
Turku Centre for Computer Science

TUCS Dissertations
No 233, August 2018

Paavo Nevalainen

Geometric Data Understanding
Deriving Case-Specific Features





Geometric Data Understanding:
Deriving Case Specific Features

Paavo Nevalainen

To be presented, with the permission of the Faculty of Science and
Engineering of the University of Turku, for public criticism in Auditorium

Agora XXI on Aug 20, 2018, at 12 noon.

University of Turku
Department of Future Technologies

Vesilinnantie 5, 20500 TURKU, FINLAND

2018



Supervisors

Professor Jukka Heikkonen
Department of Future Technologies
University of Turku
Finland

Assistant Professor Tapio Pahikkala
Department of Future Technologies
University of Turku
Finland

Adjunct Professor Mikko-Jussi Laakso
Department of Future Technologies
University of Turku
Finland

Reviewers

Paola Magillo
DIBRIS - Dipartimento di Informatica, Bioingegneria, Robotica e ingeg-
neria dei Sistemi
Università degli studi di Genova
Via Balbi 5, 16126 Genova
Italy

Csaba Beleznai
Department of Vision, Automation & Control
AIT Austrian Institute of Technology
Giefinggasse 4, 1210 Vienna
Austria

Opponent

Timo Tokola
Faculty of Science and Forestry
University of Eastern Finland
PL 111, FI-80100 Joensuu
Finland

ISBN 978-952-12-3723-2
ISSN 1239-1883

The originality of this thesis has been checked in accordance with the University 
of Turku quality assurance system using the Turnitin OriginalityCheck service.



To all sports researchers and GIS workers of the world!



Abstract

There exists a tradition using precise geometric modeling, where uncertain-
ties in data can be considered noise. Another tradition relies on statistical
nature of vast quantity of data, where geometric regularity is intrinsic to data
and statistical models usually grasp this level only indirectly. This work fo-
cuses on point cloud data of natural resources and the silhouette recognition
from video input as two real world examples of problems having geometric
content which is intangible at the raw data presentation.

This content could be discovered and modeled to some degree by such
machine learning (ML) approaches like deep learning, but either a direct
coverage of geometry in samples or addition of special geometry invariant
layer is necessary. Geometric content is central when there is a need for
direct observations of spatial variables, or one needs to gain a mapping to
a geometrically consistent data representation, where e.g. outliers or noise
can be easily discerned.

In this thesis we consider transformation of original input data to a ge-
ometric feature space in two example problems. The first example is cur-
vature of surfaces, which has met renewed interest since the introduction
of ubiquitous point cloud data and the maturation of the discrete differen-
tial geometry. Curvature spectra can characterize a spatial sample rather
well, and provide useful features for ML purposes. The second example in-
volves projective methods used to video stereo-signal analysis in swimming
analytics.

The aim is to find meaningful local geometric representations for fea-
ture generation, which also facilitate additional analysis based on geometric
understanding of the model. The features are associated directly to some
geometric quantity, and this makes it easier to express the geometric con-
straints in a natural way, as shown in the thesis. Also, the visualization
and further feature generation is much easier. Third, the approach provides
sound baseline methods to more traditional ML approaches, e.g. neural net-
work methods. Fourth, most of the ML methods can utilize the geometric
features presented in this work as additional features.

Keywords: triangularized irregular networks, curvature, point clouds, micro-
topography, silhouette capture, camera calibration.
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Tiivistelmä

Geometriassa käytetään perinteisesti tarkkoja malleja, jolloin datassa esiin-
tyvät epätarkkuudet edustavat melua. Toisessa perinteessä nojataan su-
uren datamäärän tilastolliseen luonteeseen, jolloin geometrinen säännön-
mukaisuus on datan sisäsyntyinen ominaisuus, joka hahmotetaan tilastol-
lisilla malleilla ainoastaan epäsuorasti. Tämä työ keskittyy kahteen es-
imerkkiin: luonnonvaroja kuvaaviin pistepilviin ja videohahmontunnistuk-
seen. Nämä ovat todellisia ongelmia, joissa geometrinen sisältö on tavoitta-
mattomissa raakadatan tasolla.

Tämä sisältö voitaisiin jossain määrin löytää ja mallintaa koneoppimisen
keinoin, esim. syväoppimisen avulla, mutta joko geometria pitää kattaa
suoraan näytteistämällä tai tarvitaan neuronien lisäkerros geometrisia in-
variansseja varten. Geometrinen sisältö on keskeinen, kun tarvitaan suoraa
avaruudellisten suureiden havainnointia, tai kun tarvitaan kuvaus geometris-
esti yhtenäiseen dataesitykseen, jossa poikkeavat näytteet tai melu voidaan
helposti erottaa.

Tässä työssä tarkastellaan datan muuntamista geometriseen piirreavaru-
uteen kahden esimerkkiohjelman suhteen. Ensimmäinen esimerkki on pin-
takaarevuus, joka on uudelleen virinneen kiinnostuksen kohde kaikkialle
saatavissa olevan datan ja diskreetin geometrian kypsymisen takia. Kaare-
vuusspektrit voivat luonnehtia avaruudellista kohdetta melko hyvin ja tar-
jota koneoppimisessa hyödyllisiä piirteitä. Toinen esimerkki koskee projek-
tiivisia menetelmiä käytettäessä stereovideosignaalia uinnin analytiikkaan.

Tavoite on löytää merkityksellisiä paikallisen geometrian esityksiä, jotka
samalla mahdollistavat muun geometrian ymmärrykseen perustuvan ana-
lyysin. Piirteet liittyvät suoraan johonkin geometriseen suureeseen, ja
tämä helpottaa luonnollisella tavalla geometristen rajoitteiden käsittelyä,
kuten väitöstyössä osoitetaan. Myös visualisointi ja lisäpiirteiden luonti
muuttuu helpommaksi. Kolmanneksi, lähestymistapa suo selkeän ver-
tailumenetelmän perinteisemmille koneoppimisen lähestymistavoille, esim.
hermoverkkomenetelmille. Neljänneksi, useimmat koneoppimismenetelmät
voivat hyödyntää tässä työssä esitettyjä geometrisia piirteitä lisäämällä ne
muiden piirteiden joukkoon.

Avainsanat: kolmioverkkomallit, kaarevuus, pistepilvet, mikrotopografia,
hahmoääriviivojen kaappaus, kamerakalibrointi.
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Chapter 1

Introduction

Machine learning (ML) is a discipline residing in the intersection of three
disciplines: computer science, mathematics and domain or target field (Con-
way, 2010). Geometry is a rather commonly occurring mathematical field,
which is sometimes used abusively on the domain specification, and maybe
sometimes left underrepresented in the intersection of ML and mathematics.
There is a question: how much one should understand about the domain
field? Perhaps good results follow already by a routine application of the
most standard methods? Of course, certain amount of data understanding
is always needed e.g. for imputation of the missing data, choosing correct
scaling etc. Sometimes elaborate techniques are being developed to produce
helpful features for specific problems. Development of such a new feature
can be a tedious task. One of the main arguments of this Thesis is that
the geometric data understanding is helpful in the completion of the ML
projects.

Data understanding requires sometimes a lengthy analysis of the data
sources, measurement methods and data format alternatives. The cross-
industry standard process (CRISP-DM) for data mining (Berthold et al.,
2010), has six stages in a ML project:
1) project understanding, 2) data understanding, 3) data preparation, 4)
modeling, 5) evaluation, 6) deployment. In reality, first three stages have
diffuse boundaries, and evaluation is a crucial step. One could say that
process understanding is about defining the evaluation criteria and data un-
derstanding is about what to model. This work focuses on stages 2) and 3)
from the geometric point of view using the ground curvature analysis and
geometric swimming video rectification as examples.

Geometry is an aspect of mathematics which pervades a lot of ML theory
starting from the concrete application fields of this work (micro-topographic
registration from point clouds and underwater stereo-imaging) to such ab-
stract heights as kernel spaces, Lie algebraic image processing (Kondor, 2008)
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and manifold projections (Sober and Levin, 2016). Usually there is a don’t
touch - don’t get hurt approach to geometry. The time it takes to get to the
end of the matter could have been used in learning strong parameterless or
self-adaptive methods perhaps leading to similar results.

The actual research of this work is focused on three cases: 1) registration
of an area stoniness without specifying individual stones with publications
(P1) and (P3), 2) micro-topographic registration of forest machine trails
(P5,P6) and 3) the underwater camera view rectification (R2,R4). Two main
cases are depicted in the upper row of the Fig. 1.1. The thesis concerns
geometrically justifiable representations, which can be utilized by some ML
methods, see Fig. 1.1. The related publications (P1,R2,...,P6) can be found
in Ch. 6.2.

Raw sensor data Representations ML analysis

Figure 1.1: The main input domains (data types) covered in this work.
Above left : A slice of a 3D point cloud at Turku Harakkakallio. Measures
are in meters and data from NFL open data site. Above right : An athlete
swimming at 25 m pool of the Impivaara public swimming center. The image
has 1022 × 355 pixels, each pixel is 4 mm wide in the geometric projection.
Below : The process flow, where raw data is turned to representations for
analysis by ML methods. The Thesis scope is in yellow.

The point clouds are created by aerial and ground-based light detection
and ranging (LiDAR) and photogrammetric measurements. Point clouds
were originally used to measure and model built environments (indoors, built
infrastructure), but the natural resource modeling and evaluation has become
common during last two decades. This development shows in the available
point cloud analysis methods, too. There is a wide variety of methods e.g. for
curvature analysis (see Ch. 3). They suite well to densely sampled, smooth
surfaces with the point cloud position noise level close to the natural coarse-
ness of the surface. Only few of the available methods suit to the natural
resource analysis, where samples are sparse and noise level is high, and sur-
faces have no ideal smoothness.

The best swimming analysis sites have a dense array of cameras with a
stereo-camera calibration. Cameras are either temporarily installed or per-
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manent, and even the physical aspect of these systems requires high accuracy
and is expensive. In case of P2 and P4, the number of cameras was limited by
the available computational capacity and camera places by the architecture.

Existing situation on these two fields (natural resource analysis and swim-
ming analysis) seems to leave room for some more research. Point clouds on
natural resources exhibit a wide range of spatial distributions, and e.g. the
terrain surface still has no formal multi-scale definition. There was also need
for a computationally efficient swimming analysis arrangement.

1.1 Motivation to geometrically expressive features

An approach among the ML practitioners is to add features to the data
model whenever new data sources or new feature extraction methods become
available. This is a justifiable practice as long as the total amount of features
stays low (e.g. under 200), since most of the methods are noise-tolerant
and produce about the same results with or without useless features. The
meaning or even the source of a feature is of less importance. This encourages
considering the method as a black box, and data as a primal input only.

Geometric properties have always been a part of the image processing
techniques. There are also various ways to produce invariance to Euclidean
(rigid) transformations (translation, rotation). There is a recent general pur-
pose phi-descriptor (Matsakis, 2016), which may prove to be useful e.g. in
geomorphology classifications. Geometry seems to pervade the deep learn-
ing, too. The recent capsule networks (Sabour et al., 2017) implements a
voting system, where a higher order feature will be accepted only if it is
geometrically sensible with respect to the lower order features.

Three motivational points for having geometric representations either as
features and feature sets or as a separate date structure, are outlined in the
following.

1. Some geometric entities are interesting or useful by themselves, even
the concrete measurement of them may be cumbersome or impossible.
There is a need for an indirect model-based geometric measure-
ment.

2. Geometry often provides additional constraints reducing the degrees
of freedom of the problem, or at least giving better probabilistic struc-
ture to the noise component. This argument is loosely related to the
minimum description length principle (MDL), which states that the
best models are such which enable the most efficient transmission of
the data (Rissanen, 1978). Using dimensions of the geometric primi-
tives involved in data may lead to a separation of the noise and the
characteristic structure. This case is of efficient geometric data
modeling.
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3. Sometimes there is no easy way to give a probabilistic model to a phe-
nomenon (e.g. the cross-terrain ground model). The model varies over
different scales, and to capture the properties of the surface one needs
to register the model on a spectrum of physical scales, and use the ac-
quired continuum of models as a basis for further ML operations. This
motivational item is termed as the multi-scale geometry aspect.

A need for indirect measurements based on a geometric representation,
(see Fig. 1.1) is relatively easy to perceive in cases, where it occurs. An
example of this need is swimming analysis (P2), where a generic metric
view to the body dynamics is essential. The second motivational factor
(structuring data geometrically) is exemplified e.g. in the micro-topography
analysis (study of the ground contour in small scale) where e.g. the derived
features should be independent of the slope (P1).

The swimming research is dominated by the need for videometric mea-
surements e.g. the speed of the swimmer as a function of time. In this
respect, it was considered essential to get a geometrically rectified projec-
tion of the swimming action before any silhouette capture or vectorization
etc.

1.2 Research goal and methods

The research goal was to find helpful geometric representations and methods
for the micro-topography and swimming research, which would be an im-
provement from the currently known methods. The point cloud study had
a focus on the curvature aspect, which may prove useful with or without
the neural network methods, which are gaining popularity. The aim of the
swimming research was to develop an applicable and verifiable video metrol-
ogy approach to serve as a basis and a benchmark for future ML attempts
in the biometrics analysis.

The results are summarized in Ch. 7 on p. 89.
Research data consists of aerial point clouds from Sodankylä and pho-

togrammetric point clouds from Vihti, Finland. The swimming video records
are from Turku Impivaara Sport Center. The point cloud analysis is focused
only on curvature aspects and the video material was subjected to camera
calibration.

1.3 Proposed novelties

The following is a list of the proposed novelties in papers P1,...,P6.

1. A point cloud thinning algorithm (spatial angle filtering (SAF)), which
applies to ground and canopy modeling, and can be tuned in a ML
training phase to specific tasks. (P6)
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2. An efficient equation to estimate mean curvature of a triangle. (P5)

3. A numerically efficient histogram of gradients (HOC) method based on
the properties of the above equation. (P6)

4. A practical and economical procedure for the projective geometry cap-
ture using a sparse underwater camera array. (R2,R4)

1.4 Organization of the thesis

This thesis consists of two parts that both together form the contribution
of the research. The thesis has 7 chapters. The second part presents the
six original research publications that are conducted in various research
projects. Gaining the data understanding as an early part of a machine
learning project and geometric data have been discussed in this Chapter.
Chapter 2 gives an introduction to supervised machine learning and its re-
lation to primal and derived features.

Chapter 3 outlines concepts and theory of triangulated irregular network
(TIN) curvature and briefly presents some characteristics of topography and
micro-topography such as local height, slope and curvature. Chapter 3 also
provides the state-of-the-art approach to curvature in the extent needed to
relate current research and the new results of the thesis. The Chapter 4
contains three algorithms or methods, which are among the deliverables of
the research done. The Chapter 4 also has a summary of the computational
complexity of TIN curvature methods. Some numerical examples are also
provided.

Chapter 5 provides an overview to video-based athletics performance
analysis using swimming as the target sport. The camera calibration problem
and issues with inaccuracies in camera positioning are covered briefly.

A summary of the research papers of the second part is provided in
Chapter 6. Each problem domain is briefly introduced, the approach and
outcome are presented in the context of the research goals of this thesis.
Chapter 7 summarizes the contributions and limitations of this thesis. Also,
possible future extensions to the research are discussed.
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Chapter 2

Machine learning

Several methods presented in this thesis have method parameters which have
been or can be tuned and utilized by some Machine Learning (ML) ap-
proaches. As Samuel (1959) states, ML brings some sort of autonomy into
the decisions ML systems make. This autonomy emerges from specific algo-
rithms, which may meet wider conditions than the programmer specifically
enforces. One way to measure this autonomy (or resiliency to details of new
cases) is called the generalization capability. It means how well an algorithm
performs when facing new but similar data.

ML learning algorithms can be divided to supervised and unsupervised
ones. The former have a specific data set used to tune a set of algorithm
parameters and to estimate the generalization performance. Data has to be
divided or augmented to features and a target variable (labels). Unsuper-
vised methods form the necessary classification from the features only and
may provide insight to data in general. Semi-supervised algorithms need a
source of extra input (reinforcement learning) or a user feedback to improve
the performance (recommender systems).

Fig. 2.1 outlines the thesis scope in terms of general ML concepts, which
are briefly introduced in the following text. A vivid spectrum of algorithms
and methods is forming from supervised to unsupervised methods. This work
employs only the supervised learning, which requires pre-defined expert
input or valid measurements in order to be applicable. This is because of
the type of the project cases were suitable for supervised learning. The
sample sizes in this work are small and in that case the cross-validation
(CV) is a natural tool to measure the classification or prediction performance
when facing the new data (generalization performance). CV is able to find
an approximate optimum between the state of underfitting and overfitting.
The former occurs when the algorithm performs poorly with all data, and
the latter occurs when the algorithm performs poorly with the new data.
There are also information criteria assessing the model complexity choice
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prediction error
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CV

Figure 2.1: ML concepts central to the thesis (in grey). The mind map is
adapted from Amazon.com (2018).

e.g. Akaike (AIC) and Bayesian information criteria (BIC) (?) and the
minimum description length approach (MDL) (Rissanen, 1978). To work
well, AIC requires the true model to be infinite dimensional and BIC requires
the model to be finite dimensional (?). The point cloud data sets are heavily
censored in this work and no model families with controllable complexity
were used. Also, the nature of the true model has not been taken into
consideration and the usage of AIC and BIC have been omitted. All the
above criteria require the samples to be i.i.d, which is probably not the case
with the point clouds.

The logistic regression fits a hyperplane which is most likely separator
between two classes, this in the sense of a likelihood function totally definable
by data only. The optimization problem involved in logistic regression can
also be understood purely from a geometric perspective. There exists a
sigmoidal weight function for the linear regression, which leads to the exactly
same solution. The ridge regression is an ordinary linear regression but
with a penalty subjected to the linear regression coefficients.

Sec. 2.1 introduces the supervised learning from a type theoretical and
software modularization point of view, Sec. 2.2 brings up the specifics when
applying supervised learning to the spatial prediction and Sec. 2.3 brings very
briefly up the feature extraction needed to deal with various geometrically
inspired features, some of which will be presented in Ch. 3 and Ch. 4.
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2.1 Supervised learning

A data sample z = (x y) consists of a feature vector x ∈ X ⊂ Rd and a
label y ∈ Y ⊂ R, where d ∈ N is the data dimension and X and Y are the
domains of the feature vectors and labels, respectively. The label y is often
called the tag, class, label or target variable or class of a sample z. A set
of samples z can be considered as well a matrix D = (X Y ) with feature
block X and the label column Y , if we just associate each row z of D to the
sample membership relation: z ∈ D. To shorten the presentation the set
aspect and the matrix aspect of D have been denoted as the same, even this
is not exactly so. The function application to sets of samples is being used.
Inevitable variations like multi-target prediction D = (X Y1 Y2) are excluded
from the scope of the presentation, since the cases covered are single-target
D = (X Y ) ones.

The relation between labels Y and features X can be characterized by
an approximate function f̂ such that D ≈ (X f̂(X)). The function f̂ is
called a predictor. The problem of finding an ideal function f : X → Y
is usually ill-posed meaning that there are: a) some missing values (x _),
b) duplicate labels (x y1) 6= (x y2), or c) sensitivity of resulting labeling Ŷ
over a small perturbation ε of input (x y) 7→ (x + εei y), where ei is the i’th
Euclidean base vector. A large scale example of a binary classification with
two partially overlapping clusters can be considered as approximately of type
b) with strong regularization, and of type c) with weak regularization.

The ill-posedness can be fought by regularization or by CV or a combi-
nation of both. CV actually ’regularizes’ models with e.g. a polynomial base
with a variable degree. The resemblance of supervised learning techniques
and regularization of ill-posed inverse problems is widely noted (Sever, 2015).

The maximum likelihood principle (Hastie et al., 2001) prefers a predictor
ŷ = f̂∗(x) that its value is the most probable given the data D i.e. f̂∗(x) =
argmaxy∈R(p(y|x+, D)), where ŷ is the predicted value, p(y|x+, D) is the
conditional probability for y given a new feature vector x+ and a data set D.
Several geometrically or intuitively justified methods have been developed
to approximate f̂∗ in cases where the direct or approximative addressing of
the probability p(y|x,D) is not practical. The varying mixture of intuition,
geometric reasoning and concepts of probability are seen in methods like
k-nearest neighbors, k-means and logistic regression, and procedures like
nested cross-validation, which can be seen also as a re-sampling method.

2.1.1 Nested complete cross-validation

The general idea of nested CV is to produce both a predictor and an un-
biased estimate of its prediction performance (Varma and Simon, 2006). The
CV is based on some sort of search over subsets of data D, and the complete
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cross-validation (CCV) (Mullin and Sukthankar, 2000) has the most exhaus-
tive search possible. The rest of the CV methods can be formulated with
various restrictions on the enumeration of the data subsets of the CCV. The
CV process itself is a minimization problem, as depicted in Fig. 2.2. An ML
algorithm A bridges the processing of the data D to a series of optimiza-
tion problems, where the performance (loss) of various subproblems is being
estimated.

𝐷1 𝐷2 𝐷3

𝐷 𝐷+

ML

known unknown

Optimization problem:

𝐸+ 𝑙𝑜𝑠𝑠 ,  𝑓⋆

Algorithm 𝒜

train+eval test

Figure 2.2: The nested CV as a performance optimization problem of a ML
algorithm. The sample distinct subsets D1, D2, D3 ⊂ D act as a hierarchical
iteration structure. E+(loss) is the estimate of the expected loss with a new
data D+, and f̂? is the deliverable predictor.

The treatise has a procedural and structural focus and the constituents
of the CCV algorithm (hyperparameters, training, prediction, inter-
nal parameters, enumeration, loss measure, evaluation, testing and
deliverable predictor) will be presented in a functional manner.

All supervised learning algorithms A produce a prediction function f̂ spe-
cific to the application of A. The functional type of the supervised learning
algorithm is:

A : Θ × 2D → YX ,

where Θ ⊂ R|θ| is the domain of the hyperparameters θ ∈ Θ of the algorithm
A. The power set 2D is the set of all subsets of data D and YX is a set of all
surjective functions from feature vector values X to label values Y . A specific
single event of learning by an algorithm A produces a prediction function
f̂ : X → Y from chosen hyperparameters θ and the data D0 ⊆ D:

A(θ,D0) = f̂ (2.1)

with f̂ possessing a usual potential for function application, i.e. f̂(x) = ŷ. A
clarification of the three roles of f̂ in nested CV is in place. f̂ is an individual
iterate in the training phase, f̂∗ is the best possible predictor to be tested,
and f̂? is the delivered predictor.
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Applying an algorithm A is called training, whereas applying f̂ is called
prediction. Note that training may involve some internal parameters.
E.g. a ridge regression has a single hyperparameter θ = λ and internal
parameters β ∈ Rd (in the case of zero mean normalized data), so that:
f̂ = x ∙β, where β = argminλ∈R+ ‖Ŷ −Y ‖2 +λ‖β‖2. If the hyperparameters
are missing, there is no need for CV, and the problem reduces to an ordinary
(possibly still hard) minimization problem.

The CCV algorithm is an exhaustive in the sense that it uses a set of
all possible tuples of three subsets triplets of data D. The definition of the
search space utilizes a set split operator split, which is needed later and
which produces all the pairs of the distinct subsets of D:

split(D) = {(D1, D2)|D1, D2 ⊂ D, D1 ∩ D2 = {}} (2.2)

The enumeration part consists of producing a set of all triplets of all pos-
sible distinct subsets of D: triplets = {(D1, D2, D3)|D3 ⊂ D, (D1, D2) ∈
split(D\D3}. The subsets D1, D2 and D3 are named as the training, eval-
uation and test set, respectively. One can now create a model f̂ by D1,
evaluate the choice of hyperparameters θ by D2 and test the generalization
performance by D3. The combinational cost is usually impractically high
because the cardinality |triplets| = 4|D|. Nevertheless, CCV is used here in
an explanatory purpose.

The performance can be evaluated by some comparison of predicted val-
ues ŷ ∈ Ŷ and the known values y ∈ Y . The loss measure loss(ŷ, y)
depends on the data domain and the problem type. The loss over sets is
defined e.g. as the mean of individual loss measurements: loss(Ŷ2, Y2) =
meany∈ Y2 loss(ŷ, y). To perform an evaluation eval() of an algorithm A,
one uses e.g. an average loss over some data subsets D1, D2 ⊂ D0:

eval(A, θ,D0) = mean
(D1,D2)∈pairs(D0)

loss
(
f̂(X2), Y2

)
, (2.3)

where f̂ = A(θ,D1) and (usually) D0 = D\D3.
Testing test() consists of experimentations with hitherto unseen data

D3 using the best predictor f̂∗ found in D\D3:

test(A, Θ, D) = mean
D3∈D

loss(f̂∗(X3), Y3), (2.4)

where f̂∗ = A(θ∗, D\D3) and θ∗ = argminθ∈Θ eval(A, θ,D\D3).
As a summary, evaluation gives an estimate of the expected loss within

the known data, whereas testing estimates the expected loss E+ with new
data D+, which is drawn from a same assumedly stationary random source
D as D, so that D,D+ ∼ D:

Ey∈D0 [loss(ŷ, y)] ≈ eval(A, θ,D0)

E+=Ey∈D+ [loss(ŷ, y)] ≈ test(A, Θ, D).
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Evaluation and testing in CV can be seen as an attempt to have a compro-
mise solution for the so called bias-variance trade-off problem (Hastie et al.,
2001). Bias measured by test() in this respect is a degree of unability of a rel-
atively simple mathematical model to represent a possibly complex real life
phenomenon. High variance of eval() over different data sets D0 indicates
high flexibility (and low reliability) of the model. Therefore, one attempts
to have both relatively low variance and relatively low bias, although, as a
general rule of thumb, one could much more easily achieve low bias with high
variance, or vice versa.

The deliverable predictor can be computed after assessing the Eq. 2.4.
One is now free to use whole the data:

θ? = argmin
θ∈Θ

(D1,D2)∈split(D)

loss
(
A(θ,D1)(X2), Y2

)

f? = A(θ?, D). (2.5)

The practical implementation of CV hides the internal parameters and
uses sequential procedural steps for testing, training and prediction. Train-
ing sets the internal parameters and possibly does some other practical pre-
liminary computations for speeding up the prediction e.g. constructing a
space partitioning structure etc. Typically, the prediction is as optimized as
practically possible, and this may affect the overall design of an algorithm
A.

2.1.2 Examples of practical CV algorithms

As mentioned, CCV is impractical for larger data sets. There are several
common strategies to restrict the subset enumeration:

1. leave-one-out (LOOCV): The evaluation subset D2 is restricted to be
singleton: |D2| = 1.

2. leave-two-out (L2OCV) with |D2| = 2.

3. k-fold CV (k-CV): Data is divided to k approximately equal parts and
the subset sizes are limited to a ratio |D1| : |D2| : |D3| ≈ (k−2) : 1 : 1.
Also other partitioning strategies exist, though.

4. sub-numerative testing: Some data sets may be too large even for the
methods 1-3 and their variants. Then only a minor subsets of the data
are being accessed in training, evaluation, testing and production of
the deliverable predictor f̂?. E.g. stream data analysis (Aggarwal,
2006) uses only diminutive part of the data.
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5. spatial cross-validation (SCV), which is similar to LOOCV or k-CV
except it is specific to the spatial data. This is why the enumeration set
triplets is conditioned to have a geographical distance between the sets
D1, D2, D3 larger than a certain threshold value r. This arrangement
reduces the effect of the possible spatial correlation of producing too
optimistic estimates for E+, see (Pohjankukka et al., 2017). Spatial
data is different from the cases 1-4, but a similar need for limitation of
subsets may occur, if there is a relatively strong correlation over a norm
and between a small subset of features. The geographical location is
an aspect of spatial samples introduced in the next Section.

There are various alterations to the above scheme e.g. in what comes
to the optimization by arranging and embedding the rest of the nested CV,
see e.g. (Mullin and Sukthankar, 2000). Another specialty is imbalanced
labeling Y or the loss function, which requires some adaptations. (Chawla,
2010)

2.2 Spatial prediction

The left detail of a Fig. 2.3 depicts a spatial generalization problem, where
there is a reference area with some field measurements (red squares) on a
variable of interest, and a generalization area (blue circles), where the field
variable is to be predicted. The spatial data samples z have a location field
p ∈ R2 added: z = (p x y).

The public open data is usually available in a regular rasters, e.g. the
open data at the reference area has DA = (A, XA, _) and the generalization
area has DC = (C, XC , _), whereas the field measurements data DQ is
typically with random locations: DQ = (Q, _, YQ). The underscore ’_’
signifies a missing value here. Typically, the raster data DA does not have
the field measurements YA known at the raster points, unless a satellite or
aerial measurement is in question.

Usually the field measurements are done in a rather small set of sample
points Q ⊂ R2 with |Q| � |A|. The measurements do not necessarily co-
incide with the raster A. The reference area A can be subjected to several
field campaigns DQ with complex statistical and ML methods used to com-
bine a best possible estimation ŷ ∈ ŶA over the area A. For simplicity, it
is assumed in this presentation that only one set of field measurements DQ

has been performed.
The spatial generalization problem can be stated formally now: Given the

reference data DA, measurements DQ and the generalization data DC , pre-
dict ŶC . The following is a short presentation of the spatial learning phase,
spatial merge and the spatial application phase. The text is correspondent
to the computational flowchart of the right detail of the Fig. 2.3.
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Figure 2.3: Left : The raster A of the reference area raster, the raster C of the
intended application area, field measurement points Q (red) and the nearest
raster points A|Q (green) depicted. Right : The work flow from the reference
area A to the target area C. Field measurements YQ are used directly or
indirectly to predict ŶC .

The spatial learning phase predicts the entity y at the area A, even
it was measured only at the sample points Q. First, one has to use a spatial
interpolation strategy to form a temporary non-spatial representation D =
(X,Y ), which is a composition of the data DA and DQ. Next, an ordinary
ML application proceeds, with possible minor alterations to the generation
of teaching, evaluation and testing subsets, which can have added spatial
constraints. Possible spatial constraints are based on raster points A and
sample points Q.

There are two possible ways to use an interpolation scheme to produce
the non-spatial representation: rasterization of field measurements or ap-
proximation of the raster data at the field measurements:

1. Rasterization of measurements: interpolate from values YQ to (typ-
ically 1 or 4) nearest raster locations in A to get an approximation
ỸA|Q to be used as a non-spatial ML data D = (XA|Q, ỸA|Q). The
raster points A|Q ⊂ A depicted in green in Fig. 2.3 denote the neigh-
boring raster points of Q at the raster A. The construction of A|Q
depends on the details of the used interpolation scheme. Interpolation
methods such as the nearest neighbor (NN), the Shepard (?) and sev-
eral others can be used in this case. There are excluded details e.g.
weighting summands correctly to maintain so called unity property of
interpolation when cumulating several values to one position. A pro-
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cedural expression for this step is ỸP |Q = interp(Q,YQ, P |Q), where
interp(., ., .) stands for an interpolation scheme for known values YQ

at Q approximated at new locations P |Q ⊂ P .

2. Interpolation of the raster values: interpolate from (typically 1
or 4) nearest feature values amongst XP |Q to sample locations Q to
form X̃Q of D = (X̃Q, YQ). Methods such as NN and the bilinear
interpolation can be used in this case. A procedural expression for this
step is X̃Q = interp(A,XA, Q).

Both alternatives 1 and 2 can be seen as examples of a spatial version of the
conditional join operator ./ of the relational algebra (Elmasri and Navathe,
2010), where the join condition is dictated by the interpolation scheme used.

The spatial application phase to predict ŶC of a distinct new site
C, C ∩ A = {} is considerably simpler. It either utilizes the predictor f̂?

produced in the spatial learning phase or uses data sets DA = (AXA ŶA) or
DQ = (QXQ YQ) as a vector prototype library to interpolate directly at the
feature space the target area C values, see Fig. 2.3. Also, the locations p can
be used e.g. for data imputation, and adaptations can be made based on
statistical analysis at the base area A. The spatial prediction was used e.g. in
P3 to produce the stoniness prediction over a rather large area (30×35 km2).

2.3 Feature extraction

The feature extraction tends to seek features X ′ derived from the original
features X so that the original data D = (X Y ) can be substituted either by
D′ = (X ′ Y ) or D′′ = (X X ′ Y ). If X ′ is somehow essential and hopefully
having much less columns (features) than the set X, thenD′ is a new problem
forth to experiment with. If X ′ somehow complements the weaknesses of
the used method, D′′ is a worthy new data. The feature extraction and
selection phase has complications e.g. from a typical field campaign setting,
where several labels Y are being measured. See an authoritative presentation
on (Naula et al., 2014), where the cost aspect of observations is coupled to
the prediction performance aspect.

This thesis uses two main signal types: geographic height (derived from
various sources) and the video signal. The height signal is used to pro-
duce e.g. curvature features, which focus to geomorphological and micro-
topographical aspects. The generation of them include pattern recognition
and possibly also pixel and voxel methods (if the rasterization is being done).
The video signal is used to produce e.g. the athlete silhouette for gait anal-
ysis and various biomechanical metrics. That is why both of the cases D′

and D′′ can occur with both signal types.
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Chapter 3

TIN geometry, concepts,
theory and methods

Topographic height is a very concrete and a very important feature among
the open nature resource data. This Chapter presents some features de-
rived from the topographic height represented as triangulated irregular net-
works (TIN). The curvature has a central role in topographic and micro-
topographic analysis, and all the essential concepts and most of the theo-
retical background of the established research will be presented. Only some
essentials of the differential geometry of smooth surfaces is covered fro intro-
ducing the principal curvatures and principal directions.

Topographic height can be modeled either by a regular raster format
(digital elevation models (DEM)) or by TIN (Meng et al., 2010). TIN is
represented as (irregular) triangles. There are several principles to form a
TIN from a point cloud e.g. windowless morphological operations of Li et al.
(2017). There are also many sources of the initial point cloud, e.g. aerial
laser scan, photogrammetry and terrain-based laser scan. The following text
focuses on TIN as a given 3D point set.

There are several ways to represent a TIN depending on the purpose of
the model and the level of space partitioning optimizations used. The basic
building blocks are the cloud points p ∈ P ⊂ R3, triangles t ∈ T ⊂ P 3 and
edges e ∈ E ⊂ P 2, where P, T and E are the sets of points, triangles and
edges, respectively. An obvious way is to present a TIN as a pair (P, T ),
where T = Delaunay(P ) is a Delaunay triangulation (Fortune, 1997), a set
of triangles created from the vertically projected points P ∈ R2 so that a so
called Delaunay property holds in T . The exact or approximate Delaunay
property holds when there are no other points within a circle circumscribing
a triangle. This is an adequate requirement for the numerical analysis of
TINs, since it eliminates deformed triangles.

A concept of natural neighborhood follows from the Delaunay property.
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Naturally neighboring points P (p) ⊂ P of a point p ∈ P are each connected
to p by a triangle edge. The notion of natural neighborhood can be general-
ized to edges and triangles. A dual of Delaunay triangulation is the Voronoi
tessellation (Fortune, 1997), which consists of space cells V oronoiP (p) ⊂ R3

closest to each point p ∈ P . A TIN analysis often limits the Voronoi cells to
the surfaces of TIN triangles.

Sec. 3.2 shortly presents common topographic height features. Sec. 3.4
presents general concepts and notation. Sec. 3.5 introduces several angular
measures including the solid angle, which is needed for point cloud filtering
and for the Gaussian curvature. Sec. 3.7 has the general TIN curvature
theory and Sec. 3.8 the current implementations and research documented.

Sec. 3.8 concerns generally available, traditional GIS concepts (both
grid and TIN based) concerning the curvature calculation and visualization.
Sec. 3.9 has a list of published TIN methods for the curvature analysis.

3.1 Topographic height data sources

The height data originates from three sources:

1. nation-wide and publicly available digital elevation map (2m DEM)
provided by National Survey of Finland (NSF). The quality of the
data is generally good, but the verification of its descriptivity and
fidelity when subjected to ground objects below 3 m diameter is not
well established. (P2)

2. nation-wide and publicly available aerial laser scan (ALS) point cloud
data by NSF. This data has good canopy penetration but rather sparse
point density (approx. 0.8 m−2) (P4). Points have also the intensity
value and the return number, which could be used in the analysis.

3. photogrammetric point clouds provided by unmanned aerial vehicles
(UAV). These are becoming increasingly important, but remain to be
site-specific and limited in accessibility. The photogrammetric signal
has good point density (approx. 800-3000 m−2) but weak penetration.
(P6) Points have the color value, which can be very useful in object
registration.

A fourth height data type (not included in the thesis) is the UAV Li-
DAR. The energy and data communication requirements, the need for a
very sophisticated and light-wight movement tracking technology and prob-
lems in producing the final point cloud make this technology still difficult
for a routine production in large scale. (Karpowicz, 2016) This technology
is better than photogrammetry when working under the canopy or in the
mining industry.
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There is not much research on the micro-topography registration and
classification based on aerial point clouds, yet. Most of them are ground-
based or using the lowest point of a grid slot approach (Kim et al., 2017).

3.2 Some features derived from TINs

The geographical research and the user community of geographic information
systems (GIS) have spun a web of terminology and concepts relating to
various height related features. It is the current opinion of the author that the
four most important features are the local height, the slope angle, the aspect
of the slope and curvature. These features have each various versions and
each feature can be based either on a regular raster data or TIN data. In both
cases the features can be considered representing aspects of an ideal ground
surface. Due to noisy and sparse sampling and non-analytical surfaces of
with the natural resource data, there is no chance to reproduce the exact
ideal surface nor a probabilistic model of it. Still, many choices, e.g. the
assumptions made to produce vertex normal points of TINs, are made with
an aim to approximate the ideal surface locally.

A brief outline of each feature is given before dwelling upon the ground
curvature from the Sec. 3.4 onwards. The site used is in Vihti, Finland.
The LiDAR data is publicly available from NSF. The ground model was
developed by SAF (P3) and sparsified to a 2m average distance between
points by a method presented in (P6).

3.2.1 Local height

The local height delivers a generic overview of any geomorphological details.
Basically, two hills of similar local shape should register in a similar way
using this feature independent of the possible difference in the dominant
height of the surrounding area. There are many possible ways to define the
local height, but most of these definitions involve a horizontal scale factor,
which dictates the scope of the height comparisons. A simple way to address
the scale is to define a reference height z̄r(p), p ∈ R2 of the environment of
a location p as the average on the circular perimeter with a radius r. The
local height z′(p) = z(p)− z̄r(p) is having nearly Laplacian distribution (see
Fig. 3.1) with small values of r until slowly settling to the typical height
distibution of the area with r → ∞ . Again, there are several possibilities to
define the reference height z̄r(p). Introducing first a reference ring with the
width δ:

ringr(p, δ) = {q ∈ P | r − δ/2 ≤ ‖q − p‖ ≤ r + δ/2} (3.1)

19



original height 2km x 2 km

E

N

30

40

50

60

70

80

he
ig

ht
 (

m
)

local height, r=35 m 

-1.5

-1

-0.5

0

0.5

1

1.5

lo
ca

l h
ei

gh
t (

m
)

local height, r=70 m 

-5

0

5

lo
ca

l h
ei

gh
t (

m
)

-5 0 5 10

height (m)

10-2

100
pr

ob
. d

en
si

ty
 (

m
-1

)

height distribution

r=35 m height
r=70 m height
5=35 m Laplacian
5=70 m Laplacian

Figure 3.1: Upper left : A topographic height at Vihti, Finland. Upper right :
Local height with the reference perimeter radius r = 35 m. Lower left :
Local height with r = 70 m. Lower right : Local height distributions and the
corresponding ideal Laplacian distributions. The root mean square (RMS)
error of the ideal distributions is 27 and 6 cm, respectively.

one can have e.g. the following simple definition:

z̄r(p) = mean
q∈ringr(p,δ)

z(q). (3.2)

Alternatively, one can fit a plane P(z, n) with a plane unit normal n and
a height z at a point p to the data at the ring zone: P(z, n) = {q|(q −
( pT z )T ) ∙ n = 0} to the ring data:

P(z, n) = {q ∈ R3 | (q − ( pT z )T ) ∙ n = 0}

(z∗, n∗) = argmin
(z,n)

∑

q∈diskr(p,δ)

w2(‖q − p‖)w1(‖q − P(z, n)‖), (3.3)

where the distance measurement ‖q − P‖ can be either a) the vertical dif-
ference or b) perpendicular one (so called total linear fit) to the plane P
and the weight function w1(u) over the projection distance u can either be
of c) usual square fitting w1(u) = u2, or of d) robust fitting (several choices
of w1(u) are possible), and the radial weight function w2(R) can be either
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e) the uniform w2(R) = 1 or any f) of the so called ’bump’ functions, e.g.

w2(R) = e
1−(1−( R−r

δ/2
)2)−1

, r − δ/2 ≤ R ≤ r + δ/2 with vanishing derivative
at the disk borders. The example in Fig. 3.1 was produced by choices b),
d) and f) (local total robust linear fit with continuity property at the disk).
The initial solution was computed by choices a), c) and e), though. In this
approach, the local reference height is the height of the plane at p:

z̄r(p) = z∗ (3.4)

A useful optimization trick is to use the state (z∗, n∗) of the plane fit of a
neighboring point to initialize the computation at a new point. This reduces
the amount of iterations needed for the Eq. 3.3. The regular grid data allows
the rapid composition of the disk point sets by relative index set operations,
details of this have been omitted here.

This scheme can mimic a wide variety of commonly employed local height
formulations by a suitable choice of parameters r and δ.

3.2.2 Slope angle

If the local ground normal n(p) can be established meaningfully at point
p ∈ R3 so that it is either smooth enough or representative enough at the
discretization level used, one can derive the local slope angle β(p) by a simple
definition:

β(p) = acos(n(p), e3), (3.5)

where e3 = (0, 0, 1) is the vertical unit vector. This quantity is also known
as the angle of inclination. The slope angle has been used e.g. in (P6) as
one of the features. The triangle slope angle βt follows from the Eq. 3.5 by
substituting n(p) by nt.

Figure 3.2: Left : A slope angle at Vihti, Finland. Right : The slope angle
distribution. The area has very small elevation differences.

There is a variety of other related concepts used by GIS tradition e.g.
the slope k(p) = tan(β(p)) and the differential of the slope angle
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DSA = |n(p) ∙ d
dpβ(p)|, where n is the orientation of the maximum incli-

nation. The latter is being used by the GIS community especially for the
visual selection of the scale of the DEM models. It is rather close to the
analytical curvature H (Kreyszig, 1959) of a smooth 2D curve, when the
slope is negligible: β ≈ 0 → H ≈ DSA.

DSA is also being used as a directional version for e.g. studying the
local polarization of the ground for enhanced visual effects. Rudimentary
tests indicate the slope angle is one of the best slope derived multi-purpose
features.

3.2.3 Aspect of the slope

The aspect of the slope is the direction of the maximum slope, see Fig. 3.3.
Using the horizontal projection n(p) of the surface normal n(p) of Eq. 3.5,
one can write:

(cos(aspect), sin(aspect)) = n0(p), (3.6)

where the vector power zero n0 = n/‖n‖ is a unit vector operator. Just like
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Figure 3.3: Left : The aspect of the slope at Vihti, Finland. Right : The aspect
distribution. The zero value of the aspect is set to south. The ground slopes
mostly to south-west. The image reveals watersheds very well.

slope, this feature is surprisingly important with phenomena dependent of
vegetation (e.g. soil water dynamics) since the vegetation depends on the
amount of sunlight. The aspect is best represented as a feature using the
vector components of the Eq. 3.6 to avoid problems of the cyclicity of the
aspect angle.

3.2.4 Ground features by other data formats than TIN
Techniques using voxels (Plaza-Leiva et al., 2017), normal vector voting, e.g.
the crease detection (Page et al., 2002), establishing local shape deformation
maps (Digne et al., 2017) between the sample and ideal surface, have been
left out of the scope of this thesis, although they are very promising with
respect to natural resource data. Likewise, many methods can be used for
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vegetation, canopy and tree classification e.g. the above-mentioned voxel
approach (Plaza-Leiva et al., 2017) and the local shape probing (Digne et al.,
2017). These methods and domains will not be covered in this work, although
e.g. the SAF method (P5) can be used for canopy detection (P6) and to the
classification, too.

There are also excellent techniques using vector, neighborhood or tensor
voting to feed a second stage of analysis, which is either principal surfaces or
principal curves (Mao et al., 2016) to detect micro-topographic features like
forest machine trails (P6). These have also been excluded from this work.

3.3 Motivation for the ground curvature analysis

Stone profiles are quite similar independent of the ground slope, as long as
the slope remains of small scale. The rotation needed to make a ground
profile approximately horizontal is called a tilt. It was soon clear, that the
functional spaces based on transforms like the Fourier family of methods
(taking the definition widely and including also the wavelet approaches) fail
to cope with even a moderate tilt of the sample area.

Fig. 3.4 depicts a synthetical 2D experiment constructed from circle
arcs with curvatures κ (60 % of the length) and −κ (40 % of the length),
which alternate in turns. The curvature analysis fails to recover the original
structure from the noisy version, whereas Fourier spectrum has an excellent
match on the low frequency scale. But, the curvature analysis proves to be
tilt-invariant, whereas the Fourier analysis is very sensitive to any rotation
larger than 10o. Note that this limit exceeds commonly with the naturally
occurring terrain contours. This indicates that traditional image processing
methods, although they are often very efficient, need to be augmented with
tilt-invariant1 methods e.g. curvature analysis.

The above example shows how the Fourier transform is extremely tolerant
to noise as long as the tilt of all the samples is similar. There are several
possibilities of combining the benefits of Fourier and curvature analysis. One
is using a window of a local linear fit to produce an un-tilted signal for
the Fourier transform. Second is geometric mesh smoothing (Yutaka and
Ohtake, 2003) to eliminate noise on the required scale before the curvature
histogram analysis. Third is a multi-scale curvature analysis, which produces
a curvature spectrum over a range of local length scale. The result is similar
to the Fourier family power spectrum but the range is physical length of each
locality.

1Rotation invariance in image processing usually means horizontal rotations. Tilt-
invariance could be called a gradient-invariance in image processing context.
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Figure 3.4: Top row : A synthetic 2D ground surface height profile with
curvature alternating between two values κ = ±0.8m−1. Two curvatures
appear in ratio 2:3. The tilted position (second column) has been rotated by
10o from the original position (first column). Uniform noise with amplitude
0.15 m added (third one). Middle row : The observed curvature spectrum is
sensitive to noise and insensitive to tilt. Bottom row : The obtained Fourier
spectrum is sensitive to the tilt and indifferent to noise.

3.4 Concepts and notation for the TIN analysis

A rather expressive notation has to be used to cover the current field with
wide range of different presentation styles and topics. Several results have
to be presented in a unified way, that is why e.g. the indexing of geometric
primitives has a heavy structure. It is likely that the only meaningful gener-
ally valid and generally accepted alternative to the notation chosen involves
discrete differential geometry (DDG) and geometric algebra (GA) and would
be theoretically too heavy for the scope of this presentation.

A triangle t is a counter-clockwise cyclically ordered set of its vertex
points. When the context dictates that p is a vertex point, p ∈ t = (a, b, c)
means that p ∈ {a, b, c} as by a structural membership. In some cases p ∈ t
refers to the geometric insidence relation defined by a barycentric inequality:

q = waa + wbb + wcc, 0 ≤ wa, wb, wc ≤ 1, wa + wb + wc = 1.
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The above parameters wa, wb, wc are called barymetric coordinates of t. The
notational practice of using .ε. in a context-specific fashion extends also to
other geometric entities with discrete definition and continuous geometric
domain. The practice eases the presentation, but requires attention from
the reader.

A point, an edge and a triangle have TIN neighborhoods of various kinds,
see the list below. These are called natural neighborhoods, when the Delau-
nay property holds in the triangles T :

T (p) = {t ∈ T |p ∈ t} (NN triangles of a vertex)

P (p) = {q ∈ P | ∃t ∈ T : p, q ∈ t} (NN points of a vertex)

E(p) = {(p, q) | q ∈ P (p)} (the set of adjoining edges)

T (t) = {t′ ∈ T | t′ ∩ t 6= {}} (NN triangles of a triangle)

Just like triangles, an edge e as an ordered point pair e = (p, q) is seen
both as a linear segment in 3D and an ordered set {p, q} when addressed
by the membership relation . ∈ .. Also, edges are identified by two adjacent
triangles: e = t∩ t′. This definition is ordered, too. The edge can be referred
to by the opposite point, see Fig. 3.5. E.g. when t = (a, b, c) one can refer
to an e = (b, c) as e = eta, and to point a as a = pte. This undoubtedly
heavy index notation comes handy later when presenting a collection of the
currently known methods about the TIN curvature. A summary of notations
concerning edges is given below:

t ∩ t′ (an edge between two triangles)

(p, q) (an edge between two points)

etp (an edge opposite to a vertex p within a triangle t)

pte (a point opposite to an edge e within a triangle t)

le, lt∩t′ , lpq, ltp (length of an edge)

~e = q − p (an edge vector of an edge e = (p, q))

Some general concepts needed for the TIN analysis are presented next in
the alphabetical order.

Border points ∂T ⊂ P are points next to no data (e.g. missing or removed
triangles). This is an important category, since many point clouds have
often complex border point set ∂T . Note: All convex hull points belong
to this set, too.

Duals Duals are usually defined using discrete differential forms (Desbrun
et al., 2008) on simplicial manifolds embedded to R3 with intrinsic
dimensionalities 0,1 and 2. This presentation is intentionally limited,
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Figure 3.5: The indexing of edges. A vertex point a ∈ t and an edge e ⊂ t
are opposite to each other.

and a dual is said to be a bijection between primal and dual TIN
elements having different dimensionality. The dual counterparts cover
their domain completely by their measure. When one enumerates e.g.
all points p ∈ P as primals, their duals cover whole the dual set.
Fig. 3.6 gives four examples from left to right, three first ones having
points as primals and duals as crossline segments, duals as a set of parts
of triangle faces, and duals as edge segments. The fourth example has
an edge primal and triangle faces as the dual.

Figure 3.6: A dual of a point p on a crossline (left) and on a TIN triangles
and edges (middle). An edge dual on TIN triangles (right).

Euclidean unit co-ordinate vectors e1, e2, e3 (pointing East, North and
up) are sometimes needed in the definitions and equations.

Expected size of a natural neighborhood set of a uniformly random
point cloud equals 6. The ramifications of this occur occasionally in
the text without further mention. Formally:

E(|T (p)|) = E(|E(p)|) = E(|P (p)|) = 6. (3.7)

Since the above statement is to be used in characterizing computational
costs, a short treatise has been included here. The Euler’s formula for
planar graphs (West, 2000) adapted to TIN’s is |P | − |E| + |T | = 1.

A partial (upper limit) proof of the expected size E(|T (p)|) = 6 of the
natural neighboring triangle set can be found in (Okabe et al., 2000, p.
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65). An intuitive proof given here is based on the Euler characteristic
of a planar connected graph made of triangles, taking into account the
obvious topological and measure dependencies of a triangularization
(e.g. 3 halves of edges and 1 half point per triangle), and assuming
the number of the boundary edges among the convex hull of P is of
lower order than the number of points |P |, and taking the limit at the
infinity |P | = ∞. See Fig. 3.7, which depicts a triangle and some visual
cues and arithmetical sketches at the asymptotic limit depicted by the
equivalence . ≈ .. There are about twice as many triangles as points,
and the expected sizes of the natural neighborhoods P (p), E(p), T (p)
of a point p are about as large.

Figure 3.7: An informal explanation of the expected size of the natural
neighbors assuming uniform horizontal point distribution. . ≈ . denotes
equivalence at the infinity.

Projection matrices P_(v1, v2)v and P⊥(v)v projecting a vector v to a
subspace spanned by vectors v1 and v2, and to a subspace perpendic-
ular of v, respectively:

P_(v1, v2) = v0
1v

0T
1 + v0

2v
0T
2 (3.8)

P⊥(v) = I − v0v0T . (3.9)

Projection to the horizontal plane has been depicted by the underscore
and will be used occasionally:

p =

(
1 0 0
0 1 0

)

p . (3.10)

Space discretization At some cases there are several possibilities to divide
an area or a volume to duals of vertices and edges. A space division is
called space discretization.

27



Triangle area A triangle t = (a, b, c) has an area:

At = ‖(b − a) × (c − a)‖/2. (3.11)

Triangle face normal A triangle t = (a, b, c) has:

nt = ((b − a) × (c − a))0 (3.12)

as the triangle face normal. The normal is directed away from the solid
(the ground, a tumor etc.) which means that the triangle vertices have
to be enumerated in a counter-clockwise fashion (when seen outside
the solid).

Vector arcus cos The angle between two vectors v1, v2: acos(v1, v2) =
cos−1(v0

1 ∙ v0
2)

Vector power zero is a notational convenience for defining unit vectors.

Vertex unit normal na, nb, nc are vertex unit normals at the indexed ver-
tices of a triangle t = (a, b, c). They are of unit length, but the orien-
tation varies according to different authors.

3.5 Some angle definitions

Triangle tip angles φtp, signed edge angles βe, projected tip angles φpt and
the solid angle ωp will be introduced in the following three Sections. These
angles are needed in various definitions of the upcoming curvature methods.

3.5.1 Tip angles

The tip angle φtp at a vertex a of a triangle t = (p, a, b) is the angle between
edge vectors a − p and b − p. It has been depicted at Fig. 3.8:

φtp = acos(a − p, b − p). (3.13)

An equivalent notation for the tip angle is by the opposite edge. If e = (a, b),
then φtp = φte.

3.5.2 Signed edge angle

Edge angles βe are signed so that the configuration depicted in Fig. 3.8 has
a positive angle sign. The Fig. 3.8 has an edge e = (p, q) = t∩ t′ opposite to
vertex points a ∈ t and b ∈ t′ has been depicted in Fig. 3.8.
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Figure 3.8: A tip angle φtp of a triangle t defined by the vertex point p ∈ t
and the edge e = (a, b) = t ∩ t′. An edge angle βe defined by the normals of
the adjoining triangles t and t′ has been depicted, too.

The edge sign sgn(e) is positive when an edge is ’a ridge’ and negative,
when edge is ’a valley’, see (P2, Eq. 14, p. 687). The edge sign is inde-
pendent of the triangle order, triangle vertex indexing order and dependent
of the triangle normal orientation (triangle normals must be always directed
outside from the solid). Mathematically, the edge sign is a crucial compo-
nent deciding the sign of a handedness determinant of a 3-vector blade, but
practically it is a sign of the oriented distance between the point q and the
affine plane spanned by t:

sgn(t ∩ t′) = sgn((q − p) ∙ nt), p ∈ t ∩ t′, q ∈ t′\t (3.14)

βt∩t′ = sgn(t ∩ t′) acos(nt, nt′) (edge tilt angle) (3.15)

The edge sign of Eq. 3.14 can be assumed to be widely used in CAD industry
already on 1980’s as a standard trick when dealing with edges of directed
polygon faces.

3.5.3 Projected tip angles

A vertex p and an associated vertex normal vector np define a plane P(p, n) =
{q ∈ R3 | (q − p) ∙ n = 0}. A tip angle φtp of a triangle t = {p, a, b} can be
projected on that plane by projecting the individual edge vectors a − p and
b − p on the plane P :

φpt = acos(P⊥(a − p), P⊥(b − p)) (3.16)

The sum of the projected tip angles

2π ≥ φp =
∑

t∈T (p)

φpt (3.17)

equals φp = 2π, when point p is not one of the border points of T , i.e.
p /∈ ∂T .
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Figure 3.9: A tip angle φtp of a triangle t surface at the vertex p get projected
to the plane perpendicular to the vertex normal np. The inside points have
full neighborhood

∑
t∈T (p) φpt = 2π.

3.5.4 Tip angle interpolation

Many equations define e.g. the curvature either at vertices or at triangles.
Depending on an application, one may need to transform any feature f ∈ XT

between vertices and triangles. A standard solution to this need is the tip
angle interpolation. The most recommended strategy is to use tip angles
φtp, p ∈ t ∈ T defined on the face of a triangle t and the projected tip angles
φpt, t ∈ T (p) Crane et al. (2013); Mesmoudi et al. (2012) as explained in this
section. The corresponding definitions in this thesis are Eqs. 3.16 and 3.13,
respectively. Possible other strategies are discussed in (P5) and Crane et al.
(2013).

One can define two transforms of a feature f between vertices and trian-
gles:

fp =
1
φp

∑

t∈T (p)

φptft (3.18)

ft =
1
π

∑

p∈t

φtpfp , (3.19)

where the total perimeter angle φp of the Eq. 3.17 gives boundary-adapting
weighting for the boundary points p ∈ ∂T , see Fig. 3.9. Note that (Mesmoudi
et al., 2012) uses a simplification φp ≈ π for the boundary points p ∈ ∂T ,
which is not adequate for applications, where the boundary is dominant as
with P6 (due the canopy front) and P2 (due to missing data). Although the
original contributions of this thesis are mostly covered in Ch. 4, the Eq. 3.18
is presented here to improve the flow of the presentation.

The transforms of Eqs. 3.18- 3.19 have the property called the partition
of unity: if f ≡ 1, both transformations are exact, since

∑
p∈t φtp = π and∑

t∈T (p) φpt = φp. Transformations are also approximate inverses of each
other.
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Summaries of various ways to define the tip normals np (needed to define
tip angles) is given in (Crane et al., 2013, pp. 61-67) and in (Klasing et al.,
2009, Tables I and II). The methods can be divided to those using a general
local fit and those using the TIN neighborhood. The recommended method
of Crane et al. (2013) adopted to P2 and P4 is using the tip angles as weights
for triangle normals:

np =




∑

t∈T (p)

φtpnt





0

(3.20)

3.5.5 Solid angle

The term ’solid angle’ derives from astronomy, where the observed optical
radius 0 ≤ γ ≤ 2π (in radians) of a visible roundy object is associated by
the solid angle 0 ≤ ω ≤ 4π (in steradians):

ω = 2π(1 − cos γ). (3.21)

In this work, actual physical dimensions of angular measures (rad. and ster.)
are left out, whenever possible. The left part of the Fig. 3.10 depicts a roundy
object, the optical radius γ and the spatial angle ω.

Figure 3.10: Left : The relationship of the solid angle ω (steradians) and the
corresponding optical radius γ (radians). Right : A solid angle ω(v1, v2, v3)
defined by three vectors v1, v2, v3 ∈ R3.

3.5.6 Solid angle of a vector triplet

The right part of the Fif. 3.10 depicts a solid angle ω(v1, v2, v3) ∈ R3 defined
by three counter-clockwise enumerated unit vectors v1, v2, v3. The solid angle
equals the area of the unit sphere captured between three great circles defined
by three vectors. An equation of the solid angle is given by ? and before
that by Euler, Lagrange etc.:

ω(v1, v2, v3) = 2 tan−1 v0
1 ∙ v0

2 × v0
3

1 + v0
1 ∙ v0

2 + v0
2 ∙ v0

3 + v0
3 ∙ v0

1

. (3.22)
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There is another formulation by l’Huillier (P3) with about equal computa-
tional complexity (one cross product less, 4 more tan and cos operations):

ψi = acos(vj , vk), i, j, k ∈ {1, 2, 3} (3.23)

ψ4 = 0

ψ0 =
3∑

i=1

ψi

ω(v1, v2, v3) = 4 tan−1

√

Π4
i=1 tan

ψ0 − ψi

4
, (3.24)

where indices of Eq. 3.23 go through one ordered cycle of {1, 2, 3}, see
Fig. 3.10.

The actual choice between Eqs. 3.22 and 3.24 depends on further details
of the computation, since each one uses or produces intermediary results to
and from other curvature computations presented later.

3.5.7 Solid angle of a vertex point

There are several formulations for the solid angle ωp, given a TIN vertex point
p and its surrounding triangularization T (p). First of all, one can choose
summand terms from Eqs. 3.22 and 3.24 to sum up vector triplet angles
ωtp specific to each adjoining triangle t = (a, p, b) ∈ T (p). One triangle is
depicted in the Fig. 3.11. Each contribution ωtp will be then summed up to
the final sum ωp:

ωtp =
∑

(a,p,b)=t∈T (p)

ω(b − p, a − p,−e3), (3.25)

ωp =
∑

t∈T (p)

ωtp . (3.26)

Figure 3.11: ωtp as a summand of the spatial angle ωp at a vertex t.

Secondly, there is another version of Eq. 3.26 originating from Mesmoudi
et al. (2012), which uses edge angles βe defined in Eq. 3.15. This formulation
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is economical if the edge angles can be re-used elsewhere (e.g. in the angle
excess method of Eq. 3.48. The alternative Mesmoudi definition of the solid
angle ωp at a vertex p follows;

ωp = 2π −
∑

e∈E(p)

βe . (3.27)

3.6 Curvature on a continuous surface

This is a minimal treatise on the curvature on continuous manifolds (lines
and surfaces) in order to introduce the principal curvatures and principal
directions. Fig. 3.12 depicts a black line with a changing curvature (black),
and another curve (green) with the same legnth and a constant curvature.

Figure 3.12: A continuous planar curve of length Δs and curve orientation
change Δβ with varying (black) and constant (green) curvature.

The definition of the curvature of the planar curve (Kreyszig, 1959) is
based on the rate of change of the curve orientation and it requires the
continuity of the derivative of the curve:

κ(s) =
dβ

ds
, (3.28)

where β(s) is the normal angle of the tangential of the curve and s is the
geometric length along the curve. One can use the fundamental property
of integration to define a local average κΓ of the curvature over an interval
Γ = [s1, s2] ∈ R:

κΓ =
1

s2 − s1

∫ s2

s1

dβ

ds
ds =

β(s2) − β(s1)
s2 − s1

=
Δβ

Δs
(3.29)

Note that the definition allows edges, where there is a discrete concentration
of the curvature as a constituent of the total sum Δβ. This comes handy,
when we move on analyzing discrete TIN surfaces.
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3.6.1 Principal curvatures

One can use Eq. 3.28 to chart the curvature state of a point p at a smooth
surfaceM. A plane perpendicular to the surface, when rotated by an angle α,
defines an intersection curve with the surface, see Fig. 3.13. The intersection
curve has a directional curvature H(α) at the point p (Pressley, 2010) with
the following behaviour:

H(α) = κ1 cos2(α) + κ2 sin2(α), (3.30)

where κ1 and κ2 are the principal curvatures at that point and, α is the angle
with unspecified orientation. κ1 and κ2 are also the minimum and maximum
of the directional curvature H(α). The principal curvatures are related to
the mean curvature H and the Gaussian curvature G by:

H = (κ1 + κ2)/2 (3.31)

G = κ1κ2 (3.32)

κi = H ±
√

H2 − G, i = 1, 2 . (3.33)

Figure 3.13: Every point has a well-defined normal, along with a plane can
be spawn. The intersection of the plane and the manifold define a curve, for
which extremes κ1, κ2 of the Eq. 3.29 can be defined. Illustration by Eric
Gaba, Wikimedia commons, 2018.

For brevity, Lebesque measures meas(S), S ⊂ R3 of a manifold S are used
occasionally to signify the length, area or volume of the set S depending of
the intrinsic dimensionality of the set S. Also, the vector norm ‖.‖ has been
extended over sets in a straightforward fashion: ‖M− p‖ = minq∈M ‖q− p‖,
where M ∈ R3 is a geometrical object.
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3.6.2 Mean and Gaussian curvature

Definitions of some more curvature concepts on a once-differentiable contin-
uous 2D manifold M ⊂ R3 is in order. The expanded manifold M(ε) can
be specified by the original manifold M and its Gauss map image M(ε):

M(ε) = {q + εn(q)| q ∈ M} (3.34)

and n(q) is the unit normal of the surface M at q ∈ M. The analysis
of the whole surface M is uninteresting, but if one limits to a subset Γ ⊂
M, one can define the mean curvature HΓ and the Gaussian curvature GΓ,
both averaged over Γ. The details of the derivation are in Pressley (2010).
There exists a second degree polynomial of the expansion factor ε: AΓ(ε) =
meas{nε(Γ)}, where the Lebesque measure meas(.) is in this case the surface
area. One can introduce average principal curvatures κΓ1, κΓ2, the average
main curvature HΓ = (κΓ1 + κΓ2)/2 and the average Gaussian curvature
GΓ = κΓ1κΓ2, which are coupled by the following equation:

AΓ(ε) = (1 + εκΓ1)(1 + εκΓ2)AΓ = (1 + 2HΓε + GΓε2)AΓ. (3.35)

Figure 3.14: Left : The expansion of an arc of the length l and radius r.
Right : A schematics of the Gauss expansion of a small differential part
dA = dxdy of Γ. Local curvature components κ1 and κ2 contribute to the
average curvature components of the Eq. 3.35 as shown in Pressley (2010).

A visualization of Eq. 3.35 is in the Fig. 3.14 as follows: assuming an
unspecified locality dxdy (can be infinitesimal or finitesimal), one can use
the average line curvatures κ1 and κ2 on each direction x, y to estimate the
expanded area meas(M(ε)) = AΓ(ε). In the infinitesimal case the averag-
ing is simply governed by a corresponding differential form. In finitesimal
case Pressley (2010) proves that averages κ1, κ2 can be found and they are
consistent i.e. the Eq. 3.35 has real number constituents.

3.7 Established approach to TIN curvature

This is an account of the currently available theory excluding the formal level
of discrete differential forms of e.g. (Crane et al., 2013) and the classical DG
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approach of continuous surfaces using e.g. the fundamental forms of Kreyszig
(1959). These disciplines are treated only informally.

Curvature, unlike the slope angle, is not dependent on any horizontal
reference plane, and it can be defined on a free surface, e.g. a tumor. That
is why the ’solid’ side of the surface is mentioned further in the text, when
orientation of normals is being discussed.

To increase the accessibility of the presentation, the formal level of DDG
concepts and notation have been avoided. The DDG approach (Crane et al.,
2013) can informally be summarized in the following three principles:

1. Convergence at the infinitesimal limit: the discrete-differential entities
converge at the infinitesimal limit to the differential geometric (DG)
results and behaviour, whenever the discretized surface is smooth. The
triangulation of the TIN has to have proper measure behaviour at the
infinitesimal limit. This means a sequence of TINs with increasingly
smaller triangles approaches a limit value of the smooth surface.

2. Proper summation of dual measures: vertex and edge duals sum up to
the total measure of the discretized surface. The summing concerns the
line length and surface area measures, and duals are local measured
sets (areas or lengths), which can be associated in an intuitive and
natural way to the vertices and edges.

3. The formulated quantities are averages over a dual.

This presentation will focus on curvature formulations using physical di-
mensions such as angle/curve length (planar curve curvature, see Fig. 3.12),
angle/surface area (Gaussian curvature) and angle multiplied by surface
length / surface area (mean curvature).

The definition of the denominator Δs of the Eq. 3.29 is naturally difficult
in the discretized setting, where the total change of orientation Δβ has been
concentrated e.g. to a vertex point or on an edge. The DDG practition-
ers have a many choices for this partitioning of duals, this especially with
surfaces and polytopes embedded in 3D.

A long line of geometric research started by Euler, Cauchy and Riemann
have been summarized in the presentation of the motion invariant measures
of convex polytopes in Hadwiger (1957). The measures are based on proba-
bilities of other parallelopipeds of smaller dimensionality intersecting a given
polytope. The results apply directly to the TIN curvature analysis as shown
in Grinspun and Desbrun (2006). The convexity requirement of Hadwiger
(1957) can be relaxed in this presentation since the TIN applications have no
such tight concave details, which would change the polynomial coefficients
of the volume perturbation introduced next.

It is shown in Hadwiger (1957), that a polynomial of the volume V (O(ε))
of a spatial expansion O(ε) = {p ∈ R3| ‖O−p‖ ≤ ε} of a polytope O ⊂ R3 can

36



be developed as a sum over a spatial partitioning (dictated e.g. by triangles)
of its surface ∂O = M ⊂ T so that: V (O(ε)) =

∑
t∈M Vt(ε), where Vt(ε)

is a similarly perturbed volume of a triangle t ∈ M. The perturbed spatial
volume V (O(ε)) has a polynomial form:

V (M(ε)) = V + εA + ε2 L + ε3 χ, (3.36)

where V,A,L and χ ∈ Z stand for the volume, surface area, characteristic
length and the Euler characteristic number of the original polytope O. The
Euler number of a regular polytope is χ = 2, but the number can vary.
Especially a fragment of a polytope (e.g. an individual triangle) can have an
Euler number with a real value related to its spatial angular partitioning.

Each coefficient of the polygon can be expressed as a boundary integral,
which can be summed up over a dual partitioning, e.g. a TIN triangulariza-
tion. The dual partitioning sets up a boundary condition for the expansion of
an individual triangle, but the nature of expansion polygon coefficients being
exact averages of the partition still holds. Instead of relying any canonical
ways to partition space, one has to rely on common sense and relate the dual
partition strategy to the goal of finding meaningful local averages.

To apply the volume expansion to TIN with concave localities, one needs
a space discretization e.g. based on the edges of triangles. The edge tilt
angles βe of Eq. 3.15 have to be divided by the space discretization, and a
new triangular solid angle ωt has to be introduced:

ωt = ω(na, nb, nc), (3.37)

where ω(v1, v2, v3) of the Eq. 3.22 (or the Eq. 3.24) is a spatial angle defined
by a vector blade v1, v2, v3 and ωt is a solid angle defined by vertex normals
and associated to the triangle t. The definition of the solid angle associated
to a triangle t in Eq. 3.37 is dependent of the triangle index ordering: it
must be counter-clockwise when seen from outside of the solid.

The contribution Vt(ε) of a triangle t to the expanded volume V (M(ε))
is visualized in the Fig. 3.15: the yellow face of a triangle t expands by Atε,
edges e ⊂ t by leβeε

2/2 (green) and the vertices (as a sum) by ωtε
3/3. All

the terms can be expressed as a sum with the original polynomial structure
of Eq. 3.36:

Vt(ε) = Vt + Atε +
1
2

∑

t′∈T (t)

lt∩t′βtt′ε
2 +

1
3
ωtε

3, (3.38)

where the initial volume Vt, edge tilt angle fraction βtt′ and the solid angle
ωt are each space partitioning related. Tilt angle fractions βtt′ are depicted
in Fig. 3.15. See an introductory presentation of the derivation of Eqs. 3.36
and 3.38 from Grinspun and Desbrun (2006).
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There are some general constraints imposed by the space discretization,
though. The edge tilt angle fractions sum up to the edge tilt angle: βtt′ +
βt′t = βt∩t′ . The spatial angle ωt associated to a triangle t sums up from
the fractions of opening spatial angles ωp of vertices p ∈ t in such a way
(dictated by the dual partitioning used as depicted in Fig. 3.15), that the
sum of spatial angle measures fulfill:

∑

t∈T

ωt =
∑

p∈ P

ωp . (3.39)

Figure 3.15: Left : Volume expansion Vt(ε) once differentiated (Eq. 3.40) has
an area term At (yellow), a mean length term

∑
t′∈T (t) lt∩t′βtt′ε (green) and

an Euler term ωpε
2 (red). Right : Coefficients of the expansion polynomial

are measure values, and they follow the measure summation law: meas(C1 ∪
C2) = meas(C1) + meas(C2) − meas(C1 ∩ C2). One summation of the 2D
case depicted is marked with ’+’. The concave alignment of the vertex
edges produce negative angles marked with ’-’ resulting in the concave cases
correctly summed up, too. This holds to the 3D case too (not depicted).

One differentiation with respect to ε helps to match the polynomial terms
of the Eq. 3.38 with the averaged curvature terms of Eq. 3.35 in the specific
case of a TIN triangle Γ = t:

At(ε) = At +

2HtAt︷ ︸︸ ︷∑

t′∈T (t)

lt∩t′βtt′ ε +
GtAt︷︸︸︷
ωt ε2 (3.40)

Ht =
1

2At

∑

t′∈T (t)

lt∩t′βtt′ (3.41)

Gt =
ωt

At
. (3.42)
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Eqs. 3.41 and 3.42 are based on volume expansion and thus they will be
called volume expansion curvatures in this presentation. The literature
and established practice uses them as a basis for formulations specific to ver-
tex points (using a dual partitioning centered on vertices, not on triangles).
Although the Eq. 3.41 is an applicable definition by itself, it is subject to
many possible space discretization schemes but merely a scheme for defini-
tions, since edge angle fractions βtt′ are subject to the space discretization
with many options. The volumetric approach handles the concave locales in
a sensible way, see the right part of the Fig. 3.15, even the original theory
of Hadwiger (1957) is based on probabilistic analysis of convex polytopes.

3.7.1 Consistence of the curvature state

Although the definitions of triangular curvatures Gt and Ht (see e.g.
Eqs. 3.42 and 3.41) are valid, they fail to produce non-complex primal curva-
ture values in some rare cases where there is large divergence in the normal
vector field n(p), p ∈ t ∈ T created by the barymetric interpolation on a
triangle t. This is an inevitable consequence of the discretization by a TIN.
Fig. 3.16 shows two triangles and their normal vector field generated by the
barycentric interpolation from the normal vectors at the vertices. The left
triangle is from a normal situation. If one allows (right triangle) extremely
large noise so that TIN at some places has close to vertical edges, the cur-
vatures Gt and Ht computed by most of the methods presented are not
compatible. One can bring the triangular Gaussian curvature Gt arbitrarily
close to the upper limit Gt ≤ 2π/At. The upper limit is a result of the TIN
property, that the triangularization is never folded over itself, since the TIN
is being created by a Delaunay process on the horizontal projection of the
point cloud. The symmetry of the example causes Ht = 0 and the primal
curvatures of Eq. 3.33 will be imaginary ±i

√
2π/At, where i is the imaginary

unit. TIN is not approaching a smooth manifold at these extreme cases.
A TIN can be regularized by any measure, which reduces the occurrence

of sharp vertices with an extreme curvature state. One method relies in
controlling the smoothness of the vector field - in this case the vertex normals
np, p ∈ P . The fundamental theorem of vector calculus (Crane et al., 2013)
states that every relatively smooth vector field e.g. the horizontal component
n(p) of the normal field n(p) can be decomposed to a curl-free and divergence-
free components:

n(p) =

curl-free
︷ ︸︸ ︷
−∇Φ(p)+

divergence-free
︷ ︸︸ ︷
∇× n(p) +

harmonic
︷︸︸︷
h(p) (3.43)

The actual procedure is called the Helmholz-Hodge decomposition and it
has been defined for TINs in Crane et al. (2013). In this case the potential
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Figure 3.16: The Gauss map n(p) on a triangle t. Left : realizable state.
Right : an effect of extreme noise, where vertex normals are perpendicular to
the triangle normal nt.

field Φ(p) ≈ z(p) where the smooth height z(p) has to be implemented e.g.
by Natural Neighbor interpolation (Gold, 1989). The procedure is relatively
elaborate, though. Alternatives for solving the incompatibility problem are:

1. Modifying the interpolant within each triangle t in such a way, that the
divergence is prevented. Currently it seems difficult to achieve a com-
putationally efficient formulation which has the compatible curvature
state with both the triangle and vertex form.

2. Expanding the domain of the interpolation scheme (by taking more tri-
angles in the formulation) and smoothing the interpolation, so that the
divergence (which is caused by the extreme height variations around a
triangle disappear. This is a complex approach, especially what comes
to the behaviour at the point cloud borders.

3. Eliminating the complex values as a noise (if only few such values seem
to occur).

4. Formulating the Gaussian curvature Gp at vertices, as in Mesmoudi
et al. (2012); Crane et al. (2013) and in P1,P3, and then using the
transform from Gp to Gt (or from Ht to Hp).

3.8 GIS curvature implementations

(P1) lists some relevant methods to evaluate DEM derived from the Li-
DAR data. These methods are usually available in the most common GIS
software. These include micro-topography measures such as standard de-
viation of the curvature and residual topography a.k.a local height analy-
sis (Brubaker et al., 2013). All these approaches require the generation of
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Figure 3.17: Above: The tangential component of the normal vector field.
Below left: Divergence-free scalar potential component. Below middle: curl-
free vector potential component. Below right: Harmonic component. Tri-
angular averaged Gaussian curvature Gt requires the divergence-free compo-
nent be eliminated. The image is a courtesy of Crane et al. (2013).

DEM from LiDAR, and using analysis window as large as 5 m reducing the
possible micro-topography scale detected. It is mentioned in (Bishop et al.,
2012, p. 18) that 1-2 m DEM raster size is possible in applications where
the vegetation effect is negligible, e.g. the seashore change detection.

A typical GIS software provides usually several DEM curvature indica-
tors. Some of the indicators are developed because of the efficiency in the
local height filter computation or their visualization potential, and they do
not necessarily relate properly to the mathematical curvature state. This is
why e.g. some of the indicators are slope sensitive (these cases are mentioned
in the text). For a mathematically oriented readers there is an excess of ter-
minology, and the following explanations provide only a verbal hindsight.

Profile curvature is measured along the direction of the maximum slope
and calculated from 3x3 cell. The profile curvature depends on the
slope by its definition.

Planform curvature is perpendicular to the previous one and calculated
from 3x3 cell. Differentiation occurs in the horizontal plane. This
indicator is slope dependent, too. Profile and planform curvatures
visually distinguish micro-topography well, though.

Main curvature is twice the mean curvature H. This term occurs usually
in geometric and mathematical literature but is available in many GIS
implementations.

Longitudinal curvature is closely related to the profile curvature, except
the computations are done in a tilted coordinate system defined by the
local tangential plane making it indifferent to the slope.
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Cross-sectional curvature is closely related to the planform curvature,
except the computations are done in a tilted coordinate system defined
by the local tangential plane making it indifferent to the slope.

Tangential curvature is close to the longitudinal curvature except it ac-
commodates a possible rotation around the slope direction on the tan-
gential plane.

An excellent online presentation of the above definitions and their imple-
mentation as raster computations is de Smith et al. (2015).

3.9 Curvature computation on noisy TIN surfaces

A direct LiDAR analysis of curvature and slope distributions and sur-
face roughness is very rare (P1,P3). Usually it concerns the infrastructure
projects and archaelogy, and scanners are ground-based (P1).

The outdoors PC problems (micro-topography, infrastructure in the na-
ture etc.) is addressed usually by establishing a continuous surface over a
large raster window (3x3, 5x5), or by avoiding demanding formulations and
using e.g. simple principles like finding the lowest point in the grid etc. A
usual way is to compute H and G separately. A good reference of the most
common curvature methods (covering both the TIN and the DEM domains)
is Gatzke and Grimm (2006).

Meanwhile, the curvature analysis of point clouds have been established
well in the technological environments. Most of the literature focuses on
cases with the ratio of noise amplitude and the point density typical to built
environments, miniature statues etc. The notable exception is Golovinskiy
and Funkhouser (2009), but it is the opinion of the author that even this
method should be improved when working with the typical recognition tasks
and data concerning the wide-scale point clouds of the natural resource open
data.

The following is a distilled list of the methods available to capture the
curvature state.

Parameterization of a continuous ideal surface. A local fit of a convenient
shape function is followed by the classic curvature analysis. This is the
oldest approach (Gold, 1989). The shape functions are quadric, cubic
or conic ones. The cubic fitting gives good results. These methods are
usually applied to technological environment with low noise.

Spherical image is a local sphere fitting method, which approximates
Gaussian curvature Gp at a vertex p using normals nq, q ∈ P (p). It is
designed for smooth surfaces and is sensitive to noise. See (Meek and
Walton, 2000).
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Angle deficit Computationally very economical method to approximate
Gp, which re-uses tip angles φtp (SAF by-products) and the sum of
projected tip angles φp, see depiction in Table 3.1. The quality of esti-
mation is good under wide range of conditions (Mesmoudi et al., 2012).
Using the notation of this presentation:

Gp =
φp −

∑
t∈T (p) φtp

Ap
, (3.44)

where Ap is the dual surface area of a point p. There are two options
to choose Ap. The simple one splits each triangle to equal sizes:

Ap =
∑

t∈T (p)

At/3, (3.45)

whereas the more complex one by (Mesmoudi et al., 2012) uses Eq. 3.45
only to obtuse triangles2, and a 3D Voronoi cell t ∩ V oronoiP (p) to
split all non-obtuse triangles t to surfaces with a size Apt = meas(t ∩
V oronoiP (p)):

φtp = φ̄te + φ̄te′ ∀p ∈ t, {p} = e ∩ e′, e, e′ ∈ t (3.46)

Apt =

{
At/3, ∃q ∈ t : φtq > π/2

(tan φ̄te)l2e/4 + (tan φ̄te′)l2e′/4 otherwise

Ap =
∑

t∈T (p)

Apt , (3.47)

where edges e, e′ flank the vertex p of a triangle t and definition in
Eq. 3.46 produces a set of 3 linear equations for solving all 3 tip angle
fractions φ̄te, e ∈ t.

A 3D Voronoi cell simply encloses all points q ∈ R3 which are closer
to the vertex p than any other point p′ ∈ P . A typical solution strat-
egy of the vertex area ingredient Apt in a non-obstuse case requires 6
vector operations (to solve 3 tip angle fractions from a set of 3 linear
equations) and it occurs roughly for 80 % of the triangles.

It is worth mentioning that Eq. 3.44 is intrinsic to the surface (using
only measurements done on the surface!) only when p is an incident
point i.e. fully surrounded by its neighborhood Tp (i.e. having φp = 2π
logically deduced), since the actual computation of φp < 2π requires a
reference to the vertex normal np which is an extrinsic entity. Eq. 3.44
alters the definition of concentrated Gaussian curvature of (Mesmoudi
et al., 2012, Def. 1) by having φ freely ranging 0 < φp ≤ 2π, whereas
the original definition has φp = π for border points p ∈ ∂T and φ = 2π
for the inner points p ∈ P\∂T .

2having one vertex (any) obtuse
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Figure 3.18: A triangle t with only acute angles: A Voronoi region of a
vertex p on a triangle t is formed from two rectangular triangles with areas
1
2 l2e tan φ̄te and 1

2 l2e′ tan φ̄te′ . A triangle t′ with (any) obtuse angle is sim-
ply split to 3 parts with equal areas by the center point with barycentric
coordinates (1/3, 1/3, 1/3).

Angle excess A method to approximate Gp using edge angles βe, see Grin-
spun and Desbrun (2006) and a depiction in Table 3.1. Some formula-
tions of Ht and Hp may uses edge angles too, justifying this approach:

Gp =

∑
e∈E(p) βe

Ap
. (3.48)

Similar formulations can be concocted to Ht, Gt and Hp, too.

Integral of mean curvature re-assembles Eq. 3.41 to refer to vertices in-
stead of triangles by using only one half of each edge length le/2 and
using the vertex dual area Ap of Eq. 3.45 instead of the triangle area At

of Eq. 3.11. Since tip angles βe have a sign (see Eq. 3.14 and Fig. 3.8),
this is a more general method than ’integral of absolute mean curva-
ture’ mentioned at Gatzke and Grimm (2006). See the actual definition
at (Mesmoudi et al., 2012, Eq. 5) and (P5, Eq. 13). A rudimentary
graphical sketch is at Table 3.1.

Hp =
1

2Ap

∑

e∈E(p)

leβe (3.49)

Meusnier’s theorem relates the mean curvature Hp and the observed cur-
vatures κP along the intersection curve S ∩ P formed between a con-
tinuous surface S and a plane P containing p ∈ P and with an in-
clination θP to the normal np. The mean curvature is by Meusnier:
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Hp = mean∀P κP/ cos θP (Rashevskii, 1956). The approximation of
Hp on a TIN uses 3 or more 3D Delaunay circles of t ∈ T (p), see Chen
and Schmitt (1992) and Table 3.1.

Laplace-Beltrami operator (L-B) integrated over an Ap produces an ex-
pression using edge lengths le and triangle tip angles φte = φtp, {p} =
t\e. See (Mesmoudi et al., 2012, Eq. 4) and the Fig. 3.8:

Hp =
1

4Ap

∑

e=t∩t′∈E(p)

(cot φte + cot φt′e)le. (3.50)

The L-B operator is called the Swiss army knife of DDG! (?) See an
outline of the coefficients used by Eq. 3.50 from Table 3.1.

Triangle tensor by Theisel et al. (2004) solves the complete curvature state
within a triangle t from the very assumption that normals are interpo-
lated by the barycentric way, see Table 3.1. Unfortunately, the values
at vertices p differ when computed within different triangles t ∈ T (p),
and have to be averaged or voted from the set of all candidates. See
more about this approach from (P1 App. II), (Theisel et al., 2004)
and ?.

Taubin’s integral formulation by Taubin (1995b) is of O(|T (p)|) (non-
iterative) quadratic method, which provides a computationally eco-
nomical directional curvature Hp(α) uses a truncated Laurent series,
which forces a restriction to the orthogonality of the surrounding nor-
mals nq ∙ (q − p) = 0, q ∈ T (p) further away from the vertex p. The
assumption is actually not true, but is then remedied by the multi-
plication factor of 2 (causing the DDG limit behaviour to be correct):

κpq ≈ 2np ∙ (q − p)0/‖q − p‖, (p, q) = e ⊂ t, (3.51)

where p and q are vertex points. This approach differs from other
methods, where the change rate of the vertex normals are used (κpq ≈
nt ∙ (nq − np)0), but it allows an easy formulation of the quadratic
problem of solving an eigenvalue problem by letting q to range con-
tinuously on the triangle t. This leads to principal curvatures κ1, κ2

after a lengthy definitions. The method provides also the principal
directions.

One has to perform approximately 2 vector normalizations, 21 dot
products, and 15 ’saxpy’ operations of Golub and Van Loan (1996),
totaling 38 vector operations. The smoothing of the curvature state is
easy and has been expanded to cover more points, providing com-
petitive method to (P3,P5,P6). It also has a specific smoothing
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method (Taubin, 1995a). Unfortunately this formulation of Taubin
(1995b) was not known by the author while researching the subject.

Continuous triangle curvature (Rusinkiewicz, 2004) has a very compact
presentation of an approach starting from a barycentric normal vector
field and, using two fundamental forms (Kreyszig, 1959). The approach
is very close to Theisel et al. (2004) e.g. what comes to computational
costs except this method provides continuity and compatibility at the
triangle edges and vertices. This property would be useful e.g. in
eliminating noise from TIN in a controlled way.

Table 3.1 depicts six methods from the above list. Triangle tip angles
φtp, t ∈ T (p) and the plane of the vertex normal are the computational
elements of the angle deficit method focused on vertices p. The angle excess
needs edge angles βe, e ∈ E(p) around a vertex p to sum up the concentrated
curvature to estimate the mean curvature Hp. Meusneur approximates Hp

by three best fitting spheres. The Laplace-Beltrami defines a nominal length
using triangle tip angles and edge lengths. The final approximation used for
Hp has a form: nominal length / dual area The triangle tensor accesses the
vertex normals only.

Table 3.1: Visualization of the geometric stage of the competing methods.
From left to right: Angle deficit, angle excess, integral of mean curvature,
Meusnier, Laplace-Beltrami, triangle tensor. The input of each method has
been indicated by visual clues.

A more detailed summary of the above methods has been omitted. An
interested reader is directed to (P3,P5), (Mesmoudi et al., 2012; Crane et al.,
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2013; Taubin, 1995b) and Gatzke and Grimm (2006). An approach using
local smooth fit is presented in (Yang and Qian, 2007). The Laplace-Beltrami
construction of the curvature is presented in (Meyer et al., 2003). The last
two references are for rather smooth techno-environment cases, whereas other
methods tolerate noise little better.

3.9.1 Histogram cumulation by triangles, edges and vertices

A typical ML approach for e.g. micro-topography analysis is to choose a
small target area and produce a vector description from it. Then, a property
(e.g. stoniness) or quality may be addressable in the vector space by some
ML method, e.g. regression. A histogram of a local quantity, e.g. curvature,
can be very useful in this sense since aggregates like histogram tend to reduce
the noise while they allow a possible increase of the dimensionality of the
signal.

  p

Figure 3.19: Left : The setting used to define the mean curvature He specific
to an edge e = t ∩ t′. Right : The average of the mean curvature Hr(p)
cumulated over the edges (green) within a ball centered around p and with a
radius r. The Gaussian curvature average Gr(p) cumulated over the points.

Given an area of interest, usually a subset TS ⊂ T of all triangles T ,
the histogram can be cumulated 1) over the triangles or 2) over edges or 3)
vertices. The Gaussian curvatures can be cumulated from the discontinuities
at vertices and edges (Grinspun and Desbrun, 2006). The mean curvature
He associated to an edge e = t ∩ t′ between two triangles t and t′:

He =
3βe le

At + At′
(3.52)

is basically a rearrangement of the summation terms over all triangles t ∈
T of the Eq. 3.41. Instead of triangular terms one uses the edge terms.
A summation limited to a locality leads to a local average of the mean
curvature, see Fig. 3.19. One can limit the edge lengths le (approximately)
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to stay within the sample. Eq. 3.52 is also directly comparable to the vertex
curvature Hp of the Eq. 3.49, the latter just has summation focused on
vertices. When an edge e is at the border of the triangularization, e ∈ ∂T ,
the denominator of Eq. 3.52 consists only one triangle area At, naturally.
Some of the Gaussian curvatures Gp can be used in a weighted manner
similar to Eq. 3.52, too.

3.10 Open problems

Possible inconsistency of the curvature state mentioned in Sec. 3.7.1 may
have been a reason why such approaches like ones presented in (P1,P3,P5,P6)
have not been done earlier, what comes to natural resource point clouds. The
problem has been avoided usually by establishing a continuous surface over
a large raster window (3x3, 5x5), or by avoiding demanding analysis of the
natural resource data and staying with technological environment (indoors,
man-made environment, infrastructure). A usual way is to compute H and
G separately. A good reference of the most common curvature methods
(covering both the TIN and the DEM domains) is Gatzke and Grimm (2006).

Meanwhile, the curvature analysis of point clouds have been established
well in the technological environments. Most of the literature focuses on
cases with the ratio of noise amplitude and the point density typical to built
environments, miniature statues etc. The notable exception is Golovinskiy
and Funkhouser (2009), but it is the opinion of the author that even this
method should be improved when working with the typical recognition tasks
and data concerning the wide-scale point clouds of the natural resource open
data.

(P1) and (P3) introduce some current approaches to mean and Gaussian
curvature analysis applicable to TINs. (P5, p. 687) aligns the mean curva-
ture concentrated to a vertex introduced by Mesmoudi et al. (2012) to the
notation used in (P5). The mean curvature at a vertex is formulated as the
ratio formed by edge tilt angles around the vertex, and the area covered.
Problems of this approach are the sensitivity to noise and complicated com-
putation of the dual area. The noise sensitivity seems to arise because the
formulation refers to only 6 surrounding triangles (on the average), when
compared to the proposed formulation in (P5) (13 triangles). Also, the dual
area requires extra calculations in the presence of obtuse tip angles of the
triangle neighborhood T (p). All alternative formulations are established to
vertex points, whereas (P5,P6) use triangles itself.

The triangle tensor method is computationally efficient, but is one of
the most sensitive methods to noise, and requires a heavy smoothing phase
before applied. Typically, there is no clear connection between smoothing
and the method results, and this holds to most of the methods.
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An open problem is that smoothing is hard to be implemented as a
monotonic procedure. Monotonicity is an essential property required by an
efficient CV search. The proposed SAF method (P4) is monotonic.
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Chapter 4

Curvature histograms by
vertex expansion

This Chapter solves two problems in a novel way. First one is about creating
a TIN, which then serves as a basis for further curvature analysis. The
second problem is of how to obtain vectorizable curvature summary (e.g. a
histogram) from target area consisting a subset of a TIN.

The material in this Chapter is a result of the thesis project, unless
there is a comparison to contemporary methods, or a numerical illustration.
A method to define the ground model (P3) will be presented in Sec. 4.1.
Sec. 4.2 presents several results concerning the curvature computation based
on the planar extension from (P5). Sec. 4.3 outlines an efficient directional
curvature procedure (P6) for generating directional histograms over sample
areas. Sec. 4.4 summarizes possibilities in curvature vectorization. Sec. 4.5
presents three synthetic and application examples. The complexity analysis
in Sec. 4.6 is intended to produce a very general and unifying over a variety
of methods.

4.1 Solid angle filtering

Point cloud filtering aims to a controlled sparsity in order to denoise or com-
press the point cloud (Xu et al., 2015). The noisy, censored and sparse nature
of the natural resource data requires adaptations to existing filtering meth-
ods or completely new approaches. Fig. 4.1 depicts a cross-section projected
from a real point cloud with a typical height distribution (national LiDAR,
spruce forest, Kuusamo, projected stripe has 12 m width). Each point pi in
the middle image has a vertex angle 0 ≤ ω2D(pi) ≤ 2π opening downwards.
It is defined by the point triplet (pi−1, pi, pi+1), where the triplet is ordered
by the x co-ordinate. The filtering process eliminates the smallest values ω2D

(depicted as blue dots in the middle detail of Fig. 4.1), then largest values
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Figure 4.1: An example of angular filtering in 2D. Left : A vertical slice
of a point cloud, x is horizontal distance and z is the height. Dot colors
indicate the vertex angle ω2D (exceptionally in radians for this preliminary
example) of each point. The final ground points are marked with circles. The
lowest points are favored in the ground model. Right : Vertex angle (ω2D)
distribution maintains some variation even after the filtering depending on
the angular limits.

(depicted in yellow), until the following condition holds for all points:

(180 − 25)o ≤ ω2D ≤ (180 + 25)o .

The limit values of the vertex angle ω2D used in the example depicted in the
Fig. 4.1 are symmetrical, but this does not need to be so. The limit values
have a clear regularizing and data compression effect which is outside the
scope of this thesis. Solid angle filtering (SAF) is a simple generalization of
this idea to 3D.

Observing the Fig. 4.1, one notices that the ground can be defined rather
well by a cross-line, density of which can be controlled by the limit values of
the cross-line angle ω2D. The canopy top line instead is of less tangible nature
and the forest biomass and the canopy study has multitude of approaches (?)
as well as many targets. The canopy top model may has been introduced in
the following, since it can be generated rather simply by the SAF process,
and may suit for some practical purposes.

The SAF proceeds on a Delaunay triangulated TIN T =
Delaunay(P ), P ⊂ R3. A simple assumption is being made that a
point p ∈ P on top of a vertex of sharp cone T (p) is either not a ground
point or at least not very representative as such, since it is in some sense
a ’local outlier’ separated by its natural neighbors q ∈ N(p) by a steep
descent along an edge. The spatial (or solid) angle ωp (in steradians)
limited by T (p) and seen from p downwards inside the limiting cone of
triangle surfaces forms the criterion to eliminate points from the cloud.
The elimination proceeds by a simple principle: ωp has to fall within the
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given limits, otherwise p gets eliminated from remaining points P . There
would be various other possibilities for elimination e.g. the smallest edge or
triangle slope amongst the neighboring points N(p) etc. Many such criteria
have been tested already by the author, and this treatise focuses on the
SAF only. This is because only the SAF method has been published (P3).
A brief description of the algorithm follows:

Ground TIN:
1) Eliminate pikes (drop points until ωmin ≤ ωp for all remaining p ∈ P ).
Keep the triangularization updated accordingly during the elimination.
2) Eliminate holes (drop points until ω ≤ ωmax for all remaining p ∈ P ).
Keep the triangularization updated accordingly during the elimination.

Canopy TIN:
1) Eliminate holes and 2) pikes just like with the ground model, but using the
different limits ωmin, ωmax specific to the canopy model. Note that canopy
TIN process needs the holes to be processed first!

There are two versions of SAF, an iterative batch version and a one-
go version with the incremental delete. The batch version removes a point
p with the spatial angle ωp too large or small only if the value ωp is still
valid i.e. if the point neighborhood P (p) is still intact. When exhausting
such vertices p a new triangularization T ′ = Delaunay(P ′) of the remaining
points P ′ and new values ωp′ , p

′ ∈ P ′ is done.
The one-go version is possible only if the Delaunay triangularization rou-

tine provides the incremental delete T ′ = Delaunay(T, P, p). This version
allows e.g. a CV process to control SAF and scan various possible spatial
angle limit settings ωmin, ωmax efficiently within the hyper-parameter opti-
mization loop.

The additional material of (P3) (available at http://users.utu.fi/
ptneva/ALS/algorithms.pdf) has outline of the iterative batch version of
SAF. There are different (potential and realized) platforms for the algorithm,
namely Matlab, python, Point Cloud Library (PCL) (Rusu and Cousins,
2011) and julia (Bezanson et al., 2012): At the writing of this thesis, the
iterative (python, Matlab) and one-go (Matlab) versions have been imple-
mented and documented in the additional material of P3.

Typical (CV validated) values for limit values of solid angle and the cor-
responding radial measure are given in Table 4.1. Values are not authorative
but observed averages after CV tuning phase in recent few ML projects:

Solid angle approximation

Is there any possibility to use a computationally advantageous but more
inaccurate approximation of the spatial angle while the elimination process is
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Table 4.1: Typical spatial angle limit values ωmin, ωmax. The corresponding
optical radii γmin, γmax (in degrees) are defined in the Eq. 3.21 and depicted
in the Fig. 3.10 and are used to help users of SAF to choose the values
manually.

Operation ωmin ωmax γmin (o) γmax (o)
Ground model 4.1 11 70 140
Canopy model π 3π 28 120

going on? The answer is yes, early stages could use the following approximant
of ωp, which is based on tip angles φtp, t ∈ T (p), p ∈ t, which are also
needed in the processing of curvature features after the SAF process halts.
The following definitions of the tip angle sum φp and the approximate spatial
angle ω̃p are sketched in the upper part of the Fig. 4.2:

φ = π/|Tp| (central half-edge angle of the equivalent regular polygon)

φp =
sin(φ)

φ

∑

t∈T (p)

φtp (the sum of surrounding tip angles) (4.1)

ω̃p = 2π

[

1 ∓

√

1 − (
φp

2π
)2

]

, (4.2)

where the sign is decided upon whether p seems to be a pike or a hole
(the necessary heuristics is omitted here for brevity). The approximation
uses the spatial angle of a circular cone having an equivalent cone surface
angle αp. The correction term sin(φ)/φ is the ratio of perimeters of a regular
polygon and its enclosing circle. Using the observed point cloud distributions
of natural neighborhoods N(p), T (p), p ∈ P of case (P6), one gets the scatter
plot of ω(p) and ω̃(p) depicted in the lower detail of the Fig. 4.2. The SAF
method can use the approximant till the elimination process starts working
on ωp ≈ π/2 range (with ground TIN production, or ωp ≈ (4 − 1/2)π with
the canopy TIN), then one has to start the exact computation by Eq. 3.26 or
Eq. 3.27. The limit values for switching from the approximate spatial angle
computation to the accurate one, are author’s current recommendation to
the future users of SAF based on the visual inspection of Fig 4.2. Note that
only the lower end of the plot has been depicted in the Fig 4.2, the missing
part mirrors the shown part. This optional early approximation has been
implemented in (P5), although no mention of it occurs in the paper due the
space constraints.

The heuristics presented in Eq. 4.2 is only one of many strategies possible
at the early stages of the point cloud elimination. The early vertex elimina-
tion could be based e.g. to the minimum slope of edges e ∈ E(p) of the edge
star E(p). A further study have to be subjected to these possibilities later.

54



Figure 4.2: Above: The construction of the approximate conic, which has the
same skirt angle φp as the original vertex p. Below : A comparison of ω̃p and
ωp with a typical LiDAR point cloud (Kuusamo) used for TIN registration.
The safe usability limit ωp = π/2 of the approximation corresponds to the
half-cone angle γ = 41o.

SAF end result

SAF leaves the point cloud in a filtered state. The top detail of the Fig. 4.3
shows the truncated solid angle ω(p) histogram after SAF with ωmin =
3.4, ωmax = 9.1. SAF is an iterative algorithm, since removed points expose
some points p, which were within the spatial angle limits originally, but
with a new reduced vertex neighborhood set P (p) they have to be removed,
too. The bottom detail of the Fig. 4.3 depicts the Gaussian curvature G =
1/r2, where r is the associated curvature radius. G = 50 m−2 yields r =
0.15 m, which is approximately the smallest curvature radius geometrically
representable by a triangulation with an average triangle side length 0.2
m (P6). Curvatures larger than that are noise, and the amount of noise
in the curvature histogram reduces towards the origo. Averages seem to
be surprisingly accurate in synthetical and real world examples, e.g. the
Pomokaira site (30 × 35 km2) gives the geometric mean curvature radius
r = 6365 km with various methods, which is close to the average radius of
Earth on latitudes 68o of Pomokaira (author’s unpublished experiment).

Typically, 10-15 % of the point cloud are eliminated as non-ground hits
in Northern Finland, 20-25 % in Kuusamo area (halfway on the national lat-
itude scale), and 30-70 % in Southern Finland. The largest numbers occur at
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Figure 4.3: Top: SAF reduces the range of spatial angles ωp in an iterative
fashion. Bottom : Gaussian curvature computed from the resulting triangu-
lation. Site: Vihti of (P6).

the broadleaf forests of the seashore areas. There is not yet studies of the po-
tential of the micro-topography analysis over the whole national scale. Also,
interesting connections and possibilities between various information mea-
sures of point clouds, results of SAF process with different parameterization
and multi-scale ground models have not been studied yet.

4.2 Vertex expansion vs. volume expansion

There is an alternative approach (P5 Eq. 5) to average triangular curvatures
by the volume expansion presented in Ch. 3.7. The surface expansion is kept
piecewise planar (rounded expanded edges and vertices are omitted), see the
left detail of the Fig. 4.4. This alternative is called vertex expansion
curvatures, and it fulfills DDG requirements of convergence (see p. 36),
too. As shown in Pressley (2010), Eq. 3.35 can be differentiated once and
twice to get:

Ht =
1

2At

d

dε
At(ε)|ε=0 (4.3)

Gt =
1

2At

d2

dε2
At(ε)|ε=0 . (4.4)

The parameter ε concerns the perpendicular expansion of the surface of
the triangle t. A small error will be introduced when ε is changed to ad-
dress the expansion of vertices, with expanded triangle area Ãt(ε) address-
ing the expanded triangle t(ε) after the discrete Gauss map of Eq. 3.34
t(ε) = nε({a, b, c}):

Ãt(ε) ≈ ‖(b + nbε − (a + naε)) × (c + ncε − (a + naε))‖/2. (4.5)

56



By completing the differentiations, one gets (P5):

H̃t =
1

4At
nt ∙ [(nb − na) × (c − a) +

+(b − a) × (nc − na)] (4.6)

G̃t =
1

2At
nt ∙ (nb − na) × (nc − na). (4.7)

The Eqs. 4.6 and 4.7 can be taken as functions of the triangle t and its
vertex normals, e.g.: H̃t = H̃t(na, nb, nc). This is notational convenience
which will be used later in the text. The surface ∂t(ε) of the expansion
t(ε) defined by Eq. 4.5 is not necessarily parallel to the original triangle t,
unless a triplet of altered vertex normals n′

a, n
′
b, n

′
c (not unit vectors!) is

specifically constructed to guarantee that. Using such normals proves to be
not very useful, but the construction of modified vertex normals n′

p, p ∈ P
guaranteeing the parallel expansion t(ε) ‖ t, t ∈ T is presented here for
the sake of completeness. The construction uses the standard one vector
1 = (1, 1, 1)T . Any three triangles t, t′, t′′ ∈ T (p), which define a nonsingular
matrix Np, can be used. If this is not possible, the location T (p) is planar
and n′

p = np. See the left depiction of Fig. 4.4:

nt ∙ n
′
p = 1, t ∈ T (p) (parallel expansion condition) (4.8)

Np = (nt nt′ nt′′) (4.9)

n′
p = N−T

p 1, p ∈ P. (4.10)

These new elongated vertex normals n′
p, p ∈ P have to be applied to Eqs. 4.6

and 4.6 to get the improved planar expansion values H̃ ′
p and G̃′

p:

H̃ ′
t = H̃t(n

′
a, n

′
b, n

′
c) (4.11)

G̃′
t = G̃t(n

′
a, n

′
b, n

′
c) (4.12)

Eq. 3.41 requires some more memory (6 scalars per triangle) and 4 scalar
products, whereas Eq. 4.6 requires 7 vector operations, so the comparison be-
tween volume extended and planar extended curvatures is not clear. Eq. 3.42
defining the Gaussian curvature Gt requires one determinant and 3 inner
products, while Eq. 4.7 uses one determinant and two vector operations. It
seems that the comparison of the numerical quality will decide. Since the
discretization is coarse in usual TIN applications, all formulas have deficien-
cies when operating far from the ideal realm of small angular changes. It
is worthwhile to compare definitions of Eqs. 3.41, 4.6 and 3.42, 4.7 with a
naturally occurring TIN models.
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Figure 4.4: Left : Triangles t1, t2 ∈ T (p) seen along the edge t1 ∩ t2. Each
triangle face is expanded a width of ε in a parallel fashion, and εn′

p = p(ε)−p
is defined by the new vertex point p(ε) at the expanded state. Right : The
modified space discretization divides triangles t and t′ in a spiral surface in
order to reduce the sensitivity to noise, when computing mean curvatures
Ht and Ht′ . New edge tip angle fractions β̄tt′ and β̄t′t are computed using
the edge specific mean vertex normal nt∩t′ .

Fig. 4.5 demonstrates the relationship of volumetric and planar mean
curvature Ht by a scatterplot. The non-correlation in the top left detail can
be explained by the increased noise level in plane expansion. A less noisy
tilt angle formulation exists, but it is computationally expensive (top right).
The volumetric Ht rounds edges and vertices, whereas the planar surface
expansion keeps all edges and vertices sharp. This leads to differences in
numerical values of Ht and Gt. The noise also might arise because Ht refers
only to three triangles in the neighborhood T (t) of a triangle t, whereas H̃t is
influenced by all the triangles T (t) via vertex normals. This can be checked
by applying two different dual partitioning strategies to the mean curvature
Ht:

1. Splitting edge angles to equal halves: βtt′ = βt′t = βt∩t′/2

2. Splitting edge angles by a spiral cut from one vertex normal to the
other (see Eq. 4.15) and making sure that: β̄tt′ + β̄t′t = βt∩t′

The alternative 2 uses the mean of the angle between the vertex normal
interpolated over an edge t ∩ t′, and the triangle normal nt. (The straight
orange division line at the each edge in Fig. 4.4 would appear as a spiral.)
The mean of the vertex normals np, np′ is given in Eq. 4.14. Using the
projection matrix P⊥(v) of Eq. 3.9 to project the mean of the vertex normals
to the normal plane of the edge t∩t′, one is able to define the edge tilt normal
fraction β̄tt′ of Eq. 4.15, and finally a modified version of the triangle average
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Figure 4.5: Scatter plot comparison of volume and vertex expansion. Volume
expansion V (ε) (top left) and the parallel plane expansion of Eq. 4.11 (top
right). Gaussian curvature has an easier nature (bottom left). A special case
of the case marked by a red circle (at bottom left) is at the border of the
cloud where the local sample is too noisy (bottom right).

of the mean curvature Ht, see the right depiction of Fig. 4.4:

Pt∩t′ = P⊥(p′ − p), p, p′ ∈ t ∩ t′ (4.13)

nt∩t′ = (np + np′)
0 (4.14)

β̄tt′ = acos(Pt∩t′nt∩t′ , nt)sgn(t, t′) (4.15)

Ht =
1

2At

∑

t′∈T (t)

lt∩t′ β̄tt′ . (4.16)

Similar experiments of increasing complexity seem to indicate, that the good
performance of the planar expansion version H̃t of Eq. 4.6 happens indeed
because of its access to large number of triangles 1 +E(|T (t)|) = 13 whereas
the basic volume expansion of Ht refers only to 4 triangles. It is possible
to formulate volume expansion in such a fashion, that more complex local
contour features can be accommodated, though. (P5) mentions the noise fil-
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tering capabilities of the planar expansion version in relation to the so called
egg container pattern. It is not mentioned in (P5) that the volume extension
formulation has similar capability as long as the egg container pattern is
exact. If there are even slight height differences included, the performance
of the volume extension formulation collapses. The vertex expansion formu-
lation is permutationally more advantageous as explained in (P5) but also
influenced over a wider surrounding than the volume expansion formulation.
Fig. 4.6 is a schematical one about the influence areas of two approaches,
when triangle values ft are in question. A similar schematics could be drawn
for the vertex values fp, but both situations are more complex.

Figure 4.6: The triangle neighborhood T (t) of a triangle t gets referred to
via three vertex normals np, each referring E(|T (p)|) = 6 triangles. The
basic volume expansion curvatures refer only to 4 triangles 1+3 depicted as
yellow. The planar expansion curvatures refer to 13 triangles.

4.3 Directional curvature

The Eq. 4.6 defines the mean curvature H̃t(na, nb, nc) of a triangle t = (a, b, c)
with vertex normals na, nb, nc according to the planar expansion approach.
The appendix A of (P6) and additional material of (P6) on the web site
have a proof that when Eq. 4.6 is provided by directionally projected vertex
normals np(α), p ∈ t, the result equals the projected curvature Ĥt(α) typical
to GIS DEM analysis. Denoting ~α = (cos α sin α 0) ∈ R3 as the directional
horizontal vector and using P_(~α, e3) to project vertex normals np to a di-
rectional vertical plane spanned by the vectors ~α and e3 to new values np(α),
one gets:

np(α) = P_(~α, e3) np (4.17)

H̃t(α) = H̃t (na(α), nb(α), nc(α)) , t = (a, b, c), (4.18)

where the nature of the projected curvature H̃t(α) is explored in more detail
in (P6). On the informal level of discussion, H̃t(α) is a constant (everywhere
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at a triangle t) curvature induced by the dilatation s(ε) − s(0) of the ex-
panded and original lengths s(ε) and s(0) of directed stripes defined by the
orientation α, see the Fig. 4.7, leading to:

H̃t(α) =
1

s(0)
ds(ε)
dε

. (4.19)

Shortly, there is linear relationship between vertex normals and the mean
curvature, and both the projection in Eq. 4.17 and the differentiation opera-
tion in 4.19 are linear, so the operation order can be changed to get Eq. 4.18.

A perhaps unnecessarily constructive proof of the directed curvature
H̃t(α) being constant on a triangle t, and its numerical value equaling
Eq. 4.18 is given in (P6 App. A) and in the additional material. The proof
is based on the assumption that the normal vector field n(q), q∈t is defined
by the barycentric interpolation:

n(q) = nau + nbv + ncw, u + v + w = 1, 0 ≤ u, v, w ≤ 1. (4.20)

Figure 4.7: Left : The projection of the vertex normals to the directed plane
span{~α, e3}. Right : A line on the expanded plane at a direction ~α dilates
defining the directed curvature, which is constant everywhere of the triangle
(when using the barycentric interpolation of the Gauss map n(q), q ∈ t.

Eq. 4.18 holds for all triangles t ∈ T , when q ∈ t. Gathering all vertex
normals to one matrix N = {n(p)}p∈P and all edge vectors ~e, e ∈ E to a
matrix W using Eq. 4.6 (see P6) as an assembly rule, one can express the
computation of the directional curvatures of all triangles t ∈ T in a chosen
direction α by:

H(α) = [P_(~α, e3)N]0W, (4.21)

where H(α) = {Ht(α)}t∈T is the set of directional curvatures as a vec-
tor. The implementation of Eq. 4.21 is computationally efficient and enables
computationally economical sampling of orientations 0 ≤ α ≤ π. Possible
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features and properties derived from Eq. 4.21 are: local and large-scale dom-
inant directions (P6), minimum and maximum curvatures κ1 and κ2, various
sample area plots like: Gaussian vs. mean curvature distributions, the prin-
cipal curvatures distributions, etc. Fig. 4.8 depicts examples of some one
and two variable histograms (κ1, κ2), (H,G), H and G.

The directional curvature H(α) is bound to a vertical plane span{~α, e3},
which enabled an optimized matrix computation of Eq. 4.21. It is possible
that some applications require binding to a plane orthogonal to the triangle
t defined the triangle normal nt. In that case there is no artificial distortion
from the vertical plane, but the optimization possibility of Eq. 4.21 is lost.
One has to substitute e3 by a vertex and triangle specific vector npt, p ∈ t
in defined in the Eq. 4.17 and compute Ht of each triangle t ∈ T separately:

npt(α) = P_(~α, nt)np . (4.22)

In both cases (global e3 projection orientation, local normal orientation) the
resulting histogram has to be weighted by the triangle areas At.

4.4 Histogram of oriented curvatures (HOC)

Micro-topography is analyzed often in a vectorized format of the supervized
learning, which uses samples z = (x y) with a feature vector x and a la-
bel y, see Ch. 2.1 and Sec. 3.9.1. Convolutional neural networks used for
finding suitable helicopter landing sites from LiDAR point cloud (?) pro-
vides a rare exception to this rule. The main issue with neural networks
is expenses in generating the labels y by ground truth measurements or by
expert judgement. Nevertheless, the representational power of deep learning
is a great advantage, and several sub-sampling methods can alleviate the
sample population problem.

Using the combination of the mean curvature by vertex expansion in
Eq. 4.6 and the cumulation of the global directional curvature Eq. 4.21 sub-
jected to small localities is called a method of histogram of oriented curva-
tures (HOC). It is intended in the analysis of the micro-topography of sample
areas of various sizes. The name of the method derives from the histogram
of oriented gradients (HOG) (?), (?). Localized histograms (and other ag-
gregates) are gaining popularity, since they dampen noise, are applicable to
both vectorization and to deep learning (?), (?) and are resilient to missing
data.

Fig. 4.8 presents a curvature analysis of one positive and one negative
sample of glacial liquefaction spread. A liquefaction of soil happens when
soil and water form a two-phase liquid on enough large an area that it is
geographically significant feature. The feature is hard to detect from the
ground, though.
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Figure 4.8: A liquefaction area at Kuusamo, Finland. Referring to sub-
images by the reading order: 1: κ1 of a liquefaction spread (a positive sam-
ple). 2: κ2 of a a neutral site (a negative sample). 3-4: principal curvature
histograms (κ1, κ2), 5-6: (G,H) histograms. 7-8: G histograms. 9-10: H
histograms. In this case taking only the s.t.d. of G or H suits well as a
vectorization strategy.

There are four one-dimensional histogram cumulations possible, see
Fig. 4.8. These are two two-dimensional ones with (Ht, Gt) and (κt1, κt2),
and two angular cumulations of the principal orientations (κt1, κt2), all cu-
mulated over a sample S ⊂ T .

4.5 Numerical experiments

The volume expansion method deals with curvatures on an assumed surface,
which goes through the vertex points (at the limit of increasing point den-
sity). The vertex expansion addresses a surface, which osculates the triangle
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face centers. This will be demonstrated by the example 1, where a regular
polygon is used as an illustration. Aggregative methods like HOC require
that the summation of consitutients is close to additive. This means that
e.g. the cumulated mean (H̃t +H̃t′)/2 (see Eq. 4.6) of two neighboring trian-
gles t, t′ should be close to the approximate mean curvature Ht∪t′ of the two
triangles as a whole. This property of HOC is demonstrated in example 2
using bilinear formulation of the normal vectors n(q), q ∈ ∪t′. The example
3 completes the height feature list of the Vihti area started at Sec. 3.2.

Example 1: Qualitative comparison in 2D

What is the most natural definition of the reference curvature when compar-
ing the volume extension and the planar extension approaches on a regular
polytope? The curvature state is after all a property of an ideal surface pass-
ing through or nearby the sample points and that ideal surface is basically
unknown, and sometimes even a non-computable entity.

There is a definition of the 2D curve curvature based on Gauss map,
which is analogous to the planar expansion derivative1 of Eq. 4.3. A curve
segment S with the total length s(0) = meas(S) is Gauss mapped by a
distance ε. Then, the average curvature κ over the total length equals:

κ =
1

s(0)
ds(ε)
dε

, (4.23)

where the expanded length s(ε) = meas(S(ε)) and S(ε) = {q + εn(q) | q ∈ S}
is the curve shifted (’expanded’ or Gauss mapped) by εn(.), and n(.) is the
local unit normal of the curve S.

There are three possibilities to subject 2D polylines to Eq 4.23, see
Fig. 4.9. Each of them is analogous to some of the already presented 3D
strategies of computing mean curvature Ht, the relevant Eqs. are mentioned
in each case. The length extend s(ε) − s(0) has been depicted in different
colors in Fig. 4.9:

1. ’volume’ expansion i.e. rounding depicted in green, see Eqs. 3.28, 3.35
and 3.41.

2. ’planar’ expansion depicted in orange, see Eqs. 4.3 and 4.6.

3. improved ’planar’ expansion with elongated vertex normals depicted
in blue, see Eq. 4.11.

Eq. 4.23 can be applied in each of the three cases and related to either
the inner fitting circle with radius r or the outer fitting circle with radius

1Eq. 4.3 actually follows from the volume expansion principle, but is named differently
due to its application to the planar expansion.

64



Figure 4.9: Left above : Gauss mapped 2D curve S with an original length
s(0). Left below : Two possible circles fit to a cross-line with constant vertex
angles α and constant segment lengths l. A vertex point has the length of its
dual (equaling l) marked with a thick line zone. Right : A detail of a vertex
when using three different strategies to approximate S(ε).

R. Results given as truncated Taylor series developed at α = 0 are in
the Table 4.2. Differences with the alternative ideal curvatures κ = 1/r or
κ = 1/R are small (< 10%) when assuming practical polyline vertex angles
α ≤ 50o.

Table 4.2: Relation of 2D curve expansion strategies to the curvature κ
defined by the inner and outer fitting circle. The first missing terms are of
magnitude O(α4).

κ

Case inner circle outer circle
1 (1 − α2/12 + ...)/r (1 + α2/24 + ...)/R

2 (1 − α2/8 + ...)/r 1/R

3 1/r (1 + α2/8 + ...)/R

One could argue that the outer circle fit (case 2) is more natural in
the analogous 3D problem of natural resource data with relatively sparse
points, which assumedly really represent samples of the ground. This argu-
ment favors the proposed planar expansion strategy implemented by Eq. 4.6
(P3,P5). In case of really dense data and relatively smooth surfaces (tradi-
tional technological environments and targets) one can assume a Gaussian
(or at least symmetric) noise, which would favor the volume expansion (case
1), since its curvature estimates are between inner and outer circles. The
improved planar expansion (case 3) could be useful in cases, where the noise
level is high, but also the density is rather high, and the geometric objects
to be detected are close to the signal density range.
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The aesthetical choice or a choice of an expert in a specific 2D application
could be either of the three presented, yet e.g. the existing national LiDAR
clouds (with a density ρ ≈ 8 m−2) seem to be best to handle with the al-
ternative 2. The cases with symmetrical noise give a chance to try to define
an ideal surface staying between two extremities 1/R < κ < 1/r. Chasing
the properties of the ideal surface lead to approaches such as information
geometry (Nielsen, 2010) and principal surfaces (Chang and Ghosh, 2001),
both of which are deliberately left out from this work.

Example 2: Curvature histogram cumulation on small triangle sets

In an infinitesimal setting on a continuous surface H = mean0≤α≤π H(α)
i.e. an average of all curvatures of 2D curves passing through a point, when
curves are created by cutting the surface by vertical planes. This is a con-
sequence of Eq. 3.30. The directional curvature H̃t(α) of Eq. 4.6 has the
same property, proven in a constructive way in the supplementary material
of (P6). Also, it behaves as the mean of the constituent triangles of a bilinear
interpolation scheme on a regular grid. A visual demonstration of this has
been provided in Fig. 4.10. The average of the mean curvatures of adjacent
triangles (left detail) equals the numerical average of the mean curvature of
the bilinear interpolation (right detail).

0
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0.2

z

1 t=1

two triangles forming a bilin. patch

y

0 t=2

x

-1 10.50-0.5-1

0 1 2 3
-0.02

0

0.02

0.04

(
)

directed curvature

bilinear H
H

t
( ), t=1

H
t
( ), t=2

Figure 4.10: Left : Triangles 1 and 2 with their normal vectors forming a
bilinear interpolation patch. Right : Bilinear interpolation over two adjacent
triangles gives the average of the directed curvature Ht(α) of triangles t = 1
and t = 2.

This example serves as a hint how the expected mean of the mean cur-
vature of a HOC very accurately equals the expected mean curvature pro-
duced by a bilinear interpolation of the Gaussian map n(S) over a regular
grid square S. A more complex analysis using the perturbation theory (not
included in the Thesis scope) seems to prove that also the expected vari-
ance would equal in two cases: TIN based on a regular grid and a bilinear
interpolation based on a regular grid (DEM). This means that the HOC
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can perform better than a DEM immediately when the sampling density
exceeds the DEM sampling density. Further analysis requires case-by-case
comparison of two data sources.

Example 3: Principal curvatures at Vihti

Eqs. 3.41, 3.42 and 3.33 were implemented in order to demonstrate the prin-
cipal curvatures. Edge angle fractions βtt′ = βt∩t′/2 were split to exact
halves. Fig. 4.11 depicts the same Vihti area with the principal curvatures
κ1 and κ2.

An important observation at this case is that κ1 obviously detects an as-
pect of micro-topography not revealed by other three height derived features
(local height of Eq. 3.1, slope angle of Eq. 3.5, aspect of the slope of Eq. 3.6
and κ2), see Figures 3.1, 3.2 and 3.3 at pages 20, 21 and 22, respectively.
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Figure 4.11: Above: Principal curvatures κ1 and κ2 at Vihti, Finland. Below :
The distributions of the principal curvatures over the same area.
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Results in Examples 1 and 2 are novel (not included in the publications
P1,P3,P5,P6) and seem to verify that the vertex expansion is an applicable
new basis for the curvature analysis. The example 3 would need a similar
DEM analysis to compare the two data sources (aerial point clouds and
DEM).

4.6 The computational costs of the TIN curvature

A summary of most of the possible methods and formulations, and the com-
putational complexity of likely combinations is given here. Some comparisons
to the established methods are given, too. The presentation evolves around
the graph depicted in Fig. 4.12, which provides a strategic overview on the
computation order and costs. The graph is annotated with computational
costs and referred to by the Table 4.3 where the actual summary of the costs
of the curvature properties has been given. Analysis is rather coarse focus-
ing on counting vector (v) operations (affine transform a + bv with scalars
a and b, inner product, norm). This is rather close to ’saxpy’ used in Golub
and Van Loan (1996). Some details e.g. solving linear equations, or several
scalar summations etc.) are counted in as roughly equivalent vector oper-
ations. The summary excludes computation of the principal orientations
except with Taubin’s integral formulation, where the eigenvalue problem is
built in.

Fig. 4.12 has SAF related computation inside the gray sack. The initial
Delaunay process has O(n log n) cost, and later iterations reduce the point
cloud by O(kn) costs per iteration. Grey circles (the solid angle ωp and the
slope angle βt of the Eq. 3.5) can serve as outputs Y by itself. There are two
possible ways to compute the vertex dual area Ap, and the choice depends
on whether triangular values At, nt are actually needed.

E.g. the cost of the arrow t → At, nt in the Fig. 4.12 equals 3n: one
cross-product (approx 2 inner products) and one vector norm. Each arrow
is given the cumulated costs of its input data and the calculation step itself.

Each curvature method has a set of inputs which can be found from the
Fig. 4.12. E.g. the mean curvature H̃t of the Eq. 4.6 has the structure:

H̃t =
1

4At
∙ [() × () + () × ()]

and it has 2 cross products (approx. cost 3 dot products each), one dot
product and one scalar-vector multiplication i.e. approx. 2 × 3 + 1 = 7 cost
factor units, see first row of the Table 4.3. Although the cost measure is
coarse and does not take into account many possible processing environment
optimizations, it is similar to all methods, and has some indicative power.
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Figure 4.12: The order of computations of the preliminary parameters. Two
end results highlighted. The cumulative computational demand has been
characterized in approximate vector operations (+, inner product, norm).

Table 4.3 has a summary of the approximative costs of each method
mentioned here. The cost factors of the last row can be conctructed by
following the example given in the previous paragraph.

The cost is factored to each end result as it were the only output. This
is unfair to some methods, which produce several useful inputs to other
methods with only a small additional cost. A more thorough analysis coupled
with the noise sensitivity aspect would be in order. There are problem
types in micro-topography analysis, where e.g. the local distribution of the
principal directions is important.

One needs at least a pair (H,G) of methods to capture the curvature
state properly. The vertex expansion and L-B has temptingly good efficiency,
but they are not a consistent pair: a large number of vertices would have
imaginary principal curvatures without heavy smoothing. A transform from
triangle values to vertex values costs approx. 2 vector operations, which has
to be taken into account when finding the best pair of methods.

Most experience from the computational speed comes from data of (P3),
which consists of aerial point clouds over an area of 30× 35 km. The triangle
tensor method and the proposed H̃t computed approx. 1 km2 (0.8×106

points) in 10 minutes, whereas the L-B method was approx. 30 % slower.
This was due to the computational speedups vector formulation can provide
vs. the trigonometric and arithmetic of the L-B method. This example
sheds light to the approximate nature of the vector operation column of the
Table 4.3.
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The suitability of the methods for a HOC like oriented mean curvature
generation varies. The method of (Taubin, 1995b) would be the most efficient
for a very high grained HOC analysis, but has a large initial computational
demand and sensititivy to noise. (Theisel et al., 2004) is close to imprac-
tical what comes to noise sensitivity. The L-B method requires a compiled
environment, since its formally good efficiency requires fast arithmetic, not
vector computations. By many practical considerations, the proposed pair
(H̃t, G̃t) is a very good one, especially with the HOC algorithm. All pos-
sible combinations and specific needs have not been inspected yet, though.
Especially the efficiency of computing the principal directions have not been
tested yet with a large set of the methods.

Table 4.3: The computational demand of Gaussian and mean curvature by
various methods. Methods originated from this study are in boldface. Each
result has been assumed to be computed independently. Results with (*)
have been transformed to vertices via Eq. 3.18. Excluded methods have
costs higher than 35 vector operations per vertex.

description page and Eq. parameters v. oper./n

G̃t vertex exp. p. 57 4.7 np, nt 7
Hp L-B p. 45 3.50 Ap, φte, le 7..13
Gp angle excess p. 44 3.48 Ap, βe 10..16
G̃′

p vertex exp. p. 57 4.12 G̃t, φpt, φp 13
Hp integral p. 44 3.49 Ap, βe, le 13..19
Ht triangle tensor p. 40 p, np 14
H̃t vertex exp. p. 57 4.6 and P5 p, np, nt 15
Gt triangle tensor p. 40 p, np 17
Gt vol. expans. p. 38 3.42 ωt, At 18
Ht experimental p. 59 4.16 At, le, nt, np 19
Gp angle deficit p. 43 3.44 Ap, φp, φtp 20..26
G̃p vertex exp. (*) p. 30 3.18 G̃t, φpt, φp 23
Gp vol. exp. (*) p. 30 3.18 Gt, φpt, φp 25
Hp integral form. (Taubin, 1995b) p, np 38
Gp integral form. (Taubin, 1995b) p, np 38
H̃ ′

p vertex exp. p. 57 4.11 H̃t,Np 31
H̃p vertex exp. (*) p. 30 3.18 H̃t, φpt, φp 31
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Chapter 5

Dynamic analysis by video
metrology

Video analysis is an essential part of the swimming coaching. The main
benefit is the quick and accurate feedback, which helps the athlete to reflect
the feedback in the light of his still recent kinesthetic memory. It is also
possible to have metrics not only from the performance (speed) but about
the swimming technique as well. The silhouette vectorization and capturing
of the biomechanics are naturally easier, too. Silhouette vector and biome-
chanics signal e.g. a subset of the body skeleton joint angles (Nguyen et al.,
2016) are a very useful input for ML methods. A concise utilization of video
signal to measure several geometric aspects at the same time is called video
metrology (Criminisi, 1999), and the following is an attempt to expand the
work of Criminisi with sparse underwater camera array.

(R2) explores possibilities of the direct projection method in swimming
analysis and (R4) compares the results with the traditional camera calibra-
tion. Both approaches (camera calibration and direct projection) are com-
putationally simple, yet rather involved with the geometrical concepts and
relations. The calibration requires a theoretically valid optical theory in-
cluding the air-plexiglass-water interaction supported by the camera model.
The direct projection requires more carefully orchestrated calibration mea-
surements.

The camera calibration documented in (R2) and (R4) seems a neces-
sary step to get good biomechanical signals for further attempts to cluster
athletes. Also, there is a natural need to measure and observe athletic per-
formance (motivation 1 for a geometric modeling presented in Sec. 1).

Camera position and orientation errors translate to the pixel errors rather
directly and are intimately related to the general arrangement of the site. A
motivation for the direct projection method presented in papers (R2) and
(R4) is given in Sec. 5.2. The general layout of the measurement site and
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the swimming coaching sessions is presented schematically in 2D in Sec. 5.4.1
and in Fig. 5.4. Sec. 5.4.3 evaluates the camera installation accuracy in the
stereo-camera approach. The approach used in the publications (R2) and
(R4) is reported in Sections 5.5 and 5.6. Nomenclature of this Chapter has
been provided separatedly in the Sec. 5.1 for the reader’s convenience.

5.1 Nomenclature for the swimming analytics

D,DM,DS direct projection method with a free interpolant,
or with mono or stereo camera model as the interpolant

M,S,I mono and stereo camera calibration model,
ideal camera model with no projection error

RBF radial basis functions
S, S12 stereo-calibration model, a model created by

cameras 1 and 2
αc camera model parameters of a camera c
Δ. standard deviation s.t.d. of an entity
γ rotation matrix exponent
ac camera orientation pixel
c camera index

e1, e2, e3 unit vector basis of the global coordinates
eci, i = 1, 2, 3 unit vector basis of the camera c coordinates

Ft a smooth mapping from pixels p to
projection plane locations g

g ∈ G the projection plane point
gc camera location

G ⊂ R3 the projection plane
Ic = (Pc, Ic) an image of the camera c

H Householder projection matrix
Ic intensity values of an image, can be understood

as a function: P → pixel intensities
k refraction index

nc, nc(p) ray direction specific to a pixel p
p ∈ P a pixel

(p, g) ∈ U a ground truth measurement
Pc a pixel set of a camera c

(not necessarily rectangular)
R a rotation matrix

R(p) a pixel ray
U ground truth measurement set

w(p) image blending weight
x, y, z the global coordinates
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5.2 Motivation

The original motivation was to capture an approximative 3D dynamics of
the swimmer using a sparse camera array. This faces several challenges,
only some of which have been addressed in this Thesis (marked with ’+’)
while the rest remain to be a topic of future research (marked with ’-’).
The first challenge is the accurate capture of the swimmer silhouette (+),
speed (+) and the planar skeletal biometrics (-). The second is reducing the
deterioration of the signal from bubbles (-), and proper correspondence of
two views to from a 3D biometrics model (-). Only some of the goals were
reached, and thus the presentation is to chart a starting point for the future
research.

The proposed methodology extends the work of (Criminisi, 1999) to un-
derwater conditions using the line segment-based calibration of (Zhang et al.,
2016) to get accurate calibration input data. The paper (R4) also presents
a coherent methodology to estimate the accuracy of the existing systems.

The traditional approach with rigidly set multi-camera systems can be
presented in two steps. One first creates a pinhole camera model, which maps
individual pixels to rays in the local camera coordinates. The next step is
to apply a coordinate transformation from camera specific local coordinates
to the global ones. The installation tolerance of the cameras naturally has
to be of the same or smaller magnitude as the characteristic length of the
object covered by a pixel. The installation tolerance requirement is especially
high for the orientation of the camera (Dang et al., 2009), as discussed in
Sec. 5.4.3.

Publications R2 and R4 demonstrate, that the the direct camera cal-
ibration can have superior accuracy with a rather robust implementation.
The only economical methods for swimming analysis based on sparse cam-
era array are the direct projection method presented here, and a multitude of
auto-calibration methods e.g. Vupparaboina et al. (2015), since these require
no accurate camera placement. The auto-calibration faces difficulties in an
underwater scenery, since the corresponding visual details cannot be paired
well from the blurred view. Also, the only central object is the human body
with a non-rigid shape.

5.3 Preliminaries

5.3.1 Underwater optics

Underwater optical observations (Buiteveld et al., 1994) deal with many
difficulties, first three (refraction, dispersion and absorption) are systemat-
ical and can be countered rather efficiently. The last two (dispersion and
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vignetting) are noise signals proportional to the distance and hard to elimi-
nate. The vignetting occurs only at the borders of the image.

Figure 5.1: Left : Refraction at the water-plexiglass-air system. The cam-
era is not exactly perpendicular to the glass, and the plexiglass properties,
especially its refraction factor, are not well defined. Right : A detail of a
swimming lane buoy (approx 45 cm long at a distance of 9 m). Dispersion
colors large intensity gradients. The effect is strongest at the border of the
camera view.

To start from refraction: there is a change of the direction of the light
rays at surfaces where two mediums with different speed of light meet. E.g.
the ratio of speed of light in air and water is approx. k = 1.4 (the refraction
index). This phenomenon described by the Snell’s law can be combatted
by including the refraction to the camera models, or using spherical plexi-
glass casings in the front of the camera view. Dispersion is a related phe-
nomenon: the speed of light in water (and in lesser extend in air!) depends
on the wavelength. This means sharp contrasts in images get blurred with
a rainbow coloring, see Fig. 5.1. This phenomenon can be countered e.g.
by calibrating the camera three times using different wavelengths, and then
using the camera models to produce a compound image. Water is optically
rather dense material and its absorption of different wavelengths varies:
400 nm wavelengths are absorpted the least, and 980 nm (actually already
at the invisible range) wavelengths the most. There are several methods to
counter this loss of color for the purpose of more aesthetical images. The
last phenomenon, scattering, is the most difficult to deal with. Scattering
deviates a number of light beams and brings noise to the image, and there
is an ultimate distance limit for the video analysis with and without a dense
camera array. There is still one phenomenon, vignetting (?), which is the
loss of brightness at the border of the view. Vignetting is caused by the
plexiglass properties at large ray angles, since the camera view is close to
140o.
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5.3.2 Current research

An excellent presentation of the optics of the water-plexi-air system can
be found in (Bäuer-Burchardt et al., 2016) and a more directly applicative
approach (the Pinax model) in (Luczynski et al., 2017). It is becoming more
common to see the camera metrology problem as a continuum starting from
optical models to defining a smooth enough direct mapping between world
points and the pixels, as in (R2,R4) and (Criminisi, 1999). The latter is for
the dry setting and consider many minimally measured settings, which differ
from this work, where only one swimming plane is used. This work (R2,R4)
is dealing also with the correspondence problem (Scharstein and Szeliski,
2002) at two different instances. First one is in detecting the chessboard
pattern of the calibration board, which easily induce errors. These practical
problems were solved by various means, e.g. matching lines (Zhang et al.,
2016) instead of crossings. The second is about to match the correspondent
anchor points (Lu et al., 2017) in the swimmer body, and this is still an open
research problem.

5.3.3 The swimming site

Characteristic to Impivaara swimming site in Turku is that athletics analysis
happens in a pool which is used by the general audience at the same time.
This sets special requirements: e.g. the video cameras have to be only on
one side of the pool and safely behind plexiglass windows. A short pool (25
m) was chosen for technique practise of start, glide and turn phases. The
number of cameras (3) was limited by the budget and the camera positions
were dictated by the architecture of the pool, see Fig. 5.2.

The swimming lane 7 was dedicated to the athletes and the lanes 8-10
were kept empty during the swimming analysis sessions. Distance between
the cameras and the center of the lane 7 was 8.75 m. A camera view covers
approx. 9.3 m.

Figure 5.2: Left : The swimming pool and the projection plane at the middle
of the swimming lane 7. Right : The depth profile of the pool. Camera
windows marked with bullets and the final virtual view with a rectangle.
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5.4 Camera Calibration

Camera calibration means creating a map from pixels to pixel rays emanating
from the camera location. Geometric rectification means that a camera
view is transformed onto a common coordinate system, in this study to a
swimming plane G. Four models are used for the latter. These are mono-
camera and stereo-camera calibration models (M and S), an ideal camera
model (I) with only the placement and orientation errors, and the direct
projection method (D). The model I is used for assessing the impact of the
camera installation accuracy to the overall geometric mapping from pixels
to global coordinates.

Traditionally, the video analysis of swimming has been done by an array
of calibrated cameras with a very accurate camera casing. If the camera
array is dense, an S or multi-camera calibration (Gai et al., 2016) is the
choice. The multi-camera approach has been left out from this study.

Each camera in a dense array have overlapping views with more than
neighboring two cameras whereas a sparse camera array has at most two
neighboring views overlapping (Vupparaboina et al., 2015). If the camera
array is sparse as in our case depicted in Fig. 5.2), the M approach is still
possible. These methods require a calibration checkerboard or similar source
of the ground truth information (see Fig. 5.7) to be recorded in the calibra-
tion volumes of cameras c and c′ depicted by grey circles Mc and Scc′ in the
left part of the Fig. 5.3.

There is a practical limit in the depth dimension z of the underwater
camera view restricting the stereo calibration, making it both an inaccurate
and difficult procedure in case of the sparse camera array. The M method
has more calibration volume to be used, but it sets heavier demands on the
camera placement. Methods M and S are limited to the calibration sampling
being limited vertically between the surface and the bottom, too. M and S
calibration are introduced more thoroughly in the next Section. The direct
projection D is being presented in Sec. 5.5.

5.4.1 Mono and stereo calibration

The left part of the Fig. 5.3 depicts the stereo view volume for the stereo-
camera model S12 of cameras 1 and 2, and the calibration volume of the
mono-camera model M1 of the camera 1. The mono-camera calibration
happens for each camera separatedly by recording the calibration board with
a chessboard pattern underwater in the front of the camera. The calibration
process (?) fixes the camera model parameters αc ± Δαc, where the first
argument is the vector of actual parameters (5 to 9 of them depending on
the chosen camera model complexity) and the second is an estimated s.t.d.
The remaining part is to specify the camera location gc ± Δgc ∈ R3 and

76



Figure 5.3: Left : The calibration volume of mono calibration of the camera
1 (M1) and stereo volume of cameras 1 and 2 (S12). The ground truth
measurement sets U1,U2 and U3 of the geometric projection method are also
depicted. Right: The (red) orientation pixel ac marks the global e3 axis
(along z). The pixel ec marks the optical axis of the camera. A view from
the camera c = 3.

its accuracy (std.) in the global co-ordinates before the pixel ray R(p) =
{tnc + gc | t ∈ R+} ⊂ R3 with a normal vector nc(p)±Δnc specific to a pixel
p can be computed.

Figure 5.4: A schematics in 2D showing the camera orientation marker error
Δac, the camera location error Δgc, the camera model error Δαc (a vector
of 5 to 9 terms depending on the complexity of the calibration model), the
pixel ray error Δnc, the marker errors ΔU and the resulting location error
Δg on the projection plane G.

The stereo-camera calibration is very much like the mono-camera case
except that the measurement observations in the common view volume S12

depicted in the Fig. 5.3 are addressed differently; they produce common error
from the both camera models. The parameters subject to the optimization of
the total error are twice as many as in the mono-camera calibration, while the
common view introduces a compatibility constraint. Therefore, the stereo
calibration requires some more samples than two mono-camera calibrations.
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One can now define a mapping Ft : p → g from pixels to a suitably
chosen projection plane G by calculating the projection point g:

{g} = R(p) ∩ G . (5.1)

See Fig. 5.4, which has an overall depiction of the camera position and the
mapping of pixels p to projection points g.

5.4.2 Camera position error evaluation, S method

Mono-camera calibration requires a special additional observations to orient
the camera. In Impivaara case, the additional observations were the global
axis pixels ac, c = 1..3 geometrically measured to be exact (with a sub-pixel
accuracy), and the corresponding optical axis pixels ec, see the right part
of the Fig. 5.3. For stereo-camera calibration, it is also possible to chain
the models S12 and S23 by forming a best square sum fit between them
without actually using the orientation pixels. This reveals the poor quality
of the measurements. The cameras should roll out in a relatively straight
line, but the calibration data is simply not accurate enough due to too small
overlapping camera views and lack of a more sophisticated camera model.
The quality test by chaining the models produces a camera configuration
which is approx. 4 cm erroneous, the rest of the misalignment shown in the
right part of Fig. 5.5 is explained by the actual physical realization of the
camera setup. The M and S calibrations were done by Matlab toolbox (?),
which is based on the works of ? and ?. Probably the best currently available
water-plexiglass-air camera model of Luczynski et al. (2017) was not available
at the moment of the research reported in the papers (R2) and (R4).

5.4.3 Assembly costs of the camera array

Usually, the camera model is attained while not referring to the position
and orientation at all. This leaves the mechanical fixing of the cameras
likely with the sub-pixel accuracy i.e. a negligible level. In the setting of the
swimming lane 7 of the pool depicted in Fig. 5.2, it means 4mm/5m = 0.05o

orientation accuracy for a pixel size 4 mm (the refraction index k = 1.4 taken
into account in the distance 5.0 m). If the camera coupling surface is 50 mm
long, this means the assembly accuracy of 4mm × 50mm/5m = 0.04mm.

It is generally known and very universal engineering law, that machin-
ing costs of high-precision mechanical parts grow faster than exponentially,
when the geometric tolerance is improved (Colding, 1961), e.g. when the po-
sitioning and orientation accuracy of a camera rig are increased, see Fig. 5.6.
Modern production methods have not been able to challenge this law. A
similar law holds for positioning and orientation of the assembly of machin-
ery components. Achieving tight tolerances is rather costly, especially if the
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Figure 5.5: Left : The calibration chessboard pattern in the camera 2 spe-
cific co-ordinates. Notice the vertically limited positions. Right : Local co-
ordinate frames of the cameras c ∈ {1, 2, 3} (from left to right) after min-
imizing the square error between the measurements of models S12 and S23

by keeping camera positions gc as the minimization argument.
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Figure 5.6: Typical costs of a small machining object with a limited produc-
tion series. A reproduction of an image of Colding (1961).

question is about a row of several cameras, and if the cameras should be
easily removable (a common requirement).

5.5 Direct projection method (D)

The direct geometric projection is a historical alternative from 1920s (Mün-
dermann et al., 2006), when camera models were not computationally pos-
sible yet. A projection plane dictated by the center of the swimming lane is
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calibrated directly, i.e. the pixel mapping sampled by a sparse measurement
set U (see grey line at the Fig. 5.2 and the point set at the Fig. 5.7) is gener-
alized to whole of the projection plane G. The idea is to avoid the demand
for accurate camera positioning. Cameras still need positioning in the prac-
tical sense in order to cover the view adequately and to keep them steady,
and only a visual and manual assessment of the positioning is enough.

5.5.1 Practical arrangements

Fig. 5.7 depicts the practical details and the workflow of the direct projec-
tion method (D). Two pontoons support a chessboard, position of which
is measured by a laser meter along the swimming lane. The chessboard is
guided by a rope, which gives the estimated positioning accuracy of 1.5 cm
std. Cameras are held by a simple frame, allowing manual aiming of the
optical axis is aimed towards a marker at the opposite wall. The cumulated
measurements (p, g) ∈ U form two point clouds, one of observed pixels p ∈ P
(right top corner) of the pixel frame P and the other of the observed positions
g ∈ G (the detail below the previous one). The interpolation generalizes to
a mapping Ft : p → g for all pixels p ∈ P in a given camera view while
minimizing the global error (third detail in the right). The resulting rectified
image (below right) is produced by a fast version of Ft assigning 4 × 4 mm
space for each pixel. The spatial size of the final virtual view is a deliberate
choice: it is round figure conveniently close to the average spatial size of the
pixels of each camera view.

Fig. 5.7 shows the measured locations U ⊂ G on the projection plane
G. Each measurement (a pair (p, g) ∈ U of a pixel p and its loca-
tion g = (x, y, z) ∈ G on the swimming plane allowing the interpolation
g̃ = f(p), p ∈ P . The pixels are corners of the chess board pattern (see
Fig. 5.7). The swimming plane has an approximately constant z ± Δz with
a s.t.d. Δz = 0.015 m in the global coordinates. The measurements were
rather dense, approx. 9000 measurements over the area of 1.5 × 17m2 re-
sulting in 5 cm average distance between the measured points. Even a local
linear interpolation would have worked, but the method of ? was used. It
consists of local thin plate spline fitting, see details in (R2).

Several other interpolation methods are possible, e.g. using a small col-
lection (3 per each camera view) of the local mappings governed by mono-
camera models each with 6+3+2+2=13 parameters for the actual camera
model, position and orientation, respectively. This approach actually has
less parameters (3×13 = 39) than the approach used in (R2) (approx. 90 to
100). Using arguably the best available air-plexiglass-water camera model
of Luczynski et al. (2017), one ends to 3× 12 = 36 parameters while gaining
almost global physically correct interpolant.

80



Figure 5.7: A set of images depicting the direct geometric calibration, which
also serves as a quality check for traditional camera calibration methods.
A floating calibration board floats guided by a wire through the swimming
lane. Laser distance measurement (bottom left) makes it possible to generate
the calibration data U (top right). Bottom right : The validation and the
resulting virtual view.

5.6 Accuracy summary

The accuracy of the methods M and S can be compared to D by assigning the
best possible camera positioning to each camera and minimizing the global
error that way. This is actually favoring those methods, since the basic M
and S do not use the information derived by measurements U .

Recall the Fig. 5.4. At this stage, the projection plane G is useful to only
make the accuracy comparisons sensible, i.e. the error of the methods M and
S is directly about the swimmer measurements (and speeds, after a simple
additional calculation). The s.t.d. Δg of g is caused by s.t.d.’s Δgc, Δnc and
measurement uncertainty ΔU of the corresponding quantities g, nc and U .
The orientation error Δnc inherits its inaccuracy from the following: Δαc

(camera model s.t.d. from the camera calibration software), Δgc (placement
s.t.d.) and Δa (orientation pixel s.t.d). The actual definitions and calcu-
lations involved are relatively basic and documented in (R4), although e.g.
Δnc has a von Mises distribution (?) on a unit sphere instead of a Gaussian
distribution. The handling of the rotation matrix is somewhat special, and
due to some typographical errors in (R4), is covered briefly in Sec. 5.6.1.
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5.6.1 Rotation

To properly compare the accuracy of M and S methods with direct meth-
ods, one needs to let the orientation and location errors of cameras con-
tribute properly to the final projection error Δg. A symbolic algebra package
Sympy (Rocklin and Terrel, 2012) supporting random variables was used to
compute proper error distributions.

After a pixel p has been registered with an intensity Ic(p) by a camera c,
it is time to find a corresponding orientation within the camera specific co-
ordinates, which are more or less unaligned with the global co-ordinates E =
{e1, e2, e3}. The camera specific co-ordinates have an optical axis directed
(almost) towards a special marker ac ∈ Pc. The camera rotation around the
optical axis has been aligned to the horizontal level with a sub-pixel accuracy
already. The camera specific co-ordinates Nc = {nc1, nc2, nc3} are dictated
completely by the observation of the alignment marker at the pixel ac. The
rotation matrix R is a linear map which helps to transform the camera model
pixel beam nc(p) to the global beam n(p): n(p) = R−1nc(p). The global
beam is then used to find out the final projection point.

This treatise acts as a clarification of (R4), since (P4 p. 10) has unfortu-
nate typographic errors swapping some matrices H.. (Householder) and R..

(rotation).

A 3D rotation can be constructed from two line reflections, (Dorst et al.,
2007) which is the best formulation for the analysis of inaccuracies, since it
allows an easy derivation of the Taylor series and is a viable way to apply
the distribution algebra. The geometric algebraic approach and various for-
mulations of the projective geometry can surely give attractive alternatives,
but they have been excluded from this thesis. The necessary details can be
found from (Dorst et al., 2007). Fig. 5.6 depicts a point p rotated around a
point O. An individual line reflection dictated by a line span{u} is denoted
as p′ = Hup, where Hu stands for the Householder projection and equals:

Hu = −I + 2u0u0T , (5.2)

and I is a 3D identity matrix. The construction in Fig. 5.6 has p′′ =
Hu+vHu p, where H. stands for a Householder projection matrix. The above
arrangement can be directly utilized as the actual definition of the rotation
matrix Ruv:

Ruv = Hu+vHu . (5.3)

It can be seen by the direct substitution that the rotation fulfills the following
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Figure 5.8: A point p rotated to p′′ around the line span{u × v} by an
amount of φ using two sequential line projections through a line span{u}
and through a line span{u + v}.

four requirements for the unit vectors u and v:

Ruu = I (identity) (5.4)

Ruvu = v (rotation from u to v) (5.5)

Ruvw = w (eigenvector property) (5.6)

R2
u(u+v) = Ruv , (exponentiation) (5.7)

where a vector w has w ∙ u = w ∙ v = 0 and is thus perpendicular to the
rotation plane span{u, v}. The last requirement extends (by a construction
of a sequence of a binary choices converging to a chosen rational number) to
a more familiar exponentiation property of rotation angles: Let Ruv have a
rotation angle φ. Then Rγ

uv, γ ∈ R has a rotation angle γφ.
The actual projection of perceived pixels p to the projection plane can

be later sped up by recording the map p → g directly, as explained in (R2).

5.6.2 Direct methods with camera models as interpolants

The best possible camera model with detailed air-plexiglass-water refrac-
tion (Luczynski et al., 2017) should indeed provide the best interpolation
function especially what comes to the extrapolation outside the measured
U zone, although ordinary regularized interpolants perform rather well at
the practical zone nearby U . The (Luczynski et al., 2017) model was not
available at the time of the study, though.
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Multi-view arrangement is a modern approach (Furukawa and Ponce,
2009), which fashions a very neat theory and adapts to a multitude of camera
models. It was not usable in this case due to the architectural constraints of
the site and the budget limitations.

It is possible to use any smooth interpolant with the D method,
e.g. (Luczynski et al., 2017) or the camera models of M and S. The two
latter choices lead to DM and DS methods. DM and DS are very close to
interpolation with radial basis functions (RBF) with very large radii.

All these approaches M,S,D,DM and DS produce a mapping Fmodel :
P → G from pixels p ∈ P to points g ∈ G ⊂ R3 on the projection plane
G, see a summary in Table 5.1. Included is an ideal (I) camera model to
demonstrate the effect of the camera location and position error. The model
I is forced to be absolutely correct by defining the pixel ray nc to be exact:

nc = (g − gc)
0, (5.8)

whereas all the other camera models produce some error Δnc. The camera
calibration tool used (?) formulates both the pixel ray nc(p) and the corre-
sponding error Δnc(p) with a best Gaussian distribution approximation.

5.6.3 Comparison of the methods

The models M and S use the orientation information provided by the align-
ment pixels ac, while methods DM and DS use the best possible fit i.e.
the camera orientation ac and the location gc were interpolation parameters
alongside the usual camera model parameters αc. Table 5.1 summarizes the
mean error and characterizes each method by their parameterization. The
mean error is the difference mean(p,g)∈U ‖ĝ(p) − g(p)‖ of the predicted po-
sition ĝ(p) and the actual position g(p) over the calibration set (p, g) ∈ U .
the model DS has a rather weak accuracy and it has been excluded from the
treatise. ’I’ stands for the ideal (non-realisable) camera model, which has
only the camera location and position as parameters. The last five columns
are: mean pixel projection error at the projection plane G, number of the
cameras involved needing a pair of orientation and placement parameters
ac, gc, number of the camera model parameters αc, whether the calibration
point set U is used or not, and the total number of parameters d for the
final virtual view, respectively. d is counted over all the cameras, e.g. I has
d = 3 × (2 + 3) = 15. The number of parameters d of direct method D may
seem high, but the interpolation is heavily regularized avoiding overfitting.

Figs. 5.9 and 5.10 provide an overview of the projection error. It is
important to have a suitable stitching of the overlapping projections without
too large systematical deviations. Methods DM and D both deliver a rather
good projection accuracy. E.g. the D method has the speed error within
Δv ≤ 0.07m/s for an athlete speed v = 1.6m/s, which is ±4.5%. Both M
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Table 5.1: Parameterization summary. The spatial reference is either the
marker pixel a or the markers of the projection plane G. Camera model is
either used or not. Parameters not needed are marked with ’_’.
Model Spatial ref. Cam. model Error (mm) ac, gc αc U d

M a yes 18 1 1 no 33
S a yes 37 2 2 no 44
D G no 4.0 _ _ yes -
DM a yes 8.8 1 1 yes 33
DS a yes 40 2 2 yes 44
I a no 11 1 _ no 15

and S methods show large error at the perimeter. This is due the inadequate
shape of the calibration volume (too shallow), large camera placement error
(approx. 1 cm) and inadequate camera model for large angular view (air
zone has the view angle close to 140o). S method suffers from the sparse
array placement, too.

Another method to validate the camera calibration is the commonly used
back-projection (Zhang, 1999) in Fig. 5.11, which usually shows the error of
the projection in pixels, but is modified here to show the projection error
on the projection plane G. The camera c = 1 is at the shallow end of the
swimming pool (see Figs. 5.2 and 5.7). This squeezes the volume used for
calibration chessboard, and causes a visible loss of accuracy in M and S
models. The D method is a clear winner. M method works about as well in
the vertical direction and on both directions on camera 3. This camera has
a reduced width of view due the proximity of the wall at the starting end of
the pool. The angular vertical change is small, and even the inadequately
narrow calibration samples cover the vertical direction well. An estimate
of the author is that a combination of 3 mono-camera models used in DM
approach would reach the performance of the interpolation used in D method.

The D method produces final combined mapping, which can be used for
fast geometric rectification.
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Figure 5.9: The placement accuracy by cameras 1,2 and 3 (top to bottom)
by each calibration method. Top: direct mono model (DM). Bottom : Mono
calibration model. (M)
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Figure 5.10: From top to bottom: The placement accuracy by cameras 1,2
and 3 of stereo calibration (S) and by cameras 1,2 and 3 of direct calibration
(D).
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Figure 5.11: Back projection test of various calibration methods. The units
are mm’s on the projection plane G.

Figure 5.12: The stitching of the three PP mappings.
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Chapter 6

Research description

Research questions and a summary of the research are presented in the fol-
lowing two sections.

6.1 Research questions

Research questions are formulated in the following:

Q1 Is the curvature signal usable in natural resource data?

Q2 Do established curvature methods apply to natural resource data?

Q3 Which is the mildest mechanical accuracy requirement still adequate for
underwater stereo view analysis in swimming research?

Q1 originated from a more pompous quest over a set of useful features
derived from the geographical height signal (of any source, DEM, LiDAR,
photogrammetric, satellite radar). This quest quickly focused on Q1, al-
though a brief presentation of various height features has been presented in
Sec. 3.2.

To answer Q1, several techniques and approaches were experimented with
and three field campaigns were conducted. Adequate predictors were based
on curvature on each case, although a lot of improvement would be possible
combining several methods together.

The local linear fit, if suitably adapted to converge to the maximum
density in the local height distribution, allows both a multi-scale approach
(see Section 3.3 at p. 23) and regular grids to be formed from the point cloud.
Direct point cloud analysis is very difficult without some sort of filtering
to eliminate effects of outgrowth, foliage and canopy, and one promising
filtering method was proposed (P5). The directional curvature histograms
derived from the triangularization proved to be numerically efficient and
applicable to practical problems (P6). This result, when properly integrated
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with point cloud filtering to achieve a multi-scale capability, seems to be the
most promising of the findings.

Q2 was based on the author’s suspicion that most of the curvature al-
gorithms are developed for technological environments. Laser scans of small
artifacts, architecture and such have good sampling density and relatively
low noise in the off-the-plane component. To answer Q2, the author had ap-
proximately 6 different attempts to find new noise-tolerant formulations and
principles, until one, triangular mean and Gaussian curvature via planar ex-
pansion, was found. Recently, two publications were found, which seemingly
have not been applied widely to technological environments, and which may
be suitable to the natural resource data with minor adaptations, but some-
what less efficiently. These are methods of Theisel et al. (2004) and Taubin
(1995b). The Taubin’s method facilitates a built-in smoothing, which may
be useful with a multi-scale approach. It may be possible to implement the
directional curvature histograms as efficiently to the method of Theisel as to
ones developed in this work.

Q3 has an intrinsically geometrical nature, too. It led to a demanding
analysis of probabilistic representation of rotation tensors. To answer Q3,
a projection plane approach was used. This method has been applied in
1910-1930 for biomechanics movement capture (Mündermann et al., 2006),
but was then abandoned, when modern mono- and stereo-camera calibration
methods were developed. But, if the cameras cannot be positioned nor ori-
ented accurately, these methods render useless. The answer to the question
was found, it is possible to analyse swimming with sparse camera array and
to have a very small budget to mechanical camera installation. The most
important requirement for the stationary camera installation is the steadi-
ness (unmovability over time and environment conditions) of the cameras,
but not the orientation accuracy.

6.2 Summary of the articles

(P1): Micro-topography registration from point clouds,
ground stoniness as a case

Summary: The title of (P1) (Nevalainen et al., 2015) is Detecting stony
areas based on ground surface curvature distribution. The sample areas sum
up to 3.3 km2 but are distributed over a rectangle of 32 × 36 km2. LiDAR
data of sample density ρ = 0.8 m−2 was used to detect stony areas labeled
to positive and negative areas by a geology expert. The motivation of the
study was twofold: to try to reach close to the theoretical object detection
limit, and to verify if the method is applicable for commercial usage.
Method: The curvature was approximated by choosing a set of regular
raster points, each of which had a local planar fit to approximate the tan-
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gential of the ground surface. The distance weight was an ad hoc function of
Appendix I to ensure, that the occasional vegetation points did not deviate
the plane too high above the ground. Each plane defined the grid normal,
which was then used to approximate Gaussian curvature by barycentric in-
terpolation given in Meyer et al. (2003). A peculiar arrangement was used to
estimate the vertex Gaussian curvature Gp: the barycentric formula of Eq.
8 gives the curvatures Gtp at each adjoined triangle T (p), then the mode of
the curvatures is addressed: Gp = modet∈ T (p)({Gtp}).

Since the multi-scale approach with grid square sizes δ ranging between
δ = 1.25 ≤ δ ≤ 6 m, the missing information had a significant effect at the
densest two grid. Even the local fits performed at regular grid points arise
a chance to use bilinear curvature formulations, the barycentric triangular
version was used, since this reduced the effect of missing information, see
(P1) Fig. 2. The Gaussian curvature spectrum was cumulated over each
sample area, and this was used as a vector source for logistic regression.
Output and observations: The results were adequate for practical pur-
poses. The paper entered to a previously uncharted area of accuracy in
micro-topography detection.

Method parameters were numerous, although a large subset of param-
eters seemed to have no effect at all to the cross-validated prediction per-
formance. This called for more research to find curvature extraction meth-
ods with less parameters and more predictable behaviour. This paper con-
tributed mostly to Q2 in an indirect way, since most of the tested traditional
curvature methods did not perform well.
Personal contribution: the algorithm development, analysis of the data,
drafting of the manuscript. Geological expertise was provided by PhDMaarit
Middleton from Geological Survey of Finland (GTK). The data was gathered
by prof. Raimo Sutinen (GTK) and PhD Maarit Middleton.

(R2): Video calibration without a camera model: A sparse
camera array as a case

Summary: The paper (Nevalainen et al., 2016a) titled Video based swim-
ming analysis for fast feedback addressed a situation where small budget
forced the swimming analysis to be based on only few sparse cameras. No
adequate and accurate methods existed, and the project had a very limited
funding. The reliability and simplicity were the leading design principles
of the system. The camera calibration is well established as long as the
camera positioning and orientation is known rather accurately. At the mo-
ment of writing, accurate pin-hole camera models for flat-pane housing with
front glass correction in underwater conditions existed. (A recent reference
is Luczynski et al. (2017), which has an adequate model, but no correction
for possible axial orientation error.) Also, the mechanical accuracy required
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in non-immersive conditions was too expensive to arrange, though.
The aim of the paper was to measure the swimmer speed and to enable

further bio-mechanical analysis over the swimmer profile. A specific notation
is used for images I = (P, J): they are formulated to consist of a set of pixels
P ⊂ [1, n]× [1,m]×{1}, where n,m is the size of the camera output images
in pixels, and the intensity value map (a function) J : P → [0, 255] ⊂
N. This allows identifying images like (P1 ∩ P2, J3), where the domain is
not necessarily rectangular, and several possible intensity maps J3 can be
applied. The direct plane calibration is actually a very old method, which
was used in 1920s and 1930s with the physical scaling, e.g. a chessboard
pattern behind a galloping horse was scaled in size to correspond to correct
measures of the projection plane (also the camera was removed as far as
possible to reduce parallax errors).
Method: A direct calibration method was used, where the actual planar
positions of the swimming lane are measured in the absolute reference frame,
and related to the pixel positions by non-linear interpolation. The compu-
tational arrangement enables a quick referencing of only one nearest neigh-
bor, or approximately four time slower referencing of 4 nearest neighbors for
Shepard interpolation.
Output and observations: It was proven that the first option is simple
enough for real-time video signal adjustment with the 50 Hz frame rate.
The overall system arrangement was very economical. Its weak point is
the manual file management and lack of proper production tools for the
swimming coaching sessions. The paper contributed to the research question
Q3 by demonstrating in practice that the camera positions need not to be
known.
Personal contribution: Design and practical implementation of the cam-
era setup and calibration. The algorithm development, analysis of the data,
drafting of the manuscript. The video material was gathered by MSc Antti
Kauhanen, Turku Sport Academy (TSA).

(P3): Micro-topography registration from point clouds, ex-
tension of (P1)

Summary: The article Nevalainen et al. (2016b) has a title: Detecting
terrain stoniness from airborne laser scanning data. Two new methods are
introduced, one of which uses the traditional data format (DEM, the regular
raster data). There is a new data set, which is considerably larger, and the
focus is on characterizing each sample by a curvature distribution vector,
just like the previous paper did.
Method: Curvature profiling based on triangularization (LTC) was being
compared with the local linear fit of (P1), and a traditional DEM analysis
using a Laplace operator to register stoniness. LTC needs a proper ground
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model, which was produced by the SAF process, but not all the parameters
were subjected to the cross-validation tuning. The logistic regression was
used just like in (P1).
Output and observations: The equation (Eq. 8, P1) for Gaussian curva-
ture was changed to (Eq. 5, P3) creating much less noise to the cumulated
curvature histograms. LLC curvature results (both the physical scale of cur-
vature, and the prediction performance) were verified by a totally different
method using the Laplace operator based curvature estimation on regular
DEM grid. The TIN -based method performed worst. It became apparent,
that Gaussian curvature is not adequate as the sole basis of sample vectoriza-
tion. A contribution to the research question Q1 is that one should generate
the full curvature state, and rely also on other point cloud and height derived
features, if possible.

The (Fig. 8, P3) demonstrates the usage of the resulting classifier to
large-scale prospecting. There 32 × 32 m2 samples were fed to the predictor
and the resulting log-likelihoods visualized. The prediction is influenced by
the set of positive teaching samples, which were of higher ground and lesser
tree volume. A separate predictor could be tuned for woody areas, though.
Personal contribution: The algorithms, analysis, drafting of the
manuscript.

(R4): Swimmer tracking without a camera model: an exten-
sion of (R2)

Summary: Nevalainen et al. (2017a) is an expansion of (R2) and has a title:
Real-time swimmer tracking on sparse camera array. The error analysis
covers the speed of the swimmer, location at the projection plane (20 cm
towards the camera from the center line), and the camera positioning and
orientation. A swimmer tracking is somewhat ad hoc method based on
comparison of large rectangular compartments of the image. The detection
of the swimming movement cycle duration is based on the silhouette tracking.
The notation changes from (R2): An image is I = (P, I) where P are the
pixel positions (or identities) and I is the usual map from a pixel to its
intensity. The notation differs from (R2), it was intended to provide an easy
extension for a future paper, which uses intensities I(B) of rays of light B
instead of pixels P .
Method: The location error analysis is a standard treatment of a mea-
surements (p,g), p ∈ P, g ∈ R3, and an interpolation (p, F (p)), where p is
an image, g is a calibration measurement in the real world (the projection
plane), and F , which is the provided mapping from a pixel to the real world.

An analysis of the swimmer velocity accuracy in this setting has a specific
difficulty: the frame frequency (50 Hz corresponding to ≈ 0.03 mmovement)
dictates an absolute lower limit to the time differentials. Therefore the speed
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analysis was performed at that definite limit (P4 Eq. 8) with an assumption
of a maximum swimming speed of 8 pixels per second.

A considerable effort was put to analyze the errors caused from the cam-
era positioning and orientation. The probabilistic treatment of the camera
orientation is very complex, thus a numerical distribution algebra package
(Python 3 Sympy) was used.

A simple absolute difference of pixels was used for the swimmer tracking.
This introduces a lot of noise but is very fast.
Output and observations: The traditional approach to swimming anal-
ysis is to have a high density of cameras, the stereo-camera model and an
ad hoc approach to the water-plexiglass-air refraction. Usually the systems
are expensive and require a very elaborate camera positioning. It seems that
the simple approach presented, supported by a robust and well checked al-
gorithm implemented to an application specific integrated circuit (ASIC),
could be a possibility for a real-time tracking system. A careful reconsid-
eration should be done about what to compute in-real-time, and what to
leave to a batch processing mode, and which kind of compression to per-
form before the long-term data storage. What comes to research question
Q3, the conventional M and S methods seem to require much higher camera
positioning and orientation tolerances than feasible by a limited budget.
Personal contribution: The algorithm development except about a half
of the effort of developing the tracking method, which was done by DrTech
Muhammad Hashem Haghbayan. Analysis of the data, drafting of the
manuscript.
Errata: There is a typographic error in the paragraph between equations
(10) and (11): H(u,u) and H(u,v) have to be replaced by Ruu and Ruv.
Also R(., .) should be R.. in two occasions. Fig. 6 has a wrong caption
text. It should read: Swimming speed over 5 swimming cycles, non-smoothed
version. The first cycle reveals the effect of bubbles. Every second cycle is
sharp due to left-right hand discrepancy.

(P5): Triangular mean curvature

Summary: A mean curvature is usually formulated by the volume expan-
sion (see Eq. 3.36 in Sec. 3.7). In case of TIN, this requires references to
three neighboring triangles producing a noisy triangular mean curvature es-
timate. This has been traditionally countered by formulating the curvature
in the vertex points, whereby a reference to (an average of) 6 edges of 6
surrounding triangles is needed. To produce histograms over a sample area,
one has to construct an elaborate dual area of the vertex (Mesmoudi et al.,
2012).

An alternative approach of computing the triangular mean curvature is
introduced in (P5) (Nevalainen et al., 2017b). A vertex expansion is used,
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which is accurate in the infinitesimal limit, and which leads to a very simple
triangular mean curvature formula.
Method: The traditional formulation is based on the surface area expansion
polynomial leading to definitions of the triangular mean curvature Ht and
triangular Gaussian curvature Gt of Eq. 3.41 and Eq. 3.42. If one relaxes
from the requirement of parallel expanded planes, one gets the averaged tri-
angular mean curvature of Eq. (5) of (P5). Properties of this formulation are
compared to current approaches. A benefit of Eq. (5) is that some commonly
occurring noise patterns get filtered, even singular pikes get dampened only
moderately.

The process of mapping a triangular feature Xt to a vertex feature Xp

is presented in a concise fashion. A method of computing the principal cur-
vature orientations is presented: the contribution of each orientation vector
vt and its exact opposite −vt, t ∈ T (p) have been made equal in the neigh-
borhood voting process. The convergence on the infinitesimal limit has been
visualized using an analytical torus model with synthetic std. noise.

A rare comparison of the produced curvature histogram and the analyt-
ical exact solution have been provided. Also a unique curvature analysis of
a prostata lesion have been included as an example.
Output and observations: The proposed definition of the triangular mean
curvature compares well in computational efficiency, although the analysis
is not detailed. The triangular mean curvature seems to produce useful
signal for micro-topography applications especially in the presence of sparse
sampling, relatively high noise and curvature histogram vectorization, see
(P6).

The mean curvature formulation proposed outperforms others in the pres-
ence of large noise. The edge signum (Eq. 14, P5) is a rather efficient
formulation, which has been used in the CAD industry widely from 1980s.

There is an additional complication in computing the principal curva-
tures, see Eq. 20 in (P5). Due the possibility of curl in vertex normals due
the noise, it is possible that the discriminant H2

t −Gt is not positive, result-
ing complex primal curvature values. This must be countered by removing
the curl component from the vertex normals (when considered as a vector
field). This issue has not been addressed in this paper.

The analytical example of a noisy torus surface (Fig. 9, P5) demonstrates
how a wide sortiment of possible histograms presented in Sec. 4.4 might be
needed in various applications. In this case the Gaussian curvature histogram
is very accurate, whereas the mean curvature and principal curvatures are
not. The effect of noise is seen especially in estimation of the constant
principal curvature κ2 = 1/r dictated by the smaller torus radius r.

This paper has been included to the thesis because it provides a view over
the contemporary approaches to the curvature analysis of discrete surfaces,
and so contributes to the research question Q2.
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Personal contribution: algorithm development, analysis of the data,
drafting of the manuscript. The magnetic-resonance imaging (MRI) data
of the prostata lesion was provided by PhD Ivan Jambor and prepared to
voxels by MSc Jussi Toivonen.

(P6): Micro-topography registration from point clouds, rut
detection as a case

Summary: Several TIN analysis methods have been combined in order to
visualize the rut formation of foresting machines. A method for producing di-
rectional curvature histograms directly from TIN is presented and applied to
detect the local dominant direction of curvature in Nevalainen et al. (2017c).
Data is produced by a UAV photogrammetry.
Method: The SAF process is applied both for the canopy height model
and the ground TIN. A parameterized TIN thinning algorithm has been
developed and documented. It increases the average distance of the natural
neighbours to a given limit. (Natural neighbours p and q have a common
triangle t, p, q ∈ t ∈ T ). A mean curvature flow (MCF) is a TIN smoothing
method, which alters the height values of points in order to reduce local
extremities of the mean curvature (Crane et al., 2013). Histograms of the
sample areas are derived by the globally projected vertex normals of Eq. 4.21,
(Eq. A5, P6).

The detected dominant curvature directions, where there is a largest
difference between two perpendicular histogram versions, have been used
to visualize the TIN model and the machine trails. The visualization is
used in manual control point insertion. Control points are an input for the
convolution search, which produces an accurate match between numerical
trail centerline and the actual trail in the point cloud. The rut profile analysis
is based on rasterization, since the convolution scheme is numerically fastest
to arrange on a traditional raster format.
Output and observations: The profile depth corresponds to manual ob-
servations with 0.65 accuracy, when two depth categories (less and more than
20 cm rut depth) are being used. This is enough for practical purposes. Two
obstacles remain:

1. ML methods experimented to register the ruts produced too much
noise, especially too many false positives among the young trees. New
combinations of methods, e.g. team of experts approach, several clas-
sification categories (e.g. young trees, trails, open ground, canopy)
should be used. The pair of histograms of directional curvatures seems
to give rather good signal and should be included as one vector source
to the team of experts approach.
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2. The manual field measurements (rut depth) used were geo-referenced,
although not very well (3 geomarkers were used when 5-6 is the stan-
dard with the equipment and algorithms used). Experiments with
more data and with less or no georeferencing at all should be made
to determine the geometric quality of the point cloud under this more
economical arrangement.

The paper contributes to reasearch question G1. The ground TIN produced
by SAF process described seems to produce a high-quality ground model even
at the approximity of the canopy front. The HOC method is numerically
efficient, and shold be experimented with over a larger variety of microto-
pogrpahy problems.
Personal contribution: The algorithm development, analysis of the data,
drafting of the manuscript. The background and motivation from the forestry
point of view was written by PhD Aura Salmivaara Nature Resource Center
of Finland (Luke). The data and the initial photogrammetric processing was
done by Juuso Hiedanpää (Metsälinkki Ltd.).
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Chapter 7

Conclusions

This section summarizes the contributions given in six original publications
included into thesis. We also consider extensions of the algorithms and
methods for more general settings in future work as well.

7.1 Contributions of the thesis

In this thesis several new algorithms were introduced.

• SAF (P3), which delivers ground and canopy TIN models from a point
cloud. It requires two parameters, which have to be tuned by a CV
process.

• A fast HOC (P6) method, which produces a directed curvature his-
togram from the ground TIN model.

• A useful TIN thinning algorithm (P6) for multi-scale analysis. It has
one parameter, the average distance between neighboring points. It
is tailored to a situation where the ground model is bordered by the
possibly fragmented canopy front.

• Direct geometric projection method for swimming analysis was exper-
imented with and the accuracy compared to conventional methods.
Although this is not a new method, it is demonstrated that it is a
feasible alternative for a low-budget swimming analysis.

It seems that the triangular mean curvature of Eq. 4.6 (P5) and trian-
gular Gaussian curvature (Eq. 4.7) are useful new ingredients to the micro-
topography analysis.

When compared to the rather generic title of this thesis, the presenta-
tion naturally falls short of covering all the aspects of geometric data un-
derstanding. Especially the theoretical considerations have been limited to
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exclude the probabilistic modeling and finesse of the DDG notation. Multi-
scale models are an important tool in micro-topography but were mostly
excluded, except in (P1) and (R2). General 3D analysis of swimming per-
formance, and bundle adjustment approach similar to (Hansen, 1992), has
been excluded.

7.2 Future work

There are various open problems concerning e.g. the computational costs of
the total work flow and of alternative point cloud problem formulations.

(R4) introduces a ground TIN model with 2 parameters. There are pos-
sibilities to develop a ground TIN model with only one parameter. One
possible model would be an information theoretical one with a triangular
curvature penalty e.g. the Willmore energy (Grinspun and Desbrun, 2006)
H2−G ∝ κ2

1+κ2
2 as for a regularization term. What is missing is the efficient

categorization of cloud points similar to the RANSAC (Hast et al., 2013) be-
fore a minimum description length (MDL) formulation can be casted. The
resulting ground model would have either local scale factor (Yang and Meer,
2017) or information per area as the only parameters. Also, Taubin’s for-
mulation includes a smoothing method (Taubin, 1995b), which should be
compared with SAF related smoothing, TIN regularization and a multi-scale
curvature analysis.

There are open questions like implementation of multi-scale modeling of
ground TINs in a theoretically sound way, and connections to MDL and
smoothness regularization, which have not been covered in this thesis and
which are not yet present in standard industry implementations. It may
be possible that some old formulations like Taubin (1995a) or Theisel et al.
(2004) can be casted to a multi-scale formulation. The method of Theisel
et al. (2004) can provide a competitive formulation of HOC. The HOC
method of Sec. 4.4 uses 3 vector dot products and one vector normalization
and stores 2 vectors per vertex, When (Taubin, 1995a) is extended to output
the directional curvature, it uses only 2 vector dot products and stores 2
vectors. The method is superior if principal vectors are required. The HOC
formulation requires 16 additional vector dot products, whereas (Taubin,
1995a) needs approx. only 2 dot products.

The natural resource data seems to have a discrepancy between the size
of available data (approx. 1.3 × 109 samples) and the size of typical field
measurement campaign (typically 102...3 samples). This calls for a blend
of unsupervised and supervised methods, which hopefully could take into
account the (very diminutive) set of field measurements.

Deformation states between the point cloud and a local shape
probe (Digne et al., 2017) can be collected to a library, which neatly ad-
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dresses point cloud subsets of various local dimensionality. This approach
addresses both the raster data and point clouds, but it can be adopted to the
TIN models. Local parts of a TIN usually have only one or two dimensional
subparts. Applicatios and variations of the local shape probe remain as a
potential research topic.

The SAF algorithm has to be implemented so that it can be an efficient
part of the CV process. There are some algorithmic details and potential for
optimization by approximating both the spatial angles and the sort ordering
of the spatial angles, which requires some study.

An applicable theoretic framework combining a parameterized geomet-
ric model as a one component and geometrically meaningfully defined noise
as another other component would integrate the research. Candidates for
such a theoretical framework are e.g. MDL, stochastic geometry (Schnei-
der and Weil, 2008), information geometry (Nielsen, 2010) and geometric
algebra (Dorst et al., 2007) (GA). The MDL approach includes a difficult
sub-problem of defining outliers efficiently. The GA provides an interesting
formulation for the local point cloud covariance matrix, which is often used
to evaluate various dimensional saliency values. The local covariance can
be presented as a geometric object subjected to normal algebraic manipula-
tions, and some combinations of common geometric objects can be covered
concisely.

The D method of papers (R2) and (R4) extends easily to the 3D analysis.
By using two planes G1 and G2 depicted in Fig. 7.1, each pixel can be
given a beam with an observed intensity, and the beam field with its natural
neighborhood relations can be used to quickly find out the depth information
from observed surfaces (colored bars on the swimmer body). The end result
is a priori distribution for bio-mechanical posture detection. The actual bio-
mechanical underwater 3D surface registration is still a focus of research, the
key issues concern the presence of bubbles and blurred featureless surfaces.

Figure 7.1: The direct projection method, a 3D approach.

The proposed direct calibration approach adapts to the coming synthetic
aperture photography (light-field or plenoptic cameras) (Ng et al., 2005),
which are well-suited for swimming research, since a dense array of cheap

101



plenoptic cameras is easy to install, do not protrude to the swimming spool
space, and is able to reduce the effect of light scattering and bubbles, thus
rendering the ordinary imaging methods (using e.g. anchor points) usable.
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Abstract— Presence of ground surface stones is one indicator
of economically important landmass deposits in the Arctic. The
other indicator is a geomorphological category of the area. This
work shows that ground stoniness can be automatically predicted
with practical accuracy. Northern forests have less biomass and
foliage, thus direct analysis of stoniness is possible from airborne
laser scanning (ALS) data. A test set of 88 polygons covering
3.3 km2 was human-classified and a method was developed
to perform the stoniness classification over this set. The local
curvature of the surface is approximated directly from the point
cloud data without generating the Digital Terrain Model (DTM).
The method performs well with area under curve AUC = 0.85
from Leave-Pair-Out cross-validation, and is rather insensitive to
missing data, moderate forest cover and double-scanned areas.

Keywords— Logistic regression, aerial laser scanning, remote
sensing, natural resources, curvature, ground relief, point clouds,
open data.

I. INTRODUCTION

This work is about the stones and bolders detection at mass-
flow deposits in Northern Finland. Mass-flow deposits [12]
have become under consideration as a potential sediment sup-
ply for infrastructure construction. They are convex landforms
composed of poorly sorted coarse-grained sediments occurring
in topographic depressions as fields of tens or hundreds of
hummocks. They are characterized by irregular distribution
of boulders and stones on their surfaces although the size
distribution and density varies greatly. The surface stoniness
is a key parameter for recognition of the mass flow deposits.

The characteristics described above can be detected by
automated geomorphology analysis. The automation lacks
classification to stony and non-stony areas, though. Kemijärvi
district in Northern Finland provided polygon areas with expert
classification to 43 positive (stony) and 45 negative (not stony)
sites, which were used to verify the stoniness classification
method documented here.

The next two subsections present the data used and the cur-
rent state of the art on stoniness detection and related research.
Ch. 2 outlines the local curvature method and compares it to
the digital terrain based method. Ch. 3 presents results, and
Ch. 4 brings conclusions.

A. Test data

Airborne Light Detection and Ranging (LiDAR) is an active
remote sensing technique that measures travelling time of
a sent high energy monochromatic light beam to determine
distance to a target. Intensity of the these backscattered laser
pulses is also recorded. The airborne LiDAR data by the
National Land Survey of Finland (NLS) was obtained in
the fall 2012 with a Leica ALS50-II laser scanner (Leica
Geosystems, St. Gallen, Switzerland) from a flight altitude of
2000 m. Last-return data allows in this case 0.09 − 0.14m
vertical ground resolution.

This work concerns the point cloud coordinates q ∈ R3

only. The additional information available at laser exchange
format (LAS) specification [3] is not used.

The point cloud in this specific instance has c. 20-30 %
hits to forest canopy, the ground signal is rather clear. Also,
the stones and boulders are relatively large, the actual size
distribution has not been measured. Stones are bare and the
vegetation is thin due to northern latitude. On the other hand,
the point cloud is sparse with the sample density ρ ≈ 0.8/m2

at the ground level and the stone detection task is close to
the theoretical limit. Requiring 1..2 hits per stone one gets an
approximation for the minimum detectable stone radius rmin:
2πr2min ρ ≈ 1..2 (samples) → rmin ≈ 0.5..0.6m. Stones of
this size may have a detectable effect, if occurring at large
numbers.

Total area of the positive sample polygons is 1.7 km2 and
the number of LAS points is 1.6 × 106. The same numbers
hold for the negative samples.

B. Current approaches to detect stones

There seems to be no research about aerial ALS data and
stoniness detection applied to forest areas. Most of the research
on rock exposure and rock mass characterization is based
on on-site scanning with considerably higher point densities.
Usually the target area has no tree cover, objects are elongated
(walls, ditches, archaelogical road tracks, etc.) and often multi-
source data like photogrammetry or wide-spectrum tools are
used. E.g. [14] detects curbstones which separate the pavement



and road. The sample density ρ = 5/m2 produces geometric
error of size 0.3m which is larger than the observed shapes
(curbstones) and thus not practical.

Digital Terrain Model (DTM, or public terrain model in
Fig. 1) is a standard analysis concept used by Geographic In-
formation Systems (GIS). Many implementations and heuris-
tics exist to form DTM from LAS. Usually, the smallest raster
grid size is dictated by the sample density and in this case grid
size δ = 2m is possible, and δ = 1m already suffers from
numerical instability and noise.

A rare reference to DTM based detection of a relatively
small local ground feature (cave openings) at forest circum-
stances is in [15]. In that paper the target usually is at least
partially exposed from canopy and the cave opening is more
than 5 meters of diameter. On the other hand, the forest has
more biomass.

One reference [4] lists several alternative LiDAR based
DTM features, which could be used in stone detection, too.
Some of the features are common in GIS software, but most
should be implemented for stoniness detection.

Hough method adapted to finding hemispherical objects is
considerably slower, although there is recent publication about
various possible optimizations, see e.g. [7]. These optimiza-
tions are mainly about better spatial partitioning.

Minimum Description Length (MDL) is presented in [16]
with an application to detect planes from the point cloud. The
approach is very basic, but can be modified for hemispherical
objects rather easily. MDL formalism can provide an easy
choice between two hypotheses: a plain spot/a spot with a
stone.

Fig. 1. Alternatives for stoniness detection. The public terrain model is
nationwide, but does not provide finer details of local planarization.

The GIS approach to stone detection is missing but would
have three steps:

1) Generating either a Triangulated Irregular Network
(TIN) or DTM raster file from .las binary file. DTM
raster files are publicly available from NLS. 1

2) One or many texture features generated from DTM
3) texture classification

The texture features possible are the following:

• local height difference, see Laplace filtering in upper row
in Fig. 4. An alternative is difference of a point cloud
spline surface and a coarse DTM.

• various roughness measures, e.g. rugosity (related
trigonometrically to the average slope), curvature, stan-

1NLS laser data: http://www.maanmittauslaitos.fi/en/maps-5

dard deviation of slope, standard deviation of curvature,
mount leveling metric (opposite to a pit fill metric men-
tioned in [4])

• Multiscale curvature presented in [6]. It is used for di-
viding the point cloud to ground and non-ground returns,
but could be modified to bring both texture information
and curvature distribution information. The latter could be
then used for the stoninesss prediction like in this study.
The methods, possibly excluding TIN based interpolation,
seem to be numerically more costly than our approach.

The actual texture classification method would be heavily
influenced on the choices made above. Most of the features
listed are standard tools in GIS systems or can be implemented
by minimal coding. E.g. the mount leveling metric would
require negating the height.

Terrain roughness studied in [4] is a concept which is close
to stoniness. Authors mention that the point density increase
from ρ = 0.7/m2 to ρ = 10/m2 did not improve the terrain
roughness observations considerably. This is understandable
since the noise at the vertical components of surface hits
is at the range of the higher density. The paper states that
algorithms producing the features have importance to success.
This led us to experiment with various new algorithms.

Point cloud features based on neighborhoods of variable
size are experimented with in [10]. Many texture recognition
problems are sensitive to the raster scale used, thus we tested
a combination of many scales, too.

In comparison to previous references, this approach is rather
independent study based on four facts: point cloud density
is low, ground hit percentage is high providing relatively
even coverage, a direct approach without texture methods was
preferred, and the method is for a single focused application.
Also, we wanted to avoid complexities described in [8] and
keep the method parameters tunable by cross-validation.

II. LOCAL CURVATURE APPROXIMATION

This presentation uses the following concepts, most of
which will be elaborated later in the text:

• sample polygon is a geographical area, either stony or
not stony. See Fig. 4.

• points q ∈ Q ⊂ R3 of the LAS point cloud Q
• raster of size n1 × n2, n1, n2 ∈ N and cell size δ ∈ R+

• raster grid locations k ∈ I ⊂ {1, ..., n1}×{1, ..., n2}, for
indexing. I covers only the sample polygon area.

• raster grid points ck ∈ R2. The grid is on the horizontal
(x, y) plane, x corresponding to ETRS-TM35FIN east
coordinate and y to north.

• approximate topological heights zk ∈ R of the approxi-
mated ground surface

• surface points pTk = (cTk zk), {pk}k∈I = P ⊂ R3

• surface normals {nk}k∈I = N ⊂ R3

• nearest cloud points {Qk}k∈I,Qk⊂Q from the location k,
see Fig. 2

• surface triangularization J ⊂ I3, see Fig. 2



• adjoining triangles Vk at location k ∈ I , see Fig. 2
Vk = {(j0, j1, j2) ∈ J | ∃ l ∈ {0, 1, 2}, jl = k}

Fig. 2. Left: The triangulation of the grid avoids the incomplete squares. A
triangle (k0, k1, k2) and local cloud point set Qk depicted. Right: A stone
revealed by two adjacent tilted planes. That stone gets detected only with
δ = 2m.

The surface points P , normals N , and triangularization J
form a surface model S = (P,N, J). Heights zk and normals
nk are approximated based on local point cloud subsets Qk.
The aim is to compute a heuristic curvature κk at each grid
location k and then use the resulting normalized histogram
over a sample area for classification. The heuristic curvature
κ is based on Gaussian curvature G and mean curvature H .
The problem of approximating G and H from a ground surface
triangulation J is presented in [5] and [13]. We gained more
prediction accuracy by not generating the normal vectors from
the triangular mesh (P, J) as in [5] but producing normals in
a separate fitting process Qk ⇒ nk (see App. I), and then
applying the single triangle formulation of [13].

The histogram of curvature over each polygon proved to
be simple and efficient basis for classification. One does not
need to construct the DTM surface for that, local sampling of
the point cloud is enough. Also the texture analysis can be
skipped.

The algorithm steps 1...3 are repeated once per each grid
constant δm, m = 1...6, see Table 1. The steps are:

1) Estimating the ground height zk and ground normal nk

by local plane fitting at a grid location k.
2) Curvatures calculated at the vertices of each triangle of

the grid, see Fig. 2.
3) Local curvature estimation at location k based on voting

among the adjoined triangles Vk.
4) Curvature histograms are normalized, vectorized ...
5) ...and used by logistic regression.

Vector voting methods listed in [9] decrease noise and
achieve good approximative surface normals for symmetrically
noisy data sets. Our target cloud has asymmetrical noise
(vegetation hits are always above the ground), and hits under
the ground (reflections) are extremely rare. Finding the local
planes is very straight-forward adaptation of [11]. The plane
fitting process resembles usual localized principal component
analysis (PCA) except the distance weight is not symmetrical,
but penalizes heavily points immediately below the local

ground manifold while attempting to ignore the points well
above the ground. After local planes are generated, local cur-
vatures are calculated by adaptation of the process described
in [13].

A more detailed presentation of steps 1-5 follows:
1: Approximating the local planar fit. The regular grid points
ck are given the approximate local heights zk and normals nk

by a plane fitting process which uses local cloud points Qk.
The fitting algorithm is described in the App. I. The result is
the surface model S.

Sec. 3.2 of [2] presents a very similar approach, except
the fitting function g(.) used there is quadratic and intended
for well-pruned (thin) and dense manifolds of points. To
summarize this step: ck, Qk ⇒ (pk,nk). See the App. I for
details.

2: This step uses the ground surface approximation S to
estimate local curvatures κki, k ∈ I, i ∈ Vk at all vertices of
all triangles J . Ch. 3 of [13] provides a simple and elegant
barymetric interpolation of curvature properties over a triangle
j ∈ J , when triangle corner points and the corresponding
surface normals are given. Triangle set J is produced by taking
care that every grid square with only 3 points gets a triangle,
then filling the complete squares by splitting them to two
triangles randomly. See Fig. 2. The incomplete squares are
a result of too sparse or completely missing cloud points.

The exposition in [13] ends to expressions for Gaussian
curvature K and mean curvature H of the ground relief S
limited to a triangle. Curvatures are calculated using heuristics
of App. II. To summarize this step: S, J ⇒ κkj , j ∈ Vk.

3: Each grid location k gets several nominal curvature
candidates, one per each adjoining triangle vertex j ∈ Vk.
The final value is the mode of the candidates. The summary:
{κkj |j ∈ Vk} ⇒ κk.

4: The final preliminary step before the supervised learn-
ing is the vectorization process. Each sample polygon i ∈
1..n, n = 88 gets analyzed with a grid constant δr, r = 1..6
resulting in a histogram vector xir of all curvatures at the
sample polygon i. A summary: δr, {κk}k∈I ⇒ xir.

Table 1. Grid constants used.

Grid m 1 2 3 4 5 6
δm (m) 1.25 2.0 3.0 4.0 5.0 6.0

The histogram is more refined near the zero curvature, the
exact definition of the bin limits is here:

κ0 = 0.04 1/m, κ6 = 1.8 1/m

κb =

(
1

κ0
+
b

6

(
1

κ6
− 1

κ0

))−1
, b ∈ 1...5

B = {−κb}b=0..6 ∪ {0} ∪ {κb}b=0..6 (1)

The bin limits B are then sorted to ascending order.



Each representation vector xir is normalized and appended
to form the final sample vector:

xi = (1xi1/‖xi1‖, ...,xi6/‖xi6‖) ∈ Rd+1, i ∈ 1...n (2)

The maximum dimensionality of the problem d = 6×(7+1+
7− 1) = 75 is based on the histogram bin definition in Eq. 1,
the choice of the number of the bins and concatenation of 6
histograms. Subtraction term −1 comes from the fact that the
histogram is defined by the bin limits, not by the bin centers.
Actually, all possible subsets of six grids were tried, five best
combinations are listed in Table 2.

Fig. 3. Curvature histograms of the polygons 632 (non-stony, dotted line)
and 7089 (stony, solid line) introduced at Fig. 4. Histograms are normalized
and concatenated to form a sample vector.

Figure 3 depicts the distributions of two polygons on all grid
sizes. The non-stony signal has distinctive amount of planar
areas with approximately zero curvature. Stony areas have
both positive and negative curvature extremes reducing the
close to planar areas. The curvature range κ ∈ [0.05, 0.1] 1/m
represents typical ground contour not interfered with stones.

It is possible to formulate a similar interpolation for a
bilinear case over one square of the grid following the same
derivation procedure as in [13]. The triangular formulation
recovers the data nearby the low point density areas more
efficiently.

A. Comparison to DTM approach

Three different grids are visualized.
Conventional geographic information systems (GIS) have

well-established DTM routines. With the available point den-
sity, their range reaches to grid size δ = 2m. Tighter grids
e.g. δ = 1m are numerically unstable.

For visual comparison, two test areas located West from
Kemijärvi Finland were processed with the standard GIS tool
ArcGIS 10.3 using ArcGIS/Topo-to-Raster.2 method. Areas in
question have different scales indicated by a line of 100m
length. A visual comparison is in Fig. 4.

2ArcGIS Topo to Raster: http://resources.arcgis.com/en/help/main/10.1/index.html

Fig. 4. Upper row: Laplace filtered DTM height relief generated by a GIS
software. Lower row: curvatures from LAS cloud. Left column: A non-stony
area 632. Right column: A stony area 7089. The scale indicated by a horizontal
100 m long line. The scales and three zones of different grid sizes are common
to both columns.

Fig. 4 left column is a non-stony, and right column stony
sample. The upper row is GIS topographic height model, the
lower row is the local curvature rendered by our approach.
The grid size δ = 1.0m is impossible to produce with
standard terrain modeling tools. GIS results have been filtered
by the 3× 3 mean difference to make it visually comparable
with curvatures. The GIS height signal detects stones at
4.0m range, but also picks up the basic contour signal. Both
samples miss r = 1.0m range stones.

The conventional GIS approach to stoniness classification
would have the three steps (data → DTM → textures) pre-
sented in Sec. I-B. GIS tools have certain lack of control over
the process which produces the DTM on which the further
texture analysis must be founded. Also, the texture methods
have trouble learning from the teaching polygons which have
a slightly lax spatial relation to actual stony areas. It seems
that the approach presented here exceeds the capabilities of
many open source and commercial GIS software.

B. Method parameters

Strictly speaking, there are 15 parameters for weight func-
tion g(.), 3 for histogram and 6 for grid constants. One pa-
rameter is a tolerance for close-to-planar case when Gaussian
curvature K ≈ 0. Preliminary numerical tests indicate that
the weight parameterization seems to be rather independent



problem to general classification performance. Same holds to
the planarity limit and histogram definition. That leaves 6 grid
constants as practically effective method parameters.

III. RESULTS

A. Logistic regression

The label vector yi ∈ {0, 1}, i = 1..n was acquired by field
campaign done by a geology expert.

This is a qualitative response problem, so logistic regression
was chosen to predict a label ŷ from a given sample vector
x. The prediction coefficient β ∈ Rd+1 is tuned by usual
maximum likelihood approach to optimal value β∗T ′ using a
sample set {(xi, yi)}i∈T ′ , T ′ ⊂ T = 1..n where T ′ is the
training set and T is the full sample set:

f(xi,β) = Pr(yi = 1 |xi) = (1 + exp [−β · xi >])
−1

ŷ(T
′)(x) =

{
1 f(x,β∗T ′) ≥ 1/2

0 otherwise
(3)

The sample vectors xi are defined in Eq. 2 and the label
vector yi in the text soon after Eq. 2. Vectors {xi}i∈ T ′ are
standardized before solving the regression problem.

The area under curve (AUC) performance measure seems
natural in this application area, where cost functions do exist
but are not exactly known. The number of samples n = 88
is rather small due to the time constraints set for the field
campaign for capturing the label data. [1] recommends in this
case:

• to perform a leave-pair-out test over all possible positive-
negative label pairs P , and

• to measure AUC by using the Heaviside function H(.)
for summation.

AUC =
∑

(i,j)∈P

H(ŷij − ŷji)/|P |

ŷij = ŷ(T\{i,j})(xi) (learning without a pair i, j)
P = {(i, j) | yi = 1, yj = 0, i, j ∈ J}

H(∆ŷ) =
(
1 + sign(∆ŷ)

)
/2

B. Summary of results

There are 63 possible non-empty subsets of the six available
grids, each leading to different vectorization of the samples.
The best 4 subsets are listed in Table 2 ordered by the leave-
pair-out AUC.

The publicly available DTM data from NLS has the grid
size δ = 2m. Grid combination {5, 6} of this study could be
based on the DTM data, it results in almost equal performance.

Table 2. Results with different combinations of grid sizes δm, m = 1, .., 6.

The best result when using only the GIS range of grids is marked with (*).

Grids used, m ∈ {1, 4, 5} {5, 6} {1, 3, 5} {1, 4}
AUC 0.853 0.845* 0.837 0.837

It can be claimed that the Table 2 result (*) is an opti-
mistic estimate for the DTM/GIS approach since information
about normals is missing in public DTM. Normals should be
geometrically estimated e.g. from 4 adjacent grid squares of
grid constant δ = 2.5m, and that size is close to numerically
unreliable with this data density. Our method uses information
from only one grid square at a time ans is numerically more
stable.

IV. CONCLUSIONS

The prediction performance AUC = 0.85 is adequate for
practical applications. The forest type of the test site is rather
common and it is likely that almost similar ground sample
densities can be expected especially in pine-woods elsewhere
in Finland.

The method can be used as a generic stoniness indicator,
but to use it independently off the context of this study, one
should implement an approximation of the distributions of size
and density of stones and boulders. Also, it is likely that the
current method does not detect stones with radius r < 2m
well.

The method has linear computational efficiency due to space
partitioning. The analysis speed is now c. 2 km2/h with the
point density 0.8− 1.2 points/m2, and using Python 3.4/Intel
Core ir-3470. The speed gains are possible by avoiding the in-
terpreted execution, by cheaper approximation of the curvature
and by using distributed computation. The speed is practical
already, though.

Texture analysis has many possible methods, some of which
could perform well in this problem. Texture methods easily
react to the general terrain type of the test site and are then
less generalizable to new sites. In our opinion, one has to strive
for independence from the terrain type and develop methods
which detect stoniness decoupled from the environment. The
more direct the method is, the better.

For some point cloud classification problems e.g. stoni-
ness detection, texture based methods may not be the sole
technique. Direct point cloud analysis methods have to be
developed in parallel.
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APPENDIX I
SURFACE APPROXIMATION

The input and output of the algorithm are:

• input: the set of nearby cloud points Qk ⊂ R3 at grid
location k, and the grid point ck.

• output: local surface point pk and normal nk defined by
a local planar approximation Pk of the surface S. Pk =
{x ∈ R3 | d(x, pk,nk) = 0}, pk ∈ Pk and nk is the plane
normal. d(.) is the geometric distance between the plane
P and a cloud point q.

Optimization concerns parameter wT
k = (zk, u, v) where

zk is the local height associated to the grid point ck, and u, v
are orientation parameters of the local plane normal nk. The
problem of finding the local plane Pk is now:

w∗k = argmin
wk

f(wk) =
∑
q∈Qk

g[d(q, pk,nk)] (4)

d(q, p,n) = (q − p) · n/‖n‖2
pk = (cTk , zk)T

nk = (u, v, 1)T

g(.) = see Fig 5 and Table 3 (5)

Iteration starts with winit = (minq∈Qk
(qz), 0, 0)T and ends

when the change of the target function f(t) is small enough.
The second order polynomial in Fig 5 depicts the normal least

squares linear regression, which would often lead the surface
approximation S to diverge from the best possible fit. The
shape of g(.) enables the iteration to converge from the initial
winit to a local ground alignment w∗.

Fig. 5. The penalty function w = g(l). l is the distance of point p from a
local plane and w is the weight given to the distance l.

g ∈ C1(R,R+) is a piecewise third order polynomial,
which has the interval properties listed in Table 3. The table
defines g(.) uniquely inside the range l ∈ [l1, l5]. The linear
extrapolation is applied outside that range. Within a range l ∈
[li, li+1], i = 1..4 and with end values gi = g(li), g

′
i = dg

dl (li):

∆li = li+1 − li
g(l) = (gi, gi+1, g

′
i∆li, g

′
i+1∆li) · h ((l − li)/∆li) (6)

h(t) = (h0(t), h0(1− t), h1(t), h1(1− t))
h0(t) = (2t− 3)t2 + 1

h1(t) = (t− 2)t2 + t (7)

The parameters of the distance weight function g(.) are
presented in Table 3.

Table 3. Weight function definition. Indices i refer to points at Fig. 5. Note
that the orthogonal distance li has a physical dimension (m).

i 1 2 3 4 5
li (m) -0.4 -0.1 0.04 1.0 2.0
g(li) 8.0 0.0 0.0 2.0 2.6
dg
dl

(li) -0.3 0.0 0.0 1.4 0.27

Parameters were chosen by the following criteria:

1) the plane Pk coincides with the local mode of the
distances dq = d(q, p,n), q ∈ Qk, k ∈ I1 ∪ I2, where
I+ represents locations of a positive sample polygon and
I− of a negative sample

2) convergence from the initial value winit quaranteed by
linear extrapolation

3) acceptable convergence speed



APPENDIX II
APPROXIMATE LOCAL SURFACE CURVATURE

Curvature tensor approximation for triangulated surfaces is
presented in detail in Ref. [5]. Ch. 3 of [13] has derivation
of Gaussian curvature K = κ1κ2 and median curvature H =
(κ1 + κ2)/2 where κl, l ∈ {1, 2} are the two eigenvalues of
the curvature tensor.

This is a reproduction of Ch. 3 of [13] adapted to the
notation used in this paper. Triangle vertex points p0, p1, p2
and the corresponding surface normals n0,n1,n2 come from
the planar fits (see App. II) and are given in relation to a
triangle j ∈ J . The following computation is indifferent to
the orientation of vertices and the scaling of the normals. The
triangle index is omitted.

Note that the successors (.)′ and precedessors ′(.) in the
triangle indexing are presented by prime markings:
0′ = 1, 1′ = 2, 2′ = 0, ′(i′) = i.

uT = (u0, u1, u2) barycentric coordinates
u0 + u1 + u2 = 1

q̃(u) = (p0 p1 p2)u, triangle surface point
ñ(u) = (n0 n1 n2)u interpolated normal
D = |(n0 n1 n2)| scaling determinant
ri = p′i − pi′ edge vectors

m = ri × ri′ triangle normal (any i)
h =

∑3
i=1 ni × ri

M(u) = ñ(u) ·m

Then the two eigenvalues κ1, κ2 of the curvature tensor are:

K(u) =
D

||ñ(u)||2M(u)

H(u) =
ñ0(u) · h
2M(u)

κl(u) = H(u)±
√
H(u)2 −K(u) (8)

The following heuristics gives a single value, which repre-
sents the curvature:

κ(u) =

{
sign(κ1u)

√
|K(u)|, sign(κ1(u)) = sign(κ2(u))

H(u), otherwise
(9)

The curvature κ(u) has to be evaluated at every corner:
κjl = κ(ul) where u0 = (1, 0, 0),u1 = (0, 1, 0),u2 =
(0, 0, 1). Note that this appendix considered the vertex cur-
vatures of triangle j ∈ J .

The heuristics in Appendices I-II have not been completely
optimized. Further improvements are still possible.
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Abstract: This paper proposes a digital camera based swimming analysis system for athletic use with a low budget. The
recreational usage is possible during the analysis phase, and no alterations of the pool environment are needed.
The system is of minimum complexity, has a real-time feedback mode, uses only underwater cameras, is flexi-
ble and can be installed in many types of public swimming pools. Possibly inaccurate camera placement poses
no problem. Both commercially available and tailor made software were utilized for video signal collection
and computational analysis and for providing a fast visual feedback for swimmers to improve the athletic
performance. The small number of cameras with a narrow overlapping view makes the conventional stereo
calibration inaccurate and a direct planar calibration method is proposed in this paper instead. The calibration
method is presented and its accuracy is evaluated. The quick feedback is a key issue in improving the athletic
performance. We have developed two indicators, which are easy to visualize. The first one is the swimming
speed measured from the video signal by tracking a marker band at the waist of the swimmer, another one is
the rudimentary swimming cycle analysis focusing to the regularity of the cycle.

1 INTRODUCTION

This paper describes the swimming analysis system
being developed at the Impivaara public swimming
center in Turku, Finland. Starting a new site for swim-
ming analysis requires usually considerable resources
and our economical approach with 5-7ke budget for
hardware and software licenses should be of interest
to any swimming coach considering a basic comput-
erized real-time feedback at a local site.

Budget reasons forced us to use 3 cameras only
and video coverage of 18 m. Another major constraint
was to get the system up and running with no special
initial procedure and without disturbing recreational
swimmers. The system can be expanded in the future
by a fourth camera at the grey dot depicted in Fig1.
This setup will cover the whole 25 m pool length.

We use the video image series of the light-
reflective marker on the waist of the swimmer to
record the movement of the swimmer. The marker
moves along the tracking plane, which resides 200
mm aside towards the cameras from the centerline of
the swimming lane. The distance has been chosen so
that it approximates the dimensions of the pelvis of an
average-sized adult male and female. The real move-

ment of the marker is naturally a non-planar one, but
the planar approximation is a useful first step to sim-
plify the swimmer movement analysis. The tracking
plane of swimming lane 7 is depicted in Fig.1. The
tracking plane has c. 1 m depth at the shallow end and
c. 2 m depth in the deep end of the pool. All the cali-
bration measurements were constrained on this plane,
and the calibration result is a geometric mapping from
the image pixels to global coordinates of the tracking
plane. Two lanes with numbers 7 and 8 were cal-
ibrated. Lane 8 is used occasionally for swimming
analysis purposes, but camera views do not cover the
whole length of the tracking plane as seen in Fig.4.

The camera positions are constrained to win-
dowsills at the sides of the pool at the depth of 560
mm. The image mapping was constructed directly in
relation to the tracking plane, and this method does
not require usual camera model, camera locations and
orientations. The stereo calibration method proved in-
ferior because of very limited overlap between cones
of visibility, see Fig.4.

The design emphasizes the possibility to a fast
feedback. Thus there are features which are designed
to operate in real-time during the session of athletic
performance. There are also some features which are



Figure 1: The general layout of the site seen from above.
The tracking plane of lane 7 is emphasized.

based on the post-session phase. The forms of the
feedback implemented are:

1. Real-time marker movement tracking embedded
on the video.

2. Different performances presented side-by-side for
visual comparison and evaluation. It can be real-
time and post-session.

3. Stroke variation visualization, which is designed
so that it can be monitored by the athlete in the
pool. It can be real-time or post-session.

4. Geometric transformation of the video stream
from pixels to global coordinates. It can be real-
time or post-session.

The geometric mapping algorithm can project the
raw video to a real-time 25 fps mono-color visualiza-
tion on the tracking plane. The full quality color video
has processing speed of c. 5 fps and cannot be per-
formed in real-time. The geometric mapping will be
a crucial part for a seamless swimmer-focused view
after the swimmer detection has been implemented.

The marker tracking routine introduces both
stochastic and algorithmic noise to the signal. After
the pixel signal is transformed to global coordinates,
the signal needs to be smoothed to eliminate the noise.
The Kalman smoothing uses a basic dynamical model
of a swimmer body. Smoothing requires the record of
the whole performance as input and thus is a post-
session step.

So far the coaching routine with verbal and video
feedback has been established, but already the proce-
dure is used on weekly basis and it requires no extra
technical personnel on site.

The rest of the paper is organized as follows.
Sec.2 is a short presentation about the current re-
search. Sec.3 documents the architecture of the sys-
tem, tracking and swimming cycle registration. Sec.4
presents the used in-plane calibration method in de-
tail, since this aspect is heavily dictated by the budget
limitations yet opens possibilities for future research

as well. Sec.5 is about the real-time tracking visual-
ization.

The swimmig cycle registration and comparison
presented in Sec.6 has been an important early facil-
ity for the coaching. The post-session analysis phase
of Sec.7 is one adaptation to the budget limitations.
Sec.8 summarizes the design choices made to achieve
the real-time system response. Sec.9 has conclu-
sions and discussion about the possible future devel-
opments.

2 LITERATURE REVIEW

There are several approaches to swimming analysis.
The oldest one is using wire. (Jean-Claude, 2003)
reports about measuring the force in the wire while
some object is dragged behind, another method is
measuring the swimmer speed directly using the wire.
The mechanical method is used especially to verify
the video installments.

Video analysis is the dominant mode of perfor-
mance analysis nowadays, see e.g. a review of the
field in (Kirmizibayrak et al., 2011). A typical ap-
proach is:

• to produce the continuous video stream from mul-
tiple cameras

• and trace anchor points of the body (marked or
nonmarked) and then

• combine the acquired information to a biome-
chanical or 3D visualization model.

There are several commercial tools available,
many of them summarized in (Kirmizibayrak et al.,
2011). Typical examples are Dartfish (Dartfish, 2015)
and Sports Motion (Sportsmotion, 2015).

Wearable accelerometers are relatively new tools.
These are developing smaller and lighter, also the op-
eration time is increasing due the lower power re-
quirements and increased battery capacity. (Dadashi
et al., 2013) shows an arrangement with only one
accelerometer to record the swimming performance
over the full length of the pool. The data link is
usually radio-linked in bursts like e.g. (James et al.,
2011), or in the end of the performance, like in
(Dadashi et al., 2013).

A typical large scale system design can be found
from (Mullane et al., 2010). They provide an ex-
cellent analysis of what feedback should be provided
real-time and what at post-session phase.

Swedish Center for Aquatic Studies has AIM
(Athletes in Motion) system which can combine
views from submerged and above-water cameras,



see (Haner et al., 2015). The calibration process re-
sembles our approach albeit they use striped poles
while we use chessboard pattern. AIM has been de-
veloped by efforts of Chalmers and Lund Universities.

Chalmers University has a multiple accelerometer
arrangement, which is coupled with a video analysis
and a biomechanical model. Accelerometers can be
placed by suction cups to various areas of the body.
One study shows how a relatively low frequency still
provides adequate biomechanical modeling (Siirtola
et al., 2011).

Another video technique is the virtual camera
technique, where a moving viewpoint is synthetized
between two adjacent cameras. It is possible to in-
terpolate the view between stationary spots like in
(Makoto et al., 2002).

Head is a popular choice of strapping the athlet
with a sensor device. One can wear a colored cap, or
swimming glasses with an accelerometer, see (Pansiot
et al., 2010).

Relatively new approach is the video analysis
without markers (Ceseracciu, 2011). From athlete
point of view it is much less intrusive and enables au-
tomation of the analysis process.

The trend in research seems to be towards 3D
visualization and increasing usage of biomechanical
models. Actual analysis is quite developed and re-
maining goals are at quick performance feedback and
well visualized and conceptually simple performance
measures.

As a summary, existing systems are well-
developed and serve the coaching activities well. Of-
ten the implementation is rather involved requiring
technical assistance, set-up times and high initial and
running costs. Our aim was to produce a cheap and
simple non-intrusive alternative with stable basis for
further improvement.

3 SYSTEM DESCRIPTION

The system consists of:

• one 2-core 3.2 GHz 64 bits computer with. 2 TB
of disc space

• 3 permanently placed 50 fps cameras at the side
wall of the 25 m pool. The maximum image size
is 750×2044. The camera placement is dictated
by the construction of the pool.

• one movable extra camera for above-water usage
and one movable underwater camera. Usage of
the extra cameras is just for visual observation and
verbal feedback only.

• movement marker and band at the hip of the
swimmer.

The cameras and computer record and store over 50
fps high resolution digital video in uncompressed for-
mat. The image size is 750× 2044 pixels. An indi-
vidual pixel of the geometrically transformed image
corresponds to 4.0×4.0 mm2 and 2.3×2.3 mm2 on
lanes 7 and 8, correspondingly.

The uncompressed data from three cameras
amounts to about 1GB for a 10 second clip. All cam-
eras are synchronized so that they capture images at
the same time. The time stamps are stored in the video
files and they can be used in determining how to stitch
the tracking results.

Marker tracking algorithm utilizes OpenCV pack-
age (Bradski, 2000). Camera calibration was done
with self-developed software.

Process is divided to real-time and post-session
phases. Figure2 illustrates the various steps of the
process. The recorded video is stored in a raw uncom-
pressed file format specific to the camera manufac-
turer and is later accessed by the post-session phase.

Figure 2: The processes and data flow. Post-session steps
are indicated by the dashed outline.

4 CAMERA CALIBRATION

Camera calibration is a preliminary measurement pro-
cess delivering either the camera model (mapping
from pixels to normal vectors of the pinhole camera
idealization) or the direct geometric mapping from
pixels to global positions.

Three calibration methods, stereo-
camera (Bouguet, 2008), mono-camera (Bouguet,
2008) and our own direct planar calibration were
tested.

The stereo-calibration is an industry standard
method since it is able to produce depth information
(3D) and is not limited to the tracking planeG of
Fig. 1. It calibrates the full camera view just like the



mono-camera method. It also provides an early qual-
ity check in the form of relative camera positions de-
picted in Fig.3. The position error was c. 85 mm
even after the best possible calibration measurements
described in (Bouguet, 2008).

Figure 3: The camera positions from stereo-calibration.

Reason for the low accuracy is the difficult geom-
etry of the camera positions dictated by the location of
the windowsills of the pool, see Fig.1. The amount of
overlap of the camera views is only c. 22%, see Fig.4
with refraction included, whereas the overlap ratio in
a usual stereo calibration analysis is above 50%.

Figure 4: The area of visibility per each camera on the
tracking plane. Colors (red/green/blue) correspond to cam-
eras (1/2/3). Only c. 22% of the view is overlapping at lane
7. The lane 8 is closer to cameras, and there is no overlap-
ping anymore.

The small overlap also rules out the homography
approach described in (Chum et al., 2005) applied to
all the sample points at the whole tracking plane at
once. Otherwise that method would have been excel-
lent, since it is able to use the expected location errors.

The mono-camera approach is very close to
stereo-calibration, except the location and orientation
of each camera is a separate subject of the match-
ing process, when a fit is made to the tracking plane
data. The mono-camera method is also close to the
direct planar calibration presented in Sec.4.1. The
main difference is that the direct calibration requires

no camera model (not even the camera location) and
that the mapping from pixels to global locations can
be arbitrarily chosen. The mono-camera calibration
produces better mapping quality at the image borders
than the direct planar calibration. The difference is
aesthetic only, since the accurate zone of the direct
calibration can be made large enough to accommo-
date all the swimmer motions. Also the mono-camera
approach has been omitted from this presentation.

The stereo and mono calibrations were done with
Matlab Camera Calibration Toolbox, see (Bouguet,
2008). The theory of the toolbox is given at (Zhang,
1999) and (Heikkilä and Silven, 1997).

The most accurate method was the direct planar
calibration proposed in Sec.4.1. This method can be
categorized as an ad hoc approach answer to two con-
straints: sparsely placed camera array and potential
for real-time video transformation. Nearest reference
is (Luo et al., 2006), which uses a camera model and
requires the co-planarity of the camera image plane
and the tracking plane. Our method requires no cam-
era model. The direct planar method is presented in
the following.

4.1 Direct Plane Calibration

The geometric calibration was done for lanes 7 and
8 of ten available lanes. The calibration data for the
direct method was gathered by floating a calibration
chessboard along the surface at the tracking plane and
recording its position at each picture, see Fig.5. The
chessboard had buoys at the top and weight at the bot-
tom. The global positionx0 of the board was mea-
sured within 10 mm accuracy std.

To ease the presentation, some definitions are
needed. An imageI = (P,J) of sizen×m is a pair of
set of pixelsp∈ P = [1,n]× [1,m] ⊂ Z2

+ and their in-
tensitiesJ = { j(p)|p∈ P}, where an individual pixel
p has intensityj(p). Images come in three varieties,
source imagesIs = (Ps,Js), geometrically transformed
target imagesIt = (Pt ,Jt), and calibration images.

The tracking planeG = {g∈ R3 | (g−gG) ∙nG =
0} is defined by one insident pointgG = (0,0,z0)T ,
wherez0 = 5050 mm in case of lane 7. The 200 mm
aside of the center of the swimming lane. The normal
vector nG is a unit vector aligned with the globalz
axis. The marker is assumed to move along this track-
ing plane. Fig.1 depicts the tracking planeG and the
global coordinatesx,y,z.

A chessboard corner pixel and its corresponding
global positions form a measurement pair(p,g) ∈U .
The calibration data setU is cumulated over all cali-
bration images. One measurement image is depicted
at the upper part of Fig.5. The lower part shows the



Figure 5: Direct calibration on the tracking plane. Above:
an individualx0 position of the calibration board at camera
2 view. Below: the cumulated observation setU of camera
1 consisting of corner point pixelsp and global positions
g ∈ R3 from all images of lane 7 at camera 1. Only thex
component of the global positiong depicted.

measurement setU (only x component ofg shown).
The pixel samples ofU cover only a part of the im-
age pixelsP whereas the end result of the direct plane
calibration maps all pixels of the source image onto
the tracking planePs → G. In that sense this is an
interpolation problem.

In the following, only the mapping of thex com-
ponent is detailed. They component has a similar
treatment and is omitted for brevity. There would
be some advantage to use a coupled mappingp →
(x,y) e.g. a mono-camera model for interpolation but
even this rudimentary approach with two independent
mappings produced encouraging results.

A piecewise bilinear smoothing function:

x = f (p,α∗
x) (1)

with shape parametersα∗
x ∈ Rd and automatic tiling

heuristics is used to set a mapp→ x from pixelsp to
the global coordinatex. The shape parameter dimen-
siond ∈N+ varies case by case because of the imple-
mentation (D’Errico, 2006) but is in this application
d ≈ 80. The regularization parameterλx ∈ R+ con-
trols the smoothness. The definition below uses func-
tionalsAx for error penalty andB for non-smoothness

penalty:

α∗
x = argmin

α
Ax( f (.,α))+λxB( f (.,α))

Ax( f (.,α)) = ∑
(p,g)∈ U

( f (p,α)−x)2 (2)

B( f (.,α)) = ∑
(p,g)∈ U

(mean
q∈Np

f (q,α)− f (p,α))2

In the above,Np is the set of neighboring pix-
els of p at pixel radiusr = 2. The function f (., .)
is implemented as Matlabgridfit.m with ’bilinear’
and ’laplacian’ options, see (D’Errico, 2006). Val-
uesλx = 120, λy = 180 were chosen to keep the non-
smoothness measureB(.)/A(.) tolerable.

4.2 Precomputed Mapping

Let us combine Eqs.2 and 1 for further treatment.
The source image pixelsps are mapped to tracking
planeG by:

Fs(ps) = ( f (ps,α∗
x), f (ps,α∗

y),z0) ∈ G, ps ∈ Ps (3)

The image ofIs on G is nowFs(Is). The target image
It is mapped to tracking planeG by:

Ft(pt) = g0 + γ




0 1
1 0
0 0



 pT
t ∈ G, pt ∈ Pt (4)

The target image pixel sizeγ = 4.0 mm for lane 7 and
γ = 2.3 mm for lane 8. Image locationg0 is specific
for each camera view on each swimming line. Pixel
p = (i, j) has row and column indices as depicted in
Fig. 6. It is now possible to interpolate the intensity
value ofpt using Shepard interpolation of Eq.6 at the
tracking planeG.

First, some definitions. Let|Pt | be the number of

pixels in the imageIt andM ∈ N|Pt |×4
+ be a reference

pixel matrix. One rowMpt . specified in Eq.5, holds
4 reference pixels fromPs for a pixel pt ∈ Pt . The
nearest neighbor operator NNk(x,X) selectsk nearest
neighbors ofx from a setX. Sets are treated as vec-
tors whenever there is a unique enumeration of the
set. The location ofpt is gt . Nt is the set of 4 nearest
neighbors of the sourcce image locations arG.

gt = Ft(pt)

Nt = NNk(gt ,Fs(Ps)) ⊂ G, k = 4

Mpt i = F−1
s (Nti) ⊂ Ps, i = 1...4 (5)

Wpt i = {s(‖gi −gt)‖) | gi ∈ Nt}
0, i = 1..4 (6)

s(r) = 1/max(r, 0.05 mm)

whereW∈R|Pt |×4
+ is a radial interpolation weight ma-

trix with a correspondence to same indexing as ma-
trix M. Functions(r) is the radial weight used. The



normalization in Eq.6 happens byL1 norm: w0 =
w/∑i |wi | for a general weight roww.

Considering pixel intensitiesJt andJs as vectors
indexed by pixels, the transformation becomes:

Jt(pt) :=
k

∑
i=1

Js(Mpt i)Wpt i (7)

By selectingk = 1 one gets the real-time transforma-
tion:

Jt(pt) := Js(Mpt1) (8)

Eq. 8 corresponds to the Nearest Neighbor refer-
encing which can be computed at 25 fps (measured
with Matlab). The casek = 4 of Eq.7 can be com-
puted at 5 fps and thus is not usable in real-time. The
quality of k = 1 case is adequate to a video stream,
see Fig.6. If quality par the original is required, one
can use Eq.7. The balance between speed and quality
can be tuned further by choosingk = 2 ork = 3.

The geometric image mapping is efficient and
simple, see Eqs.8 and7. The formulation used also
makes it possible to combine the three separate video
signals accurately to one single video. This feature
will be implemented when an automated swimmer
targeting is added to the system.

Figure 6: Quality of the fast mapping, a detail at the oppo-
site wall. Above: the source imageIs with pixel coordinates
i and j. Below: the target imageIt with global coordinates
x andy.

4.3 Error analysis

The measurement pointsU in Fig. 5 are in approx-
imate horizontal rows. There is c. 150 mm vertical
gap between rows and c. 50 mm average horizontal
distance between points. This requires the interpolant
to have rather high penalty for non-smoothness.

The pixel detection was done with Matlabde-
tectCheckerBoard.mfunction, theory of which is con-
tained in (Zhang, 2000). The pixel detection error
is p≈ (1,1). The mechanical placement accuracy of
the measured points(p,g) ∈ U is Δg ≈ (10,10,10+
0.01z)T mm as an approximate std. The error is un-
biased and the final accuracy ofFs(ps) is much better.

A pixel-wise geometric mapping error measure
e(p) is formulated by Eq.9 and depicted at Fig.7:

e(p) = ‖g−Fs(p)‖, (p,g) ∈U (9)

Since the sample setU is of rather good quality and
since the functionFs is rather smooth, the error stays
almost constant even if the tuning of the shape param-
etersαx,αy in Eq. 2 is subjected to cross-validation
over subsets ofU . The error is largest in occasional
points at the border and grows rapidly when extrap-
olating. The border areas are seldom occupied by a
swimmer, though, and the problem is more of aes-
thetical nature. The border error can be eliminated in
the future by applying a different interpolant instead
of one in Eq.3.
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Figure 7: The geometric mapping errore(p), p∈Ps defined
by Eq.9. Large errors happen occasionally at the borders of
the sampled areaU .

5 REAL-TIME TRACKING

The swimmer tracking method is based on marker
tracking using the blob tracking facilities of OpenCV



(Bradski, 2000). The marker is placed on a colored
flexible band worn by the athlete in order to improve
accuracy and reduce noise. The band is selected and
installed so that it will not hinder the performance of
the swimmer. The yellow color of the band is chosen
to increase its visibility and identifiability in the envi-
ronment. The band can be occluded by the swimmer’s
hand, or by bubbles in the water.

The color of the band is selected based on the
color hue distribution of the environment. Tests on
the site showed that the environment colors (water,
swimmer, light, walls, etc) are between the interval
90◦ − 270◦, leaving the rest of the hue circle open.
We selected a yellow color band. The choice leaves
room for one or two extra markers, if needed in some
future analysis.

The pixel trajectory of the marker is being visu-
alized for the user in real-time, see Fig.8. The pixel
trace is then being mapped to global coordinates on
the tracking plane using the geometric mapping de-
scribed in Sec.4. Tracking performs well with the
current 50 fps speed allowing the real-time rendering.

The visualized points are referring to image pixel
coordinates and are not suitable for speed analy-
sis. The swimmer speed is calculated by converting
these points using the geometric mapping described
in Sec.4.

The real-time swimmer trace is provided as an
overlay curve at the video area, see Figure8. The
current frame position is highlighted. The recorded
session can be replayed immediately.

6 SWIMMING CYCLE
REGISTRATION

A swimming cycle is the state history over a time in-
terval during which the swimmer state returns rela-
tively close to the initial state. The maximum per-
formance requires rather monotonic strokes, yet the
rhythm may vary based on metabolical optimum. De-
tecting the regularity of swimming strokes is of im-
portance. Cycles seem to have a distinctive decelera-
tion phase just before each hand stroke. This enables
a simple cycle registration by finding a local spike
heuristically in phase signal at timesti ∈ R+, i ∈ N+.
Using a peace-wise linear parameterτ:

t(τ) = ti(τ− i)+ti+1(i +1−τ), i = bτc, τ∈R+ (10)

one can compare the shapes of two cyclesi and j di-
rectly in a duration-invariant way on their own relative
time scaleti + τ. Let us define the duration of a cycle
i asTi = ti+1− ti . Now, the dissimilaritydi j between

Figure 8: Presenting the tracking results to the user. The
emphasised square is for the user only and it does not cor-
respond to the tracking plane. The track is based on pixel
information for reducing response time.

two cyclesi and j can be defined:

di j = [
∫ 1

0
(vx(t(i + τ))−vx(t( j + τ)))2dτ]1/2+

+λ|Ti −Tj | (11)

The horizontal velocityvx in Eq.11 is based on pixel
information with a moving average smoothing, since
we noticed the raw pixel signal is enough for the cycle
detection. The last summand of Eq.11 sets a weight
on the duration difference between two strokes. The
duration difference penalty is open to experimenta-
tion, currently we use value:λ = 4. We have used
the vertical velocityvx(t) as the target signal for sim-
ilarity analysis. The target signal could be also the
horizontal velocity or a vector combination of both,
in which case a vector norm should be used in Eq.11.

The swimming cycle registration is a post-session
process, which will be implemented as a real-time
feature in the future. A similarity matrix is cumu-
lated from last few strokes (last 5 in cases depicted
in Fig. 9). The visualization is designed to be seen
directly from the pool. The colors are scaled so
that black is a serious deviation from allowed, white
means identical strokes. Each stroke is compared to
others and no judgement is made towards the quality



of the swimming performance in general. The gray-
scale used is an arbitrary choice at the moment.

Figure 9: Swimming stroke regularity visualization. Rows
and columns are individual strokes. White means zero dif-
ference and black a differencedi j = 0.2 m/s.

7 POST-SESSION PHASE

The post-session phase occurs when there is a pause
in the athletic performance. First, the recorded video
is stored on the hard disc. The trainer opens the video
file with the tracking software and it is able to provide
feedback to the coach and swimmer in a reasonable
time (at most a few minutes).

The software allows the overlaying of multiple
tracking results of different athletes. The trainer can
use these data overlays to compare a trainee with a
reference (trained) swimmer performance.

The speed graphs acquired by geometric trans-
form of the original pixel trace are displayed in a sep-
arate area of the screen under the video frame. The
graphs span the whole observed length.

A number of quantitative measures are displayed
on the current swimmer performance, like aver-
age speed, distance, time, minimum and maximum
speeds. A specific time period can be highlighted
in the speed graph, to restrict the numeric display to
measurements on this area.

There will be further experiments on visualizing
various swimming characteristics. Preference will be
given to the real-time feedback.

7.1 Kalman Smoothing

Kalman smoothing (J. Hartikainen and and Särkkä,
2011), is applied to pixel trace to get smoothed plots
of the position and velocity components over time.
Fig. 10 depicts the smoothed position and velocity
history. Further swimming style analysis and move-
ment registration operations can be based on this sig-
nal.
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Figure 10: The smoothed position and velocity of the
marker tracking. Above: Measured and smoothed signals.
The current tracking brings large procedural noise compo-
nent to velocity. Below: The moving deviation estimates.
Only one camera view was used in this demonstration.

The marker observations are described as com-
ing from a linear dynamical system of Eq.12 with
Gaussian noisew ∼ N(0,dσ2

x,σ2
yc) as the driving

force component. Our numerical choice was:σx =
10 N, σy = 20 N. Other constants of Eq.12 are spec-
ified in Eq.13:

m g̈(t)+c ġ(t)+k g = w(t) (12)

The system is further discretized to given non-regular
observation times and transformed to a discrete-time
linear dynamical model with Gaussian noise term, see
details from (J. Hartikainen and and Särkkä, 2011).

The numerical values of the swimmer model of
Eq. 12 are chosen for an average swimmer, and
the dampening parameters approximate the observed
speed resistance of swimming. The model will be im-
proved later e.g. using Gaussian process formulation
instead of Kalman, adding more biomechanical au-
thentity to the model and physically interesting latent
forces, see e.g. (Hartikainen et al., 2012):

m = I2×60kg (mass)

c = d11.7 16.3c kg/s (dampening) (13)

k =

(
0 1
1 2

)

×0.05kg/s2 (spring)

The average error (std.) of the procedure is at the mo-
mentΔx = 0.018 m,Δy = 0.008 m,Δvx = 0.2 m/s,
Δvy = 0.2 m/s for positions and velocities alongx and
y axes. Improvements will be made by applying a bet-
ter tracking method less sensitive to bubbles.

Kalman smoothing is a post-processing task, too.



8 SYSTEM PERFORMANCE

A principal objective of the system is to provide im-
mediate trainer feedback. To achieve that, the imple-
mentation is based on the following principles:

• The frames are processed and tracked in their
uncalibrated shape (containing all camera distor-
tions, refraction etc.). The physical meaning for
the tracking signal can be attached only after the
geometric mapping, which is a postprocessing
step, see Fig.2.

• The tracked area is limited manually, see the high-
lighted area in Fig.8. Usually swimmers occupy
only a narrow band on the screen. Limiting the
tracking to this area of interest reduces compu-
tation significantly. At the moment, the tracking
box (see Fig.8) is selected manually, but there
will be few prerecorded tracking areas for differ-
ent swimming styles in the future.

• The dissimilarity measure of Eq.11 is also based
on the raw pixel information. The formula is com-
putationally cheap, and it has to be evaluated on
a separate processor once when swimmer passes
a camera. Full real-time indicator will be imple-
mented when a second computer and a monitor
will be added to the system.

• The geometric mapping of video images uses re-
duced quality to deliver real-time performance.

• Seamless (combined from 3 cameras) geomet-
rically accurate visualizations like video, stroke
regularity indication and physical speed analysis
are all left as a post-processing step. At this phase,
the geometric mapping has been done to images
and data already.

9 CONCLUSIONS

We have presented a simple video-based swimming
analysis system which is easy to install, is of low cost
and is simple to calibrate without any technical assis-
tance. It can be installed to a wide variety of pool
types. It is maintenance free and based on our experi-
ence so far, it can be operated by one person only. In
ordinary use no technical assistance is needed.

The proposed system provides swimming speed
analysis and instant visual feedback. The system is a
good basis for further expansion e.g. with swimming
gait analysis, biomechanical modeling etc.

The current system can be easily upgraded by a
fourth camera at the location indicated by a grey cir-
cle in Fig.1. The video monitoring would then span

whole the pool length. A second video screen will be
added in the future to serve the athletes better.

There are many off-the-shelf analysis systems
with a wide spectrum of functionality available today.
Usually these systems are much more complex and
expensive than one presented here. Our choice was to
implement the real-time pixel trace of the marker and
swimming cycle regularity visualization.

The tracking system needs to be improved in the
near future. At the moment it falls off-the-track too
often, especially when a hand moment occludes the
already lost marker.

The current system has been used by Finnish na-
tional swimming teams both on senior and junior level
since autumn 2014. Automated tracking has made it
possible to give faster and more accurate feedback to
athletes. Thus it has been possible to test a large num-
ber of athletes in relatively short time during national
team camps, when previously only a few of the top
swimmers were able to get the service due to time in-
vestment required using the older version of the sys-
tem. According to national team coach the system
has been a major asset in developing technical skills
of national team athletes. The findings have also been
used in national coaches’ education to provide insight
into swimming performance.

The proposed direct planar calibration method
used is aimed for efficient real-time video stream
transformation. The efficiency is possible due to the
restriction to 2D tracking plane projection only. There
is potential for the same formulation to be generalized
for 3D motion capture at the overlapping view zones
(2×2 m at the current system, 3×2 m after one cam-
era will be added). The proposed calibration method
may be of use in other applications where conditions
in camera placement rule the stereo-calibration out
and where planar observations suffice.

The most important future goals are a reli-
able markerless tracking and implementing a record
database with automated input from the site and a sup-
port for rudimentary searches and comparisons.

The swimming gait registration based on the pro-
file shape of the body of the swimmer is a potential
development.

Automated detection of different phases of the
swimming performance remains the last goal. It is
the hardest since there are a lot of different swimming
styles each with somewhat differing phases, and fe-
male and male swimming costumes differ.
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Abstract: Three methods to estimate the presence of ground surface stones from publicly available
Airborne Laser Scanning (ALS) point clouds are presented. The first method approximates the
local curvature by local linear multi-scale fitting, and the second method uses Discrete-Differential
Gaussian curvature based on the ground surface triangulation. The third baseline method applies
Laplace filtering to Digital Elevation Model (DEM) in a 2 m regular grid data. All methods produce
an approximate Gaussian curvature distribution which is then vectorized and classified by logistic
regression. Two training data sets consisted of 88 and 674 polygons of mass-flow deposits, respectively.
The locality of the polygon samples is a sparse canopy boreal forest, where the density of ALS
ground returns is sufficiently high to reveal information about terrain micro-topography. The surface
stoniness of each polygon sample was categorized for supervised learning by expert observation on
the site. The leave-pair-out (L2O) cross-validation of the local linear fit method results in the area
under curve AUC = 0.74 and AUC = 0.85 on two data sets, respectively. This performance can be
expected to suit real world applications such as detecting coarse-grained sediments for infrastructure
construction. A wall-to-wall predictor based on the study was demonstrated.

Keywords: aerial laser scan; point cloud; digital elevation model; logistic regression; stoniness;
natural resources; micro-topography; Gaussian curvature

1. Introduction

There is an increased attention towards classification of the small scale patterns of terrain surface.
Recognition of micro-topography may help in arctic infrastructure planning [1], terrain trafficability
prediction [2], in hydraulic modeling [3], and in detecting geomorphologic features like in [3,4], and
terrain analysis and modelling.

In Finland, a nationwide airborne light detection and ranging (LiDAR) mapping program has
provided the means for detecting ground objects with the ground return density ρ ≈ 0.8 m−2. Since one
needs at least one point per stone, and to define the stone radius one needs at least 4 points per stone,
this leads to an absolute theoretical detection limit of stone radius rmin = 0.6...1.2 m. The real limit
is naturally somewhat higher. The actual stone sizes fall into this critical range (as discussed in
Section 2.2) making the stoniness detection a difficult problem.

Remote Sens. 2016, 8, 720; doi:10.3390/rs8090720 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 720 2 of 21

One aspect of the ground surface is the presence of stones and boulders, which can be
characterized by the stone coverage and by stone size distribution. Mass-flow deposits are recognized
by irregular distribution of boulders and stones on their surface. Mass-flow deposits may have regional
significance in aggregate production if they occur in fields as they do in the Kemijärvi region in Finland.
Mass-flow sediments are often moderately sorted sediments with low fine grained fraction (clay and
silt content, <0.006 mm) being less than 12 % [5]. In addition they contain boulders and stones in
their sediments which may be crushed for aggregates. Therefore, they are potential aggregates for
infrastructure construction. Mass-flow deposits can be detected in a two-step process: First candidate
polygons are found by analyzing geomorphological features in a process which can be automated,
then surface stone detection based on airborne LiDAR data is performed to limit the set of candidates.
Various other geomorphological features like paleolandslides [6], fluvial point bars [7], neotectonic
faults [3] and Pulju moraines [8] in Finland and several other types of glacial landforms elsewhere (see
summary in [9]) have already been mapped using LiDAR data.

The intent of this paper is to document various methods, which analyze airborne laser scanning
data (ALS) or digital elevation model (DEM) to detect stony areas. Our hypothesis is that a direct
approach may be able to detect a signal of a target feature like stoniness better than methods using
DEM. This is because DEM is a general smoothed representation of the ground surface for generic
purposes [10]. This paper focuses on binary classification of the stoniness of sample areas. The approach
results in a classifier, which is subjected to 20 m× 20 m point cloud patches to produce a binary mask
about stoniness covering whole Northern Finland. Stoniness is just one example of micro-topographic
features, which could be detected from public ALS data. Even the positive samples of the data sets
focus on stony mass-flow deposits, algorithms are developed for general stoniness detection, which
can be later targeted to various specific purposes depending on the available teaching data. It is our
hope that the research community finds our results and methods useful in the future.

This paper is an expansion of [11], which studied only one polygon set data2014 using curvature
estimation based on local linear fit (LLC). In comparison to [11], this paper uses an additional data set
data2015, additional public DEM data format and two additional methods: local curvature estimation
based on triangulated surface model computed from LiDAR (LTC) and Laplace filtering of a DEM grid
(DEC). LTC uses triangulated irregular network (TIN) produced by a solid angle filtering (SAF). An
overview of the relation of computational methods and various data formats can be seen in Figure 1.

DEM input 

(open data)
polygon cut

local height

(DEC)
curvature

histogram

polygon cut
local linear fit

(LLC)

binary

classification

Solid angle

filtering (SAF)
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(open data)

wall-to-wall

classification

1) 

2) 

1) 

2) 

2) 

3) 
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5)produced by NLS

Figure 1. The process flow, methods covered in this paper are highlighted. Data formats: (1) 2 m
raster; (2) point cloud; (3) task-specific TIN model; (4) curvature value sets; (5) sample vectors. LLC
can optionally use either original point cloud (2) or vertex points (3) produced by SAF TIN model.
Wall-to-wall classification is a possibility provided by the resulting binary classifier.
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The structure of the paper is as follows: a summary of current research applicable to
micro-topographic feature detection is in Section 1. Data sets and data formats are explained in
Section 2.2. The solid angle filtering (SAF) can be used by two presented methods, it has been
described in Section 2.4. Three methods are documented in Sections 2.5–2.7. Methods are compared in
Section 3. Possible improvements are discussed in Section 4 and further application areas considered
in Section 5.

Current Research

A good presentation of general-purpose ALS classification is in [12]. Our work relates to
some of the contour and TIN -based ground filtering algorithms mentioned in [13], since all of
our methods either directly or indirectly use or produce a tailor-made ground model. Methods
described in [13] are usually more generic accommodating to infrastructure signatures etc. It is
possible, that methods described in our paper have to be combined with existing generic ground model
algorithms, where an assembly of methods would use e.g., a voting arrangement at the approximity of
constructed environment.

Solid angle filtering (SAF) in Section 2.4 resembles the despike algorithm presented in [14].
Two problems are mentioned in [14]: Unnecessary corner removals (rounding off the vertices of e.g.,
block-like structures) and effects of negative blunders (false points dramatically below the real surface
level). Our routine was specifically designed to eliminate these problems. SAF can also be used
in canopy removal. An interesting new technique in limiting the ground return points is min-cut
based segmentation of k-nearest neighbors graph (k-NNG) [15]. The graph is fast to compute with
space partitioning, and it could have served as a basis for stoniness analysis directly e.g., by fast local
principal components analysis (PCA) and local normal estimation with vector voting procedure, as
in [16]. The literature focuses mostly on laser clouds of technological environment, where the problem
of eliminating the canopy (noise) and finding the ground returns (a smooth technical surface) are
not combined. Our experiments with local normal approximation and vector voting were inferior to
results presented in this paper. There is great potential in local analysis based on k-NNG, though.

There seems to be no research concerning the application of ALS data to stoniness detection
in forest areas. Usually target areas have no tree cover [17], objects are elongated (walls, ditches,
archaeological road tracks, etc.) [17,18] and often multi-source data like photogrammetry or
wide-spectrum tools are used. curbstones which separate the pavement and road in [18]. Their data
has the sample density ρ = 5/ m2 which produces geometric error of size 0.3 m which is larger than the
observed shapes (curbstones) and thus not practical. Effects of foliage and woody debris are discussed
in [19]. They mention that even a high-density ALS campaign is not able to get a dense sampling of
the ground surface in a non-boreal forest (Pennsylvania, U.S.). They reported ground return ratio is
40% with the ground sample density ρ = 4/ m2, which is much higher than ρ ≈ 0.8/ m2 in our study.
The distribution of the local ground sample density was not reported in [19] but is probably much
higher than in our case.

DEM in Figure 1) is a standard data type used by geographic information systems (GIS).
Many implementations and heuristics exist (see e.g., [20]) to form DEM from ALS format .las defined
by [21]. Usually, the smallest raster grid size is dictated by the sample density and in this case DEM
grid size δ = 2 m is possible, and δ = 1 m already suffers from numerical instability and noise.

A rare reference to DEM based detection of a relatively small local ground feature (cave openings)
in forest circumstances is presented in [22]. In that paper the target usually is at least partially exposed
from canopy and the cave opening is more than 5 m in diameter. On the other hand, the forest canopy
was denser than at our site in general. Another application is detecting karst depressions, where slope
histograms [23] and local sink depth [24] were used to detect karst depressions. There are similarities
with our study, e.g., application of several computational steps and tuning of critical parameters
(e.g., the depression depth limit in [23]), although the horizontal micro-topology feature size is much
larger than in our study (diameter of doline depressions is 10–200 m vs. 1.5–6 m diameter of stones in
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our study). The vertical height differences are at the same range, 0.5–1.5 m in our study and in [23,24],
though. A similar study of [25] uses higher density LiDAR data with ρ = 30 m−2 to detect karst
depressions of size 26 m and more. The vertical height difference (depth) was considerably larger
than in in [23,24]. The high density point cloud and a carefully designed multi-step process results
in quantitative analysis of sinkholes in [25], unlike in our study, where the stoniness likelihood of a
binary classifier is the only output.

One reference [19] lists several alternative LiDAR based DEM features, which could be used
in stone detection, too. These include fractal dimension, curvature eigenvectors, and analyzing
variograms generated locally over multiple scales. Some of the features are common in GIS software,
but most should be implemented for stoniness detection.

Hough method adapted to finding hemispherical objects is considerably slower than previous
ones, although there is a recent publication about various possible optimizations, see e.g., [26].
These optimizations are mainly about better spatial partitioning.

Minimum description length (MDL) is presented in [27] with an application to detect planes
from the point cloud. The approach is very basic, but can be modified to detect spherical gaps rather
easily. MDL formalism can provide a choice between two hypotheses: a plain spot/a spot with a stone.
Currently, there is no cloud point set with individual stones tagged to train a method based on MDL.
MDL formalism could have been used without such an annotated data set, but we left this approach
for further study. In addition, probably at least 4..8 returns per stone is needed and thus a higher
ground return density than is currently available.

This paper presents two methods based on ALS data and one method using DEM and acting as a
baseline method. The DEM method was designed according to the following considerations: It has to
be easy to integrate to GIS and it would start from a DEM raster file, then generate one or many texture
features for the segmentation phase. The possible texture features for this approach are the following:

• local height difference, see Laplace filtering Section 2.7. This feature was chosen as the
baseline method since it is a typical and straightforward GIS technique for a problem like
stoniness detection.

• various roughness measures, e.g., rugosity (related trigonometrically to the average slope), local
curvature, standard deviation of slope, standard deviation of curvature, mount leveling metric
(opposite to a pit fill metric mentioned in [19]).

• multiscale curvature presented in [28]. It is used for dividing the point cloud to ground and
non-ground returns, but could be modified to bring both texture information and curvature
distribution information. The latter could then be used for the stoninesss prediction like in this
study. The methods, possibly excluding interpolation based on TIN, seem to be numerically more
costly than our approach.

Possible GIS -integrated texture segmentation methods would be heavily influenced on the choices
made above. Most of the features listed are standard tools in GIS systems or can be implemented
by minimal coding. An example is application of the so called mount leveling metric to stoniness
detection, which would require negating the height parameter at one procedure.

Terrain roughness studied in [19] is a concept which is close to stoniness. Authors mention that
the point density increase from ρ = 0.7/m2 to ρ = 10/m2 did not improve the terrain roughness
observations considerably. This is understandable since the vertical error of the surface signal is at the
same range as the average nearest point distance of the latter data set. The paper states that algorithms
producing the terrain roughness feature have importance to success. This led us to experiment with
various new algorithms.

Point cloud features based on neighborhoods of variable size are experimented with in [29].
Many texture recognition problems are sensitive to the raster scale used, thus we tested a combination
of many scales, too. According to [16], curvature estimation on triangulated surfaces can be divided to
three main approaches:
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• surface fitting methods: a parametric surface is fitted to data. Our local linear fit LLC falls on this
category, yet does not necessarily require triangularization as a preliminary step.

• total curvature methods: curvature approximant is derived as a function of location. Our local
triangular curvature LTC is of this category of methods.

• curve fitting methods.

LLC has a performance bottleneck in local linear fit procedure described in Section 2.5.
This problem has been addressed recently in [30], where an algebraic-symbolic method is used
to solve a set of total least squares problems with Gaussian error distribution in a parallelizable and
efficient way. That method would require modification and experimentations with e.g., a gamma
distributed error term due to asymmetric vegetation and canopy returns.

The vector voting method presented in [16] decreases noise and achieves good approximative
surface normals for symmetrically noisy data sets of point clouds of technological targets. Our target
cloud has asymmetrical noise (vegetation returns are always above the ground), and returns under
the ground (e.g., reflection errors) are extremely rare. Usually vector voting methods are used in
image processing. They are based on triangular neighborhood and any similarity measure between
vertices, focusing signal to fewer points and making it sometimes easier to detect. Neighborhood
voting possibilities are being discussed int Section 4.

General references of available curvature tensor approximation methods in case of triangulated
surfaces are [31,32]. A derivation of Gaussian curvature κG and mean curvature κH is in [33]:

κG = κ1κ2 (1)

κH = (κ1 + κ2)/2, (2)

where κl , l ∈ {1, 2} are the two eigenvalues of the curvature tensor. Perhaps the best theoretical
overview of general concepts involved in curvature approximation on discrete surfaces based on
discrete differential geometry (DDG) is [34].

We experimented with methods which can produce both mean and Gaussian curvatures, giving
access to curvature eigenvalues and eigenvectors. Our experiments failed since the mean curvature κH
seems to be very noise-sensitive to compute and would require a special noise filtering post-processing
step. Difficulties in estimating the mean curvature from a noisy data have been widely noted, see
e.g., [29].

In comparison to previous references, this paper is an independent study based on the following
facts: point cloud density is low relative to the field objects of interest (stones), ratio of ground returns
amongst the point cloud is high providing relatively even coverage of the ground, a direct approach
without texture methods based on regular grids was preferred, individual stones are not tagged in
the test data, and the methods are for a single focused application. Furthermore, we wanted to avoid
complexities of segmentation-based filtering described in [35] and the method parameters had to be
tunable by cross-validation approach.

2. Materials and Methods

Test data is presented in Section 2.2. It is available online, details are at the end of this paper.
Figure 1 presents the process flow of stone detection. Two data sources at left are introduced in

Section 2.2, tested methods (DEC, LLC, LTC) are detailed in Sections 2.5–2.7. The vectorization of
samples varies depending on the method in question, details can be found in Section 2.8. The solid
angle filtering SAF of Section 2.4 is a necessary preprocessing step for LTC, but could be used also
before LLC for computational gain.

2.1. Study Area

The study area is a rectangle of 1080 km2 located in the Kemijärvi municipality, in Finnish
Lapland, see Figure 2. The 675 sample polygons cover approx. 10.7 km2 of the area. Mass-flow
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sediment fields such as the Kemijärvi field, have regional significance for aggregate production as
there is an abundance of closely spaced mass-flow formations within a relatively short distance from
the road network.

Figure 2. Upper left: The site near Kemijärvi Finland. The research area covered by 120 open data .las
files covering 1080 km2. Upper right: the relative location of sample polygons. Amount of sample
sets in parenthesis. Lower left: A view of a sample site in boreal forest. Lower right: approximately
the same view as at lower left after solid angle filtering (see Section 2.4) of the point cloud. The stone
formation has been circled. Location is at UTM map T5212C3, polygon 11240.

2.2. Materials

Table 1 gives a short summary of the data sets: the first set data2014 is rather small with
positive samples occupied by large boulders. The second set data2015 has an imbalance of many
positive samples with smaller stones vs. fewer negative samples. Data sets are depicted in Figure 2.
The acquisition of data sets differ: the classification of data2014 was based on cumulated field
photographs and the land survey annotations of the general topographic map (stone landmarks).
There is no stone size distribution data available for data2014, though. The set data2015 was classified
and the approximative stone size and coverage statistics recorded by a geology expert. The second
data set seems to present more difficult classification task—the areas are more varied and stone size
probably smaller than in the first set. The advantage of having two data sets of different origin is that
the resilience and generality of the methods can be better asserted.

Table 1. Some characteristics of the two data sets.

Data Set Stony Samples Area km2 Non-Stony Samples Area km2 Acquisition

data2014 56 1.7 49 1.7 cumulated observations
data2015 471 4.7 204 6.0 field campaign

The data preprocessing consists of the following three steps:
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1. All hummocky landforms (i.e., hills) with a convex topographic form were delineated from the
ALS derived digital elevation model and its tilt derivative with an Object-Based Image Analysis
algorithm developed in eCognition software, see [1]. This step produced data2014 and data2015
polygon sets ( see Table 1 and Figure 2).

2. A 10 m× 10 m space partitioning grid was used to cut both the point cloud (ALS) and DEM to
polygon samples.

3. Point cloud was cut to 2 m height from initial approximate ground level. The mode of heights in
2 m× 2 m partitions was used as the ground level.

ALS LiDAR data was produced by National Land Survey (NLS) (NLS laser data: http://www.
maanmittauslaitos.fi/en/maps-5) in fall 2012 with a Leica ALS50-II laser scanner (Leica Geosystems,
St. Gallen, Switzerland), the flight altitude was 2000 m. Last-return data has approx. 0.09–0.1 m vertical
ground resolution and average footprint of 0.6 m. ALS data has several additional information fields
per cloud point, see e.g., [21]. We used only x-y-z components of the data. Approximately 25% of
the data are canopy returns, the rest is ground returns. Reflection errors causing outlier points occur
approximately once per 0.5× 106 returns.

DEM data is 2 m regular grid data available from NLS. It is nationwide data aimed for general
purposes (geoengineering, construction industry). Its vertical accuracy is 0.3–1.0 m std. Both ALS
and DEM data were cut to polygon samples by using 10 m× 10 m space partitioning slots. See two
example polygon shapes in Figure 3. The further processing focused only to the point cloud limited by
each polygon sample.

stony area

100 m

laplacian 2m laplacian 4m

non−stony area laplacian 2m laplacian 4m

0.8

1  

cu
rv

at
ur

e 
κ 
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Figure 3. A stony (upper row) and a non-stony (lower row) sample polygon. Original polygons are
approximated by 10 m× 10 m batches. The ground height (DEM 2 m) and its Laplace discrete operator
signals with 2 m and 4 m radius are depicted. The border noise has been removed from actual analysis.
The 100 m scale is aligned to North.

Stones are bare and the vegetation is thin due to high Northern latitudes.The point cloud on this
site has approx. 25 % returns to forest canopy and approx. 75 % ground returns, so the ground signal
is rather strong. The reflection errors were extremely rare, approx. 1 per 106 returns. Together the
sample sets represent rather well the Kemijärvi study area.

http://www.maanmittauslaitos.fi/en/maps-5
http://www.maanmittauslaitos.fi/en/maps-5
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2.3. Materials online

Sample data sets including some polygon point clouds, DEM data of two map pages, sample
vectors, some field images, SAF algorithm document, a short description of the data set and the
problem are available at: http://users.utu.fi/ptneva/ALS/.

2.4. Solid Angle Filtering (SAF)

The proposed solid angle filtering is a novel method to produce an alternative TIN DEM sensitive
to stones and boulders on the ground. Filtering starts by forming an initial TIN either from a full
point cloud or after an industry standard preliminary canopy and tree point elimination. The cut was
made 2 meters above the local mode of the point cloud height. The 2D projection of TIN satisfies
Delaunay condition at all times during the iterative process of point elimination. The prominent ’pikes’
in the intermediate TIN are removed in random order while the Delaunay triangulation is updated
correspondingly. The implementation requires a dynamical Delaunay algorithm, which facilitates
incremental removal of points. We used an industry standard approach described in [36] with O(k)
computational complexity per removed point, where k stands for the average number of nearest
neighbors of a point.

A second iterative phase removes ‘pits’ in a similar fashion. The prominence of pikes and pits is
measured by solid angle Ωk, which is the spatial angle of the surrounding ground when viewed from
a TIN vertex point pk. Appendix A provides the technical definition of computing Ωk.

Each state of TIN is achieved by dropping one point which fails the following inequality:

Ωmin ≤ Ωk ≤ Ωmax, (3)

where solid angle limits Ωmin = 1.80 sr (steradians) and Ωmax = 12.35 sr correspond to solid angles of
two spherical cones with opening angles 89 ◦ and 330 ◦, respectively. The choice affects the prediction
performance: if both limits are close to a planar situation of Ω ≈ 2π, there is a loss of points. If there
are no limitations (Ωmin ≡ 0, Ωmax = 4π), data is dominated by the noise from canopy and tree
trunks. The solid angle limits were defined by maximizing the Kolmogorov-Smirnov (K-S) test [37]
difference using 95 % confidence limit. Figure 4 depicts the difference between solid angle distributions
at positive and negative sample sets at the choice we made. A pike at approx. 2.5 sr indicates stones.
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0.096 > 0.014 (95% conf.)

positive samples

negative samples

Figure 4. The solid angle distribution of positive and negative samples among the data2015 data set.
Averages can be distinguished well but variation among samples is high.

The resulting ground surface triangularization (see lower left part of Figure 2) resembles the end
product of the 3D alpha shape algorithms [38], when alpha shape radius is chosen suitably. It produces
an alternative TIN model which hopefully contains a signal needed in stone detection. In this paper
this method is used as a preprocessing step for LTC method (see Section 2.6) and for LLC method
(see Section 2.5, and Figure 1).

http://users.utu.fi/ptneva/ALS/
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2.5. Curvature Estimation Based on Local Linear Fit (LLC)

LLC method is based on a curvature approximation method described in [33]. The method
requires surface normals to be available at the triangle vertices. LLC provides these normals by a local
linear fit to the point cloud at a regular horizontal grid. Since the resulting curvature function is not
continuous at the border of the triangles, a voting procedure is needed to choose a suitable value for
each grid point.

Finding the local planes is a similar task to finding the moving total least squares (MTLS) model
in [39]. The differences are the following:

• a space partitioning approach is used instead of a radial kernel function to select the participant
points. This is because ground surface can be conveniently space partitioned horizontally unlike
in [39], where the point cloud can have all kinds of surface orientations.

• the point set is not from constructed environment. Canopy returns create a 3D point cloud, thus
the loss function cannot be symmetrical, but must penalize points below the approximate local
ground plane.

The LLC process has 6 steps, which are expounded in Appendix B. Step 1 is cutting the foliage
dominated part of the point cloud, step 2 approximates ground with local linear planes at regular
grid points. Step 3 spans the grid with triangles avoiding spots with missing data. Step 4 defines the
curvature within each triangle. Step 5 combines the curvature values of the neighboring triangles to
each grid point. Step 6 is about forming a histogram over the whole grid of the sample polygon.

LLC is a multi-scale method like [28]. Steps 1 through 6 are repeated with differing grid lengths
δj, j ∈ [1, 6] of the grid, see Table 2. There is a potential danger for overfitting, so the qualities of grid
sizes are discussed here from that point of view.

Table 2. Square grid sizes used in local linear fit of LLC method.

Grid Version 1 2 3 4 5 6

Grid constant δm (m) 1.25 2.0 3.0 4.0 5.0 6.0

The smallest grid size δ1 = 1.25 m has approx. 85 % of the grid slots with only 1 to 3 points
as shown in the left part of Figure 5 and so it represents a practical low limit of the local planar fit.
A practical upper limit is δ6 = 6 m because only the largest boulders get registered on this scale. Such
large boulders are few, as shown in the right part of Figure 5.
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Figure 5. Approximative properties of data2015 data set. Similar qualities of data2014 are not available.
Left: The number of stones at a spatial partition when the partitioning range (the grid size δ) changes.
A sensible approximation of e.g., local ground inclination is possible only when there are at least
3 points per grid square. Right: The difference between positive and negative samples is mainly in
stone size distribution. The practical detection limit in size is approx. 1.0 m.
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2.6. Local Curvature Based on Ground Triangularization (LTC)

The input is a triangulated surface model generated by SAF method described in Section 2.4 and
Figure 1. LTC produces the curvature estimates directly to the vertex points, so local linearization step
3 of the LLC method of Section 2.5 is not needed. Vectorization (step 4 of LLC) has to be done, but
only once, since there are no grids nor multi-grids in this method. The idea is to calculate the value
κk of a Gaussian curvature operator at each ground point pk based on the Gauss-Bonnett theorem as
described in [31].

The right side of the Figure A1 depicts a point pk and its neighboring points pi and pj.
The neighboring triangles Tk of a vertex point k define a so-called spherical excess, which is the
difference between the sum of triangular surface angles βikj and the full planar angle 2π. Now, one
can write an estimator for the Gaussian curvature κk at point pk based solely on local triangularization
formed by the Delaunay process:

βikj = acos(pi − pk, pj − pk)

Ak = ∑t∈Tk
At/3 (4)

κk ≈
(

2π −∑(i,k,j)∈Tk
βikj

)
/Ak, (5)

where βikj is the angle at vertex k in a surface triangle t = (i, k, j) ∈ Tk, acos(., .) is the angle between
two vectors defined in Equation (A1) in Appendix A, and Ak is a characteristic surface area associated
with the vertex k. The characteristic area has been defined approximately by taking one third of the
area At of each adjoining triangle t. There are locally more stable but also more complicated ways
to calculate Ak, see e.g., [31,32]. The choice made in Equation (4) causes noise because the area is
approximate but seems to allow effective histogram vectors.

2.7. Curvature Based on Filtering DEM by a Modified Discrete Laplace Operator (DEC)

The third method is traditional, fast and easy to implement in the GIS framework and thus
provides a convenient baseline for the previous two methods. Local height difference is converted to
local curvature approximant. Curvature histograms are then vectorized as in previous methods.

DEM data with a regular grid with the grid size δ = 2.0 m was utilized. Data is publicly available
over most of Finland. The discrete 2D Laplace operator with radius rhoriz = 2.0 m is well suited
for detecting bumpy features like stones at the grid detection limit. It simply returns the difference
between the average height of 4 surrounding grid points and the height of the center point. A modified
Laplacian filter with rhoriz = 4.0 m (length of two grid squares) was used to estimate the local height
difference on the larger scale, see Figure 6. A postprocessing transformation by Equations (7) and (8)
was applied to produce correspondence to Gaussian geometric curvature κk at point k. A geometric
justification for the transformation is depicted in Figure 6. A stone is assumed to be a perfect spherical
gap with perfect horizontal surrounding plane. The mean curvature κH can be approximated from
the observed local height difference of Equation (6) by using the geometric relation Equation (7),
see Figure 6. z̄(rhoriz) is the average height at the perimeter of horizontal radius r. The local height
difference Z̄ is the key signal produced by Laplacian filter. Gaussian curvature is approximately the
square of the mean curvature, when perfect sphericality is assumed, see Equation (8). The sign of the
Gaussian curvature approximant κGk at point ck can be decided on the sign of the height difference Z̄ at
vertex k. The index k of the vertex point pk is omitted for brevity. Equation (7) comes from rectangular
triangle in Figure 6.

Z̄ = z− z̄(r) local height difference (6)

1/κ2
H ≈ r2

horiz + (1/κH − Z̄)2 approximate mean curvature condition (7)

κH ≈ 2Z̄/(Z̄2 − r2
horiz) mean curvature solved from Equation (7)

κG ≈ − sign(Z̄)κ2
H approximate Gaussian curvature (8)
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Figure 6 shows grid squares of size 2 m× 2 m. Points A are used to calculate the average height
z̄(2.0 m) and points B the average height z̄(4.0 m).

Figure 6. Left: The Laplace difference operator returns the height difference between the center point (1)
and the average of points A. The modified Laplace difference operator does the same but using points
B. These two kernels define each an average circumferential height difference Z̄. Right: The geometric
relation between Z̄ and approximate mean curvature κH . Horizontal line represents average ground
level at the circumference.

Many sample polygons are relatively small. The above described difference operator produces
numerical boundary disturbance, see Figure 3. This can be countered by limiting the perimeter
average z̄(r) only to the part inside the polygon, and then removing the boundary pixels from the
histogram summation.

The next step is to build the sample histograms as with other methods. Histogram vectors from
two filters are concatenated to produce a sample vector of a polygon. The details of forming the
histogram are given in Section 2.8.

2.8. Vectorization

All three methods produce histograms of Gaussian curvature κG = ±1/r2, where r is the local
characteristic curvature radius and the curvature sign has been chosen in Equation (8) so that potential
stone tops have negative curvature and “pit bottoms” have positive curvature. An ideally planar spot
k has curvature radius rk ≡ ∞ and curvature κG ≡ 0. Recall that minimum detectable stone radius
is approx. rmin = 0.6...1.2 m, which leads to a Gaussian curvature interval of κG ∈= [−1.8, 1.8] m−2.
This range was spanned by histogram bins. LLC and DEC are rather insensitive to bin choice, so a
common ad hoc choice was made for these methods, see Table 3. The LTC method proved sensitive
to bin choices, so the values were derived using a subset of 10 positive and 10 negative samples in
leave-pair-out cross-validation. This set was excluded from later performance measurements.

Table 3. Curvature histogram bins.

Method Positive Half of the Bin Values

LLC and DEM 0.010, 0.030, 0.060, 0.13, 0.25, 0.50, 1.0, 2.0
LTC 0.031, 0.12, 0.25, 0.44 ,0.71, 1.13, 1.8

The histogram creates a vector representation xi, i = 1..n for all sample polygons i. The LTC
method produces one histogram vector, the DEC method produces two vectors (for r = 2 and r = 4 m)
and LLC produces 6 vectors (for 6 different grids), which are then concatenated to form the final
sample vector xi.

Figure 7 provides a summary of average curvature distributions produced by each of the three
methods. The planar situation with κG ≡ 0 is the most common. Occurrences with characteristic radius
r < 1 m are very rare. Useful information is contained within the range κG ∈ [−1, 1] m−2. With LLC
method, grid size δ = 2 m is able to detect greater curvatures and grid size δ = 5 m is the last useful
grid size. DEM is remarkably similar to 2 m LLC grid, which was to be expected.
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Figure 7. Curvature distributions produced by each method. Upper left: LLC and grid size 2m.
Upper right: LLC and grid size 4 m. Larger grid size results in narrow band around κ = 0. Lower left:
DEM curvatures are characterized by kurtosis. Lower right: the LTC distribution.

Negative samples (dashed lines) have about the same amount of exactly planar samples, but are a
little bit more slightly curved (|κG| ≈ 0.4 m2) samples. This probably results from the basic ground
curvature distribution. If the presented three methods were to be adapted elsewhere, the changing
background curvature spectrum may result in changes in the prediction performance.

The LTC method is able to detect the negative curvature around the stone causing the curvature
distribution to be asymmetric. Unfortunately, this method is also very noise-sensitive reducing its
performance.

Each method requires more testing and especially test data with known stone properties (relative
coverage of the surface, radius and height distribution, individually located and labeled stones).

2.9. Logistic Regression

The label vector yi ∈ {−1, 1}, i ∈ D = 1...n was acquired by field campaign done by a geology
expert. D is the index set of the full sample set, size n = |D| varies depending e.g., on the different
sensitivity to sparse point cloud of each method. The sample vectors xi ∈ Rd are produced by histogram
vectorization described in Section 2.8. Dimensionality d varies depending on the method. We use the
affine form zi = (1, xi) to shorten the following treatise. Vectors {zi}i∈D are also standardized before
solving the regression problem.

This is a qualitative response problem, so logistic regression was chosen to predict a label ŷ from
a given sample vector x. The prediction coefficient β ∈ Rd+1 is tuned by usual maximum likelihood
approach to optimal value β∗D′ using a sample set {(zi, yi)}i∈D′ , D′ ⊂ D where D′ is the training
set used:

f (zi, β) = Pr(yi = 1 | zi) = (1 + exp [−β · zi])
−1

ŷ(D′)(z) =

{
1 when f (z, β∗D′) ≥ 1/2

−1 otherwise
(9)

The area under curve (AUC) performance measure is natural in this application area, where cost
functions do exist but are not exactly known. The sample set data2014 is rather small and the sample
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set data2015 has imbalanced samples of positive and negative cases and the n-fold cross-validation
may produce too optimistic estimates, as mentioned in [40]. It is recommended in [40] in this case:

• to perform a leave-pair-out (L2O) test over all possible positive-negative label pairs P, and
• to measure L2O area under curve AUC by using the Heaviside function H(.) for summation.

P = {(i, j) | yi = 1, yj = −1, i, j ∈ D} all possible (+,–) pairs

AUC = ∑(i,j)∈P H(ŷij(zi)− ŷij(zj))/|P| leave-pair-out AUC (10)

ŷij(z) = ŷ(D\{i,j})(z) prediction without a pair i, j based on z

H(∆ŷ) =
(
1 + sign(∆ŷ)

)
/2 Heaviside over the prediction difference

2.10. Method Parameters and Design Choices

Some parameters were optimized by nested cross-validation or K-S test and thus settled. Some
parameters are ad-hoc built-in parameters, values of which are chosen mostly during the coding
process. These should be taken into consideration if the methods are utilized under slightly different
conditions. A list of the open parameters, their potential range and some of the discrete design choices
available, follows. Table 4 is a summary of the treatise.

Table 4. Effective method parameters, a summary.

Method Parameters Binary Choices

SAF 2 0
LLC 3–15 63
LTC 0 1
DEC 2 1

LLC: There are 11 non-zero shape parameters of the planar distance weight function g(.) presented
in [11]. The validation of the choices made will be a separate publication. There are some minor design
choices, an example is Equation (B2): one can use either median or mean rule in composing curvature
from surrounding triangle vertices, and results do not change noticeably. Median rule was used to
reduce occasional outliers. Another example is the 6 grid sizes in Table 2. The number of possible
subsets of grids to be used equals 26 − 1 = 63.

LTC: There is a design choice of using the local surface area At/3 in Equation (4) or a more
complex definition given in [32]. This is listed as one binary choice in Table 4.

DEC: There is a binary choice of either choosing Laplacian filter signal Z̄ or the Gaussian
approximant κk of Equation (8) based on the signal Z̄.

2.11. General Wall-to-Wall Prediction

Methods presented in Sections 2.4–2.9 were applied only to given polygon areas, since teaching
is possible only where the response value is known. But after the parameters of predictor have been
settled, the area to be inspected can be a generic one. As a demonstration and speed test, we applied
methods to a 1080 km2 area divided to 20 m× 20 m pixels with approx. 320 points from a point cloud of
density ρ = 0.8 m−2. Pixels have 6 m overlapping margins to increase the sample area to 32 m× 32 m
(approx. 820 points) to avoid partially populated histograms, which would not be recognized correctly
by the classifier. See Figure 8 for the DEC method wall-to-wall result.
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Figure 8. Left: The local height from DEM files, 30 km× 36 km area depicted. The scale is oriented
northwards. The general location of the rectangle can be seen in upper left part of the Figure 2. Right:
Stoniness probability by DEC method. The scale is probabilty of having stones on a particular pixel.
Roads and waterways are classified as stony areas. LLC and LTC methods are much less sensitive to
roads and constructed details.

3. Results

Binary classification of stoniness was done by logarithmic regression over curvature histogram
vectors cumulated over each sample polygon area. Three methods were used; they differ on how the
curvature approximants were produced(Table 5):

• Local linear fitting (LLC) divides the polygon into 6 different grids. Each grid square is fit by a
plane approximating the local ground height of the center of the plane and the plane orientation.
Curvatures are computed from these center points and their orientation normals.

• Curvature from DEM (DEC) uses traditional DEM data. Curvatures are approximated by the
observed local height difference delivered by a modified discrete Laplace operator.

• Curvature by local triangulation (LTC) has a TIN computed by SAF method of Section 2.4.
The curvature is then computed triangle by triangle as in LLC.

Area under curve AUC [41] was measured using both data sets and all three methods, see
Section 2.9. The AUC measure describes the discriminative power of a predictor over various possible
cutoff point choices. A proper cutoff depends on the costs involved and is not known at the moment,
justifying the accommodation of AUC. Leave-pair-out variant of AUC was used, see considerations
for this choice in Section 2.9.

Table 5. Leave-pair-out AUC results based on three methods used: digital elevation model, local linear
fit and local triangular curvature for two polygon sample sets.

Data Set DEC LLC LTC

data2014 0.85 0.82 0.79
data2015 0.68 0.77 0.66

LLC proved best for data2015. This data set is large and perhaps more representative of the
locality, and the performance AUC = 0.77 can be considered adequate for practical application such as
pre-selecting possible gravel deposit sites for infrastructure construction. Its performance is also on
par with many hard natural resource prediction tasks based on open data, see e.g., [2].
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Data set data2014 is somewhat exceptional, since it contains larger boulders and seems to be an
easy prediction task for wide array of methods. Both DEC and LLC performed well. The same holds
to several other tested methods which have not been included to this report, e.g., neighborhood voting
based on solid angle values.

DEC performance is mediocre with data2015 set because the average stone size depicted in Figure 5
right side is actually below the theoretical detection limit of a regular 2 m grid. Established DEM
computation routines are a trade-off of many general-purpose goals and some of the stone signal
seems to be lost in the case of the data2015 set.

LLC, eventhough it was cross-validated with data2014, performed adequately here. There were
high hopes about local curvature based on triangularization (LTC), but it performed the worst. This is
because LTC computes the curvature directly from a TIN, and the process produces a lot of noise. LTC
has been included in this report mainly because the method is fast to compute and there seems to be
potential to reduce noise in the future by neighborhood voting methods.

The processing speed (see Table 6) has a linear dependence with the area analyzed. This is
because the analysis is done by space partitions of constant point cloud sample size n. All the steps
have a linear O(n) time complexity except the Delaunay triangulation in SAF. The point removal
phase in SAF is of O(kn) complexity, where k ≈ 5...20 is the amount of nearest neighboring points.
The experiments were run on a desktop computer with Intel Core i5-3470 CPU (3.20 GHz) running
Ubuntu Linux 14.10. LLC implementation requires several intermediary file operations, which
makes it slow. All implementations are experimental prototypes and many speed improvements
are still possible.

Table 6. Analysis speed computed from average of two runs over the data set data2015.

Analysis Speed DEC LLC LTC

km2/h 200 0.5 4.0

4. Discussion

A traditional approach for terrain micro-topography classification is to use DEM model as a basis
for a wide array of texture methods. The low end has a simple texture feature computation followed
by segmentation tuned manually by an expert. The high end has several texture features extracted,
and preferably at least two DEM models of different grid size as a basis for analysis.

This paper presents a way to use the existing ALS LiDAR material to construct an alternative
task-specific terrain surface representation which hopefully contains more information e.g., concerning
the presence of stones. All methods presented are conceptually simple, although documenting and
coding LLC and LTC brings up a multitude of details and ad hoc choices, see e.g., the number of
method parameters in Table 4. Each method has potential for further improvement by a more thorough
parameter tuning. SAF and LLC have enough method parameters that tuning by new field campaign
data at more southern boreal forests could succeed. More southern boreal forest provides a challenge
since the ratio of the ground returns is only 30%–60% instead of 70% at our Northern test site.

LLC and DEC perform well enough to be practically usable. The direct utilization of ALS data
seems to work on this site.

Because LTC is based on a TIN model, there is available additional geometrical information like
mean curvature, curvature eigenvalues and eigenvectors etc. for more complex micro-topographic
features. If it is possible to reduce the noise and keep the computation costs at the current low level,
a combination of these features could be a basis for fruitful multi-layer texture analysis.

Many terrain micro-topography classification tasks e.g., registering post-glacial landslides, karst
depresssion detection and fault lines detection e.g., can be done with DEM and by texture methods,
but there may be a need to add stoniness or curvature related features to improve the classification.
The current data sets do not provide accurate quantitative information about stoniness for regression
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methods. The wall-to-wall stoniness result with 20 m × 20 m pixels produced by current binary
classification (see Figure 8) can be utilized as an additional feature in other prediction problems in the
future. The wall-to-wall pixel size must be increased when the ground return ratio decreases in the
southern dense forests.

Three individual methods or a combination of them can be modified to produce estimates of
the relative stone coverage and stone size distribution. This step can be taken only if data sets come
available with individual stones and their properties tagged out. Furthermore, more sophisticated
probabilistic and minimum description length (MDL) based methods would then be possible. The stone
coverage and size distribution information in Figure 5 is approximative only, so current data sets
cannot be used for development of quantitative stoniness models.

It is hard to estimate how far to southern forests the three methods can be extended. The ground
return density varies with boreal forests, and detection results from spatially rather sparse accessible
spots should be somehow extended to nearby areas using other available public data and Machine
Learning methods. This line of research requires specific field test sets, though.

There are several other micro-topological problems, e.g., classifying and detecting undergrowth,
marshland types, military structures, unauthorized inhabitation and geomorphology e.g., frost
phenomena. Some of these require comparison of two snapshots from ultra-light vehicle (UAV)
scans, and e.g., a combination of SAF and MDL might perform well in this scenario. We believe SAF
has wide adaptivity to several purposes by tuning its 2 parameters (minimum and maximum spatial
angle allowed) and MDL can be built to detect a specific shape (a hemisphere in cases of stones, a box,
a prism or a cylinder in case of other applications). As mentioned before, MDL would require denser
point clouds with ρ ≈ 1.6...3.2 m−2.

5. Conclusions and Future Research

Results in Section 3 show that LLC performs better than DEC but is numerically much more
expensive. LLC seems to be robust and useful when the computation costs can be amortized over
several subsequential analyses. LTC performed worst but there is room for improvement as discussed
in Section 4. Both LLC and DEC are ready to be applied to industrial purposes after prototyping
implementations are upgraded to production code.

Current results are bound to stoniness of mass-flow deposits what comes to teaching data, but
each method should work in generic stoniness detection, if such a need arises and general teaching
data sets become available.

Using direct ALS information either as an alternative data source or supplementary one may help
solving a variety of micro-topography detection problems better in the future. The research efforts will
be focused on the following topics:

• Extending the analysis to more dense forests, where stoniness detection occurs only at benevolent
cicumstances (forest openings, sparse canopy, hilltops). In this environment the acquired
stoniness signal has to be combined to a wide array of open data features to extend prediction to
unobservable areas. The corresponding field campaigns will be more elaborate.

• Taking into account the stone coverage and size distribution. It is likely that a multi-grid method
like LLC might perform well in this prediction task (given suitable teaching data), whereas DEC
may be restricted by the general purpose nature of DEM and its modest grid size.

• Topography and vegetation classification of marshlands. Marshlands have similar high ground
return ratio as the current case site. SAF can be tuned by cross-validation to produce a tailored
TIN and an improved LTC method with added curvature properties (mean curvature, curvature
eigenvectors) could detect various micro-topographic marshland features. It is our assumption
that the histogram approach would work also with marshland classification, given a suitable
teaching polygon quality produced in field campaigns.

• Using min-cut based segmentation of k-NNG graph of ALS data as described in [15] instead of
simple Delaunay triangulation. One has to modify the algorithm to include neighborhood voting
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to reduce noise. This could be a fruitful approach, since it could suit to 3D analysis of forest tree
species, providing more motivation for the implementation.

• Utilizing all relevant LiDAR attribute fields, like return intensity, return number, the scan angle etc.
(see [21]).
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Abbreviations

The following abbreviations are used in this manuscript:

ALS Aerial laser scan
AUC area under curve
DDG Discrete differential geometry
DEC Curvature based on DEM
DEM Digital elevation model
DTM Digital terrain model
GIS Geographic information system
k-NNG k-nearest neihgbors graph
K-S Kolmorogov-Smirnov test
L2O Leave-pair-out
LiDAR Light detection and ranging
LLC curvature based on local linear fit
LTC local curvature based on ground triangulation
MDL Minimum description length principle
MTLS Moving total least squares
NLS National Land Survey of Finland
PCA principal components analysis
SAF Solid angle filtering
TIN triangulated irregular network
UAV Ultra-light vehicle

Appendix A

The computation of a solid angle Ωk takes place at the approximity of a point pk, namely at the
set of the adjoining triangles Tk, see detail A) of Figure A1. Detail B) presents a tetrahedron defined
by points pk, pi, pj, pl , where pi, pj ∈ Tk\pk are from the outskirt of the triangle set Tk and pl is an
arbitrary point directly below point pk. There are several ways to implement the solid angle calculation,
a formula based on a classical l’Huillier’s theorem [42] is presented here:

acos(a, b) = cos−1(a0 · b0) angle between two vectors (A1)

x0 := x/‖x‖2 vector normalization

αi = acos(pl − pk, pj − pk) compartment angles i, j, k

αj = acos(pi − pk, pl − pk)

αl = acos(pj − pk, pi − pk)

α0 = αi + αj + αl basic product term

ωil j = 4 tan−1
√

tan α0
4 Πν∈{i,j,l} tan α0−2αν

4 compartment angle (A2)

Ωk = ∑il j∈Tk
ωil j solid angle at point pk (A3)
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Figure A1. Solid angle filtering. (A) The set of adjoining triangles Tk of a point pk seen from above;
(B) A compartment ijl of the vertex point pk presented in detail. A solid angle Ωk is a sum of
compartment angles ωil j of Equation (A2). Point pl is an arbitrary point directly below the vertex
point pk.

Equation (A2) approaches so called Heron’s planar trigonometric formula [42] when angles
αi, ... approach zero. The practical implementation requires a combination of space partitioning to a
manageable point cloud patches of approx. 700...2000 points and a 2D Delaunay triangulation with an
efficient point removal method. We use a batch version (python scipy.spatial.delaunay) with our own
industry standard routine for deletion. This combination is simple to implement and excels in practise
as [36] mentions, even though there exists faster incremental deletion arrangements with 2..3 times
slower construction phase.

Appendix B

Step 1: Data can be preprocessed in three different ways before the LLC step. Alternatives are
listed here in the order of increasing computational efficiency and decreasing amount of points:

(a) raw 3D ALS data
(b) same as (a) with tree and foliage returns cut from approx. 2 m height from approximative

ground level
(c) TIN model produced e.g., by solid angle filtering of Section 2.4

The local linear fitting step 2 finds similar ground model per each alternative, only the speed of
convergence varies. All three alternatives seem to result in about the same quality when measured by
predictor performance.

Step 2: The fitting of the plane resembles a normal regression problem with an ad hoc nonlinear
loss function, which penalizes residuals below the plane to force the ground fit. By applying the
fitting process to planes of varying sizes one gets an assembly of plane orientations and plane centers.
The neighboring planes can then be used to approximate local curvature. Since sample density is
low, some of the plane fits cannot be performed. Therefore, it is numerically more resilient to use
triangulation over neighboring planes and define curvature over each triangle using formulation
developed in [33]. Another approach would be to produce a triangular mesh and estimate curvature
based on it, as in [31,32]. There is a large filtering effect in this approach, since vertex normals depend
on surrounding vertices. Local linear fit seemed to pick up the stoniness signal better, especially since
we used multi-scale grids.

The grid division has been depicted in Figure B1. At each grid slot, one has to find the best fitting
plane P(p, n), where p ∈ R3 is the center point of the plane P and n its normal. The initial state for
the plane is: P0 = P(lowest point of local sample, (0, 0, 1)T) δ.

The plane P represents a good local ground linearization provided that the weight function
g(l) of the orthogonal distance l penalizes heavily points below the approximated ground level.
The details of weight function have been published in [11]. The practical considerations in selecting the
weight function shape are at rapid and guaranteed convergence, whereas the influence to prediction
performance comes from the actual ground returns and their geometry.
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Figure B1. Left: An individual local plane P(pk, nk) at grid point ck and its parameters (local plane
center point pk and normal nk). A triangulation T of the grid avoids squares with incomplete data.
A local cloud point set Qck and neighboring triangles Tk ⊂ T of a grid slot ck are also depicted. Center:
a stone revealed by two adjacent tilted planes. This stone provides a signal with the grid size δ = 2 m.
Note the amount of missing planes due to a lack of cloud points. Right: The grid of size δ = 4 m at
the same spot. The stone does not appear, local variation has disappeared but the grid is almost full
approximating the sample polygon shape.

The optimal fit at each grid slot concerns now coordinate components wT = (pz, nx, ny) of p and
n. The local plane P is found by a numerical minimization:

w∗ = argmin
w ∑

qj∈Qc

g[(qj − p) · n] (B1)

Step 3: Triangulation is based on the grid centers, where the surface normal is known. Because
of relatively low point density, some grid locations are bound to have no points and thus have to be
omitted from triangulation, see Figure B1. The triangularization T outlined in Figure B1 is generated
randomly, see Figure B1. The end result dictates the adjoining triangle sets Tk ⊂ T of each grid point
k. The size |Tk| of the adjoining triangle sets varies depending on how dense or sparse point cloud is
nearby point k: 1 ≤ |Tk| ≤ 8.

Step 4: The curvature is approximated on each vertex of each triangle as in [33]. There are several
other similar formulations e.g., using rectangular grids, but those are not so suitable in the presence of
sparse and missing cloud points. The end result is set of candidate curvatures κtk, t ∈ Tk per each grid
point pk.

Step 5: Now the task is to combine the final curvature approximant at a grid point pk by taking a
median of values available at the adjoining vertices of all surrounding triangles:

κ(pk) = median
t∈Tk

κtk (B2)

Step 6: We used the normalized histograms of h = histk∈Kκ(pk), where K is the set of grid centers
and histogram operator hist(.) and its properties are documented in Section 2.8.
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Abstract. A swimmer detection and tracking is an essential first step
in a video-based athletics performance analysis. A real-time algorithm is
presented, with the following capabilities: performing the planar projec-
tion of the image, fading the background to protect the intimacy of other
swimmers, framing the swimmer at a specific swimming lane, and elim-
inating the redundant video stream from idle cameras. The generated
video stream is a basis for further analysis at the batch-mode. The geo-
metric video transform accommodates a sparse camera array and enables
geometric observations of swimmer silhouette. The tracking component
allows real-time feedback and combination of different video streams to
a single one. Swimming cycle registration algorithm based on markerless
tracking is presented. The methodology allows unknown camera posi-
tions and can be installed in many types of public swimming pools.

Keywords: athletics, swimming, body motion tracking, camera calibra-
tion, background subtraction, video processing, silhouette registration,
movement cycle registration.

1 Introduction

Video systems in swimming coaching have three contradictory requirements.
They should be economical to implement and operate while they have to produce
adequate visualization and there should be some analysis capacity for real-time
numerical feedback. This paper proposes a pipeline of video processing algo-
rithms which are implemented already or intended to be implemented in the
near future. The pipeline aims in early reduction of the video data amount to
be stored and computed. It consists of a fast planar projection based on camera
calibration, background filtering and swimmer tracking. The planar projection
makes it possible to combine different camera streams to a single one and gives
a solid physical framework for further analysis. Since swimming speed is an es-
sential feature, speed accuracy estimation is included. The calibration based on
planar projection is not conventional one, thus a comparison to an ideal pinhole
model with existing camera placement uncertainty is documented.
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The background filtering serves as a preparatory step in athlete tracking but
also protects the intimacy of the general public. This is needed since the site
(Impivaara Swimming Center, Turku, Finland) is open to the general public
while the coaching sessions take place. Video recordings are used as handouts
for athletes and are sometimes used as a public scientific resource.

The swimmer tracking helps to record only the swimmer and his immediate
surroundings (bubble clouds, wave form at the water surface). This amounts to
storing only 2 % of the original raw video data. The registration and vectorization
of the swimmer silhouette in real time remains as a possible further development.
This paper documents one silhouette vectorization algorithm implemented as
a post-processing step. The vectorization quality has been compared to cycle
registration and to the horizontal velocity records of the real-time swimmer
tracking. The final aim of our project is an establishment of a video database
with combination of bio-mechanical indicators, silhouette dynamics, silhouette
state vector, time stamps for automatically and manually detected events and
handout videos.

Starting a new site for swimming analysis requires usually considerable re-
sources and our economical approach should be of interest to any swimming
coach considering a basic computerized real-time feedback at a local site.

The rest of the paper is organized as follows. Sec. 2 is a short presentation
about the contemporary research. Sec. 3 describes the site and the computing
equipment. Sec. 4 presents an economical and simple calibration method based
on planar projection. Also a brief comparison to mono-camera and ideal pin-hole
model is provided. Sec. 5 is a proposal for real-time markerless tracking of the
swimmer and it may have relevance to the swimming research community. The
swimming cycle registration based on markerless tracking is proposed in Sec. 6.
Sec. 7 has conclusions and discussion about the possible future developments.

2 Literature Review

The oldest approach in swimming tracking uses mechanical wire. [20] reports
about measuring the force in the wire while some object is dragged behind,
another method is measuring the swimmer speed directly using the wire. The
mechanical method is used especially to verify the video installments.

Currently, performance analysis is based on video analysis, see e.g. a review
in [19]. A typical approach is:

– to produce video stream from multiple cameras
– and detect marked or nonmarked anchor points of the body, and
– combine the trace information to a biomechanical model and visualization

tools.

Several commercial tools are available, see e.g. a summary at [19]. Known
examples are Dartfish [18] and Sports Motion [17].

A combination of other sensors are used in coaching, e.g. wearable accelerom-
eters with data cache for whole length of the pool [6] and pressure pads [23] at
hands.
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A typical mature system is documented at [25]. An excellent analysis of
real-time and post-session coaching feedback is provided. Swedish Center for
Aquatic Studies has AIM (Athletes in Motion) system capable of combining
views from submerged and above-water cameras, see [15]. The calibration process
is close to our approach although they use striped poles while our approach is
based on chessboard pattern. AIM has been developed by Chalmers and Lund
Universities.

Another possibility is the virtual camera technique. A synthetical moving
viewpoint is computed between adjacent cameras. The view between two sta-
tionary cameras can be interpolated as in [11]. This approach is possible in our
site to eliminate the projection error between neighboring cameras. A concise
method for virtual view generation is described in [26].

Video analysis without markers [12] simplifies the coaching sessions. It is
much less intrusive and provides a smooth coaching process. This is also our
approach. Although [12] aims for 3D body capture, their arrangement cannot
be applied to a sparse camera-row easily. Our approach is more modest, 2D
silhouette capture and for swimming style analysis.

A real-time human silhouette detection system is documented in [4]. In their
application, the background is stable and can be recorded before the session.
Our environment has potential moving objects (non-athlete swimmers sharing
the same site during atheltic sessions). The aim of [4] is to estimate the center
of the body of elderly people at domestic conditions. This data is then used to
activity detection and classification.

Silhouette-based gait detection is the topic of [5]. The technique divides the
standing or walking target to subparts for analysis. The approach is directly
applicable on our field. The added difficulty comes from presence of bubbles and
light scattering underwater.

The trend in research is towards 3D visualization and biomechanical models.
Analysis of the recorded data is quite developed but there is room for improve-
ment what comes to quick performance feedback by understandable performance
measures.

There are mature systems which already serve the coaching activities well.
The implementation seems to be rather involved requiring technical assistance,
set-up times and high initial and running costs. Our approach is economical, we
seek a non-intrusive rudimentary implementation with basis for further improve-
ment.

3 The site and the system description

3.1 The site

We had only 3 cameras allocated for the project. The cameras cover 18 m over
the 25 m pool length. Cameras had to be placed to underwater window sills at
depth of 560 mm at the pool side. A fourth camera can be added to the grey
dot depicted in Fig 1 in the future. This setup will cover the whole 25 m pool
length.
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The tracking plane is positioned c. 200 mm aside towards the cameras from
the centerline of the swimming lane 7. The distance has been chosen so that it
approximates the dimensions of the pelvis of an average-sized adult male and
female.

The image mapping constructs pixel intensities directly in relation to the
tracking plane. This method does not use any camera model, camera locations
nor orientations. The World Coordinate System (WCS) is depicted in Fig. 1.
Axis y stands for depth. The horizontal length x is oriented from the turning
point towards the starting point.

Swimming pool

track 7

tracking plane

window camera

1 2 3

25 m

z x
y

a

Fig. 1. The general layout of the site seen from above. The tracking plane of lane 7 is
emphasized. Orientation point a of camera 1 is depicted.

3.2 System

The system consists of:

– one 2-core 3.2 GHz 64 bits computer with. 6 TB of disc space
– 3 permanently placed 50 fps cameras (Basler acA2000-50gc GigE). The image

size is 750× 2044. Pixel size at the tracking plane is fixed to 4× 4 mm2. The
frame time difference Δt = 50−1sec will be used later in this paper.

The uncompressed data from three cameras amounts to about 1GB for a 10
second clip. All cameras are synchronized so that they capture images at the
same time. The time stamps are stored in the video files and they can be used
in determining how to stitch the video streams together.

4 Planar Projection

Stereo and mono camera calibration methods adapted to underwater conditions
are the usual choice for the calibration phase. However, on this site the actual
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camera locations were not precise preventing the mono-camera calibration and
the camera array was too sparse for stereo camera calibration. Instead, a direct
planar calibration was used, where pixels and their WCS position on the projec-
tion plane G (see Figs. 2 and 1) were sampled in such a quantity, that the rest
of the pixel mapping was accomplished by interpolation.

A preliminary measurement process delivering the direct geometric mapping
from pixels to global positions is documented first. The method can be catego-
rized as an ad hoc approach answer to two demands: sparsely placed camera
array and real-time video transformation. Nearest reference is [21], which uses a
camera model and requires the co-planarity of the camera image plane and the
tracking plane. Our method requires no camera model but can optionally use
one as an interpolant.

The calibration data was gathered by floating a calibration checkerboard
along the surface at the tracking plane and recording its horizontal position at
each picture. The chessboard had buoys at the top and weight at the bottom.
The global position x0 of the board was measured within 10 mm accuracy std.

Next, a quick computation scheme for target pixel intensities will be derived.
It is divided to a pre-computation of constants of Eq. 5 and real-time compu-
tation of Eq. 6. The following treatise refers to Fig. 2. Informally, one needs
mappings Fs and Ft describing the relation from source image Is and target im-
age It to WCS. Then a functional composition Ft ◦F−1

s will provide the proper
source image intensity It(pt) for a target image pixel pt. The following defini-
tions use somewhat unconventional definition of image as a set of pixels and a
function I(.) for pixel intensities because the pixel set Ps of source image is not
a conventional rectangle, but merely a general subset of the full frame.

Fig. 2. Relation of source image, target image and the projection plane.

The tracking plane G = {g ∈ R3 | (g − gG) ∙ nG = 0} is defined by the unit
normal vector nG aligned with WCS z axis and one plane point gG = (0, 0, zG)T ,
where zG = 5050mm in case of lane 7. See Fig. 1, which depicts the tracking
plane G and the WCS axes x, y, z. A source image Is = (Ps, Is) has a set Ps of
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pixels with intensities Is(p), p = (i, j, 1)T ∈ Ps, where i and j are conventional
image pixel grid indices. Whereas source image intensities Is are given, the target
image It = (Pt, It) requires the geometrically rectified intensity map It to be
computed. One can cover a conveniently chosen part of the plane G with the
following mapping Ft : Pt → G:

Ft(pt) =




0 γ xmin

γ 0 ymin

0 0 zG



 pt, (1)

where γ = 4.0 mm is an arbitrarily chosen scale factor and gmin ∈ G defined
in Eq. 2 is a camera view specific upper left corner (UL) point. The lower right
(LR) corner point gmax has similar definition Eq. 3. Corner points UL and LR,
and the target image pixel sizes nt,mt ∈ N+ can be chosen freely as long as they
lead to connected combined image and fulfill the constraint posed by Eq. 3:

gmin = (xmin ymin zG)T (2)

gmax = Ft

(
(nt, mt, 1)T

)
. (3)

The target image size Pt = [1, nt] × [1,mt] ∈ N2
+ and the the UL position

gmin are free parameters, which are to be fixed by a practical choice so that
the mapping quality is good and all camera views combine to a continuous total
view. Fig. 3 shows a choice made for all three camera views.

A camera board has a checkerboard pattern. Each corner pixel p on the
checkerboard on each calibration image and its corresponding global position
g ∈ G form a measurement pair (p,g) ∈ U , where p ∈ PU ⊂ Ps. The calibration
data set U is cumulated over 37 calibration images with c. 3000 measurement
pairs. The pixel samples PU of U cover only a part of the source image pixels
Ps whereas the end result of the direct plane calibration have to map whole
source image onto the tracking plane using Fs : Ps → G. In that sense this is
an interpolation problem.

[2] uses two bilinear functions fx, fy : R2 → R to map WCS coordinates x
and y separately:

Fs(ps) = (fx(ps), fy(ps), zG)T . (4)

Specifically, for the calibration measurement set U it holds that (p,g) ∈ U →
Fs(p) ≈ g. It is worth to mention that the above mapping Fs could have been
any relatively smooth function with some sort of regularization control.

4.1 Pre-computation and post-computation

The initial problem of finding the target image content has been accomplished,
except it is inconvenient to inverse Fs. Instead, one needs to match source image
pixels to target image on the projection plane. There are many possibilities to
this. One can e.g. use Shepard interpolation as in [2] and pre-compute the neces-
sary neighborhood sets and weights. In that respect, k = 4 nearest neighbors of
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a point Ft(pt) amongst the point set Fs(Ps) are used. The interpolation neigh-
borhood matrix M ∈ N|Pt|×k

+ and neighborhood weight matrix W ∈ R|Pt|×k
+ can

be pre-computed and used for the real-time pixel intensity computation:

It(pt) =
k∑

i=1

Wpti Is(Mpti), pt ∈ Pt. (5)

A special case k = 1 leads to the nearest neighbor approximation, which
is very fast and requires no weights W . By denoting C = Mpt1 as a table of
the nearest neighbor pixels of pt ∈ Pt at Ps, one can write the final real-time
transformation as:

It := (Pt, Is(C(Pt))) (6)

The pre-computed image mapping is simple and efficient enough for to be
used in real-time. The usage of the projection plane G also makes it possible to
combine each camera signal accurately to one single video, as demonstrated in
Fig. 3. What comes to implementation, two image intensities rest on two memory
blocks, and C is an index array.

4.2 Error analysis

The measurement set U has c. 150 mm vertical gap and c. 50 mm average
horizontal distance between points. This requires the interpolant to have rather
high penalty for non-smoothness.

The measurement errors for each observation (p,g) ∈ U were as follows:

– pixel p detection was done with Matlab detectCheckerBoard.m function, the-
ory of which is contained in [7]. The pixel detection error is p ≈ (1, 1) std.

– the mechanical placement accuracy of a measured point g is Δg ≈ (10, 10, 10+
0.01 y)T mm as an approximate std.

The so called back-projection (see e.g. [22]) plot shows that the geometric
mapping error is un-biased but not Gaussian. The back-projection map is not
included to this paper. The final accuracy of Fs(ps) is much better than of initial
data U . The geometric mapping error measure e(p) is given in Eq. 7 and depicted
at Fig. 3:

e(p) = ‖g − Fs(p)‖, (p,g) ∈ U (7)

Since the sample set U is of rather good quality and since the function Fs is rather
smooth, the error stays almost constant even if the tuning of the interpolation
is subjected to cross-validation over subsets of U . The positioning error with
std. σg ≈ 1.8 mm (see [2]) is largest in occasional points at the border and
grows rapidly when extrapolating. The border areas are seldom occupied by a
swimmer, though, and the problem is more of aesthetical nature. The border
error can be eliminated in the future by applying a different interpolant instead
of one in Eq. 4. Future calibrations will use a laser device for the horizontal
position measurement, hopefully improving the visible errors occurred during
the recording of the calibration data set U revealed by Fig. 3.
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Fig. 3. Above: Error of the interpolation as a difference e(p) = ‖Fs(p)− g‖, (p,g) ∈ U
at the calibration data set U . Also the choice of target image views Pt for each camera
depicted. The color bar shows errors within the tracking area limited by view frames
(gmin i,gmax i), i = 1, 2, 3. Maximum error outside the tracking area is 9 mm. Below:
Speed error for a point moving at v = 1.6m/s. Velocity distribution is measured to all
directions. The std. is 0.07 m/s.

The speed error with the result std. σv ≈ 0.07m/s has been estimated
by assuming an observable point moving at a typical velocity v = 1.6 m/s =
8 pixels/frame. An observation cannot occur at a shorter time interval than one
frame, thus more pessimistic finite differences must be used in estimation. In-
stead of usual chain differentiation of velocity v(p) = F ′

s(p)ṗ γ where pixel speed
ṗ is assumed to be constant ṗ = 8/Δt, one needs to employ a probabilistic vari-
ables p ∼ U(Ps) and ṗΔt ∼ N (8, 2 × 0.52), where variance term comes from
two additive measurements of consecutive frames with std. 0.5 pixels (≈ 2 mm
according to [2]). The resulting distribution function of speed v is presented at
Fig. 3:

v ∼
Fs(pr)− Fs(p)

r
ṗ γ, ‖pr − p‖ = r = 8, pr ∈ Ps. (8)

Both the location and speed errors are somewhat larger in practise, since there
are always observation or registration errors involved.

4.3 Effect of inaccurate camera placement to traditional calibration

Alternative calibration methods were evaluated and tested. The best alternative
was mono-camera model used as an interpolant of planar projection Eq. 4, but
even that failed to reach the same accuracy as direct planar calibration. The
traditional mono-camera calibration was next and the stereo-calibration worst -
this was due to small overlapping of the camera view cones, see Fig. 1.
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The traditional camera calibration requires an arrangement where the camera
locations and orientations are known or can be measured accurately. Unfortu-
nately, the geometric accuracy (see Table 1) technically possible on the site was
not enough for traditional calibration to be competitive. Since the approaches
differ so much, it is good to have a criterion for required camera positioning
accuracy before mono or stereo calibration become an option.

A treatise of the application of mono-camera model combined with the plane
projection follows. There are three distinct parts: pinhole camera model, coordi-
nate transformation due the camera orientation, and projection to the tracking
plane.

Pinhole camera model Q−1
1 : P → S2 ⊂ R3 from pixels P to camera-

related projection directions on the unit sphere S2. Literature has the camera
model defined usually the opposite way as Q1 but uses the concept in both mean-
ings. We used Matlab Toolbox [24] and an underwater calibration chessboard.

Camera orientation of a camera c is defined by WCS orientation matrix
Nc = {ni},ni ∈ S2, i = 1..3, to be derived on the next page. The WCS coordi-
nate base is denoted by {ei} and camera coordinate base by {eci}, i = 1..3, see
Figures 4 and 1.

Fig. 4. The WCS orientation base E, an orientation Ec specific to a camera c and
column vectors of the coordinate transform matrix Nc depicted at the camera c. The
pixel a is the global z axis marker for camera c.

The orientation is measured by an alignment marker pixel a ∈ P , which
indicates the global z axis direction in the camera coordinates, see Figures 1
and 4. The following definitions are needed:

ac = Q−1
1 (a, α) (geom. axis 3 in camera coords)

Pc23 = ec3 eT
c3 + ec2 eT

c2 (a projection matrix)

bc = (Pc23 ac)
0 (projecting ac to (ec2, ec3) plane), (9)

where α are the pinhole model parameters achieved e.g. by Matlab toolbox [24]
session and (.)0 denotes vector normalization.
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The above definition relies on the fact that cameras have been placed very
carefully to have very small rotational error around the optical axis. This was
achieved by special horizontal reference markers at the opposite side of the pool.
The achieved optical axis rotation accuracy is c. 0.1× 10−3 rad.

A rotation matrix Ruv rotates a unit vector u to a unit vector v:

Ruv = H(u + v)H(u), (10)

where the so called line reflection matrix H(u) = −I+2uuT /‖u‖2, see e.g. [28].
The rotation matrix Ruv has the following necessary properties: H(u,u) =
I, H(u,v)u = v, w∙u = w∙v = 0→ R(u,v)w = w,R(u, (u+v)0)2 = R(u,v).

A coordinate transformation matrix Nc can now be based on the definitions
of Eq. 9 and two consecutive Euler rotations Rφ and Rθ depicted in Fig. 4:

Rφ = R ec3 bc
(11)

Rθ = Rbc ac
(12)

Nc = (Rθ Rφ)−1. (13)

The final transformation from coordinates specific to a camera c to WCS
equals:

n = Nc nc (14)

where nc = Q−1
1 (p, α), p ∈ P is the camera-specific orientation of a pixel p from

the previously addressed pinhole model.
Projection: The final map Q2 : n→ g ∈ G is the projection to the tracking

plane G:

l = (zG − gc ∙ e3)/(n ∙ e3) (projection length) (15)

g = gc + ln ∈ G (on-line condition) (16)

The projection length l has been solved from the in-plane condition: g ∈ G→
g ∙ e3 − zG = 0.

The total mapping FsM = Q2 ◦Nc ◦Q
−1
1 : P → G for mono-camera has been

now constructed. By assuming normal distributed measurements of Table 1 and
normal distributed pinhole model parameters from Matlab Toolbox [24], one
gets the pixel placement accuracies listed in Table 2. Due to nonlinearities in
Eqs. 9... 16, the resulting distribution of tracking plane position g ∈ G is not
normal distributed. Std. values are used in Table 2 to make comparisons possible.
Computations were done by python Sympy package [27] by coding Eqs. 9... 16
with their corresponding variance terms (first five values) of Table 1. ΔN at the
last row of Table 1 stands for the maximum angular orientation variance at e3

direction and it is a result, not an input for the computation.
The ideal camera placement is exact, whereas the current accuracy is within

10 mm (std.). The ideal camera model is impossible but it can be modelled
with Eqs. 9 by assuming the pixel specific local direction vector ac be given.
All existing camera models are between the ideal one and the Matlab Toolbox,
which is based on [7] and [16].
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Table 1. Error terms (1 std.) of the mono-camera calibration.

Term Explanation value

Δa direction pixel error 2.0 pix.

Δp chessboard pixel error 0.9 pix.

ΔzG tracking plane position 10 mm

Δgc real global camera position (*) (10,10,15) mm

Δgc ideal global camera position (**) (0,0,0) mm

ΔN global camera orientation 0.4 × 10−3 rad

The accuracy is clearly limited by the camera placement if direct calibration
is not utilized. Also, the limiting factor in direct calibration is horizontal position
measurement, which can be improved in the future.

Table 2. The effect of camera placement inaccuracy. The projection calibration, an
ideal and a real mono-camera model accuracy Δg compared. Values are std. in vertical
and horizontal direction.

Method no pos. error (*) (mm) real pos. error (**) (mm)

direct calibration 2.0 ... 7.0 2.0 ... 7.0

ideal camera model 3.2 ... 5.2 13 ... 15

mono-calibration 3.4 ... 10 15 ... 21

5 Silhouette Tracking

The real-time swimmer tracking method is based on finding the horizontal pixel
translation which minimizes the intensity difference of two sequential images.
There are three caveats in this simplistic approach though:

1. The background does not move and causes a strong slow-down bias. In our
chosen approach, we use the difference of two consecutive images as a basis
of further computations, thus eliminating this effect.

2. Hands are constantly propelling the swimmer forwards with a backwards
stroke aside the body. This causes similar slow-down bias, but only locally.
This error source can be eliminated by dividing the observed area to e.g.
3× 6 subparts as depicted in Fig. 5 and taking the average of the majority
translational shift observed.

3. The resulting speed or horizontal position as a function of time cannot be
directly associated to any particular body part. This problem can be solved
only by a secondary tuning at the post-processing phase.

The swimmer tracking succeeds in keeping the swimmer at focus, thus en-
abling the reduction of the video record size. Bio-mechanical indicators e.g. ac-
curate speed of head, pelvis etc. have to be measured at the post-processing
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phase. The inexact preliminary speed measurement does not prevent later addi-
tive corrections!

The algorithm to find the horizontal shift u∗ ∈ R (in pixels) between two
sequential images I1 and I2 is presented. It is based on minimizing the following
simple and fast dissimilarity measure:

dA(I1, I2) =
∑

p∈P1∩P2

|I1(p)− I2(p)|/|P1 ∩ P2|, (17)

where the summation is applied to the overlapping part of two images or sub-
images after a possible horizontal translation explained later in the text. Since
the athlete silhouette has a slight shape change between two frames, the dissimi-
larity minimization is made by sub-images, and only the most similar sub-image
pairs will contribute to the decision about the effective horizontal translation
happening between frames. This limited set of sub-images is detected by their
deep local minima of dA(., .) measured by the second order derivative (or its ap-
proximant) at the minimum. The algorithm is designed to be of O(|Pt|) (constant
time for a pixel), and it allows simple task-parallelization per each sub-window,
although it is intended to a single processor. It requires one parameter, the a
priori value u0 for the vertical speed.

Following conventions have been used in the algorithm: I(Δi) is an image I
shifted by Δi pixels horizontally along the current swimming direction. Ii,k is a
k’th sub-image of an image Ii. g(u) is a low-order polynomial fit to a data set
{(i, f(i))| i ∈ a short interval ⊂ N+}, e.g. of degree 2 or 3.

Data: Sequential images I1 and I2, and the previous horizontal
translation u0 ∈ R+

Result: Translation u∗ ∈ R+ which best fits sub-images I.k

forall I1,k ⊂ I1 do
f(i) ≡df dA (I1,k(i), I2,k(0)) see Eq. 17;
i0 ← bu0c truncated value;
ik ← argmin

i∈[i0−Δu,i0+Δu]

f(i) optim. evaluations based on local convexity;

g(u) ≡df f(i) interpolated to continuous u ∈ R+;
uk ← argmin

u∈[ik−Δu,ik+Δu]

g(u);

wk ←
d2g
du2 (uk) approximative or exact second derivative;

end
u∗ ← meank∈[1,4]uk when ordered by descending wk;

Algorithm 1: Finding the optimal horizontal pixel shift between two images.

There is a faster, non-interpolating and more inexact version of this algorithm
using discrete value ik directly and approximating the importance wk of a sub-
image k by the second order difference D2(.) with a unit step size:

uk ← ik

wk ← f(i0 − 1)− 2f(i0) + f(i0 + 1) = D2(i0). (18)
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t= 1.67 (s), v=1.42 (m/s)
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Fig. 5. Above: Horizontal pixel translation Δp in for the optimal match at each sub-
window. Middle: Division of the camera view to sub-images Ii,k, k ∈ [1, 18]. The back-
ground is neutral since the difference of two sequential images has been used for the
swimmer tracking. Below: Original video frame (G channel of the RGB signal).

A typical speed of a female backstroke swimmer is u0 = 8...9 pixels/frame
(≈ 1.5...1.7 m/s). This speed is specific to abilities of the athlete, swimming
style, sex and age. It serves as an initial guess for the algorithm 1 when first two
images are being processed. The later image pairs will use the latest observed u∗

as the initial guess. Two sequential images are then divided to sub-image pairs
I.k, which have in some cases unique optimal horizontal shift uk (in pixels).
The shifts are made in exact pixels i, and usually only few trials are needed
to find the best pixel fit ik = argmin

i
f(i) when starting the search from the

truncated initial guess i0 = bu0c. The continuous counterpart g(u) of the image
fit function f(i) is evaluated only locally at a short interval, and a low-order
2nd or 3rd order polynomial is enough to estimate the quality of the fit. Fig. 5
depicts more generic splines in order to illustrate the regularity of the local fit.
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If two sub-images resemble each other, they provide more useful information
about the translation than other sub-image pairs, and should be preferred. The
quality of the fit is reflected by the depth of the local minimum. E.g. sub-images
2,4,9 and 10 in Fig. 5 indicate the horizontal speed best and are chosen to form
the averaged horizontal shift u∗.

The momentary horizontal velocity of the swimmer is now v(t) = u∗(t) γ/Δt
where γ = 4 mm is the geometric pixel size from Eq. 1 and time t = iΔt for
an image Ii. Fig. 6 depicts the resulting tracking speed. Individual strokes can
be registered but the plot would require some smoothing. The current system
has a real-time velocity plot based on marker-tracking, but at the moment it
seems to have poorer quality. There are further improvements possible to Alg. 2
in order to produce better tracking speed plot, but similar improvements can be
achieved in the post-processing phase, as well. E.g. a Kalman filtering employed
in [2] can be used.

0 0.5 1 1.5 2 2.5 3 3.5 4
1

1.2

1.4

1.6

1.8

2
horizontal speed by silhouette tracking, 3x6 tiles
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v(
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m
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Fig. 6. Silhouette tracking. Above: Horizontal translation for the optimal match at
each subpart. Below: Division of the camera view to subparts Ik, k ∈ [1, 18]. The
background is black since the difference image is being used for the swimmer tracking.

6 Swimming Cycle Registration

There are several alternatives for swimming cycle registration. One can detect
pikes from the velocity curve of Fig. 6 and produce a visual dissimilarity graph
based on velocity histories of each swimming stroke as in [2].

Another alternative is silhouette vectorization, which would provide access
to the state space of the performance. This approach would open the door to
fully nonlinear dynamics analysis.

Third alternative uses the translational sub-image dissimilarity demonstrated
in Alg. 2 to find the closest match from the frames which exist approximately one
estimated cycle duration away from the current frame. This gives a continuous
cycle duration measure. The next matching frames form a detectable path in the
image dissimilarity matrix D depicted in Fig. 7. The definition of the dissimilarity
matrix D follows:

D = {d(Ii, Ij)}i,j∈1..n, (19)
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where n is the number of video images over one length of the pool. There are

Fig. 7. Translational dissimilarity of full frames in a swimming performance with a
gliding phase (frames 1-50) and backstroke phase (frames 51...). Exceptional events
are clearly visible. 100 % dissimilarity means difference between completely black and
completely white images.

several possibilities for the dissimilarity d(., .) which will be explored next. Fig. 5
has been produced by matching whole images with only horizontal translation al-
lowed, while left part of Fig. 6 has been produced using sub-images and fully free
translation. An algorithm implementing a dissimilarity measure dB(Ii, Ij) based
on extent of minimizing free translational shift is presented next. The previous
notion of horizontally shifted image I(i), i ∈ N+ is now extended to completely
free translation I(i), i ∈ N2. Also, previous interval search for minimization is
substituted by square area search over box((ux, uy),Δu) = [ux−Δu, ux +Δu]×
[uy − Δu, uy + Δu] ⊂ R2, ux, uy ∈ R. A similar box(i,Δu) ⊂ N2, i ∈ N2 has a
corresponding discrete domain.

Data: Two images or sub-images Ii and Ij and the search limit Δu = 2.
Result: the image dissimilarity dij = dB(Ii, Ij) based on the norm of

minimizing 2D pixel translation.
f(i)← dA (I1(i), I2(0)) , i ∈ N2 ;
i∗ ← argmin

i∈box(0,Δu)

f(i) optimizing evaluations based on local convexity;

g(u) ≡def f(i) interpolated to continuous u ∈ R2;
u∗ ← argmin

u∈box(i∗,Δu)

g(u);

dij ← ‖u∗‖2
Algorithm 2: Finding the extent of an optimal pixel shift between two images.

Another variant of Alg. 2 defines dissimilarity dC(., .) with translations u
restricted to horizontal shift only. Yet another dissimilarity applies to whole



16 Paavo Nevalainen et al.

images only:
dD(Ii, Ij) = mean

I1k∈I1

dC(I1k, I2k), (20)

which has a possible variant restricting the value set used for averaging by a
similar interpolation and weight strategy as used in Alg. 1.

The following cycle duration algorithm assumes the dissimilarity matrix D
partially pre-computed using the dissimilarity variant dD(., .) of Eq. 20 so that
it contains the path of best matching future frames. This can be ensured by
computing a diagonal stripe of D using some practical margin width, say 15
frames. The algorithm then traces the path to produce the cycle duration plot
on right side of Fig. 8. First, the best matching future frame Ii+ji

is searched for
a frame Ii. Then, an interpolation function g(., .) is based on a modest sample set
of neighboring dissimilarity values of D to find a best matching cycle duration
ui. This algorithm produces interpolated frames Ii+ui , ui ∈ R+, from where the
cycle duration T (t) = uiΔt, t = iΔt can be derived:

Data: Dissimilarity matrix D, image index i and the previous cycle
duration ui−1 ∈ R+ or a priori u0

Result: Duration ui ∈ R+ which best fits frame pairs Ii, Ii+ui
.

forall i ∈ 1...n do
j0 ← bui−1c;
ji ← argmin

j
Dij starting the search from j0;

g(v, u)← Dij interpolated to continuous u, v ∈ R using earlier
computed values of D in a neighborhood box((i, jk),Δu);
ui ← argmin

jk−Δu≤u≤jk+Δu
g(i, u) a local search with Δu = 3;

end
Algorithm 3: Finding the optimal match over the swimming cycle duration.

As before, a faster and less accurate version can be provided by bypassing
the interpolation step: ui ← ji. It seems, that a practical choice is to use the
latter less accurate model and use e.g. Kalman smoothing (see e.g. [8]) with
a physically feasible point mass and damping coefficients to produce the final
velocity plot of Fig. 6 and the cycle period graphs depicted in Fig. 8.

7 Conclusions

A principal objective of the system is to provide immediate trainer feedback.
To achieve that in the early phase of the project, the implementation has been
based on the following principles:

– The analysis is limited to a monotonic stage of the athletic performance.
Detection of stage changes like from gliding to stroking remains a future
problem. At the moment the analysis is triggered manually. Several swim-
ming styles are supported, though.

– A real-time marker tracking has been implemented. It will be substituted by
the markerless tracking in the future.
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Fig. 8. Left: The frame dissimilarity matrix D based on the dissimilarity measure
dD(., .). Both horizontal and vertical translations are allowed. See Alg. 3. The cycle
length shows as diagonal stripes. Right: The cycle duration based on the dissimilarity
matrix at left. The graph shows how the athlete shifts from slide mode to stroke mode.
The graph contains noise, since the interpolation routine of Alg. 3 was by-passed for
quality assurance.

– The geometric mapping of images, markerless silhouette tracking, seamless
combination of 3 camera signals, tracked velocity visualization and cycle reg-
ularity visualization are real-time processes, which will quite likely perform
at 25 fps (for every second frame).

– silhouette capture and vectorization, separate legs-vs-hands stroke analysis,
biomechanical analysis and various problems about clustering athletes by
their swimming technique are all left as a post-processing step.

As the the execution order of the Alg. 1 is O(1) per pixel, and there are c.
100 processor instructions per pixel, it is estimated that the execution time will
be very small and that the intended computing equippement [1] can handle the
tracking of 25 fps video input. This means two processors will be capable of real-
time geometric transform [2] and tracking task with c. 25 fps i.e. every second
frame are subjected to computation and every second frame is interpolated with a
simple instruction set. The computation tasks are inherently parallel, facilitating
upgrade to system speed 50 fps.

A simple pipeline of real-time swimmer tracking, which requires relatively
modest computational arrangements and is able to provide immediate coaching
feedback, has been presented. The analysis is limited to projective 2D plane,
and it is our hope that it will be capable of silhouette vectorization and further
bio-mechanical analysis. The camera calibration process adapts to the econom-
ically feasible sparse camera array arrangement and to poor camera placement
accuracy. A procedure to decide between conventional camera calibration and
direct projection plane calibration has been presented.
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At the moment the system performance has not been validated against con-
temporary techniques and technologies. A new approach avoiding many pitfalls
of computationally heavy operations has been proposed, and further improve-
ments depend on the feedback of the research community with long traditions
and experience on this field. The concrete micro-array chip implementation of
algorithms will proceed later, and we remain optimistic that the result will have
practical value.

The current system will be upgraded by a fourth camera at the location
indicated by a grey circle in Fig. 1. The video monitoring would then span
whole the pool length.

There are several alternatives to algorithms used to track the swimming
speed. One can preprocess or vectorize the images by FFT etc. methods. These
alternatives were not of interest now, since we aim at a video database of large
number of athletic sessions with correctly focused video frames in order to cu-
mulate samples for further application of Machine Learning methodologies, e.g.
for swimming gait evaluation.

The geometric mapping of the video image is fast while it maintains enough
signal quality for markerless tracking algorithms. An interesting alternative in-
terpolant for the mapping Fs of Eq. 4 is the best available water-plexiglass-air
camera model as described in [9]. The same model has been applied e.g. in [15].
The model requires more tuning parameters than e.g. [24]; camera position and
orientation, plexiglass thickness and refraction coefficient, and the air length be-
tween camera and plexiglass must be fit by mean square error minimization of
Eq. 7. This approach will be attempted in the future.

We hope that proposals and demonstrations of this paper stir up some inter-
est in the research community. We aim at a combination of simple and feasible
methods, and the current set of algorithms lacks only a high-quality silhouette
registration with a simple real-time version to detect swimming phase changes
and events.
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This is an expansion of the work presented in [2]. The following novelties
have been added:

– horizontal speed error analysis in Sec. 4.2,
– comparison of the direct planar calibration and conventional calibration

methods in the presence of the camera position and orientation uncertainty
in Sec. 4.3 and Table 2,

– a real-time method for markerless swimmer tracking over multi-camera array
in Section 5. This is the main result of this paper. Earlier version in [2] used
marker tracking, which is considerably easier task.

– Swimming cycle registration based on markerless tracking on Section 6.
Method is based now on comparison of image pair differences instead of
mere tracker speed curve analysis.
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Abstract: Curvature spectrum is a useful feature in surface classification but is difficult to apply to cases with high noise
typical e.g. to natural resource point clouds. We propose two methods to estimate the mean and the Gaussian
curvature with filtering properties specific to triangulated surfaces. Methods completely filter a highest shape
mode away but leave single vertical pikes only partially dampened. Also an elaborate computation of nodal
dual areas used by the Laplace-Beltrami mean curvature can be avoided. All computation is based on trian-
gular setting, and a weighted summation procedure using projected tip angles sums up the vertex values. A
simplified principal curvature direction definition is given to avoid computation of the full second fundamental
form. Qualitative evaluation is based on numerical experiments over two synthetical examples and a prostata
tumor example. Results indicate the proposed methods are more robust to presence of noise than other four
reference formulations.

1 INTRODUCTION

Wide-scale point clouds have become accessible to
analysis everywhere. The point cloud surface regis-
tration typically has an approximate or accurate De-
launay triangular or tetrahedral mesh generation as a
preliminary step. The surface models are called irre-
gular triangularized networks (TIN) for historical re-
asons. The application domains can be roughly di-
vided to three categories by the target environment:
built environment, natural resource data and medical
3D imaging.

The ratio 0 ≤ σh/r ≤ 0.3 of the perpendicular
noise component σh and the nominal surface radius r
describe the difficulty of curvature registration. The
built environment data has usually high point den-
sity and small noise ratio compared to the natural re-
source data (Mitra and Nguyen, 2003). Built surfa-
ces are usually solid, curvature values change slowly
over distance, and it is desirable to be able to detect
the local curvature accurately. A typical mean curva-
ture method for such data is based on the Laplace-
Beltrami (L-B) operator (Meyer et al., 2003; Mes-
moudi et al., 2012).

Other two application domains have
the noise ratio much higher, approximately
σh/r = 10−2...10−1 (Schaer et al., 2007). Sur-

Figure 1: The voluminous highest noise component ari-
ses either from the scanning process (LiDAR point clouds,
left), or from the voxel granularity (right). Neither case
should require any parameters to filter. Occasional anoma-
lies (circles) should be transferred intact to pattern recogni-
tion phase.

faces, e.g. the terrain surface, are porous, covered
with vegetation or mathematically undefined. Natural
resource data is gatherer by aerial light detection
and ranging (LiDAR) or by spatial photogrammetry.
Natural resource data has shape recognition tasks
where the point samples per target ratio reaches
one (Nevalainen et al., 2016), i.e. one single elevated
hit is a possible target (e.g. a surface stone), see
Fig. 1. Detection of an individual target is naturally
uncertain in the presence of noise, but one can cluster
larger areas e.g. to stony or non-stony ones using
e.g. the curvature spectrum (Nevalainen et al., 2015).
On the other hand, there is a natural frequency limit
defined by the nominal mesh length. Excitation of
this frequency over a large area (see Fig. 1 left side) is
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usually a numerical artifact which should be filtered
at some point of the processing.

Medical 3D applications, especially magnetic re-
sonance imaging (MRI), often have non-isotropic
voxels causing excitation at the frequency limit, see
right part of the Fig. 1. Numerical methods should be
resilient to effect of noise, low sampling and discreti-
zation patterns.

Surface registration is reminiscent of interpola-
tion, whereas noise reduction is filtering. Typically,
these two operations can be performed in any order, or
combined together. Spatial filtering requires several
parameters, and it is worthwhile to seek curvature re-
gistration methods, which would handle the highest
frequency as depicted in Fig. 1:

1. leaving single pikes to be handled by later pattern
recognition and filtering steps.

2. eliminating automatically large excitations of the
highest frequency.

Naturally, if such a behaviour is squarely against
the needs of a specific application, there is an abun-
dant supply of existing curvature registration met-
hods, which should be employed instead. Alternative
methods have several opposing properties for discrete
differential operators (Wardetzky et al., 2007) used as
building blocks for curvature analysis. If a new appli-
cation field arises, one has to be aware of the trade-
offs between different properties.

The Gaussian and mean curvature completely de-
fine the local curvature of any continuous surface. It
is the consensus of the current research that the local
Gaussian curvature is best estimated on TIN models
by so called angle deficit (see e.g. (Crane et al., 2013),
and the result is robust to noise. This reference met-
hod is named as vertex Gaussian in this paper.

This paper uses the classical differential geometric
definition of the average Gaussian curvature (Press-
ley, 2010): it is the ratio of the total orientation change
over a surface area, a TIN triangle in this case. It is
pointed out in Sec. 3.1 that this simple definition leads
to a triangular Gaussian curvature estimation on ver-
tices, which fills the requirements 1 and 2 mentioned
before.

The mean curvature is numerically more difficult
target than Gaussian curvature. One starting point for
computation has been neglected in the literature thus
far. It is possible to define the mean curvature by the
local rate of change of the surface area when the sur-
face is mapped towards the direction of its unit nor-
mal (Pressley, 2010). This definition is related to the
theory of minimal surfaces and it can be applied di-
rectly to the triangulated surface with defined vertex
normals. Also this novel mean curvature formulation

has the earlier mentioned properties 1 and 2, as rumi-
nated in Sec. 3.1.

The rest of the paper has the following struc-
ture: Section 2 introduces the triangular Gaussian and
mean curvatures, and a collection of competing defi-
nitions. Also the problem of finding the principal cur-
vature direction has been addressed there. Section 3
has a practical example (prostata tumor), and two
synthetical test cases to verify the properties 1 and 2
of the proposed method. Section 4 brings in the con-
clusions.

2 TRIANGULAR CURVATURE

The following notation will be used throughout the
presentation. The set of cloud points P ⊂ R3 is gi-
ven. A triangle t = (a,b,c), a,b,c ∈ T ⊂ P 3 is de-
fined by three vertex points which can be referred in
cyclic fashion in counterclockwise order (with three
possible combinations considered identical). To shor-
ten the notation, the vertex membership a ∈ t and
the geometric insidence q ∈ t have the same nota-
tion, when the intended meaning is clear from the
context. A vertex p has a set of surrounding triang-
les Tp = {t ∈ T |p ∈ t} ⊂ T . The edge neighborhood
Np =∪t∈Tp t \{p} is a counterclockwise cyclically or-
dered set of points connected to p by a triangle edge.

The triangle t = {a,b,c} has a unique face normal
nt (oriented outwards) and an area At :

Nt = (b−a)× (c−a)
At = ‖Nt‖/2 (1)
nt = N0

t , (2)

where Nt is a temporary cross product term and vec-
tor power v0 = v/‖v‖ of a vector v denotes the vector
normalization.
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The local curvature state of the surface is comple-
tely defined after finding out both mean curvature H
and the Gaussian curvature G. Sections 2.1- 2.7 pre-
sent the curvature quantities both in a triangle t and at
a vertex p.
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2.1 Triangular Gaussian Curvature

The tangential orientation change ∆α over a length l
defines κ, the average of the curvature of a 2D curve
over the same length: κ = ∆α/l. Analogous to this,
the average of the Gaussian curvature of a smooth sur-
face S ⊂ R3 can be defined (Pressley, 2010, p.166-
168) as the ratio GS = ωS/AS, where AS is the surface
area of S and ωS is the solid angle of which the sur-
face normal n(q),q ∈ S traces. This definition can be
applied to a triangle t = {a,b,c} with vertex normals
na,nb,nc with the exception that the accurate surface
S is not known and the triangle area At is a lower
bound approximation of the hypothetical smooth area
meas(Sq). Ramifications of this fact will be addressed
in Sec. 3.1.

The solid angle ωt in Eq. 3 is the total trace of
normal n(q), q ∈ t and, assuming a barycentric inter-
polation scheme, it equals the solid angle of a vec-
tor tri-blade na, nb, nc (van Oosterom and Strackee,
1983):

tan(ωt/2) = na·nb×nc
1+na·nb+nb·nc+nc·na

(3)

Gt = ωt/At . (4)

The numerator in Eq. 3 equals zero when at least two
vertex normals are parallel, which results in require-
ments 1 and 2 of Sec. 1 to be fulfilled as far as trian-
gular Gaussian Gt of Eq. 4 is concerned. This will be
elaborated further in Sec. 3.1.

2.2 Triangular Mean Curvature

Considering a triangle t = (a,b,c) and the associa-
ted surface normal approximants na,nb,nc at verti-
ces a,b,c, and a barycentric dependency of normals
n(q),q ∈ t in the triangle t, one can define a nor-
mal mapped parallel triangle tu = {q+un(q)|q ∈ t}.
Using a definition of (an averaged) mean curvature
in (Pressley, 2010, p. 207), one gets:

Ht =
1

2At

( d
du Atu |u=0

)

= (nb−na)×(c−a)+(b−a)×(nc−na)
4At

·nt . (5)

Note that triangular mean curvature Ht ≡ 0 when all
the vertex unit normals are parallel i.e. na = nb = nc.
This leads to requirements 1 and 2 of Sec. 1 to be
fulfilled.

2.3 Projective Tip Angles as Weights

The vector angle function acos() and the projected
vector angle function acosn() simplify the upcoming
presentation. The projection angle φ′12 is the angle φ′12
between vectors v1 and v2 when seen from direction

n. See the right part of the Fig. 3. A projection matrix
P(n) = I−n0n0T is used to define acosn(.):

acos(v1,v2) = cos−1(v0
1 · v0

2) (6)
v′i = P(n)vi, i = 1,2

acosn(v1,v2) = acos(v′1,v
′
2). (7)

Note that acos(v1,v2)≡ acosv1×v2 (v1,v2).
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The projective tip angles φ′t p are used systemati-
cally to average all triangular quantities Xt , t ∈ T to
corresponding vertex quantities Xp, p ∈ P :

φ′t1a = acosnp(p−a,b−a) ( See Fig. 3) (8)

φ′p = ∑t∈Tp φ′t p (9)

Xp = ∑t∈Tp φ′t p Xt/φ′p. (10)

This weighting procedure of a quantity X will be de-
noted as: Xt → Xp in the rest of the text.

Good numerical properties of tip angle weighting
pointed us to amortize the computational costs by ap-
plying it to produce the following vertex properties:
normals np, triangular mean curvature Hp, triangu-
lar Gaussian Gp and principal curvature direction vp.
Another benefit was the unified handling of the boun-
dary points, since the angle sums φ′p ≤ φp ≤ 2π give
an excellent weighting at the boundary. This is impor-
tant because e.g. the natural resource data is prune to
have missing values and holes in the point cloud, and
the boundary points are thus common. When a point
p is not in the border, the sum of projected angles
equals: φ′p ≡ 2π. There are other weighting schemes
in the literature, these are being discussed in Secti-
ons 2.5 and 2.6.

2.4 Vertex Gaussian

Since the projected tip angles have been introduced,
it is possible to define an alternative vertex Gaussian
using the spherical excess (Crane et al., 2013) formu-
lation. The vertex Gaussian of Eq. 12 serves as a re-
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ference method:

φp = ∑t∈Tp φt p (11)

Gp = (φ′p−φp)/(Ap/3). (12)

2.5 Vertex Normals

Vertex normals np are weighted from triangle normals
nt using the generic scheme of projected tip weighting
defined in Eq. 10: nt → np. There are several other
possible definitions. Vertex normals can be conside-
red pointing towards the new altered vertices after the
local surface is varied, or they somehow represent a
continuous but unknown reference positions. The al-
ternatives satisfying DDG convergence requirements
listed in (Crane et al., 2013) are reproduced here for
discussion. The vertex normal can be:

1. The vector area: np =
(

∑t∈Tp Atnt

)0

2. The area (or volume) gradient np = (dAp/d p)0,
when one vertex p is varied in R3.

3. The normal of a sphere which inscribes vertex p
and its edge-neighborhood points Np. See (Max,
1999; Crane et al., 2013).

Such a sphere fitting required by the alternative 3 is
impossible with usual point clouds, but just applying
the definition from a case of a perfect sphere fit to any
general triangle neighborhood, the resulting normal
vector np behaves smoothly:

np =


 ∑

t=(a,p,b)∈Tp

nt

‖b− p‖‖a− p‖




0

.

According to (Jin et al., 2005), versions 1 and 2 are
simple but prune to noise, projected tip angle weig-
hting (our choice) is reliable and simple, and version
3 is rather good but also somewhat expensive.

2.6 Other Mean Curvature Definitions

This short survey omits all methods based on a local
fit of a smooth interpolant, see e.g. (Yang and Qian,
2007). These methods show resilience to noise, but
tend to have an uncontrollable loss of high frequen-
cies and are usually computationally more expensive
than the methods presented in the following.

The mean curvature through the discrete Laplace-
Beltrami (also known as the cotan-Laplace) operator
has been documented in (Mesmoudi et al., 2012). It
is one of the best methods according to (Mesmoudi
et al., 2012). The mean curvature Hp at a vertex p
becomes:

Hp =
1

4A′p
‖∑b∈Np(

1
tanφ t1a

+ 1
tanφ t2c

)(b− p)‖, (13)

where triangles t1, t2 ∈ Tp have a common edge (p,b)
with opposite vertex angles φt1a,φt2b. See Fig. 3. The
vertex specific area A′p ≈ AP/3 is the area of so called
mixed Voronoi cell. Using A′p instead of Ap/3 reduces
the area contribution of possible obstuse angles φt p in
a way, which is detailed in (Mesmoudi et al., 2012).
The exact value of A′p depends on the geometry of
the triangle set Tp but is always rather close to the
above given expected average. The variance in A′p
adds numerical stability of the estimates of the vertex
mean curvature Hp but is rather costly to calculate.
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The concentrated Gaussian curvature by (Mes-
moudi et al., 2012) equals Eq. 12. The concentrated
mean curvature by (Mesmoudi et al., 2012) is re-cast
to the notation in this paper as:

sgn(t1, t2) = −sgn((b− p) ·nt1) (14)
βt1t2 = acos(nt1 ,nt2)sgn(t1, t2) (15)

ωp = 2π−∑t1∈Tp βt1t2 (16)

Hp =
1

4A′p
(2π−ωp), (17)

where the edge angles βt1t2 are depicted in Fig. 4,
the angle sum ωp is the inwards opening solid angle
at vertex p, and the summation is done over edges
(p,q), q ∈ Np.

The sign of the edge angle βt1t2 is determined by a
vector blade handedness sign (a determinant sign) of
an edge (p,q) = t1∩ t2 between triangles t1 = (a, p,q)
and t2 = (q, p,b), see Eq. 14. Note that the edge sign
is positive for pikes (the situation depicted in Fig. 4)
and symmetric: sgn(t1, t2) = sgn(t2, t1). The normals
nt are a result of earlier stages of the computational
process.

Also the solid angle ωp in Eq. 17 is already avai-
lable from the preceding solid angle filtering (SAF),
which can be done to reduce the noise level of the
point cloud or for filtering out the foliage signal (Ne-
valainen et al., 2016), or before any shape classifica-
tion via curvature spectrum. Availability of spatial an-
gles ωp makes this method computationally the chea-
pest one.
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In some applications like tumor detection in elec-
tron magnetic resonance (EMR) imaging, the orienta-
tion of the surface normal np is completely free (but
outwards from the tumor). That is why the edge sig-
num refers only to two adjoined triangles t1 and t2
which are both oriented outwards. The signum in
Eq. 15 requires one vector operation (saxpy, see (Go-
lub and Van Loan, 1996)) of R3 vectors.

Barycentric interpolation (Theisel et al., 2004) is
based on normalized linear change of the normal n
over the triangle t from where a generic expression
for Gaussian and mean curvature can be deduced. For
our purposes only the mean curvature Ht p of triangle
t = (a,b,c) at a vertex point p ∈ {a,b,c} needs to
be considered. The Eq. 18 is adapted to our notation
from (Theisel et al., 2004; Nevalainen et al., 2015):

h = na× (c−b)+nb× (a− c)+nc× (b−a)
Ht p = (np ·h)/(2np ·Nt) (18)
Ht p→ Hp, (19)

where h is a temporary vector multiplicant.
There is also a triangular approximation of the se-

cond fundamental form (Crane et al., 2013; Rusinkie-
wicz, 2004), which is used in (Rusinkiewicz, 2004)
to derive the principal curvatures, mean and Gaussian
curvature principal and directions directly. This met-
hod requires iteration of a least squares problem, and
it seems to be computationally more expensive than
the methods covered here.

There are other possible interpolation schemes
over a triangle, e.g. using radial basis or by applying
the well-known Rodriguez rotation formula (Dorst
et al., 2007) twice (first over one edge, then between
edge and a vertex of interest). Preliminary tests indi-
cate that these options seem to lead to more complex
formulas yet the numerical results stay very close to
the schemes included to this study. This holds to both
the triangular and the vertex values.

2.7 Principal Curvature Orientation

The curvature eigenvalues κt1 and κt2 of a triangle t
are the curvature extremals when tracing a continuous
surface S through point p by a perpendicular plane:

κtl = Ht ±
√

H2
t −Gt , l = 1,2 (20)

Object and shape recognition may use any subset of
the four curvature characteristics G,H,κ1,κ2.

The barycentric surface normal map t → tu was
used to derive Eq. 5. By applying it again, but this
time to find a trajectory with most drastic curvature
effect per traversed arc length on a triangle t, one gets
the principal curvature direction vt of a triangle t. This

is a direction with the largest curvature (eigenvector
of κ1). The second eigenvector is not of interest, since
it will be dictated by the first eigenvector. Another

Figure 5: Averaging principal curvature direction vt from
triangles (above) to vertices vp (below).

way to express vt is based on constraining the second
fundamental form to be diagonal and solving the prin-
cipal direction from this constraint at Eq. 21. This is
different from (Rusinkiewicz, 2004), where whole the
second fundamental form is solved by least squares
fitting a set of linear constraints. Below are the equa-
tions leading to the eigenvalue problem:

′ma = P(b− c)(a− c) (before scaling)
′mb = P(a− c)(b− c) (before scaling)

ma =
′ma

′ma·(a−c)

mb =
′mb

′mb·(b−c)

Dt = (na−nc)mT
a +(nb−nc)mT

b

P(nt)Dtvt = λvt , (21)

where ′ma,
′mb,m′amb are constituents of a constant

matrix Dt = dnt/dq, the rate of change of the normal
at triangle t. Note that eigenvalue λ is not proportional
to principal curvature, since the barymetric mapping
does not preserve the unity of the normals.

The weighted summation scheme vt → vp of
Eq. 10 is not directly applicable, since the principal
directions±vt are defined by the orientation only, wit-
hout a coherent sign. The summation must take this
into account. The following heuristics relies on the
monotonic nature of the vector summation of the non-
unit cumulative vector v̂p:

v̂p(S) = P(np)∑t∈Tp φ′t p sgnt p vt

S∗ = argmaxS ‖v̂p(S)‖
vp = (v̂p(S∗))

0 , (22)

where S is the set of signums S = {sgnt p}t∈ Tp , which
can be found performing O(|Tp|) scalar products
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v̂p current · vt by a single enumeration and reversing a
subset of signums if necessary.

The weighting scheme in Eq. 22 relies on the pro-
jected tip angle weights φ′t p, which have multiple ap-
plications and thus can be amortized from computa-
tional cost. The weighting scheme in (Rusinkiewicz,
2004) uses triangular contributions of the vertex spe-
cific area A′p. This weighting scheme has not been
tested by us. Overall, avoiding the least squares fit
and area weighting makes our method less expensive
computationally.

3 NUMERICAL EXPERIMENTS

Two synthetical models and a visual inspection of
a practical problem have been covered, see Secti-
ons 3.1- 3.3. The following mean curvature methods
have been compared:
1. triangular average mean curvature (our method)
2. L-B (Meyer et al., 2003)
3. concentrated mean curvature (Mesmoudi et al.,

2012)
4. barycentric interpolation of the normal (Theisel

et al., 2004)
Two Gaussian curvatures have been compared, trian-
gular average Gaussian (our method, Eq. 4), and ver-
tex Gaussian (Crane et al., 2013). Since there are 3
vertex normal definitions, 2 weighted summation po-
licies, 4 mean curvature and 2 Gaussian curvature de-
finitions, results of only the most interesting combi-
nations have been provided.

3.1 A Local Pike

This model demonstrates the different character of
each methods with respect to noise in the surface nor-
mal direction. Especially the two noise modes presen-
ted in Fig. 1 are modelled. The case 1 in Fig. 6 is an
apex of a larger regular formation. The case 2 is a sin-
gle pike which can be either noise or a useful feature.
The case 3 demonstrates a large noise field at the hig-
hest possible frequency dictated by point cloud den-
sity. The geometrical mean

√
|G|= κG derived from

the Gaussian curvature G is used for the comparisons,
since it has the same physical dimension (inverse of
radius) as the mean curvature.

The abscissa value h is the height of point p.
When h→ 0, it is the planar special case with nominal
radius r→ ∞ and κr→ 1.

The barycentric method exaggerates curvature at
large h values, which are likely to be noise. The bary-
centric mean curvature and the triangular curvatures

10
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Figure 6: Four mean curvature methods and two Gaussian
curvature methods compared in various settings with one
point protruding out. The square root of the Gaussian cur-
vature is used for comparison. The analysis point at height
h has been circled.

(our methods, both G and H) tend to dampen a sin-
gular pike (case 2). The barycentric method is losing
its dampening tendency at high values of h, which are
more likely to be noise.

The output value of the vertex mean and Gaussian
curvatures (and barycentric mean curvature) is scaled
downwards (dampened) by a ratio w, value of which
depends on the case. The cases 1,2,3 have dampe-
ning ratios w = 1, 1/3, 0. A singular pike (case 2) has
dampening factor 1/3 which is still adequate to con-
tribute in the curvature spectrum or to be detected by
later pattern recognition phase.

The egg cell pattern of case 3 gets completely
dampened by triangular curvatures G and H, and by
the barycentric method. The vertex normals defined
by Eqs. 2 and 10 become parallel, which then cau-
ses the triangular curvatures of the involved triangles
t to be zero, see Eqs. 5 and 4. This can be a use-
ful property in some applications, e.g. in stone de-
tection (Nevalainen et al., 2016), or in reducing the
granularity effect produced by voxels.

The concentrated curvature, vertex Gaussian, and
Laplace-Beltrami are closely related in all cases. The
behaviour of all six methods is rather similar to each
other in the hyperbolical case (a saddle point) and this
case has not been included in this presentation.

3.2 A Torus

A torus of radii r = 1, R = 2.5 has been used. This is
a classical test case, since the curvature aspects of the
ideal shape are analytical, yet both elliptic and hyper-
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bolic local surface metrics occurs.
Two torii, a dense one with |P |= 820 and a sparse

one with |P |= 220 were used. Fig. 7 shows the sparse
torus with uniform local height distribution. A uni-
form distribution is used also on the tangential mani-
fold metrics. The height noise concerns point loca-
tions and the tangential noise concerns triangulation
irregularity. The height noise std. was varied between
0 ≤ σh ≤ 0.3r. The upper end of the noise is typi-
cal to many LiDAR applications. The height noise
distributions from real LiDAR data are not uniform
nor Gaussian. The main curvature spectrum seems to
depend mainly on the std of the uniform or natural
height distribution, not from the choice between the
two.
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Figure 7: The triangular mean curvature and triangular
Gaussian curvature and two curvature eigenvalues on a to-
rus as a function of the angle φ associated with the smaller
radius. The height noise is at the maximum σh/r = 0.3.

3.3 A Prostate Tumor

The main difficulty with MRI point clouds arises from
the anisotropy of the point cloud. The voxels are
elongated 2.75× 0.48× 0.48 mm3 and this demands
a lot from the curvature analysis methods. Informa-
tion about the curvature spectrum of the tumor has
been applied to e.g. breast cancer classification (Lee
et al., 2015). It is possible that the curvature spectrum
will be an important feature alongside spatial texture
patterns, 3D Fourier transform, overall size and loca-
tion of the tumor for clustering algorithms. The Gaus-
sian curvature and principal curvature direction can
help in e.g. descriptor based vectorization (Vranic
and Saupe, 2001). Fig. 10 depicts a prostate lesion,
which shows a typical developable shape: the lesion
could be spread back to planar (its Gaussian curvature
is approximately zero).

3.4 Results

Our method, when referred, means triangular mean
and Gaussian (Eqs. 5, 4, 10) and the principal curva-
tures derived from them. Tests reach the high noise
amplitude range σh/r = 0.3 typical to the natural re-
source data, see Fig. 7. Effects of noise filtering of L-
B and our method have been depicted in Fig. 8. L-B
is bound by its fidelity to local geometry. Difference
at smooth surface (the left part of the abscissa) is due
to the irregularity of the triangles, which brings some
advantage to an averaging method like ours.
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Figure 8: The root mean square error of the mean curva-
ture H estimation error under different perpendicular noise
levels σh (std.) on a torus with radii r and R.

Fig. 9 has curvature spectrae based on L-B and
our method. Other methods were inferior at the noisy
end and had to be excluded. The presence of noise
spreads the detected spectrum from the ideal smooth
case. L-B manages the task only if the triangulariza-
tion is rather regular and the height noise almost zero.
Our method captures two-thirds of the mean curva-
ture distribution, yet suffers from the spectrum spread
caused by the noise, which is inevitable. Both Gaus-
sian approximations perform as well enabling e.g. the
curvature spectrum classification to be possible under
wide range of noise levels. Other two methods (con-
centrated and barycentric) perform worse than L-B.

Fig. 10 depicts the prostate lesion with the Gaus-
sian curvature close to zero everywhere meaning its
surface is mostly developable (a so called ruler sur-
face). This is an artifact caused by a combination of
the elongated voxels and the method used for trian-
gularization. The surface has high energy noise com-
ponent caused by the voxel granularity. Our methods
dampen this highest geometric noise component au-
tomatically. Also concentrated and barycentric mean
curvatures performs surprisingly well. L-B suffers
from its fidelity to the highest shape frequency com-
ponent.

The computational cost of the barycentric method
is too high when compared to its performance, see
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Table 1: Evaluation of the mean curvature methods. Proposed methods in boldface.

Method Vector opers/t Spectrum quality Singular noise w Massive noise w
vertex G 15 good 1 1
triangular G 15 good 1/3 0
triangular H 15 good 1/3 0
LB 18 average 1 1
concentrated 2 poor 1 1
barycentric 32 poor 1/3 0

-1 0 1 2

0.5*(
1
+

2
)

0

2

4

f

-1 0 1 2

1 2

0

2

4

f

-1 0 1 2

1

0

2

4

f

-1 0 1 2

2

0

2

4

f

ideal

triangular

L-B

Figure 9: The ideal curvature spectra of a torus with r = 1,
and Laplace-Beltrami and triangular approximations. The
effect of height noise σh/r = 0.1 spreads out the approxi-
mated spectrae.

160

170

170

180

x,y,z (mm)

160

triangul. 
1

40150
30

-0.1

0

0.1

0.2

0.3
mm

-1

160

170

170

180

x,y,z (mm)

160

triangul. 
2

40150
30

-0.1

0

0.1

0.2

0.3
mm

-1

-0.5 0 0.5 1

(
1
+

2
)/2 (mm

-1
)

0

1

2

3

4

5

f

mean curvature H

triangular

L-B

concentr

barycentr

-0.5 0 0.5 1

1 2
 (mm)

-2

0

5

10

f

Gaussian curvature G

triangular

vertex

Figure 10: Upper row: the principal curvature components.
Lower row: Distributions of the mean and Gaussian curva-
tures by different methods.

Table 1. L-B has the best accuracy when the perpen-
dicular noise is small and the triangulation is rather
regular, but fails when the perpendicular noise is high.
The spectrum quality is given a qualitative judgement.
See the definition of the dampening ratio w at Sec. 3.1.

4 CONCLUSIONS

The proposed method (triangular mean and Gaussian
curvature) has about the same computational demand
as the reference method (LB mean and vertex Gaus-
sian curvature) in case where the vertex specific area
A′p of the mixed Voronoi cell is computed exactly as
recommended in (Mesmoudi et al., 2012). Based on
the good performance under height noise, it seems
that the triangular method should be used in such na-
tural resource data applications, where the curvature
spectrum is required, and the spectral range should
reach near the highest shape frequency, but excluding
the large excitations of the mentioned frequency.

The above definition may seem contrived, but e.g.
a typical rasterization process is lossy and tuning the
filtering process requires a lot of parameters, which
concern the highest shape frequency naturally contai-
ned with the methods proposed here. Further valida-
tion is necessary with e.g. track analysis of forestry
harvesters (Pierzchala et al., 2016).

Principal orientation computation presented in
Sec. 2.7 is closely related to other two methods pre-
sented, e.g. it uses the same projected tip angle weig-
hts. One has to inspect in the future how useful the
principal orientations are in micro-topographic analy-
sis. It may be that a multi-scale approach for produ-
cing several TIN models with coherent curvature and
principal orientation information is needed.

There is a huge bulk of raster analysis methods
and a lot of experience in applying these methods for
e.g. height raster data analysis. Emerging triangular
analysis tools based on DDG will not outdate these
methods, but in some cases there seems to be potential
to improve the curvature spectrum range closer to the
theoretical limit dictated by the point cloud sample
density and the known sample accuracy.
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Abstract: The rut formation during forest operations is an undesirable phenomenon. A methodology
is being proposed to measure the rut depth distribution of a logging site by photogrammetric point
clouds produced by unmanned aerial vehicles (UAV). The methodology includes five processing
steps that aim at reducing the noise from the surrounding trees and undergrowth for identifying the
trails. A canopy height model is produced to focus the point cloud on the open pathway around the
forest machine trail. A triangularized ground model is formed by a point cloud filtering method.
The ground model is vectorized using the histogram of directed curvatures (HOC) method to produce
an overall ground visualization. Finally, a manual selection of the trails leads to an automated rut
depth profile analysis. The bivariate correlation (Pearson’s r) between rut depths measured manually
and by UAV photogrammetry is r = 0.67. The two-class accuracy a of detecting the rut depth
exceeding 20 cm is a = 0.65. There is potential for enabling automated large-scale evaluation of the
forestry areas by using autonomous drones and the process described.

Keywords: micro-topography; forest harvesting; UAV; photogrammetry; micro-topography;
point cloud; TIN; curvature; rut formation

1. Introduction

Mechanized wood harvesting operations can cause rut formation, which deteriorates soil quality,
decreases forest productivity and affects hydrological balance and water quality through changed
sediment discharge [1–8]. Thus, the rut depth distribution is one of the central measures of the
environmental and economic impact of harvesting operations.

Indeed, international forest certification standards issued by the Forest Stewardship Council
(FSC) and by the Programme for the Endorsement of Forest Certification (PEFC) along with national
legislations have recommendations and regulations concerning the rut formation [9,10]. Monitoring the
obedience of standards and laws requires data of ruts, and these data are traditionally collected by
manual measurements from randomly-selected samples of logging sites [11]. Due to the costs of
time-consuming manual measurements, data collected cover unfortunately only a very small part of
the operation sites.

Ruts are formed when the loading exerted by the forest vehicle exceeds the strength of the
soil [12–14]. The bearing capacity depends on various static and dynamic factors: e.g., soil type, root
density, slope and other micro-topographic water dynamics and frost state. As a result, both the spatial
and temporal variation in trafficability is extremely large [14,15]. An easily collected and extensive
dataset on rut depths that covers field measurements over several test sites and various weather
conditions is thus needed for any attempts to model forest terrain trafficability [16].
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The development of techniques in the collection, processing and storage of data offers a great
possibility to collect extensive datasets on rut formation. Close-range aerial imagery captured by
unmanned aerial vehicles (UAV) provides one of several methods under development. This method
for retrieving data on changing terrain by photogrammetry with efficient digital workflows has been
used by [4,13,17,18].

Other potential methods include light detection and ranging (LiDAR) scanning [16,19] and
ultrasonic distance ranging accompanied by proxy measurements such as controller area network
(CAN-bus) data [20]. Compared with other methods, UAV photogrammetry provides a cost-effective
option for collecting high-resolution 3D point clouds documenting the operation site in full extent [4].

The photogrammetric UAV data have some deficiencies [20] when compared with aerial LiDAR
(ALS) [21]. ALS is a true 3D mapping method in the sense that it allows multiple Z returns from a
single laser beam, whereas photogrammetric data have only one Z value for each point. This results
in hits concentrated at the top layer of the dense canopy or undergrowth, leaving the ground model
often rather inadequate or narrow.

Usually, the logging trails have a corresponding canopy opening (a canopy pathway) around
them, and the UAV data points sample the trail surface if the flight altitude is low enough and the flight
pattern dense enough. Occasional obstructions and discontinuities occur, though, and the numerical
methods must adapt to this difficulty. While the point cloud is limited compared to the one produced
by a LiDAR scanner, the potential for rut depth detection is worth examining due to lesser costs,
smaller storage demands and abundance of details provided by the imagery (RGB) information.

A large dataset on ruts would aid not only extensive monitoring of forest standards, but also the
modeling and forecasting purposes as rut formation depends quite directly on soil bearing capacity
and, thus, relates to forest terrain trafficability [22]. A post-harvest quality assurance pipeline using
the UAV technology could be an essential part in cumulating such dataset.

The rut width depends on the tire dimensions, and the distance between the ruts depends
on the forest machine dimensions; these can be approximately known a priori. The rut features
have generally a rather fixed scale: a rut is about 0.6–1.2 m wide; the depth varies between
0 and 1.0 m; and the distance between ruts is a machine-specific constant usually known beforehand
(approximately 1.8–2.5 m).

The most relevant study in trail detection is [23], where the usage of the digital elevation map
(DEM) has been avoided, making the point cloud recording possible without specific geo-referencing
markers. This makes the field procedure simpler and faster and gives more freedom to choose
the UAV flight pattern. A multi-scale approach similar to [24] could be useful, since the point
cloud density changes especially at the canopy border. Now, a mono-scale analysis has been used.
The triangularization produced by methods described in Section 2.5 has approximately a 20-cm average
triangle edge length.

Several restrictions have been made in [23]: the locations have to be relatively smooth and without
underbrush. An interesting study of [4] uses photogrammetric data from a ground-based recording device.
A very good matching of rut depth has been achieved using different point cloud processing methods.
The test site is open canopy, but measurements require a field team traversing the trail.

We propose a sequence of processing steps for more realistic conditions (varying terrain, some
underbrush and trees allowed, trail pathways only partially exposed from the canopy cover). We have
subtracted DEM height provided by the National Land Survey of Finland (NLS) for some visualizations,
but actual methods are independent of the local DEM.

We propose a procedure for large-scale field measurement of rut depth. The procedure is based
on the point cloud collected by the UAV photogrammetry. The following data models are constructed
for autonomous logging trail detection and finally for rut depth data extraction:
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1. a canopy height model to focus the point cloud on the logging trail. The model is produced by a
solid angle filtering (SAF) of point clouds [25];

2. a surface model as a triangularized irregular network (TIN) for trail detection; the model is
produced by applying SAF with a different parameter setting, followed by mean curvature flow
smoothing (MCF) [26];

3. ground model vectorization (orientation of possible ruts and likelihood of having a trail through
any given point;

4. the height raster of a straightened harvesting trail; this phase uses a histogram of curvatures
(HOC) method;

5. a collection of 2D rut profile curves.

2. Materials and Methods

2.1. Study Area

The field study was carried out in Vihti, Southern Finland (60◦24.48′N, 24◦23.23′E), in mid-May
2016. Two routes within approximately 1 km from each other were driven first by an 8-wheeled Ponsse
Scorpion harvester with the official operating weight of 22,500 kg, and the rear wheels of each bogie
were equipped with chains. Consecutively, the route was driven 2–4 times by a loaded 8-wheeled
Ponsse Elk forwarder. The mass of the forwarder was 30,000 kg (operating weight + the scale weighted
full load as seen in Figure 1, second detail below). The rear wheels of the front bogie were equipped
with chains, and the rear bogie was equipped with Olofsfors Eco Tracks. The tire width was 710 mm
for both the harvester and the forwarder. The general setting of the forest operation, the machinery
and their chose weights and the routes used closely resemble a standard forest harvesting operation.
As mentioned in several publications [4,16,22], the rut depth has high variability dependent on a
multitude of factors, and currently, only case studies are practical.

Figure 1. Top and middle: Trail 1 and Trail 2 areas as orthophotos and the drone flight plan schematics;
bottom: the harvester, forwarder and drone used in the field campaign are shown with the map location
(with the ETRS-TM35FIN coordinate system, see Abbreviations section) of the site.
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The ruts were measured manually using a horizontal hurdle and a measuring rod.
Manual measurements were taken at one-meter intervals. Accurate GPS coordinates of manual
measurements were recorded at 20-m intervals.

The route covered various soil types: Bedrock covered by a 5–15-cm layer of fine-grained mineral
soil, clay and sandy till covered by an organic layer of 10–60 cm. The terrain profile varied from flat to
slightly undulating. Soil moisture conditions varied along the route. Part of the trail in Trail 1 was
covered with logging residue.

2.2. Point Cloud Data

Photogrammetric data were collected using a single-lens reflex (consumer-grade compact) camera
(Sony a6000) with a 24 MPix 20-mm objective. The camera was attached to a GeoDrone-X4L-FI drone,
which has a normal flight velocity of 6 m/s and an onboard miniature global navigation satellite +
inertial system (GNSS/INS) with a typical accuracy within a one-meter range. The flight heights and
the corresponding ground sample distance (GSD) are reported in Table 1. The forward overlap was
80% and the side overlap 70%.

Table 1. Details of the photogrammetric data. GSD is provided by the GeoDrone manual. Vertical noise
is an approximation of the vertical accuracy of the point cloud points.

Trail Flight Height (m) GSD (cm) # Photos Cloud size Route Length (m) Vert.Noise (std.cm)

1 100 2.0 42 8.1× 106 208 4.0
2 150 3.0 34 7.1× 106 280 3.5

Since there were two different locations, it was possible to test two different flight heights.
The optimal flight height depends on the tree species, canopy density and tree density. Trail 2 had
less tree cover, so the vertical accuracy was about the same. The aim of this study, however, was
not to optimize the flight plan, but to develop an efficient method for point cloud post-processing.
The vertical noise level was measured on the smooth surfaces of the geo-markers from the difference
of the initial point cloud and the final ground TIN.

Two sets of four and five ground control points (depicted as circles in Figure 2) were positioned to
minimize terrain surface height error and to allow reconstruction of the unified point cloud from aerial
images. GPS coordinates of the control points were recorded with a setting of a 5-cm std.position error
target with the RTK GeoMax Zenith25 PRO Series. The above mentioned error target can be reached
almost immediately in open fields, but the forest canopy imposes difficulties; sometimes, a prolonged
period of waiting time was required for a reliable measurement. All measurements were accomplished
within a period of 30 min of cumulated field time per site, however.
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Figure 2. Trail 1 (below) and Trail 2 (above) are separated by approximately 1 km. The geo-reference
markers are depicted by circles, the flight path is shown with the yellow cross-line and the trails by
thick white curves. Trail 2 was not fully covered by the UAV photogrammetry. The starting points of
the flight paths are indicated by the double circle.

2.3. Methodology

An overview of the methodology is given here. The subsequent Sections 2.5–2.8 go through different
stages in detail, while introducing various parameters. Section 2.9 summarizes these parameters.

The TIN models for both the canopy height and the ground model are developed first. The canopy
height model is used to improve the quality of the ground model at the fragmented boundaries.
The ground model visualization is used for comparing with the manually-measured rut depths.
A height convolution iteration is performed at this phase to form a smooth center line. The convolution
filter uses the information about the assumed wheel distance of the forest vehicle. The final step is
about recording the rut depth profiles.

The essential steps of the workflow are: (1) UAV photogrammetry; (2) canopy elimination,
forming and visualizing the (4) curvature state of the (3) ground model; (5) finding the central line of
the trail and (6) forming the profile model of the ruts; see Figure 3. Many processing steps used have
several alternatives, and a rather intense search for various techniques has already been done in the
preliminary phase of this study.

Several parameters were used to produce the point cloud, the ground model TIN and the final
rut depth profiles. A summary of the parameters can be found in Section 2.9, where all the numerical
values are stated.
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Figure 3. The process chart of the computational steps (1)–(6), which are detailed later in the text.
SAF is used twice to produce two TIN models. The thinning is done first to all ground points with no
limitation, then to that part of the remaining canopy front points, which are overlapping the canopy
points. HOC produces a curvature state, which is visualized in order to choose manual control points.
The control points are inserted manually, and this phase has potential for further automation (orange
box). The end product is the rut depth profile distribution.

2.4. Step 0: Point Cloud Generation

The photos taken were processed with AgiSoft PhotoScan Professional software into 3D
high-resolution point-clouds. The software applies a structure-from-motion (SFM) process that
matches feature-based images and estimates from those the camera pose and intrinsic parameters
and retrieves full 3D scene reconstruction [27], which is geo-referenced by ground control points [28].
The geo-reference markers were identified manually in the set of images in which they appeared, and
the AgiSoft software performed the necessary geo-referencing using the images, the UAV GNSS/ISS
records and the geo-marker pixel and positioning information as the input. Point clouds were
re-projected to the ETRS-TM35FIN projection.

2.5. Steps 1, 2: Point Cloud Preprocessing

Proper preprocessing proved to be essential for detecting the rut profiles accurately.
Eliminating the direct and secondary effects of the proximity of the canopy was important.
Canopy narrows the stripe of the exposed ground and causes a curvature signal. The vegetation and
the harvesting residue cause noise and force one to filter and smoothen the TIN in a controlled way.

Two point clouds of Figure 2 and Table 1 have initially an average distance of 6 cm to the
horizontally nearest natural neighbor; see Figure 4.
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Figure 4. Left: The TIN model after SAF. Middle: The TIN model after the thinning process where the
average triangle edge length has been forced to 20 cm. Right: Initial and final NN distance distributions.
The mean point distance l̄ has been shifted from initial 0.07 m to 0.20 m. Bottom right: Definition of the
NN distance as an average of the TIN triangle side lengths.
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Natural neighbors (NN) are defined by the well-known 2D Delaunay triangulation [29], and
those are needed when the ground TIN model is created. The rut detection requires a detailed control
over the TIN model production, so we do not use the standard methods available from the GIS and
point cloud software. Instead, we apply SAF [25], which utilizes the solid angle ωp of the “ground
cone” associated with each point p. Filtering is based on having all accepted points within the limits
ω1 ≤ ωp ≤ ω2 in the resulting TIN.

An important descriptor of the point cloud before and after the thinning is the distribution of the
triangle edge lengths of the Delaunay triangularization [30]. See Figure 4, left, where two distance
distributions (before and after thinning) are depicted.

The preprocessing of the point cloud data consists of a sequence of operations to make the rut
depth extraction computations feasible. The operations are listed below:

(a) Eliminating point pairs with horizontal distance less than 5 mm. This makes the further
processing code simpler. The point above/below gets removed when computing the
ground/canopy model, respectively. The minimum distance was decided by the 0.5% data
loss criterion. See Figure 4. This process can be done in linear O(|P|) time, where |P| is the size
of the point cloud.

(b) Building the ground TIN model by applying SAF two times in order to have a structured
reduction of the canopy noise at the narrow stripes at the further steps. The first SAF run builds
(a) the canopy TIN (green in the middle detail of Figure 5). The model is based on controlled
triangularization unlike usual canopy models based on local windows; see e.g., [31]. The second
run builds (b) the ground TIN. The spatial angle limit parameters used can be found in Section 2.9.
Two models built are used in Steps (c) and (d).

(c) The mean curvature flow (MCF) [26] was applied to the ground TIN model to smoothen it.
The MCF procedure contains one method parameter λ ∈ [0, 1], which controls the aggressiveness
of the smoothing effect. MCF is a TIN smoothing method, which resembles the mean filtering of
the raster data. It has a typical trade-off between smoothing the noise and possibly deteriorating
a useful signal.

(d) Thinning of the point cloud. Thinning is dictated by the mean natural neighbor distance l̄
(see Figure 4), which increases during the process from the preliminary average l̄ = 0.07 m to
the target value lb = 0.20 m in the red zone of Figure 5. The limit value still enables a rather
good imprint of the rut shape on the resulting surface triangularization. The green canopy area
was subjected to thinning to lc = 5.0 m. This was to eliminate the noise at the border areas of
the ground model. Parameters lb and lc were deemed the most suitable for the further process.
See the listing of the actual Algorithm 1.

Figure 6 shows some large TIN triangles produced by the thinning step (d). The large triangles do
not contribute to the curvature analysis, since they are eliminated by a triangle size limit lmax = 1.2 m.
This is to make it possible to analyze the trails with a very fragmented boundary and the canopy front.

There is the intermediate zone called the canopy front (see the blue horizontal bar at the right
side of Figure 5), which is being defined by the height difference of two TIN models. Taking the height
difference of two TIN models with independent triangularization is a standard GIS procedure with
some subtle practical considerations and speed-ups, which have not been documented here. The end
result consists of a mixture of red and blue zones with the canopy part (green) practically disappearing;
see Figure 5. The sparse areas have very large triangles (see Figure 6), but the height differences at
the canopy front are moderate, i.e., the artificial curvature spike visible in the right detail of Figure 5
becomes partially eliminated. The advantage is that the canopy removal can be achieved without
referencing any DEM model.
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Figure 5. Left: The canopy detection is based on two separate SAF runs with different parameters to
detect the canopy top surface (green) and the normal ground model (red). Right: A vertical slice of
the point cloud depicted at the left. Blue vertical bars indicate where the extra thinning of the ground
model is being applied. Note the ground model profile arising at the canopy front due to the lack of
photogrammetric ray penetration.
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Figure 6. Left: Trail 1; Right: Trail 2. The directional curvature at the locally-dominant direction.
The visualization is formed from 20 different directional curvature images by tiling them using 3.8 m
image tiles. Left: Trail 1 is in the center. Right: Trail 2 traverses horizontally across the lower part of
the image. Co-ordinates are in ETRS-TM35FIN (m).

Since the thinning is a non-trivial procedure, it is outlined here. The algorithm runs initially as
presented, and the stopList is a list of points already removed. Initially, it is set to be empty; but when
the target length lb has been reached, a new target value lc will be set, and a second run ensues with
the stopList being initialized by a set of the points at the canopy front (a zone indicated by blue bars in
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Figure 4). This makes it possible to thin the canopy front more heavily. The canopy front is the set of
connected ground model triangles with any canopy point above each of the triangles:

Algorithm 1: Thinning the point iteratively making the mean neighborhood distance reach
the target value. ltarget is increased incrementally during the process. Note: The algorithm is
applied twice: first, as it is presented, and the second time with the stopList being initiated with
the canopy front.

Data: Point cloud P, mean distance limit ltarget

Result: Thinned point cloud P
l̄ ← ∞ while l̄ > ltarget do

T ← Delaunay(P)
edges← enumerating all edges of T
ls← lengths of all edges
sort ls and edges to the ascending length order
l̄ ← mean(ls)
stopList← {} (canopy front points on the second run!)
while l̄ > ltarget and |stopList| < 0.1|P| and minl∈ls l < 0.5 ltarget do

Starting from the shortest edge e = (a, b) ∈ edge:
if {a, b} ∩ stopList = {} then

P← P\{a} Remove one end point a of e (choose randomly)
stopList← stopList ∪ {b} Add the other point b to the stopList list

end
end

A Delaunay triangulation package providing a batch input, and a dynamical delete is
recommended for the algorithm. If no suitable algorithm is available, we recommend space partitioning
and slight modification of the algorithm (available from the authors), which thins the TIN as much as
is possible until a new TIN is produced in one batch run.

2.6. Steps 3, 4: Trail Detection

Trail detection has two steps: (a) extracting the rotation-invariant curvature state and visualizing
the TIN; and (b) manual insertion of the trail control points to initialize the numerical trail center
line match.

Visualizing the trails: The target area was covered by a grid of circular samples with the grid
constant δ = 3.5 m and the sample radius r = 2.1 m. A dominant direction of the curvature was
detected from each of the samples using HOC, which is a closely related to the well-known histogram
of gradients (HOG) method [32], except that it works with the curvature values. HOC produces
histograms of dominant curvatures and the corresponding orientation. The directed curvature is
a basic geometric entity along a vertically-oriented plane cutting the TIN surface. The orientation
is chosen so that there is a maximum difference between two perpendicularly-oriented curvature
histograms; see Figure 7. This arrangement has a rotational invariance.
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Figure 7. Top, from left to right: The height map of a 5.3-m square spot with two parallel ruts,
the direction with the smoothest curvature, the direction with the most drastic curvature distribution
and the corresponding histograms f1 and f2. Bottom: A spot with a ditch beside a road having a sharp
V shape. beside a road having a sharp V shape. The curvature is rather isotropic. Actual samples are
circular and centered on squares depicted with a radius r = 2.1 m.

The directional curvature can be specified for a TIN in a discrete differential geometric (DDG) way.
The definition is based on the triangular average of the mean curvature introduced in [33], with the
following modification: vertex normals of each triangle are projected to the directional plane before
application of the mean curvature equation. The constructed histogram is then weighted by triangle
surface areas. The histogram concerns a set of triangles among a sample circle with a radius r with
circle centers forming a sample grid with a grid constant δ. The end result seen in Figure 6 was strongly
affected by the choice of the sample radius r.
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The details of producing the sample histogram f (κα) of the directional curvature κα in
the orientation α are included in Appendix A. The directional curvatures were produced in
nα = 20 directions. The number of directions was chosen by the exhibited noise level (difference
in neighboring directions), which is larger the less directions are chosen and the smaller the samples
are. 0 ≤ αi ≤ π, i = 1, ..., nα.

Formally, the curvature state has three components, the orientation α∗, the smooth directional
curvature histogram f1(κ) = f (κα∗) at the previously-mentioned orientation and the rough directional
curvature histogram f2(κ) = f (κα∗+π/2), the last two perpendicular to each other. Histograms f1

and f2 are scaled to be distributions observed from Equation (A4). The orientation α∗ is chosen by
maximizing the directional distribution difference e(α):

α∗ = arg maxαe(α), (1)

where e(α) = 1
2

∫
| f1(κ)− f2(κ)|dκ. Finally, one can define the curvature eccentricity 0 ≤ e ≤ 1,

extremes associated with isotropic and maximally anisotropic cases, respectively:

e = e(α∗) (2)

The value of the upper limit follows from the fact that both f1 and f2 are distributions. A vectorized
representation x of the curvature state is formed by concatenating f1 and f2:

x = ({ f1(κi)}i=1,...,nα
, { f2(κi)}i=1,...,nα

), (3)

where i = 1, ..., nα is the bin index of the histograms.
The complete curvature state of each sample window is thus a triplet (x, e, α∗), where the feature

vector x identifies the rotationally-invariant local micro-topography, the eccentricity e of Equation (1)
characterizes a degree of anisotropy and α∗ of Equation (1) holds the orientation. The orientation is
indefinite when isotropy is small: e ≈ 0. Figure 6 shows the directional curvature over the TIN models
of Trails 1 and 2. The image has been constructed from the sample grid using the rough directions
α∗ + π/2 at each sample grid center.

Figure 7 depicts two spots, one with ruts and one without. The size of the depicted squares is
3.8 m. The boundary inference and noise from the surface vegetation tends to be isotropic, affecting
both perpendicular histograms f1 and f2 about the same way, thus not contributing much to the
eccentricity e, which is related to the difference of the histograms. A vegetation effect is seen at the
upper pair of the curvature images and one boundary effect (a dark patch in the height image) in the
lower row.

2.7. Manual Selection of Trails

It is typical to have the presence of older trails from previous operations, and it seems difficult
to direct any automatic detection and analysis to the correct recent trails. Hence, manual insertion
of proximate trail control points was used. The control points initialize a more accurate numerical
trail detection phase described in the next section. The control points are depicted in Figure A4 of
Appendix B.

2.8. Steps 4, 5: Profile Evaluation

The first part of the profile evaluation consists of an accurate detection of the trail center line.
The second part is about forming the rut depth profile.

The TIN model was rasterized to a height image of a 0.2-m grid length, which was subjected
to a convolution filter depicted in Figure 8 using 20 different orientations. The filter was specifically
designed to match the trail created by a typical forest forwarder. The convolution computation in each
direction α is fast, and thus, it was performed for the whole area at once. The actual formulation is
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somewhat involved, since the convolution of ruts is performed by two separate runs and then matched
(by an ordinary raster multiplication) from the resulting two images using the rut separation D (the
axial length of the forest machine). Convolution in two parts seems to produce a better signal than one
single convolution consisting of the left and right ruts. The latter creates three responses, the extra
ones with one half of the magnitude of the middle one.
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Figure 8. Left: The left and the right rut have mirror filters within a distance D, which can be set for
each machine type. See Appendix B for the exact definitions. The ideal profile has an average nature,
which is more pronounced at the average profile cumulated over the trail length. Right: The filter
gle f t(p, α) of the left rut in an orientation α = 19◦. The shape is formed by cubic splines and has a
theoretically correct shape, e.g., to detect constant, gradient and unit impulses. Bottom: The result of
the height convolution of Trail 1 in ETRS-TM35FIN co-ordinates. The image is a combination of the
strongest responses of each orientation α.

Given the normal 2D convolution operator ?, the convolution signal c is:

c(p, α) = [z(p) ? gle f t(p, α)][z(p) ? gright(p, α)], (4)
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where z(p) is the rasterized TIN height at location p. The ideal trail profile as a combination of filter
functions gle f t(.) and gright(.) of Equation (A5) with the local trail orientation α has been depicted as a
projection along the trail in Figure 8 (top left). The top right detail is the convolution filter function
gle f t oriented in this depicted case in a direction α = 135◦. See the rut profile convolution parameters
D, w, d (rut separation, rut width and depth, respectively) used for this particular case in Figure 8 and
their values in Section 2.9. The profile convolution is one ingredient to be maximized along the smooth
trail center line. The trail line ‘finds’ the response of two ruts depicted by the black end of the grey
spectrum in Figure 8 (below). The multiplication arrangement of Equation (4) reduces extra stripes in
the image, and the trail pattern triggers only once. Areas without a good signal are spanned by a strong
continuity restriction and control points inserted manually. See the further details in Appendix B.1.

The manual points of Figure A4 outlining the initial trail were used to match a Cornu spline [34]
with linear curvature change over the spline length. This spline allows the addition and removal
of spline segments without altering the spline shape. The spline was then adjusted by maximizing
the convolution match along the trail. The classic nonlinear regularization is based on the curvature
squared integrated over the spline length (akin to the nonlinear elastic deformation energy of a
thin beam).

A further adjustment was performed using the trail coordinate system with trail relative length t
along the spline and the distance v from the spline as the new coordinates. The adjustment involved
local shifts along the v axis to track the rut trajectory exactly. Section 3 presents the detected rut
depths along the rut length and the average rut cross-profile. The algorithmic details are presented in
Appendix B.

2.9. Parameterization

Table 2 lists all the parameters used. Actual cross-validation verification of the values shown has
not been included. Some justifications of the values have been given in the text.

Table 2. The 25 parameters, their values and a short explanation.

Phase Param. and Value Explanation

thinning ltarget = 0.2 m thinning limit
thinning 0.1|P| stopList size limit
thinning 0.5ltarget triangle edge length limit

vectorization r = 2.1 m sample radius
δ = 3.5 m sample grid interval

SAF canopy ω1 = π pike limit
ω2 = 3π hole limit

SAF ground ω1 = 4.4
ω2 = 8.1

MCF λ = 0.7 smoothing degree

thinning lb = 0.2 m NN length at ground
lc = 5.0 m NN length at canopy front

trail detection nα = 20 number of curvature directions

profile evaluation

D = 2.8 m rut distance
w = 1.2 m rut width
d = 0.6 m rut depth (no actual effect)

rrut = 3.8 m convolution sample length
medium

∆L = 0.2 m rut profile sampling interval
7 free shape params. see Table A1

convolution fit λ1 = 0.7 m2 regularization weight
∆l = 0.6 m convolution sampling frequency
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3. Results

The initial filtering by SAF, MCF and thinning described in Algorithm 1 produces the point cloud,
which is the basis for the further curvature analysis. An ideal regular triangular lattice with a 20-cm
side length (the set value used) has the horizontal point cloud density ρideal = 14.4 m−2. The resulting
ground model has a very high quality with density very close to the ideal one; see Table 3. The given
values are for the canopy openings, since the earlier processing reduces the density of the canopy area
to a much lower value (ρ < 1 m−2; see Figure 6).

Table 3. The point cloud properties. Horizontal densities ρ are in m−2. The abbreviations TP, TN, FP
and FN correspond to true and false positives and negatives given as percentages.

Trail Initial ρ ρ TIN ρ after Thinning TP (%) TN (%) FP (%) FN (%)

1 190 120 16 19 51 26 4
2 180 117 15 38 24 24 14

TIN models were generated from the photogrammetric point cloud at two target areas
(Trails 1 and 2), in Figure 1; curvature vectors were recorded from a regular grid of sample locations
(see Table 2) using the histograms of dominant directions, and the rut profiles were analyzed from the
TIN model. Some results like the canopy and ground TIN models have been made available for an
undetermined time period; see the Supplementary Materials on p. 18.

In Finland, the Government Decree on Sustainable Management and Use of Forests (1308/2013)
based on the Forest Act (1093/1996) and related field control instructions by the Finnish Forest Centre,
Helsinki, Finland (2013) regulate that rut depths of 10 cm (mineral soils) and 20 cm (peatlands) are
classified as damage and can be detrimental to the forest growth. Table 3 gives a summary of detecting
particularly the 20-cm depth: P (positive) stands for a depth more than 20 cm, N (negative) for a depth
less than 20 cm and, e.g., TP and FN stand for the ratio of the sum of correctly-detected deep rut
sections and deep sections not recognized, correspondingly. The overall accuracy (sum of TP and TN
weighted by the trail lengths) is 65%. The performance is adequate for the purposes of the quality
assurance of forest operations considering the amount of data that can be possibly collected compared
to traditional methods.

After manual identification of the control points on trails, the center lines of trails were adjusted
automatically by the convolution penalty, and the rut depth profiles were formed. Figure 9 shows the
depth distributions along both trails on both manual and UAV measurements. Really deep depressions
are rather rare, and they tend to become detected better. The UAV measurement detected much more of
the depth 0.2–0.3 m range than the manual measurement on Trail 1. Trail 2 has a good correspondence
between the manual and UAV measurements. The trail depth classification is in general worse in the
presence of nearby trees.

Pearson’s r correlation was taken between UAV and manual rut depth values at each manual
measurement point; see Figure 10. The correlation r = 0.67 relates to the following inaccuracies:
horizontal placement error of the point cloud and the reference level estimation in the manual
measurement.

Figure 11 demonstrates how large differences can occur between two ruts. Some rocks and roots
(each correctly identified) force the rut to have positive (above the reference level) heights. Multiple
passes deteriorate the shape of the rut, but the average shape is relatively constant over large distances
and similar terrain. The averaged trail profile shows typical displacement of the soil. The effect of
slopes has been removed, but a long sideways slope causes one of the ruts to become deeper (the right
rut of Trail 2 in Figure 11).
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manually-measured rut depths and the rut depths extracted from the UAV photogrammetric point
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depressions, whereas Trail 2 has a dominantly moderate rut depth.
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Figure 11. Top and middle: The depth profiles of the left and right rut of both trails extracted from
the UAV photogrammetric point cloud. Bottom: The 3D trail cross-profile averaged over the length.
The left and right ruts of each trail are visible. The reference height is set to z = 0 m. The narrow
bottom of the ruts is an artificial result of the final rut profile rectification.

4. Discussion

The experiments of registering the rut depths by UAV photogrammetric point cloud are a part of
a larger research project, e.g., [22], on traversability prediction. Thus, the site was emulating a typical
forestry operation dictating payload amounts, machinery used and number of passes.

Figure 9 shows how the UAV measurement detected much more of the depth 0.1–0.3 m range
than the manual measurement on Trail 1. This can be explained by difficulties in defining the control
surface level in a compatible fashion by both methods (manual and UAV) on certain terrain conditions.
The manual reference level tends to be assessed by humans from the proximity of the rut, whereas
the UAV method fits the reference height origin (0-m level of the trail cross-profiles of Figure 11).
Neither reference level is imperfect per se, but it seems that the calibration measurements should be
done within an artificial environment with absolute measures, or with a ground-based LiDAR scanner,
for example, which provides the chance to match the reference height of two point clouds reliably.

The point cloud need not to be geo-referenced nor matched to the DEM. This allows a UAV flight
path that is reduced to cover only the trails with only a necessary amount of overlapping to enable the
photogrammetric 3D point cloud generation. The RGB information would add to trail registration
performance, but requires more research and more varied test materials with different weather, soil,
terrain and light conditions.

The following is a short presentation of the observations of the experiments with alternative
techniques (not including the proposed methodology presented in the Section 2.3):

Point cloud preprocessing: We extracted the curvature state of the ground model in order to
expose the trails from the data. Subtracting the DEM height from the point cloud provides an easy



Remote Sens. 2017, 9, 1279 17 of 26

way to eliminate the canopy points, but the resulting algorithm would not cope well in countries and
sites with no ubiquitous DEM model. Furthermore, it requires careful planning and placement of the
geo-referencing markers to reach the, e.g., ±1 m/100 m height accuracy required with the two sites
used in this study.

Ground height model: We produced TIN using a solid angle filtering [25] method. The local linear
fit of [35] is a computation-intensive method, which does not adapt well to the noise from the canopy
wall around the trail. Various heuristics such as taking the local mean of the lowest point cloud points
after a space division to small compartments (approximately 20–30 cm) forces a repetitive inefficient
computation and is not suitable for parameter optimization. Traditional local quadratics methods
applied to the 3 × 3 raster window used to derive the DEM models [36] in geographic information
systems (GIS), when scaled to the UAV point cloud density (≈80 m−2 at the surface), smoothed the rut
contour too much and did not provide adequate control for proper signal processing optimizations.

Vectorization: Vectorization is needed to detect a possible rut present locally and to assess the
possible orientation of it. We used a novel histogram of curvatures (HOC) approach. There are several
possibilities uncharted yet, including image difference methods based on entropy and information
measures. Furthermore, all possible sampling radii and sample grid densities have not been fully
covered yet. No adequate combination of machine learning methods, features and cloud preprocessing
has been found yet to detect the ruts automatically with a reliable performance.

Neighborhood voting: It is possible to improve the track analysis by smoothing and strengthening
the orientation information. There are several promising neighborhood voting methods, which need
to be adapted only a little to this problem, but the basic signal from the vectorization phase has to be
improved first.

Finding the trail center line: Trails can have a complicated structure, the proper handling of which
has not been added yet. Early experiments with principal graphs using the software of [37] seem
to be capable of handling loops, branches and junctions. It seems to be mathematically possible to
utilize the local orientation information of [37], but at the moment, the noise level of the orientation
is too high. The noise signal of the small trees, which do not completely get eliminated by solid
angle filtering (SAF) [25], is particularly problematic. Multiple classification to ruts/young trees/open
ground/canopy could be a solution.

Several experiments were made to automate the trail detection. Two major difficulties are:
(1) finding methods generic enough to cope with most of the environmental conditions, especially
with trails partially covered by the canopy; and (2) speeding up the initial processing steps. At the
moment, the initial point cloud generation by photogrammetry is too slow for any online approach
that would allow the automated flight control and autonomous flight path planning. At the moment,
one is limited to a pre-defined flight pattern and batch processing after the field campaign.

5. Conclusions

We aim at a streamlined and economical workflow, which could be used after the harvesting
operations both for collecting extensive ground truth data for trafficability prediction models and as a
generic post-harvest quality assessment tool. A novel method of cumulating histograms of directed
curvatures (HOC) is proposed, which reduces the computational burden of curvature analysis of the
TIN samples. We demonstrate the procedure comparing the results with the field data collected from a
test site. The procedure contributes towards automated trail detection and rut depth evaluation.

The proposed procedure can classify rut depths into two categories (insignificant
depression/harmful rut depth) with practical precision using approximately 10 UAV images per
100 m of trail length. It is relatively inexpensive, since it is independent of the following conditions:

• before-after type of data collection
• GPS data of harvesting routes
• geo-referencing for utilizing the digital elevation maps (DEM)
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The UAV requires the visual contact of the operator. This is more a legislation restriction, which
could be removed in the future.

A proper point cloud pre-processing seems to be essential when using UAV point clouds for rut
depth analysis and similar micro-topography tasks. The profile analysis based on manual control points
is already ready for a practical tool implementation, while the pre-processing requires some practical
improvements to be used with cross-validation or with neural network methods. Especially the
segmentation into several classes, e.g., young trees, dense undergrowth and ruts, could be useful.
Furthermore, a combination of the slope and curvature histograms and other pattern recognition
methods has to be tested in the future.

The flight height of 100 m seems adequate with the equipment used. Experiments have to be
performed with atypical flight plans with no geo-referencing and focusing the flight path on the trails
more closely. These experiments will require direct structure-from-motion methods that are based
on numerically-estimated camera positions, and the resulting point cloud has slightly lower spatial
accuracy [38].

The 65% accuracy in classifying deep ruts (depth of over 20 cm) is adequate for practical purposes,
e.g., as a post-harvest quality assurance. More extensive calibration data have to be produced to
evaluate the performance in order to contribute to the on-going research of trafficability prediction.
The combination of the canopy height model produced by UAV photogrammetry and the ground
TIN produced by a more deeply-penetrating aerial LiDAR scan has to be studied in the future.
This combination could contribute to understanding the relation between the rut formation and
tree roots.

An efficient pipeline for rut depth field measurements is an essential step in gaining understanding
about the interplay between environmental factors described by the public open data and the scale
and nature of the variations caused to, e.g., cross-terrain trafficability [22] by the micro-topography.
The current size of the test site is not adequate for final assessment of the future rut depth classification
performance, but the suggested methodology based on UAV photogrammetry, ground TIN based on
the SAF method, directional curvature analysis and using either manual or automatic trail detection
seems to have potential.

As [16] states, the reference ground level (namely the ground level before the trail was formed)
remains difficult to define by any means, including the best possible ground-based laser scanning and
human assessment. The rut depth evaluation has to have some categorical element, addressing mainly
two or three rut depth classes.

In the long run, the cloud pre-processing + SAF + MCF + thinning should be implemented either
using existing software or a separate application to be developed. There is an on-going effort to
streamline this process so that it behaves monotonically under usual cross-validation procedures in
order to allow efficient parameter optimization for various machine learning tasks. The HOC procedure
(generation of directed curvatures directly from TIN) is a novel generic technique, which will be a part
of future attempts at vectorizing the ground models of both LiDAR and UAV photogrammetric origin
in order to classify ruts and other useful micro-topographic features automatically at a large scale.

Supplementary Materials: The following are available online: http://users.utu.fi/ptneva/ALS/additional.pdf:
A semi-informal constructive proof of triangular mean curvature yielding the directional curvature by the projected
vertex normals under the barycentric interpolation scheme. https://seafile.utu.fi/f/5e8b21efdd0448ae813e/?dl=1:
A part of the original point cloud (trail 1 curve), the canopy and the ground TINs as a ZIP file.
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Abbreviations

The following abbreviations are used in this manuscript:

ALS aerial laser scan
CAN-bus controller-area network bus
CV cross-validation
DEM digital elevation map
DDG discrete-differential geometry
ETRS-TM35FIN co-ordinates based on European Terrestrial Reference System 1989.

The central meridian is 27◦ and false easting 500 km.
FSC (national) Forest Stewardship Council
GIS geographic information system
GPS geo-positioning system
GNSS/ISS global navigation satellite + inertial system
GSD ground sample distance
HOC histogram of oriented curvatures
HOG histogram of gradients
LiDAR light detection and ranging
MCF mean curvature flow
NLS National Land Survey of Finland
NN natural neighbors
PEFC Programme for the Endorsement of Forest Certification Schemes
SAF solid angle filtering
SFM structure-from-motion
TIN triangular irregular network
UAV unmanned aerial vehicle

Appendix A. Directed Curvature on TIN

This Appendix documents some computational definitions and details to produce the curvature
histograms efficiently. There are three relevant theorems, the proofs of which are provided in the
Supplementary Materials.

The TIN vertex normals are calculated from triangle face normals using the projective tip angles;
see Section 2 of [33]. The mean curvature Ht of a triangle t with the area At, vertex points a, b, c and
vertex normals np, p ∈ {a, b, c} is defined as follows [33]:

Ht(na, nb, nc) =
(nb − na)× (c− a) + (b− a)× (nc − na)

4At
(A1)

The relevant theorems in the Supplementary Materials are the following:

1. The averaged mean curvature Ht of Equation (A1) is constant over the triangle t.
2. The directed curvature H − t(α) of Equation (A3) Ht(α) with orientation α is constant over the

triangle t.
3. The directed curvature can be calculated by Equation (A3) with substituting original vertex

normals np of Equation (A1) by the projected vertex normals mp of Equation (A2).
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Theorems 1 and 2 hold when the barycentric interpolation scheme (see, e.g., ([35], Appendix II))
is applied to the normal map defined by vertex normals.

The orientation plane is defined by the orientation angle α, and the projection np → mp is
arranged by:

ᾱ = (cos(α), sin(α), 0)T

P(α) = e3eT
3 + ᾱᾱT

mp = (P np)
0, p ∈ {a, b, c}, (A2)

where .T is a vector transpose, e3 is the vertical unit vector, P(α) is a projection matrix and v0 = v/‖v‖
denotes scaling a vector v to be a unit vector. The oriented curvature is:

Ht(α) = Ht(ma, mb, mc) . (A3)

When the histogram of oriented curvatures hist({(Ht(α), At)}t∈sample is being built, each oriented
curvature value Ht(α) gets weighted by the triangle area At.
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Figure A1. Left: Projection of vertex normals on the directional plane spanned by vectors ᾱ and e3.
Right: Splitting of the raster rectangle (a, b, c, d) to four triangles.

Equations (A1)–(A3) have to be repeated nα times. Numerical benefits can be gained by projecting
all the vertex normals np of a set of triangles T of a sample area, p ∈ t ∈ T at the same time in a matrix
N = {np}p∈point cloud, and re-arranging the vertex points of Equation (A1) to an assembly matrix W,
so that:

H(α) = [P(α)N]0 W, (A4)

where H(α) = {Ht(α)}t∈T and the unit scaling [.]0 concerns each column of P(α)N. The sparse matrix
W has only six non-zero elements on each column on average. This allows one to use a relatively high
number of orientations α (16 in our application) allowing, e.g., the smoothing of the local window
histograms f (καj), j = 1, ..., 16 by referring to the two neighboring histograms f (καj−1) and f (καj+1).
The window histogram f (κalphaj

) is cumulated from a subset of terms in H(αj) concerning triangles
within a single circular sample spot with a radius r; see Table 2 and Figure 7. The histogram of
curvatures (HOC) method consists of generating the histograms by Equation (A4) and choosing
the vectorization by two dominant orientations of Equation (3). There are several other possible
alternatives for Equation (3), however. A similar method exists for the DEM raster data, but it has been
excluded from this paper.
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Appendix B. Profile Analysis

Appendix B.1. The Convolution Filter

The convolution is for matching the trail center line to a pair of ruts (a trail). The convolution filter
gle f t((x, y), α) of Equation (4) for detecting a rut (left one in this case) was constructed from piecewise
cubic functions. The following description omits the technical details of necessary rotation due to the
orientation angle α. Each interval of Figure A2 is completely defined by specification of the nodal
values (vi, zi, z′i), i = 1, ..., 5 and (ui, zi, z′i), i = 6, ..., 8, where v is the dimension across the trail, u runs
along the length of the trail, z is height and z′ is the derivative of height (either dz

dv or dz
du , depending on

the index i). Table A1 holds the necessary parameters, when given the rut width w = 0.6 m and the
convolution sample length rrut = 3.8 m. There could be a non-parametric convolution profile for most
typical environments and machinery defined by cross-validation measures, but the current amount of
data is not enough for that.
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Figure A2. The shape of the convolution filter. Top: The left rut profile construction. Bottom:
The length profile construction. See also Figure 8 for the general view.

Table A1. Convolution shape parameters. See Figure 8 and Table 2.

i 1 2 3 4 5 6 7 8

vi or ui −w/2 0 w/2 w 7w/2 rrut 0.8r 0.6r
zi 0 −1 0 0.35 0 0 −2.8 0.8
z′i 0 0 2 −0.1 0 0 0 0

The final convolution functions gle f t and gright are constructed from the two orthogonal
components z1(v) and z2(u):

gle f t(u, v) = z1(v− D/2)z2(u) (A5)

gright(u, v) = z1(−v + D/2)z2(u),

to which necessary rotation by orientation α dictated by the trail trajectory and translation is applied to
map between the real-world coordinates (x, y) and the trail-specific coordinates (u, v). The convolution
raster g(x, y) in the globally-rotated coordinates is depicted in the upper left part of Figure 8. See the
definitions of the rut profile parameters D, w, d, rrut from Figure 8 and their values from Table 2.
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Appendix B.2. Forming the Height Raster

The height raster is used in the convolution phase. A rectangular height raster with a 0.2 m × 0.2
m grid was created from the TIN in order to apply the fast raster convolution of the previous section.
The chosen raster size leads to 3.8 points per raster slot, which is about the same relative sample
density as used in constructing the national DEM model from the aerial LiDAR data. Each slot was
assigned the mean height of the ground point samples on the slot. This is a very crude rasterization
policy, but serves its purpose as the domain of the numerical height convolution.

Appendix B.3. Convolution Fit of the Trail Center Line

Manual control points initialize an iteration to find out a smooth centerline of a trail consisting of
two parallel ruts. An interpolation scheme with piecewise linear curvature [34] (Euler or Cornu spiral)
was chosen. This spline has as few parameters (one curvature) per segment as a piecewise linear
curve (one orientation), and it provides a high quality transform for the surrounding local point cloud.
Figure A3 depicts the spline fitting arrangement. Formally, let a = (q1, α1, κ1, κ2, ..., κm) be a parameter
vector, where q1 is the first point (given manually), α1 is the initial trajectory orientation at q1 and κi
are curvatures at each control point qi ∈ Q, where the set of control points is initially Q = {qi}i=1,...,m.
Then, S(a) ∈ R2 is the spline in question. Using a continuous index t ∈ [1, m] = T ⊂ R, one can
define the sub-segments (qtj , qtj+1), [tj, tj+1] ⊂ T . Sub-segments can be generated so that they have
approximately the same length: ∆l = ‖qtj+1 − qtj‖, where ∆l = 0.6 m has been chosen to sample typical
ruts. A sub-segment is depicted in Figure A3.

u
v p

i
V

i
q

i t
t
jt

j+1

Figure A3. A schematic presentation of the trail center line matching. A convolution filter positioned
at q(t) ∈ S(a) has been outlined. A sub-segment [tj, tj+1] ∈ T is shown with a thick line. The local
coordinate frame (u, v) can also be seen in Figure A2.

The curvature κ(tj) can be now defined at each sub-segment end qtj :

κ(tj) =
2φj

‖qtj+1 − qtj‖+ ‖qj − qj−1‖
,

where φi is the direction change between segments at qtj . The curve fitting uses the square of the
curvature as the regularization term to find the optimal parameters α∗:

a∗ = arg min
a

m

∑
i=1

V2
i + λ1 ∑

tj∈T
κ(tj)

2, (A6)

where Vi = minq∈S(a) ‖qi − q‖ is the distance between the control point qi and the spline S(a).
The convolution match should add a curve integral to the Equation (A6) to be maximized.

That formulation has weak convergence properties, and an alternative with better convergence and
the same end result has been adopted. Some of the control points qi ∈ Q are moved to new positions,
where they have a maximal fit by the convolution response c(., α) of Equation (4). The movement is
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restricted to the perpendicular line from the control point qi. The procedure uses the perpendicular
local coordinate vector v depicted in Figure A3, and it has the following three steps:

V∗i = arg max
V

c(qi + Vv, αi) (A7)

qi := qi + V∗i v, (A8)

where αi is the curve tangent orientation at qi and := denotes the iterative updates of locations qi.
The update occurs every time when the orientation changes more than 15◦. The orientations αi and the
possible updated distances V∗i , qi ∈ Q can be recorded for further iterations. An addition of control
points occurs progressively until a target density L = 4 m has been reached, and a deletion of a control
point qi occurs when it does not change the resulting curvature at the same position more than 10%.
The two parameters ∆l, ∆L presented here guarantee an acceptable convergence.

After the initial convergence, the fitting continues by upgrading segment points qtj to control
points. The variable qi has to be substituted by qtj in Equations (A7) and (A8), and a necessary set
update Q := Q ∪ {qtj} has to be made. The addition of new points proceeds from one end of the trail
towards the other, since the Cornu spline can have the last point undefined. The speed of the fit and
the end quality are satisfactory. The end result is seen in Figure A4. Original manual points have
drifted to new positions (circles), and new control points are not shown.
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  v
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Figure A4. The trail central line detection by height convolution maximization. The local coordinates
(u, v) are the same as in Figure A2.

Appendix B.4. Profile Adjustment

The previous step does not catch all the sharp turns of the trails. This can be seen from the first
two trail profiles of Figure A5. An additional straightening is needed. This happens by shifting each
(u, z) profile in such a way that the mean profile along the trail lengths keeps deepening.
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initial trail profiles, trail 1

20 m

adjusted trail profiles, trail 1

initial trail profiles, trail 2

20 m

adjusted trail profiles, trail 2

-0.6

0
trail height (m)

Figure A5. Top two: Trail profiles in the u direction after the trail center line has been fixed with the
height convolution adaptation. Bottom: Trail profiles in the u direction after the local profile adjustment.
Note: the height scale given concerns all height plots.

The computation is basically a minimization problem in 700–900 dimensional space (the number
of translations of separate profiles each sampling 20 cm of the track length, e.g., with Trail 1:
180 m/0.2 m = 900, where L is the trail length and ∆L is the profile slicing distance). The actual
implementation is fast, though, since each individual translation is independent and needs to be
computed only once. Figure A6 depicts the change of the mean rut profile from the initial (dashed line)
to the adjusted (solid line). The final rut longitudinal depth profiles of Figure 11 have been produced
from the center lines of the ruts of these adjusted profiles.
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Figure A6. Left: Effect of the profile adjustment to the mean rut profile. Right: The TIN model before
the final adjustment.
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The original point cloud points p = (x, y, z) ∈ P can be mapped to the projective coordinates
defined by the spline S(a) and the local coordinates (u, v): (x, y, z)→ (t, v, z), where t can be scaled to
the distance along the trail center line and v is the distance from the center line (including a local shift
δv introduced in the previous profile adjustment step). The point cloud can be updated by a linear
O(|P|) computational cost during the iteration, thus allowing several other trail detection criteria than
the height convolution. This is because a small change in the spline parameters a in each iteration step
produces only a minor re-shuffling of co-ordinates t. All derived features (like curvature) naturally
require a major re-computation, however. Figure A6 (right) shows a fragment of the rectified point
cloud at Trail 1. A linear interpolation of interval [ti, ti+1] end point normals was used for this detail.
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