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Abstract 

ABSTRACT 

Tiina Saanijoki 

Neurobiology of physical exercise: Perspectives on psychophysiological ef-
fects and opioidergic neurotransmission 

University of Turku, Faculty of Medicine, Department of clinical physiology and 
nuclear medicine; Doctoral programme in clinical research; Turku PET Centre, 
Turku, Finland 

Regular physical exercise promotes health and prevents and treats multiple 
chronic diseases. Despite the well-acknowledged health benefits, many people 
remain physically inactive. Affective responses induced by exercise are believed 
to influence future exercise behaviour. Previous studies suggest that pleasurable 
sensations experienced in response to exercise are regulated by the endogenous 
opioid system. The opioid system is also involved in the reward processing, and 
may modulate food reward responses after exercise, possibly contributing to sub-
sequent caloric intake and weight loss outcomes.  

In this thesis, affective responses to high-intensity interval training (HIIT) and 
moderate-intensity continuous training (MICT) were investigated over a two-week 
training intervention in untrained healthy subjects and subjects with type 2 diabetes 
or prediabetes. Positron emission tomography (PET) was used to explore endoge-
nous opioid release after HIIT and MICT in young healthy subjects. The interac-
tion between exercise-induced opioid activation and changes in food reward pro-
cessing were assessed using functional magnetic resonance imaging (fMRI).  

HIIT generated a more negative overall affective experience in comparison with 
MICT; however, this lessened over the training period. Thus, HIIT appears as a 
tolerable exercise method for sedentary adults with and without diabetes. Fur-
thermore, HIIT induced opioid release in key brain regions implicated in emotion 
and pain processing and the opioid release correlated with measures of negative 
emotionality. In contrast, MICT did not result in significant opioid release, alt-
hough increased opioid activation correlated with increased euphoria after MICT 
as well as with increased neural responses to palatable foods. These results indi-
cate that the intensity of the exercise regulates endogenous opioid release and 
concomitant changes in affect and reward processing. Taken together, these find-
ings may have practical implications in developing more tolerable and likeable 
exercise programs to enhance physical activity participation in different popula-
tion groups, as well as in optimising the efficient use of exercise in health care, 
for example in weight loss interventions and in the treatment of various affective 
disorders. 

 
Keywords: high-intensity interval training (HIIT), affect, opioid system, reward 
processing, positron emission tomography, PET, functional magnetic resonance 
imaging, fMRI 



Tiivistelmä 

TIIVISTELMÄ 

Tiina Saanijoki 

Liikunnan aiheuttamat psykofysiologiset vasteet ja aivojen opioidijärjestel-
mä 

Turun yliopisto, Lääketieteellinen tiedekunta, Kliininen fysiologia ja isotooppi-
lääketiede; Turun kliininen tohtoriohjelma; Valtakunnallinen PET-keskus 

Säännöllinen liikunta ylläpitää terveyttä sekä ennaltaehkäisee ja hoitaa lukuisia 
sairauksia. Terveyshyödyistä huolimatta moni jää kuitenkin sohvaperunaksi. Lii-
kunnan harrastaminen riippuu osin siitä, miltä liikunta tuntuu. Aikaisempien tut-
kimusten perusteella aivojen opioidijärjestelmän ajatellaan olevan liikunnasta 
saatavan mielihyvän taustalla. Opioidijärjestelmä säätelee myös ruuan ja syömi-
sen aiheuttamaa mielihyvää, ja se voi siten muovata liikunnan aikaansaamia 
muutoksia ruuan palkitsevuudessa vaikuttaen näin syömiskäyttäytymiseen ja pai-
nonhallintaan.  

Tässä väitöskirjatyössä tutkittiin, miltä kovatehoinen intervalliharjoittelu (high-
intensity interval training, HIIT) ja keskitehoinen kestävyysharjoittelu (modera-
te-intensity continuous training) tuntuvat kahden viikon liikuntajakson aikana 
liikunnallisesti passiivisilla terveillä koehenkilöillä, sekä tyypin 2 diabeetikoilla 
ja esidiabeetikoilla. Lisäksi positroniemissiotomografia (PET) -kuvantamisella 
selvitettiin aivojen opioidijärjestelmän toimintaa HIIT ja MICT harjoitusten jäl-
keen terveillä nuorilla miehillä. Toiminnallisen magneettikuvantamisen (fMRI) 
avulla tutkittiin liikunnan vaikutuksia herkullisten ruokakuvien aikaansaamiin 
hermostollisiin vasteisiin aivoissa.  

Lyhytkestoinen HIIT aiheutti huomattavasti negatiivisemman tunnekokemuksen 
kuin pitkäkestoinen MICT, mikä kuitenkin helpottui jo kahden viikon harjoittelu-
jakson aikana niin terveillä kuin tyypin 2 diabeetikoilla ja esidiabeetikoilla. Näin 
ollen rankka HIIT voi soveltua liikuntavaihtoehdoksi myös aikaisemmin liikun-
taa harrastamattomille. Lisäksi havaittiin, että liikunnan intensiteetti säätelee opi-
oidijärjestelmän toimintaa. HIIT vapautti endogeenisiä opioideja tunteiden ja 
kivun säätelyyn liittyvillä aivoalueilla. Opioidien vapautuminen oli yhteydessä 
negatiivisiin tuntemuksiin. Vastaavaa opioidien vapautumista ei havaittu MICT:n 
jälkeen, joskin suurempi opioidiaktivaatio oli yhteydessä lisääntyneeseen eufori-
suuden tuntemukseen ja suurempiin hermostollisiin vasteisiin herkullisille ruoka-
kuville pitkäkestoisen liikunnan jälkeen. Tutkimuksista saatuja tuloksia voidaan 
hyödyntää kehitettäessä uudenlaisia lähestymistapoja paitsi ihmisten liikunnalli-
seen aktivoimiseen, myös liikunnan tehokkaampaan hyödyntämiseen painonpu-
dotuksessa ja esimerkiksi masennuksen ja riippuvuuksien hoidossa.  

 
Avainsanat: kovatehoinen intervalliharjoittelu, HIIT, mieliala, opioidijärjestel-
mä, palkkiojärjestelmä, positroniemissiotomografia, PET, toiminnallinen mag-
neettikuvaus, fMRI  
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1 INTRODUCTION 

Physical activity is widely recognised for its numerous health benefits. Regular 
physical activity helps maintain both physical and mental functioning, and lowers 
the risk for several chronic diseases such as type 2 diabetes mellitus (T2DM) and 
coronary heart disease as well as reduces the risk of premature death (Physical 
Activitity Guidelines Advisory Committee, 2008). While the most physically 
active people appear to be at the lowest risk, the greatest health improvements 
are observed when people who are least fit become physically active (Warburton 
et al, 2006). Moderate-intensity continuous training (MICT), such as brisk walk-
ing, jogging, or cycling, is a traditional and efficient means for improving fitness 
and health (Penedo and Dahn, 2005). However, it is likely that additional health-
benefits can be gained from more vigorous exercise. Consequently, high-
intensity interval training (HIIT) has become a topic of intense interest for re-
search over the last decade and emerged as an effective method for improving 
maximal oxygen uptake (VO2max) in a variety of populations (Milanović et al, 
2015; Ramos et al, 2015; Weston et al, 2014). In general, HIIT refers to alternat-
ing repeated bouts of high-intensity exercise with light-intensity recovery inter-
vals. The modality of exercise can be anything from cycling, running, and bur-
bees to functional training performed at high-intensity (Stork et al, 2017). Exper-
imental work has demonstrated that HIIT improves cardio-metabolic risk factors 
at least equally well as MICT, but requires considerably less time-commitment. 
This is considered to be the significant appeal of HIIT, given that lack of time is 
cited as one of the major barriers for regular exercise participation (Aaltonen et 
al, 2012; Korkiakangas et al, 2011; Stutts, 2002). However, HIIT is a very stren-
uous exercise mode, which has raised concerns regarding its tolerability for sed-
entary and clinical populations (Hardcastle et al, 2014). 

Aerobic activity also improves brain health. Abundant data indicates that exer-
cise supports mood and cognition throughout the lifespan (Voss et al, 2013). Ex-
ercise modifies the structures and functions (i.e. physiological, psychological and 
biochemical) of the brain (Matta Mello Portugal et al, 2013), which enhances 
learning and memory, improves executive functions, counteracts age-related 
mental decline, and protects against neurodegeneration (Cotman et al, 2007). 
Furthermore, the psychophysiological benefits of exercise include mood eleva-
tion (Brown et al, 1995; Steptoe et al, 1989; Thayer et al, 1994), stress reduction 
(Tsatsoulis and Fountoulakis, 2006; Zschucke et al, 2015), anxiolysis (Gordon et 
al, 2017; Wipfli et al, 2008), and hypoalgesia (Naugle et al, 2012).  

The effects of exercise on mood and emotional functioning have recently been 
examined not only from the aspect of potential tools for treating mental disorders 
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but in the context of exercise adherence. Regardless of the wide awareness of the 
health benefits of regular exercise, the rate of physical inactivity is high positing 
a substantial burden for public health and the economy (Ding et al, 2016; Lee et 
al, 2012). Furthermore, research indicates that 50% of those who begin exercise 
programs drop out within the first six months (Wienke and Jekauc, 2016) and 
that a relapse to less active or inactive state is common and occurs after the exer-
cise intervention has finished (Amireault et al, 2013). The investigation of psy-
chological responses to exercise and especially the exploration of affective re-
sponses to acute exercise has been of specific interest as the positive affect per-
ceived during exercise appears to predict future exercise participation (Rhodes 
and Kates, 2015). Thus, it is believed that participation in regular exercise is part-
ly dependent on how exercise makes an individual feel and that a greater under-
standing of the affective responses induced by exercise might provide new in-
sights in resolving the problem of exercise adherence.  

One potential neurobiological mechanism underlying the beneficial psychophys-
iological effects of exercise is the increased synthesis and release of neurotrans-
mitters and neurotrophic factors (Dishman et al, 2006; Matta Mello Portugal et 
al, 2013). These mechanisms could contribute to enhanced neurogenesis, angio-
genesis, and neuroprotective activity, which further promote cognitive, affective, 
and behavioural functioning. The most favoured theory with the general public is 
the ‘endorphin hypothesis’, which ascribes the mood improvements after a bout 
of exercise to an increased release of β-endorphins (Morgan, 1985; Yeung, 
1996). Indeed, central endogenous opioid release has been demonstrated in the 
brains of endurance athletes after prolonged, 2-hours of running using positron 
emission tomography (PET), and associated with self-reported increases of eu-
phoria (Boecker et al, 2008). Endogenous opioids are implicated in the modula-
tion of emotions and pain (Leknes and Tracey, 2008; Nummenmaa and 
Tuominen, 2017), and research in both animals and humans highlight the im-
portance of the opioid system and especially the μ-opioid receptor (MOR) in the 
pleasurable effects of external rewards like food, drugs, and social interaction. In 
this respect, exercise-induced changes in opioid action could also contribute to 
reward processing after exercise, which might have implications for example in 
weight management and treating addictions. Previous research has revealed al-
tered hedonic and motivational responses to food following exercise (Finlayson 
et al, 2009; McNeil et al, 2015; Oh and Taylor, 2012), however the involvement 
of endogenous opioids remains unresolved. Clearly, more research is needed to 
explore the role of the opioid system in different psychophysiological effects 
promoted by various types of exercise. The experimental studies presented in this 
thesis aimed to investigate the psychophysiological responses to HIIT and MICT 
and the underlying brain function using multi-modal neuroimaging techniques 
including PET and functional magnetic resonance imaging (fMRI). 
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2 REVIEW OF THE LITERATURE 

2.1 Physical activity and exercise 

Physical activity refers to body movement that is produced by skeletal muscles, 
and which requires more energy expenditure than resting. Exercise and sports are 
subsets of physical activity that are intentional, structured, and repetitive and aim 
at improving or maintaining health and fitness. (Caspersen et al, 1985). A dose 
refers to the amount of physical activity performed, which is a function of its in-
tensity, duration and frequency. In order to promote and maintain health, the pre-
vailing recommendations for sufficient physical activity include accumulating 
either 150 minutes of moderate-intensity or 75 minutes of vigorous-intensity 
physical activity per week along with strength training of a minimum of 2 days 
per week. Physical activity has a dose-response effect on the prospects of obtain-
ing health benefits, and exceeding the minimum recommendation further de-
creases the risk of inactivity-related chronic diseases. (Haskell et al, 2007). How-
ever, the responsiveness to physical activity varies considerably between indi-
viduals (Bouchard and Rankinen, 2001).  

2.1.1 Exercise intensity 

Exercise intensity is an important determinant of the physiological training adap-
tations (Garber et al, 2011) as well as one of the key modulators of psychophysi-
ological responses to exercise. Exercise intensity can be expressed as either an 
absolute measure, such as heart rate (HR) or metabolic equivalent (MET), or as a 
relative measure, for example a percentage of maximal HR (% HRmax) or a per-
centage of maximal oxygen uptake (% VO2max, maximal aerobic capacity). MET 
is a measure of energy expenditure and refers to the absolute energy required to 
perform a given activity. One MET is equal to the oxygen uptake of 3.5 ml∙kg-

1∙min-1 and describes the energy expenditure while sitting at rest. Thus, absolute 
measures do not consider individual physiological capabilities, whereas relative 
measures are proportional to an individual’s maximal capacity. (Norton et al, 
2010). Additionally, subjective measures such as perceived exertion can be used 
to determine exercise intensity. One of the most commonly used subjective tools 
is rating of perceived exertion (RPE) Borg 6–20 Category Scale (Borg, 1998). It 
has shown a strong correlation with heart rate and blood lactate concentration 
independently of gender, age and fitness status (Scherr et al, 2013), and thus pro-
vides a relatively good estimate of the exercise intensity level. A summary of the 
commonly used classifications of exercise intensities is shown in Table 1.  
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Table 1. Categories of exercise intensity and the objective and subjective 
measures. Subjective measures are from Borg (6–20) RPE Scale. (Adapted, with 
permission, from Norton et al, 2010). 

Intensity 
category METs % HRmax % VO2max Perceived exertion (RPE) 

Sedentary < 1.6 < 40 % < 20 % Very, very light             
(RPE < 8) 

Light 1.6 < 3 40 < 55  20 < 40  Very light to fairly light      
(RPE 8−10)  

Moderate 3 < 6  55 < 70   40 < 60  Fairly light to somewhat hard 
(RPE 11−13) 

Vigorous 6 < 9  70 < 90 60 < 85 Somewhat hard to very hard 
(RPE 14−16) 

High ≥ 9  ≥ 90 % ≥ 85 Very hard                  
(RPE ≥ 17) 

The intensity categories are classified according the energy demands, and thus 
they reflect the gradient in metabolic and neurohumoral responses during activi-
ty. As the intensity of the exercise increases, many physiological responses show 
an accelerating, rather than linear pattern along with increased intensity: small 
increases in exercise intensity may lead to relatively large increases in the physi-
ological and metabolic demands of the body, such as blood lactate concentration, 
respiratory rate, and stress hormones such as adrenaline and noradrenaline. These 
responses reflect physiological stress, that challenges body homeostasis. (Norton 
et al, 2010). They are also associated with the perceptual-cognitive sensation of 
exertion and pain as well as affective responses. 

Skeletal muscle activity requires energy in the form of adenosine triphosphate 
(ATP). Three energy systems produce ATP in muscle: 1) creatine phosphate 
(CrP) breakdown, 2) anaerobic glycolysis, and 3) mitochondrial oxidative me-
tabolism of carbohydrates and lipids. CrP pathway and glycolysis are independ-
ent of oxygen and are thus referred to as anaerobic systems, whereas mitochon-
drial oxidation requires oxygen and is called aerobic metabolism. These systems 
differ in the substrates used, the capacity of ATP regeneration, maximal rate of 
ATP regeneration, and metabolic products. (Baker et al, 2010). During moderate-
intensity exercise, almost all the required ATP is provided by the aerobic system 
of oxidative metabolism of carbohydrates and lipids. Muscle glycogen, blood 
glucose, and free fatty acids are the major substrates for oxidation and because 
these energy resources are vast, moderate-intensity exercise can be sustained for 
long periods of time before exhaustion sets in. Blood lactate concentration ele-
vates only a little (if at all) above the resting level. (Hargreaves, 2000). In con-
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trast, during intense exercise all three energy systems contribute to different ex-
tents based on an interaction between the intensity and duration of the exercise. 
Short duration high-intensity exercise especially, relies extensively on fast anaer-
obic processes in replenishing ATP to power extremely high muscle force use 
and power outputs. As a result, lactate levels increase substantially and other 
metabolic by-products (e.g., inorganic phosphate, +H) accumulate in the muscle 
causing fatigue. (Baker et al, 2010; Glaister, 2005). The level of exercise intensi-
ty that corresponds to the transition from aerobic to anaerobic metabolism is re-
ferred to as the 2nd ventilatory threshold (also lactate threshold or anaerobic 
threshold). This is the point at which the ventilatory equivalent of oxygen in-
creases in excess of the ventilatory equivalent of carbon dioxide and where blood 
lactate concentration starts to accumulate rapidly. (Mezzani et al, 2012). 

2.1.2 Moderate-intensity continuous training (MICT) 

Moderate-intensity continuous training (MICT) describes traditional endurance 
training protocols performed at constant intensity continuously at a steady state 
for a set duration, usually 45–60 minutes. Typical training modalities include 
brisk walking, jogging, and cycling, which are performed at an intensity that elic-
its a heart rate response of 55–69% HRmax or elevates the rate of oxygen con-
sumption to 40–59% of VO2max. (Norton et al, 2010).  

Traditionally, moderate-intensity training has been the most common type of ex-
ercise recommended to improve physical fitness and overall health-related pa-
rameters. The effort-versus-benefit relationship promotes moderate-intensity ac-
tivities, given that they are relatively easy to start and readily available. Never-
theless, MICT is considered time consuming, which may limit habitual exercise 
maintenance, given that a lack of time is perceived as major barrier in engaging 
in regular exercise (Babraj et al, 2009). 

2.1.3 High-intensity interval training (HIIT) 

According to the physical activity guidelines, vigorous-intensity activity can elic-
it health benefits in less time than moderate-intensity physical activity. The 
guidelines indicate that for improving cardiovascular fitness, 75 minutes of vig-
orous activity is equivalent to 150 minutes of moderate-intensity activity. In this 
respect, high-intensity interval training (HIIT) has emerged as a time-efficient 
means to achieve the health-related goals of exercise training, which additionally 
counters the often-cited problem of lack of time. 
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The concept of HIIT originates from the early 1900s and it is considered as one 
of the most powerful forms of exercise for improving physical performance in 
athletes (Billat, 2001a, 2001b; Buchheit and Laursen, 2013; Laursen and Jenkins, 
2002). In the 1920s, Finnish track athlete Paavo Nurmi, who dominated middle 
and long-distance running by winning a total of nine gold Olympic medals, al-
ready included interval training in his training routines (Buchheit and Laursen, 
2013). Today, different forms of interval training have become very popular 
among regular exercisers.  

Generally, HIIT refers to any workout that consists of repeated, short bursts of 
activity performed at “all-out” effort or near-maximal intensity alternated with 
recovery periods of rest or light intensity activity. The term HIT (high-intensity 
training) is often used interchangeably with HIIT. Recent recommendations for a 
standardisation of terminology propose that the term HIIT should be used to de-
scribe interval training protocols consisting of 1−4 min bouts of activity per-
formed at an intensity between 80-100 % of maximal heart rate, whereas the term 
“sprint interval training” (SIT) should be used when referring to exercise proto-
cols using shorter (≤ 30 s) work intervals at maximal intensity in “all-out” man-
ner. (Weston et al, 2014). For clarity and due to its better recognisability among 
lay audience, the term “HIIT” is used throughout this thesis. 

Increasing evidence shows that HIIT elicit comparable or even superior metabol-
ic and cardiovascular improvements to traditional MICT in healthy adults as well 
as in the sedentary population and in subjects with lifestyle-induced diseases 
(Jelleyman et al, 2015; Milanović et al, 2015; Ramos et al, 2015; Weston et al, 
2014). However, there are numerous different interval training protocols and re-
searchers continue to optimise practices that would maximise the physiological 
adaptations resulting from exercise, while minimising discomfort and the time 
and effort devoted to training. At least nine different variables can be chosen for 
a HIIT protocol (e.g., work and recovery interval durations and intensities, num-
ber of intervals in a set, exercise modality). A common HIIT protocol used in 
research is based on repeated Wingate tests, which progresses from four 30 s su-
pramaximal “all-out” efforts separated by 4 min of rest or active recovery 
(Burgomaster et al, 2005; Gibala et al, 2006). Another, less demanding HIIT pro-
tocol involves 60 s bouts at the intensity of 90% of HRmax alternating with 60 s 
periods of recovery (Gibala et al, 2012). However, the optimal protocol is yet to 
be discovered and is likely highly individual (Weston et al, 2014). 
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2.2 Physical activity behaviour 

The health benefits of exercise are widely acknowledged and dependent on regu-
lar exercise practice. Despite the broad awareness of this, the rate of physical ac-
tivity worldwide is alarmingly low. Globally, more than one third of the adult 
population is insufficiently active and fail to meet the recommended volume in 
physical activity (Hallal et al, 2012). In Finland, 25 % of adults report that they 
do not perform any regular physical activity according to the Regional Health 
and Well-being Study (ATH Study) conducted by the National Institute for 
Health and Welfare (Murto et al, 2017). The societal costs of physical inactivity, 
poor cardiovascular fitness, and high rates of sedentary behaviour have been es-
timated to vary between 3.2 and 7.5 billion euros per year in Finland, and the 
costs are expected to increase due to aging and growing prevalence of many non-
communicable diseases (Vasankari et al, 2018). Thus, physical inactivity and 
sedentary behaviour represent a major challenge for public health and economy 
worldwide and calls for actions for increasing physical activity levels (Baker et 
al, 2011; Tuso, 2015).  

Physical activity is a complex behaviour that is influenced by numerous psycho-
logical, biological, and environmental factors and their interactions (Bauman et 
al, 2012). For some time now, research has aimed to understand determinants of 
physical activity that produce meaningful and sustainable improvements in phys-
ical activity practice (Allen and Morey, 2010; Heath et al, 2012). Among adults, 
the most often cited motives for physical activity participation are related to 
health and fitness as well as social and emotional aspects such as enjoyment 
(Aaltonen et al, 2012, 2014; Caglar et al, 2009; Dacey et al, 2008; Kolt et al, 
2004; Korkiakangas et al, 2011; Sit et al, 2008). The most common barriers in-
clude tiredness and lack of time (Aaltonen et al, 2012; Ebben and Brudzynski, 
2008; Fox et al, 2012; Korkiakangas et al, 2011; Reichert et al, 2007; Sit et al, 
2008; Stutts, 2002).  

Motivating individuals to adopt and maintain regular physical activity and exer-
cise is a great challenge for health care professionals. Various behavioural theo-
ries have tried to reveal the most effective interventions for changing physical 
activity habits. These theories have traditionally emphasised cognitive factors 
(Ajzen, 1991; Bandura, 1998), however, also affective and emotional facilitators 
have recently been recognised in conceptual models of physical activity motiva-
tion. For instance, in line with hedonic theories of behaviour (Cabanac, 1992; 
Johnston, 2003), participation in regular exercise has been suggested to depend 
on how exercise makes one feel: affective response to exercise shapes the 
memory of the exercise experience and guide subsequent exercise behaviour 
(Figure 1). This approach posits that human behaviour is guided by a propensity 
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to maximise pleasure and minimise displeasure and pain, and consequently, af-
fective responses direct individuals towards profitable or pleasurable stimuli and 
away from harmful or unpleasant stimuli (Kahneman, 1999). Hence, negative 
affective valence from unpleasant sensations during exercise would impair ad-
herence to exercise, whereas a positive affective valence from enjoyable percep-
tions during exercise should engender greater adherence (Ekkekakis, 2003). In-
deed, affective responses to exercise have been found to influence adherence to 
exercise programmes as well as a risk of dropping out from exercising (Lee et al, 
2016; Rhodes and Kates, 2015). Williams and colleagues (2008) demonstrated 
that previously sedentary adults, who experienced greater pleasure during exer-
cise, exercised more both 6 and 12 months later. An increase of one unit on the 
rating scale of affective valence during a session of MICT resulted in an addi-
tional 38 and 41 minutes of exercise per week at the 6 and 12 months follow-up, 
respectively. (Williams et al, 2008). In another study, one additional unit on the 
scale of affective valence during 10 minutes of moderate-intensity treadmill walk 
predicted additional 27–29 minutes of physical activity per week in healthy low-
active adults. A higher positive affect during exercise was also coupled with an 
additional 15 minutes of exercise per week after six months. (Williams et al, 
2012). Altogether research suggests that greater pleasure during a bout of exer-
cise predicts increased adherence to exercise programs via anticipated affective 
response to future exercise, whereas post-exercise affective state has not shown 
such association (Kiviniemi et al, 2007; Kwan and Bryan, 2010; Rhodes and 
Kates, 2015; Williams, 2008; Williams et al, 2012). Overall, these studies sup-
port the relationship between affective response to physical activity and long-
term physical activity behaviour.  

 

 

Figure 1. A model of affective response influencing exercise adherence. 
(Adapted, with permission, from Williams DM, 2008; Exercise, affect, and ad-
herence: an integrated model and a case for self-paced exercise; J Sport Exerc 
Psychol 30: 471–496; http://dx.doi.org/10.1123/jsep.30.5.471). 
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2.3 Psychophysiological responses to exercise 

In general, acute exercise is associated with increased positive affect and de-
creased negative affect (Ekkekakis and Petruzzello, 1999; Liao et al, 2015; 
Raedeke, 2007; Reed and Ones, 2006; Yeung, 1996), as well as alleviation of 
psychological and physiological responses to stress (Salmon, 2001; Zschucke et 
al, 2015). Exercise has also been found to be one of the most efficient behaviour-
al strategies for self-regulation of mood in healthy adults (Edwards et al, 2017; 
Thayer et al, 1994). However, the transient affect modulation elicited by an acute 
bout of exercise is variable and can range from complete aversion (Lee et al, 
2016) to intense sensations of euphoria, often referred to as runner’s high 
(Dietrich and McDaniel, 2004; Morgan, 1985). Such sensations may be experi-
enced as rewarding. In rodents, physical exercise such as wheel running, has re-
inforcing properties for which animals are willing to work and show conditioned 
place preference (Belke and Wagner, 2005; Greenwood et al, 2011). The reward-
ing component of exercise may contribute to addictive behaviour (Berczik et al, 
2012) and athletes have reported withdrawal-like symptoms when deprived of 
their habitual level of exercise (Aidman and Woollard, 2003). 

2.3.1 Affect 

The term “affect” is often used to mean anything emotional (Barrett, 2006). In its 
most basic form affect (“core affect” or “basic affect”) is considered as the gen-
eral neuropsychological state and the elemental component of emotions and 
moods. It consists of all possible combinations of valenced (positive or negative, 
pleasant or unpleasant) and activated (high arousal or low arousal) states includ-
ing states that would not be called emotions, such as calm, drowsiness or liveli-
ness. Basic affect per se is not about anything, instead, it can be experienced 
without any internal or external stimulus. Thus, basic affect is experienced con-
stantly, although the intensity of affect can vary over time. (Barrett, 2006; 
Fernández-Dols and Russell, 2003; Russell, 2003).  

Basic affect also guides human behaviour. It represents different scenarios of 
action on a single dimension, namely pleasure−displeasure, and thus, provides a 
means of assessing resources when planning or deciding on behaviour. The 
pleasure−displeasure dimension has been considered to be a psychological cur-
rency that facilitates comparison between different options. Typically, although 
not always, people tend to seek pleasure and avoid displeasure. Physical exercise, 
listening to music, consuming specific foods, smoking cigarettes, and looking for 
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particular companions are, at least in part, methods for regulating basic affect. 
(Fernández-Dols and Russell, 2003).  

Emotions and moods, which include basic affect, are much more complex affec-
tive phenomena. Emotions are typically about something. They are induced by 
external or internal stimuli, and temporally follow these eliciting stimuli quickly 
or even instantly. Compared to emotions, moods are more long-lasting and are 
less closely related to external or internal stimuli, and are thus more remote from 
their initial cause. (Ekkekakis, 2013). In exercise studies, investigating basic af-
fect (valence and activation) rather than specific emotions would likely be more 
beneficial (Ekkekakis and Petruzzello, 2000).  

2.3.2 Perceived exertion 

Perceived exertion is a subjective measure that describes the subjective intensity 
of effort, strain, and/or fatigue that is experienced during physical activity or ex-
ercise (Robertson and Noble, 1997). It comprises detecting and interpreting phys-
iological, psychosocial, performance-related, and symptomatic processes arising 
from the body during physical activity. Perceived exertion is mostly based on 
physiological sensations and exertional symptoms experienced during exercise, 
such as increased heart and breathing rate, increased sweating, and muscle fa-
tigue, which ultimately shape the perceptual response. However, the sense of ef-
fort is also subject to psychosocial mediators, which include affective mediators, 
cognitive mediators, and social/situational mediators such as music. Variables 
that provide feedback from e.g. heart rate or distance travelled are performance-
related exertional mediators, which further modify the perceptual response of 
exertion. (Eston, 2012; Haile et al, 2015). 

Perceived exertion can be assessed during any type of exercise or daily activities. 
The level of perceived exertion can be assessed by selecting a number, or rating 
of perceived exertion (RPE), from a numerical range displayed on a perceived 
exertion scale. The most commonly used psychophysical tool to assess RPE in 
adults is the Borg 6–20 Category Scale. (Eston, 2012; Haile et al, 2015). The 
Borg (6–20) RPE Scale strongly correlates with heart rate and blood lactate con-
centration independently of gender, age and fitness status (Scherr et al, 2013), 
and thus provides a relatively robust estimate of the exercise intensity level. Con-
sequently, RPE is a valid tool for monitoring, prescribing, and regulating exer-
cise intensity and assessing training load (Eston, 2012).  



 Review of literature 21 

2.3.3 Pain  

Pain is integral element of sports and exercise. Phrases describing the perceptions 
of exercise-induced pain have become clichés (e.g. “no pain, no gain”). (Cook et 
al, 1997). The perception of naturally occurring muscle pain during exercise in 
healthy people is well-recognised and distinct from perceived exertion (Cook et 
al, 1997; Haile et al, 2015). Muscle pain threshold during exercise shows a large 
inter-individual variation and pain intensity increases as a positively accelerating 
function of the power output (Cook et al, 1997). Exercise-induced pain may re-
duce a person’s willingness to perform exercise or hamper performance and thus 
it may have implications for adoption and maintenance of regular exercise (Haile 
et al, 2015).  

Pain is defined as “an unpleasant sensory and emotional experience associated 
with actual or potential tissue damage, or described in terms of such damage” 
(Merskey et al, 1994), suggesting that experience of pain is subjective, it in-
volves an affective component, and may not be related to actual tissue damage 
(Haile et al, 2015; O’Connor and Cook, 1999). Pain experience is a complex per-
ceptual process that originates in the brain and is strongly modulated by interac-
tions between peripheral nociceptive input and modulatory processes at the spi-
nal and supraspinal levels. The endogenous pain modulatory system within the 
nervous system includes inhibitory and excitatory functions, and involves multi-
ple neurotransmitters and neuromodulators. During exercise, the mechanical 
pressure of the working muscles, and/or the noxious metabolic by-products such 
as bradykinin stimulate nociceptors within the afferent nociceptive pathways, and 
send information from active skeletal muscle to the central nervous system via 
group III and IV afferent nerve fibres. In the brain, pain modulation occurs in the 
cortical, hypothalamic, midbrain, and brainstem structures. (O’Connor and Cook, 
1999). 

Physical exercise can also shape endogenous pain modulation (Drury et al, 2005; 
O’Connor and Cook, 1999). Exercise-induced hypoalgesia (EIH) occurs when a 
noxious stimulus is perceived as less painful during or after a bout of exercise. 
EIH has also been characterised by increases in pain thresholds and tolerance, as 
well as by reductions in ratings of pain intensity. (Koltyn, 2000; Koltyn et al, 
2014). Meeting the physical activity guidelines have been associated with a re-
duction in pain sensitivity in healthy women (Ellingson et al, 2012), and thera-
peutic exercise programmes may be an important element also in the treatment of 
many chronic pain syndromes (Mior, 2001). In patients with chronic pain, evi-
dence indicates an inverse relationship between physical activity and pain sensi-
tivity. It has been shown that regular physical activity is associated with de-
creased symptoms and improved functioning in patients with several chronic 
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pain conditions (Bidonde et al, 2017; Landmark et al, 2011; Mior, 2001). Alt-
hough the processes responsible for EIH are poorly understood, multiple analge-
sia mechanisms, including opioid and non-opioid systems, have been suggested 
to contribute to changes in pain sensitivity resulting from exercise (Koltyn et al, 
2014; Smith and Lyle, 2006; Sparling et al, 2003).  

2.3.4 Modulators of affective and perceptual responses 

Numerous factors influence affective and perceptual responses to exercise (Reed 
and Ones, 2006). These include contextual factors (e.g., exercise setting, music, 
weather), aspects of the exercise stimulus (e.g., intensity, duration, mode), and 
individual differences (e.g., fitness level, age, gender, affective state prior to ex-
ercise session, genes). In general, better physical fitness level and current partici-
pation in physical activity have been associated with more pleasant affective re-
sponses to exercise. (Magnan et al, 2013). Aerobic fitness appears as an im-
portant mediator of affective responses especially at high exercise intensities and 
larger exercise doses (Ekkekakis and Petruzzello, 1999). Habitually more active 
individuals report higher levels of positive affect and tranquillity and lower levels 
of negative affect and fatigue during a session of moderate-intensity exercise in 
comparison with less active individuals (Magnan et al, 2013). A single session of 
moderate-intensity exercise improves vigour and decreases fatigue more as well 
as results in higher improvements in disturbances in mood in regular exercisers 
than non-regular exercisers (Hoffman and Hoffman, 2008). Regular exercisers 
also respond positively to an acute bout of vigorous-intensity exercise, reporting 
less state anxiety and fatigue and more vigour in comparison to non-regular exer-
cisers, who responded with an initial reduction in positive mood states, followed 
by a rebound to baseline levels 25 minutes after the cessation of exercise 
(Hallgren et al, 2010). Similarly, a bout of interval training results in more nega-
tive affective responses in insufficiently active individuals compared with active 
ones (Frazão et al, 2016).  

Furthermore, high body weight may also modify perceptions of exercise 
(Ekkekakis and Lind, 2006; Hulens et al, 2003). It also predicts lower levels of 
physical activity participation and lower adherence to exercise programmes (Bish 
et al, 2007; Tryon et al, 1992). Overweight individuals report higher perceived 
exertion (Ekkekakis and Lind, 2006; Hulens et al, 2003) and obese individuals 
experience more displeasure during exercise than normal weight individuals 
(Ekkekakis et al, 2010). Overweight individuals tend to experience more muscu-
loskeletal aches and pains as well as other physical discomforts such as skin fric-
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tion and urinary stress incontinence (Hulens et al, 2001, 2003), which may fur-
ther deteriorate the affective experience.  

Additionally, various chronic diseases may also influence the perceptual re-
sponses to exercise due to both physiological and psychological factors. For in-
stance, cardiovascular disease patients may experience pain during exercise at a 
certain level of exertion or exercise intensity due to ischemia. Pain is common 
also in diabetic patients who suffer from peripheral neuropathies and various 
types of arthritides. (Haile et al, 2015). Furthermore, increased feelings of fa-
tigue, which accompany many common clinical conditions such as T2DM and 
fibromyalgia, may increase perceived exercise effort (Huebschmann et al, 2015) 
and further interfere with exercise tolerance and adherence (Busch et al, 2009; 
Fritschi and Quinn, 2010).  

Affective responses to exercise appear complex and versatile, suggesting that 
they are driven by various underlying mechanisms. The dual-mode hypothesis by 
Ekkekakis (Ekkekakis, 2003) suggests that both physiological and social-
cognitive cues are important modulators of affective response to exercise and 
neither alone entirely dictates the affective response. In addition to physical fac-
tors described above (higher BMI, poorer physical fitness and clinical condi-
tions), other physical determinants that are associated with acute affective re-
sponse include interoceptive cues from the body during exercise, such as in-
creased respiration, HR, and body temperature, as well as sweating and muscle 
pain. Moreover, cognitive factors such as self-efficacy, personal goals, and ex-
pectations, further shape the affective experience. For example, exercise self-
efficacy, which is situation-specific self-confidence in one’s abilities to perform 
or engage in exercise, has shown to be an important cognitive determinant of the 
affective response to exercise (Bryan et al, 2007; Focht et al, 2007). Higher 
physical activity levels have also been associated with higher exercise self-
efficacy (Fallon et al, 2005; Rose and Parfitt, 2012). 

Exercise intensity is a key modulator of perceptual and affective responses to 
exercise. Affective changes from pre- to various post-exercise time points are 
robustly positive, regardless of exercise intensity. A positive shift in affect has 
been described following brief self-paced low-intensity walks (Ekkekakis et al, 
2000) as well as after a bout of moderate- and vigorous-intensity exercise. The 
responses of affect during exercise however, show a much more diverse and in-
tensity-dependent pattern (Ekkekakis and Petruzzello, 1999). Moderate-intensity 
exercise, though commonly assumed to induce positive affective response in 
most individuals, has a huge variation in affective responses during exercise. 
This has been demonstrated in a study where 44% of participants experienced a 
progressive enhancement in affective valence, whereas 41% experienced a pro-
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gressive deterioration of affect during a 30 minute session of moderate-intensity 
cycling (Van Landuyt et al, 2000). The dual-mode model proposes that exercise 
intensity at which the transition from aerobic to anaerobic metabolism occurs is 
crucial as regards affect. Moderate-intensity training, which is sustained by aero-
bic metabolism for long periods of time, is typically associated with positive af-
fective changes, whereas higher intensities at the anaerobic threshold (lactate 
threshold/ventilatory threshold) results in variable affective responses of which 
some report positive and some report negative affective changes. The variation at 
this intensity level is likely due to different perceptions of the metabolic transi-
tion from aerobic to anaerobic metabolism. Suprathreshold intensities consistent-
ly result in a deterioration of affective responses during exercise. (Ekkekakis et 
al, 2005). Given that an affective response is thought to arise from the interplay 
between interoceptive (e.g., heart rate, muscle pain) and cognitive factors (e.g., 
self-efficacy, personal goals, expectations), the factor making the greatest impact 
on affect at a given moment is posited to depend on the intensity of the exercise 
and upon the stress that is being placed on bodily homeostasis. Thus, according 
to the dual mode theory, defining exercise intensity with respect to a fixed meta-
bolic marker such as the lactate/ventilatory threshold is important, instead of the 
percentage of maximal capacity. This would ensure that the intensity is physio-
logically equivalent between individuals. (Rose and Parfitt, 2008). Interestingly, 
affect-regulated exercise has been suggested as one approach for use in the clini-
cal practice of prescribing and advising on exercise and physical activity. Exer-
cising at the intensity where affect remains “good” or “very good” has been 
shown to be sufficient regarding the physical activity recommendations in over-
weight and obese individuals. (Costa et al, 2015).  

Affective responses induced by interval training have also gained considerable 
interest recently. In general, HIIT has been considered as a very demanding and 
unpleasant exercise method. However, recovery periods interspersed with work 
intervals may alleviate the displeasure associated with high-intensity exercise 
(Oliveira et al, 2013) and variety in the protocol may increase exercise motiva-
tion (Wisloff et al, 2007). According to the dual-mode hypothesis, the very high 
exercise intensity utilised in HIIT protocols would predict negative affective ex-
perience. Indeed, the early studies found that during exercise, HIIT (1 min at 
100% Wpeak and 1 min at 20% Wpeak for 20 min) elicits more displeasure com-
pared to MICT (40 min at 40% Wpeak), yet more pleasure than continuous vigor-
ous-intensity exercise (CVI; 20 min at 80% Wpeak) in inactive adults. Despite the 
negative affective response during exercise, HIIT was perceived as more enjoya-
ble than MICT or CVI and ranked as the preferred exercise modality. (Jung et al, 
2014). Another study comparing the affective responses to HIIT and CVI applied 
a different HIIT protocol (2 minute high-intensity intervals with less than 60 sec-
onds of recovery periods), and found an opposite pattern of affective responses 



 Review of literature 25 

indicating that affect was more positive during CVI than HIIT (Oliveira et al, 
2013). Such equivocal findings are probably a result of methodological differ-
ences: given the numerous variations of HIIT methods, the protocol that elicits 
the highest positive affective responses remains unknown. 

2.4 Endogenous opioid system 

The endogenous opioid system is an essential modulatory mechanism that is in-
volved in the regulation of pain, pleasure, and diverse autonomic functions. It 
consists of G-protein-coupled opioid receptors (μ, δ- and κ-receptors), which in-
teract with their endogenous ligands (endorphins, enkephalins, dynorphins, and 
endomorphins), which in turn have different affinity profiles for different opioid 
receptors. Opioid peptides derive from the proteolytic cleavage of large protein 
precursors; for example β-endorphin, which possesses the highest affinity for μ-
opioid receptors (MORs), is derived from alternative splicing of pro-
opiomelanocortin. Both opioid peptides and receptors are ubiquitous and located 
with varying densities throughout the central, peripheral, and autonomic nervous 
systems as well as in different organs such as the heart, lungs, liver, and gastroin-
testinal tracts. This widespread distribution is consistent with the involvement of 
opioids in diverse pleiotropic effects; they are essential for supraspinal, spinal, 
and peripheral pain modulation, and regulate many other physiological processes, 
including stress responses, respiration, cardiovascular functions, gastrointestinal 
transit, as well as endocrine and immune functions. Furthermore, opioid peptides 
and receptors are rich in limbic brain areas, which posits the endogenous opioid 
system in a key role in reward and emotion processing and drug addiction. In 
general, activation of opioid receptors attenuates neuronal action by pre- and 
postsynaptic mechanisms, which include the release of inhibitory neurotransmit-
ters and alterations in neuronal excitability. (Benarroch, 2012; Feng et al, 2012). 

2.4.1 Opioid system in pain and pleasure 

Of the three types of opioid receptors, MOR subtypes have been most extensive-
ly studied. MOR is encoded by the opioid receptor mu 1 gene (OPRM1) and is 
widely expressed in both cortical and subcortical regions of the brain. MORs 
mediate the effects of endogenous opioids (e.g., β-endorphins) and of exogenous 
opioid agonists (e.g., morphine), and thus are well-acknowledged for their role in 
processing analgesic, euphoric, and addictive functions. MORs are abundantly 
expressed at all levels of the complex central pain controlling network, including 
the anterior cingulate cortex, amygdala, hypothalamus, periaqueductal grey mat-
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ter (PAG), and rostral ventromedial medulla, and engage in multiple aspects of 
pain modulation. Human neuroimaging studies using positron emission tomogra-
phy (PET) support the fundamental role of MORs in central analgesia mecha-
nisms. For example, sustained moderate-intensity muscular pain induces dynam-
ic changes in the MOR mediated neurotransmission in multiple brain areas relat-
ed to pain (Scott et al, 2007; Zubieta, 2001). The pain relieving effects of placebo 
(Wager et al, 2007) and transcranial magnetic stimulation (Lamusuo et al, 2017) 
have also been shown to involve MOR action. Furthermore, MOR activation has 
been found to be associated with reductions in the unpleasantness of pain, sug-
gesting that analgesic effects of MORs include not only attenuation of nocicep-
tion but blunting of the distressing, affective component of pain as well (Zubieta, 
2001).  

Another main aspect of opioid system is its emotion-regulating properties. MOR 
system is an important component of dispersed interconnected neurocircuitry 
involved in the regulation of specific emotion systems as well as pleasure and 
reward. Emotional stimulation induces MOR activation in the key components of 
the emotion circuit, including regions involved in emotional saliency encoding 
and fear learning (i.e. amygdala and hippocampus), arousal and alertness modu-
lation (i.e. thalamus) and appetitive motivation and reward (i.e. ventral and dorsal 
striatum). The effects of opioids are not limited to any specific feelings, instead 
MOR actions influence various emotions. (Nummenmaa and Tuominen, 2017). 
While the involvement of the MOR system is most well-recognised in pleasura-
ble feelings associated with reward, MOR action has also been linked to fear and 
anxiety (Liberzon et al, 2007; Wilson and Junor, 2008), sadness and depression 
(Hsu et al, 2013, 2015; Zubieta et al, 2003), as well as anger and aggression 
(Berman et al, 1993; Spiga et al, 1990).  

Normal pleasure responses are essential for well-being (Berridge and 
Kringelbach, 2008). The mesolimbic reward system guides motivated behaviour, 
and highly pleasurable sensations upon receiving or consuming rewards reinforce 
subsequent repetition of the behaviour. Although dopamine is often regarded as 
the primary neurotransmitter responsible for reward processing, accumulating 
evidence suggests that dopamine is more likely to be central in motivational 
drive, such as craving and desire, rather than in actual pleasure. Instead, MOR 
stimulation appears to be more closely involved in generating liking and hedonic 
responses (Berridge and Kringelbach, 2015; Berridge and Robinson, 2016) and 
opioids can generate reward independently of dopamine (Hnasko et al, 2005). 
Animal studies indicate that MORs are primary mediators of the rewarding ef-
fects of exogenous opiates (Bozarth and Wise, 1981), ethanol, nicotine, and psy-
chostimulants (Benarroch, 2012), yet MOR system is closely involved also in the 
hedonic effects of natural rewards. For example, social interaction is crucial for 



 Review of literature 27 

mammalian survival and thus highly motivating and rewarding (Trezza et al, 
2011). Social acceptance (Hsu et al, 2013) and social laughter (Manninen et al, 
2017) induces MOR activation in humans, and both in animals and humans so-
cial bonding has been found to be linked to the MOR system (Burkett et al, 2011; 
Loseth et al, 2014; Nummenmaa et al, 2015, 2016).  

Feeding is another natural stimulus that engages the MOR system. Although ho-
meostatic processes constitute the basis of appetite regulation, the brain’s reward 
mechanisms and especially the MOR system drive both incentive motivation and 
generation of pleasurable sensations upon food consumption (Peciña and Smith, 
2010). In animals, MOR stimulation increases both food intake and hedonic reac-
tions to food (Berridge et al, 2010; Gosnell and Levine, 2009; Peciña and Smith, 
2010), and may increase the preference especially for a high fat diet (Katsuura et 
al, 2011). Human PET studies have revealed that food consumption induces 
MOR activation (Burghardt et al, 2015; Tuulari et al, 2017) and that continuous 
overstimulation of the MOR system following excessive eating may result in 
subsequent downregulation of the MOR in obesity (Karlsson et al, 2015, 2016) 
indicating a link between MOR and food consumption in humans. 

2.4.2 Opioidergic effects of physical exercise  

The neurobiological mechanisms underlying the affective responses to exercise 
have been primarily attributed to changes in brain neurochemical concentrations 
(Basso and Suzuki, 2016; Dishman et al, 2006; Matta Mello Portugal et al, 
2013). The most popular theory, the ‘endorphin hypothesis’ ascribes the exer-
cise-induced euphoria and mood improvements to increased release of β-
endorphin (Morgan, 1985; Yeung, 1996), and hence, to opioidergic neurotrans-
mission. Indeed, plasma β-endorphin concentration is elevated after prolonged 
(Heitkamp et al, 1993; Petraglia et al, 1990) and intense exercise (Farrell et al, 
1987; Gambert et al, 1981; Rahkila et al, 1988). These responses, however, show 
a large inter individual variability (Farrell et al, 1982) and a poor correlation with 
exercise-induced affective responses (Farrell et al, 1982; Kraemer et al, 1990). 
While the exercise-induced perceptual and affective responses likely engage the 
opioidergic system, the blood borne responses of raised opioid levels may not 
serve as representative markers of the brain, given that the direct effects of pe-
ripheral endorphin on the brain is limited by the blood brain barrier (Banks and 
Kastin, 1990). 

Studies using opioid antagonists have attempted to indirectly elucidate central 
opioidergic involvement in exercise. Opioid antagonists such as naloxone, block 
the effects of β-endorphin and should therefore diminish the possible endorphin-
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dependent mood-enhancing effects of exercise. Findings have remained incon-
clusive: some studies have demonstrated attenuated mood-improvements after 
blocking opioid receptors with opioid antagonist (Daniel et al, 1992; Janal et al, 
1984; Järvekülg and Viru, 2002), whereas others have found no effect of opioid 
antagonists on affective responses (Farrell et al, 1986; Markoff et al, 1982). In-
decisive findings also link opioidergic mechanisms to perceived effort and en-
durance. Some studies, but not all (Koglin and Kayser, 2013), have found that 
opioid receptor blockade with naloxone results in increased ventilation 
(Grossman et al, 1984) and breathlessness (Mahler et al, 2009) as well as in in-
creased ratings of perceived exertion at high levels of power output (Grossman et 
al, 1984; Sgherza et al, 2002). Discrepancies in these findings may be at least 
partly due to genetic variance, given that the rare G allele of the MOR gene 
OPRM1 has been found to be associated with greater changes in perceived exer-
tion and lactate during exercise (Karoly et al, 2012). 

Multiple animal studies have confirmed central opioidergic involvement in exer-
cise. Increased β-endorphin levels were found in nucleus accumbens in rats after 
a fatiguing 2-hours of forced treadmill running (Blake et al, 1984), whereas in-
creased opioid receptor binding was demonstrated after 2-hours but not 1-hour of 
forced swimming with non-selective opioid receptor antagonist 
[3H]diprenorphine (Sforzo et al, 1986) and after a few repeated low-intensity ex-
ercise sessions (7 days, 1 hour per day) with selective MOR agonist 
[3H]DAMGO (Arida et al, 2015). Similarly, increased MOR expression was 
found in rat hippocampal formation in response to acute, moderate-intensity, 
both voluntary and forced exercise (de Oliveira et al, 2010). These findings, 
however, only demonstrate exercise-induced opioid modulation, but fail to link 
opioidergic neurotransmission to behavioural or emotional responses. Recently, 
elevated expression of MOR gene OPRM1 mRNA was found in nucleus accum-
bens of rats, which were selectively bred for high levels of voluntary wheel run-
ning in comparison with low voluntary wheel running rats, which suggests that 
MOR may be implicated in motivation for exercise in the long term (Ruegsegger 
et al, 2015). Interestingly, β-endorphin and the MOR system have also been 
found to be pivotal for exercise-induced promotion of hippocampal neurogenesis 
(Koehl et al, 2008). This however, appears to be susceptible to exercise intensity: 
in rats, high-intensity exercise such as HIIT does not promote adult hippocampal 
neurogenesis like moderate-intensity exercise does, perhaps due to stress induced 
by higher exercise intensity (Inoue et al, 2015; Nokia et al, 2016). Chronic expo-
sure to exogenous opioids such as morphine has been shown similar inhibition on 
neurogenesis in rat hippocampus (Eisch et al, 2000), thus increased MOR activa-
tion followed by repeated high-intensity exercise could weaken hippocampal 
neurogenesis. 
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The first evidence that endogenous opioids are released in human brain in re-
sponse to prolonged exercise was provided by a seminal investigation measuring 
brain opioid receptor binding with non-selective radioligand [18F]FDPN using 
PET-imaging (Boecker et al, 2008). The study included ten trained distance run-
ners who were chosen for the study based on their prior runner’s high experienc-
es. Brain opioid receptor binding was measured in two separate conditions: at 
baseline (without sportive activity for >24h) and 30 minutes after 2 hours of run-
ning. Running reduced opioid receptor binding, indicating endogenous opioid 
release, in frontolimbic regions of the brain, and this reduction correlated with 
increases of self-reported euphoria. Although this study supports the idea that the 
endogenous opioid system is closely involved in the runner’s high phenomenon, 
it is unlikely that the association with euphoria can be generalised to a typical 
exerciser, given that sensations of euphoria are not common even among long-
distance runners (Dishman and O’Connor, 2009). Furthermore, two-hour exer-
cise sessions are not applicable for most regular exercisers, and thus the effects 
of exercise duration and intensity on the brain opioid system remain unknown. 

2.5 Effects of exercise on food reward processing 

People make over 200 food-related choices per day of which they are aware of 
only a fraction (Wansink and Sobal, 2007). Food decisions are made in the brain 
and they integrate multiple hormonal and neural signals that reflect internal state 
and the environment (Smeets et al, 2012). These decisions concern when, what, 
and how much to eat, and they determine the final food intake (Van Meer et al, 
2016). Overconsumption occurs when more energy is consumed than expended. 
Overconsumption leads to a positive energy balance and weight gain, and is con-
sidered to be the main cause of obesity (Blundell and King, 1996). The anticipa-
tion phase, when food or food-related cues are perceived or thought of, initiates 
the process of food choice (Van Meer et al, 2016). For example, palatable foods 
bear strong automatic incentives, and a mere glimpse of a delicious dessert or the 
smell of pizza may trigger a strong urge for eating. Hence, perception of a food 
cue activates various processes in the brain including hedonic evaluation of food 
and preparation for food ingestion (van der Laan et al, 2011). Previous fMRI 
studies have demonstrated that individuals who show greater brain reactivity to 
high-caloric food images consume more snacks after the experiment (Lawrence 
et al, 2012), have higher BMI (Stoeckel et al, 2008), and poorer weight loss out-
comes (Murdaugh et al, 2012). As a result, sensitivity to anticipatory food cues 
may be predictive of actual food consumption and weight gain/loss outcomes. 
Furthermore, obesity has been suggested to reflect problems in dealing with food 
cues and the desire to eat, instead of increased pleasure derived from eating or a 
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stronger preference for energy-dense foods (Van Meer et al, 2016; Mela, 2001). 
Examining brain responses to food cue exposure may help unravel the mecha-
nisms underlying eating behaviours. 

Physical exercise can modulate eating behaviours and play a role in weight loss 
and management. Exercise modulates food intake not only by affecting various 
physiological signalling pathways that govern energy homeostasis and regulate 
appetite (Schubert et al, 2014) but also by inducing alterations in the subjective 
hedonic responses to food. Human behavioural and neuroimaging studies have 
demonstrated altered hedonic and motivational responses to food after exercise. 
A single exercise session abates chocolate craving and consumption (Oh and 
Taylor, 2012) as well as reduces preference for high versus low-fat foods 
(McNeil et al, 2015). At the neuronal level, functional magnetic resonance imag-
ing (fMRI) studies have shown altered haemodynamic responses to pictures of 
high versus low caloric foods within brain regions implicated in reward pro-
cessing following acute (Crabtree et al, 2014; Evero et al, 2012) and long-term 
exercise (Cornier et al, 2012), indicating changes in anticipatory food reward 
processing.  

However, it appears that physical exercise alone, without calorie restriction is an 
ineffective means for weight loss (Shaw et al, 2006; Swift et al, 2014). One rea-
son may be because individuals reward themselves through compensation for 
physical exertion and overestimate calories expended relative to the calories con-
sumed (King, 1999). Moreover, exercise-induced changes in hedonic processing 
and a craving for food following exercise is likely to influence compensatory 
responses in dietary caloric intake, which may also contribute to modest efficien-
cy of exercise interventions without energy restriction for weight loss outcomes 
(Thomas et al, 2012). Energy intake and food craving after exercise have been 
shown to vary considerably between individuals. For example, a single session of 
exercise was shown to increase food palatability and craving as well as prefer-
ence for energy dense appetising foods in individuals who were more prone to 
increase their post-exercise energy intake in comparison with individuals whose 
energy intake did not change or even declined (Finlayson et al, 2009). Further-
more, increased food palatability and increased preference for high-fat sweet 
foods acutely after exercise has been found to predict smaller weight loss out-
comes after 12-week exercise intervention in obese individuals (Finlayson et al, 
2011). Despite progress in understanding the effects of exercise on hedonic pro-
cessing of food, the underlying neurochemical mechanisms remain unknown. 
Given that endogenous mesolimbic opioid system and particularly the MORs are 
involved in both motivational processing and hedonic evaluation of food as well 
as in rewarding aspects of physical exercise, the interaction between opioid re-
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lease following physical exercise and food reward processing seems plausible, 
yet unresolved. 

2.6 Summary of the literature 

Affective responses induced by physical exercise are associated with future exer-
cise participation. Exercise intensity is a key modulator of the affective response 
during exercise. Altogether, higher exercise intensity elicits more negative affec-
tive response during exercise, whereas moderate-intensity exercise may result in 
improvements in affect. The affective responses to versatile protocols of HIIT 
remain less understood, but of importance, because HIIT has shown to be an effi-
cient exercise strategy in healthy and clinical populations and it tackles one of the 
often-cited barriers for physical activity, namely the lack of time. Furthermore, 
the research regarding the neurochemical mechanisms underlying the affective 
responses to exercise is sparse. While animal studies indicate a role of endoge-
nous opioid system in exercise, in humans, only one study has demonstrated cen-
tral opioidergic involvement after a prolonged, 2-hours of running. The opioid 
action in different exercise settings and its role in affective responses as well as 
in food reward processing following exercise thus remain unclear. 
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3 OBJECTIVES OF THE STUDY 

This thesis set out to investigate the affective and perceptual responses to physi-
cal exercise performed at different intensities, because these responses may in-
fluence adaption and adherence to regular exercise. Additionally, the aim was to 
explore the involvement of the endogenous opioid system in the brain in exer-
cise-induced affective and perceptual responses, as well as in exercise-induced 
alterations in food reward processing; this was done using a multimodal neu-
roimaging approach with positron emission tomography (PET) and functional 
magnetic resonance imaging (fMRI).  

The specific objectives of this thesis were: 

1) To study affective adaptation in healthy inactive males over a two-week peri-
od of HIIT and MICT (I). 

2) To study affective adaptation in males and females with type 2 diabetes melli-
tus or prediabetes over a two-week period of HIIT and MICT (II). 

3) To investigate exercise-induced opioidergic action in the human brain at dif-
ferent exercise intensities (III). 

4) To investigate whether exercise-induced opioid release predicts changes in 
anticipatory food reward processing (IV). 
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4 GENERAL METHODOLOGY 

4.1 Subjects 

Subjects were collected from two larger studies, “The effects of short-time high-
intensity interval training on tissue glucose and fat metabolism in healthy sub-
jects and in patients with type 2 diabetes; “HITPET” (NCT01344928), and “Mo-
lecular and Functional Neurobiology of Physical Exercise; “EXEBRAIN” 
(NCT02615756) (http://www.clinicaltrials.gov). Altogether 28 healthy, middle-
aged untrained men (Study I), 26 middle-aged men and women with insulin re-
sistance (Study II), and 24 healthy young men (Studies III-IV) were studied. 
Characteristics of the subjects are presented in Table 2. 

The inclusion criteria for the healthy subjects in Study I were male sex, age 40–
55 years, BMI 18.5–30 kg∙m2, normal fasting blood glucose concentration, and 
sedentary lifestyle. For the insulin resistant subjects in Study II, the inclusion 
criteria included male or female sex, BMI 18.5–35 kg∙m2, impaired glucose tol-
erance according to the criteria of American Diabetes Association, and physically 
inactive lifestyle (VO2peak < 40 ml∙kg-1∙min-1). Exclusion criteria for Studies I and 
II consisted of high blood pressure (>140/90 mmHg for healthy and >160/100 for 
insulin resistant subjects) and other chronic diseases or medical defect requiring 
medical treatment. 

The inclusion criteria for the healthy subjects in the Studies III-IV were male sex, 
age 18–65 years, BMI ≤ 27 kg∙m2, and good health. The exclusion criteria were 
current medication affecting central nervous system, history of or current neuro-
logical or psychiatric disease, and any chronic medical defect or injury, which 
hindered or interfered with everyday life. 

For all subjects the exclusion criteria also included regular use of tobacco prod-
ucts or illicit drugs, heavy alcohol consumption, poor compliance, history of oth-
er nuclear imaging studies, and presence of ferromagnetic objects or notable 
claustrophobia, which would contraindicate MR imaging. 

The studies were conducted according to the Declaration of Helsinki. The ethical 
committee of the Hospital District of the Southwest Finland approved the study 
protocols. All the subjects signed the ethics committee approved informed con-
sent form. 

 

 



34 Materials and methods 

Table 2. Baseline characteristics of the participants in each study. 
     

  Study I Study II Study III Study IV 

Health status healthy T2DM or  
prediabetes healthy healthy 

Number of subjects 
(male/female) 28/0 16/10 22/0 24/0 

Age (years) 48 (5) 49 (4) 26 (5) 27 (5) 
Body mass (kg) 84 (9) 92 (13) 78 (9) 78 (9) 
Height (cm) 179 (4) 173 (8) 182 (7) 182 (7) 
BMI (kg∙m2) 26.1 (2.5) 30.5 (2.7) 23.4 (1.7) 23.5 (1.6) 

VO2peak  
(ml∙kg-1∙min-1) 34.2 (4.1) 27.2 (4.6) 48.9 (6.2) 47.2 (8.3) 

Values are presented as mean (SD). T2DM, type 2 diabetes; BMI, body mass index; 
VO2peak, peak oxygen uptake 

4.2 Overall study designs 

The imaging studies and training interventions were conducted at the Turku PET 
Centre, Turku, Finland. The VO2peak tests were performed at the Paavo Nurmi 
Centre, University of Turku, Turku, Finland. 

4.2.1 HITPET 

HITPET was conducted in two phases as a parallel-group randomised controlled 
trial. In the first phase, the subjects were healthy untrained middle-aged men 
(n=28, Study I) and in the second phase the subjects were untrained men and 
women with T2DM or pre-diabetes (n=26, 10 women, Study II). The study de-
sign is illustrated in Figure 2. In both phases the subjects were randomised with 
1:1 allocation ratio for HIIT and MICT training interventions. During interven-
tion, the subjects completed six supervised training session within two weeks, 
with at least one recovery day between exercise sessions. Peak O2 uptake was 
determined in a VO2peak test prior to and after intervention, and perceptual and 
affective responses were assessed with questionnaires before, during, and after 
each training session. Blood lactate concentration was determined from capillary 
blood samples before and after each training session. 
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Figure 2. HITPET study design. VO2peak, peak oxygen uptake; RPE, Rating of 
Perceived Exertion; SAM, Self-Assessment Manikin; PSQ, Perceived Stress 
Questionnaire; PANAS, Positive and Negative Affect Schedule, VAS, visual an-
alogue scale.  

Training interventions were conducted as described previously (Eskelinen et al, 
2016; Heiskanen et al, 2017). The HIIT protocol was based on repeated Wingate 
tests. The HIIT session consisted of a warm-up and 4−6 bouts of all-out cycling 
efforts for 30 seconds with 4 minutes of recovery between the bouts, during 
which subjects remained still or did unloaded cycling (Monark Ergomedic 894E, 
Vansbro, Sweden). Each bout started with a few seconds of acceleration to max-
imal cadence without any resistance, followed by a sudden increase of the load 
and maximal cycling continued for 30 seconds. The number of bouts started from 
four and increased to five and six after every other training session. For the 
healthy subjects the load was 7.5% of the body weight and for the insulin re-
sistant subjects the load was 10% of the fat free mass in kg. The subjects were 
familiarised with HIIT protocol during the screening phase. 

In the MICT group, subjects performed continuous aerobic cycling for 40–60 
min at moderate intensity (60 % of peak workload) with an electrically-braked 
cycle ergometer (Tunturi E85, Tunturi Fitness, Almere, The Netherlands). Train-
ing duration was increased from initial 40 min to 50 min and further to 60 min 
after every other training session. 
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4.2.2 EXEBRAIN 

EXEBRAIN was conducted as a randomised crossover trial. Schematic illustra-
tion of the study design is illustrated in Figure 3. After the clinical screening, la-
boratory tests and VO2peak tests, all subjects (n=24) underwent PET and MRI 
studies after rest and a session of MICT, and 12 subjects additionally after a ses-
sion of HIIT, on separate days. The order of the studies was counterbalanced 
across subjects.  

 

Figure 3. EXEBRAIN study design. VO2peak, peak oxygen uptake; RPE, Rating 
of Perceived Exertion; SAM, Self-Assessment Manikin; PSQ, Perceived Stress 
Questionnaire; PANAS, Positive and Negative Affect Schedule, VAS, visual an-
alogue scale.  

The MICT session consisted of continuous aerobic cycling for 60 minutes at a 
workload in the middle between aerobic and anaerobic thresholds (Tunturi E85, 
Tunturi Fitness, Almere, The Netherlands). The HIIT session consisted of a 
warm-up and five bouts of all-out cycling efforts for 30 seconds against re-
sistance of 7.5% of body weight with 4 minutes of unloaded recovery between 
the bouts (Monark Ergomedic 894E, Vansbro, Sweden) performed as described 
in the previous section (HITPET). Perceptual and affective responses were as-
sessed with questionnaires before, during, and after the training sessions. Blood 
lactate concentration was determined from capillary blood samples before and 
after each training session. The PET scan began within 15−36 min after the exer-
cise cessation and the fMRI took place immediately after the PET, 80−110 min 
after the completion of the exercise. During rest, the subjects sat or lay down 
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passively for 60 minutes before the PET and MRI studies. Music, television, 
reading, or mobile entertaining devices were not available to the subjects during 
exercise sessions or rest.   

4.3 Perceptual and affective measurements 

During exercise, perceived exertion was assessed using Borg’s rating of per-
ceived exertion (RPE) 6−20 scale with anchors ranging from “No exertion at all” 
(6) to “Maximal exertion (20). Subjective feelings of emotional valence (pleasant 
versus unpleasant) and arousal (calm versus excited) were assessed using the Self 
Assessment Manikin (SAM) rating scale (Bradley and Lang, 1994). SAM is a 
nine-point pictorial assessment tool to measure basic affect. RPE and SAM were 
administered within 5 seconds after each 30 second bouts during HIIT sessions 
and in every 10 minutes in HITPET MICT sessions and every 15 minutes in the 
EXEBRAIN MICT session (Figure 2 and Figure 3). 

The subject’s level of perceived stress was measured using the Perceived Stress 
Questionnaire (PSQ) (Levenstein et al, 1993). Subjects rated each of the 30 items 
on a 4-point Likert response scale ranging from “Disagree” (1) to “Agree” (4) in 
terms of how they felt at that moment. Higher scores indicate higher perceived 
stress. PSQ was administrated before and after exercise sessions in the HITPET 
study (Figure 2). 

Positive and negative affect was assessed using the Positive and Negative Affect 
Schedule (PANAS) (Watson et al, 1988). PANAS lists 20 affect-related adjec-
tives for positive activated affect and negative activated affect. Subjects were 
asked to respond to each item by how they were feeling “right now”. Positive 
activated affect reflects affective states that are positive in valence (i.e., pleasant) 
and high in activation, such as excitement and alertness, whereas negative acti-
vated affect reflects affective states that are negative in valence (i.e., bad) and 
high in activation, such as distress and upset. Higher scores indicate greater posi-
tive activated affect and greater negative activated affect. PANAS was adminis-
trated before and after each exercise session (Figure 2 and Figure 3) and before 
rest in EXEBRAIN. 

The visual analogue scale (VAS) with contrasting statements anchored at each 
end (i.e. not at all irritated to extremely irritated) was used for subjective ratings 
of selected emotions (separate scales for tension, irritation, pain, exhaustion, sat-
isfaction, motivation to exercise, in EXEBRAIN also euphoria and energy were 
included). Subjects were asked to respond to each scale in terms of how they felt 
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at that moment. VAS was administrated before and after each exercise session 
(Figure 2 and Figure 3) and before rest in EXEBRAIN. 

Subjective current level of appetite sensations (i.e. hunger, satiation, prospective 
food consumption) were recorded on VAS (Flint et al, 2000) with extreme state-
ments anchored at each end (i.e. “I am not hungry at all” and “I have never been 
more hungry”). Appetite VAS was utilised in EXEBRAIN and administrated 
before and after each exercise session (Figure 3) and before rest. 

4.4 Measuring μ-opioid receptor availability − Positron emission 
tomography (PET) 

PET is a nuclear imaging technique that enables investigation of various physio-
logic, metabolic, and functional processes in vivo. PET is based on positron-
emitting radionuclides, most commonly 18F (t½ = 109.8 min), 11C (t½ = 20.4 min), 
or 15O (t½ = 2.03 min), which are used to label biological substrates of pharma-
ceuticals to produce molecules called radioligands. A trace amount of radioligand 
is administrated into human body, where the unstable radioisotope emits a posi-
tron. In tissue, the emitted positron rapidly loses its energy and combines with its 
antiparticle, an electron, triggering an annihilation, in which the masses of these 
particles are converted into electromagnetic energy in the form of two 511 keV 
photons travelling to opposite directions. These high-energy photons escape the 
body and are detected in coincidence by the scintillation detector ring of the PET 
scanner surrounding the imaging object. The spatial location of the annihilation 
can be determined based on the two simultaneous events detected on opposite 
sides of the detector ring (Figure 4). A typical PET scan consists of a detection of 
large number of pairs of annihilation photons (106−109), which are registered and 
corrected for multiple factors, such as scatter, attenuation and random coinci-
dence. Finally, an image reconstruction algorithm is applied to produce 3D 
tomographic images representing radioactivity distribution. Thus, PET image 
indirectly maps the functional process that created the distribution of the radio-
nuclide. (Cherry and Dahlbom, 2004; Townsend, 2004). 
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Figure 4. Schematic illustration of the basis of PET imaging. 

 

The function of opioidergic system in the brain can be studied with a number of 
different radioligands by using PET. Here, we used [11C]carfentanil, which is a 
high-affinity agonist selective to μ-opioid receptors (Frost et al, 1989; Titeler et 
al, 1989) and which has a high test-retest reliability (Hirvonen et al, 2009). 
[11C]carfentanil binding is sensitive to endogenous opioids, as it decreases during 
stimuli such as pain, that putatively increases the endogenous opioid tone in the 
brain resulting in activation of the MOR system (Scott et al, 2007). Acute in-
creases in [11C]carfentanil binding would then manifest an acute reduction in en-
dogenous opioid tone, and thus, a deactivation of MOR mediated neurotransmis-
sion (Nummenmaa et al, 2016; Prossin et al, 2010; Zubieta et al, 2003). Thus, 
these bidirectional changes in [11C]carfentanil binding between baseline and 
challenge conditions are thought to reflect the challenge-induced changes in en-
dogenous opioid release and changes in neurotransmission (Colasanti et al, 2012; 
Mick et al, 2014; Zubieta et al, 2003).  

4.4.1 PET image acquisition (Studies III-IV) 

Production of [11C]carfentanil is described in detail in the original article III. The 
injected dose, specific radioactivity, and the injected mass of the radioligand did 
not differ between the scans. The radioligand was administrated intravenously as 
a bolus injection via a catheter placed in the left arm at tracer doses with no ex-
pected pharmacological side effects. The targeted injection dose was 250 MBq. 
Radioactivity data acquisition in the brain started concomitantly with the injec-
tion of the radiotracer and was measured with the Philips Ingenuity TF PET/MR 
(Philips Healthcare, Cleveland, OH, USA) scanner. Total scanning time was 51 
minutes, during which 13 time frames were collected (3×1 min, 4×3 min, 6×6 
min). PET data was corrected for dead-time, decay, and photon attenuation using 
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MR-based attenuation correction technique that is based on image segmentation, 
and images were reconstructed using time-of-flight information. A T1-weighted 
MR images (1 mm3 voxel size) were acquired for anatomical reference using 
repetition time (TR) = 25 ms, echo time (TE) = 4.6 ms, flip angle = 30°, scan 
time 376 s.  

4.4.2 PET data analysis (Studies III-IV) 

A reconstructed PET image represents regional radioactivity concentration dis-
tribution. In order to convert radioactivity concentration into biologically mean-
ingful pharmacokinetic information such as receptor binding in the brain, kinetic 
compartment models are used (Gunn et al, 2001; Heiss and Herholz, 2006). In 
these models, the compartments represent different pharmacokinetic pools into 
which the radioligand is distributed after being administrated, such as arterial 
plasma and the positions of the ligand in free and bound states. The model de-
fines radioligand kinetics into and out of each compartment by rate constants (k). 
Here, a two-tissue compartment model called simplified reference tissue model 
(SRTM) (Lammertsma and Hume, 1996) was utilised (Figure 5) to obtain re-
gional binding potential (BPND), which is the ratio of specific to non-displaceable 
binding in the brain (Innis et al, 2007).  

 

 

Figure 5. Schematic illustration of the compartments and rate constants of the 
simplified reference tissue model. Cp, radioligand concentration in the arterial 
plasma; Cr, radioligand concentration in the reference region, comprised of non-
displaceable uptake (free and non-specifically bound ligand in the tissue); Ct, 
radioligand concentration in the tissue, comprised of specifically bound ligand, 
non-specifically bound ligand and free ligand in the tissue; K1, rate constant for 
transfer from arterial plasma to tissue; k2, rate constant for transfer from tissue to 
plasma; k2a, apparent rate constant for transfer from tissue to plasma.  
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BPND is the characteristic measurement from reference tissue methods such as 
STRM, as it compares the radioligand concentration in receptor-rich with recep-
tor-free regions (Innis et al, 2007). 

𝐵𝑃୒ୈ ൌ 𝑓୒ୈ  ൈ  
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In the equation, fND denotes the free fraction of the ligand in the non-displaceable 
compartment, ଵ

௄೏
 stands for receptor affinity and Bmax is the density of available 

receptors.  

SRTM enables quantification of receptor availability without the need for arterial 
blood sampling, because the time activity curve (TAC) from a specific reference 
region, which is a region almost completely devoid of receptors of interest, 
serves as input data. Thus, SRTM is based on the comparison of radioligand con-
centration between receptor-rich and receptor-free regions. (Gunn et al, 1997). 
However, SRTM relies on several assumptions on the modelled biological sys-
tem. The reference region is assumed to be virtually devoid of target receptors 
and thus has only non-specific binding of the ligand. The degree of non-specific 
binding is assumed to be similar in both reference and target regions. SRTM does 
not differentiate between free ligand and non-specifically bound ligand, and thus 
the exchange between these compartments is assumed to be sufficiently fast to be 
approximated as one compartment. (Gunn et al, 1997; Lammertsma and Hume, 
1996) 

The preprocessing of the reconstructed PET images, which addresses head mo-
tion during scanning as well as individual differences in brain anatomy, was car-
ried out using Statistical Parametric Mapping 8 (SPM8) software 
(www.fil.ion.ucl.ac.uk/spm/), running on Matlab R2012a (The MathWorks Inc., 
Natick, MA, USA). To correct for head motion during the scanning, all the vol-
umes of the dynamic PET scan were realigned frame-to-frame. Then, the summa-
tion image was calculated from realigned frames and co-registered with subject’s 
T1-weighted MR image. The occipital cortex, which was used as a reference re-
gion, was manually drawn on the co-registered T1 image using the PMOD 3.3 
software (PMOD Technologies, Zürich, Switzerland) to produce TAC for subse-
quent SRTM. The resulting parametric BPND images generated using SRTM 
were normalised to the Montreal Neurological Institute (MNI) space using de-
formation fields obtained by segmenting the T1-weighted images. Normalised 
parametric images were smoothed with a Gaussian kernel of 7 mm full-width 
half-maximum (FWHM). 

In the full-volume statistical analyses, voxel-wise differences in [11C]carfentanil 
BPNDs between rest, MICT, and HIIT conditions were tested with repeated 
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measures one-way ANOVA and paired samples t test in SPM8. The threshold for 
statistical significance was set at p < 0.05, with a false discovery rate (FDR) cor-
rected at cluster level (Study III). Associations between BPNDs, exercise-induced 
perceptual and affective changes, as well as biological variables were tested us-
ing exploratory whole-brain analysis in SPM8, with a statistical threshold set at p 
< 0.05, FDR corrected at cluster level (Study III).  

Additionally, for Study IV, anatomical regions of interest (ROIs) in key compo-
nents of the reward and emotion circuits (ventral striatum, dorsal caudate nucle-
us, putamen, amygdala, thalamus, insula, orbitofrontal cortex, and anterior, mid-
dle, and posterior cingulate cortex) were generated using the AAL (Tzourio-
Mazoyer et al, 2002) and Anatomy (Eickhoff et al, 2005) toolboxes. Subject-
wise BPND were extracted for each ROI from rest and MICT conditions using 
Marsbar toolbox for SPM (http://marsbar.sourceforge.net/) (Study IV). 

4.5 Measuring anticipatory food reward – functional magnetic res-
onance imaging (fMRI) 

Magnetic resonance imaging (MRI) enables the studying of the anatomical struc-
ture and functions of the central nervous system non-invasively without radiation 
exposure. MRI uses strong (typically ≥ 1.5 T) magnetic fields to create high-
contrast images of biological tissue. It utilises the nuclear magnetic resonance 
properties of hydrogen, which is abundant in human body as part of water and 
lipids. Hydrogen atom nucleus consists of a single positively charged particle, a 
proton. The proton rotates, or spins, at high speed on its axis producing an elec-
trical current and thereby generating a tiny magnetic field called magnetic mo-
ment. Magnetic moments are normally randomly orientated, but when placed in 
an external strong magnetic field (B0) such as MRI scanner, they align either with 
(parallel) or against (antiparallel) the external field. Slightly more magnetic mo-
ments align with B0 than against it because it requires less energy. This creates a 
net longitudinal magnetisation in the direction of the field. To generate the MR 
signal, rotating magnetic field B1 is applied for a short duration by radiofrequen-
cy (RF) pulsations, which tilts the net magnetisation away from B0. Once the ex-
citation RF pulses stop, the system seeks to return to equilibrium in a process 
called relaxation. This results in the restoration of the longitudinal magnetisation 
along with B0 in a process referred to as longitudinal (T1 or spin-lattice) relaxa-
tion, while the transverse magnetisation decreases and disappears in a process 
known as transverse (T2 or spin-spin) relaxation. These create a signal that can 
be measured using a receiver coil. T1-weighted images provide excellent dis-
crimination between water and fat, and thus good anatomic detail, and differenti-
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ation of for example the grey and white matter in the brain is possible. (Hendee 
and Morgan, 1984; McRobbie et al, 2006; Seeger, 1989). 

Brain activation can be studied using functional MRI (fMRI). It measures dy-
namic changes in blood oxygenation and blood flow related to neuronal activity, 
either in response to a certain task or when at rest. The most common method for 
performing fMRI uses the Blood Oxygenation Level Dependent (BOLD) con-
trast. BOLD utilises differences in the magnetic properties of oxygenated and 
deoxygenated haemoglobin: deoxyhemoglobin is paramagnetic, and thus differs 
substantially from water and surrounding tissues in its magnetic properties. This 
creates small inhomogeneities in the magnetic field that affect the BOLD signal. 
Increased neural activity stimulates an increase in the local blood flow in order to 
meet the larger metabolic demand for oxygen and nutrients in stimulated regions 
of the brain. This results in a net increase in the balance of oxygenated arterial 
blood to deoxygenated venous blood at the capillary level: since more oxygen is 
supplied than actually consumed, this leads to a decrease in the concentration of 
deoxygenated hemoglobin, which leads to an increase in BOLD signal. The spa-
tial resolution of fMRI is on the order of millimetres, while temporal resolution 
typically varies between 1-3 seconds. (Huettel et al, 2014; Kim and Ogawa, 
2012).   

4.5.1 Experimental design (Studies IV) 

The fMRI experiment was performed as previously described (Nummenmaa et 
al, 2012). Experimental design for fMRI is summarised in Figure 6. The fMRI 
stimuli were full-colour photographs of palatable foods (e.g. strawberries, choco-
late cake, sundae), non-palatable foods (e.g., crackers, lentils, aubergine), and 
non-food objects (cars) matched with respect to low-level visual features such as 
mean luminosity, root mean square (RMS) contrast, and global energy. Previous 
evaluations show that palatable foods are rated as more pleasant than non-
palatable foods, t(28) = 10.97, p < 0.001 (Nummenmaa et al, 2012). During the 
fMRI, the participants viewed alternating 15.75-second epochs with six stimuli 
from one category (palatable foods, non-palatable foods, cars), each shown for 1 
s and intermixed with fixation cross visible for a random time (0.75 – 1.75 s; 
mean = 1.25 s). The order of the stimuli during each epoch was randomised. A 
car stimulus epoch was always presented between the palatable and non-
palatable stimulus epochs to maximise the power of the design and to prevent 
carryover effects of viewing the food pictures. To ensure that the participants 
paid attention to the stimuli, the images were placed slightly to the left or to the 
right of the screen and the participants were instructed to press the left or right 
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response button according to which side the stimulus was presented. Altogether 
there were a total of 72 palatable food trials (in 12 epochs), 72 non-palatable food 
trials (in 12 epochs) and 144 car trials (in 24 epochs). The starting epoch was 
counterbalanced across the participants. The total task duration was 14 minutes. 
(Nummenmaa et al, 2012).  

 

 

Figure 6. Experimental design for fMRI. Participants viewed alternating 15.75-s 
blocks with palatable foods, non-palatable foods, or cars. Each block contained 6 
stimuli from one category, intermixed with fixation crosses (modified from orig-
inal publication IV). 

4.5.2 MR Image acquisition (Study IV) 

MR imaging was performed using the 3T Philips Ingenuity TF PET/MR scanner. 
Whole-brain functional data in a total of 430 functional volumes were acquired 
with echo-planar imaging (EPI) sequence, sensitive to the blood-oxygen-level-
dependent (BOLD) signal contrast with following parameters: TR = 2000 ms, TE 
= 20 ms, 90° flip angle, field of view (FOV) 240 × 240 × 140 mm, 80 × 80 ac-
quisition matrix, 53.4 kHz bandwidth, 3 mm × 3 mm in plane matrix and 4.0 mm 
slice thickness with no gaps between slices, 35 slices acquired in ascending or-
der. T1-weighted MR images with 1 mm3 resolution were acquired for anatomi-
cal reference (TR = 8.1 ms, TE = 3.7 ms, flip angle 7°, scan time 263 s). 

4.5.3 fMRI data analysis (Study IV) 

Data were preprocessed and analysed using SPM8 as described previously 
(Nummenmaa et al, 2012). The EPI images were sinc interpolated in time to cor-



 Materials and methods 45 

rect for slice time differences and realigned to the first scan image by rigid body 
transformations to correct for head movements. EPI and structural images were 
co-registered and normalised to the T1 standard template in MNI space using 
linear and non-linear transformations, and smoothed with a Gaussian kernel of 8 
mm FWHM.  

A whole-brain random effects model was implemented using a two-stage process 
(first and second level). This random-effects analysis assesses the effects on the 
basis of inter-subject variance and thus allows inferences at population level. For 
each participant, a general linear model (GLM) was used to assess regional ef-
fects of task parameters on BOLD indices of activation. The model included 
three experimental conditions (palatable foods, non-palatable foods, and cars) 
and effects of no interest (six realignment parameters) to account for motion-
related variance. Low-frequency signal drift was removed using a high-pass filter 
(cut-off 128 s), and autoregressive AR(1) modelling of temporal autocorrelations 
was applied. Subject-wise contrast images were generated using the contrast pal-
atable minus non-palatable foods. Furthermore, to test exercise-dependent 
changes in anticipatory reward, we modelled the interaction contrasts (palatable 
versus non-palatable foods) × (rest versus exercise) and (foods versus cars) × 
(rest versus exercise). The second level analysis used these contrast images in a 
new GLM to generate statistical t test images. With balanced designs at the first 
level, this second level analysis closely approximates a true mixed effects design, 
with both within and between subject variance. The threshold for the data was set 
at p < 0.05, and FDR corrected at the cluster level.  

The effects of exercise-induced changes in regional MOR availability on antici-
patory reward responses to palatable foods in fMRI were tested. The difference 
scores (MICT minus rest) of the subject-wise BPNDs in each generated ROIs 
from rest and MICT conditions were used in a full-volume linear regression 
analysis to predict the voxel-wise contrast estimates (SPM contrast images) for 
the interaction contrasts (palatable vs. non-palatable foods) × (rest vs. exercise) 
and (foods versus cars) × (rest versus exercise). Each ROI was used as a predic-
tor in a separate model because of the high between-regions co-dependency of 
[11C]carfentanil binding potentials (Tuominen et al, 2014, 2015).  
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5 RESULTS 

5.1 Perceptual and affective responses to repeated HIIT and MICT 
(Studies I-II) 

We examined the perceptual and affective responses to repeated HIIT and MICT 
protocols in physically untrained healthy (Study I) and insulin resistant (Study II) 
subjects. The healthy group (Study I) consisted of male subjects, while both male 
and female subject were included in the insulin resistant group (Study II). Within 
studies, the HIIT and MICT groups did not differ significantly in age, BMI, or 
VO2peak before the training intervention. Between subject comparison showed 
that insulin resistant subjects had significantly higher BMI (26.1 in healthy vs. 
30.5 in insulin resistant) and lower VO2peak (34.2 ml∙kg-1∙min-1 in healthy vs. 27.2 
ml∙kg-1∙min-1 in insulin resistant) than healthy subjects. The physiological train-
ing adaptations are summarised in Table 3. In healthy subjects, the training inter-
vention improved VO2peak and Loadpeak and not differently between the HIIT and 
MICT groups (both p < 0.001 for the training effect) (Study I). In insulin re-
sistant subjects, the response of VO2peak was different between the HIIT and 
MICT groups (p = 0.050 for the group × training interaction), and only HIIT im-
proved the VO2peak (p = 0.013 for the training effect for HIIT), while Loadpeak 
improved similarly in response to both HIIT and MICT (p < 0.001 for the train-
ing effect) (Study II). Lactate was higher after HIIT than the MICT sessions in 
both healthy and insulin resistant subjects (p < 0.001 for the training group × 
time interaction). 

Perceptual and affective responses during exercise sessions: Overall, healthy 
and insulin resistant subjects responded to HIIT and MICT similarly (Figure 7): 
perceived exertion, displeasure, and arousal were higher during HIIT compared 
with MICT sessions (all p < 0.01 for the training group × bout interaction). How-
ever, the comparison between the insulin resistant and healthy subjects revealed 
that while perceived exertion and arousal were at a similar level over the course 
of the training intervention, insulin resistant subjects experienced markedly lower 
subjective pleasantness during HIIT and higher pleasantness during MICT than 
healthy subjects (p = 0.018 for the training group × health status interaction) 
(Study II). Perceived exertion, displeasure, and arousal experienced during the 
exercise sessions alleviated over the training period of six days in both healthy 
and insulin resistant subjects, and the effect was similar for HIIT and MICT (all p 
< 0.001 for the training session). 
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 Table 3. Characteristics of healthy and insulin resistant subjects (Studies I and 
II) and their training adaptations to HIIT and MICT. (Modified from Original 
publication II.) 

HIIT MICT 
  Pre Post Pre Post   

Study I (Healthy subjects)         

n 14 13 14 13 
 

Age, year 47 (45, 50)  48 (45, 51)   

Height, cm 180 (177,182)  179 (176, 181)   

Weight, kg 83.1 (78.2, 88) 82.6 (77.7, 87.4) 84.1 (79.2, 89.1) 84.1 (79.3, 88.9) 
 

BMI 25.9 (24.5, 27.2) 25.7 (24.3, 27) 26.4 (25, 27,7) 26.4 (25, 27.7) 
 

Fat, % 22.2 (19.8,24.6) 21.2 (18.8, 23.6) 22.9 (20.5, 25.3) 22.1 (19.7, 24.5) *** 

VO2peak,        
ml·kg-1·min-1 34.7 (32.4, 37.1) 36.7 (34.1, 39.3) 33.7 (31.4, 35.9) 34.7 (32.2, 37.2) *** 

Loadpeak, W 225 (206, 244) 245 (227, 262) 224 (205, 243) 238 (220, 255) *** 

Study II (Insulin resistant subjects)       

n 13 11 13 10 
 

men/women, 
n 9/4 7/4 7/6 6/4 

 

T2DM/    
prediabetes, n 11/2 10/1 6/7 4/6 

 

Age, year 49 (47, 51)  49 (46, 51)   

Height, cm 173 (168, 179)  172 (167, 176)   

Weight, kg 88.9 (80.6, 97.2) 88.4 (80.1, 96.7) 91.5 (84.5, 98.6) 91.1 (84.0, 98.1) 
 

BMI 30.5 (28.5, 32.5) 30.3 (28.4, 32.3) 31.0 (29.4, 32.7) 30.8 (29.2, 32.5) 
 

Fat, % 34.8 (31.4, 38.5) 33.8 (30.5, 37.5) 33.8 (30.8, 36.9) 32.9 (30.0, 36.0) * 

VO2peak,         
ml·kg-1·min-1 25.7 (23.2, 28.2) 27.0 (24.6, 29.5)‡ 27.0 (24.9, 29.2) 26.9 (24.6, 29.1)§ † 

Loadpeak, W 173 (153, 193)  187 (167, 207)  190 (173, 208)   201 (183, 219) *** 

Age and height values are means (95% confidence interval, CI), all other values are 
model-based means (95% CI). BMI, body mass index; VO2peak, peak oxygen uptake; 
Loadpeak, peak workload. 
* p ≤ 0.05 for the training effect 
*** p ≤ 0.001 for the training effect 
† p ≤ 0.05 for the group × training interaction 
‡ HIIT time effect, p = 0.013  
§ MICT time effect, p = 0.75 
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Figure 7. Perceived exertion (A) and arousal (C) increased more, and affective 
valence decreased more (B) during HIIT compared with MICT sessions in both 
healthy and insulin resistant subjects. Bout: 1−4 30 s maximal sprints in the HIIT 
group, and 10 min, 20 min, 30 min, 40 min time intervals in the MICT group. 

Affective responses before and acutely after exercise: In general, healthy and 
insulin resistant subjects showed similar acute affective responses to HIIT and 
MICT, and especially in the beginning of the intervention the overall affective 
state was more negative after HIIT compared with MICT. In healthy subjects 
(Study I), perceived stress, tension, and irritation were higher, and PANAS posi-
tive score was lower acutely after HIIT over the training period, while no signifi-
cant changes in these were recorded after MICT (all p < 0.05 for the training 
group × time interaction). Participants in the HIIT group reported higher PANAS 
negative scores, more pain and less satisfaction than participants in the MICT 
group (all p < 0.05 for training group). Both PANAS positive and negative scores 
declined during the training intervention in healthy subjects (all p < 0.001 for 
session). In insulin resistant subjects (Study II), perceived stress remained unaf-
fected over the training period in the MICT group, but increased significantly 
after the first two sessions of HIIT, after which stress declined to the level com-
parable with MICT (p = 0.035 for the training group × session × time interac-
tion). The PANAS positive score significantly decreased after the first two ses-
sions of HIIT, and then increased over the training period, whereas after MICT, 
the PANAS positive score declined towards the end of the intervention (p = 
0.014 for the training group × session × time interaction) in insulin resistant sub-
jects. Furthermore, satisfaction was higher after, as compared with before, MICT 
sessions over the course of the intervention and both pre and post HIIT satisfac-
tion increased throughout the training period in insulin resistant subjects (p = 
0.031 for the training group × session × time interaction). Pain increased in both 
groups after the training sessions but more in the HIIT group, yet alleviated in the 
HIIT group during the training period (p = 0.033 for the training group × session 
× time interaction). Motivation to exercise increased more after MICT than after 
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HIIT (p = 0.006 for the training group × time interaction) and pre-training ratings 
of motivation to exercise declined during the training period until the last training 
session, whereas post-training ratings increased during the intervention similarly 
between the groups (p = 0.047 for the session × time interaction). In insulin re-
sistant subjects, neither HIIT nor MICT significantly affected the feeling of irri-
tation, and in both training groups the PANAS negative score and feeling of ten-
sion varied between the training sessions (p = 0.006 and 0.008, for session, re-
spectively). Acute affective responses were not associated with changes in lac-
tate, VO2peak or Loadpeak in either healthy or insulin resistant subjects. 

Comparison of affective responses between healthy and insulin resistant subjects 
(Study II) showed that PANAS positive scores after HIIT significantly increased 
throughout the training intervention in insulin resistant subjects, while they re-
mained unaltered in healthy subjects, whereas after MICT, PANAS positive 
scores decreased in both healthy and insulin resistant subjects during the inter-
vention (p = 0.002 for the session × training group × health status interaction). 
Pain ratings after HIIT remained unaffected in healthy subjects but decreased 
significantly in insulin resistant subjects during the intervention, while after 
MICT, pain ratings did not change over the training period in either healthy or 
insulin resistant subjects (p = 0.005 for the session × training group × health sta-
tus interaction) (Figure 8). 

 

Figure 8. PANAS positive (A) and pain scores (B) after HIIT and MICT in 
healthy and insulin resistant subjects. The values are least squares means and the 
error bars represent 95% confidence intervals (modified from Original publica-
tion II). 
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5.2 HIIT releases endogenous opioids in human brain (Study III) 

In this study, MOR binding and affective responses after a single session of HIIT 
and MICT were examined in healthy subjects in a crossover fashion. After HIIT, 
[11C]carfentanil BPND values were significantly lower than after rest or MICT in 
widespread regions of the brain, according to full-brain voxel-based analysis us-
ing repeated measures one-way ANOVA for the subset of participants who com-
pleted all three studies (n=11) (p < 0.05, FDR corrected). These areas included 
cortical regions, such as prefrontal cortex, anterior cingulate cortex, and insula, 
and subcortical brain regions such as hippocampus, thalamus, amygdala, ventral 
striatum, periaqueductal grey matter in the brainstem, and cerebellum (Figure 9). 
The average change of [11C]carfentanil BPND was -19 ± 14 % (range -50 % to 0 
%). HIIT did not induce increases of [11C]carfentanil binding. In contrast, 
[11C]carfentanil BPND values were not significantly changed after MICT com-
pared to rest, either for the whole group (n=21) using paired t test or in the re-
peated measures one way ANOVA for the subset of participants who performed 
all three scans (n=11). Although no significant differences in BPND values be-
tween MICT and rest conditions were observed at group level, this response 
showed a notable variation between participants: MOR binding decreased in 
some individuals and increased in others in response to MICT. 

 

 

Figure 9. Brain regions showing significantly decreased MOR binding after 
HIIT in comparison with rest (p < 0.05, FDR corrected). vSTR, ventral striatum; 
ACC, anterior cingulate cortex; MCC, middle cingulate cortex; PCC, posterior 
cingulate cortex; OFC, orbitofrontal cortex; PAG, periaqueductal grey matter. 
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Acute affective responses to HIIT and MICT: In the subset of participants 
who completed both exercise modes (n=12), HIIT increased perceived exertion 
and arousal more and decreased affective valence more than MICT during exer-
cise (F1,11 = 31.71, p < 0.001; F1,11 = 6.44, p = 0.028; and F1,11 = 13.44, p = 0.004, 
respectively). PANAS positive score was higher after MICT that after HIIT (F1,11 
= 10.01, p = 0.009), and PANAS negative score was higher after HIIT than 
MICT (F1,11 = 29.37, p < 0.001). Satisfaction ratings increased after MICT and 
decreased after HIIT (F1,11 = 7.60, p = 0.019) and euphoria ratings were higher in 
MICT than in HIIT condition (F1,11 = 4.74, p = 0.052), and higher after exercise 
(F1,11  = 6.00, p = 0.032). Exhaustion ratings were higher after HIIT than after 
MICT (F1,11 = 6.92, p = 0.023) and the feeling of energy was higher after MICT 
than after HIIT (F1,11  = 14.98, p = 0.003). Irritation ratings were higher after 
HIIT than after MICT (F1,11 = 10.91, p = 0.007), and tension ratings were higher 
under HIIT than MICT conditions, but the pre- and post-exercise ratings did not 
differ significantly from each other (F1,11 = 13.49, p = 0.004). Pain ratings were 
higher after exercise, but not differently so between MICT and HIIT (F1,11 = 
9.62, p = 0.01). Motivation to exercise was lower under HIIT than MICT condi-
tions and there were no differences in ratings between before and after exercise 
(F1,11 = 10.14, p = 0.009). Lactate was higher after HIIT than after MICT (F1,11 = 
923.62, p < 0.001). MICT-induced affective responses in the participants who 
performed only MICT (n=10) did not differ from those of the participants who 
performed both MICT and HIIT (all p > 0.05). 

Associations between exercise-induced affective responses and changes in 
MOR binding: Exploratory whole-brain analysis revealed that after MICT, in-
creased euphoria ratings correlated with decreased BPND in the dorsal prefrontal 
cortex (r = 0.81) and precuneus (r = 0.80) (Figure 10A). Lower ratings of affec-
tive valence during MICT correlated positively with decreased BPND in the or-
bitofrontal regions of the brain (r = 0.76). Higher ratings of perceived exertion 
during MICT predicted decreased BPND in the frontal (r = 0.77) and parietal re-
gions (r = 0.71) of the brain. After HIIT, increased negative affect (Figure 10B) 
and tension correlated with decreased BPND in the frontal cortex (r = 0.75 and r = 
0.90, respectively). Lower ratings of affective valence during HIIT and decreased 
satisfaction after HIIT predicted decreased BPND in the dorsal prefrontal cortex (r 
= 0.71) and thalamus (r = 0.76), respectively. Inverse correlations were not rec-
orded. 
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Figure 10. Whole brain exploratory analysis revealed that decreased 
[11C]carfentanil BPND predicts increased euphoria after MICT (A) and increased 
negative affect after HIIT (B). Circles denote the clusters where BPND changes 
are shown against euphoria (A) and negative affect (B) in the scatterplots, how-
ever the inference is based on the full-volume SPM analysis and the scatterplots 
are shown for visual purposes only. (Modified from original publication III).  

5.3 Associations between anticipatory food reward responses and 
exercise-induced changes in MOR binding (Study IV) 

In this study, we tested whether MICT-induced changes in MOR binding correlate 
with changes in anticipatory reward processing using [11C]carfentanil PET and 
fMRI methods. Physical exercise per se did not significantly influence brain re-
sponses to anticipatory food reward, compared with rest. In general, higher neu-
ronal responses to foods versus cars was observed in the network of brain regions, 
including the supplementary motor area, sensory motor and premotor cortices, and 
parietal cortices. Furthermore, contrasting palatable versus non-palatable foods 
resulted in robust activation of the reward and emotion circuit, where activation 
foci were observed in the medial prefrontal cortex, bilateral caudate, bilateral hip-
pocampus, posterior cingulate, bilateral fusiform, and precuneus. As reported in a 
previous section (Study III), a group level whole brain analysis revealed no signifi-
cant differences in [11C]carfentanil BPND values between MICT and rest. 
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To investigate whether MICT-induced regional changes in MOR binding would 
be associated with changes in anticipatory reward responses measured with 
fMRI, the BOLD responses to palatable versus non-palatable foods and foods 
versus cars in MICT versus rest condition were predicted with regional BPND 
difference in each ROI using a full-volume linear regression analysis. MICT-
induced change in MOR binding in eight out of ten ROIs correlated negatively 
with the difference between MICT and rest conditions in BOLD responses to 
palatable versus non-palatable foods. These findings indicate that increased exer-
cise-induced opioid release predicts higher brain responses to palatable versus 
non-palatable foods. This effect was observed in widespread brain regions in-
cluding both cortical regions (i.e. prefrontal cortex, anterior cingulate cortex, and 
insula), as well as subcortical regions (i.e. hippocampus, thalamus, amygdala, 
ventral striatum, periaqueductal grey matter in the brainstem, and cerebellum) 
(Figure 11 and Figure 12). Opposite correlations were not recorded. 

Similarly, the MICT-induced change in MOR binding in four out of ten ROIs 
associated negatively with the difference in BOLD responses to foods versus cars 
between MICT and rest conditions showing that increased opioid release after 
MICT predict higher responses to food versus non-food objects. This effect was 
found in frontal, temporal, parietal and occipital cortices, anterior and middle 
cingulate, supplementary motor areas, and left thalamus and caudate (Figure 11). 
 

 

Figure 11. Cumulative maps showing the number of ROIs (out of 10) whose 
[11C]carfentanil BPND correlated with BOLD responses to (A) palatable versus 
non-palatable foods between MICT and rest conditions and to (B) foods versus 
cars between MICT and rest conditions, p < 0.05, FDR corrected (modified from 
original publication IV). 
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Figure 12. Brain regions where MICT-induced change in thalamic MOR binding 
of [11C]carfentanil is associated with the difference in BOLD-fMRI responses to 
palatable versus non-palatable foods between MICT and rest conditions. The 
scatterplots show least-square regression lines with 95% confidence intervals and 
are shown for visual purposes only, statistical inference is based on the full-
volume SPM analysis (modified from original publication IV). 

 

Associations between perceptual responses and functional responses: MICT 
acutely increased the ratings of hunger, prospective food consumption, desire to 
eat, and reduced satiety (all p < 0.05). Whole brain exploratory analysis revealed 
that decreased MOR binding after MICT predicted decreased fullness (Figure 
13A) and satiety and increased hunger and prospective food consumption (Figure 
13B) after MICT. Moreover, reduced fullness (Figure 13C) and increased pro-
spective food consumption (Figure 13D) as well as increased positive affect after 
MICT and higher perceived exertion during MICT predicted higher responses to 
palatable versus non-palatable foods after MICT compared with rest. 
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Figure 13. MICT-induced change in MOR binding correlated positively with 
decreased fullness (A) and negatively with prospective food consumption (B). 
Negative change in BPND is consistent with increased endogenous opioid release. 
Furthermore, reduction in fullness (C) and increase in prospective food consump-
tion (D) after MICT predicted higher BOLD fMRI responses to palatable vs. 
non-palatable foods after MICT compared with rest. The scatterplots show least-
square regression lines with 95% confidence intervals and are shown for visual 
purposes only, statistical inference is based on the full-volume SPM analysis (all 
p < 0.05, FDR corrected) (modified from original publication IV).  
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6 DISCUSSION 

The main findings of this thesis were: 

1) HIIT, based on repeated Wingate tests, generates overall a more negative 
affective experience in comparison with MICT. We showed that during 
exercise, HIIT increases perceived exertion, displeasure, and arousal sig-
nificantly more than MICT. Negative affect and tension are higher acutely 
after HIIT than MICT, whereas satisfaction and positive affect are higher 
acutely after MICT than HIIT. These acute responses were similar in 
healthy, habitually active young adults as well as in untrained healthy and 
insulin resistant overweight adults. In insufficiently active subjects, the 
HIIT-induced negative affective experience already starts to improve with-
in a few exercise sessions.  

2) Endogenous opioid release in response to physical exercise depends on the 
intensity of exercise and on the concomitant affective changes. We showed 
that HIIT induces opioid release in human brain, as evidenced by de-
creased MOR binding of [11C]carfentanil measured with PET, in key brain 
regions related to reward and pain processing. Reduced MOR binding cor-
related with measures of negative emotionality. In contrast, MICT did not 
result in a significant overall change in MOR binding, although this re-
sponse exhibited notable variation between individuals: the magnitude of 
MOR activation correlated with increased positive affect and euphoria af-
ter MICT. 

3) Exercise-induced changes in endogenous opioid action are associated with 
anticipatory food reward processing. We showed that the MICT-induced 
changes in MOR binding correlate negatively with the exercise-induced 
changes in neural anticipatory food reward responses in fMRI. This effect 
was observed in widespread brain regions involved in homeostasis and re-
ward processing, and it suggests that higher opioid release predicts higher 
brain responses to palatable versus non-palatable foods. 

6.1 HIIT induces more negative affective response in comparison 
with MICT 

Throughout the studies I−III, we observed that the levels of perceived exertion 
and arousal increased and the affective valence decreased during both exercise 
modes, but significantly more steeply during HIIT compared with MICT sessions 
in untrained healthy and insulin resistant adults, as well as in healthy habitually 
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active young men. In addition, immediately after exercise, the affective state in 
general was more negative after HIIT than MICT across the studies: HIIT evoked 
higher ratings of perceived stress, negative affect, irritation, tension, and exhaus-
tion, whereas MICT resulted in higher ratings of positive affect, satisfaction, and 
energy. These findings are in line with several recent studies, which have demon-
strated more negative affective responses during and immediately after HIIT in 
comparison with MICT in recreationally active and inactive adults as well as in 
overweight to obese individuals (Decker and Ekkekakis, 2017; Green et al, 2017; 
Jung et al, 2014; Thum et al, 2017). Nevertheless, some studies have reported 
similar affective responses to continuous and interval protocols in habitually ac-
tive young men as well as in overweight to obese inactive adults (Kilpatrick et al, 
2015a; Little et al, 2014). Although the interval training protocol that elicits the 
most positive affective responses remains unknown, the perceptual responses and 
enjoyment have been found more positive during shorter than longer intervals 
(Kilpatrick et al, 2015b; Martinez et al, 2015; Townsend et al, 2017). Thus, 
sprint bouts even shorter than 30 seconds might be favoured over a few minute 
intervals (Vollaard and Metcalfe, 2017).   

The acute negative affective responses elicited by HIIT are considered to nega-
tively impact the general perceptions toward exercise, and consequently to dis-
courage exercise motivation and reduce the likelihood of future exercise partici-
pation (Biddle and Batterham, 2015; Hardcastle et al, 2014). Thus, the present 
findings together with findings of others would advocate MICT over HIIT. How-
ever, we demonstrated that perceived exertion, displeasure, and arousal already 
attenuated within six exercise sessions, regardless of the training mode, in both 
healthy and insulin resistant individuals (Studies I and II). Rapid attenuation of 
perceived exertion and leg pain in response to six days of HIIT have also been 
previously reported in young active individuals (Astorino et al, 2012). Weaken-
ing of these perceptual responses over repeated exercise are likely due to rapid 
adaptations in physiological systems such as metabolic (Eskelinen et al, 2015), 
neuromuscular (Kinnunen et al, 2017), cardiovascular (Kiviniemi et al, 2014), 
and respiratory systems (Bailey et al, 2009), as well as improvements in pain 
tolerance (Drury et al, 2005; Koltyn, 2002) and in psychological and cognitive 
elements (Stork et al, 2017). Nevertheless, the positive progression of affective 
responses over six training sessions is encouraging as regards the adoption of 
new exercise routines and suggests that even very intense HIIT may be a feasible 
exercise strategy for untrained individuals.  

Interestingly, the adaptation to repeated HIIT appeared somewhat more positive 
in insulin resistant than healthy inactive subjects. While healthy subjects reported 
higher perceived stress and a lower positive affect acutely after HIIT versus 
MICT throughout the intervention, in insulin resistant subjects the disparities in 
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these measures between training groups abolished in fact after three exercise ses-
sions and the positive affect and perceived stress after HIIT improved to a level 
comparable to MICT. Moreover, the notable drop in post-HIIT ratings of pain, as 
well as the pronounced enhancement of positive affect over six exercise sessions 
in addition to growing exercise motivation after HIIT may indicate that exercise 
enjoyment, although not directly measured, improved in response to repeated 
HIIT in insulin resistant subjects. This would be in line with recent work demon-
strating that enjoyment of HIIT increases with repeated training over the first 
three to six weeks of training (Heisz et al, 2016; Smith-Ryan, 2017), whereas 
enjoyment of MICT remains constant and lower than HIIT (Heisz et al, 2016). 
We did not observe associations between affective responses and improvements 
in physiological parameters (e.g., VO2peak, Loadpeak), however, others have re-
ported that increases in workload over the training period predicted increases in 
exercise enjoyment. This suggests that physiological adaptions in strength and 
perceived competence may be important for facilitating exercise enjoyment 
(Heisz et al, 2016). It must be noted that insulin resistant subjects included wom-
en, whereas the healthy group consisted of men only. This may have influenced 
the positive perceptual and affective adaptation observed among the insulin re-
sistant group, given that women tend to experience greater exercise enjoyment 
(Green et al, 2017) and exercise-induced mood improvements (McDowell et al, 
2016) as well as less intense muscle pain during exercise (Cook et al, 1998) in 
comparison with men. Nevertheless, the observed positive affective adaptation 
during and after HIIT likely promotes exercise adherence, as was recently shown 
in overweight to obese adults and people with prediabetes, who were able to sus-
tain a regular HIIT programme independently for four to five weeks following a 
brief supervised laboratory intervention (Jung et al, 2015; Vella et al, 2017). Ac-
cordingly, HIIT appears to be adopted at least equally well, if not even better, by 
untrained insulin resistant individuals in comparison with healthy individuals.  

The present results indicate that positive affective as well as physiological adap-
tations take place soon after initiating a new exercise regimen. Regarding health 
gains, HIIT is not imperative and thus, individuals can freely choose the exercise 
alternative that is the most convenient for them. However, the present findings of 
rapidly alleviating displeasure experienced during HIIT may encourage previous-
ly inactive adults to also try high-intensity exercise protocols. Moreover, as indi-
vidual preferences and specific needs have to be taken into account in clinical 
practice when prescribing and advising on physical exercise, the apparent suita-
bility of HIIT for insulin resistant adults may help to broaden the exercise strate-
gies utilised in the health care of people with and at risk of T2DM. This could 
improve the physical activity participation in this population group. 
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6.2 Exercise intensity modulates endogenous opioid release in hu-
man brain 

The novel finding of Study III was that the exercise intensity modulates MOR 
activation and the concomitant changes in affective states. High-intensity exer-
cise, HIIT, elicits endogenous opioid release, as evidenced by significantly de-
creased MOR availability in the key brain regions of pain, reward, and emotion 
processing, such as the thalamus, ventral striatum, amygdala, anterior cingulate, 
orbitofrontal and insular cortices. Moreover, HIIT resulted in increased negative 
affect, irritation, and exhaustion and loss of energy. In contrast, moderate-
intensity continuous exercise, a training protocol that reflects public health guide-
lines (MICT), did not result in any net change in MOR binding, although it did 
improve positive affect, satisfaction, and euphoria, and changes in these variables 
were associated with the change in MOR binding.  

Decreased MOR binding detected after HIIT versus rest is indicative of increased 
endogenous opioid release (Henriksen and Willoch, 2008; Quelch et al, 2014). 
This finding is in accordance with the other PET studies that have been conduct-
ed in the field of exercise research, which also reported opioid release in re-
sponse to strenuous exercise (Boecker et al, 2008; Hiura et al, 2017). The earliest 
PET study examining the opioidergic effects of physical exercise demonstrated a 
decade ago an increased opioid release after 2 hours of running in male endur-
ance athletes with the non-selective opioid receptor radioligand [18F]FDPN 
(Boecker et al, 2008). More recently, 20 minutes of continuous vigorous-
intensity and severe-intensity cycling were shown to induce opioid release in rec-
reationally active young men using [11C]carfentanil (Hiura et al, 2017). In con-
trast to previous findings, one hour of indoor cycling did not result in activation 
of the MOR function, yet it increased self-ratings of positive affect, satisfaction 
and energy. Such milder affective improvements are typically reported to occur 
in response to low to moderate-intensity exercise and physical activity in general 
(Hall et al, 2002; Kilpatrick et al, 2007). Despite no net change in MOR availa-
bility after MICT, we detected a notable variation in MOR responses between 
individuals, and found that decreased binding predicted higher increases in rat-
ings of euphoria following MICT. This suggests some level of emotional modu-
lation by MOR action, although the affective responses after moderate-intensity 
exercise is likely modulated also by other neural factors and neurotransmitter 
systems, such as the endocannabinoid system (Dietrich and McDaniel, 2004). 
Interestingly, Raichlen and colleagues (2013) found that only moderate exercise 
intensities at 70−85 % of maximal HR increased the circulating levels of endo-
cannabinoid anandamide, but neither low nor near-maximal exercise intensities 
affected anandamide concentrations. This suggests a role for the endocanna-
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binoids in mediating the positive psychological responses elicited by moderate 
exercise. (Raichlen et al, 2013).  

Opioid release after HIIT, but not MICT, indicates that the endogenous opioid 
action at the MOR sites in response to physical exercise may be relevant for 
more strenuous exercise regimens. This is supported by the previous reports of 
opioid release following demanding and exhaustive exercise protocols (Boecker 
et al, 2008; Hiura et al, 2017). In addition, peripheral levels of β-endorphin have 
been found to rise in response to high-intensity or prolonged exercise, but not in 
response to low or moderate-intensity exercise (Schwarz and Kindermann, 1992). 
Furthermore, endogenous opioids have been suggested to modulate perceptions 
of fatigue (Harber and Sutton, 1985), and blocking MOR with naloxone has been 
found to impair maximal cycle ergometry performance in healthy subjects main-
ly through increased perceived exertion rather than by physiological limits 
(Sgherza et al, 2002). Overall, these data imply that endogenous opioid activa-
tion after strenuous exercise is related to mechanisms of antinociception and 
stress relief. An acute bout of HIIT induces greater physiological (Wahl et al, 
2013) and emotional stress and pain than MICT as shown in Studies I and II. 
Thus, it may well result in endogenous opioid release and MOR activation, 
which not only promotes analgesia, but also regulates the stress response by 
modulating behaviour and responses of the endocrine and autonomic nervous 
system. The lesser physiological and emotional demands of 1 hour of aerobic 
exercise may not generate such profound or persistent stimulation of the MOR 
system. Interestingly, MICT-induced MOR activation was associated with higher 
ratings of perceived exertion and lower affective valence during exercise, sug-
gesting that higher perception of strenuousness during exercise resulted in in-
creased MOR activation also after MICT. This finding further supports the hy-
pothesis that activation of the MOR system has a suppressive effect on emotional 
and physical challenges that threaten organism homeostasis. However, more re-
search is warranted on the underlying causes of divergent MOR responses to 
moderate-intensity exercise.  

After HIIT, decreased MOR binding predicted higher negative affect and tension, 
and decreased satisfaction. Despite no net change in MOR binding after MICT, a 
notable variation in MOR responses was detected between individuals, and after 
MICT, decreased MOR binding predicted greater increases in ratings of eupho-
ria. The exercise-induced changes in MOR binding were recorded specifically in 
the brain regions related to processing pain and analgesia: the thalamus, insula, 
anterior cingulate cortex, prefrontal cortex, basal ganglia, and periaqueductal 
grey matter (Duerden and Albanese, 2013; Zubieta, 2001). These regions are also 
primary for reward and emotions (Haber and Knutson, 2010) and manage both 
positive and negative affect (Saarimäki et al, 2016). Our findings of diverse as-
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sociations between exercise-induced perceptual and affective changes and chang-
es in MOR binding in these regions are consistent with a role of the endogenous 
opioid system for pain and pleasure (Leknes and Tracey, 2008). Interestingly, 
although HIIT-induced pain may have contributed to MOR function, we did not 
find a correlation between MOR activation and pain ratings after exercise. Others 
have reported similar observations, as no effect of either exogenous opioid ago-
nist (codeine) or antagonist (naltrexone) treatment has been found on exercise-
induced muscle pain (Cook et al, 2000; Ray and Carter, 2007). MOR activation 
in the anterior cingulate cortex and thalamus, however, is associated with attenu-
ation of the affective component of pain (Zubieta, 2001), and hence, this could 
contribute also to tolerance for strenuous and painful high-intensity exercise such 
as HIIT. Nonetheless, ultimately, the specific contributions from pain, analgesia, 
and negative emotionality to the outcomes in this study setting cannot be separat-
ed, as all of these functions involve MOR activation in these brain regions. 

Regarding appetite, decreased MOR availability after HIIT predicted reduced 
craving to eat following exercise, whereas after MICT, decreased MOR availa-
bility predicted increased hunger and prospective food consumption and de-
creased fullness and satiety following exercise. These observations accord with 
abundant data elucidating the close involvement of the opioid system in both 
homeostatic and hedonic aspects of feeding (Nogueiras et al, 2012).  

6.3 Anticipatory food reward responses are associated with changes 
in MOR binding after MICT 

In Study IV, we found a novel role for the brain MOR system in modulating an-
ticipatory food reward following aerobic exercise. Changes in MOR binding after 
MICT, indicating changes in endogenous opioid release, were associated with 
changes in neural responses to foods images after exercise. Subjects who showed 
larger opioid release following MICT showed the largest increase in the anticipa-
tory food reward responses following exercise. This effect was found in multiple 
brain regions implicated in food anticipation and reward processing, including 
the ventral striatum, thalamus and hypothalamus, and amygdala, as well as the 
medial prefrontal cortex, anterior cingulate, and insula. These findings suggest 
that individual variation in acute hedonic and motivational processing of food 
after exercise may be modulated by exercise-induced changes in the opioid sys-
tem in the brain. 

Hedonic aspects of food motivate feeding and may lead to overeating and weight 
gain. Both acute and chronic physical exercise has been shown to alter hedonic 
and motivational responses to food. On a neurochemical level, MOR action is 
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tightly involved in hedonic and motivational processing of food (Mendez et al, 
2015; Peciña and Smith, 2010), and recently, we demonstrated in healthy sub-
jects that lower baseline MOR binding predicts higher anticipatory food respons-
es (Nummenmaa et al, 2018a), which suggests a direct link between brain opioid 
function and food reward processing. Although we did not find changes in antic-
ipatory food reward following exercise in the main analyses, the change in MOR 
binding after MICT was associated with altered processing of anticipatory food 
reward between rest and MICT conditions. Thus, subjects who showed the larg-
est increases in endogenous opioid release also had the highest anticipatory fMRI 
food reward responses to palatable versus non-palatable foods following the ex-
ercise session. These data are consistent with previous work showing that MOR 
stimulation increases food consumption and preference for palatable foods both 
in animals and humans, whereas conversely blocking opioid receptors with opi-
oid antagonist prevents motivation towards food consumption (Cambridge et al, 
2013; Giuliano et al, 2012; Mysels and Sullivan, 2010). Our findings also go be-
yond the previous data and suggest a role for physical exercise. 

In contrast to our initial observation that anticipatory food reward responses on 
fMRI were unaffected by MICT, others have demonstrated changes in neuronal 
responsiveness to visual food cues following exercise. Aerobic exercise has been 
found to decrease neuronal activation to high-caloric foods vs. non-foods in bi-
lateral insula and increase activation in the left precuneus (Evero et al, 2012), 
whereas high-intensity exercise has shown to induce decreased neuronal respon-
siveness to images of high caloric foods vs. non-foods in the orbitofrontal cortex 
and left hippocampus, as well as increased responsiveness in dorsolateral pre-
frontal cortex (Crabtree et al., 2014) immediately (within ten minutes) after exer-
cise cessation. Extended periods between exercise and fMRI may compromise 
the detection of such changes, as no effect of exercise on haemodynamic re-
sponses to images of food was found, when the fMRI took place after 30 min of 
the completion of exercise (Cornier et al, 2012). Similarly, due to the 51 min 
PET scan prior to fMRI measurement, we may have lost some of the effects of 
MICT on brain responses. Nonetheless, the variation in palatable food reward 
responses between MICT and rest conditions was explained by exercise-induced 
change in MOR binding. Interestingly, neuronal activation to visual food cues in 
obese individuals was found to decrease in response to a six-month exercise in-
tervention (5 days per week), however, an acute bout of aerobic exercise blunted 
these effects (Cornier et al, 2012); this could be explained by exercise-induced 
MOR action, according to the present findings.  

The effects of exercise on weight-loss outcomes are typically modest and indi-
vidually widely variable. This heterogeneity in weight loss suggests that some 
individuals may adopt compensatory behaviours, such as increasing energy in-
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take in response to exercise. Compensatory eating following exercise could un-
dermine the beneficial effect of exercise on energy balance, and consequently 
weaken the weight loss outcomes. (Melanson et al, 2013). The altered food re-
ward processing after exercise, which also shows considerable inter-individual 
variability, may modulate compensatory energy intake propensity. Previous re-
search has found that a single session of exercise increased palatability and crav-
ing for food as well as preference for high-caloric appetising foods in individuals 
who were more prone to increase their post-exercise energy intake in comparison 
with individuals whose energy intake did not change or even decreased 
(Finlayson et al, 2009). Moreover, increased food palatability together with in-
creased acute preference for high-fat, sugary foods after exercise predicted 
smaller weight loss outcomes after a 12-week exercise intervention in obese in-
dividuals (Finlayson et al, 2011). Our findings of enhanced reward processing 
given sufficient opioidergic activation suggest one possible modulatory mecha-
nism for food reward processing following exercise that may contribute to com-
pensatory eating behaviours. Nevertheless, more research is needed to determine 
the modulatory role of MOR at higher exercise intensities and the effect of exer-
cise on other physiological correlates that may influence food reward, such as 
leptin (Hopkins et al, 2014).  

6.4 Limitations of the studies 

Across all studies, we recorded perceptual and affective responses during exer-
cise sessions and immediately after exercise (within 5 min), however data was 
not acquired while the subjects were recovering from exercise, or during the PET 
scans. Affect fluctuates continuously and dynamically, and although high-
intensity exercise increases negative affect during and immediately after exercise, 
a rebound towards positive affect tends to arise during a recovery of 10–20 min 
(Hall et al, 2002). Furthermore, given the fluctuating nature of affect, all the 
changes observed in these measures may not be induced solely by exercise, 
which might have been controlled for by using a non-exercise control group. The 
exercise intervention of six training sessions in Studies I and II was short and 
may not reflect the long-term affective responses to HIIT. Generalisability is fur-
ther limited by the tightly controlled training settings, as exercise modality was 
limited to the cycle ergometer and all the training sessions were carried out indi-
vidually in a laboratory environment under supervision and encouragement. 
Whether HIIT can be initiated, adopted, and sustained independently in real life 
settings by inactive, healthy and overweight to obese people with T2DM or pre-
diabetes requires further investigation.   



64 Discussion  

The PET studies (Studies III and IV) include certain limitations. First, we used 
BPND as a measure of the MOR binding. This composite outcome measure does 
not differentiate between receptor density and affinity. Thus, changes in BPND 
may be due to changes in the receptor affinity, the amount of actual receptor pro-
teins, receptor trafficking between cell surface and intracellular spaces, or the 
amount of endogenous ligand occupancy in the receptor proteins. Nevertheless, 
regardless of the exact mechanism, decreased BPND after exercise most likely 
reflects endogenous opioid actions on the MOR system (Boecker et al, 2008; 
Colasanti et al, 2012; Scott et al, 2007). Second, physical exercise may have in-
fluenced the radiotracer kinetics of [11C]carfentanil. For example, altered cerebral 
blood flow could potentially influence both delivery and washout of the tracer, 
leading to artefactual changes in receptor binding estimates. While this con-
founding factor cannot be definitively ruled out on the basis of current data, it is 
unlikely that decreased blood flow would explain decreased BPND after HIIT, 
given that previous simulations (Endres et al, 2003; Frost et al, 1989; Liberzon et 
al, 2002) have demonstrated that reference tissue modelling of specific binding is 
relatively insensitive to changes in cerebral blood flow. Moreover, recent re-
search using simultaneous measurement of brain perfusion (with arterial spin 
labelled MRI) and radioactivity uptake after tracer injection (with PET), convinc-
ingly shows no effect of altered cerebral blood flow on receptor binding with 
other reversibly binding radiotracers (Sander et al, 2017), which likely translates 
to [11C]carfentanil as well (Nummenmaa et al, 2018b). Third, the time points of 
measurements may have affected the results. The PET scan started 20 minutes 
after exercise cessation and fMRI took place after the PET scan. Significant dilu-
tion of the BPND effect in the time between the exercise and the PET scan seems 
unlikely, as decreased BPND persists for 20–65min after pain stimulation (Scott et 
al, 2007). However, some of the effects of exercise on haemodynamic brain re-
sponses to food images have most likely been missed, due to the 51 min PET 
scan prior to fMRI measurement. Others have reported altered functional re-
sponses 10 minutes after exercise (Crabtree et al, 2014; Evero et al, 2012), but 
not 30 minutes after exercise (Cornier et al, 2012), paralleling our findings. 

[11C]carfentanil has a very high intra-class correlation coefficient and low varia-
bility, suggesting good reliability for both within-subject and between-subject 
study designs (Hirvonen et al, 2009). However, although mood questionnaires 
are common in exercise studies and the food image fMRI paradigms are widely 
used for examining the neural basis of food reward processing and ingestive be-
haviour, the reliability of these methods is not well understood. This may limit 
the statistical power of the present studies (Matheson, 2018), and thus, the results 
should be interpreted with caution. 
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Finally, the study groups may limit the generalisability of the findings regarding 
neural responses to exercise. In Studies III and IV, only young lean (non-obese) 
male subjects were studied. Given that age, obesity, and sex influence both MOR 
availability and the capacity to activate the MOR system (Burghardt et al, 2015; 
Gabilondo et al, 1995; Karlsson et al, 2015; Zubieta et al, 1999, 2002) as well as 
the responsiveness to visual food stimuli (Brooks et al, 2013; Chao et al, 2017), 
our findings may not directly generalise to females and other age and weight 
groups. Moreover, the physical activity background of the participants varied 
considerably in Studies III and IV (from no exercise at all to yoga, crossfit, and 
martial arts), yet the effect of cardiovascular fitness on MOR tone and activation 
capacity remains unknown. The anticipatory food reward responses following 
exercise were examined only after MICT but not after HIIT, given the small 
number of subjects who completed the HIIT session. 

6.5 Practical implications and future directions 

The prevalence of physical inactivity is alarming, and innovative new ideas are 
needed to increase the adoption and maintenance of regular exercise. The goals 
of exercise programmes are typically twofold, with emphasis on both health ben-
efits and tolerability. The present findings suggest that HIIT is a feasible exercise 
alternative for sedentary adults and it can be implemented as part of the training 
routines of diabetic patients. This may broaden and individualise the exercise 
strategies utilised in diabetes care, which could possibly improve the levels of 
physical activity in this population group. Although perceptual responses and 
enjoyment appear more positive during shorter than longer intervals (Kilpatrick 
et al, 2015b; Martinez et al, 2015; Townsend et al, 2017), the optimal work 
and/or rest interval duration for maximising both physiological and psychological 
adaptations needs be determined in future studies. Moreover, future studies 
should also aim at investigating the best practices of HIIT in real world settings 
in order to maximise the feasibility and accessibility. 

While affective responses during continuous exercise have shown to be predic-
tive of future exercise participation and adherence (Kwan and Bryan, 2010; 
Rhodes and Kates, 2015; Williams et al, 2008), whether this predictive relation-
ship applies to interval training remains unknown. The variable nature of interval 
exercise may complicate the evaluation of fluctuating affect, and its subsequent 
influence on future exercise behaviour. For example, intervals of varied length 
may exert distinct influence on physiological and metabolic strain in a manner 
that affects perceptions of effort differently than in continuous exercise. Breaking 
exercise into small, more achievable bouts may allow participants more opportu-
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nities to experience mastery over completed sprints, which may lead to increased 
self-efficacy (Jung et al, 2014). This could be important especially for novice 
exercisers. Future research needs to explore how perceptual and affective re-
sponses both during and after HIIT may influence future exercise participation. 
This might also influence the implementation of HIIT protocols into physical 
activity recommendations. 

The present findings indicate a novel role for the MOR system in modulating 
various psychophysical responses to acute exercise at different intensity levels. 
While high exercise intensity resulted in a robust release of endogenous opioids, 
moderate-intensity exercise showed both activation and deactivation of the MOR 
system. There are several interesting research aspects in these findings. First, 
lower BMI is linked to higher baseline MOR binding in amygdala (Nummenmaa 
et al, 2018a), but whether other factors related to exercise, such as better aerobic 
fitness or higher physical activity level affect baseline MOR availability, and 
whether these influence the MOR activation capacity in response to exercise re-
main unknown. Thus, future research should explore the potential mediators un-
derlying the variable MOR responses induced by moderate-intensity exercise. 
Second, animal studies suggest that higher levels of exercise may produce greater 
compensatory responses within the MOR system. Future studies should deter-
mine whether in humans acute MOR responses to exercise are similar in individ-
uals with opposing exercise backgrounds (e.g., competitive endurance athletes 
such as triathletes versus completely sedentary individuals) and whether long-
term repeated exercise modulates MOR responses. This could provide insights on 
the neurobiological mechanisms that underlie the habituation to physical activity, 
maintenance of regular exercise participation, and exercise addiction. Third, 
MOR activation after acute aerobic exercise resulted in enhanced food reward 
and thus, anticipatory reward sensitisation. Whether exercise-induced MOR ac-
tion is linked to other types of reward, such as monetary rewards or substance 
craving, needs to be established in future studies. Given that an altered MOR 
function has been associated with behavioural addictions such as pathological 
gambling and binge eating disorder (Joutsa et al, 2018; Majuri et al, 2017) as 
well as with substance abuse (Gorelick et al, 2005; Hermann et al, 2017), exer-
cise might address these underlying mechanisms, and thus, possibly provides a 
potential tool for treating these conditions. 

Moreover, dysfunctions in the MOR system have been associated with major 
depressive disorder (Kennedy et al, 2006), the leading cause of disability world-
wide (WHO, 2017). Research has shown promise for the efficacy of physical 
exercise in alleviating symptoms of depression which may be comparable to psy-
chotherapy and antidepressants (Kvam et al, 2016). One important future exten-
sion of the present work would be to determine whether exercise is capable of 
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affecting the dysfunctional MOR system in these patients, and whether exercise-
induced adaptation in the MOR system is associated with the therapeutic effects 
of exercise. 

Finally, the neurochemical mechanisms mediating motivational and affective 
behavioural processes of exercise are not exclusively posited on the opioidergic 
system. The dopamine system, for example, is undeniably a part of the reward 
system and likely involved in the positive psychological outcomes of exercise. 
Previous animal studies have revealed altered dopaminergic activity in response 
to acute and chronic exercise (Meeusen et al, 2001; Robison et al, 2018), howev-
er this has yet to be demonstrated in humans (Wang et al, 2000). The endocanna-
binoid system has also gained interest as a mediator of exercise-induced positive 
mood responses (Brellenthin et al, 2017; Raichlen et al, 2012). As a close inter-
action between opioid, dopamine, and endocannabinoid systems has been estab-
lished (Wenzel and Cheer, 2017), they may also possess a synergistic functions 
in the psychological effects of exercise. All things considered, understanding the 
neurobiological underpinnings of the psychophysiological responses to exercise 
could provide new means for targeted and effective use of exercise in health care, 
for example in weight loss interventions and lifestyle changing programmes as 
well as in the treatment of various affective spectrum disorders.  
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7 CONCLUSIONS 

The benefits of regular exercise are advantageous on a health promotion level 
only when exercise programmes are well tolerated and engaged in by the people 
who are the targets of public health recommendations. By this means, the find-
ings of the present thesis suggest that although the perceptual and affective re-
sponses are more negative both during and acutely after HIIT compared with 
MICT, these responses show significant improvements already within six train-
ing sessions indicating rapid positive affective and physiological adaptations to 
continual exercise training. Accordingly, even very intense HIIT can be a tolera-
ble exercise option for insufficiently active adults with and without insulin re-
sistance, and thus, HIIT could be implemented as part of training routines of dia-
betic patients. These findings are valuable for the development of new time-
efficient, yet pleasurable exercise strategies to increase exercise participation and 
physical activity level in general.  

The positive psychophysiological effects of physical exercise have been pro-
posed to involve central opioidergic mechanisms. The findings of this thesis 
strengthen previous data and beyond this, demonstrate for the first time that exer-
cise intensity modulates acute MOR action and concomitant changes in affective 
states. High-intensity exercise, HIIT, elicited endogenous opioid release, as evi-
denced by significantly decreased MOR binding. Decreased MOR binding corre-
lated with HIIT-induced increases in negative affect. In contrast, moderate-
intensity exercise did not result in significant overall change in MOR availability, 
but it did improve the positive affect, satisfaction and euphoria, and changes in 
these measures correlated with changes in MOR binding. This pattern of results 
indicates that MOR may have a dual role at different levels of physical exercise: 
modulation of positive emotionality in moderate intensity exercise and modula-
tion of negative emotionality in high-intensity exercise. These findings pave the 
way for a better understanding of the neurochemical basis of affective responses 
to exercise and its role in exercise behaviour.  

Finally, physical exercise regulates appetite, modulates food reward, and helps 
control body weight. Differences in acute food reward responses following exer-
cise possibly contribute to energy intake after training. Findings described in this 
thesis reveal a novel role for the brain MOR system in modulating anticipatory 
food reward following exercise. Changes in MOR binding after moderate-
intensity exercise correlated negatively with the exercise-induced changes in an-
ticipatory food reward responses in fMRI in such way that higher opioid release 
after exercise predicted higher brain responses to palatable versus non-palatable 
foods. This data suggest that altered MOR action induced by acute exercise may 
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modulate appetitive motivation and contribute to anticipatory reward sensitisa-
tion by enhancing food reward. Consequently, it may account for compensatory 
energy intake following exercise and compromise weight control. These findings 
may facilitate further understanding of the complexity of physical exercise in 
weight loss interventions.  
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