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Software development companies compete with each other in cost effectiveness, quality
and speed of delivery like any other businesses operating on the free market. To keep up
with the competition companies reuse code and implement common features with third-
party tools and libraries.
Using third-party code can can help in staying ahead of competition but it can also in-
crease the attack surface of your application, cause loss of privacy and control and in-
crease the likelihood of information leaks.
In this thesis we define a new term (cross-domain) that is better suited for dependency
control analysis and develop a dependency checker tool that can find dependencies and
the entities behind them on web pages. We also perform and empirical study where we
use this tool for a corpus of ∼370,000 Finnish websites and analyze the results.
In the study we find that about half of the dependencies on Finnish websites are cross-
domain and that almost 73% of the dependencies are controlled by entities registered
to United States. We also find that the cross-domain dependency landscape in Finland is
dominated by the ”Big Friendly Giants” Google and Facebook and that this has a negative
impact on privacy and security of Finnish websites.
In the end of the thesis we present possible countermeasures that can alleviate the risks
caused by third-party dependencies and note that these dependencies should be better
understood, monitored and their powers limited.
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Chapter 1

Introduction

In development programmers have always reused code whether it was language specific

libraries or community shared functions and tools. Netscape’s Navigator was one of the

first web browsers. In January 1998 Netscape decided to release the source code of Navi-

gator that created Mozilla and kicked into movement the open-source software movement

as we know it. These days it is estimated that 51% of the world’s population has internet

access. With World Wide Web’s growth browsers have gotten immensely more capable

and complex. This huge explosion of a new medium has created a vast web software

industry and with it the use of dependencies in web related code has changed.

In today’s world software companies compete with each other in cost efficiency, qual-

ity and speed. All of these requirements together with a booming open source community

has lead to a lot of web code reuse across the stack. From the browsers perspective we as a

community have built large amounts of CSS and JavaScript frameworks and libraries that

can be used directly in the browser. Introducing these kind of third-party dependencies

might propagate trust and increase the attack vector of your web related software.

In this thesis we are focusing on three separate research questions (RQs). The ques-

tions are as follows:

RQ1: How to technically measure cross-domain dependencies on web pages?
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RQ2: How does the dependency landscape on Finnish web pages look like on a

large scale and on why does it look like it does?

RQ3: What kind of threats the current situation has created?

When talking about dependencies and their security implications the focus of this

thesis is on JavaScript due to its wide client side capabilities in modern web browsers

though most of the conclusions and notes on some level apply for all dependency types.

In the second chapter we talk about trust relationships that should be considered when

introducing third-party dependencies and go through a few imaginary risk scenarios that

illustrate the problems and security implications that third-party dependencies can intro-

duce.

It the third chapter we talk about different dependency types on web pages and propose

a way for categorizing them. We also inspect and define the terms same-origin and same-

domain and explain why these both terms are required in the context of dependencies.

In the beginning of the fourth chapter we plan and build an open source tool that can

be used to run a dependency check for any web page. We talk about technology selections

and go deeper into what is technically required to measure dependencies on web pages in

general. We also scrape ∼370,000 Finnish domain names and run the dependency checker

tool against them and analyze the results.

In chapter five we go through a non-exhaustive list of possible countermeasures for

security implications third-party cross-domain dependencies can cause.

Chapter six makes conclusions of the whole thesis. We will revise the findings on

the theory and case study and what implications they have. At the end of the chapter are

thoughts on further studies on this matter.
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Risks of Third-Party Dependencies

In the fast phased world of web, software companies compete with each other in cost ef-

fectiveness, quality and speed of delivery like almost any other businesses that operate on

the free market. To keep up with the competition companies reuse code and integrate/im-

plement common features to their applications with third-party tools and libraries. Reuse

of third-party code can have a lot of benefits but it also creates risks. In this chapter we

discuss about the possible risk categories and scenarios. This forms a base for our RQ3

and directs the development and design of the dependency checker tool discussed in more

detail in chapter 4.

Most code reuse creates a some sort of dependency. Installing third party utilities can

speed up development significantly but it also easily leads to a lot of third-party dependen-

cies of which you are not directly in control of. Most developers do not have the resources

to read through all source code of the dependencies they are forced to use to keep up with

business requirements and project deadlines. We would argue that in these cases part of

the control of how the application works moves under the control of the controller of the

dependency. The effect of the lost control materializes if and only if the dependency is

even partly used as a ”black box” which usually end up being a requirement for speeding

up development and thus makes the case quite common.

Reusing open source code has a lot of benefits and as the open source movement has
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gained traction over the years the quality of open source tools and libraries has improved.

Also the amount of freely usable open source code has exploded and thus using someone

else’s code is easier than ever. Code reuse can also have negative effects like loosing

control or trust to third-parties that in most cases are not as well know as developers or

companies might want to think they are.

In this thesis we focus on linked (”live”) dependencies (see section 3.2) on web pages

putting weight specifically on JavaScript dependencies due to their dynamic possibilities.

Prime examples of these kind of dependencies are for example client-side scripting li-

braries like jQuery or user tracking libraries like Google’s analytics.js when downloaded

from third-party controlled content delivery networks (CDN).

2.1 Organizational trust and control

Like mentioned above using third-party dependencies almost always moves some of the

responsibility and control of the intended end result (web page or web site or web applica-

tion) to the owners of the dependency. With packaged dependencies there is a possibility

to inspect the dependencies and make an informed decision about the dependency, what

it does and can do within the application and what the risks that come from it are when

it is added. With linked dependencies that you do not have a direct control over, this

is not the case as the same process does not guarantee the same level of safety. Linked

dependencies (like packaged ones) can be inspected when the dependency is added but

knowing when the contents of the dependency change after adding it is not trivial and it

can not be checked in the same process where packaged dependencies are inspected (if

such step even exists in the current process) as you have no direct control over the third-

party dependency and when its contents change. Nothing guarantees that the contents of

the linked third-party dependencies change only when you want them to change or that

they are what they seem to be when you inspect them.
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When adding a third-party linked dependency you are trusting the organization in

control of that dependency. When it comes to allowing a third-party to load and execute a

linked JavaScript file from their servers you are giving them a possibility to take control

over the whole user experience of the pages the dependency is downloaded and executed

on – you just trust them not to do it. This is possible due to the native APIs that any script

run on a page can take advantage of (like DOM manipulation) and the fact that there is

really no standard way to limit for example what element of a page certain scripts can

manipulate or what data the script can collect of the page and send back home. Third-

party scripts are pretty much first-class citizens like you own scripts.

Are the organizations that companies trust their digital businesses to worth the trust

and how is that trust formed? How much do organizations and developers use linked

third-party dependencies and how well the risks are know that adding these kind of de-

pendencies exposes them to? What can be done to the current situation?

On a more philosophical level if we think about trust from human perspective it can

be defined as follows: ”Trust is the personal believe in correctness of something. It is

the deep conviction of truth and rightness and can not be enforced. If you gain someones

trust you have established an interpersonal relationship, based on communication, shared

values and experiences. Trust always depends on mutuality.” [1].

In the context of technology trust can form on the human level for example between

organizations and individuals but it can also be formed on a technological level. The

biggest difference between these two levels being that within the technological level trust

can be usually automatically verified and limits of agreements enforced. In most cases

this kind of automation does not exist for third-party linked dependencies.



CHAPTER 2. RISKS OF THIRD-PARTY DEPENDENCIES 6

2.2 Risk scenarios

Propagating trust for example via third-party linked dependencies exposes the organiza-

tion and the products the dependencies are in for different types of risks. We will go over

a few different types of risk categories and preset possible example risk scenarios.

2.2.1 Acquisitions

Scenario 1

Lets imagine a situation where company A agrees with company B to use company B’s

analytics script on its website. The trust is formed between individual actors inside the

companies A and B. An agreement is formed between the companies based on the trust

of the actors on both sides. Now the companies have formed a mutual agreement and can

be considered to trust each other.

Now in these companies employees come and go and the individual actors between

whom the trust initially was formed are gone but the agreement is still in place and A

still uses B’s analytics script without any problems. Behind the scenes company C makes

an offer to buy company B’s analytics product and the owners of B decide to sell. C has

ensured that nothing in the B’s analytics product breaks for the existing users. Though

company B releases a news post about selling its analytics product the information about

the acquisition never reaches the company A.

At this point company A has an agreement with a company C who does not employ

the people who personally were part of forming the agreement with them and the whole

company is not the same anymore. As A has tens of these kind of deals it has a very low

possibility of noticing these kind of changes in the trust relationship without an internal

process that periodically checks all its agreements for these kind of issues.

The company C who acquired company B’s analytics product is malicious and changes

how the analytic script it now owns (and that is already used on multiple high traffic sites)
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behaves. It keeps the normal business running as is to look as nothing would have changed

but addition to that it starts mining cryptocurrencies with A’s users using the analytics

script they have full control over.

The user experience of the users of A’s website gets worse but in such a way that A’s

users end up blaming their own devices for the light slowdown. This kind of user feedback

never reaches company A in a way that would trigger an inspection. To keep even more

under cover the company C alters their analytics script so that when the company A’s

employees use their own website a version of the script is loaded that does not have the

cryptocurrency mining functionality. The company C is able to do this as part of their

agreement the company A reports all their internal IP addresses to C so that internal

traffic can be excluded from the user analytics.

Finally after half a year of exploitation company A finds out what is going on after

launching an investigation related to the soaring usage of their website. A immediately

removes C’s analytics script from its website and takes legal action against B and C but

the damage has already been done.

Conclusion

As we can see from the scenario 1 above company and product acquisitions can pose a

significant risk if the trust relationships are not periodically followed and the agreements

between the companies enforced and tested to hold as has been agreed upon. These kind

of attacks are called supply chain attacks [2] and they take advantage of common trust

relationships in software supply chains. One good example of this kind of an attack was

when an unnamed company bought a popular WordPress captcha plugin from another

company and embedded a backdoor to the plugin. This affected more than 300,000 web-

sites [3].
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2.2.2 Information leaks

Scenario 2

Company A is a newly formed bank that is working on its online banking platform. Com-

pany B is an analytics company like in the scenario 1 (see section 2.2.1) but not malicious.

Company A wants to know how its customers are using its public website and how

they move from there to the online banking platform. They also want to know how their

customers use the online banking platform to guide development to the right direction in

the future.

To achieve this the developers in the company A are given a feature request from man-

agement. Their public website already uses B’s analytics script. To measure conversions

and see how users move between these two sites the same analytics script is installed to

the online banking platform. Analytics data starts flowing from the online banking plat-

form to the systems of B and management in company A is happy to be able to look at

the new data in their dashboards.

In a few weeks A’s social media team alerts their own developer team about a Twitter

conversation where a technologically minded customer is asking why his bank account

data is sent to the analytics company (B) when he uses A’s online banking platform. A’s

social media team tells transparently that they collect usage data to be able to improve the

product in the future but does not understand the underlying issue.

The Twitter discussion becomes a national social media storm and the development

team is pulled in to investigate the issue. The developers find that the analytics script

is addition to tracking what pages the user visits sending a huge amount of information

back to the analytics system including partial page content. A’s development team realizes

that the analytics script has collected peoples private banking information about accounts,

balances and transactions of hundreds of thousands of their customers. The management

is notified and the B’s analytics script is removed from the online banking platform.

After the incident is uncovered and the issue fixed A starts an internal investiga-
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tion about the issue. In the investigation they find that the marketing department has

shared read access to the data collected in B’s systems for three advertising and market-

ing companies they work with. The read access is immediately removed, the analytics

data cleaned and the partner companies asked to delete all data but in reality A has no

possibility to know where the data might have already leaked.

Conclusion

As we can see from the scenario 2 when the inner workings of third-party dependencies

are not fully understood by the users (in this case company A) they can pose a risk for

unintended information leaks that can easily leave the business in a vulnerable state.

In the scenario above we can also see how the data not only leaked to B’s systems

where it should have never been sent in the first place but it leaked forward to subcontrac-

tors. This was not intentional but it is easy to see that this kind of case is quite realistic.

Company A had never wanted to trust their customers private banking data to marketing

related subcontractors but did want to trust them with the user flow and action data to

improve marketing impact. The third-party dependency and not understanding its power

ended up forcibly widening the trust between A and its marketing related subcontractors

and thus loosing control of the data.

The above scenario is totally fictional but a relatively similar case happened in Finland

with S-Pankki that was using Google Analytics on their online banking platform [4].

On a more light scale loading a linked dependency from a third-party server always

gives some data to that server in the request like for example cookies set for that domain.

This can and should also be seen as telling something of your users to a third party.
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2.2.3 Hacking

Scenario 3

Company A is a media company that runs a big online news website. Company B provides

CDN services as part of its service portfolio. To deliver content to its users faster A uses

B’s content delivery network (CDN) for all its static resources on its news website.

In company A a secretary at the financial department needs monthly receipts for book

keeping of the payments charged by B from A from using its CDN. A developer at the IT

department of company A who has access to the CDN web interface where the receipts

can be downloaded is frustrated by this mundane task and wants the secretary to be able

to download the receipts directly by himself. As he can not add any new user accounts

to the CDN web interface as it would rise the monthly fee that is partially based on the

amount of user accounts he emails his credentials to the secretary and tells him not to

change the password and keep the account log in information only to himself.

On a weekend trip to Prague the secretary’s phone gets stolen. The thieves are able

to access the secretary’s company email via the phone and they get hold of the CDN web

interface credentials.

The secretary tells about the stolen phone to the company when he gets back to work

on Monday. The standard procedure takes place. All the secretary’s account passwords

are reset and the phone automatically remotely wiped if it ever is seen by the remote

mobile device management system of the company. The CDN account password is not

reset as it does not belong to the secretary and the IT department employees taking care

of the resets are not aware of the shared account credentials. The developer at the IT

department who gave his credentials to the secretary is not aware that he has ever lost his

phone.

The CDN credentials of the well known media company are sold by the thieves on

black market and bought for couple of thousand dollars by a hacker group. The hacker

group uses the credentials to log in to the CDN control panel and infects all JavaScript
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files they can find with a cryptocurrency miner script.

The script runs successfully and unnoticed for couple of weeks until the breach is

noticed when updated to the site are being deployed. All account passwords related to the

CDN are reset and an investigation about the incident started but the damage has already

been done.

Conclusion

Neither of the first two scenarios above had anything to do with hacking. Both of the

issues were related to organizations, trust and not fully understanding the tools in use.

Hacking by definition entails intruding to systems, circumventing protections and finding

edge cases to trigger systems to behave in unintended ways. This means that there is

an unimaginable number of ways to hack something in a way that makes it possible to

compromise a file that acts as a third party dependency for someone else.

The point in mentioning hacking here is that it is one of the risk scenarios you are

exposed to when using third-party dependencies. Instead of worrying just about your own

servers getting hacked with third-party dependencies you will have to also worry about

the third-party servers getting hacked thus increasing the attack surface of your website.

In case of a large news site using a CDN is close to a must and commercially available

options are probably safer and more robust that building your own. We would argue

though that in smaller cases like linking jQuery to your site from a public CDN for a

possibility of a small speed gain is a case where the advantages do not overcome the

disadvantages.
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Dependencies on web pages

3.1 Introduction

Web pages are what make up the world wide web. They’re usually written in Hypertext

Markup Language (HTML) [5] and consumed with web browsers [6].

Web pages consist of HTML, Cascading Style Sheets (CSS) and JavaScript. HTML

is used to create a semantic structure for inline and linked content, CSS is used to style

this content and JavaScript is used to provide enhanced interactivity and user experience.

Web pages can house all kinds of formats of digital content the most common and widely

supported formats being text, image, video and audio.

Web pages are usually accessed with web browsers via internet. Most of these pages

are hosted on servers which simply put are just internet connected computers running a

program that allows access to predefined HTML documents on that computer.

The HTML documents accessed with a web browser and served to you by the server

might be static or dynamically created. Dynamic in this case means that the HTML

document was written by a program instead of for example a human being.

When web browsers ask servers for resources they use a protocol called Hypertext

Transfer Protocol (HTTP) [7] for communication. It is specifically designed for this use

and forms the base for data communication for the World Wide Web.
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Figure 3.1: Code and content division

Understanding the basics of ”how the web works” is a prerequisite for answering our

RQ1, RQ2 and researching dependency landscape on the web in general.

3.2 Dependency types

Dependencies on web pages can be looked from many angles and thus what is seen as a

dependency depends on the point of view. Lets go through a few examples of what can

be seen as dependencies.

Lets divide a web page to two different ”buckets” called code and content. The code

bucket has all markup, styles and JavaScript – everything that technically makes a web

page. The content bucket has all actual content of the page like text, images, videos and

audio but no code. This kind of division between code and content allow us to look at

dependencies from two different perspectives (see 3.1).

Dependencies from a code point of view are more complex than from a content point

of view. Lets say that a script on the page relies on a native feature of a web browser.

Depending on what the script wants to achieve the native feature can be seen as a depen-

dency that is missing if the web browser doesn’t support it. This is a very common case
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as native APIs supported by different versions of different web browsers vary greatly [8].

This leads to a conclusion that native browser APIs and features can be seen as third-party

dependencies. The version of the platform and available features are something we build

on but in the end we have no control over. This is something that needs to be taken into

account when building and testing web pages.

When it comes to code and especially modern JavaScript packaged dependencies are

extremely common and are known to cause horrifying problems like the infamous left-pad

incident [9] [10]. All packaged dependencies are dependencies but they’re only depen-

dencies from the point of view of the build process at development time. From the point

of view of the web browser packaged dependencies are something it can not do anything

about if it encounters an error at runtime. Outdated packaged dependencies can cause se-

rious security problems but there is little the browser can do to alleviate this. The outdated

packaged dependencies need to be updated by the developer and a new version of the web

page needs to be deployed to fix problems related to packaged dependencies.

Dependencies the web browser has the possibility to do something about are the linked

(”live”) unpackaged dependencies of a web page. The HTML document might include

multiple links to external scripts and/or style sheets across the document. In some cases

the order of these dependencies in the document is relevant for correct execution. Failed

loading of even one linked dependency might render the web page in a state that does not

reflect the intended end result from the perspective of the developer of the page. Thus

all external scripts, styles, fonts etc. meant to be loaded by the browser can be seen as

dependencies if they are required to achieve the intended end result.

A web page can download resources that the rendering and functionality of the current

page does not need. This kind of pre-emptive loading of resources can be related to for ex-

ample the web page preparing for a user triggered navigation to another page on the same

website. In this case pre-emptive loading of resources can significantly shorten then time

it takes for the other page to be shown to the user if the user decides to navigate to it. We
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would argue that these kind of ”soft” dependencies can also be seen as dependencies from

the perspective of the developer. Implementing this kind pre-emptive resource loading is

an intentional choice and thus falls under the umbrella term ”intended end result”.

From the point of view of an intended end result for the rendering of a web page

content also plays a big role. If all content fails to load there is not much on the site

for humans to consume. Its directly consumable informational and functional value is

close to zero. Though linked content is not usually seen as a dependency I would argue

the opposite. It may not be a direct dependency related to code but it is still crucial for

achieving the intended end result.

This leads us to note that in terms of this thesis the most beneficial way to look at

dependencies is to think them as something the browser loads whether it is a script or an

image or something in between. The natural inspection point is thus the network traffic

that happens in the web browser when a web page is loaded.

When inspecting HTTP requests made by the browser when loading a web page the

requested resources can be categorized by type. At the time of writing there seems to be

no written standard or specification for how browsers should categorize requests though

most of them do provide an API for inspecting how they do it internally.

The need for providing this kind of classification that is accessible via a public APIs

has risen from the development of web browser developer tools over the past years. Based

on an acknowledgement on an article at Mozilla Developer Network (MDN) the current

documented version of the webRequest JavaScript API that allows developers to access

the internal categorization types of resources is based on Chromium’s webRequest API

[11].

MDN currently lists 20 different resource types1. The browser compatibility table in

the article [11] lists only 12 of them2 and the web request.json file [12] the article

1Them being: beacon, csp report, font, image, imageset, main frame, media, object, object subrequest,
ping, script, stylesheet, sub frame, web manifest, websocket, xbl, xml dtd, xmlhttprequest, xslt and other

2Missing ones being: image, main frame, object, script, stylesheet, sub frame, xmlhttprequest and other
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says the documentation is derived from lists only 13 resource types. The article lists 7

more resource types than the file it tells it is base on but doesn’t really tell where they

come from. Digging around Chromium’s source you can find an internal enumerated

type (enum) definition [13] that lists 19.

As we can see from the inconsistencies and lack of proper specification above the

web is a place where specifications live their own life and so do browser vendors imple-

mentations of the specifications. It is a bit of a game of who happens to implement it

first. Thus any of the lists mentioned above can not be considered as exhaustive, static

or standard but an image of the current state at the time of writing. What comes to the

backwards compatible nature of web it is more probable that more things get added than

that something gets dropped in the future.

In this thesis we are most interested in the ”more classical” resource types like script,

stylesheet and image and specifically of the origins these types of resources are

downloaded from.

3.3 Origins

Origin is a term defined in the RFC 6454 [14] of IETF. Roughly speaking origin con-

sists of scheme, host, and port. The definition of origin forms the base for categorizing

resources downloaded by browsers. As a term it is mainly security related and makes

deriving terms like same-origin and cross-origin possible.

3.3.1 Same-origin and cross-origin

As origin consists of scheme, host and port for having two different URIs belong to the

same origin their scheme, host and port must match. Let’s look at a few simple examples

that can be found from the origin specification.

All of the following URIs have the same origin:
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1 http://example.com/
2 http://example.com:80/
3 http://example.com/path/file �

Each of the following URIs have different origins:

1 http://example.com/
2 http://example.com:8080/
3 http://www.example.com/
4 https://example.com:80/
5 https://example.com/
6 http://example.org/
7 http://ietf.org/ �

Cross-origin is a counter term for same-origin and means that the origin is different

from hypothetical origin we are comparing the current origin to. So for two imaginary

URIs either one or more of the three required components that make an origin do not

match. This means that if either one or more of scheme, host or port differ between two

URIs they are considered cross-origin.

From the cross-origin example URIs above we can see for example that different

subdomains of the domain are considered cross-domain though the domain matches.

3.3.2 Same-domain and cross-domain

The definition of the terms same-domain and cross-domain are not standard and are used

quite freely and even wrongly in many cases as the concept of domain is not properly

understood. This thesis defines and explains the terms same-domain and cross-domain.

In the origin specification the host part of an origin can be seen as a fully qualified

domain name (FQDN) without the full stop (period) character at the end. Thus they are

almost interchangeable. A FQDN consists of a top level domain (TLD), domain and

possible sub-domains [15]. This means that host defined in the origin specification can be

further split to these three different components. Lets look at a FQDN example.
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1 www.example.com �
In the above example the ”com” part is the TLD. The ”example” part is the domain

and the ”www” part is the sub-domain. Understanding this allows us to define the terms

same-domain and cross-domain relatively strictly.

With the term same-domain this thesis refers to a much relaxed interpretation of same-

origin where two origins are considered same-domain if and only if their TLD and domain

match. The sub-domain part of the FQDN is not considered and neither are the protocol

or the port in the context of the origin.

The following URI examples are all considered as same-domain when compared to

each other.

1 http://example.com/
2 http://example.com:8080/
3 http://www.example.com/
4 https://example.com:80/
5 https://example.com/ �

As with cross-origin the term cross-domain is a counter term for same-domain. In

this thesis cross-domain refers to a much relaxed interpretation of cross-origin where two

origins are considered cross-domain if and only if their TLD and/or domain differ. The

sub-domain part of the FQDN is not considered and neither are the protocol or the port in

the context of the origin. The following URI examples are all considered as cross-domain

when compared to each other.

1 http://example.com/
2 http://example.org/
3 http://ietf.org/ �

Simply put if the TLD and domain parts of the FQDN part of an origin match with

another origin the origins are considered same-domain. Otherwise they are considered

cross-domain.
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Need for same-domain and cross-domain terms

The need for the terms same-domain and its counter pole cross-domain arises from inves-

tigating organizational trust relationships on web pages. In many cases a lot of resources

a web page downloads are from the same origin but with larger organizations where web

pages are built on top of custom CDNs and micro services a lot of resources are down-

loaded from sub-domains owned by the same organization. In the context of organiza-

tional trust resources tightly controlled by the organization under inspection are not as

interesting as resources controlled by third-party organizations.

The definition of origin is strict for good reasons and works very well when talking

about technical trust but to better cater for real life situations where most organizations

can be assumed to have control over of their main domain, its sub-domains, available

protocols and open ports this thesis introduces the terms same-domain and cross-domain.

The definitions of these terms are much more relaxed than the definition of origin and is

thus more suitable for inspecting the real world organizational trust relationships via re-

source downloaded by web pages. Applying this more relaxed definition when comparing

origins between resources downloaded by a browser allows us to filter away most of the

resources that in real life are controlled by the inspected organization and allows to focus

more on the more interesting third-party controlled resources.

This thesis applies the cross-domain definition in practice when doing resource origin

comparisons in the case study chapter when scraping over a large amount of front pages

of .fi TLDs.



Chapter 4

Case study

4.1 Introduction to case study

This case study spans a time from February 2018 to March 2018. In this case study

we focus on researching cross-origin JavaScript dependencies on home pages of Finnish

websites by developing a dependency checker tool, running that tool with a specific con-

figuration against around 260,000 websites that use the internet country code top-level

domain (ccTLD) of Finland (.fi) [16] and analyzing the collected data. The development

of this tool is our answer to RQ1 and it makes possible the aggregation of a corpus that

allows us to answer RQ2 and RQ3.

The developed Dependency Checker tool has been published in GitHub [17] with MIT

license for anyone to use. Though the focus of this thesis is in JavaScript dependencies the

Dependency Checker tool is more general and can be used to inspect other dependencies

like for example external Cascading Style Sheets [18], fonts and media.

4.2 Dependency checker tool

To be able to measure dependencies of web pages from different domains in large volumes

and to collect the measured data I decided to create a command line tool that when given
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a web page URL [19] would be able to gather the data and count some basic statistics of

loaded dependencies.

4.2.1 Goals

The first goal for the dependency tool was for it to be able to keep track of all dependencies

loaded by a web page whether the dependencies are loaded statically based on the initial

HTML document delivered to the browser or loaded dynamically by some of the initially

loaded scripts on the page. Lazy loading resources is a common design pattern used on

the web to improve speed or perceived speed of web pages. Lazy loading on web pages is

usually done after the DOMContentLoaded [20] event of the document or after the

load [21] event of the window.

The second goal for the tool was for it to be able to categorize the found dependencies

in a meaningful way. So that you could easily inspect or focus on selected dependency

type instead of having to wade through them all.

The third goal was for the tool to be able to distinguish between cross-origin, cross-

domain and subdomain dependencies. Cross-domain inspection is the strictest option as

f.ex. if a page hosted at https://www.example.com loads resource from http:

//example.com the request is considered as cross-origin as the schemes of the origins

do not match. A strict interpretation like that is necessary for security reasons at the

browsers end but in this tool it might not be beneficial. That is why a goal was set so that

you could tell the tool f.ex. to only consider the hostname [22] or even only the root

domain when analyzing dependencies.

The fourth goal for the tool was for it to be able to recognize the organizations or

individuals behind the loaded cross-origin dependencies. This would allow the user to

easily see who is in control and of what dependencies.
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4.2.2 Technical design

To meet to set goals a technical design to support them was done before starting the im-

plementation of the tool. The first problem was how to solve detecting the dependencies.

Static dependencies could be gathered from the loaded HTML document but it would not

be able to catch the dynamically loaded dependencies. Thus a simple static analysis of

HTML documents would not be enough. To be able to observe the dynamically loaded

dependencies the web page would need to rendered in an environment that would be as

close to a normal browser environment as possible so a Chrome based headless browser

called Puppeteer was selected.

By their own words Puppeteer is a Node library which provides a high-level API to

control headless Chrome or Chromium over the DevTools Protocol [23]. We evaluated

the API provided by Puppeteer and decided that it would serve as a good base for the

tool. As Puppeteer was meant to be used with Node the language of choice for writing the

tool was selected to be JavaScript on Node. Also asynchronous features like async and

await supported by latest Node versions were a strong argument for using Node when

working in an inherently asynchronous environment like web.

Puppeteer API provided for example methods for opening a new page in the headless

browser, waiting for the page load [24] event to fire and attach different kinds of ob-

servers to the page before it gets navigated to. As all cross-origin dependencies would

need to be loaded over the network by the browser listening for requests made by the

browser was selected as the point for gathering data. Puppeteer also provided APIs for

measuring used CSS and JavaScript coverage of pages but I decided not to use it as the

focus of this study wasn’t in the efficiency between loaded and actually used resources but

just in the loaded ones. Thus taking advantage of the requestInterception [25]

method of the Puppeteer API (see 4.1).

The second bigger problem to solve was how to find the organizations or individuals

behind the loaded resources. In the context of a web page resources can be downloaded



CHAPTER 4. CASE STUDY 23

Figure 4.1: Request Interception in Puppeteer

from a wide variety of origins. As an origin always consists of scheme, hostname and

port and the hostname is the only part that actually tells where the resource is instead of

just defining how to access it is the only part that has potential for identification.

There is a query and response based protocol called WHOIS [26] that is intended for

fetching information about internet resources like domain names and IP addresses in a

human readable format. It is also the only currently available free and widely used way

to acquire information about domain name ownership. What makes WHOIS a difficult

protocol to deal with is that the response format isn’t strictly defined and thus the content

and the format of WHOIS responses vary wildly between different WHOIS servers. This

makes it harder for computers to further process the data.

I decided to use WHOIS for querying all possible data for each different root domain

found from the dependency origins and then try to parse owner information out of the

different WHOIS responses.
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4.2.3 Development

4.2.4 Usage

I will go shortly over the usage of the tool in this section but complete and always up

to date instructions on how to install and use the tool can be found from the GitHub

repository is README.md file.

Performing a basic test is as simple as running the following command in the root

directory of the tool.

1 yarn start −−url=https://example.com/ �
This kind of command will print out status information about the execution of the test

while it runs and finally print out the results in to the console. In the command above it

is good to note that if the server responding to URL https://example.com would

for example perform a redirect to URL https://www.example.com the tool would

consider all resources loaded from URL https://www.example.com to be cross-

origin as the URL you asked for it to test was https://example.com and thus the

origin differs.

So by default the URL you give will be used in the cross-origin or cross-domain

comparisons as is. By setting the --follow-redirects flag the comparison URL

will be automatically updated to the URL the initial document was downloaded from. A

command that would tell the tool to automatically follow redirects would look like the

example below.

1 yarn start −−url=https://example.com/ −−follow−redirects �
Like mentioned in the Technical design subsection dependencies might get lazy loaded

or dynamically loaded after the load event of the window object. To better capture dy-
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namically or lazily loaded dependencies in the test we can tell the tool to wait a certain

amount of milliseconds after the load event. A command example of waiting 5 seconds

after the page has been loaded and thus giving time for dynamic dependencies to load can

be seen below.

1 yarn start −−url=https://example.com/ −−wait=5000 �
By default the tool doesn’t fetch the organizational information for the dependencies

and doesn’t print all the found dependencies to the console but only shows found depen-

dency types and counts for same-origin and cross-origin dependencies. It also counts a

cross-origin percentage for each of the found dependency types (see 3.2) and for the page

in total. Possible dependency type categories are document, stylesheet, image, media,

font, script, texttrack, xhr, fetch, eventsource, websocket, manifest and other [27].

To trigger the tool to print out all cross-origin dependencies and fetch owner data for

them with WHOIS you’ll need to use the -l handle that stands for ”long output”. Run-

ning commands with the -l handle take noticeably longer as the tool needs to perform

separate WHOIS queries for each unique root domain and IP address among the found

dependencies. For larger sites this might mean performing hundreds of WHOIS queries

to be able to aggregate the results.

An example of a command that would list detailed data of all found cross-origin de-

pendencies is shown below. It is good to note that if the site doesn’t have any cross-origin

dependencies none would of course be listed and the output would not differ from the

output of the same command without the -l handle.

1 yarn start −−url=https://example.com/ −l �
As large sites can have huge amount of dependencies when media is counted it makes

analyzing the data reported by the tool harder and finding the meaningful dependencies
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becomes harder. As an example let is imagine that a page at https://www.example.

com loads all of it is images from a content delivery network hosted in a subdomain

cdn.example.com. For our tool this means that all of the images loaded by the page

from that subdomain are cross-domain dependencies. The user of the tool might not

be interested of the dependencies they load from their own content delivery network or

from their own subdomains. It is possible to filter away all dependencies loaded from

the subdomains of the root domain we’re running the test for. To tell the tool to consider

all dependencies loaded from subdomains of the root domain of the given --url handle

we can use the --ignore-subdomains handle. Example of such a command can be

seen below. By using this handle the comparison becomes cross-root-domain instead of

cross-origin.

1 yarn start −−url=https://example.com/ −−ignore−subdomains �
In some cases organizations might have subsidiaries etc. that host their own services

in totally different root domains than the main organization. The case might be that some

of the services provided and maintained by the subsidiaries are integrated f.ex. to the

main organizations website. In this case it can be relevant to be able to filter out depen-

dencies that are loaded from different root domains or subdomains owned by the same

organization. This can be achieved by using the --consider-trusted handle. It

basically allows you to list other domains that the tool will consider ”same origin” when

it is doing its comparisons. Multiple trusted domains can be inputted by repeating the

handle. An example of a command that adds two trusted root domains that differ from the

root domain the test is run for can be seen below.

1 yarn start −−url=https://example.com/ −−consider−trusted=www.other−domain.com

−−consider−trusted=another−domain.net �
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We’ve now gone through how the tool can be used to analyze single web pages by

hand and how we can affect its internal concept of what is considered trusted to be able to

filter the most interesting results out of all the found ones. The tool also supports a couple

of other handles that aren’t very useful when doing by hand analysis from the command

line but are valuable when the tool is called by another program.

The tool supports a --silent handle for disabling all progress logging and --output

handle for selecting an output format for the data. At his point the tool supports only out-

putting the data in human readable format to the console and JSON output meant to be

read by computers. The JSON output contains more detailed data of the dependencies

than the human readable version enabled by default. Using these two handles together it

is possible to make the program run silently and only output JSON when it is done. Below

is an example of a command like that.

1 yarn −−silent start −−url=https://example.com/ −l −−silent −−output=json �
Notice that in the above example we also add a --silent handle for yarn that we’re

using to invoke the start command defined in the package.json file of the project. We’ll

need to do this as yarn prints some output of it is own and in the case where we want the

result only to contain valid JSON we can’t let yarn progress logging to pollute that.

For an example of a pretty printed JSON output of the command like above run

for page https://www.vero.fi/henkiloasiakkaat/ and stripped so that only

one request example is show per each found resource type see appendix A.1.

Testing

The testing of the dependency checker tool and it is different running configuration op-

tions was made by hand running the tool against different kinds of URLs. The results

reported by the tool were then checked by hand to be correct. The tool doesn’t have any

automated test at this point but with more time such tests could be implemented.
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4.3 Collecting data

4.3.1 Step one: collecting .fi domains

The first required part for running the planned test for a large amount of .fi TLD web

pages was to gather a list of .fi TDL domain names. Finnish Communications Regulatory

Authority (FICORA) provided an open OData API [28] that provides information about

domain names registered by organizations and associations. This API does not include

information about domain names registered by private individuals if they have not specif-

ically selected that they want to publish their data when registering a domain. This is

the reason our corpus does contain a small amount of domains that are associated with a

private person. Despite the OData API not containing most of the domains registered by

private individuals FICORA states that the data provided via this API contains roughly

80% of all registered .fi domains.

To be able to locally process all the data the API holds of the domains as part of this

thesis a tool was written [29] that is capable of extracting all the data stored in the API

in ∼22 minutes. The tool supports saving the extracted data in two formats: a single

JavaScript Object Notation (JSON) file and single comma-separated values (CSV) file1.

This tool has also been published in GitHub as open source under the MIT license [29].

For the purpose of collecting data for this thesis the tool was installed on a virtual

private server2 and ran with the following parameters:

1 npm run start −− −−no−csv �
The duration of the scrape in the setup described above was 21 minutes and 52 seconds

and resulted in a single JSON file with a size of 235 megabytes. The file included data of

371,331 unique .fi domains. In the gathered corpus we can directly see that ∼91% of the

1The schema of the files can be checked from the GitHub repository of the tool
2Technical specifications of the VPS: 4 GB RAM, 2 CPU Cores, 48 GB SSD Storage, 40 Gbps Network

In, 1000 Mbps Network Out, Ubuntu 17.10
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Figure 4.2: Domains per associated entity type

domains are owned by companies (see 4.2) and registered to Finland (see 4.3). Top 20

registrars control ∼55% of the domains (see 4.4). The 8th largest registrar with name -

-- in the graph is not really a registrar but is a default value Ficora uses to fill the registrar

name field in the data if the domain does not have a registrar. This is the case for 2.57%

of the domains.

4.3.2 Step two: gathering HTTP status codes for filtering

In the first step a large set of .fi domains was gathered but blindly running the dependency

checker tool (see 4.2) for all of them would have taken quite a lot of time. The estimated

execution time for running the dependency tool with the planned configuration (see 4.3.3)

against the home pages of 371331 unique domains single threaded on the VPS was close

to 43 days 3. To take into account only domains we could gather data most likely from

the list of domains gathered in the first step was decided to be filtered based on whether

3(371331 domains x 10 s) / (60 s * 60 m * 24 h) = ∼ 42.98 days
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Figure 4.3: Top 10 home countries of domain users

Figure 4.4: Top 20 registrars
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a server would answer properly with a 200 OK HTTP response code to a HEAD request

sent by our VPS.

To prepare for the HTTP status code check the data was imported form the JSON

file generated in the step one to a relational SQLite database. The database schema was

designed to match the schema of the JSON file. SQLite was selected over other options

for its easy portability and lightness. Importing all of the data asynchronously to a clean

SQLite database with a Node.js4 script took ∼2 hours and 27 minutes.

After the import a second Node.js script was written the purpose of which was to

iterate over all the domains imported to the SQLite database, send a HTTP HEAD request

to the domain and save the response code to the same database for that domain.

For making the HEAD request and parsing the HTTP status code the servers cURL

tool was used in the following form:

1 curl −s −o /dev/null −I −L −w ”%{http code}” −−connect−timeout 60 −−max−
time 120 <domain>.fi �
In the bash command string above curl is the name of the tool and the rest are han-

dles that control how it behaves. The -s handle makes curl silent so that it does not

show progress meter or error messages. The -o handle and its value /dev/null di-

rects the output of the command to /dev/null which means basically throwing it

away. The -I handle instructs curl to fetch only the headers of the document using

the HEAD command that most HTTP-servers support. The -L handle makes curl follow

redirects if the server reports that the requested page has moved to a different location.

The --connect-timeout handle and its value 60 tell curl that the maximum time

it can wait for the connection to the server to open. The --max-time handle and its

value 120 set a hard execution time limit for the whole command. The value for both

of these time limiting commands is set in seconds. Finally the -w handle with the value

"%http code" makes curl to write only the numerical response code that was found in

4Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript engine



CHAPTER 4. CASE STUDY 32

Figure 4.5: Counts of HTTP status codes ranges in the corpus

the last retrieved HTTP(S) transfer to stdout. This is what we want our script to read and

save.

The Node.js script that was in charge of executing the above command for each

domain in the corpus and saving the status code returned by the curl command to the

database was written so that it was able to run 400 separate instances of the above com-

mand asynchronously and concurrently. This allowed gathering and saving the HTTP

status codes in one run for all of the domains in ∼4 hours and 3 minutes.

As we can see in the figure 4.5 72.30% of the domains in our corpus answer with

the HTTP status code starting with number two (2xx), 1.04% with number three (3xx),

4.89% with number four (4xx), 0.91% with number five (5xx), 0.01% with a non stan-

dard status code and 21.16% of the queries failed. The fact that 20.86% of the checks

resulted in to a status code 000 that in the figure is labeled as failed is surprising. The

000 is not a valid HTTP status code but a code that cURL returns if the Domain Name

System (DNS) resolution fails, the connection refuses or times out or if the server for
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some reason invalidly returns the status code 000 [30]. From this we can deduce that

about 20% of registered .fi domains are not in any use at all.

4.3.3 Step three: scraping results

In the second step we gathered HTTP status codes for all domains in our corpus. This al-

lowed us to pick only domains for the dependency check that looked healthy. All domains

with a HTTP status code 200 were considered healthy and selected from the corpus for

the dependency test. The exact number of domains were selected for further analysis

based on the HTTP status code was 268,482. That is 72.30% of all the domains in our

corpus.

The dependency data was gathered with the dependency checker tool described in this

thesis (see 4.2). A small Node.js helper script was also written for this data gathering

phase. The scripts purpose was to iterate over all domains in the corpus where the saved

HTTP response code for the domain was 200 and skip all other domains. The script

would then run the dependency checker tool with the following configuration for all the

qualified domains in the corpus and save the JSON output returned by the dependency

check to the SQLite database for later analysis.

The dependency checker tool was run with the following configuration:

1 yarn −−silent start −l −−follow−redirects −−wait=5000 −−output=json −−silent
−−url=http://<domain>.fi/ �
The handles in the above command are explained in detail in the chapter that describes

the dependency checker tool (see 4.2). In short the above command will perform the

dependency test on the domain passed for it and when testing it will observe the network

traffic triggered by the page for 5 seconds after the page load event has triggered [31].

This is to allow lazily loaded or triggered scripts to execute and possibly cause more

HTTP requests that will then get recorded by the dependency checker tool. It is good to
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note that by default the dependency checker tool will emulate iPad 10 when performing

the test so that it would look more like a normal visitor to the server and web page it is

testing. This makes it harder for servers and web pages to modify their behavior based on

the default User Agent [32] of Puppeteer [23].

After running the dependency test for the 268482 unique domains we could inspect

the results and saw that the dependency test succeeded for 265177 domains and failed for

3305 domains. All tests marked as failed were timeouts. The script in charge of running

the dependency check for the selected domains had a 120 second maximum execution

time set for individual tests. This means that if the dependency test took more than 120

seconds to complete for one domain the test was killed and reported as timed out. Only

domains where the dependency test succeeded were selected for further analysis.

In our corpus based on the dependency check results 27 sites had initiated zero same

domain requests. As the download of the initial document is counted as a request this

kind of a situation should not be possible but there was a logical explanation for this.

The dependency checker tool when run with the --follow-redirects and --wait

handles picks up the domain it will use for the origin comparisons after the wait. If the

server did not issue a redirect but returned a page with status code 200 OK that used the

meta refresh tag [33] or JavaScript to perform a client-side redirect to a page that fails to

load5 the dependency checker tool compares all made requests to an internal error page

domain of Chromium. This leads to a situation where all requests made were considered

cross-domain. These 27 domains with erroneous results where also filtered out when

running further analysis for the data. The size of the domains in this filtered corpus was

265,150.
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Figure 4.6: Protocol usage in request data

4.4 Analysis

After the dependency data collection our corpus of 265,150 .fi domains includes data of

12,754,376 separate requests. Of all those requests 54.3% were downloaded over https

and 45.7% over http (see figure 4.6). Of the requests, 49.8% were same-domain and

50.2% cross-domain.

Looking at all of the requests in the corpus we can see that the largest amount of

requests a single web page made was 1,435 and the smallest 1. On average a site makes

roughly 48 requests. It is good to note that the median of 37 probably better reflects the

”real world average” (see table 4.1).

When we look at the same-domain requests only we can see that the largest amount of

requests a page made was 1432 and the smallest 1. On average a single web page makes

roughly 24 same-domain requests but again the median of 17 is probably better reflects

the ”real world average” (see table 4.2).

5For example if the DNS resolution for the domain fails or the server refuses the connection.
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Table 4.1: All requests
Property Requests
Max 1435
Min 1
Average 48.10
Median 37
Standard deviation 46.72

Table 4.2: Same-domain requests
Property Requests
Max 1432
Min 1
Average 23.94
Median 17
Standard deviation 27.00

Lastly when we only look at the cross-domain requests of our corpus we can see that

the largest amount of cross-domain requests a site made was a staggering 1377 and the

smallest amount was zero. Doing zero cross-domain requests is possible but doing zero

same-domain requests is not as the initial HTML document needs to be downloaded from

the same-domain. That sets the possible minimum of same-domain requests to one. On

average a web page makes ∼24 cross-domain requests but in our corpus the median is only

11 requests and again probably better reflects the ”real world average” (see table 4.3).

It is good to note that in these all three tables (4.1, 4.2 and 4.3) the standard deviation

is relatively large which means that the amount of requests a web page makes varies a lot

between the web pages in our corpus.

The figure 4.7 shows a stacked bar chart that on the x-axis shows request dispersion

Table 4.3: Cross-domain requests
Property Requests
Max 1377
Min 0
Average 24.17
Median 11
Standard deviation 34.64
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Figure 4.7: Same-domain vs. cross-domain per resource type

between different resource types. On the y-axis an average request count is shown for that

particular resource type and how many of the requests on average are cross-domain and

how many on average are same-domain.

From the graph we can see that the most downloaded resource type is image which

after text is the most common media type on web pages. After that comes scripts and

style sheets. The amount of on average downloaded scripts being relatively close to the

amount of downloaded images supports our initial intuition of scripts being used a lot.

What comes to the same-domain vs. cross-domain we can see that it is roughly half and

half for almost all resource types. Images are downloaded a bit more from same-domain

than cross-domain and scripts a bit less. This points to the direction that using third party

scripts is a bit more common than using your own.

In figure 4.8 we can see how cross-domain requests are divided between the country

of the registrant. This means that we have gone through all cross-domain requests, tried

to find those requests a registrant with country information and then counted the results
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Figure 4.8: Requests by country of the registrant

per country.

As we can see a staggering 72.6% of the resources at the end of these cross-domain

requests are controlled by entities in USA. Only 16% of the resources are controlled

by entities in Finland. France accounts for 1.1% and all other 152 countries for 4.3%

(marked as OTHERS). For 4.4% we were unable to automatically determine the country

of the registrant (marked as NOT AVAILABLE).

The fact that 72.6% of the resources are controlled by entities in USA correlates with

the previous tables about popular URLs we have looked at as companies like Google,

Facebook and Twitter are registered in USA.

4.4.1 Popular hostnames

We have listed top 20 hostnames to which the web pages in our corpus made the most

requests (see table 4.4). The top 20 hostnames gather 3,823,779 requests of the total

12,754,376 requests. It means that around 30% of all the requests go to these 20 host-
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names.

If we look at the organizations behind these top 20 hostnames we can see that Google

controls roughly 37% of them, Facebook around 13% and Fonecta Oy 10% – Fonecta

being the most significant Finnish company in the list. Some of the hostnames allow us

to deduce something of the nature of the services behind them. By looking at the top 20

hostnames from this perspective we can see that Google fonts, maps, analytics and video

(YouTube) are popular products on the Finnish market. It also seems to be quite popular

to connect your page to Facebook in one way or another. Embedding Instagram photos

and Tweets also seems to be popular. The RCMS is a CMS (content management system)

product owned by Valve Branding Oy and is used by Fonecta in their own systems. The

other identifiable closed source CMS’s in the top 20 domains are Kotisivukone and Wix.

4.4.2 Popular URLs

In the table 4.5 we have listed top 30 URLs. The list was aggregated from all the requests

in the corpus. A URL was considered unique based on the combination of origin and

pathname. Query strings were not considered when aggregating the list. From the list we

can naturally see the same kind of corporate landscape than we already saw on the top 20

hostnames list. Google and Facebook dominate the list while Wix is the only visible third

player on it. Fonts, analytics, maps and ads account for almost all of the top 30 URLs.

4.4.3 Popular JavaScript and CSS resources

In the table 4.6 we list the top 20 JavaScript URLs. Like with popular URLs (see table

4.5) the list was aggregated from all the requests in the corpus and a URL was considered

unique based on the combination of origin and pathname. Addition to this the URLs were

filtered based on their pathname. If the pathname would end to a character sequence like

.js it was included. Otherwise it was discarded. The same applies for the table 4.7 with

the exception that the matched character sequence for the end of the pathname was .css
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Table 4.4: Top 20 hostnames
Hostname Request count
www.facebook.com 703,062
fonts.gstatic.com 422,628
www.google-analytics.com 384,459
maps.googleapis.com 259,060
fonts.googleapis.com 229,909
scontent-frx5-1.xx.fbcdn.net 192,888
static.parastorage.com 162,361
varattu.domainkeskus.com 149,245
www.google.com 111,942
connect.facebook.net 96,403
www.youtube.com 93,411
maps.gstatic.com 90,751
use.typekit.net 88,318
rcms-f-production.s3.amazonaws.com 69,148
ajax.googleapis.com 53,959
staticxx.facebook.com 53,626
stats.g.doubleclick.net 53,382
scontent.cdninstagram.com 52,986
pbs.twimg.com 52,479
cdn.kotisivukone.fi 51,630
service.giosg.com 51,395
maps.google.com 48,236
insight.fonecta.fi 47,553
www.planeetta.net 46,795
beacon.krxd.net 44,704
googleads.g.doubleclick.net 44,578
cdn.krxd.net 44,521
asiakas.kotisivukone.com 44,255
frog.wix.com 41,031
s7.addthis.com 39,047
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Table 4.5: Top 30 URLs
URL (origin + pathname) Request count
http://fonts.googleapis.com/css 117,222
https://fonts.googleapis.com/css 111,282
https://www.google-analytics.com/analytics.js 92,726
https://www.google-analytics.com/r/collect 84,088
https://maps.googleapis.com/maps/vt 60,050
https://stats.g.doubleclick.net/r/collect 46,554
https://www.facebook.com/tr/ 44,032
http://www.google-analytics.com/analytics.js 32,857
https://staticxx.facebook.com/connect/xd_
arbiter/r/Ms1VZf1Vg1J.js

32,724

https://www.google-analytics.com/collect 31,592
https://beacon.krxd.net/optout_check 29,211
http://www.google-analytics.com/r/collect 27,362
https://www.google.com/maps/vt 26,345
https://googleads.g.doubleclick.net/pagead/id 26,231
https://frog.wix.com/bt 25,182
https://fonts.gstatic.com/s/roboto/v18/
KFOmCnqEu92Fr1Mu4mxMKTU1Kg.woff

24,471

https://www.google.com/ads/ga-audiences 22,660
http://maps.googleapis.com/maps/vt 22,241
https://www.facebook.com/rsrc.php/v3/yI/l/0,
cross/0Xlu5eqfuG_.css

21,653

https://www.facebook.com/rsrc.php/v3/yQ/l/0,
cross/bQHxYl9iQJ4.css

21,653

https://www.facebook.com/rsrc.php/v3/y0/r/
NzGftzPVAEh.js

21,361

https://www.facebook.com/rsrc.php/v3/yU/r/
WVTlt39y1Y8.js

21,342

https://www.facebook.com/rsrc.php/v3/yv/r/
77Cj57ioOEE.js

20,993

https://www.facebook.com/rsrc.php/v3/yS/l/0,
cross/kJpSEF3CePB.css

20,852

https://www.google-analytics.com/ga.js 20,488
https://www.facebook.com/rsrc.php/v3/y-
/r/KsG3u3GrOUd.png

20,358

http://www.google-analytics.com/ga.js 20,337
http://staticxx.facebook.com/connect/xd_
arbiter/r/Ms1VZf1Vg1J.js

20,266

https://www.google-analytics.com/r/__utm.gif 18,002
http://www.google-analytics.com/r/__utm.gif 18,002
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instead of .js.

It is good to note that though here we are filtering JavaScript and CSS files from the

requests based on their filename extensions it is possible for a path without the extension

to return CSS or JavaScript. This means that the way of filtering we have used is naive but

it is naive in purpose. By using only the filename extension for filtering we increase the

likelihood of catching URLs related to third-party libraries like for example Bootstrap6

As in the previous two tables (see 4.4 and 4.5) here too Google and Facebook dominate

the scene. They are the only two visible players on the top 20 JavaScript URLs table. The

services behind these URLs are mostly related to analytics, ads and embedded YouTube

videos. No popular open source libraries or frameworks are visible among the top 20

JavaScript URLs.

The case with the top 20 CSS URLs is somewhat similar (see table 4.7) but in the

table we can see a few identifiable open source libraries. Among these URLs Google,

Facebook and Twitter again control most of the scene but we can see that a CSS file

related to Font Awesome icon library [34] is quite popular. The library is loaded from

maxcdn.bootstrapcdn.com that is related to Bootstrap mentioned before. Thus

we can deduce that Bootstrap is relatively popular on Finnish websites.

Other CSS URLs that catch the eye are downloaded from cdn.kotisivukone.

fi and rcms-f-production.s3.amazonaws.com. Kotisivukone seems to use a

custom version of jQuery UI [35]. Some of their own CSS files named common.css

and common responsive.css are also quite popular. It is probable that these files

are downloaded by default on almost all pages created with Kotisivukone.

The rcms-f-production.s3.amazonaws.com hostname is related to the RCMS

that was mentioned earlier. They seem to be loading some common/shared theme files as

well and use Fancybox that is a jQuery plugin [36]. It is also probable in this case that the

files are loaded out of the box on most of the sites created with RCMS.

6Bootstrap refers to Twitter Bootstrap. More information of it can be found here:
https://getbootstrap.com/
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Table 4.6: Top 20 JavaScript URLs
URL Request count
https://www.google-analytics.com/analytics.js 92,726
http://www.google-analytics.com/analytics.js 32,857
https://staticxx.facebook.com/connect/xd_
arbiter/r/Ms1VZf1Vg1J.js

32,724

https://www.facebook.com/rsrc.php/v3/y0/r/
NzGftzPVAEh.js

21,361

https://www.facebook.com/rsrc.php/v3/yU/r/
WVTlt39y1Y8.js

21,342

https://www.facebook.com/rsrc.php/v3/yv/r/
77Cj57ioOEE.js

20,993

https://www.google-analytics.com/ga.js 20,485
http://www.google-analytics.com/ga.js 20,334
http://staticxx.facebook.com/connect/xd_
arbiter/r/Ms1VZf1Vg1J.js

20,266

https://connect.facebook.net/en_US/fbevents.js 17,910
https://www.googletagmanager.com/gtm.js 17,412
https://www.facebook.com/rsrc.php/v3/yp/r/
TBQDewS0gKn.js

15,733

https://static.doubleclick.net/instream/ad_
status.js

15,336

https://www.google.com/js/bg/
lSvH2GMDHdWiQ5txKk8DBwe8KHVpOosizyQXSe1BYYE.js

14,963

https://www.facebook.com/rsrc.php/v3/y2/r/tQ_
sLmrosus.js

14,680

https://connect.facebook.net/fi_FI/sdk.js 14,595
https://www.facebook.com/rsrc.php/v3/yU/r/
AM6qVQ7gqTd.js

14,083

https://www.youtube.com/yts/jsbin/www-embed-
player-vflSh-IWH/www-embed-player.js

13,418

https://www.youtube.com/yts/jsbin/player-
vflMfSEyN/en_US/base.js

13,214

https://maps.googleapis.com/maps-api-v3/api/js/
32/6/util.js

12,286
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Table 4.7: Top 20 CSS URLs
URL Request count
https://www.facebook.com/rsrc.php/v3/yI/l/0,
cross/0Xlu5eqfuG_.css

21,653

https://www.facebook.com/rsrc.php/v3/yQ/l/0,
cross/bQHxYl9iQJ4.css

21,653

https://www.facebook.com/rsrc.php/v3/yS/l/0,
cross/kJpSEF3CePB.css

20,852

https://www.youtube.com/yts/cssbin/www-player-
sprite-mode-vflb71xJh.css

16,989

https://www.facebook.com/rsrc.php/v3/yX/l/0,
cross/1L0gwr0mSGQ.css

12,693

https://www.facebook.com/rsrc.php/v3/y3/l/0,
cross/uqUo2rrLKdz.css

11,861

https://www.facebook.com/rsrc.php/v3/yJ/l/0,
cross/26V-iCD0O0M.css

9,378

https://maxcdn.bootstrapcdn.com/font-awesome/4.
7.0/css/font-awesome.min.css

5,470

https://cdn.kotisivukone.fi/libs/jquery/ui/css/
jquery-ui-1.8.20.custom.min.css

5,467

https://cdn.kotisivukone.fi/r201/b2481/clients/
css/common.css

5,466

https://platform.twitter.com/css/timeline.
529166ecfeb05abf3ee5afe0a8c349a4.light.ltr.css

5,340

https://www.facebook.com/rsrc.php/v3/yQ/l/0,
cross/s-0cTMMtN2G.css

4,790

https://www.facebook.com/rsrc.php/v3/yt/l/0,
cross/L8mrIXnxuCy.css

4,784

https://ton.twimg.com/tfw/
css/syndication_bundle_v1_
2801d83f2f75998762a22055f578875d6e10fd1d.css

4,513

http://rcms-f-production.s3.amazonaws.com/
themes/_default/hide.css

4,295

http://rcms-f-production.s3.amazonaws.com/js/
release/jquery/fancybox/jquery.fancybox.css

4,295

http://rcms-f-production.s3.amazonaws.com/
themes/_default/cookie-policy.css

4,293

http://rcms-f-production.s3.amazonaws.com/
themes/fonecta/fonectaframework/framework-
v2.css

4,151

http://rcms-f-production.s3.amazonaws.com/
themes/fonecta/fonectaframework/base-v2.css

4,151

https://cdn.kotisivukone.fi/r201/b2481/clients/
css/responsive/common_responsive.css

4,145
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4.4.4 Landscape and threats

As we have seen in the results presented in chapter 4.4 in the landscape of Finnish web-

sites about half of all resources are downloaded from somewhere (and in most cases

someone) else than the website at hand. We have also seen that the cross-domain re-

source landscape regarding JavaScript and CSS is mostly dominated by a couple of big

corporations the two biggest ones being Google and Facebook.

Of the web pages in our corpus 69.84% opened a connection to an origin that con-

tained at least one of the following substrings google, youtube, adsense or adwords.

These strings are commonly know to be used by Google on its domain names and thus

are a good fit for approximating connections to Google services when looking at a request

origin. Based on this naive but effective test we can say that roughly 70% of Finnish

websites give data about their users to Google.

We performed the same kind of test for Facebook and we can see that 21.81% of the

web pages in our corpus opened a connection to an origin that contained at least one of

the following substrings facebook, fbcdn, fbsbx or instagram. Based on this we

can say that roughly 22% of Finnish websites give data about their users to Facebook.

From a technical point of view extensive usage of third-party dependencies has the

possibility to greatly expand the attack surface of websites. In case of large operators

like Google and Facebook the resources provided to third parties are a cornerstone of

their business and well taken care of. Having large economic resources and interest in

taking care of these technical resources greatly reduces the risk of them being hacked,

maliciously used or even sold. This means that using these kind of dependencies provided

by large companies is relatively safe and the real effect that using these dependencies has

to your attack surface or loose of control is relatively small. What adding third-party

resources will always do though is weaken the privacy of your site.

Like mentioned earlier in chapter 4 if we look at the dependencies related to Google

and Facebook we can identify some of the products behind these dependencies and de-
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duce possible reasons why these dependencies might have formed addition to Google and

Facebook just being strong brands.

From Google’s products Google Fonts, Google Analytics, DoubleClick, Google Ads,

Google Maps, Google Tag Manager, reCAPTCHA and YouTube are widely used based

on the tables 4.4, 4.5, 4.6 and 4.7. Based on the same data we can see that from Facebook

the Facebook Pixel is Facebook’s most used service. The other popular Facebook services

are ”web plugins” and custom built integrations with Facebook Web SDKs. Of the plugins

Comments, Facepile and Like Button seem to be the most popular ones.

If we look at the different widely used Google services we can identify a user needs

that they fulfill. Website owners like to use custom fonts on their websites. Custom fonts

are a great way to personalize your site from a visual and brand perspective. Google Fonts

service provides a wide variety of web fonts and all its fonts are free to use. Addition to

that they provide good instructions on how to use the fonts on your website and the overall

quality of the service is high. All of these make a pretty strong case for using their fonts.

It is also good to note that most content management systems provide plugins that allow

the end users to customize the fonts on their sites and some of them provide easy access

to all fonts in the Google Fonts service [37] [38].

As with Google Fonts we would argue that the case with Google Analytics, Google

Maps, YouTube and so forth is similar. They are all free and high quality products that

are easy to use. This coupled with Google’s strong brand and huge user volumes they are

able to push their own services to their users if they so wish and why would not they wish

that as more users using their services means more data of the users and their behavior for

them. The saying ”If You’re Not Paying for It; You’re the Product” might already sound

like a cliche but it is sadly true.

What comes to the trending products from Facebook like the Pixel and different web

plugins they tell a similar story. Pixel provides entities advertising through Facebook the

possibility to create a loop-back link from their own website back to Facebook that again
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allows them to more efficiently target advertising etc. With the Facebook web plugins

directed towards website owners Facebook allows users to pull some real time data from

their accounts or pages and display that data on their own site. From a website owner

or developer perspective this is a very easy way to integrate two different services. From

Facebook’s perspective it is good customer service but they also conveniently get a beacon

that can report back who visited that site creating an information loop like the Pixel.

If we think about the products Google and Facebook provide they share quite a few

similar properties. They are all free (if you do not count the money you need to pay for

advertising), high quality and easy to use. As a website owner or a developer there is a lot

to gain by using them. For example implementing a sophisticated user tracking software

like Google Analytics could easily take years and cost millions but with Google Analytics

it can be done in matter of minutes and it costs nothing. With Facebook the media you

have created and the communities you have built can be reused on your own systems only

via the options they provide (like web plugins). Luring in users with free quality software

and locking them in to your system are different strategies but both of these strategies

lead to a similar situation where data of your users flows back to these entities. By using

free Google or Facebook services we expand their ”sensor network” around the web and

facilitate their core business that is selling advertising. The more they know about us the

more they can sell ads and make money.

We would argue that the usage of third-party cross-domain dependencies can create at

least the following threats:

• Increased attack surface
• Loss of privacy and information leaks
• Loss of control

As a whole the chapter 4 together with chapters 5 and 6 answers our RQ2 and RQ3.



Chapter 5

Threats and possible countermeasures

In this chapter we go through a non-exhaustive list of possible treats related to third-

party cross-domain dependencies and countermeasures that can help in working more

safely with (third-party) dependencies. This chapter will not go technically deep into

the different possible solutions but it will introduce them and provide some citations for

learning more on the subject. This chapter also partially answers RQ3. In this chapter

we have divided the countermeasures under different threat categories and introduced

concrete methods under them but it is good to note that some of the solutions overlap

multiple categories.

5.1 Increased attack surface

Like mentioned already in a theoretical risk scenario in section 2.2.3 cross-domain third-

party dependencies will increase the attack surface of your application compared to not

having these dependencies at all. How much these cross-domain third-party dependencies

will increase the attack surface of your site is debatable. Dependencies controlled by large

organizations are usually better taken care of due to bigger available resources for taking

care of the provided resources. The third-party resources having large value for the core

business of the owner of the dependency will make it more likely for the dependency to
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be taken care of and more resources allocated for that purpose.

5.1.1 Local copies

Third-party dependencies can be added to web pages using for example public content

delivery networks like jQuery CDN or Google Hosted Libraries. The advantage of loading

a dependency from a CDN is mostly speed but every time you use a CDN that you do not

control you are giving away some information about your site and your users. One way

to improve privacy with these kind of dependencies is to create local copies of them. By

hosting these dependencies yourself you will loose the speed gain that your would have

achieved by using a third party CDN but what you have lost in speed you have gained in

privacy and control.

5.1.2 SSL

Loading cross-domain third-party dependencies over HTTP exposes you to a larger risk

of man in the middle attacks. This means that in theory someone could be actively eaves-

dropping and replacing the contents of the third-party dependencies without you knowing.

Using HTTPS protocol instead of the plain HTTP protocol you will make a man in the

middle attack harder to execute.

In the world wide web today it is preferable to serve everything over HTTPS instead

of HTTP. Google for example has announced that its search algorithm takes HTTPS into

account when ranking search results [39]. In other words it could be said that Google

penalizes sites that do not use the HTTPS protocol.

5.1.3 Security Audits

Like with all software performing recurring security audits can help in spotting security

problems early. In terms of security audits for third-party cross-domain dependencies at
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least all security aspects listed in this thesis should be taken into consideration. Security

audits are best performed by a third-party due to objectivity reasons. A wide variety of

security related consultancies offer security auditing related services and testing.

Addition to consultancies a variety of different kinds of semi-automatic test suites

and tools exist [40]. These kinds of vulnerability scanning tools can be used to run tests

for existing infrastructure and software to get a quick overview of the robustness of the

software against known threats and attacks.

5.2 Loss of privacy and information leaks

Like noted in section 4.4.4 and theorized in section 2.2.2 using cross-domain third-party

dependencies will always cause a certain level of loss of privacy and when used negli-

gently can lead to unintended information leaks. The level of privacy lost depends on

many things on the server and client side. We will not go deep into the technical details

but rather point out that this is a thing that should be taken into consideration when adding

dependencies. Every request a web browser makes carries a certain amount of information

with it. This amount of information can and should be limited to the minimum required

amount required by the web page to work and stay secure to minimize the potential risk

of loss of privacy and information leaks.

A simple practical way of testing what kind of data your web page sends when load-

ing a dependency is to capture the network request and inspect its contents and headers.

This will allow you to evaluate what kind of information you are giving away just by

downloading the dependency.

5.2.1 Proxying

One way to prevent information leaking is to proxy requests through a server that you

control. This will help in anonymizing user requests and gives you the power to decide
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exactly what information you send with the requests. Depending on the situation proxying

can be either an easy task or an unfit solution. For anonymizing requests to static public

resources (like for example Google Fonts) is relatively easy but implementing anonymiza-

tion for resources that for example require authentication can be a more difficult task.

Proxying can have all the same effects as local copies (see subsection 5.1.1) but de-

pending on the proxy implementation you can allow the dependencies to change dynam-

ically that which in case of local copies require manual updating of the dependencies or

setting up a system that takes care of automatically updating the local copies of the de-

pendencies. This kind of a system closes the purpose of a proxy and is probably best

implemented as a proxy.

5.3 Loss of control

We would argue that one of the biggest issues with third-party cross-domain dependencies

is the lost control. Lets say that you add a simple Google Analytics script to your site.

That script is downloaded every time someone accesses your site and the caching time

Google sets for that script is 2 hours. Lets say that you inspected the Google Analytics

script file when you added the dependency. Do you know how often Google changes the

contents of the script file? You can probably find that out but most of us do not do that.

We add third-party dependencies to our sites and then just forget them.

When adding cross-domain third-party script dependencies on web pages you are giv-

ing these dependencies addition to a vast access to your page and user a possibility to

change the contents of the loaded scripts and thus to change what these scripts do. These

script could for example load more scripts from totally different servers, redirect your

users to a totally different site or send all visible data on the page forward including data

requiring logging in.
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5.3.1 Subresource Integrity

One way to limit the threats that emerge form the loss of control using cross-domain

third-party scripts cause is to take advantage of a pretty well supported modern browser

feature called subresource integrity. This feature simply enables browsers to verify that a

file is delivered without unexpected manipulation. It is based on a new integrity at-

tribute supported by the HTML script and link tags. The integrity attribute contains

a cryptographic hash of the representation of the resource the author expects to load [41].

In simple terms it means that when you add a dependency to your web page you can

ensure that the contents of the dependency do not change without you updating the hash

in the integrity attribute of the script tag that invokes the download of the resource.

This feature is a rather simple but very powerful way of ensuring that third-party scripts

are what you think they are. As a security feature it is also relatively easy to use.

5.3.2 Content Security Policy

Another way to limit the powers of possibly unknown contents of third-party scripts is to

use a content security policy (CSP). Content security policy can be triggered in supported

browsers by setting a Content-Security-Policy HTTP header or a specifically

formed HTML meta tag [42].

With CSP the browser can be instructed for example to disable all inline scripts or even

disable scripting totally. It is also possible to enforce the browser to limit downloaded

resources only to certain domains and this can be even done per resource type if necessary.

It is also possible to enforce the use of HTTPS protocol on all connections and so fort.

The specification is large and its third version is still very much a work in progress though

the two previous versions are quite well supported by the major browsers.



Chapter 6

Conclusions

In this thesis we have researched how to technically measure dependencies on web pages

(RQ1), how does the dependency landscape on Finnish web pages look like on a large

scale and on why does it look like it does (RQ2) and what kind of threats the current

situation has created (RQ3).

Measuring cross-domain dependencies on web pages is possible. A good way to

do so is to intercept and analyze requests made by browsers when loading a web page.

Collecting data of the requests and responses allows analysis on many levels. During the

case study (see chapter 4) of this thesis a tool for this purpose was created and the tool

tested with a large corpus of Finnish websites.

In this thesis we have focused on analyzing the origins and controllers of the origins

of the requested resources, the type division of requests between different resources types

recognized by browsers and protocols used for accessing these resources. Our corpus

shows that about half of the requests made are cross-domain. We have seen that about half

of the requests are made over HTTP and the other other half over HTTPS. We know that

almost 73% of the resources downloaded by the web pages in our corpus are controlled

by entities registered in United States of America and only 16% by entities registered in

Finland. We also know that in average only the count of downloaded images exceeds the

amount of downloaded scripts.
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We have also established that the cross-domain dependency scene on Finnish websites

is dominated by Google and Facebook and determined that they have achieved this market

dominance by providing ”free to use” quality products that match user needs. The motiva-

tion for providing these services is that they support the core business of these companies

– selling ads – by aggregating data of the users of these services that can be then used to

target adds better.

The kind of business model that the ”Big Friendly Giants” of the web (mainly Google

and Facebook) run has had an effect on the Finnish web scene and in terms of privacy it

is not positive. In general we can say that by using Finnish websites some information of

you as a user is more often than not sent to Google, Facebook or both. Having a small set

of dependencies shared by a large volume of websites and controlled by only a couple of

entities creates a ”single point of failure” that in theory can have security implications of

catastrophic scale.

We advice that the users of third-party dependencies should deeply understand what

the dependencies they use really do, hold the controllers of these dependencies account-

able for what they do with them and preferably automatically monitor changes in depen-

dencies and enforce limitation on when the contents and functionality of these dependen-

cies can change.

During the case study performed in chapter 4 data of the responses to the requests

performed were not collected. It would be interesting to perform a study that collects data

of the responses too. This would allow determining for example things like average page

weight in terms of data downloaded ”over the wire” and average page render time that

can not be deduced from the corpus collected in this thesis.
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Appendix A

Attachments

A.1 Dependency tool output example (partial)

1 {
2 "resources": {
3 "document": {
4 "requests": [
5 {
6 "url": "https:\/\/www.vero.fi\/henkiloasiakkaat\/",
7 "method": "GET",
8 "headers": {
9 "upgrade-insecure-requests": "1",

10 "user-agent": "Mozilla\/5.0 (iPad; CPU OS 9_1 like
Mac OS X) AppleWebKit\/601.1.46 (KHTML, like

Gecko) Version\/9.0 Mobile\/13B143 Safari\/
601.1",

11 "x-devtools-emulate-network-conditions-client-id":
"B3FC45C669DD4C96F30F784176E7D58C",

12 "accept": "text\/html,application\/xhtml+xml,
application\/xml;q=0.9,image\/webp,image\/apng
,*\/*;q=0.8"

13 },
14 "crossOrigin": false
15 }
16 ],
17 "totalCount": 1,
18 "sameOriginCount": 1,
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19 "crossOriginCount": 0,
20 "crossOriginPercentage": 0
21 },
22 "stylesheet": {
23 "requests": [
24 {
25 "url": "https:\/\/www.vero.fi\/static\/bundle\/

styles-983873274d.css",
26 "method": "GET",
27 "headers": {
28 "user-agent": "Mozilla\/5.0 (iPad; CPU OS 9_1 like

Mac OS X) AppleWebKit\/601.1.46 (KHTML, like
Gecko) Version\/9.0 Mobile\/13B143 Safari\/
601.1",

29 "x-devtools-emulate-network-conditions-client-id":
"B3FC45C669DD4C96F30F784176E7D58C",

30 "accept": "text\/css,*\/*;q=0.1",
31 "referer": "https:\/\/www.vero.fi\/

henkiloasiakkaat\/"
32 },
33 "crossOrigin": false
34 }
35 ],
36 "totalCount": 1,
37 "sameOriginCount": 1,
38 "crossOriginCount": 0,
39 "crossOriginPercentage": 0
40 },
41 "image": {
42 "requests": [
43 {
44 "url": "https:\/\/stat.vero.fi\/piwik.php?

action_name=Henkil%C3%B6asiakkaat%20-%
20Verohallinto&idsite=2&rec=1&r=255281&h=15&m=3&
s=54&url=https%3A%2F%2Fwww.vero.fi%
2Fhenkiloasiakkaat%2F&_id=acee47dc549594d4&_idts
=1519995834&_idvc=1&_idn=0&_refts=0&_viewts=
1519995834&send_image=1&cookie=1&res=1366x1024&
gt_ms=203",

45 "method": "GET",
46 "headers": {
47 "user-agent": "Mozilla\/5.0 (iPad; CPU OS 9_1 like

Mac OS X) AppleWebKit\/601.1.46 (KHTML, like
Gecko) Version\/9.0 Mobile\/13B143 Safari\/
601.1",
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48 "x-devtools-emulate-network-conditions-client-id":
"B3FC45C669DD4C96F30F784176E7D58C",

49 "accept": "image\/webp,image\/apng,image\/*,*\/*;q
=0.8",

50 "referer": "https:\/\/www.vero.fi\/
henkiloasiakkaat\/"

51 },
52 "crossOrigin": true,
53 "whoisData": {
54 "domain": "vero.fi",
55 "registrantName": "Verohallinto",
56 "registrantOrganization": "",
57 "registrantCountry": "Finland"
58 }
59 }
60 ],
61 "totalCount": 9,
62 "sameOriginCount": 8,
63 "crossOriginCount": 1,
64 "crossOriginPercentage": 11.11
65 },
66 "script": {
67 "requests": [
68 {
69 "url": "https:\/\/stat.vero.fi\/piwik.js",
70 "method": "GET",
71 "headers": {
72 "user-agent": "Mozilla\/5.0 (iPad; CPU OS 9_1 like

Mac OS X) AppleWebKit\/601.1.46 (KHTML, like
Gecko) Version\/9.0 Mobile\/13B143 Safari\/
601.1",

73 "x-devtools-emulate-network-conditions-client-id":
"B3FC45C669DD4C96F30F784176E7D58C",

74 "accept": "*\/*",
75 "referer": "https:\/\/www.vero.fi\/

henkiloasiakkaat\/"
76 },
77 "crossOrigin": true,
78 "whoisData": {
79 "domain": "vero.fi",
80 "registrantName": "Verohallinto",
81 "registrantOrganization": "",
82 "registrantCountry": "Finland"
83 }
84 }



APPENDIX A. ATTACHMENTS A-4

85 ],
86 "totalCount": 2,
87 "sameOriginCount": 1,
88 "crossOriginCount": 1,
89 "crossOriginPercentage": 50
90 },
91 "xhr": {
92 "requests": [
93 {
94 "url": "https:\/\/www.vero.fi\/api\/tweets\/",
95 "method": "GET",
96 "headers": {
97 "accept": "application\/json, text\/plain, *\/*",
98 "x-devtools-emulate-network-conditions-client-id":

"B3FC45C669DD4C96F30F784176E7D58C",
99 "user-agent": "Mozilla\/5.0 (iPad; CPU OS 9_1 like

Mac OS X) AppleWebKit\/601.1.46 (KHTML, like
Gecko) Version\/9.0 Mobile\/13B143 Safari\/
601.1",

100 "referer": "https:\/\/www.vero.fi\/
henkiloasiakkaat\/"

101 },
102 "crossOrigin": false
103 }
104 ],
105 "totalCount": 1,
106 "sameOriginCount": 1,
107 "crossOriginCount": 0,
108 "crossOriginPercentage": 0
109 }
110 },
111 "totalRequests": 14,
112 "totalSameOriginRequests": 12,
113 "totalCrossOriginRequests": 2,
114 "crossOriginPercentage": 14.29
115 } �


