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ABSTRACT 
 

UNIVERSITY OF TURKU 

Department of Chemistry/Faculty of Science and Engineering 

 

GRANQVIST, LOTTA: Novel 19F NMR Sensors for the Characterization of Higher-

Order Secondary Structures of DNA and RNA 

 

Doctoral thesis, 156 p. 

Laboratory of Organic Chemistry and Chemical Biology 

Bioorganic Chemistry 

May 2018 

 

Both DNA and RNA can fold into a variety of non-canonical structures. Non-canonical 

structures, such as triplexes and G-quadruplexes, are an active research area due to their 

biological significance and therapeutic potential. As structural complexity and 

conformational transitions are essential for the diverse biological roles of nucleic acids, 

characterization of the dynamic nature of nucleic acid is vital to understand their 

functional properties. This thesis focuses on 19F NMR spectroscopy as a tool that can be 

used to investigate the conformational polymorphism of nucleic acids and the dynamic 

nature of nucleic acid-ligand interactions.  The utility of 19F NMR is based on covalently 

incorporated fluorine labels that act sensitive reporters upon conformational transition.  

In this study, six novel fluorine-labelled building blocks were synthesized and 

incorporated into oligonucleotides applying standard solid-phase oligonucleotide 

synthesis. The building blocks were successfully used to investigate DNA and RNA 

triplexes, RNA invasion and bistable hairpin-G-quadruplex RNA structures. Melting of 

triplexes could be followed from well-distinguish 19F signals of the triplex, duplex and 

single strand species, and melting temperatures of the structures were obtained. The 

temperature dependent 19F NMR data of the bistable RNAs enabled to characterize 

melting processes, melting temperatures and thermodynamic parameters. In addition, 

ion induced changes at the hairpin-G-quadruplex equilibrium positions were 

successfully monitored. In general, the 19F NMR experiments provided new information 

on investigated structures and demonstrated that five of the building blocks can be 

considered suitable for further 19F NMR applications. 
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DNA ja RNA voivat laskostua erilaisiksi ei-kanonisiksi rakenteiksi. Ei-kanoniset 

rakenteet, kuten kolmoiskierteet ja G-kvadrupleksit, ovat aktiivinen tutkimusalue niiden 

biologisen merkittävyyden ja niihin liittyvien terapeuttisten mahdollisuuksien takia. 

Koska rakenteellinen monimutkaisuus ja konformaatiomuutokset ovat välttämättömiä 

nukleliinihappojen biologisille toiminnalle, rakenteiden ja niiden dynamiikan 

karakterisointi on tärkeäää toiminnallisten ominaisuuksien ymmärtämiselle. Tässä 

väitöskirjassa keskityttiin 19F NMR spektroskopiaan tutkimusmenetelmänä, jolla 

voidaan tutkia nukleiinihappojen konformationaalista monimuotoisuuutta ja 

nukleiinihappojen ja niiden ligandien välisiä vuorovaikutuksia. 19F NMR perustuu 

nukleiinihappoihin kovalenttisesti liitettyihin fluorileimoihin, jotka toimivat herkkinä 

reporttereina konformaatiomuutosta detektoitaessa.  

Tutkimuksessa syntetisoitiin kuusi fluorileimatttua rakennusyksikköä, jotka liitettiin 

oligonukleotideihin käyttämällä vakiintunutta kiintokantajalla tapahtuvaa 

oligonukleotidien synteesimenetelmää. Rakenneyksiköillä tutkittiin onnistuneesti DNA 

ja RNA kolmoiskierteitä, RNA:n invaasiota ja kahtaispysyviä hiusneula-G-kvadrupleksi 

RNA rakenteita. Kolmoiskierteiden denaturaatiota pystyttiin seuraamaan 

yksityiskohtaisesti hyvin erottuvista kolmoiskierrettä, kaksoiskierrettä ja yksinauhaista 

rakennetta vastaavista fluorisignaaleista. Kahtaispysyvien rakenteiden 

lämpötilariippuvainen käyttäytyminen pystyttiin karakterisoimaan, mikä mahdollisti 

sulamislämpötilojen ja termodynaamisten arvojen määrittämisen. Tämän lisäksi ionien 

vaikutusta hiusneula-G-kvadrupleksi tasapainotiloihin havannoitiin onnistuneesti. 

Yleisesti 19F NMR tutkimuksilla saatiin uutta tietoa tutkituista rakenteista. Lisäksi 

tutkimukset osoittivat että viiden syntetisoidun rakennusyksikön ominaisuudet 

soveltunevat myös muihin 19F NMR tutkimuksiin.   

Asiasanat: 19F NMR, DNA, RNA, kolmoiskierre, G-kvadrupleksi, kahtaispysyvä 
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1. INTRODUCTION 

Fluorine-19 nuclear magnetic resonance (19F NMR) spectroscopy has numerous 

applications in chemical biology.1-12 The high detection sensitivity of fluorine combined 

with the intrinsic sensitivity of fluorine chemical shifts to the local environment has led 

to many successful 19F NMR applications also for investigation of biological 

macromolecules.1-6,8,9,11,12 Fluorine is an unnatural element in macromolecules that is 

essentially absent from biological systems. Therefore, an obvious prerequisite for 19F 

NMR spectroscopy is the incorporation of fluorine into investigated molecules. 

However, the lack of interfering background signals provides a great advantage in NMR 

spectroscopy. 19F NMR spectroscopy was recognized as a potential method to 

investigate biologically important macromolecules over 40 years ago.13,14 Employing 

fluorine as a spin label to investigate macromolecules by introducing it either into the 

macromolecule13 or into its ligand14 was first established with proteins, and this concept 

was embraced a few years later in the nucleic acid field. In 1977, two independent studies 

reported the potential of the fluorine labelling approach for 19F NMR studies of nucleic 

acids.15,16 Marshall and Smith reported their 19F NMR studies on fluorine-labelled 5S 

ribosomal RNA (rRNA)15, and Horowitz and co-workers published their research on 

fluorine-labelled transfer RNA (tRNA)16. Since then, 19F NMR has been used to 

investigate several artificial and biologically important nucleic acid structures, such as 

aptamers17-19, viral regulatory hairpins20-25, riboswitches26-29, ribozymes30-32, DNA 

adducts33,34, triplexes35,36 and telomeric G-quadruplexes37-40. 

Technical and synthetic advances have played and are still playing a significant role in 

the progress of 19F NMR spectroscopy applications. Substantial advances have been 

made in NMR instrumentation that increase feasibility and sensitivity of 19F 

detection.4,5,8 Recent advances in the hyperpolarized NMR technique (HP NMR) have 

greatly enhanced the sensitivity of 19F detection, and HP 19F NMR is expected to 

contribute generally to future macromolecule research.41,42 Significant progress in 

synthetic fluorine chemistry has provided straightforward access to numerous fluorine 

containing macromolecules and small molecules.6,12,43-45 In addition, advances in 

oligonucleotide synthesis techniques have played a crucial role in nucleic acid-related 

research in general.46-51 

Progress in the nucleic acid field has been slower than in the protein field, but interest in 

nucleic acid-related 19F NMR research has dramatically increased in recent years. The 

structural and functional diversity of nucleic acids have increased tremendously and this 

progress has also impacted 19F NMR research. In addition, the 19F NMR spectroscopy-

based techniques employed in drug development have started to shift from the protein 

field to the nucleic acid field.17,40,52 Moreover, 19F NMR spectroscopy based methods 

that utilize fluorinated oligonucleotides as hybridization probes53-58 have recently been 

developed and have also received interest in magnetic resonance imaging (MRI)53,54,57. 
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The growing knowledge of nucleic acids provides limitless research opportunities, and 

considering instrumental and synthetic developments as well as the variety of potential 

applications, 19F NMR spectroscopy may become a routine detection method in nucleic 

acids research. 

1.1 19F NMR and nucleic acids 

Fluorine-19 has several advantageous NMR properties: it has a spin of ½, a high 

gyromagnetic ratio, and it has a natural abundance of 100%.2,59,60 19F sensitivity is high, 

83% of the sensitivity of 1H, and much higher than that of 13C, 15N and 31P (Table 1). 19F 

has a wide chemical shift range (over 400 ppm), and 19F shifts are highly sensitive to 

changes in the local environment. In addition, 19F is absent from nucleic acids and the 

background signal interference is thus negligible with typical NMR measurement 

conditions. The disadvantage of 19F NMR spectroscopy is that the 19F reporter group 

(label, probe) must be incorporated into nucleic acids or into nucleic acid ligands.1,2,5,8,12 

Because an introduced modification may significantly alter the native properties of 

nucleic acids, the influence of the fluorine substitution should be carefully evaluated. 

The chemical and physical properties of fluorine, however, are highly beneficial for 

modulating pharmacological properties of small molecular ligands.44 

 

Much of the interest in 19F NMR spectroscopy arises from the simplicity and 

informational richness of one-dimensional (1D) 19F NMR spectra.1,2,4-6,8,9,12 In particular, 

the strength of 19F NMR is its ability to provide insight into the complex nature of the 

dynamic intra- and intermolecular structural equilibria of nucleic acids and dynamic 

behaviour of nucleic acid-ligand complexes.1,2,5,8,12 In addition to solution-state NMR, 

solid-state 19F NMR methods have been used to investigate nucleic acids.22,61-65 A 

common problem with 1H NMR studies on large molecules is the abundance of protons 

that need to be assigned and the severe signal overlap due to the narrow chemical shift 

range (10-15 ppm) of protons.66-72 Introducing a spin label such as 19F into the nucleic 

Table 1.2,60 NMR properties of selected nucleus  

Nucleus Spin (I) 

Gyromagnetic 

ratio 

(10-7 rad s-1 T-1) 

Natural abundance 

(%) 
Relative sensitivity 

1H ½ 26.7519 99.98 1.0 

19F ½ 25.181 100 0.83 

13C ½ 6.7283 1.108 0.0159 

15N ½ -2.712 0.37 0.00134 

31P ½ 10.841 100 0.066 
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acid may hence provide clear advantages.1,2,5,8,72 Compared to spectrophotometric 

methods commonly used to investigate nucleic acids such as ultraviolet spectroscopy 

(UV)73-75, circular dichroism (CD)76-78, and fluorescence79,80, NMR methods are 

inherently less sensitive. However, as with other NMR nuclei 19F NMR spectroscopy 

has other advantageous properties, such as its ability to provide more detailed 

information at local levels and information on coexisting structures.2,5,8,12 19F NMR is 

often used in conjunction with other methods, and it is considered an independent 

complementary method rather than a competitive alternative to NMR with traditional 

nuclei or other methods.  

Although this thesis is focused on 1D 19F NMR applications, multidimensional homo- 

and heteronuclear NMR experiments, such as 19F/19F NOESY (nuclear Overhauser effect 

spectroscopy) and 19F/1H HOESY (heteronuclear Overhauser effect spectroscopy), have 

been used to obtain further information on nucleic acids structures.21,23,25,81-85. In 

addition, multidimensional NMR methods are central techniques for 19F signal 

assignment21,23,25,29,83, and fluorine can be used as a tool to aid the assignment of 1H 

signals84-86. 

1D 19F NMR applications for nucleic acids are mainly derived from the intrinsic 

sensitivity of the fluorine chemical shift to the local environment.2,60 In general, fluorine 

can be introduced either into a nucleic acid (nucleic acid observed, internal probes) or 

its ligand (ligand observed, external probes). Due to the high environmental sensitivity 

of fluorine, 19F signals are expected to reflect distinct state of a process of interest, such 

as conformational states or ligand-bound and unbound states (Figure 1a). Depending on 

the exchange rate of the process, three basic exchange regimes can be identified: fast 

(with well-behaving coalescence signal), intermediate or slow exchange (Figure 

1b).11,87,88 When the exchange rate is slow on the NMR timescale, two distinct signals 

are observed corresponding to individual states (free and bound or distinct 

conformations A and B). The relative peak areas of the resolved signals directly reflect 

the distribution of the states (i.e., molar fractions), and thus the integration of the signals 

allows a quantitation of the states. In the fast exchange regime, a single signal is detected 

as a weighted average signal of both states. In the case of an intermediate exchange 

process, a broad signal is detected. Depending on the goals, 19F NMR data can be used 

to obtain quantitative or qualitative information. Commonly, the interest has been in 

detecting structural equilibria or complex formation.1,2,5,8,12 In addition, 19F NMR data 

have been used to extract different parameters, such as dissociation constants 

(Kd)17,20,24,25,38,52,89, pKa values90-92, melting temperatures (Tm)19,24,36-39,55,89,93-95 and 

thermodynamic19,31,37,90,96 and kinetic30,32,96,97 parameters.  
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Figure 1. (a) A schematic presentation of internal and external fluorine probes and (b) the 

chemical exchange rates. 

The structural and conformational analysis and ligand-nucleic acid interactions studies 

have mainly utilized internal fluorine probes. Consequently, a large portion of literature 

review is focused on internal fluorine probes (Section 1.2). Using external small 

molecule fluorine probes as structural probes has been demonstrated as an alternative 

approach to internal fluorine probes, and this concept is presented in Section 1.3. Section 

1.4 is a brief summary of small molecule-nucleic acid interactions studies. 

1.2 Internal fluorine probes 

1.2.1 General properties of fluorine labels and synthesis of fluorine-

labelled oligonucleotides 

Fluorine labels can be incorporated into oligonucleotides either enzymatically or by 

chemical synthesis. Although standard oligonucleotide synthetic techniques48,69,98 may 

be applied, challenges in the synthesis of appropriate fluorine-containing building blocks 

or their poor incorporation efficiency into oligonucleotides can significantly limit the 

use of the label. The most common synthetic method is the standard solid-phase 

oligonucleotide synthesis98 using fluorine-modified phosphoramidite building blocks. 

slow

exchange

fast

exchange

intermediate

exchange

conformation A conformation B

bound unbound 

an internal probe

an external probe

a) b)
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This method requires that a fluorine-containing nucleoside phosphoramidite is 

compatible with automated solid-phase synthesis, including the synthesis cycle and 

cleavage conditions. An enzymatic synthesis of fluorine-labelled oligonucleotides 

requires a triphosphate analogue of a fluorine-containing nucleoside.21,23,29,91,99-101 The 

triphosphates are usually incorporated into RNA by in vitro transcription using T7 RNA 

polymerase21,23,29,91,99 or into DNA using DNA polymerase100,101. In contrast to solid-

phase synthesis, which allows the site-specific incorporation of a fluorine label, 

enzymatic synthesis typically produces a uniformly fluorine-labelled 

oligonucleotide.21,23,48,98,99 In general, enzymatic synthesis allows synthesis of larger 

oligonucleotides compared with chemical synthesis. 

In fluorinated nucleoside analogues, the fluorine moiety can be incorporated either in 

the base or the sugar.12 In addition, a few non-nucleosidic fluorine modifications have 

been attached to the 5´-end of oligonucleotides.18,37,53,102 Some of the analogues are well-

known from other applications. For example, 5-fluorouridine is a nucleoside analogue 

of the anticancer drug 5-fluorouracil103, 2´-deoxy-5-trifluoromethyluridine (trifluridine) 

is an antiviral drug104, and 2´-deoxy-2´-fluoronucleosides are known modifications in 

the antisense applications105. However, there has been growing interest in the 

development of novel fluorinated derivatives that are specifically designed for 19F NMR 

applications. The goal of development has been to improve the sensitivity and 

practicality of 19F NMR measurements.18,19,37,39,53,55,58,101,106,107 A direct approach to 

improve sensitivity is to increase the amount of magnetically equivalent fluorine atoms 

and to introduce fluorine atoms in an isolated spin system. The measurements may then 

be performed at micromolar RNA concentrations without plausibly interfering 19F-1H 

couplings (if the proton-fluorine decoupling technique is not available). In addition to 

generally improving 19F NMR spectroscopic properties, derivatives have been developed 

for more specific purposes. For example, dual probes bearing both a 19F- and a 

fluorescence-detecting moiety have been described.39,100 An important aspect for the 

development of fluorinated derivatives, however, is their effect on the native structure 

of the nucleic acid. In general, fluorine modification should not cause secondary 

structural perturbations or affect the stability of the structure. Although a non-invasive 

modification is typically highly preferable, in some applications, for example in the case 

of hybridization probes53,55,56,58, the role of perturbations is less important. The following 

chapters (1.2.1.1–1.2.1.3) describe fluorinated nucleoside and non-nucleoside 

derivatives covering some general issues, but the utility of the labelled derivative 

depends on the application.  

1.2.1.1 Base modifications 

The most common site for fluorine modification is the C5 position of pyrimidines 

(Figure 2). Substituents in the C5 position are oriented the major groove in the double 
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helix.108 Large substituents at this position are generally well tolerated and do not 

significantly disturb the structure or stability of the duplex. Sterically demanding groups 

accommodated in the major groove may, as expected, significantly affect groove-

mediated interactions.  

 

Figure 2. Structures of C5-substituted pyrimidines. 

5-Fluoropyrimidines (i.e., 5-fluorouridine15,16,20,23,25,26,28,30,64,65,83,90,97,109-111, 2´-deoxy-

5-fluorouridine35,109,111-117, 5-fluorocytidine23,25,27,28,31,32,83,111 and 2´-deoxy-

5-fluorocytidine111,116,118) have been extensively used in 19F NMR studies. 

5-Fluoropyrimidine-modified nucleic acids may be synthesized by solid-phase synthesis 

using 5-fluoropyrimidinenucleoside phosphoramidites.111,119 In addition, 

5-fluoropyrimidine (both U and C) -substituted RNAs can be produced efficiently by 

enzymatic methods.23,99 The impact of 5-fluoro modification on nucleic acid structures 

has been thoroughly investigated by several methods showing that this modification has 
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a negligible effect on their structure or stability.23,83,92,111,120-124 Fluorine is sterically 

comparable to hydrogen, but due to its high electronegativity125, it decreases the apparent 

pKa values of cytidine N3 from 4.2 to 2.3126 and that of uridine from 9.2 to 7.623,127. These 

decreased pKa values have no observed effects on base pairing at a physiological 

pH.23,83,92,111,120-124 Fluorine substitution, however, increases the opening rates of the 

canonical Watson-Crick 5-fluoropyrimidine-adenine base pairs within the DNA or RNA 

duplex. In contrast, the opening rates are unchanged with canonical 5-fluorocytosine-

guanine base pairs. Overall, 5-fluoro pyrimidine modification has proven to be sensitive 

non-invasive label. From the 19F NMR perspective, measurements have been conducted 

either with or without proton decoupling techniques. 

2´-Deoxy-5-trifluoromethyluridine bears three magnetically equivalent fluorine atoms 

in an isolated spin system.128 The trifluoromethyl group is, however, readily converted 

to a cyano group in concentrated ammonia, which prevents the incorporation of this 

nucleoside derivative into oligonucleotides by the standard solid-phase oligonucleotide 

synthesis.129 Although this problem can be circumvented by applying milder cleavage 

conditions56,129, the modest stability of the 5-trifluoromethyl group may be reason why 

few 19F NMR experiments employ this nucleoside analogue55,56,63,128,130. (An enzymatic 

synthetic method has also been described.131,132) A 5-trifluoromethyluracil-adenine base 

pair within a DNA duplex is slightly destabilizing (compared to T-A), but the duplex 

forms a B-type duplex.128,129,133 Recently, a 2´-deoxy-5-trifluoromethylcytidine was 

incorporated into DNA by solid-phase synthesis and was demonstrated to be a sensitive 

analogue for 19F NMR studies.130 

5-[4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-ynyl]-2´-deoxyuridine bears nine 

magnetically equivalent fluorine atoms in an isolated spin system.106 This nucleoside has 

been introduced into oligonucleotides in place of thymidine106 or uridine24,89 by solid-

phase oligonucleotide synthesis, and it has been reported to be slightly destabilizing. 

Other sterically demanding analogues contain a 3,5-bis(trifluoromethyl)phenyl group.55 

This is a sensitive reporter group containing six magnetically equivalent fluorine atoms 

that are not coupled to protons. In contrast to other fluorinated nucleoside analogues, the 

fluorine moieties of 3,5-bis(trifluoromethyl)phenyl-modified 2´-deoxyuridine analogues 

have been introduced into DNA postsynthetically (i.e., 3,5-bis(trifluoromethyl)benzoic 

acid and 4-[3,5-bis(trifluoromethyl)benzamido]benzoic acid were coupled to 

5-(3-aminopropyn-1-yl)-2´-deoxyuridine residue after solid-phase synthesis). These 

3,5-bis(trifluoromethyl)phenyl-modified analogues do not substantially effect the 

stability of the DNA duplexes; the duplexes maintain a B-type conformation, but 

deviations from the native secondary structures can be detected. 

5-[4´´-(5´´´-Aminobenzo[d]oxazol-2´´´-yl)-2´´-fluorophenyl]-2´-deoxyuridine is an 

example of a dual probe, but its utility has mainly been in fluorescence detection.100 

Recently, the applicability of a 5-[(3,5-bis(trifluoromethyl)phenyl)ethynyl]-

2´-deoxyuridine was demonstrated.19 In contrast to the 3,5-bis(trifluoromethyl)phenyl 

group bearing 2´-deoxyuridine analogues discussed above, it has been incorporated into 
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DNA as a phosphoramidite. In addition, an enzymatically incorporated 

4-(trifluoroacetyl)phenyl-modified 2´-deoxyuridine and 2´-deoxycytidine were recently 

presented as novel derivatives for 19F NMR studies.101 

In addition to fluorinated natural pyrimidine nucleobases, the well-known nonpolar 

pyrimidine isosteres 2,4-difluorotoluene and 2,4-difluorobenzene nucleoside analogues 

have been employed in a few 19F NMR studies (Figure 3).84,85,93,134 In these studies, the 

nucleoside analogues have been incorporated into oligonucleotides as corresponding 

nucleoside phosphoramidites. The fluorine atoms are magnetically non-equivalent and 

coupled to protons. Because these isosteres have been extensively used as base mimics, 

their properties have been thoroughly investigated.135-137 The shape of a 

2,4-difluorotoluene/2,4-difluorobenzene-adenine base pair closely resembles the natural 

thymine/uracil-adenine Watson-Crick base pair, but there are no hydrogen bonding 

interactions. Therefore, the 2,4-difluorotoluene/2,4-difluorobenzene substitution is 

typically structurally non-perturbing, but it decreases the stability of the double helix.  

 

Figure 3. Structures of pyrimidine isosteres and 2-fluoroadenosine. 

In contrast to fluorine-modified pyrimidine bases, the availability of fluorine-modified 

purine bases is limited, presumably due to the modest stability of these molecules.138-140 

Currently, only 2-fluoroadenosine has been employed more generally in 19F NMR 

studies (Figure 3).21,25,29,91 2-Fluoroadenosine-5´-triphosphates can be incorporated 

efficiently into RNA by enzymatic methods.21,25,29 The fluorine substituent is unstable in 

chemical RNA synthesis139,140, and thus the utility of 2-fluoroadenosine has been limited 

to uniformly substituted enzymatically produced RNAs21,25,29. Studies on uniformly 

substituted RNAs have shown that 2-fluoroadenosine is a sensitive non-invasive 

analogue for 19F NMR studies.21,25,29 The fluorine is oriented into the minor groove. 

When introduced in a double-helical RNA, 2-fluoroadenine forms a stable base pair with 

uracil and mild destabilizing perturbations observed in local base pair stabilities are 

compensated by favourable base stacking interaction. In addition to 2-fluoroadenosine, 

some other purine analogues, including 7-fluoro-7-deaza-2´-deoxyadenosine140, 

7-fluoro-7-deaza-2´-deoxyguanosine140, 2-fluoro-7-deazaadenosine91, 7-fluoro-

7-deazaadenosine91, 6-trifluoromethylpurine ribonucleoside141, and fluorinated biaryl100 
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and 4-(trifluoroacetyl)phenyl-modified101 7-deazapurine 2´-deoxynucleosides, have 

been proposed as potential derivatives for 19F NMR studies. 

Figure 4 presents more specialized fluorine-labelled nucleoside analogues, and these 

analogues are compatible with standard solid-phase synthesis. Fluorinated 2´-deoxy-

N4-(6-aminopyridin-2-yl)cytidine derivatives have been designed to interact with duplex 

DNA via Hoogsteen hydrogen bonding and have been employed to investigate triple-

helical DNA structures.58 8-[(3,5-Bis(trifluoromethyl)phenyl)ethynyl]-2´-deoxy-

guanosine is a dual probe, and it has been developed for the detection of 

G-quadruplexes.39 Due to the 3,5-bis(trifluoromethyl)phenyl group at the 8-position, 

guanine favours a syn orientation, which is favourable in the G-quadruplexes that have 

been investigated by this analogue. In addition, fluorinated arylamine guanosine DNA 

adducts33,34 have been exploited in 19F NMR studies, and these are presented in Section 

1.2.2.10. 

 

Figure 4. Structures of fluorinated nucleoside derivatives designed for specific nucleic acid 

structures. 

1.2.1.2 Sugar modifications 

Few studies have utilized sugar-modified nucleoside analogues and only two sugar 

modifications have been employed. One modification is a 2´-deoxy-2´-fluoro 

(2´-F)17,22,61,82,142, and the other is a 2´deoxy-2´-trifluoromethylthio (2´-SCF3) 

modification, which has been designed for 19F NMR applications94,107,143 (Figure 5a). 

Recently, 2´-fluoro-2´-deoxyarabinocytidine was proposed as a possible analogue for 

monitoring small molecule-DNA i-motif interactions.144 One advantage of 2´-F and 

2´-SCF3 modifications is that the label can be incorporated into any position in the 

RNA.94,107,142,143 Modifications in the sugar part, however, affect conformational 

properties and may cause significant alterations in the structure and stability of nucleic 

acids.82,94,107,143,145 In addition, plausible 2´-hydroxyl group-mediated interactions are 

disrupted. 
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Figure 5. (a) Sugar-modified nucleoside analogues. Base (B) is adenine (Ade), uracil (Ura), 

cytosine (Cyt) or guanine (Gua). (b) C3´-endo (N-type, A-form) and C2´-endo (S-type, B-form) 

sugar conformations.146  

2´-F and 2´-SCF3 modifications can be incorporated into oligonucleotides using standard 

solid-phase oligonucleotide synthesis.94,107,142,143 2´-Deoxy-2´-fluoronucleosides 

predominantly adopt a C3´-endo sugar conformation that prefers RNA duplexes 

(A-form) (Figure 5b).147-150 Thus, a 2´-F substitution in an RNA duplex is usually 

structurally non-perturbing and slightly increases the stability of the double helix. The 

strong preference to C3´-endo pucker, however, affects the C2´/C3´-endo equilibrium, 

and a 2´-F modification may cause structural perturbations, for instance when positioned 

into a loop82. Compared to 2´-F modification, the 2´-SCF3 group is a more sensitive 

fluorine label with three magnetically equivalent and spin-isolated fluorine 

atoms.94,107,143 In contrast to 2´-F, the 2´-SCF3-substituted ribose favours a C2´-endo 

conformation and thus significantly decreases the stability of an RNA duplex.  

1.2.1.3 Other modifications 

A few 19F NMR studies have utilized non-nucleosidic modifications at the 5´-terminus 

(Figure 6). As discussed, 3,5-bis(trifluoromethyl)phenyl is a sensitive reporter group for 
19F NMR studies. This group has been incorporated via an appropriate linker into the 

5´-end of both DNA18,53 and RNA37 oligonucleotides using solid-phase synthesis, and 

the applicability of the group for the detection of G-quadruplexes has been 

demonstrated18,37,38. In addition, some preliminary 19F NMR studies have been conducted 

with oligodeoxynucleotide 5´-fluorodiphosphates.102  

 

Figure 6. Structures of non-nucleosidic fluorine modifications at the 5´-end of oligonucleotides. 
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1.2.2 19F NMR spectroscopy studies of nucleic acids 

1.2.2.1 Early studies and tRNA 

Horowitz and co-workers published their research on 5-fluorouridine-modified tRNA in 

197716, and in the same year, Marshall and Smith reported their 19F NMR studies on 

5-fluorouridine-modified 5S rRNA.15 Fluorine-labelled tRNAs were then extensively 

studied over the following years99,151-164, but little research was conducted with fluorine-

labelled 5S rRNA165. tRNA studies have primarily focused on Escherichia coli tRNAVal. 

5-Fluorouridine-substituted tRNAs were isolated from E. coli cells grown in the 

presence of 5-fluorouracil.16,166 This biosynthetic method provided tRNAs in which over 

90 % of uridine residues were replaced by 5-fluorouridine16, and this method was later 

replaced by enzymatic in vitro synthesis99. The fluorinated tRNAVal contained fourteen 

5-fluorouridine residues (Figure 7a).  

 

Figure 7. (a) 5-Fluorouracil-substituted E. Coli tRNAVal cloverleaf structure (residues that are 

replaced by 5-fluorouridine are indicated as grey spheres) (b) and its 19F NMR spectrum. (c) 19F 

NMR spectra of 5-fluorouracil-substituted E. Coli tRNAVal in the absence (thin line) and in the 

presence of valyl-tRNA-synthetase (solid line). Spectra reprinted with permission from Chu, W. 

C.; Horowitz, J. Biochemistry 1991, 30, 1655-1663. Copyright (1991) American Chemical 

Society.159 

In addition to currently employed modern NMR strategies (HOESY and 

NOESY)155,157,161, a variety of other approaches were used to assign the fluorine 

signals16,99,152-161. For instance chemical modification, pH dependency, solvent 

accessibility, mutation and interaction studies were performed16,99,152-161, and this 

laborious signal assignment was not completed until 1991-1992160,161. In summary, a 

variety of investigations were conducted with fluorine-labelled tRNAs, including studies 

a) b)

c)
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of tRNAVal-RNA153,156, tRNAVal-protein (cognate synthetase)159,163,164 (Figure 7b and c) 

and tRNAVal-small molecule154,162 binding interactions, ion induced conformational 

changes154,156,157 and temperature-dependent unfolding158, thus demonstrating the 

sensitivity of the fluorine to local environment and the diversity of 19F NMR-based 

approaches.  

1.2.2.2 Short oligonucleotides and conformational heterogeneity 

Many structural studies have utilized 19F-labelled nucleosides that are able to provide 

well-separated signals in single-stranded (ss) and double-stranded (ds) environments. 

Employing this labelling strategy, both the intra- and intermolecular secondary structure 

equilibria of short oligonucleotides have been successfully analysed by 19F NMR 

spectroscopy. Additionally, studies of more complex nucleic acid structures often rely 

on labels’ single strand-double strand recognition ability. 

Intramolecular hairpin-hairpin equilibria have been investigated to demonstrate the 

general ability of labels to distinguish coexisting nucleic acid structures quantitatively 

and to evaluate the influence of the fluorine modifications on nucleic acid structures. As 

a representative example, Figure 8 shows the 19F NMR spectra of 2´-F-labelled RNAs.142 

As observed, the 2´-F labels were sensitive to secondary structures, and unambiguous 

signals were detected for alternative hairpin conformers. Consequently, the ratios of 

coexisting conformers were easily determined from the relative peak areas of the 19F 

signals. However, the 2´-F pyrimidines shifted the equilibrium approximately 20-25 % 

toward the structures in which 2´-F pyrimidines exist in a double-helical region. In 

contrast, the equilibrium positions were unaffected with 2´-F purines.  

 

Figure 8. 19F NMR spectra (1H decoupled) of (a) 2´-F uridine (2´FU)- and (b) 2´-F guanosine 

(2´FG)-modified bistable RNAs and their reference hairpins. Reprinted and modified with 

permission from Kreutz, C.; Kählig, H.; Konrat, R.; Micura, R. J. Am. Chem. Soc. 2005, 127, 

11558-11559. Copyright (2005) American Chemical Society.142 

a) b)
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Furthermore, 5-fluoropyrimidine-modified DNA and RNA sequences adopting mutually 

exclusive hairpin structures have been investigated comprehensively.111 In each case, the 

5-fluoro pyrimidine label provided well separated 19F signals, and the equilibrium 

position remained unaffected, thus demonstrating the non-invasive nature of the 5-F 

modification. Interestingly, it was noted that the chemical shift difference between DNA 

folds (i.e., between ss and ds environments) was clearly smaller than the chemical shift 

difference between RNA folds. It was suggested that the difference between chemical 

shift dispersion was caused by the different stacking patterns within A- and B-form 

duplexes, and therefore the fluorine experiences a much larger environment change 

between RNA folds compared with DNA folds. Likewise, with the 2´-F and 5-fluoro 

pyrimidine labels, 2´-SCF3 labels have provided well-separated 19F signals for 

alternative hairpin structures, but the effect of the 2´-SCF3 group on the equilibrium 

position depends strongly on the labelling site.107,143  

The effect of the surrounding conditions to induce the dimerization of short 

oligonucleotides has also been analysed with 5-fluoropyrimidines. These studies have 

taken advantage of the suitability of 19F NMR spectroscopy to a variety of measurement 

conditions. For example, the dimerization of an RNA hairpin and its tethered model and 

corresponding DNA models (Figure 9a) were successfully investigated at different pH 

and in different Mg2+, Na+ and PEG400 (polyethylene glycol) concentrations.115,116 In 

another study the effect of Na+, K+, Sr2+, Mg2+, Ca2+ or Ba2+ on the hairpin-dimer 

equilibrium of an RNA was examined (Figure 9b).90 19F NMR data provided information 

on the contribution of electrostatic, entropic and enthalpic factors to the hairpin-dimer 

equilibrium and revealed that some of the cations induced formation of additional hairpin 

conformations.  

 

Figure 9. Schematic presentation of hairpin-dimer equilibria. (a) An RNA hairpin and its tethered 

model containing a 2´-deoxy-5-fluorouridine. In the case of DNA analogues U is T.  

(b) 5-Fluorouridine-modified RNA hairpin model of the translational operator of the MS2 

bacteriophage. Also a hairpin model containing three 5-fluorouridine residues was used. 

 

 

 

a) b)
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In a recent study, 2´-deoxy-5-trifluoromethylcytidine and 2´-deoxy-5-trifluoromethyl-

uridine were used to probe a salt-induced formation of a left-handed Z-DNA.130 The 

labels were able to distinguish B-form, Z-form and ssDNA structures. Consequently, the 

distribution of these structures was easily determined from well-separated 19F signals in 

varying ionic conditions and different temperatures.  

The ability of the labels to discriminate between structural species has enabled the use 

of 19F NMR to study the thermal stability of nucleic acid structures. The melting of 

nucleic acid structures can be monitored in the fluorine signals upon stepwise 

heating33,34,93,158, and thermodynamic parameters19,37,90,96 and Tm values93 can be extracted 

from the temperature-dependent 19F NMR data. The Tm determination method93 has 

gained popularity and has been employed to characterize the melting behaviour of a 

variety of structures.19,24,36-39,55,89,94,95 This application was demonstrated with an 

intermolecular RNA duplex and an intramolecular RNA stem loop structure using a 

2,4-difluorotoluyl ribonucleoside.93 Melting of the intramolecular stem loop structure 

occurred in a fast exchange regime (Figure 10). When the chemical shift of the 19F signal 

was plotted against temperature, a sigmoidal curve was obtained, and the Tm value of the 

stem loop structure was obtained from its inflection point. The melting of the 

intermolecular duplex was in the slow exchange regime. The sigmoidal melting curve 

and thus the Tm value was obtained by plotting a fraction of a single strand against 

temperature. Importantly, in both cases, the Tm value was comparable with the value 

obtained by temperature-dependent UV spectroscopy. Additionally, it was 

simultaneously possible to monitor the temperature-dependent behaviour of coexisting 

structures from their distinct 19F signals. This is a clear advantage over traditional 

spectrophotometric methods (UV and CD)73-78, which often cannot provide information 

on the melting of coexisting structures. Compared to UV and CD spectroscopy, 19F 

reflects melting at a local level. Therefore, 19F NMR can be used to probe the 

temperature-dependent behaviour of a specific part of a nucleic acid structure, which 

typically is difficult with UV and CD spectroscopy. 1H NMR of imino protons can also 

be used for melting analysis, but spectral crowding and the Tm-independent exchange 

rate of the imino protons can interfere with this method.167,168 It should be noted that the 

chemical shift of 19F is inherently very sensitive to temperature11,59, and thus the 

temperature-dependent behaviour of the reporter group needs to be considered when 

analyzing the data24.  
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Figure 10. (a) 2,4-Difluorotoluyl ribonucleoside (rF)-modified intramolecular stem loop 

structure. (b) 19F NMR spectra (1H decoupled) at different temperatures. Only the signal of 

fluorine in position 4 is shown. (c) Melting profile obtained from the 19F NMR data. Reprinted 

and modified with permission from Graber, D.; Moroder, H.; Micura, R. J. Am. Chem. Soc. 2008, 

130, 17230-17231. Copyright (2008) American Chemical Society.93 

1.2.2.3 Spliceosomal U2-U6 snRNA complex 

The spliceosome is a ribonucleoprotein complex that removes introns from eukaryotic 

precursor messenger RNAs (pre-mRNAs) in a process called splicing.169 The 

spliceosome is composed of numerous proteins and five small nuclear RNAs (snRNAs), 

including U2 and U6 snRNAs. The interaction between U2 and U6 snRNAs creates the 

splicing scaffold. 5-Fluorocytidine has been employed to investigate the conformational 

heterogeneity of the protein-free human spliceosomal U2-U6 snRNA complex, 

specifically to investigate the formation of a four-helix conformation and a tree-helix 

conformation and to study the potential equilibrium between these conformers (Figure 

11).31,32 The 19F NMR spectrum of the U2-U6 snRNA complex exhibits a major 19F 

signal, which was attributed to a double-stranded form and thus indicates the formation 

of the four-helix junction conformation. In addition, a very broad signal was detected in 

the single-stranded region corresponding to the three-way junction conformation. The 

complexity of the signal was thought to originate from multiple alternative 

conformations or intermediates. Several fluorine-labelled mutation models were 

investigated to confirm the signal assignment. Because an analogous conformational 

equilibrium of the yeast complex has been shown to depend strongly on Mg2+ 

concentration, the effect of Mg2+ on the human U2-U6 snRNA complex was also 

investigated. In the presence of Mg2+ a slight shift in the equilibrium was detected; the 

percentage of the heterogeneous minor conformer increased from ~14% to ~17%. 
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Figure 11. Proposed secondary structures of the human U2-U6 snRNA complex model. The 19F 

NMR spectra of control RNAs and the U2-U6 snRNA complex in the absence and in the presence 

of magnesium. The 5-fluorocytidine (5FC) is in red. Reprinted and modified with permission from 

Zhao, C.; Bachu, R.; Popović, M.; Devany, M.; Brenowitz, M.; Schlatterer, J. C.; Greenbaum, N. 

L. RNA 2013, 19, 561-573. © 2013 RNA Society.31  

Two-dimensional 19F-19F EXSY (exchange spectroscopy) experiments were additionally 

conducted to obtain information about conformational exchange dynamics32; this 

method had previously been successfully applied to the hairpin-hairpin equilibria of a 

short 5-fluorouridine-modified RNA97. The 19F-19F EXSY data indicated that there was 

a dynamic exchange between different conformations, but the complexity and low 

quality of the spectra prevented more detailed kinetic analysis.32 Overall, the 19F NMR 

results were consistent with biochemical studies.31,32 It was concluded that the 

predominant four-helix conformation is in dynamic equilibrium with the minor three-

helix conformation, and facile interconversion between these conformations occurs. 

1.2.2.4 Riboswitches 

Riboswitches are ligand-sensing regulatory elements most commonly found in the 

noncoding regions of some bacterial mRNAs.170,171 A typical riboswitch consists of two 

domains: an aptamer domain, which contains a selective high-affinity binding site for a 

ligand, and an adjoining expression platform, which controls gene expression. The 

formation of a stable aptamer-ligand complex induces conformational changes in the 

expression platform and leads to the regulation of gene expression. 19F NMR 

spectroscopy has been used to investigate bacterial riboswitches, including preQ1 class I 

riboswitches26,28,94,111, an S-adenosylmethionine type II (SAM-II) riboswitch27, 

four-helix conformationthree-helix conformation

-165.1 ppm

-167.4 ppm
~ -165.4 ppm

~ -167.8 ppm
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a guanine-sensing riboswitch29, and an artificial tobramycin-sensing riboswitch107. 

Conformational equilibria of the riboswitches in the absence and presence of ligands can 

be detected and quantified by 19F NMR analysis and complemented by other detection 

methods to offer insight into folding pathways. In addition, 19F NMR has provided 

information about how different factors, such as Mg2+ ions27,28,94, temperature27,28, base 

mutations28 or competitive artefact28, affect structural equilibria. The preQ1 class I 

riboswitches are discussed in more detail below; 19F NMR spectroscopy has been applied 

to the detection of both aptamer-ligand complexes28,94,111 and structural changes in the 

expression platform in response to ligand binding26.  

The minimal aptamer domain (34 nt) of a Fusobacterium nucleatum preQ1 class I 

riboswitch forms a pseudoknot structure upon 7-aminomethyl-7-deazaguanine (preQ1) 

binding.172 19F NMR spectroscopy was used to analyse the structural behaviour of the 

wild-type aptamer and its mutant form (a single base pair mutation, A33G/U9C, Figure 

12b) using 5-fluoro pyrimidine labels.28 The 19F NMR data indicated that the mutant 

aptamer adopted two conformational states in the absence of preQ1 (Figure 12b), and 

this result was further confirmed with 1H and 15N NMR spectroscopy. In addition to the 

stem-loop structure, the aptamer adopted a pseudoknot conformation that structurally 

resembles the ligand-bound complex and exists in a slow dynamic equilibrium with the 

stem-loop structure. The pseudoknot formation stabilized at a low temperature and in 

the presence of Mg2+ ions.  

 

Figure 12. Comparison of the conformational behaviour of wild-type and mutant F. nucleatum 

preQ1 riboswitch aptamers. 1H NMR and 19F NMR spectra of free (upper) and preQ1-bound 

(lower) (a) 5-fluorouridine-modified wild-type RNA and (b) 5-fluorocytidine-modified mutant 

RNA. Proposed structures are shown. Spectra reprinted and modified with permission from 

Santner, T.; Rieder, U.; Kreutz, C.; Micura, R. J. Am. Chem. Soc. 2012, 134, 11928-11931. 

Copyright (2012) American Chemical Society.28  
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The 19F NMR data showed that the wild-type aptamer was unable to adopt a preorganized 

pseudoknot structure.28 Instead, a clear indication of a proposed dimeric structure was 

observed. As observed in Figure 12a, the dimer was a dominant structure in the absence 

of the ligand. In addition, a trace of the dimer was detected in the presence of preQ1, 

whereas only the 19F signal attributed to the preQ1 complex was observed for the mutant 

aptamer (Figure 12b). This difference thought to be caused by the single base pair 

mutation because it not only stabilizes the pre-organized pseudoknot fold but also 

destabilizes the dimer formation. The dimer was assigned as an artefact formed in high 

RNA concentrations, and it was confirmed using a fluorescence experiment that the 

wild-type aptamer adopted a pre-organized pseudoknot structure in the presence of 

magnesium at a low RNA concentration (0.5 µM versus 600 µM used in 19F NMR 

experiments). The direct evidence of a competitive structure provided an explanation for 

data previously obtained by small-angle X-ray scattering. Similarly, ligand-free state, a 

Mg2+-induced pseudoknot structure and a ligand bound state (preQ1) of another preQ1 

class I riboswitch aptamer domain have been successfully monitored with a 2´-SCF3 

guanosine (Figure 13a).94  

 

Figure 13. (a) 19F NMR and 1H NMR analysis of ligand-free, Mg2+-induced pseudoknot fold and 

preQ1-bound state of 2′-SCF3 guanosine-modified Thermoanaerobacter tengcongensis preQ1 

class I riboswitch. Reprinted and modified with permission from Jud, L.; Košutić, M.; Schwarz, 

V.; Hartl, M.; Kreutz, C.; Bister, K.; Micura, R. Chem. Eur. J. 2015, 21, 10400-10407 © 2015 

The Authors.94 (b) 5-Fluorouridine-modified bistable secondary structure model of the 

F. nucleatum preQ1 riboswitch. The minimal aptamer domain (grey bold letters, same as Figure 

12a) and the bistable hairpin sequence within the expression platform (black bold letters) share a 

single nucleotide (G34 underlined). The binding of preQ1 (aptamer domain adopts a preQ1-bound 

state) shifts the equilibrium position towards the lower stem-loop structure (i.e., termination 

hairpin). 

a) b)
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19F NMR spectroscopy has also been used to detect the ligand-induced rearrangement 

on the expression platform of the F. nucleatum preQ1 class I riboswitch (Figure 13b).26 

Chemical and enzymatic structural probing indicated that the expression platform 

contains a hairpin-hairpin equilibrium that is sensitive to ligand-induced rearrangement 

at the aptamer domain. Since a full-length riboswitch (61 nt) was also required for more 

detailed investigations, 1H NMR spectroscopy was unsuitable method because of 

spectral crowding. Using 5-fluorouridine labelling, it was possible to confirm that the 

expression platform adopted a hairpin-hairpin equilibrium and to directly monitor the 

preQ1-induced changes in the equilibrium position.  

1.2.2.5 Hammerhead ribozyme 

The metal ion-induced folding of hammerhead ribozyme has been monitored by 19F 

NMR to obtain local information on the folding process.30 Hammerhead ribozyme is a 

small catalytic RNA that undergoes autocatalytic self-cleavage in the presence of Mg2+ 

ions. The catalytic core of the minimal hammerhead ribozyme is flanked by three helical 

stems. To acquire a functional conformation the core undergoes structural 

rearrangements in the presence of Mg2+ ions. One of the 2´-O-methyl-5-fluorouridines 

(U4 in Figure 14) was introduced into domain 1 and the other was located at the interface 

between domains 1 and 2 (U7 in Figure 14) of the cloverleaf construct.  

 

Figure 14. Schematic presentation of a two-stage folding process for a hammerhead ribozyme. 

The 2´-O-methyl-5-fluorouridines U4 and U7 are shown as green spheres. Crystal structure of 

hammerhead ribozyme. Reprinted and modified with permission from Hammann, C.; Norman, 

D. G.; Lilley, D. M. J. PNAS 2001, 98, 5503-5508. Copyright (2001) National Academy of 

Sciences.30 

Both of the labels were sensitive to titration with Mg2+ ions; thus, it was possible to 

monitor the folding process from the chemical shifts and linewidths. With label U7, two 
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different transitions were detected upon the addition of Mg2+ ions. The first transition at 

a low Mg2+ concentration (500 µM) was attributed to an initial folding event i.e., the 

formation of domain 2. As the linewidth of the signal significantly broadened between 

0 and 500 µM Mg2+, and then subsequently narrowed between 500 µM and  

1 mM Mg2+, the folding process was interpreted as an intermediate exchange regime 

(a 500 MHz instrument was used for the analysis). It was estimated that the formation 

of domain 2 occurs on approximately the millisecond timescale. The second transition 

was detected at millimolar Mg2+ concentrations. The same transition was also observed 

with label 4, and thus, it was attributed to the formation of domain 1. The chemical shift 

data of the second transition showed non-cooperative binding of Mg2+ ions with apparent 

association constants of approximately 100-500 M-1. In summary, the 19F NMR data 

supported the two-stage ion-induced folding mechanism in which the sequential 

conformational transitions of domains 2 and 1 create the active conformation of the 

minimal hammerhead ribozyme. 

1.2.2.6 Trans-activation response element 

The trans-activation response element (TAR) is a conserved RNA stem loop structure 

found at the beginning of human immunodeficiency virus (HIV) transcripts.173 The 

interaction between TAR and the viral protein Tat has an essential role in viral 

transcription, and TAR has been extensively studied as a potential therapeutic 

target.174,175 19F NMR spectroscopy has been used to investigate the binding of metal 

ions20, argininamide20,25 and invader oligonucleotides24,89 to fluorine-labelled TAR 

models. In addition, solid-state 19F NMR spectroscopy has been applied to investigate 

Tat peptide-TAR interactions.22,64,65  

Metal ion-TAR interactions have been explored using 5-fluorouridine-modified HIV 

type-1 (HIV-1) TAR models (Figure 15).20 Several 5-fluorouridines were introduced 

within TAR models to determine the binding sites and Kd values for metal ions (Mg2+, 

Ca2+ and Co(NH3)6
3+). The applicability of this approach was first evaluated by 

monitoring the chemical shift changes induced by the known TAR ligand argininamide 

as a function of its concentration. Identifying the locations of binding sites for small 

molecules has also been conducted previously with other RNA targets.162,176 
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Figure 15. (a) 5-Fluorouridine-modified HIV-1 TAR models and (b) their 19F NMR spectra. 

Spectra reprinted and modified from Olejniczak, M.; Gdaniec, Z.; Fischer, A.; Grabarkiewicz, T.; 

Bielecki, L.; Adamiak, R. W. Nucleic Acids Res. 2002, 30, 4241-4249, by permission of Oxford 

University Press Copyright 2002, Oxford University Press.20 

Structural studies have shown that the bulge region undergoes major structural 

rearrangement upon the binding of argininamide (Figure 16b and c).177-179 The residue 

U23 undergoes significant secondary structural rearrangement and may participate in 

base triplet (U23-A27-U38) formation within the argininamide-TAR complex. As 

expected, titration experiments showed that the labelled residues positioned within the 

bulge region (i.e., FU-23, FU-25, FU-38 and FU-40) were sensitive to the addition of 

argininamide, whereas negligible changes were observed for residue FU-31, which is 

positioned at the loop.20 Notably, a large chemical shift change was detected for FU-23. 

Because the argininamide titration experiment was consistent with structural studies and 

was able to provide site-specific information, the binding of Mg2+, Ca2+ and Co(NH3)6
3+ 

ions was investigated by the same technique. The titration data showed that the metal 

ions bind to the bulge region. In addition, the Kd values for argininamide (0.3 mM), Mg2+ 

(0.9 mM) and Ca2+ (2.7 mM) were obtained from the titration data. Co(NH3)6
3+ caused 

the irreversible aggregation of RNA, and thus its Kd value could not be determined. 

A similar approach was successfully used to investigate the argininamide binding in 

uniformly labelled HIV-2 TAR models (Figure 16a).25 The concept was the same as 

described above; 19F chemical shift changes were followed upon the consecutive 

addition of argininamide, and the obtained data were used for the localization of the 

binding site and to determine the Kd values. It was proposed that this technique could be 

used to identify novel TAR-binding small molecules. In addition to the studies with 

uniformly labelled tRNAs, this is one of the few examples that has utilized a uniform 

labelling strategy. These TAR models have also been used for solvent accessibility 

19F NMR spectra
a) b)
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measurements (i.e., solvent-induced isotope shift (SIIS) studies) and detailed structural 

studies.21,23,25,83 

 

Figure 16. (a) Uniformly labelled HIV-2 TAR models. Structures of unlabelled (b) HIV-1 TAR 

(PDB ID 1ANR)177 and (c) HIV-2 TAR argininamide (cyan) complex (PDB 1AJU)179. Residues 

U23, A27 and U38 are coloured to illustrate the secondary structure rearrangement of the bulge 

region. Consistent numbering is used for the HIV-1 (bulge U23, C24, U25) and HIV-2 (bulge 

U23, U25) TAR models. 

As described above, residue U23 is part of a marked secondary structural rearrangement 

upon the binding of argininamide. Similarly, Tat peptide binding induces a significant 

conformational rearrangement at the bulge region and affects the position of residue 

U23.180,181 The binding of Tat peptide has been monitored by rotational-echo double-

resonance (REDOR) NMR using fluorine-labelled HIV-1 TAR models.22,64,65 REDOR 

NMR is a solid-state NMR technique for measuring dipolar couplings and hence 

distances between a heteronuclear spin pair. Using a 31P-19F REDOR experiment, the 

distance between a 2´-F-modified U23 and a phosphorothioate modified A27 was shown 

to change from 10.3 to 6.6 Å upon Tat peptide binding.22 In addition, the Tat-TAR 

interactions were investigated by combining several REDOR experiments using 15N- and 
13C-labelled Tat peptide and a 5-fluorouridine-modified TAR model.64,65 Both the 

intramolecular22 and intermolecular64,65 distances were comparable with solution NMR 

studies, thus demonstrating the utility of the REDOR method to study RNA-peptide 

interactions and RNA conformational changes.  

The invasion of 2´-O-methyl oligoribonucleotides into a fluorine-labelled HIV-1 TAR 

model is a more complex example of an intermolecular nucleic acid-nucleic acid 

interaction that has been successfully monitored by 19F NMR.24,89 The invasion of 

oligonucleotides was clearly detected from distinct 19F signals of the hairpin and of the 

A27

U38

U23

U23

A27

U38

b) c)a)
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macro-loop invasion complex (Figure 17a and 17b), and Kd values could be extracted 

from the titration data. Thus, 19F NMR provided a direct way to compare the ability of 

different oligonucleotides to invade the fluorine-labelled TAR model. The invasion was 

also monitored in the presence of the aminoglycoside neomycin. Neomycin is known to 

bind to the minor groove below the bulge. It was suggested that this interaction might 

affect the invasion, and titration data confirmed that neomycin clearly promoted the 

invasion. Moreover, it was later shown that the covalent conjugation of neomycin to 

2´-O-methyl oligoribonucleotides significantly promotes invasion.89 In addition to 

titration studies, the temperature-dependent behaviour of invasion complexes was 

monitored by 19F NMR.24,89 As illustrated in the Figure 17a, the macro-loop invasion 

complex/open chain invasion complex/single strand conversion is coupled to the 

hairpin/single strand conversion, and thus the overall melting process is a highly 

complex, in particular when the interaction between the invader and TAR is weak. The 

applicability of 19F NMR spectroscopy for monitoring these dynamic intramolecular and 

intermolecular equilibria was demonstrated.  

 

Figure 17. (a) Schematic presentation of the invasion of 8 mer 2´-O-methyl oligoribonucleotide 

into a 5-[4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-ynyl]-2´-deoxyuridine-modified HIV-1 

TAR model  (boxed) and the temperature-dependent behaviour of the invasion complexes. 

(b) The 19F NMR spectra upon the titration of 2´-O-methyl oligoribonucleotide. Reprinted and 

modified with permission from Kiviniemi, A.; Virta, P. J. Am. Chem. Soc. 2010, 132, 8560-8562. 

Copyright (2010) American Chemical Society.24 
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1.2.2.7 DNA triple helix 

Triple-helical nucleic acid structures are formed when a third strand (i.e., triplex-forming 

strand) binds a sequence-specifically in the major groove of a double-helical nucleic acid 

structure.182-184 (A brief description of triple helices is presented in Section 3.2.1). 

A pyrimidine motif DNA triplex has been studied by 19F NMR spectroscopy using a 

2´-deoxy-5-fluorouridine-modified third strand (Figure 18).35 Because the formation of 

C-rich pyrimidine motif triplexes requires the protonation of the cytosine bases185-189, the 

model is strongly pH-dependent and stabilized under acidic conditions.  

 

Figure 18.  Schematic presentation of triplex formation and 19F NMR spectra of 2-deoxy-

5-fluorouridine-substitued single strand alone (A and E) and in the presence of duplex (B, C and 

D). Spectra reprinted and modified from Tanabe, K.; Sugiura, M.; Nishimoto, S. Bioorg. Med. 

Chem. 2010, 18, 6690-6694, Copyright (2010), with permission from Elsevier.35 

The 19F-NMR spectra of the third strand alone was complex and multiple signals 

indicated the formation of secondary structures (Figure 18).35 These signals were 

attributed to non-specific structures, because C-rich strands can adopt unspecified 

structures under acidic conditions190,191. This suggestion was further confirmed by the 

fact that a single 19F signal was observed at a neutral pH or at an elevated temperature. 

The association of the third strand to the DNA duplex at 25 °C and the dissociation of 

the third strand upon heating could be clearly detected from distinct 19F chemical shifts. 

As a result, this labelling choice allowed the detection of triplex and single-stranded 

structures and to some extent, competitive unspecified structures. These results 

demonstrated that DNA triplexes can be monitored by 19F NMR. In another study, 

neomycin-conjugated triplex-forming oligonucleotides were investigated by 19F NMR 

spectroscopy.36 This work has been conducted in our laboratory; some of the preliminary 

work is included in the Results and Discussion Section and thus it is not presented here.  

triplex

single strand

single strand and higher-order structures

25 °C

25 °C

50 °C

50 °C

25 °C

duplex triplex
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1.2.2.8 G-quadruplexes 

G-quadruplexes are four-stranded nucleic acid structures formed by G-rich DNA and 

RNA sequences.192-194  These topologically diverse structures have received considerable 

attention due to their possible biological roles, for instance, in replication, translation, 

telomere biology and transcription.193,195-201 A short description of G-quadruplexes is 

presented in Section 3.5. 

A dimeric model of a human telomeric RNA G-quadruplex has been studied with a 

3,5-bis(trifluoromethyl)phenyl label (Figure 19a).37 A single 19F signal assigned to a 

dimeric G-quadruplex was observed at a low RNA concentration, and an additional 

signal was detected at a higher RNA concentration (Figure 19b). This 19F signal was 

attributed to a higher-order G-quadruplex in which two dimeric G-quadruplex subunits 

are stacked together. Consequently, the 19F NMR allowed the behaviour of the dimeric 

and stacked G-quadruplex structures to be investigated simultaneously in various 

conditions. 

 

Figure 19. (a) Structure of 19F-labelled telomere RNA. According to CD spectroscopy the 

labelling did not affect the G-quadruplex structure, but the Tm values were not reported. (b) 19F 

NMR spectra and (c) 1H NMR spectra of labelled RNA at different concentrations. (d) 19F NMR 

spectra of labelled RNA in vitro, within Xenopus laevis oocyte extract and in Xenopus laevis 

cells. The peaks corresponding to dimeric G-quadruplex are marked with red dots and those of 

the stacked G-quadruplex with green dots. (e) Structure of pyridostatin. Reprinted and modified 

with permission from Bao, H.; Ishizuka, T.; Sakamoto, T.; Fujimoto, K.; Uechi, T.; Kenmochi, 

N.; Xu, Y. Nucleic Acids Res. 2017, 45, 5501-5511. Copyright (2017) The Authors.37 
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The temperature-dependent conversion of stacked G-quadruplex/dimer 

G-quadruplex/single strand was monitored by 19F NMR.37 Tm values of 52.4 °C and 

67.8 °C were obtained for stacked and dimeric G-quadruplex, respectively, at a 3.0 mM 

concentration. Moreover, thermodynamic parameters were extracted from the 

temperature-dependent 19F NMR data by applying van’t Hoff analysis. The 

thermodynamic parameters indicated that the stabilizing stacking interactions are of an 

enthalpic origin. In particular, the ∆H value for the stacking interaction between two 

G-quadruplex subunits (∆H -61.8 kJ/mol) was nearly comparable to the formation of the 

single G-tetrad (∆H -86.9 kJ/mol).  

Interestingly, the conformational behaviour of the G-quadruplex was investigated in 

cells using 19F NMR spectroscopy (i.e., in-cell 19F NMR experiment).37 The 19F-labelled 

RNA was injected into Xenopus laevis oocytes. The single observable 19F signal 

associated with stacked G-quadruplex demonstrated that the higher-order G-quadruplex 

structure was formed in living cells (Figure 19d). Similarly, the 19F signal of the stacked 

G-quadruplex was also detected in oocyte lysate. The stacked G-quadruplex-dimeric 

G-quadruplex equilibrium was additionally investigated under molecular crowding 

conditions. The 19F NMR data showed that molecular crowding agents, including 

acetonitrile, dimethyl sulfoxide, ethanol and PEG200, induced and stabilized the 

formation of a stacked G-quadruplex structure. The binding of a well-known 

G-quadruplex binding molecule, pyridostatin (Figure 19e), to dimeric and stacked 

G-quadruplexes was also studied.38 The binding stoichiometry (including Kd values) and 

temperature-dependent behaviour of the complexes could be monitored by 19F NMR 

spectroscopy. The results indicated that pyridostatin preferably binds to the dimeric 

rather than the stacked G-quadruplex. Finally, it was demonstrated that interaction 

between a telomeric repeat binding protein and the dimeric G-quadruplex was detectable 

by 19F NMR.  

DNA G-quadruplexes have also been investigated by 19F NMR spectroscopy. The 

intended purpose of the 5´-end 3,5-bis(trifluoromethyl)phenyl-modified thrombin 

binding aptamer (TBA) was to use it as a potassium ion sensor (Figure 20a).18 A unique 
19F signal was detected that responded to K+ addition in a concentration-dependent 

manner. Unfortunately, the modification decreased the thermal stability of TBA 

(∆Tm -7.0 °C compared to native TBA) and thus reduced the detection range of 

potassium ions. In a recent study, TBA was investigated with a 19F-modified guanine 

derivative (Figure 20b), and as expected, the derivative stabilized the G-quadruplex (∆Tm 

+5.0 °C compared to native TBA).39 Like the 5´-end modification, the guanine label was 

clearly able to distinguish single-stranded and G-quadruplex structures. In addition to 

TBA, the formation of intermolecular human telomeric DNA G-quadruplex structures 

was monitored with the guanine label. The derivative was also used to monitor the 

thermal melting of telomeric DNA G-quadruplex and for the detection of G-quadruplex 

structures in Xenopus laevis oocytes. In another recent study, the thermodynamic 
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properties of 5-[(3,5-bis(trifluoromethyl)phenyl)ethynyl]-2´-deoxyuridine-modified 

TBAs were analysed by 19F NMR (Figure 20c).19 

 

Figure 20. 19F-labelled thrombin binding aptamers. (a) A non-nucleosidic fluorine modification 

at the 5´-end of TBA. (b) 8-[(3,5-Bis(trifluoromethyl)phenyl)ethynyl]-2´-deoxyguanosine-

modified TBA. (c) 5-[(3,5-Bis(trifluoromethyl)phenyl)ethynyl]-2´-deoxyuridine, which has been 

incorporated in place of one of the thymidine residues within TBA. 

1.2.2.9 Protein-nucleic acid interactions 

Nucleic acid-protein interactions play fundamental roles in biology, and similar to 

nucleic acid-nucleic acid interactions, 19F NMR spectroscopy can elucidate the structural 

and dynamic properties of these macromolecule complexes. 19F NMR data have 

provided information about binding sites and interactions as well as conformational 

changes and structural distortions. These studies include interactions between E. coli 

tRNAVal and its cognate synthetase159,163,164, between bacteriophage T7 RNA polymerase 

and its promoter109, between Lambda phage cro repressor and its operator DNA OR3112,113 

and between E. coli lac repressor and its lac operator114.  

In addition to probing binding interactions, 19F NMR spectroscopy has been successfully 

used to investigate the dynamic conformational behaviour of enzyme-DNA 

complexes.117,118,134 For example, 19F NMR spectroscopy has been exploited to 

investigate the flipping of cytosine by DNA cytosine-5 methyltransferase HhaI 

(M.HhaI).118 The dynamic conformational behaviour of the target cytosine (for 

methylation) in the binary (DNA-enzyme) and ternary (DNA-enzyme-cofactor) 

complexes was investigated by replacing it with 5-fluorocytosine (Figure 21a). 19F NMR 

and gel shift mobility data revealed three conformational states for the 5-fluorocytosine: 

a stacked conformation in the DNA duplex, an ensemble of extrahelical flipped-out 

conformations, and an extrahelical flipped-out locked conformation in the enzyme active 

site. In particular, the binding of a cofactor analogue S-adenosyl-L-homocysteine 
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(AdoHcy) to the binary complex (i.e., the formation of a ternary complex) induced the 

formation of the extrahelical locked conformation (Figure 21b). This conformation was 

clearly detected by 19F NMR spectroscopy because a new signal appeared approximately 

11 ppm from the signal of the stacked 5-fluorocytosine. Because the data indicated that 

the base flipping was not solely dependent on the binding of the cytosine in the active 

site of the enzyme, it was proposed that the enzyme has an active role in the opening of 

the DNA duplex. 

 

Figure 21. (a) 19F-labelled DNA used to investigate base flipping. The recognition site of the 

methyltransferase is boxed. The target cytosine was replaced by 5-fluorocytosine, and the other 

5-fluorocytosine served as an internal reference. A cytosine of the complementary strand was 

methylated to prevent interaction of the enzyme with that cytosine. (b) Structure of the ternary 

M.HhaI (light grey)-DNA (dark grey, flipped out cytidine residue is in cyan)-AdoHcy (black) 

complex with non-labelled DNA sequence (PDB ID 3MHT202).  

In addition, 19F NMR spectroscopy has been utilized to investigate the conformational 

dynamics of vaccinia type IB topoisomerase-DNA117 and uracil DNA glycosylase-

DNA134 complexes. The catalytic mechanism of tRNA methylation has also been 

investigated.110 All of these studies mentioned above were conducted between 1985 and 

2004, and despite these early studies, this area has gained little interest during the last 

decade. Recent studies have demonstrated the capability of labels to detect the formation 

of protein-nucleic acid complexes.19,38,101,107 For example, the interaction between DNA 

duplex and a core domain of p53 (a tumour suppressor protein203) was monitored with a 

5-[4-(trifluoroacetyl)phenyl]-2´-deoxycytidine.101 Protein-nucleic acid complexes have 

also been investigated using fluorine-labelled proteins.204,205 

1.2.2.10  DNA adducts 

Arylamines are mutagenic compounds that form covalent adducts with DNA in vivo and 

have been implicated in the development of various cancers.206,207 The “adducted DNA” 

a) b)
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can adopt multiple conformers that exist in dynamic equilibria, and the mutagenicity 

partly originates from this conformational heterogeneity. 19F NMR spectroscopy has 

been used to investigate the complex conformational behaviour of FAF, FAAF and 

FABP adducts, which are fluorinated analogues of extensively studied C8-substitued 

deoxyguanosine arylamine DNA adducts of 2-aminofluorene and 4-aminobiphenyl 

(Figure 22a).33,34,96,208-221 19F NMR spectroscopy has enabled the direct detection of 

various conformations and revealed how the distribution and stability of the conformers 

depend on surrounding features, such as DNA sequence composition or temperature 

(Figure 22b and c). 19F NMR in conjunction with other detection methods has provided 

valuable insight into conformational heterogeneity and how a certain adduct affects the 

mutagenic and repair outcomes. 

 

Figure 22. (a) Structures of FAF [N-(2´-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene], FAAF 

[N-(2´-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene] and FABP [N-(2´-deoxyguanosin-

8-yl)-4´-fluoro-4-aminobiphenyl] adducts. (b) Conformational states adopted by non-fluorinated 

FAF. A major groove B-type conformation (B) and a stacked conformation (S). (c) 19F NMR 

spectra of FAF (grey G) modified DNA duplexes in different sequence contexts (the inverted 

base pair is circled). Reprinted and modified from Jain, V.; Hilton, B.; Lin, B.; Patnaik, S.; Liang, 

F.; Darian, E.; Zou, Y.; MacKerell, A. D.; Cho, B. P. Nucleic Acids Res. 2013, 41, 869-880 by 

permission of Oxford University Press © The Authors 2012.217 

1.2.2.11  Peptide nucleic acid-nucleic acid interactions 

Peptide nucleic acids (PNAs) are synthetic homologs of nucleic acids in which the 

phosphate-sugar backbone is replaced by a peptide-like backbone.222 As illustrated in 

Figure 23a, PNAs can form a triplex structure via strand invasion in addition to triplex. 
19F NMR has been used to investigate interactions between triplex-forming peptide 

nucleic acids (TFPNAs) and 19F-labelled miRNA hairpin models.95 (This study has been 

a)

b)
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conducted in our laboratory and the used fluorine-modified nucleoside analogues are 

presented in the Results and Discussion Section). Using 19F NMR, it was possible to 

distinguish these triplex structures and thus analyse the binding modes of differently 

modified TFPNAs. 19F NMR provided information about binding stoichiometry, 

transitions between binding modes, and the temperature-dependent behaviour of 

coexisting complexes.  

 

Figure 23. (a) Schematic presentation of PNA triplexes. PNA sequences are represented in bold. 

(b) Fluorinated PNA analogues. 

In addition, PNA-nucleic acid interactions have been investigated by incorporating a 

fluorine label into the PNA (Figure 23b).223 Using this strategy, 19F NMR spectroscopy 

was successfully applied to monitor the hybridization of fluorine-labelled PNAs with 

complementary parallel or antiparallel RNA or DNA sequences and to monitor more 

complicated competitive hybridization processes. 

1.2.2.12 Hybridization probes 

Fluorine-labelled oligonucleotides have been used as 19F NMR-based hybridization 

probes to detect target sequences and structural distortions. A variety of approaches have 

been described. In one strategy, a photo-cross-linking-induced 19F chemical shift change 

was combined with a hybridization chain reaction.56 Using this strategy it was possible 

to detect miRNAs at a nanomolar level using 3-cyanovinylcarbazole- and 2´-deoxy-

5-trifluoromethyluridine-modified DNA probes (Figure 24a). In a different approach, a 

potential DNA hybridization probe for MRI was designed to utilize a paramagnetic 

relaxation enhancement effect.53 As illustrated in Figure 24b, the probe adopts a hairpin 

structure in which close proximity of a 3´-end chelate to the 5´-end fluorine moiety was 

shown to quench the 19F signal, whereas a detectable 19F signal was observed upon 

hybridization with a target sequence. Additionally, fluorinated DNA-polymer 

conjugates57 and fluorinated DNA gold nanoparticle complexes54 have been proposed as 

potential MRI probes.  
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Figure 24. (a) Photo-cross-linking reaction between 3-cyanovinylcarbazole and 2´-deoxy-

5-trifluoromethyluridine. (b) Schematic presentation of the mechanism of a DNA probe 

containing a fluorine and a chelate part. 

3,5-Bis(trifluoromethyl)phenyl-modified oligodeoxynucleotides have been used as 

hybridization probes to detect DNA mismatches and single nucleotide bulges 

(Figure 25).55 In this approach the hybridization of the probe with the target sequences 

is expected to provide a characteristic 19F signal for each structure. As summarized in 

Figure 25, both of the probes were able to distinguish some of the distortions, but the 

discrimination ability of the fluorine moiety was better with a longer linker. 

 

Figure 25. 3,5-Bis(trifluoromethyl)phenyl-modified hybridization probes and investigated 

mismatch and bulge structures. The non-complementary sequences that were recognized are 

presented below the labels.  
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In contrast to the hybridization probes discussed above, fluorinated 2´-deoxy-

N4-(6-aminopyridin-2-yl)cytidine-modified triplex-forming oligodeoxynucleotides have 

been used to recognize mismatches in double-stranded DNA structures.58 One of the 

cytidine derivatives and its interaction with a duplex is shown in Figure 26. This probe 

was able to distinguish fully complementary sequence and all three mismatch structures 

simultaneously.  

 

Figure 26. The proposed interaction of fluorinated 2´-deoxy-N4-(6-aminopyridin-2-yl)cytidine 

derivative with the DNA duplex. (• Hoogsteen hydrogen bonding) 

1.3 External fluorine probes 

Fluorinated small molecules have been proposed as an alternative approach to internal 

fluorine probes.224 One advantage of small molecule external probes is that the labelling 

of the target nucleic acid is avoided. However, the obvious challenge of this approach is 

to find a suitable fluorinated small molecule that readily reflects the process of interest. 

The concept of this approach has been demonstrated with fluorinated 

diaminocyclopentanes224, but the use of external fluorine probes as structural probes has 

received little interest thus far.  

The interaction of racemic fluorinated diaminocyclopentanes (Figure 27a) with tRNALys
3 

was investigated by 19F NMR to evaluate their properties as external 19F NMR probes.224 

Among these compounds, a (±)-4-fluorocyclopentane-1,3-diamine was the most 

sensitive probe. Its interaction with tRNALys
3 led to a chiral resolution and distinct 19F 

signals were observed for each enantiomer (Figure 27b). 1H NMR and TROSY 

(transverse relaxation optimized spectroscopy) measurements revealed, that the 

enantiomers bind at the same binding site located in the T-arm with Kd values in the 

millimolar range.  



46  Introduction 

 

 

Figure 27. (a) Structures of fluorinated diaminocyclopentanes. (b) 19F NMR spectra of 

()-4-fluorocyclopentane-1,3-diamine (rac 2a refers to ()-4-fluorocyclopentane-1,3-diamine) 

with tRNALys
3 D-arm, tRNALys

3 T-arm and tRNALys
3. Reprinted and modified with permission 

from Moumné, R.; Pasco, M.; Prost, E.; Lecourt, T.; Micouin, L.; Tisné, C. J. Am. Chem. Soc. 

2010, 132, 13111-13113. Copyright (2010) American Chemical Society.224 

The applicability of ()-4-fluorocyclopentane-1,3-diamine as a structural probe was 

further demonstrated by monitoring its interaction with other tRNAs including E.coli 

tRNAf
Met and tRNAMet and yeast tRNAPhe.224 A different signal splitting was observed in 

each case, demonstrating the sensitivity of the probe to its local environment. In addition, 

()-4-fluorocyclopentane-1,3-diamine was successfully used to monitor the thermal 

melting of the T-arm hairpin. The non-invasive properties of ()-4-fluorocyclopentane-

1,3-diamine were also demonstrated by analysing its interaction with neomycin 

aptamer.52 Neomycin aptamer adopts a less structured conformation in the absence of a 

ligand and upon neomycin binding adopts a well-structured conformation. 1H NMR 

experiments showed that the interaction of ()-4-fluorocyclopentane-1,3-diamine with 

the neomycin aptamer did not affect conformational equilibrium whereas a higher 

affinity probe clearly shifted the equilibrium towards a bound state. Because the 

()-4-fluorocyclopentane-1,3-diamine was displaced upon neomycin binding, it was 

possible to monitor the conformational capture of the aptamer via its 19F signals. It was 

proposed that this concept might be suitable for investigating riboswitches. The 

()-4-fluorocyclopentane-1,3-diamine has also been employed in ligand binding studies 

(Section 1.4). 

Another example of an external fluorine probe is 3,5-bis(trifluoromethyl)phenyl-

modified bisbenzimide H 33258 (Figure 28a).225,226 It is a dual probe designed to 

discriminate between dsDNA structures. In contrast to ()-4-fluorocyclopentane-

1,3-diamine, its interaction with the target is not based on a weak non-invasive 

interaction. Bisbenzimide H 33258 (Hoechst 33258) is a well-known fluorescent agent 

that binds to the minor groove of an AATT region of dsDNA. The 19F NMR data showed 

that the 19F shift of the probe was sensitive to the adjacent base-pairs of the AATT 

binding site (Figure 28b) and it was demonstrated that all four neighbouring base pairs 

were recognized in a mixture of sequences.225 Moreover, it was shown that the probe 

a) b)
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could distinguish single nucleotide bulge structures near the AATT binding site (Figure 

28c) and thus provide characteristic 19F signals for each structure.226 

 

Figure 28. (a) Structure of 3,5-bis(trifluoromethyl)phenyl-modified bisbenzimide H 33258. (b 

and c) Investigated structures. Binding site of the probe is shown. 

1.4 Small molecule binding studies 

Nucleic acid structures are attractive targets for small molecules, and 19F NMR-based 

methods have also been used to investigate small molecule-nucleic acid interactions. 

The studies employing internal fluorine probes have focused on investigating known 

small molecule-nucleic acid interactions.17,20,25,38,162,176 Previously mentioned TAR-

argininamide20,25 and G-quadruplex-pyridostatin38 interactions are examples. In addition, 

several examples have been reported in which 19F NMR spectroscopy has been utilized 

to provide detailed information on the binding interactions of fluorinated small 

molecules62,227-238, such as fluorinated daunomycin234-237 or tripeptide231,232 or 

acridine229,233 derivatives, usually with polynucleotides or short oligonucleotides. 

Although 19F NMR can be used to investigate small molecule-nucleic acid complexes in 

a detailed manner, it also has great potential to identify novel small molecules in 

biologically relevant nucleic acid targets. 19F NMR spectroscopy has been recognized as 

a valuable tool in drug development in the protein field, and 19F NMR based methods 

for Kd determination and small molecule screening are well established.4,11,239-241 

Fluorine is extensively employed to modulate the pharmacological properties of drugs, 

and thus, fluorine is not introduced into small molecules only for detection purposes.44 

Despite 19F NMR-based methods being extensively used in protein-based drug 

discovery, few corresponding studies with nucleic acids have been conducted. The basic 

principles of small molecular ligand-RNA screening are presented below. 

As discussed earlier, internal fluorine probes can be used to investigate small molecule-

nucleic acid interactions. A general concept of this method has been demonstrated by 

investigating the binding of both high-affinity and low-affinity ligands to 2´-F-labelled 
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tobramycin and flavine mononucleotide (FMN) aptamers.17 The changes to the 19F 

signals upon the consecutive addition of ligands were characteristic of the strength of 

the ligand-RNA interactions. In other words, the binding of high-affinity ligands 

occurred in a slow exchange regime, whereas the binding of low-affinity ligands 

occurred in a fast exchange regime. It was additionally demonstrated that the method is 

suitable for larger RNAs. The 53 nt RNA construct contained the ligand binding sites 

for tobramycin and FMN, and binding of these ligands could be detected simultaneously 

(Figure 29). Apparently, this concept has not been used to identify novel small molecules 

binding to biologically relevant targets. 

 

Figure 29. RNA construct (53 nt) bearing ligand binding sites for tobramycin (i.e., hairpin loop 

containing 2´-F adenosine (red)) and FMN (i.e., internal loop containing 2´-F uridine (blue)). 19F 

NMR spectra upon the addition of tobramycin and FMN. Reprinted and modified with permission 

from Kreutz, C.; Kählig, H.; Konrat, R.; Micura, R. Angew. Chem. Int. Ed. 2006, 45, 3450-3453. 

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.17 

In an alternative approach, the small molecule contains a fluorine.4,11,239 This approach 

can be further divided into a ligand-based binding (direct ligand observation) and a 

competition ligand-based binding (a reporter displacement method) (Figure 30). In the 

ligand-based binding experiment, the ligand of interest contains fluorine and its binding 

to a nucleic acid target is monitored directly from its fluorine signal. The competition 

ligand-based binding experiment requires a fluorine-labelled molecule, called a spy or 

reporter molecule, which has a weak to medium affinity to a nucleic acid target. A non-

fluorinated ligand of interest displaces the spy molecule from the target, and the binding 

of the ligand can be observed via the fluorine signal of the spy molecule.  
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Figure 30. Schematic presentation of (a) a ligand-based binding and (b) a competition ligand- 

based binding. 

In a recent study, 19F NMR-based fragment screening was applied for the first time to a 

nucleic acid target.40 The target is a telomeric repeat RNA (TERRA) that folds into G-

quadruplexes and is considered to be a potential anticancer target. A library of 355 

chemically and structurally diverse fluorinated fragments was screened against 

TERRA16 (composed of 16 r(UUAGGG) repeats). Fragments that bind to TERRA16 

were identified by comparing 19F spectra in the absence and in the presence of TERRA16. 

An increase in linewidth and a decrease in the intensity of the 19F signal was detected 

upon binding, whereas the 19F signal of nonbinding compound remained unaffected 

(Figure 31a). Using this technique, 20 primary hits were identified, and the binding 

properties of seven of these were further evaluated. The same 19F NMR technique was 

employed to investigate whether these seven hits bind to tRNAPhe; 1H NMR spectroscopy 

was used to investigate whether they bind to a shorter TERRA2 construct (Figure 31b) 

or a DNA analogue of TERRA2 or dsDNA. This selectivity validation showed that some 

of the compounds were selective for G-quadruplexes and, interestingly, favoured the 

parallel propeller-like conformation. Apparently, this is the only research that has 

utilized 19F NMR-based fragment screening of a nucleic acid target. 

 

Figure 31. (a) Schematic presentation of the 19F NMR based screening method. (b) Structures of 

some of the compounds that bind to TERRA2 (PDB ID 3IBK242). 
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The spy-molecule approach has been demonstrated by investigating aminoglycoside 

binding into a 16S rRNA A-site model (Figure 32a).52 (Aminoglycosides are antibiotics 

that function by binding in the bulge region of the 16S rRNA A site.243) ()-4-

Fluorocyclopentane-1,3-diamine, which has also been employed as an external structural 

probe (Section 1.3), and a fluorinated paromamine derivative were used as spy molecules 

(Figure 32b).52 Although the binding of aminoglycosides (Figure 32c) could be 

monitored with ()-4-fluorocyclopentane-1,3-diamine (Kd 2 mM), the obtained Kd 

values for high- and low-affinity aminoglycosides were comparable. Therefore, the 

fluorinated paromamine derivative was employed to rank high-affinity aminoglycosides, 

but due to its higher binding affinity, it was unsuitable as a spy molecule using the same 

measurement conditions as ()-4-fluorocyclopentane-1,3-diamine. However, by 

increasing the salt concentration, the binding affinity of the fluorinated paromamine 

derivative decreased (Kd 300 µM vs. 1.1 mM), and its interaction with the target was 

shifted from a slow exchange intermediate to a fast exchange regime. Consequently, in 

these conditions, it was possible to use it as a spy molecule, and it reflected the binding 

strengths of aminoglycosides better than ()-4-fluorocyclopentane-1,3-diamine. This 

research clearly demonstrated that the spy molecule approach can be used to identify 

both high- and low-affinity molecules in a nucleic acid target, but apparently this method 

has not yet been applied to the discovery of novel RNA or DNA binders. 

 

Figure 32. (a) Structure of 16S rRNA A-site model. Binding site of aminoglycosides is circled. 

(b) Structures of spy molecules and (c) investigated aminoglycosides. 
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2. AIMS OF THE THESIS 

Nucleic acids are complex dynamic molecules that may adopt a variety of secondary 

structures. The structural complexity, conformational flexibility, and dynamic and 

adaptive nature of nucleic acid ligand interactions make them challenging biopolymers 

to investigate. 19F NMR spectroscopy has shown its potential to investigate diverse 

nucleic acid structures. Like other spin label-based techniques, 19F NMR spectroscopy 

may be used to provide quantitative information and detailed real-time information about 

structural equilibria and ligand-nucleic acid interactions. As the interest of 19F NMR 

spectroscopy for the detection of nucleic acids has increased, there is increasing demand 

for novel 19F-labelled nucleoside analogues with improved 19F spectroscopic properties. 

Other properties would also be desirable for these analogues such as facile incorporation 

into oligonucleotides, stability of the analogue in a variety of conditions and a non-

invasive nature. The main aim of this thesis was to develop novel 19F-labelled building 

blocks that can be used to characterize DNA and RNA secondary structures. In the 

present study, fluorine-containing reporter groups were introduced into the sugar part. 

Compared to base modifications, the sugar part provides a uniform modification site. 

Thus, the modification can readily be expanded to all four conventional nucleosides, 

allowing labelling at any site of the target oligonucleotide. On the downside, sugar 

modifications can affect the sugar pucker, causing deviations to the overall conformation 

and decreasing the stability of the nucleic acid structures. Modification at the 2´-site may 

also disturb interactions that are related to the 2´-hydroxyl group of the RNA. As the 

purpose was to apply conventional solid-phase oligonucleotide synthesis for the 

incorporation of fluorine labels site-specifically into oligonucleotides, phosphoramidite 

building blocks of fluorinated nucleosides were prepared. The influence of the analogues 

on the stability and conformation of the native oligonucleotide structures were studied 

by distinct methods (UV- and CD-melting profiles and 1H NMR of imino protons), and 

then the applicability of the sensors for the 19F NMR-based detection of the secondary 

structural transitions of the oligonucleotides was evaluated. DNA- and RNA-

triplex/duplex/single strand conversions and RNA G-quadruplex/hairpin-transitions 

were studied. 
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The aims of this thesis may be summarized as follows: 

 To synthesize novel non-invasive fluorinated building blocks that can be 

efficiently incorporated into oligonucleotides by an automated solid-phase 

synthesis (I-III) 

 To evaluate the applicability of these building blocks to characterize DNA and 

RNA secondary structures (including DNA (I) and RNA triplexes (II), RNA 

invasion (I) and RNA hairpin-G-quadruplex equilibria (III)) by 19F NMR 

spectroscopy 

 To provide new information about higher-order secondary structures of 

oligonucleotides, more specifically, triple-helical DNAs and RNAs and 

bistable G-quadruplex/hairpin RNAs 
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3. RESULTS AND DISCUSSION 

3.1 Fluorine-labelled building blocks 

The 19F-labelled nucleoside and non-nucleoside derivatives that have been introduced 

into nucleic acids to characterize RNA and DNA secondary structures were presented in 

Section 1.2.1. Although they have been successfully applied to investigate nucleic acid 

structures, several shortcomings have been described, such as synthetic challenges with 

building blocks, compatibility with oligonucleotide synthesis methods, the general 

stability of the label, changes in the stability and/or structure of the nucleic acid, poor 

shift discrimination, possible sensitivity limitations with a single fluorine atom and the 

need for proton decoupling techniques. The 19F-modified thymidine analogues are all C5 

position modified pyrimidines (Figure 2, Section 1.2.1.1)19,55,100,101,106,111,128,130, and 

several of them bear sterically demanding reporter groups that will likely affect major 

groove mediated interactions. The two sugar modifications, 2´-F17,82,142 and 

2´-SCF3
94,107,143 presented in Section 1.2.1.2 have been used to investigate RNA 

structures and are not generally compatible with B-form DNA. In fact, sugar-modified 

fluorine probes have not yet been generally applied to characterize DNA secondary 

structures. Although 2´-F is sterically non-perturbing125 and prefers the C3´-endo 

conformation147-150, it bears only one fluorine atom coupled to protons142. 2´-SCF3-

modified ribonucleosides are more sensitive, but the strong preference for C2´-endo 

pucker has restricted the utility of these analogues in single-stranded RNA 

regions.94,107,143 Fluorine-modified nucleobases for RNA bear only one fluorine 

atom21,111, although 5-[4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-ynyl]-

2´-deoxyuridine has been employed as an RNA environment as well24,89. The 

incompatibility of 2-fluoroadenosine for solid-phase oligonucleotide synthesis139,140 also 

narrows the repertoire of available purine analogues for site-specific labelling. The 

utility of 5´-end fluorine modifications18,37,53,102 (Section 1.2.1.3) is generally narrow for 

diverse structural studies. Overall, the choices of 19F-modified derivatives in place of 

ribonucleosides are still rather limited, and studies have mainly relied on 

5-fluoropyrimidines. For these reasons, there is demand for novel and improved 

labelling strategies. The fluorine-labelled building blocks presented in this thesis were 

developed from these aspects and are intended to improve or overcome weaknesses 

described above and thus provide viable alternatives to the currently available building 

blocks. 

The fluorine-labelled building blocks (1–6) developed in this thesis are shown in 

Figure 33. 4´-C-[(4-Trifluoromethyl-1H-1,2,3-triazol-1-yl)methyl]thymidine (1)I is 

designed for the detection of DNA secondary structures, whereas 

4´-C-[4-(trifluoromethyl)phenyl]uridine (2)II and 2´-O-(4-trifluoromethyl-1H-1,2,3-
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triazol-1-yl)methyl ribonucleosides (3–6)II,III are designed for the detection of RNA 

secondary structures. Each of the building blocks was incorporated into oligonucleotides 

as phosphoramidite. To obtain the fluorine signals directly as singlets without the need 

for fluorine-proton decoupling and to improve the sensitivity, the reporter groups, i.e., 

(4-trifluoromethyl-1H-1,2,3-triazol-1-yl)methyl and 4-(trifluoromethyl)phenyl, contain 

a trifluoromethyl (CF3) group in a quasi-isolated spin system. The triazoyl moiety was 

synthetically easily accessible. It is a weak base244 and is uncharged in the pH range used 

in 19F NMR measurements (i.e., pH 5.5–7.0).  

 

Figure 33. Synthesized fluorine-labelled building blocks. 

It has been shown that the 4´-C-modifications face the minor groove in double-helical 

DNA and usually induce only minor changes to the stability of the double helix.245-254 

Therefore, it was expected that introducing 1 into the DNA may be a non-disturbing 

substitution but one that is sensitive to secondary structural rearrangements. In addition, 

the nucleoside of 1 predominantly has an S-type conformation typically adopted in B-

type duplexes (Section 3.1.3). The applicability of 1 as a non-invasive derivative for 19F 

NMR studies was demonstrated with DNA triplexes (Section 3.2.2).I On an RNA duplex 

4´-C-modifications orient outward from the helix. Therefore, a modest sensitivity to 

structural rearrangements was expected for 4´-C-reporter groups in an RNA environment 

upon hybridization. Despite this possible shortcoming, a 4´-C-modified building block 

2 was synthesized.II As an advantage over the other labelled building blocks, it bears a 

free 2´-OH group. However, its 19F NMR properties were found to be disadvantageous. 
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Its properties compared to 1 and 3 are presented in Section 3.3.2. Whilst 1 is designed 

for a DNA environment (due to the orientation of the reporter group, the lack of a 2´-OH 

group and the preference for an S-type conformation, as discussed above), its 

applicability in an RNA environment was demonstrated as well (Section 3.3.1).I Similar 

to other 2´-modifications, the possible shortcomings of 2´-O-(4-CF3-1H-1,2,3-triazol-

1-yl)methyl modifications may arise from sugar puckering and the disturbance of 2´-OH 

related interactions. The sugar conformation analysis of the nucleoside of 3 showed the 

preferred N conformation that is desired in RNA (Section 3.1.3). It was also shown to be 

a non-invasive substitution in RNA triplexes (Section 3.4).II Due to these promising 

results, 2´-O-(4-CF3-1H-1,2,3-triazol-1-yl)methyl modification was incorporated into 

cytidine and purine nucleosides as well. These 19F-labelled building blocks (4–6) were 

used to characterize bistable hairpin-G-quadruplex structures (Section 3.5).III 

3.1.1 Synthesis of fluorine-containing phosphoramidite building 

blocks 

3.1.1.1 4´-C-[(4-Trifluoromethyl-1H-1,2,3-triazol-1-yl)methyl]thymidine 

phosphoramidite  

The synthesis of 4´-C-[(4-CF3-1H-1,2,3-triazol-1-yl)methyl]thymidine phosphoramidite 

(12) is outlined in Scheme 1.I The multistep synthesis of 4´-C-azidomethyl-

5´-O-(4,4´-dimethoxytrityl)thymidine (10) starting from thymidine (7) has previously 

been described.253,255,256 Accordingly, 3´-O-(4,4´-dimethoxytrityl) (DMTr) -protected 

4´-C-hydroxymethylthymidine (8) was first synthesized from thymidine (7), and the 

primary hydroxyl groups of 8 were then converted to trifluoromethanesulfonyl (Tf) 

groups. The obtained triflate nucleoside was cyclized into an O2,5´-anhydronucleoside257, 

and the remaining Tf-group was replaced with an azide ion to obtain 9. The hydrolysis 

of the anhydronucleoside linkage, exposure of the 3´-OH group, and DMTr-protection 

of the 5´-OH group provided 10 in 49 % overall yield from 7. The copper(I)-catalyzed 

azide-alkyne cycloaddition258,259 between the 4´-C-azidomethyl group and gaseous 

3,3,3-trifluoropropyne in the presence of sodium ascorbate afforded 11 bearing a 

(4-CF3-1H-1,2,3-triazoyl)methyl group. Compound 11 was then quantitatively 

phosphitylated to the phosphoramidite 12.  
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Scheme 1. Synthesis of phosphoramidite building block 12. Conditions: 

i) 3,3,3-trifluoroprop-1-yne, CuSO4, sodium ascorbate, H2O, DMSO ii) 2-cyanoethyl 

N,N-diisopropylchlorophosphoramidite, Et3N, DCM. 

3.1.1.2 4´-C-[4-(Trifluoromethyl)phenyl]uridine phosphoramidite  

The synthesis of the 4´-C-[4-(trifluoromethyl)phenyl]uridine phosphoramidite building 

block (22) is depicted in Scheme 2.II The starting compound 13 could be synthesized 

from ribose on the multigram scale following a previously published method.260 A 

Grignard reaction between 4-(trifluoromethyl)phenylmagnesiumbromide and ketone 13 

stereoselectively gave 14 (73% yield, 2R:2S, 7:1, n/n). The tert-butyldimethylsilyl group 

(TBDMS) was then replaced by a benzoyl group (Bz) (15) to avoid premature pyranose 

formation during the subsequent steps. The oxidation of the alkene with OsO4 followed 

by periodic acid treatment provided 16. The isopropylidene group was then removed, 

and the deprotected hydroxyl groups were protected with Bz-groups (17). The 

N-glycosidation of 17 gave 18 in 72% yield. The β-anomer was the major product due 

to the neighbouring group participation via the 2´-O-Bz group. The 2D NOESY 

correlation between the H1´ and aromatic protons of 4-(trifluoromethyl)phenyl (CF3Ph) 

verified the 4´R-configuration. The major problem of the synthesis was the 

4,4´-dimethoxytritylation of the 5´-OH group of 19 (20 in 40% yield). The reactivity of 

the 5´-OH group was comparable to that of the 2´-OH group due to the steric hindrance 

of the 4´-CF3Ph group, and therefore a substantial amount of the 2´,5´-bistritylated 

derivative was formed together with the desired product (20). Several synthetic 

approaches were attempted to overcome this problem (Experimental Section). For 

example, the 5´-O-Bz group of 18 was removed selectively by [tBuSnOHCl]2 in 

methanol261, the exposed 5´-OH group was tritylated and the 2´-O- and 3´-O-Bz 
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protections were removed by NaOMe treatment. By this strategy, the yield was slightly 

improved (51%). However, the direct tritylation of 19 proved to be a less complex 

method. Moreover, 19 could be readily recovered from the bistritylated sideproduct. 

Finally, the 2´-OH was protected with a triisopropylsilyloxymethyl group (TOM) (21) 

and the 3´-OH group was phosphitylated to give phosphoramidite 22. The overall yield 

from 13 to 22 was 6 %. Instead of the TOM group, the TBDMS group was initially used 

for protecting the 2´-OH group. However, both the synthesis of the corresponding 

2´-O-TBDMS protected phosphoramidite and its introduction into oligoribonucleotides 

were difficult (Experimental Section). 

 

Scheme 2. (i) 4-Bromobenzotrifluoride, Mg, Et2O; (ii) TBAF, THF; (iii) BzCl, DMAP, Py; (iv) 

1: OsO4, 4-methylmorpholine N-oxide, acetone; 2: H5IO6, THF; (v) HCl, H2O, dioxane; (vi) 

TMSOTf, 2,4-bis(trimethylsilyloxy)uridine, MeCN; (vii) NaOMe, MeOH; (viii) DMTrCl, Py; 

(ix) [tBuSnOHCl]2, MeOH; (x) DIEA, Bu2SnCl2, (triisopropylsiloxy)methyl chloride, 

1.2-dichloroethane; (xi) 2-cyanoethyl N,N-diisopropylchlorophosphoramidite, Et3N, DCM. 
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3.1.1.3 2´-O-(4-Trifluoromethyl-1H-1,2,3-triazol-1-yl)methyl modified 

phosphoramidites 

The syntheses of 2´-O-(4-CF3-1H-1,2,3-triazol-1-yl)methyl modified phosphoramidite 

building blocks are outlined in Scheme 3.II,III A straightforward synthesis of 

2-´O-(azidomethyl)-5´-O-(4,4´-dimethoxytrityl)ribonucleosides (27a-d) from 

commercially available 3´,5´-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-protected 

ribonucleosides (23a-d) bearing appropriate base protections has previously been 

reported.262-264 Accordingly, 23a-d were treated with a mixture of dimethyl sulfoxide 

(DMSO), acetic anhydride (Ac2O) and acetic acid (AcOH).262 The 3´,5´-cyclic silyl 

protecting groups were then removed with tetrabutylammonium fluoride (TBAF) to 

obtain 24a-d. The 2´-O-methylthiomethyl groups were converted to 2´-O-chloromethyl 

intermediates 25a-d by 2-nitrobenzenesulfenyl chloride (NBSCl), and subsequent 

treatment with NaN3 gave 2´-O-azidomethyl derivatives 26a-d.263,264 In the case of 

purine derivatives, NBSCl was added in the presence of trifluoromethanesulfonic acid 

to prevent a side reaction between the 2´-O-chloromethyl intermediate and the N3 of a 

purine nucleobase to give a cyclonucleoside.263The 5´-OH groups were protected with 

DMTr group (27a-d). The 2´-O-azidomethyl groups were then exposed to copper(I)-

catalyzed azide-alkyne cycloaddition with gaseous 3,3,3-trifluoropropyne to give 28a-d. 

Finally, compounds 28a-d were converted to the corresponding phosphoramidites 29a-d 

using 2-cyanoethyl N,N-diisopropylchlorophosphoramidite. The overall yields were 

64-80 % (calculated from azides 27a-d).  

 

Scheme 3. (i) DMSO, Ac2O, AcOH; (ii) TBAF, THF; (iii) NBSCl, DMF (CF3SO3H); (iv) NaN3, 

DMF; (v) DMTrCl, Py; (vi) 3,3,3-trifluoroprop-1-yne, CuSO4, sodium ascorbate, H2O, DMSO; 

(vii) 2-cyanoethyl N,N-diisopropylchlorophosphoramidite, Et3N, DCM. 
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3.1.2 Synthesis of fluorine-labelled oligonucleotides 

Fluorine-labelled oligonucleotides were synthesized on the 1.0 µM scale using an 

automatic DNA/RNA synthesizer applying standard phosphoramidite coupling 

chemistry. Benzylthiotetrazole (BnSTet) was used as an activator. Coupling times of 

20 s and 300 s were used for the standard commercially available DNA and RNA 

phosphoramidite building blocks, respectively. 19F-labelled phosphoramidites 29a-c 

were incorporated into oligonucleotides as an integral part of the automatic synthesis by 

increasing the coupling time to 600 s (no other adjustments were made to the standard 

coupling cycles). The coupling yields of 29a-c were comparable to those of 

commercially available phosphoramidite building blocks (> 98 %) according to a trityl 

assay. 29d was manually coupled due to its low solubility in acetonitrile. Accordingly, 

a solution of 29d (0.20 mol L-1 in dry acetonitrile, 200 µL, 40 µmol) was mixed with a 

BnSTet solution (0.25 mol L-1, in dry acetonitrile, 160 µL, 40 µmol). The opaque 

solution of 29d cleared up after the addition of BnSTet. This mixture was suspended 

with a CPG (controlled pore glass) support bearing 1 µmol of the sequence before 29d 

and mixed for 10 min under nitrogen. The mixture was then loaded back onto the 

synthesis column and filtered. Capping (with a mixture of Ac2O, lutidine and 

N-methylimidazole in tetrahydrofurane (THF), 5:5:8:82, v/v/v/v) and oxidation (with a 

mixture of 0.02 mol L-1 I2 in pyridine (Py) and H2O in THF 1:21:213, v/v/v) steps were 

performed manually followed by washings with acetonitrile. The column was then 

coupled to the synthesizer, and the automatic chain elongation was continued. According 

to the trityl assay, 29d coupled nearly quantitatively (> 98 %). Also, for 12 and 22, better 

coupling efficiencies (12: 98% and 22: 90%) were achieved by applying manual 

coupling, but smaller excesses of 12 and 22 could be used (10 equiv). It is worth noting 

that the 2´-O-TBDMS-protected 4´-C-[4-(trifluoromethyl)phenyl]uridine 

phosphoramidite (36, Experimental Section) coupled inefficiently (coupling yield 

~20%) due to the steric hindrance of the TBDMS group.  The oligonucleotides were 

released from the support and deprotected by standard ammonolysis 

(2´-deoxyoligonucleotides in concentrated ammonia at 55 ºC overnight, 

oligoribonucleotides in a mixture of concentrated ammonia and ethanol 3:1, v/v, 3.5 h at 

55 ºC and overnight at rt). The 2´-O-TBDMS and 2´-O-TOM -protections were removed 

by a standard protocol with triethylamine trihydrofluoride treatment followed by 

cartridge filtration to remove traces of reagents and protecting groups. The crude 

oligonucleotides were purified with reverse-phase high-performance liquid 

chromatography (RP HPLC) using a semipreparative column at either ambient 

temperature or elevated temperature (60 °C) (Figure 34). The homogeneity of the 

oligonucleotides was confirmed by RP HPLC, and the authenticity was verified by 

electrospray ionization time-of-flight mass spectrometry (ESI-TOF MS).  
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Figure 34. A representative example of the RP HPLC trace of a crude oligoribonucleotide 

containing a 2´-O-[(4-CF3-1H-1,2,3-triazol-1-yl)methyl]uridine (3) (ON13, Figure 43). 

Conditions: a semipreparative RP HPLC column (C-18, 250 × 10 mm, 5 μm), a gradient elution 

of 0–50% acetonitrile in 0.1 mol L-1 triethylammonium acetate in 25 min at 25 °C, flow rate 

3.0 ml min-1, detection at 260 nm. MS (ESI-TOF) spectra of the purified oligoribonucleotide 

(ON13).  

3.1.3 Sugar conformation of the fluorinated nucleosides 

Substituents can affect the sugar ring conformation and hence significantly decrease the 

stability of the nucleic acids. The sugars in B-type dsDNA prefer the C2´-endo 

conformation (S-type), whereas those in A-type dsRNA prefer the C3´-endo 

conformation (N-type).146 The sugar pucker preference can, however, vary from those 

observed in canonical dsDNA and dsRNA, particularly in single-stranded and non-

canonical regions.107,143,146,193 The sugar puckers of the corresponding nucleosides of 1, 

2 and 3 (i.e., 30I, 31II and 32II, Figure 35a) were determined using the optimized Karplus 

relation for 1H NMR H1´-H2´ coupling constants (JH1´-H2´)265. 4´-C-[(4-CF3-1H-1,2,3-

triazol-1-yl)methyl]thymidine (30, Figure 35b) favoured the DNA-type C2´-endo 

conformation (S 72%, JH1´-H2  ́ = 7.3 Hz), and 2´-O-[(4-CF3-1H-1,2,3-triazol-1-

yl)methyl]uridine (31, Figure 35c) existed predominantly as an RNA-type C3´-endo 

conformation (N 67%, JH1´-H2  ́= 3.3 Hz). The population of the C3´-endo conformation 

for 4´-C-[4-(trifluoromethyl)phenyl]uridine (32) was N 48% (JH1´-H2  ́= 5.3 Hz) and the 

corresponding value for uridine was N 53% (JH1´-H2  ́= 4.8 Hz). The sugar 

conformation of 3 was additionally determined in a short single-stranded RNA sequence, 

5´-AU3A-3´. The obtained C3´-endo population of 3 in this sequence was N 32% 
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(JH1´−H2´ = 6.9 Hz), and the corresponding values (N %) for the other residues were 48% 

(JH1´−H2  ́= 5.3 Hz, A), 50% (JH1´−H2´ = 5.1 Hz, A) and 46% (JH1´−H2´
 = 5.5 Hz, U). In the 

non-labelled sequence, 5´-AUUA-3´, the corresponding values (N %) were 50% 

(JH1´−H2  ́= 5.1 Hz, A), 46% (JH1´−H2´
 = 5.5 Hz, A), 44% (JH1´−H2´ = 5.7 Hz, U) and 46% 

(JH1´−H2  ́ = 5.5 Hz, U). It may be worth noting that 2´-O-[(4-CF3-1H-1,2,3-triazol-1-

yl)methyl]uridine (3) hence existed as relatively low C3´-endo populations (N 32%) in 

this short RNA single strand, but so did the unmodified ribonucleotides (N 44–50%).   

 

Figure 35. Sugar puckering. (a) Structures and sugar pucker of fluorine-labelled nucleosides and 

uridine. (b) Sugar puckering of 4´-C-[(4-CF3-1H-1,2,3-triazol-1-yl)methyl]thymidine (30) and 1H 

NMR and NOESY spectra used for analysis. (c) Sugar puckering of 2´-O-[(4-CF3-1H-1,2,3-

triazol-1-yl)methyl]uridine (31) and 1H NMR used for analysis. 1H NMR (500 MHz) 

measurements were carried out in MeOD. 

a)

b)

c)

31

30
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3.2  DNA triplexes 

3.2.1 Introduction to triple helices 

Both artificial triplex-forming oligonucleotides (TFOs) and naturally occurring triple 

helices have been investigated intensively for decades. TFOs have gained enormous 

attention as potential therapeutic agents, because they can bind sequence-specifically to 

genomic DNA and affect gene expression (i.e., antigene strategy).266,267 In general, TFOs 

can be used as tools to site-specifically manipulate DNA, and a variety of biological 

applications have been described.266-270 For instance, TFOs have been used to inhibit 

transcription and replication and to induce mutations and recombination. Naturally 

occurring DNA triplexes (H-DNAs) may be involved in gene expression 

regulation.269,271-273 H-DNAs induce genetic instability, and have been associated with 

several diseases269,274,275 such as Friedreich’s ataxia276, autosomal dominant polycystic 

kidney disease and lymphomas269. In contrast to DNA triplexes, RNA triplexes have 

attracted little attention, but their biological importance has recently been recognized 

(Section 3.4).273,277,278 As TFO-based targeting has heavily focused on DNA, it may also 

be worth noting that the targeting of the double-helical regions of RNA by TFPNAs has 

shown promising results.95,279,280 In addition, accumulating evidence suggests that some 

noncoding RNA (ncRNA, non-protein coding RNA) regulatory mechanisms are 

mediated through triplex formation with genomic DNA.273,278,281-285 Overall, triple-

helical nucleic acids are a diverse, constantly emerging multidisciplinary research area.  

Various methods are used to investigate triplexes: for example, UV75 and CD76,77 

spectroscopy, fluorescence based techniques286,287, isothermal titration calorimetry 

(ITC)187, gel electrophoresis184,288 and NMR183,289,290. Among the used methods, the UV 

melting study75 is probably the most used technique. However, this technique has several 

limitations that can complicate the interpretation of the melting profile such as 

overlapping or wide melting transitions and small absorbance changes. In addition, 

intermediate structures or coexisting species are difficult or impossible to detect and 

analyse. As UV spectroscopy does not provide structural information, it is often used in 

combination with CD spectroscopy. Although CD spectroscopy can be used to 

characterize triplexes76,77, it has rather similar caveats to those of UV spectroscopy for 

analysing intermediate structures, coexisting species or large nucleic acids. Although 

several methods are available, the interest in 19F NMR to investigate triplexes arises from 

its ability to probe structural species in a quantitative manner in different surrounding 

conditions. A deeper understanding of the conformational transitions of triple helical 

oligonucleotides may increase the medicinal potential of these complex secondary 

structures. In this thesis, the 19F NMR spectroscopic detection of both DNAI and RNAII 

triplexes has been investigated, and new information could be provided. 
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Nucleic acids can form both intra- (i.e., the triple helical structure is formed within a 

nucleic acid molecule) and intermolecular (i.e., the triple helical structure is formed 

between distinct nucleic acid molecules) triple helical structures.182-184 In a triple helical 

structure, a single-stranded third strand is bound sequence-specifically to the major 

groove of a polypurine-polypyrimidine duplex. The third strand can be oriented either 

parallel or antiparallel relative to the polypurine strand of the duplex. The investigated 

DNA (Section 3.2.2) and RNA triplexes (Section 3.4) in this thesis are parallel 

pyrimidine motif triplexes, and antiparallel triplexes are not discussed. In the parallel 

pyrimidine motif triplexes, T/U•A-T/U and C+•G-C base triplets (• Hoogsteen base 

pairing, - Watson-Crick base pairing, C+ a N3-protonated cytosine) are formed via 

Hoogsteen hydrogen bonding (Figure 36).182-184 Several factors influence the formation 

kinetics and stability of the triplex, such as the sequence length, base and backbone 

composition, pH, salt concentration and temperature.184,186,187,291-293 The stability of 

C-rich pyrimidine motif triplexes is strongly dependent on pH, because the C+•G-C base 

triplet requires a N3-protonated cytosine (pKa value for N3 of cytidine is 4.2126).185-189 

Therefore, the formation of C-rich triplexes is typically favoured in acidic conditions, 

which limits their occurrence in physiological conditions. Under acidic conditions, 

C-rich sequences can also form competitive structures such as CC+-duplexes and 

i-motifs that disturb the triplex formation.190,191 In addition, ligands can affect the 

formation and stability of triplexes.294,295 For example, neomycin (an aminoglycoside 

antibiotic, Figure 36) has been shown to significantly stabilize triplexes.296-305 

 

Figure 36. Schematic presentation of parallel pyrimidine motif triplex ( Hoogsteen hydrogen 

bonding, - Watson-Crick base pairing). T/U•A-T/U and C+•G-C base triplets. Structure of a 

parallel pyrimidine motif DNA triplex (PDB ID 1BWG290). Neomycin binds in the triplex major 

groove (i.e., the Watson-Hoogsteen groove).300  

Crick-Hoogsteen 

groove

Watson-Hoogsteen

groove

triplex forming

strand

major groove
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Several factors limit the efficient triplex targeting and formation in physiological 

conditions, for example, pH- and cation-dependency, charge and steric repulsion, kinetic 

properties, self-associated structures, thermal stability, base triplet code, modest affinity, 

cellular delivery and stability to intracellular nucleases.266,267,269,294,306,307 Therefore, a 

considerable number of chemical modifications and conjugate groups have been 

introduced into TFOs to improve their properties.266,267,294,306-308 Publication IV describes 

the syntheses and hybridization properties of triplex-forming aminoglycoside 

2´-O-methyl oligoribonucleotide conjugates in which aminoglycoside modifications 

have been incorporated into desired positions of oligonucleotide chains as 

phosphoramidite building blocks. However, as it is not related to 19F NMR spectroscopy, 

it is not discussed in this thesis, even though it is included in the PhD studies of the 

author. 

3.2.2  Characterization of DNA triplexes 

DNA triplexes were investigated using 4´-C-[(4-CF3-1H-1,2,3-triazol-

1-yl)methyl]thymidine (1).I As discussed, due to the orientation of the reporter group 

and the S-type sugar conformation, it was expected that 1 is a sensitive non-invasive 

derivative in DNA environments. The triplex structure chosen for the studies is the same 

pH-dependent parallel pyrimidine motif triplex ON1/ON4/ON5 (Figure 37) that was 

previously investigated by Tanabe et al.35 using 2´-deoxy-5-fluorouridine (Section 

1.2.2.7). They had incorporated the label in the third strand and showed that it was able 

to detect triplex formation. In addition, they monitored the pH- and temperature-

dependent behaviour of the triplex-forming strand. Similarly to this previous study, 1 

was positioned at the middle of a pyrimidine strand (ON1). ON1 is the third strand in 

the ON1/ON4/ON5 triplex (i.e., paired via the Hoogsteen face) (Figure 37). To also 

monitor the behaviour of the underlying duplex, an ON1/ON2/ON3 triplex in which the 

ON1 is the pyrimidine strand of the duplex (i.e., paired via the Watson-Crick face) was 

investigated as well (Figure 37). Tanabe et al.35 did not report whether 2´-deoxy-

5-fluorouridine can be used to distinguish triplex and duplex structures when positioned 

in a Watson-Crick strand. 

The influence of 1 on the thermal stability of the structures was investigated by UV 

spectroscopy. As seen in Table 2, 1 had a minor effect on the stability. The CD-profiles 

additionally confirmed that the labelled sequences formed triplex structures similarly to 

their native counterparts. 
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Figure 37. 19F NMR signals of labelled probe in different DNA-hybridization modes. Conditions: 

i) 100 μmol L-1 of ON1, 10 mmol L-1 sodium phosphate (pH = 5.5) 2 mmol L-1 Mg2Cl and 

0.1 mol L-1 NaCl in D2O-H2O (1:9, v/v) at 25 ºC, ii) the same as i), but pH = 6.0 at 37 ºC, 

iii) 50 μmol L-1 of ON1, 45 μmol L-1 ON2, 10 mmol L-1 sodium phosphate (pH = 6.0) 

2 mmol L-1 Mg2Cl and 0.1 mol L-1 NaCl in D2O-H2O (1:9, v/v) at 37 ºC, iv) 50 μmol L-1 of ON1, 

50 μmol L-1 ON2, 50 μmol L-1 ON3, 10 mmol L-1 sodium phosphate (pH = 6.0) 2 mmol L-1 Mg2Cl 

and 0.1 mol L-1 NaCl in D2O-H2O (1:9, v/v) at 50 ºC, the passive temperature-dependent shift has 

been eliminated and the shifts have been interpolated to those at 37 ºC, v) 100 μmol L-1 of ON1, 

100 μmol L-1 ON3, 100 μmol L-1 ON4, 10 mmol L-1 sodium phosphate (pH = 6.0) 2 mmol L-1 

Mg2Cl, 0.1 mol L-1 NaCl in D2O-H2O (1:9, v/v) at 37 ºC. (Note: in spite of the virtual homogeneity 

of the oligonucleotides, the shoulders of the 19F NMR signals most likely originate from 

impurities). 

19F NMR studies were then carried out (detailed measurement conditions are presented 

in the caption of Figure 37). As seen in Figure 37ii, ON1 at pH 6.0 gave a sharp signal 

at -62.53 ppm that corresponds to the single strand, whereas at pH 5.5 (Figure 37i), a 

broad signal at ~ 0.6 ppm upfield was additionally detected, attributed to unspecific 

C-CH+ interactions. This pH-dependent behaviour of ON1 is consistent with that 

described by Tanabe et al.35 Next, the ON1/ON4/ON5 triplex formation was 

investigated by the titration of ON1 with the duplex ON4/ON5. As seen in Figure 38a, 

upon the consecutive addition of ON4/ON5 duplex, a new unique signal appeared 

at -61.69 ppm indicating the formation of ON1/ON4/ON5 triplex. As well-separated 

signals (∆δ = 0.84 ppm) were detected, the temperature-dependent behaviour of the 

ON1/ON4/ON5 triplex was then studied to evaluate the applicability of 1 for melting 

temperature determination. The temperature-dependent 19F NMR spectra are shown in 

Table 2. UV-melting temperatures (Tm/ºC) of the 1-modified secondary structures 

entry oligonucleotides Tm/ºC (∆Tm/°C) 

1 ON1/ON2-duplex 54.9 (-0.6) 

2 ON1/ON2/ON3-triplex 32.9 (-0.6) 

3 ON1/ON4/ON5-triplex 31.0 (-1.7) 
ΔTm in comparison to those obtained with unmodified oligonucleotides (X = thymidine). Conditions: 

10 mmol L-1 NaH2PO4 (pH = 6.0), 0.1 mol L-1 NaCl, 2.0 mmol L-1 MgCl and 2.0 μmol L-1 of each 

oligonucleotide. UV-detection at 260 nm. 
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Figure 38b. When the molar fraction of ON1 was plotted against the temperature (Figure 

38c), a sigmoidal curve resulted. The Tm value could be extracted from the inflection 

point (66 °C). The obtained Tm value is not comparable to that determined by UV 

spectroscopy (31 °C) due to the concentration dependency of the triplex formation 

(100 µmol L-1 vs. 2 µmol L-1).  

Figure 38. (a) DNA-triplex formation and (b and c) its thermal melting followed by 19F NMR 

spectroscopy. Conditions: 100 μmol L-1 ON1 (X = 1), 0-120 μmol L-1 ON4 and ON5 (1:1, n/n), 

10 mmol L-1 sodium phosphate (pH = 6.0), 2 mmol L-1 MgCl and 0.1 mol L-1 NaCl in D2O-H2O 

(1:9, v/v).  

The formation and melting of ON1/ON2/ON3 triplex in which ON1 is paired via the 

Watson-Crick face was investigated in a similar manner. A lower ON concentration 

(50 µmol L-1) was, however, used for the measurements (a seemingly direct conversion 

of ON1/ON2/ON3 triplex to ON1 was observed at a 100 µmol L-1 ON concentration 

due to the concentration dependency of the triplex formation). As seen in Figures 35 iii 

and iv, distinct 19F signals were detected for the duplex (-62.17 ppm) and the triplex 

(-61.86 ppm). Consequently, by this labelling strategy, it was possible to monitor the 

melting of the triplex and the duplex. The molar fractions of the structural species upon 

heating were obtained from the relative peak areas, and the Tm values could be extracted 

from the 19F NMR data (Figure 39). In addition, the denaturation of ON1/ON2/ON3 

triplex was monitored in the presence of neomycin. As seen in Figure 39, a 

stoichiometric amount of neomycin stabilized the triplex (∆Tm = 4 °C) whereas the 

duplex stability remained almost unaffected as expected.  

In conclusion, 1 was proven to be suitable for the characterization of DNA triplexes 

providing well-separated signals for structural species. Compared to the results reported 

by Tanabe et al.35 1 provided clearly sharper signals than 2´-deoxy-5-fluorouridine 

(Figure 18). In addition, the temperature-dependent data obtained using 1 could be used 

to extract Tm values.  
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SpinWorks 2.5:     Anu: 1.0 eq complementary + 1.0 eq 3.strand DNA konsentraation tarkistettu, Tse

PPM   16.0     15.8     15.6     15.4     15.2     15.0     14.8     14.6     14.4     14.2     14.0     13.8     13.6     13.4     13.2     13.0   

file: D:\19F NMR tripleksin sulamiset\usinta 2 konsentraatiot tarkistettu\45\fid   expt: <zgflqn>

transmitter freq.: 470.561870 MHz

time domain size: 32768 points

width: 14005.60 Hz = 29.763572 ppm = 0.427417 Hz/pt

number of scans: 3640

freq. of 0 ppm: 470.557053 MHz

processed size: 32768 complex points

LB:    0.000    GB: 0.0000

 

SpinWorks 2.5:    Anu: 1.0 eq nemycine vanha liuos. Tset = 317.8K = 43.7oC

PPM   16.0     15.8     15.6     15.4     15.2     15.0     14.8     14.6     14.4     14.2     14.0     13.8     13.6     13.4     13.2     13.0   

file: D:\19F NMR tripleksin sulamiset\usinta 2 konsentraatiot tarkistettu\58\fid   expt: <zgflqn>

transmitter freq.: 470.561870 MHz

time domain size: 32768 points

width: 14005.60 Hz = 29.763572 ppm = 0.427417 Hz/pt

number of scans: 4000

freq. of 0 ppm: 470.557051 MHz

processed size: 32768 complex points

LB:    0.000    GB: 0.0000

 

SpinWorks 2.5:    Anu: 1.0 eq complementary + 1.0 eq 3.strand DNA konsentraation tarkistettu, Tse
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file: D:\19F NMR tripleksin sulamiset\usinta 2 konsentraatiot tarkistettu\50\fid   expt: <zgflqn>

transmitter freq.: 470.561870 MHz

time domain size: 32768 points

width: 14005.60 Hz = 29.763572 ppm = 0.427417 Hz/pt

number of scans: 3967

freq. of 0 ppm: 470.557171 MHz

processed size: 32768 complex points

LB:    0.000    GB: 0.0000
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PPM   16.0     15.8     15.6     15.4     15.2     15.0     14.8     14.6     14.4     14.2     14.0     13.8     13.6     13.4     13.2     13.0   

file: D:\19F NMR tripleksin sulamiset\triplex + 1 eq neomycine lisäykset\1\fid   expt: <zgflqn>

transmitter freq.: 470.561870 MHz

time domain size: 32768 points

width: 14005.60 Hz = 29.763572 ppm = 0.427417 Hz/pt

number of scans: 2000

freq. of 0 ppm: 470.557166 MHz

processed size: 32768 complex points

LB:    0.000    GB: 0.0000

 

Figure 39. DNA-triplex/duplex/single strand conversions followed by 19F NMR spectroscopy. 

Conditions: 50 μmol L-1 ON1 (X = 1), ON2 and ON3, 10 mmol L-1 sodium phosphate (pH = 6.0), 

2 mmol L-1 MgCl and 0.1 mol L-1 NaCl in D2O-H2O (1:9, v/v).  

3.3 Comparison of 19F NMR properties 

3.3.1 1 vs 5-[4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-ynyl]-

2´-deoxyuridine on a HIV-1 TAR-model 

Our laboratory has previously applied 19F NMR spectroscopy to characterize the 

invasion of 2´-O-methyl oligoribonucleotides into a 19F-labelled HIV-1 TAR model 

(Section 1.2.2.6).24,89 In these previous studies, the 5-[4,4,4-trifluoro-

3,3-bis(trifluoromethyl)but-1-ynyl]-2´-deoxyuridine was positioned in the upper stem of 

the HIV-1 TAR hairpin, and it was able to reflect the denaturation of the hairpin 

(i.e., A/B equilibrium) as well as the melting of the macro-loop complex to the open 

chain invasion complex (i.e., C/D equilibrium) (Figure 40a). Both of these equilibria 

were able to be monitored from separate albeit partly coalescent signals, indicating that 

the equilibria between these intramolecular secondary structures were slow on the NMR 

time scale. As intramolecular hybridizations are usually fast on the NMR time scale, it 

was attributed that the 5-[4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-ynyl]-

2´-deoxyuridine itself deviated the equilibrium rate. Therefore, the same TAR model 

was modified with 1, and the invasion studies were repeated.I  
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Three 1-modified HIV-1 TAR models were synthesized in which 1 was positioned at the 

loop (ON6), at the upper stem (ON7) or at the lower stem (ON8) (Figure 40a). The 

labelling site of ON7 was the same as that previously used for 5-[4,4,4-trifluoro-

3,3-bis(trifluoromethyl)but-1-ynyl]-2´-deoxyuridine. As seen in Table 3, the effect of 1 

was either marginal or slightly destabilizing, depending on the substitution site. 

 

The temperature-dependent behaviour of the 19F-labelled HIV-1 TAR models were 

monitored in the presence and absence of 1.0 equivalent of a 12 mer 2´-O-methyl 

oligoribonucleotide (ON9) (Figure 40a). 19F NMR measurements were carried out using 

a 50 µmol L-1 oligonucleotide concentration in a 10 mmol L-1 sodium cacodylate buffer 

containing 0.1 mol L-1 NaCl, pH 7.0, D2O-H2O (1:9, v/v). (Previous conditions: 

20 μmol L-1 19F-labelled HIV-1 TAR with ON9 in 0.1 mol L-1 NaCl with 25 mmol L-1 

sodium phosphate, pH = 6.5, D2O-H2O (1:9, v/v)).24 As seen in Figure 40b, the labels 

positioned into the double-helical regions (ON7 and ON8) allowed the monitoring of 

the hairpin melting (A/B equilibrium). In contrast, the label positioned in the loop region 

(ON6) was insensitive to the melting of the hairpin and shifted continuously (over 

0.5 ppm) over the measured temperature range. The Tm values obtained for ON7 (71 °C) 

and ON8 (68 °C) from 19F NMR data were close to those determined by UV 

spectroscopy (ON7 and ON8 71.0 °C and 69.2 °C, respectively). Compared to the 

previous study, in which the melting occurred in a slow exchange regime24, well-

behaving coalescence signals were now obtained (Figure 41a). By ON8, it was possible 

to monitor the equilibrium between the macro-loop complex and the open chain invasion 

complex (C/D equilibrium). Also here, an averaged 19F signal between the structures 

(C/D) was detected (Figure 41b). The signal was broad indicating that the process was 

slower compared to the melting of the hairpin (A/B equilibrium). A Tm value (39 °C) 

was obtained from the inflection point of the melting profile (Figure 40b). The label 

located in the upper stem of the TAR (ON7) was also able to sense the C/D equilibrium, 

but the obtained shift versus temperature profile was unclear. Although the signals of the 

hairpin (A) and the macro loop complex (C) overlapped (Figure 40b), the titration with 

ON9 could be followed at 55ºC, i.e., under conditions where the hairpin (A) was directly 

converted to the open chain invasion complex (D) (Figure 41c). Finally, the thermal 

denaturation of the open chain invasion complex (B/D equilibrium) could be monitored 

from the relative peak areas using ON6 (Figure 41d). As a result, these studies showed 

that 1 is also an informative relative non-invasive modification in RNA environments, 

Table 3. UV-melting temperatures (Tm/ºC) of the 1-modified HIV-1 TAR models 

entry oligonucleotides Tm/ºC (∆Tm/°C) 

1 ON6  72.4 (+0.5) 

2 ON7 71.0 (-0.9) 

3 ON8 69.2 (-2.7) 
Conditions: 10 mmol L-1 sodium cacodylate (pH = 7.0), 0.1 mol L-1 NaCl, and 2.0 μmol L-1 of each 

oligonucleotide. ΔTm (in parentheses) in comparison to that obtained with unlabelled HIV-1 TAR model. 

UV-detection at 260 nm. 
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despite the expected modest discrimination due to the orientation of the 4´-C 

modification and the preferred C2´-endo conformation (cf. Section 3.1.3). 
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Figure 40. (a) Fluorine-labelled TAR models and schematic presentation of temperature-

dependent behaviour of invasion complex. (b) 19F NMR shift difference versus temperature 

profiles of 19F-labelled HIV-TAR models (the passive temperature-dependent shift reduced). 

Conditions: 50 μmol L-1 19F-labelled HIV-1 TAR (ON6–8) with and without 50 μmol L-1 of ON9, 

10 mmol L-1 sodium cacodylate (pH = 7.0) and 0.1 mol L-1 NaCl in D2O-H2O (1:9, v/v).  
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Figure 41. 19F NMR spectra of 19F-labelled HIV-TAR models and their invasion complexes 

under increasing temperature. Conditions: 50 μmol L-1 labelled HIV-1 TAR model (ON6–ON8) 

with and without 50 μmol L-1 ON9 (titration carried out in c), 10 mmol L-1 sodium cacodylate 

(pH = 7.0) and 0.1 mol L-1 NaCl in D2O-H2O (1:9, v/v). 

In summary, the invasion mechanism could be characterized with 1, and the results were 

consistent with those of previous 19F NMR studies24,89. However, compared to the 

temperature-dependent data obtained with 5-[4,4,4-trifluoro-3,3-bis(trifluoromethyl)-

but-1-ynyl]-2´-deoxyuridine24, the intramolecular melting transitions (A/B and C/D 

equilibria) now occurred under  a fast exchange regime, as expected for 

intramolecular hybridizations. Thus, these results seem to suggest that a highly modified 

label such as 4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-ynyl may misrepresent the 

denaturation rate, although the modification does not significantly destabilize the 

secondary structure (∆Tm -2.7 °C compared to native TAR24). As a limitation, 1 was 

unable to reflect the equilibrium between the hairpin and macro-loop invasion complex 

(A/C equilibrium), while 5-[4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-ynyl]-

2´-deoxyuridine provided well-separated signals for these structures. Therefore, it may 

be concluded that 5-[4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-ynyl]-

2´-deoxyuridine was more suitable for titration studies, whereas 1 reflected the 

temperature-dependent behaviour of complexes more reliably. 
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3.3.2 1, 2 and 3 on a miR-215 hairpin 

Several studies presented in the Introduction Section (1) are based on the labels’ ability 

to distinguish single- and double-stranded environments. This shift dispersion ability is 

typically used to evaluate novel fluorinated nucleoside analogues for further studies, as 

this property can be readily applied to characterize more complex structures. To evaluate 

and compare the properties of 1–3, they were introduced into a pri-miRNA-215 hairpin 

model309 (ON10–ON12, Figure 42), and their ability to reflect an intramolecular melting 

process was monitored.II UV melting studies did not show differences between the 

derivatives on the thermal stability of the hairpin, and the modifications had only a minor 

effect on the stability of the hairpin (in each case, ΔTm < -1.0 °C compared to the 

unlabelled pri-miRNA-215 hairpin model). The 19F NMR measurements were carried 

out using an RNA concentration of 50 µmol L-1 in a mixture of 0.1 mol L-1 NaCl and 10 

mmol L-1 sodium cacodylate at pH 6.0, D2O–H2O (1:9, v/v). Each of the probes gave a 

coalescence signal that discriminated between the hairpin (E) and denaturated form (F), 

as expected for intramolecular hybridization. As seen in Figure 42, in each case, a 

sigmoidal melting profile was obtained, and comparable Tm values (~ 55 °C) were 

obtained from the inflection points. However, clear differences could be observed in the 

shift dispersion between the single- (F) and double-stranded (E) environment. 

3 provided the largest shift dispersion (Δ = 0.82 ppm, ON12), which is likely related to 

the shielding of the H-5´,5´´ protons of the preceding nucleotide in the helix. The modest 

shift dispersions of 1 (Δ = 0.23 ppm, ON10) and 2 (Δ = 0.12 ppm, ON11) are likely 

related to the orientation of the reporter groups. As discussed, the substituent at the 4´-C 

site orients outward from the RNA helix, and thus the reporter groups probably 

encounter only modest changes in the local environment upon hybridization. The 

applicability of 1 an RNA environment was already demonstrated with HIV-1 TAR 

studies. However, 1 is designed for DNA, and its shift dispersion between the single- 

and double-stranded DNA environments is better than that in RNA. In addition to the 

poor shift response, the synthetic properties of 2 are also disadvantageous: the synthesis 

of the corresponding phosphoramidite of 2 (i.e., 22) was complex, and it coupled with 

lower efficiency. Therefore, no further studies were conducted with 2. In conclusion, 

among these derivatives, 3 seems to be the most promising for RNA studies: it provided 

a large shift dispersion, the synthesis of the corresponding phosphoramidite (i.e., 29a) 

was facile, and it coupled efficiently in the DNA/RNA synthesizer.  
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Figure 42. 19F NMR shift versus temperature profiles and profiles of the shift differences versus 

temperature after the subtraction of a passive temperature-dependent shift (0.014 ppm K-1) 

obtained by 1, 2 and 3 upon the thermal denaturation of a PRI-miR-215 hairpin model (E/F). 

Conditions: 50 µmol L-1 of ON in 0.1 mol L-1 NaCl and 10 mmol L-1 sodium cacodylate at pH 6.0, 

D2O–H2O (1:9, v/v). 

3.4 RNA triplexes 

Similar to DNA, RNA can form parallel pyrimidine motif triplexes via Hoogsteen 

hydrogen bonding (Section 3.2.1, U•A-U and C+•G-C base triplets Figure 36). In fact, 

the first reported triplex was a poly(rU)poly(rA)poly(rU) RNA triplex.310 Although 

triplex interactions are ubiquitous structural motifs in RNA tertiary structures311, the 

biological importance of RNA triplexes has been recognized more recently273,277,278. 

Triplexes have been found to play essential functional roles, for instance, in SAM-II 

riboswitch312, telomerase313,314, spliceosome315 and ribosomal frameshift pseudoknots316. 

Moreover, a triple helix forming RNA structure, called an element for nuclear expression 

(ENE, previously named an expression and nuclear retention element), has been 

recognized to act as a general stability and regulatory element.317-323  

In the present thesis, two triple-helical structures were chosen for 19F NMR experiments: 

one is an artificial model288 and the other is a viral stability and regulatory element called 
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PAN ENE317. Both of these structures were labelled with 2´-O-[(4-CF3-1H-1,2,3-triazol-

1-yl)methyl]uridine (3), and their temperature-dependent behaviour was monitored by 
19F NMR spectroscopy.II In contrast to the above investigated DNA triplexes, these RNA 

triplexes are stable at neutral pH.  

3.4.1 An artificial RNA triplex 

The structure of the artificial RNA triplex is shown in Figure 43. It is a parallel 

pyrimidine motif poly U•A-U triplex construct interrupted by two C+•G-C triplets, and 

the strands are tethered to each other by hexaethylene glycol spacers. It has been 

preciously studied by UV spectroscopy and gel shift mobility assays.288 To monitor both 

triplex and duplex structures, 3 was positioned into the polypyrimidine Watson-Crick 

strand. 

3.4.1.1 UV and CD spectroscopy studies 

The UV melting curve and CD profile of ON13 in comparison of those of the unlabelled 

RNA are shown in Figure 43. The sensor had a marginal effect on the duplex stability, 

and it also only slightly destabilized the triplex. As seen in the CD profiles (Figure 43b), 

the labelling did not induce structural distortions.  

 

Figure 43. (a) UV-melting profile and Tm values of ON13 (blue) in comparison to those of 

unlabelled RNA (black). ΔTm values (in parentheses) in comparison to those obtained with 

unlabelled RNA. (b) CD-profile of ON13 (blue) in comparison to that of unmodified RNA (black) 

at 10 ºC. Conditions: 10 mmol L-1 sodium cacodylate (pH = 7.0), 0.1 mol L-1 NaCl, 2.0 μmol L-1 

of each oligonucleotide. 
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3.4.1.2 19F NMR studies 

The 19F NMR measurements were performed using a mixture of 50 µmol L-1 ON13 in 

0.1 mol L-1 NaCl and 10 mmol L-1 sodium cacodylate at pH 7.0, D2O–H2O (1:9, v/v). As 

can be seen in Figure 44, the thermal denaturation of the intramolecular duplex (H → I) 

could be monitored by the chemical shift changes of the obtained 19F NMR coalescence 

signal (Figure 44a). The melting temperature of the duplex (Tm
H/I = 59 °C) could be 

extracted from the inflection point of the sigmoidal curve (Figure 44b) after the 

subtraction of the temperature-dependent 19F NMR shift (Figure 44c). The obtained 

melting temperature is in good agreement with the Tm value determined by UV 

spectroscopy (59.3 °C). At a lower temperature (40 °C), a new distinct 19F signal 

appeared (Figure 44a). The relative peak area of this signal increased when the 

temperature was decreased. At 32.5 °C, the signal was of equal size to the duplex-related 

signal. The new signal was assigned to a triplex that denatures at 32.5 °C. However, the 

distinct signals for the duplex and triplex indicated that the equilibrium between these 

structures may be an intermolecular rather than an intramolecular process. The 19F NMR 

measurements were then conducted at a lower ON13 concentration. As seen in 

Figure 44a, the triplex formation was indeed concentration-dependent: at a higher ON13 

concentration (50 µmol L-1), the duplex and triplex signals were of equal size at 32.5 °C 

(= Tm
G/H), whereas at a lower ON13 concentration (5 µmol L-1), only a trace of the triplex 

signal was detected at the same temperature. Thus, the detected triplex was 

concentration-dependent and may refer to an intermolecular triplex dimer of ON13 (G) 

instead of the expected intramolecular triplex (J). Finally, the molar fractions of the 

triplex (G), duplex (H) and single strand (I) (Figure 44c) were extracted from the relative 

peak areas (G vs H, Figure 44a), and the shift versus temperature profile after the 

subtraction of the passive temperature-dependent shift (H vs I, Figure 44b). 
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Figure 44. (a) 19F NMR spectra of ON13 at different temperatures (5 and 50 µmol L-1 of ON13 

in 0.1 mol L-1 NaCl and 10 mmol L-1 sodium cacodylate at pH 7.0, D2O–H2O (1:9, v/v)). (b) 
19F NMR shift versus temperature profile of ON13 (H vs. I). (c) Molar fractions of the proposed 

dimeric triple helix G, duplex H and single strand I of ON13. The molar fractions of the triplex, 

duplex and single strand were extracted either from the relative peak areas or the shift versus 

temperature profile after the subtraction of the passive temperature-dependent shift. 
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3.4.2 PAN ENE polyA complex 

The PAN ENE structure was identified in a viral transcript produced by an oncogenic 

human gammaherpesvirus, Kaposi’s sarcoma-associated herpesvirus (KSHV).317 During 

the lytic phase (production of infectious virions), KSHV produces a long noncoding 

RNA (lncRNA) polyadenylated nuclear (PAN) RNA.324 The PAN RNA is a 1.1 kb long 

intronless transcript containing a 5´ cap and a 3´ poly(A) tail, and it is the most abundant 

viral transcript during the lytic phase. A 79-nt stem-loop structure, called ENE exists 

near the 3´-end. The ENE contains an asymmetric U-rich internal loop that interacts in 

cis with the poly(A) tail, forming a triple-helical structure (Figure 45).317,324,325 This 

stabilizing interaction protects PAN RNA from a nuclear deadenylation-dependent 

decay pathway and hence enables its accumulation in the nucleus at very high levels. 

Since the characterization of the PAN-ENE polyA complex, ENE-like structures have 

been discovered, for example in other viruses319, plants322, fungi322 and, interestingly, in 

human cancer associated lncRNAs metastasis-associated lung adenocarcinoma 

transcript 1 (MALAT-1)318,320 and multiple endocrine neoplasia-β (MENβ)318.  

 

Figure 45. (a) Schematic presentation of PAN RNA. (b) The predicted secondary structure of the 

PAN ENE complexed with a polyA tail. (c) The schematic presentation of the core ENE model 

complexed with A9 (9 mer adenine oligoribonucleotide) and (d) the crystal structure of this model 

(A9 grey) (PDB ID 3P22317). The uridine residue that was replaced by 3 is circled. (e) U•A-U 

base triplet. 

A 40 mer PAN ENE model bearing the core ENE structure used in previous studies317,318 

was chosen for the 19F NMR investigations (Figure 45). 3 was incorporated into an upper 

stem of the model and in addition, four base pairs at the lower stem were replaced with 

corresponding 2´-O-methyl ribonucleotides (ON14, Figure 46). 

AAAn5´ 3´PAN (~ 1.1 kb)

a)

b) c) d)

e)
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3.4.2.1 UV and CD spectroscopy studies 

UV-melting studies showed (Table 4) that the 3 had a marginal effect on the stability of 

the PAN ENE hairpin. The Tm values for the PAN ENE A9 complexes, however, could 

not be determined from the melting curves due to the strong background absorbance of 

the hairpin. This is consistent with a previously reported UV study318 in which an unclear 

melting profile was obtained for the complex. According to CD spectroscopy the 

substitution did not induce conformational changes.  

Table 4. UV-melting experiments (Tm/ºC) of the 19F-labelled ON14 

entry oligoribonucleotides hairpin Tm/ºC complex Tm/ºC 

1 ON14 68.8 (-0.2) - 

2 ON14 + A9 68.3 (-0.8) n.d.a 

n.d: absorbance change referring to denaturation of ON14 + A9-complex severely overlapped with 

background absorbance of ON14. Inflection point cannot be determined. ΔTm (in parentheses) in comparison 

to those obtained with unlabelled RNAs. Conditions: 10 mmol L-1 sodium cacodylate (pH = 7.0), 0.1 mol L-1 
NaCl, 2.0 μmol L-1 of each oligonucleotide, UV-detection at 260 nm. 

3.4.2.2 19F NMR studies 

19F NMR measurements were performed using a mixture of 50 µmol L-1 ON14 and 

50 µmol L-1 A9 in 10 mmol L-1 sodium cacodylate buffer (pH 7.0) containing 0.1 mol L-1 

NaCl, D2O–H2O (1:9, v/v). Although the 3 was clearly positioned outside the expected 

binding region of A9, it was able to distinguish the triple helical complex (K) and hairpin 

(L) structures. As seen in Figure 46a, the complex behaved nearly as ON13: a well-

behaving coalescence signal was obtained for the hairpin melting, whereas the 

intermolecular triplex complex gave a distinct signal. The molar fractions of the 

structures and the melting temperatures were extracted from the 19F NMR data (Figure 

46b), as in the case of ON13. The melting temperatures obtained for the triplex (K) and 

the duplex (L) were 20 ºC (Tm
K/L) and 68 ºC (Tm

L/M), respectively. As neomycin has been 

shown to stabilize RNA triplexes297, the 19F NMR measurements were additionally 

conducted in the presence of five equivalents of neomycin. The molar ratios of the 

complex (K´), duplex (L´) and single strand (M´) in the presence of neomycin as a 

function of temperature are shown in Figure 46b. As expected, neomycin significantly 

stabilized the triple helical complex (Tm
K´/L´ = 48 ºC, ∆Tm = 28 ºC) but also did so for the 

hairpin (Tm
L´/M´ = 83 ºC, ∆Tm = 15 ºC). 
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Figure 46. (a) 19F NMR spectra of ON14 + A9 in different temperatures in the presence and 

absence of neomycin (5 equiv) (50 µmol L-1 ON14 and A9 in 0.1 mol L-1 NaCl and 10 mmol L-1 

sodium cacodylate at pH 7.0, D2O–H2O (1:9, v/v)). (b) Molar fractions of different secondary 

structures at different temperatures (symbols K, L, M and solid lines refer to a mixture without 

neomycin, and symbols K´, L´, M´ and dotted lines to a mixture in the presence of neomycin). 

The molar fractions of the complex, duplex and single strand were extracted either from the 

relative peak areas or the shift versus temperature profile after the subtraction of the passive 

temperature-dependent shift.  
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3.5 G-quadruplex-hairpin equilibria 

RNA G-quadruplexes formed by guanine-rich RNA sequences have gained considerable 

attention in recent years. RNA G-quadruplexes may be involved in several biological 

processes, such as translation, telomere homeostasis and the processing of 

ncRNAs.193,195,196,198,199,326,327 G-quadruplexes (both RNA and DNA G-quadruplexes) are 

four-stranded nucleic acid structures formed by stacked G-quartets connected by loops 

(Figure 47).192-194 The core unit is a planar G-quartet (tetrad) in which four guanine 

residues are linked together by Hoogsteen hydrogen bonding (Figure 47a). The 

G-quadruplex structures can be intramolecular or intermolecular. The formation and 

stability of G-quadruplexes is dependent on the monovalent cation that is located in the 

central channel of the structure (Figure 47c). In particular, potassium ions strongly 

stabilize G-quadruplexes (K+ > Na+ > Li+). RNA G-quadruplexes prefer a parallel folding 

topology (i.e., all four strands are oriented in the same direction, Figure 47b), which 

simplifies their topological diversity compared to DNA G-quadruplexes. The preference 

for a parallel topology is due to the 2´-hydroxyl groups, which restrict the guanine bases 

to the anti conformation. The antiparallel topology requires a syn conformation, and it is 

hence prevented in RNA. Several other features also contribute to the structural diversity 

and stability of the G-quadruplexes.192-194,328,329 

 

Figure 47. (a) Schematic structure of G-quartet and (b) a parallel tree-quartet G-quadruplex. 

(c) Crystal structure of bimolecular human telomeric RNA G-quadruplex (PDB ID 3IBK242). 

Potassium ions in central channel are shown as black dots, and guanine residues are in light grey 

colour.  

Structural transitions between RNA secondary structures are common in many RNA-

mediated regulatory processes. In some cases, an RNA G-quadruplex structure may be 

in equilibrium with an alternative secondary structure, usually a hairpin.330-341 Such 

intramolecular secondary structural equilibria have recently attracted attention as the 

meanings of RNA G-quadruplexes in biological processes have started to emerge. 

Although few bistable hairpin-G-quadruplex (Hp/Qd) structures have been identified so 

far, the recently published human transcriptome-wide analysis suggested that bistable 

G-quartet

a parallel tree-quartet 

G-quadruplex

a) b) c)
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Hp/Qd structures may be highly relevant structural motifs that play an important role in 

gene regulation.342 Therefore, it might be expected that several Hp/Qd equilibria will be 

identified, as G-quadruplex involving structural switches are a little explored research 

area so far. The Hp/Qd equilibrium is sensitive to the surrounding conditions such as the 

cation content and temperature.330-337 In addition, the equilibrium position may be 

modulated by small molecular ligands330-333,336 and external nucleic acid interactions341. 

Mutations may also affect Hp/Qd transitions.335 Bistable Hp/Qd structures have been 

identified both in non-coding and coding RNAs, and they may affect biologically 

important processes such as pre-miRNA maturation336,337,339, mRNA splicing335 and 

translation332,340. Consequently, it has been proposed that Hp/Qd equilibria may be 

involved in diseases199, and hence they may also be potential novel therapeutic 

targets199,333,334 in addition to RNA G-quadruplexes193,197,199,343. 

The characterization that a G-rich sequence can fold into a G-quadruplex is relatively 

straightforward201 and can be assessed by combining several methods, typically by UV 

melting studies74, CD spectroscopy344 and 1H NMR71,345. Despite the structural 

differences, the quantification of molar fractions in a Hp/Qd equilibrium is complex even 

within short bistable sequences.330-337,339-341,346,347 Among the employed methods, 1H 

NMR spectroscopy has been used to provide direct information of coexisting hairpin and 

G-quadruplex structures.331-333,335,346 The 1H NMR resonances of the imino protons of 

these structures exist in distinct spectral regions. The resonances at 10–12 ppm are 

characteristic of G-quadruplexes (i.e., Hoogsteen base pairing)71,345, whereas the imino-

proton resonances involved in Watson-Crick base pairing may be found at 12–14 ppm66. 

However, the spectral overlap and broadness of the resonance signals interfere with the 

distribution analysis of the conformers.71,331-333,335,345,346 As one of the main advantage of 
19F NMR is that it provides direct quantitative information of coexisting structural 

species and it has been successfully used to investigate several intramolecular hairpin-

hairpin equilibria107,111,142,143, it might be a valuable method to investigate Hp/Qd 

equilibria as well. In the present thesis, a well-characterized artificial Hp/Qd RNA331 

(Figure 48) was chosen for a model system.III In addition, two sequences within prion 

mRNA (Figure 54) that have been previously shown to be Hp/Qd sequences332 were 

chosen to probe the general utility of 19F NMR spectroscopy to characterize such 

structural equilibria.  
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3.5.1 An artificial G-quadruplex-hairpin model 

An artificial Hp/Qd RNA sequence has been constructed by combining a hairpin-

forming sequence derived from a pseudoknot structure of a mouse mammary tumour 

virus and a G-quadruplex-forming sequence from human N-RAS mRNA.331 This 

sequence (with additional 2´-O-methyl modifications) was labelled with purine 

derivatives 5 (ON16) and 6 (ON17).III The synthesized sequences and their schematic 

structures are presented in Figure 48. In addition, 19F-labelled hairpin derivatives with a 

polyU tail (ON19 and ON20) were synthesized as reference structures as well as the 

non-labelled analogues (ON15 and ON18). The influence of the 2´-O-(4-CF3-1H-1,2,3-

triazol-1-yl)methyl reporter group was analysed by UV and CD spectroscopy and the 1H 

NMR analysis of imino protons. 

 

Figure 48. Synthesized sequences and their schematic structures. 

3.5.1.1 UV melting studies  

UV melting studies were performed using a 2 µmol L-1 ON concentration in 0.1 mol L-1 

NaCl, 10 mmol L-1 sodium cacodylate (pH 7.0). The Tm values are listed in Table 5, and 

the corresponding UV melting profiles are shown in Figure 49. At 260 nm, Hp/Qd ONs 

(ON15–17) gave biphasic melting curves. The melting temperatures of the hairpins were 

obtained at the latter inflection points (Figure 49a). The Tm values of reference hairpins 

ON18–20 were comparable with those of the bistable sequences (ON15–17), indicating 

that the nucleobase content of the overhang did not affect the hairpin stability. 

Interestingly, the melting curves of the reference hairpins (ON18–20) were also biphasic 

(Figure 49c). The melting of G-quadruplexes can be followed at 295 nm, and an inverted 

melting profile at this wavelength is a characteristic feature of G-quadruplexes.74 As seen 

in Figure 49b, the bistable sequences ON15–17 gave inverted melting profiles, 

indicating that the sequences were able to adopt G-quadruplex structures. Although the 
19F-labelled RNAs behaved like their non-labelled analogues, the 2´-O-(4-CF3-1H-1,2,3-

triazol-1-yl)methyl reporter group affected the thermal stability of the structures. The 
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reporter group destabilized the hairpin structures (∆Tm
Hp: -3.2 – -6.3 °C), whereas it 

stabilized the G-quadruplex structures (∆Tm
Qd: +2.2 and +4.3 °C). 

Table 5. UV-melting temperatures (Tm/ºC) of the oligoribonucleotides 

entry oligoribonucleotides Tm
Hp/ºC (260 nm) Tm

Qd/ºC (295 nm) 

Hp/Qd RNAs   

1 ON15 74.5 ± 0.0 34.8 ± 0.5

2 ON16 (A) 70.0 ± 0.2 (-4.5) 37.0 ± 0.2 (+2.2) 

3 ON17 (G) 68.2 ± 0.3 (-6.3) 39.1 ± 0.2 (+4.3) 

Hp RNAs 

4 ON18 73.9 ± 0.1 n.a. 

5 ON19 (A) 70.7 ± 0.1 (-3.2) n.a. 

6 ON20 (G) 68.7 ± 0.2 (-5.2) n.a. 
Conditions: 10 mmol L-1 sodium cacodylate (pH = 7.0), 0.1 mol L-1 NaCl, and 2.0 μmol L-1 of each 

oligonucleotide. ΔTm (in parentheses) in comparison to that obtained with an unlabelled model 

(i.e., ON15 or ON18) 

Figure 49. UV-Melting profiles of ON15–20. Conditions same as in Table 5. 

3.5.1.2 CD spectroscopy studies 

The CD spectra of ONs were recorded at 20 °C in a mixture of 10 mmol L-1 sodium 

cacodylate (pH 7.0) and 0.1 mol L-1 mM NaCl. The CD profiles of the Hp RNAs (ON18–

20) displayed characteristic features for an A-form RNA helix76,78, with a strong positive 

peak around 260–270 nm and negative bands at 235 nm and 210 nm (Figure 50b). To 

evaluate the effect of the labelling on G-quadruplex structures, the CD spectra of bistable 

structures were recorded in the presence of KCl, because the K+ ions strongly shift the 

conformational equilibrium toward the G-quadruplex structure. At a 0.1 mol L-1 KCl 

concentration, the CD spectra of ONs 15–17 showed typical features for a parallel 

G-quadruplex344, with a negative peak at 240 nm and a positive peak around 260 nm, but 

ON17 (G-label) additionally showed a negative turn between 210 and 220 nm, which is 

an Hp characteristic feature (Figure 50a). Overall, the labelling has minor effects on the 

secondary structures, except in the case of ON17. In addition, the temperature-dependent 

CD spectra of ON17 (the same mixture as was used for NMR measurements) were 
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recorded and compared with those of the non-labelled analogue (ON15). As seen by 

comparing Figures 50 c and d, the CD profiles of ON17 (50 µmol L-1) were comparable 

to those of ON15 (4 µmol L-1) in 10 mmol L-1 sodium cacodylate (pH 7.0) with 

0.1 mol L-1 NaCl (without KCl). Moreover, the Qd-Hp transition (indicated by arrows in 

the spectra) was observed in both spectra.  

 

Figure 50. CD spectra. (a) and (b) CD spectra of ON15–20 at 20 ºC. Conditions: 2.0-4.0 µmol L-1 

ON in (a) 10 mmol L-1 sodium cacodylate, 0.1 mol L-1 NaCl, 0.1 mol L-1 KCl and in 

(b) 10 mmol L-1 sodium cacodylate, 0.1 mol L-1 NaCl, pH 7.0, (c) CD spectra of the NMR sample 

of ON17 (50 µmol L-1) and (d) 4.0 µmol L-1 solution of ON15 at different temperatures in 

10 mmol L-1 sodium cacodylate, 0.1 mol L-1 NaCl, pH 7.0.  

3.5.1.3 1H NMR studies 

The recorded imino-proton 1H NMR spectra of ON15–20 are shown in Figure 51 (i-viii). 

The 1H NMR measurements were first performed at a 50 µmol L-1 ON concentration in 

a mixture of 0.1 mol L-1 NaCl and 10 mmol L-1 sodium cacodylate at pH 7.0 

in D2O-H2O (1:9, v/v). As seen (i-iii), the Hp RNAs (ON18–20) gave signals in the range 

12–13 ppm, corresponding to regular Watson-Crick base pairs66. The 2´-O-(4-CF3-1H-

1,2,3-triazol-1-yl)methyl reporter group affected the resonance shifts (marked with 
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asterisks): a downfield shift was observed with the A-label (ON19, ii) and an upfield 

shift with the G-label (ON20, iii), but the intensity of the signals remained unchanged. 

The imino proton resonances of the Hp/Qd RNAs (ONs 15-17, iv-vi) were broad, which 

is consistent with a previously reported study331. In addition to a Watson-Crick 

fingerprint that resembled those of the Hp RNAs (ON18–20), broad resonances were 

detected in the Hoogsteen region (i.e., 10–12 ppm)71,345. Although some changes were 

observed, the reporter group neither caused a significant displacement of the Hp/Qd ratio 

nor induced local decreases in the signal intensity. Additionally, the Hp/Qd equilibrium 

was investigated in the presence of Mg2+ ions (3.0 mmol L-1) that stabilize the Hp-

conformer331. When MgCl2 was added into the samples, the signals broadened, but the 

expected increase in the intensity of the resonances in the Watson-Crick region was 

barely detectable (iv/vii and vi/viii).  

 

Figure 51. 1H NMR- and 19F NMR-spectra of ONs 15–20 at 25°C. 
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3.5.1.4 19F NMR studies 

The 19F NMR spectra (Figure 51 ix-xiv) of ONs 16, 17, 19 and 20 were then recorded. 

Hp RNAs ON19 and ON20 showed sharp signals at -62.63 ppm (A-label, ix) 

and -62.44 ppm (G-label, xi), respectively, whereas two peaks were observed with 

Hp/Qd RNAs ON16 and ON17. ON16 (A-label, x) gave signals at -62.63 ppm 

and -62.94 ppm (broad), and ON17 (G-label, xii) at -62.44 ppm and -62.91 ppm. As in 

both cases the shift of the minor signal corresponded to that of Hp RNAs ON19 and 

ON20, those signals were attributed to Hp-conformers, and hence the major signals 

at -62.94 ppm (A-label) and -62.91 ppm (G-label) could be attributed to Qd-conformers. 

In both cases, the ratio of the peak areas was 0.25:0.75 (Hp/Qd). The effect of the ON 

concentration (5.0 µmol L-1) and Mg2+ ions (3 mmol L-1 MgCl2) on the Hp/Qd 

equilibrium of ON17 was investigated. The distribution of the conformers remained 

unaffected at the lower ON17 concentration (xiii), indicating that the Hp/Qd equilibrium 

is not dependent on the concentration (i.e., an intramolecular process). Compared to 1H 

NMR data (vi/vii), a Mg2+ ion-induced shift to the Hp-conformer was clearly detected: 

the Hp/Qd ratio changed from 0.25:0.75 to 0.54:0.46 (xii/xiv). 

Temperature-dependent measurements 

The temperature-dependent measurements were carried out using 50 µmol L-1 of each 

ON in 10 mmol L-1 sodium cacodylate, 0.1 mol L-1 NaCl, D2O–H2O (1:9, v/v), pH 7.0. 

The temperature-dependent 19F NMR spectra of Hp/Qd RNAs ON16 and ON17 

(together with those of the Hp RNAs ON19 and ON20) are shown in Figure 52b and 

52d. As seen, the Qd-related 19F-resonances of ON16 and ON17 decreased upon heating, 

and the Hp-related ones increased, existing as a predominant signal upon passing 50 ºC. 

The ratio of the signals (Hp/Qd peak areas) was reproducible, whether the sample was 

heated or cooled (2.5 ºC / 90 min) to the target temperature. As seen in Figure 52c, the 

shifts of the Hp-related resonances of the Hp/Qd RNAs (ON16 and ON17) were in good 

agreement with those of the Hp RNAs (ON19 and ON20) in almost the whole 

temperature range except for temporally incomplete Qd/Hp/Ss coalescence signals at 

52.5–62.5 ºC (ON16) and 57.5–65.0 ºC (ON17). At temperatures over 65 ºC, the 19F 

resonances of ON16 and ON17 followed regular upfield-shifted Hp/Ss-coalescence 

curves. Due to the modest slope of the Hp/Ss-coalescence curves of ON16 and ON19, 

the denaturation range of the Hp-conformer was not easily extracted from the data. In 

contrast, the G-label reflected the melting of the Hp-conformer better, and rather steep 

upfield-shifted Hp/Ss-coalescence curves were observed with ON17 and ON20. A 

minor signal referring to an incomplete Hp/Ss coalescence signal and/or partially 

degraded RNA was observed after the complete denaturation of each RNA (marked with 

asterisks*, fused with the major signal at 80°C). The contribution of this signal (Ss*) 

was taken into account in determining the molar fractions of the Qd/Hp/Ss-transitions. 

The molar fractions of the ON16 and ON17 conformers as functions of temperature are 

shown in Figure 52a. In practice, the ratio of the Qd- and Hp-conformers was extracted 

from the relative peak areas (at 25–70 °C), and that of the Hp- and Ss-conformers (at 
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55–90 °C) from the shift versus temperature profiles. The contribution of the Ss* was 

taken into account by subtracting it from the molar fractions of the conformers, and an 

internal standard was used to confirm the changes in the peak areas. The molar fractions 

of the Qd- and Hp-conformers at temperatures below 50 °C could be determined 

accurately, but due to the modest shift discrimination between the Qd- and Ss-related 

signals (*) the molar fractions of the Qd-conformers at temperatures over 50 °C were 

approximations (the extent of the Ss-related signal * in the overlapped signals was based 

on that observed for Hp RNAs ON19 and ON20).  
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Figure 52. Monitoring of the temperature-dependent Qd/Hp-transitions of ON16 and ON17 by 
19F NMR spectroscopy. (a) Molar fractions (x) of the secondary structures: Qd (squares, blue 

lines), Hp (circles, green lines) and Ss (triangles, black lines), ON16 (filled symbols, solid lines) 

and ON17 (open symbols, dotted lines); (b) 19F NMR spectra of ON17 and ON20 

(50 µmol L-1 ON in 10 mmol L-1 sodium cacodylate, 0.1 mol L-1 NaCl, D2O–H2O (1:9, v/v), 

pH 7.0 at 25–80 °C); (c) 19F NMR resonance shift versus temperature profiles of ON17 (orange 

filled circles, solid line), ON20 (orange open circles, dotted line), ON16 (red filled circles, solid 

line) and ON19 (red open circles, dotted line); (d) 19F NMR spectra of ON16 and ON19 

(50 µmol L-1 ON in 10 mmol L-1 sodium cacodylate, 0.1 mol L-1 NaCl, D2O–H2O (1:9, v/v), 

pH 7.0 at 25–80°C). 
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To characterize the thermodynamics of the Qd→Hp-transition, the stability constant 

(K = [Qd]/[Hp]) was determined at different temperatures. As seen in Figure 53, lnK 

was linearly dependent on the inverse temperature from 25 to 50 °C whereas severe 

dispersion was observed above 50 °C. Consequently, the thermodynamic parameters for 

the Qd→Hp-transition could be extracted from the linear region. The obtained 

parameters were as follows: ON16: ΔSθ = 116 ± 2 J K-1 mol-1, ΔHθ = 37.3 ± 1.5 kJ K-1 

mol-1, ΔGθ (298.2 K) = 2.7 ± 2.1 kJ K-1 mol-1 and ON17: ΔSθ = 112 ± 5 J K-1 mol-1, 

ΔHθ = 37.1 ± 1.7 kJ K-1 mol-1, ΔGθ (298.2 K) = 3.8 ± 3.3 kJ K-1 mol-1. Importantly, the 

parameters obtained for two different sites of the 2´-O-(4-CF3-1H-1,2,3-triazol-1-

yl)methyl reporter group (ON16 vs ON17) were comparable to each other. The turning 

point of the Qd-Hp transition ([Qd] = [Hp], ΔGθ = 0) was determined from the average 

values and was assigned to be 53 °C. The obtained midpoint transition differs markedly 

from the Tm
Qd values obtained by UV spectroscopy (ON16: 37.0 ± 0.2 ºC and 

ON17: 39.1 ± 0.2 ºC). The UV-based Qd-melting profiles at 295 nm were interfered 

with the denaturation of the Hp-conformers (the increased absorbance > 50°C, Figure 

49b). The obtained UV-values suggested false Tm
Qd values detected from the first 

inflection points (ON16: 32.8 ± 6.7 ºC, ON17: 35.5 ± 1.5 ºC) of the 19F NMR-based 

biphasic melting profiles (Figure 52a). 
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Figure 53. ln K/T-1 curves of ON16 (filled red circles, solid line) and ON17 (orange open circles, 

dotted line). 
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3.5.2 Prion sequences 

Prion diseases, such as Jakob-Creutzfeldt, scrapie, bovine spongiform encephalopathy 

(mad cow disease), are neurodegenerative diseases caused by the conversion of a normal 

cellular prion protein (PrPC) into an infectious misfolded form of the prion protein 

(PrPSc).348,349 The mechanism that initiates this conversion is unknown. Currently, 

nucleic acids are considered one of the potential candidates to induce this 

misfolding.350-352 Interestingly, it has been proposed that the G-quadruplexes might be 

involved in the conversion process352, because G-quadruplex forming aptamers have 

been shown to bind with high affinity to PrPc and to prevent the conversion of PrPc to 

PrPSc 353-357 but also to induce formation of PrPSc by lowering the free energy barrier 

between PrPc and PrPSc 358. Therefore, it has been speculated that PrP’s own mRNA 

might play a role in the conversion process because it contains several consecutive 

guanine stretches.332,352  

Two previously investigated bistable Hp/Qd sequences within prion mRNA332 were 

labelled with 2´-O-[(4-CF3-1H-1,2,3-triazol-1-yl)methyl]cytidine (4). In contrast to the 

artificial sequence discussed above that can adopt a tree-quartet G-quadruplex, the 

bistable prion sequences can fold into two-quartet G-quadruplexes that are usually less 

stable than the tree-quartet ones329,359. In addition to 19F-labelled Hp/Qd sequences 

(ON22 and ON24), a 19F-labelled hairpin without an overhang was synthesized as a 

reference structure (ON26) as well as the corresponding non-labelled analogues (ON21, 

ON23 and ON25) (Figure 54). The influence of the 4 was evaluated as above by UV and 

CD spectroscopy and the 1H NMR of imino protons. 

 

Figure 54. The synthesized prion sequences and their schematic structures. 
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3.5.2.1 UV melting studies  

The Tm values are listed in Table 6, and the corresponding UV melting profiles are shown 

in Figure 55. UV melting studies were performed using a 2 µmol L-1 ON concentration 

in 0.1 mol L-1 NaCl, 10 mmol L-1 sodium cacodylate (pH 7.0). Hp/Qd RNAs ON21 and 

ON22 gave biphasic melting curves at 260 nm (Figure 55a), and the melting 

temperatures of the hairpins were obtained at the latter inflection points. The deletion of 

the overhang did not significantly affect the hairpin stability (Hp-RNAs ON25 and 26 

vs Hp/Qd RNAs ON21–24) (Figure 55a, c and d). The melting behaviours of the 

G-quadruplexes were monitored in the presence of K+ ions. Hp/Qd-RNAs I (ON21 and 

ON22) gave inverted melting profiles characteristic of G-quadruplexes74 in the presence 

of 20 mmol L-1 KCl, whereas such profiles were not observed with Hp/Qd-RNAs II 

(ON23 and ON24) even at a higher K+ concentration (0.1 mol L-1) (Figure 55b). 

However, the NMR data revealed G-quadruplex formation with ON23 and ON24, which 

was attributed to the concentration dependency of these G-quadruplexes. The labelled 

RNAs (ON22, ON24, ON26) behaved like their corresponding non-labelled analogues 

(ON21, ON23, ON25), but the label destabilized the hairpin structures 

(∆Tm
Hp = -2.7 – -3.9) and stabilized the G-quadruplex structure (∆Tm

Qd = +3.2 °C). 

Similar effects were observed above with ONs 15–20. 

Table 6. UV-melting temperatures (Tm/ºC) of the oligoribonucleotides 

entry oligoribonucleotides Tm
Hp/ºC (260 nm) Tm

Qd/ºC (295 nm) 

Hp/Qd-RNAs I 

1 ON21 71.5 ± 0.3 55.2 ± 0.7a 

2 ON22 (C) 68.8 ± 0.2 (-2.7) 58.4 ± 0.4 (+3.2)a 

Hp/Qd-RNAs II 

3 ON23 73.0 ± 0.1 n.d. 

4 ON24 (C) 69.1 ± 0.2 (-3.9) n.d. 

Hp-RNAs 

5 ON25 71.7 ± 0.3 n.a. 

6 ON26 (C) 67.9 ± 0.3 (-3.8) n.a. 
Conditions: a2 µmol L-1 ON in 10 mmol L-1 sodium cacodylate (pH = 7.0), 0.1 mol L-1 NaCl, 20 mmol L-1 

KCl, other experiments 10 mmol L-1 sodium cacodylate (pH = 7.0), 0.1 mol L-1 NaCl, and 2.0 μmol L-1 

of each oligonucleotide. ΔTm (in parentheses) in comparison to that obtained with unlabelled model. 
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Figure 55. UV-Melting profiles of ON21–26. Conditions: (a,c,d): 2 µmol L-1 ON21–26 in 

10 mmol L-1 sodium cacodylate, 0.1 mol L-1 NaCl, pH 7.0, (b) 2 µmol L-1 ON21 and ON22 in 

10 mmol L-1 sodium cacodylate, 0.1 mol L-1 NaCl, 20 mmol L-1 KCl, pH 7.0 and 2 µmol L-1, 

ON23 and ON24 in 10 mmol L-1 sodium cacodylate, 0.1 mol L-1 NaCl, 0.1 mol L-1 KCl, pH 7.0. 

3.5.2.2 CD spectroscopy studies 

The CD spectra of prion ONs were recorded at 20 °C in a mixture of 10 mmol L-1 sodium 

cacodylate (pH 7.0) and 0.1 mol L-1 NaCl with or without added KCl. The CD profiles 

of the Hp RNAs (ON25 and 26) displayed characteristic features for an A-form RNA 

helix76,78 (Figure 56c). At 20 mmol L-1 KCl the CD spectra of Hp/Qd-RNAs I (ON21 

and ON22) showed Qd-characteristic CD profiles344 (Figure 56a). At 0.1 mol L-1 KCl 

the Hp/Qd RNAs II (ON23 and ON24) displayed Qd-characteristic negative peaks at 

240 nm, but also Hp-characteristic negative values between 210 and 220 nm 

(Figure 56b). Overall, the 4 did not induce significant structural perturbations. The 

temperature-dependent CD spectra of ON22 used for NMR measurements were 

recorded and compared with those of the non-labelled analogue ON21. As seen, the CD 

profiles of ON22 (50 µmol L-1, Figure 56d) were comparable to those of ON21 (4 µmol 

L-1, Figure 56e) in 10 mmol L-1 sodium cacodylate (pH 7.0) with 0.1 mol L-1 NaCl and 

20 mmol L-1 KCl. In contrast to ONs 15 and 17 (Section 3.5.1.2), no clear transitions 

were observed, and Hp/Qd-RNAs I showed Qd-characteristic profiles throughout the 

temperature ramp. 
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Figure 56. (a-c) CD-spectra of ON21–26 at 20ºC. Conditions: 2.0–4.0 µmol L-1 ON in (a) 

10 mmol L-1 sodium cacodylate, 0.1 mol L-1 NaCl, 20 mmol L-1 KCl, pH 7.0; (b) 10 mmol L-1 

sodium cacodylate, 0.1 mol L-1 NaCl, 0.1 mol L-1 KCl, pH 7.0 and (c) 10 mmol L-1 sodium 

cacodylate, 0.1 mol L-1 NaCl, pH 7.0. (d) Temperature-dependent CD spectra of the NMR sample 

of ON22 (50 µmol L-1) and (e) 4.0 µmol L-1 solution of ON21 in 10 mmol L-1 sodium cacodylate, 

0.1 mol L-1 NaCl, 20 mmol L-1 KCl, pH 7.0. 

3.5.2.3 1H NMR studies 

As above with ONs 15–20, the effect of the labelling on prion mRNAs models was 

analysed by imino proton 1H NMR spectroscopy. The imino proton 1H NMR spectra are 

shown in Figure 57 (i-x). The 1H NMR measurements were first performed at a 

50 µmol L-1 ON concentration in a mixture of 0.1 mol L-1 NaCl and 10 mmol L-1 sodium 

cacodylate at pH 7.0, D2O–H2O (1:9, v/v) without added KCl (Figure 57 i-vi). As seen, 

a downfield-shifted Watson-Crick signal (marked with asterisks) was observed for the 

labelled sequences, but otherwise the 1H NMR spectra of the labelled RNAs were 

comparable to those of the non-labelled analogues (i/ii, iii/iv, v/vi). Besides the Watson-

Crick resonances, low-intensity resonances were observed in the Hoogsteen region of 

Hp/Qd-RNAs I (ON21 iii and ON22 iv), indicating the presence of Qd-conformers. In 

contrast, Hoogsteen-related resonances were not observed with the Hp/Qd-RNAs II 

(ON23 v and ON24 vi). The imino-proton 1H NMR spectra were then recorded in the 

presence of KCl (Hp/Qd-RNAs I 20 mmol L-1 and Hp/Qd-RNAs II 0.1 mol L-1). As 

expected, the intensity of the Hoogsteen-related resonances increased (ON21 vii and 
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ON22 viii). Hoogsteen-related resonances were also observable for Hp/Qd-RNAs II 

(ON23 ix and ON24 x), showing that these sequences were able to adopt Qd-conformers. 

The obtained 1H NMR data of the Hp/Qd-RNAs II was hence inconsistent with the UV 

melting results, which did not show Qd formation. As the difference between the 

measurements was the concentration (2 µmol L-1 vs 50 µmol L-1), the observed 

Hoogsteen resonances of ON23 and ON24 may be attributed to an intermolecular 

process rather than to an intramolecular Hp/Qd transition.   

 

Figure 57. 1H NMR- and 19F NMR-spectra of ONs 21–26 at 25°C. 
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3.5.2.4 19F NMR studies 

The same samples used in the 1H NMR experiments were used for the 19F NMR 

experiments, and the recorded 19F NMR spectra are shown in Figure 57 (xi-xvii). The 

hairpin (ON26) gave a sharp signal at -62.35 ppm (xi), and this signal was the 

predominant one with both of the Hp/Qd sequences (ON22 xii and ON24 xiii). 

Compared to the 1H NMR spectrum of the ON22, only a trace of the signal related to the 

Qd-conformer was detected in the 19F NMR spectrum (iv/xii). This difference may be 

related to the slow proton exchange of the Hoogsteen hydrogen bonds71. In the presence 

of KCl (ON22 20 mmol L-1 xiv and ON24 0.1 mol L-1 xv), the Qd-conformer was clearly 

detected with both sequences. However, in both cases, a set of Qd-signals were observed 

instead of a single signal, attributed to a mixture of Qd-conformers. To evaluate the 

concentration dependency of the structures, the 19F NMR spectra of the ONs were 

recorded at lower RNA concentrations (5 µmol L-1 versus 50 µmol L-1). As seen, the 

intensity of the Qd-related signals of ON24 decreased (xv/xvii), indicating that 

intermolecular interactions affect the equilibrium. In contrast, the ratio of the conformers 

of ON22 remained unaffected (xiv/xvi).  

The temperature-dependent behaviour of ON22 

The measurements were carried out using 50 µmol L-1 ON22 in 10 mmol L-1 sodium 

cacodylate, 0.1 mol L-1 NaCl, 20 mmol L-1 KCl, D2O–H2O (1:9, v/v), pH 7.0. The molar 

fractions of the structural species (Qd, Hp, Ss) as a function of temperature are shown in 

Figure 58a. Because a set of signals referring to a set of Qds interfered with the 

evaluation of the Hp/Qd ratio, an internal standard (i.e., 5-[4,4,4-trifluoro-3,3-

bis(trifluoromethyl)but-1-ynyl]-2´-deoxyuridine) was used to evaluate the changes in the 

peak areas [molar fractions: x(Qd) = 1 – x(Hp + Ss), x(Hp + Ss) = A(Hp + Ss)/Atot 

compared to an standard]. The molar fractions of Hp and Ss were extracted from the 

shift versus temperature profile. The Hp-conformer of ON22 did not accumulate as in 

the case of artificial ONs 16 and 17. The Qd/Hp ratio remained almost unchanged 

throughout the temperature ramp, and the melting temperatures (Tm(Qd) = 70.3 ± 1.1 °C 

and Tm(Hp) = 72.7 ± 0.5 °C) of the conformers were close to each other. The obtained 

Tm value for the Qd-conformer was much higher than that determined by UV 

spectroscopy (58.4 °C). As seen in Figure 58b, changes in the peak set referring to Qd-

conformers were observed upon heating. In addition, the equilibration rate of the Qd/Hp–

ratio of ON22 was questionably slow (despite the Qd/Hp-ratio being reproducible 

whether the sample was heated or cooled to the target temperature). Taken together, it 

may be concluded that intermolecular Hoogsteen interactions disturbed the Qd/Hp ratio 

in the concentration used for the 19F NMR analysis (50 µmol L-1 of ON22), although the 

intramolecular Qd/Hp transition may take place at a lower concentration332.  
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Figure 58.  Monitoring of the temperature-dependent Qd/Hp-transition of ON22 by 19F NMR 

spectroscopy. (a) Molar fractions (x) of the secondary structures: Qd (squares, blue line), Hp 

(circles, green line) and Ss (triangles, black line); (b) 19F NMR spectra of ON22 (50 µmol L-1 

ON22 in 10 mmol L-1 sodium cacodylate, 0.1 mol L-1 NaCl, 20 mmol L-1 KCl, D2O–H2O 

(1:9, v/v), pH 7.0 at 25–90°C. 
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4. CONCLUSIONS 

Six novel fluorine-labelled building blocks were synthesized, and their applicability as 

fluorine sensors was evaluated. Phosphoramidite building blocks of 4´-C-[(4-CF3-1H-

1,2,3-triazol-1-yl)methyl]thymidine (12) and 2´-O-[(4-CF3-1H-1,2,3-triazol-1-

yl)methyl]uridine (29a), -cytidine (29b), -adenosine (29c), guanosine (29d) were 

obtained in relatively high yields. The (4-CF3-1H-1,2,3-triazol-1-yl)methyl reporter 

group was easily accessible in each case. Importantly, the 2´-O-(4-CF3-1H-1,2,3-triazol-

1-yl)methyl group could be introduced to all four common ribonucleosides, enabling 

incorporation at any position in RNAs. In contrast, the phosphoramidite building block 

of 4´-C-[4-(trifluoromethyl)phenyl]uridine (22) was obtained with a low yield after a 

multistep synthesis. All the phosphoramidite building blocks were stable under solid-

phase synthesis and cleavage conditions, and no special adjustments were required for 

conventional synthesis procedures. Phosphoramidite building blocks 12 and 29a-d were 

coupled efficiently, either manually or as an integral part of oligonucleotide synthesis, 

whereas a lower coupling efficiency was obtained with 22.  

The 19F NMR spectroscopic experiments showed that the reporter groups provided sharp 
19F signals as singlets without proton decoupling techniques. However, in addition to the 

synthetic shortcomings, a modest discrimination between single- and double-stranded 

environments was observed with 4´-C-[4-(trifluoromethyl)phenyl]uridine (2), and it was 

not used to characterize secondary structures. 

The applicability of 4´-C-[(4-CF3-1H-1,2,3-triazol-1-yl)methyl]thymidine (1) was 

demonstrated in both DNA and RNA environments. It was proven to be a relatively non-

perturbing substitution in both environments. It was able to reflect DNA triplex 

structures when bound to either a Watson-Crick or a Hoogsteen face. The molar fractions 

of the triplex/duplex/single strand were obtained from well-separated 19F signals, and Tm 

values were obtained from temperature-dependent 19F NMR data. In addition, a 

previously conducted RNA invasion study was repeated, and the temperature-dependent 

behaviour of the invasion complex was successfully monitored.  

2´-O-[(4-CF3-1H-1,2,3-triazol-1-yl)methyl]uridine (3) was applied to investigate the 

temperature-dependent behaviour of RNA triplexes, and the applicability of 19F NMR 

spectroscopy to investigate RNA triplexes was demonstrated for the first time. 3 was 

proven to be a non-invasive analogue readily reflecting triplex, duplex and single strand 

environments, and the molar fractions of the structural specifies were easily determined. 

In addition to the Tm values, the concentration dependency of the artificial triplex model 

was revealed. Significantly, the temperature-dependent behaviour of a PAN ENE polyA 

complex was characterized, and Tm values for the triplex complex and hairpin were 

obtained in the absence and presence of neomycin.  
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2´-O-[(4-CF3-1H-1,2,3-triazol-1-yl)methyl]cytidine (4), -adenosine (5) and -guanosine 

(6) were used to characterize RNA G-quadruplex/hairpin transitions. The molar fractions 

of the Hp- and Qd-conformers were determined under different temperatures and ionic 

conditions. 4–6 were also able to reflect the concentration dependency of the Qd-

conformation, i.e., the formation of intra- and intermolecular Qd species. In addition, Tm 

values and thermodynamic parameters were extracted from the temperature-dependent 
19F NMR data. Although no significant structural perturbations were observed, except in 

the case of 6-modified Qd-conformer, the analogues affected the stability of both 

conformers and hence the molar ratios of the conformers, and these effects need to be 

taken in account when directly compared to the native Hp/Qd equilibria. Whether the 

observed stability effects are general properties of the derivatives or may be overcome 

by labelling position changes needs to be assessed with further studies. Nevertheless, 

compared to UV and CD spectroscopy as well as 1H NMR, the simplicity of determining 

the ratio of the conformers directly from 19F signals in a variety of conditions was 

demonstrated, and bistable Hp-Qd RNA models were analysed by 19F NMR 

spectroscopy for the first time. 

In summary, due to the efficient synthesis of 12 and 29a-d, their facile incorporation into 

oligonucleotides and the beneficial 19F NMR spectroscopic properties, 1 and 3-6 may be 

considered potential analogues for further 19F NMR studies. 

The potential of 19F NMR spectroscopy to investigate nucleic acids has been 

demonstrated with several studies, but also the common limitations of this method and 

the importance of the development of novel 19F-modified analogues for further 

applications have been recognized. In general, the choice of the appropriate 
19F-modification for the given application depends on the nucleic acid of interest and the 

primary experimental goal. In addition to 19F NMR spectroscopy, a variety of other 

methods are also available to investigate nucleic acids, such as NMR spectroscopy with 

other nuclei (1H, 15N, 13C) and spectrophotometric methods, each with its strengths and 

limitations. NMR spectroscopy is in general invaluable tool to investigate nucleic acids. 

Commonly, spin-labels and multidimensional NMR methods are needed to overcome 

the reduced chemical shift dispersion of protons.66-72 One of the advantage of 19F NMR 

spectroscopy is the simplicity and informational richness of the 1D 19F NMR spectra, 

and therefore the utility of 19F NMR spectroscopy do not require NMR specialization in 

the same extent that is needed for studying complex nucleic acid structures or structural 

equilibria by 1H NMR spectroscopy. Spectrophotometric methods, such as UV73-75 and 

CD spectroscopy76-78 as well as fluorescence based methods79,80, are inherently more 

sensitive methods than NMR spectroscopy. Fluorescence based methods are extensively 

used to investigate nucleic acids and a vast amount of applications have been 

described.79,80 Because nucleic acids are inherently non-fluorescent, it is necessary to 

introduce a fluorescent modification into a nucleic acid, and currently, a number of 

fluorescent analogues are available. In principle, fluorescence based methods and 19F 

NMR spectroscopy share some common general aspects, because prerequisite for both 
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of these techniques is the incorporation of an unnatural modification into a target nucleic

acid (or its ligand). For instance, challenges in development and synthesis of appropriate

building blocks and introducing them efficiently into oligonucleotides can limit the

utility of these techniques. In addition, the introduced modification can affect

significantly on nucleic acid structure and/or stability. In general, the utility of a labelled

building block depends not only its general properties, but also its behaviour in particular

structure and its ability to reflect the process of interest. UV73-75 and CD76-78 studies are

also commonly used to investigate nucleic acids. These methods do not require labelling

of the nucleic acid of interest, but analysing intermediate structures, coexisting structural

species or large nucleic acids is often difficult with these methods. In particular, the

strength of 19F NMR is that it provides direct quantitative information of coexisting

structural species and it can be readily used to analyse changes in structural equilibria

induced by environmental changes, such as ions, temperature and pH, or interaction

partners, such as small molecules, nucleic acids and proteins. This valuable characteristic

feature of 19F NMR was also demonstrated in this thesis by investigating DNA and RNA

triplexes, RNA invasion process and RNA G-quadruplex-hairpin equilibria with novel

fluorine-labelled nucleoside analogues 1 and 3-6.
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5. EXPERIMENTAL 

5.1 General 

The synthesis and characterization of the compounds are described in the original 

publications. The synthesized novel compounds were characterized by 1H NMR, 13C 

NMR, 31P NMR 19F NMR and MS when applicable.  

Synthesis of 20 by 5´-debenzoylation strategy 

The bottleneck of the synthesis of 22 was the tritylation step and the alternative synthetic 

routes are shortly summarized here. However, as stated in Section 3.1.1.1 the direct 

tritylation of 19 was practically straightforward approach, and importantly, the bis- and 

monotritylated sideproducts were readily converted back to the starting material by 

dicloroacetic acid treatment. The selective removal of the 5´-O-Bz protection was most 

successful with [tBuSnOHCl]2
261,360 (Scheme 4). However, it has been reported that the 

selective 5´-debenzoylation with this tin catalyst is sensitive to the amount of catalyst, 

reaction time and temperature, and reaction can provide a complex mixture of 

products.261 This was also the case with 18 and several test reactions were conducted 

varying the amount of catalyst, reaction time and temperature to obtain 33 in a moderate 

yield (61 %). The best result was obtained in dry MeOH with 30 mol% of catalyst at 66 

°C for 68 h, but the obtained mixture of compounds complicated the purification. 

Tritylation of 33 with excess of DMTrCl for 120 h gave 34 in an 84% yield (yield from 

18 51%). 

 

Scheme 4. (i) [tBuSnOHCl]2, MeOH; (ii) DMTrCl, Py; (iii) NaOMe, MeOH. 

Although NaOMe is unspesific reagent for selective debenzoylation, it was also tested 

for cleaving 5´-O-Bz group selectively. 33 was noticed to accumulate in some extent 

during debenzoylation reaction. Treatment of 18 with 0.1 ekv of NaOMe solution for 

10-30 min provided a mixture of products, as expected. The obtained crude was then 

tritylated and 34 was obtained in 48% yield. Although the yield is comparable to that of 

the tin method, the NaOMe step was hard to control. 5´-Debenzoylation was also tested 

using 1 % iodine-methanol solution361, but this attempt was unsuccessful.  
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Synthesis of 2´-O-TBDMS-protected 4´-C-[4-(trifluoromethyl)phenyl]uridine 

phosphoramidite 

Synthesis of 2´-O-TBDMS-protected 4´-C-[4-(trifluoromethyl)phenyl]uridine 

phosphoramidite (36) from 20 is depicted in Scheme 5. First 2´-OH group was silylated 

with TBDMSCl in the presence of AgNO3
362 (35 in 33% yield). The reaction proceeded 

slowly and a mixture of products was obtained. 35 was then phosphitylated, and also this 

reaction was difficult due to the steric hindrance of 4´-C-[4-(trifluoromethyl)phenyl] and 

2´-O-TBDMS groups. High excess of 2-cyanoethyl N,N-diisopropylchloro-

phosphoramidite (6 ekv) and prolonged reaction time at elevated temperature (48 h at 

55°C) were required to obtain 36 in 38% yield. This building block coupled inefficiently 

due to the bulky TBDMS group. The coupling efficiency improved significantly, from 

20 to 90%, when the 2´-OH group was protected with sterically less demanding TOM 

group (22, Section 3.1.2). In addition, the phosphitylation reaction was easier with TOM-

protected compound (Scheme 2). Smaller excess of 2-cyanoethyl 

N,N-diisopropylchlorophosphoramidite (3.5 ekv) could be used and the reaction 

proceeded at ambient temperature (24 h) in  a good yield (22, 86%).  

 

Scheme 5. (i) TBDMSCl, Py, AgNO3, THF; (ii) 2-cyanoethyl N,N-diisopropylchloro-

phosphoramidite, Et3N, DCM. 

5.2 Oligonucleotide synthesis 

The detailed synthetic methods of the oligonucleotides are described in the original 

publications. Oligonucleotides were synthesized on an Applied Biosystems 3400 

DNA/RNA synthesizer using standard protocols. The manual coupling of 

phosphoramidites 12, 22 and 29d is described in Section 3.2.1. The oligonucleotides 

were released from the support by standard ammonolysis (oligonucleotides in 

concentrated ammonia at 55 ºC overnight, oligoribonucleotides in a mixture of 

concentrated ammonia and ethanol 3:1, v/v, 3.5 h at 55 ºC and overnight at rt). The silyl 

protections were removed by a mixture of triethylamine trihydrofluoride (75 μL), 

triethylamine (60 μL) and DMSO (115 μL) (for 2.5 hours at 65 ºC). Then, 0.1 mol L-1 

NaOAc (10 mL) was added to the mixture, and it was loaded into a cartridge (Poly Pak 

II, Glen Research). 0.1 mol L-1 aqueous triethylammonium acetate (6.0 mL, pH = 7.0) 
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was eluted though the cartridges to remove traces of reagents and protecting groups. The 

crude oligoribonucleotides were released by elution with 60 % aqueous acetonitrile. 

Oligonucleotides were purified with RP-HPLC using a semipreparative column, a 

Phenomenex Oligo-RP C18 (250×10mm, 5 µm), with a gradient elution, typically from 

0 to 40-60 % acetonitrile in 0.1 mol L-1 aqueous triethylammonium acetate in 25 min at 

ambient or elevated temperature, flow rate 3.0 ml min-1, and UV detection at 260 nm. 

The homogeneity of the purified oligonucleotides was analysed by an analytical RP 

HPLC column, a Thermo ODS Hypercil C18 (250 × 5 mm, 5µm), flow rate 1.0 ml min-1, 

detection at 260 nm, and elution conditions the same as those of the semipreparative 

column. The authenticity of the oligonucleotides was verified by ESI-TOF MS.  

5.3 UV melting studies and CD spectroscopy experiments 

The detailed measurement conditions for the UV melting temperature and CD 

spectroscopy studies are described in the Results and Discussion section and in the 

original publications. The melting curves (absorbance versus temperature) were 

measured at 260 nm or 295 nm on a Perkin-Elmer Lambda 35 UV-vis spectrometer 

equipped with a multiple cell holder and a Peltier temperature controller. Tm values were 

determined as the maximum of the first derivative of the melting curve. The CD spectra 

were measured using an Applied Photophysics Chirascan spectropolarimeter. For both 

equipment, an internal thermometer was additionally used to verify the validity of the 

target temperature.  

5.4 19F NMR and 1H NMR experiments of the oligonucleotides 

The detailed measurement conditions for 1H NMR and 19F NMR measurements are 

described in the Results and Discussion section and in the original publications. 19F NMR 

spectra were recorded at a frequency of 470.6 MHz on a Bruker Avance 500 MHz 

spectrophotometer. Typical experimental parameters were as follows: 19F excitation 

pulse 4.0 μs, acquisition time 1.17 s, prescan delay 6.0 μs, relaxation delay 0.8 s and 

usual numbers of scans (ns) 1024, 2048 and 20480. The parameters were optimized to 

obtain the signals with the longest relaxation rate. A macro command was used for the 

automatic temperature ramps using a 20 min equilibration time for each temperature. 

The sample temperatures were calibrated using known shifts of ethylene glycol at 

different temperatures. The 1H NMR spectra of the imino regions at 25°C were recorded 

at a frequency of 500.1 MHz on a Bruker Avance 500 MHz spectrophotometer. Water 

was suppressed by an excitation sculpting technique.  
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