and the mixing
matrix depicting the linear combinations, and then appropriate time series mo-
dels, e.g. AR(1)-GARCH(1,1), will be fitted to the individual factors. Similar
ICA based approaches have been utilized in volatility modelling and VaR fo-
recasting with promising results (see e.g. Wu, Yu and Li, 2006; Chen, Härdle
and Spokoiny, 2007, 2010; Broda and Paolella, 2009; García-Ferrer, González-
Prieto and Peña, 2012).

We contribute to previous research on the subject by comparing the accuracy
of VaR forecasts based on different ICA-algorithms, including the popular fas-
tICA (Hyvärinen and Oja, 1997) and the recent extensions to FOBI and JADE
proposed by (García-Ferrer, González-Prieto and Peña, 2011) and (Matilainen,
Nordhausen and Oja, 2015) for time series exhibiting stochastic volatility. We
also study the effect different conditional volatility models have on the accuracy
of the forecasts. The performance of the models is evaluated using daily Ameri-
can stock returns covering the years from 2000 to 2014, which makes it possible
to test the forecasting performance of ICA based models under different market
conditions. VaR forecasts are made for individual assets and at portfolio level in
order to test whether the tested multivariate models will be able to sufficiently
depict the time series dynamics on both levels at the same time.

The remainder of this article is organized as follows. The proposed time
series model for asset returns and the different ICA methodologies are covered
in Section 2. Section 3 presents an empirical analysis and comparison of the
different models. Section 4 concludes the paper.
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2 ICA METHODOLOGY FOR TIME SERIES

2.1 Asset and portfolio return dynamics

Let xt be a vector of asset returns and suppose that they are formed as a linear
combination of n underlying factors sit that are independent from each other.
The returns can thus be written as

xt = Ast, (1)

where A is a so-called mixing matrix, and st =
(
s1,t, . . . , sn,t

)
.

Only the asset returns xt in equation (1) are assumed to be known as A and
st can’t be directly observed. However, if A were a known invertible square
matrix, the underlying factors st could be easily solved from equation (1):

st = A−1xt. (2)

The process of simultaneously solving A and st from the observations xt is
known as blind source separation in signal processing and statistics literature,
and multiple different algorithms for solving the problem have been proposed.
The simplest approach would be to assume that correlations are sufficient me-
asures of dependence and use principal component analysis (PCA), but using
additional criteria will lead to more sophisticated ICA-algorithms, e.g. fastICA
(Hyvärinen, 1999) or gFOBI (Matilainen et al., 2015). For an overview of ICA
methodology we refer to Hyvärinen, Karhunen and Oja (2001).

The basic model can be extended by allowing for time series dynamics in the
factors st. Suppose that each component si,t can be written as:

si,t = µi,t +σi,tεi,t, (3)

where εi,t is an i.i.d. random process with volatility of one and expected value
of zero, and µi,t and σi,t are functions of t and the past value of εi,t and si,t. In
other words µi,t is the expected value and σi,t is the volatility of si,t conditional
on Ft−1, the information set available at time t− 1. The factors st can now be
expressed as

st = µt +Σtεt, (4)

where Σt = diag(σ1,t, . . . ,σn,t). We can similarly decompose the representation
of returns in equation (1) as

xt = µ(x)
t + Atεt, (5)

where µ(x)
t = Aµt and At = AΣt.
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We aggregate the returns on portfolio level, for a portfolio with asset weights
given by vectors wp, using the approximation

rp,t = w′pxt = w′pµ
(x) + w′pAtεt,

which is exact for simple returns and coincides with the delta-approximation for
logarithmic returns. There are several possible approaches for calculating risk
measures of rp,t depending on the additional assumptions one makes. We have
strived to minimize the effects of distributional assumptions in order to verify
the applicability of ICA-type models to stock markets. Therefore we use the
empirical distribution of the estimated independent components and estimate
VaR forecasts through Monte Carlo simulations. The chosen method allows one
to calculate both asset specific and portfolio level VaR estimates using the same
simulations.

Because rp,t is a linear combination of independent random variables, one
could alternatively calculate its characteristic function, if the distributions of the
components εt are known, and combine inverse Fourier transforms with nume-
rical integration in order to calculate VaR or other risk measures (Chen et al.,
2010). The saddlepoint approximation of Lugannani and Rice (1980) can also
be used, if the cumulant generating functions of the independent components
exist (Broda and Paolella, 2009).

2.2 ICA algorithms

In order to describe the ICA estimation process on a general level, we assume
that st in equation (1) is stationary, at most one of the components si,t is nor-
mally distributed, and that the mixing matrix A is a full rank square matrix. The
non-normality assumption is necessary for the identification of the independent
components, but is non-restrictive in the application we consider since the pre-
sence of a time varying volatility means that the components can be at most
conditionally normal. Without loss of generality we also assume that E(st) = 0
and Cov(st) = I. This structure implies that xt is stationary. The goal is to find
an unmixing matrix W such that the marginal time series in Wxt and st are the
same up to their signs and order. In the case of ICA algorithms which do not
utilize the time series structure of the data, we drop the time index from xt and
st

Let ei denote a vector of dimension n, where the ith element is 1 and all
other elements are zero, and define Ei j := eie′j. Using this notation all the pos-
sible fourth order moments of an n-dimensional random vector x are given as
elements of the matrices

Bi j(x) := E
[
xx′Ei jxx′

]
i, j = 1, . . . ,n,
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and we can write

B(x) :=
∑

i

Bii(x) = E
[
xx′xx′

]
.

The fourth order cumulants of x are obtained as

Ci j(x) := Bi j(x)−Ei j−E ji− tr(Ei j)I i, j = 1, . . . ,n.

The classic FOBI and JADE algorithms utilize moment conditions, and
start by calculating the standardized vector xst = Ĉov(x)−

1
2 x, where Ĉov(x)

is the sample covariance matrix. The FOBI estimate of the unmixing ma-
trix is W = UĈov(x)−

1
2 , where U is the orthogonal matrix that maximizes

‖diag(UB̂(xst)U′)‖, i.e. the rows of U are the eigenvectors of the sample es-
timate of B(xst). The JADE estimate is similar, except U has to maximize∑

i, j ‖diag(UĈi j
(xst)U′)‖. The generalized versions of FOBI and JADE, i.e.

gFOBI and gJADE, as specified in García-Ferrer et al. (2011) and Matilainen
et al. (2015) extend the original algorithms by utilizing lagged fourth order mo-
ments and cumulants respectively.

Using similar notation as above, denote lags by τ ≥ 0 , and define the autoco-
variance matrices as:

Στ(x) = E
[
(xt−E(xt))(xt+τ−E(xt+τ))′

]
.

The matrices related to cross moments are

Bi j
τ (x) = E(xt+τx′tE

i jxtx′t+τ) and Bτ(x) =

n∑
i=1

Bii
τ(x).

The gFOBI estimator of the unmixing matrix with lags τ = 0, . . . ,K
is W = UĈov(x)−

1
2 , where the orthogonal matrix U maximizes∑K

τ=0 ‖diag(UB̂τ(xst)U
′
)‖2.

The lagged fourth order cumulants are

Ci j
τ (x) := Bi j

τ (x)−Στ(x)(Ei j + E ji)Στ(x)′− tr(Ei j)In, i, j = 1, . . . ,n.

The gJADE estimator of the unmixing matrix with lags τ = 0, . . . ,K is the ortho-
gonal matrix U that maximizes

n∑
i, j=1

K∑
τ=0

‖diag(UĈij
τ (xst)U

′
)‖2. (6)

The most popular ICA algorithm in finance has been fastICA, which sear-
ches for maximally non-Gaussian orthogonal components. We have opted to
use negentropy as a measure of non-Gaussianity over kurtosis, due to it being
less sensitive to outliers in the data. The information theoretical entropy of a
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random variable is related to the information contained in observations of said
variable, and it’s small for probability distributions which are concentrated on a
few values. In the case of a continuous random variable x with density function
f , we define its differential entropy H as

H(x) := −
∫

f (x) log( f (x))dx. (7)

It is known that Gaussian variables have the largest entropy among all random
variables of equal variance. Thus a natural measure of non-Gaussianity can be
calculated by subtracting the entropy of the random variable x from the entropy
of a Gaussian variable xg with the same variance. This gives us the definition of
negentropy J:

J(x) = H(xg)−H(x). (8)

In practice approximations are needed in order to calculate negentropy, since
using the definition would require knowledge of the true probability distribution
of x. Using a non-quadratic function G, we approximate J(x) in the case of
standardized random variables as

J(x) ≈
[
E {G(x)}−E

{
G(xg)

}]2
. (9)

Following previous studies we choose G(x) = logcosh(x) and denote its first
derivative by g(x) and second derivative by g′(x).

In order estimate the fastICA estimator, we fix the number of components at
n and initialize the orthogonal unmixing matrix U = (u1, . . . ,un)′ by selecting
random values for vectors ui and orthogonalizing them. We use the fastICA
algorithm of Hyvärinen et al. (2001) that uses symmetric orthogonalization. The
unmixing matrix W = UĈov(x)−

1
2 is solved by repeating the following two steps

until the vectors ui converge:

1. ui← E
[
xstg(u′ixst)

]
−E

[
g′(u′ixst)

]
ui, i = 1, . . . ,n

2. U←
(
UU′

)−1/2 U.

The expected values in the algorithm are approximated using sample statistics.

2.3 Volatility and auto-correlation models

In order to fully specify the dynamics of the underlying components in equation
(3), we have to choose suitable models for the conditional expectation µi,t and
the conditional volatility σi,t. Following previous research, we have chosen to
account for possible autocorrelations by modelling the conditional expectation
µi,t of the ith component as an AR(1)-process. In the case ofσit, we focus on two
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different GARCH-type models: GARCH(1,1) and GJR(1,1) (Glosten, Jaganna-
than and Runkle, 1993). The chosen models allow us to account for different
types of volatility dynamics while keeping the number of tested model combina-
tions manageable. Parameters for both volatility models will be estimated using
quasi-maximum likelihood estimation, because the exact likelihood functions
are not known. In the case of GARCH(1,1) we consider estimation using both
normal and student’s t-distribution in order to find out whether the distributio-
nal assumption affects the results. The chosen estimation approach is standard
practice in finance and it has been found to yield acceptable estimates in pre-
vious research on stock returns. Sufficient conditions for the consistency and
asymptotic normality of the quasi maximum-likelihood estimators have been
considered by Bardet and Wintenberger (2009).

The GARCH(1,1) specification for the conditional volatility is

σ2
i,t = αi,0 +αi,1(σi,t−1εi,t−1)2 +βi,1σ

2
i,t−1. (10)

The GJR(1,1) specification of a threshold GARCH model by Glosten et al.
(1993) gives the volality specification as

σ2
i,t = αi,0 +αi,1(σi,t−1εi,t−1)2 +βi,1σ

2
i,t−1 +γi1σi,t−1εi,t−1≤0(σi,t−1εi,t−1)2, (11)

where the last term allows the volatility to change differently depending on
whether the previous innovation was positive or negative. This is a desired pro-
perty in financial modelling, since negative shocks have typically a different
effect on the volatility of the following days’ returns than positive shocks. The
positivity of variance is ensured by requiring that αi,0 > 0, αi,1 ≥ 0, βi,1 ≥ 0 and,
in the case of GJR(1,1), αi,1 +γi ≥ 0.

3 EMPIRICAL ANALYSIS

3.1 Data and methodology

We test the models using two data sets consisting of daily returns for 17 and
30 industry specific American stock portfolios downloaded from the web page
of Kenneth French. The returns of each industry portfolio are value weighted
averages of the returns in said industry. We convert the returns into logarithmic
returns, and form the primary test portfolios by assigning an equal weight on
each of the industry specific subportfolios, which essentially act as assets. One
day ahead forecasts for VaR are made based on a rolling window of the previous
1000 days’ observations, i.e the model is re-estimated before calculating each
forecast. The forecast period covers the years 2000-2014.
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The ICA algorithms chosen for the tests are FOBI, gJADE and gFOBI. The
number of lags used by gJADE and gFOBI was found to have a only a negligi-
ble effect on the results, and therefore we report the results using only the lags
K = 1 and 10. As benchmark models we use the extreme value theory (EVT)
based peaks over threshold approach combined with GJR or GARCH filtering
as introduced in McNeil and Frey (2000). We also treat PCA as if it were an
ICA-algorithm, i.e. we use principal components as the independent compo-
nents si,t, in order to test whether the use of the more complicated algorithms is
worthwhile.

The performance of the difference forecasting methods is evaluated using the
unconditional coverage (UC) test of Kupiec (1995), and the independence (IND)
and conditional coverage (CC) tests of Christoffersen (1998) that are based on
likelihood ratios. The UC test is based on the number of VaR violations, whereas
the IND test is used to determine whether the probability of a VaR violation at
time t is independent of a previous VaR violation happening at time t− 1. The
CC test is a combination of the UC and IND tests. For these tests we will report
the χ2 statistics with p-values included inside parentheses. We will also report
the VaR violation rates, i.e. the number of times the VaR forecasts are exceeded.
The tables containing the test results and the number of annual VaR violations
are in the appendices.

3.2 Results for the 17 industry specific portfolios dataset

It is well known that the forecasting performance of risk models can be sensitive
to the chosen time period. In order to mitigate this problem and isolate model
specific failures, we run all tests for both the full forecasting period covering
the years 2000-2014 and for shorter subperiods. We start by analyzing the 17
industrial portfolios data set for the complete forecasting period, which covers
the recent financial crisis and as such contains a possibly significant structural
break in the data. Figure 1 shows the dynamics of the test portfolio and 99 %
VaR forecasts based on EVT and fastICA during the forecasting period.

The results in Tables 1-2 of Appendix A reveal that most of the models are
rejected by the coverage ratio tests in the case of 95 % and 99 % VaR forecasts.
For this test period only the univariate EVT methods and fastICA combined with
GJR-volatilities passed the tests at both VaR levels. It is noteworthy that both
gJADE and PCA based forecasts fared well only at the lower 95 % VaR level,
whereas gFOBI and FOBI based methods were generally rejected even though
the passed the independence tests.

The yearly VaR exceedances in Tables 3-4 imply that models are failing the
coverage ratio tests mainly due to their poor performance during the 2002 stock
market crash and the 2007-2008 financial crisis. These structural breaks in the
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Figure 1: Daily logarithmic losses of the test portfolio and 99 % VaR forecasts gi-
ven by two estimation methods for the years 2000-2014 based on the 17
industrial portfolios dataset.

data seems to have affected some of the tested models worse than others, but
even the best performing models had at least twice as many VaR exceedances
as expected during the most recent crisis. We suspect that the extremely poor
performance of moment and cumulant based ICA models relative to fastICA is
explained by their higher sensitivity to outliers. The tested ICA algorithms also
assume that the mixing matrix is constant within the observation window. This
assumption seems reasonable under normal market conditions, but it is possible
that the sensitivity of asset returns to different factors might have significantly
changed during the financial crisis, hence violating one of the core assumptions
in the ICA models.

During the pre- and post-crisis years all of the models generally performed
well at forecasting 99 % VaR levels as can be seen in Tables 5-6. Under the
normal market conditions most tested models had a tendency to overestimate
the VaR level as shown by the low number of violations contrary to their perfor-
mance during the years 2007-2008.

We perform further analysis on the multivariate models by testing their ability
to forecast 99 % VaR for the 17 industry specific subportfolios of the data set.
In order to make the testing feasible, we use only the GJR-volatility model, as it
seemed to outperform normal GARCH(1,1) on the portfolio level and we report
only the conditional coverage test statistics.

The results for the years 2000-2014 in Table 7 of Appendix B show that
PCA and fastICA had the best performance, with fastICA passing the tests for
more industry classes than any other tested model. It is interesting to note that
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restricting the forecasting period to the pre-crisis years worsens the test results
as show in Table 8. During the years 2000-2006 fastICA still seems to have the
best performance and generally passes the conditional coverage test, but results
for PCA are comparable to those of gFOBI and gJADE. This is in contrast to
the post-crisis years 2009-2014, during which all of the models performed well
as seen in Table 10. During the crisis years of 2007-2008 all models had subpar
forecasting performance as expected, with PCA and fastICA being the best ones.

The results show that gJADE and gFOBI have significant flaws when applied
to financial modelling, as they had disastrous performance during the forecas-
ting period 2007-2008 even compared to all other models. Both algorithms also
generally underperformed compared to fastICA, which does not rely on high
moments or cumulants and is hence less sensitive to the outliers inherent to fi-
nancial data. This highlights the importance of outlier resistant methods for risk
management.

3.3 Results for the 30 industry specific portfolios dataset

In order to get a better idea of how the different methods perform in higher di-
mensional data sets, we tested the forecasting accuracy of the selected models
using the 30 industrial portfolios data set provided by Kenneth French. We were,
however, forced to exclude gJADE from this part of the study due to issues rela-
ted extreme computational time, as the minimization criterion of the algorithm
requires evaluating n2(K + 1) matrices, where n is the number dimensions and
K is the number of lags. This causes the basic version of gJADE to become
unfeasible for high dimensional data sets.

In this data set the results at 95 % VaR level for the whole test period covering
the years 2000-2014 were similar to those from the 17 industrial portfolios data
set as can be seen in Table 11 of Appendix C. The EVT, PCA and fastICA
models performed well, whereas gFOBI and FOBI based models were generally
rejected by the tests. At 99 % VaR level the results for the same period show
in Table 12 were somewhat surprising, with all models except those based on
EVT being rejected by the coverage ratio tests. As previously, this was mainly
caused by the extreme number of VaR violations during the financial crisis of
2007-2008, as can be seen in Table 14. In the case of 95 % VaR forecasts, the
results in Table 13 show an extreme number of violations for ICA based models
also for the year 2002.

Analyzing the pre- and post-crisis years separately gives us additional insight
into the performance of the models under different market conditions. During
the pre-crisis years of 2000-2006, as shown in Table 15, the coverage ratio tests
rejected all PCA models with only the GJR version of these models passing even
the independence test, but no other models were rejected by the tests. The results
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in Table 16 for the post-crisis period of 2009-2014 provided no surprises, and all
tested models passed the tests just like in the case of the 17 industrial portfolios
data set.

4 CONCLUSIONS

Our results show that ICA methodology has potential as a tool for modelling
the dependence between asset returns in the forecasting of risk measures, and it
can be used as a theoretically sounder alternative to PCA, but it is not without
its own weaknesses. As expected, in VaR forecasting the results are dependent
on the chosen test period, but under normal market conditions the ICA models
proved to be successful in providing accurate forecasts.

We found that EVT models outperformed ICA methods at portfolio level
VaR forecasting, even though fastICA proved to be highly competitive at 99 %
VaR level. ICA methodology however has the benefit of providing information
about the dependence structure of individual assets, which was shown by tes-
ting VaR forecasts for the subportfolios making up the 17 industrial portfolios
data set. The factor structure also lends itself easily to both hedging and asset
pricing purposes unlike the univariate EVT-models. Overall the results suggest
that ICA methods have value in financial modelling, despite their problems in
capturing the aberrant market dynamics of the recent financial crisis, and should
be considered as an alternative to PCA in modeling non-Gaussian processes.

The main weaknesses of ICA are the assumed stability of the mixing matrix
over time, which might not hold under crisis conditions, and the amount of data
needed in the estimation process. We, however, note that the issues might be
mitigated by using higher or mixed frequency data, since the logarithmic returns
can be aggregated to a lower frequency without changing the basic structure of
the model. Further research on the issue is needed in order to ascertain the
empirical aggregation properties of ICA models.

ICA algorithms can be highly susceptible to outliers and structural breaks
in the data as shown by our test results for the stock market crashes of 2001-
2002 and the financial crisis of 2007-2008. The ICA methods based on higher
moments and cumulants, e.g. gFOBI and gJADE, were found to have the worst
performance during the aforementioned years, and as such we suggest using
alternative ICA methods, such as fastICA, which are less sensitive to outliers
in the modeling and analysis of financial time series. This is in contrast to the
promising simulation results of Matilainen et al. (2015). We also found out
that increasing the number of lags used by gFOBI or gJADE did not have a
noticeable effect on the results.
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APPENDIX A: RESULTS FOR THE 17 INDUSTRIAL
PORTFOLIOS DATA SET

Table 1: Violation rates and coverage ratio tests for 95 % VaR forecasts covering the
years 2000-2014 of the 17 Industrial portfolios data set. P-values of the
coverage ratio tests are reported inside parentheses. ** or * indicates that
the model is not rejected by the test at a 0.1 or 0.05 significance level.

Violations UC IND CC
EVT GARCH 207 (5.5 %) 1.824 (0.177) ** 0.175 (0.676) ** 1.813 (0.404) **

EVT GJR 204 (5.4 %) 1.282 (0.257) ** 1.825 (0.177) ** 2.951 (0.229) **
PCA N-GARCH 203 (5.4 %) 1.122 (0.289) ** 0.127 (0.721) ** 1.103 (0.576) **
PCA t-GARCH 204 (5.4 %) 1.282 (0.257) ** 0.103 (0.748) ** 1.229 (0.541) **

PCA GJR 198 (5.2 %) 0.48 (0.488) ** 2.355 (0.125) ** 2.739 (0.254) **
fastICA N-GARCH 221 (5.9 %) 5.548 (0.019) 0.793 (0.373) ** 6.024 (0.049)
fastICA t-GARCH 223 (5.9 %) 6.236 (0.013) 1.195 (0.274) ** 7.097 (0.029)

fastICA GJR 214 (5.7 %) 3.443 (0.064) * 1.308 (0.253) ** 4.499 (0.105) **
gFOBI1 N-GARCH 216 (5.7 %) 3.996 (0.046) 1.818 (0.177) ** 5.543 (0.063) *
gFOBI1 t-GARCH 222 (5.9 %) 5.887 (0.015) 1.958 (0.162) ** 7.52 (0.023)

gFOBI1 GJR 215 (5.7 %) 3.714 (0.054) * 1.226 (0.268) ** 4.679 (0.096) *
gFOBI10 N-GARCH 223 (5.9 %) 6.236 (0.013) 0.291 (0.59) ** 6.193 (0.045)
gFOBI10 t-GARCH 220 (5.8 %) 5.218 (0.022) 1.445 (0.229) ** 6.356 (0.042)

gFOBI10 GJR 220 (5.8 %) 5.218 (0.022) 0.129 (0.719) ** 5.04 (0.08) *
FOBI N-GARCH 221 (5.9 %) 5.548 (0.019) 3.859 (0.049) 9.091 (0.011)
FOBI t-GARCH 225 (6 %) 6.963 (0.008) 4.29 (0.038) 10.901 (0.004)

FOBI GJR 216 (5.7 %) 3.996 (0.046) 3.57 (0.059) * 7.294 (0.026)
gJADE1 N-GARCH 204 (5.4 %) 1.282 (0.257) ** 2.281 (0.131) ** 3.407 (0.182) **
gJADE1 t-GARCH 210 (5.6 %) 2.457 (0.117) ** 2.464 (0.116) ** 4.707 (0.095) *

gJADE1 GJR 200 (5.3 %) 0.706 (0.401) ** 1.874 (0.171) ** 2.462 (0.292) **
gJADE10 N-GARCH 205 (5.4 %) 1.452 (0.228) ** 1.406 (0.236) ** 2.693 (0.26) **
gJADE10 t-GARCH 210 (5.6 %) 2.457 (0.117) ** 2.464 (0.116) ** 4.707 (0.095) *

gJADE10 GJR 201 (5.3 %) 0.834 (0.361) ** 0.541 (0.462) ** 1.248 (0.536) **
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Table 2: Violation rates and coverage ratio tests for 99 % VaR forecasts covering the
years 2000-2014 of the 17 Industrial portfolios data set. P-values of the
coverage ratio tests are reported inside parentheses. ** or * indicates that
the model is not rejected by the test at a 0.1 or 0.05 significance level.

Violations UC IND CC
EVT GARCH 34 (0.9 %) 0.385 (0.535) ** 0.619 (0.432) ** 1.002 (0.606) **

EVT GJR 38 (1 %) 0.002 (0.965) ** 0.741 (0.389) ** 0.728 (0.695) **
PCA N-GARCH 53 (1.4 %) 5.545 (0.019) 1.511 (0.219) ** 7.064 (0.029)
PCA t-GARCH 52 (1.4 %) 4.877 (0.027) 1.454 (0.228) ** 6.338 (0.042)

PCA GJR 58 (1.5 %) 9.449 (0.002) 0.017 (0.896) ** 8.606 (0.014)
fastICA N-GARCH 44 (1.2 %) 0.999 (0.318) ** 1.039 (0.308) ** 2.041 (0.36) **
fastICA t-GARCH 44 (1.2 %) 0.999 (0.318) ** 1.039 (0.308) ** 2.041 (0.36) **

fastICA GJR 44 (1.2 %) 0.999 (0.318) ** 0.395 (0.53) ** 1.086 (0.581) **
gFOBI1 N-GARCH 58 (1.5 %) 9.449 (0.002) 1.812 (0.178) ** 11.271 (0.004)
gFOBI1 t-GARCH 59 (1.6 %) 10.337 (0.001) 1.875 (0.171) ** 12.224 (0.002)

gFOBI1 GJR 59 (1.6 %) 10.337 (0.001) 1.875 (0.171) ** 12.224 (0.002)
gFOBI10 N-GARCH 59 (1.6 %) 10.337 (0.001) 1.875 (0.171) ** 12.224 (0.002)
gFOBI10 t-GARCH 58 (1.5 %) 9.449 (0.002) 1.812 (0.178) ** 11.271 (0.004)

gFOBI10 GJR 58 (1.5 %) 9.449 (0.002) 1.812 (0.178) ** 11.271 (0.004)
FOBI N-GARCH 60 (1.6 %) 11.26 (0.001) 0.002 (0.962) ** 11.274 (0.004)
FOBI t-GARCH 61 (1.6 %) 12.216 (0) 0 (0.989) ** 12.229 (0.002)

FOBI GJR 57 (1.5 %) 8.595 (0.003) 1.749 (0.186) ** 10.355 (0.006)
gJADE1 N-GARCH 50 (1.3 %) 3.657 (0.056) * 1.343 (0.246) ** 5.007 (0.082) *
gJADE1 t-GARCH 56 (1.5 %) 7.778 (0.005) 0.033 (0.856) ** 7.821 (0.02)

gJADE1 GJR 55 (1.5 %) 6.997 (0.008) 1.359 (0.244) ** 7.602 (0.022)
gJADE10 N-GARCH 54 (1.4 %) 6.252 (0.012) 0.063 (0.802) ** 6.324 (0.042)
gJADE10 t-GARCH 58 (1.5 %) 9.449 (0.002) 3.221 (0.073) * 12.681 (0.002)

gJADE10 GJR 58 (1.5 %) 9.449 (0.002) 0.013 (0.909) ** 9.473 (0.009)
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Table 5: Violation rates and coverage ratio tests for 99 % VaR forecasts covering
the years 2000-2006 of the 17 industrial portfolios data set. P-values of the
coverage ratio tests are reported inside parentheses. ** or * indicates that
the model is not rejected by the test at a 0.1 or 0.05 significance level.

Violations UC IND CC
EVT GARCH 9 (0.5 %) 5.16 (0.023) 0.093 (0.761) ** 5.243 (0.073) *

EVT GJR 13 (0.7 %) 1.33 (0.249) ** 3.16 (0.075) * 5.094 (0.078) *
PCA N-GARCH 19 (1.1 %) 0.111 (0.739) ** 0.415 (0.519) ** 0.528 (0.768) **
PCA t-GARCH 20 (1.1 %) 0.319 (0.572) ** 0.46 (0.497) ** 0.782 (0.676) **

PCA GJR 24 (1.4 %) 2.118 (0.146) ** 0.986 (0.321) ** 2.483 (0.289) **
fastICA N-GARCH 13 (0.7 %) 1.33 (0.249) ** 0.194 (0.66) ** 1.519 (0.468) **
fastICA t-GARCH 13 (0.7 %) 1.33 (0.249) ** 0.194 (0.66) ** 1.519 (0.468) **

fastICA GJR 12 (0.7 %) 2.02 (0.155) ** 3.483 (0.062) * 6.268 (0.044)
gFOBI1 N-GARCH 17 (1 %) 0.02 (0.887) ** 0.332 (0.564) ** 0.352 (0.839) **
gFOBI1 t-GARCH 16 (0.9 %) 0.15 (0.699) ** 0.294 (0.588) ** 0.442 (0.802) **

gFOBI1 GJR 16 (0.9 %) 0.15 (0.699) ** 0.294 (0.588) ** 0.442 (0.802) **
gFOBI10 N-GARCH 15 (0.9 %) 0.405 (0.524) ** 0.258 (0.611) ** 0.661 (0.719) **
gFOBI10 t-GARCH 15 (0.9 %) 0.405 (0.524) ** 0.258 (0.611) ** 0.661 (0.719) **

gFOBI10 GJR 14 (0.8 %) 0.796 (0.372) ** 0.225 (0.635) ** 1.016 (0.602) **
FOBI N-GARCH 18 (1 %) 0.01 (0.922) ** 1.827 (0.176) ** 1.837 (0.399) **
FOBI t-GARCH 19 (1.1 %) 0.111 (0.739) ** 1.645 (0.2) ** 1.758 (0.415) **

FOBI GJR 14 (0.8 %) 0.796 (0.372) ** 0.225 (0.635) ** 1.016 (0.602) **
gJADE1 N-GARCH 13 (0.7 %) 1.33 (0.249) ** 0.194 (0.66) ** 1.519 (0.468) **
gJADE1 t-GARCH 14 (0.8 %) 0.796 (0.372) ** 2.727 (0.099) * 3.519 (0.172) **

gJADE1 GJR 13 (0.7 %) 1.33 (0.249) ** 3.16 (0.075) * 5.094 (0.078) *
gJADE10 N-GARCH 13 (0.7 %) 1.33 (0.249) ** 0.194 (0.66) ** 1.519 (0.468) **
gJADE10 t-GARCH 14 (0.8 %) 0.796 (0.372) ** 2.727 (0.099) * 3.519 (0.172) **

gJADE10 GJR 13 (0.7 %) 1.33 (0.249) ** 0.194 (0.66) ** 1.519 (0.468) **
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Table 6: Violation rates and coverage ratio tests for 99 % VaR forceasts covering the
years 2009-2014 of the 17 industrial data set. P-values of the coverage ratio
tests are reported inside parentheses. ** or * indicates that the model is not
rejected by the test at a 0.1 or 0.05 significance level.

Violations UC IND CC
EVT GARCH 11 (0.7 %) 1.242 (0.265) ** 0.162 (0.688) ** 1.398 (0.497) **

EVT GJR 14 (0.9 %) 0.083 (0.773) ** 0.262 (0.609) ** 0.344 (0.842) **
PCA N-GARCH 14 (0.9 %) 0.083 (0.773) ** 0.262 (0.609) ** 0.344 (0.842) **
PCA t-GARCH 14 (0.9 %) 0.083 (0.773) ** 0.262 (0.609) ** 0.344 (0.842) **

PCA GJR 15 (1 %) 0.001 (0.979) ** 0.301 (0.583) ** 0.302 (0.86) **
fastICA N-GARCH 14 (0.9 %) 0.083 (0.773) ** 0.262 (0.609) ** 0.344 (0.842) **
fastICA t-GARCH 14 (0.9 %) 0.083 (0.773) ** 0.262 (0.609) ** 0.344 (0.842) **

fastICA GJR 13 (0.9 %) 0.31 (0.578) ** 0.226 (0.635) ** 0.533 (0.766) **
gFOBI1 N-GARCH 15 (1 %) 0.001 (0.979) ** 0.301 (0.583) ** 0.302 (0.86) **
gFOBI1 t-GARCH 17 (1.1 %) 0.232 (0.63) ** 0.387 (0.534) ** 0.622 (0.733) **

gFOBI1 GJR 16 (1.1 %) 0.053 (0.818) ** 0.343 (0.558) ** 0.397 (0.82) **
gFOBI10 N-GARCH 20 (1.3 %) 1.458 (0.227) ** 0.537 (0.464) ** 2.001 (0.368) **
gFOBI10 t-GARCH 20 (1.3 %) 1.458 (0.227) ** 0.537 (0.464) ** 2.001 (0.368) **

gFOBI10 GJR 19 (1.3 %) 0.94 (0.332) ** 0.485 (0.486) ** 1.43 (0.489) **
FOBI N-GARCH 16 (1.1 %) 0.053 (0.818) ** 0.343 (0.558) ** 0.397 (0.82) **
FOBI t-GARCH 15 (1 %) 0.001 (0.979) ** 0.301 (0.583) ** 0.302 (0.86) **

FOBI GJR 15 (1 %) 0.001 (0.979) ** 0.301 (0.583) ** 0.302 (0.86) **
gJADE1 N-GARCH 13 (0.9 %) 0.31 (0.578) ** 0.226 (0.635) ** 0.533 (0.766) **
gJADE1 t-GARCH 14 (0.9 %) 0.083 (0.773) ** 0.262 (0.609) ** 0.344 (0.842) **

gJADE1 GJR 14 (0.9 %) 0.083 (0.773) ** 0.262 (0.609) ** 0.344 (0.842) **
gJADE10 N-GARCH 12 (0.8 %) 0.692 (0.406) ** 0.192 (0.661) ** 0.88 (0.644) **
gJADE10 t-GARCH 13 (0.9 %) 0.31 (0.578) ** 0.226 (0.635) ** 0.533 (0.766) **

gJADE10 GJR 14 (0.9 %) 0.083 (0.773) ** 0.262 (0.609) ** 0.344 (0.842) **
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APPENDIX B: PORTFOLIO SPECIFIC TEST
RESULTS

Table 7: Conditional coverage tests for 99 % VaR forecasts covering the years 2000-
2014 of the 17 industrial portfolios data. P-values are reported inside pa-
rentheses. ** or * indicates that the model is not rejected by the test at a 0.1
or 0.05 significance level.

PCA FastICA gFOBI1 gJADE1
Food 4.311 (0.116) ** 0.803 (0.669) ** 2.003 (0.367) ** 2.003 (0.367) **

Mines 0.803 (0.669) ** 4.987 (0.083) * 7.666 (0.022) 19.093 (0)
Oil 8.559 (0.014) 3.238 (0.198) ** 10.708 (0.005) 11.982 (0.003)

Clths 3.849 (0.146) ** 2.032 (0.362) ** 2.108 (0.348) ** 0.789 (0.674) **
Durbl 1.18 (0.554) ** 0.991 (0.609) ** 5.007 (0.082) * 3.33 (0.189) **

Chems 2.388 (0.303) ** 0.747 (0.688) ** 4.987 (0.083) * 3.296 (0.192) **
Cnsum 7.014 (0.03) 3.843 (0.146) ** 10.708 (0.005) 10.133 (0.006)

Cnstr 3.482 (0.175) ** 3.197 (0.202) ** 5.406 (0.067) * 4.575 (0.102) **
Steel 2.783 (0.249) ** 0.741 (0.691) ** 1.133 (0.568) ** 1.962 (0.375) **

FabPr 2.426 (0.297) ** 0.77 (0.68) ** 0.991 (0.609) ** 2.426 (0.297) **
Machn 0.994 (0.608) ** 2.197 (0.333) ** 2.662 (0.264) ** 0.774 (0.679) **

Cars 3.573 (0.168) ** 1.706 (0.426) ** 4.404 (0.111) ** 3.296 (0.192) **
Trans 0.858 (0.651) ** 1.706 (0.426) ** 11.274 (0.004) 8.628 (0.013)
Utils 30.774 (0) 13.215 (0.001) 35.254 (0) 19.52 (0)
Rtail 1.471 (0.479) ** 0.774 (0.679) ** 1.39 (0.499) ** 1.002 (0.606) **

Finan 0.991 (0.609) ** 1.194 (0.551) ** 1.194 (0.551) ** 0.894 (0.64) **
Other 2.041 (0.36) ** 6.338 (0.042) 5.007 (0.082) * 4.987 (0.083) *
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Table 8: Conditional coverage tests for 99 % VaR forecasts covering the years 2000-
2006 of the 17 industrial portfolios data. P-values are reported inside pa-
rentheses. ** or * indicates that the model is not rejected by the test at a 0.1
or 0.05 significance level.

PCA FastICA gFOBI1 gJADE1
Food 6.524 (0.038) 9.609 (0.008) 7.942 (0.019) 7.942 (0.019)

Mines 5.817 (0.055) * 8.747 (0.013) 9.111 (0.011) 19.157 (0)
Oil 12.485 (0.002) 5.569 (0.062) * 12.109 (0.002) 14.15 (0.001)

Clths 19.129 (0) 7.659 (0.022) 8.388 (0.015) 6.689 (0.035)
Durbl 1.461 (0.482) ** 0.965 (0.617) ** 0.442 (0.802) ** 1.461 (0.482) **

Chems 1.837 (0.399) ** 6.689 (0.035) 1.016 (0.602) ** 3.008 (0.222) **
Cnsum 7.372 (0.025) 0.442 (0.802) ** 2.875 (0.238) ** 6.761 (0.034)

Cnstr 6.479 (0.039) 5.737 (0.057) * 5.569 (0.062) * 6.479 (0.039)
Steel 8.686 (0.013) 1.119 (0.571) ** 1.955 (0.376) ** 3.509 (0.173) **

FabPr 0.315 (0.854) ** 0.615 (0.735) ** 0.615 (0.735) ** 0.615 (0.735) **
Machn 0.661 (0.719) ** 5.243 (0.073) * 12.706 (0.002) 2.178 (0.337) **

Cars 9.103 (0.011) 0.442 (0.802) ** 0.442 (0.802) ** 2.387 (0.303) **
Trans 2.178 (0.337) ** 1.519 (0.468) ** 0.661 (0.719) ** 1.519 (0.468) **
Utils 23.478 (0) 10.952 (0.004) 28.868 (0) 15.66 (0)
Rtail 12.706 (0.002) 4.024 (0.134) ** 13.833 (0.001) 10.378 (0.006)

Finan 3.942 (0.139) ** 5.151 (0.076) * 6.583 (0.037) 7.659 (0.022)
Other 4.024 (0.134) ** 0.442 (0.802) ** 3.008 (0.222) ** 1.016 (0.602) **

Table 9: Conditional coverage tests for 99 % VaR forecasts covering the years 2007-
2008 of the 17 industrial portfolios data. P-values are reported inside pa-
rentheses. ** or * indicates that the model is not rejected by the test at a 0.1
or 0.05 significance level.

PCA FastICA gFOBI1 gJADE1
Food 18.945 (0) 11.686 (0.003) 27.384 (0) 27.384 (0)

Mines 0.096 (0.953) ** 5.8 (0.055) * 13.963 (0.001) 9.626 (0.008)
Oil 2.827 (0.243) ** 2.827 (0.243) ** 16.393 (0) 13.963 (0.001)

Clths 4.259 (0.119) ** 2.892 (0.235) ** 13.587 (0.001) 23.066 (0)
Durbl 5.838 (0.054) * 11.686 (0.003) 18.945 (0) 24.45 (0)

Chems 11.686 (0.003) 13.962 (0.001) 44.481 (0) 41.1 (0)
Cnsum 5.838 (0.054) * 5.838 (0.054) * 18.035 (0) 16.384 (0)

Cnstr 13.962 (0.001) 9.566 (0.008) 18.945 (0) 24.45 (0)
Steel 0.892 (0.64) ** 4.259 (0.119) ** 13.962 (0.001) 11.605 (0.003)

FabPr 5.838 (0.054) * 2.892 (0.235) ** 9.566 (0.008) 18.945 (0)
Machn 0.323 (0.851) ** 0.892 (0.64) ** 5.838 (0.054) * 7.612 (0.022)

Cars 13.962 (0.001) 9.566 (0.008) 24.45 (0) 27.384 (0)
Trans 2.892 (0.235) ** 11.686 (0.003) 37.819 (0) 41.1 (0)
Utils 30.43 (0) 11.686 (0.003) 33.585 (0) 30.43 (0)
Rtail 4.259 (0.119) ** 5.838 (0.054) * 11.686 (0.003) 18.945 (0)

Finan 54.579 (0) 13.962 (0.001) 30.43 (0) 54.579 (0)
Other 11.686 (0.003) 21.635 (0) 27.384 (0) 28.618 (0)
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Table 10: Conditional coverage tests for 99 % VaR forecasts covering the years 2009-
2014 of the 17 industrial portfolios data. P-values are reported inside pa-
rentheses. ** or * indicates that the model is not rejected by the test at a
0.1 or 0.05 significance level.

PCA FastICA gFOBI1 gJADE1
Food 2.348 (0.309) ** 0.969 (0.616) ** 0.397 (0.82) ** 0.397 (0.82) **

Mines 4.145 (0.126) ** 3.01 (0.222) ** 3.01 (0.222) ** 8.707 (0.013)
Oil 0.88 (0.644) ** 0.88 (0.644) ** 2.102 (0.35) ** 2.102 (0.35) **

Clths 0.969 (0.616) ** 0.533 (0.766) ** 2.102 (0.35) ** 2.102 (0.35) **
Durbl 0.622 (0.733) ** 0.88 (0.644) ** 0.622 (0.733) ** 0.302 (0.86) **

Chems 0.302 (0.86) ** 0.344 (0.842) ** 0.88 (0.644) ** 0.533 (0.766) **
Cnsum 2.111 (0.348) ** 2.677 (0.262) ** 4.445 (0.108) ** 3.178 (0.204) **

Cnstr 0.88 (0.644) ** 3.01 (0.222) ** 0.533 (0.766) ** 0.88 (0.644) **
Steel 2.102 (0.35) ** 7.216 (0.027) 5.535 (0.063) * 5.535 (0.063) *

FabPr 0.622 (0.733) ** 0.344 (0.842) ** 0.88 (0.644) ** 0.533 (0.766) **
Machn 1.43 (0.489) ** 0.344 (0.842) ** 0.533 (0.766) ** 0.88 (0.644) **

Cars 0.302 (0.86) ** 0.344 (0.842) ** 0.344 (0.842) ** 0.533 (0.766) **
Trans 0.969 (0.616) ** 0.397 (0.82) ** 2.677 (0.262) ** 1.43 (0.489) **
Utils 2.535 (0.281) ** 2.535 (0.281) ** 2.205 (0.332) ** 3.035 (0.219) **
Rtail 0.622 (0.733) ** 0.302 (0.86) ** 0.533 (0.766) ** 1.398 (0.497) **

Finan 18.216 (0) 3.01 (0.222) ** 11.661 (0.003) 11.661 (0.003)
Other 2.001 (0.368) ** 0.969 (0.616) ** 1.43 (0.489) ** 0.622 (0.733) **
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APPENDIX C: RESULTS FOR THE 30 INDUSTRIAL
PORTFOLIOS DATASET

Table 11: Violation rates and coverage ratio tests for 95 % VaR forecasts covering
the years 2000-2014 of the 30 Industrial portfolios data set. P-values of
the coverage ratio tests are reported inside parentheses. ** or * indicates
that the model is not rejected by the test at a 0.1 or 0.05 significance level.

Violations UC IND CC
EVT GARCH 206 (5.5 %) 1.633 (0.201) ** 0.513 (0.474) ** 1.97 (0.373) **

EVT GJR 210 (5.6 %) 2.457 (0.117) ** 3.651 (0.056) * 5.894 (0.052) *
PCA N-GARCH 207 (5.5 %) 1.824 (0.177) ** 0.009 (0.923) ** 1.647 (0.439) **
PCA t-GARCH 210 (5.6 %) 2.457 (0.117) ** 0.04 (0.842) ** 2.282 (0.319) **

PCA GJR 205 (5.4 %) 1.452 (0.228) ** 3.079 (0.079) * 4.365 (0.113) **
fastICA N-GARCH 206 (5.5 %) 1.633 (0.201) ** 2.953 (0.086) * 4.41 (0.11) **
fastICA t-GARCH 214 (5.7 %) 3.443 (0.064) * 2.875 (0.09) * 6.066 (0.048)

fastICA GJR 196 (5.2 %) 0.298 (0.585) ** 0.836 (0.361) ** 1.057 (0.589) **
gFOBI1 N-GARCH 215 (5.7 %) 3.714 (0.054) * 1.186 (0.276) ** 4.916 (0.086) *
gFOBI1 t-GARCH 224 (5.9 %) 6.595 (0.01) 3.36 (0.067) * 9.975 (0.007)

gFOBI1 GJR 223 (5.9 %) 6.236 (0.013) 1.807 (0.179) ** 8.063 (0.018)
gFOBI10 N-GARCH 218 (5.8 %) 4.587 (0.032) 4.317 (0.038) 8.615 (0.013)
gFOBI10 t-GARCH 225 (6 %) 6.963 (0.008) 7.96 (0.005) 14.57 (0.001)

gFOBI10 GJR 219 (5.8 %) 4.898 (0.027) 4.161 (0.041) 8.761 (0.013)
FOBI N-GARCH 218 (5.8 %) 4.587 (0.032) 3.224 (0.073) * 7.828 (0.02)
FOBI t-GARCH 220 (5.8 %) 5.218 (0.022) 6.234 (0.013) 11.47 (0.003)

FOBI GJR 224 (5.9 %) 6.595 (0.01) 4.368 (0.037) 10.983 (0.004)
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Table 12: Violation rates and coverage ratio tests for 99 % VaR forecasts covering
the years 2000-2014 of the 30 Industrial portfolios data set. P-values of
the coverage ratio tests are reported inside parentheses. ** or * indicates
that the model is not rejected by the test at a 0.1 or 0.05 significance level.

Violations UC IND CC
EVT GARCH 47 (1.2 %) 2.134 (0.144) ** 1.186 (0.276) ** 3.325 (0.19) **

EVT GJR 49 (1.3 %) 3.108 (0.078) * 0.198 (0.657) ** 2.783 (0.249) **
PCA N-GARCH 64 (1.7 %) 15.284 (0) 2.451 (0.117) ** 16.678 (0)
PCA t-GARCH 64 (1.7 %) 15.284 (0) 2.451 (0.117) ** 16.678 (0)

PCA GJR 70 (1.9 %) 22.265 (0) 0.36 (0.549) ** 21.389 (0)
fastICA N-GARCH 56 (1.5 %) 7.778 (0.005) 1.688 (0.194) ** 9.476 (0.009)
fastICA t-GARCH 56 (1.5 %) 7.778 (0.005) 1.688 (0.194) ** 9.476 (0.009)

fastICA GJR 56 (1.5 %) 7.778 (0.005) 1.688 (0.194) ** 9.476 (0.009)
gFOBI1 N-GARCH 65 (1.7 %) 16.371 (0) 2.28 (0.131) ** 18.665 (0)
gFOBI1 t-GARCH 68 (1.8 %) 19.817 (0) 2.497 (0.114) ** 22.33 (0)

gFOBI1 GJR 67 (1.8 %) 18.638 (0) 2.423 (0.12) ** 21.077 (0)
gFOBI10 N-GARCH 62 (1.6 %) 13.206 (0) 0 (0.985) ** 13.22 (0.001)
gFOBI10 t-GARCH 61 (1.6 %) 12.216 (0) 0 (0.989) ** 12.229 (0.002)

gFOBI10 GJR 61 (1.6 %) 12.216 (0) 0 (0.989) ** 12.229 (0.002)
FOBI N-GARCH 69 (1.8 %) 21.026 (0) 0.382 (0.537) ** 21.425 (0)
FOBI t-GARCH 66 (1.7 %) 17.489 (0) 0.529 (0.467) ** 18.033 (0)

FOBI GJR 66 (1.7 %) 17.489 (0) 0.529 (0.467) ** 18.033 (0)
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Table 15: Violation rates and coverage ratio tests for 99 % VaR forecasts covering
the years 2000-2006 of the 30 Industrial portfolios data set. P-values of
the coverage ratio tests are reported inside parentheses. ** or * indicates
that the model is not rejected by the test at a 0.1 or 0.05 significance level.

Violations UC IND CC
EVT GARCH 17 (1 %) 0.02 (0.887) ** 0.332 (0.564) ** 0.352 (0.839) **

EVT GJR 21 (1.2 %) 0.629 (0.428) ** 1.399 (0.237) ** 1.674 (0.433) **
PCA N-GARCH 28 (1.6 %) 5.275 (0.022) 7.023 (0.008) 11.369 (0.003)
PCA t-GARCH 28 (1.6 %) 5.275 (0.022) 7.023 (0.008) 11.369 (0.003)

PCA GJR 31 (1.8 %) 8.416 (0.004) 2.526 (0.112) ** 9.809 (0.007)
fastICA N-GARCH 18 (1 %) 0.01 (0.922) ** 0.372 (0.542) ** 0.382 (0.826) **
fastICA t-GARCH 17 (1 %) 0.02 (0.887) ** 0.332 (0.564) ** 0.352 (0.839) **

fastICA GJR 18 (1 %) 0.01 (0.922) ** 0.372 (0.542) ** 0.382 (0.826) **
gFOBI1 N-GARCH 21 (1.2 %) 0.629 (0.428) ** 0.508 (0.476) ** 1.14 (0.565) **
gFOBI1 t-GARCH 21 (1.2 %) 0.629 (0.428) ** 0.508 (0.476) ** 1.14 (0.565) **

gFOBI1 GJR 21 (1.2 %) 0.629 (0.428) ** 0.508 (0.476) ** 1.14 (0.565) **
gFOBI10 N-GARCH 20 (1.1 %) 0.319 (0.572) ** 1.478 (0.224) ** 1.8 (0.407) **
gFOBI10 t-GARCH 20 (1.1 %) 0.319 (0.572) ** 1.478 (0.224) ** 1.8 (0.407) **

gFOBI10 GJR 19 (1.1 %) 0.111 (0.739) ** 1.645 (0.2) ** 1.758 (0.415) **
FOBI N-GARCH 22 (1.3 %) 1.035 (0.309) ** 1.18 (0.277) ** 2.219 (0.33) **
FOBI t-GARCH 21 (1.2 %) 0.629 (0.428) ** 1.323 (0.25) ** 1.955 (0.376) **

FOBI GJR 19 (1.1 %) 0.111 (0.739) ** 1.645 (0.2) ** 1.758 (0.415) **

Table 16: Violation rates and coverage ratio tests for 99 % VaR forecasts covering
the years 2009-2014 of the 30 Industrial portfolios data set. P-values of
the coverage ratio tests are reported inside parentheses. ** or * indicates
that the model is not rejected by the test at a 0.1 or 0.05 significance level.

Violations UC IND CC
EVT GARCH 13 (0.9 %) 0.31 (0.578) ** 0.226 (0.635) ** 0.533 (0.766) **

EVT GJR 14 (0.9 %) 0.083 (0.773) ** 0.262 (0.609) ** 0.344 (0.842) **
PCA N-GARCH 14 (0.9 %) 0.083 (0.773) ** 0.262 (0.609) ** 0.344 (0.842) **
PCA t-GARCH 14 (0.9 %) 0.083 (0.773) ** 0.262 (0.609) ** 0.344 (0.842) **

PCA GJR 17 (1.1 %) 0.232 (0.63) ** 0.387 (0.534) ** 0.622 (0.733) **
fastICA N-GARCH 19 (1.3 %) 0.94 (0.332) ** 0.485 (0.486) ** 1.43 (0.489) **
fastICA t-GARCH 19 (1.3 %) 0.94 (0.332) ** 0.485 (0.486) ** 1.43 (0.489) **

fastICA GJR 18 (1.2 %) 0.53 (0.467) ** 0.435 (0.51) ** 0.969 (0.616) **
gFOBI1 N-GARCH 16 (1.1 %) 0.053 (0.818) ** 0.343 (0.558) ** 0.397 (0.82) **
gFOBI1 t-GARCH 16 (1.1 %) 0.053 (0.818) ** 0.343 (0.558) ** 0.397 (0.82) **

gFOBI1 GJR 16 (1.1 %) 0.053 (0.818) ** 0.343 (0.558) ** 0.397 (0.82) **
gFOBI10 N-GARCH 17 (1.1 %) 0.232 (0.63) ** 0.387 (0.534) ** 0.622 (0.733) **
gFOBI10 t-GARCH 17 (1.1 %) 0.232 (0.63) ** 0.387 (0.534) ** 0.622 (0.733) **

gFOBI10 GJR 17 (1.1 %) 0.232 (0.63) ** 0.387 (0.534) ** 0.622 (0.733) **
FOBI N-GARCH 18 (1.2 %) 0.53 (0.467) ** 0.435 (0.51) ** 0.969 (0.616) **
FOBI t-GARCH 15 (1 %) 0.001 (0.979) ** 0.301 (0.583) ** 0.302 (0.86) **

FOBI GJR 17 (1.1 %) 0.232 (0.63) ** 0.387 (0.534) ** 0.622 (0.733) **





69

ESSAY 2

Heikkonen, Matti
Affine Multiple Curve Modelling via Least Squares Regressions

Submitted to a journal

2



70



71

Affine Multiple Curve Modelling via Least Squares
Regressions

Matti Heikkonen∗†

Abstract

We propose a tractable approach for modelling the joint dynamics
of interbank offered rates (IBOR) and Overnight Indexed Swap
(OIS) rates and pricing related derivatives such as forward rate
agreements. We develop a fast multi-step approach for estimating
our model by extending classical affine Gaussian single curve met-
hodology into the multiple curve framework. The performance of
the model is demonstrated using euro area interest rate data cove-
ring the years 2006-2015, and we also consider the importance of
liquidity. The results show that the model is able to achieve a close
fit to the analyzed OIS, EURIBOR and EURIBOR forward rates.

JEL classification: C58, E43, G12, G13
KEYWORDS: Term structure of interest rates, Empirical finance,
Multiple yield curves, No-arbitrage model, Factor model, OIS, LI-
BOR

1 INTRODUCTION

Modelling the evolution of interest rates over time is of great importance to
most financial institutions. The recent financial crisis caused a significant struc-
tural change in the interest rate markets as interbank offered rates (IBOR) di-
verged from Overnight Indexed Swap (OIS) rates in 2007. The emergence of
non-negligible spreads between the two rates has made untenable the assump-
tion that they could both be used as proxies of a single risk free interest rate.
The new market situation has made it necessary to create multiple curve mo-
dels for explaining the term structure of the interest rates and modelling the
∗ Department of Accounting and Finance, Turku School of Economics, University of Turku, Rehto-
rinpellonkatu 3, 20500 Turku, Finland.
† I would like to thank Henri Nyberg (discussant), Luis H. R. Alvarez, Matthijs Lof (discussant), Mika
Vaihekoski and the participants at the GSF and FDPE Winter Workshop in Finance 2016 in Helsinki,
and at the Turku Finance Research Workshop 2016 for helpful comments and suggestions.
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joint dynamics of OIS implied risk free rates and IBOR rates. As a result, a
plethora of different modelling approaches (e.g. Henrard 2007; Mercurio 2009;
Kijima, Tanaka and Wong 2009; Filipović and Trolle 2013;Moreni and Pallavi-
cini 2014; Grbac, Papapantoleon, Schoenmakers and Skovmand 2015;Grasselli
and Miglietta 2016; Cuchiero, Fontana and Gnoatto 2016a) have been proposed
for pricing instruments under this new framework.

In this article we aim to provide a tractable model for multiple interest rate
curves that can be easily estimated using time series data. We propose an affine
Gaussian term structure model, where we have opted to specify the dynamics of
both OIS and IBOR rates directly instead of modelling multiplicative spreads.
The chosen model structure combined with the assumption that IBOR and OIS
rates are driven by the same risk factors enables us to effectively split the esti-
mation of the model into two parts, since the parameters related to the market
price of risk can be estimated using only OIS data. This insight allows us to first
apply classical affine Gaussian term structure methodology to the risk free inte-
rest rates implied by OIS rates, and then estimate a smaller subset of the model
parameters using data related to IBOR rates and derivatives. We also consider
the effects of market liquidity on the interest rates and risk premiums.

The applicability of our multi curve approach to time series data is important,
as previous articles on the evolution of the term structure of interest rates have
mainly focused on government bonds (see, e.g. Cochrane and Piazzesi 2005;
Diebold and Li 2006; Almeida and Vicente 2008; Christensen, Diebold and Ru-
debusch 2009; Adrian, Crump and Moench 2013). Most studies on multiple
curve models on the other hand have focused on the consistent pricing of diffe-
rent derivatives on a single date. A notable exception is the model proposed by
Filipović and Trolle (2013) for the evolution of interbank risk and interest rates
over time. The estimation of their model, however, faced issues related to the
identification of parameters. There exists, however, a large number of articles
that focus on modelling just the IBOR-OIS spreads. The effects of credit and
liquidity risk, for example, were considered by Dubecq, Monfort, Renne and
Roussellet (2016), who also provide a review of the related literature.

In the empirical implementation of our model we have chosen to work on
the basis of the methodology developed by Adrian et al. (2013), because it al-
lows the estimation of an affine Gaussian single curve model via linear regres-
sions without requiring numerical optimization and imposing the bond pricing
recursions on parameter estimation unlike in maximum likelihood methods (e.g.
Joslin, Singleton and Zhu 2011; Hamilton and Wu 2012; Joslin, Priebsch and
Singleton 2014). Fitting the model to the prices of financial derivatives invol-
ves non-linear regressions, but fortunately the numerical optimization problem
is low dimensional and therefore computationally fast to solve. This is achieved
by breaking the parameter estimation into multiple parts and obtaining good ini-
tial values for the optimization algorithm. The additional computational burden
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for fitting the model to multiple tenor specific interest rate curves is insignificant.
We contribute by proposing a tractable multiple curve model for the dyna-

mics of risk free rates, IBORs and IBOR forward rates, deriving explicit pricing
formulas for said instruments under our model and developing a multi step ap-
proach for estimating the model. The performance of the model and the viability
of the estimation approach is demonstrated using three versions of the estima-
tion methodology. The empirical data consists of euro area interest rates with
EURIBOR as the IBOR type rate, and with either OIS or German government
rates utilized as proxies for the risk free rate. The results provide insight into the
dynamics of interest rates inside the euro area.

Our results show that our approach achieves a close fit to the observations
and explains the long-term dynamics of forward rates surprisingly well, even
when the model is fitted without utilizing forward rate agreement (FRA) data
in the estimation process. The model fit, however, becomes worse when the
risk factors are extracted from German government bond yields, which suggests
that there are important differences between the risk factors driving government
bond yields and IBORs. These differences exhibit themselves during the recent
European debt crisis which began in 2009. The relative stability of the model is
furthermore evaluated and confirmed by an out-of-sample exercise. Our results
also support (Adrian et al., 2013) in the conclusion that more than three factors
are needed for explaining the dynamics of the risk premium. When a liquidity
factor was included as the fourth risk factor, it was found to have a significant
effect on the prices of all the other three factors. We also find that including
the liquidity factor in the model is important for explaining the dynamics of the
spot EURIBOR rates, but its effects on the model’s ability to fit FRA rates were
minor.

The article proceeds as follows. In Section 2 we explain the dynamics of
the different interest rates under our model, derive prices for common IBOR
derivatives, and describe our estimation method. Section 3 examines our mo-
del through an empirical analysis and discusses the results. Conclusions are in
Section 4.

2 THE MODEL

2.1 The term structure of the risk free rates

In line with other modern multiple curve models, we assume that the there is a
risk free rate that is separate from the IBORs. In practice this means that the
overnight interest rate serves as a proxy for the risk free rate and the term struc-
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ture is implied by the OIS rates. The assumptions regarding the dynamics and
term structure of the risk free rates follow the standard affine Gaussian approach.
We assume that the interest rates are driven by an m-vector of state variables Xt

that evolve according to the following vector autoregression under the physical
probability measure P:

Xt+1 = µ+ΦXt + vt+1, (1)

where the shocks vt+1 are assumed to be conditionally normally distributed with
a covariance matrix Σ.

vt+1|Xt ∼ N(0,Σ).

We denote the price of a risk free bond with a maturity of n months at time t
by P(n)

t , and note that

P(n)
t = EPt

[
Mt+1P(n−1)

t+1

]
by the assumption of no arbitrage. The pricing kernel Mt+1 is assumed to be of
the exponentially affine form

Mt+1 = exp(−rt−
1
2
λ′tλt−λ

′
tΣ
−1/2vt+1),

where the continuously compounded risk free rate is denoted by rt = − ln P(1)
t ,

i.e. we’re using the risk free bank account process B(t, t + n) = e
∑n−1

i=0 rt+i as the
numeraire.

The time varying market price of risk is assumed to be of the essentially affine
form (Duffee, 2002)

λt = Σ−1/2(λ0 +λ1Xt),

where λ0 can be seen as controlling the long term mean and λ1 the short term
dynamics of λt that depend on Xt. Using this information and a Girsanov trans-
formation, it can be seen that the dynamics of Xt+1 under the risk neutral pricing
measure Q are given by the vector autoregressive process

Xt+1 = µ̃+Φ̃Xt + vQt+1, (2)

where µ̃ = µ−λ0, Φ̃ = Φ−λ1, and vQt+1|Xt ∼ N(0,Σ) under Q. This also implies
that bond prices are of the exponentially affine form

P(n)
t = eAn+B′nXt .

Excess return on the risk free bond with a maturity of n months is defined as

rx(n−1)
t+1 = log P(n−1)

t+1 − log P(n)
t − rt. (3)
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As noted by Adrian et al. (2013), if we assume that vt+1 and rx(n−1)
t+1 are jointly

normally distributed, we can define

β(n−1)′
t = Covt

[
rx(n−1)

t+1 ,v′t+1

]
Σ−1.

Following (Adrian et al., 2013) we assume that β(n−1)
t equals a constant β(n−1)

by construction, and thus the excess returns can be rewritten as

rx(n−1)
t+1 = β(n−1)′ (λ0 +λ1Xt)−

1
2

(
β(n−1)′Σβ(n−1) +σ2

)
+β(n−1)′vt+1 + e(n−1)

t+1 , (4)

where e(n−1)
t+1 is the return pricing error. By grouping the terms one can see that

the excess return is an affine function of the lagged risk factors, the innovation
terms from equation 1 and pricing errors.

Under our approach the risk free forward rates at time t and with a tenor of δ
months are given by the usual formula

Lt(T,T +δ) =
1

δ/12

 P(T−t)
t

P(T−t+δ)
t

−1

 ,
where δ/12 is the year fraction due to time being denoted in months. In tradi-
tional single curve models IBORs and forward IBORs were defined similarly
to the risk free rates of our framework, but that is no longer possible under the
multiple curve framework. Following recent literature on multiple curve models
(Crépey, Grbac and Nguyen 2012, Morino and Runggaldier 2014, Grbac et al.
2015, Cuchiero, Fontana and Gnoatto 2016b), we model the time t IBOR rates
using artificial bonds P̃(t,T ). The artificial bonds are assumed to share the same
latent factors with the risk free rates. As a result, we apply no-arbitrage condi-
tions to the forward IBOR rates, but the same restriction are not necessary for
the non-traded fictitious bonds P̃(t,T ). One could equivalently define the IBOR
rates directly as an exponentially affine function of the risk factor, but the bond
price construction is useful in understanding the intuition behind the model and
connecting it to the classical single curve framework.

2.2 IBOR rates and derivatives

We define tenor specific IBOR curves by assuming that the bond prices P̃(δ)
t =

P̃(t, t +δ) are exponentially affine in the state variables:

P̃(δ)
t = eÃδ+B̃′δXt . (5)

The δ month IBOR rates at time t for the period from t to t + δ are defined
similarly to the risk free rates as

Lδt = Lδt (t, t +δ) =
1

δ/12

 1

P̃(δ)
t

−1

 . (6)
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One can see that our model is capable of accommodating negative interest rates
and the IBOR rates are affine in the spirit of Keller-Ressel, Papapantoleon and
Teichmann (2013), i.e. 1 + δ

12 Lδt is an exponentially affine function of Xt. The
chosen model also allows us to estimate Ãδ and B̃δ via linear regressions as
they’re assumed to be constant over time.

We have opted to model the IBOR rates directly, but an equivalent specifica-
tion of the model could be given using the multiplicative spread S δ(t,T ) between
the risk rate free rate Lt(T,T +δ) and the IBOR rate Lδt (T,T +δ):

S δ(t,T ) =
1 +δLδt (T,T +δ)
1 +δLt(T,T +δ)

. (7)

S δ(t,T ) is exponentially affine in Xt, and in the case of the the spot rate, it
simplifies to

S δ(t, t) =
P(n)

t

P̃(δ)
t

= e(Aδ−Ãδ)+(Bδ−B̃δ)Xt . (8)

The underlying assumption is that the factors that affect the spread, e.g. credit
or liquidity risk, also have an effect on the risk free rate. It can be seen that the
affine Gaussian nature of our model allows IBOR rates to drop below the risk
free rates. In empirical applications this has not proven to be a problem, and it
should be noted that negative spreads between EURIBOR and OIS rates have
occurred in 2006.

Following Mercurio (2010), we consider as a traded asset a forward rate
agreement at time t, where the floating payment is set at time t + n, and the
payments are made at time t + n + δ, which is priced using standard risk neutral
pricing methods with the risk free bank account process as numeraire. The for-
ward IBOR rate Lδt (n) = Lδt (t + n, t + n + δ) is defined as the value K that solves
the equation

EQt

[
1

B(t, t + n +δ)

(
Lδt+n−K

)]
= 0.

The forward rate that solves the equation is given by

Lδt (n) =
1

P(n+δ)
t

EQt

[
1

B(t, t + n +δ)
Lδt+n

]
(9)

Using the longer form of the notation we can see that forward rates are mar-
tingales under the forward measure

Lδt (t + n, t + n +δ) = EQ
t+n+δ

t

[
Lδt+n(t + n, t + n +δ

]
.
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The forward rates can be solved explicitly under the pricing measure Q by using
equations (2) and (6), and the tower property of conditional expectation:

Lδt (n) =
1

δ/12

 1

P(n+δ)
t

EQt

 P̃(δ)
t+n

B(t, t + n +δ)

−1

 (10)

=
1

δ/12

 1

P(n+δ)
t

EQt

[
1

B(t, t + n)
e(Aδ−Ãδ)+(Bδ−B̃δ)′Xt+n

]
−1

 . (11)

In order to evaluate equation (10) we define CN =
∑N

k=0 Φ̃k and express the
value of Xt in terms of the previous innovations as

Xt+n = Cn−1µ̃+Φ̃nXt +

n∑
i=1

Φ̃n−ivQt+i.

By grouping terms we can write

1
B(t, t + n)

=

n−1∏
i=0

P(1)
t+i = enA1+B′1

∑n−1
i=0 Xt+i ,

where
n−1∑
i=0

Xt+i =

n−1∑
i=1

Ci−1µ̃+

n−1∑
i=1

Φ̃iXt +

n−1∑
i=0

i∑
j=1

Φ̃i− jvQt+ j

=

n−2∑
i=0

Ci

 µ̃+Cn−1Xt +

n−1∑
i=1

Cn−1−iv
Q
t+i, n ≥ 2.

In order to calculate the forward rates we define the function

Ψt(α,β,n) := EQt

[
1

B(t, t + n)
eα+β′Xt+n

]
= γtE

Q
t

exp

β′vQT +

n−1∑
i=1

(
B′1Cn−1−i +β

′Φ̃n−i
)
vQt+i




= γt exp

1
2

β′Σβ+

n−1∑
i=1

(
B′1Cn−1−i +β

′Φ̃n−i
)
Σ
(
B′1Cn−1−i +β

′Φ̃n−i
)′

 ,
where α ∈ R,β ∈ Rm and

γt = exp

nA1 +α+

β′Cn−1 + B′1

n−2∑
i=0

Ci

 µ̃+
(
β′Φ̃+ B′1Cn−1

)
Xt

.
Using this notation we can rewrite equation (10) as

Lδt (n) =
1

δ/12

Ψt(Aδ− Ãδ,Bδ− B̃δ,n)

P(n+δ)
t

−1

 =: Ψ̃δ
t (Ãδ, B̃δ,n). (12)
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It can be seen that 1 + δ
12 Lδt (n) is exponentially affine function of Xt.

Consider an interest rate swap (IRS) where two counterparties exchange a
stream of fixed rate payments for a stream of floating rate payments indexed to
IBOR. Let the tenor structures be

t = t0 < t1 < . . . < tn = T, δ = ti− ti−1

for the floating rate payments, and

t = T0 < T1 < . . . < TN = T, ∆ = Ti−Ti−1

for the fixed rate payments, where δ ≤ ∆. The value of the IRS at time t for the
payer of the fixed rate K is given by

IRS (t,T, δ,∆,K) =

n∑
i=1

δ

12
P(i·δ)

t Lδt ((i−1) ·δ)−K
∆

12

N∑
j=1

P(i·∆)
t

The fixed rate that makes the value of the IRS equal zero at time t is thus given
by

S t,T,δ,∆ =

∑n
i=1

δ
12 P(i·δ)

t Lδt ((i−1) ·δ)
∆
12

∑N
j=1 P( j·∆)

t

.

The swap pricing formula can also be used to infer the rates Lδt (n) from the
market quotes of swaps, given that the prices of the risk free bonds are known.
This makes it possible to price forward rate agreements without knowing the
values of the coefficients Ãδ and B̃δ.

2.3 The estimation procedure

We split the estimation of the parameters into essentially two parts. This can be
done because under our assumptions the market price of risk and dynamics of
the risk factors can be estimated from the OIS implied risk free rates. Both parts
of the estimation process utilize the same observations of the state risk factors
Xt, which are extracted from observed data as explained in Section 3.1.

In the first part of the process we estimate all the parameters which are re-
quired for pricing the risk free zero coupon bonds covered in Section 2.1. Any
approach suitable for estimating a single curve affine term structure model, e.g.
the maximum likelihood approach of Hamilton and Wu 2012, could be used in
this part. We have chosen to use the regression approach of Adrian et al. (2013)
due to its tractability and computational speed, and the readily available speci-
fication tests which we utilize in the analysis of the results. Their estimation
approach is described briefly in the first four steps of the estimation procedure
below, and the results are analyzed using the tests presented in their article.
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In the second part of the estimation process we estimate the IBOR parameters
Ãδ and B̃δ separately for each tenor δ. Initial values for the IBOR parameters are
obtained via ordinary least squares (OLS) regressions on the IBOR data, and the
estimates can be further improved by applying non-linear least squares (NLS)
regression to a data set containing observations of EURIBOR FRAs. The NLS
regressions are used to include the information contained in forward rates into
the estimation, but this step can be disregarded when even higher computational
speed is required and the OLS estimates provide a sufficient fit.

The estimation procedure is as follows:

1. We begin by calculating the observed excess returns on risk free bonds
from equation (3) and estimate the VAR(1) model of equation (1) using
OLS. The estimated innovations v̂t+1 are stacked into the matrix V̂ from
which we estimate variance-covariance matrix Σ̂ = V̂V̂′/T .

2. Excess returns are stacked over maturities, and regressed using OLS on a
constant, lagged pricing factors and pricing factor innovations

rxt+1 = a +βv̂t+1 + cXt + et+1 (13)

where a is an N ×1 vector, and β and c are N ×m matrices. The residuals
are collected into the matrix Ê = (e1, . . . ,eT ), which is used to estimate
σ̂2 = tr(ÊÊ′)/NT . The row vectors β̂(i) of the estimated β̂ are used to
construct the matrix B̂∗ =

[
vec(β̂(1) ˆβ(1)′), . . . ,vec(β̂(N) ˆβ(N)′)

]′
.

3. We use equation (4) to estimate the market price of risk parameters λ0 and
λ1 from the estimators obtained in the previous steps as

λ̂0 =
(
β̂′β̂

)−1
β̂′

(
â +

1
2

(
B̂∗vec(Σ̂) + σ̂2ιN

))
λ̂1 =

(
β̂′β̂

)−1
β̂′ĉ,

where ιN is an N ×1 vector of ones.

4. We generate the OIS yield curve using the modified recursion formula of
Adrian et al. (2013). The bond prices are of the exponentially affine form

ln P(n)
t = An + B′nXt + u(n)

t , (14)

and by using the above estimated values, we can obtain the pricing para-
meters from the system of equations

An = An−1 + B′n−1(µ−λ0) +
1
2

(B′n−1ΣBn−1 +σ2) + A1

B′n = B′n−1(Φ−λ1) + B′1
A0 = 0, B′0 = 0, β(n) = B′n,
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where the term 1
2σ

2 arises from allowing maturity specific return fitting
errors and incorporating them in the recursion. The derivation of the prices
is exact provided that the factor loadings match each other, Bn = β(n) for
the maturities used in step 2. The recursion is initialized by estimating A1

and B1 via OLS from equation (14).

5. The IBOR parameters Ãδ and B̃δ are estimated separately for each tenor δ
via OLS from equation (5):

ln P̃(δ)
t = Ãδ+ B̃′δXt + ũ(n)

t .

6. We obtain alternative estimators of Ãδ and B̃δ by simultaneously fitting
the model to both IBOR and IBOR forward rates via NLS regression, and
using the previously obtained estimators as starting values in the numerical
optimization:

min
Ãδ,B̃δ

T∑
t=1

(ln P̃(δ)
t − (Ãδ+ B̃′δXt)

)2
+

k∑
i=1

(
Lδt (nFRAδ

i )− Ψ̃δ
t (Ãδ, B̃δ,nFRA

i )
)2

 ,
where nFRAδ

i is the time in months until the fixing date of the FRA.

One might note that we extract the parameters defining the market price of
risk from the OIS rates. This allows us to estimate the tenor specific parame-
ters separately and to keep the NLS estimation computationally fast, while still
obtaining a good fit to OIS, IBOR and IBOR forward rates. The non-linear least
squares regression used in the last step of our multiple step estimation could be
replaced with any other suitable estimation method such as the generalized met-
hod of moments (GMM). A simplistic application of GMM, with the assump-
tion of the state vector Xt being orthogonal with respect to the regression errors,
would lead to km moment conditions and related km× km variance-covariance
matrix, which in our experience would be numerically almost singular. The
NLS approach we employ avoids these problems.

As was noted by Adrian et al. (2013), the equations (3-4) and (14) can be
used to show that bond and excess return pricing errors are connected to each
other by the equation

u(n−1)
t+1 −u(n)

t + u(1)
t = e(n−1)

t+1 .

In the chosen estimation approach the excess return pricing errors e(n)
t will have

essentially negligible autocorrelations, whereas the bond pricing errors u(n)
t will

have strong autocorrelations.
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3 EMPIRICAL ANALYSIS

3.1 Data and estimation

We consider three different ways of estimating the model and finally perform an
out-of-sample exercise on one of the estimation approaches. In the first two ap-
proaches we use OIS implied yields to estimate the risk free interest rate curve,
and the in the last approach we replace the OIS yields with the yields on Ger-
man government bonds as a proxy of the risk free rates. The second model
specification includes a liquidity risk factor.

The interest rate data consists of OIS, EURIBOR and EURIBOR FRA rates
obtained from Thomson Reuters Datastream, and German Pfandbrief and go-
vernment bond data covering the years 2006-2015. The data is monthly, and the
observations are taken on the last trading day of each month. The benchmark
for the OIS is the Euro Overnight Index Average (EONIA) rate.

The OIS data we use covers the tenors of 1,2, . . . ,12,18 and 24,36, . . . ,72
months. OIS rates with higher tenors were discarded, because the market is still
developing and thin trading of the instruments might cause some of the data to
be unreliable. Furthermore, we interpolate yields for the risk free OIS curve via
cubic splines in order to get observations for all maturities n = 1, . . . ,72. Splines
were chosen over the Nelson-Siegel-Svensson model, since they offer a more
accurate fit to observations and can be fitted without non-convex optimization.

The German Pfandbrief and government bond data sets are published by the
Bundesbank, and consist of monthly parameter estimates for the Nelson-Siegel-
Svensson model, which are used to calculate the yield observations we use. The
government bond yields are expected to differ from OIS rates as the demand for
German government bonds has been affected by a flight-to-safety as the result
of financial turmoil related to the recent European debt crisis, which began in
2009.

In the first estimation approach we estimate the five-factor specification of
our model. We extract principal components from yields of 3,6, . . . ,72 months
maturities implied by the OIS rates. Furthermore, we standardize the extracted
principal components to have unit variance in order to be used as observations
of the state vectors. It should be noted that there would be no significant change
in the results, if the principal components were estimated only from yields that
were not obtained via interpolation. Due to the limitations of available data, we
would be able to use only yield with maturities in full years, in order to keep the
maturities of the yields used in the extraction evenly spaced out. Because of this
we chose to report only the results obtained via the denser data set that contains
some observations obtained through interpolation.

Betas are calculated for risk free bonds with maturities 6,12, . . . ,72 months,



82

where the yield of the bond with maturity n = 1 is used as the risk free rate. This
gives us 12 beta estimates similar to (Adrian et al., 2013). In step 6 of our estima-
tion procedure we use EURIBOR FRA rates for the 3 and 6 month tenors. In the
case of the 3 month tenor the fixing dates are in nFRAδ

i = 1,2,3,4,5,6,7,8,9,12
months from the observations, and for the 6 month tenor they are in nFRAδ

i =

1,2,3,4,5,6,9,12 months.
In the second estimation approach we extract only three risk factors from the

same OIS implied yields as in the first approach, and we use a liquidity proxy
as the fourth priced risk factor. Otherwise the estimation proceeds as in the first
approach. The proxy used as the liquidity factor is the first principal component
of 3-month German Pfandbrief and government bond yield differential and a
factor based on the ECB’s quarterly Euro area bank lending survey. The survey
factor is calculated as the share of banks reporting that their liquidity position
affected the credit standards as applied to the approval of loans or credit lines to
enterprises. The quarterly data was converted to monthly frequency by keeping
the related factor value constant for the three months covered by the survey
answers. We refer to Kempf, Korn and Uhrig-Homburg (2012) for a detailed
explanation of the Pfandbrief and their use in the modelling of illiquidity premia.

The liquidity proxy and alongside EURIBOR-OIS spreads is shown in Figure
(1). It can be seen that the liquidity factor can likely explain most of the variation
in the spreads, but not all of it. The differences between the first two estimation
approaches should highlight the effects of the liquidity factor and to what extent
the other principal components can account for them.

In the third specification of the model we use the yields of German govern-
ment bonds as a proxy for the risk free rate in the estimation of a five factor
model. The estimation procedure of the risk free curve is identical to the one
used by (Adrian et al., 2013) except for the data set, i.e. we extract the principal
components from yields of bonds with maturities 3,6, . . . ,120 months, and cal-
culate betas from bonds with maturities 6,12, . . . ,60,84 and 120 months. The
estimation of the parameters unique to EURIBOR and FRA rates is similar to
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Figure 1: EURIBOR-OIS spreads and the liquidity risk proxy.
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the first estimation approach. The inclusion of the liquidity proxy in this spe-
cification of the model was considered, but it didn’t have a significant effect on
the conclusions regarding the fit of the model.

The reported out-of-sample exercise is performed based on the first estima-
tion approach, but unreported results imply that a similar exercise based on the
second estimation approach would yield similar conclusions. We split the data
set in half and use the first five years of data, 2006-2010, to estimate the model.
The remaining five years of data covering the years 2011-2015 are used as an
out-of-sample period to evaluate the stability of the model fit. The risk factors
for the out-of-sample period are extracted using the rotation matrix calculated
from the in-sample yields and centered using the same values as the in-sample
risk factors, i.e. we use the same affine transformation to extract both in-sample
and out-of-sample risk factors by applying it to different data sets. The low num-
ber of observations remaining in the in-sample data set is a problem that can’t
be avoided considering the short history of OIS with tenors over two years. The
short in-sample period however allows us to demonstrate that our estimation
approach can achieve a good fit even with limited amount of data.

3.2 Results for the first estimation approach

In the first estimation approach we used as risk factors the standardized principal
components extracted from only the yields implied by the OIS rates. In the
first steps of the estimation, as described in section 2.3, we effectively price the
term structure of the risk free interest rates using the methodology of Adrian
et al. (2013), which is known to give a good fit on the yield curve. Following
their approach we set µ = 0, since the principal components should have zero
expected value due to being extracted from demeaned yields.

The estimated model is able to closely fit the risk free yields as can be
seen in Figure 2 that also displays the model implied term premiums. The
term premium is calculated as the difference between the risk neutral yields
−1
n (ARF

n + BRF′
n Xt) and the model implied yields. The parameters ARF

n and BRF
n

are obtained by setting λ0 and λ1 to zero in the pricing recursions shown in the
fourth step of the estimation procedure. It should be noted that the fitted yields
remain close to the observations even during the financial crisis of 2007-2008
and the resulting turmoil. The plots also display how the term premiums of the
long maturity bonds have disappeared as the interest rates for all maturities ha-
ves dropped towards zero, and the term structure has become effectively flat as
a result of the European debt crisis.

The summary statistics in Table 1 show that the standard deviations of the
yield pricing errors are below 5 basis points for all maturities. The standard
deviations related to the shortest maturities are higher than the ones reported by
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Adrian et al. (2013) for their five factor model. This is likely affected by the fact
that we used euro area interest rate data which covers the recent European debt
crisis and was not smoothed using the Nelson-Siegel-Svensson model.

Table 1: Summary statistics, rounded to 3 significant digits, for the pricing errors
1
nu(n)

t of the monthly OIS yields for the first estimation approach. The sam-
ple period is 2006-2016, and the reported statistics include the sample mean,
standard deviation, skewness and kurtosis. The autocorrelation coefficients
of order one and six are denoted by ρ(1) and ρ(6). The maturity in months
is denoted by n = 3,6, . . . . ,72.

Summary statistics n = 3 n = 6 n = 12 n = 24 n = 60 n = 72
Mean -0.001 -0.005 -0.008 -0.000 -0.003 -0.002

Standard deviation 0.024 0.039 0.023 0.014 0.004 0.006
Skewness 1.145 2.417 1.230 -2.752 0.245 0.191

Kurtosis 11.072 17.106 10.857 16.447 4.552 3.226
ρ(1) 0.375 0.413 0.460 0.411 0.573 0.354
ρ(6) 0.056 0.028 0.101 0.001 0.264 0.130

Figure 3 shows that the pricing recursion is able to closely match the betas
for the first three factors. The behavior of the fourth and fifth factors is somew-
hat erratic, but the pricing recursion is able to emulate the general shape of the
curve. The good match between the recursion implied values and the β coef-
ficients indicates that the model is able to closely replicate the yield dynamics
as expected. An ever closer fit is obtained in the case of yields based on fit-
ted Nelson-Siegel-Svensson curves, as can be seen from the results of the third
estimation approach in Section 3.4.

The results in Table 2 reveal that all factors except the fourth one are priced by
the market. The last column shows the Wald test statistics and, in parentheses,
the p-value of the Wald statistic for the rows of Λ and λ1 under the null hypothe-
sis that they are zero. The test statistic is asymptotically chi-square distributed
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Figure 2: Five factor model yield fit and term premiums for the first estimation ap-
proach.
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with degrees of freedom equal to the number of columns in the respective ma-
trix. The derivation of the test statistics can be found in the appendices of Adrian
et al. (2013).

It is noteworthy that no component of λ0 was found to be statistically signi-
ficant, even though the constant component of the level risk (the first element
in the vector λ0) had a relatively high t-statistic. We believe that this result has
been affected by the European debt crisis and the flattening of the term structure.
It is also important to notice that at least one of the last two factors has a statis-
tically significant effect on the price of risk of every factor that is priced by the
market. This supports the conclusion made by Adrian et al. (2013) that affine
Gaussian models need more than three risk factors to explain the term structure
of interest rates.

The results reveal that level risk, as measured by the first principal compo-
nent, varies as a function of the slope and curvature factors, as measured by the
second and the third principal component, and the fourth factor. This is in con-
trast to the results of (Adrian et al., 2013), who did not find the third and fourth
factors to be significant drivers of level risk in the case of Treasury yields. It is
also important to note that level risk has no statistically significant direct effect
on the prices of other risk factors. The price of slope risk is again driven only
by the fourth factor, whereas the price of curvature risk is affected by the third
factor itself and the fifth factor. The price of the fifth factor is affected only by
the said factor itself.

Table 2: Market price of risk for the first estimation approach. Statistical significance
at a 5 % level is denoted by bold text. WΛ and Wλ1 are Wald-test statistics
for the rows of the respective matrices, Λ = (λ0,λ1) and λ1, being zero and
the related p-value is in parentheses.

λ0 λ1,1 λ1,2 λ1,3 λ1,4 λ1,5 WΛ Wλ1

PC1 0.015 -0.005 0.021 0.024 -0.022 -0.015 18.775 16.711
(t-statistic) (1.431) (-0.538) (2.078) (2.328) (-2.15) (-1.46) (0.005) (0.005)

PC2 -0.021 -0.046 -0.033 0 -0.057 0.01 12.594 11.774
(t-statistic) (-0.898) (-1.951) (-1.42) (0.021) (-2.406) (0.42) (0.05) (0.038)

PC3 0.02 -0.022 0.055 -0.12 -0.093 -0.182 20.888 20.755
(t-statistic) (0.379) (-0.406) (1.037) (-2.257) (-1.748) (-3.407) (0.002) (0.001)

PC4 0.012 -0.039 0.027 -0.067 -0.054 0.103 7.569 7.514
(t-statistic) (0.24) (-0.751) (0.518) (-1.298) (-1.038) (1.971) (0.271) (0.185)

PC5 0.008 -0.062 -0.015 -0.117 -0.159 -0.454 37.469 37.462
(t-statistic) (0.098) (-0.759) (-0.183) (-1.445) (-1.967) (-5.597) (<0.001) (<0.001)

In the last steps of the estimation process, we use the same risk factors as
in the previous steps for modelling the dynamics of the EURIBOR rates and
related FRAs. The model is able to closely fit the observed EURIBOR rates
as shown in Figure 4. Some minor divergence is evident during the European
debt crisis, but the results still imply that the factors extracted from only OIS
implied yields seem to be able to capture most of the EURIBOR dynamics even
under aberrant market conditions. The summary statistics in Table 3 show that
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the standard deviations of the estimation errors are higher than in the case of
the risk free yields. This was an expected result, as the the risk factors were ex-
tracted via principal component analysis from the OIS implied yields and would
thus explain most of their variance. It should, however, be noted that standard
deviations of the errors seems to be higher for the longer tenor EURIBOR in-
terest rates. The model implied multiplicative spreads between the EURIBOR
and OIS rates are driven mainly by the third and fourth principal component.

Table 3: Summary statistics of the errors Lδt − L̂δt based on the EURIBOR OLS es-
timates of the first estimation approach. The sample period is 2006-2016,
and the reported statistics include the sample mean, standard deviation, ske-
wness and kurtosis. The autocorrelation coefficients of order one and six are
denoted by ρ(1) and ρ(6). The tenor in months is denoted by n = 1,2, . . . . ,12.

Summary statistics n = 1 n = 2 n = 3 n = 6 n = 9 n = 12
Mean 0.000 0.000 0.000 0.000 0.000 0.000

Standard deviation 0.170 0.185 0.201 0.218 0.235 0.255
Skewness 0.509 0.333 0.208 0.271 0.376 0.406

Kurtosis 6.766 7.024 6.305 5.137 4.618 4.081
ρ(1) 0.530 0.590 0.630 0.715 0.755 0.792
ρ(6) 0.105 0.132 0.166 0.167 0.193 0.213

The fit of the model to the FRA rates is shown in Figure 4. The parame-
ters obtained by estimating the model using just EURIBOR data results in an
close fit for most of the observation period, with slight temporary divergence
during the Financial Crisis of 2007-2008 and the European debt crisis. The
NLS estimation that utilizes FRA data, however, is able to eliminate most of the
divergence between the observed and model implied FRA rates, without signi-
ficantly worsening the fit on the EURIBOR rates. It can be seen that the risk
factors obtained from just OIS data seem to be able to explain the long term
dynamics of the EURIBOR FRAs. The difference between the OLS and NLS
estimates for this estimation approach is only small, which indicates that the
NLS step of the estimation isn’t always necessary. The computational speed
of the model can thus be improved by disregarding the NLS step when OLS
estimation provides a close enough fit to the observed data.

The fit of the model is good considering the observation period of the data
and the model’s time homogeneous and purely Gaussian nature. The model
captures the time dynamics of the volatile FRA rates surprisingly well without
incorporating jump or square root processes. It should also be noted that our
model was estimated and evaluated using data covering a period of ten years, as
opposed to calibrating the model to observed prices on only a single date, as is
commonly done in articles on derivative pricing (see e.g. Cuchiero et al. 2016b,
Grasselli and Miglietta 2016). This is important especially for the purposes of
risk management, where a model should be able to explain observed asset price
dynamics over time with minimal recalibration.
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(a) Fit of the estimates for 3 month EURIBOR rate
using OLS and NLS estimation.
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(b) Fit of the estimates for 6 month EURIBOR rate
using OLS and NLS estimation.
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(c) Fit of the estimates for 3 month EURIBOR
FRA with fixing date in n=6 months.
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(d) Fit of the estimates for 3 month EURIBOR
FRA with fixing date in n=12 months.
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(e) Fit of the estimates for 6 month EURIBOR
FRA with fixing date in n=6 months.

0
1

2
3

4
5

P
er

ce
nt

2006 2008 2010 2012 2014

Observed
OLS fit
NLS fit

(f) Fit of the estimates for 6 month EURIBOR FRA
with fixing date in n=12 months.

Figure 4: EURIBOR and FRA fit of the OLS and NLS estimates for the first estima-
tion approach
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3.3 Results for the second estimation approach

In the second estimation approach three risk factors were extracted from OIS
implied yields and the fourth risk factor corresponds to liquidity risk. The es-
timated model is again able to closely fit the risk free yields despite the slight
change in the risk factors. The summary statistics of the yield pricing errors in
Table 4 show that the means and standard deviations of the yield pricing errors
remain low and are comparable to the results of the first estimation approach for
the shorter maturities.

Table 4: Summary statistics, rounded to 3 significant digits, for the pricing errors
1
nu(n)

t of the monthly OIS yields for the second estimation approach. The
sample period is 2006-2016, and the reported statistics include the sample
mean, standard deviation, skewness and kurtosis. The autocorrelation coef-
ficients of order one and six are denoted by ρ(1) and ρ(6). The maturity in
months is denoted by n = 3,6, . . . . ,72.

Summary statistics n = 3 n = 6 n = 12 n = 24 n = 60 n = 72
Mean -0.005 -0.013 -0.021 -0.015 0.017 0.008

Standard deviations 0.034 0.024 0.032 0.025 0.021 0.027
Skewness -1.005 -0.368 0.270 0.019 0.784 0.322

Kurtosis 4.960 2.192 2.192 2.935 3.010 4.366
ρ(1) 0.769 0.868 0.832 0.866 0.934 0.675
ρ(6) 0.414 0.725 0.471 0.589 0.624 0.308

Table 5 shows the parameters estimates for the market price of risk and the
related test statistics. It can be seen that the results differ from those obtained
using the first estimation approach, as only the first three factors are priced by
the market. The liquidity risk factor itself is not priced, but it drives the prices of
all the other risk factors. This is despite the fact that the slope risk, as measured
by the second principal component, and curvature risk, as measured by the third
principal component, affect only their own market prices.

The alternative way of extracting the risk factors allows the OLS estimates to
obtain a closer fit to the observed EURIBOR rates, as we can see from Figure
5 and Table 6. The fit remains close even during the recent European debt
crisis even though some deviations are still observable during the years 2011 and
2012. The standard deviations of the errors are lower than in the first estimation
approach and they’re similar for all tenors. This shows that all of the effects of
the liquidity factor are not captured by the first few principal components of the
yields.

The parameter estimates obtained by linear regressions on just the EURIBOR
data are also able to explain most of the EURIBOR FRA dynamics as shown in
Figure 5. The fit is close for most of the sample period, but there are temporary
spikes of divergence between the observed rates and the model implied values.
However, NLS estimation seems to eliminate most of the in-sample divergence
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Table 5: Market price of risk for the second estimation approach, where the fourth
risk factor corresponds to liquidity risk. Statistical significance at a 5 % level
is indicated by bold text. WΛ and Wλ1 are Wald-test statistics for the rows
of the respective matrices, Λ = (λ0,λ1) and λ1, being zero and the related
p-value is in parentheses.

λ0 λ1,1 λ1,2 λ1,3 λ1,4 WΛ Wλ1

PC1 0.014 0.016 0.008 -0.018 0.066 34.234 31.984
(t-statistic) (1.484) (1.461) (0.823) (-1.378) (4.606) (<0.001) (<0.001)

PC2 -0.024 -0.017 -0.052 -0.052 0.079 10.617 9.664
(t-statistic) (-0.98) (-0.618) (-2.025) (-1.517) (2.145) (0.06) (0.046)

PC3 0.041 0.037 0.031 -0.276 0.269 14.601 14.155
(t-statistic) (0.697) (0.56) (0.498) (-3.291) (2.947) (0.012) (0.007)

Liquidy factor -0.014 -0.022 0.031 0.082 0.073 0.538 0.53
(t-statistic) (-0.082) (-0.115) (0.17) (0.313) (0.245) (0.991) (0.97)

Table 6: Summary statistics of the errors Lδt − L̂δt based on the EURIBOR OLS esti-
mates of the second estimation approach. The sample period is 2006-2016,
and the reported statistics include the sample mean, standard deviation, ske-
wness and kurtosis. The autocorrelation coefficients of order one and six are
denoted by ρ(1) and ρ(6). The tenor in months is denoted by n = 1,2, . . . . ,12.

Summary statistics n = 1 n = 2 n = 3 n = 6 n = 9 n = 12
Mean 0.000 0.000 0.000 0.000 0.000 0.000

Standard deviations 0.143 0.145 0.135 0.130 0.141 0.158
Skewness 1.623 1.230 0.497 0.569 0.667 0.588

Kurtosis 9.642 9.537 7.245 5.956 5.450 4.557
ρ(1) 0.436 0.466 0.383 0.375 0.463 0.572
ρ(6) 0.179 0.303 0.278 0.127 0.156 0.214

and allows us to obtain an ever better fit to the FRAs, but it comes at the cost
of a slightly worse fit to the EURIBOR rates. The overall quality of the fit to
the FRA rates is similar to the first estimation approach, and the inclusion of the
liquidity factor didn’t cause a noticeable improvement unlike in the case of the
EURIBOR rates.

3.4 Results for the third estimation approach

In the third estimation approach we used the yields on German government
bonds as a proxy for the risk free interest rates. This data set is comparable in
nature to the one used by (Adrian et al., 2013), and the fit of the model on the
yields is similarly as shown in Figure 6. The plots reveal similarities between
evolution of the German government bond yields and the OIS rates used in the
estimation approaches of the previous sections. The general trend for yields
of all maturities has been downward, with the shortest maturity yields falling
fastest in the wake of the financial crisis. The longer maturity yields remained
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(a) Fit of the estimates for 3 month EURIBOR rate
using OLS and NLS estimation.
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(b) Fit of the estimates for 6 month EURIBOR rate
using OLS and NLS estimation.
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(c) Fit of the estimates for 3 month EURIBOR
FRA with fixing date in n=6 months
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(d) Fit of the estimates for 3 month EURIBOR
FRA with fixing date in n=12 months
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(e) Fit of the estimates for 6 month EURIBOR
FRA with fixing date in n=6 months
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(f) Fit of the estimates for 6 month EURIBOR FRA
with fixing date in n=12 months

Figure 5: EURIBOR and FRA fit for the NSL and OLS estimates of the second esti-
mation approach.
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higher for longer, but the flattening of the yield curve is evident and as is the fall
in the term premiums during the European debt crisis.

Table 7 reports the summary statistics of German government yield pricing
errors. The means of the yield fitting errors are low for all maturities, and the
standard deviations of the errors remain below one basis point for all maturities
above 8 months. We suspect that the high volatility of the errors for low maturity
yields were caused by the fast drops in rates in 2009.

Table 7: Summary statistics for the pricing errors 1
nu(n)

t of the German government
bond yields. The sample period is 2006-2016, and the reported statistics
include the sample mean, standard deviation, skewness and kurtosis. The
autocorrelation coefficients of order one and six are denoted by ρ(1) and
ρ(6). The maturity in months is denoted by n = 3,6, . . . . ,120.

Summary statistics n = 3 n = 6 n = 12 n = 24 n = 60 n = 120
Mean -0.008 -0.013 -0.005 -0.001 -0.005 -0.010

Standard deviations 0.027 0.020 0.004 0.003 0.004 0.006
Skewness -2.065 -2.527 -0.913 -1.207 0.606 0.217

Kurtosis 16.584 19.643 9.092 5.208 3.848 3.005
ρ(1) 0.398 0.418 0.532 0.644 0.914 0.723
ρ(6) 0.115 0.269 0.214 0.156 0.599 0.291

The overall fit of the model to the risk free yields seems to be better than in
the case of the OIS data, and the pricing recursion is able to closely match the
betas for all factors as shown in Figure 7. The match is close even for the fourth
and fifth factors, which proved to be problematic with the OIS implied yields.
We believe that this might be related to the German government bond data being
smoothed by the Nelson-Siegel-Svensson model. It should also be noted that the
market for OIS with tenors over two years is relatively new, which might affect
the quality of the OIS data used in the first two estimation approaches.

Table 8 shows the estimation results and test statistics for the market price of
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(a) German government bond yield fitting and term
premium estimates for maturity n = 24.
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(b) German government bond yield fitting and term
premium estimates for maturity n = 120.

Figure 6: Five factor model yield fit and term premiums for the third estimation ap-
proach.
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Figure 7: Regression estimates for the coefficients β(n) versus the recursion values Bn
for the third estimation approach. The β(n) coefficients, denoted by circles,
are obtained from the equation (13) via OLS
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risk. As can be seen, at the 5 % significance level all factors except the slope
risk, as measured by the second principal component, are priced. This is in
line with results of Adrian et al. (2013) for Treasury yield data. The level risk
as measured by the first principal component is driven by the slope risk and
the fourth factor. Neither the third nor the fifth factor affect it, which shows a
difference between the pricing of the OIS implied yield and the yields of German
government bonds. The constant component of the level risk was not found to
be statistically different from zero at a 5% significance level.

The only factor that has a statistically significant effect on the market price
of curvature risk is the curvature risk itself, as measured by the third principal
component. It is not affected by the level risk or the fourth factor, unlike in
the case of Treasury yields as shown by Adrian et al. (2013). Curvature risk
together with the fourth factor, however, play a role in driving the market price
of the fourth factor. The fifth factor affects solely its own market price.

Table 8: Market price of risk estimated from German government bonds in the third
specification of our model. Statistical significance at 5% level is indicated
by bold text. WΛ and Wλ1 are Wald-test statistics for the rows of the re-
spective matrices, Λ = (λ0,λ1) and λ1, being zero and the related p-value is
in parentheses.

λ0 λ1,1 λ1,2 λ1,3 λ1,4 λ1,5 WΛ Wλ1

PC1 0.019 -0.006 -0.027 -0.011 0.034 -0.005 18.76 15.98
(t-statistic) (1.643) (-0.564) (-2.4) (-0.983) (2.988) (-0.439) (0.005) (0.00)

PC2 0.005 0.05 -0.031 0.041 -0.043 -0.008 10.151 10.119
(t-statistic) (0.186) (1.897) (-1.171) (1.542) (-1.641) (-0.304) (0.118) (0.072)

PC3 -0.028 0.055 -0.104 -0.211 0.094 -0.007 16.82 16.605
(t-statistic) (-0.444) (0.875) (-1.662) (-3.354) (1.474) (-0.116) (0.010) (0.005)

PC4 0.067 -0.123 0.151 0.265 -0.415 -0.07 36.638 35.879
(t-statistic) (0.809) (-1.486) (1.815) (3.149) (-4.736) (-0.84) (<0.001) (<0.001)

PC5 -0.07 -0.034 0.040 -0.046 -0.074 -0.389 22.185 21.596
(t-statistic) (-0.836) (-0.398) (0.469) (-0.537) (-0.828) (-4.535) (0.001) (0.001)

We also used the factors extracted from the German government bond yields
to model the dynamics of the EURIBOR rates. Figure 8 shows that the OLS
fit on EURIBOR rates is generally close only until the year 2010, after which
a clear divergence can be observed for all maturities. It is noteworthy that after
they diverge, the model implied EURIBOR rates seem to exhibit a higher vo-
latility than the observations. We suspect that the European debt crisis and the
resulting flight-to-quality has affected German government bond yields in ways
which are unrelated to the movements of EURIBOR rates. These effects would
exhibit themselves in the principal components extracted from the bond yields
thus worsening the fit of the model on EURIBOR rates.

The summary statistics of the EURIBOR fitting errors shown in Table 9 reveal
that the fitting problems are similar for all tenors, and the standard deviations
of the errors are higher than in the other estimation approaches. The results
indicate that the first two estimation approaches should be preferred and that the
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risk factors for explaining EURIBOR dynamics should not be extracted from
German government bonds.

Table 9: Summary statistics of the errors Lδt − L̂δt based on the EURIBOR OLS es-
timates of the third estimation approach. The sample period is 2006-2016,
and the reported statistics include the sample mean, standard deviation, ske-
wness and kurtosis. The autocorrelation coefficients of order one and six are
denoted by ρ(1) and ρ(6). The tenor in months is denoted by n = 1,2, . . . . ,12.

n = 1 n = 2 n = 3 n = 6 n = 9 n = 12
Mean -0.000 -0.000 -0.000 -0.000 -0.000 -0.001

Standard deviations 0.332 0.357 0.373 0.360 0.355 0.358
Skewness -1.876 -1.722 -1.447 -1.414 -1.460 -1.424

Kurtosis 7.486 6.893 5.475 5.095 5.148 4.929
ρ(1) 0.780 0.827 0.838 0.840 0.838 0.840
ρ(6) 0.198 0.259 0.310 0.315 0.317 0.336

The fit on the FRA rates shows similar behavior as in the case of the EU-
RIBOR rates, as seen in Figures 8, and the fitted FRA rates are more volatile
than the observed ones. The biggest divergence between the model implied and
observed forward rates is in October 2009 and it’s caused by an extreme value
of the fourth principal component. It is somewhat peculiar that this is also the
month when Greece announced that it had been understating its deficit figures
for years. Further research into the common risk factors of euro area govern-
ment bonds might thus be warranted, but it is beyond the scope of this article.

NLS estimation is able to improve the fit on FRA rates by smoothing the most
extreme divergences and achieves a relatively good fit. This is however achieved
at the cost of an even worse fit on the observed EURIBOR rates. Especially the
3 months EURIBOR interest rates exhibit major divergence between the model
fit obtained via NLS estimation and the observations during the years 2008 and
2009.

3.5 Out of Sample Exercise

We evaluate the out of sample performance of the model and our estimation
approach by splitting the data set in half. The first five years of data, 2006-
2010, are used to estimate the model, and the fit is compared against the out-of-
sample period covering the years 2011-2015. In practice one would re-estimate
the parameter value more often, but we consider this extreme exercise in order
to illustrate the relative stability of the model fit.

The model fit to OIS yields remains extremely close during the out-of-sample
period, even though some slight divergence is visible during the years 2014 and
2015 as can be seen in Figure 9. The summary statistics of the risk free yield
pricing errors for the in-sample period of 2006-2010 and out-of-sample period
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Figure 8: EURIBOR and FRA fit for the NSL and OLS estimates of the third estima-
tion approach.
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of 2011-2015 are shown in Tables 10-11. It can be clearly seen that the fit of
the model remains good during the out-of-sample period. It should be noted
that the out-of-sample period has relatively stable market conditions compared
to the in-sample period, which covers the Financial Crisis and the resulting drop
in interest rates.

Table 10: Summary statistics for the pricing errors 1
nu(n)

t of the OIS yields for the
in-sample period of 2006-2010.

Summary statistics n = 3 n = 6 n = 12 n = 24 n = 60 n = 72
Mean -0.009 -0.018 -0.024 -0.008 -0.015 -0.012

Standard deviations 0.032 0.054 0.029 0.018 0.006 0.010
Skewness 2.130 2.114 1.541 -1.226 -0.119 0.074

Kurtosis 11.584 10.750 8.342 6.811 2.438 3.328
ρ(1) 0.446 0.436 0.433 0.350 0.714 0.311
ρ(6) 0.002 -0.005 -0.038 0.025 0.264 0.100

Table 11: Summary statistics for the pricing errors 1
nu(n)

t of the OIS yields for the
out-of-sample period of 2011-2015.

Summary statistics n = 3 n = 6 n = 12 n = 24 n = 60 n = 72
Mean 0.008 0.004 -0.001 0.004 0.003 0.004

Standard deviations 0.024 0.018 0.011 0.015 0.009 0.016
Skewness 0.213 -0.108 -1.039 0.334 -0.336 0.690

Kurtosis 2.924 4.797 4.142 2.220 2.195 2.763
ρ(1) 0.811 0.434 0.469 0.886 0.861 0.851
ρ(6) 0.458 -0.155 0.125 0.614 0.525 0.531

The limited number of observations in the in sample period affects t-statistics
related to the market price of risk making it harder to statistically distinguish the
parameter values from zero. Table 12 shows that only the first, third and fifth
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Figure 9: Five factor model yield fit and term premiums for the in sample period of
2006-2010 and out of sample period of 2011-2015.
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factors seem to be priced based on the Wald test statistics even though each row
of the matrix λ1 has values that are individually significant. The prices of the
first two factors are driving by the seconds and third factor, whereas the fourth
and fifth factor drives the market prices of the last three factors.

Table 12: Market price of risk obtained from the in sample period of 2006-2010.
Statistical significance at a 5 % level is denoted by bold text. WΛ and Wλ1

are Wald-test statistics for the rows of the respective matrices, Λ = (λ0,λ1)
and λ1, being zero and the related p-value is in parentheses.

λ0 λ1,1 λ1,2 λ1,3 λ1,4 λ1,5 WΛ Wλ1

PC1 0.022 0.008 0.044 0.055 0.03 0.027 19.17 17.865
(t-statistic) (1.149) (0.415) (2.302) (2.872) (1.503) (1.394) (0.004) (0.003)

PC2 -0.031 -0.073 -0.146 -0.058 0.053 -0.105 9.629 9.473
(t-statistic) (-0.469) (-1.085) (-2.194) (-0.871) (0.772) (-1.573) (0.141) (0.092)

PC3 0.007 0.004 0.049 -0.102 0.218 0.127 12.806 12.768
(t-statistic) (0.1) (0.053) (0.652) (-1.358) (2.819) (1.684) (0.046) (0.026)

PC4 -0.027 0.008 0.069 0.189 -0.273 0.128 10.563 10.428
(t-statistic) (-0.251) (0.078) (0.644) (1.747) (-2.453) (1.179) (0.103) (0.064)

PC5 -0.058 0.017 -0.073 -0.078 -0.241 -0.506 24.06 23.784
(t-statistic) (-0.511) (0.15) (-0.637) (-0.673) (-2.031) (-4.359) (0.001) (<0.001)

Figure 10 shows the fit of the model to the FRA and EURIBOR rates. It can
be seen that the model seems to capture the dynamics of the observed FRA rates
even during the out of sample period of 2011-2015. A gradual difference in level
between the model implied and observed rates is visible towards the end of the
year 2012, and the fit of the model is worse to the EURIBOR rates than to the
related FRA rates. It is noteworthy that NLS-estimation seem to only improve
the fit of the model during the in sample period. In practical applications re-
estimation of the model could be used to eliminate the divergence.

The summary statistics for the pricing errors of the EURIBOR rates are
shown in Tables 13 and 14. During the out of sample period the fit of the model
is worse for the longer tenor EURIBOR rates as can be seen from the means and
standard deviations of the errors. As the Figure 10 showed, a persisting diffe-
rence in the levels of the model implied and observed rates appears during the
out of sample period, which explains the large autocorrelations of the errors.

Table 13: Summary statistics of the errors Lδt − L̂δt based on the EURIBOR OLS esti-
mation for the in sample period of 2006-2010.

n = 1 n = 2 n = 3 n = 6 n = 9 n = 12
Mean 0.000 0.000 0.000 0.000 0.000 0.000

Standard deviations 0.204 0.218 0.228 0.225 0.228 0.240
Skewness 0.500 0.202 -0.030 -0.023 0.089 0.194

Kurtosis 4.867 4.756 4.665 4.686 4.787 4.596
ρ(1) 0.415 0.501 0.522 0.580 0.603 0.643
ρ(6) 0.142 0.181 0.181 0.062 0.026 -0.023
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using OLS and NLS estimation.

Figure 10: EURIBOR and FRA fit of the OLS and NLS estimates. The vertical line
indicates the start of the out of sample period covering the years 2011-
2015.
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Table 14: Summary statistics of the errors Lδt − L̂δt based on thef EURIBOR OLS
estimation for the out of sample period of 2011-2015.

n = 1 n = 2 n = 3 n = 6 n = 9 n = 12
Mean -0.022 -0.027 -0.084 -0.158 -0.183 -0.191

Standard deviations 0.171 0.188 0.229 0.294 0.348 0.390
Skewness 1.361 1.423 1.302 1.048 0.887 0.805

Kurtosis 5.024 5.274 4.369 3.125 2.624 2.320
ρ(1) 0.878 0.881 0.912 0.945 0.956 0.962
ρ(6) 0.434 0.462 0.557 0.652 0.680 0.699

4 CONCLUSIONS

In this article we proposed an affine Gaussian model for modelling the joint
dynamics IBOR and OIS rates and pricing related interest rate derivatives. We
developed a simple and computationally fast approach for estimating the model
and implemented a version of it that was based on the methodology of Adrian
et al. (2013). Our multiple curve approach maintains the computational benefits
of their methodology and readily permits all the extensions described in the
Section 4 of their article, e.g. unspanned factors and the use of daily data.

Our empirical analysis shows that the model achieves a close in sample fit
to the observed EURIBOR and OIS rates, and that the long term dynamics of
the two types of rates can be mostly explained by shared risk factors. The mo-
del fit is good even when all the risk factors are extracted from just OIS yields,
even though the model implied EURIBORss show minor divergence from ob-
served rates mainly during the European debt crisis. The same risk factors can
also explain the dynamics of the EURIBOR FRA rates. This suggests that the
EURIBOR-OIS spreads should be modelled jointly with the OIS implied yield
curve in order to get a coherent view of the market dynamics. The inclusion of a
liquidity risk factor leads to an improvement on model fit to the EURIBORs as
it can explain most of the differences between the EURIBOR and OIS rates, but
the difference on the fit to the EURIBOR FRA rates is negligible. It should be
noted that our liquidity proxy is correlated with the other risk factors, whereas
Dubecq et al. (2016) assumed in their model that the liquidity and credit risk
factors were independent from the factors driving the risk free interest rate.

Risk factors extracted from the German government bonds on the other hand
were less useful in explaining the dynamics of EURIBORs, which indicates that
there are differences between the risk factors driving government bond rates
and EURIBORs. Our out-of-sample exercise shows that the models ability to
explain the dynamics of EURIBOR and OIS rates isn’t limited to the in-sample
period. In the case of FRA rates the model interest rates started slowly diverging
from the observed rates during the second year of the out-of-sample period.
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The results on the five and four factor specifications of our model indicate that
more than three factors can be necessary to price the term structure of interest
rates, which is in line with results of Adrian et al. (2013). While their effect
on the yields might be small, the fourth and fifth factor play an important role
in determining the dynamics of the risk premiums for factors as expected. The
results on the second specification of our model imply that liquidity risk has a
significant effect on driving the market price of risk. It is possible that some of
its effects are captured by the higher principal components of yields.

There were, however, noteworthy surprises as the slope risk was priced and
the level risk, as a measured by first principal component, didn’t have a signifi-
cant effect on the price of any factor in any of the used estimation approaches.
This is in contrast to Adrian et al. (2013) whose results implied that slope risk, as
measured by the second principal component, was not priced in the four or five
factor specifications of theor model. The results suggests a difference between
the euro area and American interest rate dynamics, which is likely explained by
the recent European debt crisis that is covered by our data set.
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Abstract

We propose a parsimonious quadratic short rate model for explain-
ing the term structure of Overnight Indexed Swap rates and Inter-
bank Offered Rates. A multiple curve extension to the arbitrage free
affine Nelson-Siegel model is derived as a special case of the gen-
eral quadratic model. The models are estimated using the quadratic
Kalman filter, and they obtain a close fit to euro area data covering
the years 2009-2014. The results provide insight into the dynamics
of the interest rates and spreads, and the effects liquidity and credit
risk have on them under the physical and risk free probability mea-
sures.

JEL classification: E43, G12, G21
KEYWORDS: Credit Risk, Liquidity Risk, Interbank Market, EU-
RIBOR, Multi-Curve model, Quadratic term-structure model, Short
rate model

1 INTRODUCTION

The financial crisis of 2007-2008 had a significant impact in the interbank mar-
kets globally. Before the financial crisis Interbank Offered Rates (IBORs) and
Overnighted Indexed Swap (OIS) rates were practically indistinguishable from
each other, and it was generally accepted that financial instruments related to the
two rates could be modeled separately from each other (see e.g. Henrard, 2007,
2010). This assumption, however, became untenable during the financial crisis
when increased liquidity and credit risk brought the interbank trading to a vir-
tual halt and caused significant spreads between IBORs and OIS rates (Michaud
and Upper (2008); González-Páramo (2011)) as shown in Figure 1. The topic is
not only important for market participants, but also has policy implications for
∗ Department of Accounting and Finance, Turku School of Economics, University of Turku, Rehtor-
inpellonkatu 3, 20500 Turku, Finland.
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central banks seeking to control market stress.
A growing body of literature has focused on the spreads, and there has been

great interest in finding the underlying factors and disentangling their effects.
We add to the existing literature on spreads and link it to the framework of
multiple curve term structure models by considering a quadratic term structure
model (QTSM) for the joint dynamics of the risk free OIS rates and their spreads
with IBORs. The proposed model is parsimonious and easily accommodates a
negative lower bound on yields. We evaluate the empirical performance of the
proposed model using data on Euro Interbank Offered Rates (EURIBORs) and
OIS rates under the assumption that the spreads are driven by factors related to
credit and liquidity risk.

The proposed model belongs to the quadratic class of term structure models
(see e.g. Ahn, Dittmar and Gallant 2002, Leippold and Wu 2002, Leippold
and Wu 2003, Chen, Filipović and Poor 2004, Jiang and Yan 2009). However,
it should be noted that the introduction of additional pseudo-factors makes it
possible to convert quadratic models into affine models, as was shown by Cheng
and Scaillet (2007), but it comes at the cost of the parsimonious presentation
offered by the quadratic class. Therefore our approach is essentially grounded in
the tradition of affine yield curve models that have been popular in finance since
the seminal works of Vasicek (1977), Cox, Ingersoll Jr and Ross (1985) and
Duffie and Kan (1996). Due to their tractability, this class of models is also well
suited for econometric estimation and the pricing of derivatives. The models
can accommodate different price structures, and their properties and ability to
model the yield structures of government bonds have been well studied (see Dai
and Singleton, 2000, 2002; Duffee, 2002; Cochrane and Piazzesi, 2005; Collin-
Dufresne, Goldstein and Jones, 2008; Duffee and Stanton, 2012) and adaptations
have been made for modeling LIBOR rates (Keller-Ressel, Papapantoleon and
Teichmann, 2013).

Our approach for incorporating spreads is related to the extensive existing
literature on multiple curve models (e.g. Henrard, 2007; Kijima, Tanaka and
Wong, 2009; Mercurio, 2009; Bianchetti, 2010; Grbac, Papapantoleon, Schoen-
makers and Skovmand, 2015; Nguyen and Seifried, 2015; Cuchiero, Fontana
and Gnoatto, 2016b,a; Crépey, Macrina, Nguyen and Skovmand, 2016; Fil-
ipović, Larsson and Ttrolle, 2017) and it nests the short spread model of Grbac,
Meneghello and Runggaldier (2016). As special case of the model, we derive
a multiple curve extension to the arbitrage free Nelson-Siegel (AFNS) model
(Christensen, Diebold and Rudebusch, 2009, 2011) and explain how similar ex-
tensions can be easily derived for the AFNS models with stochastic volatility
considered by Christensen, Lopez and Rudebusch (2014a, 2015).

In the empirical part of the article, we consider specifications of the model
that contain five factors. The first three factors affect the risk free spot rate and
the last two factors drive the spot spread between EURIBORs and OIS rates.
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Figure 1: The EURIBOR-OIS spreads during the years 2006-2015 calculated using
EURIBOR and OIS rates of the same tenor.

The last two factors correspond to liquidity and credit risk, and they are allowed
to depend on the factors driving the risk free rate unlike in the model considered
by Dubecq, Monfort, Renne and Roussellet (2016). Estimation is done using
the Quadratic Kalman Filter (QKF) of Monfort, Renne and Roussellet (2015).

Our identification scheme is based on the use of proxies for credit risk and
liquidity, and is similar to approaches used by Kempf, Korn and Uhrig-Homburg
(2012) and Dubecq et al. (2016). Our credit proxy is based on Credit Default
Swap (CDS) data, and it can be motivated by the results of Longstaff, Pan, Ped-
ersen and Singleton (2011), who found that the first principal component could
account for most of the variation in the spreads in the case of sovereing CDS
data. The liquidity proxy is based on European Central Bank’s (ECB’s) survey.
and the spreads between Pfandbrief and German government bond yields which
have been analyzed in detail by Kempf et al. (2012).

The article proceeds as follows. In Section 2 we provide a review of previous
research on spreads. In Section 3 we present the proposed short rate model and
the variant of it that extends the arbitrage free Nelson-Siegel model. Section
4 provides a discussion of the data, the estimation approach and the results.
Concluding remarks are made in Section 5.
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2 PREVIOUS RESEARCH ON SPREADS

This article focuses on modelling the dynamics of the risk free rate and EURI-
BORs. As such, it is closely related to the existing literature on spreads. The
primary focus of said studies has been on liquidity and credit risk, whose effects
on the interbank market and the fixed income markets in general have been con-
sidered in numerous articles after the financial crisis with partly contradictory
results. The effects of policy actions, such as the Federal Reserve’s Term Auc-
tion Facility, have been considered by Taylor and Williams (2009), Wu (2011)
and McAndrews, Sarkar and Wang (2016). Gyntelberg and Wooldridge (2008)
studied the causes of the spreads, and found that both credit and liquidity risk
were behind the divergence of the interbank rates during the financial turmoil
of 2007. Angelini, Nobili and Picillo (2011) studied the spreads between un-
secured and secured interbank rates, and according to their results the spreads
were mainly driven by aggregate factors such as aggregate risk aversion rather
than bank-specific factors, but for example central bank interventions were not
found to be an important determinant. Smith (2012) emphasized the impor-
tance of time-varying risk premia, while noting that credit and liquidity factors
also played an important role. According to Christensen, Lopez and Rudebusch
(2014b) central bank liquidity operations helped lower the premium and the
spreads between LIBORs and Treasuries would have been even higher other-
wise.

Kempf et al. (2012) studied the term structure of illiquidity premia, and found
that volatilities in the asset markets drove short-term liquidation risk whereas
the long-term economic outlook had a dominant effect on the long term liqui-
dation risk. The results of Filipović and Trolle (2013) imply that liquidity was
the main driver of spreads at the start of the financial crisis, but the dynamics
changed after the bankruptcy of Lehman Brothers and the default component
became dominant. It was the almost sole driver of spreads in their observation
period after May 2009, including the European debt crisis. Schwarz (2016) on
the other hand found liquidity to be more important in explaining EURIBOR-
OIS spreads than credit risk, whereas according to Dubecq et al. (2016) liquidity
was on average more important during the years 2007-2013, but credit risk ac-
counted for most of the spreads at the end of that period. The existing literature
thus suggests that both credit and liquidity factors play an important role in ex-
plaining the interbank spreads, but their relative importance varies over time.

The spreads in government have been studied in parallel to the interbank
spreads. The results of Codogno, Favero and Missale (2003) imply that the
spreads between government bond yields in the euro area are mainly driven by
differences in credit risk. While credit quality is the main driver, according to
Beber, Brandt and Kavajecz (2008) liquidity still has a non-trivial effect on the
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spreads which is heightened during periods of large flows into or out of the
bond market. Monfort and Renne (2013) suggest that there is a causal relation-
ship between periods of credit and liquidity stress. In the U.S. bond market the
effects of liquidity and the related flight-to-quality premium has been studied
for example by Longstaff (2004).

3 THE MODEL

3.1 The General Framework

We assume that under the risk neutral pricing measure Q the risk free spot rate
rt is a quadratic function of the n dimensional vector of risk factors Xt, which
follow a multivariate Ornstein-Uhlenbeck process. Their dynamics can be rep-
resented as the system of equations

rt = α+β′Xt + X′t ΨXt (1)

dXt =
(
µQ + KQXt

)
dt +ΣdWQ

t , (2)

where Wt is a standard Brownian motion, and the matrix Ψ is symmetric and
positive semi-definite. If we further restrict Ψ to be positive definite, it can be
easily seen that the lower bound of rt is given by α− 1

4β
′Ψ−1β. KQ is assumed to

be negative semi-definite, which means that some of the risk factors are allowed
to follow unit root processes under the pricing measure. The model can be
easily modified to accommodate a deterministic shift extension (see Brigo and
Mercurio, 2001) by replacing α with a deterministic function φt.

The market price of risk is assumed to be of the essentially affine form (Duf-
fee, 2002)

λt = λ0 +λ1Xt.

Given the market price of risk, it can be seen that the dynamics of the state
vector Xt under the physical probability measure P are given by

dXt = (µP + KPXt)dt +ΣdWP
t ,

where µP = µQ + λ0 and KP = KQ + λ1. The eigenvalues of KP are assumed
to negative in order to ensure that the process is stationary under the physical
probability measure. In the empirical part of this article we parametrize the
dynamics of the risk factors independently under the two probability measures
in order to improve the numerical stability of the estimation process.
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The time t price of a risk free zero coupon bond with maturity for τ is given
by

P(t, τ) = EQ
t

[
exp

(
−

∫ τ

0
rt+udu

)]
= exp

(
A(τ) + B(τ)′Xt + X′tC(τ)Xt

)
,

where A(τ), B(τ) and C(τ) are the solution to the following system of ordinary
differential equations

dA(τ)
dτ

= tr
[
ΣΣ′C(τ)

]
+

1
2

B(τ)′ΣΣ′B(τ) + B(τ)′µQ−α, A(0) = 0

dB(τ)
dτ

= 2C(τ)ΣΣ′B(τ) + KQ′B(τ) + 2C(τ)µQ−β, B(0) = 0

dC(τ)
dτ

= 2C(τ)ΣΣ′C(τ) +C(τ)KQ + KQ′C(τ)−Ψ, C(0) = 0.

We define IBOR dynamics using artificial bonds P̃(t, τ), which are similar to
the risk free bonds P(t, τ), but have a spread relative to the risk free rate rt. The
spot spread st is assumed to be of the quadratic form

st = αs +β′sXt + X′t ΨsXt,

where Ψs is a symmetric positive semi-definite matrix. The time t IBOR of tenor
δ is then given by the equation

1 +δL(t, t +δ) =
1

P̃(t, δ)
,

where

P̃(t, τ) = EQ
t

[
exp

(
−

∫ τ

0
(rt+u + st+u)du

)]
= exp

(
Ã(τ) + B̃(τ)′Xt + X′t C̃(τ)Xt

)
.

We have elected to use the same parameters for all tenors, but tenor specific
spot spreads and deterministic shift extensions can be used when more flexibility
is necessary. The spreads can be bounded to be strictly non-negative by requir-
ing Ψs to be positive definite and imposing the restriction αs −

1
4β
′
sΨ
−1
s βs ≥ 0.

It should, however, be noted that negative spot spreads do not imply negative
spreads between IBORs and OIS rates, and the dynamics of Xt can make neg-
ative values of st unlikely even when they’re theoretically possible. Permitting
negative spot spreads can thus be useful for facilitating the estimation of the
model by providing additional flexibility in the parametrization.

3.2 An Extension to the Arbitrage Free Nelson-Siegel Model

The quadratic multiple curve model proposed in the previous section can be
modified so that the risk free rates are given by the AFNS-model of Christensen
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et al. (2009, 2011). This is achieved by applying simple restrictions to the model
parameters in equations (1) and (2). The risk free yield curve is of the AFNS
form, if the spot rate is a sum of the first two risk factors

rt = X1,t + X2,t,

and Σ and KQ are block diagonal matrices of the form:

KQ = diag(K
Q
,KQ)

Σ = diag(Σ,Σ),

where Σ is a 3×3 matrix and

K
Q

=


0 0 0
0 −λ λ

0 0 −λ

 , λ > 0.

The risk free short rate is thus driven by the first three risk factors that are in-
dependent from the other risk factors under the risk free measure Q. Under the
physical measure P the model can admit dependence between all of the risk fac-
tors, since KP is allowed to vary freely. A similar approach can be used to form
linear quadratic multiple curve extensions to the AFNS models with stochastic
volatility considered by Christensen et al. (2015). The extensions would re-
quire additional restrictions on KP in order to ensure that the factors driving the
stochastic volatility remain non-negative, i.e. all the non-diagonal elements on
the relevant rows of the mean reversion matrix would be zeros.

It can be shown that under this specification the price of the risk free zero
coupon bond with maturity of τ is

P(t, τ) = exp
(
A(τ) + B1(τ)X1,t + B2(τ)X2,t + B3(τ)X3,t

)
,

where the values of the functions Bi(τ) are

B1(τ) = −τ

B2(τ) = −
1− e−λτ

λ

B3(τ) = τe−λτ+ B2(τ).

A solution for the yield adjustment term A(τ) can also be derived in analyti-
cal form (see Christensen et al., 2011). In addition to analytical formulas, the
AFNS-model also gives well defined interpretations for the three factors driving
the risk free rate, as X1,t defines the level of the yield curve, X2,t the slope and
X3,t the curvature. The interpretations thus align with those of the first three
principal components extracted from yields that are commonly used as risk fac-
tors in discrete time term structure models.
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The tractability of the model for EURIBORs can be further improved by
assuming that spot spreads are not affected by the factors that drive the risk free
rate. We partition the state variables Xt into two vectors Xt = (X1,t,X2,t,X3,t)′

and Xt = (X4,t, . . . ,Xn,t)′, where only the factors Xt affect the spreads. The spot
spreads and the prices of the artificial bonds related to EURIBORs are then
simplified to

st = αs +β′sXt + X′tΨsXt

P̃(t, τ) = P(t, τ)EQ
t

[
exp

(
−

∫ τ

0
st+udu

)]
.

4 EMPIRICAL ANALYSIS

4.1 Data and the Identification of the Credit and Liquidity Proxies

Our interest rate data consists of weekly observations of EURIBOR and OIS
rates obtained from Thomson Reuters Datastream, and German Pfandbrief and
government bond data covering the years 2009-2014. The benchmark for the
OIS is the Euro Overnight Index Average (EONIA) rate. The German Pfand-
brief and government bond data sets are published by Bundesbank, and consist
of parameter estimates for the Nelson-Siegel-Svensson model, which are used to
calculate the yields. The OIS data we use covers the tenors of 1, 3, 6, 9, 12, 24,
36, 48 and 60 months. The EURIBOR data covers the tenors of 1, 3, 6, 9 and 12
months. We extract the prices of the zero coupon bonds P(t, τ) and P̃(t, τ) from
the EURIBOR and OIS data, and calculate the yields yt(τ) = − log(P(t, τ))/τ
and ỹt(τ) = − log

(
P̃(t, τ)

)
/τ from the bond prices.

We identify the liquidity risk factor by using as a proxy the first principal
component of 3-month and 5 year German Pfandbrief and government bond
yield differentials and a factor based on the ECB’s quarterly Euro area bank
lending survey. The Pfandbrief is regarded as having credit risk comparable to
the German government bonds, but it is a less liquid instrument (Kempf et al.,
2012). The survey factor is calculated as the share of the banks reporting that
their liquidity position affected the credit standards as applied to the approval of
loans or credit lines to enterprises. The quarterly data was converted to weekly
frequency by keeping the related factor value constant for the three months cov-
ered by the survey answers. Credit risk is identified using as a proxy the first
principal component of Credit Default Swap rates of 37 euro area banks similar
to Dubecq et al. (2016). The sample variance of both proxies is standardized to
one and the resulting time series are shown in Figure 2.
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Figure 2: The credit and liquidity proxies.

4.2 Model specifications and estimation method

We estimate a five factor version of the full quadratic model where the first
three factors affect only the risk free rates and the last two factors, which we
associate with credit risk and liquidity, affect the short spread st. This allows
us two decompose the state vector into two parts Xt =

(
X
′

t ,X
′
t

)′
, where Xt =(

X1,t,X2,t,X3,t
)′ and Xt =

(
X4,t,X5,t

)′. Using this notation the dynamics of the
model under the physical probability measure P can be written as

dXt =
(
µP + KPXt

)
dt +ΣdWt

rt = α+β′Xt + X
′

tΨXt

st = αs +β′sXt + X′tΨsXt,

Observations of Xt made at discrete times follow a vector autoregressive process,
whose dynamics are described in Appendix A.

We follow the identification restrictions of Ahn et al. (2002), and restrict
β and βs to be vectors of zeros, Σ to be a diagonal matrix and KP to be an
upper triangular matrix. Ψ and Ψs are restricted to be positive semi-definite
matrices, and their diagonal elements are set equal to one in order to improve
the numerical stability of the estimation. The liquidity risk and the credit risk
factor are identified by associating them with the related proxies denoted by pl,t

and pc,t.
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We consider two different specifications of the general QTSM model. In the
first specification no additional restrictions are placed on the parameter, whereas
in the second specification KQ is restricted to be a block diagonal upper trian-
gular matrix so that Xt and Xt are independent of each other under the pricing
measure. Without the restriction on KQ, the yields are given by a quadratic
function of all the risk factors, even though Xt does not affect the risk free spot
rates.

The general model is compared with our multiple curve extension to the
AFNS-model, where we restrict KP to be an upper triangular matrix and Σ to be
a diagonal matrix similar to the general model. The AFNS model would be well
identified with less restrictions, but the chosen approach was adopted because
under it all three estimated models have the same basic form with each having
increasingly stricter restrictions than the previous one. This approach also al-
lows us to show how even this restricted version of the AFNS model is able to
achieve an extremely close fit to the data.

We use the quadratic Kalman filter of Monfort et al. (2015) as described in
Appendix B to estimate the models via quasi-maximum likelihood methods and
to obtain approximations of the underlying latent factors. The estimation is
based on the observed OIS implied yields yt(τ), and EURIBOR implied yields
ỹt(τ) and the proxies pi,t described in Section 4.1. We associate the fourth risk
factor with liquidity risk and the fifth risk factor with credit risk. The full set
of observation equations for the previously specified maturities τ, EURIBOR
tenors τ̃ and proxies are defined as

yt(τ) =
−1
τ

ln P(t, τ) = A(τ) + B(τ)′Xt + X′tC(τ)Xt + ετ,t,

ỹt(τ̃) =
−1
τ̃

ln P̃(t, τ̃) = Ã(τ̃) + B̃(τ̃)′Xt + X′t C̃(τ̃)Xt + ε ˜̃τ,t,

pl,t = Al +ClX2
4,t + εl,t

pc,t = Ac +CcX2
5,t + εc,t.

Because the filter is initialized using unconditional moments of the factors,
the first forecasts are typically more inaccurate that the latter forecasts, which
utilize information contained in the observed time series. Due to this we chose
to ignore the first forecasts in the calculation of the log likelihood function. This
choice doesn’t affect the asymptotic properties of the estimates. The covariance
matrix of the observation errors is fixed to be a diagonal matrix with all error
terms having standard deviations of 5 basis points.

4.3 Parameter Estimates

The parameter estimates for the dynamics of Xt in the full quadratic model are
shown in Table 1. The mean reversion matrices KP and KQ show a meaning-



115

ful difference between behavior of the risks factors under the physical and risk
neutral probability measures. Under the physical measure the fourth and fifth
factor, which are related to liquidity and credit risk, have a significant effect on
the three factors driving the risk free spot rate. However, under the risk neutral
measure the effect of these factors is significantly smaller as shown by the pa-
rameter values in the 3×2 upper right block of KQ. While said parameters are
mostly statistically significant also under the pricing measure, their economic
significance can be considered to be minor due to their low values. It is note-
worthy that the factor related to credit risk follows a unit root process under the
risk neutral pricing measure Q, as the mean reversion rate is zero. This is in line
with the research in credit risk, where the intensities are often found to be non-
stationary underQ (see e.g. Dubecq et al., 2016). Under the physical probability
measure the credit risk factor is stationary with a slow rate of mean reversion.

Table 1: Parameter estimates for the dynamics of Xt in the QTSM models. The stan-
dard deviations of the estimates are inside parentheses, and the parameter
values that have been fixed as zeroes due to the model specification or on
the basis of preliminary analysis have been marked with a hyphen.

(a) Parameter estimates for the full QTSM model.

KP
1 -0.1035 (0.0286) -14.3026 (3.8516) -1.4385 (0.2820) -5.0647 (1.1192) -6.5292 (1.2117)

KP
2 - -169.4034 (55.4537) -16.1775 (3.8265) -61.8712 (9.1583) -79.8013 (18.3164)

KP
3 - - -3.2389 (0.6341) -0.8699 (0.1107) -0.9609 (0.1831)

KP
4 - - - -0.0515 (0.0111) -0.0962 (0.0361)

KP
5 - - - - -8.56e-04 (3.07e-04)

µP′ 0.0965 (0.0231) 1.0603 (0.3447) 0.6158 (0.1808) 0.0060 (0.0041) 8.85e-04 (3.62e-04)

KQ
1 -0.4842 (0.0671) 10.5765 (3.056) 2.4993 (0.5152) -0.0035 (7.46e-04) 0.0127 (0.0042)

KQ
2 - -65.6923 (14.6999) -35.6399 (6.0876) 0.0019 (6.08e-04) -0.0685 (0.0208)

KQ
3 - - -0.2163 (0.0484) -1.28e-04 (4.08e-05) 0.0061 (0.0022)

KQ
4 - - - -20.2238 (1.9977) -5.9885 (1.5669)

KQ
5 - - - - -

µQ′ 2.1546 (0.9186) -9.7906 (5.1191) 0.0574 (0.0103) 5.539 (1.1329) -0.1388 (0.0238)

diag(Σ) 0.0035 (6.57e-04) 1.53e-04 (6.47e-05) 0.0033 (3.23e-04) 0.0208 (0.0042) 0.0151 (0.0018)

(b) Parameter estimates for the QTSM model with block diagonal KQ.

KP
1 -0.1044 (0.0154) -14.303 (1.5337) -1.3584 (0.1984) -4.8843 (0.4778) -6.5279 (0.44)

KP
2 - -169.6195 (24.25) -15.3322 (1.9259) -59.7226 (7.3822) -79.804 (9.5321)

KP
3 - - -3.3244 (0.3549) -0.8424 (0.0698) -0.9843 (0.1538)

KP
4 - - - -0.0531 (0.0065) -0.1002 (0.0175)

KP
5 - - - - -8e-04 (1.78e-04)

µP′ 0.0349 (0.0079) 0.3348 (0.0382) 0.6474 (0.126) 0.0068 (8.79e-04) 9.62e-04 (1.14e-04)

KQ
1 -0.4793 (0.0643) 10.5389 (1.218) 2.5592 (0.3114) - -

KQ
2 - -65.0424 (8.2707) -34.3479 (4.7747) - -

KQ
3 - - -0.2187 (0.0283) - -

KQ
4 - - - -21.2125 (0.9374) -7.0866 (0.554)

KQ
5 - - - - -

µQ′ 2.1564 (0.2841) -9.9561 (0.5322) 0.0554 (0.0094) 5.6859 (0.6774) -0.1444 (0.0152)

diag(Σ) 0.0034 (3.68e-04) 1.54e-04 (1.37e-05) 0.0035 (3.93e-04) 0.0229 (0.0033) 0.0159 (0.0012)
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The parameter estimates for factor dynamics of the quadratic model with a
block diagonal mean reversion rate matrix KQ under the risk free pricing mea-
sure are extremely close to those of the more general model considered above.
The only exception to this rule are the first two values of µP differ between the
two model, which are differ by approximately three standard deviations.

The multiple curve AFNS model, which is a restricted version of the
quadratic models considered above, allows for a clearer interpretation of the
factor dynamics. The first three rows of KP in Table 2 show that the three fac-
tors, i.e. level, slope and curvature, driving the risk free rate are affected by
liquidity and credit risk. The positive coefficient related to liquidity risk on the
first row of KP indicate that high levels in that risk factor also related to higher
interest rate levels and vice versa. This might be partially explained by the
actions of the European Central Bank in response to worsening liquidity (see
González-Páramo, 2011).

The AFNS and the QTSM specifications for the short rate lead to different
parameter estimates for the dynamics of the two factors driving the spreads.
The differences in µQ

4 , µQ
5 , KQ

4,4 and KQ
4,5 will affect A(τ), B(τ) and C(τ), which

will also be reflected in the filtered estimates of the risk factors.

Table 2: Parameter estimates for the dynamics of Xt in the multiple curve AFNS
model. The standard deviations of the estimates are inside parentheses, and
the parameter values that have been fixed as zeroes due to the model spec-
ification or on the basis of preliminary analysis have been marked with a
hyphen. The parameter driving the rate of mean reversion under the pricing
measure was estimated as λ= 0.4864 with a standard deviation of of 0.0130)

KP
1 -0.0162 (0.0073) 3.3572 (0.9358) 0.6374 (0.3377) 2.8663 (0.6638) -0.2527 (0.1304)

KP
2 - -7.7966 (1.7475) -0.3996 (0.7104) -6.0687 (1.2420) -0.3182 (0.1844)

KP
3 - - -1.9561 (0.6906) -0.7285 (0.6372) 1.1042 (0.4990)

KP
4 - - - -0.1494 (0.054) -0.0050 (0.0047)

KP
5 - - - - -0.0177 (0.0095)

µP′ -0.1046 (0.0435) 0.1575 (0.0825) 0.0801 (0.0823) 0.0083 (0.0057) -

µQ′ - - - 1.2178 (0.1591) -0.1053 (0.0153)

KQ
4,4 -6.8935 (0.8442) KQ

4,5 1.0499 (0.9886) KQ
5,5 -

diag(Σ) 0.0020 (0.0017) 9e-06 (1.66e-05) 0.0152 (8.23e-04) 0.0164 (0.0022) 0.0156 (0.0019)

The parameters defining the relation between the risk factors and the spot rate,
the spreads and the proxies are shown in Table 3, and they are similar for both
the QTSM models as expected. It is noteworthy that the estimated parameters
permit negative spreads as shown by the values of αs. However, the actual spot
spreads, as implied by the models and the factors extracted using the quadratic
Kalman filter, stay positive during the entire in sample period.
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Table 3: Parameter estimates for all of the models, with standard deviations shown
inside parentheses.

(a)

QTSM QTSM-b

α -0.136 (0.0385) -0.1427 (0.0284)
Ψ2,1 -0.0374 (0.0119) -0.0292 (0.0033)
Ψ3,1 0.0925 (0.0374) 0.1109 (0.023)
Ψ3,2 0.688 (0.095) 0.657 (0.0657)
αs -0.0251 (0.0077) -0.0257 (0.0053)

Ψs,2,1 0.9211 (0.0264) 0.9222 (0.0176)
Al -10.4145 (3.0515) -9.5215 (1.8566)
Ac -5.8632 (0.9875) -5.599 (0.5906)
Cl 69.0115 (15.736) 62.7211 (9.4801)
Cc 66.096 (13.9173) 61.5657 (5.3523)

(b)

AFNS

αs -0.0048 (0.0015)
Ψs,2,1 0.8066 (0.0693)

Al -3.8138 (0.6858)
Ac -2.197 (0.3216)
Cl 331.9056 (77.1482)
Cc 275.1046 (64.1559)

4.4 In sample forecasts and the filtered time series

We start the analysis of the model fit to the data on the basis of the means of
errors and root mean squared errors, which are summarized in Table 4. All
of the models were able to achieve close fits with the means of errors staying
below one basis point. As expected, the estimates based on the general QTSM
specifications of the model having the lowest RMSEs for most of the observed
time series, with the statistic being mostly below 3 basis points. Based on these
statistics, the most general specification of the model achieved the best fit to
the data as expected. The AFNS specification of the model achieved the most
uneven fit to the data, but it was generally competitive with the more general
models. It should also be noted that the quasi maximum likelihood estimation
utilized the forecasting errors, and therefore in the estimation we essentially
optimized the accuracy of the forecasts instead of the fit of the model on a given
date considered in this paragraph.

The differences in accuracy between the in-sample forecasts of the different
models are small, with RMSE statistics in Table 5 favouring the parsimonious
multiple curve AFNS model for most of the time series. The difference between
the highest and the lowest RMSE is less than one basis point for each of the
observed time series. The results suggests that the AFNS specification is suffi-
ciently flexible when compared to the more general quadratic specifications, and
it can be preferable in practical applications as it is more parsimonious, easier
to estimate and offers factor structure with clear interpretation. Further research
with a larger dataset that allows out-of-sample testing is, however, needed to
verify this conclusion. The forecasts alongside the observations are shown in
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Table 4: Mean and root mean squared errors of the model fit to the observed yields
and proxies based on the updated estimates of the factors obtained from the
quadratic Kalman filter as defined in Appendic B. In each row the lowest
RMSE value and the mean closest to zero are bolded.

QTSM QTSM-block AFNS
mean RMSE mean RMSE mean RMSE

1m OIS 0.0023 0.0310 0.0010 0.0313 0.0002 0.0459
3m OIS 0.0022 0.0194 0.0042 0.0199 0.0006 0.0193
6m OIS -0.0021 0.0221 -0.0016 0.0226 -0.0019 0.0266
9m OIS -0.0044 0.0208 -0.0049 0.0218 -0.0054 0.0325

12m OIS -0.0014 0.0206 -0.0020 0.0214 -0.0062 0.0336
24m OIS 0.0061 0.0322 0.0085 0.0334 -0.0017 0.0336
36m OIS 0.0038 0.0273 0.0040 0.0284 0.0070 0.0393
48m OIS -0.0014 0.0220 -0.0059 0.0238 0.0042 0.0262
60m OIS 0.0049 0.0306 0.0085 0.0323 -0.0029 0.0418

1m EURIBOR 0.0001 0.0192 0.0004 0.0198 0.0030 0.0256
3m EURIBOR 0.0051 0.0266 0.0063 0.0270 -0.0035 0.0222
6m EURIBOR 0.0061 0.0210 0.0061 0.0212 0.0104 0.0235
9m EURIBOR -0.0070 0.0160 -0.0075 0.0168 0.0012 0.0182

12m EURIBOR 0.0080 0.0360 0.0081 0.0363 -0.0028 0.0361
pl 0.0019 0.0153 0.0018 0.0153 0.0008 0.0153
pc -0.0005 0.0242 -0.0006 0.0251 0.0011 0.0177

the figures of Appendix C.
It should be noted that even though the forecasting errors are generally small,

they exhibit autocorrelations which are significant in the case of the EURIBORs
and the shortest maturity OIS rates. This observation is likely to be explained by
the nature of the data or the assumptions underlying the models. The autocorre-
lations might be explained by a missing explanatory variable, which has only a
minor effect overall level of the interest rates. It is also possible that the model
parameters are not constant over the entire observation period, which covers
the Great Recession and the European debt crisis. It is however questionable,
whether implementing a regime switching model would be worth the additional
complexity considering the good explanatory power of our relative simple mod-
els. One should also note the differences between the short term dynamics of
the relatively volatile OIS rates, which are based on actual transactions, and the
stable EURIBOR rates.

The quadratic Kalman filter provides estimates of the latent factors, which
allows us to calculate the model implied spot rates rt and spreads st shown in
Figure 3. The estimated spot rates of all three models have similar dynamics
and reflect the events observable in the movements of the OIS rates such as the
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Table 5: Mean and root mean squared errors of the model implied forecasts obtained
from the quadratic Kalman filter for the observed yields and proxies. In each
row the lowest RMSE value and the mean closest to zero are bolded. The
Kalman filter forecasting equations are shown in Appendix B.

QTSM QTSM-block AFNS
mean RMSE mean RMSE mean RMSE

1m OIS 0.0032 0.0567 0.0028 0.0564 -0.0023 0.0632
3m OIS 0.0030 0.0508 0.0059 0.0510 -0.0016 0.0457
6m OIS -0.0017 0.0555 -0.0002 0.0560 -0.0037 0.0528
9m OIS -0.0043 0.0585 -0.0038 0.0593 -0.0068 0.0603

12m OIS -0.0018 0.0630 -0.0013 0.0639 -0.0073 0.0650
24m OIS 0.0043 0.0856 0.0077 0.0860 -0.0017 0.0811
36m OIS 0.0009 0.0889 0.0022 0.0890 0.0077 0.0892
48m OIS -0.0047 0.0866 -0.0081 0.0872 0.0054 0.0843
60m OIS 0.0016 0.0905 0.0061 0.0918 -0.0014 0.0927

1m EURIBOR 0.0032 0.0442 0.0039 0.0448 0.0024 0.0442
3m EURIBOR 0.0094 0.0407 0.0113 0.0417 -0.0023 0.0323
6m EURIBOR 0.0104 0.0412 0.0112 0.0420 0.0124 0.0376
9m EURIBOR -0.0032 0.0357 -0.0028 0.0370 0.0033 0.0341

12m EURIBOR 0.0111 0.0476 0.0122 0.0492 -0.0008 0.0443
pl 0.0217 0.1731 0.0206 0.1729 -0.0010 0.1723
pc -0.0017 0.1058 -0.0018 0.1061 0.0006 0.1027

drop in 2009, when central central bank policy caused interest rates in general to
fall. The spot spreads implied by the different models also show similarities, but
there is an interesting difference in 2014, when the spot spreads implied by the
AFNS specification are rising coinciding with a similar change in the credit risk
proxy, whereas those implied by the full quadratic models vary near the same
level they have exhibited since the middle of 2012.

The differences in the levels of the spot rates and spreads explained by the
differences in the model specification and parameter estimates as mentioned
earlier in Section 4.3. In particular, the constant terms in the yield spreads ỹt(τ)−
yt(τ) implied by the AFNS and the QTSM models are different, which translates
to a difference in the level of the filtered factors.

Estimates of the first three factors in the AFNS model are show in Figure 4.
The level factor captures the overall fall in interest rate levels that characterizes
the observation period, with temporary upward spikes in 2011 and 2013. The
slope factor behaves essentially as a mirror image of the level factor. The fact
that the absolute values of both factors are similar reflects the flattening of the
interest rate curve as the interest rates fall close to zero.
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Figure 3: In-sample estimates of the model implied spot rates rt and spreads st calcu-
lated on the basis of updated factor estimates obtained from the quadratic
Kalman filter, as described in Appendix B.
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5 CONCLUSION

We introduce a parsimonious quadratic multiple curve term structure model
where the spreads between the spot rates driving IBORs and OIS rates are
quadratic functions of risk factors. As a special case of the class of models
we derive a multiple curve extension to the arbitrage free Nelson-Siegel model
of Christensen et al. (2011). The proposed models are tractable and can be
parametrized in such a way that yields or spreads have an arbitrary lower bound.

We estimate the pameters of the models using quasi maximum likelihood es-
timation via the quadratic Kalman filter of Monfort et al. (2015). The results
show that the models are able to obtain close fits to European interest data dur-
ing the tumultuous years that followed the financial crisis of 2007-2008, but
more data is required in order to evaluate the out of sample performance of the
proposed models. We identify the effects of liquidity and credit risk via prox-
ies and find that they affect the factors driving the risk free rate. However, the
parameters in the matrix KQ defining the dependence between the factors affect-
ing the spreads and the spot rates under the risk neutral pricing measure Q were
extremely small, which suggests that the dependence is important mainly un-
der the physical probability measure. Restricting the factors driving the spreads
to be independent of the factors driving the risk free rates can be used to de-
rive tractable and parsimonious pricing formulas such as our extension to the
arbitrage free Nelson-Siegel model.
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APPENDIX A: CONDITIONAL DISCRETE TIME
DYNAMICS OF THE RISK FACTORS

The dynamics of the risk factors under the probability measure P follow the
n-dimensional Ornstein-Uhlenbeck process

dXt = (µP + KPXt)dt +ΣdWP
t .

When KP is diagonalizable, its eigen decomposition is

KP = UΛU−1,

where Λ = diag(λ1, . . . ,λn). Using this representation, the well known condi-
tional expectation and variance of Xt (see e.g. Ahn et al., 2002) are given by the
equations

EP [Xt+τ|Xt] = UΛ−1
(
eτΛ− I

)
U−1µP + UeτΛU−1Xt

Var(Xt+τ|Xt) = U

vi j
(
eτ(λi+λ j)−1

)
λi +λ j


i j

U′,

where vi j are elements of the matrix

V = U−1ΣΣ′U′−1.

The conditional distribution of the risk factors is defined as

Xt+τ|Xt ∼ N
(
EP [Xt+τ|Xt] ,Var(Xt+τ|Xt)

)
.

APPENDIX B: QUADRATIC KALMAN FILTER

The QKF is based on converting the quadratic model into an affine one. Follow-
ing the notation of Monfort et al. (2015), we write the physical dynamics of the
state space model as

Xt = µ+ΦXt−1 +Ωεt, εt ∼ IIN(0, I)

Yt = A + BXt +

m∑
k=1

ekX′tC
(i)Xt + Dηt, ηt ∼ IIN(0, I),

where Yt is an m-vector, ΩΩ′ = Σ, εt and νt are assumed to be independent of
each other, and ek is a standard basis vector, i.e. a column vector whose ith
element is equal to one and all other elements are equal to zeroes. The latent
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factors Xt are stacked into the augmented state vector Zt = (X′t ,Vec(XtX′t ))
′. Un-

der the physical probability measure the dynamics of the observations Yt and
latent factors Zt can be written as

Zt = µ̃+Φ̃Zt−1 +Σ̃
1/2
t−1εt, εt ∼ IIN(0, I)

Yt = A + B̃Zt + Dηt, ηt ∼ IIN(0, I)

where

µ̃ =

(
µ

Vec(µµ′+Σ
)
)

Φ̃ =

(
Φ 0

µ⊗Φ+Φ⊗µ Φ⊗Φ

)
,

Σ̃t−1 ≡ Σ̃(Zt−1) =

(
Σ ΣΓt−1

Γ′t−1Σ Γt−1ΣΓ′t−1 + (I +Λn)(Σ⊗Σ),

)

B̃ =

 B

Vec
[
C(1)

]′
...

Vec
[
C(m)

]′


and Γt−1 = I ⊗ (µ+ ΦXt−1) + (µ+ ΦXt−1)⊗ I, and Λn is an n2 × n2 matrix parti-
tioned into n×n blocks such that the block (i, j) is e je′i .

The filter is initialized using the values

Z0|0 = µ̃u and P0|0 = Σ̃u,

where µ̃u and Σ̃u are the unconditional mean and variance of Zt. The prediction
and measurement equations are

Zt|t−1 = µ̃+Φ̃Zt−1|t−1

Pt|t−1 = Φ̃Pt−1|t−1Φ̃′+Σ̃t−1

Yt|t−1 = Ã + B̃Zt|t−1

Mt|t−1 = B̃Pt|t−1B̃′+ DD′

and the Kalman gain is given by

Kt = Pt|t−1B̃′M−1
t|t−1.

The updated states are given by the equations

Zt|t = Zt|t−1 + Kt(Yt−Yt|t−1)

Pt|t = Pt|t−1−KtMt|t−1K′t .
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APPENDIX C: SUPPLEMENTARY FIGURES AND
TABLES
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Figure 5: In-sample forecasts of the EURIBOR implied bond yields.
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Figure 6: In-sample forecasts of the OIS implied bond yields.
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Figure 7: In-sample forecasts of the liquidity and credit risk proxies
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Table 6: Autocorrelations of the forecast errors.

QTSM QTSM-block AFNS
ρ(1) ρ(6) ρ(1) ρ(6) ρ(1) ρ(6)

1m OIS 0.5401 -0.1573 0.5365 -0.1585 0.5950 0.0713
3m OIS 0.5223 0.0953 0.5231 0.1005 0.3486 -0.0146
6m OIS 0.4047 0.1574 0.4179 0.1737 0.2794 0.1277
9m OIS 0.2642 0.1055 0.2875 0.1266 0.2455 0.1686

12m OIS 0.2112 0.0987 0.2342 0.1139 0.1961 0.1546
24m OIS 0.2169 0.1040 0.2240 0.1030 0.1142 0.0231
36m OIS 0.1643 0.0950 0.1704 0.0959 0.1812 0.1134
48m OIS 0.1158 0.0388 0.1272 0.0494 0.1290 0.0220
60m OIS 0.1727 0.0817 0.1973 0.1090 0.2805 0.1218

1m EURIBOR 0.7507 0.2866 0.7539 0.2977 0.7572 0.2528
3m EURIBOR 0.8200 0.5126 0.8245 0.5337 0.7310 0.3504
6m EURIBOR 0.7630 0.4337 0.7657 0.4406 0.7248 0.4245
9m EURIBOR 0.6410 0.3000 0.6600 0.3306 0.6283 0.4152

12m EURIBOR 0.7238 0.4444 0.7354 0.4631 0.7114 0.5576
pl -0.0890 0.0696 -0.0891 0.0693 -0.0999 0.0723
pc 0.3687 0.0929 0.3740 0.0944 0.2728 0.0760
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