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4 Abstract 

ABSTRACT 

Zsófia Gombos 
Polymorphisms and genetic susceptibility of Type 1 diabetes and Addison’s disease 

University of Turku, Faculty of Medicine, Institute of Biomedicine, Medical Microbiology and Immunology, 
Turku Doctoral Programme of Molecular Medicine (TuDMM), Immunogenetics Laboratory, Turku, Finland 
Annales Universitatis Turkuensis 
Turku, Finland, 2017 

The HLA region accounts for approximately half of the genetic susceptibility in type 1 diabetes. The 
strongest genetic association with type 1 diabetes (T1D) is conferred by HLA class II alleles, where 
particular combinations of the DRB1, DQA1 and DQB1 define disease risk. Our aim was to investigate the 
effect of non-class II loci independently of the DQ-DR genes and to localize them using case-control study 
and transmission study in nuclear families. We explored the contribution of selected microsatellite markers 
in the HLA class III and I regions covering a 4Mb region telomeric to the DQB1 gene and also the HLA-A 
and -B gene alleles were analyzed for diabetes association. The effect of found markers in the various phases 
of progression of autoimmunity was further looked in children participating in the Finnish Type 1 Diabetes 
Prediction and Prevention study.  

In our case-control study (stratified subjects for DR3/DRB1*04:04 and DR3/DRB1*04:01 genotypes) we 
found that the microsatellite markers located between C12A and C143 near the HLA-B gene confer a strong 
association for T1D. HLA-B*39 allele in linkage disequilibrium with the HLA-A*24 allele was associated 
with the highest risk on the DRB1*04:04 haplotype. 

We extended the case-control study for Finnish nuclear families with parents carrying either the DRB1*08-
DQB1*04 (DR8) or the DRB1*04:04-DQB1*03:02 (DR4) haplotypes. On the DRB1*04:04-DQB1*03:02 
haplotype the D6S273 and C125 microsatellite markers showed independent disease association, the 
C125*200 allele appeared at an increased frequency on the HLA-B*39 positive DRB1*04:04-DQB1*03:02 
haplotypes, suggesting an independent effect. In addition, presence of the D6S273*137 allele appeared to 
increase the disease predisposing effect of the DRB1*04:04-DQB1*03:02 haplotype but it was not possible 
dissect its effect on the HLA-B*39. On the DRB1*08-DQB1*04 haplotype the C143, C245 and MOGc 
microsatellite markers showed disease association. However, correcting for multiple comparisons, the 
disease association turned out not significant. The D6S273*135 and C143*417 alleles showed protective 
effect when haplotype method was used. HLA-B*39:01 and B*39:06 alleles did not shown any effect in 
DRB1*08-DQB1*04 haplotype although B*39:06 was too rare to demonstrate its disease association, 
needing larger series.  

The association between the HLA-DR-DQ haplotypes and class I HLA-A and -B alleles during the 
progression from autoantibody seroconversion to clinical disease was studied in 249 children. The Cox-
regression multivariate analysis demonstrated a significant promoting effect of HLA-B*39 allele after 
seroconversion for the second biochemical autoantibody, whereas the HLA-A*03 allele was associated with 
protection after the first- and second biochemical autoantibody appearances. The HLA-B*39 effect during 
the disease was mainly found in children carrying the DR3/DR4 genotype.  

Addison’s disease is an organ-specific autoimmune disease, which is often found together with T1D as part 
of a polyendocrinopathy syndrome. Haplotype analysis using the microsatellite markers did not provide 
statistical support to the importance of HLA regions other than HLA-DR-DQ loci in three different European 
populations (Finnish, Estonian, Russian). We found that Addison’s disease was preferentially associated with 
DRB1*04:04 and also DRB1*04:03 alleles together with DQB1*03:02 contrasting thus with T1D where 
DRB1*04:01 was the most strongly associated allele in DQB1*03:02 positive haplotypes. 

Keywords: type 1 diabetes, Addison’s disease, HLA, DQB1, DQA1, DRB1, microsatellite markers, 
association
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TIIVISTELMÄ 
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Perinnöllinen alttius ja polymorfismit tyypin 1 diabeteksessa ja Addisonin taudissa 

Turun yliopisto, Lääketieteellinen tiedekunta, Biolääketieteen laitos, Lääketieteellinen Mikrobiologia ja 
Immunologia, Molekyylilääketieteen tohtoriohjelma (TuDMM), Immunogenetiikan laboratorio, Turku, 
Suomi 
Annales Universitatis Turkuensis 
Turku, Suomi, 2017 

Noin puolet tyypin 1 diabeteksen geneettisestä alttiudesta tulee HLA-geenialueelta. Voimakkain assosiaatio 
on luokan II HLA -geeneillä DRB1, DQA1 ja DQB1, joiden alleeliyhdistelmät määrittävät sairausriskin. 
Tämän työn tavoitteena oli tutkia DQ ja DR geeneistä riippumattomien HLA alueen varianttien vaikutusta 
sairausriskiin ja lokalisoida ne käyttämällä tapaus-verrokkitutkimusta sekä ydinperheiden 
transmissiotutkimusta. Tutkimme valikoituja mikrosatelliittimarkkereita luokan II ja I HLA alueilla, sekä 
HLA-A ja -B alleelien assosiaatiota tyypin 1 diabetekseen. Löydettyjen markkereiden vaikutusta 
autoimmuniteetin etenemisen eri vaiheisiin tarkasteltiin lapsilla, jotka osallistuivat tyypin 1 diabeteksen 
ennustamista ja ehkäisyä tutkivaan projektiin. 

Tapaus-verrokkitutkimuksessamme, jossa nämä kaltaistettiin DR3/DRB1*04:04 ja DR3/DRB1*04:01 
genotyyppien suhteen, voimakkaimman assosiaation tuottivat C12A ja C143 mikrosatelliittien välissä olevat 
markkerit lähellä HLA-B geeniä. DRB1*04:04 haplotyypissä vahvin riski liittyi HLA-B*39 alleeliin, joka oli 
kytkentäepätasapainossa HLA-A*24 alleelin kanssa.  

Tutkimusta laajennettiin DRB1*08-DQB1*04 (DR8) ja DRB1*04:04-DQB1*03:02 (DR4) positiivisiin 
suomalaisiin ydinperheisiin. Mikrosatelliittimarkkerit D6S273 ja C125 osoittivat itsenäistä assosiaatiota 
DRB1*04:04-DQB1*03:02 haplotyypissä. C125*200 -alleelin frekvenssi oli lisääntynyt HLA-B*39 
positiivisessa DRB1*04:04-DQB1*03:02 haplotyypissä viitaten itsenäiseen efektiin. Lisäksi D6S273*137 
alleeli vaikutti lisäävän DRB1*04:04-DQB1*03:02 haplotyypin altistavaa efektiä, mutta assosiaatiota ei 
pystytty erottamaan HLA-B*39 alleelin assosiaatiosta. DRB1*08-DQB1*04 haplotyypissä 
mikrosatelliittimarkkerit C143, C245 ja MOGc assosioituvat tautirskiin, mutta monivertailun korjauksen 
jälkeen assosiaatio ei enää ollut merkitsevä. Haplotyyppimenetelmän perusteella alleelit D6S273*135 ja 
C143*417 osoittivat suojaavaa vaikutusta. HLA-B*39:01 ja B*39:06 alleeleilla ei ollut merkitsevää 
vaikutusta DRB1*08-DQB1*04 haplotyypissä, mutta B*39:06 alleelin matala frekvenssi todennäköisesti 
selittää sen, miksi suuremmissa aineistoissa löydettyä assosiaatiota ei pystytty havaitsemaan.  

HLA-DR-DQ haplotyyppien ja luokan I HLA-A ja -B -alleelien välistä yhteyttä taudin etenemiseen 
autovasta-aineiden serokonversiosta kliiniseen tautiin tutkittiin 249 lapsen avulla. Coxin regressioanalyysi 
osoitti HLA-B*39 alleelin nopeuttavan taudin kehittymistä, kun taas HLA-A*03 oli assosioitui suoja 
vaikutukseen ensimmäisen ja toisen autovasta-aineen ilmentymisen jälkeen. HLA-B*39 alleelin vaikutus 
taudin etenemiseen havaittiin pääasiassa lapsilla, joilla oli DR3/DR4-genotyyppi. 

Addisonin tauti on elinspesifinen autoimmuunisairaus, joka esiintyy usein tyypin 1 diabeteksen kanssa osana 
polyendokrinopatiasyndroomaa. Tilastollista tukea HLA-DR-DQ lokuksen ulkopuolisten HLA alueen 
varianttien tärkeydelle ei löydetty kolmessa erilaisessa eurooppalaisessa populaatiossa (suomalaiset, 
virolaiset, venäläiset) mikrosatelliittimarkkereiden haplotyyppianalyysin perusteella. Havaitsimme, että 
Addisonin tauti assosioitui DRB1*04:04 ja DRB1*04:03 alleelien kanssa, erottuen tyypin 1 diabeteksesta, 
jossa DRB1*04:01 on voimakkaimmin assosiaatuva DRB1 -alleeli DQB1*03:02 positiivisissa 
haplotyypeissä. 

Avainsanat: tyypin 1 diabetes, Addisonin tauti, HLA, DQB1, DQA1, DRB1, mikrosatelliitimarkkerit, 
assosiaatio 
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ABBREVIATIONS 

ACAs Adrenal cortex antibodies  

ACTH Adrenocorticotropic hormone 

AAD Autoimmune Addison’s disease 

AD Addison’s disease 

AFBAC  Affected-Family-Based Artificial Control 

APC Antigen presenting cells 

APS Autoimmune polyendocrine syndrome 

ASP Affected sib-pair families  

Asp Aspartic acid 
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GAD Glutamic acid decarboxylase 

GADA Glutamic acid decarboxylase autoantibodies 

GWAS Genome-wide association studies 

HBDI Human Biological Data Interchange  

HLA Human leukocyte antigen  

HM Haplotype method 

IAA Insulin autoantibodies 

IA-2A Insulinoma-associated protein 2 autoantibodies 

IAA Insulin autoantibodies 

ICA Islet cell autoantibodies 

INS Insulin gene
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JDFU Juvenile Diabetes Foundation Units 

kbp Kilobase pair  

kDa kilodalton 

LD Linkage disequilibrium 

LYP Lymphoid tyrosine phosphatase  

MMR  Mumps-Measles-Rubella  

Mb Mega base pairs=1000 000 base pairs 

MHC Major histocompatibility complex 

Msats Microsatellites 

NKG2D Natural Killer Group 2D 

NOD Non-obese diabetic 

OR Odds ratios 

PIC Polymorphism information content  

PTPN22 Protein tyrosine phosphatase 22 gene  

RT-PCR Reverse Transcription-Polymerase Chain Reaction  
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SNP Single nucleotide polymorphism 
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SSRs Simple sequence repeats  

SSP Sequencing-specific primer 
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Tb Terbium  

T1DGC Type 1 Diabetes Genetics Consortium  

TDT Transmission/Disequilibrium Test 

T1D Type 1 diabetes  

TNF Tumor necrosis factor 

TNFα Tumor necrosis factor alpha 

TRF Time-resolved fluorescence 

TRIGR Trial to Reduce IDDM in the Genetically at Risk 

VNTR  Variable number tandem repeat 

WES Whole exome sequencing  

ZnT8A Zinc transporter 8 autoantibody 

β2m Beta2-microglobulin  
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1. INTRODUCTION 

Autoimmune diseases affect up to 10% of the general Caucasian populations and include the organ-

specific disorders such as type 1 diabetes (T1D) and Addison’s disease (AD) with multifactorial 

etiology where both genetic and environmental components contribute to the disease risk (You, 

Henneberg 2016).  

The human leukocyte antigen system (HLA; 6p21.3; 7.6Mb; 252 genes) consists of large number of 

genes (28%) with immune functions and confers the strongest genetic risk for type 1 diabetes and 

Addison’s diseases. Among HLA region genes are the classical HLA class I (HLA-A, HLA-B, 

HLA-C) and class II (HLA-DRB, HLA-DQ, HLA-DP) genes, which encode antigen presenting 

molecules. HLA class III is a diverse collection of more than 20 genes including those encoding 

some complement proteins. Variations within HLA have been found to be associated with almost 

every autoimmune disease, with risk estimates exceeding by far those of other genetic susceptibility 

factors identified in these complex diseases. Strong linkage disequilibrium (LD) in the region has, 

however, complicated the identification of the causative variants. Population studies have shown 

that associations exist between different autoimmune diseases and particular peptide-presenting 

HLA class I or II molecules. Moreover, the HLA class I and class II genes are the most 

polymorphic loci in the human genome.  

It should be noted that although HLA class I and class II show the strongest association in almost 

all autoimmune diseases, several other genes outside the classical HLA loci contribute to the 

diseases appearance. 

The aim of the study was to investigate the effect of non-class II HLA loci in T1D and AD 

susceptibility by analyzing microsatellite markers in the HLA class III and class I region. In 

addition, our aim was to explore the effects of the HLA class I (common HLA-A and HLA-B) and 

class II alleles (HLA-DRB1, HLA-DQB1, HLA-DQA1) on progression from autoantibody 

positivity to overt T1D. 
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2. REVIEW OF LITERATURE 

2.1. Type 1 diabetes 

2.1.1. Pathogenesis of type 1 diabetes 

Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease involving the specific destruction 

of insulin-producing β-cells in the islets of Langerhans in pancreas. Immune-mediated T1D 

sometimes is referred to as type 1A. However, not all patients with type 1 diabetes have any 

evidence of autoimmunity. According to the recent American Diabetes Association classification 

this subgroup of autoantibody negative patients should be considered as type 1B (idiopathic) 

diabetes, reported mainly in African and Asian ancestry (American Diabetes Association 2012). 

Both major classes of T cells (CD4+ and CD8+ T cells) are important in the autoimmune process. 

Destruction or loss of function of the β-cells is leading to loss of insulin secretion, and thus to an 

elevated blood glucose level and appearance of glucose in urine. The disease is most often 

diagnosed in children and adolescents, usually with classical symptoms, such as polydipsia, 

polyuria, fatigue, blurred vision and unexplained weight loss, finally ketoacidosis (Atkinson, 

Eisenbarth & Michels 2014, WHO-Type 1 diabetes). The duration of the asymptomatic preclinical 

period, the process leading to clinical symptoms, may last from few weeks up to several years. T1D 

appears when the function of most of the β-cells (85-90%) is lost and insulin produced by the 

remaining cells is not enough to control the blood-glucose level. Insulitis, chronic and uneven 

infiltration of inflammatory cells into islet, precedes the clinical disease (Figure 1) (Atkinson et al. 

2015).
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Figure 1. A simplified modern model for pathogenesis of type 1 diabetes (Modified from Atkinson 

et al. 2015). 

The clinical manifestation of type 1 diabetes is the endpoint of a usually long-lasting immune-

mediated destruction of the β-cells. At clinical diagnosis about 96-98% of patients with T1D have 

detectable titers of one or more autoantibodies against islet autoantigens in the peripheral blood, 

showing the autoimmune nature for the disease (Bingley 2010, Knip et al. 2016). Children with 

seroconversion to any two autoantibodies have a risk of >80% for the development of diabetes 

during childhood or adolescence at the 15-year follow-up (Ziegler et al. 2013). In contrast, 0.5% of 

the background population and 3-4% of first-degree relatives of T1D patients are positive for 

autoantibodies (Knip et al. 2010). Marker autoantibodies can appear as early as 6 months of age, 

with peak incidence before 2 years of age in the genetically susceptible children, and they are 

present months and years before manifestation of T1D (Atkinson, Eisenbarth & Michels 2014). 

These autoantibodies include islet cell autoantibodies (ICA), that were identified by indirect 

immunofluorescence assay using pancreatic tissue sections from blood group 0 organ donors as 

substrate to bind islet cell reacting antibodies in the studied sera (Bottazzo, Florin-Christensen & 

Doniach 1974). These antibodies represent a heterogeneous group which recognize various 

molecules like GADA (Baekkeskov et al. 1990), IA-2A (Gianani et al. 1995) and ZnT8A (Wenzlau 

et al. 2007). In addition islet specific autoantibodies include IAA, which are specific for β-cells
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(Palmer et al. 1983). These four autoantibodies are antibodies to specific autoantigens and analyzed 

by specific radiobinding assays and therefore so-called biochemical autoantibodies. The general 

view is that the diabetes-associated autoantibodies are not directly involved in the β-cell destruction 

but function as biomarkers of an ongoing disease process. These diabetes-associated autoantibodies 

are the best characterized markers for future development of clinical T1D (Knip et al. 2016). 

Presence of autoantibodies specific for only one protein have a low predictive value for the 

development of T1D, but combinations of multiple specific autoantibodies and high titers of them 

correlate strongly with risk of developing T1D and can be used as predictors (Knip et al. 2016, 

Ziegler et al. 2013). Approximately half of the children positive for multiple autoantibodies will 

develop T1D within 5 years whereas that proportion increased up to 84% during 15 years of follow-

up. Younger children diagnosed with T1D are more often positive for IAA than older children or 

adults. In contrast, GADA, IA-2A and ZNT8A are found more evenly throughout childhood, 

GADA and ZNT8A being also common in adults diagnosed with T1D. IA-2A and ZnT8A 

autoantibodies common at diagnosis are rare as primary antibodies (Ilonen et al. 2018, Wenzlau et 

al. 2007). Persons with IA-2A and ZnT8A tend to progress more rapidly to T1D than persons 

without these antibodies (Regnell, Lernmark 2017) 

Relationship between primary diabetes-associated autoantibodies and various HLA genotypes and 

alleles have been described in different studies. IAA is frequently the first autoantibody to appear in 

young children with appearance peak during the second year of life in the preclinical phase (Ilonen 

et al. 2013, Krischer et al. 2015). Only 75% of children positive for IAA autoantibody at diagnosis, 

in contrast, GADA, IA-2A or ZnT8A as the initial autoantibody were typically positive at diagnosis 

with 89.5%, 100% and 100%. That children remaining positive for IAA at diagnosis had a longer 

preclinical period duration as measured from seroconversion to diagnosis. IAA is associated with 

HLA-DRB1*04:01/2/4/5-DQB1*03:02 (commonly referred to as HLA-DR4-DQ8) risk haplotype, 

whereas primary GADA associated with DQA1*05-DQB1*02 (commonly referred to as HLA-

DR3-DQ2) haplotype. The genetic associations of primary IAA- and primary GADA-association 

autoantibody predominate only in children diagnosed before the age of 10 years (Ilonen et al. 2018). 

Genes within the HLA-DQ gene region have been suggested to be primary denominators in the 

production of GADA association, whereas the HLA-DRB1 region might be more important in 

formation of IA-2A (Sanjeevi et al. 1998). This is supported by the observation that among DR4-

DQ8 haplotypes DRB1*04:01 is strongly increased compared to the other common DR4 allele, 

DRB1*04:04, in patients with IA-2A as the only autoantibody present at diagnosis (Mäkinen et al. 

2008). 
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2.1.2. Environmental factors 

Environmental factors play an important role in the pathogenic process as demonstrated by the rapid 

increase in the disease incidence in most western countries during the last decades (DIAMOND 

Project Group 2006, Patterson et al. 2009). Some studies observations suggest that the proportion of 

patients with high-risk HLA genotypes has decreased, whereas the proportion of those with low-risk 

or protective HLA genotypes has increased over the last decades (Fourlanos et al. 2008, Gillespie et 

al. 2004, Hermann, Turpeinen et al. 2003, Vehik et al. 2008). These data are compatible with an 

increased environmental pressure. The roles of microbial infections including composition of 

human microbiota as well as partially intertwining nutritional factors have been targets of greatest 

interest (Knip, Simell 2012). 

The development of T1D has 13 to 50% concordance in monozygotic twins which has been 

regarded to support the influence of environmental factors acting on genetic predisposition 

(Hyttinen et al. 2003, Redondo et al. 2001, Redondo et al. 2008). On the other hand, although 

monozygotic twins have the same or very similar DNA sequence and share the same environment, 

gene expression and DNA modification patterns in both cellular and humoral immunity, T-cell 

receptors and autoantibodies can differ significantly, meaning that monozygotic twins do not share 

similar immune repertoire. This challenges the conventional paradigm that monozygotic twins are 

identical genetic controls in which environment is the only differing variable (Haque, Gottesman & 

Wong 2009). 

Some migration studies have suggested that moving from a low- to high incidence countries 

increase the incidence, emphasizing the influence of environmental conditions (Hussen, Persson & 

Moradi 2013, Oilinki et al. 2012, Sonigni, Lombardo 2010). Several studies among second-

generation immigrants, adoptees from abroad and also some Sardinian immigrants appear to be in 

contrast with the environmental hypostasis and demonstrated original risk to remain in new 

environment (Ji et al. 2010, Sonigni, Lombardo 2010). This may indicate that both genetic and 

environmental factors can be responsible for differences in the incidence.  

Several viruses like rotavirus, mumps virus and cytomegalovirus have been suggested to be 

associated with the development of T1D but currently the prime viral candidates are the 

enteroviruses such as Coxsackieviruses group B (CVB) (Rodriguez-Calvo et al. 2016). It has been 

shown in many different studies that antibodies against enteroviruses are more common in newly 

diagnosed T1D patients than in nondiabetic controls. Even though the enterovirus infections are less
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Several viruses like rotavirus, mumps virus and cytomegalovirus have been suggested to be 

associated with the development of T1D but currently the prime viral candidates are the 

enteroviruses such as Coxsackieviruses group B (CVB) (Rodriguez-Calvo et al. 2016). It has been 

shown in many different studies that antibodies against enteroviruses are more common in newly 

diagnosed T1D patients than in nondiabetic controls. Even though the enterovirus infections are less
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frequent in Finland than in countries with lower incidence. Temporal association between 

seroconversion for the first diabetes-associated autoantibodies and enterovirus infections has been 

also reported. The long subclinical phase of the β-cell damaging process makes it difficult to 

identify a virus which could play role in the early stage of autoimmune process. Although it may be 

unlikely that T1D is caused by only the CVB1 serotype, whereas CBV3 and CBV6 infections may 

protective. The identification of this specific strain would be beneficial and would facilitate the 

design of an enterovirus vaccine (Knip, Simell 2012, Hyöty 2016).  

Rotaviruses are very common gastrointestinal viruses that cause intestinal infection as well as 

viremia in young children. In the Australian BabyDiab Study, rotavirus infections were temporally 

associated with increases in islet autoantibodies (IAA, IA-2 and GAD65) in children before they 

developed diabetes (Rodriguez-Calvo et al. 2016). 

In general, evidence from animal models suggests that viral infections can trigger the development 

of autoimmunity and diabetes caused by different mechanisms (Craig et al. 2013). Several 

mechanisms have been proposed for virus-mediated autoimmunity. Firstly, increasing evidence 

suggest that some virus infections can directly infect pancreatic tissues upregulating MHC class I 

molecules on β-cells or cause β-cells damage leading to the release of autoantigens and thus initiate 

the autoimmune process (Jun, Yoon 2003). Secondly, molecular mimicry hypothesis states that 

where viral proteins show close similarity to host tissue, they could induce cross reactivity 

responses against the self-antigen. For example, the P2-C protein sequence of Coxsackievirus B4 

virus is partially similar to human GAD65 and within rotavirus VP7 protein there is high sequence 

similarity to T cell epitope peptides in the islet autoantigens like tyrosine phosphatase-like 

insulinoma antigen 2 and GAD65 which might be stimulating T cells to cross-react causing damage 

to host tissue (Rodriguez-Calvo et al. 2016).  

Various dietary factors have also been linked to T1D during infancy and childhood. The duration of 

breastfeeding has shown inverse correlation with incidence of T1D (Lund-Blix et al. 2015) but early 

dietary exposure to supplementary cow’s milk (CM) based formula and also other diet constituents 

like fruits, berries and roots have been associated with risk to T1D (Virtanen 2016). Cow’s milk 

proteins, such as bovine serum albumin (Karjalainen et al. 1992), β-lactoglobulin (Vaarala et al. 

1996), β-casein (Cavallo et al. 1996) and bovine insulin (Vaarala et al. 2012) obtained during 

infancy have been suggested as predisposing factors of T1D. CM proteins in infant nutrition do not 

cause diabetes directly. A possible explanation for this finding, higher cow’s milk intake might 

promote progression to T1D in children with islet autoimmunity (Rewers, Ludvigsson 2016). 
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However, the large clinical TRIGR (Trial to Reduce IDDM in the Genetically at Risk) trial using 

hydrolyzed casein formula did not reduce the incidence of type 1 diabetes in the first seven years 

(Knip et al. 2014). Some chemicals in food, such as nitrates, nitrites, N-nitroso and low zinc in the 

drinking water have also been suggested to increase the risk for T1D (Samuelsson et al. 2011).  

Lack of vitamin D supplementation in infancy has been shown to increase the risk of T1D in a 

European case-control study from seven centers (The EURODIAB Substudy 2 Group 1999). This 

study indicated that supplementation with vitamin D resulted in a reduced risk of T1D. Similar 

finding was seen in a Finnish birth cohort study where the daily high-dose D vitamin (2000 IU/day) 

supplementation decreased the risk when compared to no supplementation group (Hyppönen et al. 

2001). A meta-analysis based on five studies concluded that vitamin D supplementation in early 

childhood may offer protection against the development of T1D (Zipitis, Akobeng 2008). On the 

other hand, prospective Diabetes Autoimmunity Study in the Young (DAISY) has found that 

neither the intake of D vitamin nor circulating plasma 25-hydroxyvitamin D concentration 

throughout childhood correlated with increased risk of β-cell autoimmunity or progression to T1D 

(Simpson et al. 2011). In addition, comparisons between neighboring low and high incidence 

countries did not find significant differences in the circulating vitamin D concentrations in pregnant 

women and schoolchildren (Viskari et al. 2006). 

According to a widely accepted hypothesis, T1D is a multifactorial disease, clinical manifestation 

results from interaction between environmental and genetic factors and still poorly known 

environmental factors trigger an autoimmune process in a genetically susceptible individual leading 

to the destruction of the β-cells. 

2.1.3. Epidemiology  

According to the International Diabetes Federation, more than 132 600 children and adolescents 

under 19 years are estimated to be diagnosed with T1D annually worldwide. In 2017, altogether 

1,106 500 (0-19 years) children and adolescents were estimated to have type 1 diabetes globally. 

Worldwide more than 20 million people are suffering with T1D (IDF Diabetes Atlas 2017). The 

epidemiologic patterns of the T1D regarding geographic distribution, gender, age of onset, as well 

seasonal changes and ethnic factors in populations are well studied. The incidence rates of 

childhood-onset T1D in the age group between 0-14 years varies considerably with geographic 

region (Galler et al. 2010). 



16 Review of literature  

frequent in Finland than in countries with lower incidence. Temporal association between 

seroconversion for the first diabetes-associated autoantibodies and enterovirus infections has been 

also reported. The long subclinical phase of the β-cell damaging process makes it difficult to 

identify a virus which could play role in the early stage of autoimmune process. Although it may be 

unlikely that T1D is caused by only the CVB1 serotype, whereas CBV3 and CBV6 infections may 

protective. The identification of this specific strain would be beneficial and would facilitate the 

design of an enterovirus vaccine (Knip, Simell 2012, Hyöty 2016).  

Rotaviruses are very common gastrointestinal viruses that cause intestinal infection as well as 

viremia in young children. In the Australian BabyDiab Study, rotavirus infections were temporally 

associated with increases in islet autoantibodies (IAA, IA-2 and GAD65) in children before they 

developed diabetes (Rodriguez-Calvo et al. 2016). 

In general, evidence from animal models suggests that viral infections can trigger the development 

of autoimmunity and diabetes caused by different mechanisms (Craig et al. 2013). Several 

mechanisms have been proposed for virus-mediated autoimmunity. Firstly, increasing evidence 

suggest that some virus infections can directly infect pancreatic tissues upregulating MHC class I 

molecules on β-cells or cause β-cells damage leading to the release of autoantigens and thus initiate 

the autoimmune process (Jun, Yoon 2003). Secondly, molecular mimicry hypothesis states that 

where viral proteins show close similarity to host tissue, they could induce cross reactivity 

responses against the self-antigen. For example, the P2-C protein sequence of Coxsackievirus B4 

virus is partially similar to human GAD65 and within rotavirus VP7 protein there is high sequence 

similarity to T cell epitope peptides in the islet autoantigens like tyrosine phosphatase-like 

insulinoma antigen 2 and GAD65 which might be stimulating T cells to cross-react causing damage 

to host tissue (Rodriguez-Calvo et al. 2016).  

Various dietary factors have also been linked to T1D during infancy and childhood. The duration of 

breastfeeding has shown inverse correlation with incidence of T1D (Lund-Blix et al. 2015) but early 

dietary exposure to supplementary cow’s milk (CM) based formula and also other diet constituents 

like fruits, berries and roots have been associated with risk to T1D (Virtanen 2016). Cow’s milk 

proteins, such as bovine serum albumin (Karjalainen et al. 1992), β-lactoglobulin (Vaarala et al. 

1996), β-casein (Cavallo et al. 1996) and bovine insulin (Vaarala et al. 2012) obtained during 

infancy have been suggested as predisposing factors of T1D. CM proteins in infant nutrition do not 

cause diabetes directly. A possible explanation for this finding, higher cow’s milk intake might 

promote progression to T1D in children with islet autoimmunity (Rewers, Ludvigsson 2016). 

 Review of literature 17 

However, the large clinical TRIGR (Trial to Reduce IDDM in the Genetically at Risk) trial using 

hydrolyzed casein formula did not reduce the incidence of type 1 diabetes in the first seven years 

(Knip et al. 2014). Some chemicals in food, such as nitrates, nitrites, N-nitroso and low zinc in the 

drinking water have also been suggested to increase the risk for T1D (Samuelsson et al. 2011).  

Lack of vitamin D supplementation in infancy has been shown to increase the risk of T1D in a 

European case-control study from seven centers (The EURODIAB Substudy 2 Group 1999). This 

study indicated that supplementation with vitamin D resulted in a reduced risk of T1D. Similar 

finding was seen in a Finnish birth cohort study where the daily high-dose D vitamin (2000 IU/day) 

supplementation decreased the risk when compared to no supplementation group (Hyppönen et al. 

2001). A meta-analysis based on five studies concluded that vitamin D supplementation in early 

childhood may offer protection against the development of T1D (Zipitis, Akobeng 2008). On the 

other hand, prospective Diabetes Autoimmunity Study in the Young (DAISY) has found that 

neither the intake of D vitamin nor circulating plasma 25-hydroxyvitamin D concentration 

throughout childhood correlated with increased risk of β-cell autoimmunity or progression to T1D 

(Simpson et al. 2011). In addition, comparisons between neighboring low and high incidence 

countries did not find significant differences in the circulating vitamin D concentrations in pregnant 

women and schoolchildren (Viskari et al. 2006). 

According to a widely accepted hypothesis, T1D is a multifactorial disease, clinical manifestation 

results from interaction between environmental and genetic factors and still poorly known 

environmental factors trigger an autoimmune process in a genetically susceptible individual leading 

to the destruction of the β-cells. 

2.1.3. Epidemiology  

According to the International Diabetes Federation, more than 132 600 children and adolescents 

under 19 years are estimated to be diagnosed with T1D annually worldwide. In 2017, altogether 

1,106 500 (0-19 years) children and adolescents were estimated to have type 1 diabetes globally. 

Worldwide more than 20 million people are suffering with T1D (IDF Diabetes Atlas 2017). The 

epidemiologic patterns of the T1D regarding geographic distribution, gender, age of onset, as well 

seasonal changes and ethnic factors in populations are well studied. The incidence rates of 

childhood-onset T1D in the age group between 0-14 years varies considerably with geographic 

region (Galler et al. 2010). 



18 Review of literature  

Europe has by far the most informative and reliable data of T1D incidences (The EURODIAB ACE 

study: Europe and Diabetes). Etiology of Childhood Diabetes on an epidemiological basis from 

1988 with 44 European centers participating (The EURODIAB ACE Study Group 2000). The 

WHO Multinational Project for Childhood Diabetes (DIAMOND) was started in 1990. The 

DIAMOND incidence study includes 114 populations from 57 countries from around the world, 

representing about 84 million children up to the year 2000 (DIAMOND Project Group 2006). 

The incidence of T1D is increasing worldwide despite wide variations between continents, 

countries and regions (Diaz-Valencia, Bougneres & Valleron 2015). The incidence rates are 

commonly divided into five different groups: very low (<1/100 000/year), a low (1-4.9/100 

000/year), an intermediate (5-9.99/100 000 per year), high (10-19.99/100 000 per year) and very 

high (≥20/100 000/year) (Karvonen et al. 2000). The highest incidence rates are found among 

Caucasians especially in Northern Europe (Finland, Sweden, Norway with ≥30/100 000/year), 

whereas the lowest ones found in Eastern Asia and South America (≤1/100 000/year). The 

worldwide incidence of T1D is described to vary at least 100- to 350-fold among 100 different 

countries (Borchers, Uibo & Gershwin 2010, Karvonen et al. 2000) being highest in Finland 

(>60/100 000 per in each year) (Harjutsalo et al. 2013) and Sardinia (around 50 cases/100 000 per 

in each year) (Bruno et al. 2013). By contrast, disease incidence is lowest in India (South Asia), 

Venezuela (South America) and China (Eastern Asia) with approximately 0.1 new cases in 100 000 

children per each year (Borchers, Uibo & Gershwin 2010, http://www.diabetesatlas.org). 

Considerable differences in the frequency of genetic factors associated with T1D susceptibility and 

protection are found between various populations. The typical Caucasoid HLA susceptibility 

haplotypes and genotypes are rare among the Asians (Park, Eisenbarth 2001). This variation of risk 

and protective alleles might relate to the variable incidence rates among populations but 

considerable differences have also been found between populations with similar genetic background 

(Karvonen et al. 2000). 

The general tendency in Europe is an increasing gradient from south to north with the lowest 

incidence countries such as Macedonia (3.6/100 000/year) and Greece (4.6/100 000/year) in south 

and very high incidence countries Finland, Sweden and Norway (≥60, 40 and 28 new cases/100 000 

in yearly, respectively) in north (The EURODIAB ACE Study Group 2000, Ilonen et al. 2009). 

Incidence in many countries of the Eastern Central Europe is also relatively low but has been 

rapidly increasing (Patterson et al. 2009). Notably exception from this general model is the very 

high incidence Sardinia (≥50/100 000/year) (Bruno et al. 2013). 
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There are also sharp differences in neighboring regions. Ten-fold difference in the disease 

occurrence has been observed between different neighboring countries in Europe. For example, 

between Baltic countries (Estonia 10.5, Lithuania 7.4 and Latvia 5.9 new patients ≤14 years of age/ 

100 000/year) and nearby in Finland, the difference in incidence is very large. One of the sharpest 

incidence differences also exists between Finland and the neighboring Karelian Republic of Russia 

(incidence 7.4/100 000/year) (Kondrashova et al. 2005). However, analyses of four diabetes-

predictive autoantibodies found similar frequencies in both Finnish and Russian children in other 

islet autoantibodies than autoantibodies against IA-2A, which was of lower prevalence among 

Russians (Kondrashova et al. 2013). This suggests that the frequency of islet autoimmunity as such 

as common but progressive form of it often heralded by IA-2A is more common in Eastern Karelia. 

Similar findings have also been found in comparisons of autoantibody frequencies among other 

high and low incidence populations (Long et al. 2012, Padoa 2011). Reasons for incidence 

variations are still unclear; differences in both genetic and environmental factors have been 

suggested. Conspicuous differences in socioeconomic status often found between high and low 

incidence countries may associate with many additional factors related to different lifestyle and 

living conditions in the neighboring countries. 

The incidence of T1D has increased worldwide since the beginning of statistics, and the increase 

was particularly large in the younger age (0-4 years) in Europe until 2005 (Harjutsalo, Sjöberg & 

Tuomilehto 2008). The change over time may be partly explained by changes in lifestyle causing 

rapid early growth and weight development (Harder et al. 2009, The EURODIAB Substudy 2 Study 

Group 2002). The mean of the annual increase in incidence is between 2.5%-3.6% worldwide 

although in Sweden from 2002 and later on in Finland between 2005 and 2011 a plateau in 

incidence rate has been reported. The first plateau was recorded in the 1980s in Finnish children 

aged between 10-14 years, after this incidence started to increase again (Berhan et al. 2011, 

Harjutsalo et al. 2008, Harjutsalo et al. 2013). 

Although most autoimmune disorders more frequently affect females than males, the childhood-

onset T1D is generally as common in boys and in girls. The male/female ratio is close to 1, although 

slight female or male predominance has been reported from some countries (Maahs et al. 2010). 

The peak of incidence in age of onset is about three years earlier in girls than in boys. Clear male 

predominance is found after the puberty (Harjutsalo et al. 2008, Wändell, Carlsson 2013). 
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Studies of diabetes seasonality distinguish between the seasonality of birth and seasonality of onset 

or diagnosis. Children born during the spring-summer (mainly in May) showed increased 

association for T1D in many studies (Kahn et al. 2009) but a German study showed that children 

and adolescents with T1D were more often born during the autumn-winter months (Neu et al. 

2000). The seasonality of onset or diagnosis of T1D has been extensively studied and the results are 

conflicting. One third of analyzed centers had a peak in colder (October-January) and also one third 

had troughs in June to August in WHO DIAMOND Project. However, Finland has a clear trough in 

June and July and peaks in early spring and late autumn (Moltchanova et al. 2009). 

Suggested explanations for seasonality in diagnosis include the fact that winter months bring more 

infections, and decrease in vitamin D levels during the darker months. Relationship between season 

of the birth and susceptibility for type 1 diabetes have attributed to for example intrauterine 

infections, dietary intake, short duration of breastfeeding and, early exposure to cow’s milk 

proteins. However, the autoimmune process which lead to clinical diabetes is long, therefore the 

environmental factors associated with seasonality at diagnosis can be considered as disease 

precipitators acting at a late stage of prediabetes. The result of both could be higher autoimmune 

activity that causes β-cell destruction (Moltchanova et al. 2009, Patterson et al. 2015). 

2.2. Genetics of type 1 diabetes 

It is well known that T1D is a complex, multigenic disorder that is influenced by environmental 

factors. This means that gene polymorphisms affecting the disease risk can affect any phase of the 

disease process. To fully understand the genetics of T1D one should investigate the natural history 

from birth until clinical manifestation during the follow up.  

First approach, follow newborns with family members affected type 1 diabetes. The risk of 

developing diabetes in first-degree relatives 8-15 fold higher and around 2 fold in second- and third-

degree relatives with history of type 1 diabetes (Weires et al. 2007). Children with two affected 

first-degree family members have almost 30% higher risk for T1D. The risk of type 1 diabetes in 

offspring of diabetic parents is 5% by age 20 years (Bonifacio, Ziegler 2010), although they have 

different lifetime risk depending on whether the mother (~3%), father (~5%), or sibling (~8%) has 

the disease (Harjutsalo, Reunanen & Tuomilehto 2006). A young age of affected child at diagnosis, 

paternal young-onset diabetes, male sex, and older paternal age at delivery considerable increased 

the risk of type 1 diabetes for sibling (Harjutsalo, Podar & Tuomilehto 2005). On the contrary, the 

daughters of the mothers with T1D and young age at onset seem to be protected from diabetes in
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Finnish longitudinal population-based study (Harjutsalo et al. 2010). The strong genetic 

contribution to T1D is illustrated with prospective long-term follow-up, by cumulative incidence 

among monozygotic twins. This is reported to be around 80% both had developed T1D by 60 years 

of age among monozygotic twins who were initially discordant (only one twin affected) for diabetes 

(Redondo et al. 2008). Dizygotic twin siblings have instead a 5-6% concordance rate for T1D 

similar to that in non-twin siblings (Morran et al. 2015). 

Second approach, type 1 diabetes is known to be strongly associated with DRB1*03-DQA1*05:01-

DQB1*02:01 (DR3-DQ2) and DRB1*04-DQA1*03-DQB1*03:02 (DR4-DQ8) haplotypes, alone or 

in combination. Approximately 90% of young children with T1D carry either HLA-DR3 or HLA-

DR4 haplotype. On the other hand, some haplotypes are strongly protective like DR15-DQ6 

(DRB1*15:01-DQA1*01:02-DQB1*06:02/*06:01). Newborn screening has been used to identify 

children at increased genetic risk who could be followed up for the appearance of β-cell 

autoantibodies that are known to be strongly associated with an increased risk for T1D. In children 

long-term followed up studies from birth such as in the Finnish Diabetes Prediction and Prevention 

(DIPP), The Environmental Determinants of Diabetes in the Young study (TEDDY), German Baby 

DIAB and in the Diabetes Autoimmunity Study in Young (DAISY) in the USA (Pociot, Lernmark 

2016, Ziegler et al. 2013). Children without affected family members have a 0.3% risk for type 1 

diabetes (Bonifacio, Ziegler 2010) but this is population specific and in Finland 0.9% when 

calculated based on yearly incidence of 60 cases/100 000 children.  

The major genetic risk factors are the HLA class II region. In addition, around 50 loci outside HLA 

region contribute to the disease susceptibility, most of them revealed by genome-wide association  

studies (GWAS) (Pociot et al. 2010). 

2.2.1. Human leukocyte antigen (HLA) 

2.2.1.1. Structure and function of the HLA genes and molecules 

The major genetic determinants of type 1 diabetes reside in the HLA region within the major 

histocompatibility complex (MHC), containing many genes related to the functions of the immune 

system. The first report on genetic association between the MHC and T1D was published in 1973 

(Singal, Blajchman 1973) and HLA studies have thereafter contributed much to the understanding 

of this disease. The HLA complex is located on the short arm of chromosome 6 and approximately 

3.6 million base pairs (Mb) long. Molecular products encoded by HLA genes are involved in 
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immune regulation and cellular differentiation. The region contains more than 200 identified genes, 

over half of which predicted to be expressed. Of these, an estimated 40% are involved in immune 

responses, with a tendency for clustering by function. The HLA region is divided in three groups of 

genes: class I, class II and class III, with the class II loci at the centromeric end of the region and the 

class I loci at the telomeric end (Bodmer 1987). The class III genes are structurally and functionally 

different from two other classes, but class III name is often used due to their location on 

chromosome 6 between class I and class II region (Figure 2). While HLA class I molecules are 

present as transmembrane glycoproteins and expressed on the surface of all nucleated cells but to 

varying degrees. Class II molecule expression is restricted to B lymphocytes, dendritic cells, 

macrophages and activated T lymphocytes. Both HLA class I and class II molecules are involved in 

the presentation of antigens to T cells. Class I molecules present cytosolically derived intracellular 

peptides to the T cell receptor of CD8+ (cytotoxic) T cells. When the peptides are pathogen derived, 

this can lead to an immune response resulting in the killing of the infected cell. The class I 

molecules are additionally involved in innate immune responses by operating as ligand for natural 

killer cell receptors including inhibitory receptors. In contrast, class II genes are normally expressed 

by a subgroup of immune cells called antigen presenting cells (APC) that includes B cells, 

macrophages, dendritic cells and thymic epithelial cells, where they present peptide-fragments from 

exogenous antigens to CD4+ T-cells. The HLA proteins are more polymorphic that any other 

protein in the human genome, having the ability to bind a wide range of peptides. Different HLA 

molecules have slightly different peptide-binding structure and different HLA molecule thus bind to 

and present different peptides to T cells (Morran et al. 2015). 

 

Figure 2. A schematic map of the HLA region with limited number of genes. Distance between loci 

are approximate. 
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The normal function of class I proteins is a presentation of peptides from expired or defective. The 

proteins encoded in the class I region include the classical molecules HLA-A, -B, -C which encode 

the α-polypeptide chains of the class I molecules. The heavy; α chain (about 45 kDa) is anchored to 

the cell membrane. The HLA class I α-chains have typical structure: different domains of the 

protein are encoded by different exons, thus α1, α2, α3 extracellular domains are encoded by exons 

2, 3 and 4, a transmembrane region and cytoplasmic chain (Figure 3). The water-soluble light β-

chain (12kDa) of the class I molecules is the non-polymorphic beta2-microgobulin (β2m) encoded 

by a gene outside the HLA region in chromosome 15. Typically, 8-10 amino acids length peptides 

can bind into the groove (Figure 5). The high polymorphism in the HLA-A, -B and -C region arises 

mostly of the exons 2 and 3 nucleotide substitutions (Klein, Sato 2000, Marsh, Parham 2001). 

By contrast, non-classical HLA-E (HLA-E), -F (HLA-F) and -G (HLA-G) genes are oligomorphic 

in their coding sequences (Table 1). 

Figure 3. Schematic pictures of the HLA class I gene (Modified from Marsh, Parham 2001).  

The HLA class II locus is located in the 6p21.3 region and contains approximately 700 kb. It 

consists of over 30 genes loci including the major class II structural genes encoding DP, DQ and 

DR molecules. There is strong linkage disequilibrium between the different HLA alleles, especially 

between the DR and DQ loci. Specific alleles of especially these two loci show strong associations 

with various autoimmune diseases. 

Class II molecules consists of two polypeptide chains, α (about 33-35kDa) and β (about 26-28kDa), 

encoded by the A and B genes, respectively. 
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Figure 4. Schematic pictures of a HLA class II gene (Modified from Marsh, Parham 2001). 

 
Figure 5. Structure of HLA class I and II molecules (Modified from Marsh, Parham 2001). 
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The α and β chains have two extracellular domains (α1, α2 and β1, β2), a transmembrane region and 

a cytoplasmic tail (Figure 4 and 5). The polymorphism of HLA class II originates from the α and 

the β chains, which are non-covalently bound together. The peptide binding-groove is formed by α1 

and β1 domains together, in DQ and DP molecules the domains of both chains are polymorphic but 

in the DR molecule the α chain is not polymorphic in the peptide binding region (Williams 2001). 

The groove is open at both ends, which allows longer peptides to bind. Peptides bound by HLA 

class II molecules are thus generally longer than peptide bound by HLA class I molecules. The 

amino acid changes modify the peptide-binding specificity by altering the shapes of the antigen-

binding groove. In contrast to DR, DQ and DP the polymorphism found in the HLA-DM and HLA-

DO region is limited. In addition to the functional class II genes there are also class II pseudogenes, 

such as DQA2 and DQB2 within the region. The number of different alleles discovered for the 

highly polymorphic HLA loci has been increasing steadily. According to the IMGT/HLA database 

(http://www.ebi.ac.uk/imgt/hla/stats.html) over 18 000 unique allele sequences have been reported 

in HLA in 2018, over 13 000 alleles in class I and over 4800 class II alleles has been described 

(Table 1).  

Table 1. Extent of polymorphism in HLA class I and class II (data content from the IMGT/HLA 

2018 database). 
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HLA-DR is rather complex in structure as it consists of several functional β-chain genes as well as 

pseudogenes (HLA-DRB2, -DRB6, -DRB7, -DRB8 and -DRB9). HLA-DRB3, -DRB4, and -DRB5 

all produce a functional DRβ chain that can dimerize with the product of DRA1 gene. The DRB1 is 

found on all copies of chromosome 6, but the other three (as second locus DRB3, DRB4 and 

DRB5) functional genes are only present on some chromosome, dependent on the DRB1 gene on 

the chromosome. Allelic variants of DRB1 are linked with either none or one of the genes DRB3, 

DRB4 and DRB5 (Noble 2015).  

The class III region is the most gene-dense part of the human genome which contains about 60 

expressed genes. Many of these are also participating the innate immune system, encoding 

inflammatory cytokines, stress response proteins and complement factors (Klein, Sato 2000, Turner 

2004). 

2.2.1.2. HLA variation in T1D 

Diversity of HLA molecules may arise partly due to point mutations and also more frequently due 

to mechanisms as gene conversion. Many polymorphism in HLA genes leads to nonsynonymous 

amino acid changes in the peptide-binding groove of HLA molecules, that indicates a strong 

selection pressure on the peptide-binding groove and the importance of the HLA-peptide 

interaction. Interestingly, in people who are heterozygous at each of the six class I and class II HLA 

loci, it has been estimated that an APC could theoretically present over 1012 different peptides. The 

HLA-peptide-T cell receptor binding has been of particular interest in the context of different 

autoimmune diseases including T1D. A common feature of these diseases is tissue damage related 

to the presence of autoreactive T cells that escape both negative selections in the thymus and 

peripheral tolerance mechanisms. However, it remains to be determined whether autoreactive T 

cells are directly generated and activated by the mechanisms such as atypical HLA-peptide- T cell 

receptor binding orientation; low affinity peptide binding that facilitates thymic escape, T cell 

receptor-mediated stabilization of weak peptide-HLA interaction and presentation of peptides in a 

different binding register. Other mechanisms that may generate and activate autoreactive T cells are 

likely to be driven by epitope variation, including molecular mimicry; post-translational epitope 

modification and generation of hybrid peptides, and HLA stability may play an important role in 

T1D (Dendrou et al. 2018). 
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2.2.1.3. The nomenclature of HLA alleles 

Two system of the nomenclature are applied to HLA. The first system was formed in 1965 and was 

based on serological specificity. Antigens were eventually assigned letters and numbers. The 

modern HLA nomenclature started in 1987 with HLA- and locus name, then separator ʿ*ʾand 

specification of the allele. The first two digits specify the group of alleles as corresponding to the 

serological antigen. The older system stopped in this level, not completely differentiating alleles. 

The third and fourth digits identified the specific allele. Digits five through six denote any 

synonymous mutations within the coding frame of the gene. The seventh and eight digits 

differentiate the mutations outside the coding region. In addition, the last change in nomenclature 

system was in 2010, thence number of suffixes were used to identify expression level that were 

such as L (low expression), N (not expressed), Q (questionable expression), S (secreted molecule 

but is not present on the cell surface), A (aberrant expression) and those found only in the 

cytoplasm (C). From 2017, no alleles have been named with the ʿCʾ or ʿAʾ suffices. Thence 2010 

colons ʿ:ʾ were introduced as separators between pairs and digits. The completely described allele 

may be up to nine digits long, not including the HLA-prefix and locus notation to designate a 

specific allele at a given HLA locus (Figure 6) (Torres, Moraes 2011). 

All new and confirmatory sequences should now be submitted directly to the WHO Nomenclature 

Committee for Factors of the HLA System via the IMGT/HLA database using the sequence 

submission tool provided (http://www.ebi.ac.uk/ipd/imgt/hla/). 

 

Figure 6. HLA nomenclature (Modified from Torres, Moraes 2011).
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Fortunately, in most disease association studies the first two fields (four digits) such as allelic 

resolution or high resolution carrying the information on the amino acid sequence of the encoded 

protein also involve the important disease association (Kiviniemi et al. 2007). By contrast low 

resolution in DNA-based typing result at the level of the first filed (two digits) in the DNA based 

nomenclature (Nunes et al. 2011). Paradoxically, increased resolution of HLA genotyping can 

decrease statistical power of HLA disease association analysis by increasing the number of HLA 

subtypes (Noble, Erlich 2012). 

2.2.2. HLA class II region and genetic risk of type 1 diabetes 

An important aspect of the HLA region is the linkage disequilibrium (LD); it means nonrandom 

association of markers in various HLA loci. The strong LD means for example two specific alleles 

at two loci to be found together more often than expected based on their frequencies. The strong 

linkage disequilibrium complicates identification of the independent effects in the HLA region.  

The strongest association between T1D and HLA region is seen with haplotypes and genotypes 

found in the DRB1-DQA1-DQB1 loci where individual alleles are often found only in one or a few 

haplotypic combinations (Noble 2015, Noble, Valdes 2011). For instance the DRB1*03:01 is found 

linked to DQA1*05:01 and DQB1*02:01, to create the haplotype as DRB1*03:01-DQA1*05:01-

DQB1*02:01 often mentioned as DR3 haplotype and known to be risk haplotype for T1D.  

The high- and low-risk DR4 haplotypes differed at the DQB1 locus such as high-risk DQB1*03:02 

(DQ8) and low-risk DQB1*03:01 (DQ7). DQB1*03:02 encodes an Alanine whereas DQB1*03:01 

encodes an Aspartic acid (Asp) at codon 57 on exon 2. This lead to structural difference between 

DQB1 molecules and e.g. Asp at position 57 confers protection. This residue in pocket of the 

peptide-binding groove, contributes to a salt-bridge which is missing in the neutral or susceptible 

amino acids at same position (Noble, Erlich 2012, Todd, Bell & McDevitt 1987). The two most 

common DR4-DQ8 haplotypes the DRB1*04:01-DQA1*03:01-DQB1*03:02 and DRB1*04:04-

DQA1*03:01-DQB1*03:02 differ only at 71 and 86 amino acid positions (Lysine-Glycine vs 

Arginine-Valine) of DRB1 (Erlich et al. 2008). Position 86 contributes to pocket 1 while position 

71 contributes to pocket 4 and 7 of the peptide-binding groove. Among the DR4 haplotypes the 

DRB1*04:03-DQA1*03:01-DQB1*03:02 was found to protect against T1D, by contrast the 

DRB1*04:01-DQA1*03:01-DQB1*03:02 haplotype shows a high disease risk and DRB1*04:04-

DQA1*03:01-DQB1*03:02 a moderate one (Hermann, Knip et al. 2003, Hermann, Turpeinen et al. 

2003, Ilonen 2016, Noble 2015).  
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Four haplotypes such as DRB1*15:01-DQA1*01:02-DQB1*06:02, DRB1*15:01-DQA1*01:02-

DQB1*06:01, DRB1*14:01-DQA1*01:01-DQB1*05:03 and DRB1*07:01-DQA1*02:01-

DQB1*03:03 were associated with strong protection from T1D in white Caucasian population. The 

DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype is associated with strong protection from T1D, 

even in the presence of high-risk HLA alleles and/or T1D-associated autoantibodies. The 

DRB1*15:01-DQA1*01:02-DQB1*06:01 haplotype was very rare in Finnish population (Erlich et 

al. 2008, Ilonen et al. 2016, Thomson et al. 2007). The disease association of various HLA-DR2 

haplotypes expressing diverse linkage patterns of DRB1 and DQA1/DQB1 alleles or unusual 

DQA1/DQB1alleles in cis with the DRB1*15:01 allele suggests that protection from T1D maps 

largely to the DQA1*01:02 and DQB1*06:02 alleles, which together encode for the HLA-DQ6 

heterodimer. In contrast DRB1*14:01-DQA1*01:01-DQB1*05:03 was rather common in some 

Central European populations and Italians (approximately 11% in controls) and could this 

contributed to the low incidence of T1D in these countries (Hermann, Turpeinen et al. 2003). It is 

not known at which stages in the natural history of T1D development this haplotype affords 

protection (Pugliese et al. 2016). The HLA-DRB1-DQA1-DQB1 haplotypes define the major 

genetic effect for T1D risk (Table 2). 

Table 2. Selected susceptible and protective haplotype in the HLA class II region in the Finnish 

population (Ilonen 2016). 

Risk haplotypes in HLA region Odds ratio 
(95% CI) Risk factor 

DRB1*04:01-DQA1*03-DQB1*03:02 10.11 
(8.9-11.5) 

Strong 
susceptibility 

DRB1*04:05-DQA1*03-DQB1*03:02 (rare) 3.01 
(1.1-8.4) 

Strong 
susceptibility 

DRB1*04:04-DQA1*03-DQB1*03:02 2.8 
(2.4-3.3) 

Weak 
susceptibility 

(DR3)-DQA1*05-DQB1*02 2.8 
(2.5-3.2) 

Weak 
susceptibility 

Protective haplotypes in HLA region Odds ratio 
(95% CI) Risk factor 

DRB1*04:03-DQA1*03-DQB1*03:02 0.4 
(0.2-0.7) Weak protection 

(DR7)-DQA1*02:01-DQB1*03:03 0.08 
(0.05-0.2) 

Strong 
protection 

(DR15)-DQB1*06:01 (rare) 0.07 
(0.01-0.5) 

Strong 
protection 

(DR15)-DQB1*06:02 (common) 0.03 
(0.03-0.05) 

Strong 
protection 

(DR14)-DQB1*05:03 0.03 
(0.01-0.08) 

Strong 
protection 
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Four haplotypes such as DRB1*15:01-DQA1*01:02-DQB1*06:02, DRB1*15:01-DQA1*01:02-
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contributed to the low incidence of T1D in these countries (Hermann, Turpeinen et al. 2003). It is 
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DRB1*04:01-DQA1*03-DQB1*03:02 10.11 
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The individual risk is obviously affected by both inherited haplotypes in an additive manner without 

clear dominant or recessive effect although some specific interactions have been noted.  

The DR3/DR4 haplotypes combinations or more specifically DRB1*03:01-DQA1*05-DQB1*02 

and DRB1*04:01/02/04/05-DQA1*03:01-DQB1*03:02 heterozygous genotypes confer the greatest 

susceptibility to T1D, higher than homozygosity for either predisposing DR3 or DR4 haplotypes 

(Noble, Valdes 2011). The DR3/DR4 heterozygous genotypes can produce two heterodimers 

encoded in cis and two encoded in trans by product of DQA1*0301 from the DR4 haplotype 

combined with the product of DQB1*0201 from the DR3 haplotype, as well as the product of 

DQA1*0501 from the DR3 haplotype paired with the product of DQB1*0302 from DR4 haplotype. 

These trans molecules may be explanation for the high risk associated with heterozygous genotype. 

T-cell recognition of peptides bound to trans-encoded DQ heterodimers (i.e. DQA1*05:01 with 

DQB1*03:02 and DQA1*03:01 with DQB1*02:01) can differ significantly from the cis-encoded 

DQ (i.e. DQA1*05:01-DQB1*02:01 and DQA1*03:01-DQB1*03:02) molecules thus increasing 

the variability in T-cell repertoire (Erlich et al. 2008). In Caucasian populations up to 90% of T1D 

patients carries of DR3 or DR4 haplotype while DR3/DR4 is reported between 30-50% (Noble, 

Erlich 2012). However, DR4-DQ4 (DRB1*04:05-DQB1*04:01), DR9 (DRB1*09:01-

DQB1*03:03) and DR8 (DRB1*08:02-DQB1*03:02) have been reported to be highly susceptible 

haplotypes among Japanese (Katahira et al. 2008). The absence of the DR3 and DR4-DQ8 

haplotypes may contribute to lower incidence for T1D in Japan.  

In fact, the T1D disease risk is most likely caused by combination of DR and DQ molecules (Erlich 

et al. 2008) and additionally the third type of classical HLA class II molecule DP encoded by the 

DPA1 and DPB1 genes seems to affect the disease risk. Both HLA DPA1 and DPB1 loci are highly 

polymorphic (Table 1). The DPA1*01:03-DPB1*03:01 and DPA1*01:03-DPB1*02:02 haplotypes 

have been associated with susceptibility and DPA1*01:03-DPB1*04:02 with a protective effect 

with T1D (Varney et al. 2010).  

2.2.3. Genetic risk for type 1 diabetes associated with polymorphism of MHC class I genes 

HLA-A, HLA-B and HLA-C 

While the alleles of class II HLA genes appear to have strongest association with T1D, several 

studies have shown additional associations between T1D and HLA class I gene alleles (HLA-A at 

30Mb, HLA-B at 31.4Mb) independently from the HLA class II regions (HLA-DRB1 and HLA-
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DQB1) which modify the susceptibility to the disease (Nejentsev et al. 2007, Noble et al. 2002, 

Noble et al. 2010, Mikk et al. 2014, Mikk et al. 2017, Valdes, Erlich & Noble 2005).  

Three loci (HLA-A, HLA-B and HLA-C) in the HLA class I region are extremely polymorphic 

(Table 1) in the exons 2 and 3 encoding the α1 and α2 domains of the protein (Figure 3 and 5), 

which form the peptide-binding groove. 

Some alleles of the HLA class I region have shown the association both at serological and at allele 

level with T1D, including the A*24, B*18 and B*39, with and also without connection to the HLA 

DR-DQ region. The B*39:06 allele appears to be the most highly predisposing (exclusively on DR8 

haplotype) and B*57:01 alleles with greatest protective effect of class I alleles with T1D. Other 

significantly T1D associated alleles include as predisposing A*24:02, A*02:01, A*02:02, B*18:01, 

and C*05:01 and with protective effect A*11:01, A*32:01, A*66:01, B*07:02, B*44:03, B*35:02, 

C*16:01 and C*04:01 (Baschal et al. 2011, Mikk et al. 2014, Nejentsev et al. 2007, Noble et al. 

2002, Noble et al. 2010, Reijonen et al. 1997, Valdes, Erlich & Noble 2005).  

HLA class II molecules are involved in the initial antigen presentation event and in triggering the 

immune response. These may thus affect the initial events in development of the T1D. On the other 

hand, HLA class I molecules, given the role in target-cell recognition by CD8+ cytotoxic T 

lymphocytes, play a role in ongoing immune response and might affect the rate of pancreatic beta-

cell destruction (Noble et al. 2002). This is supported by the significant association of the HLA-

A*24:02, HLA-B*18:01 and HLA-B*39:06 with early disease onset in patients with highest risk 

DR3/DR4 genotype (Noble et al. 2002, Valdes, Erlich & Noble 2005). The HLA-A*24 has been 

reported to be linked with total beta-cell destruction (Nakanishi et al. 1993) and also with rapid 

progression of autoimmunity to clinical disease (Nakanishi et al. 1999). By contrast the HLA-A*03 

and HLA-B*44:03 have been associated with protection in different Caucasian populations. The 

HLA-B*44:03 allele was associated also with older age at disease onset (age>15.1 years) (Noble et 

al. 2002, Valdes, Erlich & Noble 2005).  

HLA-B*39 has been found predisposing on DRB1*04:04-DQA1*03-DQB1*03:02 and (DR8)-

DQB1*04 haplotypes in Finland. Most significant effect was found in the (DR3)-DQA1*05-

DQB1*02/DRB1*04:04-DQA1*03-DQB1*03:02 and (DR3)-DQA1*05-DQB1*02/(DR8)-

DQB1*04 genotypes. The HLA-B*39 increased the DRB1*04:04-DQA1*03-DQB1*03:02 

haplotype risk and changed the risk level associated with (DR8)-DQB1*04 haplotype from 

neutral/slightly protective to a predisposing one. In other haplotypes B*39 alleles were rare
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hand, HLA class I molecules, given the role in target-cell recognition by CD8+ cytotoxic T 

lymphocytes, play a role in ongoing immune response and might affect the rate of pancreatic beta-
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reported to be linked with total beta-cell destruction (Nakanishi et al. 1993) and also with rapid 

progression of autoimmunity to clinical disease (Nakanishi et al. 1999). By contrast the HLA-A*03 

and HLA-B*44:03 have been associated with protection in different Caucasian populations. The 

HLA-B*44:03 allele was associated also with older age at disease onset (age>15.1 years) (Noble et 
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haplotype risk and changed the risk level associated with (DR8)-DQB1*04 haplotype from 
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(Mikk et al. 2017, Reijonen et al. 1997). The increasing effect of B*39 on DRB1*04:04-

DQB1*03:02 conferred risk was also found in other populations in Baltic region (Nejentsev et al. 

1997). 

In the C locus eight alleles remain significantly associated with T1D in Caucasian multiplex 

families such as C*03:03, C*03:04 and C*07:01 with predisposing effect and C*04:01, C*06:02, 

C*07:02, C*08:02 and C*16:01 alleles with protection. The C*07:01 alleles also found on 

DRB1*04:04-DQB1*03:02 risk haplotype with strong LD (Valdes, Erlich & Noble 2005). 

2.2.4. Genes in the “HLA class III” region 

The HLA class III region is a 700 kb sequence located between the centromeric class II (HLA-

DRA) and the telomeric class I regions (MICB). This region does not encode HLA molecules but is 

extremely gene-dense region encoding over 60 genes, resulting multiple molecules in the human 

genome. These include several secreted proteins with immune functions: components of the 

complement system (such as C2, C4, factor B), cytokines (such as TNFα, LTA and LTB), hormonal 

synthesis (steroid 21-hydoxylase, CYP21), heat shock proteins (HSPA1A, HSPA1B, HSPA1L) and 

extracellular matrix organization members (immunoglobulin superfamily) (Valdes, Thomson & 

Barcellos 2010). Encoded within the region is also BAT1, which belongs to the DEAD-box 

(aspartic acid-glutamic acid-alanine-aspartic acid) family of RNA-dependent ATPase (Price et al. 

2004). Some polymorphisms are seen in the region that encodes a negative regulator of the 

inflammatory cytokines TNFα, which influences development of T1D (He et al. 2014). Nowadays, 

the HLA class III region has been completely defined and there is growing evidence that many of 

these genes are involved in susceptibility to a number of diseases (Milner, Campbell 2001). 

2.2.5. Microsatellite markers 

Microsatellites (Msats), or Simple Sequence Repeats (SSRs), consist of short tandem repeats 

(STRs); sort units of 1-10 base pairs in length of the DNA sequences, which are abundantly 

distributed across genomes and demonstrate high level of allele polymorphism. Msats are 

ubiquitous in prokaryotes and eukaryotes, present even in the smallest bacterial genomes. Msats can 

be found anywhere in the genome, both in protein-coding and noncoding regions. Because of their 

high mutability, microsatellites are thought to play a significant role in genome evolution by 

creating and maintaining quantitative genetic variation. In promoter regions, the length of Msats 
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may influence transcriptional activity. 

Although the first microsatellite was characterized in 1984 by Jeffreys and colleagues as a 

polymorphic GGAT repeat in the human myoglobin gene the term “microsatellite” was introduced 

in 1989, by Litt and Luty, where “satellite” was used due to the fact that density gradient 

centrifugation separates DNA fragments with repetitive sequences into the upper “satellite” fraction 

with less density (Abdurakhmonov 2016). As genetic markers, microsatellites have been 

extensively studied in DNA-based genetic analyses in the past 34 years. In Pubmed database search 

with the keyword “microsatellite” found almost 55 000 research publication. However, searching 

for microsatellite and type 1 diabetes-related articles, only 282 articles has been published, the last 

publication in human studies by Steck and coworkers was in 2014 (Steck et al. 2014). Microsatellite 

markers are inherited from both parents, making them useful for parentage analysis and population 

genetic studies. 

Microsatellite repeats typically exist between twenty and a few hundred bases. There are more than 

one million Msats loci (approximately 3% of the human genome) in the human genome and 

majority of them are dinucleotide repeats (~30%) (Sawaya et al. 2013). Seventy six percent of the 

human microsatellites repeats are A, CA, AAAN, AAN or AG. The most frequently appearing 

repeat is (CA)n, which occur every 30 kbp around the hole genome in humans; both in protein-

encoding and noncoding DNA, thereby this is the most commonly used microsatellite for the 

analysis, followed by (AT)n, (GA)n, (GC)n, the last type being rare (Ellegren 2004). Polymorphism 

of a microsatellite depends on variation of the numbers of repetitions, numbers of alleles and also 

their distribution in the different populations. Parameters as the polymorphism information content 

(PIC) or percentage of the heterozygosity, calculated from the number of alleles and their 

frequencies in a population, have been used to classify microsatellites. A marker is considered as 

reasonably informative when the number of alleles is greater than five and the PIC or 

heterozygosity value above 0.75 (Foissac, Cambon-Thomsen 1998). 

Number of known microsatellites in the HLA region is over than 1500 (846 in HLA class I, 295 in 

HLA class III and 386 in class II) and still increasing. Of them, more than 280 microsatellites were 

developed as genetic markers (146 in HLA class I, 61 in HLA class III and 61 in HLA class II). 

Allele sizes of the microsatellites in the HLA region has been varying between 79-473bp (Foissac, 

Cambon-Thomsen 1998, Foissac, Salhi & Cambon-Thomsen 2000, Shiina et al. 2009). The 

polymorphic microsatellite markers through the HLA region have been applied for exact mapping 

of disease-related genes within the HLA region in linkage and in disease susceptibility studies, and  
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also population, transplantation, and recombination studies (Foissac, Cambon-Thomsen 1998). 

Names of microsatellites in the MHC region were reorganized and renamed by Gourraud (Gourraud 

et al. 2004, Gourraud et al. 2006) by sequence based analyses. Detailed microsatellite marker 

information is available at the dbMHC database of the NCBI: 

(http://www.ncbi.nlm.nih.gov/gv/mhc/xslcgi.cgi?cmd=mssearch). 

TNFα is a major proinflammatory cytokine encoded within HLA class III region which is involved 

in the islet β-cell destruction (Milner, Campbell 2001). A functional single nucleotide 

polymorphism (SNP) (TNFα -308 G/A) was identified in the promoter region of the human TNF 

gene. The TNFα -308A allele has been reported to associate with higher promoter activity (Green, 

Trial & Birdsall 1998) and also higher TNF expression in peripheral blood mononuclear cells (Das, 

Baniasadi & Kapuria 2006). Linkage disequilibrium between HLA genes and tumor necrosis factor 

(TNF) microsatellite was described in 1991 (Jongeneel et al. 1991) and the D6S273-TNFα region 

was found to be in stronger linkage disequilibrium in T1D patients with carrying high-risk 

haplotype on DR-DQ region than in control population (Hanifi-Moghaddam et al. 1998). The 

studies on association of TNFα polymorphism with T1D have, however, produced contradictory 

results. The TNFα -308 G/A was associated with T1D in several, but not in all studied populations 

(Deng et al. 1996). TNFα was found to be in LD with HLA DR3-DQ2 haplotypes that confer 

susceptibility to T1D among Caucasians in several populations (Javor et al. 2010, Törn et al. 2006,) 

and also among Brazilian patients (Patente et al. 2015). On the other hand, in North Indians (Kumar 

et al. 2007) and Moroccans (Bouqbis et al. 2003) divergent results were published. In addition 

THNFα*106 also TNFc microsatellite allele 167 has been found to define disease risk in HLA-

DR3-DQ2 haplotypes independently of other markers in Sardinian population (Zavattari et al. 

2001). 

A novel family of the human MHC class I genes termed MICA has been located telomeric to the 

TNFα, centromeric of HLA-B gene and ~2Mb telomeric of HLA-DRB1. MIC proteins are 

considered to be markers of “stress” and expressed on the on the freshly isolated gastric epithelium, 

endothelial cells, fibroblasts and found many cells within the immune system but not present on 

CD4+ and CD8+ T cells or B cells. The highly polymorphic MIC genes only with one polymorphic 

position (alleles with methionine at codon 129) have 10-50 fold higher capacity to complex 

NKG2D than a valine at the same position. Only two of seven MIC loci MICA and MICB encode 

expressed transcripts, other five are pseudogenes (MICC, MICD, MICE, MICF and MICG). The 

MICA locus encodes membrane-bound polypeptides of 383-389 amino acids (length depend of 

number of alanine repeats in the transmembrane region, within humans more than 50 different
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alleles). MICA molecules show homology with HLA class I molecules, but they do not combine 

with β2 microglobulin, do not bind peptides and are not expressed on the normal circulating 

lymphocytes. MICB is less polymorphic with 17 different alleles (Collins 2004). The most studied 

polymorphism is a short tandem repeat (STR) in the transmembrane domain of MICA (STR 

MICA). STR MICA is a GCT repeat microsatellite in MICA exon 5 and named based by the 

number of repeats (4, 5, 6, 7, 8, 9 and 10 repetitions). The STR MICA allele 5.1 is the most 

common allele (approximate frequency 0.5) in European populations which contains five GCT 

repeats and a G insertion (GGCT) that causes a frame shift, leading to a premature stop codon and 

cut of the cytoplasmic tail. MICA alleles have been reported to influence the risk for the T1D 

(Gambelunghe et al. 2007, Gupta et al. 2003). The STR MICA*5 and STR MICA*5.1 alleles were 

transmitted more frequently together with DQ8 and MICA*5.1 also with DQ2 haplotype in families 

samples (Nikitina-Zake et al. 2004). In several Caucasian populations like Swedish, Belgians and 

Latvians and also Asian Indians MICA*5 allele was found associated with T1D and MICA*6 

negatively associated with the disease (Gupta et al. 2003, Roach et al. 2006, Sanjeevi et al. 2002, 

Shtauvere-Brameus et al. 2002, Van Autreve et al. 2006). In Koreans and Japanese patients 

MICA*4 alleles was present at a higher frequencies, whereas allele 6 was present at a lower 

frequency (Kawabata et al. 2000, Park et al. 2001).  

The microsatellite locus D6S273 centromeric of TNF, and it is ~200 kb in size. Result of a case-

control study suggested an association between marker D6S273 and type 1 diabetes. D6S273*2 

(130bp length) allele has been conferred susceptibility on the DRB1*04:01 haplotype (Hanifi- 

Moghaddam et al. 1998, Lie et al. 1999) however Johansson and coworkers found also the 

D6S273*2 (130 bp length) are associated with T1D in family materials otherwise these association 

was independent of HLA DQ2-DR3 contributions (Johansson et al. 2003). The D6S273*138 and 

has been found to define disease risk in HLA-DR3-DQ2 haplotypes independently in Sardinian 

population (Zavattari et al. 2001). 

The MIB microsatellite near the HLA-B locus (~25kb centromeric to HLA-B) has been shown to be 

in linkage disequilibrium with TNF microsatellites (Grimaldi et al. 1996).  

The D6S2223 is located ~5.5Mb telomeric of HLA class II locus. D6S2223*3 associated with a 

reduction of T1D risk of DRB1*03-DQA1*05:01-DQB1*02:01 (DR3-DQ2) haplotypes in family 

analysis in different populations (Johansson et al. 2003, Lie et al. 1999). 

Alleles of microsatellite loci D6S105 and D6S265 on the telomeric side of chromosome 6 are in 
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linkage disequilibrium with HLA class I alleles in the common European population haplotypes 

(Worwood, Raha-Chowdhury & Darke 1994).  

2.2.6. T1D susceptibility genes outside the HLA region 

2.2.6.1. Insulin gene polymorphism 

In the early 1980s, the insulin gene (INS) was identified as the first non-HLA locus linked to T1D 

susceptibility in numerous studies and different populations. INS is located on chromosome 

11p15.5 designated as IDDM2, encompasses 1430 base pairs (bp), consists of three exons and two 

introns and encodes preproinsulin, the precursor of mature insulin. Preproinsulin is processed to 

proinsulin by removal of the signal peptide and then to mature biologically active insulin by 

removal of the C-peptide. A variable number of tandem repeat minisatellite (VNTR) region consist 

of 14 to 15 bp consensus sequence (5´-ACAGGGGTGTGGGG-3´) located 596 bp upstream of the 

INS gene, contains three classes of alleles according to the number of repeats involved. The shorter 

class I VNTR alleles contains 26-63 repeats, class II with 64-140 repeats and long class III alleles 

141-209 repeats (Barratt et al. 2004, Durinovic-Bello et al. 2010). About 80% of Caucasoid alleles 

are between 30-44 repeats (class I) and rest are longer than 110 repeats in class III. Haplotypes of 

the VNTR class III alleles and neighboring variants have been divided into two protective lineages 

as protective haplotype and very protective haplotype, which correspond to VNTR class IIIA and 

IIIB subclasses (Stead et al. 2000). Intermediated lengths (class II) alleles are very rare in 

Europeans derived populations (Bennett et al. 1995). The class I alleles of the INS VNTR 

associated with the T1D risk with lower insulin mRNA and protein expression in the thymus, 

compared with the dominant protective class III alleles (Stead et al. 2000, Vafiadis et al. 2001). The 

VNTR regulates transcription rates of insulin and its precursors. Class I and class III alleles 

differentially affect transcription of insulin in the thymus and pancreas. Class III alleles result in 

20% increased INS transcription of insulin in thymus and may thereby be associated with more 

efficient negative selection of insulin reactive T cells and less susceptibility to T1D as compared to 

class I alleles providing an attractive model for the role of the insulin gene in susceptibility to T1D. 

The −23HphI (rs689) SNP with +1140A/T alleles are in linkage disequilibrium with VNTR, 

therefore A allele with the short class I and T allele with the long class III can be used as alternative 

markers for VNTR classes. In addition, the C allele of −2221MspI (rs3842729) is in LD with the 

VNTR class I and subclass IIIB, whereas the T alleles represents subclass IIIA. Individuals with T 

allele of these two SNPs have a reduced risk of T1D (Zhang et al. 2015).  
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2.2.6.2. CTLA-4 and PTPN22 gene polymorphisms 

The cytotoxic T-lymphocyte antigen-4 gene (CTLA-4) known as IDDM12 is located with CD28 on 

the long arm of chromosome at 2q33. CTLA-4 consists of four exons and three introns and encodes 

a costimulatory molecule, which is expressed on the surface of activated T cells. CD28 involved in 

the regulation process of the activation of T cells by antigen-presenting cells and subsequent 

cellular immunity (Magistrelli et al. 1999). The CTLA-4 bound with higher affinity for the B7 on 

the antigen presenting cells than CD28. Common polymorphisms have been described both in the 

coding and promoter regions of the CTLA-4 gene. The most common polymorphism described in 

the coding region in 1st exon which leads to an alanine→threonine substitution (+G49A, rs231775) 

in the single peptide. The disease associated G allele is shown to reduce the CTLA-4 driven 

negative regulation of T-cell activation (Wang et al. 2014). The association between the CTLA-4 

gene region and T1D was reported first by Nistico et al. in 1996 (Nistico et al. 1996). In addition to 

T1D, the CTLA-4 +49A/G polymorphisms have been associated with other autoimmune diseases as 

Addison’s disease and rheumatoid arthritis, celiac- and Grave´s diseases (Xuan et al. 2013). 

Another common polymorphism located at 3´-UTR (G6230A, C60T, rs3087243) has also been 

found associated with T1D susceptibility. These two common polymorphisms were studied in meta-

analysis, involved 58 different studies with more than 30 000 cases and more than 40 000 controls. 

The result demonstrated that the G49A and C60T polymorphisms of the CTLA-4 gene being in 

strong linkage are a risk factor for developing T1D in Caucasians and Middle Eastern populations, 

but no association was found in Africans (Wang et al. 2014).  

The protein tyrosine phosphatase 22 gene (PTPN22) is located at 1p13.3-p13.1 and it encodes the 

lymphoid tyrosine phosphatase (LYP), which is important down-regulation of the immune 

response. Protein tyrosine phosphatases such as LYP are responsible preventing spontaneous T cell 

activation and they have the ability to prevent the response to antigen by dephosphorylating and 

inactivating T cell receptors. It has been demonstrated that single nucleotide polymorphism (SNP) 

in the PTPN22 gene can lead to susceptibility to autoimmune diseases such as T1D, Addison´s 

disease, rheumatoid arthritis, Grave’s disease by decreasing in negative regulation of hyper-reactive 

T cells (Hermann et al. 2006, Noble, Erlich 2012). The association between the PTPN22 and T1D 

was described at first by Bottini and coworkers in 2004 (Bottini et al. 2004). They described and 

analyzed SNP at position 1858 (rs2476601) at codon 620 of LYP, which encodes arginine (1858 

allele C) or tryptophan (1858 allele T) (Xuan et al. 2013). The 1858T allele frequencies showed 

geographic differences in different populations. In European countries, there is a south to north 

gradient in allele frequencies, from 2-3% in Italian and Sardinian populations (Saccucci et al. 2008), 
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7-8% Western populations (Zhernakova et al. 2005) up to 10-15% among Scandinavians (Nielsen et 

al. 2007) and Finns (Hermann et al. 2006).  

2.2.6.3. New generation of genetic studies in Type 1 Diabetes 

A new generation of genetic studies is in progress. By the year 2000, a draft of the human genome 

sequence was completed. At that time the genome-wide association studies (GWAS) was provided 

for better resolution using high-density single-nucleotide-polymorphism (SNPs) throughout the 

genome. These have been widely used to define genes affecting different complex disorders, 

including inflammatory bowel disease, multiple sclerosis, Type 2 diabetes and Type 1 diabetes in a 

hypothesis-free context. GWAS compare common genetic variants in large numbers of affected 

cases to those in unaffected controls to determine whether an association with disease exists. Due to 

the big number of studied polymorphisms a very high p values for genome wide significance are 

needed. For example the GWAS performed by the Immunochip genotyping p value less than 5x10-8 

is needed to identify new T1D-associated loci (Pociot 2017).  

Nowadays, more than 3000 publications are catalogued by the National Human Genome Research 

Institute and the European Bioinformatics Institute (GWAS catalog 

http://www.genome.gov/gwastudies). The Catalog is a quality controlled, manually curated and 

literature-derived collection of all published GWAS assaying at least 100 000 SNPs (p values<10-5). 

The GWAS studies predominantly test for association of common SNPs, with minor allele 

frequency higher than 5 %. The GWAS Catalogue reports 64 SNPs associations for T1D, but 

notably the disease-causing variants and genes are still largely unknown. The leading role in these 

studies belongs to International Consortia, which process individual DNA samples from various 

cohorts; among the main leaders have been the International Type 1 Diabetes Genetics Consortium 

and the Welcome Trust Case Control Consortium, all study populations were of European ancestry 

(Pociot 2017). 

In 2007, primary result of the first successful GWAS in seven different multifactorial diseases, 

included 14 000 affected individuals from United Kingdom, 2000 with each disease. For 

comparison, two sets of control groups, each containing 1500 individuals were used. All study 

subject were genotyped using the same Affymetrix GeneChip 500K array. Results of analyzed data 

showed significant association between T1D and six regions on four different chromosomes 

(12q24, 12q13, 16p13, 18p11, 12p13 and 4q24) by the Wellcome Trust Case Control Consortium 

(Wellcome Trust Case Control Consortium 2007).  
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The largest of these studies, completed in 2010, was the Type 1 Diabetes Genetics Consortium 

(TIDGC). T1DGC is an international, multicenter research program established in 2002, by adding 

about 4000 affected sib-pair families (ASP) and more than 2600 controls from the same collections 

and used the Illumina 550K platforms in these studies. The main goals of T1DGC are to identify 

genomic regions and candidate genes whose variants modify the individual risk of T1D and help 

explain the clustering of the disease in families and expand the genetic resources for T1D research. 

Therefore four major research projects have been performed: particular examination of the HLA 

region by SNPs genotyping and high-resolution HLA typing; detailed investigation of published 

candidate genes; genome wide linkage scan and a GWAS and meta-analysis (Pociot et al. 2010). 

The GWAS has inherent limitations. GWAS applies a non-candidate gene approach, and it is 

hypothesis-free and thus false positive results also easily arise. Most of the disease-associated SNPs 

map within the non-coding regions of the genome with high linkage disequilibrium with the 

functional SNPs. In addition, many significant SNPs identified by GWAS have relatively moderate 

or low risk in themselves, with the odds ratio between 1.1-1.3. However, despite the relatively weak 

effects, in combination with other clinical and pathological predictors, genotyping these 

susceptibility SNPs could be useful addition to assess disease risk and progression.  

The next generation of genome-wide studies is underway, identifying additional variants at both 

known and novel loci. These studies based on high-density genotyping arrays, fine-mapping of 

known loci, sequencing of whole genomes and whole exomes, and integrating sequence results with 

functional studies. 

In contrast to GWAS, studies in individuals with extreme phenotypes have often detected rare 

variants in coding regions within large functional effects. Since, 2005, next generation DNA 

sequencing platform such as whole exome sequencing (WES) is a highly effective approach in 

discovering genes underlying multifactorial disease. More than 95% of the analyzed 20 000 single 

nucleotide variants are already known as polymorphism in human population (Mohlke, Scott 2012).   

Therefore, follow-up deep sequencing and functional studies are required to ascertain the biologic 

mechanisms. 
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2.3. Addison’s disease 

2.3.1. Addison’s disease pathogenesis and etiology 

Addison’s disease (AD) or primary adrenal insufficiency is a disorder characterized by the damage 

of the adrenal cortex and deficiency in corticosteroid production as glucocorticoid (primarily 

cortisol) and mineralocorticoid (primarily aldosterone) hormones (Oelkers 1996). Addison’s disease 

was described at first by Thomas Addison in his classical paper “On the Constitutional and Local 

Effects of Disease of the Supra-Renal Capsules” in 1855 (Løvås, Husebye 2005). In 1949, the 

synthesis of cortisone allowed the treatment of the condition (Brandão Neto, de Carvalho 2014). 

Humoral and cellular immunity play roles in autoimmune AD pathogenesis. Environmental 

triggers, such a viral infections, drugs, smoking, food and stress could play role in genetically 

predisposed individuals (Brandão Neto, de Carvalho 2014).  

The symptoms of the primary adrenal insufficiency develop when 90 percent of the adrenal cortex 

has been damaged. These are fatigue, reduced appetite with weight loss, joint and back pain and 

also most of the patients’ experience salt craving and dizziness. Increased excretion of water can 

lead to dehydration and low blood pressure. The most conspicuous sign is the hyperpigmented skin, 

especially in sun-exposed areas, also in palmar creases and oral mucosal surfaces, which is caused 

by the elevated adrenocorticotropic hormone (ACTH) and renin levels. Typically, the serum cortisol 

level is below the normal range (Mitchell, Pearce 2012). Low serum aldosterone level, elevated 

plasma renin concentration or activity, and low dehydroepiandrosterone sulphate levels can further 

verify the diagnosis. The presence of the anti-21-hydroxylase antibodies is diagnostic for the 

autoimmune etiology (Falorni et al. 1995). Most of the patients have uncertain symptoms for many 

years before the diagnosis, by contrast, others progress more acutely (Myhre et al. 2002). 

Treatment involves replacement of the deficient hormone. The untreated AD leads to death, hence 

the early recognition is extremely important, because many patients die undiagnosed. The well-

treated patients may live close to a normal life and they have a normal survival rate (Bergthorsdottir 

et al. 2006). 

Autoimmune AD is a part of an autoimmune polyendocrine syndrome (APS) in 60% of patients. 

APS-I is identified in only 5-10 % of patients with autoimmune AD in most populations. However, 

APS-I has been found to be more common in Finland and Sardinia (Napier, Pearce 2012). APS-II is 

defined as a combination of AD with autoimmune thyroid disease (Hashimoto´s thyroiditis or 

Graves´ disease) and/or type 1 diabetes and presents in approximately 50 % of individuals with
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primary adrenal failure (Falorni et al. 2004, Myhre et al. 2002). The cross-sectional studies 

suggested that 50-60% of the patients with autoimmune AD have other one or more additional 

autoimmune disorder, most commonly autoimmune thyroid disease (about 30% of the AD cohort) 

and/or type 1 diabetes (10% of the AD patients develop) (Falorni et al. 2004, Myhre et al. 2002). 

Several other autoimmune diseases may also be present in the syndrome. 

2.3.2. Epidemiology 

In 1968 the prevalence of the Addison’s disease was 39 in a million (Mason et al. 1968). The 

overall prevalence estimated to be between 40-60 people per million of the general population in 

worldwide. Nowadays the prevalence of the AD disease is increasing, reported incidence between 

110-140 cases per million in European populations, making it 30-fold less prevalent than T1D 

(Mitchell, Pearce 2012). Prevalence of the AD is in various population is different: lowest in New 

Zealand with 0.45 per 100 000 inhabitants (Eason et al. 1982), in United States and in Japan 5 cases 

per 100 000 (Jacobson et al. 1997, Takayanagi et al. 2000) and 11.7 per 100 000 in Italy (Laureti et 

al. 1999) and 4-11 cases in 100 000 in Northern Europe (Willis, Vince 1997) with lowest with 4 in 

Finnish population and highest in Norway with 14.4 cases per 100 000 inhabitants (Erichsen et al. 

2009).  

Addison’s disease is typically affecting young and middle aged (between 30-50 years) individuals 

and more often strikes women than men (ratio 1.5-3.5:1), although men with AD were significantly 

younger than the women with AD (aged 42±18.4 years versus aged 60±20.2 years) (Løvås, 

Husebye 2002, Myhre et al. 2002). 

There is also a month-of-birth effect in autoimmune Addison’s disease manifestation, with an 

increased risk for those born in during the winter months (December-January) and decreased in 

those born in the summer (Pazderska et al. 2016). This has been speculated to be related e.g. to 

numbers of infections in the critical period in infancy. 

2.3.3. Autoantibodies in Addison’s disease 

The first autoantibodies associated with disease were detected with immunofluorescence using 

tissue sections from adrenal cortex in 1957 by Anderson et al. (Anderson et al. 1957). 

Immunofluorescence with human adrenal has become a useful diagnostic test for adrenal cortex 

antibodies (ACAs); these ACAs were of the immunoglobulin subclasses as IgG1, IgG2 and IgG4. 
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Winqvist and co-workers identified the steroidogenic enzyme 21-hydroxylase as the main target of 

the ACAs (Winqvist, Karlsson & Kampe 1992). The immunofluorescence assay (Betterle et al. 

1999) is still in use, but largely replaced by highly sensitive and specific radiobinding assays for 

21OH autoantibodies (Tanaka et al. 1997). Autoantibodies against 21-hydroxylase (CYP21A2 or 

PC450c17) are present in 70-90% AD cases compared to less than 0.5% frequency in general 

population (Myhre et al. 2002). Around 1% of first-degree relatives of patient with AD are positive 

for the anti-21-hydroxylase antibody in their blood. Of these, about 15 % will develop overt AD 

during an observation period of 6 years (Coco et al. 2006). Antibodies to steroid 17-α-hydroxylase 

are less sensitive markers for the disease, only 20-30% present in AD patients. These autoantibodies 

are often associated with gonadal failure in women (Falorni et al. 2002) and measured by indirect 

immunofluorescence assay (Betterle et al. 1999).  

Nowadays there is no preventive therapy to halt or reverse the progressive destruction of adrenal 

cortex.  

2.3.4. Genetics of Addison’s disease 

Large-scale genetic analysis in humans with autoimmune AD has not been done because of the 

rarity of the disease. The investigations carried out so far have been candidate-gene association 

studies with case-control design in small cohorts of patients; only few susceptibility loci have been 

identified to contribute to autoimmune AD (Mitchell, Pearce 2012). 

The major genetic susceptibility for Addison’s disease has been found in several populations 

conferred by HLA DR3-DQ2 (DRB1*03:01-DQA1*05-DQB1*02) and HLA DR4-DQ8 

(DRB1*04:04-DQA1*03-DQB1*03:02) haplotypes, highest risk associated with a heterozygous 

combination of these haplotypes. The DRB1 (DRB1*03:01 and DRB1*04:04) seem to have 

stronger predisposing effect to AAD than DQB1 region (Mitchell, Pearce 2012). DRB1*0404 has 

shown disease association in United Sates and Norway, but not in Italian population where 

DRB1*04:03 was strongly protective (Gambelunghe et al. 2005). Combination of the two 

haplotypes, DR3-DQ2/DR4-DQ8 genotype, has also shown earlier disease manifestation than the 

other risk genotypes (Erichsen et al. 2009, Gambelunghe et al. 2005, Skinningsrud et al. 2011). By 

contrast DRB1*01-DQA1*01:01-DQB1*05:01 (DR1-DQ5), and DRB1*13:01-DQB1*06:03-

DQA1*01:03, DRB1*13:02-DQB1*06:04-DQA1*01:02, and DRB1*07-DQB1*02:01-

DQA1*02:01 conferred protection against Addison’s disease (Erichsen et al. 2009, Myhre et al. 

2002). Conserved extended haplotype including DR3 and HLA-B8 (without HLA-A1) together
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confer the highest risk for Addison’s disease, while the HLA-B15 is associated with protection from 

progression to clinical manifestation (Baker et al. 2010, Baker et al. 2011). 

Several studies have reported associations with polymorphisms in HLA class I chain-related genes 

termed MIC, MICA and MICB, has been identified close to HLA-B locus. Park and coworkers 

reported increased risk associated with homozygosity for MICA5.1 as well as D6S273 

microsatellite alleles. In DR3/DR4 genotypes, the D6S273*140 on the DR3 and D6S273*134 allele 

on the DR4 haplotype showed disease association (Park et al. 2002). The association of MICA5.1 

with increased risk in DR3 haplotypes was confirmed by Skinningsrud et al. but they did not find 

any effect on DR404 haplotypes. The risk for Addison’s disease was increased for DR3-

D6S273*140-MICA5.1/DRB1*04:04-D6S273*134-MICA5.1 genotypes (Skinningsrud et al. 2011). 

Allelic variants at several other genetic loci have been associated with autoimmune AD. The 

CTLA4 polymorphisms have also been associated with AD with A and G SNP in exon 1, and AT 

repeat in the 3' untranslated region of exon 3 and G or A alleles of the JO30 SNO downstream of 

this gene. Like CTLA4, PTPN22 gene encodes a negative regulator of T cell signaling. The same 

PTPN22 variant (T allele at rs2476601, associated with 1858C>T and Arg620Trp substitutions as in 

T1D has been implicated also in AD (Mitchell, Pearce 2012).  

In the genome-wide association analysis, 17 SNPs (out of 64 analyzed SNPs), on eight different 

chromosomes (chromosome 2, 3, 6, 8, 13, 14, 18 and 21) were associated at a level of genome-wide 

significance (p<5x10-7) in multiplex families and case-control cohorts from UK and Norway 

populations (Mitchell et al. 2015). 

The number of the known risk genes is steadily increasing and will help understanding more clearly 

the pathogenesis of the Addison’s disease together with new information on environmental factors 

involved. 
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3. AIMS OF THE STUDY 

The strongest genetic association with different autoimmune disease is conferred by HLA class II 

alleles. The purpose of this study was to find additional polymorphisms within HLA region 

affecting the genetic susceptibility to type 1 diabetes and Addison’s disease. 

The specific aims were: 

1, To localize the genes within class I and class III HLA region modifying the effect of 

class II HLA-DR/DQ loci on type 1 diabetes susceptibility.  

2,  To find whether risk alleles of the HLA-A and -B alleles within HLA class I region 

affect the progression from diabetes-associated autoimmunity to clinical disease. 

3, To find whether the same HLA-B alleles within HLA class I region modify the risk 

conferred by HLA-DRB1*04:04-DQB1*03:02 haplotype in both type 1 diabetes and 

Addison’s disease. 
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4. MATERIALS AND METHODS 

4.1. Materials 

In Study I, type 1 diabetic patients diagnosed before the age of 15 years were recruited mainly in 

university hospitals in Turku, Helsinki, Oulu and Tampere and control subjects were newborns who 

were screened for HLA-DR/DQ associated genetic susceptibility for T1D in context of the Finnish 

Diabetes Prediction and Prevention projects (DIPP) run in three University hospitals in Finland 

(Turku, Oulu and Tampere). Initially, we included more than 1400 type 1 diabetic patients and over 

30,000 control subjects. After the HLA DR3/4(04:04) and DR3/4(04:01) genotype stratification, we 

analyzed 314 patients and 535 control subjects for ten selected ten microsatellite markers in non-

class II HLA region (D6S273, TNFα, C12A, STR MICA, MIB, C125, C143, C245, C3211 and 

MOGc) and additionally, the presence of the HLA-A*24 and HLA-B*39 alleles were studied in the 

same sample groups.  

In Study II, a total of 323 Finnish nuclear families typed for HLA-DR/DQ genotypes were 

involved in the analysis of eleven microsatellite markers within the HLA class III and class I region 

(D6S273, TNFα, C12A, STR MICA, MIB, C125, C143, C245, C3211, MOGc and D6S2223). 

Nuclear families were stratified into two separate groups: parents carrying the DRB1*08-DQB1*04 

(referred as DR8 family set; n=188), parents with DRB1*04:04-DQB1*03:02 (referred as DR4 

family set; n=135) haplotypes. Further genotyping was performed for the two main subtypes of 

HLA*B39 allele (B*39:01 and B*39:06). Each nuclear family consisted of one or two parent(s) and 

one affected child with T1D. Most of the families were recruited from four university hospitals in 

Finland (Turku, Oulu, Tampere and Helsinki).  

Study III. Newborn infants with increased (HLA-DQB1*03:02/*02) or moderate risk (HLA-

DQB1*03:02/x where x≠*02, *03:01 or *06:02) for type 1 diabetes were monitored for ICA; 

GADA, IAA and IA-2 autoantibodies at 3- to 6- month intervals in Turku and 3- to 12- month 

intervals in Tampere and Oulu. For further genotyping of class I alleles, we selected 249 samples, 

which were positive at least for one biochemically defined antibody besides ICA.  

In Study IV, sixty-nine Addison’s patients were collected from three different Eastern Baltic 

countries, namely Estonia (n=24), Finland (n=14) and Russia (n=31). Sixty-six out of sixty-nine 

patients were adults. None of the patients had type 1 polyendocrinopathy syndrome but 29.0% of 

the patients had type 2 autoimmune polyendocrinopathy syndrome. Seventy percent of the Estonian 

and Finnish patients were positive for the 21-hydroxylase antibodies, including seven out of eight
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patients (Finnish n=6 and Estonian n=2) with type 2 autoimmune polyendocrinopathy syndrome. 

We have no data for further clinical information from Russian patients. As controls we used 

background populations which were collected from the same geographical regions (n=269 Estonian, 

n=1000 Finnish and n=413 Russian). The Finnish control samples were cord bloods collected from 

two university hospitals in Finland (Oulu; n=499 and Turku; n=501). HLA class II haplotypes were 

determined in control as well as in Addison’s disease samples and also eleven microsatellites that 

were described in Study II, were determined in the patients’ samples. 

The diagnosis of T1D was based in the World Health Organization criteria.  

The local Ethics Committees had approved all of the studies and informed consent was obtained 

from the participating subjects or from their parents. 

4.2. Methods 

4.2.1. DNA 

In Study I-IV, genomic DNA was extracted from peripheral EDTA-blood using the salting-out 

method (Miller, Dykes & Polesky 1988) was used for all of the genetic analyses in this work. The 

regions of interests were amplified in a 96-well plate format in PCR in Hybraid TouchdownTM 

(Cambridge, UK) or MJ Research DNA Engine TetradTM (Massacgsetts, USA) thermal cyclers. 

4.2.2. HLA class II genotyping  

HLA-DQA1-DQB1 genotype and HLA-DRB1*04 subtypes were identified by PCR amplification 

combined with lanthanide-labelled oligonucleotide hybridization and time-resolved fluorometry 

detection. These methods were used in all four papers as follows. The polymorphic second exon 

was amplified using sequence-specific primer pairs biotinylated at the 5´-end. The biotinylated PCR 

products were transferred to the streptavidin-coated microtitration plates. After denaturation, DNA 

was hybridized to short allele-specific oligonucleotide probes labelled with either europium (Eu), 

terbium (Tb) or samarium (Sm) chelates. After the appropriate incubation time, enhancement and 

washing steps followed. Finally, the three-colour time-resolved fluorescence of lanthanide labels 

were detected in a 1234 DELFIA TM Research Fluorometer (PerkinElmer, Wallac Oy). Results 

(counts/s and signal-to-background ratios) were analyzed with the Wallac Multicalc software.
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4.2.2.1. HLA-DQB1 genotyping 

HLA-DQB1 gene proved to have the strongest association for T1D and Addison’s disease. 

Therefore, all four studies were started with analyzing the major susceptibility (DQB1*03:02, *02,) 

and protective alleles (DQB1*03:01, *06:02, *06:03) of the HLA-DQB1 region (Sjöroos et al. 

1995). HLA-DQB1 “full house” genotyping was performed with lanthanide-label hybridization 

assay (Kiviniemi et al. 2007, Laaksonen et al. 2002).  

4.2.2.2. HLA-DQA1 genotyping 

The specific region of the second exon of the HLA-DQA1 gene was studied in Paper I-IV 

according to Sjöroos and co-workers publication (Sjöroos et al. 1998). We could differentiate the 

HLA-DQA1*02:01, *03 and *05 alleles with specific Eu labelled TRF hybridization assay.  

4.2.2.3. HLA-DR4 subtyping 

Distribution of the DRB1 alleles of the DR4 group was analyzed among the HLA DQB1*03:02 

positive subjects, because the DQB1*03:02 allele is in very strong linkage disequilibrium with DR4 

alleles and various DRB1*04-DQB1*03:02 (DR4-DQ8) haplotypes differ in their T1D 

susceptibility depending of the specific DR4 allele. For DR4 subtyping, the high-resolution TRF-

based technique was designed by Nejentsev and co-workers (Nejentsev et al. 1999). With this 

assay, the number of the tested alleles increased to 13 groups, these include 29 DR4 subtypes. This 

method enabled us to identify the most common Caucasian DRB1alleles.  

4.2.3. HLA class I genotyping 

The common HLA-A and HLA-B alleles in the Finnish population were typed using the sequence-

specific primers (SSP) for amplification and detection of the PCR product on the agarose gels 

(Paper I, II and III) (Bunce et al. 1995, Bunce, Fanning & Welsh 1995). However the samples 

positive for HLA-B*39 were tested with the B*39:06 specific probe in nuclear families with HLA-

DRB1*08-DQB1*04 haplotypes in unpublished results. This assay based on the DELFIA® 

principle (PerkinElmer Life and Analytic Sciences Wallac, Turku, Finland) used biotinylated 

primers in PCR to allow binding of the PCR product to a streptavidin coated microtiter well (Mikk 

et al. 2017).
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4.2.4. Genotyping of microsatellites  

In Paper I ten (D6S273, TNFα, C12A, STR MICA, MIB, C125, C143, C245, C3211, MOGc) and 

in Paper II and IV eleven microsatellites (D6S2223 added) covering approximately 4Mb over the 

HLA region were analyzed using the previously described genotyping technique by Foissac et al. in 

1998 (Foissac, Cambon-Thomsen 1998). Each microsatellite region was amplified using primer 

pairs with one fluorescent-labelled (6-FAM, HEX or TET) primer. Fluorescent labels were attached 

to the 5´end of the forward primer as displayed the pseudo-colors blue, yellow and green. The 

lengths of the amplification products were determined on an automated multicapillary sequencer 

(MegaBace 1000; Amersham Pharmacia Biotech, Sunnyvale, CA, USA, ABI 310or on ABI 377 

Applied Biosystems, Foster City, CA, USA). The data were analyzed by Genescan and Genetic 

Profiler software. 

4.2.5. The autoantibody assays 

Islet cell antibodies were detected with immunofluorescence assays as described earlier (Bottazzo, 

Florin-Christensen & Doniach 1974, Kimpimäki et al. 2002, Siljander et al. 2009). The detection 

limit for ICA was 2.5 Juvenile Diabetes Foundation Units (JDFU, sensitivity 100%, specificity 

98%). Serum levels of IAA were quantified with micro-assay method, described by Williams et al. 

(Williams et al. 1997). GAD65 (GAD antibody GADA) and IA-2 antigen (IA-2A) were measured 

with a specific radiobinding assay (Savola, Bonifacio et al. 1998, Savola, Sabbah et al. 1998). The 

cut-off limits for IAA, GAD65 and IA-2 (respectively in Relative Unit; 1.56 RU, 5.36 RU and 0.43 

RU) were based on representing the 99th percentile for more than 350 Finnish non-diabetic subjects 

(Siljander et al. 2009).  

4.3. Statistical analysis and computer software 

Odds ratios were calculated according the Woolf’s formula OR=ad/bc with weighted average 

(a=number of exposed cases, b= number of exposed controls, c=number of unexposed cases, 

d=number of unexposed controls). The homogeneity of different odds ratios were analyzed by 

Mantel-Haenszel method. 

The allele frequencies were estimated by direct counting. For the calculation of the statistical 

significance the Chi-square test or Fisher’s exact test when appropriate was used. Bonferroni
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correction (mentioned as p cor.) was used Studies I, II and IV to reduce the chances of obtaining 

false-positive results due to multiple.  

Ninety-five % confidence intervals were calculated to estimate the precision of the Chi-square test 

and the Odds ratios (Study I Study IV) using the Epistat software package. Genepop software 

package was (Raymond, Rousset 1995) utilized for the population differentiation test where the null 

hypothesis of similarity between the type 1 diabetes and controls populations was rejected, when 

p<0.01. 

Transmission/Disequilibrium Test (TDT) is a useful method to detect the linkage and association 

between complex diseases- and analyzed genetic markers in nuclear families with heterozygous 

parents (Spielman, McGinnis & Ewens 1993). The TDT test is effective for any marker where data 

are available from parents and one or more affected offspring. In the study II TDT was performed 

using TDTPHASE program of the UNPHASED software package (Dudbridge et al. 2000). 

Conditional Extended TDT (CETDT) was used to estimate the disease association of non-class II 

microsatellite markers independent of HLA class II; DRB1-DQA1-DQB1 regions (Dudbridge 2003, 

Koeleman et al. 2000). Haplotypes analysis was done with GENEHUNTER 2.0 software in study II 

(Kruglyak et al. 1996). Data from 323 Finnish nuclear families allowed unambiguous assignment of 

alleles at three-locus haplotypes (DRB1-DQA1-DQB1) in HLA region. Control genotypes were 

determined by the affected-family-based artificial control (AFBAC) method where parental 

haplotypes not transmitted to the affected child in each trio family were used to form and artificial 

control (Falk, Rubinstein 1987, Thomson 1995). 

In Study III the PASW 18.0 (SPSS Inc., Chicago, IL) statistical software was used for two different 

survival analyses; as non-parametric Kaplan-Meier method and for classical semi-parametric Cox-

regression models. The effect of all typed HLA class I alleles and HLA class II haplotypes on 

progression to type 1diabetes after appearance of the biochemically defined autoantibodies was 

tested using Cox-regression. 
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5. RESULTS 

5.1. DRB1*04:04-DQB1*03:02 haplotype associated risk  

5.1.1. Localization of the class I and class III region genes affecting T1D susceptibility in 

HLA-DR/DQ matched case-control series (Publication I).  

The effect of other than HLA-DR and -DQ genes within the HLA gene region on T1D susceptibility 

was analyzed using two case-control datasets matched for combination of DR3-DQ2 and DR4-DQ8 

haplotypes but with different DR4 subtypes. DR3-DQ2 was deduced from the presence of 

DQA1*05-DQB1*02 and DR4 haplotype was either DRB1*04:01-DQB1*03:02 ((DR3/DR401), 

T1D n=241, controls n=354)) or DRB1*04:04-DQB1*03:02 ((DR3/DR404), T1D n=75, controls 

n=181)). Four selected class I gene alleles (HLA-B*39, HLA-B*62, HLA-A*02, HLA-A*24) and 

10 microsatellite markers (D6S273, TNFα, C12A, STR MICA, MIB, C125, C143, C245, C3211 

and MOGc) were analyzed from all samples. These cover a distance of ~2300 kb and include the 

whole HLA class I region and the borderline region between class I and class III (Figure 7). 

 
Figure 7. Schematic picture of markers in the HLA region with approximate distances (kb).  

↑ microsatellite markers, █ genes, TNFa- equal with TNFα (from original Publication I-II). 

The distribution of the allele frequencies at ten microsatellite loci and presence of the tested HLA-A 

and HLA-B alleles was analyzed in the DR3/DR4 subgroups and the significance of differences 

between cases and controls tested using the Chi-square test. In addition, the population 

differentiation test was used as a complementary test. The distribution of analyzed markers in the 

region between the D6S273 and MOGc and their odds ratios (ORs) in the two groups of DR3/DR4 

genotypes with DR4 allele being either DRB1*04:01 or DRB1*04:04 are shown in Table 3. In both
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subgroups, a single allele of each microsatellite marker was found in great majority of both patients 

and controls without conferring any risk or protection effects. These alleles were interpreted to 

represent the extended DR3-DQ2 haplotype. 
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subgroups, a single allele of each microsatellite marker was found in great majority of both patients 

and controls without conferring any risk or protection effects. These alleles were interpreted to 

represent the extended DR3-DQ2 haplotype. 
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Table 3. The most common HLA markers in the DR3/DRB1*04:04 and DR3/DRB1*04:01 

genotypes among the patient- and control groups (Modified from Publication I). 

Markers 

allele sizes 

Patients 

DR3/04:04 

n=75 (%) 

Controls 

DR3/04:04 

n=181 (%) 

OR (95%CI) p/pcor 

Patients 

DR3/04:01 

n=241 (%) 

Controls 

DR3/04:01 

n=354 (%) 

OR (95% CI) p 

D6S273       *135 

                    *137 

df =7            *141 

19 (25.3) 

56 (74.7) 

65 (86.7) 

77 (42.5) 

105 (58.0) 

138 (76.2) 

0.5 (0.2-0.9) 

2.1 (1.1-4.1) 

2.0 (0.9-4.6) 

0.01/NS 

0.02/NS 

NS 

88 (36.5) 

123 (51.0) 

201 (83.4) 

141 (39.8) 

170 (48.0) 

296 (83.6) 

0.9 (0.6-1.2) 

1.2 (0.8-1.6) 

1.0 (0.6-1.6) 

NS 

NS 

NS 

TNFα           *2 

                     *6 

df=12           *11 

66 (88.0) 

38 (50.7) 

29 (38.7) 

150 (82.9) 

62 (34.3) 

87(48.1) 

1.5 (0.6-3.6) 

2 (1.1-3.5) 

0.7 (0.4-1.2) 

NS 

0.02/NS 

NS 

228 (94.6) 

72 (29.9) 

9 (3.7) 

326 (92.1) 

93 (26.3) 

14 (3.95) 

1.5 (0.7-3.1) 

1.2 (0.8-1.7) 

2.4 (0.4-2.4) 

NS 

NS 

NS 

C12A           *236 

                     *250 

df=11           *256 

9 (12.0) 

37 (49.3) 

61 (81.3) 

52 (28.7) 

35 (19.3) 

138 (76.2) 

0.3 (0.15-0.8) 

4.1 (2.2-7.6) 

1.4 (0.7-2.8) 

0.007/NS 

2x10-6/2.2x10-5 

NS 

78 (32.4) 

113 (46.9) 

187 (77.6) 

93 (26.3) 

154 (43.5) 

283 (79.9) 

1.3 (0.9-1.9) 

1.1 (0.8-1.6) 

0.9 (0.6-1.3) 

NS 

NS 

NS 

STR MICA  *A4 

                     *A5 

                     *A5.1 

df=4             *A9 

9 (12.0) 

5 (6.7) 

70 (93.3) 

34 (45.3) 

42 (23.2) 

30 (16.6) 

169 (93.4) 

31 (17.1) 

0.5 (0.2-1.0) 

0.4 (0.1-1.0) 

1.0 (0.3-3.4) 

4.0 (2.1-7.6) 

NS 

NS 

NS 

5x10-6/2x10-5 

40 (16.6) 

136 (56.4) 

205 (85.1) 

32 (13.3) 

59 (16.7) 

191 (54.0) 

304 (85.9) 

46 (12.9) 

1.0 (0.6-1.6) 

1.1 (0.8-1.6) 

0.9 (0.6-1.5) 

1.0 (0.6-1.7) 

NS 

NS 

NS 

NS 

MIB             *326 

                     *332 

df=15           *350 

8 (10.7) 

31 (41.3) 

65 (86.7) 

32 (17.7) 

28 (15.5) 

164 (90.6) 

0.6 (0.2-1.3) 

3.8 (2.0-7.4) 

0.7 (0.3-1.7) 

NS 

2x10-5/3x10-4 

NS 

132 (54.8) 

2 (0.83) 

201 (83.4) 

181 (51.1) 

7 (1.9) 

273 (77.1) 

1.2 (0.8-1.6) 

0.7 (0.1-3.8) 

1.5 (0.9-2.6) 

NS 

NS 

NS 

HLA             B*39 

                     B*62 

31 (41.3) 

 

23 (12.7) 4.8 (2.5-9.6) 

 

10-6  

133 (55.2) 

 

176 (49.7) 

 

1.3 (0.9-1.8) 

 

NS 

C125            *194 

                     *200 

                     *208 

df=17           *210 

59 (78.7) 

31 (41.3) 

5 (6.7) 

22 (29.3) 

135 (74.6) 

27 (14.9) 

29 (16.0) 

61 (33.7) 

1.3 (0.6-2.5) 

4.0 (2.1-7.8) 

0.4 (0.1-1.1) 

0.8 (0.4-1.5) 

NS 

9x10-6/1.5x10-4 

NS 

NS 

183 (76.0) 

14 (5.8) 

115 (47.7) 

8 (3.3) 

269(76.0) 

20 (5.6) 

152 (42.9) 

19 (5.4) 

1.0 (0.7-1.5) 

1.0 (0.5-2.2) 

1.2 (0.7-1.7) 

0.6 (0.2-1.5) 

NS 

NS 

NS 

NS 

C143            *425 

                     *441 

                     *445 

df=14           *449 

28 (37.3) 

3 (4.0) 

28 (37.3) 

54 (72.0) 

23 (12.7) 

10 (5.5) 

89 (49.2) 

127 (70.2) 

4.1 (2.1-8.2) 

0.7 (0.2-2.9) 

0.6 (0.3-1.1) 

1.1(0.6-2.1) 

<2x10-5/2.8x10-4 

NS 

NS 

NS 

0 (0.0) 

67 (27.8) 

64 (26.6) 

196 (81.3) 

1 (0.28) 

84 (23.7) 

92 (25.9) 

285 (80.5) 

0.0 (0.0-25.5) 

1.2 (0.8-1.8) 

1.0 (0.7-1.5) 

1.1 (0.7-1.6) 

NS 

NS 

NS 

NS 

C245            *428 

                     *436 

                     *464 

                     *476 

df=10    *436/*436 

18 (24.0) 

68 (90.7) 

0 (0.0) 

15 (20.0) 

27 (36.0) 

48 (26.5) 

146 (80.7) 

0 (0.0) 

61 (33.7) 

38 (21.0) 

0.9 (0.4-1.7) 

2.3 (0.93-6.1) 

 

0.5 (0.2-1.0) 

2.1 (1.1-4.0) 

NS 

NS 

NS 

0.04/NS 

<0.02 

110 (45.6) 

201 (83.4) 

37 (15.4) 

5 (2.1) 

47 (19.5) 

171 (48.3) 

296 (83.6) 

41 (11.6) 

13 (3.7) 

58 (16.4) 

0.9 (0.6-1.3) 

1.0 (0.6-1.6) 

1.4 (0.8-2.3) 

0.6 (0.2-1.7) 

1.2 (0.8-1.9) 

NS 

NS 

NS 

NS 

NS 

C3211          *205 

                     *207 

                     *211 

df=19           *217 

11 (14.7) 

37 (49.3) 

16 (21.3) 

44 (58.7) 

31 (17.1) 

43 (23.8) 

64 (35.4) 

111 (61.3) 

0.8 (0.4-1.9) 

3.1 (1.7-5.7) 

0.5 (0.3-1.0) 

0.9 (0.5-1.6) 

NS 

10-4/1.9x10-3 

0.04/NS 

NS 

92 (38.2) 

81 (33.6) 

24 (10.0) 

150 (62.2) 

119(33.6) 

130 (36.7) 

36 (10.2) 

216 (61.0) 

1.2 (0.8-1.7) 

0.9 (0.6-1.2) 

1.0 (0.5-1.7) 

1.1 (0.7-1.5) 

NS 

NS 

NS 

NS 

HLA             A*24 

                     A*2 

29 (38.7) 

 

35 (19.3) 2.6 (1.4-5.0) 

 
<2x10-3  

148 (61.4) 

 

200 (56.5) 

 

1.2 (0.9-1.9) 

 

NS 

MOGc           *130 

                     *132 

df=14             *148 

50 (66.7) 

32 (42.7) 

32 (42.7) 

94 (51.9) 

89 (49.2) 

75 (41.4) 

1.9 (1.0-3.4) 

0.8 (0.4-1.4) 

1.1 (0.6-1.9) 

0.04/NS 

NS 

NS 

63 (26.14) 

162 (67.2) 

108 (44.8) 

95 (26.8) 

213 (60.2) 

183 (51.7) 

1.0 (0.7-1.4) 

1.4 (0.9-1.9) 

0.8 (0.6-1.1) 

NS 

NS 

NS 

   bold-alleles associated with the DR3 haplotype; df-degree of freedom, pcor-Bonferroni correction
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Markers with a significant difference between cases and controls were found in most analyzed loci 

in the DR3/DRB1*04:04 subgroup whereas no significant differences were found in the 

DR3/DRB1*04:01 subgroup of patients and control subjects. Figures 8A and 8B show OR values 

for T1D associated alleles in the two analyzed subgroups. We confirmed the previous findings that 

B*39 (Nejentsev et al. 1997, Reijonen et al. 1997) and A*24 (Honeyman et al. 1995) alleles have a 

strong disease association (respectively, OR 4.8, 95% CI 2.5-9.6 p=10-6 and OR 2.6 95% CI 1.4-5.0 

p<2x10-3, respectively) on the DR3/DR04:04 genotype (Table 3). 

None of the markers was associated with higher T1D risk than HLA-B*39 allele (OR 4.8) on the 

DR3/DRB1*04:04 genotype although the 95% CIs were overlapping in all comparisons of T1D 

associated alleles on the D6S273-TNFα-C12A-STR MICA-MIB-HLA B-C125-C143-C245-C3211-

HLA A-MOGc segment of DRB1*04:04 (Table 3 and Fig 8A). The differences stayed statistically 

significant after Bonferroni correction in the following microsatellite alleles: C12A*250, STR 

MICA*A9, MIB*332 C125*200, C143*425 and C3211*207. Similar results were obtained by 

using the population differentiation test. C12A, STR MICA, C125 and C143 regions showed 

statistically significant differences between affected and background population with strong p 

values on the DR3/DR04:04stratified groups (Table 4).  

In the DR3/DRB1*04:01 subgroup of patients and control subjects, statistical test did not reveal 

significant differences in any single allele on the D6S273-MOGc region (Table 3 and Figure 8B), 

although population differentiation result demonstrated a significant differentiation between 

patients and background population at MIB locus (p= 4.63x10-3, threshold p<10-2) and also the 

C12A marker was close to the significance level (p=1.373x10-2) (Table 5). 
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Table 3. The most common HLA markers in the DR3/DRB1*04:04 and DR3/DRB1*04:01 

genotypes among the patient- and control groups (Modified from Publication I). 

Markers 

allele sizes 

Patients 

DR3/04:04 

n=75 (%) 

Controls 

DR3/04:04 

n=181 (%) 

OR (95%CI) p/pcor 

Patients 

DR3/04:01 

n=241 (%) 

Controls 

DR3/04:01 

n=354 (%) 

OR (95% CI) p 

D6S273       *135 

                    *137 

df =7            *141 

19 (25.3) 

56 (74.7) 

65 (86.7) 

77 (42.5) 

105 (58.0) 

138 (76.2) 

0.5 (0.2-0.9) 

2.1 (1.1-4.1) 

2.0 (0.9-4.6) 

0.01/NS 

0.02/NS 

NS 

88 (36.5) 

123 (51.0) 

201 (83.4) 

141 (39.8) 

170 (48.0) 

296 (83.6) 

0.9 (0.6-1.2) 

1.2 (0.8-1.6) 

1.0 (0.6-1.6) 

NS 

NS 

NS 

TNFα           *2 

                     *6 

df=12           *11 

66 (88.0) 

38 (50.7) 

29 (38.7) 

150 (82.9) 

62 (34.3) 

87(48.1) 

1.5 (0.6-3.6) 

2 (1.1-3.5) 

0.7 (0.4-1.2) 

NS 

0.02/NS 

NS 

228 (94.6) 

72 (29.9) 

9 (3.7) 

326 (92.1) 

93 (26.3) 

14 (3.95) 

1.5 (0.7-3.1) 

1.2 (0.8-1.7) 

2.4 (0.4-2.4) 

NS 

NS 

NS 

C12A           *236 

                     *250 

df=11           *256 

9 (12.0) 

37 (49.3) 

61 (81.3) 

52 (28.7) 

35 (19.3) 

138 (76.2) 

0.3 (0.15-0.8) 

4.1 (2.2-7.6) 

1.4 (0.7-2.8) 

0.007/NS 

2x10-6/2.2x10-5 

NS 

78 (32.4) 

113 (46.9) 

187 (77.6) 

93 (26.3) 

154 (43.5) 

283 (79.9) 

1.3 (0.9-1.9) 

1.1 (0.8-1.6) 

0.9 (0.6-1.3) 

NS 

NS 

NS 

STR MICA  *A4 

                     *A5 

                     *A5.1 

df=4             *A9 

9 (12.0) 

5 (6.7) 

70 (93.3) 

34 (45.3) 

42 (23.2) 

30 (16.6) 

169 (93.4) 

31 (17.1) 

0.5 (0.2-1.0) 

0.4 (0.1-1.0) 

1.0 (0.3-3.4) 

4.0 (2.1-7.6) 

NS 

NS 

NS 

5x10-6/2x10-5 

40 (16.6) 

136 (56.4) 

205 (85.1) 

32 (13.3) 

59 (16.7) 

191 (54.0) 

304 (85.9) 

46 (12.9) 

1.0 (0.6-1.6) 

1.1 (0.8-1.6) 

0.9 (0.6-1.5) 

1.0 (0.6-1.7) 

NS 

NS 

NS 

NS 

MIB             *326 

                     *332 

df=15           *350 

8 (10.7) 

31 (41.3) 

65 (86.7) 

32 (17.7) 

28 (15.5) 

164 (90.6) 

0.6 (0.2-1.3) 

3.8 (2.0-7.4) 

0.7 (0.3-1.7) 

NS 

2x10-5/3x10-4 

NS 

132 (54.8) 

2 (0.83) 

201 (83.4) 

181 (51.1) 

7 (1.9) 

273 (77.1) 

1.2 (0.8-1.6) 

0.7 (0.1-3.8) 

1.5 (0.9-2.6) 

NS 

NS 

NS 

HLA             B*39 

                     B*62 

31 (41.3) 

 

23 (12.7) 4.8 (2.5-9.6) 

 

10-6  

133 (55.2) 

 

176 (49.7) 

 

1.3 (0.9-1.8) 

 

NS 

C125            *194 

                     *200 

                     *208 

df=17           *210 

59 (78.7) 

31 (41.3) 

5 (6.7) 

22 (29.3) 

135 (74.6) 

27 (14.9) 

29 (16.0) 

61 (33.7) 

1.3 (0.6-2.5) 

4.0 (2.1-7.8) 

0.4 (0.1-1.1) 

0.8 (0.4-1.5) 

NS 

9x10-6/1.5x10-4 

NS 

NS 

183 (76.0) 

14 (5.8) 

115 (47.7) 

8 (3.3) 

269(76.0) 

20 (5.6) 

152 (42.9) 

19 (5.4) 

1.0 (0.7-1.5) 

1.0 (0.5-2.2) 

1.2 (0.7-1.7) 

0.6 (0.2-1.5) 

NS 

NS 

NS 

NS 

C143            *425 

                     *441 

                     *445 

df=14           *449 

28 (37.3) 

3 (4.0) 

28 (37.3) 

54 (72.0) 

23 (12.7) 

10 (5.5) 

89 (49.2) 

127 (70.2) 

4.1 (2.1-8.2) 

0.7 (0.2-2.9) 

0.6 (0.3-1.1) 

1.1(0.6-2.1) 

<2x10-5/2.8x10-4 

NS 

NS 

NS 

0 (0.0) 

67 (27.8) 

64 (26.6) 

196 (81.3) 

1 (0.28) 

84 (23.7) 

92 (25.9) 

285 (80.5) 

0.0 (0.0-25.5) 

1.2 (0.8-1.8) 

1.0 (0.7-1.5) 

1.1 (0.7-1.6) 

NS 

NS 

NS 

NS 

C245            *428 

                     *436 

                     *464 

                     *476 

df=10    *436/*436 

18 (24.0) 

68 (90.7) 

0 (0.0) 

15 (20.0) 

27 (36.0) 

48 (26.5) 

146 (80.7) 

0 (0.0) 

61 (33.7) 

38 (21.0) 

0.9 (0.4-1.7) 

2.3 (0.93-6.1) 

 

0.5 (0.2-1.0) 

2.1 (1.1-4.0) 

NS 

NS 

NS 

0.04/NS 

<0.02 

110 (45.6) 

201 (83.4) 

37 (15.4) 

5 (2.1) 

47 (19.5) 

171 (48.3) 

296 (83.6) 

41 (11.6) 

13 (3.7) 

58 (16.4) 

0.9 (0.6-1.3) 

1.0 (0.6-1.6) 

1.4 (0.8-2.3) 

0.6 (0.2-1.7) 

1.2 (0.8-1.9) 

NS 

NS 

NS 

NS 

NS 

C3211          *205 

                     *207 

                     *211 

df=19           *217 

11 (14.7) 

37 (49.3) 

16 (21.3) 

44 (58.7) 

31 (17.1) 

43 (23.8) 

64 (35.4) 

111 (61.3) 

0.8 (0.4-1.9) 

3.1 (1.7-5.7) 

0.5 (0.3-1.0) 

0.9 (0.5-1.6) 

NS 

10-4/1.9x10-3 

0.04/NS 

NS 

92 (38.2) 

81 (33.6) 

24 (10.0) 

150 (62.2) 

119(33.6) 

130 (36.7) 

36 (10.2) 

216 (61.0) 

1.2 (0.8-1.7) 

0.9 (0.6-1.2) 

1.0 (0.5-1.7) 

1.1 (0.7-1.5) 

NS 

NS 

NS 

NS 

HLA             A*24 

                     A*2 

29 (38.7) 

 

35 (19.3) 2.6 (1.4-5.0) 

 
<2x10-3  

148 (61.4) 

 

200 (56.5) 

 

1.2 (0.9-1.9) 

 

NS 

MOGc           *130 

                     *132 

df=14             *148 

50 (66.7) 

32 (42.7) 

32 (42.7) 

94 (51.9) 

89 (49.2) 

75 (41.4) 

1.9 (1.0-3.4) 

0.8 (0.4-1.4) 

1.1 (0.6-1.9) 

0.04/NS 

NS 

NS 

63 (26.14) 

162 (67.2) 

108 (44.8) 

95 (26.8) 

213 (60.2) 

183 (51.7) 

1.0 (0.7-1.4) 

1.4 (0.9-1.9) 

0.8 (0.6-1.1) 

NS 

NS 

NS 

   bold-alleles associated with the DR3 haplotype; df-degree of freedom, pcor-Bonferroni correction
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Markers with a significant difference between cases and controls were found in most analyzed loci 

in the DR3/DRB1*04:04 subgroup whereas no significant differences were found in the 

DR3/DRB1*04:01 subgroup of patients and control subjects. Figures 8A and 8B show OR values 

for T1D associated alleles in the two analyzed subgroups. We confirmed the previous findings that 

B*39 (Nejentsev et al. 1997, Reijonen et al. 1997) and A*24 (Honeyman et al. 1995) alleles have a 

strong disease association (respectively, OR 4.8, 95% CI 2.5-9.6 p=10-6 and OR 2.6 95% CI 1.4-5.0 

p<2x10-3, respectively) on the DR3/DR04:04 genotype (Table 3). 

None of the markers was associated with higher T1D risk than HLA-B*39 allele (OR 4.8) on the 

DR3/DRB1*04:04 genotype although the 95% CIs were overlapping in all comparisons of T1D 

associated alleles on the D6S273-TNFα-C12A-STR MICA-MIB-HLA B-C125-C143-C245-C3211-

HLA A-MOGc segment of DRB1*04:04 (Table 3 and Fig 8A). The differences stayed statistically 

significant after Bonferroni correction in the following microsatellite alleles: C12A*250, STR 

MICA*A9, MIB*332 C125*200, C143*425 and C3211*207. Similar results were obtained by 

using the population differentiation test. C12A, STR MICA, C125 and C143 regions showed 

statistically significant differences between affected and background population with strong p 

values on the DR3/DR04:04stratified groups (Table 4).  

In the DR3/DRB1*04:01 subgroup of patients and control subjects, statistical test did not reveal 

significant differences in any single allele on the D6S273-MOGc region (Table 3 and Figure 8B), 

although population differentiation result demonstrated a significant differentiation between 

patients and background population at MIB locus (p= 4.63x10-3, threshold p<10-2) and also the 

C12A marker was close to the significance level (p=1.373x10-2) (Table 5). 
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Figure 8. Odds ratios for the strongest associated alleles in DR3/DRB1*04:04 (A) and 

DR3/DRB1*04:01 (B) groups (♦OR, 95% CI for OR) (from original Publication I).
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Table 4. Population differentiation test for comparison of T1D patients and controls with the 

stratified HLA genotype groups (from original Publication I). (significance level p<0.01; SE-

standard error)  

 
Locus 

DR3/DRB1*04:04 
T1D n=75, Controls n=181 

DR3/DRB1*04:01 
T1D n=241, Controls n=354 

p values SE p values SE 

D6S273 0.02368 0.00040 0.09557 0.00114 

TNFα 0.29543 0.00166 0.65175 0.00178 

C12A 0.00326 0.00013 0.01373 0.00041 

STR MICA 0.00018 0.00002 0.54007 0.00195 

MIB 0.02614 0.00047 0.00463 0.00020 

C125 0.00239 0.00013 0.56609 0.00229 

C143 0.00013 0.00002 0.46173 0.00242 

C245 0.16287 0.00117 0.27557 0.00239 

C3211 0.02037 0.00042 0.14022 0.00189 

MOGc 0.53826 0.00163 0.25469 0.00236 
      significant p values are bold
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Table 4. Population differentiation test for comparison of T1D patients and controls with the 

stratified HLA genotype groups (from original Publication I). (significance level p<0.01; SE-

standard error)  

 
Locus 

DR3/DRB1*04:04 
T1D n=75, Controls n=181 

DR3/DRB1*04:01 
T1D n=241, Controls n=354 

p values SE p values SE 

D6S273 0.02368 0.00040 0.09557 0.00114 

TNFα 0.29543 0.00166 0.65175 0.00178 

C12A 0.00326 0.00013 0.01373 0.00041 

STR MICA 0.00018 0.00002 0.54007 0.00195 

MIB 0.02614 0.00047 0.00463 0.00020 

C125 0.00239 0.00013 0.56609 0.00229 

C143 0.00013 0.00002 0.46173 0.00242 

C245 0.16287 0.00117 0.27557 0.00239 

C3211 0.02037 0.00042 0.14022 0.00189 

MOGc 0.53826 0.00163 0.25469 0.00236 
      significant p values are bold
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5.1.2. Reconstruction of the extended haplotypes in families (Publication I-II).  

For reconstruction of extended haplotypes in families, CETDT (unphased package) was used to 

estimate the most frequently transmitted length at each microsatellite locus in 20 randomly selected 

heterozygous nuclear families with DR3/DRB1*04:04, 20 with DR3/DRB1*04:01 and 20 with 

DR3/(DR8)-DQB1*04 genotype (Table 5). The extended DR3 haplotype was DQB1*02-

DQA1*05-D6S273*141-TNFα*2-C12A*256-STR MICA*A5.1-MIB*350-C125*194-C143*449- 

C245*436-C3211*217 (Table 3 and Table 5).  

Table 5. Transmission disequilibrium analysis of selected HLA markers in DR3 haplotype with 

DR3/DRB1*04:04, DR3/DRB1*04:01 and DR3/(DR8)-DQB1*04 families (Unpublished data).  

Marker 
allele size 

DR3/DRB1*04:04 DR3/DRB1*04:01 DR3/(DR8)-DQB1*04 
T 

(n) 
NT 
(n) 

T 
(%) p T 

(n) 
NT 
(n) 

T 
(%) p T 

(n) 
NT 
(n) 

T 
(%) p 

D6S273*141 15 1 93.8 1.3x10-4 13 1 92.9 4.8x10-4 13 0 100 2.2x10-5 

TNFα*2 11 1 91.7 1.8x10-3 15 4 79.0 9.2x10-3 7 0 100 1.8x10-3 

C12A*256 14 1 93.3 2.4x10-4 14 3 82.4 5.5x10-3 4 0 100 1.8x10-2 
STR  

MICA*A5.1 16 2 88.9 4x10-4 15 3 83.3 3.1x10-3 10 0 100 1.9x10-4 

MIB*350 12 2 85.7 4.9x10-3 14 2 87.5 1.5x10-3 7 0 100 1.8x10-3 

C125*194 15 2 88.2 7.9x10-4 14 2 87.5 1.5x10-3 3 0 100 4.1x10-2 

C143*449 13 2 86.7 2.7x10-3 11 2 84.6 8.8x10-3 7 1 87.5 2.4x10-2 

C245*436 13 0 100 2.2x10-5 11 2 84.6 8.8x10-3 10 0 100 1.9x10-4 

C3211*217 10 1 90.9 3.5x10-3 9 2 81.8 2.8x10-2 3 0 100 4.1x10-2 

MOGc*148 3 1 11.1 NS 10 2 83.3 1.6x10-2 3 0 100 4.1x10-2 

We could see in both family groups an extended DR3-DQ2 haplotype transmitted, which was 

identical with the most common microsatellite alleles in case control series up to C3211 in the 

telomeric end of the haplotype (Table 5). A common dominating MOGc locus allele could no more 

be detected. The finding demonstrates the high degree of homogeneity of the Finnish DR3-DQ2 

haplotype. 

Conditional extended TDT (CETDT) on the HLA region was used to estimate the most frequently 

transmitted length of each microsatellite also in the selected DRB1*04:04 and DRB1*04:01 

haplotypes (unphased package). The extended DRB1*04:04 haplotype was DQB1*03:02-

DRB1*04:04-D6S273*137-TNFα*6-C12A*250-STR MICA*A9-MIB*332-B*39-C125*200- 
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C143*425-C245*436-C3211*207-A*24-MOGc*130 corresponding to those markers increased in 

the case-control study (Table 3 and Table 6) whereas markers in the DRB1*04:01 haplotype was 

TNFa*2-C12A*236-STRMICA*A5-MIB*350-B*62-C125*208-C143*441-C245*464-C3211*205-

A*2-MOGc*132 (Table 7). 

 

Table 6. The most common with DRB1*04:04 haplotype transmitted allele (Unpublished data). 

Marker 
allele size T (n) T (%) p value 

D6S273*137 12 100 4.5x10-5 

TNFα*6 6 100 3.9x10-3 

C12A*250 7 100 1.8x10-3 

STR MICA*A9 7 100 1.8x10-3 

MIB*332 6 100 3.9x10-3 

HLA-B*39 7 100 1.8x10-3 

C125*200 6 100 3.9x10-3 

C143*425 6 100 3.9x10-3 

C245*436 7 100 1.8x10-3 

C3211*207 10 100 2x10-4 

HLA-A*24 5 100 8.5x10-3 

MOGc*130 5 100 8.5x10-3 
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NT 
(n) 
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(%) p T 

(n) 
NT 
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(%) p 

D6S273*141 15 1 93.8 1.3x10-4 13 1 92.9 4.8x10-4 13 0 100 2.2x10-5 

TNFα*2 11 1 91.7 1.8x10-3 15 4 79.0 9.2x10-3 7 0 100 1.8x10-3 

C12A*256 14 1 93.3 2.4x10-4 14 3 82.4 5.5x10-3 4 0 100 1.8x10-2 
STR  

MICA*A5.1 16 2 88.9 4x10-4 15 3 83.3 3.1x10-3 10 0 100 1.9x10-4 

MIB*350 12 2 85.7 4.9x10-3 14 2 87.5 1.5x10-3 7 0 100 1.8x10-3 

C125*194 15 2 88.2 7.9x10-4 14 2 87.5 1.5x10-3 3 0 100 4.1x10-2 

C143*449 13 2 86.7 2.7x10-3 11 2 84.6 8.8x10-3 7 1 87.5 2.4x10-2 

C245*436 13 0 100 2.2x10-5 11 2 84.6 8.8x10-3 10 0 100 1.9x10-4 

C3211*217 10 1 90.9 3.5x10-3 9 2 81.8 2.8x10-2 3 0 100 4.1x10-2 

MOGc*148 3 1 11.1 NS 10 2 83.3 1.6x10-2 3 0 100 4.1x10-2 

We could see in both family groups an extended DR3-DQ2 haplotype transmitted, which was 

identical with the most common microsatellite alleles in case control series up to C3211 in the 

telomeric end of the haplotype (Table 5). A common dominating MOGc locus allele could no more 

be detected. The finding demonstrates the high degree of homogeneity of the Finnish DR3-DQ2 

haplotype. 

Conditional extended TDT (CETDT) on the HLA region was used to estimate the most frequently 

transmitted length of each microsatellite also in the selected DRB1*04:04 and DRB1*04:01 

haplotypes (unphased package). The extended DRB1*04:04 haplotype was DQB1*03:02-

DRB1*04:04-D6S273*137-TNFα*6-C12A*250-STR MICA*A9-MIB*332-B*39-C125*200- 
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C143*425-C245*436-C3211*207-A*24-MOGc*130 corresponding to those markers increased in 

the case-control study (Table 3 and Table 6) whereas markers in the DRB1*04:01 haplotype was 

TNFa*2-C12A*236-STRMICA*A5-MIB*350-B*62-C125*208-C143*441-C245*464-C3211*205-

A*2-MOGc*132 (Table 7). 

 

Table 6. The most common with DRB1*04:04 haplotype transmitted allele (Unpublished data). 

Marker 
allele size T (n) T (%) p value 

D6S273*137 12 100 4.5x10-5 

TNFα*6 6 100 3.9x10-3 

C12A*250 7 100 1.8x10-3 

STR MICA*A9 7 100 1.8x10-3 

MIB*332 6 100 3.9x10-3 

HLA-B*39 7 100 1.8x10-3 

C125*200 6 100 3.9x10-3 

C143*425 6 100 3.9x10-3 

C245*436 7 100 1.8x10-3 

C3211*207 10 100 2x10-4 

HLA-A*24 5 100 8.5x10-3 

MOGc*130 5 100 8.5x10-3 
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Table 7. The most common with DRB1*04:01 haplotype transmitted allele (Unpublished data). 

Marker 
allele size T (n) NT (n) T (%) p value 

D6S273*137 7 2 77.8 NS 

TNFα*2 8 2 80 4.9x10-2 

C12A*236 6 0 100 3.9x10-3 

STR MICA*A5 7 1 87.5 2.4x10-2 

MIB*350 7 1 87.5 2.4x10-2 

HLA-B*62 7 0 100 1.8x10-3 

C125*208 3 0 100 4.1x10-2 

C143*441 6 1 85.7 4.6x10-2 

C245*464 6 1 85.7 4.610-2 

C3211*205 6 0 100 3.9x10-3 

HLA-A*2 10 0 100 1.9x10-4 

MOGc*132 10 0 100 1.9x10-4 

5.1.3. Localization of the independent disease association of the class I and class III gene 

region in Finnish nuclear families (Publication II). 

We extended our study (Publication II.) for 135 Finnish nuclear families with DRB1*04:04-

DQB1*03:02 (DR4) haplotype and also for 188 families with DRB1*08-DQB1*04 (DR8) 

haplotype. Both family sets were analyzed for HLA-B*39 allele and 11 microsatellite markers 

(D6S273, TNFα, C12A, STR MICA, MIB, C125, C143, C245, C3211, MOGc and D6S2223) 

covering a 4-Mb region telomeric to HLA-DQB1 gene (Figure 7). The HLA DRB1-DQA1-DQB1 

region displayed strong disease association in both family sets using TDT and CETDT tests (DR4 

p=5x10-21, df=11 and DR8 p=7x10-34 df=10) (Figure 9 and 10). Microsatellite alleles with parental 

frequency of less than 2% were pooled in both analyses.
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Figure 9. Selected microsatellite markers on 6p21 chromosome region in Finnish nuclear families 

with DRB1*04:04 haplotype. TDT and CETDT –log10p values shown separately for all analyzed 

markers (from original Publication II).  

Markers are numbered as follows: 1, D6S273   2, TNFα   3, C12A   4, STR MICA   5, MIB 

6, HLA-B*39   7, C125   8, C143   9, C245   10, C3211   11, MOGc   12, D6S2223 

In the DRB1*04:04 families markers in three separate gene region as D6S273-TNFα, MIB-HLA 

B*39-C125 and C3211-MOGc-D6S2223 showed association with T1D both in the single locus 

TDT analysis and CETDT analysis conditioned for HLA haplotype (Table 8, Figure 9). Associated 

regions peaked at D6S273, HLA-B and C3211 loci in single locus TDT analysis. 
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Table 7. The most common with DRB1*04:01 haplotype transmitted allele (Unpublished data). 
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allele size T (n) NT (n) T (%) p value 

D6S273*137 7 2 77.8 NS 

TNFα*2 8 2 80 4.9x10-2 
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C125*208 3 0 100 4.1x10-2 
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C245*464 6 1 85.7 4.610-2 
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HLA-A*2 10 0 100 1.9x10-4 

MOGc*132 10 0 100 1.9x10-4 

5.1.3. Localization of the independent disease association of the class I and class III gene 

region in Finnish nuclear families (Publication II). 

We extended our study (Publication II.) for 135 Finnish nuclear families with DRB1*04:04-

DQB1*03:02 (DR4) haplotype and also for 188 families with DRB1*08-DQB1*04 (DR8) 

haplotype. Both family sets were analyzed for HLA-B*39 allele and 11 microsatellite markers 

(D6S273, TNFα, C12A, STR MICA, MIB, C125, C143, C245, C3211, MOGc and D6S2223) 

covering a 4-Mb region telomeric to HLA-DQB1 gene (Figure 7). The HLA DRB1-DQA1-DQB1 

region displayed strong disease association in both family sets using TDT and CETDT tests (DR4 

p=5x10-21, df=11 and DR8 p=7x10-34 df=10) (Figure 9 and 10). Microsatellite alleles with parental 

frequency of less than 2% were pooled in both analyses.
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Figure 9. Selected microsatellite markers on 6p21 chromosome region in Finnish nuclear families 

with DRB1*04:04 haplotype. TDT and CETDT –log10p values shown separately for all analyzed 

markers (from original Publication II).  

Markers are numbered as follows: 1, D6S273   2, TNFα   3, C12A   4, STR MICA   5, MIB 

6, HLA-B*39   7, C125   8, C143   9, C245   10, C3211   11, MOGc   12, D6S2223 

In the DRB1*04:04 families markers in three separate gene region as D6S273-TNFα, MIB-HLA 

B*39-C125 and C3211-MOGc-D6S2223 showed association with T1D both in the single locus 

TDT analysis and CETDT analysis conditioned for HLA haplotype (Table 8, Figure 9). Associated 

regions peaked at D6S273, HLA-B and C3211 loci in single locus TDT analysis. 
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Table 8. Transmission disequilibrium analysis with selected markers in the HLA region in HLA-

DRB1*04:04-DQB1*03:02 haplotype families (Modified from Publication II). (p cor. calculated 

with Bonferroni correction)   

Marker Allele T (n) NT 
(n) 

T 
(%) 

p value 
of allele 
in TDT 

Global 
TDT 

p value 

Global 
CETDT 
p value 

Corrected 
global 

CETDT 
p value  

D6S273 
df = 7 

135 
137 
139 

Others 

34 
70 
0 
69 

63 
41 
11 
58 

35.1 
63.1 

0 
54.3 

3x10-3 
6x10-3 

9.4x10-5 
 

3.5x10-5 9x10-6 10-4 

TNFα 
df = 9 

6 
10 

Others 

56 
5 

139 

33 
22 

145 

62.9 
18.5 
48.5 

1.4x10-2 
7x10-4 

 
9x10-3 NS NS 

MIB 
df = 12 

332 
342 
348 
350 

Others 

30 
2 
6 
53 

100 

13 
10 
15 
30 

123 

69.8 
16.7 
28.6 
63.9 

 

9x10-3 
1.6x10-2 
4.6x10-2 
1.1x10-2 

2x10-3 3.3x10-2 NS 

HLA-
B*39 

3901 
negativ

e 

46 
12 

12 
46 

79.3 
20.7 

3.9x10-6 
3.9x10-6 4x10-6 NS NS 

C125 
df = 12 

194 
200 
208 

Others 

39 
36 
12 

129 

19 
12 
35 

150 

67.2 
75.0 
25.5 
46.2 

8x10-3 
3.9x10-4 

6x10-4 2x10-4 8x10-4 9.5x10-3 

C3211 
df = 11 

195 
207 
209 
213 

Others 

15 
46 
13 
4 

120 

30 
25 
3 
13 

127 

33.3 
64.8 
81.2 
23.5 
48.5 

2.4x10-2 
1.2x10-2 
9x10-3 

2.5x10-2 
 

3x10-4 1.4x10-2 NS 

MOGc 
df = 9 

130 
134 
144 

Others 

56 
1 
1 

103 

34 
9 
6 

112 

62.2 
10.0 
14.3 
47.9 

1.9x10-2 
7x10-3 

4.7x10-2 2x10-3 NS NS 

D6S2223 
df = 3 

170 
176 

Others 

50 
4 

54 

33 
17 
58 

60.2 
19.1 
48.2 

NS 
3x10-3 1.6x10-2 3.7x10-2 NS 

     df-degree of freedom, OR-odds ratio, CI-confidence interval 

To extend the analysis to determine the effect of non-class II markers on the fixed DRB1*04:04-

DQB1*03:02 haplotype the conditional haplotype method (HM) was used (Figure 9, Table 9). The 

C125*200 allele was confirmed to have an independent disease association on the DRB1*04:04-

DQB1*03:02 haplotype with OR 3.56 (p=0.039). The effect of the D6S273*137 and HLA-B*39 

allele did not quite reach the statistical significance (Table 9). The C125*200 was similarly 

increased also on the extended HLA DRB1*04:04-DQB1*03:02-B*39 haplotype (31/40 

transmitted, 77.5%) compared to AFBAC controls (3/7 transmitted, 42.8%) but, the difference was 
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not significant. 

Table 9. Disease associated markers of the DRB1*04:04-DQB1*03:02 haplotypes in the Finnish 

families using the haplotype methods (from original Publication II). 

Marker Marker 
length Patients (n) AFBAC (n) p value OR 95% CI 

D6S273 137 
All others 

54 
33 

12 
18 

0.059 2.45 0.97-6.266 

HLA-B*39 3901 
All others 

45 
57 

8 
26 

0.054 2.57 0.987-6.852 

C125 
200 
208 

All others 

31 
1 
60 

4 
4 
24 

0.039 
0.021 

3.56 
0.077 

1.056-13.182 
0.003-0.783 

     AFBAC-affected family-based artificial controls 

5.2. HLA-DR8-DQ4 haplotype associated risk (Publication II and Unpublished data). 

The same microsatellite selection was analyzed also in the family set with DR8-DQ4 haplotype.  

The D6S273, C143, C245, MOGc and D6S2223 microsatellites showed disease association in the 

TDT test and three of them, C143, C245, and MOGc remained significant also in CETDT analysis 

(Figure 10 and Table 10). The C143*445 and the C143*449 (p= 0.019, p=0.003, respectively) 

alleles in the C143 markers and the C245*436 (p=0.008) were significantly increased in the 

affected offspring. Microsatellite alleles with a parental frequency of less than 2% were pooled in 

the TDT and CETDT analysis. The haplotype method also revealed significant increase of the 

C143*449 allele and reciprocal decrease of C143*417. D6S273*135 allele was also decreased on 

transmitted haplotypes (Table 11).  

Further HLA-B genotyping allowed us to distinguish between B*39:01 and B*39:06 alleles in 

selected B*39 positive samples. We observed 44 B*39:01 and 8 B*39:06 alleles in the 188 nuclear 

families with DRB1*08-DQB1*04 haplotype (Table 10). The B*39:06 allele appeared exclusively 

on the (DR8)-DQB1*04 haplotype. The results of conditional HM analysis of B*39 locus on 

DRB1*08-DQB1*04 haplotypes are displayed in Table 12. HLA-B*39:01 occurred less often in 

patient than control haplotypes but the rare B*39:06 was more common in patient haplotypes 

although neither one of these differences was significant. 
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Table 8. Transmission disequilibrium analysis with selected markers in the HLA region in HLA-

DRB1*04:04-DQB1*03:02 haplotype families (Modified from Publication II). (p cor. calculated 

with Bonferroni correction)   

Marker Allele T (n) NT 
(n) 

T 
(%) 

p value 
of allele 
in TDT 

Global 
TDT 

p value 

Global 
CETDT 
p value 

Corrected 
global 

CETDT 
p value  

D6S273 
df = 7 

135 
137 
139 

Others 

34 
70 
0 

69 

63 
41 
11 
58 

35.1 
63.1 

0 
54.3 

3x10-3 
6x10-3 

9.4x10-5 
 

3.5x10-5 9x10-6 10-4 

TNFα 
df = 9 

6 
10 

Others 
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To extend the analysis to determine the effect of non-class II markers on the fixed DRB1*04:04-

DQB1*03:02 haplotype the conditional haplotype method (HM) was used (Figure 9, Table 9). The 

C125*200 allele was confirmed to have an independent disease association on the DRB1*04:04-

DQB1*03:02 haplotype with OR 3.56 (p=0.039). The effect of the D6S273*137 and HLA-B*39 

allele did not quite reach the statistical significance (Table 9). The C125*200 was similarly 

increased also on the extended HLA DRB1*04:04-DQB1*03:02-B*39 haplotype (31/40 

transmitted, 77.5%) compared to AFBAC controls (3/7 transmitted, 42.8%) but, the difference was 
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not significant. 

Table 9. Disease associated markers of the DRB1*04:04-DQB1*03:02 haplotypes in the Finnish 

families using the haplotype methods (from original Publication II). 

Marker Marker 
length Patients (n) AFBAC (n) p value OR 95% CI 

D6S273 137 
All others 

54 
33 

12 
18 

0.059 2.45 0.97-6.266 

HLA-B*39 3901 
All others 

45 
57 
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0.054 2.57 0.987-6.852 
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200 
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0.039 
0.021 

3.56 
0.077 

1.056-13.182 
0.003-0.783 

     AFBAC-affected family-based artificial controls 

5.2. HLA-DR8-DQ4 haplotype associated risk (Publication II and Unpublished data). 

The same microsatellite selection was analyzed also in the family set with DR8-DQ4 haplotype.  

The D6S273, C143, C245, MOGc and D6S2223 microsatellites showed disease association in the 

TDT test and three of them, C143, C245, and MOGc remained significant also in CETDT analysis 

(Figure 10 and Table 10). The C143*445 and the C143*449 (p= 0.019, p=0.003, respectively) 

alleles in the C143 markers and the C245*436 (p=0.008) were significantly increased in the 

affected offspring. Microsatellite alleles with a parental frequency of less than 2% were pooled in 

the TDT and CETDT analysis. The haplotype method also revealed significant increase of the 

C143*449 allele and reciprocal decrease of C143*417. D6S273*135 allele was also decreased on 

transmitted haplotypes (Table 11).  

Further HLA-B genotyping allowed us to distinguish between B*39:01 and B*39:06 alleles in 

selected B*39 positive samples. We observed 44 B*39:01 and 8 B*39:06 alleles in the 188 nuclear 

families with DRB1*08-DQB1*04 haplotype (Table 10). The B*39:06 allele appeared exclusively 

on the (DR8)-DQB1*04 haplotype. The results of conditional HM analysis of B*39 locus on 

DRB1*08-DQB1*04 haplotypes are displayed in Table 12. HLA-B*39:01 occurred less often in 

patient than control haplotypes but the rare B*39:06 was more common in patient haplotypes 

although neither one of these differences was significant. 
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Figure 10. Selected microsatellite markers on 6p21 chromosome region with Finnish nuclear 

families with DR8-DQ4 haplotype. TDT and CETDT –log10p values shown separately in all 

analyzed markers (from original Publication II).  

Markers are numbered as follows: 1, D6S273   2, TNF   3, C12A   4, STR MICA   5, MIB  

6, HLA-B*39   7, C125   8, C143   9, C245   10, C3211   11, MOGc   12, D6S2223 
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Table 10. Transmission disequilibrium analysis with selected markers in the HLA region in HLA-

DRB1*08-DQB1*04 haplotype families (Modified from Publication II with unpublished data).  

Marker Allele T 
(n) 

NT 
(n) 

T 
(%) p value 

Global 
TDT 

p value 

Global 
CETDT 
p value 

D6S273 
df = 6 

135 
137 
141 

Others 

55 
75 
37 
71 

81 
69 
18 
70 

40.4 
52.1 
67.3 
NS 

0.025 
NS 
0.01 
NS 

0.037 NS 

HLA-B*39 
df = 2 

3901 
3906 

Negative 

19 
5 
28 

25 
3 
24 

43.2 
62.5 
53.8 

NS 
NS 
NS 

NS NS 

C143 
df = 11 

417 
421 
433 
445 
449 

Others 

12 
11 
6 
60 
75 
88 

22 
25 
19 
37 
43 
106 

35.3 
30.6 
24.0 
61.9 
63.6 
45.4 

NS 
0.018 
0.008 
0.019 
0.003 
NS 

0.001 0.036 

C245 
df = 9 

436 
440 
444 
468 
476 

Others 

74 
3 
1 
3 
2 
96 

45 
11 
7 
15 
10 
91 

62.2 
21.4 
12.5 
16.7 
16.7 
51.3 

0.008 
0.027 
0.024 
0.003 
0.016 
NS 

10-4 0.014 

MOGc 
df = 9 

130 
132 
134 

Others 

64 
73 
3 
55 

46 
53 
11 
85 

58.2 
57.9 
21.4 
39.3 

NS 
NS 

0.027 
NS 

0.006 0.033 

D6S2223 
df = 3 

168 
170 

Others 

12 
90 
70 

39 
47 
86 

23.5 
65.7 
44.9 

0.0001 
0.0002 

NS 
6.7x10-5 NS 

      Bonferroni correction on Global CETDT p value was NS in all analyzed markers 
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Figure 10. Selected microsatellite markers on 6p21 chromosome region with Finnish nuclear 

families with DR8-DQ4 haplotype. TDT and CETDT –log10p values shown separately in all 

analyzed markers (from original Publication II).  

Markers are numbered as follows: 1, D6S273   2, TNF   3, C12A   4, STR MICA   5, MIB  

6, HLA-B*39   7, C125   8, C143   9, C245   10, C3211   11, MOGc   12, D6S2223 
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Table 10. Transmission disequilibrium analysis with selected markers in the HLA region in HLA-

DRB1*08-DQB1*04 haplotype families (Modified from Publication II with unpublished data).  

Marker Allele T 
(n) 

NT 
(n) 

T 
(%) p value 

Global 
TDT 

p value 

Global 
CETDT 
p value 

D6S273 
df = 6 

135 
137 
141 

Others 

55 
75 
37 
71 

81 
69 
18 
70 

40.4 
52.1 
67.3 
NS 

0.025 
NS 
0.01 
NS 

0.037 NS 

HLA-B*39 
df = 2 

3901 
3906 

Negative 

19 
5 
28 

25 
3 
24 

43.2 
62.5 
53.8 

NS 
NS 
NS 

NS NS 

C143 
df = 11 

417 
421 
433 
445 
449 

Others 

12 
11 
6 
60 
75 
88 

22 
25 
19 
37 
43 
106 

35.3 
30.6 
24.0 
61.9 
63.6 
45.4 

NS 
0.018 
0.008 
0.019 
0.003 
NS 

0.001 0.036 

C245 
df = 9 

436 
440 
444 
468 
476 

Others 

74 
3 
1 
3 
2 
96 

45 
11 
7 
15 
10 
91 

62.2 
21.4 
12.5 
16.7 
16.7 
51.3 

0.008 
0.027 
0.024 
0.003 
0.016 
NS 

10-4 0.014 

MOGc 
df = 9 

130 
132 
134 

Others 

64 
73 
3 
55 

46 
53 
11 
85 

58.2 
57.9 
21.4 
39.3 

NS 
NS 

0.027 
NS 

0.006 0.033 

D6S2223 
df = 3 

168 
170 

Others 

12 
90 
70 

39 
47 
86 

23.5 
65.7 
44.9 

0.0001 
0.0002 

NS 
6.7x10-5 NS 

      Bonferroni correction on Global CETDT p value was NS in all analyzed markers 
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Table 11. Analysis of the DRB1*08-DQB1*04 extended haplotypes in nuclear families using the 

haplotype method (modified from Publication II with unpublished data).  

Marker Marker length Patients (n) AFBAC (n) p value OR 95% CI 

D6S273 135 
All others 

18 
56 

39 
58 

0.043 0.48 0.23-0.98 

HLA-
B*39 

3901 
3906 

Negative 

4 
5 
70 

14 
3 
85 

NS 
NS 

 

NS 
NS 

NS 
NS 

C143 
417 
449 

All others 

1 
22 
50 

12 
13 
56 

0.005 
0.053 

 

0.08 
2.26 

0.004-0.62 
0.97-5.28 

C245 
436 
440 

All others 

27 
1 
35 

26 
5 
40 

NS 
NS 

NS 
NS 

NS 
NS 

 

MOGc 132 
All others 

27 
38 

39 
46 

NS NS NS 

D6S2223 170 
All others 

43 
33 

41 
45 

NS NS NS 

     AFBAC-affected family-based artificial controls 

5.3. HLA class I region effect on the progression from diabetes associated autoimmunity 

to clinical disease (Publication III). 

The effect of other than HLA-DR and -DQ genes within the HLA gene clas I region during the 

progression from autoantibody seroconversion to overt diabetes was analyzed in 249 children 

positive for ICA and at least one biochemical autoantibody (IAA, GADA and IA-2A). These 

children were analyzed for a panel of different HLA-A (A*01, -A*02, -A*03, -A*24, -A*28 and -

A*32) and HLA-B (-B*08, -B*27, -B*35, -B*39, -B*56 -B*60 and -B*62) alleles. Out of them, 

195 were positive for at least two biochemically defined autoantibodies. The median age of the 

children at the time of seroconversion to positivity for the first biochemically antibody was 1.8 

years (range 0.3-9.9 years) and for the second biochemically defined autoantibody 2.0 years (0.8-

9.9 years). During the follow-up 136 children developed type 1 diabetes.  

When the effect of the HLA-DR-DQ haplotypes was tested by using the Cox-regression univariate 

analysis, the HLA-DR3/DR4 genotype ((DR3)-DQA1*05-DQB1*02 combined with DRB1*04:01-

DQB1*03:02 or DRB1*04:04-DQB1*03:02) showed significiant association (p=0.01) with 

progression to disease after the appearance of the first biochemical autoantibody. When effect of the 

HLA-DR-DQ haplotypes was tested, the (DR3)-DQA1*05-DQB1*02 was found to be associated 

with progression to T1D (p value 0.015) and (DR1/10)-DQB1*05:01 (p value 0.03) haplotype with
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protection againts overt disease. Similar associations were found when these two haplotypes were 

associated with DRB1*04:01-DQB1*03:02, suggesting that the association of (DR3)-DQA1*05-

DQB1*02 and (DR1/10)-DQB1*05:01 haplotypes most probably were secondary to the DR3/DR4 

((DR3)-DQA1*05-DQB1*02/DRB1*04:01/04-DQB1*03:02) genotype association.  

Multivariate analysis adjusted for the age at appearance of the first and second biochemically 

defined autoantibodies showed that class I alleles HLA-A*03, and HLA-B*39 affected the progress 

rate form seroconversion to T1D. B*39 was associated with more rapid progression whereas A*03 

was protecting against progression (Table 12). These effects were more significant when measured 

from seroconversion for at least two biochemical autoantibodies. HLA-B*39 effect was significant 

only when analyzed after appearance of the second autoantibody (p value 0.014). HLA-A*24 allele 

did not have any significant effect with progression of autoimmunity. 

Table 12. Cox-regression analysis of HLA class I region´s effects on progression to clinical 

diabetes in children with diabetes-associated autoantibodies. Adjusted according to the age at 

appearance of different autoantibodies (from original Publication III). 

HLA 
 class I-II 

region 

After the first biochemically defined 
autoantibody 

After the second biochemically 
defined autoantibody 

p value Hazard ratio  
(95 % CI) p value Hazard ratio  

(95 % CI) 
A*03 0.042 0.611 (0.38-0.98) 0.027 0.552 (0.33-0.93) 

A*24 0.191 1.422 (0.84-2.41) 0.598 1.176 (0.64-2.15) 

B*39 0.159 1.549 (0.84-2.84) 0.014 2.401 (1.2-4.82) 

The same analysis was also performed after dividing the children according to the presence of the 

HLA-DR3/DR4 genotype (Table 13). The strong effect of HLA-B*39 on the progression from β-

cell autoimmunity to clinical disease was only seen in subject carrying the DR3/DR4 genotype 

combining both major class II risk haplotypes. The rate of disease development is also shown in the 

Kaplan-Meier curve in Figure 11. The number of children in follow-up at each time point is also 

given.  

Contrary to the B*39 effect the protective effect of A*03 was seen in follow up children with other 

than DR3/4 genotype. HLA-A*24 allele did not have any significancy effect on progression to T1D.
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than DR3/4 genotype. HLA-A*24 allele did not have any significancy effect on progression to T1D.
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Table 13. Multivariate Cox-regression analysis of HLA class I effects on progression to clinical 

diabetes. Adjusted according to age at appearance of first/second biochemically defined 

autoantibody (from original Publication III). 

Progression after appearance of the first biochemically defined 
autoantibody 

HLA-class I 
region 

DR3/4 not present DR3/4 present 
p 

value 
Hazard ratio 

(95 % CI) 
p 

value 
Hazard ratio 

(95 % CI) 
A*03 0.015 0.49 (0.28-0.87) 0.741 1.14 (0.52-2.52) 

A*24 0.096 1.643 (0.91-2.95) 0.142 0.372 (0.1-1.39) 

B*39 0.660 1.21 (0.52-2.805) 0.004 6.564 (1.80-23.93) 
Progression after appearance of the second biochemically defined 

autoantibody 
A*03 0.003 0.39 (0.21-0.72) 0.554 1.31 (0.53-3.21) 

A*24 0.252 1.455 (0.77-2.77) 0.117 0.297 (0.06-1.36) 

B*39 0.013 3.16 (1.28-7.81) 0.007 7.45 (1.74-31.93) 
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Figure 11. The effect of the HLA-B*39 allele on the progression to T1D in children with DR3/DR4 

combination after development of the first biochemically-characterized autoantibody (p value 

0.00007, log-rank test). B*39 positive children indicated by the solid and B*39 negative by dashed 

lines (from original Publication III). 

5.4. HLA class II and class I region effects on the Addison’s disease susceptibility. Case-

control series in three different populations (Publication IV). 

The effect of HLA-DR and -DQ genes within the HLA gene region on Addison’s disease 

susceptibility was analyzed using case-control datasets in three populations: Finnish (patients n=14, 

control subjects n=1000), Russian (patients n=31, control subjects n=413) and Estonian (patients 

n=24, control subjects n =269). Most of the patients were adults (66 out of 69) and 70% of Estonian 

and Finnish patients were positive for antibodies against 21-hydroxylase including seven out of 

eight patients with type 2 autoimmune polyendocrinopathy syndrome. All samples were analyzed 

using genotyping of HLA class II genes HLA-DRB1, HLA-DQA1, HLA-DQB1 and 11 

microsatellite markers (D6S273, TNFα, C12A, STR MICA, MIB, C125, C143, C245, C3211, 

MOGc and D6S2223) (Figure 7). In addition the presence of HLA-B*39 was tested in all subjects.  

The HLA-(DR3)-DQA1*05-DQB1*02 haplotype was associated with Addison’s disease in all three 

analyzed populations (Table 14), but the frequency of this haplotype showed significant variation. 

Eleven out of 14 Finns (78.6%), 12 out of 24 (50%) Estonians and only 11 out of 31 (35.5%)
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MOGc and D6S2223) (Figure 7). In addition the presence of HLA-B*39 was tested in all subjects.  

The HLA-(DR3)-DQA1*05-DQB1*02 haplotype was associated with Addison’s disease in all three 

analyzed populations (Table 14), but the frequency of this haplotype showed significant variation. 

Eleven out of 14 Finns (78.6%), 12 out of 24 (50%) Estonians and only 11 out of 31 (35.5%)
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Russian patients were positive for the haplotype. The HLA-DRB1*04:04-DQB1*03:02 haplotype 

was found also increased among the patients. This was highly significant among Estonian and 

Russian patients but did not quite reach statistical significance in the small group of Finnish 

patients. Instead, HLA-DRB1*04:01 haplotype was not increased among patients with Addison’s 

disease.  

The DRB1*04:03 allele was also significantly more common among the patients than background 

populations in Russians (6 out of 31 and 2 out of 413, respectively, p value 10-4, OR 49.3 and 95% 

CI 8.35-375.04). It was combined with DQB1*03:02 in three out of six patients and in three with 

DQB1*03:05 allele.  

Analysis of 11 microsatellite markers covering ~4MB over the HLA region with haplotype method 

did not provide statistical support to the importance of loci other than HLA region in Addison’s 

disease. The HLA-B*39 allele was observed only in 5 cases among 69 Addison’s patients and the 

HLA-DRB1*04:04-DQB1*03:02-B*39 haplotype was detected only once in a Finnish patient. 

Table 14. The main HLA haplotype frequencies in the three analyzed Addison’s disease-associated 

population (Modified from Publication IV). 

Population Haplotype Patients 
N (%) 

Controls 
n (%) OR p 

value 
95 % 

CI 

Finns 
N = 14 

n = 1000 

DQA1*05-DQB1*02-(DR3) 11 (78.6) 202 (20.2) 14.5 <0.0001 3.7 - 
41.4 

DQB1*03:02-DRB1*04:01-(DR4) 2 (14.3) 124 (12.4) - NS - 

DQB1*03:02-DRB1*04:04-(DR4) 3 (21.4) 62 (6.2) 4.1 0.078 0.9 -1 
6.5 

Estonians 
N = 24 
n = 269 

DQA1*05-DQB1*02-(DR3) 12 (50.0) 60 (22.3) 3.5 0.0056 1.4 - 
8.8 

DQB1*03:02-DRB1*04:01-(DR4) 0 (0) 12 (4.5) - NS - 

DQB1*03:02-DRB1*04:04-(DR4) 7 (29.2) 25 (9.3) 4.0 0.008 1.4 - 
11.6 

Russians 
N = 31 
n = 413 

DQA1*05-DQB1*02-(DR3) 11 (35.5) 65 (15.7) 2.9 0.0102 1.3 - 
6.8 

DQB1*03:02-DRB1*04:01-(DR4) 3 (9.7) 31 (7.5) - NS - 

DQB1*03:02-DRB1*04:04-(DR4) 7 (22.6) 28 (6.8) 4.0 0.0051 1.4 - 
10.9 
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6. DISCUSSION  

6.1. Type 1 diabetes 

There are several loci within the HLA region responsible for the susceptibility to T1D. The major 

disease determinants are in class II gene cluster DRB1-DQA1-DQB1 and weaker effects are exerted 

by HLA class I region where identity of affecting genes is still unclear. Based also on data from the 

Type 1 Diabetes Genetics Consortium (T1DG) genome-wide association study the DRB1-DQA1-

DQB1 haplotypes have the strongest predisposing effect with T1D, which may differ between 

populations (Noble, Erlich 2012). In this work the contribution of non-class II HLA loci to disease 

risk was explored using a set of microsatellite markers, which covered 4-Mb region telomeric to the 

DQB1 gene in Finnish population. This thesis aimed to further characterize extended HLA 

haplotypes and to identify non-class II loci modifying the genetic susceptibility to T1D using both 

case-control and nuclear family studies as well as follow up of autoantibody positive children.  

In the case-control study datasets were matched for combination of DR3-DQ2 and DR4-DQ8 

haplotypes and further for DQB1*03:02 haplotypes with different DR4 subtypes. DR3-DQ2 is an 

extended haplotype showing extremely small amount of variation in the studied region and one 

could thus deduce variation to be derived mainly from the various DR4-DQ8 haplotypes. Among 

the DR4 subtypes only DRB1*04:01 and DRB1*04:04 are frequent in Finnish populations 

(Hermann, Turpeinen et al. 2003) and these were analyzed in our case-control study. Chi-square 

statistic and population differentiation test were applied to map the marker of the strongest T1D 

association within the D6S273-MOGc segment. The same region was also analyzed using two 

nuclear family sets parents carrying DRB1*08-DQB1*04 (DR8) and DRB1*04:04-DQB1*03:02 

(DR4) haplotypes. The DRB1*08-DQB1*04 haplotype is the third most predisposing haplotype 

after the high risk DR3 and DR4 in type 1 diabetes in the T1DGC series (Erlich et al. 2008) and 

also one of the three haplotypes in Finland sharing OR value around 1.0 after DR3 and DR4 risk 

haplotypes and being also of particular high frequency in Finland compared to other European 

populations (Ilonen 2016). TDT and CETDT were used to estimate disease association of non-class 

II markers of DR-DQ region and the independent disease association of the analyzed microsatellite 

markers was further confirmed using the haplotype methods.  

We found that in the case-control and family studies in the DR3/DRB1*04:01, DR3/DRB1*04:04 

and DR3/(DR8)-DQB1*04 stratified groups that there was only one allele at each microsatellite 

locus present in the majority of analyzed groups. Therefore we could determine the extended 

haplotype in DR3 and also in both DR4 subtypes. This finding implies that in our studies, the DR3
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haplotype does not contain any additional disease associated marker which is in concordance of the 

strong linkage disequilibrium of the this extended haplotype, particularly A1, B8, DR3, DQ2 in 

Finland as the other common DR3-DQ2 haplotype associated with A30 and B18 is practically 

absent in the Finnish population (Haimila, Penttilä et al. 2013, Haimila, Peräsaari et al. 2013).  

In the DR3-DRB1*04:04 stratified group we found that markers between C12A and C143 near the 

HLA-B region confer strong additional disease association, which, however, is exceeded by the 

B*39 effect suggesting that diabetes associated gene is located on this area and is probable B*39 

itself. This finding was supported by the population differentiation test. None of the markers were 

associated with higher risk than HLA-B*39.  

In the DR3/DRB1*04:01 stratified group of patients and control subjects, no single microsatellite 

allele was associated with the significant changes in the disease risk although the MIB locus 

showed a difference between the background and patients populations in the population 

differentiation test.  

The present case-control study does not support the idea the polymorphism of transmembrane 

region with MICA protein (STR MICA) could independently be responsible for diabetes 

association (Van Autreve et al. 2006) although the STR MICA*A9 conferred higher risk on the 

DR3/DRB1*04:04 than DR3/DRB1*04:01 (OR 4.0 vs OR 1.03, respectively). Markers located in 

this region have also been associated with several other autoimmune diseases (Bilbao et al. 2003, 

Gambelunghe et al. 1999, Mizuki et al. 1997) 

Several studies have tried to map a non-class II HLA gene associated with type 1 diabetes. At first, 

by analyzing the DR3-B8 and DR3-B18 haplotypes, it was predicted that the region between HLA-

B and BAT3 should contain a gene associated with T1D (Degli-Esposti et al. 1992). Another study 

suggested that the non-class II HLA gene of type 1 diabetes susceptibility is located between the 

D6S273 and TNFα markers (Hanifi-Moghaddam et al. 1998). However, D6S265 marker next to the 

TNFα located ~1.3 Mb telomerically was used. Because no markers were tested between these two 

markers, to our mind, the telomeric boundary of the candidate region could not be specified exactly. 

A non-class II HLA gene associated with type 1 diabetes was mapped also on D6S2223, ~2.5 Mb 

telomeric to MOGc (Lie et al. 1999). Our data does not support this result, because we had a weak 

effect on MOGc-D6S2223 markers. 

We also analyzed the same region using nuclear families with DRB1*08-DQB1*04 (DR8) or 

DRB1*04:04-DQB1*03:02 (DR4) haplotypes. In the DR4 family sets the D6S2223-TNFα, MIB-
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B*39-C125 and C3211-MOGc-D6S2223 genomic regions showed association with disease in the 

single locus TDT. In the conditional transmission analysis where parents carried the DRB1*04:04-

DQB1*03:02 haplotype, the D6S273 and C125 remained to show strong disease association 

independently from the DR-DQ haplotype. Using the haplotype method the predisposing effect of 

the C125*200 allele was confirmed. The earlier findings that B*39 modifies the risk effect of 

DRB1*04:04-DQB1*03:02 haplotypes (Nejentsev et al. 1997, Reijonen et al. 1997) was now 

confirmed to be due to the B*39:01 subtype but we observed multiple microsatellite markers which 

might also contribute to the disease risk. 

In addition the D6S273 marker appeared to confer T1D risk in the TDT and CETDT analysis on the 

DRB1*04:04-DQB1*03:02 family sets. The D6S273*137 allele was more frequently transmitted to 

affected offspring, however did not differ significantly in the DRB1*04:04-DQB1*03:02 nuclear 

families. Similarly to our finding family studies in several countries observed that DRB1*03:01-

DQB1*02-B*18:01 haplotypes carrying D6S273*2 (corresponding to our D6S273*131 allele size) 

(Johansson et al. 2003, Lie et al. 1999) and DRB1*03-DQB1*02-B*08:01 haplotypes carry allele 

D6S273*5 (corresponding to our D6S273*137 allele size), whereas no such phenomenon was 

observed on DR4 haplotypes (Lie et al. 1999, Valdes et al. 2005).  

Lie and coworkers described that the D6S2223*3 allele appears with decreased frequency on the 

DRB1*03-DQA1*05:01-DQB1*02:01 haplotype (Lie et al. 1999). We did not analyze the DR3-

DQ2 haplotype for this marker but no independent association of D6S2223 marker on the DR4 

haplotype was seen. 

In the DR8 family set the CETDT analysis produced also several significant associations although 

these did not remain significant after correcting p values by the number of comparisons made. This 

may, however, be too insensitive when markers in linkage disequilibrium were used. The haplotype 

method analysis also suggested that the D6S273*135 allele is decreased in patients with DRB1*08-

DQB1*04 haplotypes, finding being similar to the tendency on DRB1*04:04-DQB1*03:02 

haplotypes. 

Also the C143*417 allele associated inversely and independently on the DR8 haplotype. No such 

data has been published before this finding.  

Considering these data, it looks that detailed mapping of non-class II HLA loci modifying type 1 

diabetes risk might improve possibilities for accurate disease prediction in different populations. 

Most studies have demonstrated DRB1*04:04-DQB1*03:02 haplotype is associated with lower risk
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to T1D than the DRB1*04:01-DQB1*03:02 haplotype (Donner et al. 2000, Erlich et al. 2008, 

Hermann; Turpeinen et al. 2003,Thomson et al. 2007). However, importance of the HLA-B*39 

marker within the DRB1*04:04-DQA1*03-DQB1*03:02 haplotype on the disease risk has been 

previously described in the Finnish, Estonian and Russian population by our group (Nejentsev et al. 

1997, Reijonen et al. 1997) and it was shown that the risk of B*39 positive HLA-DRB1*04:04 

haplotype was at the same level as that of HLA-DRB1*04:01 positive haplotype (Nejentsev et al. 

1997). The risk of the B*39:01 allele with type 1 diabetes has not been detected in earlier studies, 

but the HLA-B*39:01-DRB1*04:04-DQA1*03-DQB1*03:02 haplotype is rare in many European 

and European derived populations (Noble et al. 2010, Valdes, Erlich & Noble 2005). The HLA-

B*39:01 allele has been found also in other haplotypes than DRB1*04:04-DQA1*03-DQB1*03:02, 

it is common also in (DR8)-DQB1*04 haplotype, but in a big Finnish family trio analysis it was 

associated with T1D only on the DRB1*04:04-DQA1*03-DQB1*03:02 haplotype (Mikk et al. 

2017).  

This study now confirmed that the HLA-B*39:01 allele had the strongest predisposing effect among 

the analyzed markers on the DR3/DRB1*04:04 genotype in Finnish T1D patients. The HLA-

B*39:01 allele has also a strong effect in the late phase of progression of type 1 diabetes-associated 

autoimmunity which was apparent from the appearance of the second instead of the first 

biochemical antibody. The strong effect of HLA-B*39:01 on the progression form β-cell 

autoimmunity to clinical disease was only seen in subject carrying the combination of both major 

class II haplotypes, the DR3/DR4 genotypes. Among the DR3/DR4 heterozygotes, 7 of 11 HLA-

B*39 positive samples were DRB1*04:04 positive.  

Independent risk of certain class I alleles has been established more recently using also dense SNP 

analysis and HLA-B*39 allele was also identified there as the strongest class I risk allele and also 

associated with lower age-at-diagnosis both in family and case-control trials (Nejentsev et al. 2007). 

We now analyzed separately the HLA-B*39:06 and HLA-B*39:01 allele predisposing effect in 188 

nuclear families with DRB1*08-DQB1*04 haplotype. The HLA-B*39:06 allele appeared 

exclusively on the (DR8)-DQB1*04 haplotype and absent on DRB1*04:04-DQB1*03:02 but was 

rare and did not significantly associate with increased T1D risk although many surrounding 

microsatellite markers did. A bigger family series still found a significant T1D association of HLA-

B*39:06 on the (DR8)-DQB1*04 haplotype also in the Finnish population (Mikk et al. 2014, Mikk 

et al. 2017). It has also been described earlier in the Collections of Human Biological Data 

Interchange (HBDI), and type 1 Diabetes Genetics Consortium (T1DG), where the B*39:06 allele
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had risk association on four DRB1-DQB1 haplotypes including DR8, DR1, DR2 and DR4 

haplotypes (Noble et al. 2010). B*39:06 showed the strongest association on DRB1*08:01-

DQB1*04:02 (DR8) and DRB1*01:01-DQB1*05:01 (DR1) haplotypes and also associated with 

younger age at onset (Baschal et al. 2011, Noble et al. 2010, Valdes, Erlich & Noble 2005). 

However the B*39:06 allele is extremely rare on the DRB1*01:01-DQB1*05:01 in Finnish 

population (Mikk et al. 2017). 

The HLA-A*24 allele often presents in haplotype LD with B*39 alleles (Haimila, Peräsaari et al. 

2013, Mikk et al. 2014, Reijonen et al. 1997). In this study, disease risk association of A*24 allele 

was confirmed in the DR3/DRB1*04:04 group using case-control analyzes. Previously, the A*24 

allele has been reported to increase risk in type 1 diabetes populations (Honeyman et al. 1995). The 

A*24 allele was associated with DRB1*04:04-DQB1*03:02 haplotype but the association was 

weaker than that of HLA-B*39:01 allele. In the follow up DIPP cohort a survival analysis was used 

to test the HLA-A*24 allele effect on the seroconversion for persistent islet autoantibodies, and 

further on the progression rate to clinical disease after the appearance of multiple (at least 2) 

biochemically defined islet autoantibodies. The A*24 allele was not associated in Cox-regression 

with disease risk or with progression of autoimmunity on our stratified samples. However, later on 

with extended analysis by Mikk and coworkers the HLA-A*24 allele was found associated with 

faster disease progression especially in the (DR3)-DQA1*05-DQB1*02/DRB1*04:04-DQA1*03-

DQB1*03:02 genotype (Mikk et al. 2017). In the analysis of autoantibody positive subjects from 

the Belgian Diabetes Register the A*24 allele was associated with faster progression independently 

as well as in the presence of DQ8 haplotype to clinical diabetes (Mbunwe et al. 2013). 

The finding on the effects of class II alleles on the autoantibody appearance and class I alleles on 

the disease progress after established autoimmunity has created a hypothesis that HLA class II 

molecules are important in the initiation of the autoimmunity via CD4 positive T-helper cells by 

recognizing the initial antigen whereas the class I molecules affect the progression to clinical 

disease after the initial triggering via CD8 positive cytotoxic T cells. 
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6.2. Addison’s disease  

Addison’s disease is also a polygenic autoimmune disease with HLA region as the most important 

determinant of the disease risk (Myhre et al. 2002, Skinningsrud et al. 2011). The HLA class II 

region encoding DR and DQ molecules is also the most strongly associated gene locus in Addison’s 

disease. (Baker et al. 2010, Erichsen et al. 2009). 

The result obtained in this study confirms the association in patients with Addison’s disease with 

two class II HLA haplotypes. HLA DQA1*05-DQB1*02-(DR3) and DQB1*03:02-DRB1*04:04-

(DR4) were significantly increased although considerable odds ratio differences were found 

between the Estonian, Russian and Finnish populations. The DR3-DQ2 haplotype association was 

strongest among Finns, whereas the effect of the DQB1*03:02-DRB1*04:04 haplotype was 

stronger among Estonians and Russians. The susceptible alleles are more diverse in Estonians and 

Russians. These differences may be generated by the patient selection but might also be caused by 

the genetic differences between the three populations. 

Haplotype analysis using microsatellite markers did not provide statistical support to the 

significance of other loci than HLA-DR-DQ loci. The B*39 allele increasing Type 1 diabetes risk of 

DQB1*03:02-DRB1*04:04-(DR4) haplotype was present only in one Finnish patient of three ones 

with the haplotype and no one in the 14 patients in other populations.  

The found diversity of DRB1*04:04-DQB1*03:02 positive haplotypes and the fact that 

DRB1*04:01-DQB1*03:02 does not shown any association with Addison’s disease emphasized the 

role of DRB1*04:04 molecules itself. In this respect, the increased frequency of the DRB1*04:03 

haplotype in the Russian patients was also interesting. The DRB1*04:01 and DRB1*04:04 

haplotypes were common DR4 alleles, the DRB1*04:03 was present very rarely among Finns and 

Estonians. This is also the case in many populations where the DRB1*04:04 association of 

Addison’s disease has been described (Myhre et al. 2002, Erichsen et al. 2009).  

Few studies have suggested the importance MICA5.1 allele in Addison’s disease (Gambelunghe et 

al. 1999, Park et al. 2002). The present results also found that the MICA5.1 allele is very common 

in all patients groups but it was not genotyped in controls thus preventing analysis of its 

independent effect. Despite strong LD between MICA5.1 and DR-DQ region it was anyway not 

found in all disease associated DR3 haplotypes, which indicates that it does not explain DR3-DQ2 

association.
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7. CONCLUSIONS 

After decades of research and thousands of reports; HLA remains the strongest predictor of type 1 

diabetes and Addison’s disease risks. However, the genes involved in the region are multiple and 

not yet completely known. The accumulated data demonstrate the difficulties involved with the 

identification of complex autoimmune diseases genes in various European populations.  

The clear associations of the HLA-B*39:01 and the A*24 alleles with type 1 diabetes in case-

control and progression studies were confirmed, whether they act independent remains 

inconclusive. HLA-B locus with B*39:01 appears to associate with the peak risk in HLA-

DRB1*04:04-DQB1*03:02 haplotype, although effect on neighboring regions cannot be excluded. 

Notably, the B*39:01 does not increase the disease risk in (DR8)-DQB1*04 haplotype, although it 

is common also with this haplotype.  

The HLA-B*39:06 allele was rare and although it has been shown in larger studies to increase T1D 

risk it cannot explain the risk modifying effects of microsatellites surrounding the B-locus. Further 

studies will be needed to clarify these effects. Our results emphasize the importance of haplotypes, 

but also genotype analyses in HLA studies are important to reveal interactions, which can otherwise 

remain undetected. The identified class I alleles and probably new markers in the region associated 

with increased risk on the certain class II haplotypes and genotypes provide additional biomarkers 

for screening susceptibility to type 1 diabetes and for predicting the rate of progression to clinical 

disease after the development of autoantibodies, which will be important e.g. for selection of cases 

and controls in secondary prevention studies aiming at hindering the progression to clinical disease. 

Contrary to T1D we could not find any effect of class I region of DRB1*04:04-DQB1*03:02 

haplotypes on Addison’s disease which finding supports the significance of DRB1*04:04 molecule 

itself in disease risk as the more common DRB1*04:01-DQB1*03:02 haplotype does not increase 

the risk. Interestingly also the DRB1*04:03 allele, rare among Finnish and Estonians, seemed to 

increase the risk in Russian population.  

There are still many regions of smaller effect or low frequency to be discovered, and better 

exploitation of existing type 1 diabetes and Addison’s cohorts with more powerful and targeted 

methods is an informative step forward. 
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found in all disease associated DR3 haplotypes, which indicates that it does not explain DR3-DQ2 

association.
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7. CONCLUSIONS 

After decades of research and thousands of reports; HLA remains the strongest predictor of type 1 

diabetes and Addison’s disease risks. However, the genes involved in the region are multiple and 

not yet completely known. The accumulated data demonstrate the difficulties involved with the 

identification of complex autoimmune diseases genes in various European populations.  

The clear associations of the HLA-B*39:01 and the A*24 alleles with type 1 diabetes in case-

control and progression studies were confirmed, whether they act independent remains 

inconclusive. HLA-B locus with B*39:01 appears to associate with the peak risk in HLA-

DRB1*04:04-DQB1*03:02 haplotype, although effect on neighboring regions cannot be excluded. 

Notably, the B*39:01 does not increase the disease risk in (DR8)-DQB1*04 haplotype, although it 

is common also with this haplotype.  

The HLA-B*39:06 allele was rare and although it has been shown in larger studies to increase T1D 

risk it cannot explain the risk modifying effects of microsatellites surrounding the B-locus. Further 

studies will be needed to clarify these effects. Our results emphasize the importance of haplotypes, 

but also genotype analyses in HLA studies are important to reveal interactions, which can otherwise 

remain undetected. The identified class I alleles and probably new markers in the region associated 

with increased risk on the certain class II haplotypes and genotypes provide additional biomarkers 

for screening susceptibility to type 1 diabetes and for predicting the rate of progression to clinical 

disease after the development of autoantibodies, which will be important e.g. for selection of cases 

and controls in secondary prevention studies aiming at hindering the progression to clinical disease. 

Contrary to T1D we could not find any effect of class I region of DRB1*04:04-DQB1*03:02 

haplotypes on Addison’s disease which finding supports the significance of DRB1*04:04 molecule 

itself in disease risk as the more common DRB1*04:01-DQB1*03:02 haplotype does not increase 

the risk. Interestingly also the DRB1*04:03 allele, rare among Finnish and Estonians, seemed to 

increase the risk in Russian population.  

There are still many regions of smaller effect or low frequency to be discovered, and better 

exploitation of existing type 1 diabetes and Addison’s cohorts with more powerful and targeted 

methods is an informative step forward. 
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