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Abstract

Independent component analysis is a classical multivariate tool used for esti-
mating independent sources among collections of mixed signals. However, mod-
ern forms of data are typically too complex for the basic theory to adequately
handle. In this thesis extensions of independent component analysis to three
cases of non-standard data structures are developed: noisy multivariate data,
tensor-valued data and multivariate functional data.

In each case we define the corresponding independent component model
along with the related assumptions and implications. The proposed estimators
are mostly based on the use of kurtosis and its analogues for the considered
structures, resulting into functionals of rather unified form, regardless of the
type of the data. We prove the Fisher consistencies of the estimators and par-
ticular weight is given to their limiting distributions, using which comparisons
between the methods are also made.
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Tiivistelma

Riippumattomien komponenttien analyysi on moniulotteisen tilastotieteen tyo-
kalu, jota kaytetdan estimoimaan riippumattomia lahdesignaaleja sekoitettu-
jen signaalien joukosta. Modernit havaintoaineistot ovat kuitenkin tyypillisesti
rakenteeltaan lilan monimutkaisia, jotta niitd voitaisiin lahestya alan perin-
teisilld menetelmilla. Téassa vaitoskirjassa esitelladn laajennukset riippumat-
tomien komponenttien analyysin teoriasta kolmelle epéastandardille aineiston
muodolle: kohinaiselle moniulotteiselle datalle, tensoriarvoiselle datalle ja mo-
niulotteiselle funktionaaliselle datalle.

Kaikissa tapauksissa maéaritelladn vastaava riippumattomien komponent-
tien malli oletuksineen ja seurauksineen. Esitellyt estimaattorit pohjautuvat
enimmakseen huipukkuuden ja sen laajennuksien kayttoon ja saatavat funk-
tionaalit ovat analyyttisesti varsin yhtendisen muotoisia riippumatta aineiston
tyypista. Kaikille estimaattoreille naytetadan niiden Fisher-konsistenttisuus ja
painotettuna on erityisesti estimaattoreiden rajajakaumat, jotka mahdollistavat
teoreettiset vertailut eri menetelmien valilla.
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Part 1

Summary






1 Introduction

The continuous technological advancement has brought with it an ever-increasing
output of data and the researchers today are faced with data sets massive in
size and complex in structure.

The increased size manifests in huge numbers of observations and variables
and to draw any conclusions from the data a reliable way of separating infor-
mation from the noise is necessary. An attractive option is provided by inde-
pendent component analysis (ICA) which aims to linearly separate the data
into mutually independent source components. To this end ICA has two ap-
pealing properties: first, its linearity often translates into low computational
complexity, and secondly, it generally yields highly interpretable components.

Similarly, the increasing complexity of data has lead into datasets exhibiting
more intricate structures than the basic multivariate methodology taught in
universities can account for. While generally there is nothing stopping one
from resorting to the classical methods, such behavior tends to ignore the wealth
of information available in the special structure. The aim of this thesis is to
extend the main ideas behind the classical independent component analysis
into the realms of these non-standard data structures. More specifically, we
formulate methods for dealing with noisy multivariate data, tensor-valued data
and multivariate functional data, all common forms of data encountered in
present-day applications, and explore their theoretical properties.

The proposed methods are built by naturally extending classical multivariate
methodology to consider the special characteristics of the different structures.
The resulting procedures prove powerful tools for the respective forms of data
and at the same time still retain the essential properties of the classical methods
used as their building blocks. In discussing the methods, special attention is
paid to two classical statistical concepts, consistency (showing that the method
works) and limiting distributions (showing how well the method works). These
two in conjunction with the corresponding algorithms and equivariance proper-
ties provide for a statistically comprehensive treatise of the subject.

The summary part is divided into the introduction and four additional sec-
tions. Section 2 briefly introduces the notational conventions we adhere to for
the remainder of the summary. Some technical issues regarding measure the-
ory and the existence of various probabilistic constructs are also recalled. The
next three parts discuss the theory and literature of independent component
analysis in the cases of vector-valued, tensor-valued and functional data, re-
spectively. The three treatises have been tried to be kept as unified in content
and organization as possible, and for the most parts of Sections 3 and 4 this
has been successful (in the author’s opinion). However, when we move from
finite-dimensional spaces to the infinite-dimensional some fundamental statis-
tical concepts no longer exist in the form we are used to, and consequently in
Section 5 discussing functional data some compromises have been made. But
the key elements of the theory and most of the familiar intuition gained in
spaces of finite dimension still hold.



Throughout the summary part of the thesis we will refrain from giving data
analysis examples as numerous ones can be found both in the thesis papers and
in Virta et al. (2016¢); Virta and Nordhausen (2017a,b). Implementations of the
main methods of Sections 3 and 4 can be found in the R-packages Nordhausen
et al. (2017b); Virta et al. (2016a).



2 Notation and some technicalities

Throughout the thesis we implicitly assume the existence of some suitable, rich
enough probability space (€2, F,P) where all our random constructs of interest
are defined as measurable random variables. As the basic theory of random
variables taking values in RP can be found in any measure-theoretic treatise
of probability, see e.g. Billingsley (2008), this construction is given no more
thought in the first two parts of the thesis discussing respectively random vec-
tors and random tensors (we use the word “tensor” instead of the mathemat-
ically more sound “array” as it is the standard practice). Even though the
latter case is in practice quite different from the former, measure-wise it can be
reduced to the former by considering random tensors as random vectors with
the added ordering of the elements into a lattice form. However, in the third
part discussing functional data we will take some time to briefly go through
concepts such as random functions and measurability in general Hilbert spaces.
This is to ensure that a reader unfamiliar with these concepts can still follow
the exposition of the final part of the thesis.

Our notation is mainly standard: The Euclidean spaces are denoted by
R, RP, RP1XP2_  RP1>XXPr_ the convex cones of p X p positive semidefinite
and positive-definite matrices by RE*? and REP, and the unit sphere in R?
by SP~!. Orthonormal sets of vectors also play a major role throughout the
thesis and by UP** we denote the set of all p x k matrices with orthonormal
columns, k& < p. Univariate random variables will be denoted by lower-case
letters, z,y,2 € R, random vectors by bold lower-case, x,y,z € RP, random
matrices by bold upper-case, X,Y,Z € RP1*P2 and random tensors by the Euler
script, X, Y,2Z € RP1**Pr_ The components of a random vector/matrix/tensor
are denoted in lower-case with suitable indexing such as z;,;, for the elements
of the random matrix X. We do not distinguish between a random variable and
its realization.

The distribution of a random variable z is denoted by F, and similarly for
a random vector x, a random matrix X, etc. As the aim of the thesis is not
to do robust statistics (indeed, quite the opposite as most of the methods to
come require fourth moments to operate) we implicitly assume the existence of
all required moments and related quantities for all considered distributions F,,
touching the issues related to robustness only briefly in passing. Let then D be
some suitable, rich enough collection of distributions. Many of our constructs
and estimators are best defined as statistical functionals S : D — S from D
to some appropriate space, often Rﬁ_ﬁ_p and throughout the thesis we abuse
the notation by writing S(z) instead of the more proper S(F,) when z ~ F.
Whenever we discuss the finite sample aspects of an estimator S, we use the
notation £, to denote the empirical distribution of the sample and consequently
the finite sample estimate of S can be written as S = S(F,).

Some important vectors and matrices we repeatedly use include the standard
basis vectors e; € R?, j € {1,...,p} and the matrices EY = eie;r with a single
one as the element (7, j) and other elements zero. The set of all p x p diagonal



matrices with positive diagonal elements is denoted by DP, the set of all p x p
permutation matrices by PP and the set of all p x p diagonal matrices with
diagonal elements equal to £1 by JP. These three classes of matrices can be
used respectively to scale, reorder and change the signs of the components of
a random vector x € RP. They also naturally combine into the class CP of all
matrices representable as DPJ for some D € DP, P € PP and J € JP. The
class CP consists then of all p X p matrices with a single non-zero element on
each row and column.

When we move to discuss tensor-valued random variables the following no-
tions prove useful. The vectorization operator vec : RP1*"*Pr — RP1'Pr takes
the tensor X and stacks its elements into a long vector vec(X) of length p; - - - p,.
in such a way that the first index goes through its cycle the fastest and the last
index the slowest. For example, the vectorization of a matrix is obtained by
stacking its columns from left to right into a vector. The symbol ® denotes the
Kronecker product A ® B between two matrices A € RP1*P2 and B € R%*92,
defined as the p1g1 X page block matrix with the (k,1) block equal to ay;B, for
kEe{l,....,p1}, 1 € {1,...,p2}. As a binary operation the Kronecker prod-
uct has numerous useful properties such as associativity and distributivity, see
Van Loan (2000). If further A,X and B are matrices of conforming sizes we
have the identity vec(AXB") = (B ® A)vec(X), providing a useful connection
between the two previous concepts. Similar identity holds also for the vector-
ization of a linearly transformed tensor, see Section 4.

For both vectors and matrices the notation || - || denotes the standard Eu-
clidean (Frobenius) norm unless otherwise stated. For a square matrix A €
RP*P the diagonal p X p matrix with the same diagonal elements as A is de-
noted by diag(A) and the p x p matrix obtained by replacing the diagonal of A
with zeroes by off(A) = A —diag(A). For a p? x p? matrix ¥ we also introduce
the “partial trace” notation tr°(¥) to refer to the trace of the matrix obtained
by replacing the k+ (k—1)p, k € {1,...,p}, diagonal elements of ¥ by zeroes.
If ¥ is a covariance matrix of a vectorized random matrix then tr°(®) is the
sum of the variances of its off-diagonal elements.

Throughout the thesis we are particularly concerned with asymptotic results
and for that let {x,}>2; be an infinite sequence of random variables. We say
that the sequence x,, belongs to the class o,(ay,) for some deterministic sequence
a, if the sequence z,/a, converges in probability to 0. The class Op(a,) in
turn contains all sequences x,, for which z,,/a,, is bounded in probability, i.e.,
for every e > 0 there exists M, such that P(|z,/a,| > M.) < € for all n. As is
standard, we denote the previous two by the abuse of notation, =, = o,(a,) and
Zn, = Op(ay,). Our main tools for showing inclusions to the previous two classes
are the law of large numbers and the central limit theorem. Namely, if z,, —, «
then x, —z = 0,(1) and if \/n(z, —p) ~» N(0,7) then /n(z, —pu) = Opy(1). The
algebra of convergent and bounded sequences is particularly straightforward:
we have op(1) + 0p(1) = 0p(1), 0p(1) + Op(1) = Op(1), 0p(1)0p(1) = 0p(1) and
0p(1)Op(1) = 0,(1). Despite their seeming simplicity the previous four rules are
sufficient to give us almost all of our asymptotical results. Detailed discussions
of the previous concepts can be found in, e.g., Serfling (2009); Van der Vaart
(1998).



3 Independent component analysis for
vector-valued data

3.1 Location-scatter model and its extensions

Location-scatter model and multivariate normal distribution

Before delving into our main theme, independent component analysis (ICA), we
first briefly consider the location-scatter model, see e.g. Oja (2010), discussing
some classical methodology associated with it and also deriving our future model
of choice in the process. Now, let x € R? be a random vector coming from the
location-scatter model,

x = p+ Qz, (3.1)

where the location vector p € R?P and the invertible mixing matrix 2 € RP*P
are the model parameters and z € R? is an unobserved random vector. Clearly,
the parameters are not identifiable without further assumptions on z and the
very least we can do is to fix the location g and the scales of the columns of €2.
Assuming finite second moments we achieve this by requiring

E(z)=0, and Cov(z)=E (zzT) =1, (3.2)

As a consequence, €2 is now identifiable up to post-multiplication by an orthog-
onal matrix as we can write

Qz = (QU) (UTZ) - Q7 (3.3)

where z* still satisfies the moment conditions in (3.2). However, despite this
unidentifiability the first two moments of x are still fully identifiable, E (x) =
pu, Cov(x) = QQ". If moment-based assumptions are to be avoided, some
robust alternatives for E and Cov can be used to fix the parameters instead, see
Maronna and Yohai (1976).

Imposing additional assumptions on z in model (3.1), we obtain a variety of
classical multivariate models. The traditional choice is to assume multivariate
normality, z ~ N,(0,,1,), yielding a general multivariate normal (Gaussian)
distribution for x ~ N, (u, X), with the density function

) = g o {5 0w = )

and the covariance matrix ¥ = QQ". Two key properties of a random vector
z ~ N,(0,,1I,) having the standard multivariate normal distribution are:

i) Spherical symmetry: z ~ Uz for all U € UYP*P.

ii) Independence: the components of z are mutually independent.

7
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Figure 8.1: From left to right, random samples from the multivariate normal distri-
bution, multivariate t-distribution with 5 degrees of freedom and an independent com-
ponent model with exponential and logistic components. Fach distribution has been
standardized to have E(z) = 0 and Cov(z) = I,.

Both of the previous properties provide a starting point for generalizing the
normal model N,(u,X). If we decide to hold onto the spherical symmetry of
the normal model we obtain the class of elliptical distributions and if we in-
stead require that the components of z be kept independent we arrive at the
independent component model, the main topic of this thesis. The multivariate
normal distribution is the unique family of distributions lying in the intersection
of these two models, see Kollo and von Rosen (2006). Figure 3.1 shows bivari-
ate scatter plots of random samples from distributions coming from the three
models, showcasing how different their forms can be. The next two sections
discuss respectively the elliptical and independent component models.

Elliptical model and principal component analysis

Before we formally define the class of elliptical distributions we first consider its
“standardized” counterpart, the class of spherical distributions. See Fang et al.
(1990); Kollo and von Rosen (2006); Paindaveine (2012) for detailed treatises
of both models. We say that a random vector z € RP has spherical distribution
if it satisfies the first property of the standard multivariate normal distribution
highlighted previously,

z ~ Uz, forall UecUyP*r.

The distribution of a spherical random vector remains unchanged under rota-
tions and reflections implying in particular that its equidensity contours are
spheres centered at the origin. Alternative characterizations for spherical dis-
tributions based on density functions and characteristic functions exist but for
our purposes the above definition is sufficient. All odd moments of a spherically
distributed z are zero and its second moments satisfy E(zz') = pI, for some
constant p > 0, assuming the moments exist in the first place (Anderson, 1992).

8



Assume now that z € RP has a spherical distribution and let
x = pu+ Qz,

where p and © are as in (3.1) and again the latter is identifiable only up to
post-multiplication by an orthogonal matrix. Now x obeys an elliptical dis-
tribution with the parameters g and ¥ = QQ' and, assuming the required
moments exist, has the mean and covariance, E (x) = u, Cov (x) = pX. The
reason we stress the existence of moments again is that the most common use
of the elliptical model is to craft distributions sharing some key properties of
the normal distribution while at the same time having heavier tails and to use
the resulting distributions to test the efficiencies of various estimators. That
having been said, these concepts are largely irrelevant to the main body of our
work and the interested reader is directed to Kariya and Sinha (2014) for more
information.

A method closely related to the elliptical family is the classical principal
component analysis (PCA), see Pearson (1901); Hotelling (1933); Jolliffe (2002)
and the references therein. To provide a foundation for a future comparison
between PCA and ICA we next briefly describe PCA in the context of elliptical
distributions. Let x € RP have a centered elliptical distribution, x = Qz, where
z € R? has a spherical distribution. Writing = UDV' for the singular value
decomposition of the mixing matrix, we can further assume that V' = I,, asthe
transformation by the orthogonal V' leaves the distribution of z unchanged.
Consequently, the covariance matrix of x has the form Cov (x) = pUD?*U"
and projecting the observations on the eigenvectors U we obtain the principal
component scores

U'x=U"UDz = Dz

The covariance matrix of the principal component scores is pD?, implying that
the scores are uncorrelated. Of course, this aspect of the result is not a con-
sequence of the elliptical model and some simple linear algebra shows that the
above procedure can be used to obtain uncorrelated components regardless of
the distribution of the random vector x. A standard practitioner of PCA would
next discard a suitable amount of components with the lowest variances and
carry out any further analyses with the smaller set of variables. However, we
formulated PCA in the context of elliptical distributions for the precise reason
of showing that PCA can be used to “solve” the elliptical model (although the
original components get lost in the absorbing of VT). So although generally
ICA is seen as superior to PCA (it finds independent components while PCA
finds only uncorrelated), we may also view them in parallel (both solve one
generalization of the multivariate normal model). As uncorrelatedness implies
independence for Gaussian variables, under the multivariate normal model PCA
actually recovers independent components, further making PCA and ICA, the
signature methods of the elliptical and independent component model, equiva-
lent in the intersection of the two models.

The previous derivation on elliptical distributions and PCA actually hold
not just for the covariance matrix but for any orthogonally equivariant scatter
matrix. For example, see Marden (1999); Visuri et al. (2000) for the use of
spatial sign covariance matrix in extracting the principal components. A scatter

9



matrix is any functional S : D — Rﬁ_Xp which is affine equivariant in the sense
that

S(Ax) = AS(x)A ",

for all invertible A € RP*P. For orthogonally equivariant scatter matrices we
naturally require that the above holds merely for all orthogonal A € UP*P. See
Diimbgen et al. (2015) for more information on scatter matrices.

Independent component model

The second extension of the multivariate normal model mimics N, (0,,1L,) by
equipping the location-scatter model (3.1) with the additional assumption that
the components of z are mutually independent. This move from uncorrelated-
ness to independence turns out to be strong enough to almost guarantee the
identifiability of the model parameters.

Too see how the assumption of independence affects the confounding in (3.3)
we invoke the classical Skitovich-Darmois theorem (Ghurye and Olkin, 1962): if
we can form independent non-trivial (consisting of more than one summand) lin-
ear combinations from a collection of random variables that are themselves mu-
tually independent, then all the random variables must be normally distributed.
This means that if at most one component of z has normal distribution then
the confounding matrix U in (3.3) can have only a single non-zero element in
each row (to prevent the formation of non-trivial linear combinations). Thus
U = JP for some J € J? and P € PP and we can identify the independent
components up to order and marginal signs. With this we are now ready to
formulate the independent component model.

Definition 1. We say that the random vector x € RP obeys the independent
component (IC) model if

T=p+Qz, (3.4)

where p € RP and the invertible & € RP*P are unknown parameters and the
latent random vector z € RP satisfies Assumptions V1, V2 and V3 below.

Assumption V1. The components of z are mutually independent,
Assumption V2. The vector z is standardized, E (z) = 0, and Cov (z) = I,,.
Assumption V3. At most one of the components of z is normally distributed.

Assumption V3 is in a sense backward to the classical multivariate statistics
where all methods generally assume full multivariate normality. Also, the as-
sumption is in practice not as strict as it sounds; if z happens to contain more
than one normal component we simply lose our ability to consistently estimate
the corresponding columns of €2, but we can still estimate the remaining columns
(and independent components). This approach was taken in the context of ICA
in Virta et al. (2016b) and in a wider model in Blanchard et al. (2005) where
also dependence between the non-Gaussian components was allowed. In this
introduction we however restrict for simplicity to the fully identifiable case, the
more general extensions following easily. Finally, Assumptions V2 are V3 are
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more formally identifiability constraints but we will nevertheless continue to
refer to them as assumptions.

ICA has a long history and was before its modern formulation as a statistical
problem considered mainly as a signal separation problem. Two early contri-
butions to ICA include the Fisher consistent fourth cumulant-based methods,
fourth order blind identification (FOBI) (Cardoso, 1989) and joint approzimate
diagonalization of eigen-matrices (JADE) (Cardoso and Souloumiac, 1993),
which will later serve as the primary examples for our extensions of ICA to
non-standard data structures. An early version of the IC model was also con-
sidered already in Cardoso (1989) for stationary time series. Later approaches
based on the same idea of decomposing cumulant matrices or tensors are found,
for example, in Moreau (2001); Kollo (2008); Comon et al. (2015).

Comon (1994) defined contrasts as functionals of random vectors that are
maximized when the vector has independent components and showed that all
marginal cumulants can be used as contrasts to solve the IC problem. The same
ideas were later used in conjunction with projection pursuit (Friedman and
Tukey, 1974; Huber, 1985) to develop the FastICA-estimator (Hyvérinen, 1999)
of which several variants have been proposed over the years, see Hyvarinen and
Koster (2006); Koldovsky et al. (2006); Nordhausen et al. (2011a); Miettinen
et al. (2014a); Virta et al. (2016b); Miettinen et al. (2017).

While the diagonalization of cumulant matrices and tensors along with pro-
jection pursuit constitute the two main approaches to ICA in the literature,
a diverse array of other perspectives have also been considered: Hastie and
Tibshirani (2003); Chen and Bickel (2006); Samworth and Yuan (2012) used
non-parametric and semi-parametric marginal density estimation to solve the
problem; Ilmonen and Paindaveine (2011); Hallin and Mehta (2015) developed
efficient estimators based on marginal ranks and signed ranks; Oja et al. (2006);
Taskinen et al. (2007); Nordhausen et al. (2008) based their estimators on pairs
of scatter matrices with the independence property; Karvanen et al. (2002);
Karvanen and Koivunen (2002) chose the latent score functions from a set of
distributions using the method of moments and Matteson and Tsay (2017) min-
imize a measure of dependency based on the distance covariance.

A different problem is encountered if we allow an arbitrary number of Gaus-
sian components in the IC model and do not fix their number a priori. Now
solving the independent component problem amounts to estimating both the
signal components and also their true number. Despite the practical implica-
tions of this problem inferential treatments of it are rather scarce in the litera-
ture. For hypothesis testing of the true dimension using limiting distributions
and bootstrapping in the IC model and a related wider model, see Nordhausen
et al. (2016, 2017a). A closely related model is the non-Gaussian component
analysis (NGCA) model where arbitrary dependencies between the signal com-
ponents are allowed, see Blanchard et al. (2005); Kawanabe (2005), but where
the true dimension of the signal space is usually assumed to be known.

ICA can be seen as a special case of the classical blind source separation
(BSS) problem where no assumption on the independence of the observations
needs to be made. The resulting body of methods covers, for example, time
series of varying dimensions (Tong et al., 1990; Belouchrani et al., 1997; Miet-
tinen et al., 2014b; Matilainen et al., 2015; Virta and Nordhausen, 2017a) and
spatial data (Nordhausen et al., 2015). While allowing dependent data would
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open up the door for a wide range of modern applications, in this thesis we still
stick strictly to the classical case of independent and identically distributed ob-
servations (and in any case, the methods we discuss have a long history of being
successfully applied to data mildly violating some of the key assumptions).

3.2 IC functionals

We next formally define our main tool for estimating the parameters of the inde-
pendent component model in Definition 1 in the form of statistical functionals.
To “solve” the model is equivalent to estimating both g and €. The first task
is trivial as Assumption V2 guarantees that E (x) = p and we may without
loss of generality assume throughout the following that g = 0,. Instead of €
it is customary to estimate its inverse, which is the purpose of IC functionals
defined next.

Definition 2. The functional T' : D — RP*P is an independent component (IC)
functional if we have

i) T'(2) = I, for all standardized z € RP with independent components and
i) T(Ax) = T(x) A" for all z € R? and all invertible A € RP*P,

where two square matrices A, B € RP*P | satisfy A = B if and only if A = JPB
for some J € JP and P € PP.

To be considered an IC functional a statistical functional I' must thus
satisfy two conditions. The first condition requires that in the case of triv-
ial mixing, @ = I, the transformation by I'(x) = I'(z) does not mix up
the already-found independent components. The second condition is a form
of affine equivariance and its implications can be seen by observing that for
any change of coordinate system, x — Ax, the transformation by I' satis-
fies I'(x)x +— T'(Ax)Ax = I'(x)x. That is, the resulting components are not
dependent on the used coordinate system making IC functionals share that
property with invariant coordinate system (ICS) functionals, see Tyler et al.
(2009). Notice also that since the second condition of Definition 2 is required
to hold for all possible random variables x, it holds particularly for all realized
samples X1,...,X,. To summarize, 1) is more a general, desirable statistical
property of an estimator whereas i) is something specific to the current model,
a “stopping condition” which halts the estimation procedure when something
with independent components is found.

Combining the two conditions shows that for any x coming from an IC
model we have T'(x) = 27!, meaning that T is Fisher consistent to the inverse
of the mixing matrix €2 up to the order and signs of its rows and can be used
to solve the IC model via the linear transformation x — I'(x)x. The need for
the equivalence = instead of full equality in both of the previous conditions is
naturally a consequence of our identifiability constraints leaving both the signs
and the order of the components of z unfixed. However, as this has little bearing
on practice we later abuse the language by saying, e.g., that a solution is unique
when it is actually unique up to this equivalence class.

After we have later obtained a collection of candidate IC functionals a nat-
ural next question is which one should we use. All IC functionals by definition
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solve the IC problem and we need some further criteria to differentiate between
them. Various choices for such a measure include, e.g., robustness properties
of the estimators or their convergence rates. We choose, however, as our cri-
terion the limiting efficiencies of the functionals as the sample estimates of all
IC functionals we later encounter can be shown to be root-n consistent with
the limiting normal distributions, i.e. y/n{vec(I' — ')} ~ N,2(0, ®) for some
limiting covariance matrix ¥ € foz’ 2. The comparison between the IC func-
tionals can then be reduced to the comparison between their limiting covariance
matrices and numerous tools for computing the “size” of a square matrix exist,
such as trace, tr(-), determinant, det(-), or any matrix norm, || -||. Our pre-
ferred measure is closely related to the first of these but motivated in a slightly
different way, namely via a connection to a measure of finite sample accuracy
of an IC functional, the minimum distance index. But before we delve further
into these concepts we first explore two important implications of Definition 2
into the limiting efficiencies.

Using the second property from Definition 2 we have for any invertible matrix
A € RP*P that

Vilvee{T(Fax) — T(Fax)}] = vilvee{ D(F)A~" — T(F) A~}
— (AT @ L)Valvee{T(Ey) - D(F)},

showing that the limiting distribution of I'(Fa) is for all A reduced to that
of I‘(Fx). Consequently, whenever we derive the limiting distributions of the
sample estimates we may without loss of generality assume that the IC model
is equipped with the trivial mixing € = I,, simplifying the calculations greatly.
The second effect of Definition 2 on the limiting distributions is caused by the
presence of the equivalence = instead of an equality. Namely, as the order and
the signs of the rows of I are not fixed, an arbitrary sequence of estimators
I',, does not in general converge in probability to any fixed matrix. To obtain
the limiting result we thus have to choose our sequence of estimates carefully,
by implicitly changing the signs and reordering the rows of f‘n, to result into a
sequence which does converge in probability to I,. This fact is addressed in the
asymptotic results later on by explicitly saying that we can “choose a sequence
of estimates” with the desired properties.

The matrix T'(Fy)Q, where € is the true mixing matrix, is often called the
gain matrix and Definition 2 implies that it is invariant under transformations
x — Ax for any invertible A € RP*P. In the case of a perfect separation each
row of I'(Fx)€ must pick a single, unique element of z and a natural measure
of the success of an IC functional is thus the distance of the gain matrix from
the class of matrices CP.

Definition 3. Let x € RP come from an IC model with the mixing matriz €2
and let T' = T'(Fy) be an IC functional. The minimum distance (MD) index
related to T is

1 .
\/ﬁcl’g(gl’” cra — IP”F‘

The MD index was introduced in Ilmonen et al. (2010b) where it was shown
that 0 < D(T') < 1 with D(T") = 0 if and only if I'Q? € CP. The value zero thus
indicates a perfect identification of the independent components. Assuming

D(T) = D(T', Q) =
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identity mixing, £ = I,, and an IC functional with a limiting normal distribu-
tion, y/n{vec(T' —1,)} ~ N,2(0,¥), Ilmonen et al. (2010b) further showed that
the sample MD index D(T') satisfies

n(p = 1)D(L)? = nlloff ()[|F + 0p(1).

One consequence of the above result that is of particular interest to us is that
the transformed index n(p — 1)D(I")? converges to a limiting distribution with
the expected value tr°(¥), the sum of the limiting variances of the off-diagonal
elements of I'. Furthermore, the limiting variances of the diagonal elements of
T' do not depend on the choice of the IC functional but only on the distribution
of z (and the standardization method), see Section 3.3. Thus comparing the
partial traces of the limiting covariance matrices of different IC functionals
within the same IC model is equivalent to comparing their traces. Because
of these useful properties we base all our comparisons between different IC
functionals on the partial trace tr°(¥). A further advantage of condensing the
asymptotic accuracy into a single number is that in simulations we can estimate
this quantity as a mean of n(p—1)D(I")2 over several replications and the results
can be used in checking whether our computations are correct.

Several other performance measures for IC functionals are also based on
the gain matrix, see for example the Amari index (Amari et al., 1996), the
interference to signal ratio (ISR) (Ollila, 2010), the inter-channel interference
(ICI) (Douglas, 2007) and the review of different indices in Nordhausen et al.
(2011b). These however lack the useful limiting properties possessed by the MD
index.

3.3 Standardization

All the IC functionals discussed in this thesis use the same preprocessing step,
multivariate standardization, known also as whitening. Define the inverse square
root of a square matrix S € RPX? as any matrix G € RP*P satisfying GSG " = L.
If the matrix S is symmetric positive-definite and has the eigendecomposition
S = UDU, the set of all inverse square roots of S consists precisely of the ma-
trices VD™Y2UT where V € UP*P, see Ilmonen et al. (2012). If the diagonal
elements of D are distinct we have the unique symmetric choice uD '/?U’.
Now, given a zero-mean random vector x € RP, its standardized version is de-
fined as x4 = X(x)~/?x where 2(x)~/2 is a symmetric inverse square root
of ¥(x), the covariance matrix of x. We require, without loss of generality, the
symmetry as it makes some asymptotic calculations simpler later on. Naturally
E(Xst) = Ip.

The multivariate standardization acts particularly nicely under affine trans-
formations: for any invertible A € RP*P the map x — Ax causes the trans-
formation 2;1/2 — UX];l/QA_1 where U € UP*P is some orthogonal matrix
depending on both x and A (Ilmonen et al., 2012). We next investigate the
implications of standardization to the problem of estimating the independent
components.

A basic result in ICA says that if we can assume the existence of second
moments then under the IC model we have the identity

x5t = Uz, (3.5)
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for some U € UP*P see Cardoso and Souloumiac (1993). Consequently, all ICA
methods in the following will concentrate solely on estimating the unknown
orthogonal matrix U and all IC functionals we consider will accordingly be
of the form V(x,)X(x)~/2, where the rotation functional V taking values
in UP*P is defined only for standardized random vector. Thus choosing the
functional V is equivalent to choosing the estimation method. While limiting
our choice of IC functionals to a smaller class of functionals of a specific form
is somewhat restrictive, the members of this class are easier to construct and
rather well-behaved as is exemplified by the following two lemmas.

Lemma 1. Let the functional T be of the form T'(x) = V(zy)X(x)~ /2 with
Veu?P*P. Then T is an IC functional if and only if

i) V(zst) = I, for all z € RP with independent components and
i) V(Uzg) = V(zg)U' for all x € R? and all U € UP*P.

The proof of Lemma 1 is given in the Appendix and in order to show that
a functional T is an IC functional it is thus sufficient to show that the corre-
sponding rotation functional V satisfies the conditions of Lemma 1. The next
result shows that the standardization also fixes the asymptotic variances of the
diagonal elements of T', regardless of V. For its proof, see for example Virta
et al. (2016b).

Lemma 2. Let x € R? come from an IC model with Q = I, and let T'(x) =
V(ze )2 (2) /2 be an IC functional with the limiting distribution /n{vec(I’ —
L)} ~» N,2(0,%). Then the diagonal elements ASV (yxi) of ¥ are

Kr + 2
4 )

ASV('Ykk) =

where Ky = B(z)* — 3.

The asymptotic variances of the off-diagonal elements of I still depend on
the choice of V and they have to be derived separately in each case. Before
we get to the main topic of constructing specific IC functionals, the next sec-
tion still briefly describes our basic building blocks for formulating the rotation
functionals V.

3.4 Cumulants

Our main tools for constructing IC functionals are univariate and multivariate
moments, containing information both on the shapes of the marginal distribu-
tions and the dependency structure between them. For any m € N the set of
mth moments of a random vector x € R? is the set

{E(.Z‘il"'l‘im) |i1,...i7,L€{1,...,p}}.

The sets of first two moments are captured conveniently by the mean vector
E (x) and the shifted covariance matrix Cov (x) + E (x) E (x) '

However, despite the simple form and the familiarity of moments we pre-
fer to work with an alternative but analogous concept, cumulants, see e.g.
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McCullagh (1987). In the same way as moments are defined as the coef-
ficients of the Maclaurin series of the moment-generating function My (t) =
E {exp (th) }, cumulants are obtained from the coefficients of the Maclaurin
series of the cumulant-generating function log { My (t)}. We denote the mth or-
der joint cumulant between the components z;,, ..., z;,_ , i1,...9m € {1,...,p},
by ¢(x4,,...,x;, ), reserving the standard notation k for the more frequently
appearing excess kurtosis. In case all the indices coincide, we obtain a marginal
cumulant of order m and use the shorter notation ¢, (z;). Assuming that the
random vector x has zero mean, a comparison of the two series expansions
yields the following relationships between marginal cumulants and moments of
low order,

e (z)=E(2*), c3(z)=E(2®), ci(z)=E (x4) -3{E(2*)}?,
and similarly for joint cumulants and moments,
zllxlz) ) (36)

E(
(Tiy iy Tig) 5
(

T xllesxu) —E (xilxiS) E ($i2$7;4)

¢ (xh ) xi2) -
c (xil ) xiz ) xig)

E
C($i17xi2,xi37xi4) E
—E

(thu) (xileé) 7E(xilxi2)E(xi3xi4)'

The main reason for preferring cumulants over moments is the number of useful
properties they have when working with independent random variables and
affine transformations. We next list the most important of these in the form of
a lemma, see McCullagh (1987).

Lemma 3. 1. Ifziy,...,z;, and zj,, ...,z are two independent collections
of random variables (the random variables within the same collection may
still be dependent) then any cumulant ¢(-) involving random variables from
both collections is zero.

2. Cumulants are homogeneous of first degree in every component, i.e. for
m
at,...,am € R we have c(a1x;,,...,amx;,) = ([ ar) c (@i, ..., 5,,)-
As a special case, marginal cumulants of order m are homogeneous of
order m.

3. The marginal cumulants are additive under independence, i.e. if x;,,...,T;
are mutually independent then we have for marginal cumulants of any or-

der, cm (22:1 T,) = 22:1 em (Tiy,)-

4. The marginal first cumulant is shift-equivariant, cq (z; +b) = ¢1 (z;) + b,
and marginal cumulants of higher order are shift-invariant, ¢, (x; +b) =
em (24), for all b € R.

s

5. Marginal cumulants of order three and higher vanish for the normal dis-
tribution.

Apart from being computationally useful, the properties listed in Lemma 3
lead to some useful interpretations for joint and marginal cumulants. For exam-
ple, the first property implies that joint cumulants measure the level of depen-
dence between its argument random variables and the final property suggests
that marginal cumulants in some sense measure departure from normality.
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The number of marginal cumulants of order m is simply m, but the number
of joint cumulants of order m quickly grows with m. Therefore it is important
to have some more convenient means of handling the collections of cumulants.
The simplest one is to arrange the joint cumulants of order m into a tensor
K™ = K™(x) € R?**P of order m so that (K™), . = c(z1,,...,2i,)
Note that K™ is symmetric with respect to permutation of its indices meaning
that the majority of its elements repeat and the only unique elements are the
marginal cumulants on the super-diagonal (K™), .. For example, K? is equal
to the ordinary covariance matrix which is naturéll’y symmetric. The tensorial
way of thinking has some useful properties, e.g. under the linear transformation
x — Ax the mth order cumulant tensor transforms as

K™ s KK A,

where X} is the tensor-by-matrix multiplication, see the introduction to ten-
sors in Section 4. Also, if x has independent components the cumulant tensors
K™, m > 2 are all super-diagonal. However, the methods we later consider
never go beyond fourth cumulants and for our purposes it is actually more
beneficial to collect the joint cumulants into matrices.

We start by observing that the last row of (3.6) can be written as

c (xiumizv‘rimxiax) =E (951'1951'2%3552‘4) -E (xilx;;xisx;l)

*

—E (a:ilx* x; xi4) —-EB (371‘1951'2%3 14) )

12713
where x* is an independent copy of the random vector x € RP. Fixing now the
first two indices, i, = i, i» = j, the obtained p? fourth cumulants are captured
by the p x p matrix

CY (x) =E (zja; xx') —E (zix] cxx* ) (3.7

- E (:clx;‘ . x*xT) - E (asi:rj . x*x*T) ,
and the family of matrices {C"(x) | 4,5 € {1,...,p}} collects (with some
repetition) all fourth joint cumulants of the random vector x € RP. Assuming
that x is standardized, E (x) = 0,,E (xxT) = I,,, we still have the simpler form

CY (x) =E (z;2; - xx') — EY — E’" — §,;1,,. (3.8)

Property 1 in Lemma 3 further guarantees that if the components of the stan-
dardized x are also independent then the only non-zero elements in the whole
collection of matrices C¥ (x) are the ith diagonal elements of C* (x), i €
{1,...,p}, which equal respectively the marginal kurtoses of the p components,
see e.g. Miettinen et al. (2015). This fact will be exploited later in the thesis
to craft two classical IC functionals.

However, before using the set of fourth cumulants in its entirety we first
investigate two IC functionals that can be constructed by considering only the
marginal cumulants in the super-diagonals of the tensors K™. We are again
especially interested in fourth marginal cumulants and introduce the following
short-hand notation for some specific cumulants and moments of a standardized

random vector x = (z1,...1,) ",

Be(x) =E(23), #rr(x) =Br(x) =3, wi(x)=E(27) — {E ()} >
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If the random vector x is clear from the context we omit the parenthesis and
simply use B, ki etc. The fourth moment (§; and the fourth cumulant k; are
conventionally called the kurtosis and excess kurtosis of the random variable
T, respectively.

3.5 IC functionals based on marginal cumulants

We begin by introducing two lemmas which suggest that specific functions of
marginal cumulants are maximized if and only if a random vector has indepen-
dent components, i.e., in the “solution” of the IC model. Their proofs are given
in the Appendix.

Lemma 4. Let z € RP have independent components and fixr m € N,m > 3.
Assume further that {cy, (21)}° > -+ > {cm (zp)}2 and that ¢y, (z;) = 0 for at
most one value of k € {1,...,p}. Then, for a fized k € {1,...,p — 1}, we have
for all vy € SP~Y with v] e, =0, 1 € {1,...,k—1},

{en(0[ 2} < {em (20},
with equality if and only if v, = e for somel € {k,...,p} with {cn, (zl)}2 =
{em (2)}7.

Lemma 5. Let z € RP have independent components and let m € Nym > 3.
Assume further that ¢, (z) = 0 for at most one value of k € {1,...,p}. Then

we have for all orthogonal matrices V= (v1,...,v,) € UP,
P , & ,
> {em (012)} < {em (2))
k=1 k=1

with equality if and only if V' = I,

Lemmas 4 and 5 imply two specific optimization problems for construct-
ing a rotation functional V. In the first one we sequentially search for mutu-
ally orthogonal projection directions, maximizing the value of the squared mth
marginal cumulant on each step. The components are then found one-by-one in
decreasing order corresponding to the values of {c,, (2)}?. The final conditions
for reaching an equality in Lemma 4 are required to accommodate for a case
where two or more components share the same non-zero value of the squared
cumulant and we can find either of them in a particular step. In the second
optimization problem we find all p mutually orthogonal projections at once,
maximizing the sum of the squared mth marginal cumulants of the projections.
These ideas are formalized in Definitions 4 and 5 below. The inequalities guar-
antee the consistencies of both these approaches in the sense of condition 4) in
Lemma 1: the values of the objective functions decrease for any non-trivial rota-
tion of a vector of independent components z, assuming that at most one of the
independent components has value zero for the chosen cumulant c,,. Based on
the final part of Lemma 3 this assumption now replaces the weaker Assumption
V3 in the IC model.

In Virta et al. (2016b) equivalent results to those in Lemmas 4 and 5 are given
for convex combinations of third and fourth cumulants in the case where we
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allow multiple normally distributed independent components. However, as the
standard case with only a single cumulant and the basic IC model in Definition 1
better serves instructive purposes we choose to formulate everything under it.
The extensions in Virta et al. (2016b) then follow rather straightforwardly with
some minor tweaks. Similar results to Lemma 5 can be given also when the
second powers are replaced with any gth absolute power |-|7, ¢ < 1 but as far
as we know only the cases ¢ = 1,2 have been considered in the literature, see
Miettinen et al. (2015) for the former.

Definition 4. Let © € RP and firt m > 3. Then the deflation-based projection
pursuit (DPP) functional is TP = T'P(x) = VX(x)~'/2 € RP*P where the kth
row of the rotation functional V= (vy,...,v,)" € UP*P is found as

v = argmax {cp, (v] @)},
subject to v,;'—vl = O for alll € {1,...,k}.

Definition 5. Let x € R? and fix m > 3. Then the symmetric projection pursuit
(SPP) functional is T° = T¥(x) = VE(x)~1/2 € RP*P where the rotation
functional V= (vy,...,v,)" € UP*P is found as

P
V= argmaxz {Cm ('U;frmSt) }2 ’
k=1

: T
subject to V' V= 1,.

The functionals in Definitions 4 and 5 are easily seen to be IC functionals:
The first condition of Lemma 1 is satisfied by our earlier discussion and the
second condition follows by noting that the optimization problems in Definitions
4 and 5 are equivariant under transformations x4 — Uxg where U € UP*P,

The names deflation-based and symmetric come from the signal process-
ing literature where the previous algorithms have the squares replaced with
absolute values and go under the names of deflation-based FastICA and sym-
metric FastICA, see Hyvérinen (1999). In FastICA it is common to use also
non-cumulant-based objective functions G, such as the logarithmic hyperbolic
cosine, G(z) = log{cosh(z)}, or the Gaussian function, G(x) = exp(—z?/x).
However, neither of these functions satisfies inequalities such as those in Lem-
mas 4 and 5 and consequently the obtained methods do not provide consistent
solutions to the IC model, see Wei (2014). However, they have other useful
properties that make them still valuable in practice, see Virta and Nordhausen
(2017¢).

For solving the two optimization problems in Definitions 4 and 5 the tech-
nique of Lagrangian multipliers can be used to obtain sets of fixed-point equa-
tions, which in turn lead to corresponding fixed-point algorithms. We refrain
from listing these results here as equivalent ones can be found in Virta et al.
(2016b) and in numerous papers discussing FastICA (Hyvérinen, 1999; Mietti-
nen et al., 2017). What is more, the fixed-point equations also give us a way
of finding the limiting distributions and consequently the asymptotic variances
of the two IC functionals. For brevity, we have in the following presented these
only in the case m = 4, the fourth cumulants. This both simplifies the notation
and provides an even ground for comparing the projection pursuit methods to
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the IC functionals obtained with fourth joint cumulants in the next section.
See Virta et al. (2016b); Miettinen et al. (2017) for more general results and
Koldovsky et al. (2006); Miettinen et al. (2014a) for using different objective
functions for extracting different independent components.

Before the results we still state the assumption on the maximally one van-
ishing fourth cumulant for easy future reference.

Assumption V4. At most one of the fourth cumulants ki, k € {1,...,p}, of
the independent components is zero.

Theorem 1. Let x,...,x, be a random sample having finite eighth moments
from an IC model satisfying Assumption V4 and let Q = I,,. Then for m = 4
there exists a sequence of DPP functionals TP such that /n{vec(T'P — I,)} ~»
Np2(0, %) where the diagonal elements ASV (i), k # 1, of ¥ are

02
ASV (yx1) = Lﬂ, k<,
k
22
ASV (1) = 2 mﬁ +1, k> L

l

Interestingly the asymptotic variances of the elements of the DPP functional
depend on the estimation order of the components and although we have fixed
this order in Lemmas 4 and 5 it can happen that this order is compromised
in practice (due to local maxima or bad initial values etc.). This behavior
is exploited in Nordhausen et al. (2011a) where the extraction order of the
independent components is forced to be the one which minimizes the asymptotic
variances.

Theorem 2. Let x,...,x, be a random sample having finite eighth moments
from an IC model satisfying Assumption V4 and let Q = I,. Then for m =4
there exists a sequence of SPP functionals T' such that /n{vec('S — L)} ~»
Np2(0, %) where the diagonal elements ASV (vii), k # 1, of ¥ are

kp(we — BR) + K7 (W — B7) + K}
(k3 + K3)?

ASV('Ykl) =

The results of Theorems 1 and 2 can now be used to conduct asymptotic
comparisons between the DPP and SPP functionals. The asymptotic variances
have such differing forms that no simple analytic results can be given but the
values of the partial trace tr°(®) can still be computed for specific collections of
distributions for the independent components. This has been done in Miettinen
et al. (2015); Virta et al. (2016b); Miettinen et al. (2017) with the observation
that the SPP functional generally outperforms the DPP functional.

3.6 IC functionals based on joint cumulants

We next turn our attention to joint fourth cumulants and two classical IC func-
tionals based on them. Recall from Section 3 the matrices C*(x) collecting all
fourth joint cumulants of the standardized random vector x. As p?, the number
of the matrices, grows quite fast with the dimension p it seems reasonable to
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consider only a subset of them, ranked using some measure of importance. The
matrices C* (x), i =1,...p, with the repeated index stand out as the foremost
ones, containing also the marginal fourth cumulants. To even further condense
the information content in these p matrices we take their sum to obtain the
matrix used in fourth order blind identification (FOBI) (Cardoso, 1989),

ZC” E (Jx|32xT) - 3T, = E (xxTxx") — 31,

FOBI is one of the first methods that can solve the IC problem and using
the above FOBI-matrix we define in a minute the corresponding FOBI func-
tional. The main property of the FOBI-matrix that makes it useful to us
is that it is diagonal for any random vector with independent components,
C(z) =" _ (kg +p+ 2)EF*. This behavior is in the context of scatter matri-
ces called the independence property, see Nordhausen and Tyler (2015); Virta
(2016). Replacing C in the following with any other scatter matrix with the
same property would not compromise the method in any way and would lead
into collections of new IC functionals, see Nordhausen et al. (2008).

Definition 6. Let x € RP. Then the FOBI-functional is TY = TF(x) =
VE(x)~1/2 € RPXP where the rotation functional V = (vi,...,v,)T € UP*P
contains the eigenvectors of the matriz

C(zy) =E (zz' zz") — 31,
as its rows in decreasing order according to the corresponding eigenvalues.

To prove that the FOBI-functional is an actual IC functional we again go
through the two conditions in Lemma 1. The first one clearly holds if and only
if we can identify the eigenbasis of the diagonal matrix > 7_, (s +p + 2)Ekk
uniquely up to the equivalence class CP. This is guaranteed under the following
assumption.

Assumption V5. The fourth cumulants ki, k € {1,...,p}, of the independent
components are distinct.

Assumption V5 is stronger than Assumption V4 and thus FOBI makes the
strictest assumptions of all ICA methods we have seen thus far. Curiously, this
does not mean that FOBI would perform better than the projection pursuits
when the assumption is satisfied, and the situation is actually quite the opposite,
see the discussion after the limiting variances below. The second condition of
Lemma 1 is satisfied by the basic properties of the eigendecomposition after
noticing the orthogonal equivariance, C(Ux) = UC(x)U ", making I'" an IC
functional.

The above discussion already hints that compressing the cumulant matrices
C% into the single FOBI-matrix might not have been the best idea and we next
seek ways to incorporate all p? matrices into the estimation of the rotation func-
tional. Evaluating a single cumulant matrix on the standardized observation
x5+ = Uz yields

c (Uz) = (Z u;ﬂukjmkE ) U’

k=1
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showing that each C"(x,;) has U as (one possible set of) its eigenvectors. The
ranks of the matrices depend on the unknown U and thus it is difficult to say
whether U can be identified using a single matrix C only. Our second classi-
cal ICA method, joint diagonalization of eigen-matrices (JADE) (Cardoso and
Souloumiac, 1993), bypasses this obstacle by as per its name jointly diagonal-
izing the whole set of cumulant matrices C* (xy,), i,j € {1,...,p}.

To formulate the corresponding IC functional we define the joint diagonalizer
of a set of matrices S = {S; | j € {1,...,m}} as the orthogonal matrix V =
(Vi,...,vp) T € UPXP satisfying

V= argmaxi ||diag (VSjVT) %, (3.9)

j=1

and with the rows vj ordered in decreasing order with respect to the “eigenval-
ues” ;ﬁzl v;SjV;€7 k e {1,...,p}. The Frobenius norm of a matrix is invariant
under orthogonal transformations from both sides and some simple matrix al-
gebra shows that the above maximization problem is equivalent to minimizing
the sum of the squared off-diagonal elements of the matrices, justifying calling
the procedure “diagonalization”. If the matrices S; are diagonal, as is the case
with our population level Cij(z), the joint diagonalizer can be shown to be
uniquely determined up to signs and order if, for all pairs (k,1), there exists
j € {1,...,m} such that the eigenvalues v, S;v; and v/ S;v; are distinct, see
Belouchrani et al. (1997).

Definition 7. Let x € RP. Then the JADE functional is T/ = I'/(x) =
VX (x)~1/2 € RP*P where the rotation functional V = (vy,...,v,)" € UP*P is
the joint diagonalizer of the set of matrices,

{dj(mst) | i’j € {L"'ap}} .

That the functional I' is a true IC functional is somewhat tricky to show,
see Miettinen et al. (2015) for a proof, and a sufficient condition for this is As-
sumption V4. Thus from an assumption point of view, DPP, SPP and JADE
start from an even ground while FOBI alone requires more strict conditions for
its Fisher consistency. To estimate the JADE-functional in practice the tech-
nique of Lagrangian multipliers can be used on the optimization problem (3.9)
to obtain a set of fixed-point equations, from which the limiting distributions
below are also derived. However, the resulting algorithm is computationally
slow and a faster choice is, for example, the Jacobi rotation algorithm (Clark-
son, 1988; Belouchrani et al., 1997). Miettinen et al. (2015); Illner et al. (2015)
remarked that based on empirical testing both algorithms always yield the same
results, justifying the replacement. However, without formal proof the limiting
distributions of I'/ given next in Theorem 4 still apply only to the estimate
computed with the fixed-point algorithm. The proofs of the following asymp-
totic results can be found in Ilmonen et al. (2010a); Miettinen et al. (2015), see
also Bonhomme and Robin (2009); Virta et al. (2015) for similar results.

Theorem 3. Let x,...,x, be a random sample having finite eighth moments
from an IC model satisfying Assumption V5 and let & = I,. Then there exists

a sequence of FOBI functionals T'F such that /n{vec(TF — I,)} ~» N,2(0,%)
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where the diagonal elements ASV (i), k # 1, of ¥ are

Wi +w; — BI? — 6k — 9+ Zf;ék’l(l‘{/t + 2)

ASV(y) = ( )2
KR — K]

Theorem 4. Let x,...,x, be a random sample having finite eighth moments
from an IC model satisfying Assumption V4 and let Q@ = I,,. Then there exists
a sequence of JADE functionals T such that v/n{vec(T’ — I,)} ~ Np2(0, %)
where W is as in Theorem 2.

Again, the results of Theorems 3 and 4 can be used for the asymptotic com-
parison of FOBI and JADE (and the two projection pursuit functionals), see
Miettinen et al. (2015); Virta et al. (2015). The main implication of the com-
parisons was that regardless of the distributions of the independent components
FOBI generally underperforms both the projection pursuit methods and JADE,
which is based on Theorem 4 actually asymptotically equivalent to SPP. How-
ever, JADE is computationally much more intensive than FOBI and apart from
replacing JADE with SPP another way to speed it up would be to diagonalize
only a subset of the fourth joint cumulant matrices (Miettinen et al., 2013).

We close the section by giving a heuristic argument for why the limiting dis-
tribution of the SPP functional (with fourth cumulants) and JADE-functional
should be the same. Recall that the fourth kurtosis tensor K*(x) € RP*XPxpxp
collects all p* fourth joint cumulants of the random vectors x. Both SPP and
JADE can now be considered as forms of “diagonalization” of K*(x4): SPP
tries to rotate the data so that the marginal cumulants are maximized which is
equivalent to maximizing the diagonal of 5K4(xst). JADE wants to diagonalize
the p? cumulant matrices which is equivalent to maximizing the diagonal of
K*(x5) AND some additional off-diagonal elements. However, as in the so-
lution z the kurtosis tensor fK4(z) is diagonal these extra elements contribute
asymptotically nothing to the estimation, making the result of Theorem 4 some-
what expected.
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4 Independent component analysis for
tensor-valued data

4.1 Tensor notation

We next move to our first generalization of independent component analysis
where both the observations and the latent random variables are assumed to
be tensor-valued. To prepare for the theoretical derivations and to gain some
visual intuition, this section briefly goes through the main aspects of multilinear
algebra essential to our treatise. The used notation follows the standard one
found, for example, in De Lathauwer et al. (2000); Kolda and Bader (2009),
where more detailed discussions of the following concepts can be found. Refer-
ences to the theory of tensor-valued random variables will be given in the next
section when we discuss different models for tensor-valued data.

Let X = (x4,..4,.) € RP1XXPr he a tensor of rth order. The r “directions”
from which we can look at X are called the modes or ways of X. For example, a
matrix X € RP1*P2 has two modes, 1-mode and 2-mode, corresponding respec-
tively to its columns and rows and when the order » > 3 the visualization gets
more difficult. As the number of elements in a tensor of high order is generally
quite large and tracking all the elements via their positions in the tensor gets
quickly quite awkward, two alternative ways of splitting a tensor into smaller
pieces are commonly used.

The first is equivalent to dividing a matrix X either into a collection of
columns or a collection of rows, called in the tensor context the 1-mode vectors
and 2-mode vectors of X, respectively. In Figure 4.1 we have visualized this de-
composition in the case of a tensors of third order. More generally, the collection
of m-mode vectors of a tensor X is obtained when we fix the » — 1 other indices
and vary the value of the mth index to produce a total of p,, = p1-+-Dr/Pm
vectors of length p,,. If we further collect these p,, vectors in some pre-defined
order into a matrix X(,,) we obtain what is called the m-mode matricization
or m-mode unfolding of X. The actual ordering of the vectors is irrelevant to
our causes as long as it stays consistent and one simple option is the cyclical
ordering suggested in De Lathauwer et al. (2000). The matricization is a par-
ticularly useful concept as it allows us to reduce the derivations of the Fisher
consistencies and limiting distributions of the methods into the simplest, non-
vector case of tensor-valued observations, matrices. The second division of a
tensor X into several smaller components does the opposite to the previous and
fixes the value of the mth index and lets the other » — 1 indices vary, producing
a total of p,, m-mode faces, tensors of size p1 X -+ X Pyp—1 X Prmg1 X =+ X Py
The 1-mode faces and 2-mode faces of a matrix are again its rows and columns
but for tensor or order larger than two this no longer holds true. Figure 4.2
illustrates the situation for a tensor of third order. For simplicity we refrain
from introducing a notation for the m-mode faces as they will only be used
briefly in the context of assumptions.
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Figure 4.1: The 1-mode, 2-mode and 3-mode vectors of a tensor of third order.

To operate our tensor observations we introduce a specific group of linear
transformations of a tensor by matrix. For a tensor X € RP1**Pr and a matrix
A, € RIm*Pm we define the m-mode multiplication of X by A to be the tensor
X X A,y € RPUVXTXPm—1X@m XPm41 X XPr with the elements,

Pm

(x Xm Am)zlz., = § a'irnjnlxi1<-~7;7nfljnzi'm+1---ir'

Jm=1

An equivalent and more accessible definition can be stated using m-mode vec-
tors: X X,, A,, is the tensor obtained by pre-multiplying each m-mode vector
of X by A,,. The operation can be understood as a linear transformation from
the mth direction and is a higher order analogue for the ordinary linear trans-
formation of a vector by a matrix, x — Ajx. Also the second order cases can
be written using basic linear algebra, X — A;X and X +— XAQT.

The transformation operation x,, is associative regardless of the mode m
and for two distinct values of m it is also commutative, X X, A, Xy Ay =
X Xt Apyr Xom Ay, for all m # m’. For two multiplications from the same
mode we instead have X x,, A,, X, B,y = X %X, (BjAy,). We regularly
apply transformations simultaneously from all » modes and introduce the short-
hand notation X %], _; A,, = X x;3 A;--- X, A,. The simultaneous linear
transformation acts particularly nicely under vectorization and matricization.
The map X — X x7,_; A,, induces the maps X(,,) = Ay X)) (A1 ®@ -+ @
A, A ® @A, 1)" and vec(X) — (A, ® - @ Aj)vec(X).

We also introduce a second type of tensor multiplication which takes two ten-
sors, X € RP1X - XPm—1XPmXPm+1XXPr gy y € RP1X " XPm—1XqmXPm+1X “‘Xpr,
with all modes of equal length except possibly the mth one. The m-mode prod-
uct of X and Y is defined as the matrix X x_,, Y € RPm*9m with the elements

- 1eeelom— m el el — m el
(xxfmy)kl Z Liy..i 1kim41 i Yiy..i Wm0

Ty esbm—T1sbmAg e sbr

This operation too has a less intimidating representation using the m-mode
vectors: X X _,, Y is the sum of all outer products between the corresponding m-
mode vectors of X and Y. We again turn to examples of low order to gain more
intuition. For vectors x € RP', y € R% the product is simply x®;y = xy ' and
for matrices X € RP1¥P2 Y € RP1¥P2 we have X ®; Y = XY and X @, Y =
X'y. Using the matricization we also have yet another representation for x _,,,
namely, X X _, ¥ = X )Y ()
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Figure 4.2: The three collections of m-mode faces of a tensor of third order.

The Kronecker product ® plays an important part in the following sec-
tions. Apart from its previous uses in matricization and vectorization it is also
naturally encountered when one considers the covariance matrix of the vector-
ized transformation vec(X x7 _; A,,), where the tensor X has standardized
components. Namely, using the formulas in the previous paragraphs we have
Cov{vec(X x" _ Ap)} =A A @@ AJA].

Finally, we define a couple of moment- and cumulant-based quantities for
a random tensor X € RP1**Pr_ These act as tensorial counterparts to the
kurtosis and other related quantities of real-valued random variables and play
key role in the limiting distributions of the tensorial estimators later on. Let
B(X) € RPr**Pr contain the element-wise fourth moments of the elements of
X. For all m € {1,...,r}, we define B(,,)(X) = (Bm)1,--- ,B(M)pm)—r € RpPm
as the vector of row means of By,,)(X), the m-mode flattening of B(X). Thus,
B(m)(X) contains the average fourth moments of the m-mode faces of X, that
is, e.g. for a matrix X € RP1*P2 the vector B(;)(X) € RP! contains the row
means of the fourth moments of X and B,)(X) € RP? the column means of the
fourth moments of X. The vectors & (,,)(X) = B(m)(:)C) —3,W(m)(X) € RP™ are
defined analogously but only with the fourth moments replaced by the element-
wise quantities E(z%) — 3 and E(2®) — E(23)?, respectively. Lastly, we define
P(m)k1(X) as the sample covariance of the kth and Ith rows of B,,)(X). If the
random tensor X is clear from the context we again omit it and use simply
,B(m), K(m) etc.

The previous list of concepts and their properties shows that it is almost
possible to manipulate tensor-valued data with pure linear algebra alone, and
in the following we plan to do so whenever possible. But sometimes we still
need to resort to the actual tensorial forms, for example, in formulating our
models in the next sections.

4.2 On tensorial methodology

Before introducing the tensor independent component model we first briefly
discuss canonical examples of tensorial data and the accompanying models and
methods commonly used for tensor-valued data in the literature.

To get an idea where tensorial data can be encountered, consider the fol-
lowing list of situations: A multivariate time series of the prices of p assets is a
sample of first order tensors (vectors). A collection of grayscale images of size
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w X h constitutes a sample of second order tensors (matrices). If the images
are instead coloured, the colour information (RGB) can be thought of as an
additional dimension of size three, making the set a sample of tensors of order
three. A collection of instantaneous 3D fMRI-measurements of a group of people
makes for a sample of tensors of order three, or four if each person has several
measurement taken over time, and five if the experiment is repeated in different
experimental situations. The list could be continued to even higher dimensions
by adding replications under different conditions to the previous examples.

The majority of the approaches to tensor-valued data can be divided roughly
into three groups: vectorization-based methods, tensor decompositions and
methods based on tensorial samples. The vectorization-based methods con-
stitute the simplest approach to tensor modeling. At their most basic level we
simply vectorize the observed sample of tensors X; € RP1**Pr to obtain a
sample of vectors x; € RP*""'Pr_which can then be subjected to the desired mul-
tivariate methods. These kind of procedures are especially common with ICA
and functional magnetic resonance imaging (fMRI) data. Temporal ICA and
spatial ICA, two staple methods in the previous context, are obtained when one
vectorizes the obtained 3D-images and, after dimension reduction with SVD,
treats either the rows or columns of the data matrix as observations, respec-
tively, see Stone et al. (2002); Calhoun et al. (2003); Calhoun and Adali (2006).
Although a seemingly natural way to approach the problem, the simplicity of-
fered by vectorization comes at a price. As standard multivariate methods are
generally invariant to the ordering of the variables in the random vector, the
vectorization causes us to lose all spatial structure we had in the original ten-
sors. This is well illustrated with covariance estimation: the covariance matrix
¥ of a random vector x € RP'P2 contains in general pips(pi1ps + 1)/2 parame-
ters. But if x is known to be a vectorized matrix originating from the matrix
location-scatter model introduced later its covariance matrix has the Kronecker
structure, 3 = X5 ® 31, and the number of parameters is instead the consid-
erably smaller pi(p; + 1)/2 4+ pa(p2 + 1)/2 — 1. This approach to vectorized
data is called structured covariance estimation and it shows that not all meth-
ods starting with vectorization are guilty of losing the spatial structure, but it
instead depends largely on what we do after the vectorization. See Srivastava
et al. (2008); Werner et al. (2008) for different approaches to structured covari-
ance estimation. Several studies for comparing vectorization and truly tensorial
methods have been made in recent years, see e.g. Li et al. (2010); Virta et al.
(2016¢); Virta and Nordhausen (2017a); Virta et al. (2017b,c); Virta and Nord-
hausen (2017b).

The use of the second category, tensor decompositions, is especially popu-
lar among signal processors. The decompositions can be seen as a higher-order
analogues of eigendecomposition and singular value decomposition with the two
primary methods being the CP-decomposition and the Tucker decomposition,
see Kolda and Bader (2009). Vast literature has since been developed around
these two and other related decompositions, see Kolda and Bader (2009); Ci-
chocki et al. (2009, 2015); Sidiropoulos et al. (2017) for comprehensive reviews.
The biggest difference between the methods of the second category and the
other two is that tensorial decompositions rarely incorporate the concept of
a random sample that is so central to all statistics. For example, for a sam-
ple of matrix-valued data the CP-decomposition takes the observation tensor
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X € RPr*P2xP3 where one mode represents the individual samples, and de-
composes it as X ~ D x3 _; A, where D is some small diagonal tensor and
A1, Ay, Aj are suitably sized matrices with unit length columns. The decom-
position thus acts also on the observation space causing the individual observed
matrices being mixed. This is critically in odds with the standard statistical
practice where the observations space is left untouched and we instead focus
on understanding the structure of the variable space, the two other modes of
the data tensor X in our example. A simple “fix” would be to leave the ob-
servation mode untransformed in the decomposition. This approach, which is
almost non-existent in the literature, provides fruitful grounds for studying the
statistical properties of the wide collection of decomposition methods proposed
over the years.

The third group of methods can be seen as a combining the best features
of the previous two in a statistical sense. That is, we both retain the concept
of a random sample and treat the tensors naturally as tensors. Most often this
means generalizing some standard multivariate methodology to tensor-valued
data using the multiplication X,, to operate the observations separately from
each mode, and this is the approach we also take in the thesis. Previous works
in literature include tensor or matrix versions of, for example, PCA (Ding and
Cook, 2014), sufficient dimension reduction (Li et al., 2010; Pfeiffer et al., 2012;
Ding and Cook, 2015a,b; Zhong et al., 2015) and (generalized) linear models
where either the response or the predictor can be tensor-valued (Hung and
Wang, 2012; Zhou et al., 2013; Zhao and Leng, 2014; Zhou and Li, 2014; Li and
Zhang, 2017). Tensorial extensions of ICA have also been proposed (Vasilescu
and Terzopoulos, 2005; Zhang et al., 2008) but the first model-based treatise
appeared only in Virta et al. (2017b). The next sections now go to introduce
this approach on the problem.

4.3 Tensorial location-scatter model and its extensions

Tensorial location-scatter model

We motivate the tensorial IC model in the same manner as its vectorial coun-
terpart in Section 3, through the related general location-scatter model. We
say that the random tensor X € RP1**Pr gbeys the tensorial location-scatter
model if

X =M+2 %", Do, (4.1)

where the location tensor M € RP** " *Pr and the invertible mixing matrices
Q) € RPr>xPr Q. € RP*Pr are unknown parameters and the latent tensor
Z satisfies E{vec(Z)} = 0,,...,, and Cov{vec(Z)} =1,,..,,.. Again all r mixing
matrices are identifiable only up to post-multiplications by orthogonal matrices.
Vectorizing the model (4.1) reveals it as a structured submodel of the vector-
valued location scatter model (3.1) where the mixing matrix has the Kronecker
structure 2 = 2, ®---® Q. If one was to proceed with vectorization, this spe-
cial form of mixing would need to be addressed in the subsequent analyses with
the risk of otherwise losing structural information, as discussed in the previous
section. The model (4.1) also nicely exhibits the basic paradigm underlying all
our tensor constructs: in extending vector-valued methodology to tensor-valued
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random variables the focus shifts from individual elements to the modes. That
is, the elements of X are no longer regarded in isolation but in an aggregate
way through the corresponding rows, columns and other modes, as exemplified
the r simultaneous transformations acting on the individual modes in (4.1).

Additional assumptions on the latent Z again lead into various useful families
of models. Beginning with the simplest choice, fixing the distribution of the
latent tensor as vec(Z) ~ Np,..p, (0p,.cp., Ip,op,.) gives X the tensor normal
distribution discussed in Manceur and Dutilleul (2013); Ohlson et al. (2013),
see also Gupta and Nagar (1999); Kollo and von Rosen (2006). While the
normality assumption simplifies the algebra of linear methods considerably it
can be regarded highly unrealistic in practice especially when the tensors are of
large size. To obtain more versatile models the tensorial location-scatter model
can analogously to Section 3.1 be extended to obtain the tensorial elliptical
model and the tensorial IC model. We next discuss these in order.

Tensorial elliptical model

Beginning again from spherical distributions, two natural, alternative defini-
tions for tensorial spherical distributions can be derived. In the first we require
that the vectorized latent tensor vec(Z) has a spherical distribution, see Arashi
(2017), and in the second we require that the distribution of the latent tensor
is tensorially spherical, that is

Z~ZxI Uy, forall Uy ey P ... U, eUPr P

Vectorization reveals that the second definition gives a broader class of distri-
butions than the first one with the cost of less structure. However, if one sticks
strictly to the natural tensor operations such as x,, this structure is most likely
enough for the majority of methods. The class of tensor elliptical distributions
is now readily defined as the collection of all distributions of the form

X=M+2Zx, 1A,

where Z has a tensor spherical distribution in one of the previous senses and
A, me{l,...,r}, are square matrices of suitable sizes. Although the matrix
case r = 2 has been discussed in the literature (Gupta and Varga, 1995; Gupta
and Nagar, 1999; Caro-Lopera et al., 2016), the general tensor case has received
very little attention and many of its properties remain still undiscovered. For
example, it has been conjectured that the tensorial elliptical model and tensorial
PCA do not share the same relationship as their vectorial counterparts, see
Section 4.5. Consequently we postpone the discussion of tensorial PCA to
Section 4.5 where we generalize the covariance matrix to tensors.

Tensorial IC model

With the previous important but beyond-our-scope models out of the way, we
are now ready to define the second natural generalization of the tensor normal
distribution and our model of choice, the tensor independent component model.

Definition 8. We say that the random tensor X € RP1*""*Pr obeys the tensor
independent component (IC) model if

X =M+2x"_; D, (4.2)
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where M € RPV*Pr qnd the invertible £, € RP>*Pr Q. € RPr>Pr gre
unknown parameters and the latent random tensor Z € RP***Pr gatisfies As-
sumptions T1, T2, T3 below.

Assumption T1. The components of Z are mutually independent,

Assumption T2. The vector vec(%) is standardized, E{vec(Z)} = 0p,...,, and
Cov{vec(Z)} = I,,...p,.

Assumption T3. For each m € {1,...,r}, at most one of the m-mode faces
of Z consists entirely of normally distributed components.

Assumption T1 is again self-evident and Assumptions T2 and T3 serve as
identifiability constraints after which the mixing matrices €2, are identifiable
up to post-multiplications by matrices J,,P.,, I, € JPm, P, € PPm for
m € {1,...,r}. To see how Assumption T3 rids the tensor IC model of the con-
founding by orthogonal matrices found in the general tensor location-scatter
model let, for example, the last two 1-mode faces of % consist entirely of stan-
dard normal components. The 1-mode matricization of the model now reads

Xy = Z) (@200 Q)",

where the last two rows of Z;) now contain only normally distributed compo-
nents. If we let go of Assumption T3 the block matrix

I, > 0 I, —2 0
( 0 U) ( 0 UT> ’

where U € 4?*? is any orthogonal matrix, can be fitted between €2, and Z )
all the while preserving the model assumptions, and Assumption T3 is therefore
included to prevent situations such as this from happening. Again the Skitovich-
Darmois theorem can be used to show that limiting the amount of normal
components is indeed a sufficient condition for identifiability as well. Notice that
Assumption T3 allows much more freedom on the distirbutions of the individual
elements of X than we would have by vectorizing (4.2) and resorting to the
vector-valued IC model. For example, by having p — 1 non-normal elements on
the super-diagonal of the rth order tensor X € RP**P_ the tensorial IC model
for X allows p” —p+1 normal components whereas the corresponding vectorized
IC model permits only a single one. This again reflects the importance of the
modes over the individual elements of the tensors in tensorial models. However,
even if Assumption T3 is violated it again only renders us unable to estimate
the corresponding columns of the mixing matrices, meaning that we can still
estimate the non-normal parts of the modes. Strategies similar to Nordhausen
et al. (2016, 2017a) could also be developed to estimate the number of normal
modes in such a case.

The objective in tensor ICA is naturally the estimation of the unknown
parameters in the tensor IC model and we can again focus solely on the mixing
matrices Qq,...,€2,, the location parameter being found simply as E(X) = M.
Accordingly, we assume in the following that E{vec(X)} = 0,,...,..
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4.4 Tensorial IC functionals

We follow in our exposition the same structure as we did with the vectorial
ICA, making our next topic tensorial IC functionals. As we are now faced with
the task of estimating inverses for all r mixing matrices, our definition of an IC
functional also consists of the r corresponding parts.

Definition 9. Fiz m € {1,...,r}. The functional Ty, : D — RPm*Pm jg an
m-mode independent component functional if we have

i) Tpn(X) = Q1 for all X € RPYXPr coming from a tensorial IC' model
and

i) T (X X7 Up) = T (X) U, for all X € RPY <P and all orthogonal
U, eurr>v, ... U, €Yvrr=rr,

where = is as in Definition 2 and two square matrices A, B € RP*P satisfy
A=B if and only if A = 7JPB for some T € R, J&€ JP and P € PP.

The definition of an m-mode IC functional is markedly different from that
of an IC functional in Definition 2. First, for condition i) in Definition 9 we
require only orthogonal equivariance instead of the affine equivariance we had
in the vector case as practice has shown that the latter is simply too strict a re-
quirement; the m-mode functional must, in addition to being able to unmix the
mth mode, also be invariant to transformations from other modes. Moreover,
all currently existing m-mode IC functionals fail to be affine equivariant, caus-
ing us to “settle” for the orthogonal equivariance. Second, the weaker condition
i1) in conjunction with any possible diagonality criteria we had in Definition 2
would not be strong enough to guarantee the Fisher consistency of the I',,, and
we instead have to directly require it in condition ). As in the vector case, we
again have an equivalence instead of full equalities in both conditions but this
time we also allow arbitrary scale for the quantities. This is necessitated by us
not fixing the mutual scaling of the r mixing matrices, i.e., the model remains
unchanged if we respectively multiply and divide any two mixing matrices by
the same non-zero scalar.

To solve the tensor IC problem it is sufficient to find an m-mode IC functional
for all modes m € {1,...,r}. These functionals need not necessarily be obtained
by the same “formula” and it is instead possible to use different methods to
unmix the different modes. This naturally begs the question which combination
of functionals is the best one and to answer that we require a measure of the
success of an m-mode IC functional. We again resort to the MD index in
Definition 3 and its asymptotics for the comparisons but with one difference; the
lack of affine equivariance means that our asymptotical results hold only when
the mixing matrices €21, ..., €, in the tensorial IC model are all orthogonal.

Assume next that we have a full collection of m-mode IC functionals I',,, with
limiting normal distributions under the trivial mixing, v/n{vec(T'y, — I, )} ~
Np2(0,®), m € {1,...r}. We can show that all the asymptotical results de-
rived after Definition 3 still hold within the individual modes, and consequently
the partial traces tr°(W¥,,) can be used to compare the efficiencies of differ-
ent m-mode IC functionals within the same mode. However, our goal is still
the unmixing of all 7 modes and thus we are usually more interested in the
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joint efficiency of the whole set I'y,...,I'.. Moreover, we would also like to
make efficiency comparisons between the tensorial IC methods and the naive
vectorization-based methods, again necessitating the combining of the r func-
tionals into one to allow comparisons with the single functional used by the
vectorial methods.

The first step towards the solution is given by the Kronecker product. If we
vectorize the tensorial IC model we see that the unmixing of each mode by the
respective I';, is equivalent to unmixing the vectorized model by the product
I'y =T, ® - ®I'y. Thus to compare tensorial and vectorial ICA methods
on an equal level the product I'g should directly be compared to the vectorial
IC functional I'ye.. The second step is provided by Theorem 6 in Virta et al.
(2017b) which connects the limiting behavior of the MD index of I'g to those
of its factors,

r

n(p—1)D(Tg)’ =Y pmn(pm — )D(T')? + 0,(1).

m=1

Based on the results in Section 3.2 the average of the left-hand side converges to
g = > _1 pmtr®(¥,,) and if the compared vector-valued IC method has the
limiting covariance matrix W, the efficiency comparisons should be done be-
tween 1)g and tr°( Wy ). This approach was taken in Virta et al. (2017b,c) where
the soon-to-be-introduced tensorial FOBI and tensorial JADE were shown to
be highly superior to their vectorial counterparts.

4.5 Tensorial standardization

The first step towards a solution in vectorial ICA is standardization and the
same holds for its tensorial counterpart. But before we can extend the Maha-
lanobis standardization itself we first have to develop a tensorial version of its
basic building block, the covariance matrix.

Our definition of m-mode IC functionals acting mode-wise makes clear that
also for the standardization we need a collection of r covariance matrices, one
for each mode. Staying true to the “mode-paradigm” discussed in Section 4.3,
the m-mode covariance matrix 33,,(X) should then somehow characterize the
variation of the tensor X in the mth direction. As the basic building blocks
of the mth mode of X, the individual m-mode vectors and their covariance
matrices clearly each capture some aspects of this variability, and to measure
the average variation in the mth direction we average over them to obtain,

1
S (X) = —F (X(m)X(Tm)) eRP P e {1,...,7},

Pm
the m-mode covariance matrices of X, see Srivastava et al. (2008). These ma-
trices share various properties of their multivariate counterparts: they are sym-
metric positive semidefinite, diagonal under independence and, furthermore,
they also serve the analogous purpose in tensor independent component analy-
sis. Virta et al. (2017b) showed that if X comes from a tensorial IC model we
have,

Xeg =X X T (X)) V2 =72 %" _ U, (4.3)
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for some constant 7 > 0 and orthogonal U; € YPr*Pr ... U, € UP *Pr. Thus
again standardization reduces the problem of estimating inverses of full-rank
matrices to that of estimating orthogonal matrices. The unknown factor 7
means that in practice we can estimate 2 only up to scaling, which is completely
satisfactory as the scale of our IC model was in any case arbitrarily fixed.

Based on the previous result all our efforts to solve the tensor IC model will
start with standardization and consequently the obtained m-mode IC function-
als will again be of the form V,,(Xs)3,,(X) /2, where the m-mode rotation
functional V,,, taking values in UP*P is again defined only for standardized ran-
dom tensors. This form again both implies simplified criteria for a functional to
be an m-mode IC functional and fixes the limiting variances (and distributions)
of the diagonal elements of I',,,, as stated in the next two lemmas. The first one
is proven in the Appendix and for the proof of the second one, see Virta et al.
(2017D).

Lemma 6. Let the functional T, be of the form T, (X) = Vm(fxst)Em(fX:)_l/Q
with V : D — UPm>Pm  Then Ty, is an IC functional if and only if

i) Vin(Xg) = I, for all X coming from the tensorial IC model with diag-
onal mizing, Qy, = D,,, for some diagonal matriz D,,, m € {1,...,r}.

ZZ) Vm(xSt X:n:l Um) = Vm(xst) U»I.L fOT’ all X € RPrXXPr gnd all orthog_
onal Uy e YPr>pPr ... U, € YPr>pr,

Lemma 7. Fizm € {1,...,r}. Let X € RP**"*Pr come from a tensorial IC
model with @y = I,,...,Q, = I, and let T\, (x) = V0 (Xgt) X0 (X) 72 be
a m-mode IC functional with the limiting distribution \/n{vec(Ty, — I, )} ~
Np2 (0p2 , W), Then the diagonal elements ASV (v kk) of ¥, are

F(m)k + 2

ASV (Y kk) = 1p

Again the limiting behaviors of the off-diagonal elements of I',,, have to be
derived separately for each m-mode IC functional and that is one of our main
focuses with the proposed methods in the next section.

We close this section by discussing a natural derivative of the m-mode co-
variance matrices, the tensorial PCA. The main difference between vectorial
and tensorial PCA is that in the latter the connection between PCA and el-
liptical models is most likely lost. Namely, for it to hold we would need an
affine equivariant m-scatter functional and Virta et al. (2017b) conjecture that
no such functionals exist for general tensors. An affine equivariant m-scatter
functional is a functional S,,, : D — RE™*P™ with the property,

S (X X" _ 1 A) = Ap S (XA

for all invertible A; € RPr1*P1 /A, € RP-*Pr. Again the requirement to
annihilate linear transformations in 7 — 1 modes seems to be too strict for such
constructs to exist. Orthogonally equivariant m-scatter functionals still exist,
the prime examples being the m-mode covariance matrices above. And although
orthogonal equivariance does not render them capable of solving the tensorial
elliptical model, their properties are certainly sufficient for the tensorial 1C
model.
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However, despite the above hardships we can still do the analogous to regular
PCA and project each mode of X onto the first d,, < p,, eigenvectors of the
corresponding X,,(X), m € {1,...,7}, in order to reduce the dimension of
X. This approach has been used in Li et al. (2010) and later in Virta et al.
(2016¢) under the name TPCA. The procedure is also equivalent to applying
the higher order singular value decomposition (HOSVD) (De Lathauwer et al.,
2000) to all non-observation modes of the data tensor. A matrix-valued PCA
was also proposed in Ding and Cook (2014), with an iterative approach to the
estimation, and further research is needed to reveal the relationship between
the two methods.

4.6 Tensorial FOBI and JADE

We begin by providing tensorial counterparts for the cumulant matrices used by
FOBI and JADE. Our extensions are derived in the same manner as the m-mode
covariance matrix in the last section, using the plug-in method for the outer
products xx”. As the first matrix in (3.7) can be written as E(xx' EYxx "),
and equivalently for the remaining three matrices, our m-mode tensor extension
of the cumulant matrix C* is then simply

cy

m

—1 T ij T —1 * T ij * T
(X) = p, E (Xon)X(m)E jX(m)X<m>) —Pm E (X<m>X(m)E JX<m>X(m>>

=0 (Xom Xy B Xy Xl ) = 2B (X Xy B Xy X1 )
where the division by p,, again represents taking average over the m-mode
vectors of X. As the above method of constructing C% is heuristic at best,
the matrices have both lost their interpretation as cumulants in the traditional
sense and lack any guarantee that they will be useful in tensorial ICA. However,
some hope is given when we evaluate the matrix Cif; for a tensor X which
has been standardized in the sense of the last section, X,,(X) = 7L, , for all
m € {1,...r}, and obtain

ij 1 T ij T
— 7 (pmEY + B 46,1, ,

having a striking resemblance to the corresponding form in (3.8). The related
FOBI-matrix for a standardized tensor is now simply defined as in the vector-
valued case,

P

i=1

Some mildly tedious algebra along with the ruleset for manipulating tensors in
Section 4.1 were now used in Virta et al. (2017b) to show that, under Assump-
tion T5 below, the eigenvectors of C,, fulfill the conditions of Lemma 6 and
the resulting method of solving the tensorial IC model is called TFOBI. The
corresponding m-mode IC functionals are given in the next definition.

Assumption T5. For each m € {1,...,r}, the elements of K(;,,)(%) are dis-
tinct.
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Definition 10. Fiz m € {1,...,r} and let X € RP1***Pr Then the m-
mode FOBI-functional is TX = TE(X) = V,,,2,1/2(X) € RP»*Pm where the
rotation functional V,, = (vy,..., 'vpm)T € UPm*Pm contains the eigenvectors

of the matriz
1
G (X)) = (Kostm) Xy Koty X)) = 74 (0m + 2,
m

as its rows in decreasing order according to the corresponding eigenvalues, where
T is as in (4.3).

Even though 7 in Definition 10 is an unknown constant there is no need to
estimate it as its value does not affect the obtained eigenvectors or their order
of extraction in any way.

Comparison between the tensorial and vectorial versions of FOBI now in-
stantly reveals benefits of the former over the latter. First, assume an rth order
tensor X € RP**P coming from the tensorial IC model. Then, computing the
r m-mode IC functionals requires a total of 2r eigendecompositions of p x p
matrices whereas vectorizing and computing the FOBI IC functional requires 2
eigendecompositions of p” x p” matrices, making the effect of the order r on the
computational complexity additive for the tensorial FOBI and multiplicative for
the vectorial FOBI. Second, Assumption T5 is a direct tensorial extension of
Assumption V5 and the two share the same relationship as Assumptions T3 and
V3: again the tensorial version of FOBI gives more freedom for the distributions
of the individual components of Z than the regular FOBI.

However, despite its success over vectorial FOBI, we can still do better than
tensorial FOBI by again considering all p2, m-mode cumulant matrices (4.4) in
all modes. Plugging in the standardized tensors Xy, Virta et al. (2017¢) showed
that the unknown orthogonal matrices Uy, .-, U, diagonalize all cumulant
matrices of the respective modes,

p"n,
CY (Xy) =7"Up, (Z U(m)iku(m)jkﬁ(m)kEkk> U,
k=1

where (u(m)r) are the elements of U,,,, m € {1,...,r}. This instantly prompts
us to define the tensorial JADE as the joint diagonalization of the cumulant
matrices (4.4) in each mode.

Definition 11. Fiz m € {1,...,r} and let X € RP**"*Pr. Then the m-
mode JADE-functional is T'), = T (X) = V,,2;1/%(X) € RP»*Pm where the
rotation functional V,, = (vi,..., v, )1 € UPmXPm is the joint diagonalizer of
the set of matrices,

{ChXa) |5 €{l...pm}},
where
Ci(Xy) = pimE (Xst(m)X:t(m)-Einst(m)XZt(m))
— 0 (Xst) (pm B + B + 0451,,,) S (Xsr) T
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Contrary to tensorial FOBI, in Definition 11 the unknown scalar 7 needs to
be estimated and natural estimators for its square are the m-mode covariance
matrices, X,,(Xs:) = 721, m € {1,...,r}.

Virta et al. (2017¢) showed that under Assumption T4 the joint diagonal-
ization indeed extracts the independent components and the obtained method
is called TJADE. To show that T', is a true m-mode IC functional in the sense
of Lemma 6 we need to adopt Assumption T4 below and the proof then exactly
mimics the corresponding steps for the JADE functional, see Section 3.6.

Assumption T4. For each m € {1,...,7}, at most one element of K(n) is
zero.

The comparisons made earlier between the assumptions of vectorial FOBI
and tensorial FOBI hold exactly analogously between the assumptions of vec-
torial JADE and tensorial JADE.

Finally, Definitions 10 and 11 allow for a straightforward but tedious cal-
culation of the limiting distributions of the corresponding sample estimates via
Lemma 2 in Miettinen et al. (2015). This was done in Virta et al. (2017b,c)
and the following two theorems again describe one specific aspect of the limiting
distributions, the limiting variances of the off-diagonal elements of the function-
als. Notice that due to the limitations concerning the equivariance properties of
tensorial functionals discussed in Sections 4.4 and 4.5 the next results generalize
only to orthogonal mixing matrices.

Theorem 5. Fixm € {1,...,r}, let Xy,...,X,, be a random sample having
finite eighth moments from a tensorial IC model satisfying Assumption T5 and
let @ = 1,,...,9Q, = I, . Then there exists a sequence of m-mode FOBI
functionals TE such that /n{vec(TE — I, )} ~ Np,.2(0y2 ,®,,) where the
diagonal elements ASV(Vm k1), k # 1, of ¥, are

B(myk + D)t = Bk + 2otaire (F(myt + 2) + bo
ASV (ymmt) = () i

)

P (R(myk — F(m1)

where by = (pm — T)Emyt — (Pm +8) + 2D(mykr + (Pm — 1)(B(m)k + D).

Theorem 6. Fiz m € {1,...,7}, let X1,...,X,, be a random sample having
finite eighth moments from a tensorial IC model satisfying Assumption T4 and
let 1 = I,,,...,Q = I, . Then there exists a sequence of m-mode JADE

functionals T, such that v/n{vec(T), — I, )} ~ Np,.2(0y2 , W) where the
diagonal elements ASV (V. k1), k # 1, of ¥, are

¢(m)k + 1p(m)l + R?m)l + g(m)k + g(m)l - QR%m)kR?m)lﬁ(m)kl

2
Pm (R%Tn)k + R%m)l)

ASV(ym k) =

)

where Yimyk = Ky @ik = Blyr) 00 Emyk = By (Rmyk + 2)(pm — 1)

The asymptotic variances are again too messy to allow for any analytical
comparisons but we can still compare different estimates using the partial traces
and the results in Section 4.4. These comparisons were done between tensorial
FOBI, tensorial JADE and their vector-valued versions in Virta et al. (2017b,c),
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establishing in particular that the tensor methods’ lack of affine equivariance
is negligible when compared to the effects of vectorization. Finally, to validate
the results, plugging in » = 1,p; = 1 and simplifying reverts the asymptotic
variances in Theorems 5 and 6 to those in Theorems 3 and 4.

Remark 1. Virta et al. (2017b,c) defined also a second set of cumulant matri-
ces CY, yielding alternative FOBI and JADE m-mode functionals to the ones
in Definitions 10 and 11. However, the former is generally asymptotically infe-
rior to I‘,I:L and the latter is asymptotically equivalent to I‘Zz and we have thus
withheld from reviewing them here.
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5 Independent component analysis for
functional data

5.1 Hilbert space theory

Our last topic treats the independent component analysis of multivariate func-
tional data. While functional data analysis can in a sense be seen as statistics
in an infinite-dimensional Euclidean space, the notations between this and the
previous sections are still anything but compatible. Hence in this section we
present yet another, final set of notation. See Conway (2013); Hsing and Eubank
(2015) for a more comprehensive discussion.

Let T be a closed interval on R and let (Ho, (-,)o) be a real, separable
Hilbert space of functions from T to R. The geometry of the space is entirely
determined by the inner product (-, -)g, which induces the corresponding norm,

Ifllo = (f, £)o/?, and the metric, do(f,g) = [|f — gllo, for f,g € Ho. The
previous concepts already provide analogies for several central concepts of mul-
tivariate statistics but some key ones are still missing, most notably matrices,
the generalization of which is given by bounded linear operators. An operator
L : Ho — Ho is said to bounded if the operator norm, ||L||op = inf{M > 0 |
VfeHo: ||Lfllo < M| fllo},is finite, and linear if L(af+g) = aL(f)+ L(g), for
alla € R, f,g € Hp, both familiar properties of matrices. The set of all bounded
linear operators from Hy to Ho is denoted by L(Hy) and forms a Banach space
when equipped with the operator norm || - ||op.

We next introduce analogies of several familiar notions of linear algebra
to linear operators. The identity operator id € L(Hp) leaves any function
unchanged, id f = f, for all f € Hy. Similar to the matrix transpose, every
bounded linear operator has the adjoint operator L* : Hy — Ho determined
uniquely by the relation, (Lf, g)o = (f, L*g)o, for all f,g € Hy. If an operator
satisfies L = L* it is called self-adjoint and if further (Lf, f)o > 0, for all f €
Ho, we say that L is positive semidefinite. A self-adjoint, positive semidefinite
operator L is said to be a trace-class operator if Y ;- (Ley, ex) converges for
some orthonormal basis e, k € N, in which case its trace, tr(L), is defined
as the previous quantity (which is independent of the choice of the basis ey).
If both of the identities, UU* = id and U*U = id, hold for an operator U the
operator is called unitary. Finally, the simplest way of constructing bounded
linear operators is akin to using the vectors a,b to obtain the rank-1 matrix
ab': for every pair of functions, g, h € Hy, the tensor product operator (g®h) :
Ho — Ho acting as (g @ h)f = (h, f)o - g is a bounded linear operator.

To be able to do statistics in Hy we introduce randomness to the space by
briefly returning to the measure-theoretic notions discussed back in Section 2.
Recalling our probability space, (2, F,P), a random function is defined to be
any mapping X : Q — Hy which is F/B-measurable where B is the Borel-
algebra generated by the open sets in Hy with respect to the induced metric dj.
To aid visualization, a random sample of simulated functional data is depicted
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x(t)

Figure 5.1: A random sample of n = 40 functions from a particular distribution.

in Figure 5.1. Similarly, a random operator is defined as any mapping X : Q —
L(Ho) which is F/Bop-measurable where Bop is the Borel-algebra generated
by the open sets in L(Hg) with respect to the metric induced by the operator
norm.

The Riesz representation theorem can next be used to define expected val-
ues for both random functions and operators. If the random function X is
bounded in the sense that E(||X||o) < oo, then there exists a unique func-
tion pu € Hp such that E((X, f)o) = (i, f)o, for all f € H, and we define
E(X) = p. Analogously, if the random operator W is bounded in the sense that
E(||[Wllop) < oo, then there exists a unique bounded linear operator T such
that E(W £, g)o) = (Y f, g)o, for all f,g € Hy and we again define E(W) = T.

With the tensor product and the expected values at hand, we are now
equipped to quantify variation in functional spaces. Assuming that the ran-
dom function X is centered, i.e. E(X) = 0, and has finite second moments,
E(||X||3) < oo, the covariance operator of X is the self-adjoint, positive semidef-
inite, trace class operator 3(X) = E(X ® X). Like its multivariate counterpart,
also the covariance operator can be shown to admit an eigendecomposition:
Y(X) = D Me(on @ ¢r) where A\, = (S, dr)o, k € Ny, are the non-
negative eigenvalues in decreasing order and the eigenvectors ¢, k € N, form
an orthonormal basis of Hg, that is, (dx, d1)o = dk;. The concept of functional
principal component analysis would now naturally follow but we will postpone
its discussion to Section 5.2 where we also review other models for functional
data.

From this point onwards, we abandon the familiar course of presentation
used in the previous two parts of the summary. Infinite-dimensional data fun-
damentally differs from the finite-dimensional in various important aspects and
this means that generalizations of some everyday objects from multivariate
statistics to Ho are sometimes very difficult to obtain. For example, inverses of
operators can be rather ill-behaved in Hy and as a consequence the standard-
ization of random variables is not feasible in the usual sense, an issue we discuss
closer in Section 5.3. However, we will still review the related methodology and
models insofar as they exist.
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5.2 Functional data models

Whereas in finite-dimensional setting the different classes of methods were uni-
fied through their connection to the location-scatter and normal models this
no longer holds for functional data and the extensions of the previous models
are of a more disconnected variety. We assume in the following, without loss
of generality, that all random functions X are centered, E(X) = 0, and begin
by describing Gaussian random elements in Hg, the functional version of the
normal distribution.

A random function X is said to be Gaussian if (X, f)¢ is normally dis-
tributed for all f € H, (Lifshits, 2012). As an immediate consequence, any
finite tuple ((X, f1)o,..., (X, fp)o) has a multivariate normal distribution by
the Cramér-Wold device. Any Gaussian function X in H is square integrable,
E(||X||?) < oo, and furthermore the distribution of a zero-mean Gaussian ran-
dom function X is uniquely determined by its covariance operator 3 (X). How-
ever, contrary to the finite-dimensional Euclidean spaces, not every self-adjoint,
positive semidefinite operator L € L(Ho) defines a Gaussian distribution. A
counterexample is given by the simplest bounded linear operator, the identity
operator id. A heuristic reason for this is that the sequence of eigenvalues of
any bounded, self-adjoint, positive semidefinite operator must converge to zero,
something id with its infinite sequence of unit eigenvalues fails to do. If Hy is a
reproducing kernel Hilbert space (Paulsen and Raghupathi, 2016), meaning that
point evaluation is representable for all t € T as f(t) = (f, g¢), for some g; € Ho,
any finite collection of time points, X (¢1),..., X (tm), has a joint Gaussian dis-
tribution. The resulting Gaussian functions are in stochastic analysis generally
called Gaussian processes and some classes of covariance functions commonly
used with Gaussian processes include the set of squared exponential covariance
functions and the set of Matern covariance functions (Rasmussen and Williams,
2006).

A classical method of functional data analysis which behaves particularly
well for Gaussian functions is functional principal component analysis (FPCA),
better known under the name of Karhunen-Loeéve expansion, see Bosq (2012).
Assume that the covariance operator of the random function X has the eigen-
decomposition X(X) = Y22, Au(dr @ ¢x). As the eigenvectors form an or-
thonormal basis of H, the identity operator id : Hy — Ho can be written as
id =Y 72, (¢x ® ¢x), and we have the representation X = > 72 (¢r, X)odr. As
in the multivariate case, the “principal components” my = {¢x, X)o are uncor-
related and have the corresponding eigenvalues as their variances, E(mgm;) =
OgiAk- If X is now a Gaussian function, our previous derivations reveal that the
principal components my, are independent N (0, \g)-distributed random vari-
ables and dimension reduction into a finite sub-space of Hy can be carried out
by truncating the expansion at a chosen value of k. Numerous extensions of
FPCA and the Karhunen-Loeéve expansion have been proposed over the years,
see Yao et al. (2005); Ramsay and Silverman (2006); Bali et al. (2011).

As we saw earlier, id is not a feasible covariance operator in Hg and con-
sequently pursuing functional elliptical and independent component models via
the generalization of the properties of a “standardized” Gaussian function will
not work. However some tricks can be used to arrive at extensions of familiar
models, such as the elliptical functional models considered in Bali and Boente
(2009); Boente et al. (2014). A random function X is said to have an ellip-
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tical distribution with parameters p € Ho and ¥ € L(Hp), where ¥ is self-
adjoint, positive semidefinite, compact operator, if for any bounded linear op-
erator A : Hy — R? the random vector AX is elliptically distributed with the
parameters Ay and A¥XA*. Essentially, a random function is elliptical if all its
finite-dimensional reductions are. The resulting class of elliptical random func-
tions shares many of the properties of its finite-dimensional cousin: if the mean
and covariance operator of an elliptical function exist they equal respectively p
and pY, for some p > 0; the conditional expectations of finite-dimensional pro-
jections of elliptical functions admit simple expressions and the class of elliptical
functions is a superset of the set of Gaussian functions.

In addition to PCA, the recent years have seen a wide range of classical mul-
tivariate methods being extended to functional data, including non-parametric
methods (Yao et al., 2005; Ferraty and Vieu, 2006), linear modelling (Ramsay
and Silverman, 2006; Horvath and Kokoszka, 2012), canonical correlation (He
et al., 2004; Ramsay and Silverman, 2006; Hsing and Eubank, 2015) and suf-
ficient dimension reduction (Ferré and Yao, 2003, 2005; Hsing and Ren, 2009).
In practice, the application of all the previous methods to observed data re-
quires one intermediate step: as we can never observe anything truly infinite-
dimensional, the obtained discrete data points need to be smoothed into func-
tions by fitting them into an appropriate, (finite-dimensional) functional basis.
Excellent account of smoothing can be found, for example, in Ramsay and Sil-
verman (2006) and consequently we will refrain from discussing it here.

Finally, also our main topic has received its functional counterpart. In Li
et al. (2015) a functional version of independent component analysis was devel-
oped and due to its close connection to the multivarite functional ICA of Virta
et al. (2017a) we will devote the next section to it.

5.3 Functional ICA

A first hurdle in defining independent component analysis in spaces of infinite
dimension is given by the concept of independence itself. A random function X
does not per se consist of any distinct components we could consider as inde-
pendent and the independence must somehow be contained within the function
itself. Along these lines Li et al. (2015) defined a random function X to be in-
dependent if its coordinates (X, ¢r)o, k € N, with respect to some particular
predefined basis ¢y, k € N, of Hg define a set of independent random variables.
An infinite collection of random variables is said to be independent if all of its
finite subsets consist of mutually independent random variables. The same def-
inition for the independence of X is used also by Gutch and Theis (2012) who
in addition require that the orthogonal projection to any subspace spanned by a
subset of the basis is independent with the projection to the complement of the
subspace. A key question is then the determination of the basis ¢y, all following
results greatly depending on the choice. In a finite Euclidean space a natural
candidate is the corresponding canonical basis but no such concept exists for
general Hilbert spaces. The choice of Li et al. (2015) is to use an eigenbasis of
the covariance operator of X as this canonical basis and consequently they are
able to define the functional IC model.

Definition 12. Let X be a random element in Ho with E(||X||3) < oo and let
ok, k € Ny, be an eigenbasis of X(X). Then we say that X obeys the functional
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independent component model if there exists an operator I' € L(Hy) such that
I'X has independent components with respect to the basis ¢.

As the simplest IC method, FOBI seems again like the most reasonable start-
ing point for functional generalization but additional obstacles are encountered
already at the first step of the procedure, the standardization: a standardized
function would need to have the identity operator as its covariance operator,
something we already deemed impossible. As the standardization is an integral
part of FOBI and required in the subsequent step, Li et al. (2015) bypass this
barrier by assuming that the unmixing operator I" in Definition 12 is of a very
specific form. Namely, they require that for some fixed d, the operator I' acts
only on a subspace spanned by the d first basis vectors ¢y, effectively reduc-
ing the separation problem from infinite- to finite-dimensional. If we denote
Mg = span(¢q,...,dq) and let P; and Qg4 be respectively the projections onto
the span and its orthogonal complement, the assumption can be written as

I' = PJAP; + Qq, (5.1)

for some bounded linear operator A € L(Hp). In the following this form of
the model will be called a d-dimensional functional IC (d-FIC) model and the
dimension d is henceforth assumed to be fixed.

One way to motivate the simplification is via Gaussian functions; the mutu-
ally independent principal components my1, mg12, ... in the Karhunen-Loeve
expansion of the simplified model behave as if the original function was Gaus-
sian. As normal distribution is a common choice for the distribution of errors in
classical models, the previous allows us to consider the tail of the expansion as
noise and the subspace M, as the “signal subspace”. Similar problems involv-
ing standardization in functional spaces have been solved using, for example,
regularization (Li and Song, 2017). Let next X(9 = P;X and Z® = P,;Z be
the projections of the observed and latent function into the signal subspace, to
which we may without loss of generality restrict ourselves.

To solve the functional IC model it is thus sufficient to find any operator I" €
L(Ho) such that T X (@ has independent components. However, we again require
some additional structure from the estimators, as put forth in the following
definition.

Definition 13. The functional T' : D — L(Myg) is a d-dimensional functional
independent component (d-FIC) functional if, for all XD coming from a d-FIC
model, we have,

i) T(X XD has independent components and

i) T(XNXD = D(AXDYAXD for all invertible linear operators A €
L(Ho)

Definition 13 clearly parallels Definitions 2 and 9 but with one important
distinction: the invariance property rests entirely on the assumption that the
d-FIC model is accurate. In particular, the invariance is unlikely to hold in any
practical situation, a price we have to pay for moving the concepts of ICA to
the infinite-dimensional spaces.

Having solved the main issue caused by the infinite dimensionality of the
space, Li et al. (2015) next defined a functional counterpart for the FOBI-matrix
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using the tensor product,
BX)=E{(X®X)XeX)}=E{|X[§(X®X)},

and showed that it exists and has an eigendecomposition under the assumption
of finite fourth moments, E(||X||*) < co. The pair of operators, ¥(X), B(X),
now shares many of the properties (equivariance, positive semidefiniteness) of
their multivariate progenitors, not the least of which is the ability to solve the
functional IC model. Standardization being now possible, Li et al. (2015) proved
that,

S(X )12 x@ = gx(z@)=1/2 7D (5.2)

for some unitary operator U € L(Hy), showing that also now standardization
solves the first half of the problem. By %(X()~1/2 we refer to any inverse
square root of the covariance operator (X (d)) and as we did not make any
identifiability constraints on Z also %(Z(?)~1/2 appears in the formula con-
trary to (3.5) and (4.3). We denote the standardized function in the following
by X' = (X (@)=1/2X(@) and it naturally satisfies $(X ) = P,, where the
projection operator Py is equivalent to the identity operator inside My. Ap-
proaching then the second part (“rotation”) via fourth moments as in regular
FOBI yields fruitful results and goes to show that the FOBI-methodology seems
to know no limits in its areas of application. We define next the corresponding
functional IC functional.

Definition 14. Let X come from a d-FIC model with the covariance opera-
tor eigenbasis ¢y, k € Ni. Then the functional FOBI-functional is TTF =
HY(XD)=1/2 ywhere H = Eizl(qbk ® i) and Y, k € {1,...,d}, are the
eigenvectors of the FOBI-operator,

d
BXS) =" m(vn @ ).
k=1

Contrary to our earlier IC functionals the current unorthodox relationship of
the model with the eigenbasis of the covariance operator forces us to define the
IC functional in Definition (17) only for data coming from the corresponding IC
model. The functional FOBI-functional can be shown to be a d-FIC functional
under the following, familiar-looking assumption.

Assumption F1. The excess kurtoses E((Z,¢x)) — 3, k € {1,...,d}, are
distinct.

To apply the above methods to extract the independent components from a
functional data sample assumed to obey the d-FIC model, a coordinate repre-
sentation of the above was developed in Li et al. (2015), essentially translating
the whole procedure into the form of linear algebra.

Other excursions into the functional realm from the viewpoint of ICA in-
clude: Gutch and Theis (2012) who discuss conditions for the identifability
of the infinite-dimensional IC model, Renddn et al. (2014) who defined kur-
tosis for functional data and used it for clustering and Virta et al. (2017a)
who developed a framework for conducting independent component analysis for
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multivariate functional data. The multivariate functional setting is in a sense a
more logical choice for functional ICA than the univariate one as the concept
of independence is in the former naturally defined as a property between the
component functions. However, this freedom comes at the price of compromis-
ing the identifiability of the corresponding IC model. This and other aspects of
the multivariate ICA methodology will be the topics of our final section.

5.4 Multivariate functional ICA

Multivariate functional data

Before moving on to the multivariate functional IC model we first describe the

concept of multivariate functional data itself. Let H = Hg X ... X Hg be a
p-variate functional space with identical component spaces Hy as described in
Section 5.1. The elements of H are multivariate functions f = (f1,... f,) from

the interval T to RP. In practice a sample of multivariate functional data looks
very much as the univariate functional sample in Figure 5.1, only that now we
have p such curves for each individual. Now, H is as a direct sum of Hilbert
spaces itself a Hilbert space, meaning that everything we wrote in Section 5.1
holds for multivariate functional data as well. However, we next introduce via
the choice of inner product and linear operators some additional structure to H
that ties its properties closely to those of its component spaces.

First, the geometry of the space is inherited from the component spaces by
defining the inner product as (f,g) = Z§=1<fj,gj>0, for all f = (f1,..., /),
9 = (91,---,9p) € H. The induced norm then satisfies | f[> = >°7_, [If;/3.
Our collection of bounded linear operators is likewise defined via the operators
of the component spaces: the set L(H) consists of all operators from H to H
which act as f — (3°7_) L fj, ..., 25— Ly; f;) for some collection of bounded
linear operators {L;; € L(Ho) | 4,5 € {1,...,p}}. The action resembles closely
ordinary matrix multiplication and, indeed, if we represent the operator as

the mapping f — Lf can be carried out using the rules for matrix multiplica-
tion. Basic functional analysis can be used to show that any operator in £(H)
is bounded and linear. Two natural subclasses of £(H) stand out: unitary op-
erators U which satisfy > 7_, Uy U = &;5 - id, for all 4,5 € {1,...,p}, and
diagonal operators L for which L;; = 0 for all ¢ # j.

Despite the current surge of interest in functional data, multivariate func-
tional data has received considerably less attention in the literature. Multi-
variate functional PCA has been considered in Ramsay and Silverman (2006);
Berrendero et al. (2011); Sato (2013); Chiou et al. (2014); Jacques and Preda
(2014); Happ and Greven (2016), multivariate functional clustering in Tokushige
et al. (2007); Kayano et al. (2010); Ieva et al. (2011); Jacques and Preda (2014),
multivariate functional sufficient dimension reduction in Li and Song (2017) and,
finally, multivariate independent component analysis in Virta et al. (2017a), the
methodology of which we review next.
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Multivariate functional IC model

Call the component functions of X = (X3,...,X,) independent if for all mea-
surable mappings g1, ..., g, : Ho — R the vector (g1(X1),...,9,(Xp)) € RP of
real-valued random variables has independent components. The multivariate
functional IC model can then be defined without reference to any basis.

Definition 15. Let X be a random function in H. Then we say that X obeys the
multivariate functional independent component model if there exists an operator
I' € L(H) such that the component functions of T'X are independent.

The lack of the eigenbasis of the covariance operator in Definition 15 means
that we also avoid the need for any moment assumptions on X. Yet, such
freedom is only temporary as again attempting to fit any analogue of standard-
ization into the model leads into problems. Before that, however, we discuss a
more pressing matter. The independence of the component functions of Z is
naturally preserved under any map Z — DZ where D € L(H) is a diagonal
operator. Thus, we can only hope to estimate the independent components up
to transformations by some arbitrary linear operators and the recovering of the
“original” components in any form cannot be guaranteed without strong addi-
tional assumptions on the model. However, this non-uniqueness sounds more
adverse than it actually is in practice and Virta et al. (2017a) showed that
various practical uses and interpretations can still be given to the extracted
components.

The same restriction as in Li et al. (2015) was used also in Virta et al. (2017a)
to solve issue with the standardization. That is, let the covariance operator of
the observed multivariate random function X = (X3, ..., X,) be the matrix of
operators,

E(X;®X;) - BE(X;®X),)
S(X)=E(X®X)= : :
E(XP®X1) E(X1>®Xp)

The same arguments as in the univariate case show that ¥(X) is adjoint, pos-
itive semidefinite, trace-class operator and admits a spectral decomposition,
Y req Ak(¢r @ ¢i) where the eigenvalues A, are in a decreasing order. Letting
again My = span(oy, ..., ¢q) for some fixed d, we assume that I’ in Definition
15 is of the form (5.1) for some A € L(Mg), where P; and Qg are again respec-
tively the projections onto M, and its orthogonal complement. If a random
function X € H obeys such a model for some fixed d, we say that X follows a
d-dimensional multivariate functional independent component (d-MFIC) model.

The definition of a solution of the simplified IC model is given next in the
form of a functional, where once again we have been obliged to modify our
expectations of an IC functional to best suit the particular model and form of
the data.

Definition 16. The functional T : D — L(Myg) is a d-dimensional multivariate
functional independent component (d-MFIC) functional if, for all X coming
from a d-FIC model, we have,

i) T(XNXD can be divided into subvectors of functions so that each sub-
vector corresponds to exactly one of the components of Z and is indepen-
dent with the remaining p — 1.
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The change in the first condition over the univariate functional IC functional
in Definition 13 is caused by the interplay of the two conflicting forms of “di-
mensionality”, p and d. Namely, if d < p then we clearly cannot estimate all p
component functions and if d > p some of the estimated components must nec-
essarily correspond to the same component of Z. Based on this a rule of thumb
d = p was advocated in Virta et al. (2017a). Furthermore, we have completely
dispensed with any invariance or equivariance of the functionals as the second
of our two primary estimators for the model does not admit such properties.
However, this is only an aesthetic setback as the property i) was in Definition
13 in any case completely theoretical and said nothing about the application of
the methodology to real data.

Finally, it is not too much of a surprise to see that after the restriction to the
finite-dimensional model, standardization by (X (%)) leaves us a unitary trans-
formation away from our objective. Namely, if we again denote by X(X(4)~1/2
an inverse square root of 3(X(9), we have,

E(x(d))—lﬂX(d) - UE(Z(d))_l/QZ(d),

for some unitary U € L(H). The estimation of the missing U is then our final
task, something Virta et al. (2017a) achieved by generalizing both FOBI and
JADE to multivariate functional data.

Multivariate functional FOBI and JADE

For our final extensions of FOBI and JADE we still require another set of
“cumulant matrices”, this time in the form of linear operators in My . In some
sense the canonical basis of the space is {11, ..., ¢4} and mimicking the formula
for (3.7) prompts us to define,

CY(X) = E{(X, ¢i)(X, ¢5) (X @ X)} — E{(X, $:)(X", ¢5) (X ® X)} (5.3)
— E{(X,0:) (X7, 0j) (X* © X)} = E{(X, ¢:) (X, ¢5) (X" ® X7)},

where X is an independent copy of X and the assumption of finite fourth mo-
ments, E(]|X||*) < oo, is sufficient for the existence of the operators. Again the
extensions have no other motivation than analogy and once more that turns to
be enough. Our interest lies with standardized random functions X, satisfying
Y(X) = Pj, and for any such function simplifying (5.3) reveals the familiar
form,

CY(X) =E{(X,0:)(X,0;) (X ® X)} — ¢; ® o; — ¢; @ ¢; — bij - Pa.

Further substituting X = UZ, where U is unitary and Z = (Z3,...,Z,) has
independent component functions, to the previous yields C%(UZ) = UDYU*
for some diagonal operator D% = D% (U Z), the exact form of which is given in
Virta et al. (2017a). This implies that the missing unitary operator once again
“diagonalizes” all operators C%(X,;), soon leading us to yet another forms of
FOBI and JADE. However, one needs to remember that we are currently playing
with two clashing forms of diagonality, the algebraic diagonality in the sense of
spectral decompositions and the physical diagonality in the sense of diagonal
operators. The operators D% belong to the latter group and to be able to use
spectral decompositions of the cumulant operators to extract U Virta et al.
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(2017a) introduced a connection between the two identically named concepts.
To avoid overt repetition we refrain from paraphrasing their results here and
simply state later the assumptions which are required for the connections to
hold. Note that for Euclidean spaces these problems are averted as the two
forms of diagonality exactly coincide.

The corresponding multivariate functional FOBI-operator for a standardized
function X also has a recognizable structure,

CX)=E{(X®X)(X@X)}-(d+2)- Py,

and is easily shown to satisfy C(UX) = UC(X)U* for any unitary U and
standardized X. Based on our earlier discussion C'(Z) is a diagonal operator
and the spectral decomposition of the FOBI-operator proves sufficient grounds
for defining the next IC functional.

Definition 17. Let X come from a d-MFIC model with the covariance operator
eigenbasis ¢, k € Ni. Then the multivariate functional FOBI-functional is
TMPF — g X(D)=1/2 where H is the linear operator with the action,

[ (Bi(r@Y0)f, . E1(Ya @ va) f),

forall f = (f1,... fp) € Mg where Ey : Mg — Ho is a linear operator (projec-
tion) that “picks” the first component of a multivariate function, Erf = f1 and

Vi, k€ {1,...,d}, are the eigenvectors of the FOBI-operator C(Xg)).

The multivariate functional FOBI-functional was shown to be a d-MFIC
functional in Virta et al. (2017a) under Assumption M1 below. Additionally, it
could be shown to be affine equivariant under the d-MFIC-model using analo-
gous arguments to Li et al. (2015).

Assumption M1. The eigenvalues of C(Zs(f)) are distinct.

Sadly, no simple interpretations for the assumption through, e.g, “functional
kurtosis” can be given.

The peculiar form of the FOBI functional stems from the identifiability
problems discussed after the introduction of the model in Definition 12. Ev-
ery projection (1 ® ¢k)X.§Zl)7 k € {1,...,d}, onto an eigenvector defines a
full p-variate random function in a 1-dimensional space where the only depen-
dence on the independent components is through the inner products (¥, X)),
k e {1,...,d}, each of which corresponds to exactly one latent function X;.
Thus the actual functional forms of the projections tell us nothing about the
independent components and Virta et al. (2017a) actually equated the solution
of the model with this d-vector of inner products. For the same reason the
choice of the projection Fj in Definition 15 is completely arbitrary and any
other coordinate projection, F»,..., E,, could have been used as well.

Moving on to our extension of JADE, one thing we are still missing is a way
to combine the information in the cumulant operators C*. We thus need a
concept of joint diagonalizer (understood in the spectral sense) for self-adjoint
linear operators. Mimicking the standard finite-dimensional definition (3.9)
Virta et al. (2017a) defined the joint diagonalizer of the set of operators in
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Mg, § = {S; € LMy) | j € {1,...,m}} to be the orthonormal basis ¥,
ke {1,...,d}, of My that maximizes the objective function,

m d
w(q/}h'"aﬂ}d :ZZka;d)k . (54)

j=1k=1
With that, the definition of the JADE functional now easily follows.

Definition 18. Let X come from a d-MFIC model with the covariance opera-
tor eigenbasis ¢r, k € No. Then the multivariate functional JADE-functional
is TMFJ = H(X(D)=1/2 where H and Ey are as in Definition 17 but the
functions Yy, k € {1,...,d}, now constitute the joint diagonalizer of the set

c={cixtP) i je1,....d}}.

To show the Fisher consistency of I'™F7/  we again need some connection
between the spectral diagonalization offered by the joint diagonalization in (5.4)
and the physical diagonality of the operators D%, and, indeed, under two tech-
nical conditions (Virta et al., 2017a) this is achieved and the multivariate func-
tional JADE-functional is a d-MFIC functional.

After having extracted the independent components in the form of the inner
products using either FOBI or JADE one issue still remains: how to deter-
mine which inner products correspond to the same independent component. In
practice this has little bearing as the value of the components is most likely
assessed by their usefulness in subsequent analyses. However, if some grouping
is desired, similar devices to those used in Nordhausen and Oja (2011) in the
context of independent subspace analysis (ISA) (Cardoso, 1998) could prove
useful in our case as well. ISA can be seen as ICA for block vectors and as
such is actually a finite-dimensional analogue for our current problem. Again
coordinate representation of the methods can be devised, using which smoothed
observed functional data can be subjected to the two methods.

Finally, our proven form of presentation naturally begs for asymptotical re-
sults for the functional IC methods too, but due to the current nonexistence of
such results and the general difficulty of moving limiting results from multivari-
ate to functional data we choose to stop here.
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6 Discussion

We end with a short section collecting various directions for future research. As
both tensorial and functional ICA are still emerging fields much work remains
to be done. The presented extensions of FOBI and JADE serve well as pre-
liminary excursions to the topic but if any of the intuition from vector-valued
ICA carries over, better estimators are to be expected. Especially linear ICA
methods are likely to have natural extensions in both cases, see for example the
various forms of group ICA (Calhoun et al., 2009) which, while already targeted
to tensor-valued data, rely typically on vectorization. Of special interest is also
the extension of projection pursuit to the two discussed forms of non-standard
data, especially in the light of Theorem 4 showing that SPP reaches the lim-
iting efficiency of JADE with a lighter computational load. Some preliminary
calculations already show that the same relationship holds with TJADE and
tensorial PP when we define the latter as search for directions u maximizing
the “tensorial kurtosis”, E{(uTX(m)XErm)u)Q}. Replacing then the square with
any smooth enough function g would give us a general-purpose “tensorial Fas-
tICA”. Similarly, projection pursuit in the case of univariate functional data is
very straightforwardly postulated and will most likely lead into applying stan-
dard FastICA to the vector of functional principal component coefficients.

A major shortcoming of all the presented methods and the key issue pre-
venting their large-scale application in practice is the lack of tools for dimension
estimation. To reliably reduce the dimension of tensorial or functional obser-
vations a systematic procedure for determining the “correct” dimensionality of
the latent tensors and functions is called for and the asymptotic and bootstrap-
ping schemes developed in Nordhausen et al. (2016, 2017a) for vector-valued
dimension reduction will likely provide a valuable starting point for hypothesis
testing in the former case, assuming normally distributed noise. Similarly the
general order determination technique of Luo and Li (2016) allowing the esti-
mation of the rank of any scatter matrix estimate could be used for the same
purpose. Assuming still Gaussian noise, for univariate functional ICA testing
for the dimension is equivalent to testing whether the “tail” of the observed
function is a Gaussian process. A naive example test is obtained by choosing
multiple subsets of the tail coordinates with different cardinality and conducting
a multivariate test of normality for each.

Third interesting prospect is the studying of the connection between the
statistical tensor methods’ and the traditional tensor decompositions discussed
in Section 4.2. Practically any tensor decomposition can be used to define a di-
mension reduction method by leaving the mode corresponding to the identically
and independently distributed sample uncompressed and if the resulting meth-
ods are subjected to careful scrutiny, many interesting connections to statistical
methodology are bound to be revealed.
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Appendix

Proof of Lemma 1. Without loss of generality we assume that all considered
roots of positive-definite matrices are selected to be the unique positive-definite
choice. Assume first that the conditions of Definition 2 hold for I'. Then for
any z € R? with independent components we have, V(zy) = I'(2)X(z)/? =
' {X(z)"1/22}%(z)"1/?2(2)'/? = I, where the first equivalence uses condi-
tion 4) of Definition 2 and the second equivalence condition ). Similarly, for
arbitrary x € RP and U € UP*P we have,

V(Uxy) = V{UZ(x)"/2UTUx} = V{Z(Ux)"/?Ux} = V{(Ux)q}.

Consequently, by the form of the functional, V{Ux,,} = T'(Ux)Z(Ux)'/? =
I'x)U'UZ(x)/?2U" = D(x)E(x)/2U" = V(x4)U", where the first equiva-
lence uses condition i) of Definition 2.

Assume then that the two conditions of Lemma 1 hold. Then for any stan-
dardized z € RP with independent components, I'(z) = V(zy)X(z) /% =
V(zs:) = I, where the second equality holds as 3(z) = I and the equivalence
uses condition 4) of Lemma 1. Finally, for arbitrary x € RP and A € RP*?P we
have, T'(Ax) = V((Ax)s)X(Ax)~ /2. By Ilmonen et al. (2012) Z(Ax)~/2 =
WX (x)"/2A 7", where the orthogonal matrix W € UP*? is chosen so that the
inverse root is symmetric. This in turn implies that (Ax)s = Wx, and we
have T'(Ax) = V(Wxy)WX(x)"/2A7! = I'(x)A™" where the equivalence
follows from the condition i) of Lemma 1. O

Proof of Lemma 4. Starting from the left-hand side of the claim we have,

P

Cm, vkz {kalcm (=1) } Z (1) 2 (21),

where vg; is the [th element of vy, the equality uses properties 2 and 3 from
Lemma 3 and the inequality uses Cauchy-Schwarz to the partition v}, (2) =
{om v tem(21)}. By our assumptions vy = 0, for 1 < I < k — 1, and
em(21)? < em(z)?, for k <1 < p. Using these, we get

P P
(v z) Z 2(m—1) A (z) < (z) Zvi(m_l) < (z1) Zv%l < (z),
=k I=k

where the second-to-last inequality uses the bound, U2(m - vklvil(m_z) < v,%l
and the last inequality the unit length of vy.

Now, plugging in v, = +e; for some I € {k,...,p} with {c, (zl)}2 =
{cm (2£)}? instantly reveals that equality holds. The converse is seen to be
true by checking what is implied if the second-to-last inequality above actually
preserves equality. In that case we must have ¢2,(z;) >0, U,%l(l — vil(m 2)) =0,
all terms and factors of which are non-negative. Thus either c2,(z;) = 0 or, for
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alll € {k,...,p}, vy € {~1,0,1}. As k < p we cannot have c2 (z;) = 0 and
thus by the unit length constraint v, = +e; for some I € {k,...,p}. Assume
then that the whole chain of inequalities preserves equality. Then both the
previous must hold and the second inequality in the chain must preserve equal-
ity. This implies that ¢2,(2;) = c2,(zx) for the same | € {k,...,p} for which
v = £e; holds, showing that the postulated condition is not just sufficient but
also necessary for the equality.

O
Proof of Lemma 5. As in the proof of Lemma 4 we have,
P I 2 P
Dem (vin) =3 4> vliem(z) o <303 0" Ve ()
k=1 k=1 Ui=1 k=1 1=1
Using again the upper bound, vil(mfl) < v}, now gives the desired inequality.

Straightforward substitution V' = PJ, where P € PP and J € J? are
arbitrary, next reveals that the equality is preserved in this case. To show the
converse we observe exactly when the application of the bound vil(m_l) < vil

preserves equality: for all k we must have Y}, vil(m_l)cfn(zl) =30 v ()

which is equivalent to requiring Y 7_, vZ,c2, (2;)(1 — vigm_m). All factors in the
terms of the previous sum are non-negative and thus if equality is reached
then we have for all pairs (k,[) either ¢2, (z;) = 0 or vy, € {—1,0,1}. By our
assumption at most one of the cumulants is zero so at least p — 1 columns of
V' consist entirely of the elements —1,0,1. As Vs orthogonal each of these
columns must then contain exactly one +1 and rest of the entries must be zero,
meaning that to achieve orthogonality also the final column must be of the same
form. Thus V' = PJ and we have shown this to be both a sufficient and a
necessary condition for equality.

O

Proof of Lemma 6. The proof is similar to that of Lemma 1. Assume first that
the conditions of Definition 9 hold. Then, for any X coming from the tensorial
IC model with diagonal mixing D,,,, m € {1,...,r}, we have,

Vir () = (D) Z (02 £ D4 (7, D2) V2 21, =1

m Pm

where the first equivalence uses condition 4) from Definition 9 and a result
from Virta et al. (2017b) that under arbitrary mixing X,,(X) « Q,,Q . The

m*
final equivalence = must hold because both V,,(X,;) and I, are orthogonal

matrices and thus have fixed scale. Assuming then an arbitrary tensor X and
orthogonal matrices Uy, ..., U,, we have,

VM(xst X:n:l Um) = Vm{x X:n:l (U7n2m(x)71/2U;Um)}
= Vm[x X;zzl {Em(x X:nzl Um)_1/2Um}]
= Vm{(x X;L:l Um)st}
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where we have used the same trick as in the proof of Lemma 1 along with the
orthogonal equivariance of 3,,. Consequently,

Vi (Xt X1 Up) = T (X X721 Ui ) 200 (X x5,y Um)1/2
=T,,(X)U,} U, 2, (X)"?U]
=V, (X)U]

where the first equivalence uses condition 4) from Definition 9.
Assume then that I',, satisfies the conditions of Lemma 6. Now, for any X
coming from the tensorial IC model,

L (X) = Voo (Xst) B (X)"V2 =V, (72 %7 _, U, V)7, U DU,

where 7,7, € R and we have used the singular value decomposition ,, =
U,,D,,V; along with Lemma 2 and Theorem 2 from Virta et al. (2017b). The
same theorem also shows that 7% = (% x],_; D,,)s and using conditions i)
and i) of Lemma 6 we get,

Tn(X) = 7 Vi {(Z X7 D)t )V, U U, DU
=1, V,,D;'U
ot

Let next the tensor X and the orthogonal Uy, ..., U, be arbitrary. Then, as in
the proof of the second condition of Lemma 6 above,

L (X %71 Um) = Vi {(X X3y U ) st} B (X X7 Um)_1/2
=V (X x5 U U 2,0 (X) 720
=T, (XU, ,

where the equivalence uses condition i) of Lemma 6. O
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Summaries of original publications

I

II

III

v

ICA is well-known for its limitation concerning the number of Gaussian
variables. In Virta et al. (2016b) this constraint is relaxed and the statistical
properties of two types of projection pursuit estimators are derived under
the obtained non-Gaussian ICA model. The efficiency of the estimators can
be divided into two parts: how well they separate the signal from the noise
and how well they separate the individual signals from each other. The two
estimators are shown to be asymptotically equivalent with respect to the
former and simulations are used to investigate their differences with respect
to the latter. A sequential hypothesis test for estimating the dimension of
the signal subspace is also proposed.

Virta et al. (2017b) present the novel concept of tensorial independent com-
ponent analysis, a dimension reduction framework for higher-order data.
An estimator based on the classical fourth-order method FOBI is proposed
and its consistency and limiting distribution are derived under the tenso-
rial independent component model. Simulations and a real data example
reveal that for both finite samples and in the limit the proposed estimator
is superior to the commonly used alternative of vectorization.

An improvement over FOBI in standard independent component analysis
is given by JADE which better utilizes the fourth-order information in
the estimation. Motivated by this, Virta et al. (2017c) present tensorial
JADE and derive its statistical properties under the tensorial independent
component model. Comparisons with both the tensorial FOBI and vectorial
ICA methods show that the previously mentioned relationship between
FOBI and JADE continues to hold also for tensorial random variables.

A popular example of higher order data is given by fMRI-measurements
and in article Virta et al. (2016¢) the methods developed in Virta et al.
(2017b,c) are put to use in the context of simulated noisy fMRI-data. The
results imply that the tensorial ICA model can be used to approximate the
structure of brain image data and that the methods of tensorial ICA can
reliably extract signals from noisy, high-dimensional tensor-valued data.

The growing popularity of functional data has also increased the need for
functional dimension reduction methodology. In Virta et al. (2017a) an
independent component analysis framework is developed for multivariate
functional data. The methodology is again based on the ideas behind FOBI
and JADE and the obtained two estimators are shown to be Fisher consis-
tent under the introduced multivariate functional independent component
model. Both simulations and a real data example reveal that the proposed
estimators surpass functional principal component analysis in efficiency.

53



References

S.-I. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind
signal separation. In Advances in Neural Information Processing Systems,
pages 757763, 1996.

T. W. Anderson. Nonnormal multivariate distributions: Inference based on
elliptically contoured distributions. Technical report, Stanford University,
Department of Statistics, 1992.

M. Arashi. Some theoretical results on tensor elliptical distribution. arXiv
preprint arXiv:1709.00801, 2017.

J. L. Bali and G. Boente. Principal points and elliptical distributions from the
multivariate setting to the functional case. Statistics €& Probability Letters,
79:1858-1865, 2009.

J. L. Bali, G. Boente, D. E. Tyler, and J.-L. Wang. Robust functional principal
components: A projection-pursuit approach. The Annals of Statistics, 39:
2852-2882, 2011.

A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines. A blind
source separation technique using second-order statistics. IEEE Transactions
on Signal Processing, 45:434-444, 1997.

J. R. Berrendero, A. Justel, and M. Svarc. Principal components for multivariate
functional data. Computational Statistics €& Data Analysis, 55:2619-2634,
2011.

P. Billingsley. Probability and measure. John Wiley & Sons, 2008.

G. Blanchard, M. Sugiyama, M. Kawanabe, V. Spokoiny, and K.-R. Miiller.
Non-Gaussian component analysis: A semi-parametric framework for linear
dimension reduction. In Advances in Neural Information Processing Systems,
pages 131-138, 2005.

G. Boente, M. S. Barrera, and D. E. Tyler. A characterization of elliptical distri-
butions and some optimality properties of principal components for functional
data. Journal of Multivariate Analysis, 131:254-264, 2014.

S. Bonhomme and J.-M. Robin. Consistent noisy independent component anal-
ysis. Journal of Econometrics, 149:12-25, 2009.

D. Bosq. Linear processes in function spaces: theory and applications, volume
149. Springer Science & Business Media, 2012.

V. Calhoun, T. Adali, L. K. Hansen, J. Larsen, and J. Pekar. ICA of functional
MRI data: An overview. In Proceedings of the 4th International Symposium
on Independent Component Analysis and Blind Signal Separation (ICA2003),
pages 281-288, 2003.

54



V. D. Calhoun and T. Adali. Unmixing fMRI with independent component
analysis. IFEE Engineering in Medicine and Biology Magazine, 25:79-90,
2006.

V. D. Calhoun, J. Liu, and T. Adali. A review of group ICA for fMRI data and
ICA for joint inference of imaging, genetic, and ERP data. Neuroimage, 45:
S163-S172, 2009.

J.-F. Cardoso. Source separation using higher order moments. In Proceedings
of the 1989 IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 2109-2112. IEEE, 1989.

J.-F. Cardoso. Multidimensional independent component analysis. In Proceed-
ings of the 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing, volume 4, pages 1941-1944. TEEE, 1998.

J.-F. Cardoso and A. Souloumiac. Blind beamforming for non-Gaussian signals.
In IEE proceedings F (radar and signal processing), volume 140, pages 362—
370. IET, 1993.

F. J. Caro-Lopera, G. G. Farias, and N. Balakrishnan. Matrix-variate distri-
bution theory under elliptical models-4: Joint distribution of latent roots
of covariance matrix and the largest and smallest latent roots. Journal of
Multivariate Analysis, 145:224-235, 2016.

A. Chen and P. J. Bickel. Efficient independent component analysis. The Annals
of Statistics, 34:2825-2855, 2006.

J.-M. Chiou, Y.-T. Chen, and Y.-F. Yang. Multivariate functional principal
component analysis: A normalization approach. Statistica Sinica, 2014:1571—
1596, 2014.

A. Cichocki, R. Zdunek, A. H. Phan, and S.-I. Amari. Nonnegative matriz and
tensor factorizations: applications to exploratory multi-way data analysis and
blind source separation. John Wiley & Sons, 2009.

A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and
H. A. Phan. Tensor decompositions for signal processing applications: From
two-way to multiway component analysis. IEEFE Signal Processing Magazine,
32:145-163, 2015.

D. B. Clarkson. A least squares version of algorithm AS 211: The FG diagonal-
ization algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 37:317-321, 1988.

P. Comon. Independent component analysis, a new concept? Signal Processing,
36:287-314, 1994.

P. Comon, Y. Qi, and K. Usevich. A polynomial formulation for joint decom-
position of symmetric tensors of different orders. In International Conference
on Latent Variable Analysis and Signal Separation, pages 22-30. Springer,
2015.

J. B. Conway. A course in functional analysis, volume 96. Springer Science &
Business Media, 2013.

55



L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value
decomposition. SIAM journal on Matriz Analysis and Applications, 21:1253—
1278, 2000.

S. Ding and R. D. Cook. Dimension folding PCA and PFC for matrix-valued
predictors. Statistica Sinica, 24:463-492, 2014.

S. Ding and R. D. Cook. Higher-order sliced inverse regressions. Wiley Inter-
disciplinary Reviews: Computational Statistics, 7:249-257, 2015a.

S. Ding and R. D. Cook. Tensor sliced inverse regression. Journal of Multivariate
Analysis, 133:216-231, 2015b.

S. C. Douglas. Fixed-point algorithms for the blind separation of arbitrary
complex-valued non-Gaussian signal mixtures. EURASIP Journal on Ad-
vances in Signal Processing, 2007:036525, 2007.

L. Diimbgen, M. Pauly, and T. Schweizer. M-functionals of multivariate scatter.
Statistics Surveys, 9:32-105, 2015.

K.-T. Fang, S. Kotz, and K. W. Ng. Symmetric multivariate and related distri-
butions. Chapman and Hall, 1990.

F. Ferraty and P. Vieu. Nonparametric functional data analysis: Theory and
practice. Springer Science & Business Media, 2006.

L. Ferré and A.-F. Yao. Functional sliced inverse regression analysis. Statistics,
37:475-488, 2003.

L. Ferré and A.-F. Yao. Smoothed functional inverse regression. Statistica
Sinica, 15:665-683, 2005.

J. H. Friedman and J. W. Tukey. A projection pursuit algorithm for exploratory
data analysis. IEEE Transactions on Computers, 100:881-890, 1974.

S. Ghurye and I. Olkin. A characterization of the multivariate normal distribu-
tion. The Annals of Mathematical Statistics, 33:533-541, 1962.

A. Gupta and T. Varga. Normal mixture representations of matrix variate el-
liptically contoured distributions. Sankhya: The Indian Journal of Statistics,
Series A, 57:68-78, 1995.

A. K. Gupta and D. K. Nagar. Matriz variate distributions. CRC Press, 1999.

H. W. Gutch and F. J. Theis. To infinity and beyond: On ICA over Hilbert
spaces. In Latent Variable Analysis and Signal Separation, pages 180-187.
Springer, 2012.

M. Hallin and C. Mehta. R-estimation for asymmetric independent component
analysis. Journal of the American Statistical Association, 110:218-232, 2015.

C. Happ and S. Greven. Multivariate functional principal component analysis
for data observed on different (dimensional) domains. Journal of the Ameri-
can Statistical Association, 2016. Accepted.

56



T. Hastie and R. Tibshirani. Independent components analysis through product
density estimation. In Advances in Neural Information Processing Systems,
pages 665—672, 2003.

G. He, H.-G. Miiller, and J.-L. Wang. Methods of canonical analysis for func-
tional data. Journal of Statistical Planning and Inference, 122:141-159, 2004.

L. Horvath and P. Kokoszka. Inference for functional data with applications.
Springer Science & Business Media, 2012.

H. Hotelling. Analysis of a complex of statistical variables into principal com-
ponents. Journal of Educational Psychology, 24:417, 1933.

T. Hsing and R. Eubank. Theoretical foundations of functional data analysis,
with an introduction to linear operators. John Wiley & Sons, 2015.

T. Hsing and H. Ren. An RKHS formulation of the inverse regression dimension-
reduction problem. The Annals of Statistics, 37:726-755, 2009.

P. J. Huber. Projection pursuit. The Annals of Statistics, 13:435-475, 1985.

H. Hung and C.-C. Wang. Matrix variate logistic regression model with appli-
cation to EEG data. Biostatistics, 14:189-202, 2012.

A. Hyvéarinen. Fast and robust fixed-point algorithms for independent compo-
nent analysis. IEFEFE Transactions on Neural Networks, 10:626—634, 1999.

A. Hyvérinen and U. Koster. FastISA: A fast fixed-point algorithm for inde-
pendent subspace analysis. In EsANN, pages 371-376, 2006.

F. Ieva, A. M. Paganoni, D. Pigoli, and V. Vitelli. ECG signal reconstruction,
landmark registration and functional classification. In 7th Conference on
Statistical Computation and Complex System, 2011.

K. Illner, J. Miettinen, C. Fuchs, S. Taskinen, K. Nordhausen, H. Oja, and
F. J. Theis. Model selection using limiting distributions of second-order blind
source separation algorithms. Signal Processing, 113:95-103, 2015.

P. lmonen and D. Paindaveine. Semiparametrically efficient inference based on
signed ranks in symmetric independent component models. The Annals of
Statistics, 39:2448-2476, 2011.

P. lmonen, J. Nevalainen, and H. Oja. Characteristics of multivariate distri-
butions and the invariant coordinate system. Statistics & Probability Letters,
80:1844-1853, 2010a.

P. lmonen, K. Nordhausen, H. Oja, and E. Ollila. A new performance index
for ICA: Properties, computation and asymptotic analysis. Latent Variable
Analysis and Signal Separation, pages 229-236, 2010b.

P. Ilmonen, H. Oja, and R. Serfling. On invariant coordinate system (ICS)
functionals. International Statistical Review, 80:93-110, 2012.

J. Jacques and C. Preda. Model-based clustering for multivariate functional
data. Computational Statistics € Data Analysis, 71:92-106, 2014.

o7



1. Jolliffe. Principal component analysis. Springer Verlag, 2002.

T. Kariya and B. K. Sinha. Robustness of statistical tests. Academic Press,
2014.

J. Karvanen and V. Koivunen. Blind separation methods based on Pearson
system and its extensions. Signal Processing, 82:663-673, 2002.

J. Karvanen, J. Eriksson, and V. Koivunen. Adaptive score functions for max-
imum likelihood ICA. Journal of VLSI signal processing systems for signal,
image and video technology, 32:83-92, 2002.

M. Kawanabe. Linear dimension reduction based on the fourth-order cumulant
tensor. In International Conference on Artificial Neural Networks, pages 151—
156. Springer, 2005.

M. Kayano, K. Dozono, and S. Konishi. Functional cluster analysis via orthonor-
malized Gaussian basis expansions and its application. Journal of Classifica-
tion, 27:211-230, 2010.

T. G. Kolda and B. W. Bader. Tensor decompositions and applications. STAM
Review, 51:455-500, 2009.

Z. Koldovsky, P. Tichavsky, and E. Oja. Efficient variant of algorithm FastICA
for independent component analysis attaining the Cramér-Rao lower bound.
IEEFE Transactions on Neural Networks, 17:1265-1277, 2006.

T. Kollo. Multivariate skewness and kurtosis measures with an application in
ICA. Journal of Multivariate Analysis, 99:2328-2338, 2008.

T. Kollo and D. von Rosen. Advanced multivariate statistics with matrices.
Springer Science & Business Media, 2006.

B. Li and J. Song. Nonlinear sufficient dimension reduction for functional data.
The Annals of Statistics, 45:1059-1095, 2017.

B. Li, M. K. Kim, and N. Altman. On dimension folding of matrix-or array-
valued statistical objects. The Annals of Statistics, 38:1094-1121, 2010.

B. Li, G. Van Bever, H. Oja, R. Sabolova, and F. Critchley. Functional indepen-
dent component analysis: an extension of the fourth-order blind identification.
2015. Submitted.

L. Li and X. Zhang. Parsimonious tensor response regression. Journal of the
American Statistical Association, pages 1-16, 2017.

M. Lifshits. Lectures on Gaussian processes. Springer, 2012.

W. Luo and B. Li. Combining eigenvalues and variation of eigenvectors for
order determination. Biometrika, 103:875-887, 2016.

A. M. Manceur and P. Dutilleul. Maximum likelihood estimation for the tensor
normal distribution: Algorithm, minimum sample size, and empirical bias
and dispersion. Journal of Computational and Applied Mathematics, 239:
37-49, 2013.

58



J. I. Marden. Some robust estimates of principal components. Statistics €
Probability Letters, 43:349-359, 1999.

R. A. Maronna and V. J. Yohai. Robust estimation of multivariate location and
scatter. Wiley StatsRef: Statistics Reference Online, 1976.

M. Matilainen, K. Nordhausen, and H. Oja. New independent component anal-
ysis tools for time series. Statistics €& Probability Letters, 105:80-87, 2015.

D. S. Matteson and R. S. Tsay. Independent component analysis via distance
covariance. Journal of the American Statistical Association, pages 1-16, 2017.

P. McCullagh. Tensor methods in statistics. Chapman and Hall London, 1987.

J. Miettinen, K. Nordhausen, H. Oja, and S. Taskinen. Fast equivariant JADE.
In Proceedings of the 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 6153-6157. IEEE, 2013.

J. Miettinen, K. Nordhausen, H. Oja, and S. Taskinen. Deflation-based Fas-
tICA with adaptive choices of nonlinearities. IEEE Transactions on Signal
Processing, 62:5716-5724, 2014a.

J. Miettinen, K. Nordhausen, H. Oja, and S. Taskinen. Deflation-based separa-
tion of uncorrelated stationary time series. Journal of Multivariate Analysis,
123:214-227, 2014b.

J. Miettinen, S. Taskinen, K. Nordhausen, and H. Oja. Fourth moments and
independent component analysis. Statistical Science, 30:372-390, 2015.

J. Miettinen, K. Nordhausen, H. Oja, S. Taskinen, and J. Virta. The squared
symmetric FastICA estimator. Signal Processing, 131:402-411, 2017.

E. Moreau. A generalization of joint-diagonalization criteria for source separa-
tion. IEEE Transactions on Signal Processing, 49:530-541, 2001.

K. Nordhausen and H. Oja. Independent subspace analysis using three scatter
matrices. Austrian Journal of Statistics, 40:93-101, 2011.

K. Nordhausen and D. E. Tyler. A cautionary note on robust covariance plug-in
methods. Biometrika, 102:573-588, 2015.

K. Nordhausen, H. Oja, and E. Ollila. Robust independent component analysis
based on two scatter matrices. Austrian Journal of Statistics, 37:91-100,
2008.

K. Nordhausen, P. Ilmonen, A. Mandal, H. Oja, and E. Ollila. Deflation-based
FastICA reloaded. In Signal Processing Conference, 2011 19th FEuropean,
pages 1854-1858. IEEE, 2011a.

K. Nordhausen, E. Ollila, and H. Oja. On the performance indices of ICA
and blind source separation. In IEEFE 12th International Workshop on Sig-
nal Processing Advances in Wireless Communications (SPAWC), 2011, pages
486-490. IEEE, 2011b.

K. Nordhausen, H. Oja, P. Filzmoser, and C. Reimann. Blind source separation
for spatial compositional data. Mathematical Geosciences, 47:753-770, 2015.

59



K. Nordhausen, H. Oja, and D. E. Tyler. Asymptotic and bootstrap tests for
subspace dimension. arXiv preprint arXiw:1611.04908, 2016.

K. Nordhausen, H. Oja, D. E. Tyler, and J. Virta. Asymptotic and bootstrap
tests for the dimension of the non-Gaussian subspace. IEEFE Signal Processing
Letters, 24:887-891, 2017a.

K. Nordhausen, H. Oja, D. E. Tyler, and J. Virta. ICtest: Estimating and Test-
ing the Number of Interesting Components in Linear Dimension Reduction,
2017b. URL https://CRAN.R-project.org/package=ICtest. R package
version 0.3.

M. Ohlson, M. R. Ahmad, and D. Von Rosen. The multilinear normal dis-
tribution: Introduction and some basic properties. Journal of Multivariate
Analysis, 113:37-47, 2013.

H. Oja. Multivariate nonparametric methods with R: An approach based on
spatial signs and ranks. Springer Science & Business Media, 2010.

H. Oja, S. Sirkia, and J. Eriksson. Scatter matrices and independent component
analysis. Austrian Journal of Statistics, 35:175-189, 2006.

E. Ollila. The deflation-based FastICA estimator: Statistical analysis revisited.
IEEFE Transactions on Signal Processing, 58:1527-1541, 2010.

D. Paindaveine. Elliptical symmetry. Encyclopedia of Environmetrics, 2012.

V. I. Paulsen and M. Raghupathi. An introduction to the theory of reproducing
kernel Hilbert spaces. Cambridge University Press, 2016.

K. Pearson. On lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 2:559-572, 1901.

R. M. Pfeiffer, L. Forzani, and E. Bura. Sufficient dimension reduction for lon-
gitudinally measured predictors. Statistics in Medicine, 31:2414-2427, 2012.

J. O. Ramsay and B. Silverman. Functional data analysis. Wiley Online Library,
2006.

C. E. Rasmussen and C. K. Williams. Gaussian processes for machine learning.
MIT press Cambridge, 2006.

C. Rendon, F. J. Prieto, and D. Pena. Independent components techniques
based on kurtosis for functional data analysis. Technical report, Charles IIT
University of Madrid, Departament of Statistics, 2014.

R. J. Samworth and M. Yuan. Independent component analysis via nonparamet-
ric maximum likelihood estimation. The Annals of Statistics, 40:2973-3002,
2012.

Y. Sato. Theoretical considerations for multivariate functional data analysis. In
Proceedings 59th ISI World Statistics Congress, pages 25-30, August 2013.

R. J. Serfling. Approximation theorems of mathematical statistics. John Wiley
& Sons, 2009.

60



N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis,
and C. Faloutsos. Tensor decomposition for signal processing and machine
learning. IEEE Transactions on Signal Processing, 65:3551-3582, 2017.

M. S. Srivastava, T. von Rosen, and D. Von Rosen. Models with a Kronecker
product covariance structure: estimation and testing. Mathematical Methods
of Statistics, 17:357-370, 2008.

J. Stone, J. Porrill, N. Porter, and I. Wilkinson. Spatiotemporal independent
component analysis of event-related fMRI data using skewed probability den-
sity functions. Neurolmage, 15:407-421, 2002.

S. Taskinen, S. Sirkiéd, and H. Oja. Independent component analysis based on
symmetrised scatter matrices. Computational Statistics € Data Analysis, 51:
5103-5111, 2007.

S. Tokushige, H. Yadohisa, and K. Inada. Crisp and fuzzy k-means clustering
algorithms for multivariate functional data. Computational Statistics, 22:
1-16, 2007.

L. Tong, V. Soon, Y. Huang, and R. Liu. AMUSE: a new blind identification
algorithm. In IEEFE International Symposium on Circuits and Systems, pages
1784-1787. IEEE, 1990.

D. E. Tyler, F. Critchley, L. Diimbgen, and H. Oja. Invariant co-ordinate selec-
tion. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 71:549-592, 2009.

A. W. Van der Vaart. Asymptotic statistics. Cambridge University Press, 1998.

C. F. Van Loan. The ubiquitous Kronecker product. Journal of Computational
and Applied Mathematics, 123:85-100, 2000.

M. A. O. Vasilescu and D. Terzopoulos. Multilinear independent components
analysis. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), volume 1, pages 547-553. IEEE, 2005.

J. Virta. One-step M-estimates of scatter and the independence property. Statis-
tics & Probability Letters, 110:133-136, 2016.

J. Virta and K. Nordhausen. Blind source separation of tensor-valued time
series. Signal Processing, 141:204-216, 2017a.

J. Virta and K. Nordhausen. Blind source separation for non-stationary tensor-
valued time series. In IEEE International Workshop on Machine Learningfor
Signal Processing, 2017b.

J. Virta and K. Nordhausen. On the optimal non-linearities for Gaussian mix-
tures in FastICA. In International Conference on Latent Variable Analysis
and Signal Separation, pages 427-437. Springer, 2017c.

J. Virta, K. Nordhausen, and H. Oja. Joint use of third and fourth cumu-
lants in independent component analysis. Unpublished manuscript, preprint
at arXiv:1505.02613, 2015.

61



J. Virta, B. Li, K. Nordhausen, and H. Oja. tensorBSS: Blind
Source Separation Methods for Tensor-Valued Observations, 2016a. URL
https://CRAN.R-project.org/package=tensorBSS. R package version
0.3.3.

J. Virta, K. Nordhausen, and H. Oja. Projection pursuit for non-Gaussian
independent components. arXiv preprint arXiv:1612.05445, 2016b.

J. Virta, S. Taskinen, and K. Nordhausen. Applying fully tensorial ICA to fMRI
data. In Signal Processing in Medicine and Biology Symposium (SPMB), 2016
IEFEE, pages 1-6. IEEE, 2016c¢.

J. Virta, B. Li, K. Nordhausen, and H. Oja. Independent component analysis
for multivariate functional data. Submitted to the Journal of the American
Statistical Association, 2017a.

J. Virta, B. Li, K. Nordhausen, and H. Oja. Independent component analysis
for tensor-valued data. Journal of Multivariate Analysis, 162:172-192, 2017b.

J. Virta, B. Li, K. Nordhausen, and H. Oja. JADE for tensor-valued observa-
tions. Accepted to Journal of Computational and Graphical Statistics, 2017c.
arXiv preprint arXiv:1603.05406.

S. Visuri, V. Koivunen, and H. Oja. Sign and rank covariance matrices. Journal
of Statistical Planning and Inference, 91:557-575, 2000.

T. Wei. On the spurious solutions of the FastICA algorithm. In IEEE Workshop
on Statistical Signal Processing (SSP), pages 161-164. IEEE, 2014.

K. Werner, M. Jansson, and P. Stoica. On estimation of covariance matrices
with Kronecker product structure. IEEE Transactions on Signal Processing,
56:478-491, 2008.

F. Yao, H.-G. Miiller, and J.-L. Wang. Functional data analysis for sparse
longitudinal data. Journal of the American Statistical Association, 100:577—
590, 2005.

L. Zhang, Q. Gao, and D. Zhang. Directional independent component analysis
with tensor representation. In ITEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1-7. IEEE, 2008.

J. Zhao and C. Leng. Structured lasso for regression with matrix covariates.
Statistica Sinica, 24:799-814, 2014.

W. Zhong, X. Xing, and K. Suslick. Tensor sufficient dimension reduction.
Wiley Interdisciplinary Reviews: Computational Statistics, 7:178-184, 2015.

H. Zhou and L. Li. Regularized matrix regression. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 76:463-483, 2014.

H. Zhou, L. Li, and H. Zhu. Tensor regression with applications in neuroimaging
data analysis. Journal of the American Statistical Association, 108:540-552,
2013.

62



ISBN 978-951-29-7148-0 (PRINT)
ISBN 978-951-29-7149-7 (PDF)

ISSN 0082-7002 (PRINT) | ISSN 2343-3175 (PDF)



	Abstract
	Tiivistelmä
	Acknowledgements
	Contents
	List of symbols
	List of original publications
	Part I Summary
	1 Introduction
	2 Notation and some technicalities
	3 Independent component analysis for vector-valued data
	3.1 Location-scatter model and its extensions
	Location-scatter model and multivariate normal distribution
	Elliptical model and principal component analysis
	Independent component model

	3.2 IC functionals
	3.3 Standardization
	3.4 Cumulants
	3.5 IC functionals based on marginal cumulants
	3.6 IC functionals based on joint cumulants

	4 Independent component analysis for tensor-valued data
	4.1 Tensor notation
	4.2 On tensorial methodology
	4.3 Tensorial location-scatter model and its extensions
	Tensorial location-scatter model
	Tensorial elliptical model
	Tensorial IC model

	4.4 Tensorial IC functionals
	4.5 Tensorial standardization
	4.6 Tensorial FOBI and JADE

	5 Independent component analysis for functional data
	5.1 Hilbert space theory
	5.2 Functional data models
	5.3 Functional ICA
	5.4 Multivariate functional ICA
	Multivariate functional data
	Multivariate functional IC model
	Multivariate functional FOBI and JADE


	6 Discussion
	Appendix
	Summaries of original publications
	References




