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1. Introduction

1.1 Scientific Background and Study Motivation

Despite the advent of unprecedented advancements and breakthroughs in the entirety of

the modern scientific domains, and of the continuous revolution that the fields of medicine

and therapeutics have been thus far witnessing, human malignancies indisputably remain

a major global burden, known for its largely unsatisfactory management practices.

 (WHO) 2018 fact sheets, cancer remains

the second leading cause of death, accounting on its own for 8.8 million cases in

2015 (Cancer, 2018). This is notwithstanding the striking progress achieved in the

molecular and genetic characterization of a wide variety of cancers to date. However,

there appears to exist a considerable gap between the mounting knowledge in cancer

biology on one side, and the actual translatability of this insight to clinical practice and

therapeutic development on the other, which is depicted by the consistent increase in the

reported cases of cancer worldwide, associated deaths, and the insufficiency of available

treatment options for patients, who often progress to the development of more resistant

malignancies. In brief, due to a series of complications associated with neoplasms,

including but not limited to cell plasticity, patient/tumor intra- and inter-heterogeneity,

and oncogenic compensatory signals, a distressing unmet medical need persists. Current

research must therefore redirect its primary focus onto alleviating the many obstacles

faced when attempting to translate the acquired molecular science of tumors to effective

treatment approaches implementable at the clinical level.

1.2 Acute Myeloid Leukemia (AML)

AML is best defined as being a hematologic malignancy (HM) affecting blood progenitor

cells committed to the myeloid lineage. The disease is characterized by a collection of

abnormal processes involving rapid proliferation, escape from apoptosis, and aberrant

differentiation patterns of the white blood cells, brought upon by the accumulation of

acquired somatic mutations and chromosomal rearrangements. The aforesaid poorly or

abnormally differentiated cells transform into leukemic blasts, which overpopulate the

 (BM), peripheral blood (PB), and occasionally other organs. This



ultimately leads to the disruption of normal hematopoiesis and to bone-marrow failure,

resulting in numerous debilitating and life-threatening clinical conditions (De

Kouchkovsky and Abdul-Hay, 2016; Pemovska et al., 2013).

1.2.1 Incidence

Statistics reveal that AML is the most common type of acute leukemia in adults,

accounting for approximately 80 percent of the documented cases (De Kouchkovsky and

Abdul-Hay, 2016). Slightly more prevalent in males than in females (ratio of 1.5:1), new

AML cases are diagnosed annually in around 20,000 individuals in the United States, and

account for 10,000 deaths, numbers of which have remained stable over the past years (De

Kouchkovsky and Abdul-Hay, 2016; L. et al., 2016)

has been set to 0.5% for any individual, a risk that is very infrequent before age 45, and

which is seen to robustly increase with time, with a mean age of onset of around 67 years

for both sexes (Key Statistics for Acute Myeloid Leukemia, 2018).

1.2.2 Diagnosis and Classification

Traditionally, AML was diagnosed and labeled according to the French-American-British

classification system (also known as FAB), first published in 1976. The diagnosis criteria

required that BM aspirates contain more than 30% myeloblasts (Döhner et al., 2017), and

subsequently, the patient was allocated to one of seven classes, denoted as M0-M7 (as

described in (Tenen, 2003)), which are defined solely based on recurrent morphologic and

cytochemical characteristics (Abdou, 2016; Walter et al., 2013).

However, as the understanding of the biology of AML grew and insight was gained into

its heterogeneity and clonal diversity, WHO devised a newer classification system to

replace the French-American British classification scheme, which integrated genetic,

immunophenotypic, biological, and clinical features for an enhanced definition of the

disease. The system was first presented in 2001, and has since undergone two revisions,

in 2008 and 2016 (Walter et al., 2013). Warranting an AML diagnosis now requires the

detection of more than 20% myeloblasts BM samples, or the detection of

documented chromosomal anomalies associated with AML, irrespective of the blast count

(De Kouchkovsky and Abdul-Hay, 2016). According to the most recent revision which



imposed several modifications to AML criteria, patient classification nowadays follows a

list of 7 classes and 25 subclasses (Arber et al., 2016; Döhner et al., 2017).

1.2.3 Signs and Symptoms

In terms of signs and symptoms, an AML patient generally presents to the clinic suffering

from fatigue, weight loss, and/or anorexia, combined with signs of leukocytosis and BM

failure, notably anemia and thrombocytopenia. All occurring symptoms are the direct

result of the accumulation of the immature blast cells and their harmful effects on normal

hematopoiesis. Ultimately, the patient succumbs to the disease either due to the infiltration

of blast cells into the central nervous system and/or the lungs (or other vital organs), or

due to complete BM failure, infection and bleeding (De Kouchkovsky and Abdul-Hay,

2016; Elihu, 2014).

1.2.4 Genetic Complexity and Risk Stratification

Upon presentation to the clinic, a patient is stratified into a risk group, primarily

determined by two main factors: the probability of treatment-related mortality, and more

importantly, that of resistance to standard therapy. These factors are determined by the

 (Elihu, 2014), and efforts have been

continuously made for more accurate characterizations. To illustrate, in a major attempt

to unveil the genomic heterogeneity of AML, the Cancer Genome Atlas (TCGA) Research

Network profoundly analyzed in 2013 two hundred de novo adult cases of AML (The

Cancer Genome Atlas Research Network, 2013). The study confirmed that, despite the

fewer mutations detectable in AML genomes compared to other cancers, AML entails a

wide genetic diversity based on a variety of potential driver mutations (typical nature of

myeloid leukemogenesis), and on a complex pattern of mutational co-occurrences and

exclusivities which hint to existent molecular synergies and redundancies whose

biological relevance remains to be elucidated. The analysis reported a set of recurrently

mutated genes, classified into 9 distinct functional categories (The Cancer Genome Atlas

Research Network, 2013; Grove and Vassiliou, 2014).

background, the European

Leukemia Net (ELN) allows, since its most recent revision in 2017, the incorporation of



into an updated risk stratification scheme. In brief, the classification was simplified to

include three categories (favorable, intermediate and adverse prognosis), which are

defined based on gene mutation statuses (NPM1, biallelic CEBPA, RUNX1, ASXL1, TP53,

and FLT3-ITD), specific chromosomal aberrations (translocations, deletions), karyotype

aberrations (complex, monosomal), and harbored allelic burden (notably of FLT3-ITD)

(Döhner et al., 2017; Kontro, 2017). While evidence concerning the involvement of other

notable genes (DNMT3A, IDH1/2, genes in the chromatin/spliceosome group besides

ASXL1 and RUNX1) in the prediction of prognosis has been mounting, the ELN awaits

further in-depth studies to be performed before their integration into its risk stratification

table (Döhner et al., 2017).

1.2.5 Current Treatment Regimens and Outcomes

The standard treatment regimen in AML is largely based on cytotoxic chemotherapy. In

particular, treatment consists of a combination of cytarabine with an anthracycline (an

antileukemic drug belonging to the antitumor antibiotics class acting as topoisomerase II

inhibitors, such as idarubicin, daunorubicin and doxorubicin). The goal of treatment is

achieving a complete remission (CR) state, defined as a blast count lower than 5% in the

BM. Treatment can be therefore divided into 2 main phases. The first phase,

referred to as remission induction, aims at achieving the CR condition described above.

This is followed by a second phase known as post-remission, which starts with

consolidation (maintenance of the remission state using chemotherapy after the patient

has recovered from the first, aggressive treatment stage, in the aim of eradicating the

remaining blast cells) and then proceeds to maintenance treatment (use of low dose

chemotherapy to prevent relapse). Chemotherapeutic treatment can also be accompanied

by hematopoietic stem cell transplantation for patients with high risk of relapse. However,

allogeneic transplantation remains a risky procedure with several undesirable long-term

complications and is largely dependent upon the availability of a matched donor, the

, and her/his specific disease characteristics (Mohty and Mohty, 2011).

Although the characterization of AML has improved over the past several decades,

standard therapy has remained unchanged for over 40 years. However, the efficacy of



conventional therapy has reached a plateau, as it has been reported that the current

treatment strategy effectively cures less than 40% of patients below 60 years of age, but

only as little as 10-15% of the more elderly population (Döhner et al., 2015). Furthermore,

an estimated average of 30% of patients will never achieve CR, and as many as 70% of

those who do will progress to a relapsed and more aggressive disease with very poor

prognosis within 3 years from the first CR (Cheng et al., 2014). The most recent estimate

of the 5-year survival rate for AML patients according to the National Institute of Health

is as low as 27% percent (Cancer Stat Facts: Leukemia - Acute Myeloid Leukemia

(AML), 2018).

Finally, the overall disease-free survival and remission rates are significantly worse for

both older patients and for those assigned an elevated risk at diagnosis (for example those

patients suffering co-morbidities such as myelodysplastic syndrome (MDS) or developing

treatment-related or secondary AML due to previous exposure to chemotherapies),

compared to the rest of the AML population (Dombret and Gardin, 2016).

Given the extremely dismal outcomes (especially for patients judged unfit for the

described intensive treatment approaches), and the almost complete lack of successful

innovation in targeted AML treatment (except for ATRA used in the case of acute

promyelocytic leukemia (APL), and for midostaurin, recently approved for the treatment

of AML with FLT3 mutations), there exists an urgent need for novel treatment options.

Those should ideally be able to effectively utilize the mounting molecular and cellular

knowledge in the field, as well as the patient-stratification processes that have been

devised, thus allowing the establishment of -

regimens. Out of the numerous molecularly-targeted options that are currently being

investigated (with so far limited success in terms of clinical translatability), one class of

molecules, referred to as the Bromodomain and Extra-Terminal (BET) inhibitors, has

sparked particular interest over the past few years in cancer treatment in general, and in

HMs in particular, and will constitute the major focus of this work.



1.3 Bromodomains & Bromodomain and Extra Terminal Family Proteins

1.3.1 Epigenetics and the Family of Bromodomain (BRD)-Containing Proteins

The term epigenetics defines the entirety of gene expression regulatory mechanisms that

occur in the cellular genome without involving modifications to its DNA sequence.

Histone post-translational modifications (PTMs) constitute one of the most immediate

contributors to epigenetic regulation by affecting the chromatin architecture through a

variety of mechanisms, involving among others the modulation of DNA affinity to

histones, histone interactions among each other and with other proteins such as

chaperones, and the creation , which themselves

affect nucleosome packing, gene transcription, and DNA repair and replication

mechanisms. It has been established that PTM-affecting enzymes in the cell can be

classified into one of three distinct classes: PTM writers, which add a modification to the

histone amino acids (such as histone methyltransferases and histone acetyltransferases

(HATs)), PTM erasers, which remove such modifications (including histone deacetylases

(HDACs) and lysine demethylases) and PTM readers, which recognize specific PTMs and

mediate downstream effects (those include bromodomain- and chromodomain-containing

proteins, such as the BET proteins) (Ferri et al., 2016; Falkenberg and Johnstone, 2014).

These epigenetic agents are known to play a key role in disease development, either

directly (when they are mutated and functionally aberrant) or indirectly (when they drive

erroneous gene transcription regulation patterns due to dysfunctional upstream drivers).

In both cases, those enzymes can serve as valuable drug targets for renormalizing

transcriptional activity, with the notable example of the previous success achieved in

HDAC inhibition with several approved drugs (e.g. vorinostat, belinostat, panobinostat

and romidepsin).

The family of BRD-containing proteins has been recently characterized in the human

proteome: it is composed of 46 members with a total of 61 well-defined BRDs, distributed

over 8 major clades, based on sequence and structure homology (Ferri et al., 2016). All

members contain one (or more) BRD(s), and all are involved in epigenetic processes

including chromatin remodeling and transcriptional activity. The term bromodomain

refers to the primary amino acid sequence contained by all members of the family, first



discovered as a chromatin-modifying factor in the Drosophila brahma in 1994 by Tamkun

et al (V. et al., 2010). Roughly 110 amino acids-long, a BRD is an epigenetic reader that

-N-acetylated lysine residues (Kac) (namely H2AK15Ac,

H2AK36Ac, H3K14Ac and H4K5Ac). This results in the euchromatization of DNA and

the initiation of transcriptional activity in the cell via the recruitment of positive

transcription factors by BRD modules. Different BRDs recognize Kac in different settings

leading to different downstream effects, which largely depend on the possible structural

interactions that form between the ligand and the proteins  binding sites (Ferri et al., 2016;

Wang and Filippakopoulos, 2015). A detailed structural description is available in Ferri

Bromodomains: Structure, function and pharmacology of inhibition (2016) (Ferri

et al., 2016).

1.3.2 Bromodomain and Extra Terminal Family Proteins (BETs)

To date, most of the attention for BRD-containing proteins has been centered around a

subclade of family II, a group composed of four members (BRD2, BRD3, BRD4 and the

testis-specific BRDT), collectively referred to as the BETs (Ferri et al., 2016). Overall,

the 4 members depict a conserved modular architecture, composed, from the N to the C

terminus, of the following shared features: a first N-terminal BRD effector module BD1,

a conserved motif A, a second N-terminal BRD effector module BD2, a conserved motif

B, an extra-terminal recruitment domain ET, and a conserved motif SEED. BRD4 and

BRDT share the additional particularity of having a conserved C-terminal motif (Wang

and Filippakopoulos, 2015). It has been found that each feature in the described

architecture of BET proteins is essential for the formation of key interactions, which are

crucial for the assembly of the transcriptional machinery that will exert the downstream

, i.e. transcription initiation and elongation. As

expected, BD1/2 bind mostly to histones, but also to non-

Kac (or occasionally at paired Kac which confers additional

stability, as is the case in histone H4). When present (i.e. in the BRD4 and BRDT

members), the C-terminal motif has been reported to promote the formation of the active

form of the positive transcription elongation factor b (P-TEFb), by dissociation of the

inhibitory subunit in the complex, HEX1M1, which in turn leads to the phosphorylation



and the activation of RNA Polymerase II. As for the extra-terminal recruitment domain,

it has been suggested to initiate crucial protein-protein complexes with downstream

positive transcriptional effectors (such as with the methyltransferase NSD3)

independently of P-TEFb. Finally, motif A is thought to act as a nuclear localization signal

for the proteins, while motif B is crucial for their homo- and/or hetero- dimerization

(Wang and Filippakopoulos, 2015).

BET proteins have been recognized as essential adaptors that play a delicate role in

controlling the tethering of specific transcriptional complexes to chromatin in a tissue-

and environment- specific fashion, leading to the activation of relevant transcriptional

programs. It thus becomes obvious that even slight deregulations of this activity are

sufficient for disease development, including inter alia tumorigenesis, inflammation, and

viral infections. Two cancer-related illustrations are hereby reported. It has recently been

found, in lung adenocarcinoma, that BRD2 greatly contributes to the disease by forming

a complex with RUNX3, which activates the expression of p21 (a cell-cycle inhibitor),

promoting lack of differentiation in a KRAS-dependent (oncogenic) fashion. Similarly, a

BRD4-NUT oncogenic fusion detected in NUT midline carcinomas (NMCs) was shown

to produce an oncogenic product that blocked differentiation and maintained constitutive

tumor growth by the creation of transcriptionally-inactive, hyperacetylated foci, through

the constitutive recruitment and sequestration of p300. This in turn leads to the

acetylation, and therefore, the inhibition of p53

the NUT moiety also leads to a local sequestration of BRD4 and other transcription

machinery components at those foci, creating a nearly complete functional repression of

the BRD4, and depleting its capability of inducing the expression of other genes critical

for differentiation (e.g. FOS).  Finally, it has also been hypothesized that the fusion

product favored, through colocalizing BRD4 at the loci, the transcription of the

proliferative and anti-differentiation gene MYC. Attempts to knockdown the fusion or to

incapacitate binding of BRD4 were shown to effectively restore normal functions, namely

through squamous cell differentiation (restored FOS expression) and arrest of the cell-

cycle (decreased MYC expression) at G1 (Wang and Filippakopoulos, 2015; Reynoird et

al., 2010; Chaidos et al., 2015).



1.3.3 BET Inhibitors (BETi)

Epigenetic modifiers continue to spark interest in the field of targeted drug discovery, and

BET proteins have recently been recognized as very promising druggable targets in a

variety of disorders, including inflammation, viral infection, and importantly, cancer

(Wang and Filippakopoulos, 2015). This is the result of previously reported genetic and

molecular events that have established clear associations between BET proteins and

tumorigenesis, notably but not exclusively, in HMs (Chaidos et al., 2015). For instance, it

was observed that the overexpression of BRD2 in mouse lymphocytes leads to the

development of B cell lymphomas. On the other hand, BRD4 inhibition has produced

promising antileukemic effects in AML. Similarly, BET inhibition has been shown to

decrease MYC expression and to restore normal cellular functions in a variety of cancers,

including HMs (AML, mixed lineage leukemia, T-cell acute lymphocytic leukemia) and

solid tumors (prostate and ovarian cancers, lung adenocarcinomas, skin malignancies)

(Wang and Filippakopoulos, 2015; Chaidos et al., 2015).

The first potent and selective probe investigated is the thieno-tiazolo-1,4-diazepine,

known as the positive enantiomer (+) of JQ1 (denoted henceforth as JQ1 for brevity).

Competitively binding at the BRD pocket of BETs, JQ1 effectively displaces those

proteins from acetylated chromatin at the micromolar range, with a notable affinity to

BRD4. This has shown remarkable preclinical efficacy in NMC (described in Section

1.3.2 and in detail by Filippakoulous et al., 2010) (Filippakopoulos et al., 2010), and

offered a first validation of the rationale of inhibiting BET proteins as a novel oncologic

therapeutic approach. Since then, several studies have focused on verifying the

extendibility of the observed efficacy to other cancers including leukemia. For example,

the study done by Baltz et al. in 2016 successfully demonstrated the usefulness of the

molecule in selected myeloid leukemia cell lines, in terms of the inhibition of proliferation

and colony formation, at subtoxic concentrations (Baltz et al., 2016). The second study,

very relevant to MYC overexpression also detected in AML and previously described in

Section 1.3.2, was presented by Brondfield et al. in 2015 and showed that JQ1 exhibited

in vitro and in vivo efficacy against numerous MYC-overexpressing AML models by

constitutively lowering the expression of that protein in all sensitive cells (irrespective of

the genetic abnormalities underlying MYC deregulation) (Brondfield et al., 2015).



Owing to those promising preclinical results, numerous BETi have been investigated, and

several of them are already being tested in as many as 20 ongoing clinical trials (CT). For

instance, I-BET762 (also known as GSK525762) has previously reported binding profiles

and affinities to BET proteins similar to those seen with JQ1 and has proven effective in

downregulating the expression of several inflammatory genes in cell studies. It is currently

being investigated in several ongoing CTs for solid tumors (NCT03266159), for relapsed,

refractory HMs (NCT01943851) and in NMC (NCT01587703). Similarly, OTX015 (also

known as MK-8628) has been used in several studies, notably for NMC and lung and

prostate cancers, and is about to be used in a dose-escalation study recruiting both de novo

and secondary MDS-to-AML patients (NCT02698189). Other molecules currently in CTs

targeting AML patients include FT-1101 (NCT02543879) and CPI-0610

(NCT02158858).

1.4 Individualized Medicine in AML Using BETi

1.4.1 Need for Individualized Therapies

Given the presented limitations still faced by applying AML therapies, the need for an

approach that would bridge knowledge to predictable therapeutic benefit becomes more

essential than ever. The plethora of genetic and molecular information nowadays made

available for patients shall allow for a more informed and meticulous understanding of

the mechanisms (and targets) underlying their disease subtypes and possibly their

responsiveness and resistance to treating agents.

Such an approach can be referred to as personalized, individualized or precision medicine,

and operates at the individual, rather than the population, level. This is expected to be of

immense relevance for the treatment of different cancers (particularly AML), owing to

the high degrees of intra- and inter-heterogeneity they harbor at the molecular level. By

rendering therapeutic interventions chiefly tailored to a subject's underlying genetic

makeup, individualized medicine promises a better management of patients by optimizing

drug benefits, and cutting off undesirable costs and side effects, while remaining optimally

safe and tolerable.



It is strongly believed that, for the sake of this work, this strategy will ultimately guide

successful selection of AML patient subgroups who are expected to benefit the most from

treatment by BET inhibition.

1.4.2 Individualized Systems Medicine (ISM)

As a direct implementation of the personalized medicine strategy described above, ISM,

initiated at the Institute for Molecular Medicine Finland (FIMM) and first described in the

Individualized Systems Medicine Strategy to Tailor Treatments for

Patients with Chemorefractory Acute Myeloid Leukemia 2013), is introduced as a

systematic analysis workflow (Annex I). Specifically, ISM is defined

based on functional assessment using an ex vivo technique referred to as Drug Sensitivity

and Resistance Testing (DSRT) (Pemovska et al., 2013). In brief, ISM starts by exposing

patient-derived tumor and healthy samples to a panel of drugs consisting of a wide range

of cancer therapeutics as well as other investigational molecules. It then proceeds to

quantify the observed differential responses to each drug, using a novel scoring technique,

and expressed either as a Drug Sensitivity Score (DSS) or alternatively as a differential

Drug Sensitivity Score (dDSS). The DSS is seen as a direct measure of a

responsiveness (toxicity/viability) to a drug, taking into account multiple characteristic

features from the dose-response curves generated (Yadav et al., 2014). It is believed to

accurately reveal how effective a drug is in treating a particular cell sample, in such a way

that a higher DSS reflects a higher sensitivity. Similarly, a cancer sample s dDSS is a

normalized value of the DSS, obtained by subtracting DSS for the same

treatment agent (Yadav, 2017). The drug sensitivity and resistance profiles can be also

integrated with the genomic and transcriptomic profiling done for the samples from the

patients, elucidating the molecular mechanisms of the progression of the disease and its

response to treatment attempts. Therefore, ISM allows the identification of targeted and

actionable drugs for AML patients in a personalized fashion, which can eventually

translate to clinically relevant (and low-risk) treatment options.



1.5 Research Question, Hypothesis, and Goals

The aim of the study was to identify genomic biomarkers that confer sensitivity or

resistance to BET inhibition in AML patients. It was hypothesized that BETi effectiveness

in AML treatment is dependent on specific underlying biomarkers harbored by respondent

samples, which can be detected and validated using ex-vivo drug screening and molecular

profiling. Through the implementation of a bioinformatics pipeline capable of performing

a systematic investigation of clinical and genomic data collected for AML patient samples

having been exposed to the BETi JQ1, this project sought to unveil specific patient

characteristics, precisely clinical and/or mutational patterns, which appear to be

significantly predictive of AML sample sensitivities to JQ1.

The significance of the study lies in its contribution to the implementation of personalized

in order to

render findings more informative and realistically-linked to the complex molecular

profiles of patients.

1.6 Summary

It is indisputable that AML remains until today a challenging cancer, where therapy

options are still largely suboptimal. Despite the mounting high-quality knowledge

 the molecular and genetic levels, targeted

therapies are still far from being effectively implemented in the clinics. The persistent

unmet medical need has to be urgently addressed, considering the devastating effects that

are imposed on patients. Among the abundant novel targeted molecules investigated for

their potential in treating AML, BET proteins are particularly promising targets for

attenuation, and have constituted over the past few years, a major field of focus in AML

drug discovery. It is unlikely that a single drug can be suitable for treating all AML

patients due to the genetic and molecular heterogeneity. Therefore, it is believed that the

class of BETi should be investigated more closely in a patient-specific context, in the aim

of identifying specific characteristics and/or genomic signatures that can explain and

ultimately predict the potency and efficacy of such molecules in AML tumors. This study

thus seeks to rationalize the implementation of personalized therapeutics for cancers in

routine clinical environments, in order to better guide the selection of drugs/drug



combinations as more-informed and effective treatment options for patients, promoting

proper disease management and general well-being.

2. Results

2.1 Dose-Response Curves

From our entire cohort, the ten most resistant samples to JQ1, with DSS (the definition of

which can be found in Section 4.2) scores comprised between 0 and 4.84, and the ten most

sensitive ones, with their respective scores ranging from 22.48 to 26.23 generate 20 four-

parameter log-logistic dose-response curves as shown in Figure 1.

Figure 1. Dose-response curves of the 10 most-sensitive (orange) and the 10 most-

resistant (blue) AML samples to JQ1 treatment.

The dose-response curves illustrated two separate clusters: the non-responsive samples

(on average low DSS values, high area under the dose-response curve (AUC) values, and

high absolute half maximal inhibitory concentration (IC50) values) demonstrated limited

reductions in viability (a maximum of 40% reduction under the highest JQ1 dose),



whereas the sensitive samples (on average high DSS values, low AUC values, and low

absolute IC50 values) showed large reductions in viability (reaching 100% inhibition for

certain samples well before the highest JQ1 dose was used).

2.2 Patient and Sample Characteristics

As is often the case in statistical analysis, the selection of suitable statistical tests to use

depended on the assumptions made concerning the distribution of the data in the samples

(in our case, the JQ1 DSS readout). Though DSS values by nature are percentages, due to

the method of their calculation (bounded between 0 and 100) (Yadav, 2017), the 170 JQ1

DSS values in our cohort demonstrated a normal distribution, as shown in Figure 2,

passing the classical Shapiro-Wilk test. Nevertheless, when comparisons concerned

groups composed of such small sample sizes where the normality assumption could no

longer be made, non-parametric equivalents were selected to ensure the quality of the

consequent conclusions.

Figure 2. The bell-shaped curve of JQ1 histogram suggests a normal distribution

(Shapiro-Wilk normality test p-value = 0.21).



2.2.1 Blast Content

Out of the total cohort of 170 AML samples, a clinically-recorded blast content was made

available for a subset of 135 samples. In those samples, the association between the blast

percentage value and the observed JQ1 response was evaluated using two statistical tests.

Based on a simple linear regression: 0 + b , the blast

showed zero association with the JQ1 response, shown by the regression coefficient close

to 0 ( b = 0.029, p-value = 0.102). Results from a Pearson correlation test yielded a similar

conclusion with an insignificant correlation (r = 0.141, p-value = 0.102).

After filtering out those samples having a blast percentage lower than 20% (value

determined by the WHO guidelines for a primary AML diagnosis  see Section 1.2.2), the

same tests were repeated on the remaining 118 samples. The same conclusion was

attained, with a linear regression coefficient b still estimated at 0.029, but with a larger

p-value of 0.22, and a Pearson correlation coefficient r = 0.114 lacking statistical

significance (p-value = 0.22). The results were summarized in Figure 3.

Figure 3. Linear regression of JQ1 DSS with Blast percentage for A) all AML samples

having a blast content (N=135) and B) AML samples with a blast content >= 20%

(N=118).



2.2.2 Culture Media

To detect a possible effect that the culture media might have on the drug-treatment

readouts, 17 samples tested with JQ1 in both conditioned medium (CM) and mononuclear

cell medium (MCM) cultures (definition of which can be found in Section 4.3) were

compared for their paired sensitivity values using non-parametric statistical tests (due to

the small sample sizes and the distribution of their DSS values): a Spearman correlation

and the Wilcoxon rank sum test. As for the remaining samples tested in either of the two

media, a parametric unpaired 2-sample t-test was performed to evaluate whether a

statistically significant difference existed between the CM-cultured (105) and MCM-

cultured (46) samples. The conducted tests are summarized in Figure 4.

Figure 4. Statistical evaluation of the culture media effect on JQ1 response. NA: Not

available.

For the 17 samples cultured in CM and MCM, statistical test results reveal a true and

robust correlation existing between the scores obtained from both media with a Spearman

correlation of 0.83 (p-value = 4.29e-05), as is shown in Figure 5A. Similarly, the

Wilcoxon test performed on the matched scores failed to reject the null hypothesis,



implying no true difference between the two media (p-value = 0.683). In agreement with

those results, the unpaired 2-sample t-test run for those samples tested in either one of the

two media (105 in CM; 46 in MCM) also failed to prove a significant difference between

the means: t = -1.695, 95% CI [-3.605, 0.288], p-value = 0.094 (Figure 5B).

Figure 5. Cell culture medias have no significant effect on the obtained JQ1 responses,

as demonstrated by the consistency of the readouts obtained for the same samples tested

in two media (A), and by the lack of significant difference between the median readouts

of the responses from the two cultures (B).

2.2.3 Sample Clinical Characteristics

To assess whether the age of the patient at the time when the sample is obtained is

predictive of the sensitivity to JQ1, a simple linear regression was built of formula:

0 a * age +  and fit using the samples for which an age could be retrieved

(N = 145). The model returned a predictor coefficient that is slightly smaller than 0 ( a =

-0.034), implying a weak trend of inverse association between JQ1 DSS and age, which

is nonetheless insignificant (p-value = 0.277). Similarly, the Pearson correlation test

yielded a small negative coefficient of -0.091 lacking significance (p-value = 0.277)

(Figure 6).



Figure 6. The age of the patient upon sample collection is not significantly associated

with the response of the sample to JQ1.

 (Diagnostic D vs Relapsed R) and the

ELN risk assigned to the patient at the time of diagnosis also fail to show predictive

potential for JQ1 sensitivity (Figures 7 and 8).

Using an unpaired t-test, the sample status analysis reports a slight decrease in the mean

score of relapsed samples with respect to diagnostic ones (t = -1.431), while lacking

significance (95% CI = [-2.904, 0.464], p-value = 0.154) as shown in Figure 7.

Figure 8 shows the results of the ANOVA test for the multiple group comparison of JQ1

DSS scores for 110 samples, stratified according to the risk assigned to the donors: once

again, the score appeared to be consistent across the groups, and thus, independent of the

risk (p-value = 0.748).



Figure 7. The JQ1 response is independent of the sample status.

Figure 8.



2.3 Genomic Analysis

2.3.1 Mutation Burden

For 139 out of 170 samples, genomic data was available. The number of mutated genes

in those samples varied with respect to the chosen p-value for the inclusion of a somatic

mutation: this resulted in 4425 mutated genes for a softer threshold of 0.05, but only 2813

genes for a more stringent cutoff, set at 0.01. Before examination of individual

associations between particular genes and sample sensitivity, a general investigation of

the effect of a (definition of which can be found in Section 4.6)

on its JQ1 response was investigated. However, given the high deviation in the mutation

burden value across samples, this measure was log-transformed to approximate a normal

distribution for improved visualization purposes. Afterwards, a simple linear model of the

form 0 m * log2(mutation burden) was calculated. Using either the

larger or smaller set of mutations included, the linear regression returned coefficients

whose magnitudes were small and p-values very large, implying no predictive potential

by the mutation burden on JQ1 sensitivity (Figure 9A: the bigger cohort, m = -0.142 and

p-value = 0.713; Figure 9B: the smaller cohort, m = 0.118 and p-value = 0.609). Similarly,

Pearson correlations lead to the same conclusions, with coefficients of -0.032 (p-value =

0.713) and 0.044 (p-value = 0.609) for the larger and smaller samples, respectively.



Figure 9. The mutation burden of a sample (taken in the log2 scale) is non-predictive of

-value inferior to A: 0.05

and B: 0.01.

2.3.2 Mutational Analysis

Using the larger cohort of mutations (p-value ), each of the 4425 genes was used to

fit a simple logistic regression model of formula: log [ ] 0 J * JQ1_DSS

, where P(mutation) represented the probability of the gene to be mutated in a sample;

the log ratio, or log odds on the left hand side of the formula takes the values from minus

to plus infinity, which can be regressed by the JQ1 response. The regression coefficient

J thus represented the association

Each model was fitted using all 139 samples having mutation data available, resulting in

46 out of the 4425 genes with statistical significance (i.e. with p-values ). Out of

these 46 genes, 11 were predicted with a positive association between existence of the

mutation and JQ1 response, while the remaining 35 were predicted with an inverse

relationship (Supplementary Table 1). Based on relevant sample sizes, on previous

literature reports, and on prior biological knowledge, a subset of those genes was taken

forth for more detailed analysis in sections 2.3.2.1 and 2.3.2.2.

2.3.2.1 Evaluation of literature-reported biomarkers

Mutations to two genes, namely NPM1 and FLT3, have previously been shown to confer

enhanced preclinical sensitivity to BET inhibition in AML (Abedin et al., 2016; Dawson

et al., 2013). An investigation of the extendibility of such claims to our ex vivo testing of

primary patient samples was performed for the sake of verification.

Contrary to expectations, NPM1 mutated samples (N=26) did not appear to be consistently

more sensitive to JQ1 than wild-type NPM1 samples. With a large stretch of DSS scores

in NPM1-mutated samples (ranging from very resistant to very sensitive) and an

insignificant gene coefficient ( J = -0.039; p-value = 0.326), the comparison concerning

this AML subpopulation was, according to our cohort and as is shown in Figure 10, largely

inconclusive.



Figure 10. No statistically significant difference between samples which harbor an NPM1

mutation and those who do not, in terms of response to JQ1-treatment.

In contrast, samples harboring a FLT3 mutation (N=43) did display, as expected, a

statistically significant increase in sensitivity to JQ1, with respect to the wild-type

samples. This was illustrated in the regression model by a FLT3 coefficient, slightly, yet

robustly, greater than 0: J = 0.084 (p-value = 0.023) (Figure 11A). Afterwards, the FLT3

mutants were split into either those harboring an internal tandem repeat (ITD; N=29) or

those having a point mutation in their tyrosine kinase domain (TKD; N=15). Notice that

one sample (4361_2) had both an ITD and a TKD, and thus belonged to both groups. Each

of those subgroups were compared to the remaining samples in the cohort: coefficients of

both subgroups remained slightly larger than zero ( J = 0.059 for FLT3-ITD and J =

0.083 for FLT3-TKD), however, the statistical significance of both models was lost (p-

value = 0.146 for FLT3-ITD and p-value = 0.128 for FLT3-TKD). The results are shown

in Figure 11B and Figure 11C.



Figure 11. FLT3-mutated samples were slightly, yet significantly, more sensitive than

wild-type to JQ1 treatment (panel A). While the statistical significance was lost, this trend

was still observed even when -groups

on type: FLT3-ITD (panel B) or FLT3-TKD (panel C).

2.3.2.2 Novel suggestive biomarkers

2.3.2.2.1 NCOR2  a predictor of sensitivity

A biomarker significantly predictive for positive JQ1 response detected in our AML

cohort was identified as a mutation harbored in the NCOR2 gene (Nuclear receptor Co-

Repressor 2). Despite the relatively small number of samples in which it was found (N=5),

an NCOR2 mutation was robustly and significantly associated with constitutive sensitivity

to JQ1: J = 0.257 and p-value = 0.027 (Figure 12A).

To evaluate this finding further, gene copy number alteration data for NCOR2 was

incorporated in the comparison. Three new samples were identified with non-diploid

statuses for the NCOR2 gene, including one that had a homozygous deletion, another that

had a heterozygous deletion, and the third one that had a gain in the copy number (4325_2,



4697_2, 2791_2). The sample having a homozygous deletion demonstrated remarkable

sensitivity to JQ1 (DSS = 20.2) similar to those of the mutated samples, whereas the two

other samples, which only have a wild-type copy of NCOR2, had scores that clustered

closer to those of the wild-type samples (DSS = 15.3 and 11.1). Re-fitting the model by

considering the activity status of NCOR2 slightly enhanced both the gene effect ( J =

0.273) and its significance (p-value = 0.013). The results are shown in the Figure 12B.

Figure 12. Mutation in the NCOR2 gene appeared to confer pronounced and significant

sensitivity to JQ1 treatment with respect to wild-type NCOR2 (A). The effect was further

confirmed upon incorporation of copy number alteration data (B), suggesting that NCOR2

inactivity is the main JQ1-sensitivity predictor.

2.3.2.2.2  a predictor of resistance

Four separate genes, all known to be recurrently mutated in AML, were returned by our

models as predictors of resistance to JQ1 in samples where they were mutated, with

varying associated effect sizes and significance levels. Those genes were IDH1 (N = 11;

J = -0.112; p-value = 0.053), IDH2 (N = 24; J = -0.083; p-value = 0.048), WT1 (N = 8;

J = -0.005; p-value = 0.937), and TET2 (N = 13; J = -0.019; p-value = 0.720). Individual

gene results are displayed in Figure 13.



Figure 13. Four genes displaying negative associations upon mutation with JQ1 response,

with varying effect sizes and significance levels. A: IDH1, B: IDH2, C: WT1, D: TET2.

According to a recent publication (Scourzic et al., 2015), the genes shown in Figure 13 all

belong to one common biochemical pathway in the cell, hereby referred to as

system (for Cytosine Passive Demethylation  See Section 3.6). Mutations disrupting the

activity of any of those genes lead to a common downstream effect. Specifically, in AML,

those genes have been reported to be mutually exclusive in a cell, an observation validated

in both the TCGA (Figure 14A) and the FIMM (Figure 14B) study cohorts.



Figure 14. The

largely validated in the AML cohorts of both TCGA (A) and FIMM (B).

To optimize the results returned from this group of genes and based on the notion that

having a mutation in one is equivalent to having a mutation in any, all samples harboring

an IDH1, IDH2, TET2, or WT1 mutation were grouped together (N=53), as representing

-wild types) for JQ1 response. The statistical test revealed that this

component represented the most significantly predictive factor in the entire gene cohort,

with an effect size J = -0.087 and a p-value = 0.01. After verifying that mutations

included for IDH1 and IDH2 were actually occurring at the known oncogenic hotspots

(R132 for IDH1 and R140/R172 for IDH2), and after having incorporated the available

relevant copy number alterations for those genes (1399_2: TET2 heterozygous deletion

and 3443_6: WT1 heterozygous deletion), the statistical test slightly improves for the

filtered sample set (N=55), with J = -0.091 and a p-value = 0.0076, suggesting that the

disruption of the normal activity of cytosine passive demethylation members is a predictor

of resistance against JQ1 treatment in AML. The final results are reported in Figure 15.



Figure 15. Members of the AML subgroup harboring aberrations in CPD genes display

significant resistance to JQ1 treatment with respect to wild-type samples.

2.4 Validation of NCOR2 mutations

All NCOR2-mutated samples in the FIMM cohort harbored an identical mutation

occurring on the genomic reverse strand: a codon insertion at genomic positions

124402513-124402511. The resulting effect was a glutamine amino acid insertion after

proline 511 on the NCOR2 protein (P511QP). The aberration was observed to happen in

a region of poly-Q repeats, leading to borderline significance in terms of certainty, which

necessitated its validation through another sequencing method to eliminate the risk of it

being a next-generation sequencing (NGS) artifact. The sequencing method of choice was

Sanger sequencing: being a targeted technique which allows site-specific reading of

relatively long genomic sequences, Sanger sequencing is considered as a well-established

method that can be used to validate NGS signals.



Figure 16. The genomic location of the NCOR2 gene (enclosed in the red box) on the

reverse strand of chromosome 12. Source: ensemble.org.

As such, 20bp primers (forward: 124402312-124402331; reverse: 124402677-

124402658) were utilized in the PCR experiment in preparation for Sanger sequencing.

Once the readouts were returned, the mutation was indeed observed to be present in all

samples, at the expected genomic position: samples harboring the mutation had two

signals emitted in Sanger readouts from the position of the insertion and onwards, coming

from the normal and mutated NCOR2 genes contained (heterozygous samples). Figure 17

represents an example Sanger sequencing sample output file validating the presence of

the mutation.

Figure 17. Example of a Sanger sequencing output file (Sample 743_5) as visualized in

ApE (A plasmid Editor). Following a stretch of consistent signals spanning the region of

poly-Q repeats, the codon insertion disrupts the signal at the expected genomic position,

and the reads become afterwards inconsistent, coming from two separate DNA strands:

the normal and the mutated NCOR2 alleles.



2.5 Biomarker Validation in cell lines

29 AML cell lines from the Cancer Cell Line Encyclopedia (CCLE) database and 26 AML

cell lines from the Catalogue of Somatic Mutations in Cancer (COSMIC) database were

combined in the analysis. For each cell line, the mutation statuses for NCOR2 and for the

were retrieved. Similarly, drug sensitivity data of the selected cell lines to

JQ1 treatment was collected from the Cancer Therapeutics Response Portal (CTRP) and

the Genomics of Drug Sensitivity in Cancer (GDSC) database, respectively. Noting that

the response data were reported with different metrics in each source (for instance, the

AUC data is normalized to a 0-to-1 range by GDSC, but not by CTRP, and IC50 data is

log transformed by GDSC, but not by CTRP), values per measure and per source were

standardized before integration, for the sake of comparability. The standardization was

performed as follows: subtracting the cohort s mean value ( ) from every measurement

from that cohort (CTRP or GDSC), and further dividing the obtained difference by the

cohort s standard deviation ( ): [(x - ) / ]. Consequently, a total of 55 cell lines, each

reporting a standard AUC and IC50 value for JQ1 treatment, as well as characterized for

its mutation status for our detected biomarkers (in binary), was constructed.

Consequently, for each sensitivity measure, a simple logistic model of formula log

[ ] 0 J * JQ1_sensitivity_measure  (as previously described) was fit,

using all observations.

Using the standardized AUC data, NCOR2 mutated cell lines are effectively predicted to

be more sensitive to JQ1, displaying an inverse relationship between the mutation

presence and the AUC values, with an effect size J = -0.677 and a borderline significance

(p-value = 0.065). Switching to the standard IC50 values yields results in-line with

J = -0.728 (p-value = 0.15).

-system hypothesis, showing that

mutants for genes in this system show on average higher AUC values for JQ1 treatment.

The returned effect size J was equal to 0.713, again with a marginal significance (p-value

= 0.088). IC50 data was also in accordance with the reported results, with J = 0.6523 and

p-value = 0.052.

The results are summarized in Figure 18.



Figure 18. AML cell line sensitivity to JQ1 validates the returned hypotheses: NCOR2

mutated cell lines display on average a higher sensitivity, reflected by low AUC values

(A), whereas cell lines where the CPD system of genes is aberrant returns higher than

average AUC scores, implying acquired resistance (B).

3. Discussion

3.1 A generalizable bioinformatic pipeline

Over the past decades, the fields of molecular biology and medicine have undergone a

remarkable influence by the rapid advancement in relevant technologies, in particular

those of high-throughput testing and sequencing facilities. The profile of molecular

studies has thus acquired a novel - , which has set the stage for

systems biology approaches involving bioinformatics and biostatistics. Such disciplines

have nowadays become essential in order to handle the bulk of data being routinely

generated, with the purpose of extracting and/or summarizing the meaningful insights

they encompass.

This work is an appropriate demonstration of the above: 170 samples are included, each

of which is characterized by thousands of clinical and molecular descriptors to be

evaluated (singly or in combinations) for association with recorded drug responses.



Clearly, achieving this goal required the development of a comprehensive bioinformatics

pipeline allowing the realization a wide variety of tasks such as data collection,

computation, evaluation, storage, and visualization, among others. Specifically, the

pipeline requires as input a cohort of patients and their associated descriptors. The data is

then preprocessed to fit statistical models for the downstream analysis to take place. For

instance, certain clinical descriptors are categorized for patient stratification (such as

sample types and risk allocations). The molecular data is systematically processed: for

example, mutations have been binarized per gene, and copy number aberration scores

were converted to discrete categories (amplification, normal, or deletion) in order to create

sample groups that are sufficiently large for comparisons. Using suitably selected

statistical tests, evaluations and model fitting per descriptor are then automatically

performed, and only those statistically significant hits are returned to the user for further

validation. The wide variety of used tests comprises 2-sample comparisons (paired t-test,

unpaired t-test, Wilcoxon test) for two-class categorical variables (such as sample type

and culture media), ANOVA tests for multiple-class categorical variables (such as ELN

risk class), linear regression models for continuous data types (e.g. patient age and

mutation burden), logistic regression models for binarized data types (i.e. mutational data

analysis), and parametric (Pearson) and non-parametric (Spearman) correlations where

applicable. Consequently, relevant data visualization (including density distribution,

scatterplots, and boxplots) and long-term data storage are also ensured by the design of

the pipeline. Finally, in the aim of validating suggestive biomarkers detected in the cohort,

similar data made publicly-available from cell-line repositories (in this case, those

maintained by the Broad and Sanger institutes) are collected, standardized (as described

in Section 2.5) and evaluated in a similar fashion, as a check of reproducibility.

With the progress of personalized medicine and biomarker discovery attempts, it becomes

evident that the tasks undertaken in this work are not uncommon, and that prospective

project designs will closely resemble the one depicted in this study. Accordingly, the value

of the aforementioned pipeline lies not only in the insights it unveiled for this specific

research question, but also in its extendibility and potential usefulness for other

prospective research projects with similar objectives of detecting sample biomarkers



robustly predictive of drug response, independently of the pathologic condition or the drug

being investigated.

Evidently, several improvements and additions can be proposed to be incorporated into

the pipeline. For instance, one option involves the use of additional data, notably

transcriptomic, signaling pathway, and epigenetic data, known to contain particularly

valuable molecular information, especially in the cancer setting (Aben et al., 2016;

Flavahan et al., 2017). Applying additional bioinformatics techniques including

differential gene expression, gene set enrichment analysis and network modeling would

render the elucidation of the mechanisms of action underlying the detected associations

feasible. Moreover, the ways of modeling the used data could also be altered (for instance,

somatic mutations could be annotated and classified based on type or on functional effect,

rather than binarized per gene). Finally, the pipeline may eventually be rendered available

for public use as a web interface or as an R package (for example, see the PAA R package

for biomarker discovery using proteomic data (Turewicz et al., 2016)).

3.2 JQ1 responsiveness illustrates sample dependency

It has been previously suggested that responsiveness of AML to BET inhibition is variable

and largely dependent on the underlying characteristics of the sample/subject at hand. To

illustrate, specific genome aberrations recurrent in different hematological malignancies

were reported as predictors of response to BET inhibition (Abedin et al., 2016). In the

case of AML, several sensitivity biomarkers (including NPM1-mutated AML, MLL-

translocated AML, and FLT3-ITD AML) were presented, with the validating proof for

each being obtained mostly from previously performed preclinical experiments using

selected cell-lines and immunodeficient mouse models.

As is clearly demonstrated in the FIMM cohort (Figure 1), the

responsiveness to BET inhibition is indeed heterogeneous, and covers a wide spectrum

ranging from high sensitivity to high resistance. The observation is therefore in-line with

the previous studies where diverging responses were dependent on t particular

profiles. This result consequently stresses the need for the detection of suggestive

biomarkers directly from patient-derived, diagnostic and relapsed, samples, ultimately



allowing for the conception of enhanced stratification protocols and the individualization

of BET-inhibition based therapeutics in AML.

3.3 Unpredictability of response from clinical sample characteristics

Based on the FIMM AML cohort, the ex vivo response reported for JQ1 is not predictable

neither by the malignant cell content of the sample at hand, nor by the media in which the

said sample was cultured for DSRT.

an accurate AML

diagnosis and prognosis (Döhner et al., 2017; Paul et al., 2014), current chemotherapeutic

treatment regimens implemented in the clinics are not modified in practice based on that

value, implying its unpredictability of the expected response. This is to be expected: the

premise of chemotherapy consists of the eradication of rapidly-proliferating cells, with no

distinction being made between healthy and malignant cells: this explains the appearance

of the myriad of side effects typically-associated with chemotherapy, such as

thrombocytopenia, hair loss, and gastrointestinal disturbances, all of which are the result

of the destruction of healthy, yet mitotically very active cell types, making -

l chemotherapeutics

with agents specifically targeted to malignant cells hence lies in the possibility of sparing

unwanted off-target activity, minimizing the adverse reactions to the treatment. Based on

the above, it may appear safe to assume that the tar

to steadily increase with an increasing proportion of malignant cells (with respect to

healthy ones) in a sample; this is nevertheless, a logical fallacy. While targeted therapies

are expected to have virtually no effect over healthy cells, their activity is not necessarily

more marked in any malignant cell, since that will typically require the blast cell to have

. In simpler terms,

targeted therapies are active in some, but not in all cancer cells, depending on the

characteristics of the cancer population, rather than its frequency. This distinction

becomes crucial to make in the case of AML which is known to entail an exceptional

degree of internal heterogeneity in BM and PB samples, in terms of clonal architecture

and molecular diversity. Therefore, the random association of blast counts and JQ1

responses in samples plays in favor of the above, further explaining why a sample with



few blasts can still harbor the profile needed for JQ1 to be effective and may as such return

a high DSS (even though this may also result from unwanted JQ1 effects on normal cells

in that sample), with the opposite being also true for a blast-rich sample, with a however

unfavorable clonal composition. As a future step, a subpopulation analysis permitting the

characterization of  specific cell populations in the sample (the blast cells

only for example) would be of interest. This may be realized via the implementation of a

flow cytometry-based drug sensitivity assay.

Another factor further strengthening the hypothesis

primarily on its direct molecular profile (rather than on experimental variables) is the fact

that the two different culture media (CM and MCM) do not contribute to the explanation

of any logical trend in the responses. Even though the CM medium is enriched in

cytokines and growth factors and is thus expected to mimic more closely the in vivo BM

environment, it does not confer to the samples a distinguishable sensitizing or protective

effect upon BET inhibition as is demonstrated in Figure 5. This is also in-line with a

recently-published study which aimed to systematically investigate the effect of culture

media on AML sample responses to varying drug classes, and which reported no effect

on the activity of the different BETi included in the analysis (Karjalainen et al., 2017).

Specific patient and disease characteristics, herein referred to as clinical characteristics,

included  age, whether the stage of the disease is at diagnosis or relapse, and

the risk class they are classified into according to the ELN scheme of 2017 (Döhner et al., 

2017)). It is inarguable that the said characteristics are useful parameters that have been

used as companion diagnostics for general treatment approaches and for decisions

concerning the initiation of cytotoxic chemotherapy, the possibility of undergoing human

stem cell transplantations, and/or the use of non-FDA (Food and Drug Administration)

approved, yet promising, treatments in ongoing clinical trials (Almeida and Ramos, 2016;

Bose et al., 2017). Nevertheless, reported studies have not detected a definitive response-

predictive potential solely based on those parameters (notably for the recently approved

or envisaged targeted therapies which are of greater relevance to us here), either because

such a potential is inexistent on its own, or because of how limited the number of AML

cases treated with targeted therapies still is at the moment (due to their very recent

approval). Rather, treatment decisions have reportedly been based jointly on those factors



with specific molecular data (cytogenetic, mutational) (Bose et al., 2017). It therefore

comes as no surprise that those factors did not seem to be singularly associated with the

JQ1 responses of samples in our cohort.

Taken together, our cohort results indicate that AML sample sensitivity to BET inhibition

is effectively subject to stratification and personalization, and that the molecular

characteristics, rather than the clinical parameters, are instrumental for the classification.

3.4 Patient material does not fully recapitulate preclinical findings

The fact that no significant association between the number of somatic mutations harbored

in an AML sample and its response to JQ1 exposure further indicates that the activity of

BET inhibition depends on specific genetic biomarkers. The purpose thus becomes the

identification of such sensitivity or resistance-conferring genetic biomarkers, either

singularly or in combinations, for more accurate predictions of the response. Several such

biomarkers have already been pinpointed in the literature, based on previous studies

largely conducted at the cell line or animal level.

The first sensitivity biomarker is a set of specific mutations which occur in the nuclear

localization sequence of the NPM1 gene (containing two key tryptophan residues),

referred to as the NPM1c mutations. Disrupting the normal folding of the C-terminus and

hence the shuttling mechanism that the protein utilizes for alternation between the nucleus

and the cytoplasm of the cell, mutated NPM1 proteins are faultily sequestered in the

cytoplasm. The repressive role of BRD4-dependent transcription that NPM1 plays is thus

lost, leading to an overactive BRD4 protein driving constitutive transcription of several

oncoproteins, including c-MYC and BCL2, essential for disease progression. BET

inhibition of BRD4 in such a scenario comes as a corrective measure for the lost NPM1

activity, and it has shown to effectively impair tumor growth, inhibit proliferation and

induce apoptosis in NPM1-mutant cell lines, in ex vivo primary AML patient samples,

and in in vivo immunodeficient mouse models grafted with NPM1-mutated cells (Abedin

et al., 2016; Dawson et al., 2013). However, the data from our FIMM cohort could not

verify the expected trend of increased sensitivity of NPM1 mutants towards BET

inhibition (Figure 10). The NPM1 mutants among our samples display a high variability

in their DSS scores, which are not significantly different from those of the wild-type



samples. We raise several hypotheses that may explain this seemingly-contradictory

observation. The first concerns the variant allele frequency of the mutations, a factor not

taken into account in the described mutational analysis procedure: the existence of an

NPM1 mutation (binarized in our technique) does not guarantee the occurrence of this

mutation in all the cells of our heterogeneous samples. Consequently, it might occur that

NPM1-mutants appearing to be insensitive to JQ1 might simply have the NPM1 mutation

in a minor clone, which does not considerably contribute to the sample readout, perhaps

mostly coming from cells harboring wild-type copies of NPM1 instead. Nevertheless, a

correlation test between the NPM1 variant allele frequencies in the mutated samples and

the associated JQ1 DSSs returned an inconclusive and statistically insignificant

association (data not presented). The second plausible explanation lies in the complexity

and heterogeneity of patient-derived samples (and notably those from more progressed

and relapsed patients): in such samples, the co-occurrence of different mutations raises

the likelihood of genetic interactions, and hence the emergence of potential compensatory

mechanisms enhancing the sample  resistance. The capture and confirmation of such

potential interactions will require more advanced complex statistical modeling approaches

to be successfully implemented.

A second sensitivity biomarker is the common FLT3-ITD mutation which usually confers

a poor prognosis to AML patients, notably because of the multiple survival and

proliferation pathways that a constitutively active FLT3 kinase confers to the AML cell.

The review reports that FLT3-ITD+ cell lines and primary AML patient samples respond

better to a combination of FLT3 and BET inhibitors, compared to the former, used as a

single agent. Similarly, FLT3-ITD+ cells lines resistant to FLT3 inhibitors are also

observed to be sensitive to BET inhibition, which effectively reduces the aberrantly high

level of expression of several oncogenic proteins in those cell lines, including c-MYC,

BCL2 and EZH2. Conversely, the activation of the Wnt -catenin pathway (possibly by

PRC2 suppression) and the TGF-  lines proved sufficient to restore high

levels of c-MYC expression and to confer significant resistance to BETi. Therefore,

knocking down those pathways restored in vitro sensitivity to the drug (Abedin et al.,

2016). In our cohort, FLT3-mutated patient samples do on average entail a significantly

increased sensitivity towards JQ1, which is in line with the reported literature findings.



One important detail to denote here is the pooling of all FLT3 mutants in our analysis into

one cohort, including mainly the ITD and the TKD point mutations. Comparing each of

those two sub-groups separately with the wild-type group still showed higher sensitivity

among the mutants of each of the groups, despite compromised statistical significances

due to the reduced sample sizes. The conservation of the trend comes as no surprise: it has

been earlier shown that ITDs and point mutations in the TKD of FLT3 both lead to the

same erroneous downstream effect by the constitutive activation of the kinase (Patnaik,

2017). Taken together, those results not only successfully reproduce the observation that

FLT3-ITD is a sensitivity-conferring biomarker towards BET inhibition in AML, but also

rationally suggest that patients with activating mutations in the kinase domain of the

protein are equally sensitive, and hence appropriate for BET inhibition treatment.

Another sensitivity biomarker is the recurrent MLL translocations seen in AML (but also

other HMs such as acute lymphoblastic leukemia ALL), which often creates a fusion

between the MLL histone methyltransferase product and SEC, the super elongation

complex, of which BRD3 and BRD4 are crucial components. The fusion oncoprotein

deregulates transcription, which drives c-MYC and BCL2 dependent leukemogenesis. It

has been shown that BET inhibition is effective in MLL-translocation cell lines and that

it prolonged survival in mouse models harboring such translocations (Abedin et al., 2016).

As chromosomal aberration data analysis has not been performed within this study, this

remains an interesting potential biomarker to be evaluated in prospective complementary

analyses.

3.5 NCOR2 mutations sensitize AML samples to JQ1

The most significant single-gene biomarker conferring sensitivity to JQ1 exposure in our

AML samples concerned the nuclear receptor corepressor 2 gene NCOR2. While its

precise role has been limitedly discussed in AML (perhaps due to its low mutation

frequency: 1.1% in the TCGA 2013 AML study cohort (The Cancer Genome Atlas

Research Network, 2013) and 3.6% in the FIMM cohort), mounting evidence has been

accumulating over the last decade to support the importance of transcription factor co-

repressors, and as a matter of fact, their aberrations, in cancer biology, as well as in other

maladies (Battaglia et al., 2010). Specifically, NCOR2 (also known as SMRT - silencing



mediator for retinoid and thyroid hormone receptors), and a similar, proto-typical co-

repressor NCOR1, are known to be potent transcriptional repressors (targeted at a wide

variety of transcriptional factors), functioning primarily in large complexes with histone

modifiers (namely the family of histone deacetylases HDACs) at genomic enhancer and

repressor sites. The activity of those proteins is delicately regulated, and selective

disruptions by enhanced or hindered functions have been observed to lead to aberrant

transcriptional rigidity and hence pathogenesis (and tumorigenesis). Those proteins have

been observed to play key roles specifically in the pathogenesis of certain AML types,

including (but most likely not limited to) APL patients (constitutive recruitment by the

PML- ) and patients with the AML1/ETO fusion protein. In both

cases, the abnormally recruited NCOR1/2 genes impede normal transcriptional regulation

and thus constitute driving critical oncogenic events (Wong et al., 2014; Battaglia et al.,

2010). The fact that all samples with mutation to NCOR2 in our cohort returned relatively

high DSS scores with JQ1, and that the median of scores in that group was robustly and

significantly higher than that of the wild-type NCOR2 samples, provides additional

support to the decisive role that transcriptional co-repressors play not only in the

development of cancer, but also in its responsiveness to specific treatments, notably those

affecting the transcriptional machinery of the cell, like the BETi do. This observation,

detected in the FIMM cohort, was successfully validated in publicly-available cell line

genomic and drug sensitivity data (Figures 12 and 18A). By considering the mode of

action of JQ1 on one hand, and the role played by NCOR2 on the other, the selection of

this gene as a biomarker of sensitivity becomes fairly comprehensible, and the

mechanistic basis could be speculated as follows. NCOR2 normally recruits HDAC

enzymes to deacetylate specific histone residues and hence

transcriptional activity. Upon NCOR2 mutation and loss of function, an aberrant

transcription of the target genes arises, resulting from persistent acetylation marks which

are detected by the BET proteins (the latter being acetyl-lysine readers). However,

inhibition of the BET proteins (for example by JQ1) prevents the detection of the aberrant

acetylation marks in this setting, and hence spares the transcriptional disruption

downstream from the NCOR2 mutations. Special attention should also be attributed here

to the insight brought upon by the incorporation of the copy number variation (CNV) data:



the patient with a homozygous deletion of NCOR2 (similar to NCOR2-/-) appeared to be

as sensitive as the heterozygous mutants, whereas those patients with a heterozygous

deletion or a gain in NCOR2 rather clustered with the wild-type NCOR2 samples, having

returned relatively low response scores. Importantly, since mutated NCOR2 samples

return DSS scores similar to the sample having no functional NCOR2 (high DSS),

whereas wild-type NCOR2 samples are rather similar to samples having at least one

functional copy of NCOR2 (low DSS), the possibility that NCOR2 mutations may be of

the dominant-negative type is raised, where the presence of a mutated copy possibly

sequesters the other wild-type version of the protein and abolishes its activity. As such,

this observation suggests the role of NCOR2 in AML as a potential novel tumor-

suppressor gene. Additional studies remain to be performed in order to further investigate

the exact mechanism and cascade of events that links NCOR2 to the BET proteins,

elucidate the way the said protein modulates responsiveness to BET inhibition in AML,

and verify the mutational dynamics and tumor-suppressor hypothetical role for the gene

which have been raised. Taken together, our primary results offer a plausible starting point

for the effective selection of sensitive AML samples to BET inhibition and hence the

prediction of response based on a simple genetic biomarker.

As previously mentioned, the low literature-reported frequency of the NCOR2 mutation

detected in our 5 samples (insertion of an additional glutamine residue at proteomic

position 511 following a glutamine-repeat region) combined with the borderline

significance returned for the detection of that mutation by whole-exome sequencing in

those samples suggested that the signal may be a sequencing artifact (perhaps due to

polymerase slippage). Nevertheless, PCR amplification of the region of interest followed

by capillary (Sanger) sequencing and visualization eliminated that possibility and

confirmed that the mutation was well present in all of those samples. NGS used for

somatic mutation calling is known to be largely dependent on the allelic fraction of the

mutation, but more importantly on its coverage, which occasionally renders the technique

prone to erroneous calls, notably false positives (Meyerson et al., 2010). As such, Sanger

sequencing, following targeted PCR amplification, allows for a considerable increase in

the abundance of the signal, and hence, more confidence in its detection, which makes it

a suitable tool for the verification of NGS signals, especially when those are dubious.



3.6

Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are frequently mutated AML genes

(in up to 20% of patients) (The Cancer Genome Atlas Research Network, 2013). One of

the normal functions that those enzymes perform lies in the citric acid cycle: they are

- -KG).

However, upon acquiring gain-of-function mutations, the enzymes play an oncogenic

role, by -KG to 2-hydroxyglutarate (2-HG), its

-KG-dependent dioxygenase enzymes

(Scourzic et al., 2015).

Wilms  tumor 1 (WT1) is also a recurrently mutated gene in AML (with a frequency of 6-

8% of the patient population) (The Cancer Genome Atlas Research Network, 2013). The

normal zinc finger transcription factor has been shown to be involved in the

hydroxymethylation of cytosine, with loss-of-function mutations leading to aberrant

patterns of the said process (Scourzic et al., 2015).

Ten eleven translocation methylcytosine dioxygenase 2 (TET2) is a third gene that has

been reported to be expressed and commonly mutated in HM patients, particularly AML

patients (in 8% according to the TCGA 2013 dataset (The Cancer Genome Atlas Research

Network, 2013), and up to 27% of de novo AML cases and 32% of secondary AML

patients (Scourzic et al., 2015)). TET2 plays a crucial epigenetic role in the cell by leading

to the successive oxidation of 5-methyl-cytosine (5-mC) bases into 5-hydroxymethyl-

cytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carbozycytosine (5-caC). The detection

of those higher oxidation state groups on cytosine bases in the DNA activates a DNA

creating an abasic site, which in a second step is filled up by a simple (non-methylated)

cytosine residue by base-excision repair (BER).

The process described above is referred to as the passive demethylation of cytosine (as

opposed to the active and reversible methylation/demethylation process controlled by

DNA methyltransferase enzymes, such as DNMT3A), and is tightly regulated in a normal

cell. It is specifically directed at unwanted cytosine methylation regions in the aim of

restoring normal 5C to 5-mC levels. If for some reason this delicate regulation is disturbed



at any point, passive cytosine demethylation is lost, and a genome-wide hypermethylation

pattern is observed, which is a typical driver for aberrant transcription (increased

oncogene expression and silenced tumor-suppressor gene expression) and cellular

transformation. The main reason for the loss of the cytosine passive demethylation (from

now on abbreviated as CPD) is a functional loss of key enzyme activity

(illustrated in (Rampal and Figueroa, 2016)). Interestingly, while being one of the main

factors, TET2 gene mutations are however

activity is lost. It has been shown that the TET2 -KG as a co-factor

to perform its aforesaid activity. Hence, and based on the above, it becomes obvious that

upstream oncogenic IDH1/2 mutations in the pathway also lead to TET2 loss-of-function,

by abnormally generating an inhibitor of the enzyme (2-HG) rather than an activator ( -

KG). Moreover, it has also been shown that loss-of-function mutations in the WT1 protein

lead to the same downstream effect, likely by inhibiting the binding of the activated TET2

protein to the right DNA regions for passive demethylation to occur. Taken together, it

can be claimed that the described mutations in any of the four genes (IDH1, IDH2, TET2,

or WT1) will lead to the same functional effect in the cell: loss of TET2 function, CPD-

activity reduction, genome-wide hypermethylation patterns, and a strong epigenetic

predisposition to cellular transformation and tumorigenesis. Since all of those described

mutations are finally similar, and as such, redundant, it has been suggested that they

display a pattern of mutual exclusivity in the cancer cells of AML. In simpler terms, a

transforming AML cell needs not to mutate more than one of those genes (and hence does

not), in order to reach the same downstream effect (Scourzic et al., 2015). This observation

was successfully validated in the entirety of the TCGA 2013 cohort (Figure 14A), but also

in our AML cohort (Figure 14B). However, three FIMM samples appeared to deviate

from the general rule of mutational exclusivity for those genes: sample 4735_2 harbored

somatic mutations in both the IDH1 and IDH2 genes, whereas samples 4599_2 and 370_2

had mutations in IDH1 and TET2. Nevertheless, it is crucial to note here that the concept

of mutual exclusivity is cell-, rather than sample-relevant. Thus, reported mutations in

more than one of those genes for the same sample are most likely due to intra-tumor

heterogeneity: the mutations are almost certainly observed in different sub-clones

composing the said samples.



The above discussion provides the acceptable basis on which grouping all mutants for

those genes into one functionally-similar group and comparing them to the remaining

samples in the cohort was made. The disrupted CPD system did eventually turn out to be

the most robust biomarker returned by the analysis, conferring exceptional resistance to

JQ1 among the mutant samples with respect to the wild-type samples (where the CPD

system is expected to be intact, Figure 15). Here again, the fact that this system is tightly

related to epigenetics and control of transcription is in-line with the role of JQ1 and the

BET proteins, even though the immediate mechanistic link between the aberration and its

effect on drug response seems less readily visible (than with NCOR2 for example) and

will require further specifically-designed experiments for elucidation and sound

interpretation. Nevertheless, this result does appear to have potentially robust support

(especially that it has been successfully reproduced in the same direction in public cell

line data), and it offers another logical factor to consider when it comes to AML patient

stratification in what concerns BET inhibition attempts, both in single-agent and in drug-

combination testing assays.

3.7 Summary and future prospects

This study clearly demonstrates that AML is a remarkable paradigm of the diseases of the

genome. Despite the fewer somatic mutations reported for this malignancy as compared

to other cancer types, the exceptionally vast heterogeneity of the underlying molecular

profiles makes the AML population very diverse. This, together with the dismal results

brought upon by traditional chemotherapy, has sparked significant interest in the

development of therapies which are both targeted at specific molecular aberrations and,

as such, personalizable among the patients, and BET inhibition is a major illustration of

this. Although instrumental in the determination of diagnosis, prognosis, and disease

management, clinical and experimental characteristics of patients and samples are

insufficient on their own to accurately stratify patients into discrete classes reflecting

different expected responses to BET inhibition, which seem to be rather dependent on the

more complex genetic and molecular data. While earlier attempts at identifying response-

predictive biomarkers from AML samples to BET inhibition have effectively returned

certain usable signals, those findings have largely been obtained from preclinical material,



notably cell-lines and animal models, which suffer the inevitable limitations in terms of

predictive validity in actual patients. This study clearly shows that the extendibility of

preclinical findings to the human level needs to be done with caution: FLT3, but not

NPM1, mutations conserve their predicted response patterns in the patient material (as

compared to those detected in cell lines for instance). In terms of novel findings, this work

contributes two major discoveries. The first one is a set of potential biomarkers or

companion diagnostics to be used in the prediction of A

with NCOR2 mutations being regarded as sensitizing-factors, whereas a dysfunctional

CPD-system representing a resistance-conferring event. Second, the project also

successfully offers a generalizable bioinformatic pipeline applicable to a wide range of

diseases and drugs in the goal of discovering novel sensitivity- or resistance- conferring

biomarkers from clinical, genomic and drug-response patient material.

The promising and useful outcomes of this work pave the way for functional

investigations to be continued upon, both at the analytical and the experimental levels.

From a data analysis perspective, while this study has looked into genomic mutations in

detail in a single gene-wise fashion, it would be of great interest to implement a more

sophisticated approach that analyzes those mutations in combinations, in the purpose of

detecting not only individual signals, but potentially (and very likely) specific co-

occurrences, exclusivities, and interactions of them which can influence reported drug

responses (synergy, additive effects, or antagonism, among other possibilities). Multiple

linear or non-linear regression methods may be worth exploring in this context. In addition

to somatic mutations, several other predictor classes are expected to have considerable

potential to rationalize drug response, and to provide valuable additional insight, and must

consequently be incorporated in future studies. Those shall include chromosomal

aberrations  such as translocations, fusions, rearrangements, etc. (which would allow the

evaluation of an additional previously reported biomarker concerning MLL-fusion

patients)  and importantly, transcriptomic and pathway data from RNA sequencing

studies (which would also allow the verification of biomarkers reported from that class,

notably MYC -catenin pathway activity status, etc.). Upon a

full annotation of the relevant biological processes, network pharmacology modeling



based on drug target interaction and signaling pathway information will be applied

(Masoudi-Nejad et al., 2013).

From an experimental point of view, future studies are most definitely projected to entail

a wet-lab component, crucial to evaluate the hypotheses raised by this study and to

consolidate the presented claims. For instance, the predictive effects of the novel detected

biomarkers of JQ1 response can be evaluated in unseen test specimens (from newer

patient samples, genetically-manipulated animals, cell-lines material, and other suitable

tools), in order to verify the reproducibility of the detected response patterns. In the case

where those biomarkers turn out being even more convincingly associated with BET

inhibition responses, investigations of the mechanistic basis underlying those associations

shall be conducted. This may include knock-in and knock-out models of the selected genes

Additionally, the implementation and utilization of prospective flow cytometry-based

DSRT assays will allow for a shift from a bulk response measure to a more population-

cells in the sample from the readout and would make possible the examination of the drug

activity in a single-cell or single-population fashion. Finally, suitable drug combination

experiments can also be proposed and devised based on the findings, in the aim of

complementing or even synergizing the effects of BET inhibition in AML. From this

study, combinations of JQ1 with HDAC inhibitors (NCOR2-relevant) or with

hypomethylating agents (CPD-relevant) appear to be worth exploration.

4. Materials and Methods

4.1 Sample Collection

Samples considered as candidates for inclusion in this study had been obtained from

patients with newly diagnosed or relapsed acute myeloid leukemia. The patients had all

provided written informed consent (Annex II). Each sample was either a bone marrow

(BM) aspirate or a peripheral blood (PB) specimen and was matched with a corresponding

skin biopsy. The samples were all extracted in the clinics according to standard protocols



approved by the local institutional review board of Helsinki University Hospital and

Comprehensive Cancer Center and compliant with the Declaration of Helsinki. Samples

were described according to a set of characteristics examined and reported in a data

repository (Granitics) managed by the collaborating clinics, and those included, among

others, the sample status (diagnosis versus relapsed samples), the age of the patient at the

time of the sample collection, a blast content estimate (in percentage), and the risk

assigned to the patient at diagnosis according to the ELN 2017 guidelines (described in

Section 1.2.4). From BM and PB samples, mononuclear cells (MNCs) were isolated at

FIMM by gradient centrifugation (Ficoll Paque; GE Healthcare, Little Chalfont,

Buckinghamshire, UK).

4.2 Sample Selection

A total of 170 AML samples were prospectively included in this study. The conditions

- AML diagnosed, relapsed,

refractory or transformed sample, ii- the sample was tested with the chemical probe JQ1,

and returned a non-dubious drug sensitivity score DSS from the CellTiter-Glo readouts of

the live cells, iii- the sample had one or more of the characteristics searched for potential

biomarkers (i.e. clinical characteristics, somatic mutations, and/or CNV data). Briefly,

DSS is a measure that extracts several characteristics from the multiparametric log-

logistic dose-response curve of a sample treated with a drug (including the area under the

-range, the minimum activity level, the

at IC50, and the lower and upper asymptotes of the response) and integrates those into a

of the mathematical basis for the calculation can be found in Quantitative scoring of

differential drug sensitivity for individually optimized anticancer therapies (Yadav et al.,

2014).

A summary of the sample characteristics is reported in Supplementary Table 2.

4.3 Drug Sensitivity Testing

MNCs from samples were cultured immediately after isolation, typically in one of two

growth media: mononuclear cell medium (MCM; Promocell, Heidelberg, Germany), or



conditioned medium (CM; 25% HS-5 conditioned medium plus 75% RPMI 1640 medium

mix) (Karjalainen et al., 2017). The samples were then sent for standard drug sensitivity

cine unit. Cells from

the samples were plated on the 384-well plates constituting the drug sensitivity plate set

in use at the time of the sample collection from the clinics. The plates had already been

prepared with a set of selected chemically active molecules (approved therapeutic drugs

in clinical use or investigational molecules/probes under development), each at five

different concentrations (for JQ1, the concentration range goes from 1 to 10000 nM,

following a 10-fold increase scheme). At 72 hours from plating, cell viability was

measured using the CellTiter-Glo reagent (Promega, Madison, WI), according to the

 instructions, with a PHERAstar FS plate reader (BMG LABTECH,

Ortenberg, Germany). Readout values allowed relevant dose-response curve fitting and

calculation of a drug sensitivity score (DSS) per sample and per drug. The results were

(THEDB  server (atlas).

4.4 Whole Exome Sequencing Pipeline

The somatic mutation and CNV data analyzed in this study was the result of a well-

established whole-exome sequencing pipeline which is routinely run for all (non-APL)

information relating to specific tools and parameters, please refer to the supplementary

Somatic STAT3 Mutations in Large Granular Lymphocytic Leukemia

(Koskela et al., 2012).

 of that DNA and various capture kits, exome capture

was performed. The exomes were then sequenced on HiSeq 1500/2000/2500 instruments

(Illumina, San Diego, CA, USA) using the paired-end sequencing technology. Upon

completion of the runs, quality control was performed on the obtained raw Illumina reads:

those were first merged then trimmed according to the quality scores from the end of the



reads. Those trimmed reads which ended up being shorter than 36 base pairs were

removed. Consequently, the remaining reads were aligned against the human GRCh37

reference assembly using the Burrows-Wheeler Aligner. Reads mapping to multiple

genomic positions and those which appeared to be PCR duplicates were eliminated to

reduce uncertainty. Somatic mutations were finally called and annotated for each tumor

sample (in reference to its matched skin sample in order to filter out germline variants).

Common population variants obtained from dbSNP were also filtered out. As for the copy

number aberration analysis, alignments in the BAM format and called variants were used

as the inputs. Scores per gene and per sample were reported as log2 copy number ratios

of the sample divided by the reference (using the copy number data for all human genes

in the Ensembl database).

4.5 Generation of Dose Response Curves

To visually examine the variation in ex vivo responses depicted by different patient

samples treated with JQ1 and the amplitude of this variation, the selected 170 samples

were ranked according to their JQ1 DSS. Consequently, the top and bottom 10 samples

were taken forth for visualization. For each, the percentage of viability of cells at each of

the five experimental doses of JQ1 was collected at 72 hours. This data was used to fit for

each sample the response (percentage of viable cells) to the logarithmic value of the JQ1

concentration (log10[JQ1]), and to subsequently plot for that sample a standard four-

parameter log-logistic curve, using the software GraphPad Prism (GraphPad Software, La

Jolla, CA, USA). The curves for all samples were then superposed on top of each other,

to facilitate their comparability.

4.6 Data Collection and the Analysis Pipeline

Upon data collection, modeling in an efficient way for downstream bioinformatic and

statistical analysis constituted the next step. The tool selected for this purpose was R, an

generation. A schematic representation of the general developed bioinformatic analysis

pipeline is presented in Figure 19.



Figure 19. General bioinformatic pipeline implemented for the data analysis.

Clinical variables included the following patient and sample characteristics:

- age of the patient at the time of sample collection (modeled as a numerical discrete

variable)

- ELN 2017 (modeled

as a categorical nominal variable  three classes: favorable, intermediate, or

adverse)

- Sample status (modeled as a categorical nominal variable  two classes: diagnosis

or relapse). Note that the relapse group included secondary (to MDS for example),

transformed, refractory, and treatment-related AML samples.

- Blast count (modeled as a numerical discrete variable  ranges from 0 to 100)

- Media used for MNCs culture (modeled as a categorical nominal variable  two

classes: CM or MCM)

Assuming a distribution of DSS scores close to normal for sufficiently large groups of

samples, the selection of parametric rather than non-parametric statistical tests was

favored, owing to their higher degree of accuracy. Nonetheless, for small sample sizes

where the normality assumption could not be confirmed, non-parametric tests were

eventually utilized. Thus, the analysis of variance technique (ANOVA) was used to

compare the means of the differen

risk at diagnosis. Unpaired two-sample t-tests were used to compare the JQ1 DSS scores

of the two groups of samples separated by the culture media or the sample status.

Wilcoxon rank sum and Spearman correlation tests were also computed for matched



samples tested in both media. As for the age of the donor at the time of sampling and the

correlation tests were used to evaluate the existence of a potential association between the

two measures.

For the somatic mutational profiles, the data was binarized per sample and per gene; i.e.,

-

The threshold for the inclusion of a mutation as existent for a sample was set at 0.05. A

total of 4425 genes mutated in at least one of the 139 samples with genomic data were

taken forward for analysis.

A mutation burden was calculated per sample, defined as the simple algebraic sum of the

somatic mutations reported for the sample. Association between the mutation burden and

the JQ1 response was investigated using a simple linear regression model, as well as a

Pearson correlation test.

-n-large-

ever

the mutational data was binarized, the model of choice was a simple logistic regression,

were the JQ1 response was used as the predictor, and the mutation status as the response.

Despite the inversion of the direction this model imposes, it was estimated that the

existence of a robust association would still be maintained under those conditions.

For all tests performed, results were evaluated for statistical significance using associated

p-values, where the threshold for significance was fixed at 0.05.

4.7 Experimental Verification  Sanger Sequencing

All five samples considered as mutated for NCOR2 by our model had a p-value enclosed

between 0.01 and 0.05 for the somatic mutation, considered as borderline in terms of

significance for mutations called from NGS experiments. To verify the existence of the

mutation in those samples, we decided to perform Sanger sequencing on stored DNA.

Upon identification of the mutation and its genomic mutation, suitable primers were

designed, such that they would both span the location of the expected mutation, but also

minimize off-target replication. The design of the primers was performed using Primer-

BLAST, a primer designing tool for PCR experiments. Once the primers were designed,



ordered and obtained, a PCR experiment was performed on all samples using standard

conditions (the Tag polymerase used was manufactured in-house). Upon completion, PCR

fragments were gel separated and the bands of interest were cut out using a standard PCR

purification kit (Macherey-Nagel, Germany). The extracted PCR products per sample

were then sent to the FIMM Technology Centre for capillary sequencing. The returned

(.AB1) files were then examined using the plasmid editor ApE.

4.8 Biomarker Validation in Public Cell Line Repositories

To validate our novel findings from the FIMM AML cohort, the formulated hypotheses

were taken forward for validation in public repositories. The purpose was to re-evaluate

for the prospective genomic biomarkers detected in our dataset their predictive potential

of JQ1 response. High-quality and well-characterized AML cell line genomic and drug

response data was judged as the most suitable resource for this purpose. This data was

obtained from two main repositories: the first one maintained by Broad Institute, with the

cell line genomic data published in its Cancer Cell Line Encyclopedia (CCLE) and the

drug response data in its Cancer Therapeutics Response Portal (CTRP). Similarly, the

Sanger Institute also provided cell line data, with genomic profiles obtained from the

Catalogue of Somatic Mutations in Cancer (COSMIC) database, and the response to drugs

from the corresponding Genomics of Drug Sensitivity (GDSC) repository. To mimic the

same analysis performed on the FIMM AML cohort, the following steps were followed

on the data retrieved from Sanger and Broad: i- the mutation data was binarized per gene

and per cell line, ii- logistic regression models accepted JQ1 response parameters as the

ndent variable. Note

that both response parameters to JQ1 were successively tested for their performance in

the built models, and those consisted of the area under the dose-response curve measure

(AUC) and the half maximal effective concentration (IC50) value. Also note that the

direction of both sensitivity parameters is identical, and that it is opposite to that used in

the FIMM dataset (DSS); i.e., small IC50 and AUC values reflecting high sensitivity in

the sample are associated with large DSS values, and vice versa.
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6. List of Abbreviations

Standard abbreviations list according to the Journal of Cell Biology (JCB) and the

following terms.

AML Acute Myeloid Leukemia

APL Acute Promyelocytic Leukemia

AUC Area Under the Dose-Response Curve

BET Bromodomain and Extra-Terminal Family Proteins

BETi Bromodomain and Extra-

BM Bone Marrow

BRD Bromodomain

CM Conditioned Medium

CNV Copy Number Variation

CPD Cytosine Passive Demethylation

CR Complete Remission

CT Clinical Trials

CTRP Cancer Therapeutics Response Portal

DSRT Drug Sensitivity and Resistance Testing

DSS Drug Sensitivity Score

dDSS differential Drug Sensitivity Score

ELN European Leukemia Net

FIMM Institute for Molecular Medicine Finland

GDSC Genomics of Drug Sensitivity in Cancer

HAT Histone Acetyltransferase

HDAC Histone Deacetylase

HM Hematologic Malignancy

IC50 Half Maximal Inhibitory Concentration

ISM Individualized Systems Medicine

ITD Internal Tandem Repeat

Kac Acetyllysine /Acetylated Lysine Residue

MCM Mononuclear Cell Medium



MDS Myelodysplastic Syndrome

NGS Next Generation Sequencing

NMC NUT Midline Carcinoma

PB Peripheral Blood

P-TEFb Positive Transcription Elongation Factor b

PTM Post-Translational Modification

TCGA The Cancer Genome Atlas

TKD Tyrosine Kinase Domain

WHO World Health Organization
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8. Appendices

Annex I. The Functional ISM Platform Conceived for Improved Therapy
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Annex II. Ethical and Confidentiality Statement

The project involves the use of human samples and clinical data. The Coordinating Ethics

Board of Helsinki University Hospital Comprehensive Cancer Center has approved the

collection and use of the samples and data. Samples are taken from patients after informed

consent and according to the Declaration of Helsinki. Prior to sampling, the patients are

coded so data collected from any analyses (e.g. sequence data) cannot be used to identify

the patient. These data will be kept on secure servers at FIMM. The study permits are

Dnro 303/13/03/01/2011 approved on 5.11.2012 and Dnro 239/13/03/00/2010 approved

on 12.10.2012. Copies of the permissions are included as appendices to the application.



Supplementary Table 1. Genes having returned a statistically significant association

between their mutation status across the FIMM samples and their respective JQ1 DSS.
Gene Name Number of

Wild-Type

Number of

Mutants

Gene

Coefficient

Gene

Standard

Error

Gene p-value

RTN4 136 3 -0.362 0.145 0.013
MGA 136 3 -0.354 0.143 0.013
WRN 136 3 -0.351 0.142 0.013
SEC63 136 3 -0.347 0.141 0.014
RYR2 136 3 -0.302 0.129 0.02
FLT3 96 43 0.084 0.037 0.023
LAD1 136 3 0.454 0.203 0.025
INTS7 136 3 -0.276 0.124 0.026

AKAP6 136 3 -0.276 0.124 0.026
CACNA1E 132 7 0.204 0.092 0.026

TMTC1 133 6 0.226 0.102 0.027
NCOR2 134 5 0.257 0.116 0.027

PHF2 135 4 -0.219 0.1 0.028
PTPRG 137 2 -0.486 0.226 0.032

CRYBG3 137 2 -0.421 0.197 0.032
ABCA6 137 2 -0.421 0.197 0.032

RDX 137 2 -0.421 0.197 0.032
PRICKLE2 137 2 -0.421 0.197 0.032

AK2 137 2 -0.421 0.197 0.032
CTD-

3193O13.9
137 2 -0.421 0.197 0.032

TRPV2 137 2 -0.415 0.194 0.032
HDAC6 137 2 -0.402 0.189 0.033

FAM81A 137 2 -0.402 0.189 0.033
FCGR3B 137 2 -0.396 0.186 0.034

FAM155A 135 4 -0.208 0.099 0.035
QSER1 137 2 -0.374 0.178 0.036
TSC2 137 2 -0.374 0.178 0.036

AC111170.2.1 136 3 -0.248 0.118 0.036
SPATA31D1 136 3 0.364 0.174 0.036

TRIO 136 3 -0.246 0.118 0.037
FLG2 137 2 -0.352 0.171 0.039

RAD50 137 2 -0.337 0.166 0.042
GPRC6A 136 3 0.341 0.168 0.042

RAPGEF4 137 2 0.73 0.363 0.044
MYOT 137 2 -0.319 0.16 0.046
MLLT4 137 2 -0.319 0.16 0.046
DMD 137 2 -0.319 0.16 0.046
IER5L 137 2 -0.319 0.16 0.046
FTH1 137 2 -0.319 0.16 0.046

MYO7B 137 2 0.892 0.45 0.048
DCAF8 137 2 -0.314 0.158 0.048
IDH2 115 24 -0.083 0.042 0.048

HDAC2 137 2 -0.311 0.158 0.049
LMBRD2 137 2 -0.311 0.158 0.049
DHX33 135 4 0.25 0.127 0.049

YEATS2 137 2 0.54 0.275 0.049



Supplementary Table 2.

characteristics.
Characteristic N (170) Median Mean SD

Age (years) 145 - 62 56.8 15

Status 170 D: 86 (50.6%), R: 84 (49.4%) - - -

Risk 110 L: 28 (25.5%),

I: 47 (42.7%),

H: 35 (31.8%)

- - -

Blast Content (%) 135 - 50 51 26

Culture Media 168 CM: 105 (62.5%),

MCM: 46 (27.4%),

both: 17 (10.1%)

- - -

Mutation Burden 139 - 42 61 66.

D: diagnosis, R: relapse/refractory, L: low, I: intermediate, H: high, CM: conditioned medium, MCM:

mononuclear cell medium


