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Abstract

Real life applications involving efficient management of natural resources are
dependent on accurate geographical information. This information is usually
obtained by manual on-site data collection, via automatic remote sensing
methods, or by the mixture of the two. Natural resource management,
besides accurate data collection, also requires detailed analysis of this data,
which in the era of data flood can be a cumbersome process. With the
rising trend in both computational power and storage capacity, together
with lowering hardware prices, data-driven decision analysis has an ever
greater role.

In this thesis, we examine the predictability of terrain trafficability con-
ditions and forest attributes by using a machine learning approach with
geographic information system data. Quantitative measures on the predic-
tion performance of terrain conditions using natural resource data sets are
given through five distinct research areas located around Finland. Further-
more, the estimation capability of key forest attributes is inspected with a
multitude of modeling and feature selection techniques. The research results
provide empirical evidence on whether the used natural resource data is suf-
ficiently accurate enough for practical applications, or if further refinement
on the data is needed. The results are important especially to forest indus-
try since even slight improvements to the natural resource data sets utilized
in practice can result in high saves in terms of operation time and costs.

Model evaluation is also addressed in this thesis by proposing a novel
method for estimating the prediction performance of spatial models. Clas-
sical model goodness of fit measures usually rely on the assumption of inde-
pendently and identically distributed data samples, a characteristic which
normally is not true in the case of spatial data sets. Spatio-temporal data
sets contain an intrinsic property called spatial autocorrelation, which is
partly responsible for breaking these assumptions. The proposed cross val-
idation based evaluation method provides model performance estimation
where optimistic bias due to spatial autocorrelation is decreased by parti-
tioning the data sets in a suitable way.

Keywords: Open natural resource data, machine learning, model evalua-
tion
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Tiivistelmä

Käytännön sovellukset, joihin sisältyy luonnonvarojen hallintaa ovat riip-
puvaisia tarkasta paikkatietoaineistosta. Tämä paikkatietoaineisto kerätään
usein manuaalisesti paikan päällä, automaattisilla kaukokartoitusmenetel-
millä tai kahden edellisen yhdistelmällä. Luonnonvarojen hallinta vaatii tar-
kan aineiston keräämisen lisäksi myös sen yksityiskohtaisen analysoinnin,
joka tietotulvan aikakautena voi olla vaativa prosessi. Nousevan laskenta-
tehon, tallennustilan sekä alenevien laitteistohintojen myötä datapohjainen
päätöksenteko on yhä suuremmassa roolissa.

Tämä väitöskirja tutkii maaston kuljettavuuden ja metsäpiirteiden
ennustettavuutta käyttäen koneoppimismenetelmiä paikkatietoaineistojen
kanssa. Maaston kuljettavuuden ennustamista mitataan kvantitatiivisesti
käyttäen kaukokartoitusaineistoa viideltä eri tutkimusalueelta ympäri Suo-
mea. Tarkastelemme lisäksi tärkeimpien metsäpiirteiden ennustettavuutta
monilla eri mallintamistekniikoilla ja piirteiden valinnalla. Väitöstyön tulok-
set tarjoavat empiiristä todistusaineistoa siitä, onko käytetty luonnonvara-
aineisto riittävän laadukas käytettäväksi käytännön sovelluksissa vai ei. Tut-
kimustulokset ovat tärkeitä erityisesti metsäteollisuudelle, koska pienetkin
parannukset luonnonvara-aineistoihin käytännön sovelluksissa voivat johtaa
suuriin säästöihin niin operaatioiden ajankäyttöön kuin kuluihin.

Tässä työssä otetaan kantaa myös mallin evaluointiin esittämällä uu-
den menetelmän spatiaalisten mallien ennustuskyvyn estimointiin. Klassiset
mallinvalintakriteerit nojaavat yleensä riippumattomien ja identtisesti ja-
kautuneiden datanäytteiden oletukseen, joka ei useimmiten pidä paikkaansa
spatiaalisilla datajoukoilla. Spatio-temporaaliset datajoukot sisältävät luon-
taisen ominaisuuden, jota kutsutaan spatiaaliseksi autokorrelaatioksi. Tämä
ominaisuus on osittain vastuussa näiden oletusten rikkomisesta. Esitetty
ristiinvalidointiin perustuva evaluointimenetelmä tarjoaa mallin ennustus-
kyvyn mitan, missä spatiaalisen autokorrelaation vaikutusta vähennetään
jakamalla datajoukot sopivalla tavalla.

Avainsanat: Avoin luonnonvara-aineisto, koneoppiminen, mallin evaluointi
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Chapter 1

Introduction

1.1 Data analysis with open data

We live in an era of data flood with information being continuously stored
by millions of devices world wide. These devices include e.g. mobile phones,
cars, satellites, industrial machines, medical instruments and washing ma-
chines, with more and more of these devices forming Internet of things net-
works together. The data collected are used for a wide variety of purposes
and applications. Some of these collected data sets have strict privacy leg-
islations or rules behind them, which means access to this data is limited.
Other data sets are categorized as open data, meaning this data has no re-
strictions on its usage. Open data is based on the idea that data should
be freely available to everyone to use and republish as they wish, without
restrictions from patents, copyright or other mechanisms of control. Due to
its nature, open data can offer greater opportunities than private data, since
it is available to larger groups of people. This allows broader utilization and
evaluation of the data from many different disciplines and parties.

Since data is collected by millions of devices automatically worldwide, it
is clear that the amount of this data is massive. It is estimated that around
2.5 quintillion (1030) bytes of data is created every day. Furthermore, the
data comes in a variety of different forms (e.g. photos, videos, databases)
with different requirements on the processing speed (e.g. periodic, real-
time). Data sets which fit into this so-called 3Vs (volume, variety, velocity)
characterization are called big data (see e.g., Chen et al., 2014). It is obvious
that automation, i.e. intelligent data processing by computers is needed
to extract useful information from the data. Machine learning (ML) is a
subfield of computer science focused on this, i.e. on the development and
application of intelligent data processing systems. With big data available
from many domains, the utilization of this data via ML approaches offers
many interesting applications. In ML projects, data analysis experts usually
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Figure 1.1: Left : the CRISP-DM process model. Right : the general flow of
modeling in ML with example applications given.

follow the phases described by the cross-industry standard process for data
mining (CRISP-DM, Shearer, 2000). The CRISP-DM model consists from
the following six phases (see Figure 1.1):

1. Business understanding. In the first phase, the focus is on understand-
ing the project objectives and requirements from a business perspec-
tive, and then converting this into a data mining problem definition.

2. Data understanding. In this phase, initial data collection and inspec-
tion are implemented to discover first insights into the data.

3. Data preparation. In data preparation phase the collected raw data is
cleaned and transformed (e.g. dimensionality reduction) into the final
data set suitable for the modeling tools.

4. Modeling. In here, various modeling techniques are selected and ap-
plied, and their parameter values are optimized.

5. Evaluation. At this stage, the model is evaluated carefully and checked
if it achieves the business objectives. A key task is to determine if there
are some important business issues which have not been sufficiently
considered.

6. Deployment. In the final phase, the model is deployed into the business
application. Monitoring and a maintenance plan are implemented, and
project review is documented.

With increasing computational power and decreasing cost per byte of stor-
age ML approaches are nowadays a hot topic both for companies and private
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consumers. It is therefore clear that with the current development of tech-
nology and data-driven goals, data analysis is one of the key subjects to be
studied now and in the future.

1.2 Motivation for the research

This thesis focuses on ML problems involving the prediction of forest soil
characteristics, forest inventory attributes and the evaluation of spatial mod-
els, i.e. models which use geographically distributed data samples. The data
in this research consists from a combination of various geographic informa-
tion system (GIS) open natural data sets collected both manually and by re-
mote sensing (RS) methods like satellites and airborne scanning techniques.
Most of these natural resource data sets are collected for some specific pur-
poses in their main applications, but this is not the subject of investigation
in this thesis. In this work, we focus on investigating the potential addi-
tional value these open data sets can provide in other applications. Fairly
recently, many governmental institutions have shown interest on data ana-
lytical solutions applying GIS data. In Finland for example, which has a
big industry in forestry, harvest route planning in foresting operations is
one of the key concerns. It has been discussed lately if GIS data could be
used to improve the safety and efficiency in these operations. It is estimated
that challenging trafficability conditions cause a yearly costs of 100 million
euros for the industry in Finland alone (Tamminen, 1991), so even small
improvements offered by ML approaches can result in substantial saves in
operation costs.

Research motivation for this thesis originates from the use of open nat-
ural data in forestry. Finland is one of the world’s largest producer of
paper and cardboard and one the of largest producers of sawn timber in
Europe. Around 20% of Finnish exports is produced by the forest industry
which employs approximately 160,000 people in Finland. The Natural Re-
source Institute Finland (LUKE, formerly METLA), a key party in Finnish
forest research, collects annually and biannually various GIS data sets to
keep track on soil and forest conditions in Finland. LUKE also carries out
statutory government work such as monitoring natural resources, certify-
ing plant production, supporting natural resource policies and producing
Finland’s official food and natural resource statistics. One of the collected
natural resource data sets is called the multi-source national forest inventory
(MS-NFI, Tomppo et al., 2008). This data set consists from various forest
state attributes such as tree volume, tree basal area, tree diameter and tree
height per hectare. The MS-NFI is based on combining field measurements
(i.e. MS-NFI sample plots) with satellite imagery and map data (Mäkisara
et al., 2016). In addition to these data sources, the MS-NFI employs also e.g.

3



land-use maps and elevation models as other digital data sources (Zevenber-
gen and Thorne, 1987; Wood, 1996). By utilizing satellite images, forest
characteristics can be estimated for geographical areas laying between rela-
tively sparse network of MS-NFI samples. By then combining the sampled
and estimated MS-NFI forest characteristics various statistics in the form
of thematic maps can be produced for any given area. An example of an
MS-NFI thematic forest map is the volume of growing stock in the whole of
Finland.

Among other environmental data sets, the MS-NFI data is used in ap-
plications such as forestry decision making and strategic large-area forest
planning. It is interesting to study how data sets like the MS-NFI could
be used e.g. in operative planning of forest operations. In forest harvest-
ing for example, the location of a harvest operation might be determined
based on the number of trees and the trafficability of the harvesting routes
in that area. The role of the MS-NFI data here would be to provide esti-
mations (using ML) on tree quantities and the safety of the routes in the
corresponding harvest area. Due to its possible uses like in the example pre-
sented, it is therefore important to study the performance of the MS-NFI
data (and other data sets like it) in these tasks. This work aims to provide
these performance measures by building and evaluating ML models using
the open natural resource data sets provided by LUKE and other similar
governmental institutions of Finland such as National Land Survey of Fin-
land (NLS), Geological Survey of Finland (GTK), Finnish Meteorological
Institute (FMI), and the Finnish Geospatial Research Institute (FGI).

1.3 Main objectives of the research

Regarding the matters considered above, the main objectives of this the-
sis are: to assess the prediction capability of the provided natural resource
data sets, to identify the most relevant predictor features needed for forest
attribute estimation, and to develop a model evaluation method for ap-
plications involving spatial data. These objectives are summarized in the
following main research questions:

(RQ1): Are the provided open natural resource data sets applicable in pre-
dicting terrain conditions and forest attributes in Finland?

(RQ2): How to evaluate the prediction performance of a model involving
spatially dependent data?

The research results obtained for question (RQ1) will provide empirical
evidence which indicates if the current natural resource data collection and
preprocessing procedures need to be modified or not before they can be

4



used in corresponding applications. The results will also help to identify the
useful features in these data sets, which can decrease the computation time
and data collection costs of the modeling processes in future applications.
The results for question (RQ2) provide a method for evaluating spatial
models by taking into account the geographical dependencies in the data,
which is many times disregarded by classical model evaluation methods.

1.4 Organization of the thesis

This thesis consists of two separate parts. Part I of the thesis includes the
chapters 1-4. Chapter 1 gives a general introduction to the subject and
provides the motivations and research questions of this thesis. Chapter 2
presents an overview of the theoretical background and Chapter 3 gives
a summary of the included research publications, results and the author’s
corresponding contributions. Conclusions and discussion are then presented
in Chapter 4. Part II presents the six original research publications that
were written during the doctoral studies at the university.
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Chapter 2

Theoretical foundations

In this chapter, we will go through the background information related to the
research conducted in the included publications. GIS and RS methods are
introduced since the provided data is mostly collected using these techniques.
Also, the nature of spatial data is considered and an introduction to the ML
paradigm and standard model selection techniques is presented. A novel
method developed during the research project is also introduced, which aims
to tackle a problem that many classical model selection methods have with
natural data sets.

2.1 Geographic information systems

Data today comes from many different sources. Multiple information sys-
tems collect data about weather, traffic, stock trade, logistics, consumer
grocery behavior, agriculture, forests et cetera. Knowing all these activities
is important but it is equally important to know where they happen. Geo-
graphic location is an important attribute of activities, policies and strate-
gies. GIS is a special class of information systems which keeps track about
events and things, and also where these events and things happen or exist
(Longley et al., 2005). In each day millions of people utilize geographic in-
formation in their work and daily lives. For example we routinely check the
weather forecasts from our neighborhoods in order to plan suitable schedules
for our activities. GIS is also critically important for officials such as the
police, hospitals and fire departments.

Geographical data collection is naturally subject to measurement errors
due to plenty of distorting factors and can lead to inaccurate inferences
while analyzing the data. In aerial imaging for example, wind causes mea-
surement devices to momentarily change imaging angles and thus making
some data samples slightly incompatible with each other. Other distortions
to the data can be the effect of natural phenomena like for example clouds,
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rain or shadows caused by trees. The measurement errors will always be
present in any natural data sets we collect and must be used as such. It
is impossible to make a perfect representation of the world, so uncertainty
about it is inevitable in practice. Fortunately, many times the measurement
errors in the data are negligible for the purpose of the corresponding GIS ap-
plication and also many methods exist which help to remedy the distortions
in the data. The extent of the measurement errors should however always
be acknowledged as stated by Walter Lewin, a former professor of physics in
Massachusetts Institute of Technology, ”Any measurement that you make
without the knowledge of its uncertainty is completely meaningless”. By
uncertainty here, Lewin means the magnitude of measurement errors.

2.2 Remote sensing methods

When working on a GIS project, the first issue or decision that we have to
face is how to incorporate data into our analysis. Data collection is one of the
most time consuming and laborious processes in GIS projects, making the
decisions on how we should collect the data, one of the most important ones.
It is crucially important to have a carefully planned and implemented data
collection process for the sake of a successful GIS project. Nowadays, GIS
data is collected via multitude of techniques such as satellites, aircraft and
remote sensors. The measurements are carried out usually by a laser pulse
and multi- or hyperspectral scanning and imaging methods. These methods
usually include devices like image sensors, optical sensors, interferometers
and spectrometers. In this thesis, we are mainly concerned with natural
resource data collected via RS techniques, since the included publications
use GIS data collected almost completely in RS manner (Pohjankukka et al.,
2014a,b, 2016, 2017, 2018; Airola et al., 2018).

2.2.1 Sensors

A sensor is a device which detects events or changes in its environment and
sends the information to other devices. Sensor devices can be divided into
two main groups: passive sensors and active sensors. Passive sensors depend
on external energy sources, like the Sun or Earth. These sensors gather data
through the detection of energy such as light, heat or radiation. Examples
of passive sensors are the photographic camera and a thermometer. Active
sensors have their own energy source and can therefore be controlled more
than passive sensors. They work by emitting a controlled beam of energy
to a surface and measure the amount of energy reflected back to the sensor.
Active sensors include methods like RADAR (radio detection and ranging)
and LiDAR (light detection and ranging). In RS applications both passive
and active sensors are used and they usually measure energy in different
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intervals of the electromagnetic (EM) spectrum. These sensors measuring
EM energy can further be divided into optical and non-optical sensors.

Optical sensors

Optical sensors measure EM energy in the wavelength range of approxi-
mately 400-700 nanometers (nm), which is the interval of the EM spectrum
called light. An example of an optical sensor is the LiDAR which is an active
RS sensor utilizing pulsed laser to measure distances to Earth (Weitkamp,
2005). LiDAR uses visible-light, ultraviolet and near infrared spectra to
perform the imaging. The laser pulses can be used to generate a three-
dimensional point cloud representation about the shape of the measurement
object. Airborne LiDAR measurements are collected with airplanes or he-
licopters by emitting a laser pulse to the target surface. The echo of this
surface reflected laser pulse is then saved by a scanner instrument in the
airplane. Currently there exists a wide variety of LiDAR applications. For
example, autonomous vehicles use LiDAR to create a 3D-model of their
surroundings for navigation purposes and quadcopter drones use LiDAR to
identify specific cereal species in crop fields.

Non-optical sensors

Non-optical sensors measure EM energy in the range outside the wavelength
range of light. These sensors measure energy of e.g. microwaves, gamma
waves, ultraviolet waves, infrared waves and radio waves. Notice that since
LiDAR also measures ultraviolet and near infrared spectra it can be con-
sidered as both an optical and a non-optical sensor. Other examples which
utilize non-optical sensors are gamma-ray spectrometry and RADAR. The
gamma-ray spectrometry involves measuring the amount of very short wave-
length (picometers) gamma rays emitted by the upper soil or rock layers due
to radioactive decay (Bakker et al., 2009). Gamma rays are measured mainly
in mineral explorations because the measured energy of specific wavelengths
provide information on the abundance of specific minerals. Gamma-ray
spectrometry must be measured close to the Earth’s surface (within a few
hundred meters) because of large atmospheric absorption of these waves.
RADAR sensors are one of the most commonly used active microwave sen-
sors originally developed and used by the military. Nowadays, they are also
widely used in civil applications. RADAR applications include e.g. environ-
mental monitoring, aviation, marine navigation and meteorology. Classified
examples of devices and techniques using active/passive and optical/non-
optical sensors are shown in Table 2.1. Note that these classifications are
not completely fixed.
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Table 2.1: Example devices and techniques utilizing passive/active and
optical/non-optical sensors (see e.g., Bakker et al., 2009).

2.2.2 Data collection techniques

Many different techniques exist today for data collection purposes. Sensors
can be attached e.g. to automobiles, aircraft, ships and satellites for multi-
ple different purposes. For example automobiles can collect data about air
pollution by making real time measurements of nitrogen dioxide levels. The
aircraft meteorological data relay (AMDAR, 2018) is an example of a pro-
gram initiated by the World Meteorological Organization (WMO) in which
meteorological data is collected worldwide by using commercial aircraft. One
of the common modern ways to collect data from the surface of the Earth
is to use a satellite. Satellites contain various measurement instruments
like for example multispectral scanners, which measure the reflected EM en-
ergy from Earth’s surface resulting as digitalized pixel image data (Bakker
et al., 2009). The Landsat (originally Earth Resources Technology Satellite
ETRS) program is a series of satellite imaging missions started during the
1970s. The missions are operated by NASA and the U.S. Geological Survey.
The program so far has consisted from eight satellites Landsat 1-8. In the
course of these missions millions of high resolution images have been ac-
quired by diverse set of instruments aboard the Landsat satellites (Landsat,
2018). The collected data contain beneficial information regarding agricul-
ture, geology, forestry, resource detection, state of oceans, regional planning
et cetera. In Figure 2.1 is presented the Landsat 8 satellite and an example
image produced by the corresponding satellite. Another example of satellite
data collection is the Sentinel-1 mission which comprises from two polar-
orbiting satellites (Sentinel-1 team, 2013). Its mission is the joint initiative
of the European Commission and the European Space Agency or ESA. It
is based on data received from Earth observing satellites and ground-based
information, and it provides short revisit times, dual polarization capabil-
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Figure 2.1: Left: Landsat 8 satellite. Right: Landsat image of Oulu, Fin-
land. Image copyright c© NASA and U.S. Geological Survey.

ity and rapid product delivery. Due to the synthetic aperture radar (SAR)
technology, the Sentinel-1 satellites can acquire imagery regardless of the
weather. SAR has the advantage of operating at wavelengths not impeded
by lack of illumination or cloud cover and can acquire data over a site under
all weather conditions during day or night time. In Table 2.2 is listed other
examples of satellites with different specifications.

Satellite Resolution Bands λ region (µm) Application

IKONOS 0.82m 5 0.45-0.9 mining and exploration

TerraSAR-X 1m 1 31066 infrastructure planning

SPOT-7 1.5m 4 0.45-0.89 deforestation

RADARSAT 8m 1 56564 oil and gas

Sentinel-2A 10m 13 0.44-2.19 agriculture

LANDSAT 8 15m 11 0.43-12.51 vegetation analysis

Table 2.2: Examples of satellites providing RS natural resource data (see
e.g., Satellite imaging corporation, 2018; Earth observation portal, 2018; Eu-
ropean space agency, earth portal, 2018). Resolution refers to the maximum
resolution of the corresponding satellite. Number of used EM frequency
bands, wavelength ranges (λ) and example applications for the satellites are
also shown.
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2.3 Data representation

In order to analyze real world phenomenas we first need to store informa-
tion about it in some format. This information is ordinarily stored either in
raster or ascii-file format in digital computers. A raster data set corresponds
to a set of images (such as GeoTIFF) representing e.g. satellite data. An im-
age file contains a discretized representation of a target area with each pixel
value corresponding to an attribute of interest like topographical height for
example. The other format, i.e. an ascii-file, is normally a text- or a csv-file
containing the target variable and geographical location data. Data resolu-
tion size plays an important role when digitalizing real world phenomenas
to a set of discrete data points. Any geographic area contains potentially
an infinite amount of information so finding the suitable resolution size for
the corresponding application should be carefully inspected. The Figure 2.2
depicts an example raster data image of a topographic height image map.
Darker values in the image correspond to areas with lower topographical
height and bright areas to higher topographical height respectively.

Figure 2.2: Raster topographical height data image from Parkano, Finland.
The potentially infinite amount of geographical information is discretized
into a finite set of pixel units.

2.4 Open data sets

This section presents some of the open natural resource data sets used in the
included publications. The data were mainly collected using RS techniques
such as satellite and airborne imaging methods. Note that not all of the
available RS data is provided in raw format, but some of the data sets are
the products (e.g. map data) of measured raw data. The data formats are
mostly GeoTIFF-images with varying resolutions. Examples of these data
sets are presented in Table 2.3. Digital elevation model (DEM) consists

12



Data Provider Publication

Digital elevation model NLS I-IV

Gamma-ray spectroscopy GTK I-IV

Airborne EM GTK II, IV

Peatland LUKE II-IV

Weather information FMI III-IV

Aerial imagery NLS V

MS-NFI LUKE II-V

Table 2.3: Examples of open natural resource data sets used in the publica-
tions included into this thesis. Data provider is given in the center column
and the last column shows in which publication the data was used.

from a numeric representation of the Earth’s surface which contains height
points representing the topography, and a method for calculating elevations
between the height points. DEM data is usually stored as a regular grid or a
triangulated irregular network (Wood, 1996). Gamma-ray spectroscopy data
is based on gamma-ray flux from potassium, which is the decay process of
the naturally occurring potassium element. This data indicates many char-
acteristics of the soil, such as the tendency to frost heaving and tendency to
stay moist after precipitation (Hyvönen et al., 2003). Factors like soil type,
porosity, density, humidity and grain size affect the amount of gamma-ray
radiation. Soil with high gamma-radiation tends to have lower moisture
than soil with low gamma-radiation. The peatland data is a binary raster
image with 0/1 values corresponding to non-peatland/peatland areas. It
is compiled using open geographic information data derived from NLS to-
pographic database (NLS, 2014). Airborne EM (AEM) data is collected by
transmitting an EM signal from a sensor attached to an aircraft. Depending
on the system used and the surface conditions, AEM techniques can detect
changes in the conductivity of soil to depths of hundreds of meters. The con-
ductivity response in the ground is commonly caused by the presence of e.g.
graphite, salt or clays which are electrically conductive materials. Weather
data provided by the FMI includes temperature and rainfall information.
Aerial imagery contains RGB and color-infrared images acquired with dig-
ital camera sensors. The biannually updated MS-NFI data (introduced in
Section 1.2) holds the state of Finnish forests in high spatial resolution. For
more information on the corresponding data sets see the included publica-
tions (Pohjankukka et al., 2014a,b, 2016, 2017, 2018; Airola et al., 2018).
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2.5 Spatial data analysis

A set of spatially distributed data points in geographical space forms a
spatial data set. These data points contain information about the charac-
teristics of the corresponding geographical locations. Data analysis involved
with data sets like this is called spatial data analysis (see e.g., Cressie, 2015).
Plenitude of real world data sets contain geographical locations. Take for
example a data set about tree attributes. This data set could involve at-
tributes such as tree height, diameter, volume et cetera, but it also includes
the locations of the trees. Another example is provided by the global po-
sitioning system (GPS). The GPS system keeps track of the locations of
millions of vehicles around the world. All navigation systems use some sort
of positioning data and are therefore involved with spatial data analysis.
Geographical data samples naturally contain dependencies with each other
as a function of distance between them. The first law of geography and
fundamental principle in geostatistical analysis, according to Waldo Tobler
(Tobler, 1970), states that: ”Everything is related to everything else, but
near things are more related than distant things”. This property of closer
things being more similar to one another is called spatial autocorrelation
(SAC). Because of SAC, special caution has to be taken in many statistical
methodologies, which often rely on the assumption of independent and iden-
tically distributed (i.i.d.) data samples. When dealing with spatial data sets
this assumption can result in optimistically biased approximations. In the
next section we will give a formal definition for SAC using the well-known
autocorrelation function (see e.g., Shumway and Stoffer, 2005).

2.5.1 Spatial autocorrelation

Let Xr denote a random variable with a corresponding probability density
function fr(x) where x is a realization of Xr. The index r denotes either time
lag (Shumway and Stoffer, 2005) or distance. In this thesis, we are dealing
with spatial data sets and therefore r ∈ R+. For defining the autocorrelation
function we need the definitions for the mean and autocovariance functions.
The mean function µr for random variable Xr is defined as the expected
value:

µr = E(Xr) =

∫ ∞
−∞

x fr(x) dx . (2.1)

The physical interpretation of µr is the average value of realizations of the
random variable Xr, which are located r distance units away from some
spatial reference point (see left side of Figure 2.3). The reference point
corresponds to the black point in the center of the circle. In practice, we
usually never have data points which are exactly r distance units away from
the center point, and therefore some tolerance level ∆r must be used. That
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Figure 2.3: Left : illustration on how µr would be estimated with real data.
The realizations of Xr are inside the surrounding shell with thickness 2∆r.
Right : illustration of how ρ(r) is calculated with raster data when the real-
izations of Xr correspond to the center values of the pixels which are inside
the shell.

is, we must allow the distance to the surrounding data points to deviate
slightly from r by some ∆r amount. In the figure, this corresponds to
having a circular shell of thickness 2∆r which contains the realizations of
Xr. The autocovariance function γ(r, s) for random variables Xr and Xs

(with indexes r and s correspondingly) is defined as the second moment
product:

γ(r, s) = Cov(Xr, Xs) = E [(Xr − µr)(Xs − µs)]), (2.2)

where Cov(Xr, Xs) stands for the covariance of random variables Xr and
Xs. By normalizing the autocovariance function we get the autocorrelation
function, which is defined as:

ρ(r, s) =
γ(r, s)√

γ(r, r)γ(s, s)
=

γ(r, s)√
σ2rσ

2
s

, (2.3)

where σ2r and σ2s are the variances of random variables Xr and Xs. To
measure the autocorrelation corresponding to the two dimensional setting
in Figure 2.3 we could fix s = 0, so the center of the circle would correspond
to random variable X0. The autocorrelation value is now a function of only
the distance r away from the center: ρ(r, 0) = ρ(r). In practice with GIS
raster data, the calculation of ρ(r) would be implemented as illustrated in
the right side of Figure 2.3. Next, we will go through other examples on
how the degree of SAC in data can be estimated.
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2.5.2 Measures of spatial autocorrelation

Variogram

The variogram (see e.g., Cressie, 2015) is a function describing the degree
of spatial dependence of a stochastic process. Let s ∈ S denote a location
point, and X(s) a random variable X of a stochastic process at location s.
Then the variogram function between locations s1, s2 ∈ S is defined as:

2v(s1, s2) = E
[
((X(s1)− µ(s1))− (X(s2)− µ(s2)))

2
]

= Var(X(s1)−X(s2)),
(2.4)

where µ(si) denotes the expected value of random variable X(si). The
function v(s1, s2) itself is called the semivariogram function. If the stochastic
process of the random variable X is both isotropic (uniform in orientation)
and stationary (independent of time or location shift), then the variogram
can be represented as a function of only the distance h between s1 and
s2. In this case we have v(s1, s2) = v(h), where h = e(s1, s2) and e is
some metric function. The distance h is usually called the lag term as in
time series analysis (Shumway and Stoffer, 2005). In practice, our data set
consists from a set of observed sample points {x(s1), x(s2), ..., x(sn)} of the
corresponding random variables. In this situation we estimate the variogram
2v(h) with the empirical variogram 2v̂(h), which is calculated by:

2v̂(h) ≡ 1

|N(h)|
∑
N(h)

(x(si)− x(sj))
2 , (2.5)

where N(h) ≡ {(i, j) : e(si, sj) = h ∧ i ≤ j} and |N(h)| is the cardinality of
N(h). That is, N(h) is a set that contains all the index pairs (i, j) of data
points that have distance h between them. The condition i ≤ j makes sure
that each pair (i, j) is not included twice into the summation in Equation
2.5 because data point pairs corresponding to index pairs (i, j) and (j, i) are
equal.

Moran index

Moran index (or Moran’s I, Longley et al., 2005) is a method for measuring
the degree of spatial similarity in locational data. It tests to see if spatial
phenomena are clustered or are randomly spread throughout space. A cen-
tral component in Moran’s I is the weight matrix W ∈ {0, 1}n×n, where n
denotes the number of data points. When i 6= j the entries of W are wij = 1
if data at locations i and j are similar, and wij = 0 otherwise. For all en-
tries where i = j we set wij = 0. The similarity between data points can be
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specified depending on the phenomenon in question. The similarity index
value itself, denoted by I, is calculated by the formula:

I =

n

n∑
i=1

n∑
j=1

wij(yi − y)(yj − y)

w
n∑
k=1

(yk − y)2
, (2.6)

where yi stands for attribute of interest at location i, w =
∑n

i=1

∑n
j=1wij

and y is the average value of the yis. When I > 0 nearby data points tend
to be similar in attributes. When on the other hand I < 0 they tend to be
more dissimilar, and when I = 0 attribute values yi are arranged randomly
and independently in space. Moran’s I is one of the most popular measures
of SAC and is widely used in the field of geography and in applications
involving GIS data.

2.6 Machine learning

We now go through an introduction to the general ML paradigm, which
is applied in all the included publications. ML is a subfield of computer
science dedicated to the research and development of methods for recog-
nizing and learning dependency relationships in data. It is about making
computers to modify and adapt their actions to reflect the correct output
to given input data. The ML field contains a wide range of methodologies
for achieving the learning goals with its fundamental roots originating from
statistics, information theory, neuroscience, physics and mathematical op-
timization. ML bears many similarities with statistics and the two can be
considered to be almost exactly equal, since they both aim for the same
goal: to learn from data. They differ however on the things they emphasize.
Statistics is more about formal statistical inference like constructing confi-
dence intervals, hypothesis tests et cetera, whereas ML is more focused on
making accurate predictions and is less strict on testing assumptions (see
e.g., Breiman, 2001b; Shmueli, 2010; James et al., 2014). It must also be
added that the statistical methods used in ML is not limited only to frequen-
tist approaches, but applies also many methods of the Bayesian framework
(see e.g. Bishop, 1996). Furthermore, the models used in ML and statistics
can be divided into two classes: parametric and nonparametric models. A
parametric model contains a fixed number of parameters which are to be
tuned so that the model fits the data well. A nonparametric model does not
have a fixed number of parameters but they vary depending on the available
data. Nonparametric models can be considered as parametric models with
potentially infinite number of parameters (see e.g., Sheskin, 2007).
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2.6.1 The learning setup

The basic setup in any ML process involves more or less the following com-
ponents: observed data set D = {(x1, y1), (x2, y2), ..., (xn, yn)}, hypothe-
sis set H, objective function E and a learning algorithm A. The vectors
xi ∈ X ⊂ Rd correspond to explanatory variables and the values yi ∈ Y ⊂ R
correspond to the outputs. The set of outputs Y can also be missing in
some cases (e.g. in clustering problems). The hypothesis set is defined as
H ⊂ {f | f : X → Y}, i.e. it is a subset of functions (or models) f which
map x 7→ f(x) = y. The learning algorithm A is defined as the mapping
A : D → H (D 7→ f̂), where D is the set of all possible data sets (or data
space, i.e. D ⊂ D = X × Y) and f̂ is selected by A, based on D. This gen-
eral learning process of ML is illustrated in Figure 2.4. Examples of A are
e.g. the k-nearest neighbor (kNN) algorithm, backpropagation algorithm in
artificial neural networks (ANN, Marsland, 2014) or Markov chain Monte
Carlo (MCMC) sampling in Bayesian modeling.

In many cases, the goal of a ML process is to find a model f ∈ H such
that the objective function E is minimized, i.e. we select the model f̂ such
that:

f̂ = arg min
f∈H

E(f,D). (2.7)

In the case of a simple linear regression, the model takes the form f(xi,θ) =
θTφ(xi) =

∑d
j=1 θjφj(xi), where θ ∈ Θ ⊂ Rd is a parameter vector defining

the linear model (i.e. linear with respect to the parameters) and each φj
is some function of xi. In linear regression, we take the optimal model
f̂ = f(xi, θ̂) to be such that θ̂ = (XTX)−1XTy, where X ∈ Rn×d is matrix
with (i, j)th element being Xij = φj(xi) and y ∈ Rn is a column vector of the
output values. The simplest case for the functions φj is to set φj(xi) = xj ,
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Figure 2.4: Illustration of a general learning process in ML.
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where xj is the jth element of xi. The optimal parameter vector θ̂ here is
called the least squares (LS) estimator, which minimizes the sum of squared
errors (SE) formula:

SE =

n∑
i=1

(yi − f(xi,θ))2 . (2.8)

If the sum in Equation 2.8 is further multiplied with the reciprocal n−1 then
the equation is called the mean squared error (MSE) formula.

Another option for implementing learning in ML is to use probabilistic
approaches such as Bayesian methods, which are based on the famous Bayes’
theorem:

p(θ |D) =
p(D |θ) p(θ)

p(D)
∝ p(D |θ) p(θ), (2.9)

where the constant normalizing factor p(D) can be disregarded. The p(D |θ)
is the likelihood of the data and p(θ) is the prior distribution of the param-
eters. In this approach, we are interested in finding a parameter vector θ
which maximizes the posterior distribution:

θ̂ = arg max
θ∈Θ

p(θ |D). (2.10)

Parameter vector θ̂ that satisfies Equation 2.10 is called the maximum a
posteriori (MAP) estimator. The advantage of the probabilistic methods
are that they allow the computation of statistics like posterior intervals,
expected values, posterior predictive variance et cetera. Other difference
between non-probabilistic and probabilistic methods is on how predictions
can be made. In the non-probabilistic approach, predictions ŷ for output
value y are made by inputting a new vector of explanatory variables x to
the learned model, i.e. ŷ = f(x, θ̂). In the probabilistic approach, pre-
dictions can be calculated as ŷ = E [y |x, D] using the posterior predictive
distribution:

p(y |x, D) =

∫
p(y |x,θ) p(θ |D) dθ. (2.11)

That is, ŷ is now calculated as the expected value of y with respect to dis-
tribution p(y |x, D). The prior distribution p(θ) in Equation 2.9 is subject
to fundamental debate in statistics between frequentist and Bayesian per-
spectives. With large data sets however the prior does not play a big role
since it essentially factors out in this case working simply as a catalyst,
and the likelihood p(D |θ) determines the model completely (Abu-Mostafa
et al., 2012). There are also possibilities to select non-informative priors,
which are designed to have no or minimal effect to the posterior distribution
(Gelman et al., 2013). In addition, the process where the model parameters
θ̂ are chosen so that:

θ̂ = arg max
θ∈Θ

p(D |θ), (2.12)
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then θ̂ is known as the maximum likelihood estimator and the process is
known as maximum likelihood estimation (MLE). It can be easily shown
that the process of minimizing SE is equivalent to MLE under Gaussian
noise distribution assumption (see e.g., Konishi and Kitagawa, 2007). When
the prior does not affect the selection of θ then MLE and MAP produce
identical results. Useful properties of the MLE estimator θ̂ are that: Pr(θ̂ =
θ0) → 1 and

√
n(θ̂ − θ0) → N (0, I(θ0)

−1) as n → ∞, where θ0 is true
unknown parameter vector and I(θ0) is the Fisher information matrix at
θ0. These properties of MLE are known as asymptotic consistency and
normality. Moreover, the MLE estimator is efficient (has asymptotically
smallest variance) and is invariant under functional transformation, i.e. if θ̂
is the MLE estimator of θ0, then z(θ̂) is the MLE estimator of z(θ0), where
z = z(θ) is a function of θ (Fisher, 1922, 1925; Lehmann and Casella, 1998;
Mukhopadhyay, 2000). Note that these asymptotic properties of the MLE
are valid only in methods which have a probabilistic interpretation.

Considering that the topic of this thesis is related to forest attribute
estimation via ML, it is worth mentioning that many studies have been con-
ducted about applying Bayesian nonparametric modeling (Bayesian mod-
els with an infinite-dimensional parameter space) to forestry applications.
Bayesian nonparametric modeling includes many effective methods such as
mixture models, latent feature models, Gaussian processes, Dirichlet pro-
cesses, hidden Markov models (HMM) and hierarchical models (see e.g.
Gelman et al., 2013; Bishop, 2006, 1996). One can find examples of such
forestry applications from works such as in a summary volume (Maltamo
et al., 2014). The corresponding case studies include applications such as
segmentation of forest to tree objects, estimation of biomass components,
tree species recognition, tree diameter distribution estimation, estimation of
canopy cover, forest fuel assessment and fire prevention, biodiversity asser-
tion et cetera.

2.6.2 Types of learning

The ML methods can be categorized into classes based on what kind of learn-
ing is implemented. They are most commonly categorized by whether they
belong into supervised learning or unsupervised learning methods. There
are also hybrids of the two mentioned like semi-supervised learning and
reinforcement learning methods, which have characteristics from both su-
pervised and unsupervised learning classes.

Supervised learning

When we are dealing with labeled data, i.e. data which contains both the
explanatory input data set X and the output data set Y (i.e. labels), we
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are doing supervised learning. In a supervised learning problem we are
always given the ground truth values yi for output variables, which can
be compared with the outputs ŷi = f̂(xi) of the estimator model f̂ . A
learning method belongs to a class of supervised learning methods when it
involves comparing the observed output values yi with the model’s estimates
ŷi. Usually an objective function like the SE in Equation 2.8 is used in this
comparison. When the output values yi belong to a set Y ⊂ Z we are
usually dealing with a classification problem, i.e. a ML system will learn to
classify data. In cases where yis belong to set Y ⊂ R we are dealing with a
regression problem. An example of supervised classification learning problem
is an object recognition system. Consider a data set which contains images of
human and non-human faces. The labels of this data set are a set of boolean
1/0 (true/false) values indicating whether the image represents a human face
or not. The ML system will be trained to recognize the characteristics of a
human face and to link these characteristics with a positive (true) output
value. An example of supervised regression problem is the prediction of the
future value of a stock in NASDAQ.

Unsupervised learning

Whereas in supervised learning we had the set of output values Y available,
in unsupervised learning we do not have this set. Unsupervised learning is
implemented without feedback using set Y on whether we have made a good
estimation or not. In this kind of learning the focus is mostly concerned with
finding similarities between the input data points in X so that inputs that
have something in common are categorized together. An example of unsu-
pervised learning is data clustering using e.g. k-means algorithm (Theodor-
idis and Koutroumbas, 2008) or statistical density estimation. Consider
a web-based system providing movie streaming services for consumers like
Netflix. Websites like these collect viewer data in order to categorize each
user’s movie taste. Based on these categorizations the website can offer new
movies to the viewers similar to their liking. This will increase the probabil-
ity that the user will not unsubscribe the websites services, and hence can
increase profits.

Semi-supervised and reinforcement learning

In semi-supervised learning problem we have only some (small) subset U ⊂ Y
of the output values available and modeling is implemented by using both
labeled and unlabeled data. In reinforcement learning, the set of output
values Y is not available at all but some scoring function is implemented to
guide the learning process. An example of reinforcement learning is playing
a game like chess, where one learns by simply playing the game.
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2.7 Model complexity selection

In the previous sections we discussed about modeling with ML. We pointed
out, that many of the learning tasks can be represented as an optimization
problem in the form of Equation 2.7. It therefore seems reasonable to sug-
gest, that we should always select such a model f which minimizes the right
side of this equation. It turns out however that even though this argument
makes sense mathematically, it is not a good approach in most real world
problems. The reason for this is that the data we use for analysis contains
almost certainly an added noise. This is simply due to the fact that abso-
lute precision is impossible to achieve in most cases of physical measuring.
Explicitly stated, this means that if our variable of interest y has a true
dependency relation y = g(x), where g is some unknown function, then the
observed value always has the form y = g(x) +ε. Here the term ε is called a
noise term, which by definition is a variable that can not be learned. There-
fore, it is important for the goal of the learning process to have f̂ ≈ g and
not f̂ ≈ g + ε, where ε is a random function generating the noise term ε.

It must also be mentioned that even though noise causes problems in
modeling, it is not necessarily the sole factor. Problems can also be caused
by e.g. a too complex hypothesis set H or a small data set D. If H contains
a large number of equally likely models that solve Equation 2.7, then it is
unlikely that generalization can be achieved. This is due to the fact that
when we have a huge set of equally good models to choose from, then the
chances of selecting the correct one is small. Another problem can arise if
D is very small and the true model g is a highly complex function. In this
case, in order to have any success in generalization, f̂ should be selected
from a simpler hypothesis set than the set g belongs to. The drawback
here of course is that now the learned model f̂ can not approximate g well.
The simplicity of a hypothesis set H can be measured with e.g. a concept
known as the Vapnik-Chervonenkis (VC, Vapnik, 1998) dimension. The VC
dimension is a measure of the capacity (complexity, flexibility) of H that can
be learned by a statistical classification algorithm. It can be shown (see e.g.
Hoeffding, 1963) that if H has a finite VC dimension, then generalization
with H is possible.

In the following subsections, we will have closer discussions about the
relationship between model fitting and generalization capability, and we will
also consider some of the most widely used methods for model complexity
selection in ML. Furthermore, at the end of this section we will present a new
model evaluation and selection method proposed in the included publication
(Pohjankukka et al., 2017), which takes into account the effects of SAC in
the data. As we noted earlier, SAC is an intrinsic property in many natural
data sets, so model evaluation and selection using the standard methods is
not always suitable in all situations.
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2.7.1 Overfitting

The situation where f̂ ≈ g + ε is caused by overfitting the model to the
observed data D. What this means is that we have trained the model f too
much, i.e. we have forced the model to learn non-existing patterns in the
data created by the noise term ε. In other terms, when we overfit a model,
we produce an analysis that corresponds too closely (or even exactly) to a
particular data set. This model may therefore fail to fit new observed data
well, making the prediction of future observations unreliable. A common
characteristic of an overfitted model is that it contains more parameters than
what can be justified with the available data set. Overfitting is tempting
to occur, since a highly complex model will fit the observed data very well
and produces a small error in Equation 2.7. However, because the whole
goal of statistical inference is on how to deal with unobserved data, i.e.
how to generalize to data we have not yet seen, it is not sufficient to just
consider minimizing the objective function. In Figure 2.5 is an illustration of
a model fitting done right and a heavily overfitted model with a 20th order
polynomial. The data points have been generated from a linear function
with an added uniform random noise. The linear fit will generalize much
better than the higher order fit in this example. Even though the higher
order model fits the data exactly, it will not generalize as well as the simpler
model since it has learned an additional random phenomenon ε, which can
not be learned. This illustration is also an example of a principle known as
Occam’s razor, which states that the simpler explanation is usually better
(see e.g., Vapnik, 1998). Dealing with overfitting is one of the key tasks in
data analysis, and the ability to handle it is what separates professionals
from amateurs (Abu-Mostafa et al., 2012).
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Figure 2.5: (a) A linear fit to data. (b) 20th order polynomial fit.
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2.7.2 Bias-variance trade-off

In Figure 2.6 is shown the connection between complexity of the estimator
model f̂ and its generalization error. In the beginning, the model is too
simple (e.g. a constant) to capture the pattern in the data. Situation like
this is called underfitting. This can be caused either by poor model fitting
or a lack of sufficient data. In the other end, when we have fitted the
model too well to the data, overfitting occurs. The optimal fit to the data
lies somewhere between the two extremes, when the model is not too simple
and not too complex. When a model is too simple, it is said to be biased by a
priori knowledge with small variance. As we increase the model complexity
to get a better fit to data we increase the model variance. Straight line
for example has a large bias and small variance, whereas a complicated
polynomial has a small bias but large variance. In other words, when we have
a less complex hypothesis set H we have better chances of generalization,
whereas when we have a more complex hypothesis set H we have better
chances of approximating the true model g. It turns out that there is a
trade-off between the generalization and approximation performance for the
model f̂ , which is known as the bias-variance trade-off (see e.g., Marsland,
2014). To make this more explicit, we will first define the average estimator
model f̄ as:

f̄(x) = ED

[
f̂ (D)(x)

]
. (2.13)

That is, f̄(x) is the average estimator model over all possible data sets D.
The notation f̂ (D) here denotes the dependency of the model f̂ to the data
D, since f̂ is learned using the data set D. Using the above definition it can
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be shown (Abu-Mostafa et al., 2012) that:

ED [Ex(SE(x))] = ED

[
Ex

[(
f̂ (D)(x)− g(x)

)2]]
(2.14)

= Ex

[
ED

[(
f̂ (D)(x)− g(x)

)2]]
= Ex

[(
f̄(x)− g(x)

)2]
+ Ex

[
ED

[(
f̂ (D)(x)− f̄(x)

)2]]
= Ex [Bias(x)] + Ex [Variance(x)]

= Bias + Variance,

where SE(x) is the squared error function for input x (cf. Equation 2.8).
We see from equation 2.14 that the expected SE over all possible data sets D
can be decomposed into the bias and variance components. As we increase
model variance we decreases the bias and vice versa. This relationship is
also illustrated in Figure 2.6.

2.7.3 Information criteria

Considering the discussions in previous sections, it is now interesting to ask
how should one select the optimal complexity of a model? Multiple method-
ologies originating from statistics and mathematical optimization have been
developed for answering this question. One widely used approach is based on
measuring how far away a fitted statistical model is from the true probability
distribution which generated the observed data. Let x(n) = {x1, x2, ..., xn}
be a set of n realizations of a random variable X with a true unknown dis-
tribution G(X). Furthermore, let F (X) be a distribution fitted to the data
x(n), which we use for approximating G(X). The probability density or mass
functions of G(X) and F (X) are denoted as g(x) and f(x) respectively. To
measure the closeness of these distributions, Akaike proposed in his work
(Akaike, 1973) to use the Kullback-Leibler information (K-L information,
Kullback and Leibler, 1951):

I(G;F ) = EG

[
log

{
G(X)

F (X)

}]
= EG [logG(X)]− EG [logF (X)] , (2.15)

where EG denotes expectation with respect to distribution G(X). In infor-
mation theory the K-L information is also known as relative entropy. The
K-L information is a fundamental building block for the concept known as
information criteria, which are used to give a bias-corrected goodness of fit
measure on how well F (X) approximates G(X). We will discuss later on
why a bias-correction is required. Important properties of the K-L infor-
mation are that I(G;F ) ≥ 0 always, and I(G;F ) = 0 ⇐⇒ G(X) = F (X).
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Proofs for these properties can be found e.g. in (Konishi and Kitagawa,
2007).

The first expectation term EG [logG(X)] in the right side of Equation
2.15 is a constant since G(X) is the true unknown distribution and therefore
does not change. With the properties of the K-L information in mind,
we notice that the best approximating distribution F (X) is the one which
maximizes the value of EG [logF (X)] known as the expected log-likelihood
function. In order to make calculations possible (due to the fact that G(X) is
unknown), we replace G(X) in Equation 2.15 with the empirical distribution
Ĝ(X) with a uniform probability function ĝ(xi) = 1/n, i = 1, ..., n where
n was the number of observed realizations of X. We denote this empirical
expected log-likelihood function as EĜ [logF (X)]. Due to the law of large
numbers we have that EĜ [logF (X)]→ EG [logF (X)] as n→∞:

EĜ [logF (X)] =

∫
log f(x) dĜ(x)

=

n∑
i=1

ĝ(xi) log f(xi) =
1

n

n∑
i=1

log f(xi),
(2.16)

so we have 1
n

∑n
i=1 log f(xi) → EG [logF (X)] as n → ∞. The empirical

expected log-likelihood function multiplied by n is therefore:

nEĜ [logF (X)] =

n∑
i=1

log f(xi)
def
= L(f(x(n))), (2.17)

where L(f(x(n))) is known as the log-likelihood function of the distribution
F (X). We see now that the higher the value of L(f(x(n))) is, the smaller
the K-L information is, and the better the fitted distribution F (X) is. The
log-likelihood can therefore be used to approximate the K-L information
of F (X). Because the probability function f(x) is always parametrized by
some vector θ ∈ Θ ⊂ Rd, we can write L(f(x(n))) as a function of θ:

`(θ) = L(f(x(n) |θ)). (2.18)

Regarding the above discussion, one would select an estimator distribution
F (X) with a probability function f(x | θ̂) such that:

θ̂ = arg max
θ∈Θ

`(θ), (2.19)

where θ̂ is the MLE estimator. Note that `(θ̂) is the estimator of
nEG[log f(X | θ̂)] and n−1`(θ̂) is the estimator of EG[log f(X | θ̂)]. It
now seems reasonable that we should compare different competing mod-
els fj(x | θ̂j), j = 1, ..., p based on the values of `(θ̂j), where θ̂j is the MLE
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estimator for model fj(x |θ). It turns out however that `(θ̂) is a biased

estimator of nEG[log f(X | θ̂)] and hence a biased goodness of fit measure,
which can lead to overfitting. This happens because the MLE favors more
complex models over simpler ones. Lets take a closer look on why the bias
occurs. Let θ0 be the parameter vector of the true data generating prob-
ability function g(x |θ0). Since g(x |θ0) is the true model, we always have
EG[log f(X | θ̂)] ≤ EG[log g(X |θ0)]. For the log-likelihood function we have
the opposite, i.e. always `(θ0) ≤ `(θ̂) since θ̂ is by definition the value which
maximizes `(θ). This result seems to be contradicting the fact that `(θ̂) can
be used as an estimator for nEG[log f(X | θ̂)]. One would think that if log-
likelihood approximates the expected log-likelihood function, then we would
have EG[log f(X | θ̂)] ≤ EG[log g(X |θ0)] and `(θ̂) ≤ `(θ0), which as demon-
strated, is not the case. So what is the problem here? The reason why this
problem occurs is that the known data x(n) = {x1, x2, ..., xn} was used twice
in the estimation process. Once for fitting the model f(x |θ), and then
reusing it for estimating the goodness of this model with `(θ). This usage
of same data twice is what gives rise to the bias in `(θ). Consequently, in
order to have a fair estimate on the goodness of a model f(x |θ) we need to
remove the bias from the corresponding log-likelihood value `(θ).

General form of information criterion

As we discussed in the previous section, the log-likelihood function `(θ)
needs to be bias-corrected before it can be trusted as fair measure of the
goodness of an approximating model f(x |θ). In other words, we need to
subtract the bias from the value of `(θ). The bias term b(G) of the log-
likelihood as an estimator of the expected log-likelihood is defined by:

b(G) = EG(x(n))[`(θ̂)− nEG[log f(X | θ̂)]], (2.20)

where G(x(n)) =
∏n
i=1G(xi) is the joint distribution of the data x(n). The

bias free measure of model goodness is therefore of the form:

IC = `(θ̂)− b(G). (2.21)

The value IC obtained after the removal of the bias is called information
criterion. Since G(X) is the unknown true distribution the bias term also
needs to be approximated with the available data x(n). The specific form
of the bias term b(G) depends on the relationship between g(x) and f(x)
and the method we use to fit f(x). The IC value is usually multiplied by a
constant factor of −2 for ”historical reasons”. It is well known for example
that −2 times the logarithm of the ratio of two maximized likelihood values
is asymptotically χ2-distributed under certain conditions and assumptions
(Burnham and Anderson, 2002). The −2 constant also arises in other sta-
tistical contexts, such as in the deviance statistic (see e.g., Gelman et al.,
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2013). For further inquiry, the reader is encouraged also to study the con-
nections of IC to the χ2-based hypothesis testing and likelihood ratio tests
(see e.g., Akaike, 1973; Wilks, 1938). When the IC in Equation 2.21 is mul-
tiplied with −2, we get the general form for information criterion (Konishi
and Kitagawa, 2007):

IC ≡ −2(`(θ̂)− b(G)) = −2`(θ̂) + 2b(G). (2.22)

Note that given the form of the IC in Equation 2.22, the better our fitted
model f(x | θ̂) is, the lower the value of IC. In Figure 2.7 is illustrated the
summarized connection between K-L information, log-likelihood function
and information criteria. In the next subsections we will briefly go through
some examples of information criteria.

Takeuchi’s information criterion

The information criterion with the bias term resulting from the estimation
of the expected log-likelihood using the log-likelihood of the approximation
model, has asymptotically the form:

TIC = −2
n∑
i=1

log f(xi | θ̂) + 2 Tr
(
I(θ̂)J−1(θ̂)

)
, (2.23)

where Tr
(
I(θ̂)J−1(θ̂)

)
is the approximated bias term with d × d matrices

I(θ̂) and J−1(θ̂). The Tr(·) operator stands for the trace of matrix. Matrices
I(θ̂) and J(θ̂) have the forms:

I(θ̂) =
1

n

n∑
i=1

∂ log f(xi |θ)

∂θ

∂ log f(xi |θ)

∂θT

∣∣∣∣∣
θ=θ̂

, (2.24)
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J(θ̂) = − 1

n

n∑
i=1

∂2 log f(xi |θ)

∂θ∂θT

∣∣∣∣∣
θ=θ̂

, (2.25)

with the corresponding (j, k)th elements:

Ijk(θ̂) =
1

n

n∑
i=1

∂ log f(xi |θ)

∂θj

∂ log f(xi |θ)

∂θk

∣∣∣∣∣
θ=θ̂

, (2.26)

Jjk(θ̂) = − 1

n

n∑
i=1

∂2 log f(xi |θ)

∂θj∂θk

∣∣∣∣∣
θ=θ̂

. (2.27)

This information criterion is known as Takeuchi’s information criterion
(TIC, Takeuchi, 1976; Stone, 1977). TIC is rarely used in practice but is
a more general having less assumptions than other more used IC statistics.
One of the reasons for low popularity of TIC is that it is not widely known
and that it is much more complicated to compute than other commonly
used IC (see e.g. Anderson, 2008). The complication arises from the fact
that TIC involves the estimation of two d × d matrices of first and second
partial derivatives, matrix inverse, and then matrix product. Unless a large
data set is available, the bias term in TIC is often numerically unstable.
However, it turns out that a very good estimate for the bias term can be
calculated in other IC statistics, one of which we discuss next.

Akaike information criterion

The Akaike information criterion (AIC) is almost identical to TIC, but it is
a more often used and famous model selection criterion. To be more precise,
AIC is actually a special case of TIC with a stronger assumption. In AIC
we assume that the hypothesis space H = {f(x |θ); θ ∈ Θ ⊂ Rd} contains
the true model g(x |θ0), i.e. ∃ θ0 ∈ Θ so that f(x |θ0) = g(x |θ0). Under
this assumption, it follows that I(θ0) = J(θ0) and thus the bias term in
Equation 2.23 asymptotically becomes:

b(G) = Tr
(
I(θ̂)J−1(θ̂)

)
= Tr

(
I(θ̂)I−1(θ̂)

)
= Tr (Id×d) = d. (2.28)

Plugging the corresponding bias term into Equation 2.23 we get:

AIC = −2

n∑
i=1

log f(xi | θ̂) + 2d. (2.29)

Bayesian information criterion

A Bayesian approach for measuring the goodness of fit of a statistical model
is based on approximating the marginal likelihood (also known as marginal
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distribution) of data x(n) by using Laplace’s approximation for integrals and
Taylor expansion (Konishi and Kitagawa, 2007). The marginal likelihood is
defined as:

p(x(n)) =

∫
f(x(n) |θ)π(θ) dθ =

∫
exp (`(θ))π(θ) dθ, (2.30)

where f(x(n) |θ) is the likelihood of data x(n) and π(θ) is the prior dis-
tribution for model parameters θ. It can be shown, that using Laplace’s
approximation for integrals and Taylor expansion for `(θ) and π(θ) around
the MLE estimator θ̂, we get:

p(x(n)) ≈ exp
{
`(θ̂)

}
π(θ̂) (2π)d/2 n−d/2

∣∣∣J(θ̂)
∣∣∣−1/2 , (2.31)

where again d is the number of model parameters, n the number of samples,
and ∣∣∣J(θ̂)

∣∣∣−1/2 = det

(
− 1

n

∂2`(θ)

∂θ∂θT

∣∣∣∣
θ=θ̂

)−1/2
= det

(
− 1

n

∂2 log f(x(n) |θ)

∂θ∂θT

∣∣∣∣∣
θ=θ̂

)−1/2
.

(2.32)

By taking the logarithm, multiplying by −2, and ignoring terms with order
less than O(1) with respect to n in Equation 2.31, we get the Bayesian
information criterion (BIC):

BIC = −2 log f(x(n) | θ̂) + d log n

= −2 log

n∏
i=1

f(xi | θ̂) + d log n

= −2

n∑
i=1

log f(xi | θ̂) + d log n.

(2.33)

Minimum description length

In 1978, Jorma Rissanen proposed in his work (Rissanen, 1978) the mini-
mum description length (MDL) principle from an information-theoretic per-
spective for measuring the goodness of a statistical model. MDL is based
on the idea that the best model to explain data x(n), is the simplest such
model which compresses data x(n) the best. If data contains regularities,
then we are able to generate a code C such that this code explains the data
in the shortest possible way. To illustrate this idea more, consider two bi-
nary strings: a random string of bits B1 = 011001010111..., and the string
B2 = 001001001001..., with a clear regular pattern. With B1, we can not
compress this string at all, since it is a random bit string containing no
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regularities. On the other hand with B2, we can compress it by writing a
code with a for-loop which repeatedly prints the bit string 001. Motivated
by this example, we now state the MDL principle. Given data x(n) and a
hypothesis set H, the MDL principal states that we should select a model f̂
such that:

f̂ = arg min
f∈H

LC(x(n) | f) + LC(f), (2.34)

where LC(x(n) | f) stands for the code length of data x(n) given the model f
and LC(f) is the code length of the model f itself. In other words, we select
the model for which the sum of the data encoding length (given the model)
and the model encoding length is the shortest. It can be shown that every
prefix code C has a corresponding probability distribution F (X) (see e.g.,
Rissanen, 1989; Grünwald, 2007). A prefix code is a code system, in which
no whole code word is a prefix of any other code word in the system. In
terms of probability distributions, the MDL can be stated as (considering
terms up to order O(log n), Konishi and Kitagawa, 2007):

MDL = − log f(x(n) | θ̂) +
d

2
log n

= −
n∑
i=1

log f(xi | θ̂) +
d

2
log n,

(2.35)

which is equivalent with Equation 2.34. The first term in the right-hand
side is the encoding length in sending the data x(n) by using the probability
distribution f(x(n) | θ̂), which is specified by the maximum likelihood esti-
mator θ̂ as the encoding function. The second term is the encoding length
for the maximum likelihood estimate θ̂ with accuracy δ = O

(
n−1/2

)
. It is

interesting to note that the MDL coincides with the BIC (MDL = BIC/2)
that was derived within the Bayesian framework. As with the all the in-
formation criteria in the previous subsections, a model having the smallest
MDL value is considered to be the best model to explain the data x(n).

2.7.4 Regularization

Model complexity selection using information criteria were based on select-
ing the model which minimized the IC value. The information criteria gave
a fair comparison between competing models by calculating the unbiased
log-likelihood value. As we discussed earlier, the best model is the one hav-
ing enough expressive power to capture the relevant pattern in the data,
but simple enough not to capture the irrelevant non-existing pattern pro-
duced by the noise in the data. Another approach to reach this same goal
besides using information criteria, is to use the concept of regularization.
Regularization is the means to constrain the model training process via pe-
nalization in order to prevent overfitting from happening. Constraining the
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model training process using regularization helps us to reach the optimal
balance in the bias-variance trade-off as we discussed in section 2.7.2 (see
Figure 2.6). In the next two subsections, we will present two common ways
of regularizing the model fitting process.

Penalty functions

Model fitting is fundamentally a constrained optimization problem which
calls for the need of nonlinear programming. As we discussed in section
2.6.1, often the goal in model fitting is to minimize some objective function E
(see Equation 2.7). In section 2.6.1, Equation 2.8, we saw an example of the
very common error function SE. We could find such a model which minimizes
the SE value, but this would produce an overfitted model. To alleviate this
problem we can use a method called penalty functions (Bazaraa, 2013),
which is a way to regularize the training process by introducing a penalty
term into the minimization problem of Equation 2.7. The penalty term
makes sure that we do not minimize E too much, but to sufficient extent.
In effect, this causes too extreme models not to be chosen from H. To make
things more explicit, let θ ∈ Rd be an independent variable, E(θ) an error
function and Ω(θ) a penalty function. A model fitting optimization problem
can now be formulated as:

minimize
θ∈Rd

E(θ)

subject to Ω(θ) = 0.
(2.36)

A vector θ that satisfies the constraint of Problem 2.36 is called a feasi-
ble solution and the set of feasible solutions is called a feasible region. The
minimization of E(θ) is therefore limited to the feasible region of the param-
eter space. When considering overfitting, we can think the penalty function
Ω(θ) as limiting the solutions θ to those which have a good balance in the
bias-variance trade-off. In other words, Ω(θ) reduces overfitting. The idea to
regularize with penalty functions is to reformulate the optimization problem
of Equation 2.36 in the following way:

minimize
θ∈Rd

E(θ) + η (Ω(θ))2 , (2.37)

where η > 0 is a large positive number. Note that this optimization problem
is now unconstrained for θ. However, the vector θ is still constrained to the
feasible region due to the penalty term, because otherwise a large penalty in
η (Ω(θ))2 would occur. The learning algorithm consequently favors solutions
θ such that Ω(θ) = 0. This reformulation of Problem 2.36 therefore has a
built-in regularization. It must be emphasized, that a general ML problem
does not require the condition Ω(θ) = 0 to be fulfilled exactly. Examples of
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regularizing the MSE are given below:

minimize
θ∈Rd

1

n

n∑
i=1

(
yi − xTi θ

)2
+ λ

d∑
j=1

I(θj 6= 0), (2.38)

minimize
θ∈Rd

1

n

n∑
i=1

(
yi − xTi θ

)2
+ λ

d∑
j=1

|θj |, (2.39)

minimize
θ∈Rd

1

n

n∑
i=1

(
yi − xTi θ

)2
+ λ

d∑
j=1

θ2j , (2.40)

where λ > 0 is the regularization parameter controlling the extent of regular-
ization. The regularization used in Equation 2.38 is called `0-regularization.
The function I(a) maps to 1 if a is true and 0 otherwise. That is, the penalty
term in Equation 2.38 is the number of nonzero elements of θ multiplied by
λ. Equations 2.39 and 2.40 are called `1-, and `2-regularization respectively.
The latter two are also known as least absolute shrinkage and selection op-
erator (LASSO) and Tikhonov regularization. A regression method which
linearly combines both `1-, and `2-regularizations is known as elastic net
(Zou and Hastie, 2005). The idea of regularization relates to the MLE pro-
cedure by a process called penalized maximum likelihood estimation, which
can be shown to be equivalent with the regularization method (see e.g.,
Akaike, 1980; Konishi and Kitagawa, 2007; Wahba, 1978).

Early stopping

Some model fitting problems can be solved analytically (e.g. in Tikhonov
regularization), but others must be solved numerically using iterative opti-
mization methods. Iterative optimization methods include e.g. gradient-
descent, golden-section search and Newton-Raphson method (Bazaraa,
2013). Iterative methods improve the model fit to training data in a step-
by-step manner. In this case it is important to identify the optimal number
of iteration steps because a too low number of iterations will result in under-
fitting and too large number of iterations will result in overfitting. A form
of regularization called early stopping is used to avoid overfitting in cases
where we need to train a model with iterative methods (Bishop, 1996). The
early stopping regularization is implemented in the following way:

1. Split the data set D into a training set Dt and a validation set Dv.

2. Perform one iteration in the model learning process using set Dt for
training and set Dv for evaluating model performance.
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3. Repeat step 2 as long as the model performance improves and stop
at iteration i, which is the first time when the model performance
decreases.

4. Choose the model parameters from iteration i−1 and stop the training
process.

Figure 2.6 illustrating the bias-variance trade-off presents also the idea of
early stopping. With increasing model fit (number of iterations) the per-
formance improves until optimal point is reached after which performance
starts to get worse.

2.7.5 Cross validation

In many cases one is interested in estimating the prediction performance of
a fitted model f . With a classification model for example, we might want
to give some estimated value, such as a classification accuracy p%, on the
model performance with new data. One way to do this estimation is to first
partition the observed data set D into two subsets: training data set Dt and
validation data set Dv (as we did in early stopping). The set Dt is then
used for training the model f and set Dv for validating its performance. It
is very important that the sets Dt and Dv do not overlap, i.e. Dt ∩Dv = ∅.
Otherwise, we risk having biased performance estimates with the validation
set Dv, because data points in Dv were used also to train the model f .

One can now ask, how should we partition the data set D? If Dt contains
most of the data points and Dv only small amount, then we get better model
fitting, but not so reliable performance estimation. If on the other hand
Dv contains most of the data points and Dt only small amount, then we
get a poor fit, but more reliable performance estimation. A method called
cross validation (CV) is a way to take the advantage from both of these
approaches: use all the data for fitting and performance estimation. The
CV procedure (see e.g., Gelman et al., 2013) is implemented in the following
way:

1. Index the data points in D by using a set I = {1, 2, ..., n}.
2. Partition the index set I into k disjoint random sets I1, I2, ..., Ik. That

is, each Ij ⊂ I, ∪ki=1Ii = I and Ij ∩ Ii = ∅ ∀j 6= i.

3. Denote next the set I−i as the set containing all indexes without the

ones included in set Ii, that is I−i =
k⋃
j=1
j 6=i

Ij .

4. For each Ij , j ∈ {1, 2, ..., k} train a model using data indexed by
I−j and use the inputs in X indexed by Ij with the trained model
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to calculate the estimated set Ŷj for the outputs in Y indexed by Ij .
Denote the set of estimated outputs as Ŷ = ∪kj=1Ŷj .

5. Report model goodness as E(Y, Ŷ) where E is some performance func-
tion.

This CV procedure of partitioning the data into k disjoint hold-out sets
indexed by Ij is called more specifically k-fold cross validation (KCV). A
special case of KCV where k = n, is known as leave-one-out cross validation
(LOOCV). The partitioning of the folds can be done either systematically
or randomly depending on the application. With geographical data sets for
example, in order to reduce the effect of SAC in performance estimates one
could design a fold partitioning so that data points inDv do not have training
data points of Dt close to them (Pohjankukka et al., 2017). Regarding
section 2.7.3 it can be shown that CV offers an alternative approach to
estimate the K-L information from a predictive point of view. In fact, it
can be shown that LOOCV is asymptotically equivalent to AIC for linear
regression models (Stone, 1977; Shibata, 1989; Konishi and Kitagawa, 2007).

Nested cross validation

Besides offering prediction performance estimation CV is also used for se-
lecting model hyperparameters such as the λ regularization parameter in
Equations 2.38, 2.39 and 2.40. In this situation however a problem arises.
In a CV procedure where the data set D is partitioned into sets Dt and Dv

biased performance estimation is bound to happen. The bias occurs due to
a phenomenon known as data snooping (see e.g., Abu-Mostafa et al., 2012)
which refers to the case where we modify our model after we have evaluated
it using set Dv. In other words, we are using the validation data to guide
the model selection process which therefore results in biased performance
estimation. Depending on the application and CV procedure however, the
bias can be smaller or larger. For example for LOOCV with a large data set
the bias is usually negligible for the purposes of the application and can be
ignored. In order to prevent data snooping from occurring in the model per-
formance estimation we use a CV procedure called nested cross validation
(NCV). NCV is almost the same as normal CV with the exception that now
the data partitioning includes a third set De called a test data set. The set
De is used to evaluate the model performance after it has been fully trained
using sets Dt and Dv with hyperparameters selected. The selection of model
parameters never includes the data in set De which therefore prevents data
snooping from happening.
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2.7.6 Spatial k-fold cross validation

When we are dealing with geographically distributed natural data it is not
necessarily sufficient to consider only model performance criteria such as
IC or standard CV, which rely on i.i.d. assumptions. These assumptions
can cause the standard criteria to favor false models due to optimistic bias
caused by SAC. In the included publication (Pohjankukka et al., 2017) a CV
based method called spatial k-fold cross validation (SKCV) was proposed for
measuring the prediction performance of spatial models, which takes into
account the bias caused by SAC. In SKCV, optimistic bias in performance
estimates is prevented by making sure that the training data set Dt only
contains data points that are at least a certain spatial distance away from
the prediction point.

We now introduce notation to give formal definition for the SKCV. Let
ci ∈ R2 denote a geographical location (coordinate) vector of data point
(xi, yi). A geographical data point is denoted as di = (xi, yi, ci) and the cor-
responding data set of n geographical data points as Dc = {d1,d2, ...,dn}.
A value rδ ∈ R+ is the so-called dead zone radius, which determines the
data points removed from the training data at each SKCV iteration. Next,
we denote the set V = {V1, ...,Vk} as the set of k distinct CV folds, where
we have Vp ⊂ Dc ∀p, Vp ∩ Vq = ∅, when p 6= q and ∪ki=1Vi = Dc. Fur-
thermore, we use the Euclidean distance function e for calculating spatial
distances between data pairs di,dj . In Algorithm 1 we show the pseudocode
for the SKCV. When k = n, then the SKCV is called spatial leave-one-out
CV (SLOO, Le Rest et al., 2014; Pohjankukka et al., 2017). An illus-
tration of the SKCV method is also given in Figure 2.8. The SKCV can
be used for estimating the spatial prediction performance of a model as a
function of rδ (and therefore for model complexity selection) and also for
selecting suitable hexagonal data sampling grid for new research areas (see
Pohjankukka et al., 2017). Naturally, as we increase the dead zone radius
rδ with data sets involving SAC the prediction performance decreases. The

Algorithm 1 Spatial k-fold cross validation

Require: V, Dc,A, rδ
Ensure: ŷ

1: for i← 1 to k do

2: Dr ←
⋃

dl∈Vi
{dj ∈ Dc | e(cj , cl) ≤ rδ} . Remove close data points

3: f̂ ← A (Dc \Dr) . Build model using reduced training set

4: for dl ∈ Vi do

5: ŷ[l]← f̂ (xl, cl) . Make prediction

6: return ŷ . The predicted ŷ
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Figure 2.8: Reduction of the training set in the SKCV procedure. The black
and gray points correspond to test and training data points respectively.
The gray data points inside the perimeters of radius rδ are omitted from the
training data, after which the test points are predicted using the remaining
training data (i.e. the gray data points outside the perimeters).

reason why the method can be used for data sampling density selection is
because in the SKCV the test data is always at least rδ distance units away
from the training data. By then sampling data from a new research area in
a hexagonal manner with radius rδ the sampled data points are always at
most rδ distance units away from the training data. The SKCV therefore
gives insight on how good generalization performance can be expected to
achieve using a hexagonally sampled data set with radius rδ.

One might also have few issues raised with the SKCV which we will
address here. Firstly, since the SKCV involves the reduction of the training
set one might argue that this obviously results in pessimistic bias. It is
however shown in the publication that the bias caused by data reduction
is negligible when compared with the bias caused by SAC. Secondly, it is
important that one takes care when selecting the number of folds k in the
SKCV. If this number is very small (say k = 2), then it could happen that
most of the training data is removed due to large combined dead zone of
the test data points. The selection of k is application-specific and must be
chosen to suit the purposes of the corresponding application.

2.8 Feature selection

In the previous section we were dealing with model evaluation and selection.
There was no further investigation on the predictor features in set X and was
used as such. In this section, we focus on measuring the goodness of these
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features by implementing feature selection. In many practical applications
it is important to implement feature selection on the observed data D. The
data might contain irrelevant and even detrimental features, which should
be discarded from the data set. We implement feature selection for reasons
such as:

• To remove irrelevant information from the data. The irrelevant fea-
tures can be considered as noise in the data. Only slightly useful
features can also be discarded depending on the application.

• To reduce the dimensionality of the data. Dimensionality reduction
decreases the problems caused by the well known concept of the curse
of dimensionality, which states in simplified terms: the number of
data points needed to achieve successful model approximation grows
exponentially with respect to the dimensionality of the data.

• To reduce the model fit time. It is well known for example in statistical
simulation that high dimensional data sets are generally very difficult
and time consuming to fit in terms of convergence. Fortunately, many
methods such as MCMC or the improved version of this the Hamil-
tonian (or hybrid) Monte Carlo (HMC, see e.g., Neal, 1994) methods
have been developed for dealing with high dimensional data.

In the included publication (Pohjankukka et al., 2018) feature selection was
implemented to recognize the optimal predictors needed for MS-NFI at-
tribute estimation. Many methods have also been developed for feature
selection and dimensionality reduction such as principal component analysis
(PCA), greedy selection, genetic algorithm (GA) and automatic relevance
determination (ARD). For more information about these methods see the
work of (Theodoridis and Koutroumbas, 2008). In the next subsections we
will go through few of these.

2.8.1 Greedy forward/backward selection

Greedy selection (see e.g., Pahikkala et al., 2010) is a depth-first type feature
selection method which chooses features sequentially based on how much
they increase or decrease the model performance. There are two greedy
feature selection methods: forward selection and backward selection.

Greedy forward selection (GFS) proceeds by sequentially ordering the
features based on how much they improve the model performance. To be
more precise, the steps of the forward selection procedure are the following:

1. Denote F = {w1, w2, ..., wd} as the feature set and F∗ = ∅ as the set
to be used for constructing and ordered version of F .
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2. For each feature wj ∈ F , form a candidate set Fj = F∗ ∪ {wj}, fit
approximation model using features of Fj and calculate a model per-
formance estimate pj for this feature combination.

3. For index i with best value of pi, set F∗ = F∗∪{wi} and F = F\{wi}.
4. Repeat the steps 2-3 until F = ∅ and return the set F∗.

The returned set F∗ after the steps shown above contain all the features of
F , which are ordered based on sequential maximum improvement of model
performance. In other words, the first feature wj to be selected to F∗, is the
best predictor feature to be used if we used only one feature in our model.
The second feature wi selected, is the one which has the maximum model
performance improvement, when combined with the first selected feature
wj . The third, fourth, et cetera features are selected using this same logic.

Greedy backward selection (GBS) is the opposite of GFS. The steps
of GBS are almost identical to those of GFS, but instead of including it
removes features in a step-by-step manner. GBS starts with all the features
in its disposal and then it sequentially removes features based on how much
the model performance decreases. At each iteration step, a feature with the
lowest decrement on the model performance is removed. GBS produces a
flipped version of F∗, first is the worst feature, then the second worst, et
cetera.

2.8.2 Genetic algorithm

GA (see e.g., Goldberg, 1989) is a heuristic search method inspired by the
theory of natural selection by Charles Darwin. GA is based on the idea that
from a population of possible solutions, good solutions survive and produce
offspring, whereas bad solutions do not survive and are discarded from the
population. The GA method is a good alternative to problems involving
non-convex optimization problems and can help in avoiding local optima.
A central component in GA is the chromosome, which represents a single
solution in the population space B. In feature selection, the chromosome
can be represented as a binary vector b ∈ B ⊂ {0, 1}d, where the ith ele-
ment (known as gene) of the vector b corresponds to a yes/no decision on
whether the ith feature should be included in that solution. Other central
components of GA include crossover and mutation operators. The crossover
operator refers to the case where two (or more) parent chromosomes bi and
bj produce offspring chromosomes bk, which share genetic material with
both parents. For example, if bi = (0, 1, 0, 0) and bj = (0, 0, 1, 1), then
one possible offspring chromosome is bk = (0, 1, 1, 1). In this example,
the offspring bk shares half of the genes with parent bi and the other half
with parent bj . The mutation operation refers to a random change in the
genes of an individual chromosome b. The genes of b may swap places or
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change values in mutation. Examples of gene swap and value changes are
(0, 0, 1, 1) → (1, 0, 1, 0) and (0, 0, 1, 1) → (0, 0, 1, 0). In GA, crossover is set
to occur with high probability and mutation with low probability. The deci-
sion on what chromosomes get to reproduce is evaluated using some fitness
function E suitable for the corresponding problem. The general procedure
of the GA feature selection can be summarized into the following steps:

1. Denote F = {w1, w2, ..., wd} as the feature set and B = {b1,b2, ...,bk}
as the set of k different binary chromosomes.

2. Evaluate each chromosome in B using the fitness function E(F ,b)
and select the suitable parent chromosomes. Denote the set of these
parents as Bp.

3. Perform crossover and mutation operations with the chromosomes in
Bp and produce a new population set B∗ consisting from the offspring
chromosomes. Evaluate the offspring chromosomes (feature combina-
tions) of B∗ with E(F ,b).

4. If termination conditions are met (good enough feature combinations
found), return the feature combination corresponding to the best chro-
mosome in B∗. If termination conditions are not met, set B = B∗ and
repeat the steps 2-4 until conditions are met.

2.8.3 Automatic relevance determination

ARD is an elegant feature selection method provided by relevance vector
machines (RVM, Tipping, 2000; Junttila et al., 2008), which is a Bayesian
analogue to the well-known maximum margin based method support vector
machines (SVM, see Vapnik, 1998). RVM starts from a problem where the
goal is to find a parameter vector θ such that:

t =
d∑
j=1

θjφj(x) = θTφ(x), (2.41)

where x ∈ Rm is an input vector, φ(x) = (φ1(x), φ2(x), ..., φd(x)) is a vector
of basis functions and t ∈ R is an unknown true output value. The observed
output value yi ∈ Y, i ∈ {1, 2, ..., n}, representative of ti, includes a noise
term εi ∼ N (0, σ2) ∀i so that:

yi = ti + εi = θTφ(xi) + εi. (2.42)

By making multivariate Gaussian assumptions, denoting β = σ−2 and hav-
ing θj |αj ∼ N (0, α−1j ) ∀j with hyperparameter αj , it can be shown (Bishop,
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2006) that the posterior predictive distribution over y for a new input vector
x is:

p(y |x, D,α, β) =

∫
p(y |x,θ, β) p(θ |D,α, β) dθ

= N (mTφ(x), σ2(x)),

(2.43)

where we have:

p(y |x,θ, β) = N
(
θTφ(x), β−1

)
,

p(θ |D,α, β) = N (m,Σ) ,

m = βΣΦTy,

Σ =
(
A + βΦTΦ

)−1
,

σ2(x) = β−1 + φ(x)TΣφ(x).

(2.44)

In (2.44), Φ is the n× d design matrix such that the ith row represent the
vector φ(xi), y ∈ Rn×1 is a column vector of the observed output values
and A is a d × d diagonal matrix with diagonal elements αj , i.e. A =
diag(αj). The optimal hyperparameters α, β of Equation 2.43 are obtained
by maximizing the evidence:

α̂, β̂ = arg max
α∈Rd, β∈R

P (y |α, β). (2.45)

The maximization of evidence in Equation 2.45 is implemented using e.g.
expectation-maximization (EM) algorithm, making the RVM method some-
times computationally more complex than SVM. The details for Equation
2.45 have been discarded here to avoid laborious derivation and can be found
e.g. in (Bishop, 2006; Fletcher, 2010).

The ARD feature selection comes into this when we are carrying out the
evidence maximization procedure. Here, many of the αj will tend to infinity
causing the posterior distribution of parameter θj to have zero mean and
variance. That is, when αj → ∞ ⇒ θj = 0. The corresponding column
with basis function φj in the design matrix Φ is therefore effectively pruned
out. The inputs xi corresponding to the remaining non-zero parameters θi
after pruning are called relevance vectors and are analogous to the support
vectors of SVM.
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Chapter 3

Research studies and results

3.1 Research publications

In this section, we will briefly go through the research studies conducted in
the publications included into this thesis. In each of the next subsections,
a summary is first given to introduce and motivate the research, which is
followed by a description of the used data sets and methods, and finally the
results and contributions to the research questions are presented.

3.1.1 Publication I: Arctic soil hydraulic conductivity and
soil type recognition based on aerial gamma-ray spec-
troscopy and topographical data

Summary

The publication (Pohjankukka et al., 2014b), examines the predictability of
soil type and its hydraulic conductivity using open natural resource data
from Parkano, Finland. Prior information about soil conditions is an impor-
tant factor in a multitude of applications. In forestry for example, the level
of success of a forest harvest is dependent on a careful route planning. Well
planned routing decisions minimize collateral damage to the forest and max-
imize safety of the harvest, which results in reduced costs for both the har-
vest operation and the forest owner. The hydraulic conductivity attribute
of soil has greatest influence to its load bearing capacity. It is therefore
essential to measure directly or estimate the hydraulic conditions of a soil
prior to the harvest in order to fulfill the safety and efficiency requirements.
Regression and classification analyses are implemented in the publication
for assessing the prediction capability of soil hydraulic conductivity and soil
type respectively.
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Figure 3.1: Left : gamma-ray spectroscopy imagery from Parkano. Right :
corresponding ground soil type imagery with legend given below.

Methods and data

The regression part of the analysis is implemented using the well-known
ridge regression (also known as regularized least squares, RLS) method.
Target variable in regression case is the water conductivity exponent (or
water permeability exponent) xwp, which measures the vertical flow speed
of water in soil. Different soil types tend to have distinct values of xwp,
making successful estimation of xwp useful in route planning for selecting
harvest tracks with optimal soil types and highest load bearing capacities.
The classification analysis is implemented using logistic regression and kNN
methods. The target variable in this case is the ground soil type class. The
input predictor features consist from gamma-ray spectroscopy and various
topographic feature (e.g. topographic height) raster data sets. A total of
342479 data points were used in the analyses. The data sets in the publica-
tion are provided by the GTK and the NLS. In Figure 3.1 is illustrated the
gamma-ray spectroscopy and ground soil type data sets. In the gamma-ray
image darker areas correspond to areas with greater humidity since humid
soil absorbs more gamma radiation than dryer soil. The ground soil type im-
age is a pre-classified (by the GTK) data set with pixel values corresponding
to soil types.

Results and contribution to research questions

The regression results for water permeability exponent xwp show that RLS
achieves slightly better concordance index (C-index, see e.g., Pohjankukka
et al., 2014b) of 0.63 than baseline method (random coin flip, C-index 0.5).

44



The classification results for soil type shows 44.5% prediction accuracy for
logistic regression and 50.5% prediction accuracy for kNN.

The publication contributes to research question (RQ1) by giving quan-
titative results on the predictability of terrain conditions using the corre-
sponding natural resource data sets with ML approach.

Author’s contribution

The author’s responsibilities in the publication consisted from: preprocess-
ing and merging of the data, modeling and evaluation of the results, and
writing of the article. Preprocessing involved cleaning the data by dis-
carding irrelevant features (irrelevance determined by data providers) and
data points with missing feature values. Merging of the data here refers to
combining the data sources into a single data matrix with uniform resolu-
tion. In order to provide compatible data sets, this needed to be done since
the data files had different resolutions and geographical covers. Modeling
and evaluation included steps such as: selecting optimal kNN model using
LOOCV, calculation of prediction accuracies et cetera. Implementation was
conducted using Matlab and Python environments. Self-made and off-the-
shelf (RLScore, scikit-learn, see Pahikkala and Airola, 2016) code libraries
were used in the analyses.

3.1.2 Publication II: Predicting water permeability of the
soil based on open data

Summary

The publication (Pohjankukka et al., 2014a) studies the same problem as
Publication I, but with additional predictor data sets and at different geo-
graphical location. The predictability of water permeability exponent xwp
is examined using AEM data, gamma-ray spectroscopy, topographic feature
data, MS-NFI data, and peat bog thickness data. The research area is lo-
cated in the northern part of the municipality of Sodankylä, Pomokaira,
Finland. Water permeability is a key factor when estimating soil load bear-
ing capacity, mobility and infrastructure potential of a terrain. Soil with
high levels of water permeability tend to stay dry and traversable, whereas
soil with low permeability creates a risk for mobility. Northern sub-arctic
areas have similar soil types so successful prediction in the region of North-
ern Finland can be generalizable to other similar regions. The study was
motivated by technical and cost issues originating from forest industry.
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Methods and data

Regression analysis was conducted using RLS and kNN methods. The tar-
get variable in the analyses is the water permeability exponent xwp. The
predictor features consisted from the MS-NFI data, aerial gamma-ray spec-
troscopy, AEM data, topographical feature data, and peat bog mask data.
Additional features such as windowed mean, windowed standard deviation,
Gabor (Weldon et al., 1996) and local binary pattern (LBP, Pietikäinen
et al., 2011) were derived from gamma-ray and AEM data. The MS-NFI
data set describes the state of Finnish forests with attributes such as tree vol-
ume per hectare, number of trees per hectare, amount of ground vegetation,
et cetera. The gamma-ray data indicates many significant characteristics
of the soil, e.g. the tendency to stay moist. Similar to the gamma-ray, the
AEM data gives information on various kinds of soil conductors. Topograph-
ical data included features such as local height difference, flow accumulation
area, confluence and inclination (Schwanghart and Kuhn, 2010). Peat bog
mask data is a boolean 1/0 raster data set describing the thickness of peat
in the research area. A value 1 in the peat bog data indicates an area with
peat thickness greater than 60 cm. A total of 1788 data points were available
from Pomokaira research area. The data sets were provided by the GTK,
NLS and LUKE.

Results and contribution to research questions

In Figure 3.2 is shown the prediction results for xwp. In practical harvesting
operations it is of interest to know how well a model performs if the pre-
dicted new data point is located r meters away from the closest known data.
For this reason, we have plotted the prediction performance as the function
of distance of test data to the closest known training data. With the baseline
C-index value being 0.5 we see from the prediction results that the regression
models perform pretty well, especially up until 100 meters prediction dis-
tance. The 6-nearest neighbor model has slightly better results than RLS. It
is curious to notice here that if only the data coordinate information is used
as features for the prediction model, then the difference is almost negligible
to prediction model where we use the features also. This indicates there is
a strong SAC within the data. The sparser spatial distribution of the data
set also affects this phenomenon in the results since when comparing to the
data set used in Publication I, the data points in the Pomokaira analysis
had much greater average geographical distance between them.

The publication contributes to research question (RQ1) by providing
quantitative empirical evidence for the use of natural resource data in terrain
condition prediction.
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8 Authors Suppressed Due to Excessive Length

Both MAPE and C-index indicate rather good prediction performance to
the distance of 120 m from the nearest soil sample point. This is seen both with
k-NN and RLS methods. When MAPE is higher than the baseline, it is better to
use baseline average than the prediction. MAPE baseline is the horizontal line
in the lower figures in Fig. 3.
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Fig. 3: Left : k-NN results with k = 6 and 3 different feature sets. Right : RLS results
on features-only case. C-index and Pearson correlation at top and MAPE below. The
prediction performance is adequate below 120 meters.

The dead zone radius r > 0 simulates a situation, where the test point is at
least r distance away from the given training points. r = 0 is traditional LOO
test arrangement and measures best the properties of the predicted value within
the training set itself. It may be too optimistic, since we seek for generalization.
A large radius r ≈ ∞ is overly pessimistic, since it would use only tiny fragments
of the training set and would completely distort the prediction.

The prediction performance near r = 0 seems to indicate rather good gen-
eralization ability, but the performance reduces drastically over the dead zone
distance r. Further study, both theoretical and practical, must be done to prop-
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Both MAPE and C-index indicate rather good prediction performance to
the distance of 120 m from the nearest soil sample point. This is seen both with
k-NN and RLS methods. When MAPE is higher than the baseline, it is better to
use baseline average than the prediction. MAPE baseline is the horizontal line
in the lower figures in Fig. 3.
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Fig. 3: Left : k-NN results with k = 6 and 3 different feature sets. Right : RLS results
on features-only case. C-index and Pearson correlation at top and MAPE below. The
prediction performance is adequate below 120 meters.

The dead zone radius r > 0 simulates a situation, where the test point is at
least r distance away from the given training points. r = 0 is traditional LOO
test arrangement and measures best the properties of the predicted value within
the training set itself. It may be too optimistic, since we seek for generalization.
A large radius r ≈ ∞ is overly pessimistic, since it would use only tiny fragments
of the training set and would completely distort the prediction.

The prediction performance near r = 0 seems to indicate rather good gen-
eralization ability, but the performance reduces drastically over the dead zone
distance r. Further study, both theoretical and practical, must be done to prop-

Figure 3.2: Left : prediction performance of 6-nearest neighbor for xwp as
the function distance of training data to test data. Different curves repre-
sent whether only features, coordinates or both were used in the prediction.
Right : Same graph as in left, but for the RLS regression model and with only
features used in prediction. In addition to the C-index, the RLS prediction
performance is measured also using Pearson correlation.

Author’s contribution

The author’s responsibilities in the publication consisted from: preprocess-
ing and merging of the data, modeling and evaluation of the results, and
writing of the article. For more detailed explanations, see author’s contri-
bution in section 3.1.1 (same as in Publication I).

3.1.3 Publication III: Predictability of boreal forest soil
bearing capacity by machine learning

Summary

In publication (Pohjankukka et al., 2016) is studied the prediction capability
of soil penetration resistance and soil damage type by using a combination
of open RS and manually on-site collected data. Terrain trafficability is a
key factor to be considered in order to achieve successful route planning
for forest harvest operations. Implementing the harvest at correct timing
is crucial since badly timed operations have greater chances to cause large
economical costs and excessive ecological damage. In poor soil conditions,
besides having the risk of getting stuck to wet soil, the forest harvesters can
damage trees unscheduled to be harvested. Damaging the roots of the trees
can lead to fungal infections and in the worst case to tree decay. According
to (Pennanen and Mäkelä, 2003), it is estimated that a yearly costs of 100
million euros in Finland alone result due to timber procurement causes. By
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providing optimized route plans using ML approach to predict terrain soil
conditions these costs could be significantly reduced. Linear and nonlin-
ear prediction methods are used in the publication together with a valida-
tion method which we call leave-one-out cross validation with a dead zone
(LOOCVDZ). The research area is located in the province of Eastern Fin-
land, Pieksämäki.

Methods and data

Regression analysis was conducted using RLS, multilayer perceptron (MLP),
MLP early-stopping committee (MLP-ESC) and kNN methods. LOOCVDZ
was used for estimating the prediction performance as a function of geo-
graphical distance between the prediction point and closest known training
data. The target variables in this analysis consist from soil damage type and
penetration resistance. The soil damage type is specified by an integer value
which defines the damage occurred to soil when being exposed to pressure
from a forest harvester. The soil penetration resistance data was collected
using a penetrometer (Muro and O’Brien, 2004) in the research area. A
penetration resistance measurement is made by dropping a penetrometer on
the soil point, pressing it against the soil, and then recording the depth of
the resulting hole. The predictor data sets consisted from: MS-NFI data,
DEM data, weather data, aerial gamma-ray data, peatland data, subsoil and
topsoil data, and soil moisture data (for more information on MS-NFI and
gamma-ray data see Publications I, II). The DEM data is constructed using
airborne laser scanning (ALS) techniques. Several derived geomorphomet-
ric features from DEM were used: plan curvature, profile curvature, slope,
topographic wetness index, flow area, aspect, diffuse insolation and direct
insolation (Zevenbergen and Thorne, 1987; Wood, 1996, 2009; Beven and
Kirkby, 1979; Seibert and McGlynn, 2007). The weather data consists from
temperature and rainfall information from years 2011-2013. The peatland
data is derived from NLS topographic database covering the whole of Fin-
land. Subsoil and topsoil data are pre-classified raster data sets describing
soil class types from Pieksämäki target area. The soil moisture data was
measured by calculating the weight difference of soil samples before and af-
ter drying it. A total of 11795 data points were available in the analyses.
The data sets were provided by LUKE, GTK, NLS and the FMI.

Results and contribution to research questions

The results for soil damage in Figure 3.3 show moderate prediction perfor-
mance up to 20 meters. Approximately after 20 meters of prediction range
the performance drops sharply to almost baseline levels. RLS and kNN were
the best prediction methods in the soil damage case. For penetration resis-
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Figure 3.3: Left : prediction performance results for soil damage. Right :
corresponding prediction results for penetration resistance.

tance MLP prediction models fared well against RLS and kNN. MLP had
overall best results with up to 100 meter prediction range. Better results
for the penetration resistance were to be expected since the data for it was
more reliable than for the soil damage type. Soil damage data was based
on expert assessment, whereas penetration resistance was based on on-site
measurements. It was concluded in the included publication (Publication
III), that a greater number of physical data samples with higher informa-
tion value within the harvest machinery stand is needed, in order to produce
sufficiently reliable ML-based prediction systems.

The publication contributes mostly to research question (RQ1) by pro-
viding quantitative results for the applicability of natural resource data to
terrain condition prediction. Contributions are also made to research ques-
tion (RQ2) since first steps are laid to the method discussed in Publication
IV.

Author’s contribution

The author’s responsibilities in the publication consisted from: preprocess-
ing and merging of the data, modeling and evaluation of the results using
LOOCVDZ, and writing of the article. For more detailed explanations, see
author’s contribution in section 3.1.1 (similar tasks as in Publication I).

3.1.4 Publication IV: Estimating the prediction performance
of spatial models via spatial k-fold cross validation

Summary

The publication (Pohjankukka et al., 2017) introduces a novel CV method
for spatial models, which is applied to the three research areas introduced
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in Publications I-III. New predictor data sets are used together with the
ones used in earlier publications and a more closer examination to the SAC
inherent in the data sets is conducted. In forestry, harvest route selection
via an ML based recommendation system would involve making soil point
predictions on the corresponding route, and the goodness of this route would
then be evaluated using these predictions. In practice, this recommendation
system would need to make predictions from the forest harvester’s current
geographical location (using known close by data) when doing online eval-
uation of the route alternatives. Due to SAC, an optimistic bias is involved
into the prediction points which are far away from the harvester’s current
location. This can cause the recommendation system to suggest potentially
unsafe route possibilities. The publication seeks to tackle this problem by
reducing the effect of SAC in point predictions by eliminating training data
points in a suitable way, making the route evaluations more realistic.

Methods and data

The publication uses kNN as the prediction method in all the analyses. Since
the prediction method itself has no effect on the presence of SAC in the data
kNN was a natural selection due to its simplicity. The data sets in this study
consist from the data used in Publications I-III with additional data included
into Parkano and Pieksämäki cases. The supplementary data sets are the
MS-NFI attributes and stoniness data for Parkano and Pieksämäki cases re-
spectively. The stoniness data describes the approximated amount of stones
in a soil point by using steel-rod sounding (Tamminen, 1991). In steel-rod
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Figure 3.4: Left : Illustration of the SKCV procedure. Right : SKCV results
(solid lines) for Parkano data with root mean squared error (RMSE) mea-
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affects the results.
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sounding, a rod is pushed into the soil after which the penetration depth and
the number of stone hits is recorded. Semivariograms and Moran’s I statis-
tics were used for confirming the presence of SAC in the data sets. In the
publication, the SKCV method was introduced for measuring the prediction
performance of a model dealing with a spatially autocorrelated data. The
idea of SKCV is shown in the left side image of Figure 3.4. Training data
points within a geographical radius of rδ are omitted from the training data
in order to simulate a scenario, where a prediction needs to be made to a
geographical location so that the distance of training data to the prediction
point is at least rδ meters. In Figure 3.5 is shown a hypothesized practi-
cal scenario of this where a forest harvester makes routing decisions based
on point predictions. In the presence of SAC, the prediction performance
decreases as the distance to the prediction point increases. Furthermore,
to confirm that the decrement to prediction performance as distance rδ in-
creases is truly because of SAC, and not simply because of omitting data
points, a modified version of the SKCV called spatial k-fold cross validation
random-leave-out (SKCV-RLO) is implemented. SKCV-RLO is identical
to SKCV with the exception that instead of removing training data points
within rδ meters from the prediction point, we remove them randomly the
same amount as we would with the SKCV. If SAC is present in the data, then
SKCV-RLO should perform better. The publication also discusses on how
the SKCV can be applied as a heuristic for data sampling density selection.
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Figure 3.5: The forest harvesting example. The harvester driver needs to
select an optimal route to target destination. Because of SAC, the prediction
error increases the further away we make point predictions.
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Results and contribution to research questions

In the right side of Figure 3.4 we see the SKCV and SKCV-RLO results
for Parkano research area. The prediction performance clearly decreases as
we increase the prediction distance rδ for all spatial densities of the data.
The spatial density refers to the sparsity of the data set when a hexagonally
sampled data is used (for details, see Pohjankukka et al., 2017). When geo-
graphically sparser data is used the effect of prediction distance rδ decreases
(as can be seen in the results of Figure 3.4). This is due to the reason that
as we decrease the spatial density of the data (resulting in a sparser data
set), pairwise geographical distances between data points increases. As data
points are farther away from each other geographically, small values of rδ
do not result in large removal of data points in the SKCV. This is especially
true when the prediction distance rδ is smaller than the average pairwise
geographical distance between data points. On the other hand, if the data
set is spatially very dense, then the effect of rδ is much larger because more
data is removed in the SKCV. The behavior of the results was similar in
all three research areas and the SKCV-RLO results confirmed that SAC in-
deed creates an optimistic bias into the prediction results, making SKCV a
relevant tool for spatial models.

The publication contributes to research question (RQ2) by proposing
a novel SKCV method for measuring the prediction performance of spatial
models.

Author’s contribution

The author’s responsibilities in the publication consisted from: modeling
and evaluation of the results, inspection of SAC in the data, applying the
SKCV method to data, and writing of the article. The SAC in the data
was investigated using semivariogram and Moran’s I statistics. Matlab and
Python environments were used for implementing the modeling and eval-
uation parts. For more details, see author’s contribution in section 3.1.1
(similar tasks as in Publication I).

3.1.5 Publication V: Comparison of estimators and feature
selection procedures in forest inventory based on air-
borne laser scanning and digital aerial imagery

Summary

In publication (Pohjankukka et al., 2018), ALS and digital aerial imagery
(DAI) data are used for predicting forest inventory attributes. Feature se-
lection is also implemented to find the most relevant ALS and DAI features
needed for predicting forest inventory attributes. In order to manage forest
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resources efficiently, it is required to have accurate information on forest
attributes in the form of thematic maps. Creating these maps manually
throughout large forests is obviously both highly expensive and laborious.
Instead of collecting samples manually, a RS based approach is preferred
by using an estimator model for the forest attributes, where features de-
rived from ALS and DAI data are used as predictors. ALS is currently
considered being the most accurate RS data for estimating forest attributes
according to (Næsset, 2002, 2004; Maltamo et al., 2006). By combining ALS
and DAI data sets it is possible to accurately estimate forest inventory at-
tributes. GA (see e.g. Van Coillie et al., 2005) and GFS methods are used
in the feature selection procedure together with linear and nonlinear predic-
tion methods used as estimators. The study was conducted with data from
Åland province, Finland. Related study about the minimum number of co-
variates and optimal number of field data in Bayesian estimation context
of predicting forest inventory variables is studied in the work of (Junttila
et al., 2015).

Methods and data

The prediction methods used in the publication include kNN, RLS and MLP-
ESC. In addition to GA and GFS feature selectors, a nested version of GFS
called nested greedy forward selection (NGFS) is used. NGFS is almost
identical to GFS with the exception that an extra outer loop is created
similarly as in NCV. In NGFS, feature selection is first implemented using
training and validation data sets Dt,Dv, and the corresponding selected
features are then evaluated using a test data set De. NGFS provides the
means to study the stability of the feature selection process because of the
extra outer loop. Data balancing prior to feature selection is also tested due
to highly skewed distributions in some of the target variables. A total of
seven forest attributes were subject to prediction: tree diameter, all trees;
tree height, all trees; tree basal area, all trees; tree volume, all trees; tree
volume, pine trees; tree volume, spruce trees and tree volume, broadleaf
trees. The predictor features consisted from 154 ALS and DAI variables such
as height above ground, Haralick texture features (Haralick et al., 1973), rgb-
and color-infrared images. A total of 10 different analyses were implemented
with different prediction method, CV, feature selector and data balancing
combinations.

Results and contribution to research questions

The results of the study indicated that around a maximum of 20-40 features
were sufficient to reach optimal prediction capability in all cases. Most
reliable prediction results were obtained for tree height (all trees) and least
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reliable for tree volume (spruce and broadleaf trees). The low prediction
performance for the two last mentioned target variables is partly explained
by the low number of such trees in Åland research area (i.e. low number
of representative data points). The low prediction performance for tree
volume attributes was also noted as instability in the NGFS feature selection.
That is, for tree volume there seems to be no clear best features to be
identified when looking at the NGFS results. In the top plots of Figure 3.6
we can see the GFS and NGFS results for the target variable tree height
(h). In this case, we note that MLP-ESC is the best estimator with optimum
prediction performance achieved with less than 10 features. In the bottom
plots of Figure 3.6 we see the corresponding results for tree volume, spruce
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Figure 3.6: Top-left : the GFS results for tree height. The prediction per-
formance measured with normalized root mean squared error (NRMSE) is
plotted as the function of predictor features. Top-right : the correspond-
ing feature selection results for NGFS. Here τ = ”the number of times the
feature was selected to the feature set which produces optimal prediction
performance”. The Feature ID refers to the identifier number of the specific
feature. Bottom- left and right : The same graphs as above but for tree
volume (spruce).
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(vs). Firstly, we notice that tree volume has a much higher prediction error
than height target variable. Secondly, by comparing the feature selection
results of NGFS we notice much more variability with tree volume than
with tree height. One can see that the feature selection results are more
definite for height variable and more random for volume variable. This
observation together with the prediction error results suggests the absence
of clear pattern in the data for tree volume target variable. According to the
figures, features 139 (h DE, selected 30 out of 30 times), 67 (i60f, selected
20 out of 30 times) and 118 (nir ASM, selected 19 out of 30 times) were the
top three features for h. The corresponding features for vs were 69 (i20l,
selected 28 out of 30 times), 48 (d3l, selected 27 out of 30 times) and 71
(i60l, selected 27 out of 30 times). For complete list of the features with
descriptions see the Publication V included into this thesis. It must lastly
also be mentioned, that while the prediction of volume target variable was
difficult in this study, it is widely known in the literature (see works e.g.
in Maltamo et al., 2014) that species-wise prediction is a more challenging
problem than prediction over all tree species when using ALS data. This is
due to the fact that laser scanning does not easily differentiate tree species
from one another.

The publication contributes to research question (RQ1) by providing
quantitative results on the predictability of MS-NFI attributes using ALS
and DAI predictor features. Furthermore, feature selection results are given
for obtaining optimal MS-NFI estimation.

Author’s contribution

The author’s responsibilities in the publication consisted from: preprocess-
ing and merging of the data, modeling and evaluation of the results, feature
selection, and writing of the article. Most of the tasks here were similar to
those in Publication I (section 3.1.1). Feature selection was implemented
using self-made and LUKE provided code libraries.

3.1.6 Publication VI: Reliable AUC estimation of spatial
classifiers, with application to mineral prospectivity
mapping

Summary

In the publication (Airola et al., 2018), a study was conducted for estimating
orogenic gold mineral occurrences using RS data from Central Lapland,
Finland. A model performance estimation method is proposed utilizing the
CV methods proposed in the works of (Airola et al., 2009, 2011; Pohjankukka
et al., 2017). Mineral prospectivity mapping (MPM) techniques are used to
delineate areas favorable for mineral exploration. By combining information
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from geospatial, geophysical and geochemical data sets the MPM can be
used for estimating the likelihood of mineral presence within a research
area. In practical applications such as this, the assumption of i.i.d. data
samples is usually not valid which causes model performance estimation
methods to produce either negatively or positively biased statistics. The
pooling procedure, performed by methods such as LOOCV can introduce
a substantial negative bias to these statistics. SAC on the other hand can
cause a positive bias as we have seen in (Pohjankukka et al., 2017). The
publication proposes the leave-pair-out spatial cross validation (LPO-SCV)
method that corrects both of these biases in the performance estimates.

Methods and data

Multiple linear and nonlinear classifiers are used in the publication. SVM,
logistic regression and RLS methods are used as linear classifiers, and for
nonlinear classifiers kNN and random forest methods (see e.g. Hastie et al.,
2001; Breiman, 2001a) are applied. Prediction performance is estimated us-
ing the proposed LPO-SCV method for removing the bias caused by both
data pooling and SAC. In the left side of Figure 3.7 is presented the main
idea behind LPO-SCV. On each CV round, both positive and negative test
instances corresponding to data instances with opposite label values are left
out (for more details see also Pahikkala et al., 2008), as well as the data
instances within rδ distance away from them. This procedure is repeated
for all possible positive-negative pairs. The LPO-SCV therefore simulates
a scenario where the left out test pair is at least rδ distance away from
the training data. The target variable for prediction in this analysis was
the orogenic gold occurrence, a real value indicating the presence of gold
mineral in a soil point. In the included publication (Airola et al., 2018),
positive-negative pair in LPO-SCV corresponds to positive and negative
gold occurrence label values. As predictor features, raster images derived
from airborne and ground based geophysics, till geochemistry and geologi-
cal interpretations are used. The predictor features consist from the same
features as generated in the work of (Nykänen, 2008). These features con-
sists from mineral exploration related geoscientific spatial data sets that are
derived from airborne geophysics (magnetic and EM), regional till geochem-
istry, ground geophysics (gravity) and a scale digital geological map. The
data sets are provided by GTK and the FGI.

Results and contribution to research questions

In the right of Figure 3.7 is shown a comparison of LPO-SCV and leave-one-
out spatial cross-validation (LOO-SCV) results. LOO-SCV is simply the
leave-one-out case of SKCV. From the prediction performance results it was
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Figure 3.7: Left: Illustration of the LPO-SCV. On a single CV round, a
positive-negative pair as well as the data instances within rδ distance away
from them is left out. Right: Comparison of LPO-SCV and LOO-SCV
results for kNN (k = 250) using the regular feature set, and only coordinates
as features.

clearly noted the presence of both the pooling and spatial biases. It is shown
in the publication that high prediction performance can be obtained even
with classifiers completely failing in generalizing outside the training data if
the spatial dependencies are not taken into account. Simple linear models
turned out to work very well in this analysis, which is likely to be result of
a highly imbalanced data set (small amount of positive gold data instances)
that was in disposal. Nevertheless, the results demonstrated that prediction
performance estimation is highly dependent on the validation strategy. The
research community involved with spatial data analysis is encouraged to
provide thorough spatial CV evaluations that reflect the characteristics of
the data and the model performance under the corresponding application,
which the classical model validation methods are not able to provide.

The publication contributes to research question (RQ2) by providing
quantitative results on the effects of pooling and SAC biases in model eval-
uation. The LPO-SCV method is presented to counter these biases.

Author’s contribution

The author’s responsibilities in the publication consisted from: modeling
and evaluation of the results, inspection of SAC in the data, applying the
SKCV method to data, and writing of the article. Author’s tasks were
similar to those in Publication IV (section 3.1.4).
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3.2 Research results

This section summarizes the main research questions and evaluates the cor-
responding research results. In what follows, each research question is in-
troduced and briefly motivated, which is then succeeded by a discussion of
the research results respectively.

3.2.1 (RQ1): Are the provided open natural resource data
sets applicable in predicting terrain conditions and for-
est attributes in Finland?

The first motivating question regarding this thesis focuses on the quality
of the provided open natural resource data for estimating forest and ter-
rain conditions. The data sets range from satellite and airborne imagery to
manually collected samples. Since the collection of these data sets result in
yearly costs for many institutions, it is of interest to study whether addi-
tional value for these data sets could be gained by utilizing them in other
than their main intended applications, and hence increasing the benefit-cost
ratio of the data. With respect to the corresponding application, this infor-
mation can also be used to better focus the data collection processes, i.e. to
concentrate only on relevant data when irrelevant data has been recognized.
Furthermore, the answer to (RQ1) also gives insight if the data sets need to
be modified either by changing the amount of collected data, or by collecting
data of higher information value.

Research results for (RQ1)

The empirical results of the included publications (Pohjankukka et al.,
2014a,b, 2016, 2017, 2018; Airola et al., 2018) indicate a moderate pre-
diction performance for estimating terrain conditions and forest attributes
with the provided data sets. In order to achieve successful and safe applica-
tions using the ML approach, natural resource data with higher information
value should be investigated. Moderate prediction performance is not suf-
ficient especially for applications which require high safety standards, such
as forest harvesting in peatland areas. Peatland areas pose a threat for
heavy machinery (see e.g., Pohjankukka et al., 2017) so accurate prediction
performance is critical in these applications. Prediction performance could
be improved by using larger and higher resolution data sets with samples
gathered more densely and from a wider set of geographical areas. Having
e.g. data sets with uniform two meter resolution would increase the infor-
mation utility value of the data. At this resolution the effect of individual
trees and their roots can be detected. Collecting RS and field measurement
data also from a wider set of geographical areas will better guarantee that
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the data represents large area phenomena and not just a local phenomenon.
This clearly allows higher probability for generalization. Feature selection
for estimating forest attributes showed good results in the Åland case (Po-
hjankukka et al., 2018), revealing around 74-87% of the predictor features
unnecessary for accurate estimation. The feature selection results differed
of course for distinct forest attributes, but nevertheless showing overall that
the amount of predictor features can be reduced with no loss in prediction
performance. In fact, it was seen that the addition of too many features
results in decreased prediction performance. Low performance for predict-
ing tree species-specific volumes in the Åland case was also partly explained
by the fact that Åland area has a relatively small distribution of trees, re-
sulting in low number of representative data points. Therefore, the data
information value is also low.

3.2.2 (RQ2): How to evaluate the prediction performance of
a model involving spatially dependent data?

The second research question was motivated by the application of natural
resource data in forest harvesting operations. As it was discussed earlier,
spatially distributed natural data sets always contain SAC. This means that
models which apply these natural data sets should take into account the
inherent SAC in the data in order to prevent optimistic prediction perfor-
mance estimation. Considering practical applications, it is therefore not
enough to use model goodness of fit measures which heavily rely on the
i.i.d. assumption of the data. A model performance evaluation method
taking into account the SAC is therefore needed, and the model validation
should reflect the intended application. In the forest harvesting example
this is especially important since safety and efficiency are crucial factors
and biased estimations are not wanted.

Research results for (RQ2)

The included publications (Pohjankukka et al., 2016, 2017; Airola et al.,
2018) tackled the problem of SAC in model evaluation by proposing the
SKCV method. This method was based on adjusting the training data
set in CV procedure to simulate the scenario where prediction point is al-
ways within certain spatial distance from the training data. The research
results revealed that indeed geospatial data sets contain SAC, which was
shown both in the SAC measures and in the prediction results. These re-
sults confirmed that goodness of fit measures accounting for SAC should be
considered in order to give realistic model performance estimates. Standard
methods for evaluation models such as IC and CV should therefore not be
used in their basic form, but rather should be modified slightly to suit the
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requirements and nature of the corresponding application and data respec-
tively. Disregarding the inherent spatial dependencies in the data can result
in too optimistic models, a situation not wished for especially in applica-
tions with high potential damages and expenses. Even though simple, the
SKCV method provides insight to the limit a spatial model can be trusted,
after which further data should be collected in order to extend the spatial
prediction range.
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Chapter 4

Conclusions

4.1 Summary of the thesis

In Chapter 1 we started by going through the introduction, motivation and
the resulting research questions of this thesis. It was discussed that in the
era of big data available from many domains, there is a rising need for data-
driven applications using ML approach. Big data comes from a large variety
of sources ranging from satellite imagery to manual data collection. Vari-
ous institutions collect data for many different purposes such as large-area
strategic forest planning (MS-NFI) or for forest harvest planning. Since the
data collection processes inherently produce costs, it is of value to know the
usefulness of these data sets. By providing quantitative measures indicating
the applicability of these data sets, we can enhance both the data collection
processes and the applications exploiting these data sets. In Chapter 2 the
theoretical background for this thesis was provided. An introduction to GIS
systems, RS techniques and data representation formats were covered. The
SAC dependency issue involved in spatial data analysis was explained, which
is not taken into account by many classical model fitness criteria. Lastly, a
coverage to ML paradigm and methods was given. Chapter 3 presented the
summaries and research results of the corresponding publications included
into this thesis. For each publication, a motivation for the research was
given together with a compact description of analysis details and research
findings. Finally, the main research questions of this thesis were revisited
and the corresponding results to these questions were summed up. The pur-
pose of this chapter is to provide a concluding discussion and present the
main outcomes of the research.
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4.2 Discussion and outcomes

Data-driven decision making is on its way to become a common tool to
be used in the future. As data sources continue to increase, there is no
doubt that data processing and inference via artificial intelligence systems
is needed, both now and in the future. This thesis was motivated by the use
and availability of open natural resource data in forestry applications (e.g.
resource management and forest harvesting). We discussed in earlier chap-
ters how the utilization of natural resource data with ML approaches can
help gain significant benefits in practical applications. These benefits include
e.g. saves in operation costs and increments in safety. The applicability of
the provided data sets was inspected in the included publications showing
moderate prediction performances in the corresponding applications. The
moderate performance can be explained partly by the low information value
and amount of the data sets. The performance could be improved by provid-
ing larger amounts of higher quality data sets (e.g. more information value
with higher resolution). Improvement could be obtained in this way since
larger and more accurate data sets are more likely to contain useful informa-
tion. Furthermore, the publications also revealed that SAC is an important
factor to be considered in applications involving spatial models. The SKCV
method taking into account the effects of SAC was used for estimating the
performance of these models. To summarize, the research findings of this
work can be listed as the following main outcomes:

1. Prediction of terrain conditions showed moderate performance (Pub-
lications I-III). Larger and higher quality data sets from a wider set of
research areas should be investigated in order to improve the predic-
tion performance.

2. Feature selection should be implemented on all the currently available
natural resource data sets in order to recognize relevant and irrelevant
features. Research results showed that in the Åland case (Publication
V) at most 87% of the predictor features are unnecessary for obtaining
optimal prediction performance.

3. Model evaluation methods should be designed to reflect the corre-
sponding application. As it was shown in earlier chapters, SAC de-
pendency is inherently present in spatial data sets, which is not ac-
counted for in many classical model goodness of fit measures. The
SKCV method was proposed for estimating the prediction performance
of spatial models (Publications IV, VI). Results indicated that SAC
is indeed present in the data and can cause significant bias into the
prediction estimates.
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As a final note, some mentions on the limitations and future work are
in order. The research studies conducted in the attached publications can
be improved by testing yet more methodologies and evaluation measures.
Due to resource limitations however, this was not possible to implement in
this work and remains to be conducted in future research. The research
results of this thesis can also be improved as additional and higher quality
data sets are obtained in the future with the advancements in RS imaging
technologies.
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Abstract—A central characteristic of soil in the arctic is its load
bearing capacity since that property influences forest harvester
mobility, flooding dynamics and infrastructure potential. The
hydraulic conductivity has the greatest dynamical influence to
bearing capacity and hence is essential to measure or estimate.
In addition, the arctic soil type information is needed in many
cases, e.g. in roads and railways building planning. In this
paper we propose a method for hydraulic conductivity estimation
via linear regression on aerial gamma-ray spectroscopy and
publicly available topographical data with derived elevation
based features. The same data is also utilized for the arctic soil
type recognition; both logistics regression and nearest neighbor
classification results are reported. The classification results for
logistic regression resulted in 44.5 % prediction performance
and 50.5 % for 8-nearest neighbor classifier respectively. Linear
regression results for estimating the hydraulic conductivity of the
soil resulted in C-index value of 0.63. The hydraulic conductivity
and soil type estimation results are promising and the proposed
topographic elevation features are apparently new for remote
sensing community and should also have a wider general interest.

I. INTRODUCTION

This paper is about predicting the soil type and its hydraulic

conductivity by regression analysis using publicly available

multi-source data. Soil type and the level of its granularity

in arctic areas is of great interest to many different parties.

The interested parties range from heavy industry to single

consumers. For instance mining industry is interested on the

type and granularity of the soil, in order to select the best strat-

egy of placement for the mining machinery. Forest industry is

interested on the load capacity of the soil, when placing forest

harvest machinery on the areas of interest. Great caution is

needed with the heavy machinery and accurate predictions for

the soil type are required in order to avoid any accidents and

minimize the moving costs. Swamp areas for example are a

high risk for heavy machinery and predetermined knowledge

of their locations is required.

We conduct a research on the usefulness of aerial gamma-

ray spectroscopy data (referred later as gamma-ray data)

combined with topographical height data when predicting the

qualities and characteristics of the soil, namely its type and

hydraulic conductivity. Gamma-ray data is inversely related

on the amount of water on the soil, which can be used to

predict the type of the soil.

We base our analysis on the gamma-ray data and topograph-

ical data provided by the Geological Survey of Finland (GTK)

and the National Land Survey of Finland (NLS). Hydraulic

conductivity of the soil can be estimated using the water

permeability exponent provided by the GTK, which describes

the rate of water flow speed in different soil types. Related

studies have been conducted in the paper of A. Azzalini and

J. Diggle [1] where they predict soil respiration rates from

temperature, moisture content and soil type. Another related

research was published in the paper of P. Scull, J. Franklin

and O.A. Chadwick [12]. In their paper they use classification

tree analysis for predicting the soil type in desert landscapes.

Related work has been done also by P. Nevalainen et al. [10],

R.P.O. Schulte et al. [13], H. Gao et al. [3] and Hyvönen et al.

[5]. Other related research was conducted by R.A. Chapuis [2],

R. Kiss [6], H.S. Mahmood et al. [7], N.J. McKenzie [8], I.D.

Moore et al. [9], A.T. Ramli et al. [11] and J.V.A. Zachary [14].

The main novelty of this paper related to the previous studies

is the proposed elevation features derived from topographical

data and the use of aerial gamma-ray data.

II. THEORY

In our analysis we are going to use regression analysis for

predicting the characteristics of the soil. Because regression

analysis is a well-known approach to model the relationship

between the explanatory variables x1, ..., xp and dependent

variable y, we are going to describe the used methods only

briefly, namely regularized linear regression and logistic re-

gression.

A. Regularized linear regression

For predicting the water conductivity of the soil we are using

regularized least squares estimation. As it is well known, when

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.319

1822



doing regularized linear regression we want to find a vector

w ∈ R
p such that the error function:

E(w) =
1

n

n∑
i=1

(
yi − wT xi

)2

+
λ

n
wT w, (1)

is minimized. In equation (1), xi ∈ R
p is the input data for ith

observation, yi ∈ R is the response value for ith observation,

n ∈ N
+ is the number of observations and λ ∈ R is the

regularization parameter.

B. Logistic regression

Logistic regression is used for classifying the dependent

categorical variable based on one or more predictor variables.

The basic idea is to use the logistic function:

F (t) =
1

1 + e−t
, (2)

where t = β0 + β1x1 + · · ·+ βpxp is a linear combination of

the explanatory variables. The output of the logistic function is

interpreted as a probability. The logistic function (2) is used in

the case of binary classification, which is why in our study we

use the multinomial version of logistic regression. Multinomial

logistic regression is the generalization of logistic regression

to allow arbitrary number of classes. In multinomial logistic

regression the activation function is the softmax logit function:

P (yi = j|xi) =

⎧⎪⎨
⎪⎩

1
1+

∑K−1
k=1 eβk·xi , k = K

eβj ·xi
1+

∑K−1
k=1 eβk·xi , 1 ≤ k ≤ K − 1

where class yi = K is selected as the ”pivot” element, βj is

the vector of regression coefficients associated with class j, xi

is the set of explanatory variables associated with observation

i. Observation xi is classified into class j∗ such that:

j∗ = argmax
j

P (yi = j|xi).

The values for the sets of parameters β1, ...βK are solved

using maximum a posteriori (MAP) estimation with quasi-

Newton optimization algorithms.

III. TEST AREA AND DATA SETS

The research area is located in the municipality of Parkano,

which is a part of the Pirkanmaa region. Pirkanmaa is a located

in the province of Western Finland. The size of the target

area is 144, 4804 km2. The target area is located in ETRS-

TM35FIN coordinates at 278 kmE, 6882 kmN, zone 35. Our

data sets consist of aerial gamma-ray data and topographical

height data. The data are 601 × 601 pixel images, with one

pixel corresponding to a 20m× 20m area. When considering

all the derived features used in the analysis we get a total

of nine images for input data and one image for output data.

We now present our data sets, firstly gamma-ray data and its

derived features and secondly topographical height data and

its derived features.

A. Aerial gamma-ray data

We conduct soil type predictions by using aerial gamma-

ray spectroscopy and topographical height features. The aerial

gamma-ray data is provided by the Geological Survey of

Finland (GTK). This data is well suited for forest harvest

applications, especially for applications in arctic areas such

as Northern part of Finland. The naturally occurring chemical

elements kalium (K) and thorium (Th) emit electromagnetic

gamma-ray radiation of extremely high frequency. By using

the gamma-ray radiation of kalium, we can infer many valu-

able characteristics of the soil. For instance, we can infer based

on the gamma-ray radiation of kalium the level of humidity,

roughness and frost heaving of the corresponding soil.

The intensity of gamma radiation is affected by the density,

porosity, grain size and humidity of the soil. The amount of

water in the soil affects inversely to the gamma radiation of

kalium. From this we can infer that, the less gamma radiation

is emitted from the area under study, the more there is water in

the area. This is useful information for we can use it to classify

whether the area under study is a suitable environment for

pine trees or we can conduct forecasts for the load capacity

and frost heaving of the soil. We can also use the gamma

radiation for classifying the soil type.

The soil in the Parkano target area is classified into 10

different soil type classes by the GTK. We use five different

features derived from the gamma-ray data: Gamma radiation

intensity itself and windowed 3× 3 mean, 5× 5 mean, 3× 3
standard deviation and 5×5 standard deviation. In Figure 1 we

present the gamma-ray data from Parkano target area and the

soil type classification. The brighter the area in the gamma-ray

picture is, the more gamma radiation is emitted in the area and

hence less water there is in the area. In Figure 2 we present

the statistical features derived from gamma-ray data. As a side

note one can notice that standard deviation detects well edges

in an image, which is also intuitive. The areas near the edges

have more variance than the uniform areas.

Fig. 1: Parkano aerial gamma-ray data (left) and soil type

classification (right) of Parkano target area. In the gamma-ray

picture one can note two larger dark areas. These correspond

to swamp and lake areas.
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Fig. 2: Gamma-ray derived statistical features. 3 × 3 mean

(upper-left), 5×5 mean (upper-right), 3×3 standard deviation

(lower-left) and 5×5 standard deviation (lower-right). Standard

deviation detects well the soil type boundaries.

B. Topographical height data

In addition to the gamma-ray data presented above we also

used topographical data provided by the National Land Survey

of Finland (NLS) in the analysis. There are several alternative

attributes possible to derive from topographical height data. In

our analysis we use ground inclination, convergence index and

flow accumulation defined in the paper of R. Kiss [6]. Figure 3

depicts topographical height data and its three derived features.

Fig. 3: Topographical height and its features. Height (upper-

left), convergence index (upper-right), flow accumulation

(lower-left) and ground inclination (lower-right).

C. Soil types

The GTK provided the analysis with two different types of

soil data from Parkano target area: ground soil classification

data and topsoil classification data. Both soil type data sets had

the same soil type classification in approximately 92 % of the

data. For this reason we used only ground soil classification

data. The soil type data is represented by positive integer

values, which indicate the pre-classified soil types. The total

data points used for analysis consisted of total of 361201 data

points, but because some of the soil types in the target area

consisted of uninteresting types, such as peat production field,

soil fill disposal site and water the overall number of used data

points was 342479.

For the regularized regression we are using the so called

water conductivity exponent, which is denoted as xwp. Water

conductivity exponent is represented by positive real values.

This value is used to estimate the vertical flow speed of water

in different soil types. According to the GTK the conductivity

speed of water is determined by the formula:

V (xwp) = 10−xwp × 3600× 24
m

s
,

where m/s stands for meters per second. This formula esti-

mates the speed of water flow through the soil. Different soil

types affect the rate at which water is penetrating through the

soil. In Figure 4 we have plotted the soil types based on their

water conductivity exponent ranges. We can see that many of

the soil types overlap each other based on their xwp ranges.

For example bedrock and carex peat could be considered as a

cluster of their own. If we cluster the soil types based on xwp

ranges we could arrive into the following clustering: {sandy

till, fine-grained till}, {gravel, sand}, {fine sand, coarse silt},
{silt} and {bedrock, carex peat}. We left out sphagnum peat

because it has the widest range and overlaps most of the

clusters.

In Table I we can see the soil types, their averaged xwp

values (xwp has a lower and upper bound for each soil type)

and relative percentages of the data. For instance, bedrock and

carex peat have a water flow of approximately 0 m
s , whereas

for gravel the speed is approximately 0.09 m
s and for sandy

till it is 27 m
s .

TABLE I: List of soil types, averaged values xwp and relative

percentages from the target area.

Id Type xwp %

1 Bedrock 11 7

2 Sandy till 3,5 34

3 Fine-grained till 4,5 22

4 Gravel 6 1

5 Sand 5,75 4

6 Fine sand 7 1

7 Coarse silt 7,25 2

8 Silt 8,75 1

9 Carex peat 10,5 13

10 Sphagnum peat 6 15
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Fig. 4: The ranges for water conductivity exponents illustrated.

The Y-axis describes the soil type id value, which can be used

to reference Table I. X-axis describes the values for the xwp

exponent.

IV. ANALYSIS AND RESULTS

We now explain our analysis and the corresponding results

in two parts. First we predict the soil type using multinomial

logistic regression and then we predict the rate of water

conductivity using regularized linear regression based on the

data presented before. We also used k-nearest neighbor clas-

sifier for comparison purposes with the logistic regression.

Optimal value 8 for k was selected by 10-fold cross validation

approach. By predicting the rate of water conductivity we can

infer the soil type by using the water conductivity exponents

presented in Table I. Water conductivity exponent can also

be used to predict the carrying capacity of the soil, which

is an important factor e.g. when we are making strategic

decisions on what routes should heavy forest machinery use.

We use 10-fold cross-validation for estimating the prediction

and classification accuracies of our models.

A. Soil type classification with multinomial logistic regression

Multinomial logistic regression was used in MATLAB-

environment with output classes for the soil types ranging

from 1 to 10 respectively. We did the same analysis with three

different feature settings:

Z
(s)
i = (fi, μi3, μi5, σi3, σi5),

Z
(t)
i = (ti1, ti2, ti3, ti4),

Z
(st)
i = (fi, μi3, μi5, σi3, σi5, ti1, ti2, ti3, ti4),

where s stands for gamma-ray statistical features, t stands for

topographical features and st is the combination of both. The

symbol i refers to the features of observation i. The features

are the following: fi is the intensity of gamma-ray radiation,

μi3 is the 3×3 windowed mean of gamma intensity, where fi is

the center point, μi5 is the same as μi3 but with a 5×5 window.

Similarly σi3 and σi5 are the windowed standard deviations.

The topographical features are ti1, ...ti4, that is the height,

ground inclination, convergence index and flow accumulation.

Positive integers from 1 to 10 were used to differentiate

between the soil type classes. Because the soil types weren’t

defined to have any ordinality, the classes were converted into

10-bit binary vectors, where only one bit had the value 1
specifying the class of the observation.

The best results were received by using both the de-

rived gamma-ray and topographical features. Prediction perfor-

mance was approximately 5-6 % lower in the case of logistic

regression when either gamma-ray or topographical features

were used alone. Similar results were noticed with 8-nearest

neighbor where the prediction performance was more than 11

% lower by using only either gamma-ray or topographical

results. The confusion matrices of the achieved results (in

percentages) using both gamma-ray and topographical features

for logistic regression and 8-nearest neighbor can be seen in

Table II and III correspondingly.

The results indicate that in most cases especially the soil

types sandy till and sphagnum peat are detected well from

the data. It was noticed that statistical gamma-ray features

give better results for the classification when compared with

the classification using topographical results. Combining both

statistical and topographical features we get the best results.

The results were compared with baseline performance,

where the idea is to replace the forecasts with a constant value

such that the used error measure is minimized. The baseline

predictor (predicting the mode of soil type labels) achieved

prediction performance of 34,8 %, almost 10 % lower than

logistic regression and more than 15 % lower than 8-nearest

neighbor.

The results are promising in that sense that the best predic-

tions are received with soil types where the water conductivity

is fastest. This result is useful especially for heavy machinery

in industry.

Nevertheless of the good prediction accuracy of sandy till,

we must also take into account the available data we used.

The training data for the classifier consisted 34 % of sandy

till, 22 % fine-grained till and 15 % of sphagnum peat. This

inevitably affects the prediction results and the difficulty to

detect the low frequency classes e.g. gravel, fine sand and silt.

B. Predicting water conductivity of the soil with regularized
linear regression

As mentioned before, water conductivity exponent xwp

refers to the rate of speed, at which water is penetrating

through the soil. We use regularized linear regression for

predicting the value of xwp at unknown regions. The values

used for regularization parameter λ ranged from 2−20, ..., 220.

Three different error measures were used for estimating

prediction performance: mean absolute deviation percentage

error (MADPE), mean interval absolute deviation (MIAD) and

concordance index (CI), see [4]. Explicitly, the error measures

are:
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TABLE II: Confusion matrix demonstrating the results (in percentages) of 10-fold cross-validation for soil type classification

using both statistical gamma-ray and topographical features with multinomial logistic regression. The amount of data points in

the diagonal of the matrix consist 44.5 % of the classifications. Y-axis denotes the class label prediction and X-axis denotes

the real class label.

1 0.4 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0

2 5.4 26.5 12.6 0.7 2.9 0.7 0.2 0.1 3.4 3.2

3 0.5 4.1 5.8 0.0 0.3 0.5 0.8 0.4 1.6 1.1

4 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7 0.1 0.5 0.1 0.0 0.1 0.2 1.2 0.3 0.1 0.0

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9 0.1 1.0 0.9 0.0 0.2 0.1 0.0 0.0 2.3 2.0

10 0.2 2.5 2.6 0.0 0.5 0.0 0.0 0.0 5.0 8.2

1 2 3 4 5 6 7 8 9 10

TABLE III: Confusion matrix of same classification task as with logistic regression, but with the classifier being 8-nearest

neighbor. The amount of data points in the diagonal of the matrix consist 50.5 % of the classifications. The axes are the same

as in Table II.

1 1.7 1.5 0.6 0.1 0.1 0.0 0.0 0.0 0.1 0.1

2 3.5 23.7 7.8 0.4 1.9 0.6 0.7 0.3 3.1 2.8

3 0.9 5.6 10.7 0.1 0.6 0.5 0.2 0.1 2.0 1.7

4 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0

5 0.1 0.4 0.1 0.1 0.8 0.0 0.0 0.0 0.1 0.2

6 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

7 0.0 0.4 0.2 0.0 0.0 0.1 1.1 0.2 0.1 0.0

8 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0

9 0.2 1.5 1.3 0.0 0.3 0.1 0.1 0.0 4.5 2.3

10 0.2 1.6 1.3 0.0 0.4 0.1 0.0 0.0 2.5 7.6

1 2 3 4 5 6 7 8 9 10

MADPE =

∑n
i=1 |yi − ŷi|∑n

i=1 |yi|
, (3)

CI =
1

N

∑
yi<yj

h(ŷi − ŷj), (4)

MIAD =
1

n

n∑
i=1

e(ŷi), where (5)

e(ŷi) =

⎧⎪⎨
⎪⎩

|yui − ŷi|, if ŷi > yui
|yli − ŷi|, if ŷi < yli
0, otherwise.

In the above equations we denote yi as the ith response value

and ŷi as the corresponding forecast value. In equation (4) we

denote N = | {(i, j) | yi > yj} | as the normalization constant

which equals to the number of data pairs with different label

values and h(u) is the step function returning 1.0, 0.5 and

0.0 for u > 0, u = 0 and u < 0, respectively. The values

yui and yli in equation (5) represent the upper and lower

bounds of the water conductivity exponent of ith observation.

The values of the C-index range between 0.0 and 1.0, where

0.5 corresponds to a random predictor and 1.0 to the perfect

prediction accuracy in the test data. Similarly as in the case

of logistic regression, we used 10-fold cross-validation for

approximating the prediction accuracy of the regularized linear

regression. The optimal value for regularization parameter was

found to be λ = 215. As a baseline prediction for comparing

the different error measures of the linear model we used
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median of the training data labels (i.e. median of xwp values of

the training set). For C-index we used the value 0.5 as baseline,

because it is invariant for the distribution of the data labels. In

regression we used both statistical and topographical features,

that is the ith observation corresponded to a 1×10 row vector

xi = (1, fi, μi3, μi5, σi3, σi5, ti1, ti2, ti3, ti4), where

the 1 is the constant for bias term. The corresponding output

value is the real value yi ∈ R
+. The results for regularized

linear regression can be seen in Table IV.

If we look at the concordance index (CI) we notice that

regression was able to detect signal from the data, considering

the amount of data (342479 data points). MIAD and MADPE

also show lower error than the corresponding baselines.

TABLE IV: Table demonstrating the results for different error

measures of the regularized linear regression using 10-fold

cross-validation. The second column represents the value of

the corresponding error measure and the third column is the

baseline performance used for comparison.

Error measure value baseline

MADPE 0.33 0.35

MIAD 1.4 2.2

CI 0.63 0.5

V. CONCLUSIONS AND FUTURE WORK

The results indicate that gamma-ray and topographical data

can be used to detect soil types up to approximately 44.5 %

accuracy using multinomial logistic regression. An increase in

the accuracy was achieved using 8-nearest neighbor classifier,

which achieves approximately 50.5 % accuracy. We note that

especially sandy till and sphagnum peat have good predic-

tion accuracies when compared with other soil types. When

considering low water conductivity soil types, the prediction

accuracy was higher.

We also noted that regularized linear regression was able to

detect signal from the data by having lower error rates in all

the error measures when comparing to baseline error.

Given the hydraulic conduction prediction, additional expert

rules or machine learning methods can be used to select

the soil type from several possible indicated by the soil

water conductivity. Such expert rules exists but are not yet

implemented.

There is also a possibility to use aerial Light Detection

and Ranging (LiDAR) data instead of the topographical height

data. This would enable computation of several surface texture

features. Additional features could give better capability to

predict the actual soil types directly. This remains subject of

further study.
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Abstract. Water permeability is a key concept when estimating load
bearing capacity, mobility and infrastructure potential of a terrain.
Northern sub-arctic areas have rather similar dominant soil types and
thus prediction methods successful at Northern Finland may generalize
to other arctic areas. In this paper we have predicted water permeability
using publicly available natural resource data with regression analysis.
The data categories used for regression were: airborne electro-magnetic
and radiation, topographic height, national forest inventory data, and
peat bog thickness. Various additional features were derived from original
data to enable better predictions. The regression performances indicate
that the prediction capability exists up to 120 meters from the closest
direct measurement points. The results were measured using leave-one-
out cross-validation with a dead zone between the training and testing
data sets.

Keywords: load bearing capacity of soil, water permeability, regression,
k-nearest neighbor, mobility, sub-arctic infrastructure.

1 Introduction

This paper is about predicting the water permeability of the soil by regression
analysis using publicly available multi-source data. Water permeability (also
called hydraulic conductivity) is a central soil property related to soil type and
soil texture. High permeability means that soil tends to stay dry and traversable
most of the year, whereas low permeability creates a risk for mobility when pre-
cipitation is high. Mobility in arctic areas is of great interest to many different
parties. E.g. the mining industry is interested about the mobility estimates when
placing various facilities. The forest industry is interested on the load bearing
capacity of the soil, since the route solutions can be adaptive to mobility pre-
dictions.

Our input data set consists of 44 features which are publicly available. The
data is in raster format with grid resolution ranging from 10 meters to 50 meters.

L. Iliadis et al. (Eds.): AIAI 2014, IFIP AICT 436, pp. 436–446, 2014.
c© IFIP International Federation for Information Processing 2014
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Water permeability of the soil has been measured in 1788 test spots at North-
ern Finland provided by the Geological Survey of Finland (GTK). It is an im-
portant attribute which, when combined with other features available, helps to
determine the soil types. Related studies have been conducted in [1] where soil
respiration rates are predicted from temperature, moisture content and soil type.
Another related research was published in the paper of P. Scull, J. Franklin and
O.A. Chadwick [2]. In their paper they use classification tree analysis for pre-
dicting the soil type in desert landscapes. R.P.O. Schulte et al.[3] focuses on
soil moisture deficit, which is a related concept but not of concern in sub-polar
areas, H. Gao et al. [4] and R.A. Chapuis [5] focus on water budget model-
ing, which was not yet attempted in our study. H.S. Mahmood et al. [6] uses
on-site gamma-ray measurements for analysis of the farming soil. N.J. McKen-
zie [7] combines gamma-ray and digital elevation model to predict the chemical
composition of the farming land. Closest to our paper is [8], where several data
sources (topographic and remote sensing) are combined with 85 soil samples to
assess the usability of the soil within and outside the sampled area. One can try
to by-pass the water permeability estimation by directly learning the dynamic
coupling between the precipitation and remotely observed soil moisture. This
approach must include the digital terrain model (DTM) to estimate the water
catchment. An example of this approach is [9].

The main novelty of this paper related to the previous studies is that the
prediction is based on wide-area public data on a subpolar region. The features
used in this paper are basically available through-out the arctic zone.

We use regression analysis to find a mapping between the publicly available
data and water permeability of the soil. In the following, we present the regression
methods in Ch. 2. Then we introduce the test area, the original data sets and
derived features (Ch. 3) and describe the analysis process and results of the
analysis (Ch. 4). The last part is for conclusions and future approaches (Ch. 5).

2 Regression Methods

Regularized least squares regression (RLS) is well known so we describe it mainly
to introduce the variables and the notation used later in the paper. The explana-
tory variables x1, ..., xp consist of given data and dependent variable y is the
water permeability. We need to find a set of parameters w ∈ R

p and b ∈ R such
that the error function:

E(w) =
1

n

n∑
i=1

(
yi −wTxi − b

)2

+
λ

n
wTw (1)

is minimized, where xi ∈ R
p is the input vector, yi ∈ R is the response value, n

is the number of observations and λ is the regularization parameter.
The k-nearest neighbors (k-NN) approach predicts the test sample by taking

the average from k points nearest to it. Euclidean distance is the used metric
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in our analysis. Explicitly stated, if y1, ..., yk are the response values of the k-
nearest points to the test sample, then the response value for the test sample
ŷt is:

ŷt =
1

k

k∑
i=1

yi.

3 Test Area, Data Sets and Features

The research area is located in the northern part of the municipality of So-
dankylä, which is a part of Finnish Lapland. The size of the target area is
18432 km2. The center point of the rectangular target area is at ETRS-TM35FIN
coordinates 7524 kmN, 488 kmE, zone 35.

The data set consists of aerial gamma-ray spectroscopy data (referred later as
gamma-ray data, AGR) combined with electromagnetic (AEM), topographical
(Z), peat bog mask (PBM) and The National Forest Inventory 2011 (VMI1) data
when predicting the qualities and characteristics of the soil, namely its type and
water permeability (WP). Gamma-ray data is inversely related on the amount
of water on the soil, which can be used to predict the type of the soil. The forest
inventory data describes the profile of tree species, their maturity and foresting
state. Albeit this kind of data is not directly available elsewhere in northern sub-
arctic areas (e.g. Russia, Canada), several studies are underway to predict the
main characteristics of the forest by remote measurement methods [10]. These
methods include LiDAR and various satellite measurements.

The data providers are:

Table 1. Data providers, data and the grid size

Provider Data Grid size

Geological Survey of Finland (GTK) AGR, AEM 50 m
WP

Finnish Forest Research Institute (Metla) VMI, PBM 20 m

National Land Survey of Finland (NLS) Z 10 m

When considering all the derived features used in the analysis we get a total
of 96 data layers.

The test site has 1788 sample points, where many mechanical and electro-
chemical properties of the soil were measured, see [11]. The water permeability
is a theoretical value derived from the soil particle size distribution of the soil.

We now present our data sources and donors.

1 VMI2011: http://www.metla.fi/ohjelma/vmi/vm11-info-en.html
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3.1 Forest Inventory Data

The National Forest Inventory (VMI) holds the state of Finnish forests. The data
is updated once in two years. The parameters are derived from various remote
sensing sources, and several spot-wise verification and calibration methods are
applied to it before publishing the data [12]. 44 numerical features include green
mass, trunk dimensions and tree density per specie category. These multi-source
features exhibit built-in dependencies, thus the final number of useful features
is lower.

3.2 Aerial Gamma-Ray Data

The aerial gamma-ray data was provided by the Geological Survey of Finland
(GTK). The raster data is based on gamma-ray flux from potassium, which is
the decay process of the naturally occurring chemical element potassium (K).
This data indicates many significant characteristics of the soil, including the
tendency to stay moist after precipitation and tendency to frost heaving. Also
the soil type, especially density, porosity, grain size and humidity of the soil have
an effect to gamma-ray radiation. In Fig. 1 we present the gamma-ray data from
Sodankylä target area. The bright end of the gray scale is for the high gamma
radiation and hence less water in the locality of the pixel.

Fig. 1. Aerial data: gamma-ray (left) and electromagnetic data (right). Air-borne elec-
tromagnetic data is sensitive to geological properties to depth of hundreds of meters,
but it also indicates some features of the top soil.

3.3 Electromagnetic Properties of Soil

The air-borne electromagnetic (AEM) data was provided by the Geological Sur-
vey of Finland (GTK). Primary AEM components, in-phase and quadrature,
were transformed to apparent resistivity values by using a half-space model [13].
The apparent resistivity gives information on different kind of soil conductors.
The apparent resistivity is governed by grain size distribution, water and elec-
tronic conductors content of soil and cumulative weathering.
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3.4 Topographical Height Data

Topographical data provided by the National Land Survey of Finland (NLS) was
included in the analysis. The data from NLS server is basically similar to aerial
laser measurements (LiDAR) except LiDAR can reach denser grid. Instead of raw
height alone we used local height difference, flow accumulation area, confluence
and inclination described in [14]. These four derived features are more efficient
for prediction than raw height data alone.

3.5 Peat Bog Mask

Peat bog mask is created from GTK aero-radiometric data and is courtesy of
NLS and METLA. The grid size is 20 m and the value 1 indicates that peat
thickness is over 60 cm. Value 0 indicates thickness less than 60 cm. The limit
chosen is practical for mobility prediction.

3.6 Derived Features

The following features were derived from gamma-ray and electromagnetic data:

– Mean and variance over 3× 3 window
– Mean and variance over Gabor filter with 8 orientations, see [15]
– Local Binary Pattern (LBP) with pixel radii r ∈ {1, 2}, see [16]

From topographical height we derived the following features: local height dif-
ference, ground inclination, convergence index and flow accumulation area. The
definition of these features is at [17]).

There are several additional attributes possible to derive from topographical
height data, and more geomorphological features will be employed in the future.

The regression methods use total of 44 original and 52 derived features, in-
cluding the constant feature. The derived features are useful only if the original
feature is continuous enough. E.g. the Forest Inventory data often has locally
constant zones with abrupt changes and the derived features do not help much.

3.7 Water Permeability Exponent

This is the subject of prediction. Basically, the water permeability indicates the
nominal vertical speed of water through the soil sample. The measurement of
this quantity is indirect, based on soil particle size distribution, and the actual
speed highly depends on the inhomogeneities (roots, rocks) and micro-cracks in
the soil. This is why this quantity is descriptive and theoretical. In our analysis
we are using a logarithmic quantity xwp derived from water permeability speed v.
For purposes of this presentation it is called as the water permeability exponent
and defined as:

xwp = − log10 v, [v] =
m

sec
, (2)

This formula has v as the vertical speed of water flow through the soil.
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4 Analysis and Results

We are looking for methods which predict water permeability on areas, where
there may not be direct water permeability measurements nearby. Therefore,
we developed a modification of the leave-one-out cross-validation (LOOCV) for
measuring the degree of spatial dependency from the nearby direct measure-
ments, which we refer to as LOOCV with dead zone. Namely, the approach
works on the measurement data just like an ordinary LOOCV in which each
measurement at a time is omitted from the training set and used as a test point,
except that we also remove from the training set all points that are within geo-
graphical distance r from the test point. This approach is illustrated in Fig. 2.
By varying r, we can measure how far from the test area we assume the closest
measurements to be at the very least. In addition, the results can be helpful in
deciding how dense grid of direct measurement one should use in order to obtain
a certain level of prediction performance.

We perform the regression of water permeability with the following three
feature sets:
– location only
– features + location
– features only

where location refers to the geographical coordinates (e.g. latitude and longitude)
and features to the ones described in Section 3. Note that one can not rely on
the location information if there are no nearby direct measurements at all, and
therefore we measure the prediction performance separately with these.

The prediction performances with the different feature sets as a function of
the radius r of the dead zone are depicted in the two leftmost graphs in Fig. 3
on p. 443. The generic version based on feature data only gives weaker results,
since the sample point arrangement at Sodankylä (see sample sets A and B in
Fig. 2) and perhaps the phenomenon itself induce spatial dependency. No good
generic regression method for this data set has been found, instead the problem
is about how much additional samples are needed per target area to make the
prediction useful.

The common k-NN method has one essential parameter, the number of neigh-
bors k. The spatial dependency can be probed by adding the dead zone radius r
to avoid the optimistic effect of the nearest neighbors. Fig. 2 depicts the modified
leave-one-out arrangement, where k nearest points outside the dead zone of ra-
dius r are used for teaching. By varying r one gets a varied data set and a rough
estimate on how dense it should be for it to predict well in new circumstances.

The same parameterized dead zone leave-one-out arrangement was used with
regression, too.

4.1 Predicting Water Permeability

As mentioned in Sec. 3.7 before, the prediction subject is the water permeability
exponent xwp defined by Eq. 2. The values used for regularization parameter λ
ranged from 2−15, ..., 215. k-NN parameter had k ∈ {1, 3, 6, 12, 22}. Two different
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r

LOO test point

Omitted points

Fig. 2. Left : 1788 sample points. Set A (1187 points, marked with red circles, distance
to the nearest neighbor dNN ≤ 86m) is tightly packed and set B is very sparse (601
points, marked with black dots, aver. dNN ≈ 1.1 km). Right : the dead zone (with radius
r) around the leave-one-out test point (black circle). The gray circles are omitted from
the training set (white circles). Both the k-NN and RLS method address the training
data only, e.g. the k nearest neighbours are selected from outside the circle.

error measures were used for estimating prediction performance: mean absolute
error (MAE) and concordance index (CI) [18]. Explicitly, the error measures are:

MAE =
1

n

n∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ CI =
1

N

∑
yi<yj

h(ŷi − ŷj) (3)

MAE prediction baseline ỹ is the best possible prediction under the assump-
tion that the prediction will be constant, thus constraining all values ŷj = ỹ, j =
1..n in the error minimization process. MAE baseline becomes thus:

MAEb = argmin
ỹ

1

n

n∑
i=1

|yi − ỹ

yi
|

The prediction performance should be better than this to be useful. The
corresponding percentage values (MAPE and MAPE b) have been used in the
rest of the text.

Concordance index counts the occurrences when the prediction fails to be
monotonical. In equation (3) we denote N = | {(i, j) | yi > yj} | as the normal-
ization constant which equals to the number of data pairs with different label
values. h(.) is Heaviside step function.

The values of the C-index range between 0.0 and 1.0, where 0.5 corresponds
to a random predictor and 1.0 to the case where prediction is monotonically
correct.
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4.2 Results

The results for regression analysis can be seen in Fig. 3 on p. 443.
Both MAPE and C-index indicate rather good prediction performance to the

distance of 120 m from the nearest soil sample point. This is seen both with
k-NN and RLS methods. When MAPE is higher than the baseline, it is better
to use baseline average than the prediction. MAPE baseline is the horizontal line
in the lower figures in Fig. 3.
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Fig. 3. Left : k-NN results with k = 6 and 3 different feature sets. Right : RLS results
on features-only case. C-index and Pearson correlation at top and MAPE below. The
prediction performance is adequate below 120 meters.

The dead zone radius r > 0 simulates a situation, where the test point is at
least r distance away from the given training points. r = 0 is traditional LOO
test arrangement and measures best the properties of the predicted value within
the training set itself. It may be too optimistic, since we seek for generalization.
A large radius r ≈ ∞ is overly pessimistic, since it would use only tiny fragments
of the training set and would completely distort the prediction.

The prediction performance near r = 0 seems to indicate rather good gen-
eralization ability, but the performance reduces drastically over the dead zone
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distance r. Further study, both theoretical and practical, must be done to prop-
erly address classical geoinformatics concepts such as spatial autocorrelation and
spatial semivariance together with the general prediction ability. The problem
is new, since spatial analysis in geosciences is usually applied in the sense of
interpolation and extrapolation performance, and general prediction is usually
analyzed in the terms of Machine Learning performance.

The feature selection was not attempted. There were two reasons for this:

– the number of features (96) remained modest.
– the forest inventory features are unique to Finland. They can be largely

substituted by various remote measurements [12], which would extend the
application scope of the method to whole sub-polar area.

5 Conclusions and Future Work

The results indicate that the chosen five data sources (forest inventory, gamma-
ray, air-borne electromagnetic, topographical data and peat bog mask) can be
used to estimate the water permeability to a certain range from known measure-
ments. This range seems to be c. 120-150 m. The best results come from the
k-NN method based on the location of the sample points only. This method is
naturally unavailable for general prediction.

There are several possible improvements. Since the mapping from water per-
meability to soil types is not unique, see [19], a special majority rule could be
used to select the dominant soil type from neighboring grid point predictions.
Such expert rules would require additional features like sophisticated geomor-
phological categories.

The Aerial Light Detection and Ranging (LiDAR) data can substitute most
of the topographical and forest inventory data features. This would extend the
scope of the prediction to any location at the arctic zone, where only aerial and
satellite measurements are economical. LiDAR has also potential for derived
features like geological morphology [20] and soil water budget modeling [10].

The final goal is to predict the water permeability, soil types, approximate wa-
ter budget and the load bearing capacity of the terrain in relation to the given
weather forecast, while the model is based on remote measures and online learn-
ing based on measurements from the harvester fleet. The potential applications
aim to wide-area routing and location planning. In this regard, even a modest
prediction power of features-only prediction could yield a cumulative effect on
route decisions.
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Abstract

In forest harvesting, terrain trafficability is the key parameter needed for route planning. Advance knowledge of the soil bearing
capacity is crucial for heavy machinery operations. Especially peatland areas can cause severe problems for harvesting operations
and can result in increased costs. In addition to avoiding potential damage to the soil, route planning must also take into consideration
the root damage to the remaining trees. In this paper we study the predictability of boreal soil load bearing capacity by using remote
sensing data and field measurement data. We conduct our research by using both linear and nonlinear methods of machine learning.
With the best prediction method, ridge regression, the results are promising with a C-index value higher than 0.68 up to 200 m prediction
range from the closest point with known bearing capacity, the baseline value being 0.5. The load bearing classification of the soil resulted
in 76% accuracy up to 60 m by using a multilayer perceptron method. The results indicate that there is a potential for production appli-
cations and that there is a great need for automatic real-time sensoring in order to produce applicable predictions.
� 2016 ISTVS. Published by Elsevier Ltd. All rights reserved.

Keywords: Terrain trafficability; Soil bearing capacity prediction; Forest harvesting; Machine learning; Open data

1. Introduction

Terrain trafficability in forests is currently one of the
most important issues in boreal timber harvesting. Con-
ducting harvesting operations during good soil bearing
conditions is crucial since improperly timed operations
can cause serious economical and ecological damage.
Vehicular loading exceeding soil strength causes not only
soil damage, but also damage to trees, mostly to the tree
roots, but sometimes to tree stem as well due to increasing
uncontrolled motion of the forwarder.

Damage to roots and stems can lead to fungal infection
which eventually causes wood discoloration and in the

worst case decay. In addition, the water and nutrition con-
ditions of the forest soil can change as a result of soil set-
tling (Ring et al., 2006). The operation of forest machines
is therefore avoided during the period of high soil failure
risk and the harvesting is postponed to the winter when soil
is normally frozen. It is estimated that the seasonal varia-
tion in timber procurement causes approximately
100 M €costs in Finland alone (Pennanen and Mäkelä,
2003). In addition, operations in poorly bearing conditions
increase time and fuel consumption and decrease the effi-
ciency of harvesting operations (Sirén et al., 2013).

Furthermore, deep ruts caused by forwarding affect the
general acceptability of the forest operations. The costs
caused by challenging trafficability conditions could be
decreased by additional information on soil conditions,
especially soil bearing capacity. The load bearing capacity
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of soil is often described by its penetration resistance.
Accordingly, forest operations could be planned to be per-
formed during adequate bearing capacity or routed to
avoid sections of poor bearing capacity, thus minimizing
the damage and maximizing the efficiency of harvesting.

In this study we conduct a research on the prediction of
soil bearing capacity by using remote sensing and field
measurement data. We have analyzed two cases, firstly
visual soil damage classification and secondly soil penetra-
tion resistance prediction. The data sets are provided by
Natural Resources Institute Finland (LUKE), Metsäteho
Ltd., the Geological Survey of Finland (GTK), National
Land Survey of Finland (NLS) and Finnish Meteorological
Institute (FMI). Similar studies have been conducted in
Pohjankukka et al. (2014a,b) where soil properties such
as type and water permeability was estimated in order to
have predictions on the soil bearing capacity using public
data. Related studies have been conducted in Azzalini
and Diggle (1994) where soil respiration rates are predicted
from temperature, moisture content and soil type and
(Schulte et al., 2005), where the soil type in desert land-
scapes was predicted using classification tree analysis.

2. Background

Timber harvesting systems vary across the world. In
Finland, the mechanized cut-to-length harvesting system
is utilized almost exclusively (Uusitalo, 2010). Harvesting
operations in Finland are typically commercial thinnings
or clear cuttings. In a traditional thinning operation only
a part of the trees, on average 30%, are cut, leaving most
of the trees standing (Äijälä et al., 2014). Depending on
stand properties thinnings are typically done one to three
times during the rotation of a stand (Äijälä et al., 2014).

The rotation period of a stand usually ends to a final
felling, where all trees of commercial value are cut. Some
individual tree clusters are left standing for example to
retain biodiversity (Gustafsson and Perhans, 2010). The
structure of private forest ownership in Finland has chan-
ged, which is causing pressure to change the forestry prac-
tices, as many forest owners are no more dependent of
forest income and emphasize multiple values in manage-
ment decisions. The commercial aspect of harvesting has
become less pronounced, while environmental standpoint
has gained more attention. More than a half of the forest
owners are satisfied with the current forest management
practices, where every sixth forest owner feels unsatisfied
especially with clear cuttings, lack of management alterna-
tives, soil preparation and damage caused by heavy
machinery (Hänninen and Karppinen, 2010). So far the
use of alternative forest management methods including
selection cuttings has been marginal concentrating on
urban forests, landscape protection areas, valuable habi-
tats, riparian and other buffer zones. If uneven-aged forest
management becomes more popular in future, it increases
the amount of thinnings. Uneven-aged thinnings place even

more challenges to harvesting machinery in respect to
avoiding damages and risk of root rot.

3. Research area and data sets

3.1. Research area

The data sets were collected from various locations
around the area of Pieksämäki, a municipality located in
the province of Eastern Finland 62�180N 27�080E. The
research areas were divided into two cases based on the
response variable. The predictor data sets varied between
the two cases as illustrated in Tables 1 and 2.

3.2. Multi-source national forest inventory data

The Multi-Source National Forest Inventory (MS-NFI)
holds the state of Finnish forests in high spatial resolution
(20 m). The data is updated every second year. The param-
eters are derived by generalizing the field measured sample
plot data applying mainly Landsat imagery and KNN
method as well as digital map information. 43 numerical
features include information regarding, for example, bio-
mass and volume of growing stock and site type. These
multi-source features exhibit built-in dependencies, thus
the final number of useful features is lower. An excellent,
detailed description regarding the MS-NFI is given by
Tomppo et al. (2008).

3.3. Digital elevation model data

We downloaded digital elevation model (DEM) data
from the file service for open data by the National Land
Survey of Finland. The DEM was made from airborne
laser scanning data with the resolution of at least 0.5 sam-
ples/m2, which is equivalent to approximately 1.4 m dis-
tance between samples. The grid size of the DEM data
set was 2 m. Several geomorphometric variables were
derived from the NLS DEM in SAGA GIS environment.
In our analysis we used the geomorphometric features:
plan curvature, profile curvature, slope, topographic wet-
ness index, flow area, aspect, diffuse insolation and direct
insolation (Zevenbergen and Thorne, 1987; Wood, 2009,
1996; Beven and Kirkby, 1979; Seibert and McGlynn,
2007). These derived features are more efficient for predic-
tion than raw height data alone.

Table 1
Predictor data sets used in prediction of soil damage response variable. RS
stands for remote sensing data and FM stands for field measurement data.

Data set Type Grid size

Digital Elevation Model data RS 2 m
Multi-source National Forest Inventory data RS 20 m
Soil type data RS 20 m
Peatland data RS 20 m
Gamma-ray spectroscopy data RS 50 m
Weather data RS 10 km
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3.4. Weather data

Weather data consisting of temperature (�C) and rainfall
(mm) for years 2011–2013 was provided by the Finnish
Meteorological Institute. The grid size of the data set was
10 km. In our analyses we used the mean temperature
and rainfall of the last 30 days as predictor features for
each observation of the response value. For example if an
observation of the response value was measured June 15,
2013 the mean temperature and rainfall predictor features
for the response value observation were calculated from
the time interval May 16 - June 14, 2013.

3.5. Aerial gamma-ray spectroscopy data

The aerial gamma-ray data with grid size of 50 m was
provided by the Geological Survey of Finland (GTK).
The raster data is based on gamma-ray flux from potas-
sium, which is the decay process of the naturally occurring
chemical element potassium (K). This data indicates many
significant characteristics of the soil, including the tendency
to stay moist after precipitation and tendency to frost heav-
ing (Hyvönen et al., 2003). Also the soil type, especially
density, porosity, grain size and humidity of the soil have
an effect on gamma-ray radiation. Areas with high
gamma-radiation tend to have lower soil moisture and vice
versa. We derived several statistical and textural features
from Gamma-ray data such as: 3 � 3 windowed mean,
3 � 3 windowed standard deviation, Gabor filter features
(see e.g. Feichtinger and Strohmer, 1997) and Local Binary
Pattern features (Pietikäinen et al., 2011).

3.6. Peatland data

The peatland data was compiled by LUKE using the
open geographic information data derived from NLS
Topographic database (NLS, 2014) depicting the terrain
and covering the whole of Finland. The positional accuracy
of the NSL Topographic database corresponds to that of
scales 1:5000–1:10,000 (NLS, 2014). The peatland mask
consist of four different NLS Topographic database ele-
ments depicting different type of peatlands. These elements
were first combined and then rasterized to 20 m grid using
ArcMap software (ArcMap, 2014). The definitions for
peatlands in the NLS Topographic database are: (1) area
is mostly covered by peatland vegetation and (2) a mini-

mum of 0.3 m peat thickness (NLS, 2014). A minimum cri-
teria for area is 1000 m2. Area with peat thickness less than
0.3 m can also be classified as peatland if it is covered by
peatland vegetation.

3.7. Subsoil and topsoil data

GTK provided the analysis of subsoil classification data
and topsoil classification data from Pieksämäki target area.
The soil type data is represented by positive integer values,
which indicate the pre-classified soil types. Both of the soil
type data sets consisted of twelve distinct soil types e.g.
bedrock, Sphagnum peat, Carex peat and sandy till. The
grid size of these data sets were also 20 m.

3.8. Soil moisture data

Gravimetric soil water content was measured from the
samples by drying the soil samples and calculating the
weight difference of dry and wet soil sample (ASTM
D2216-10, 2010).

3.9. Soil damage data

Approximately 36 km of strip roads were walked
through and visually assessed into damage classes by a for-
est operations expert. The data was kindly provided to us
by Metsäteho Ltd. in 2013. The soil damage data was clas-
sified into three main ordinal classes based on the rut depth
caused by forest harvesting machinery. The three classes
were: (1) No damage; (2) Slight damage; and (3) Damage.1

The original dataset required preprocessing since the
field recorded GPS-tracks included locational errors (zig-
zag -motion). After the data was preprocessed to produce
a smooth line form, we converted strip road lines into
points and extracted values from selected features, e.g.
MS-NFI and topographic variables.

3.10. Soil penetration resistance, stoniness and shear

modulus

The total of 50 penetration resistance measurements
were taken on two different locations in Kumpunen, Piek-
sämäki, Finland (N 6921354, E 501297 in ETRS-
TM35FIN coordinates). The study was conducted during
a commercial thinning operation. The plot locations were
selected based on expert judgment to cover the gradient
between dry mineral soil with high bearing capacity and
wet organic soil with low bearing capacity. 15 plots were
measured from dry site and 35 plots were measured from
wetter, partly paludificated site. Sites were located roughly
490 m apart from each other. Depth of organic soil varied
from 0 to almost 90 cm. We measured the soil penetration

Table 2
Predictor data sets used in prediction of penetration resistance response
variable.

Data set Type Grid size

Stoniness data FM 2 m
Peatland data FM 2 m
Soil moisture data FM 2 m
Digital Elevation Model data RS 2 m
Multi-source National Forest Inventory data RS 20 m
Weather data RS 10 km

1 Includes strip road sections covered by brash mat, originally classified
as ‘‘potential damage”, since without brash mat they likely would have
been damaged.
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resistance using a penetrometer (Muro, 2004) at five differ-
ent locations around and between the wheel tracks to avoid
the random effect caused by e.g. hitting a tree root in a sin-
gle measurement. This method is illustrated in Fig. 1. Shear
modulus was measured at the same locations with a spiked
shear vane (Ala-Ilomäki, 2013). The accumulation of log-
ging residue significantly hindered measuring, and it was
not always possible to place measurements systematically.

3.11. Rut depth measurement

Depth of both wheel ruts was measured using an
inversed U-shaped frame with its feet resting on the unde-
formed soil surface outside wheel rut, which formed the
reference level. Individual observations were averaged to
plot level. First measurements were taken after the har-
vester and the rut formation was measured again after each
pass of the forwarder collecting the timber from the cutting
area. The extraction road was cleared of logging residue
after the harvester pass in order to observe the effect of soil
properties on forwarder rut formation without the rein-
forcing effect of brash (Sirén et al., 2013). The accumulated
mass traversed over each measuring location was defined as
the sum of net vehicle mass plus the mass of load for all the
passes (Sirén et al., 2013).

4. Methods

The possibilities to predict the response variables were
estimated using both linear and nonlinear methods. Next
we will describe the used prediction methods including
leave-one-out cross-validation with a dead zone approach
for the model performance estimation given by the concor-
dance index (C-index).

4.1. Leave-one-out cross-validation with a dead zone

In geographical applications there is bound to be some
sort of spatial autocorrelation between the data points.
Data points very close to each other geographically have
intuitively larger spatial autocorrelation than data points
far apart. Accordingly, using the traditional cross-
validation approach (see e.g. Abu-Mostafa et al., 2012)
that assumes the mutual independence of the data points,
is not suitable here, as it only estimates the prediction capa-
bility of individual test data points, regardless of their dis-
tance from the training data. We need a way of simulating
the predictions in a practical situation which is why we use
the so-called leave-one-out cross-validation with a dead zone
(LOOCVDZ), (Pohjankukka et al., 2014b).

The idea of the LOOCVDZ method is to simulate the
prediction capability of the model in such a situation,
where the point for which the prediction is to be made is
at least n meters away from the closest training point.
For each data point at a time, we create a perimeter (dead
zone) of radius d around the point and remove from the
training data all the points falling inside the perimeter
including the test point itself. A model is trained with the
reduced training data set and a prediction is performed
for the test point with the learned model. This process is
repeated over the whole data set, just like an ordinary
leave-one-out cross-validation. The LOOCVDZ method
gives us a way of simulating a harvester or a forwarder pre-
dicting soil bearing capacity, when the closest known mea-
surements are at least n meters away. In Fig. 2 we have
illustrated the LOOCVDZ method.

4.2. Concordance index

Concordance index (C-index) was the main performance
measure used in the analyses (Gönen and Heller, 2005).3 m

Sample

Track

points

Fig. 1. Illustration of how the field measurements were made. Black
rectangles represent the wheel tracks and gray points represent the
measurement points. The width of the track was approximately 0.4 m and
distance from the center of the left track to the center of the right track
was 2.8 m.

δ

Fig. 2. Illustration of the dead zone with perimeter determined by d. The
black point is the one whose label we aim to predict. The data inside the
dead zone will be omitted from training the model used to predict the label
of the test point.
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Concordance index measures the relative ranking of paired
data points in the sets V ¼ fy1; . . . ; yng and
P ¼ fŷ1; . . . ; ŷng, where V is the set of observed labels
and P is the corresponding set of predictions. The C-
index measures how well the prediction model was able
to rank the predictions into correct order. It is a particu-
larly useful measure in situations where we are not espe-
cially interested in the absolute accuracy of the prediction
value, but rather where we need to make a choice between
a set of alternatives. In our application we are interested in
selecting the most supporting area or route from a set of
alternatives for the forest machine. Explicitly concordance
index is defined as:

C-index ¼ 1

N

X
yi<yj

hðŷi � ŷjÞ; ð1Þ

where N ¼ jfði; jÞjyi < yjgj is the normalization constant

which equals to the number of data pairs with different
label values and hðuÞ is the step function returning 1.0,
0.5 and 0.0 for u < 0; u ¼ 0 and u > 0, respectively. The
further apart from 0.5 C-index is, the better the model
was able to capture the pattern in the data.

4.3. Ridge regression

Ridge regression, also known as Tikhonov regulariza-
tion (Vapnik, 1998) is the regularized version of the stan-
dard linear regression. Let xi 2 Rp be the feature vector
of the ith sample point, w 2 Rp is a vector of weights and
yi 2 R is the response value of ith sample. In ridge regres-
sion our task is to find the set of weights w, such that the
objective function:

EðwÞ ¼ 1

n

Xn

i¼1

xT
i w� yi

� �þ k
n
wTw; ð2Þ

is minimized. In (2), n 2 N is the number of data points and
k > 0 is the regularization parameter.

4.4. Multilayer perceptron

Multilayer perceptron (MLP) is a feedforward neural
network (Bishop, 1996; Nabney, 2004), where we try to
minimize the objective function:

EðwÞ ¼ 1

n

Xn

i¼1

ðyi � aðxi;wÞÞ2; ð3Þ

where w is the set of weights of the network, ai is the ith
activation of the output node given input xi 2 Rp and
yi 2 R is the corresponding response value. The set of
weights w is defined as:

w :¼ wðlÞ
ij

���1 6 l 6 L; 0 6 i 6 dðl�1Þ; 1 6 j 6 dðlÞ
n o

;

where L is the number of hidden layers and dðlÞ is the num-
ber of hidden nodes on layer l. The activation functions in
the hidden nodes are tanhðxÞ functions and the output acti-
vation function was selected to be a linear function.

A popular regularization approach for MLPs is to con-
struct a committee of MLP networks trained with early
stop training (Bishop, 1996) in which training data are
divided into two parts. The first part is used to train the
MLP and the other part is used to monitor the validation
error. Training is stopped when the validation error begins
to increase. This random splitting scenario is repeated for
all committee members and the final output of the MLP
committee is obtained by counting the average output of
the committee members. Early stop is an ad hoc method
for regularization, but it is simple, fast and in many cases
gives good results. We used a MLP early stop committee
(MLP-ESC) of 10 networks with 10 hidden units.

4.5. k-nearest neighbor

k-nearest neighbor (Cover and Hart, 1967) is the sim-
plest of the used methods, but still a powerful nonlinear
method for many applications. In k-nearest neighbor we
predict the label ŷi of a test point xi 2 Rp by taking the
average value of the labels of its k nearest neighbors, i.e.
we use the formula:

ŷi ¼ 1

k

Xk

j¼1

yj;

where the values yj 2 R; i ¼ 1; . . . ; k are the labels of the

points xj that are closest to the test point xi. Euclidian dis-
tance is the standard metric used in this method for finding
the closest neighbors.

5. Analysis and results

We have separated our analysis into two cases based on
the response variables:

� Case 1: Soil damage prediction.
� Case 2: Soil penetration resistance prediction.

Both of these variables can be used as indicators for soil
load bearing capacity.

5.1. Case 1: Soil damage prediction

In soil damage prediction our data set consisted of
11,795 points from harvesting operations including both
thinning and clearcutting. The predictor variables consisted
from various remote sensing data sets and their derived fea-
tures, totaling to 83 variables used in the analysis. The tar-
get variable for prediction was soil damage class consisting
of three ordinal damage classes (no damage, slight damage,
damage). The used data sets in this case are listed in
Table 1.

We tried two different approaches in predicting soil
damage class, firstly predicting the soil damage variable
without any modifications to the label values and, sec-
ondly, combining the damage classes ‘slight damage’ and
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‘damage’ into one class so that we could get a binary pre-
diction problem (no damage - damage). The purpose of this
second approach was to detect whether the prediction
model is able to distinguish between non-damaged and
damaged soil points. The multilayer perceptron model
was trained with 11,295 data points and tested with a sam-
ple of 500 data points, because the overall calculations
using LOOCVDZ would have taken far too much time
using the entire data set. We have illustrated the prediction
results using LOOCVDZ for these two approaches in
Fig. 3.

In both cases the results indicate that a moderate predic-
tion performance to a 20–30 m range is reached especially
with k-nearest neighbor and ridge regression. Ridge regres-
sion stays above baseline up to 200 m but has nonetheless
poor performance. Low prediction performance in case 1
was expected due to low quality of the provided response

variable. Poor results of the analysis based on visually clas-
sified data implicated the need for physical measurements.
It was concluded that more accurate measurements were
needed in order to improve the performance of the models.
This insight motivated the collection of new data, i.e. pen-
etration resistance as response variable.

5.2. Case 2: Soil penetration resistance prediction

Due to high noisiness of the response variable, the soil
damage prediction resulted in maximum of 20–30 m mod-
erate prediction performance. This problem was tackled in
the case of soil penetration resistance prediction, where an
accurate data set, measured with an electrically driven and
recording penetrometer, was provided by LUKE. The pen-
etrometer proved superior over the spiked shear vane in
varying mineral soil peatland conditions. The results of this
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Fig. 3. Prediction results for case 1: soil damage class (a) and binary classification (b). The results show that there is a moderate prediction accuracy up to
20 m in both regression and classification. k-nearest neighbor achieves the highest performance to 20 m range. Ridge regression gives highest results after
20 m.
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Fig. 4. Prediction results for case 2: soil penetration resistance (a) and soil bearing capacity binary classification (b). Ridge regression and multilayer
perceptron achieve the highest results up to 100 m range. For multilayer perceptron (MLP) we have more than 70% classification accuracy up to 40 m
range.
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experiment indicated the need for real-time automatic sen-
sors for harvesters in order to produce sufficiently accurate
input data to produce applicable prediction rates. A total
of 50 penetration resistance profiles were collected from
two test sites. The test sites were selected to have differing
properties in terms of penetration resistance. The first site
was located on mineral soil with good bearing capacity,
whereas the second was partly covered by a layer of peat.
Based on physical measurements, the quality of the data
was much higher than that of the soil damage data. We
have listed the used data sets for this case in Table 2. In
the analysis, the predictor data sets consisted of 50 vari-
ables. Also in this case we divided the prediction of soil
penetration resistance into two approaches. In the first
approach we implemented a regression model for the pen-
etration resistance variable. In the second approach we
divided the data into two classes based on the following
criterion:

Class of data point xi ¼
1 if yi P 5000 kPa

0 if yi < 5000 kPa

�
;

where xi is the ith data point with elements corresponding
to feature values and yi is the corresponding value of pen-
etration resistance for that point. In this case the problem
was to classify a data point xi either into class 1 or 0. We
have illustrated the results for both of these approaches
in Fig. 4. We can notice that the results are much better
than in it was in case 1. C-index stays above 0.6 up to
100 m for multilayer perceptron and ridge regression.
Ridge regression stays above 0.6 up to 200 m. In classifica-
tion case we got 66% classification accuracy up to 100 m by
MLP and almost 70% accuracy up to 40 m by MLP-ESC.

6. Conclusion

The results indicated moderate prediction rates up to
20 m for the soil damage regression case. After 20 m the
prediction performance drops dramatically and a random
yes/no guess produces better results. C-index value stays
just above the baseline 0.5 up to 200m for the ridge regres-
sion model. In the soil damage classification case we
achieved more than 60% classification rate up to 20 m as
well. We therefore conclude that more precise measure-
ments are needed for modelling purposes. In the case of
penetration resistance prediction we achieved a C-index
higher than 0.6 up to 200 m for ridge regression model.
With soil bearing capacity classification we achieved more
than 66% successful classification up to 100m by MLP. Up
to 20 m we achieved classification accuracy of more than
80% also by MLP. The better results in the case of penetra-
tion resistance data is explained by the higher quality of the
used data sets because the data samples were based on
physical measurements.

As a summary of the results, in case 1; the soil damage
prediction remains moderate up to 20 m after which the
result drop close to baseline value. In case 2; the soil pen-

etration resistance prediction the results remain very good
up to 20 m, good up to 100 m after which the results start
to drop below baseline. It was evident that the used data
sets in penetration resistance case was more reliable and
contained less noise than the data sets used in soil damage
case. This points out the necessity of accurate and real-time
measurements in order to produce applicable forecast mod-
els for harvesting operations. If the data quality is not high
enough the prediction performance deteriorates rapidly.
However the measured data sets were rather small, which
suggests further analysis in more varied environments in
the future.

We conclude, that more detailed field data is required,
i.e. physical measurements and detailed information about
the motions of the machinery within the stand, since for
example the accumulation of traversed mass over each
location is one of the main variables explaining soil dam-
ages (Sirén et al., 2013). These can be achieved through
online learning based on trafficability data accumulated
by harvesters or other field studies. Vertical distance to
drainage network should also be tested (Murphy et al.,
2009). Further validation with weather data and water
budget models should be continued in the future as it is
one of the key variables affecting trafficability of fine
grained mineral and organic soils.
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ABSTRACT
In machine learning, one often assumes the data are independent
when evaluating model performance. However, this rarely holds in
practice. Geographic information datasets are an example where
the data points have stronger dependencies among each other
the closer they are geographically. This phenomenon known as
spatial autocorrelation (SAC) causes the standard cross validation
(CV) methods to produce optimistically biased prediction perfor-
mance estimates for spatial models, which can result in increased
costs and accidents in practical applications. To overcome this
problem, we propose a modified version of the CV method called
spatial k-fold cross validation (SKCV), which provides a useful esti-
mate for model prediction performance without optimistic bias
due to SAC. We test SKCV with three real-world cases involving
open natural data showing that the estimates produced by the
ordinary CV are up to 40% more optimistic than those of SKCV.
Both regression and classification cases are considered in our
experiments. In addition, we will show how the SKCV method
can be applied as a criterion for selecting data sampling density
for new research area.
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1. Introduction

An important step in machine-learning applications is the evaluation of the predic-
tion performance of a model in the task under consideration. For this one can use
the k-fold cross validation (CV), which assumes that the data are independent.
Geographic information system (GIS) datasets represent an example where the
independence assumption naturally does not hold due to the temporal or spatial
autocorrelation (SAC). SAC and its effects on spatial data analysis have been exten-
sively studied in spatial statistics literature (Legendre 1993, Koenig 1999). For exam-
ple, it has been shown that the failure to not account the effect of SAC in spatial
data modeling can lead to over-complex model selection (Hoeting et al. 2006, Rest
et al. 2014). Generally speaking, natural data exhibits SAC because of the first law of
geography and fundamental principle in geostatistical analysis according to Waldo
Tobler (Tobler 1970): ‘Everything is related to everything else, but near things are
more related than distant things’. In spatial statistics, the degree of SAC of a dataset

CONTACT Jonne Pohjankukka jjepoh@utu.fi
Supplemental data for this article can be accessed here.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2017
VOL. 31, NO. 10, 2001–2019
https://doi.org/10.1080/13658816.2017.1346255

© 2017 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0002-5808-2577
http://orcid.org/0000-0003-4183-2455
https://doi.org/10.1080/13658816.2017.1346255
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2017.1346255&domain=pdf


can be measured using e.g. a semivariogram (Cressie 2015b), Moran’s I (Moran 1950),
Geary’s C (Geary 1954) or Getis’s G (Getis and Ord 1992).

There are numerous applications involving spatial data which have problems caused
by SAC in the datasets such as natural resource detection, route selection, construction
placement, natural disaster recognition, tree species detection, environmental monitor-
ing, etc. (Ala-Ilomäki et al. 2015). Consider the example of harvesting operations in
forestry where optimal route selections are of key importance. In order to minimize the
risk of harvester sinking into the soil, a route with the optimal carrying capacity is
required. The route selection is based on predictions of soil types along the route
which gives the harvester an estimate on the carrying capacity of the route. If the
effect of SAC is not considered in the soil-type predictions while estimating the model
performance, we might end up selecting a hazardous route. The reason for this is that
the spatial model we are using gives overoptimistic prediction performance for soil
types farther away from the harvester’s current location. The model implicitly assumes
that we have known soil types close to the predicted soil types which is not always
the case. This fact must be taken into account in the model-prediction performance
evaluation in order to avoid overoptimistic estimation. An illustration of the considered
example is shown in Figure 1.

To counter the problems caused by SAC in spatial modeling, one usually tries to
incorporate SAC as an autocovariate factor into the prediction models themselves, e.g.
autocovariate models, spatial eigenvector mapping, autoregressive models (Lichstein
et al. 2002, Diniz-Filho et al. 2003, Brenning 2005, Bahn et al. 2006, Dormann et al. 2007,
Betts et al. 2009, Beale et al. 2010, Zhang and Wang 2010). A review of such methods is
well presented by Dormann et al. (2007). Other methods include spatial clustering and
resampling techniques for countering SAC (Ruß and Kruse 2010, Brenning 2012, Hijmans
2012). Despite the vast literature of techniques for spatial prediction, little attention is
given for assessing the spatial prediction performance of a model via CV techniques. In

Figure 1. The forest harvesting example. The harvester driver needs to select an optimal route to
target destination. Due to SAC, it is to be expected that the prediction error increases the further
away we make point predictions. The background map in the image (also in Figure 8(a)) is by the
courtesy of OpenStreetMap.
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the work by Cressie (2015a), the author does not advocate CV for confirmatory data
analysis because the independence assumption in the data samples is inherently not
valid in geostatistical context.

In this article, we propose a novel CV method called spatial k-fold cross validation
(SKCV) for estimating prediction performance under SAC-based independence violations
in the data. SKCV is also applicable for selecting grid sampling density for new research
areas. More specifically, SKCV attempts to answer the following two questions:

(1) What is the prediction performance of a model at a certain geographical location
when the closest data measurements used to train it lie at a given geographical
distance?

(2) Conversely, if the prediction performance is required to be at least a given level,
how dense data sampling grid should be used in the experiment area to achieve it?

The question (2) is about the trade-off between the prediction performance and data
collection costs. The SKCV method provides the model prediction performance as the
function of geographical distance between the in-sample and out-of-sample data, and
hence it indicates how close geographically training data has to be to the prediction
area in order to achieve a required prediction performance. The idea in SKCV is to
remove the optimistic bias due to SAC by omitting data samples from the training set,
which are geographically too close to the test data.

To evaluate how well SKCV answers the above questions, it is tested with three real
world applications using public GIS-based datasets. The applications involve assessing
the predictability of water permeability of soil and forest harvest track damage. Both
regression and classification models were used in these experiments. The usability of the
SKCV method for determining the needed sampling grid density is tested by measuring
the difference between the performance of model constructed with a given grid density
and the result predicted with SKCV. We will explain this comparison in more detail in
Section 4.1.

We wish to emphasize that we use SKCV in this manuscript for assessing the
spatial prediction performance of a model and not for model complexity selection
even though model complexity selection can also be applied with SKCV. In the
work by Rest et al. (2014), the authors used a similar spatial CV method as SKCV for
model variable selection. In their work, they compared a special case of SKCV
method, the spatial leave-one-out (SLOO) method with Akaike information criterion
(AIC) (Akaike 1998) as a criterion for model variable selection. It turned out that
SAC caused the AIC to select biased variables, whereas SLOO prevented this. In the
work by Pohjankukka et al. (2014a, 2014b, 2016), the SKCV method was called cross
validation with a dead zone method. Related studies on spatial data analysis can
also be found in the works of Azzalini and Diggle (1994), Schulte et al. (2005) and
Brenning (2012).

In what follows, a formal description of the SKCV method will be given in Section 2,
followed by description of used datasets in Section 3 and experimental analyses with
three sample cases in Section 4, and finally Section 5 includes conclusions.
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2. Spatial k-fold cross validation

SKCV is a modification of the standard CV to overcome the biased prediction performance
estimates of the model due to SAC of the data. The overoptimistic bias in the performance
estimates is prevented by making sure that the training dataset only contains data points
that are at least a certain spatial or temporal distance away from the test dataset.

Wewill denote our data point as di ¼ ðxi; yi; ciÞ, where xi 2 R
n is a feature vector, yi 2 R a

response value and ci 2 R
2 the geographical coordinate vector of ith data point. The dataset

is denoted asD ¼ d1;d2; :::;dMf g. The value rδ 2 R
þ is the so-called dead zone radius, which

determines the data points to be eliminated from the training dataset at each SKCV iteration.
The set V ¼ V1; :::;VKf g is the set of CV folds, where each Vp � D and Vp \Vq ¼ ;, when
p�q and[Kp¼1Vp ¼ D. The training of themodel is performed by a learning algorithmA. The
vector ŷ 2 R

M denotes the predicted response values by a predictionmodelF . Note that the
choice ofF does not affect the functionality of SKCV. We use the standard Euclidean distance
e to calculate the spatial distance between two data points di and dj . A formal presentation of
the SKCV method is given in Algorithm 1. When the number of folds K equals the number of
data pointsM, SKCV becomes SLOO. The SKCV algorithm is almost identical to normal CVwith
the exception of the reduction of the training set depicted in Figure 2 and in line 2 of
Algorithm 1. In particular, when rδ ¼ 0; SKCV reduces to normal CV.

Algorithm 1.Spatial k-fold cross validation

Require:V;D;A; rδ
Ensure: ŷ
1: for i 1 to K do
2: H  S

dk2V i dj 2 D j eðcj; ckÞ � rδ
� �

▹Remove data points too close
3: F  A DnHð Þ ▹Build model using reduced training set
4: for dk 2 V i do
5: ŷ½k�  F xk; ckð Þ ▹Make prediction
6: end for
7: end for
8: return ŷ ▹The predicted ŷ

There are three issues one might consider with SKCV which we will address here. First,
since SKCV may involve removal of a large number of training data, this may introduce
an extra pessimistic bias on the prediction performance not related to SAC. The size of
this bias can be estimated via experiment in which one removes the same amount of
randomly selected data from the training set on each CV round. Our experimental results
in later sections confirm that the performance decrease observed by doing this is
negligible compared to the one caused by SAC removal.

Second, the above considered issue becomes far more severe if the number of SKCV
folds K is very small (say K ¼ 2). It could happen that most of the training data is
removed because the combined dead zones of the test data points will have a large
effective radius. This concern is application-specific and the selection of the SKCV folds
must be designed to suit the purposes of the application. For example, with a sparse
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dataset it would make a little practical sense to select the SKCV folds in such a way that
all the training data is removed. For these reasons it is best to have K ¼ M, which
corresponds to the SLOO case of SKCV if computational resources allow it.

Third, one could ask whether the prediction performance for a given rδ could be
estimated by analyzing the prediction error obtained with, say, leave-one-out cross-valida-
tion simply as a function of the average distance to closest neighbors. While, this could be
doable with datasets having both densely and scarcely measured areas, the data points in
many available datasets tend to be much closer to each other than in the case we intend to
simulate. For example, with a dense dataset with a maximum distance of 3 m between a
data point and its nearest neighbors, one cannot simulate performing prediction for a data
point having the closest measurements at least 25 m away.

Finally, let us consider the difference between spatial interpolation and regression. In
the former, the only extra information available about the training data are their coordi-
nates c, while in the latter one also has access to an additional information in the form of
feature representation x. However, the SKCV algorithm works in a similar way in both
cases, as it is independent on the type of information the learning algorithms use for
training a model or what the model uses for predicting the responses for new points.

3. Datasets

The three experimental cases differ on the availability and resolution of the datasets. In
case 1 related to water permeability, prediction data were available throughout the
research area, with the exception of areas where there were obstacles (e.g. buildings or
lakes). In case 2 also related to water permeability prediction, there were scattered field
measurement data and in case 3 related to harvester track damage prediction, the
dataset was clustered into several areas. These cases are typical of common types of
spatial prediction applications. The availability of the datasets in three cases is illustrated
in Figure 3. The data range from remote sensing datasets such as satellite and airborne

Figure 2. Reduction of the training set in the SKCV procedure. The black and gray points correspond to test
and training data points. The gray data points inside the perimeters of radius rδ are omitted from the
training data, after which the test points are predicted using the remaining training data (i.e. the gray data
points outside the perimeters).
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imaging raster data to manually on-site collected samples of the soil (Zevenbergen and
Thorne 1987, Wood 1996, Hyvönen et al. 2003, Tomppo et al. 2008, Pohjankukka et al.
2014a, 2014b, 2016). The formats of the datasets are TIFF-images and ASCII-files with
different resolutions. A summary of the used datasets in the three cases is illustrated in
Table 1. In the following paragraphs we briefly describe the used datasets. More detailed
illustration of the datasets is given in the supplementary material.

3.1. Digital elevation model data (DEM)

We downloaded DEM data from the file service for open data by the National Land
Survey of Finland (NLS). The DEM was made from airborne laser scanning data with grid
size of 2 m. Several geomorphometric variables were derived from the NLS DEM in SAGA
GIS environment. In our analysis, we used the geomorphometric features: plan curva-
ture, profile curvature, slope, topographic wetness index, flow area, aspect, diffuse
insolation and direct insolation (Beven and Kirkby 1979, Zevenbergen and Thorne
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Figure 3. Coverage of data on experimental cases 1–3. (a) case 1: 361,201 data points, (b) case 2:
1691 data points, (c) case 3: 11,795 data points. Blue areas correspond to areas where data were
available. The axes correspond to locations in ETRS-TM35FIN coordinates in kilometers. The dataset
in case 1 is much more dense than datasets in cases 2 and 3.
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1987, Wood 1996, 2009, Seibert and McGlynn 2007). These derived features are more
efficient for prediction than raw height data alone.

3.2. Multisource national forest inventory data

A selected set of 43 features of the state of the Finnish forests in 20 m grid size are
available as the MultiSource National Forest Inventory (MS-NFI) by Natural Resources
Institute Finland (LUKE). The MS-NFI dataset is derived by interpolating field measured
MS-NFI samples using inverse distance-weighted k-nearest neighbor (kNN) method as
the interpolation algorithm and Landsat imagery combined with DEM data as the basis
of interpolation. Features include e.g. the biomass and volume of growing stock. The
MS-NFI data features exhibit built-in dependencies which means the number of useful
features is lower than 43. A detailed description of the MS-NFI is the work by Tomppo
et al. (2008).

3.3. Aerial gamma-ray spectroscopy data

The aerial gamma-ray flux of potassium (K) decay with the grid size of 50 m is
provided by the Geological Survey of Finland (GTK). These data are related to e.g.
the moisture dynamics, frost heaving (Hyvönen et al. 2003) and density, porosity
and grain size of the soil. High gamma radiation indicates lower soil moisture and
vice versa. Several statistical and textural features were derived from the gamma-
ray data. These include: 3 × 3 windowed mean and standard deviation, Gabor filter
features (Feichtinger and Strohmer 1997) and Local Binary Pattern features
(Pietikäinen et al. 2011).

3.4. Peatland data

The peatland data are provided by LUKE and uses topographic information provided by
NLS. The peatland data are a binary raster mask of 1000 m grid size with values 0/1
corresponding to non-peatland/peatland areas. The peatland mask is derived from four
NLS topographic database elements depicting different types of peatlands. The mask bit

Table 1. Summary of the used datasets in all experimental cases. Response value datasets are listed
in emphasized form. Also, the data format is shown either as TIFF-raster image or ASCII-vector file
and grid resolution size in meters.
Dataset Format Grid size Case 1 Case 2 Case 3

Digital Elevation Model Raster 2 m X X X
Multisource National Forest Inventory Raster 20 m X X X
Gamma-ray spectroscopy Raster 50 m X X X
Air-borne electromagnetic Raster 50 m X
Peatland Raster 1000 m X X
Weather Raster 10000 m X
Stoniness Vector – X
Soil moisture Vector – X
Water permeability exponent Vector – X X
Harvester track damage Vector – X
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1 refers to a spot where the location is mostly covered by peatland vegetation and the
peat thickness exceeds 0.3 m over a local area of 1000 m2.

3.5. Air-borne electromagnetic (AEM) data

The AEM data were provided by the GTK. The apparent resistivity indicates the soil-type
factors, e.g. grain size distribution, water content and quality in the soil and cumulative
weathering.

3.6. Weather data

Weather data on temperature (C) and rainfall (mm) for years 2011–2013 were provided
by the Finnish Meteorological Institute (FMI). The grid size of the dataset was 10 km. We
used the mean temperature and rainfall of the last 30 days at each observation point of
the response value.

3.7. Stoniness data

Stoniness was estimated by steel-rod sounding (Tamminen 1991). The rod was pushed
into the soil where the penetration depth and stone hits were recorded.

3.8. Soil moisture data

Gravimetric soil water content was measured from the samples by drying the soil
samples and calculating the weight difference of dry and wet soil sample (ASTM
D2216-10 2010).

3.9. Water permeability exponent data

Water permeability indicates the nominal vertical speed of water through the soil
sample. This feature was measured indirectly by observing the soil particle size distribu-
tion. The actual speed depends on inhomogenities (roots, rocks) and micro-cracks in the
soil. The water permeability exponent is a logarithmic quantity y derived from water
permeability speed v.

3.10. Harvester track damage data

Approximately 36 km of strip roads were traversed by Metsäteho Ltd. and visually
assessed into damage classes by a forest operations expert. The soil damage classes
used were: (1) no damage; (2) slight damage; and (3) damage. The original dataset
required preprocessing by LUKE due to the inaccuracies in GPS-tracks. The strip
road line segments were then converted to sample points used in the prediction
process.
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4. Experimental analysis with SKCV

In this section, the SKCV method is applied to three real world cases involving GIS data
making them suitable to illustrate the proposed method. In the first two cases, the water
permeability levels of boreal soil are predicted and in the final case the damage caused
by movements of a forest harvester. The experiments provide useful results e.g. for
forest industry where it is crucial to have accurate and optimistically unbiased prediction
performance for soil conditions. It is estimated that forest industry in Finland alone has
yearly costs of approximately 100 million euros caused by challenging trafficability
conditions of the soil which increase time and fuel consumption and decrease the
efficiency of timber harvesting operations (Pennanen and Mäkelä 2003, Sirén et al.
2013). These costs could be decreased by additional information on soil conditions,
especially soil-bearing capacity by utilizing public GIS data.

The research question (1) will be addressed in cases 1, 2, 3 (sections 4.1, 4.2, 4.3) and
the research question (2) will be addressed in case 1 (section 4.1). In all experimental
cases, k-nearest neighbor (kNN) algorithm was used as the prediction model F and the
predictor features xi were z-score standardized. While there are many alternative pre-
diction methods, the choice does not have an effect on the presence of SAC in the data.
Therefore, kNN was selected due to its simplicity. As a distance function that determines
the nearest neighbors, we use the Euclidean distance for the feature vectors xi. Note that
this is in contrast to the spatial distance e used in SKCV. We implemented the analyses
using k-values of 1; 3; 5; 7; 9; 11; 13; 15f g for kNN. The general behavior of SKCV results
was similar for all tested k-values and for this reason we only report the results with
k ¼ 9. The performance measures used in the experiments were the standard root mean
squared error (RMSE) for kNN regression (Araghinejad 2014, pp. 66–73) and classification
accuracy for kNN classification. In cases 1 and 2 (regression), the predicted response
value ŷi is defined as the average value of kNNs and in case 3 (classification) the mode of
the kNNs.

The semivariograms and Moran’s I statistics were calculated for the response variables
yi in all experimental cases to confirm the presence of SAC in the data. In a semivario-
gram, a variable X is spatially autocorrelated at a given distance range ½m� t;mþ t� �
R
þ with lag tolerance t 2 R

þ if its semivariogram value γtðmÞ 2 R
þ is lower than the sill

value of the variable X (Cressie 2015b). The lag tolerance t gives us the maximum
allowed deviation from m 2 R

þ when the distance between two data points is still
considered to be m meters (see Figure 4). For example, if m ¼ 10 meters and t ¼ 1
meter, then the semivariogram value γ1ð10Þ for a single data point di is calculated from
the set Γ ¼ fdj 2 D j eðcj; ciÞ 2 ½9; 11�g. In other words, the data points in set Γ are
considered to be 10 m away from di. This is rarely exactly the case and hence we
have to use the lag tolerance t. The lag tolerance values in the experimental cases were
selected to suite the resolution of the corresponding data. In the Moran’s I autocorrela-
tion plots, we call baseline the 0 correlation.

4.1. Case 1: soil water permeability prediction based on soil type

In this section, we will consider the predictability of the soil water permeability levels
based on the soil type. The response variable in this case is the water permeability
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exponent value y 2 R , which is related to both the boreal soil type and the water
permeability itself. The exact relation between these two factors is presented by
Pohjankukka et al. (2014a). Optimal harvesting routes avoid areas with small water
permeability, where soil tends to stay moist and there is an elevated risk for ground
damage and logistic problems. A reliable estimate of the water permeability distribution
is needed when making routing decisions during the preliminary planning phase and
during the harvest operations. The aim here is to increase the efficiency and minimize
the harvesting costs.

The target area is located in the municipality of Parkano, which is a part of the
Pirkanmaa region of Western Finland. The size of the target area is approximately

Figure 4. Calculation of the semivariogram. Data points within a distance range ½m� t;mþ t� are
considered to be m meters away from the center data point.
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Figure 5. The semivariogram and Moran’s I plot depicting the SAC of the water permeability
exponent y in case 1. (a) Semivariogram showing that γðmÞ stays below the sill with t ¼ 10 m.
(b) Moran’s I also revealing the presence of SAC in response value y.
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144 km2 (ETRS-TM35FIN coordinates at 278 km E, 6882 km N, zone 35). When consider-
ing all the features including the derived ones, we had a total of 49 predictor features in
the dataset. In the analysis of case 1, a total of 361,201 data points were available. A
summary of the datasets is illustrated in Table 1 of Section 3. In Figure 5 depicting the
semivariogram and Moran’s I plot for the water permeability exponent y, we can see a
clear presence of SAC. The predicted water permeability exponent ŷi for the ith data
point di ¼ ðxi; yi; ciÞ using kNN regression is defined as

ŷi ¼ 1
k

X
y2Ni

y (1)

where Ni is the set of water permeability exponent values y of the kNNs of di.
The estimated prediction performance for 9-nearest neighbor (9NN) using SKCV is

illustrated in Figure 6, which answers to research question (1) with various distance
values rδ. The spatial density in the results describes how many data points are in a
given space, i.e. it describes the sparsity of the dataset. From Figure 6 we notice a
clear rise in the prediction error (RMSE) when the distance between prediction point
and training data increases. This was an expected result based on the SAC discov-
ered in the semivariogram and Moran’s I plots in Figure 5. With sparser datasets we
notice the dead zone radius having a smaller effect on the results.

To measure how much the SKCV’s performance decrease along the increasing dead
zone radius is caused only by the decreased size of the training set, we implement
additional analysis which we refer to as SKCV random-leave-out (SKCV-RLO). SKCV-RLO
is identical to the SKCV method (see Algorithm 2 and Figure 2) with the exception that
instead of removing data points from the training set that are too close to the test
data, i.e. inside the dead zone perimeter, we instead remove the same number of data
points randomly from the training set as we would remove in SKCV. In Figure 6, the

0 50 100 150 200 250 300 350 400
5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

Dead zone radius (meters)

R
M

S
E

SKCV, data spatial density 40m
SKCV, data spatial density 60m
SKCV, data spatial density 80m
SKCV−RLO, data spatial density 40m
SKCV−RLO, data spatial density 60m
SKCV−RLO, data spatial density 80m

Figure 6. Prediction performance estimates for 9NN using SKCV and SKCV-RLO in case 1. The curves
are plotted with three spatial densities to illustrate how the spatial density of the dataset affects the
results.
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estimated prediction performance for 9NN using SKCV-RLO is illustrated. On all spatial
densities, we notice SKCV-RLO being less sensitive to the number of data points
removed from the training set giving more optimistic results than SKCV. This reinforces
our claim that the prediction algorithm prefers to use data points which are geogra-
phically close to the prediction point and shows that random removal of training data
points causes negligible change in prediction accuracy when compared with SAC-
based data removal.

Next, we focus our attention on research question (2), i.e. how densely we should
sample data points from a new research area to achieve a given prediction level.
Imagine that there are two distinct geographical areas which we refer to as areas A
and B. In area A, there exists a dataset of measurements gathered from a certain subset
of its coordinates but there are no measurements from area B yet. The aim is to perform
a number of measurements from area B in order to construct a model for predicting the
rest of the measurement values for every possible point in area B. Performing measure-
ments used to form a training set is expensive, and hence their number should be
minimized under the constraint that at least a given prediction performance level is
required. This trade-off between the number of training measurements and prediction
performance is not known in advance and our hypothesis is that it can be estimated
with SKCV on the existing data from area A. Namely, if the prediction performance
estimate provided by SKCV with dead zone radius rδ on area A is as good or better than
the required performance level, we hypothesize that we obtain as good prediction
performance in area B if we guarantee that the closest measurement points are at
most at a distance of rδ from every point in area B. Given this constraint, the number
of measurement points in area B is minimized via hexagonal sampling (see e.g. Donkoh
and Opoku 2016). To support our hypothesis (i.e. using SKCV to estimate the trade-off

δr

omitted data points

test data point

test data point

In SKCV the test data point is always
at least a certain distance away from
the closest training data points

In sample-generalize the test data point
is always at most a certain distance away 
from the closest training data points

δr δr

δr

Dead zone radius Hexagonal sampling radius
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Figure 7. Left: In SKCV the test point is always at least rδ meters away from training data. Right: In
sample-generalize procedure, we sample data points (the gray points) using a hexagonal grid and
predict the rest of the area around the sampled points. The black point represents a prediction point
where the distance to training data is maximum, i.e. rδ meters.
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between number of measurement points and prediction performance), we use an
auxiliary method called sample-generalize. In the sample-generalize procedure, we firstly
sample training data points hexagonally (e.g. measure their response variables) with
sampling radius rδ, and secondly we use this data to train a model for predicting the
responses from the rest of the area. Right side of Figure 7 illustrates the sample-
generalize procedure. Note that SKCV is inherently more pessimistic than sample-gen-
eralize since the prediction point is always at least rδ meters away from training data,
whereas in sample-generalize the prediction point is always at most rδ meters away from
training data (see Figure 7).

In order to inspect the goodness of SKCV as an estimator of the prediction perfor-
mance of sample-generalize, we implement a bias-variance analysis for nine smaller
subareas formed using a 3 × 3 grid in the Parkano research area (see Figure 8(a)). We do
this by firstly forming 72 ðA; BÞ area pairs (from 3 × 3 grid we get 9 × 8 = 72 area pairs,
i.e. each smaller area has 8 pair possibilities) from the nine smaller subareas. Second, for
each of the area pairs ðA; BÞ; we calculate the prediction performance estimate with
SKCV on area A (resultA) and the prediction performance of sample-generalize on area B
(resultB) and then we take the difference of them (resultA � resultB). Lastly, we calculate
the mean and standard deviation of the differences on the 72 area pairs. The resulting
bias-variance plot is illustrated in Figure 8(b). From the plot, we see that the SKCV
estimates tend to be pessimistically biased on the range rδ 2 ½0; 150� m. In range
rδ 2 ½150; 340� m, the SKCV estimation is almost unbiased and in range
rδ 2 ½340; 400� m, it is optimistically biased. The results are pretty stable on all spatial
densities for SKCV; the spatial density seems to shift the results simply by a constant
value.

Figure 8. (a) Division of a research area into nine smaller subareas using a 3 × 3 grid. Each
smaller area is 16 km2 in size and consists from approximately 40,000 data points. (b) Bias-
variance ðμ� σÞ plot for the difference between the prediction performance estimate pro-
duced by SKCV and the actual prediction performance of sample-generalize of the 72 (9 × 8)
area pairs. Solid curves represent the mean μ and dashed lines standard deviation σ. Different
colors represent different spatial densities for the dataset in area A where SKCV is
implemented.
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4.2. Case 2: soil water permeability prediction based on field measurements

In this section, we consider the predictability of forest soil water permeability based
on field measurement data. The difference between the response variables in cases
1 and 2 is that in case 1 the water permeability exponent y is based on remote
sensing data and in case 2, y is based on field measurements. Semivariogram
and Moran’s I plot for the response variable is presented in Figure 9 which show
clear SAC in the data. There is more variability in the SAC of case 2 than in case 1
but we must note that the dataset in case 2 was much smaller and more sparse.

The research area is located in Pomokaira, the northern part of the municipality of
Sodankylä, which is a part of Finnish Lapland. The size of the target area is 18432 km2.
The center point of the rectangular target area is at ETRS-TM35FIN coordinates
7524 km N, 488 km E, zone 35. A total of 1691 data points were collected around
the research area. The distances between the data points were much larger and they
were not available from the entire research area when compared with the case 1
dataset. 102 feature variables were used for predicting the response value, i.e. the
water permeability exponent y. The used datasets in case 2 are shown in Table 1. The
response variable y is predicted in exactly the same way as in case 1 using kNN-
regression in Equation (1).

Because the number of data points was significantly lower when compared with
case 1, it was computationally feasible to implement SLOO and SLOO-RLO analyses
on the data. The SLOO and SLOO-RLO results of case 2 are illustrated in Figure 10.
The SLOO results show a clear drop in the prediction performance as the dead
zone radius rδ is increased. A high optimistic bias is observed from the SLOO-RLO
results when compared with SLOO. The SLOO results indicate that the
prediction performance decreases radically after the distance between test and
training data is approximately 40–50 m. The effect of SAC can clearly be noted in
these results.
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Figure 9. The semivariogram and Moran’s I plot depicting the SAC of the response value of case 2.
(a) Semivariogram with t ¼ 80 m. (b) Moran’s I.
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4.3. Case 3: soil track damage classification

In this case, the goal is to assess the classification of forest harvester track damage. In
other words, the task is to predict the damage that would occur to a soil point if a forest
harvester drives through it. In particular, damage means the depression caused on the
soil by the harvester. Track damage is affected by soil type, humidity, penetration
resistance, etc. The penetration resistance of soil is an important factor in forest harvest-
ing operations which must be accounted for in order to prevent additional costs for
harvesting. Peat areas for example cause challenging soil conditions for heavy machin-
ery and extra carefulness is needed there. It is both an expensive and laborious opera-
tion to get sunken forest harvesters out from peats. Therefore it is important to select
harvesting routes which have the highest possible penetration resistance. As in cases 1
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Figure 10. The SLOO and SLOO-RLO results in the Pomokaira analysis. The y-axis corresponds to the
RMSE and x-axis to the length of dead zone radius rδ.
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Figure 11. The semivariogram and Moran’s I plot depicting the SAC of the response value of case 3.
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and 2, the semivariogram and Moran’s I plot for the response variable of case 3 are
presented in Figure 11, which also show a clear presence of SAC. Note that the track
damage is an ordinal variable consisting from three classes and hence it was also
possible to construct a variogram in this case.

The research area consists from 13 different harvesting areas in Pieksämäki, a munici-
pality located in the province of Eastern Finland 62° 18ʹ N 27° 08ʹ E. A total of 83 feature
variables were used for classifying the soil damage. The sizes of the datasets collected
from each of these areas ranged from hundreds of samples to thousands of samples.
The total number of data points was 11,795. As in cases 1 and 2, the used datasets in
case 3 are shown in Table 1. In case 3, the predicted response value of ŷi (track damage
class) is defined as the mode of set Ni (kNN classification), where Ni is again the set of
kNNs of data point di.

The SLOO and SLOO-RLO analyses were conducted on each of the 13 harvest areas
separately because the distances between the harvest areas were in worst cases dozens
of kilometers. On each of these areas, the SLOO and SLOO-RLO procedures were
implemented and the results were averaged over all areas. Figure 12 presents the
SLOO and SLOO-RLO results for case 3. Similarly as in cases 1 and 2, the results in
case 3 confirm the effect of SAC on prediction performance estimates. One can notice an
exponential form decay in the SLOO results as a function of dead zone radius rδ whereas
the SLOO-RLO results are almost unchanged as it was also in case 2. In the worst case,
we have approximately 40% difference in the results between SLOO and SLOO-RLO.

5. Conclusion

Spatio-temporal autocorrelation is always present with GIS-based datasets and needs to
be accounted for in machine-learning approaches. As discussed earlier, traditional model
performance criteria such as the CV method omit the consideration of the effect of SAC
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in the performance estimations with natural datasets. To account for the SAC in GIS-
based datasets, we demonstrated by the means of three experiments that the SKCV
method can be used for estimating the prediction performance of spatial models with-
out the optimistic bias due to SAC, while the ordinary CV can cause highly optimistically
biased prediction performance estimates. We also showed that SKCV can be used as a
data sampling density selection criterion for new research areas, which will result in
reduced costs for data collection.
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ABSTRACT
Digital maps of forest resources are a crucial factor in successful forestry applications.
Since manual measurement of this data on large areas is infeasible, maps must be
constructed using a sample field data set and a prediction model constructed from
remote sensing materials, of which airborne laser scanning (ALS) data and aerial
images are currently widely used in management planning inventories. ALS data
is suitable for the prediction of variables related to the size and volume of trees,
whereas optical imagery helps in improving distinction between tree species. We
studied the prediction of forest attributes using field data from National Forest
Inventory complemented with ad hoc field plots in combination with ALS and aerial
imagery data in Aland province, Finland. We applied feature selection with genetic
algorithm and greedy forward selection and compared multiple linear and nonlinear
estimators. Maximally around 40 features from a total of 154 were required to achieve
the best prediction performances. Tree height was predicted with normalized root
mean squared error value of 0.1 and tree volume with a value around 0.25. Predicting
the volumes of spruce and broadleaved trees was the most challenging due to small
proportions of these tree species in the study area.

KEYWORDS
Machine learning; feature selection; forestry; remote sensing data

Introduction

Accurate and geographically explicit information about forest characteristics is re-
quired for efficient management of forest resources. Remote sensing (RS) and earth
observation techniques provide means for producing estimates of forest parameters
in the form of thematic maps. In Finland, currently the most significant RS mate-
rials for forest inventory are airborne laser scanning (ALS) data and digital aerial
photography. In recent years, a forest inventory method based on these data sources
has been adopted for stand and sub-stand level forest mapping and the estimation of
forest attributes. Normally, low-density ALS data (typically 0.5 - 2 return/m2) and
digital aerial imagery with a spatial resolution of 0.25 - 0.5 m and covering visible
and near-infrared wavelengths are used. ALS is currently considered the most accu-
rate RS material for estimating stand-level forest variables (e.g. Næsset 2002, 2004;
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Maltamo et al. 2006). Compared to optical RS data sources, ALS data are particularly
well suited to the estimation of forest attributes related to the physical dimensions of
trees, such as stand height and volume. By means of ALS data, a three-dimensional
(3D) surface model of the forest can be derived. Since it is possible to distinguish laser
returns reflected from the ground surface from those reflected from tree canopies, both
digital terrain models (DTM) and digital surface models (DSM) can be derived from
ALS data (e.g. Axelsson 1999; Baltsavias 1999; Hyyppä et al. 2000; Pyysalo 2000;
Gruen and Zhang 2003). On the other hand, optical imagery is typically acquired
to complement the ALS data, because ALS is not considered to be well suited for
estimating tree species composition or dominance, with the return densities applied
for operational forest inventory (e.g. Törmä 2000; Waser et al. 2011). Of the vari-
ous optical RS data sources, aerial images are usually the most readily available and
best-suited for forest inventory purposes.

When using very high resolution RS data in forest inventory, the main alternatives
are detection of individual trees (e.g. Koch et al. 2006) or area-based inventory method
(e.g. Næsset 1997; Lefsky et al. 1999), where inventory unit is e.g. a sample plot.
The primary inventory unit applied in operational ALS and aerial image based forest
inventory in Finland is a square area with size of 16×16 meters. These areas form a
uniform grid covering the entire inventory area. Field plots are used as a reference
data for ALS and image data interpretation. Statistically, the method resembles two-
phase stratified sampling although the sampling layout is not aimed at producing
unbiased regional estimates, but instead, the method rather aims at locally (at plot
and stand level) precise forest estimates. Thus, the method requires high correlation
between the RS features and actual inventory variables (i.e. field data). Typically
non-parametric estimators such as k-nearest neighbors or most similar neighbors are
applied in combining RS data and field measurements.

By combining aerial photographs and ALS data it is possible to derive a very large
number of RS features describing the characteristics of a field plot or a stand. The ex-
tracted RS features form a n-dimensional feature space, where n equals the number of
applied RS features. It is, in general, computationally infeasible to use all possible RS
features when processing large inventory areas. Also, with increasing dimensionality,
the data typically become sparse in relation to the dimensions (Hinneburg et al. 2000).
This causes problems, especially when using estimators based on distance or proximity
in the feature space (’the curse of dimensionality’; e.g. Beyer et al. 1999). Therefore,
the number of RS features needs to be reduced in a way that produces an appropriate
subset of features for the estimation procedure, considering their usefulness in pre-
dicting the forest attributes as well as their mutual correlation. Various approaches
have been applied for this purpose (e.g. Siedlecki and Sklansky 1989; Pudil et al. 1994;
Jain and Zongker 1997; Kudo and Sklansky 1998, 2000). In RS-aided forest inventory
applications e.g. correlation analysis (Tuominen and Pekkarinen 2005; Breidenbach
et al. 2010), canonical analysis (Packalén et al. 2012), stepwise selection using various
criteria and proceeding either forwards by adding or backwards by eliminating fea-
tures, or combining these operations (Tuominen and Pekkarinen 2005; Maltamo et al.
2006; Packalén and Maltamo 2007; Haapanen and Tuominen 2008; Hudak et al. 2008;
Packalén et al. 2009; Latifi et al. 2010; Breidenbach et al. 2010; Packalén et al. 2012),
simulated annealing (Packalén et al. 2012) and genetic algorithms (e.g. Van Coillie
et al. 2005; Haapanen and Tuominen 2008; Latifi et al. 2010) have been used.

The objective of this paper is to examine the performance of different feature se-
lectors and estimators in predicting sample plot level forest parameters when using a
combination of features extracted from ALS data and aerial imagery. We implement
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feature selection with genetic algorithm and greedy forward selection and compare
multiple linear and nonlinear estimators for finding near-optimal ALS and aerial im-
agery features.

Materials and methods

In this section, we will first describe the used data sets which are followed by a de-
scription of the estimators, feature selectors and analysis details. We denote the ith
data point by a vector di = (xi, yi) ∈ Rn+1, where xi ∈ Rn is the vector of n ∈ N
predictor features and yi ∈ R the corresponding response value. The measures used in
this article for evaluating the goodness of the estimators are the root mean squared
error (RMSE) and normalized RMSE (NRMSE). These two measures are defined as:

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2, NRMSE = RMSE/y, (1)

where m ∈ N+ denotes the number of data points, ŷi is the model estimated value
for the response value yi and y is the average value of the known responses, i.e. y =
m−1

∑m
i=1 yi. Other used statistics include the relative bias (BIAS%) and the well-

known coefficient of determination (R2). The relative bias is defined as:

BIAS% = 100× 1

m

m∑
i=1

yi − ŷi
y

. (2)

Study area

The study area was defined by the ALS coverage acquired by National Land Survey of
Finland (NLS) in the spring of 2013, and it covered the main parts of the province of
Aland but excluded the easternmost municipalities and islands in the outer archipelago
(see Figure 1). The total area covered by both ALS data and aerial imagery was ap-
proximately 346,000 ha, but a large part of it was sea area. The land use in the study
area, excluding sea water, is presented in Table 1. These figures are from a land use
map that was created using field plot data of 10th National Forest Inventory (NFI10),
satellite imagery and NLS map data (Tomppo et al. 2008, 2013). Approximately 51.2%

Table 1. Land use in the study area (excluding sea water).

Area, ha %

Forest land 70076 54.9

Other wooded land 20420 16.0

Other land 11259 8.8

Forestry land in total 101755 79.8

Agriculture 14270 11.2

Roads and built-up areas 7795 6.2

Inland waters 3568 2.8

Total 127589 100
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Figure 1. Map of the sampling layout in Aland. Background land cover map is based on NFI11 and topo-

graphic data. The ALS coverage area is marked with white borderline.

of the forestry land area was dominated by pine, 0.5% by spruce, 20.5% mixed conif-
erous (pine-spruce) and 11.2% by broadleaved species. The remaining part of forestry
land area was either mixed with no dominant species (8.3%) or open regeneration
areas (1.6%), young seedling stands and very sparsely stocked areas (6.7%), where no
dominance was determined.

Field data

Sample plots of 11th National Forest Inventory (NFI11) were used as field reference
data. The design of the NFI11 in Aland was a stratified sampling with two sampling
regions: a) the ALS study area, and b) other parts of Aland, mainly remote or sparsely
wooded islands (see Figure 1). In both regions systematic cluster sampling was used.
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In the study area temporary sample plot clusters were established in a grid of 3 km
by 3 km, whereas in the other parts the grid was 4 km by 4 km. A cluster consisted
of 9 sample plots in inverted L-shaped form, having 200 meters between plots. In
addition to these temporary sample plot clusters, the permanent sample plot clusters
established in NFI9 (1999) we remeasured. The grids of the two cluster types were
overlapping. Thus, each permanent cluster replaced one temporary cluster - in the
grid of 12 by 12 km there were always 1 permanent cluster and 15 temporary clusters.
The sample plots were measured in 2013.

The sample plot was a restricted Bitterlich relascope plot with a basal area fac-
tor 1 and maximum radius of 9 meters. For each sample plot, data were recorded at
stand and tree levels. The stand level data included more than 100 variables describing
the administrative status, site, damages, accomplished and recommended silvicultural
measures. The sample plots having their center point at least 9 m from the stand
boundary and located on forest land or other wooded land were positioned with Trim-
ble Pro 6H GPS device. Using post-processed Global Navigation Satellite System
(GNSS) observations the positions of plots were determined with approximately 1 m
accuracy. Only the data of these plots were used in this study.

The tree level data included diameter at breast height (dbh), species, tree quality
class, and crown class. Every 7th measured tree with dbh larger than 195 mm and
every 14th measured tree with dbh less than or equal to 195 mm were selected as
a sample tree with more detailed measurements. The sample tree variables included
tree height, height increment of past five years (for conifers) and description of stem
quality and possible damages. In addition, a bore core was taken for age and diameter
increment assessment. The tree level data were used to calculate plot level stem volume,
basal area, mean diameter, and mean height estimates. For volume estimation, tree
heights were estimated using the mixed-effects models of (Eerikäinen 2009), including
calibration at the plot and cluster levels using the sample tree heights and additionally
mean tree heights assessed at the stand level. Then tree volumes were estimated using
the volume functions of (Laasasenaho 1982) and expanded to per hectare values using
tree specific expansion factors.

For RS-based forest inventory it is necessary to have field observations of all types
of forest, otherwise the forest strata that are missing from field observations will be
missing also from inventory results. In addition to the systematic NFI sample, the
field data was complemented by ad hoc reference sample plots, because the systematic
sample did not provide sufficient field observations in forest strata whose area was
small. For the selection of ad hoc sample, an initial grid of plots was generated to
inventory area with a spacing of 100×100 m between the initial plots (these points
included the center point locations of the NFI plots). The initial plots in forestry land
were stratified on the basis of ALS and aerial image features. The following features
were used in the stratification: height where 85% of LiDAR returns have accumulated
(4 strata), ratio of canopy returns to all returns (3 strata), inverse distance moment
of rasterized canopy height model (4 strata) and spectral average of aerial image
near-infrared (nir) band (4 strata). These features should correlate, respectively, with
stand height, stand density, size/spatial organization of tree crowns and proportion of
broadleaved trees (see the next two sections for more detailed descriptions of ALS and
aerial image features). Ad hoc plots were not allocated into strata, whose area was
less than 100 ha in the entire inventory area. Thus, although the theoretical number
of strata was 192, some feature combinations are unlikely to occur, and the number of
those strata representing an area more than 100 ha was 101 in the inventory area. On
the basis of the distribution of the existing NFI sample plots within the strata, there
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Table 2. Basic statistics of target inventory variables: tree diameter, all trees (d); tree height, all trees (h);

tree basal area, all trees (b); tree volume, all trees (va); tree volume, pine (vp); tree volume, spruce (vs); tree
volume, broadleaf (vb). The units of the target variables are given in parentheses in the top row. All v-variables

have the same unit.

Statistic d (cm) h (m) b (m2/ha) va (m3/ha) vp vs vb
mean µ 21.1 13.6 19.5 147.6 83.1 31.3 33.2

st. deviation σ 9.52 5.62 12.87 125.85 88.32 67.89 66.55

coeff. of variation σ/µ 0.45 0.66 0.41 0.85 1.06 2.17 2.00

maximum 48.6 28.0 69.6 843.5 485.8 590.0 492.5

were 70 strata that required additional field plots. Altogether 126 ad hoc plots were
selected from initial grid of plots belonging to those strata that were underrepresented
in proportion to their area or missing among the systematic NFI sample. The field
measurement of complementary field plots was carried out as with NFI plots. On the
whole, the field data in the study region consisted of 475 sample plots on forestry land,
from which 432 plots were on productive forest land, 41 on poorly productive forestry
land and 2 on unproductive land.

A summary of the main statistics of the target NFI variables is presented in Table
2. The studied variables were as follows: tree diameter, all trees (d); tree height, all
trees (h); tree basal area, all trees (b); tree volume, all trees (va); tree volume, pine
(vp); tree volume, spruce (vs); tree volume, broadleaf (vb). Diameter and height were
calculated as basal area weighted averages. Volume of pine included also other conifer
species except spruce.

ALS data

ALS data were acquired between 24th and 26th April 2013 by the company Fugro
Malta Ltd. using a Piper Chieftain aircraft and a Riegl LMS-Q780 laser scanner. It
is worth noticing that ALS data were acquired during leafless season for the purpose
of producing a DTM of the area. The scanning altitude was 2000 m above sea level,
with a maximum zenith angle of 20◦ and side overlap of 20%. Average density of
returns was 0.54 per square meter. The returns were automatically classified into
ground and vegetation returns. The automatic classification is based on the order of
the LiDAR returns, which were categorized as ’only’, ’first of many’, ’last of many’
and ’intermediate’ returns. For ground classification local minima of the last returns
are used as a basis of the ground level (Vilhomaa and Laaksonen 2011). The ground
elevation for each LiDAR point was estimated via spatial interpolation using two
nearest-neighbor ground returns and inverse distance weighting. The height above
ground (H) was calculated for each LiDAR point as the difference between the z-
coordinate and the estimated ground level.

ALS points within 9 m radius from the center points of the field plots were used in
calculation of features from H and also from intensity (I) recorded for the points. A
minimum H of two meters was used to classify LiDAR returns as canopy hits, from
which most of the features were calculated. The following features were extracted from
the height and intensity of the ALS points (for full list of the features see Table A and
B in the appendix):

(1) Average, standard deviation and coefficient of variation of H for canopy returns,
separately from first and last returns (havg[f/l], hstd[f/l], hcv[f/l]). Only returns
were included in both first and last returns
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(2) H at which p% of cumulative sum of H of canopy returns is achieved (Hp)
(hp[f/l], p is one of 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95 and 100)

(3) Percentage of canopy returns having H ≥ than corresponding Hp (pp[f/l], p is
one of 20, 40, 60, 80, 95)

(4) (a) Ratio of first canopy returns to all first returns (vegf), and (b) Ratio of last
canopy returns to all last returns (vegl)

(5) Percentage of canopy returns above height limits calculated in each field plot
from Hmin + s

10 ∗ (Hmax −Hmin) (ds[f/l], s is one of 1 - 9)

(6) Ratio of intensity percentile p to the median of intensity for canopy returns
(ip[f/l], p is one of 20, 40, 60 and 80)

For getting texture features, H and I values of first returns were also interpolated
to raster images with 0.5 m resolution. Pixel values of the raster images were calcu-
lated using inverse squared distance weighting of the two nearest ALS points. Inverse
squared distance weighting was chosen as interpolation method based on the relation
between the LiDAR return density and the shape of tree canopies. Both the height
and intensity images were further quantized into 16 classes for extraction of Haral-
icks texture features (Haralick et al. 1973). These were calculated from windows of
32 by 32 pixels around the center points of the field plots, with the co-occurrence
comparison offset of five pixels. The following texture features were first calculated
in four directions and then averaged out: angular second moment (ASM), contrast
(Contr), correlation (Corr), variance (Var), inverse difference moment (IDM), sum av-
erage (SA), sum variance (SV), sum entropy (SE), entropy (Entr), difference variance
(DV) and difference entropy (DE).

Aerial imagery data

The aerial imagery from the study area was acquired in June 2013. Vexcel Ultracam
Eagle M1 f80 camera sensor was used in image acquisition, and the imaging altitude
was 7670 m (corresponding approximately ground resolution with this sensor). Stereo
overlap was 60% within flight line and 30% between flight lines. Thus, contrary to
the ALS data, the aerial imagery was from the season when the vegetation was in
full leaf. Both RGB and colour-infrared (CIR) images were acquired. All bands of CIR
imagery green (g), red (r) and nir, and blue (b) band of RGB imagery were used in this
study. The aerial images were acquired using digital camera sensor. The images were
orthorectified into resolution of 0.5 m. Image features for field plots were calculated
again within local windows of 32 by 32 pixels. The following features were extracted
from the aerial image bands (for full list of the features see Table A and B in the
appendix):

(1) Average (mean), standard deviation (std) and coefficient of variation (cv) from
each of the four bands

(2) The next transformations from band averages within the pixel windows:

(a) NDVI as nir - r
nir + r (ndvi)

(b) A modified NDVI as nir - g
nir + g (gndvi)

(c) nir
r (nir.r)

(d) nir
g (nir.g)

(3) The same Haralick features as from the ALS based canopy height and intensity
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images with similar processing and parameters

K-nearest neighbors

K-nearest neighbors (KNN, see e.g. Araghinejad 2014, p. 66–73) is a simple, yet effec-
tive nonlinear estimator used for classification and regression. Given a data point di,
a prediction ŷi for its response value in KNN-regression is given by:

ŷi =

∑
j∈Ni

wjyj∑
j∈Ni

wj
, (3)

where wjs are the weight values for the neighbors yj and Ni is the set of indexes of
the k-nearest neighbors (|Ni| = k ∈ N). The k neighbors of di are determined by
the feature vectors xi using some metric function, typically the Euclidean distance
function e. In case of KNN-classification the predicted response value ŷi is defined,
e.g., as the mode of the k-nearest neighbors. In many applications of KNN-regression,
the weights wj in Equation 3 are usually set as wj = 1. In a distance weighted KNN the
weights are set as wj = 1

e(xj ,xi)
, i.e. neighbors dj which are closer to di in the feature

space are given higher weight. In forest applications the distance weighted KNN is also
commonly used. KNN has an upside that several response variables can be predicted
simultaneously, and then the predicted quantity variables of subgroups, e.g. volumes
of tree species, sum up to the predicted total value. Also, covariance of variables in
training observations is retained in predictions, albeit fully only if k is one.

Regularized least squares

Regularized least squares (known as RLS or ridge regression, Hoerl and Kennard 2000)
is a regularized version of the linear regression method. Linear regression models are
one of the most widely used methods in statistical inference. In RLS our aim is to find
a weight vector w ∈ Rn, such that the cost function:

E(w) =
1

m

m∑
i=1

(
yi − xTi w

)2
+
λ

m
wTw (4)

is minimized. The term λ > 0 is the regularization parameter, which will increase the
value of the cost function for high magnitude vectors w. This will balance the trade-
off between minimizing the training error and model complexity, which will result
in better generalization. The optimal λ parameter is selected from a predefined set
using e.g. cross validation (CV). In our analyses we selected optimal λ from the set
Λ = {2−16, 2−15, · · · , 215, 216} by using leave-one-out CV (LOOCV). The selection of
the set Λ is a practical rule-of-thumb (see e.g. Hsu et al. 2010) since it covers a good
representative grid of the regularization parameter values from very small to very large.
Exponential relation between the regularization parameters also assures the values are
not too close to each other.

In some of the target inventory variables the data distributions were highly skewed.
For example, with the tree volume targets the data mainly consisted of a large number
of low volume values and relatively small amount of high volume values. This naturally
causes the RLS model to favor data points with low volume values over high volume
values. Imbalanced data sets are rather common in many applications of data analysis
and often used countermeasure is to use under- or oversampling techniques (see e.g.
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Chawla 2005). Since large volume values are of more practical interest in our case we
introduce in this article an additional estimator which we call balanced RLS (BRLS).
BRLS is almost identical to RLS, except that first it implements oversampling with
replacement to the data, so that the skewed target distribution is balanced (i.e. a
uniform distribution). After the balancing we continue with building a RLS model
using this extended data set. In the tree volume example, this is equivalent to giving
more weight for learning to predict data points with large volume value than data
points with low volume value. When selecting the BRLS model via CV, we made sure
that no repetitions of the data points were included into both training and test data
sets in a single CV round. In other words, the intersection of training and test data
sets was always an empty set. Otherwise, the results would trivially be very good for
BRLS.

Multilayer perceptron

Multilayer perceptron (MLP, see e.g. Bishop 1995) is a feedforward neural network,
where the goal is to train the network by minimizing the cost function:

E(w) =
1

m

m∑
i=1

(yi − a(xi,w))2 , (5)

where the function a(xi,w) is the output of the network given an input xi and network

weights w. The network weights are defined as: w = {w(l)
jk | 2 ≤ l ≤ L, 1 ≤ j ≤ d

l−1, 1 ≤
k ≤ dl}, where L ∈ N is the total number of layers in the network (including input

and output layer) and dl ∈ N is the number of nodes on layer l. For example w
(2)
13 is

the network weight between nodes 1 and 3 of layers 1 and 2. Layer 1 in the network
corresponds to the input layer.

A popular ad hoc version of the MLP network is the MLP early stopping committee
(MLP-ESC) which consists from a committee of MLP networks. The prediction for a
response value yi is defined as the average output of the committee networks. In MLP-
ESC, we use early stopping with a validation data set to regularize the MLP training
in order to avoid over-fitting. In other words, we stop training the MLP network when
the validation error begins to increase. Due to its simplicity MLP-ESC is easy and fast
to implement and in many cases gives good results.

In our analyses, the MLP experiment was implemented using Netlab (Nabney 2004)
library and the MLP-ESC model consisted from two layers, two hidden units and 10
committee members.

Greedy forward selection

Greedy forward selection (GFS, see e.g. Pahikkala et al. 2010) is a depth-first type
feature selection method. The idea in GFS is to sequentially select the best feature to
be used along with the already selected features. Specifically, the steps of the GFS are
the following:

(1) Initially a set of selected features F is an empty set F = ∅ and a set G consists
from all the predictor features.

(2) Form a candidate feature set Ci = F ∪ {fi}, where fi ∈ G and evaluate model
performance (via e.g. CV) using features in set Ci. Repeat this process for all
possible candidate sets Ci.
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are then tested (via CV) using the corresponding test sets Di.

(3) Save the candidate set Cj with the best model prediction performance and set
F = Cj .

(4) Set G = G \ {fj}, i.e. we remove the best found feature from G. Repeat steps
2-4 until G = ∅.

The resulting set F contains all the predictor features of G with ordering based on
sequential maximum improvement of prediction performance. For example the first
element in F is the feature with the best performance if a single feature is used in
the model. The second element in F is the feature with the best performance together
with the first feature and so on.

In addition to GFS we also used a nested version of the GFS, which we call
nested GFS (NGFS). In NGFS the data set is first split into N random subsets
{D1, D2, ..., DN}, after which we implement GFS feature selection N times, with each
set Di at its turn being a test set for evaluating the prediction performance of the
features selected using the set D−i = ∪j 6=iDj . In other words, with NGFS we do GFS
feature selection N times with slightly different data sets and at each time we test
the prediction capability of the features selected by the GFS. The NGFS procedure
is illustrated in Figure 2. In this article we used N = 10 folds for the NGFS. With
NGFS we can analyze the stability of the feature selection process, i.e. it will indicate
how sensitive the feature selection is to changes in the data set.

Genetic algorithm

A genetic algorithm (GA) was also used for feature selection so that the goal of the
algorithm was to minimize the sum of the RMSE and one and a half times the bias of
the target variable in CV. The general GA procedure begins by generating an initial
population of strings (chromosomes or genomes), that consist of random combinations
of predictor variables (genes). Each chromosome is considered a binary string having
values 1 or 0 indicating that certain variable is either ‘selected’ in the subset or ‘not se-
lected’. The strings evolve over a user-defined number of iterations (generations). This
evolution includes the following operations: selecting strings for mating by applying
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a user-defined objective criterion (the more copies in the mating pool, the better),
allowing the strings in the mating pool to swap parts (cross over), causing random
noise (mutations) in the offspring (children), and passing the resulting strings to the
next generation. The process is repeated until a predefined criterion is fulfilled or a
predetermined number of iterations have been completed (see e.g. Broadhurst et al.
1997; Tuominen and Haapanen 2013; Moser et al. 2017).

The population size for GA was 100 and the number of generations 120. Because GA
is a stochastic process, we carried out nine feature selection runs for each target variable
both with KNN-regression (later KNN-GA) and RLS (RLS-GA). In addition to this
univariate modeling, all the target variables were modeled together using multivariate
KNN (MVKNN-GA). For this, we selected weights subjectively for target variables
that were normalized before the use in the evaluation function of GA. The weights
were 1 for diameter, basal area and volume of pine, 1.2 for volume of spruce, 1.5 for
height and volume of broad-leaved trees and 4 for total volume. Due to increased
complexity from multivariate optimization, we carried out 18 feature selection runs
with MVKNN-GA. The number of nearest neighbors, k, was set to 5 in both KNN-
GA and MVKNN-GA and inverse squared distance weighting of the KNN was used.
In feature selection with RLS-GA, 10-fold cross validation (10-fold-CV) was applied
for speeding computations. Otherwise, LOOCV was used both in feature selection and
in calculation of result statistics.

Analysis implementation details

Multiple feature selection scenarios using different estimators were implemented in our
analyses. For some estimators we used both GFS and NGFS feature selectors. LOOCV
based model selection was used in general for maximum utilization of the data in model
training. When it was computationally infeasible to implement LOOCV based model
selection, we used 10-fold-CV instead. This does not however diminish these analyses
since the overall difference in practice between the results of 10-fold-CV and LOOCV
is small. In Table 3, we have listed all the conducted analyses in detail with their
abbreviations. In KNN analyses using GFS we set the neighbor weights as wj = 1 and
with GA we set wj = 1

e(xj ,xi)
correspondingly.

In summary of the analyses, the goal was to find the best combination of ALS and
digital aerial imagery data features for predicting the target inventory variables. The
predictor features consisted from a total of 154 variables (see sections about ALS and
aerial imagery data or Tables A and B in the appendix) and the predicted target in-
ventory variables are listed in Table 2. The results with estimators RLS or MLP-ESC

Table 3. List of all implemented analyses and corresponding abbreviations.

estimator Feature selector Cross validation Data balancing Analysis abbreviation

RLS GFS LOOCV no RLS-GFS

RLS NGFS LOOCV no RLS-NGFS

RLS GFS LOOCV yes BRLS-GFS

RLS NGFS LOOCV yes BRLS-NGFS

KNN GFS LOOCV no KNN-GFS

KNN NGFS LOOCV no KNN-NGFS

MLP-ESC GFS 10-fold-CV no MLP-ESC-GFS

MVKNN GA LOOCV no MVKNN-GA

KNN GA LOOCV no KNN-GA

RLS GA 10-fold-CV no RLS-GA
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were calculated so that negative predictions were replaced with zero, because our re-
sponse variables cannot have negative values. A total of 475 data points were available
in these studies, making it worth mentioning that generalization of these results is
a challenging task. It is for example widely known that as the data dimensionality
increases, the number of data points needed to achieve successful generalization in-
creases exponentially. One must of course note that small data sets are a common
problem in many applications.

Results

In Figure 3 we have illustrated the GFS and NGFS results for target inventory vari-
ables height h (all trees), volume vp (pine) and volume vs (spruce). The NRMSE is
shown as a function of number of predictor features. The results of h and vs target
variables represent the best and worst cases in terms of predictability. The rest of the
target variables had results somewhere between those of h and vs. Similar graphs for
GA were not possible to produce since GA is not a sequential feature selector. We
notice that around a maximum of 40 features are enough to achieve the optimum pre-
diction performance in all cases. There was similar behavior in other target variables.
After around 40 features the results stabilize or begin to get worse, possibly due to
uninformative features. For tree height, MLP-ESC-GFS gets the lowest NRMSE value
of 0.1 with just 9 features. For spruce tree volume, KNN-GFS is the best method and
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Figure 3. GFS and NGFS feature selection results for h, vp and vs. NRMSE is shown as a function of number

of predictor features.
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has a NRMSE value of 0.943 with 41 features. Linear methods tend to be more stable
but do not have enough expressive power to capture the (most likely a nonlinear)
pattern in the data.

Detailed results for the analyses are presented in Table 4. We can see that the
NRMSE results of each variable are pretty stable with small variance across all the
analyses. The results are mixed with linear methods being the best choice with some
inventory variables (diameter d, basal area b, volumes va and vp), whereas for others
(height h, volumes vs and vb) nonlinear methods obtain the best results. Overall, the
prediction performance results in terms of R2 are lowest for pine and spruce volumes
and diameter. Linear methods seem to require more features for successful prediction
than nonlinear methods. After zeroing the negative predictions, they also produce bi-
ased predictions for volumes of spruce and broadleaf, which have large proportions of
zero observations. Data balancing with the BRLS shows worse results than their un-
balanced counterparts. This could result from the fact, that even though low frequency
data points are given more weight the balancing causes now more error for the large
frequency data points. Also nesting by NGFS shows worse results than without nest-
ing, giving 0.01–0.08 and 0.04–0.10 lower R2 values for RLS-NGFS and KNN-NGFS.

As there were no big differences in results of RLS-GA and KNN-GA with the feature
sets selected in nine runs, results of each target variable in Table 4 are after that run
that gave median NRMSE for the variable. For MVKNN-GA, one feature selection
run out of 18 was chosen by calculating ranks of NRMSEs for each target variable
and then finding the run with the minimum highest rank among the variables. In the
chosen run, 26 features were selected and highest rank was 11th for volume vb.

When comparing MVKNN-GA to the univariate methods, excluding balanced and
nested ones, R2 values of MVKNN-GA are 0.03–0.11 lower than that of the best
univariate method on the target variables. The difference is smallest for volume va and
largest for diameter d and volume vs. Prediction error levels of a variable by MVKNN-
GA are to some degree affected by the subjective weights given for the target variables
in feature selection and further by the chosen selection run. The variability of results
in the 18 selection runs was largest for volumes vs and vb.

It was of interest to also study the stability of the feature selection processes if
subjected to changes in the data set. As we discussed earlier, the NGFS gives us a
way to do this since the feature selection is implemented multiple times (depending
on the fold size N) with slightly different data sets each round. With the three NGFS
analyses (RLS-NGFS, BRLS-NGFS, KNN-NGFS) and fold size N = 10 we get a total
of 30 different feature selection results. These results are illustrated in the Figures A,
B and C in the appendix for target variables h, vp and vs respectively. The graphs
show which features among the 154 were in general selected most often and ranked
the highest. The higher the feature (represented by a colored circle in the plot) is in
the graph, the more often it was selected to the optimum feature set. The color of
the circle in the graphs represents the feature’s average rank. This will help to rank
features which are on the same level on the y-axis. For example, two features f1 and f2

might have been selected the same number of times to the optimal feature set, but f1

could always have been the first feature to be selected to optimum feature set, while
f2 could always have been the last one to be selected. The greener the feature’s circle
in the graph is, the higher it is ranked among the features. It can be noticed from
the figures that the feature selection for the target inventory variable h is more clear
than for vs. For variable h there seems to be a more stronger connection between it
and the features than for vs. This can be seen from the fact that for h in Figure A
the graph has a steeper rise than in Figure C, meaning the feature selection is more
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Table 4. Results of comparison of estimators. Negative bias indicates underestimation. The #features row

refers to the number of features in the feature set with optimal model prediction performance. The definitions

for the other statistics can be found from Materials and methods section.

Statistic Analysis d h b va vp vs vb
RLS-GFS 0.210 0.107 0.220 0.250 0.532 1.114 0.857

RLS-NGFS 0.236 0.124 0.241 0.272 0.582 1.255 0.959
BRLS-GFS 0.239 0.113 0.241 0.358 0.632 1.267 0.938

BRLS-NGFS 0.238 0.125 0.245 0.349 0.606 1.306 1.001
NRMSE KNN-GFS 0.232 0.116 0.241 0.266 0.542 0.943 0.716

KNN-NGFS 0.257 0.143 0.270 0.315 0.638 1.140 0.879
MLP-ESC-GFS 0.213 0.100 0.228 0.271 0.590 1.145 0.971
MVKNN-GA 0.261 0.142 0.269 0.295 0.604 1.187 0.852

KNN-GA 0.241 0.122 0.248 0.263 0.553 0.979 0.701
RLS-GA 0.219 0.112 0.225 0.256 0.560 1.217 0.913
RLS-GFS 0.3 0.1 0.0 0.3 4.1 19.9 13.5

RLS-NGFS 0.2 0.1 0.2 0.0 2.1 15.7 10.2
BRLS-GFS -2.7 0.0 1.3 -12.8 -13.0 19.9 1.1

BRLS-NGFS -0.4 0.0 -0.1 -11.1 4.8 19.5 14.3
BIAS% KNN-GFS -0.8 -0.9 -1.0 -1.0 2.2 -0.7 -7.9

KNN-NGFS -0.5 -0.7 -1.3 -2.5 1.2 2.3 -7.9
MLP-ESC-GFS 0.3 0.1 -0.1 -0.8 -5.0 -7.3 -6.3
MVKNN-GA 0.0 -0.6 0.7 -0.9 0.1 2.1 -6.0

KNN-GA 0.1 0.0 0.0 0.0 -0.1 0.1 0.0
RLS-GA 0.2 0.0 0.1 0.1 3.6 17.0 11.8
RLS-GFS 0.78 0.93 0.89 0.91 0.75 0.74 0.82

RLS-NGFS 0.73 0.91 0.87 0.90 0.70 0.66 0.77
BRLS-GFS 0.72 0.93 0.87 0.82 0.65 0.66 0.78

BRLS-NGFS 0.72 0.91 0.86 0.83 0.67 0.64 0.75
R2 KNN-GFS 0.74 0.92 0.87 0.90 0.74 0.81 0.87

KNN-NGFS 0.68 0.88 0.83 0.86 0.64 0.72 0.81
MLP-ESC-GFS 0.78 0.94 0.88 0.90 0.69 0.72 0.76
MVKNN-GA 0.67 0.88 0.83 0.88 0.68 0.70 0.82

KNN-GA 0.72 0.91 0.86 0.91 0.73 0.80 0.88
RLS-GA 0.77 0.93 0.88 0.91 0.72 0.69 0.79
RLS-GFS 45 30 35 41 59 66 73

RLS-NGFS 24 18 18 14 143 15 146
BRLS-GFS 24 30 46 19 25 17 50

BRLS-NGFS 13 24 33 2 24 57 41
#features KNN-GFS 18 6 44 51 42 41 43

KNN-NGFS 67 7 13 2 5 74 42
MLP-ESC-GFS 31 9 11 2 16 11 6
MVKNN-GA 26 26 26 26 26 26 26

KNN-GA 22 16 18 22 25 16 12
RLS-GA 22 21 23 17 30 22 21

14



definite with h than vs. According to the figures, features 139 (h DE, selected 30 out
of 30 times), 67 (i60f, selected 20 out of 30 times) and 118 (nir ASM, selected 19 out
of 30 times) were the top three features for h. The corresponding features for vp were
52 (d7l, selected 27 out of 30 times), 140 (i ASM, selected 25 out of 30 times) and 119
(nir Contr, selected 24 out of 30 times), and for vs they were 69 (i20l, selected 28 out
of 30 times), 48 (d3l, selected 27 out of 30 times) and 71 (i60l, selected 27 out of 30
times). For descriptions of these features see the Tables A and B in the appendix.

Discussion

In area-based forest inventory, ALS data gives a distribution of height and intensity
values, which can be described with numerous features, e.g., percentiles or proportional
canopy point densities. Further, spectral information from aerial images help in tree
species-specific modeling (e.g. Fassnacht et al. 2016) and texture features both from
the rasterized ALS data and aerial images may contain structural information about
the target element. The number of possible predictor features is thus large, as shown
by the 154 features derived in this study. This feature set clearly has multicollinearity
problems. Many of the features can also be irrelevant or noisy predictors for some
response variable, so we used two feature selection methods to get near-optimal feature
sets for our seven response variables. There is no guarantee of finding the optimal
predictor variable subset (Garey and Johnson 1979), since the algorithms do not go
through all possible combinations but solutions close to optimal can usually be found
in a feasible computation time. GFS was used because as a sequential method it
selects features in order, enabling examination of feature rankings. One stochastic
method, GA, was selected for comparison, as it has been used earlier with one of
our estimators, KNN (Tuominen et al. 2014). The other non-parametric estimator
tested was MLP-ESC. Third estimator was RLS, also known as ridge regression, for
which a fast training algorithm (GFS) for sparse linear predictors has been developed
(Pahikkala et al. 2010). Ridge regression is commonly used to address the problem of
multicollinearity.

Both of the feature selectors were used with two estimators, KNN and RLS. The
differences in prediction accuracy between GFS and GA were minor, as NRMSE and
thus also R2 accuracies were almost equal on all response variables with the same esti-
mator. The largest differences were between RLS-GFS and RLS-GA in the volumes by
tree species, for which RLS-GFS produced 0.03-0.05 higher R2 values than RLS-GA,
but then, in these volumes KNN performed better or about equally. GFS selected in
general more features than GA but this is affected by the parameters used in GA as
well. Also the estimator affects the number of selected features as linear GFS-RLS
selected a great number of features whereas non-parametric MLP-ESC-GFS selected
clearly less. While large feature sets can be processed on current computers, more fea-
tures can still cause more time and memory consumption problems in the calculation
of the actual inventory area results.

One property of estimators is whether they extrapolate. Contrary to KNN, RLS
and to some degree MLP-ESC extrapolate, which has both pros and cons. In our data
set, the volumes of spruce and broadleaf had a lot of zero or close to zero observations,
leading to negative predictions that are not feasible. These were replaced with zero,
which caused bias and thus lower NRMSE values with RLS. In this case, the amount
of bias could probably have been reduced by some transformations of the dependent
or independent variables, but due to the already large number of features this was not
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tried. However, transforming variables could also had reduced the number of features
selected by RLS-GFS for the best combination.

A nested version of GFS was run to study the sensitivity of the feature selection
to changes in the data set. In a nested cross validation, model building, including
feature selection, and prediction are repeated so that the same observation is not
used in both. In a 10-fold nested CV, prediction accuracies of KNN decreased more
than those of RLS. This shows the other side of the capability to extrapolate: KNN
does not extrapolate and thus it can be more sensitive to the changes in the data
set. Another point is that the training data CV results without nesting can be too
optimistic for an unknown observation, because the model building is affected by each
training observation. In a study of KNN variants, each training observation was used
for nesting and then LOOCV without nesting increased RMSE in general less than
5% but in some cases over 10% (Packalén et al. 2012). With our 10-fold nested CV,
the corresponding increase was 8-14% for RLS-GFS and 10-19% for KNN-GFS.

In the NGFS analysis of the stability of the feature selection, mean height and
volume of spruce were the extremities. Height has more straightforward relation with
a number of features, mainly those based on the height distribution of reflected ALS
returns and textural features of the rasterized canopy height model. Still, the top
three features h DE, i60f and nir ASM are somewhat surprising, as there is a texture
feature of the aerial imagery and an intensity feature. The height feature is also from
texture and not from more direct height distribution statistics, of which h100f is the
4th feature. These may be linked to the used relascope field plot, where the distance
for inclusion of a tree depends on its diameter: only trees having diameter 18 cm or
larger are measured at all distances up to the maximum radius of 9 m. This can cause
that on some field plots no or a few small trees are measured but e.g. h100f can have a
value of over 10 m. Part of the crowns from trees outside the plot can extend into the
plot in a fixed radius plot as well though this problem is pronounced in a relascope
plot. We could calculate predictor features according to the inclusion radius of the
largest tree measured but then the sample plot size in the calculation of the features
would decrease when the largest tree has a small diameter.

The volume of spruce has a more complex relation with the predictor features
in this data, and the distinction between frequently selected and other features in
the NGFS analysis is not obvious: there were no features with zero occurrence in
the feature set producing optimal prediction performance. This is probably linked
to the problems in the identification of tree species, because the lowest prediction
performance results were for pine and spruce volumes. There was no spruce on many
field plots and otherwise spruce was the dominant species only on a few plots. As a
shade tolerant tree species, spruce can also exist in the lower canopy storeys, which
complicates the separation of spruce from the other species further. Again here in
the NGFS analysis, the top features were somewhat surprising: three out of four top
features were from the ALS intensity distributions. It can be that the intensity features
help here in finding plots without spruce and in separation of the volumes of spruce
and pine.

To conclude, we implemented analyses for seven key inventory variables and noted
predictions to be the most reliable for tree height h (all trees) and the least reliable
for tree volumes vp (pine) and vs (spruce) and diameter d. On average, the most
difficult target inventory variables to predict were tree volumes by tree species. In
addition to the prediction performance, this was noted from the feature selection
results. In the case of tree height for example, the NGFS analysis (see Figure A in
the appendix) showed that particular and relatively small amount of features were
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selected often, suggesting the presence of stronger connection between the features and
the target variable. With tree volume on the other hand, the NGFS analysis showed
the estimators utilizing greater number of features, indicating a weaker connection
between the features and target variable. The low prediction performance for volumes
of broadleaf and spruce can be partly explained by the small proportion of these species
in Aland region. The results demonstrated that for an individual variable around 20-40
features were sufficient for near-optimal prediction, while the ranking of linear (RLS)
and nonlinear (KNN and MLP-ESC) estimators varied between the target variables.
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Appendix

Table A. List of the ALS and aerial imagery predictor features used in the analyses. Each feature has an

identifier number (gray cell) which is followed by the feature name. The descriptions for the corresponding
features can be found in Table B.

1 havgf 32 h100l 63 p80l 94 b DV 125 nir SE
2 havgl 33 hcvf 64 p95l 95 b DE 126 nir Entr
3 hstdf 34 hcvl 65 i20f 96 g ASM 127 nir DV
4 hstdl 35 vegf 66 i40f 97 g Contr 128 nir DE
5 h0f 36 vegl 67 i60f 98 g Corr 129 h ASM
6 h5f 37 d1f 68 i80f 99 g Var 130 h Contr
7 h10f 38 d2f 69 i20l 100 g IDM 131 h Corr
8 h20f 39 d3f 70 i40l 101 g SA 132 h Var
9 h30f 40 d4f 71 i60l 102 g SV 133 h IDM
10 h40f 41 d5f 72 i80l 103 g SE 134 h SA
11 h50f 42 d6f 73 b mean 104 g Entr 135 h SV
12 h60f 43 d7f 74 b std 105 g DV 136 h SE
13 h70f 44 d8f 75 b cv 106 g DE 137 h Entr
14 h80f 45 d9f 76 g mean 107 r ASM 138 h DV
15 h85f 46 d1l 77 g std 108 r Contr 139 h DE
16 h90f 47 d2l 78 g cv 109 r Corr 140 i ASM
17 h95f 48 d3l 79 r mean 110 r Var 141 i Contr
18 h100f 49 d4l 80 r std 111 r IDM 142 i Corr
19 h0l 50 d5l 81 r cv 112 r SA 143 i Var
20 h5l 51 d6l 82 nir mean 113 r SV 144 i IDM
21 h10l 52 d7l 83 nir std 114 r SE 145 i SA
22 h20l 53 d8l 84 nir cv 115 r Entr 146 i SV
23 h30l 54 d9l 85 b ASM 116 r DV 147 i SE
24 h40l 55 p20f 86 b Contr 117 r DE 148 i Entr
25 h50l 56 p40f 87 b Corr 118 nir ASM 149 i DV
26 h60l 57 p60f 88 b Var 119 nir Contr 150 i DE
27 h70l 58 p80f 89 b IDM 120 nir Corr 151 ndvi
28 h80l 59 p95f 90 b SA 121 nir Var 152 gndvi
29 h85l 60 p20l 91 b SV 122 nir IDM 153 nir.r
30 h90l 61 p40l 92 b SE 123 nir SA 154 nir.g
31 h95l 62 p60l 93 b Entr 124 nir SV - -

Table B. Descriptions of the ALS and aerial imagery features listed in Table A. Left column contains the

feature names and the right column descriptions. The square brackets in the left column mean that multiple

options can be placed there, e.g. veg[f/l] means either vegf or vegl and h[p][f/l] can be e.g. h50f or h85l. For
more information see the article sections about ALS and aerial imagery data. H means height above ground.

havg[f/l], hstd[f/l], hcv[f/l]
Average, standard deviation and coefficient of determination
of first/last returned canopy returns

h[p][f/l] H at which p% of cumulative sum of first/last canopy returns is achieved (Hp)
veg[f/l] Ratio of first/last canopy returns to all first/last returns

d[s][f/l]
Percentage of first/last canopy returns above height limits calculated in each
field plot from Hmin + s

10 × (Hmax −Hmin), s ∈ {1, 2, ..., 9}
p[p][f/l] Percentage of first/last canopy returns having H ≥ than corresponding Hp

i[p][f/l] Ratio of intensity percentile p to the median of intensity for first/last canopy returns

[r/g/b/nir] [mean/std/cv]
Average, standard deviation and coefficient of determination
of red/green/near-infrared bands of CIR imagery and blue band of RGB imagery

[r/g/b/nir] [ASM/Contr/Corr/
Var/IDM/SA/SV/SE/Entr/DV/DE]

Texture features: angular second moment/contrast/correlation/variance/
inverse difference moment/sum average/sum variance/sum entropy/
entropy/difference entropy of red/green/near-infrared bands of
CIR imagery and blue band of RGB imagery

[h/i] [ASM/Contr/Corr/

Var/IDM/SA/SV/SE/Entr/DV/DE]

Texture features: angular second moment/contrast/correlation/variance/
inverse difference moment/sum average/sum variance/sum entropy/
entropy/difference entropy of ALS based canopy height and intensity

ndvi Transformation from band averages within the pixel windows: nir-r/nir+r
gndvi Transformation from band averages within the pixel windows: nir-g/nir+g
nir.r Transformation from band averages within the pixel windows: nir/r
nir.g Transformation from band averages within the pixel windows: nir/g
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2 Airola et al.

1 Introduction

Mineral prospectivity mapping or mineral potential mapping (MPM) tech-
niques are used to delineate areas favorable for mineral exploration (see e.g.
Bonham-Garter (1994); Carranza (2008); Nykänen (2008)). By integrating in-
formation derived from spatial geological, geophysical and geochemical datasets
the MPM methodology is used to quantify the likelihood of presence of a
specific type of mineral occurrence within a study area. In supervised MPM
learning techniques, the locations of known mineral occurrences are used to
relate the occurrences to the mapped quantities that are indicative of the cor-
responding mineral deposit type. Known mineral occurrences can be also used
for validating the models (Bonham-Carter, 1994).

In this work, we consider the issue of supervised binary classification in
spatial prediction problems. Here the goal is to train a classifier that can
predict some property of a geographical area, such as the presence or absence
of a mineral deposit. Training and evaluation of such classifiers is challenging
because the available data is typically highly imbalanced and the amount
of positive instances denoting known mineral occurrences is small. Further,
instead of known negative instances, data sets usually contain only positive
and unlabeled instances (see e.g. Nykänen (2008); Rigol-Sanchez et al (2003));
a setting known as positive-unlabeled (PU) learning (Elkan and Noto, 2008).
Works such as Bradley (1997); Fawcett (2006); Huang and Ling (2005) have
suggested the use of area under ROC curve (AUC) for classifier evaluation on
imbalanced data, as the criterion in insensitive to relative class distributions
on the test set. Further, AUC has also been established as a recommended
metric for PU-learning problems (Elkan and Noto, 2008; Jain et al, 2017).
Thus, AUC is a natural performance measure for MPM classifier evaluation,
and studies such as Brown et al (2003); Nykänen (2008); Nykänen et al (2015);
Rodriguez-Galiano et al (2015) have used AUC for evaluating MPM models.
Further, since adequately large separate test data may not be afforded for
MPM, cross-validation (CV) is necessary for validating the models (see e.g.
Abedi et al (2012); Rigol-Sanchez et al (2003); Carranza (2008); Rodriguez-
Galiano et al (2015)).

Based on recent literature we suggest that there are two major sources of
bias, that can affect results when using cross-validation for estimating the AUC
of spatial classification problems. First, standard CV methods such as leave-
one-out (LOOCV) and K-fold are often affected by a negative bias resulting
from pooling together predictions from different folds for AUC computation,
as shown by Airola et al (2009, 2011); Forman and Scholz (2010); Parker
et al (2007); Smith et al (2014). Airola et al (2009, 2011) propose a leave-
pair-out CV (LPOCV) method for correcting such bias in AUC estimation.
LPOCV is further validated by Smith et al (2014) on clinical data. Second,
spatial autocorrelation causes standard CV methods to produce optimistically
biased prediction performance estimates for spatial data. This is caused by
fact that leave-one-out and K-fold relying on the assumption that the data is
drawn independent and identically distributed (i.i.d.), an assumption violated
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by spatial data where close instances tend to be more similar than ones distant
from each other. Recently, Pohjankukka et al (2014, 2017); Le Rest et al (2014)
have proposed spatial CV (SCV) methods for correcting this bias.

In this work, combining the leave-pair-out and spatial CV methods, we
introduce the leave-pair-out spatial CV (LPO-SCV) method for evaluating
MPM classifiers. As a case study, we use the approach to benchmark a number
of machine learning methods on an orogenic gold MPM classification task.
In our experiments, we first show that one can obtain completely misleading
results, if the spatial and pooling biases are not corrected for. At worst, one can
obtain with standard CV methods close to perfect AUC values for classifiers,
that are in reality not much better than random on making predictions for new
data. We demonstrate, how the LPO-SCV corrects the pooling and spatial
biases, allowing one to reliably estimate the AUC of spatial classifiers. Finally,
in the LPO-SCV based classifier comparison, we show simple linear models to
be surprisingly competitive on the MPM data.

2 Cross-validation for AUC estimation with spatial data

First, we present our mathematical notation. Let us assume a set of m in-
stances, divided into the so-called positive and negative classes. Further, let
I = {1, 2, ...,m} denote the index set of these instances, with I+ ⊂ I and
I− ⊂ I denoting the indices of the positive and the negative instances, respec-
tively. Further, let Let f : I → R denote a classifier, that maps each instance
to a real-value, representing how likely it is to belong to the positive class. We
can use f to classify data, by assigning each f(i) > t to the positive class, and
the rest to the negative class for some threshold t. Finally, when defining the
cross-validation methods we refer by fH, where H ⊆ I, to a classifier trained
with a machine learning method on the subset of the instances indexed by H.

2.1 AUC

Area under the ROC curve (AUC) is a common criterion for evaluating the
quality of a classifier. It estimates the probability, that a classifier will rank a
randomly chosen positive instance higher than a randomly chosen negative one
(Hanley and McNeil, 1982). AUC is invariant to prior class distributions, and
does not require one to define class specific error costs or a threshold t. These
advantages make it a especially popular metric for classifier evaluation and
comparison, especially in applications dealing with imbalanced data (Bradley,
1997; Fawcett, 2006; Huang and Ling, 2005).

AUC can be computed based on the Wilcoxon-Mann-Whitney statistic
(Bamber, 1975) as

1

|I+||I−|
∑
i∈I+

∑
j∈I−

H (f(i)− f(j)) , (1)
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where

H(a) =

 1, if a > 0
0.5, if a = 0

0, if a < 0
(2)

is the Heaviside step function, and |I+| and |I−| denote the number of positive
and negative instances, respectively. That is, the fraction of positive-negative
pairs, where the positive has higher prediction than the negative is computed.
The AUC value is between 0 and 1, with 0.5 corresponding to a random
classifier, or one that always predicts the same value.

2.2 Pooling bias and LPOCV

When dealing with data sets where at least one of the classes has only a
small number of instances belonging to it, cross-validation is typically used for
computing the AUC. However, recently it has been shown that standard cross-
validation methods such as leave-one-out (LOO) and K-fold cross-validation
can have a large negative bias, when used for computing AUC (Airola et al,
2009, 2011; Forman and Scholz, 2010; Smith et al, 2014; Parker et al, 2007).
This effect is related to a procedure known as pooling, where predictions from
different rounds of cross-validation are compared when computing AUC. Thus
we refer to this effect as pooling bias. Recently, Airola et al (2009, 2011); Smith
et al (2014) have shown that the pooling bias can be eliminated by using leave-
pair-out cross-validation (LPO). In LPO, each positive-negative pair is left out
in turn of the training set, and the classifier trained on the remaining instances.
The LPO AUC estimate is then computed as the fraction of pairs, where the
positive instance has a higher prediction than the negative one.

Formally, this can be defined as

1

|I+||I−|
∑
i∈I+

∑
j∈I−

H
(
fI\{i,j}(i)− fI\{i,j}(j)

)
, (3)

where fI\{i,j} is the classifier trained without the i:th and j:th instances.
For an example of pooling bias, let us consider a trivial classifier f(i) =

|I+|
m , that just predicts the fraction of positive instances in the training set.

In leave-one-out, the classifier would always obtain AUC of 0, since it would

predict |I+|m−1 when a negative instance is left out, and |I+|−1m−1 when a positive
instance is left out. While this is an extreme example, the strong effect pooling
bias can have has been established experimentally in several studies (Airola
et al, 2009, 2011; Forman and Scholz, 2010; Smith et al, 2014; Parker et al,
2007), and is further validated by our results. LPO avoids this problem, as it
never compares predictions made by different classifiers. Airola et al (2011)
show that LPO is almost unbiased, meaning that it provides an unbiased
estimate of AUC for a classifier trained on m− 2 instances.
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2.3 Spatial bias and SCV

Most of the methodologies in statistical inference rely on the assumption that
data samples are realizations from (i.i.d.) random variables. In cases where we
are concerned with spatio-temporal data sets this assumption can have major
drawbacks. Take for example geographical instances sampled from the soil. We
are given three instances i, j, and k with i and j located geographically much
closer to each other than k to both the previous two. Anyone could argue in
this scenario that i and j are probably the most similar to each other among
the three instances due to the small geographical distance between them. In
1970 Waldo R. Tobler stated in his work (Tobler, 1970) the Tobler’s first law of
geography: ”Everything is related to everything else, but near things are more
related than distant things”.

The relationship of being near versus being similar in spatial data analysis
is called spatial autocorrelation (SAC). SAC in spatial data sets is usually
measured quantitatively using e.g. variograms or Moran’s index (Cressie, 2015;
Longley et al, 2005). SAC tends to be naturally high for instances close to each
other and small for instances more distant from each other. It is therefore clear
that when we have a set of geographical data samples, they are most certainly
not i.i.d., which needs to be addressed in the model evaluation and selection.

To estimate model’s prediction performance where the effect of SAC has
been reduced Pohjankukka et al (2014); Le Rest et al (2014); Pohjankukka et al
(2017) proposed spatial cross validation (SCV) to be used for this purpose.
The idea in SCV is to estimate a model’s prediction performance for a test
point rδ units away from the closest known instances. This is conducted by
altering the data in the CV procedure, so that a test point will always be at
least rδ units away from the training data. Following Pohjankukka et al (2017),
we call this left out area the deadzone. SCV produces a prediction performance
estimate of our model as a function of rδ, i.e. the distance of closest known
data to the predicted instance. Thus SCV simulates the situation, where the
trained model is used to make predictions for data that is further than rδ units
of distance from the instances in the training data.

2.4 Spatial Leave-pair-out Cross-Validation

In order to eliminate both the biases caused by pooling and spatial autocorre-
lation simultaneously, we now introduce the LPO-SCV method, that combines
the LPO and SCV methods. The method is illustrated in Figure 1. In LPO-
SCV, on each round of CV a positive-negative pair, and all the instances
within rδ radius of these two points, are left out of the training set. The model
is trained on the rest of the training set, and predictions are made for the left
out positive and negative instance. The AUC estimate is the fraction on pairs,
for which the positive instance has a higher predicted value, than the negative
one. The procedure is repeated for all possible positive-negative pairs.
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Deadzone radius

δr

δr

Test points

Omitted points

Fig. 1 Leave-pair-out Spatial Cross-Validation. On each round, a positive and negative
instance are left out, as well as all the instances within the deadzone circles surrounding
them. Thus the CV procedure simulates the setting, where the left out test pair is at least
rδ distance away from nearest training instance.

Formally, the estimate can be defined as follows. Let d(i, j) denote the
geographical distance (e.g. Euclidean) between the i:th and j:th training in-
stances. Further, let U(i, j) = {k ∈ I|d(i, k) > rδ ∧ d(j, k) > rδ} denote all
training instances that have a larger distance than rδ from both i:th and j:th
training instance. Then, the LPO-SCV is computed as

1

|I+||I−|
∑
i∈I+

∑
j∈I−

H
(
fU(i,j)(i)− fU(i,j)(j)

)
, (4)

where fU(i,j)(i) is the classifier trained on all data outside circles of radius rδ
around instances i and j.

Similarly to the ordinary LPO-CV, the approach corrects for pooling bias
by ensuring that only predictions made on the same round of cross-validation
are ever compared. At the same time, the method corrects for spatial bias by
excluding instances too near test data from the training data. The deadzone
ensures that the AUC result holds for data further than rδ units from the
training instances, not just in the immediate neighborhood of the training
data.

A downside of the approach is computational complexity, as full LPO-SCV
requires training the classifier |I+||I−| times. When this is not computation-
ally feasible, one may approximate full LPO-SCV by randomly sampling a
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subset of all the possible pairs. Further, for ridge regression classifiers, fast
LPO-SCV cross-validation can be implemented using the fast holdout algo-
rithms (Pahikkala et al, 2012) implemented in the RLScore open source library
(Pahikkala and Airola, 2016).

3 Data

We chose to experiment the LPO-SCV method for prospectivity modelling of
orogenic gold occurrences in the Central Lapland greenstone belt (CLGB). As
positive instances, we used the locations of known orogenic gold occurrences,
and as negative instances, a random selection of locations in the study area.
As evidence features, we used rasters derived from airborne and ground based
geophysics, till geochemistry and geological interpretations. Two datasets were
generated: one with pixel size of 200 m x 200 m and another one with 50 m x
50 m. The coarser grid is a compromise between the resolutions of the original
data, while the more accurate grid reveals the details in the geophysical data
sets, but is over accurate for geochemical and gravity data. Overall dimensions
of the study area are approximately 170 km in the East-West and 110 km in
the North-South direction, yielding 508944 and 8146792 points for the 200 m
and 50 m rasters, respectively. The datasets are illustrated in Figure 2.

3.1 Training data

Positive instances were extracted from the Geological survey of Finland’s
(GTK) database of mineral deposits and occurrences in Finland, and con-
tain all the 27 gold deposits and other occurrences in CLGB that have been
categorized as orogenic. Definition of the exact location of the occurrences is
somewhat vague since they are not point-like. Usually orogenic gold deposits
are no more than 100 meters in width, but can extend hundreds of meters
along structures. Defining whether an occurrence is a single one or consists of
multiple separate occurrences is subject to interpretation. Here, the deposits
with undefined extents are represented as single pixels in the coarser grid, and
extended using a linear smoothing filter to cover a square area of 32 pixels in
the 50 m x 50 m grid.

Negative instances are generated by randomly sampling pixels in the study
area. Random sampling for the negatives is justified, since the vast majority
of the study area can be considered unprospective. Both versions of the data
set contain a total of 1000 instances. In the first one there are 27 positive, and
973 negative instances In the second data set, we randomly sample 16 pixels
from the 32 pixels representing each deposit, leading to 27×16 = 432 positive,
and 568 negative instances.
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(a) Magnetic anomaly (b) Apparent resistivity

(c) Gravity anomaly (d) Composite of geochemical data

(e) Paleostress field (f) Distance from Sirkka line and
proximity to granitoids

(g) Distance from greenstone sedi-
ment contacts

Fig. 2 Spatial representation of the evidence features in the study area. Coloring goes
from blue (low values) to red (high values). Black dots represent the locations of the known
orogenic gold occurrences.

3.2 Evidence features

The evidence feature set was the same as the one generated by Nykänen (2008)
and consists of typical mineral exploration related geoscientific spatial data
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that are derived from airborne geophysics (magnetic and electro-magnetic),
ground geophysics (gravity), regional till geochemistry and a 1:200,000 scale
digital geological map. Two evidence feature sets were generated with cell sizes
of 0.04 km2 and 0.0025 km2, while the resolution of the original measurements
varies from 1 point/0.01 km2 to 1 point/4 km2. Data preprocessing is briefly
described below, while the geological basis and more detailed description of
the preprocessing steps can be found in Nykänen (2008) and other references
provided. Grid cell dimensions used by Nykänen (2008) were 250 m x 250 m,
and resampling of cell values for the 200 m x 200 m grid was done using the
nearest neighbour method. Resampling for the 50 m x 50 m grid was done
using a linear smoothing filter. All the features are standardized to zero mean
and unit variance.

Airborne magnetic and electromagnetic data were derived from the na-
tionwide airborne geophysical measurements collected by GTK in 1973-2007
(Airo, 2005). Measurements were carried out with 200 m line spacing at a nom-
inal 30-40 m altitude using a fixed-wing aircraft, with vertical coplanar coils
(coaxial until 1979) for the electromagnetics (Hautaniemi et al, 2005). Mag-
netic data were interpolated to grids with 50 m x 50 m cell size, and deviation
from the Definitive Geomagnetic Reference Field was computed following Ko-
rhonen (2005). Further, deviation of each pixel value from the median of pixel
values within a radius of 4 km was calculated by Nykänen (2008). Electro-
magnetic response was interpreted as apparent resistivity and interpolated to
grids with 50 m x 50 m cell size following Suppala et al (2005), and further
resampled to 250 m x 250 m by Nykänen (2008).

The regional scale gravity map was derived from the ground-based gravity
measurements collected by GTK and the Finnish Geospatial Research Insti-
tute (former Finnish Geodetic Institute) in 1990’s (Kääriäinen and Mäkinen,
1997) with 1 point/1 km2. Gravity is the only evidence feature that does not
cover the entire study area. Nykänen (2008) computed the horizontal gradient
of Bouguer anomaly derived from the gravity measurements.

Geochemical data were derived from GTK’s national geochemical survey
of glacial tills, conducted in 1970’s and 80’s (Salminen and Tarvainen, 1995).
3-5 samples, taken at a density of 1 sample/km2, were combined for analysis.
The concentrations, thus, represent the average till concentration in an area of
approximately 4 km2. Data for Au, As, Cu, Fe, Ni and Te were interpolated by
Nykänen (2008) using the inverse distance weight method with the weight de-
creasing as the square of the distance. Since the grid cell size was much smaller
than the sampling density, anomalous average concentrations appear spot-like
near the locations associated to the combined sample. Nykänen (2008) further
combined the different element concentration grids by setting conditions that
Cu must always be elevated for a prospective area, at least one of As, Fe, Ni
or Te must be elevated and precence of Au increases prospectivity.

From the digital 1:200,000 scale bedrock map of northern Finland (Lehto-
nen et al, 1998), three evidence features were derived. The first feature is the
paleostress model computed following Holyland and Ojala (1997) by geome-
chanical interpretation at 1:100,000 scale using faults and lithological contacts



10 Airola et al.

from the digital 1:200,000 scale bedrock maps and 1:100,000 scale geophysi-
cal maps. The second feature is the combination of proximity to granitoids
in the Kittilä, Savukoski and Sodankylä Groups and distance to the Sirkka
shear zone. The mean distance to granitoids within a 2500 m neighborhood is
subtracted from the original proximity grid resulting in a grid which defines
the midpoint between the granitoids within the greenstone belt, and this grid
is combined with the proximity grid to the Sirkka Shear Zone. Values are dis-
cretized to 10 classes. The thrid feature derived from the bedrock map is the
distance to contact zones between the greenstone belt lithological units and
the overlying sedimentary units.

The geospatial data covers a 20 000 km2 area centered on the Central Lap-
land Greenstone Belt (CLGB), located in the Northern Fennoscandian Shield.
This area is a typical Paleoproterozoic greenstone belt composed of mafic to
ultramafic volcanic successions and largely overlying sedimentary units sur-
rounded and intruded by younger granitoids and mafic intrusions (Lehtonen
et al, 1998). There has been noticeable amount of mineral exploration activity
within the area during the recent years resulting more than 30 drill-defined
gold occurrences and one currently operating gold mine. Majority of the gold
occurrences within the CLGB are classified as orogenic gold deposits, as de-
fined by Groves et al (1998). Indirect age constraints suggest two separate
gold mineralization events within the Fennoscandian Shield at 1.9-1.86 and
1.85-1.79 Ga (Weihed et al, 2005). The assumption is that gold mineralization
occurred during late orogenic events, enabling use of the current geometries
on the bedrock map as a source of inputs for the spatial modeling because
they approximate the geometries at the time of gold mineralization (Nykänen,
2008).

4 Experiments

In the experiments, we demonstrate the effects of both pooling and spatial
bias, and how LPO-SCV allows correcting for both of them. Then we proceed
to benchmark a number of different classifiers on the prospectivity mapping
data sets. We consider three linear methods, support vector machine (SVM),
logistic regression and ridge regression, as well as two non-linear ones, k-NN
and random forest (Hastie et al, 2001; Breiman, 2001).

For ridge regression, we used the training and fast cross-validation algo-
rithms implemented in RLScore library (Pahikkala and Airola, 2016). For the
other methods, we used the scikit-learn library (Pedregosa et al, 2011), where
the SVM implementation is based on the LIBLINEAR package (Fan et al,
2008). All 1000 instances of both datasets are used in the experiments. For
the 200 m x 200 m data we run full LPO-SCV, whereas on the 50 m x 50 m
resolution data, a random subsample of 50000 positive-negative pairs is used
in LPO-SCV to speed up validation.
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Fig. 3 Comparison of leave-pair-out (LPO-SCV) and leave-one-out (LOO-SCV) spatial
cross-validation results on the version of the data with 200 m x 200m resolution and single
pixel representing each deposit. k-NN (k=250) is trained with both using the regular feature
set, and only x and y coordinates as features.

4.1 Pooling and spatial bias

In the first set of experiments, we compare a number of cross-validation ap-
proaches with k-NN classifier, in order to demonstrate both pooling and spatial
biases. We used a large number of neighbors (k=250), as we noticed the method
gave very poor results for small values of k. The experiments are performed
on the data set with 200 m x 200 m resolution and single pixel per deposit.

The first classifier is trained normally on the evidence features. The second
one is trained only on the x and y coordinates of the instances. The second
classifier is used to demonstrate the spatial bias, as clearly it cannot learn
to generalize to new areas. Based on the coordinates one can merely predict
”gold deposits are found near other gold deposits”.

We compare both LOO-SCV and LPO-SCV on deadzone radii ranging
from 0 to 30000 meters. When rδ = 0, the methods are equivalent to ordinary
LOO and LPO with no correction for spatial bias. In Figure 3 we can see a
clear demonstration of both the pooling and spatial biases.

The LOO results are for both methods much worse than the LPO methods
due to the pessimistic bias of LOO. The pooling bias increases as the deadzone
grows larger; with 30 km deadzone the LPO-SCV result with model trained
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Fig. 4 Comparison of different classifiers on data with 200 m x 200 m resolution and one
pixel per deposit.

on features is 0.84 AUC, whereas with LOO-SCV the result is only 0.70 AUC.
Most noticeably, for the model trained on only the coordinates, the results
even drop substantially below the 0.5 random level of AUC. These results are
in line with the pessimistic bias of LOO for AUC estimation shown in earlier
works of Airola et al (2009, 2011); Parker et al (2007); Smith et al (2014).

Spatial bias: For ordinary LPO and LOO with no deadzone (rδ = 0), x
and y coordinates are enough to predict well (AUC 0.81). The predictions,
however, drop to random level by rδ = 30 km, showing that based on only
the coordinates the model cannot predict at all at 30 km distance and further
from the training instances. In contrast, the model trained on the evidence
features can generalize outside the training area.

LPO-SCV eliminates both sources of bias. On one hand, it eliminates the
substantial pessimistic pooling bias that can be seen in the LOO-SCV results.
At the same time, it shows that whereas the model trained on the features
can generalize outside the immediate surrounding area of training data, the
coordinate based models cannot.
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Fig. 5 Comparison of different classifiers on data with 50 m x 50 m resolution and sixteen
pixels per deposit. Results for k-NN 10 and random forest are highly overoptimistic when
deadzone is not used (rδ = 0).

4.2 Classifier comparison

We tested five different classification methods on the data set, using LPO-
SCV. For SVM, logistic regression and ridge regression we present results
for regularization parameter 1, as the results for a large range of parameter
values were very similar. For random forest, the results are presented for 100
trees, as little improvement was observed after increasing the number of trees
beyond this point. For k-NN we present the results both for k=10 and k=250,
as the method behaved very differently depending on whether the number
of neighbors was small or large. For SVM and logistic regression we used
balancing to weight both classes equally, for the ridge regression and k-NN
implementations such option was not available, for random forests balancing
proved harmful and was not used.

The results are presented in Figure 4 for the data with 200 m x 200 m
resolution and single pixel per deposit, and in Figure 5 for the data with 50
m x 50 m resolution and sixteen pixels per deposit.

The major difference between these two experiments is, how k-NN with
k=10, and random forest behave on rδ = 0, where no deadzone correction
is done (compare Figure 4 and 5). On the data set with a single pixel per
deposit, the AUC of k-NN is 0.66, and that of random forest 0.79. On the data
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with 16 pixels, k-NN AUC is 0.98, and random forest AUC 1.00. Thus on one
of the data sets the two methods appear to work poorly, while on another it
would seem that they can classify the data perfectly. The second result is a
clear example of spatial bias. On each round of CV, the methods overfit to
the 15 deposit pixels left in the training set, and can thus predict the left-out
pixel. When deadzone radius is increased, the effect disappears and the poor
ability of the classifiers to predict beyond their immediate neighborhood is
revealed. This effect is not nearly as strong for the linear methods, as they are
not expressive enough to overfit to the data as much as the non-linear k-NN
and random forest models.

Otherwise the behavior of the methods is similar on the two versions of
the data set. It can be seen that the linear methods (SVM, logistic and ridge
regression) outperform the non-linear ones. Their AUC starts around 0.87,
and decreases to 0.85 AUC as deadzone radius grows. There are no substantial
differences between the performances of these three methods. k-NN 250 results
are also very close to those of the linear classifiers with AUCs ranging from
0.86 to 0.84 on the single pixel data. The Random forest works poorly, with
AUC always below 0.8.

Surprised by the poor performance of Random forest, we also performed
limited experiments to see whether by further parameter tuning, or by using
other types of tree-based ensemble methods such as the Extremely randomized
trees (Geurts et al, 2006), results would improve. We did not find this to be the
case. We also tested nonlinear kernel ridge regression (Evgeniou et al, 2000)
using the RBF kernels of various widths. This did not lead to improvements
over the linear ridge regression, but resulted in substantial increase in running
time.

5 Discussion

The results demonstrate the clear need for spatial cross-validation of spatial
prediction models, such as MPM classifiers. Due to small number of positive
instances available in many applications, CV is crucial for validating the mod-
els. We show that if the spatial dependencies are not taken into account, one
can obtain high AUCs even with classifiers that completely fail in generalizing
outside the training area.

The data resolution and using multiple pixels versus using a single pixel to
represent the deposits did not affect much the results for the best performing
methods, when deadzone correction was properly done. However, when using
several pixels to represent a deposit together with non-linear classifiers, we
obtained very biased results if deadzone correction is not used.

The method comparison showed that simple linear models worked well on
the MPM prediction problem. Whether the model was fitted by minimizing the
logistic, least-squares (ridge), or hinge (SVM) loss did not affect the results
much. The result is likely due to the small sample size, as there are only
27 positive instances of gold mineralization available in the data set. More
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complex models are likely to overfit to the noise in the data, rather than
discover patterns that would improve the predictions beyond what the linear
model already captures. This could also be seen in the k-NN results, where
averaging over a very large number of neighbors (k=250) provided the best
results, whereas more complex local models based on a smaller number of
neighbors (k=10) did not yield high AUC when properly validated.

In earlier work, Nykänen (2008) has shown 0.99 AUC results for both logis-
tic regression and radial basis functional link nets on orogenic gold MPM data
from the same study area. Our results are lower, though not directly compa-
rable due to differences in data processing and experimental setup in model
validation. Still, the different outcomes demonstrate the high degree to which
the results depend on the chosen model validation strategy. These choices can
often have much larger effect on results than the chosen classifiers. Thus we
encourage researchers dealing with spatial data to provide also comprehensive
spatial CV evaluations of their models, in order to establish how well they can
predict at different distances from training data. This approach provides ad-
ditional insights about the characteristics of the data, that the classical model
validation methods are not able to provide.

6 Conclusion

In this work, we considered the problem of evaluating the AUC of classifiers
on spatial data. Standard CV methods that have been developed for i.i.d. data
suffer from two sources of bias, the pooling and spatial biases. In our exper-
iments on MPM data we demonstrated the dangers of ignoring these biases,
as one can obtain incorrect AUC values ranging from much worse than ran-
dom to perfect with existing CV methods. We introduced the novel LPO-SCV
method, that allows correcting for both the pooling and spatial biases inher-
ent in classical CV methods. We demonstrate experimentally how the method
allows reducing these biases, and benchmarked a number of MPM classifiers
showing the advantages of simple linear models. While we have considered only
one MPM classification problem, the introduced evaluation approach is general
and could be applied in a wide range of different types of spatial classification
or ranking problems.
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