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Abstract

Mojtaba Jafari Tadi, M.Sc.

University of Turku, Faculty of Medicine, Medical Physics and Engineering,
Doctoral Program in Clinical Research,

Turku PET Center, Turku University Hospital,

Faculty of Science and Engineering, Department of Future Technologies

Multidimensional Embedded MEMS Motion Detectors for Wearable Mechanocardio-
graphy and 4D Medical Imaging

Background: Cardiovascular diseases are the number one cause of death. Of these deaths,
almost 80% are due to coronary artery disease (CAD) and cerebrovascular disease. Multidi-
mensional microelectromechanical systems (MEMS) sensors allow measuring the mechanical
movement of the heart muscle offering an entirely new and innovative solution to evaluate car-
diac rhythm and function. Recent advances in miniaturized motion sensors present an exciting
opportunity to study novel device-driven and functional motion detection systems in the areas of
both cardiac monitoring and biomedical imaging, for example, in computed tomography (CT)
and positron emission tomography (PET).

Methods: This Ph.D. work describes a new cardiac motion detection paradigm and mea-
surement technology based on multimodal measuring tools — by tracking the heart’s kinetic
activity using micro-sized MEMS sensors — and novel computational approaches — by de-
ploying signal processing and machine learning techniques — for detecting cardiac pathological
disorders. In particular, this study focuses on the capability of joint gyrocardiography (GCG)
and seismocardiography (SCG) techniques that constitute the mechanocardiography (MCG)
concept representing the mechanical characteristics of the cardiac precordial surface vibrations.

Results: Experimental analyses showed that integrating multisource sensory data resulted
in precise estimation of heart rate with an accuracy of 99% (healthy, n=29), detection of heart
arrhythmia (n=435) with an accuracy of 95-97%, ischemic disease indication with approxi-
mately 75% accuracy (n=22), as well as significantly improved quality of four-dimensional
(4D) cardiac PET images by eliminating motion related inaccuracies using MEMS dual gating
approach. Tissue Doppler imaging (TDI) analysis of GCG (healthy, n=9) showed promising
results for measuring the cardiac timing intervals and myocardial deformation changes.

Conclusion: The findings of this study demonstrate clinical potential of MEMS motion
sensors in cardiology that may facilitate in time diagnosis of cardiac abnormalities. Multidi-
mensional MCG can effectively contribute to detecting atrial fibrillation (AFib), myocardial
infarction (MI), and CAD. Additionally, MEMS motion sensing improves the reliability and
quality of cardiac PET imaging.

Keywords: MEMS motion sensors, seismocardiography, gyrocardiography, dual cardiac and
respiratory gating, cardiovascular disease, cardiac PET/CT imaging



Tiivistelma

Mojtaba Jafari Tadi

Turun yliopisto, ldédketieteellinen tiedekunta, Laidketieteellisen fysiikan ja tekniikan oppiaine,
Kliinisen tutkimuksen tohtoriohjelma,

PET-keskus, Turun yliopistollinen keskussairaala,

Luonnontieteiden ja tekniikan tiedekunta, Tulevaisuuden teknologioiden laitos

Moniulotteisten sulautettujen MEMS-liiketunnistimien kéytté sydinkardiografiassa
seki ladketieteellisessé 4D-kuvantamisessa

Tausta: Sydin- ja verisuonitaudit ovat yleisin kuolinsyy. Néistd kuolemantapauksista lihes
80% johtuu sepelvaltimotaudista (CAD) ja aivoverenkierron héiridistd. Moniulotteiset mikroelek-
tromekaaniset jarjestelmdt (MEMS) mahdollistavat sydédnlihaksen mekaanisen liikkeen mit-
taamisen, miké puolestaan tarjoaa tdysin uudenlaisen ja innovatiivisen ratkaisun syddmen ryt-
min ja toiminnan arvioimiseksi. Viimeaikaiset teknologiset edistysaskeleet mahdollistavat uusien
pienikokoisten liiketunnistusjirjestelmien kdyttdmisen syddmen toiminnan tutkimuksessa seki
ladketieteellisen kuvantamisen, kuten esimerkiksi tietokonetomografian (CT) ja positroniemis-
siotomografian (PET), tarkkuuden parantamisessa.

Menetelmiit: Tama viitoskirjatyo esittelee uuden syddmen kineettisen toiminnan mittaus-
tekniikan, joka pohjautuu MEMS-anturien kayttoon. Uudet laskennalliset 1dhestymistavat, jotka
perustuvat signaalinkisittelyyn ja koneoppimiseen, mahdollistavat sydimen patologisten hiir-
i0iden havaitsemisen MEMS-antureista saatavista signaaleista. Téssd tutkimuksessa keski-
tytddn erityisesti mekanokardiografiaan (MCGQG), joihin kuuluvat gyrokardiografia (GCG) ja
seismokardiografia (SCG). Niiden tekniikoiden avulla voidaan mitata kardiorespiratorisen jar-
jestelmédn mekaanisia ominaisuuksia.

Tulokset: Kokeelliset analyysit osoittivat, ettd integroimalla usean sensorin dataa voidaan
mitata syketiheyttd 99% (terveilld n=29) tarkkuudella, havaita syddmen rytmihiiriot (n=435)
95-97%, tarkkuudella, seki havaita iskeeminen sairaus noin 75% tarkkuudella (n=22). Lisiksi
MEMS-kaksoistahdistuksen avulla voidaan parantaa syddmen 4D PET-kuvan laatua, kun liike-
epitarkkuudet voidaan eliminoida paremmin. Doppler-kuvantamisessa (TDI, Tissue Doppler
Imaging) GCG-analyysi (terveilld, n=9) osoitti lupaavia tuloksia sydénsykkeen ajoituksen ja
intervallien seki syddnlihasmuutosten mittaamisessa.

Padtelmé: Tamén tutkimuksen tulokset osoittavat, ettd kardiologisilla MEMS-liikeantureilla
on Kkliinistd potentiaalia syddmen toiminnallisten poikkeavuuksien diagnostisoinnissa. Moniu-
loitteinen MCG voi edistdd eteisvirinidn (AFib), syddninfarktin (MI) ja CAD:n havaitsemista.
Lisdksi MEMS-liiketunnistus parantaa syddamen PET-kuvantamisen luotettavuutta ja laatua.

Avainsanat: MEMS liiketunnistimet, seismokardiografia, gyrokardiografia, sydin- ja hen-
gitystahdistus, sydéin- ja verisuonitauti, kaksoistahdistus, syddamen PET / CT-kuvantaminen
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Chapter 1
INTRODUCTION

Heart diseases are the number one cause of death in the world [1]. Cardiovascular disease (CVD) — also
known as heart disease — includes disorders of the heart and vessels and is considered as the leading
cause of health problems claiming nearly one third of total deaths globally [2]. The prevalence of heart
diseases is predicted to continuously rise by 2030 as a result of the rapidly growing population of the
elderly people and progressive outbreak of cardiovascular risk factors. This is associated with a further
mismatch between the number of patients and physicians, as well as increasing healthcare costs [3].

The ability to detect cardiac disorders via low-cost and smart personalized monitoring systems can
potentially improve global healthcare services. Via widespread pre-emptive screening, the focus will
shift from expensive and heavy treatment solutions towards low-cost and easy prevention of diseases,
enabling good health during a greater portion of one’s lifetime. This will lead to enhanced quality of life,
and savings for the healthcare sector and the entire global society. With the new detection and prevention
strategies, nations worldwide could save lives, but also lessen the burden these diseases cause to the
economy, personal lives and prosperity. In addition to preventing monitoring, new monitoring strategies
may contribute to the improved care of existing diseased patients.

To this end, it is imperative to seek for innovative solutions and new technologies to improve the
quality of patient care and minimize the cost of care through early detection/intervention and more ef-
fective disease or patient management [4]. Accordingly, a huge amount of investments has been made
on research and development of new scalable wearable/mobile devices as they can leverage the recent
advances in miniaturized sensor developments, embedded or pervasive health computing, and physio-
logical data analytics. Therefore, by developing easy-to-access non-invasive and/or unobtrusive sensing
systems for continuous recording of underlying physiological data, it may be feasible to diagnose at-risk
patients for early intervention.

1.1 Emerging Technologies for Health Monitoring

Emerging interdisciplinary technologies represent a great opportunity for the realization of a preventive,
predictive, pre-emptive, personalized, and wellness- and patient-centered healthcare system [4]. Smart
wearables are today considered as the potential solution for tackling societal challenges caused by health
problems. Market prospects for wearables are increasing as wearables shipments are expected to increase
to $150 billion by 2026 from the estimated level of $30 billion in 2016. Moreover, wearable technology
is expected to reduce healthcare costs by as much as 16% over the next 5 years, and remote patient
monitoring technologies could save healthcare systems up to $200 billion over the next 25 years. Mobile
health, multidisciplinary health data processing algorithms, smart fusion of multimodal systems, and
the existence of hugely accessible health databases will enhance the healthcare systems and biomedical
industries [5, 6].

The state-of-art wearable electronics such as headbands, motion tracking badges, optical sensors,
smart watches, glasses, jewellery, virtual reality headsets, and many other measuring modalities incorpo-
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Introduction

rated into small-sized patches/clothes can potentially yield to an improved health monitoring. In simple
terms, new smart wearables offer unprecedented opportunities for unobtrusive sensing through continu-
ous monitoring of physical activities, physiological and biochemical parameters, and vital signs.

Current wearable/mobile health monitoring solutions mainly deal with data acquisition, transmis-
sion, processing, storage, and the use of health informatics for the early detection and prediction of many
diseases. New embedded sensing machinery provides a real possibility for long-term ubiquitous and
intermittent sensing/diagnosing. For example, state-of-art wearable/implantable instruments comprising
microelectromechanical (MEMS) pressure, accelerometer, gyroscope, and microphone sensors have piv-
otal clinical implications for long-term ubiquitous, unobtrusive, and intermittent sensing [7—11]. Such
sensory solutions can be considered as a natural extension of the current sophisticated bio-electrical tech-
niques (e.g. electrocardiogram) enabling a comprehensive point-of-care diagnosis. Figure 1.1 shows an
envisioned portfolio of personalized medical and fitness monitoring integrated into smart devices.

With the advancing technology in the field, the new generation wearable/implantable devices will
move towards unobtrusive sensing methods such as smart textile technology, flexible stretchable print-
able electronics, and sensor fusion coupled with advances in the Internet of Things (IoT), machine learn-
ing, and deep learning to the implementation of high-performance and pervasive health informatics.
New solutions benefit from energy harvesting, efficient power consumption, and very low-power high-
performance.

Preventive care
Big Data and /

Cloud Computing

1 Continuous

)
<&
- @

Oeys

= algorithms

Q4 Predictive
o

Diagnosis and Embedded Health Monitoring

Figure 1.1: Future portfolio of consumer wearable medical devices for personalized health
monitoring (From: [12] © Reprint with permission).

1.2 Problem Statement and Motivation of the Thesis

Today, cardiovascular system is monitored by several ways, of which the most common is electrocar-
diography (ECG), that records the electrical activity of the heart and is considered the gold standard of
non-invasive diagnosis of arrhythmias and ischemic heart diseases. ECG monitoring can be performed
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remotely using either a portable device or a wearable/implantable monitor. Traditional ECG recording
requires optimal positioning and attachment of electrodes (including hair removal and skin degreasing)
for the clean recording of electrical signals [13]. To detect acute or chronic cardiac disorders such as
heart arrhythmia and ischemic heart diseases, long-term measurements and real-time alerts are necessary
to enable reliable and accurate diagnostics, as symptoms sensed by the patient may be non-specific and
occur entirely unnoticed [14,15]. New clinically approved devices such as handheld and wireless single-
lead ECG monitors — for example, AliveCore Kardia, ECG Check, Medtronic loop recorders, and Zio
Patch — constitute a paradigm shift in modern cardiac health monitoring, while there are still open issues
regarding cost-effectiveness, the patient populations that could benefit from them, and data transmission
to be interpreted and acted upon by the clinical professionals [16]. Apart from that, most of the current
existing mobile/wearable devices lack the capabilities to comprehensively measure physiological param-
eters essential for the assessment of respiratory and cardiac function. For instance, although ECG yields
valuable information on instantaneous electrical states of the heart, it gives no information concerning
the instantaneous mechanical status of the heart. The reason is that the complex movements of the heart
muscle do not necessarily correlate with the electrical performance of the heart and therefore ECG fails
to show the mechanical characteristics of the cardiac function [13].

In the past decades, more attention has focused on the resurgence of non-invasive and unobtrusive
vital sign monitoring via sophisticated methods for measuring and interpreting mechanocardiograms
(MCQG), specifically ballistocardiography (BCG) and seismocardiography (SCG) signals. A considerable
amount of work has been carried out on non-invasive and contactless sensors, mainly BCG and SCG, for
cardiomechanical monitoring and measuring important parameters of the heart motion [17]. The existing
research has addressed that the SCG/BCG signals have a great potential in allowing a proactive cardiac
performance evaluation that might be useful in the detection of heart arrhythmia, coronary diseases
and ischemia, cardiac dyssynchrony, valvular disorders, and heart failure [17]. However, there are still
undiscovered potentials, for example, via new modalities for hybrid study of the heart motions, for
detecting aforementioned diseases, as well as unsolved challenges, for example, analytical and technical
complications, that obstacle robust and reliable continuous monitoring of cardiovascular status via MCG
technology.

The main motivation of this Ph.D. work was to explore new strategies to comprehensively assess
cardiovascular mechanical function via low-cost and efficient wearable/mobile MEMS sensors. The fo-
cus of research in DIGITAL HEALTH TECHNOLOGY LAB was to not only explore existing modalities,
but also investigate new solutions for measuring physiological parameters for cardiorespiratory monitor-
ing, as well as cardiac imaging. In this context, we sought to develop biosignal processing algorithms
for estimating cardiac motions solely based on multidimensional MEMS motion detectors. We consider
multidisciplinary approaches including signal processing and artificial intelligent techniques to charac-
terize and analyse physiological signals derived from wearable and mobile sensors. These approaches
are extensively used in the detection of cardiovascular disorders such as atrial fibrillation (AFib), acute
myocardial infarction (AMI), and coronary artery diseases (CAD), as well as prediction of cardiores-
piratory quiescence phases for motion correction in medical imaging. In a nutshell, this thesis shows
the capability of a new multidimensional MCG for measuring the heart’s mechanical performance in a
three dimensional space. The presented dual-sensory solution is fully non-invasive as tri-axial MEMS
gyroscope and accelerometers are attached either directly via wearable patches or indirectly via already
available built-in inertial measurement units (IMU) of the smart phones to the chest of the individuals.
Multidimensional sensing allows obtaining 6 degree-of-freedom (DoF) motion signals originated from
the precordial vibrations coupled with the myocardial wall movements. This work closely focuses on
algorithm development for processing and analysis of the currently available MCG signals to overcome
existing challenges. The ultimate goal of this study was to improve obtained parameters estimated by
mechanical cardiovascular monitoring while introducing a new modality, so-called gyrocardiography,
based on other characteristics of the heart motion.



Introduction

1.3 Organization of the Dissertation

Chapter 2 covers cardiovascular function including anatomy and physiology of the heart and describes
major characteristics of three most important cardiac diseases considered in this work. Chapter 3 de-
scribes various modalities used in this work including different measurement techniques and physiologi-
cal signals, cardiac imaging techniques and corresponding processing methods. Chapter 4 describes PET
imaging and methodologies for motion correction. Chapter 5 specifies the aims of this Ph.D. work and
Chapter 6 describes materials and methodologies used in this study including data acquisitions system
developments, biosignal processing techniques, and machine learning frameworks. Chapter 7 presents
major outcomes obtained in this work, and Chapter 8 discusses the potential applications of multidimen-
sional cardiorespiratory motion processing systems for personal wearable/mobile heart monitoring and
medical imaging. Finally, Chapter 9 concludes this Ph.D. work and addresses future direction of research
in this field.



Chapter 2

Background Physiology and Underlying
Cardiovascular Diseases

2.1 Cardiovascular System

2.1.1 Anatomy and Mechanical Physiology of the Heart

The human heart, located in the mediastinum, is a muscular organ that is responsible for blood circula-
tion in the body. The heart muscle is comprised of four distinct chambers, namely two atria responsible
for gathering blood and two ventricles for pumping blood throughout the body. The four chambers are
divided into the left and right sides, each containing an atrium and a ventricle. In addition to these cham-
bers, the heart includes two atrioventricular valves, the bicuspid or mitral valve and tricuspid valve, and
two semilunar valves, aortic valve and pulmonary valve, in the left and right chambers. During single
cardiac cycle, two major phases, that is, systole and diastole, occur allowing blood outflow and inflow
to the vascular tree and ventricles, respectively. During the systole, left and right ventricles contract
in parallel, atriaventricular valves close — preventing blood return from the ventricles — and the aortic
valve opens to deliver the oxygenated blood cells through the aortic artery. Conversely, during the dias-
tolic phase ventricles relax and atrioventricular valves open allowing blood inflow (passive filling) from
atria to the ventricles. In simple terms, the right ventricle task is to deliver deoxygenated blood to the
lungs while the left ventricle serves to pump oxygenated blood throughout the circulatory system [18].
Each contraction and relaxation sequence is associated with changes in pressures, volumes, and flows
underlying mechanical aspects of cardiac performance.

2.1.2 Cardiac Wall Motion

The heart is an electromechanical pump and its continuous mechanical pumping action is essential for
the adequate blood supply throughout the body. The ventricular pumping action occurs as a result of
cyclical changes of the intraventricular chamber volume caused by periodic and the synchronized con-
traction and relaxation of the individual cardiac muscle cells within the ventricular wall. The myocardium
wall, a highly complex muscular structure, is the thickest muscle of the heart that encompasses left and
right chambers, and undergoes repeating changes in different dimensions and orientations. Coordinated
contraction-relaxation cycles in the myocardium are formed by continuously varying orientations and
vectors of force in three-dimensions (3D) across the chamber wall [19]. In cellular structure, the contrac-
tion of helically oriented muscle fibres of myocardium act as an integrated force causing a coordinated
wringing motion to the myocardium within each cardiac cycle [20-22]. Wringing motion due to twisting
rotation plays an important role in systolic and diastolic myocardial deformation [21].

The mechanical activity of the heart involves contraction of myocardial cells, closing and opening of
heart valves, and flow of blood into and from the heart chambers. This activity is modulated by changes
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in the contractility of the heart, the compliance of the chamber walls, arteries, and the developed pres-
sure gradient. In other words, mechanical function of the myocardium is characterized by shortening and
lengthening of myocardial fibers/papillary muscle resulting in increased chamber pressure and a decrease
in chamber volume, which allows blood ejection into the vascular tree. A single steady-state cardiac cy-
cle is one complete sequence of myocardial contraction and relaxation which leads to clockwise and
counterclockwise rotation of the left ventricle (LV). This twisting and untwisting action is associated
with the storage and release of potential forces, contributing to LV systolic contraction and diastolic re-
laxation [23]. The movement of LV is the major contributor in the long axis of the heart and is considered
as an indicator of ventricular systolic and diastolic function or dysfunction [24,25].

Over the past years, several sophisticated techniques have been presented to quantitatively investigate
cardiac mechanical function using diverse techniques in both animals and humans. The primary approach
to evaluate cardiac motion, or myocardial deformation, was carried out by attaching multiple implanted
radiopaque markers to the body of heart and subsequently undergoing biplane cine angiography analysis
in dogs [26]. Following that study, various other invasive and non-invasive approaches were carried out
including optical devices [27,28], tagging magnetic resonance imaging (tagged MRI) [29], Doppler tis-
sue imaging (DTTI) [30,31], and speckle tracking imaging [32]. These methods have been introduced to
thoroughly evaluate the dynamics of cardiac motion and myocardial tissue function. Currently, echocar-
diography (TDI), together with supplementary imaging techniques such as speckle tracking, is the most
common and standard technique to study strain rate — a measure of tissue deformation rate, and its inte-
gral, strain yields the total deformation of the heart muscle. Strain rate and strain are respectively related
to the shortening velocity and shortening fraction of the myocardial wall [33]. In a new-fashioned way,
implantable inertial sensors were used to continuously track left ventricular function/myocardium defor-
mation and assess cardiac rotation in animals [34-37]. Figure 2.1 shows cardiac wall motion analysis
using implantable/ultrasonic/contactless techniques.

2.1.3 Cardiac Electromechanical Conduction

The electrical and mechanical activity of the heart can be determined by specific physiological operations
by which the performance of the heart functionality is assessed. During a cardiac cycle, several major
electromechanical activities occur in parallel that yield to certain important cardiac events.

The heart’s conduction system controls the generation and propagation of electrical signals or action
potential that cause the heart’s muscles to contract and thereby pump blood through the whole body.
Each beat begins in the right atrium with an action potential signal from sinoatrial (SA) node. This
triggering or activation pulse from SA note depolarizes atrial myocardial cells which leads to contrac-
tion of atria. This atrial contraction or atrial systole, represented by P-wave in electrocardiograms, raise
forces/pressure to push blood into the ventricles. This period of conduction follows atrial systole and
proceeds to ventricular contraction or depolarization of ventricular cells (depicted by PR segment fol-
lowing the P wave). When the signal leaves the atria it enters the ventricles via the atrioventricular
or AV node located in the interatrial septum. It enters the bundle of His and spreads through the bundle
branches and the large diameter Purkinje fibers along the ventricular walls. As the signal spreads through
the ventricles, the contractile fibers depolarize and contract very rapidly inducing ventricular systole (de-
picted as QRS complex in ECG signal) leading to the closure of mitral (MVC) and Tricuspid valves,
contributing to the first cardiac sound or S1, followed by a rapid blood ejection through the aortic valve
opening (AVO). As the signal passes out of the ventricles the ventricular walls start to relax and recover,
a state described as ventricular diastole marked by dome-shaped T-wave on ECG (ventricular repolar-
ization). On the ECG, the ST segment depicts the period when the ventricles are depolarized. This is
followed by gradual closure of the aortic valve (AVC) and the opening of the mitral valve (MVO). The
second heart sound, S2, happens at the closing time of aortic and pulmonary valves. Figure 2.2 represents
electrophysiological events and coinciding mechanical activities.
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Diastole

Figure 2.1: Figure A shows cardiac wall motion tracking using tagged MRI, Figure B indi-
cates Speckle tracking for longitudinal wall motion tracing in echocardiography/TDI, Figure C
shows implanted MEMS accelerometer and gyroscope sensors for measuring myocardial linear
and angular movements (From: [37-40] © Reprint with permission).

2.1.4 Cardiac Time Intervals

Cardiac time intervals (CTI) refer to the timing period of physiological incidents that happen during a sin-
gle stationary cardiac cycle. In practice, CTIs are divided into two sub-segments, systolic time intervals
(STI) and diastolic time intervals (DTI). With distinguishing of the points where mitral and aortic valve
opening and closure occure, several CTI can be defined as follows: The isovolumetric contraction time
(IVCT) and the isovolumetric relaxation time (IVRT) which refer respectively to the time between the
onset of MVC and AVO, and AVC and MVO moments. Additionally, three other systolic time intervals
(STI) are defined as the total electromechanical systole (QS2), the left ventricular ejection time (LVET),
and the pre-ejection period (PEP). In our considerations, the QS2 is measured from the ECG Q-wave to
the moment of AVO, while the LVET is measured as the time interval between the moments of AVO and
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Figure 2.2: Wigger’s diagram representing electromechanical cardiac events (From: [41]
Reprint under creative commons license and attribution right ©@®).

AVC in the cardiac cycle. The PEP index is measured from the point of ECG Q-wave to the onset of the
AVO. PEP and LVET are both important clinical parameters on myocardial contractility [42—44].

2.2 Cardiovascular Diseases

According to the American Heart Association’s latest reports, heart diseases are the main cause of death
globally. Cardiovascular diseases are the number one cause of death worldwide, leading to at least 17
million deaths in 2008, representing 30% of all global deaths. Of these deaths, almost 80% are due to
coronary artery disease, or CAD, and cerebrovascular disease [2,45]. In the contexts of this Ph.D. work,
three major and high risk groups of CVDs were considered as described below.

2.2.1 Atherosclerotic Cardiovascular Disease

Cardiovascular disorders such as inflammatory diseases, ischemia, cardiac arrhythmia, and heart fail-
ure are the most known causes of death and their prevalence is increasing [2]. With atherosclerotic
cardiovascular disease, the blood flow to the heart’s muscle is decreased as the coronary arteries are
gradually narrowed due to plaque formation within the walls. Atherosclerosis, or stiffening of arteries,
is a progressive disease that refers to as obstruction and hardening of the arteries as a result of plaque
accumulation surrounding the coronary arteries [46]. Sudden rupture of atherosclerotic plaques may lead
to myocardial infarctions (MI) and ischemic strokes [47,48]. Current diagnostic techniques for coronary
artery diseases are based on anatomical demonstration of vessel lumen narrowing, for example using
X-ray contrast angiography that is insufficient for the quantitative assessment of plaque vulnerability to
rupture [49]. Other approaches have been recently introduced to utilize smartphones/wearables for the
detection of CVD conditions in a variety of ways [50-57].

The state-of-the-art for non-invasive detection of atherosclerotic plaque inflammation is PET imaging
and 18F-fluorodeoxyglucose (FDG) as a radiotracer [49, 58—60]. Cardiac PET scan is new imaging
modality suitable for metabolical assessment of coronary diseases and damaged heart muscles due to the
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Figure 2.3: Figure A is an overview of coronary (heart) disease leading to chest pain, heart
attack, and heart failure. Figure B is cross-section of the coronary artery network showing
microvasculature with (abnormal) and without (normal) plaque formation in the arteries (From:
National Heart, Lung, and Blood Institute (NHLBI) [65,66] @®).

heart attack [61]. Given the important role of inflammation in atherosclerosis, a cardiac PET scan can be
used to measure the severity of inflammation in humans [59]. However, radiographic methods including
PET suffer from major limitations such as tracer uptake quantification errors and image blurring due
to respiration and cardiac motions [62, 63]. Motion artifacts reduce the image quality and quantitative
accuracy of the PET imaging. To eliminate motion-related inaccuracies, cardiac and respiratory gating
methods are the most common approaches applied in clinical PET imaging [64]. Figure 2.3 shows an
overview of CAD progress due to atherosclerotic plaque formation in the walls of the coronary arteries.

2.2.2 Myocardial Infarction

Myocardial infarction (MI) is defined as myocyte/myocardial cell necrosis due to a prolonged episode of
ischemia [67]. Ml results from progress of CAD and refers to the severe reduction of blood flow and oxy-
gen to the heart muscle and is generally categorized as non-ST-segment elevation myocardial infarction
(NSTEMI), when a coronary artery is partially blocked so that myocardial cells demand more oxygen,
or ST-segment elevation myocardial infarction (STEMI), when the artery is completely occluded and
consequently myocardial cells die [47,48]. Figure 2.4 shows death of the heart muscle area as a result
of blocked arteries. Although, many invasive and non-invasive interventions such as ECG, stress testing,
biochemical testing, and coronary imaging are often performed for ischemia diagnosis and assessment,
still point-of-care assays for bedside detection of acute coronary syndromes (ACS) pose several limita-
tions [68]. For example, resting 12-lead ECG is a standard clinical routine in cardiology which, although
can determine the likelihood of the presence of acute coronary disease, it has relatively low sensitivity
and specificity [69-71]. Ambulatory ECG monitoring may to some extent show signs of myocardial
ischemia during normal daily activities but, in suspected cases, rarely provides important diagnostic ev-
idence. In general, ECG fails in proper diagnostic of ischemic disease due to two reasons: 1) it does not
sufficiently contribute in representation and evaluation of cardiac wall motions or mechanical character-
istics of the heart motion, and ii) normal examinations and observations do not exclude the possibility of
ischemic disease or ACS [72]. Other tests such as echocardiography, chest X-ray, cardiac magnetic res-
onance imaging (MRI), biomarkers, and cardiac PET imaging may also be used, but are more expensive
and require advanced logistics and sophisticated medical interpretations [68].
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Figure 2.4: Figure A is an overview of the heart and coronary arteries showing damaged my-
ocardial cells caused by acute infaction. Figure B is cross-section of the coronary artery with
accumulated plaque and a resulting blood clot (From: NHLBI [73] @®).

The editorial letter by Pueyo (2013) [74] addressed numerous approaches to ischemic heart disease
diagnosis by analysis of ECG depolarization. For example, Abboud et al. [75] proposed high-frequency
(within a bandwidth of 150-250 Hz) analysis of electrocardiogram to assess electrophysiological changes
due to CAD. As such, high-frequency changes in ECG QRS complex components, also known as Hyper-
QRS, has been considered a sensitive indicator of acute coronary artery occlusion [76,77]. Many other
techniques have been also developed to detect acute ischemia using ECG [50, 51, 53,54,78]. ECG QT-
wave dispersion was investigated as a measure of variability in ventricular recovery time and a possible
measure for identifying patients at risk of arrhythmias and sudden death after infarction [78]. Mechanical
dispersion, also known as strain rate variations, is measured by echocardiography and reflects the hetero-
geneity of myocardial systolic contraction. Myocardial mechanical dispersion is recently acknowledged
as an indicator for susceptibility to arrhythmias in different heart disease groups such as heart failure
and ischemia [79-81]. In recent years, machine learning algorithms based on wavelet transform feature
engineering and pattern recognition have also been suggested to diagnose CAD conditions [57, 82].

2.2.3 Atrial Fibrillation

Atrial fibrillation (AFib) is a prevalent heart arrhythmia which is characterized by irregular atrial acti-
vation (supraventricular tachyarrhythmia) leading to failure of atrial mechanical function [83]. During
normal sinus rhythm of the heart, atrial activation is followed by fast contraction of the chambers at
a similar pace [84]. Conversely, during AFib the atria contract randomly in an uncoordinated manner
and vibrate approximately 400 to 600 times per minute resulting in mechanical failure in ventricular re-
sponse. Prevalence of AFib increases with aging and approximately occurs in 3% of the adults aged 20
years or older [85]. AFib accounts for up to 40% of all strokes suffered in the world and in Europe alone
for more than 200,000 deaths per year and costs up to 17.1 billion euros each year [86]. The condition
becomes even more complicated from the age of 65 — approximately five percent of all 70 year-old
persons and more than twenty percent of all persons 85 years or older suffer from AFib [84, 87].
Despite the clinical significance of this cardiac disorder, AFib detection remains still challenging,
because it can appear infrequent and asymptomatic. Silent atrial AFib occurs in many situations before it
manifests itself with hemodynamic impairment and thromboembolic events [88]. Undiagnosed AFib can
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potentially lead to the formation of blood clot(s), heart failure (HF), acute strokes, and other heart-related
complications [83]. Untreated AFib is associated with considerable morbidity, mortality, and financial
costs [83]. Furthermore, although 30% of ischemic strokes occur without a discernible causative factor,
recent studies have uncovered AFib in 16-30% of such patients during long-term rhythm monitoring [89,
90]. To effectively prevent cardioembolic strokes, AFib must be diagnosed as early as possible in its
course. Figure 2.5 illustrates the process of ischemic stroke where a blood clot is formed in the heart
(due to disorganized electrical activity resulting in quivering of atria) and arises blood flow blockage in
the brain vessels affecting a portion of the brain.

Figure 2.5: Disorganized electrical activity in the upper chambers of the heart causes fast quiv-
ering leading to clot formation and eventually brain stroke as the clot travels through carotid
arteries (From: NHLBI [91] @@®).

Current standard diagnostic tools for arrhythmia detection include ECG [83, 92], echocardiogra-
phy [93], and pulse oximeter/photoplethysmography (PPG) [94] which have been widely used in clinical
environments. Handheld ECG devices, mobile phones [94], smart watches [95], and weighing scales [96]
are recently exploited which aim to simplify and ameliorate personal medicine by enabling individuals
to track their cardiovascular status themselves. AFib is, however, known to remain sporadic and indis-
tinguishable in some of the medical examinations requiring long-term continuous monitoring for an in
time precise diagnosis [92]. In order to detect symptoms appearing at periodic or random intervals, an
effective strategy for longer-term monitoring, up to several days or weeks at a time, is needed [83,92].
Despite vigorous research, efficient and cost-effective approaches to detect and screen for asymptomatic
AFib are yet to be introduced.

Many new portable/wearable modalities such as AliveCore Kardia [97], Zenicor [98], Mydiagno-
stick [99], Zio Patch [100], Medtronic implantable loop recorders [89] and wearable SEEQ™ mobile
cardiac telemetry [16], iPhone optical sensor [94], Apple Watches [101], and Samsung Simband smart-
watch [102] have been recently validated for AFib detection as they offer feasibility of long term mon-
itoring. However, these methods pose two major limitations. Such modalities are first of all costly as
currently available technologies for manufacturing miniaturized wearable/portable/implantable devices
are expensive and the second problem is that they always require additional hardware which makes it
impractical for large-scale screening purposes.

Mobile PPG-based recorders can be considered as a potentially suitable substitute to detect AFib
owing to the fact that smartphone camera can simply trace changes in light absorption (by placing a
fingertip on the camera), while no additional hardware is needed. However, PPG sensor measures only
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Table 2.1: Summary of cross sectional observational studies for AFib detection using ECG and
non-ECG devices.

Study Device Name Modality Size Sensitivity Specificity
Nemati et al. [102] Samsung Simband 8-channel PPG 46 97% 94%
Chan et al. [121] Cardiio Rhythm I-channel PPG 1013 92.9% 97.7%
Chan et al. [121] AliveCor 1-channel ECG 1013 71.4% 97.7%
Lau et al. [122] AliveCor I-channel ECG 204 98% 97%
Lowers et al. [123] AliveCor 1-channel ECG 1000 98.5% 91.4%
Desteghe et al. [124] AliveCor 1-channel ECG 113 78.9% 97.9%
Barrett et al. [125] Zenicor 1-channel ECG 3209 97.8% 88.2%
Chan et al. [126] Microlife WatchBP Home Pressure sensor 5969 80.6% 98.7%
Desteghe et al. [124] MyDiagnostic 1-channel ECG 113  89.5% 95.7%
Briiser et al. [127] EMFi ballistocardiogram Force sensor 10 93.8% 98.2%
Jaakkola et al. [128] Smartphone Mechanocardiograph  6-axis MEMS 300  95.3% 96%
Bumgarner et al. [128] Kardia Band 1-channel ECG 100 93 % 84%

optical pulse-wave signal and considers inter-beat variability as the only basis for AFib detection. Smart-
phone PPG recorders sense the rate of blood flow over time and give no immediate feedback due to the
heart’s muscular activities as bio-potential/biomechanical generated signals provide [103—105]. Table 2.1
presents a brief review on new technologies developed in recent years for detection of AFib. A recent
review on new and emerging approaches to detection of AFib is given in [106].

Current ECG-based methods for discriminating AFib can be determined by two principles: i) absence
of P-wave or presence of fibrillatory F-waves in the TQ interval in ECG (atrial activity analysis) [107-
109], and ii) heart rate variability due to inter-beat timing and amplitude variations of the QRS complexes
(ventricular response as a result of the atrial activity) [110]. In addition to these criteria, and regardless
of the measuring modality, further dominant characteristics of AFib signal pattern can be captured by,
for example, Poincaré and Lorenz plot analysis [104, 111, 112], root mean square (RMS) and median
absolute deviation (MAD) of successive intervals [105], distribution of the first and second difference
of cardiac cycle intervals [113], spectral entropy [114], sample entropy [115], and Shannon entropy
measures [105, 116-118]. A large number of studies, most of which based on the above techniques,
has been conducted on automatic classification of AFib. Classic approaches include signal processing
and knowledge-based techniques, while modern algorithms consider both signal processing and machine
learning solutions to achieve reliable classification on AFib. Zabihi et al. (2017) recently presented a
novel hybrid approach including multi-domain feature extraction, and a random forest classifier for AFib
detection [119]. This method achieved the first place in PhysioNet/Computing in Cardiology (CinC)
Challenge 2017 with an overall score of 82.6% on previously unseen testing data. Several other state-of-
art ECG classification techniques based on extreme gradient boosting (XGBoost), convolutional (deep)
neural networks(CNN5s), and recurrent neural networks (RNNs) also revealed encouraging results in this
challenge [120].

In this study the main focus was mobile phone detection of AFib as smartphone devices are fast
becoming ubiquitous, and they offer unprecedented possibilities for various medical applications. MCG
monitoring considers the translational and rotational precordial vibrations induced by myocardial wall
movements. Almost all modern smartphones contain low-cost built-in accelerometers and gyroscopes
enabling health data collection without any additional hardware. This study aims at indicating clinical
potentials of mobile phone AFib and MI detection versus the gold standard of visual interpretation of
continuous telemetry ECG recordings in hospitalized patients. The state-of-the-art algorithms for inten-
sive processing of the heart’s mechanical activity may open a new door on a more accurate diagnosis of
CVDs.
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Chapter 3

Background of Modalities Used in This
Work

A brief overview on background of the modalities that are used in this work for the physiological signals
recording as well as cardiac imaging techniques is provided in this chapter.

3.1 Microsensors

Developments in semiconductor fabrication processes have resulted in new and innovative solutions
that allow designing sensitive microsensors with integrated signal processing circuits, wider exploitation
of miniaturization technology, and lower manufacturing costs [129]. Microelectromechanical systems
or MEMS include mechanical and electrical micro-sized components which can be fabricated using
integrated circuit batch-processing techniques. MEMS devices have small size, low weight, low power
consumption, high sensitivity, and high resolution [129]. New smart sensors including MEMS offer a
great opportunity to combine sensing, signal processing and actuation on a micro-scale to be used in
many fields of industry, control systems, and biomedical applications.

Current smart wearable technology constitutes miniaturized and multidimensional motion detectors
for recording cardiovascular mechanical activity. User-friendly and cost-effective wearable MEMS sen-
sors together with advanced signal processing and artificial intelligence may improve prediction and
prevention of cardiovascular diseases through early stage detection and rapid determination of the char-
acteristics of an acute cardiac event, for example, heart attack, with greater certainty.

Measuring cardiac muscle motion has been known since the 19th century as a technique for assessing
the condition of the heart [17]. Six degrees of freedom (6DoF) cardiac motion sensing via miniature
sensors refers to the motion of the heart in the three-dimensional space. The generic motion of the heart
consists of the translation of the center of mass in three orthogonal directions and rotation about the
center of mass around three orthogonal axes. Approximately 40% of the mechanical movement of a
healthy heart is linear and 60% is rotational [131]. Figure 3.1 shows an experimental model of heart
kinetics resulting from sequential twisting of the myocardial wall. As addressed by previous in vivo
studies [34-37, 40], the translational quantities such as linear velocity and acceleration that describe
linear motion of the heart can be measured by for example an accelerometer sensor, while the rotational
quantities such as angular displacement, angular velocity, and angular acceleration may be measured
by a gyroscope sensor. Therefore, in considerations of this Ph.D. work, these two sensors are used
to non-invasively measure cardiac vibrations as the accelerometer sensor is sensitive to translational
vibrations and the gyroscope sensor is sensitive to the rotational precordial movements. However, the
engagement mechanism and the transfer function from the motion of the heart to the motion of the chest
are still unclear, and should be investigated more thoroughly in the future. The general working principles
of these two sensors are first described in the following and the new modalities used in cardiological
discussions will be introduced afterwards.
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Figure 3.1: Figure A is a sequence of twist mechanics of the heart over clockwise and coun-
terclockwise helical motions while electric and mechanical activation are initiated. Figure B
shows shortening of the heart muscle during systolic activation. Figure C describes lengthening
of the myocardial wall over untwisting in the beginning of diastole. Figure D shows minimum
untwisting of the muscle as it is characterized by relaxation of both layers (From: [130] ©
Reprint with permission).

3.1.1 MEMS Accelerometers

The main components of a MEMS sensor are mechanical elements, sensing mechanism, and a micro-
controller/processor. A tri-axial capacitive linear accelerometer with an integrated interface chip includes
programmable components such as integrated circuits (ICs) and sensor on one single chip [129,132,133].
General MEMS accelerometer sensors are sensitive to the displacement of a spring mass with a position-
measuring interface circuit. The displacement of spring mass is then converted into an electrical signal
and subsequently digitalized through an analog-to-digital converter (ADC) for further processing.

Any rigid object follows Newton’s second law of motion as:

a=—, 3.1)
m

where a is acceleration (m/ 52), F is force (), and m is mass (kilograms). In principle, accelerometers
measure a force applied to the micro-fabricated components, for example, moving springs, by detecting
the displacement of a moving mass relative to the fixed electrodes (see Figure 3.2). The sensing mech-
anism in most of the accelerometers is capacitance change related to the movement of that spring mass
possibly in multiple orientations or axis. This sensing approach is used for high accuracy, stable, and low
power measurements. Passive accelerometers are prone to electrical noise and temperature variations.
However, bandwidth of such accelerometer is limited to a few hundred Hertz due to the physical geome-
try of the incorporated components as well as air trapped inside the IC. The capacitance can be measured
as:

€ X e XA
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Figure 3.2: Figure A is an overview of capacitance accelerometer associated with a single
moving mass. Figure B is a mechanical model of an actual accelerometer with components
movable in two different axis.
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where, C' is capacitance (Farad), ey and ¢, are respectively the free space and relative permittivities
between the plates, and A is the area of overlap between the electrodes, and D is the separation distance
between the electrodes. As Figure 3.2 A shows the motion of the mass is relative to the fixed electrodes
(d1 and d2) leading to variation in capacitance (C'1 and C'2). By measuring the difference between the
capacitors, C'2 and C'1, it is possible to derive the displacement of the mass and its orientation. In order
to measure capacitance changes in different directions, the mechanical structures of an accelerometer
can be tilted differently, for example, 90 degrees (see Figure 3.2 B).

Selecting a suitable accelerometer for a given application is of high importance. In order to find the
most appropriate accelerometer, several main electromechanical characteristics need to be considered as
described below:

Bandwidth (Hz): this parameter describes the range of vibration frequencies to which accelerome-
ter responds. A bandwidth of 40-60 Hz is suitable for biomedical applications, e.g. for chest-
acclerometery [134].

Sensitivity (mV/g or LSB/g): indicates the minimum detectable change in the output electrical signal
within the determined range of mechanical change. The ¢ is a unit of acceleration equal to the
earth’s gravity at sea level.

Voltage noise density (uug/+/ H z): determines the noise level by measuring voltage noise changes with
the inverse square root of the bandwidth. This means that the higher the sampling frequency the
lower the accuracy.

Frequency response (Hz): specifies the frequency range (with a tolerance + 5%) to calculate how
much the device’s sensitivity deviates from the reference sensitivity.

Dynamic range: specifies the range from the smallest to the largest detectable amplitude that ac-
celerometer can measure before distorting the output signal, for instance £ 2g, 4¢, and 8g.
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3.1.2 MEMS Gyroscopes

Unlike accelerometers that measure linear movements/accelerations along one or multiple axis, gyro-
scopes or angular rate sensors measure rotational movements (angular velocity) about a specific ori-
entation with respect to inertial space. The main difference between the two sensors is that MEMS
accelerometers do not respond to change in angular velocity caused by an imposed rotation (for instance
aroll). The reason is that the inter-plate distances, d1 and d2 as shown in Figure 3.3 A, will not change
in the course of rotation and therefore the accelerometer output will not respond to this change. Hence,
the gyroscope structure is constructed differently by deploying an inner frame containing a resonating
mass coupled to the substrate by springs (at 90 degrees) relative to the resonating motion (see Figure 3.3
B).
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Figure 3.3: Figure A shows an overview of acceleration immunity to rotation. Figure B de-
scribes the inner and substrate representation relative to a moving mass in two different axis.

Mechanical oscillation between drive frames which are linked together by a spring is typically used
to measure rotation by extracting the Coriolis force. In other words, the sensor angular velocity is
derived by detecting, on the sensor frame, the motion deflections originated from a resonating structure.
The deflections can be conceived when Coriolis force arises from the relative motion of the vibrating
structure.

During driving mode, the two frames which oscillate in phase opposition generate Coriolis force.
When a vibrating gyroscope is subjected to an angular motion, the Coriolis force deflects parts of the
comb-like driving structure which move the deflection frame (Coriolis effect) and subsequently the ca-
pacitance between the comb structure is changed in proportion to the speed of rotation. The amplitude of
this coupled oscillation can be used as the measure of the angular motion. A gyroscope operating based
on this working principle is called Coriolis Vibrating Gyroscope (CVG). A CVG includes a mechani-
cal structure with at least two modes of vibrations, namely driving mode and sense of pickoff, that are
dynamically connected with Coriolis force [132, 133]. Several mechanical designs for micro-machined
gyroscopes have been suggested, of which the most used designs reported in the literature and industrial
products are vibrating beams, vibrating forks, vibrating plates, vibrating shells, and surface acous-
tic wave (SAW) structures. The interested reader may refer to [132] for more details regarding MEMS
gyroscopes.
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3.2 Cardiac Monitoring Systems

3.2.1 Electrocardiography

The electrical activity of the heart can be measured using electrocardiography with electrodes attached
to the surface of the skin of the monitored subject [135]. Depolarization and repolarization of the my-
ocardial cells create electrical current (and an electrical field) which can be measured between a pair
of electrodes placed on the body’s surface in specific positions on the skin. As such, an ECG measures
voltage changes, amplifies micro-voltages, and visually displays a series of waves originated from heart’s
overall electrical activity. An ECG signal may look different in each measuring orientation, or namely
lead, as the recorded angle of electrical activity alternates between the leads. Each lead measures voltage
or electrical potential difference between two electrodes.

A typical ECG signal describes various electrical patterns derived from electrical impulses that
spread throughout the heart. The main electrical components seen in an ECG signal — within a sin-
gle cycle — are respectively P-wave (indicating atrial contraction), QRS-complex (depicting ventricular
depolarization), and T-wave (representing ventricular repolarization). A single cardiac cycle (CC) or
beat-to-beat interval in ECG is measured from the onset of R-wave to the following R-wave.

Electrocardiography (ECG) is the gold standard and yet the most widely used monitoring modality
for diagnosis of heart arrhythmias and other abnormalities. ECG allows ambulatory or long-term moni-
toring of the cardiac operation along with manual or computerized interpretations made by experts (e.g.
clinicians). However, despite the undeniable capability of ECG for representing the electrical perfor-
mance of the heart, it gives no information how well the heart is functioning mechanically [13].

3.2.2 Ballistocardiography and Seismocardiography

The most frequently studied method for unobtrusive measurement of ballistics forces of the body is bal-
listocardiography (BCG) which relies on detecting the changes in the body center of mass [136, 137].
BCG measures infrasonic cardiac signals originating from body reactionary forces in response to the
blood ejection into the vascular tree [17, 138]. First BCG measurement was made (using a spring weigh-
ing scale) by Gordon in 1877 [136] and its instrumentation was later improved by Star and Dock [137,
139] in 1939, Elliott et al. [140] in 1954, and Mounsey [141] in 1957. Modern BCG measurement
methods include smart weighting scales, bed/chair piezoelectric sensors, inclinometers, and wearable
sensors [17].

Seismocardiography (SCG) is a non-invasive heart monitoring technique which measures precordial
accelerations caused by myocardial wall motions, ballistic forces due to blood flow, and respiration in
the upper chest area. The concept of SCG technology was originally developed along with BCG in-
vestigations where Mounsey [141] and Elliott et al [140] considered the use of single axis accelerometer
sensors to measure chest accelerations, namely precordial ballistic forces due to the palpation of the heart
beat. The term seismocardiography was first denominated by Bozhenko in 1961 [142], and its clinical
applications were later introduced by Zanetti and Salerno [143—-145]. SCG contains useful information
about the translational heart motions originating from the contraction and relaxation of the left ventri-
cle [146]. By means of SCG and BCG, it has been possible to record and study cardiac mechanics and
hemodynamic variables.

Today, multidimensional SCG can easily be obtained by mounting a tri-axial accelerometer sensor
on the upper chest area so that the x-axis corresponds to the right-to-left lateral accelerations, y-axis to
the head-to-foot aligned accelerations, and z-axis to the dorso-ventral accelerations caused by precordial
movements. The SCG signal is constituted from high frequency components (>70Hz) representing
cardiac sounds, S1 and S2, and low frequency components (4-40 Hz) reflecting cardiac physiological
events such as MVC, AVO, AVC, and MVO [17]. Salerno and Zanetti studied SCG waveforms along
with ECG and cardiac ultrasound and labeled coinciding phenomena corresponding to specific cardiac
events [143] as shown in Figure 3.4.
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Figure 3.4: SCG time intervals and waveform annotation based on ECG, Doppler, and M-mode
echocardiography. Systlic and diastolic events are respectively: MVC, AVO, rapid ejection
(RE), maximum acceleration (MA), AVC, MVO, and atrial systol (AS).

SCG and BCG can be used for unobtrusive long term monitoring of LV to estimate hemodynamic
variables, cardiac abnormalities, and breathing disorders via low-cost wearable or portable devices [127,
147-150]. Several clinical applications have been proposed for the BCG/SCG based monitoring ap-
proaches such as detection of CAD [144, 151], AFib [127], HF [152, 153], MI [149], hemodynamic
parameters estimation [154, 155], sleep disorders [156], blood pressure monitoring [157], and for the
treatment of acute coronary ischemia [158]. Generally, findings in SCG/BCG studies indicate that me-
chanical signals have great potential clinical applications in cardiac performance assessment [17]. Re-
cently, SCG has been proposed for medical imaging applications in which the quiescent phases of cardiac
cycle can be estimated by SCG for motion correction in computed tomography (CT) [159-162].

3.2.3 Gyrocardiography

Gyrocardiography (GCG) refers to a measuring modality where precordial rotational movements are
sensed using a sensor of angular motion, for instance, a gyroscope, attached to the skin of the chest. The
gyroscope sensor is configured to measure chest motion signal, an angular ballistocardiograph signal,
that is representative of rotational recoil micro-movements in response to the myocardium motion within
the chest wall [9].

GCQG technique is solely based on tracing the precordial microvibrations using a MEMS gyroscope
sensor placed on the skin anterior to the sternum. The gyroscope measures rotational velocities corre-
spond to physiological events such as the moments of LV valves openings and closings. A benefit of
the GCG is that a gyroscope measures angular motions induced by the heart pulsation [163] and the
sensor is more tolerant to noise [164] and linear body micro-movements [165]. Compared to the linear
acceleration/velocity signals, the gyroscope waveforms remain more monomorphic and stationary. GCG
can accurately detect very small rotational displacements with high temporal resolution, and thereby
can provide information on cardiac time intervals, hemodynamic variables and myocardial contractil-
ity [163]. This technique can be easily incorporated to other modalities such as ECG, BCG and SCG
for better detection of cardiac diseases, such as arrhythmia [113], acute myocardial ischemia [166], and
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other heart diseases [167]. Figure 3.5 shows BCG, SCG, and GCG signals with labels representing a
rough estimation of the physiological events in cardiac function.
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Figure 3.5: Illustration of typical BCG, SCG, and GCG signals with corresponding waveform
annotations obtained respectively by a contact-less bed sensor (highly sensitive inclinome-
ter) [168], chest accelerometer, and gyroscope sensor.

Recently published research has described the feasibility of the heart monitoring using miniatur-
ized accelerometer and gyroscope sensors in Google glasses, wrist worn devices, smart phones, and
chest worn patches [169-171]. Additionally, the body kinetic energy analysis, also known as the multi-
dimensional kineticardiography (MKCG), has been recently introduced which is based on placing inertial
sensors on the center of mass of the body, for example, on the skin of the human back, and thereby on
measuring the kinetic energies and powers of the body. This method, which resembles angular ballis-
tocardiogram, has potential in evaluating kinetic energy transferred from the heart in patients suffering
valvulopathy and heart failure [167]. Other investigators such as Marcelli et al. [34,36], Hyler et al. [172],
and Grymyr et al. [37], on the other hand, presented in vivo techniques based upon implantable gyro-
scope and accelerometer sensors in order to trace left ventricular motion changes and assess cardiac
function. These studies, although very preliminary, indicate a promising approach which may yield to a
prospective strategy suitable for implantable devices for the continuous monitoring of cardiac function.

3.2.4 Background of Heart Rate Estimation with MCG

A great deal of previous research into MCG signal processing has focused on heartbeat detection for
various applications, such as heart rate monitoring and arrhythmia detection. To date, several different
approaches have been suggested for estimating beat-to-beat intervals in mechanical cardiac signals, for
example, see [173—177]. As there are many different sophisticated algorithms for heartbeat detection
in ECG, there are also various methods to detect cardiac impulses in MCG signals. However, detecting
heartbeats from SCG/BCG/GCG signals is much more complicated than in ECG, because the mechanical
signals are often variable and inconsistent due to the inter- and intrasubject morphological variations.
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Mechanical signals in general pose a wider variability in time, amplitude height, chronology of peaks
and overall shape. In this section, a number of techniques for heartbeat identification in MCGs will be
briefly reviewed.

Currently established algorithms in the field of cardiac signal processing (including only ECG and
MCQG) are dedicated to measure either instantaneous heart rate or averaged cardiac cycles taken over
several consecutive heartbeats.

Instantaneous heartbeat detection approaches can be divided into two categories: 1) ECG-dependent,
and 2) ECG-independent methods. Algorithms that rely on the ECG fiducial points ultimately need ECG
R-peaks for accurate detection of heartbeats. These methods typically consist of a band-pass filter to
remove the respiratory and noise effect, and a complementary stage to localize MCG heartbeats through
a rule-based process [150, 178-182]. Khosrow-Khavar et al. (2015) presented a primary method for
automatic annotation of high frequency components in the SCG signals by detecting local maxima in
several SCG derived envelopes [150]. This approach extracts different envelopes of the SCG signal,
and using ECG R-waves (as the fiducial points) as well as a searching window operation detects cardiac
impulses in the SCG signal. In a follow-up study, they developed a state-of-art algorithm for robust and
standalone delineation of SCG signal which could detect heartbeats as well as moments of cardiac events
using manual annotation of cardiac cycles and a complementary classification model [183]. However,
the standalone delineation of cardiac cycles, that is identifying major cardiac activities without using
ECG, typically suffers from strong assumptions on the mechanical waveforms, which may result in false
annotation of SCG signals. Rienzo et al. (2017) also developed an envelope-based detection algorithm
based on deterministic windowing for accurate heartbeat detection in SCG [184]. The method, although
yielded promising results, it still seems to be ECG-dependent. In a recent study, Hurnanen et al. (2017)
presented a new approach based on sensor fusion, narrow-band filtering, and successive mean quanti-
zation transform [185] to estimate beat-to-beat cardiac cycles in a large dataset obtained by smartphone
mechanoacrdiography. Detection performance of this ECG-independent approach, validated by PPG
sensing, yielded a promising direction for ubiquitous heart rate monitoring.

In general, methods relying on hard rules or fixed thresholds settings are very susceptible to ampli-
tude fluctuation in SCG/BCG signals. Additionally, due to huge inter-subject variations in the signal
morphology, setting proper thresholds is laborious and may not always reveal successful estimation of
beat-to-beat intervals [148, 186]. In 2013, Garcia-Gonzalez et al. compared four previously developed
heartbeat detectors based upon continuous wavelet transform, cross-correlation, and bandpass filtering
in SCGs, and concluded that narrow or brick-wall band-pass filtering outperforms the other types of
heartbeat detectors [176]. However, band-pass filtering causes additional distortion on the SCG signals,
specifically in the presence of motion artifact, which may result in quantitative inaccuracy in heart rate
estimation. Hernandez and colleagues detected heart beats with an adaptive multi-parameter function for
feature extraction from mechanical heart signals [170]. Parameter optimization in such a framework is a
very cumbersome process due to the interpersonal variations and inconsistency between the cardiac sig-
nals’ morphology. In 2008, Shin et al. developed a classification approach based upon template-matching
and cross-correlation in order to automatically detect heart beats in BCG signals [187]. Later in 2011,
Briiser et al. developed an unsupervised learning approach based on k-means clustering for beat-to-beat
estimation in BCG recordings [173]. In a follow-up study, Briiser et al. (2013) presented a flexible
algorithm in which a pitch tracking approach was used to estimate fundamental frequency of the BCG
signal [174]. Later in 2014, Paalasmaa et al. presented a pioneering approach to model the heartbeat
complex in BCG signal in which can adaptively find positions of heartbeat using hierarchical cluster-
ing. However, algorithms solely based on clustering techniques typically suffer from miss-detection of
heartbeats [175]. Recently, Ashouri et al. (2017) presented a promising technique based on regression
modelling and unsupervised learning to obtain an accurate solution for PEP estimation from the best
performing regression model as well as the best accelerometer sensor location on the body surface [188].
A new approach based on unsupervised learning and envelope detection is presented in this Ph.D. work
(as described in Sec 6.2.3) where joint accelerometer and gyroscope derived signals are used for fully
automated and standalone estimation of heartbeats.
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Other group of heart rate estimator methods are based on computing the median heart rate over a
period of time such as fundamental frequency [174], fuzzy neural networks [189], auto-correlation [174,
190-192], hidden Markov model [193], power spectral density [169, 171], and wavelet decomposi-
tion [194]. These methods although are less prone to the morphological characteristics of the signals,
they are unable to provide information about either irregular heartbeat or rhythm variation in the inter-
beat intervals specifically for heart rate variability (HRV) analysis. Moreover, these methods may fail
to represent the correct heart rate when the signal is non-periodic, e.g. due to cardiac arrhythmia, or
strong frequency components exist in the signal. Despite various advanced signal processing methods
employed for heart rate estimations, merging sensor data by using either multiple identical sensors or
multiple particular sensors (e.g. optical, force, accelerometer, and gyroscope) are recently established
that can be advantageous for further analysing of heart’s performance [163, 164, 195]. Moreover, it is
shown that multi-modal techniques may improve the heart rate estimation in unobtrusive monitoring of
heart activity.

In recent years, there has been an increasing interest towards emerging techniques based on multi-
channel data fusion, sensor fusion, and sensor array structures to enhance the accuracy and robustness of
cardiac cycle delineations [171, 195-200]. Deconvolution, pitch-tracking, Kalman filter, and Bayesian
fusion have been recently suggested for multimodal or multi-source data fusion [160, 195,201, 202].
The use of multiple sensors — either measuring the same or different physical quantities — has been
recognized as an advantageous technique because this approach offers diversity in the signal acquisition
and processing.

3.3 Respiration Monitoring

3.3.1 Background of Respiratory Monitoring Techniques

Respiration monitoring can be performed by various techniques, for which the most widely used methods
include spirometry or airflow sensing [203], transthorasic impedance [204, 205], magnetometer [206],
elastic belts (consisting of pressure, strain-gauge transducer, capacitance, load-cell sensors) [207-209],
optical techniques and photoplethysmography [210], camera and laser beam [211], and various MEMS
motion detectors [212] for tracking variations in thorax volume and pressure that give rise to chest wall
and abdomen. Table 3.1 represents different methods for respiration monitoring reported in the litera-
ture [213]. Sensing principles for respiratory monitoring devices in this table fall into three categories as:
(1) observing movement, volume, and tissue composition changes, (2) measuring airflow, and (3) blood
gas concentration measurement. Measuring the volume or circumference of the ribcage and abdomen
is commonly obtained by transthorasic and abdominal impedance, strain, pressure, fibre-optic sensors
integrated in chest/abdomen straps fasten around the body [213]. Other systems based on magnetic field
strength [206] and microwave radiation [214] have been introduced which require infrastructures around
the measuring subject. An indirect measuring of respiration is based on plethysmography where blood
concentration of oxygen and its changes over time is measured.

Among these techniques, several different respiration monitoring systems have been to date investi-
gated (or routinely used) for gated PET, 4-dimensional (4D) CT, and gated radiotherapy. Such motion
tracking systems include pressure sensing (stress change measurement with a load-cell sensor), spirome-
try (measuring air flow to and from lungs), temperature sensing (airflow temperature changes to and from
lungs), and real-time position management (RPM) system for respiratory gating [215]. Bio-impedance
based respiratory gating has been also introduced for intrathoracic respiratory motion tracking [216].
However, employing these respiratory gating devices is laborious due to the need for complex logistics,
possibly long data processing, and lack of enough precision which may result in false outcome with in-
creased patient discomfort and subsequent difficulties for the clinicians [217,218]. Accelerometeric and
gyroscopic respiration monitoring have been recently emerged as alternative methods of the intrafrac-
tion motion sensing [212]. MEMS motion detectors are micro-sized and sensitive devices to organs’
intrafraction variation and can offer simultaneous cardiac and respiratory signals. In the context of this

22



Background of Modalities Used in This Work

Table 3.1: Methods and devices for respiratory monitoring using detection of changes in tissue
size, volume, and air flow [213].

Sensing Modality Measurement Quantity Typical Sensor Type, Position, and category

Transthoracic Impedance Thoracic Impedance Skin electrode on the chest (1)
Inductance Plethysmography ~ Abdomen and Thoracic Circumference Embedded coils around abdomen and chest (1)
Fibre-Optic Plethysmography Abdomen and Thoracic Circumference Fibre-optic strain gauge around abdomen and chest (1)

Strain Gauge Transducer Abdomen and Thoracic Circumference Resistive strain gauge around abdomen and chest (1)
Mutual Inductance Thorax Volume Magnets on chest ( 1)

Spirometry Lungs Volume Gas flow sensor (2)

Magnetometer Thorax Volume Magnetometer sensor (1)

Microwave Radiation Thorax Volume Waveguide termination (1)

Piezoelectric Sensors Thorax Volume Pressure and Piezoelectric sensors in mattress (1)
EMG Muscle Activity Skin electrodes (1)

Capacitance on Distance Thorax Volume Capacitance measurement (1)
Photoplethysmography Blood Gas Change Fibre-optic sensor (3)

Video Camera Thorax or Abdomen Motion Camera and Marker (1)

Chest-Accelerometry Thorax Translational Motion Accelerometer or inclinometer sensor (1)
Rotational Sensing Thorax Rotational Motion Angular rate or gyroscope sensor (1)

work, respiration monitoring modalities are considered for PET/CT imaging applications as they are
meant to streamline respiratory gating in PET/CT imaging. A recent review in PET instrumentation was
given in [219]. Figure 3.6 shows diverse commercial respiration monitoring systems implemented for
PET/CT imaging techniques. In this study, we considered only methods illustrated in (A) and (B) insets
for verification tasks as described in the following.

Figure 3.6: Figure A shows AZ-733V (Anzai Medical Corp., Tokyo, Japan) pressure sensor
embedded into an elastic chest belt. Figure B shows RPM system with an infrared reflective
marker placed on a plastic box positioned on the patient’s thorax. Figure C shows air tem-
perature monitoring (BioVet CT1 System; Spin Systems, Brisbane, Australia) placed close to
the patient’s nostrils. Figure D shows air flow measurement by placing spirometer close to the
patient’s nostrils (PMM Spirometer; Siemens Medical Systems, Erlangen, Germany [220]) or
mouth (CPX Spirometer; Medgraphics, St Paul, Minnesota, USA [221]) (From: [217,220-222]
© Reprints with permission).
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3.3.2 Piezo-electric Respiration Belts

Respiration belt sensors contain a piezo-electric transducer attached to an elastic belt dedicated to mea-
sure the variations in the thoracic circumference. The belt is usually fastened around the middle part of
the ribcage of the subjects to obtain thoracic or abdominal circumference during respiration. The sensing
module is interfaced to a dedicated data acquisition system where the change in the pressure, and thus
breathing amplitude, is converted to an electrical signal. The respiration signals derived from the belt
inhalation, expiration and breathing strength are used to derive breathing rate. For the imaging appli-
cations, the transducer is used to characterize breathing pattern changes and adapt a respiratory gating
system accordingly while imaging data are streaming.

3.3.3 Optical Motion Tracking

A real-time position management (RPM) system (Varian Medical Systems, Palo Alto, CA, USA) is
commonly used to remotely monitor longitudinal chest motions. The RPM system is a video-based
system (infrared tracking camera) that consists an array of LEDs that emit infrared light toward a marker
block which is made from a plastic box with two or more reflecting dots. The marker is usually placed on
the patient chest or abdomen within view of the tracking camera. The reflected light returning back (from
the dots on a plastic marker) to the camera are captured as a signal which corresponds to the motion of
chest or abdomen. A predictive filter is also deployed along with this configuration which predicts the
patient breathing pattern and continuously checks that this pattern is normal. Currently available RPM
systems rely on an infrared tracking camera and a plastic marker block which inaccurate placement of the
marker block on the targeted location as well as very low breathing amplitude are the major limitations
of this system that cause additional inaccuracies in quantitative PET/CT imaging [223].

3.3.4 MEMS-Based Respiration Tracking

The robustness and functionality of the MEMS accelerometer-derived respiration signals (ADR) for dual
cardiac-respiratory gating was validated against a respiration belt [224]. With respiration belt, respiratory
phases (normal, slow, and fast-paced) were analysed and tested against ADR signal. In continuation of
this investigation, longitudinal chest motions induced by breathing act were measured using a dual-sensor
patch to trace breathing curves. Accordingly, ADR and gyroscopic-derived respiratory (GDR) tracking
signals are considered for potential respiratory gating applications. Figure 3.7 shows PET/CT imaging
set up including MEMS gating configuration, as well as golden standard validation modalities to evaluate
MEMS derived respiration signals versus RPM (Figure A) and respiration belt (Figure B) measurements.

The ADR and GDR signals were evaluated versus reference RPM signals in terms of amplitude and
phase [226]. Respiratory phases were determined using a peak detection algorithm which was sensitized
to the minimum peak height and the minimum separation distance between the peaks of both ADR/GDR
signal and the reference respiration modalities. The result of ADR/GDR respiratory signals validation
versus the reference respiratory cycle duration (peak-to-peak) using Pearson correlation and Bland Alt-
man plot [227] are reported in the Study III.

3.4 Medical Imaging Modalities

3.4.1 Echocardiography and Strain Rate Imaging

Cardiac ultrasound scan is a non-invasive imaging technique based on sound (pressure) waves of frequen-
cies exceeding the range of human auditory. Sound waves originated from a vibrating object (e.g. crystal
elements in ultrasound’s transducer) are transmitted through a medium (e.g. chest wall, the pericardium,
and the heart) generate waves of alternating density. The resulting velocity due to the wave propaga-
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Figure 3.7: Figure A represents PET imaging and corresponding data acquisition set ups in-
cluding ECG, RPM, and MEMS accelerometer and gyroscope sensors. Figure B shows general
schematics for validation of accelerometer and gyroscopic derived respirations against respira-
tion belt (From: [225] © Reprint with permission).

tion from the medium builds the basis principles for imaging of the heart’s structure and studying blood
flow [228].

Ultrasound images are formed from transmitting ultrasonic pulse streams into the body and mea-
suring reflections return to the transducer as an echo. Ultrasound imaging requires a transducer/probe
containing an array of piezoelectric crystals directing and receiving sound waves and convert the echo
amplitudes into electrical signals. This Pulse-Echo process is the basic principle to synthesize a gray-
scale two-dimensional tomographic (’slice’) view of a tissue. Almost all ultrasound systems use phased
array technology to scan ultrasound beam by which echo ultrasonic waves are transmitted and returning
pulse echoes are received (see Figure 3.8 A). The echo signals converted to a single ultrasound pulse
represent the intensities of the echo reflections as shown in Figure 3.8 B [228].
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Figure 3.8: Figure A shows ultrasound beam direction controlled by pulsing the crystal ele-
ments in sequence. Figure B illustrates conversion of echoes returning from tissue interfaces
into electrical impulses (from [228]).

The basic image data comprises a series of digitized numbers — representing echo amplitudes —
which are processed to show reflected ultrasonic waves from surfaces of two materials with different
ultrasonic reflecting properties. In practice, these reflected echoes are reconstructed to images with
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different techniques, of which the most commons are B-mode (B for brightness), which converts pulse
echo signals into brightness-modulated dots on a display screen, and M-mode (M for motion), which
uses B-Mode to display echoes from a moving organ, such as the valve leaflets and myocardium wall.
M-Mode provides fairly high quality temporal resolution of motion patterns, allowing deeper evaluation
of the heart functioning. However, with advances in real-time 2D imaging, Doppler, and color coded
flow imaging, these modes of visualization are of much less importance today [229]. Three dimensional
images are also obtainable by employing 3D imaging transducers (transesophageal) as well as advanced
computer-generated texturing techniques that create a solid 3D image of the tissue.

Echocardiography is a point-of-care cardiac ultrasound (US) imaging which is routinely used for
diagnostic cardiac motion visualization. This method similarly follows echo-pulse generation and de-
tection process through the heart’s chambers, valves, walls and the blood vessels. Echocardiography
provides anatomic distance and volume measurements, intra-fraction motion studies, blood velocity mea-
surements or Doppler ultrasound, 3D imaging, and tissue strain measurements.

Tissue Doppler imaging (TDI) technology is mainly used in echocardiography that measures the
velocity of the heart muscle or myocardium by Doppler effect — as for moving object like heart, the
frequency or wavelength of the backscattered echoes is changed by the Doppler effect [228]. TDI evalu-
ates the heart’s functionality both quantitatively and qualitatively. TDI is often used to assess the causes
of abnormal heart sounds, the size of the heart, myocardial wall motion abnormality and deformation,
systolic and diastolic dysfunction, heart valve problems, congenital heart defects, coronary reserve flow,
and other diagnostic purposes [229].

In the course of this Ph.D. work, representative echocardiographic images are created as two- or
three-dimensional images of the heart using TDI technique for quantitative assessment of the cardiac
mechanical activity. By placing a region of interest (ROI) around the heart’s tissue or valves, measure-
ments of systolic and diastolic time intervals, as well as myocardium velocity and strain rate (myocar-
dial wall deformation) information can be obtained. Strain analysis can help in quantifying mechanical
dyssynchrony and contribute in predicting response to cardiac resynchronization therapy (CRT) [230].
In clinical considerations, the strain rate and the strain are used to detect ischemia and infarction as
well [33]. Furthermore, myocardial dispersion, an electromechanical delay between ECG Q-wave to
the maximal TDI strain, can reflect the heterogeneity of myocardial systolic contraction and has been
suggested as an indicator for susceptibility to arrhythmias in different heart disease groups such as heart
failure, CAD, and MI [79].

In a post-processing stage, using for example speckle tracking echocardiography (STE) technique —
natural acoustic markers resulting from the interaction of ultrasound energy with tissue — it is possible
to assess three myocardial deformation components: longitudinal, radial, and circumferential. STE is
commonly used for measuring twisting mechanics as well as deformation rates of the heart muscle.
Here, a brief introduction on principles of deformation rate, or more precisely strain rate, calculations
using this image processing technique is presented.

In conventional echocardiography considerations, velocity and displacement characterize wall mo-
tion, while wall deformation can be described with strain and strain rate terms. The concept of strain for
three dimensional object deformation is complex but for the sake of simplicity it can be explained for a
one-dimensional (1D) object as described in [231]. In principle, the only feasible deformation for a 1D
object is shortening or lengthening and the amount of deformation can be estimated as follows:

L-Lg
€ =
Lo ’
where € is strain, Ly is baseline length, and L is the length change at the time of measurement. As
the length changes over time, the instantaneous strain can be defined as:

_ L — L(to)
E(t) - L(t()) )

where €(t) is instantaneous strain. The amount of strain or deformation is shown in % and positive and
negative strain values describe the thickening and shortening of myocardial, respectively. Strain rate (SR)

(3.3)
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is another deformation parameter which describes the rate by which deformation occurs and is expressed
by s~!. The strain rate or local rate of deformation then equals velocity difference per unit length:
SR — Ae AL/Ly  AL/At AV
At At Ly Ly’
where AV is the velocity gradient of the myocardium [231]. Figure 3.9 shows mathematical and
schematic relation for myocardial deformation/strain rate as explained previously.
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Figure 3.9: Tissue deformation or strain is defined as the change in dimension or length (L1-LO0)
over the initial length (LO) of the region of interest. Strain rate is calculated with tissue velocity
changes as the difference between tissue velocity samples (V2-V1) normalized to the travelling
distance between the velocities (d) (partially from [33,230] © All reprints are with permission).

In considerations of this dissertation, reference echocardiography examination mainly was conducted
mainly for two purposes: 1) validating cardiac time interval and 2) assessing strain rate prospectively
calculated through SCG/GCG signals as described in Study III and IV.

3.4.2 Cardiac Nuclear Imaging

Conventional nuclear medicine is still the major player in cardiac nuclear imaging. Nuclear cardiology
includes myocardial perfusion imaging (MPI), single photon emission computed tomography (SPECT),
and positron emission tomography to detect indications of CAD and for diagnosis and risk stratification
of patients with ischemic heart diseases [232]. These nuclear imaging modalities rely on different radio-
tracers for optimal clinical cardiac imaging with high resolution and enhanced signal-to-noise ratio.
Cardiac PET scan is an alternative imaging technology to conventional SPECT which is commonly
configured with joint computed tomography (CT) or magnetic resonance imaging (MRI) to evaluate the
heart for coronary artery disease and cardiomyopathy (diseases of the heart muscle due to, for example,
heart attack) [61].

Non-invasive detection of atherosclerotic plaque inflammation is usually performed by state-of-art
18F-fluorodeoxyglucose (FDG) and PET imaging [49,58-60]. Other diagnostic technique for atheroscle-
rotic plaque inflammation includes anatomical demonstration of vessel lumen narrowing, for example,
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X-ray contrast angiography (CA). However, CA is insufficient and impractical for the quantitative as-
sessment of plaque vulnerability to rupture [49]. Plaque imaging can be also performed with cardiac
perfusion scan using 150-water (radio-water), 13 N-ammonia, and 32 Rb-Rubidium as radio-tracers and
conventional SPECT with %" Tc-technetium labelled perfusion tracers [232]. A fundamental limita-
tion of the cardiac PET is that myocardial wall movements and respiratory motions reduce the quality
of the obtained images [217,233]. Currently used approaches for tackling intrafraction-based motion
artefacts involve gating the PET data based on the timing of quiescent periods of cardiac and respira-
tory cycles [215,217]. To deal with this challenge, this dissertation doctoral dissertation concentrates
on a novel gating concept, named MEMS Dual Gating, which is based on inertial motion detectors to
eliminate motion-related inaccuracies in cardiac PET by tracking intrafraction motions induced by car-
diorespiratory mechanical activities. More details on the working principles of PET imaging, description
of methods for motion correction in cardiac PET imaging, as well as clinical objectives for quantitative
improvements of dual-gate PET are given in Chapter 4.
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Chapter 4

Positron Emission Tomography

4.1 Physical Principles of PET

Positron emission tomography (PET) is a non-invasive functional imaging technique which may be con-
sidered as the gold standard for clinical examinations of coronary arteries inflammation due to atheroscle-
rosis and oncological investigations. Today, PET imaging is a widely used tool to observe metabolic
processes in the body for diagnosis, staging, therapy monitoring, and assessment of recurrence in cancer
and cardiovascular diseases [234]. Principles of PET imaging was introduced in 1950s, but its clinical
applications emerged in 1990s when the intensive development of scanners enabled both high image
quality and intelligent quantitation. Modern PET scanners are multislice devices allowing acquisition of
3D images with a sensitivity up to 22 cps/kBq and a large axial field-of-view (up to 26 cm). New PET
scans can take as short as 5 minutes and deliver the acquired image in 30 seconds [235].

The physical basis of PET imaging is described in Figure 4.1. In principle, PET imaging relies on a
radioactive transformation by which annihilation photons are generated. Annihilation is a process where
a positron — which has lost its kinetic energy — interacts with an electron and results in two 511-keV
photons each emitting in nearly opposite directions. Scintillation crystals coupled to photomultiplier
tubes (PMTs) are generally used to detect incident of annihilation photon that creates tens of thousands
visible wavelength photons (about 1 eV energy each). These crystals measure the two annihilation pho-
tons that are generated back-to-back after positron emission from a radiotracer molecule, for example,
18F-fluorodeoxyglucose (FDG), to mark a specific function in the body [234].

Annihilation photons are susceptible to interact with tissue (scatter event). Attenuated photons that
interact with the tissue before arriving at the surface of the detectors are called scatter photons that are
assigned incorrectly to the line-of-response (LOR). These scatter photons are removed from the correct
LORs, either by Compton scattering or photoelectric absorption, through a process called attenuation
correction (AC).

4.2 Reconstruction of PET images

Two dimensional PET image reconstruction is based on LORs which lie within a defined imaging plane.
PET data streams are collected along LORs through a 2D object f(z,y). As shown in Figure 4.2 the
LORs are formed into sets of projections, line integrals for all s for a fixed orientation ¢. Collection of
all projects for 0< ¢ < 27 creates a 2D function of s and ¢ that is named sinogram [236]. Sinograms
are obtained prior to image reconstruction as they are 2D representation of image data in a matrix form.
The rows of the sinogram matrix describe the radionuclide accumulations of the object, f(z,y), in all
projections and columns represent its radial distance from the image centre [236].

There are two general ways to reconstruct nuclear images, analytic reconstruction methods, of
which the most common approach is filtered back projection (FBP), and iferative image reconstruc-
tion, of which the most commonly used iterative method is ordered subsets expectation maximization
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Figure 4.1: The principles of PET imaging shown schematically. Figure A shows the detection
in coincidence of the annihilation photons. Figure B indicates detector elements and collimator
rings preventing photons from scatter events. Figure C describes 18FDG injection and the
detection of a pair of annihilation photons in coincidence by a multiring PET camera and further
steps to reconstruct the image (sketched from [229]).

(OSEM) algorithm that aims at higher spatial resolution and signal-to-noise ratio than back projection
images [236].

Four-dimensional image reconstruction methods — based on either linear or non-linear parameter es-
timation — can reduce the impact of noisy PET using spatio-temporal functions chosen to approximately
represent the radiotracer distribution [237]. Other techniques will be also able to incorporate information
on subject anatomy and motion, along with cardiac and respiratory motion, yielding noise/motion artifact
free PET images by 5-dimensional or 6-dimensional image reconstructions [237]. In the context of this
thesis, these mathematical modellings, as well as anatomical and motion characteristics, constitute the
concept of fully 4D imaging.

Mathematical principles of above-mentioned image reconstruction methods in emission and trans-
mission tomography seem to be generally very advanced topics and are beyond the scope of this research.

4.3 Motion Artifact Problem

In today’s medical imaging and radiation oncology, intrafraction variation — intentional or unintentional
organ movement — in respiratory, cardiac, and gastrointestinal systems is the leading cause of inaccu-
racy and uncertainty [238]. Displacement of organs due to respiratory and cardiac motion results in
spatial blurring and motion artifacts that cause quantitative inaccuracies and misguided interpretation in
PET and CT imaging [239]. Misguided evaluation of PET and CT images lead to incorrect diagnosis
and treatment decisions; for example, insufficient or unnecessary treatment may occur, if motion affected
PET and CT images are used for treatment planning in radiotherapy [240]. In oncological imaging, mo-
tion artifacts result in difficulties in delineating organ or tumor boundaries, and failure in recognizing
small mobile volumes that are potentially cancerous. For example, respiratory and heart motions may
cause underestimation of standardized uptake value (SUV) and variation of lesion volume [241]. More-
over, radiation delivery in the presence of intrafraction organ movement results in a deviation between the
intended and delivered dose distributions, which might result in increased organ-at-risk dose and reduced
dose in the planned target volume [242]. Therefore, the degradation of image quality due to intrafrac-
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Figure 4.2: Sinogram formation process based on projection P(s,¢) created from line integration
along all parallel LORs at an angle ¢. Each projection is organized into a sinogram (sketched
from [236]).

tion motion and subsequent effects on radiotherapy dose planning and delivery reduce the reliability and
accuracy of the clinical interventions, leading to incorrect diagnosis, unnecessary treatment, and insuf-
ficient therapy. During normal breathing, the diaphragm moves several centimeters (cm) and chest wall
several millimeters (mm). Cardiac wall movement (myocardium longitudinal and radial deformation) re-
sults in displacements over 1 cm and consecutive beat-to-beat variation in blood flow (ballistic changes)
can cause artifact specifically for brain imaging. Brain pulsations due to ballistic recoil forces can cause
non-rigid displacement of up to 0.1 mm, even healthy and cooperative subjects show spontaneous head
motions up to 1 mm [243].

4.4 Methods for Motion Compensation in PET

To deal with motion-related inaccuracies in PET/CT imaging, respiratory and cardiac gating methods are
the most common approaches used for motion correction in nuclear medicine imaging. Gating in a simple
definition means dividing the PET data into individual bins that correlate to phases of respiratory and/or
cardiac motion by overlaying corresponding time-stamped data [241]. In practice, gating enhances the
effective spatial resolution of reconstructed images by reduction of partial volume effects (PVE) due to
motion blurring [64].

4.4.1 Cardiac gating

Cardiac gating is a well-known and widely used approach in conventional nuclear medicine imaging.
Cardiac gating aims at eliminating artifacts induced by heart muscle (myocardium) which is a moving
object undergoing repeating linear and rotational movements. It principle, motion-related inaccuracies
can be compensated when the motion of the moving organ is periodic during the imaging. In general the-
ory of the cardiac-gating, PET data stream, also known as list-mode (LM), acquired during the imaging
session are sorted with respect to the certain time or phase of the cardiac cycle. Afterwards, all sorted list-
mode data are gathered according to the time phase of the heart motion (end diastole (ED) and end systole
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(ES) phases) and finally PET data are reconstructed with advanced computational techniques [244,245].

There are two ways for triggering the imaging machine: retrospective gating and prospective gating.
Retrospective gating is a method where the data being acquired using the constant rotation of X-ray beam
(in CT) or detector (in PET) across the whole cardiac cycle and maximal tube current is at 65-85% of the
R-R interval [246,247]. Accordingly, the reconstruction of the multiple cardiac phases being prepared
retrospectively. There are, however, two ways to reconstruct the data on retrospective gating scheme.
The first technique constructs the acquired PET image data that are stored from a specific point (defined
as the percentage of the cardiac cycle). The percentage of the cardiac cycle is defined as an absolute fixed
time window in millisecond (ms) before or after the R-R interval [248]. The second technique which is
better for the irregular heart rhythm is the reconstruction of the image data on different phases of the
cardiac cycle. Therefore, the least motion phases of the heart are detected by choosing the best phase(s)
of the cardiac cycle for each of the coronary arteries and their segments [248].

In practice, retrospective gating offers faster coverage than the prospective triggering for image re-
construction at every heartbeat. Additionally, for investigation of cardiac functionality and valve pathol-
ogy, retrospective triggering has been advised more [246,248]. On the other hand, the prospective gating
is a technique that utilizes the forward-looking estimation of R-wave timing by the ECG signal in the
diastole phase of the cardiac cycle [248]. With prospective gating, the X-ray beam is on for about 20%
of the R-R interval (only a short portion of diastole phase) which is always after the QRS complex
and it is turned off during the rest of the cardiac cycle. However, Qin and et al. (2011) reported that
prospective ECG gating in comparison with retrospective ECG gating has identical image quality scores,
while the patient radiation dose reduced by 76.50% during 320-detector CT coronary angiography [249].
FigureAf4.3 shows visual concepts of retrospective and prospective cardiac gating.
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Figure 4.3: Overall schematic of retrospective and prospective triggering techniques
(from [247] © Reprint with Permission).

4.4.2 Respiratory gating

Respiratory gating is synchronized acquisition of the image data based on respiratory phases. In practice,
respiratory gating follows the same theory as cardiac gating but instead of cardiac movement a breathing
trace is segmented and the input list mode stream is sorted accordingly for the image reconstruction. The
breathing cycle is divided into distinct time-stamps (for example, peak exhale, mid inhale, peak inhale,
mid exhale). Afterwards, list mode data are arranged into bins which are generated according to the
phase or displacement of the respiration [238]. This technique is needed to remove motion artifacts that
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cause poor attenuation correction and image blurring. In order to obtain synchronized emission acquisi-
tion based on the respiratory states of the subject, proper estimation of lungs motion is necessary [239].
There are two major respiratory gating techniques to estimate intrafraction variations, namely amplitude-
based and phase-based (or time-based) respiratory gating. The amplitude-based gating relies on vertical
segmentation of respiratory cycle — with either variable or equal gate width — with reference to the
inspiration-expiration amplitude changes. The time-based/phase-based respiratory gating methods di-
vide the breathing signal in horizontally with respect to timing information of events in each breathing
cycle [250]. In PET imaging, respiratory gating events are aligned with the list-mode event during image
reconstruction. Figure 4.4 illustrates amplitude- and phase-based gating and corresponding effects of
respiration phases in cardiac PET Imaging.

Inspiration

Expiration

Figure 4.4: Principle of amplitude-based and phase-based respiratory gating schemes (sketched
from [250,251] with permission).

4.4.3 Dual gating

Dual gating is a novel technique that removes motion-related inaccuracies caused by respiratory and
cardiac motions simultaneously. Dual gating improves spatial accuracy for the accurate imaging of small
targets like vulnerable coronary plaques. This technique utilizes both cardiac and respiration traces that
are sent periodically as independent triggers into PET (LM) data. By separating of dual gated LM data
into sub-groups, each group includes certain physiological events from particular respiratory and cardiac
phase [64].

4.4.4 MEMS Dual gating

MEMS dual gating is a novel gating approach solely based on joint miniaturized tri-axial MEMS ac-
celerometer and gyroscope sensors. Multidimensional MEMS motion detectors offer comprehensive
information related to the movement of the heart and lungs. Accordingly, SCG enables measuring trans-
lational chest motion changes — including low frequency displacements caused by lungs and high fre-
quency accelerations due to the precordial vibrations. GCG, on the other hand, allows tracking rotational
changes that originate from chest/upper body inclinations during breathing and precordial angular vibra-
tions.
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The main advantage of using MEMS dual method than other techniques is that joint SCG-GCG mea-
surement offers simultaneous cardiac and respiration information originating from the mechanical oper-
ation of the internal organs. Although ECG is a perfect indicator of cardiac electrical activity, it does not
give mechanical information regarding the mechanical status of the heart nor related to the internal organs
motions. SCG and GCG together reveal supplementary information related to the mechanical function-
ality of the heart and lungs. Additionally, MEMS-based respiratory gating offers 6-axis chest motion
traces to comprehensively delineate intrafraction movements, while impedance cardiography (e.g. ECG
and bioimpedance measurements) and other currently available respiratory motion tracking technique
yield only single position one-dimensional information on the movement of the chest/abdomen. Fig-

ure 4.5 shows the overall view of the dual gating for motion correction in PET imaging.
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Figure 4.5: The principles of dual gating for PET/CT imaging (sketched from [64]).
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Chapter 5

Aims of the Study

The original publications of this study had four specific aims:

I

1I

I

v

Automatic delineation of multidimensional seismocardiography and gyrocardiography signals
for heart monitoring applications

To develop real-time and standalone heartbeat detection algorithms to delineate SCG and GCG
signals by means of sensor fusion in three orthogonal axes, a Hilbert transform, adaptive thresh-
olding and amplitude balancing, envelope detection and narrow-band filtering, and unsupervised
learning. The main objective of algorithms development was to present an ECG-independent and
fully-automatic approach that removes motion artefacts, selects the most high quality signal from
rotational and translational axes, and subsequently proceeds in estimating true location of heartbeats
(Study I and VII). The ultimate goal was ubiquitous cardiac monitoring by smartphone MCGs.

Characterization and analysis of gyrocardography signals, validating rotational cardiogenic
waveforms, and annotating dominant GCG peaks and valleys using echocardiography

To understand waveform characteristics of gyrocardiography signals from different rotational ori-
entations and to analyze waveform stability with different gyroscope sensors. Several physiologi-
cal parameters including heart rate, cardiac time intervals, moments of coinciding valvular events,
and relative myocardial mechanical performance information were examined and validated using
echocardiography studies (Study III). The main hypothesis is that rotational cardiogenic features
obtained by GCG may lead to a reliable and robust home monitoring solution for early detection and
prevention of cardiovascular diseases, specifically for heart arrhythmia and myocardial ischemia.

Improving PET imaging instrumentation by studying cardiorespiratory signals derived from
MEMS motion detectors

To explore the feasibility of a novel dual cardiac and respiratory gating approach, named MEMS
dual gating, in PET imaging by validating acquired MEMS signals through echocardiographic ob-
servations, phantom radiopacity test, and subsequently real word cardiac PET study. The main hy-
pothesis of this study is that multi-dimensional MEMS motion detectors could be used to estimate
intrafraction organs movements and can enhance the quality of acquired PET/CT images (Study
I and IV). Deterministic cardiac and respiratory motion segmentation algorithms were developed
and tested (with respiration belt and optical tracking techniques) to delineate physiological status of
internal organs such as the heart and lungs.

Automated detection of cardiac abnormalities from smartphone seismo- and gyrocardiograms
To improve the detection of cardiac abnormalities using state-of-art and automated classification
algorithms consisting of various signal processing and machine learning techniques in two-class
and multi-class settings. The ultimate goal was to explore the potential utility of a multinomial
discrimination approach in detection of AFib, coronary artery diseases, and myocardial ischemia
using only smartphone MCG recordings (Study V and VI).
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Chapter 6

Materials and Methods

6.1 Data Acquisition and Clinical Protocols

6.1.1 Instrumentation of Electromechanical Monitoring

For the MCG measurements performed for this Ph.D. study, a preliminary custom-designed hand-held
device was made for recording the electromechanical activity of the heart. This measurement system
consisted of a multidimensional seismocardiography, gyrocardiography, and standard three lead elec-
trocardiography. A miniaturized (3 mm X 3 mm X 1 mm), triple-axis, low-power, capacitive digital
accelerometer (Freescale Semiconductor, MMA8451Q, Austin, TX, USA) and an (3 mm x 3 mm x 0.9
mm) ultra-accurate, low power, low noise, 3-axis angular rate sensor (Maxim Integrated, MAX21000,
San Jose, CA, USA) were deployed for recovering precordial vibrations and respiratory motion signals.
The inertial sensors assembled on printed circuit board were coated with a thin plastic cover to be at-
tached to the skin of the chest anterior to the body of sternum bone using double-sided adhesive tape
without hair removal in the chest area. The measured acceleration and angular velocity range of the
accelerometer and gyroscope were set to =2g and £250dps, respectively. The accelerometer has an
RMS noise of 99 pg/+/Hz and is tuned to have an output bandwidth of 400 Hz, while the gyroscope
low noise density was 9 mdps/v/H z and the output bandwidth was 400 Hz. The data acquisition also in-
volved the measurement of a low power integrated analog front-end ECG (Texas Instruments ADS1293)
using Freescale FRDM-KL25Z board to collect synchronized data on a memory card with a sampling
frequency (Fs) of 800 Hz. The chosen rate of sampling is potentially beneficial in order to investigate
higher frequency (up to 320 Hz) intracardiac events such as heart valvular activity and murmurs [252].
However, a lower sampling frequency would generally result in smaller power consumption and compu-
tational complexity. Standard ECG electrode positioning is followed by mounting two electrodes on the
right and left upper chest area and two on the anterior lateral regions to the abdomen on the left and the
right hypochondriac.

A multi-modal, wireless, battery-powered, wearable system architecture with the possibility to con-
trol with a smartphone was later designed to facilitate data acquisition in biomedical research. The new
architecture consisted of a Bosch Sensortec BMI160 IMU including a 3-axis accelerometer and gyro-
scope in a single package with a sampling frequency of 200 Hz, an output bandwidth of 80 Hz and 74.6
Hz, and noise density of 180 ug/@ (1.6 mg;,,s) and 8 mdps/\/m (1.5 mdps,,s), respectively, Texas
Instruments ADS1293 analog front-end ECG (Fs= 267 Hz), Nordic Semiconductor nRF51822 (32-bit
ARM Cortex MO-based uC' with Bluetooth (BLE) radio) microcontroller, and an external microSD
memory card connected to microcontroller for data collection. Figure 6.1 shows the two versions of data
acquisition systems developed for biomedical research specifically for wearable MCG [253].

For smartphone mechanocardiography, built-in IMU including micro-sized accelerometer and gyro-
scope sensors (both with three data axes) is used to obtain SCG and GCG recordings with a sampling
frequency of 200 Hz. A dedicated Android application (app) was first developed to store the raw data
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Figure 6.1: Figure A represents overall view of first generation data acquisition system de-
signed for ECG and MEMS accelerometer and gyroscope measurements. Figure B shows the
new architecture including IMU sensor, ECG, BLE antenna, and core CPU. An Android App
was used as remote controller for this device [from [253] © IEEE reprint with permission].

(in a text format) on the internal memory of the phones. The app was later improved to perform on-
board or remote computations for heart monitoring and arrhythmia classification. Data processing can
be performed either onboard — by currently implemented algorithms in the app — or off-line — by
transferring the data from the phone’s memory card to a desktop computer or via a Cloud computing
server for development purposes. All signal processing and data analyses tasks were made off-line in the
Matlab (R2015a) programming environment.

6.1.2 Echocardiographic Setup and Examinations

The echocardiography examinations in this thesis were conducted by a Vivid E95 scanner with a 1.4-4.6
MHz transducer (GE Healthcare, Finland). A complete echocardiographic study was carried out using
conventional apical views for 3 to 6 cardiac cycles. EchoPAC post-processing software (Version 113,
GE Healthcare, Finland) was deployed for off-line echocardiographic analysis of TDI and 3D speckle
tracking strain. Standard echocardiography, ECG, and 3-axis GCG and 3-axis SCG were performed
concurrently. Figure 6.2 demonstrates the diagram of the data acquisition set up for cardiac MCG (A)
and ultrasound examinations (B).

For measurement of cardiac time intervals, mitral valve and aortic valve flow velocities were recorded
using pulsed-wave (PW) Doppler. For measurement of myocardial velocities, apical 4 chamber TDI im-
ages were obtained with an average rate of 106 frames per second. Speckle tracking, which is an auto-
mated functional imaging technique for multidimensional deformation or strain analysis, was performed.
3D volume covering the whole left ventricle myocardium was obtained from an apical view averaging 6
cardiac cycles with an average rate of 40 frames per second for 3D speckle tracking strain analysis. The
results of 18 myocardial segments were averaged to obtain global strain in longitudinal, circumferential,
area, and radial directions. In addition to curves, numerical strain and timing data from each frame were
obtained.

6.1.3 PET/CT Imaging and Clinical Protocols

Clinical PET imaging investigations, after primary proof-of-concept studies [224,226], were performed
using 18F-fluorodeoxyglucose as a tracer. 120 minutes after [18F]-FDG (~300 MBq) injection, dual-
gated PET data acquisition was performed according to the protocol described in the following.

37



Materials and Methods

(B)

Figure 6.2: Figure A represents overall simultaneous data acquisition from ECG and MEMS
accelerometer and gyroscope sensors. Figure B shows general schematics for MCG validation
study including MEMS sensors, ECG, blood pressure, and echocardiography measurements
[from [163] © Reprint with permission] .

Clinical patients with a history of heart disease underwent contrast-enhanced coronary CT angiogra-
phy (CTA) using the standard prospective ECG gated low dose CTA protocol with 50-100 ml of contrast
agent (3.5 ml/s) and concurrent acquisition of 64 parallel slices. Patients were asked to keep their arms
raised above the head by a supporting foam cushion to avoid truncation artifacts. After termination of the
CTA study, a 3D PET scan of the upper chest area including cardiac muscle was obtained in list-mode
with ECG and respiratory gating (RPM from Varian Medical Systems, Palo Alto, USA) with an acqui-
sition time of 24 minutes. The PET/CT scan is performed with Discovery D690 PET/CT scanner (GE
Medical Systems, Milwaukee, WI, USA). The considered PET/CT system has an axial and transaxial
FOV of 157 mm and 700 mm and contains a 64-slice CT. CTAC and CINE CT were obtained by using a
low-dose CT with a tube voltage of 120 keV. Figure 6.3 illustrates cardiac imaging validation set up with
concurrent RPM, ECG, and MEMS cardiac and respiration signals recorded along with the PET scan.
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Figure 6.3: General schematic of PET/CT for clinical cardiac imaging including active RPM
and ECG streaming, as well as simultaneous MEMS cardiac and respiration signal recording.
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6.2 Biomedical Signal Processing

6.2.1 Signal Preprocessing and Filtering Techniques
Automated motion artifact removal

Motion artefact is a very common problem in analyzing of MCG signals. Several different methods have
been suggested for removing motion related distortions in the MCG signals [17,173-175,196,254,255].
However, none of the suggested methods could ultimately overcome this challenge and it is still an open
issue in processing of MCG signals. In this work, two automated motion artifact removal algorithms
were developed to discard disturbing components perceptible in the MCG signals (i.e. body motion
artifacts in each axis of the gyroscope and accelerometer) as follows:

Method I: To identify distorting elements from the original MCG signals, a power envelope of the
signal (independently for each channel) was computed using the root mean square (RMS) operation.
A sliding window with the length of 500 ms and a detection threshold of twice the median value of
the power envelope are determined to search for the disturbing elements of the signals. With this ap-
proach, parts of the signal where the power envelope exceeds the determined threshold are automatically
classified as motion artifacts and therefore are discarded.

Method II: The motion artefacts are removed from the selected signals by dividing the signal into
10 s epochs. A single sided FFT is computed for each epoch and the resulting spectra are smoothed
with a moving average filter of ten samples. The amplitudes within the pass-band frequency range are
integrated for each epoch spectra. Epochs with a value more than 125 % of the median value are removed.
After each segment removal, the median value is updated yielding always comparable removal threshold
independent on the original signal quality

Figure 6.4 briefly illustrates the process of the motion artifact detection on a typical noisy signal using
both methods. Figure 6.4 (A) shows the envelope of the signal power, where the signal components
exceeding the threshold (dashed line) are highlighted by red color. In Figure 6.4 (B), parts in which
classified as motion artifact in the original MCG signal are detected (highlighted by red color), and can
be discarded. With Method I, eleven motion-artifact free segments, marked with numbers and green
color dashed vertical lines, are detected. Figure 6.4 (C) and (D) show motion artifact removal using the
second method in both SCG and GCG signals.
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Figure 6.4: Detection of motion artifacts from MEMS motion signals. Figure A shows the first
method where a filtered signal in which noisy components exceeding the RMS threshold are
highlighted. Figure B demonstrates detected motion artifacts throughout the original signal.
Figure C and D show motion artifact removal using spectral analysis in SCG and GCG.
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Frequency analysis and bandpass filtering

Frequency contents of the recorded SCG and GCG signals are analysed using fast Fourier transform
(FFT) approach. Figure 6.5 demonstrates the result of the FFT analysis by plotting power spectral density
of the signals from all channels of accelerometer and gyroscope sensors. As it can be seen, most of the
frequency components and signal energy are accumulated in the range of 0.1-50 Hz. However, the
spectrum of GCG shows energy concentration in the frequency band 0.1-30 Hz while for the SCG a
wider spectral band between 0.1 and 40 Hz is visible. On the basis of this rough frequency analysis,
two band-pass filters, one based on FFT and one based on Butterworth IIR (infinite impulse response)
are designed. Different cut-off frequencies are examined for GCG and SCG signals and after extensive
studies on the time-frequency analysis of the signals, cut-off frequencies of 1-20 Hz and 4-40Hz are
found to be a good compromise for the GCG and SCG, respectively, for maximal noise reduction while
preserving the morphology of the signal close to the original. Thereby, biosignals recorded in the course
of this study are pre-processed with either an FFT filter or a 3dB bandpass 4" order Butterworth IIR filter
to eliminate baseline wandering and noise components. Electrical signals obtained via ECG recordings
are also filtered with the cut-off frequencies of 1-49 Hz.

Single spectrum analysis filter

Conventional frequency domain filters generally require setting the pass-band frequency limits accord-
ing to the characteristics of the frequency contents of the biosignals and may occasionally cause loss of
vital information that can lead to morphological changes as well as amplitude attenuation [256]. In this
work, another filtering approach is considered that is based on decomposing the signal into its favorable
and unwanted components. Singular spectrum analysis (SSA) is an algorithm of time series analysis
as it offers the capability of decomposing the signal into principal components (PCs) — by choosing a
subset of eigenelements — in order to reduce noise, remove baseline wander, and identify oscillatory
components [257]. SSA filter consists of two complementary stages: decomposition and reconstruc-
tion [258]. Decomposition stage includes two steps, i) embedding the original time series of length NV
into a sequence of lagged vectors of size L by forming K = N — L + 1 principal components, where
L is the window length (1<L<N), and creating a trajectory matrix A (Hankel matrix), and ii) singular
value decomposition (SVD) of the trajectory matrix A by setting S = AA” and delivering it as a sum
of rank-one bi-orthogonal elementary matrices. Reconstruction stage consists of two steps as well: 1)
eigentriple grouping by splitting the elementary matrices A; into m disjoint subsets I, ..., I,;, and sum-
ming the matrices within each group, and ii) diagonal averaging by transforming each matrix A of the
grouped decomposition into a new series of length V.

In the context of smartphone MCG signal processing, for the SCG-GCGs with a sampling frequency
of 200 Hz, it was empirically established that a windowing length L up to 10-15 ms is suitable for
decomposing signal and the first three PCs are best noiseless components to be reconstructed. This
reconstructed component, which is assumed to be noiseless while leaving out redundant and other ir-
relevant information, is therefore employed for further signal analysis tasks. Figure 6.6 shows that the
morphological characteristics of mechanical activation complexes, heartbeats, differ from no-filtering
status to SSA-filtering in all axes of MEMS signals in a selected noisy signal (an AFib case with present
HF) for demonstration purposes.

6.2.2 Hilbert Adaptive Beat Identification Technique

The Hilbert transform is a popular operation for detecting the QRS complexes in ECG signals, and a
considerable amount of literature has been published on this topic [259-262]. Being based on Hilbert
transform, the detection of heartbeats is improved as the envelope of the signal coordinates proper de-
tection of the dominant peaks — namely cardiac impulses — across the signal. In this thesis, the ca-
pability of the Hilbert transform for locating heartbeats in SCG and GCG (or generally MCG) signals
is assessed through a new approach named Hilbert adaptive beat identification technique (HABIT) for
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Figure 6.5: Spectral analysis of SCG and GCG signals

the accurate detection of aortic valve opening timings, interbeat time intervals, and HRV estimation in
MCGs [163,263].

The HABIT method includes a preprocessing step where a 4" order Butterworth IIR filter with band-
pass frequencies of 1-20 Hz and 1-45 Hz is respectively applied on all gyroscopic and accelerometeric
channels, allowing the removal of baseline wander and noise. Afterwards, the total acceleration and
angular velocity magnitude signals denoted respectively by s(¢) and ¢(t) are defined as :

5(t) = \/AccX(£)2 + AccY ()2 + AccZ(t)? (6.1)

g(t) = /GyroX(t)2 + GyroY ()2 + GyroZ(t)2 (6.2)

where AccX, AccY and AccZ are the axes of linear accelerations and GyroX, GyroY, and GyroZ
are the axes of angular velocity. The axes of translational and rotational precordial vibrations in this
dissertation are defined as follows: the x-axis points laterally from left to right (sinistero-dexter), the y-
axis points from head to foot (superior inferior), and the z-axis points from back to front (dorso-ventral).
These axes are illustrated previously in the Fig. 6.2 (A).
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Figure 6.6: Typical AFib (with present HF) signal derived from smartphone MCG without
filtering (A), with band-pass filter (B), and SSA filter (C).

The total magnitude of acceleration/rotation signals are then fed to the Hilbert transform in order to
derive the envelope of the combined SCG and GCG signals. Hilbert transform of a real signal f(t) can

be defined as:
+00
h(t) = l/ 1) 4 (6.3)

t—T1

—0Q

where il(t) is a Hilbert transform of f(t) signal returning a complex helical sequence named analytic
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signal. The analytic signal for a series of real-valued finite energy signal has a one-sided Fourier trans-
form meaning that negative frequencies are vanished. Hilbert calculates the FFT of the input sequence,
replaces those FFT coefficients that correspond to negative frequencies with zeros, and calculates the
inverse FFT of the result [264]. Afterwards, the envelope of SCG-GCG signals is extracted as the ampli-
tude of the analytic signal:

A(n) = |ha(n)| = \/h2(n) + h2(n) (6.4)

where h,(n) is an analytic signal. The envelope signals — which are here denoted by A(n) and A(n)
for SCG and GCG signals, respectively — are filtered by a previously described brick-wall band-pass
FFT filter with cut-off frequencies of 0.5-3 Hz (corresponding to 30 and 180 beats per minute) to extract
cardiac pulsatile waveforms over SCG/GCG signals. Subsequently, the SCG,(n) and GCG,(n) signals,
representing filtered envelopes of SCG and GCG signals, respectively, are linearly summed to achieve a
very low-frequency approximation of the heart motion signal, P(n), which is called the principal signal

in this work.
P(n) = SCGy(n) + GCGy(n). (6.5)

After converting multiaxial cardiac motion signals into a single axis signal, a successive mean quan-
tization transform (SMQT) [265] is applied to dynamically balance the achieved principal signal or
P(n). One dimensional SMQT allows improving the signal quality dynamically by removing the gain
and bias of the signal. Finally, a refinement process — based on adaptive thresholding suggested by
Pan-Tompkins method [266] — is deployed for accurate estimation of heartbeat location on SCG/GCG
signals. With the refinement process we localize the exact position of heart pulses in the original filtered
SCG-GCG signals (typically z-axis of SCG and y-axis of GCG) through estimating of fiducial mark-
ers (local maxima) in the principal signal. Figure 6.7 shows the overall process of adaptive heartbeat
detection using HABIT method in SCG/GCG signals.
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Figure 6.7: Adaptive heartbeat detection on SCG-GCG signals using HABIT method. Green
color dashed line shows the signal level, blue color dashed line refers to adaptive threshold, and
black color dashed line reflects noise level in the SCG-GCG signals (from [263] © Reprint
with permission).
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6.2.3 Automated Unsupervised Heartbeat Detection

One limitation of HABIT and similar methods is the manual selection of the sensor channels where the
heartbeat detection is taken place. Another standalone heartbeat detection algorithm with the capability
to autonomously select the best/high quality cardiac sensing channel from IMU sensors was therefore de-
veloped to tackle this limitation. This new approach automatically selects the best performing SCG/GCG
channel by finding the vibrating axis that has the highest peak-to-peak amplitude () divided with abso-
lute median deviation. The selection process is based on rough signal-to-noise ratio estimation as

SNRyis = max {S/N}, (6.6)
ar€{z,y,z}

where S is the median absolute difference of local maximums and minimums that are separated at min-
imum 1 sec, N is considered to be noise defined as frequency components over 50 Hz (obtained by
filtering the signal with a third order Butterworth high pass filter with 50 Hz cut-off frequency), ax is
the selected axis/channel in IMU sensor. This gives the signal-to-noise ratio and the highest ratio is
considered to select the best axis (SNR,;5) for further processing. This selection is performed indepen-
dently to both tri-axial SCG and GCG. After selecting the best SCG and GCG axes, a pre-processing
step including bandpass filtering (for noise and baseline wandering elimination) and motion artifact re-
moval was applied on all three channels of MEMS sensors (in total 6 channels) — using an iterative
frequency spectrum analysis over the signals and removing high energy parts of the signal as described
in Section 6.2.1.

The heartbeat detection part consists of two peak detection sub-algorithms, namely wavelet enhance-
ment and clustering, for both accelerometer and gyroscope signals. In general, four peak candidate
streams, each having their own independent candidates (two SCG and two GCG candidates), are com-
bined to estimate the exact location of heart beats. Figure 6.8 shows the main framework of the algorithm.

Axis Selection /-&mlemmem

Heartbeat
Detection

Pre-Processing Artifact Removal

Data Read '—‘ Heart Rate

Band Pass Filtering Gyroscope

Figure 6.8: A block diagram of the unsupervised multidimensional beat detection approach
based on data fusion and clustering.

The wavelet enhancement method utilizes a narrow band filtering as described in [185]. This process
is based on two steps: i) sample-wise squaring to enhance peak amplitudes, and ii) convolving the signal
with Gaussian shaped template window of 800 ms. From the resulting filtered signal the candidate peaks
are detected using an automatic multiscale peak detection (AMPD) [267].

An unsupervised k-means clustering is also considered as a complementary beat detection method.
Therefore, all local maxima and minima points in SCG/GCG are detected from the pre-processed sig-
nal. The considered features for the k-means clustering are the amplitudes of successive maxima and
minima points on SCG/GCG signals, determined as f, and f, for accelerometer and gyroscope signals
respectively,

f, = (max;, min;, max;+1, min;11), (6.7)

f, = (max;, ming, maxiy). (6.8)
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where i is the position of the i*” local maxima/minima.

The selected distance measure is the euclidean norm. The correct cluster is recognized by finding the
cluster with highest average peak amplitude. These four candidates (two accelerometric and gyroscopic
heartbeat positions detected by two different methods) are merged into one stream in order to estimate
the heartbeat locations [173]. Briefly, the detected peak candidates in each stream will pair/assign to
no more than one other candidate in each of the three other streams. Each candidate will assign to the
closest one to its own location and if no suitable pairing candidate is found within 330 ms window no
pairing occurs. The final location is determined by the average location of identified pairs. Figure 6.9
shows the overall performance of the presented framework for heartbeat detection in SCG-GCG signals.

=

@
[}
2 0.5 ECG S o0s ECG
3 =
> 0 g o
4055 406 4065 407 4075 408 4085 4055 406 4065 407 4075 408 4085
c ! 1
§ s
= . =1
= x © :
§ o SCG z-axis g . GCG y-axis
[ ©
g 5
-1 <
4055 406 4065 407 4075 408 4085 w055 406 4065 407 aors 408 4085
N 2 1
) ©
S . kel
; 0 GCG y-axis 2 o SCG z-axis
S s
< 4 é’ -1
4055 406 406.5 407 407.5 408 408.5 < 4055 406 4065 407 4075 408 408.5

Time (s) Time (s)
Figure 6.9: An example of heartbeat detection using wavelet-clustering method for a healthy
subject (A) and CAD disease patient (B). Heartbeats in both SCG z-axis and GCG y-axis are
found through clustering (blue circles in the original blue color signal trace) and wavelet filtered
signals (red circles in the green color trace).

6.2.4 Methods for Cardiac Quiescence Phase Prediction

Cardiac cycle segmentation includes identifying fiducial points and subsequently estimation of the car-
diac time intervals, that is systolic and diastolic periods. In the first study, a deterministic approach
mainly based on identifying cardiac activity markers in ECG and SCG signals as well as distinct win-
dowing roles are reported. The method was originally proposed for mechanical cardiac gating (dividing
SCG signals into a certain number of bins) purposes. Cardiac segmentation in MCG signals is a chal-
lenging task due to inter- and intrapersonal variations. Several different studies have reported state-of-art
algorithms for automated cardiac cycle segmentation in SCGs [159-162]. Echocardiogrphyic observa-
tions in Study IV showed that signals derived from MEMS sensors can indicate dominant phases of
cardiac cycles specifically the cardiac relaxation phase (diastasis) where myocardial motion is in its min-
imum level. Accurate detection of this cardiac quiescent phase within the cardiac cycles in MCG signal
is advantageous for cardiac gating purposes.

One major motivation of this doctoral study was to employ suitable solutions including novel sensor
fusions as well as signal processing techniques for cardiac and respiratory cycle segmentation. The
segmentation process in MCG signals aims at accurate separation of the two fiducial points from the joint
GCG and SCG signals. The systolic contraction complex (AVO point) and the diastolic A- wave peaks
(AVC/MVO point) are well-defined locations that are constantly visible in the GCG and SCG signals (as
shown in Figure 3.5). These timing points, as validated by echocardiography inspections, coincide with
the opening and closure moments of the heart valves [143,163]. Accordingly, by estimating ventricular

systolic and diastolic cardiac events it is feasible to accurately estimate cardiac mechanical activation
and relaxation episodes.
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Deterministic segmentation process in this study includes a search window W1 defined from the
onset of AO-peak in MCG signals to the onset of the following heartbeat. Within this search window,
a local maxima is searched which typically appears in the early diastolic phase. With dividing cardiac
cycle into two parts, that is P1 and P2, systolic and diastolic cardiac time intervals are roughly estimated.
P1 begins from the point of AO peak to the mid diastolic A- wave and P2 is defined from ending moments
of P1 to the onset of the following heartbeat.

For prospective cardiac gating applications, each sub-segment can be divided into a certain number
of bins depending on the purpose of imaging examination. For instance, a 3 bin cardiac gating scheme
will include two systolic bins within P1, where a short cardiac semi-quiescence is expected, and one large
diastolic bin P2, where full cardiac relaxation/quiescence takes place. Figure 6.10 shows the cardiac cycle
segmentation process in GCG and SCG using the above described windowing technique. Moreover, this
figure shows multi-dimensional views (ensemble averaged) of the cardiac cycles with corresponding
segmented systolic-diastolic phases.
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Figure 6.10: Cardiac segmentation process in SCG and GCG signals (left) and six-axis view of
the cardiac signals with corresponding roughly estimated mechanical relaxation phases (right).

6.2.5 Chest Motion Decomposition with MEMS

Chest motion signals derived from inertial sensors consist of low frequency and high frequency com-
ponents. The high frequency components generally fall between 2-45 Hz and reflect the precordial
micro-vibrations, while signals within the frequency bands less than 2 Hz reflect chest’s longitudinal
motion [178]. These low frequency chest motion components are induced by breathing action and can
be separated from precordial high frequency movements using a respiration signal extractor (RSE) al-
gorithm. Tri-axial motion sensing using joint inertial sensors allows comprehensive chest movement
analysis in different orientations (6DoF) as angular and translational movements can be tracked. For the
purpose of respiratory gating in PET imaging, this multidimensional motion sensing may help in better
estimation of intrafraction organ movements, e.g. heart-lungs coupled motions. To this end, this study
introduces algorithms yielding accelerometric- and gyroscopic-derived respiration signals — denoted
by ADR and GDR — and segmentation processes to estimate quiescent respiratory periods suitable for
amplitude- or phased-based respiratory gating.
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The RSE algorithm developed in the context of this Ph.D. work decomposes low frequency com-
ponents from the raw accelerometer and gyroscope signals. With the gyroscopic signals, an integration
process (resulting in a type of low-pass filtering) is considered in order to derive chest inclinations or
the angle of rotation (tilt). This process is similarly performed with accelerometers in order to calculate
angles of rotation, for example, pitch around x-axis and roll around y-axis, as shown in Figure 6.11.
Unlike gyroscopes, accelerometer sensors are not able to measure yaw which is rotation around z-axis.

A) Single-axial Accelerometer B) Tri-axial Accelerometer
~=== Sensing Axis of the Accelerometer ‘ACCX= acceleration in X direction
g is Earth’s gravity . X
Accyis acceleration in X direction Accy=g.sin(a) , at t;
-
,,,,,,,,,,,,,,,,,,,,,,, Agcx =0,att, asa=0
A
ccy A
- O;’@o 9“0@/ Acc;, = acceleration in Z direction
%, S
% .
/,/' ? Oo/) z
S\ a
Yax
4
1
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Figure 6.11: Angle measurement using single (A) and multidimensional (B) accelerometer
sensor for tracking respriatory induced chest inclination.

As shown in Figure 6.11 (A), a single axis accelerometer sensor can sense angular displacement

around x-axis, «, as acceleration Acc, in this direction depends on gravity change along with angular
displacement. Therefore

AccX

) 6.9)

a = arcsin(

With a multidimensional sensor inclination around x-axis (pitch) is dependent on the total magnitude
of gravity with z- and y-axes while the the angular position of the sensor alters with .

AceX )
VAceZ? + AccY?”

Similarly, rotation around Y axis (roll) depends on total magnitude of gravity with z and x-axes while
accelerometer tilts with an angle of 3

Pitch = arctan( (6.10)

AccY )
VAccZ? + AceXx?”

In continuation to angle calculation, a brick-wall band-pass filter with the frequency bands of 0.1-2
Hz is applied on the SCG-GCG signals in order to discard high frequency components of the signals.
Finally, their amplitude is balanced dynamically using SMQT approach [265]. Figure 6.12 shows respi-
ration signals extracted MEMS signals and alignment between the respiration signals and end-expiration
peaks identified in RPM, ADR, and GDR.

Roll = arctan( (6.11)
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Figure 6.12: Flowchart of respiration signal extractor algorithm (left) and resulting MEMS
GDR and ADR signals follow reference RPM with high correlation (right).

Unlike z-axis, the x- and y-axes of accelerometer sensor are able to show respiratory inclinations
as their coordination position on the chest is changed by the chest micro-scale rotation/inclination. In
contrast, accelerations measured in the z-axis pose stronger precordial vibrations than the other axes.
Even though it is possible to measure breathing signals with for example gyroscopes, the main motiva-
tion to use accelerometers for wearable/implantable devices is lower power consumption. Low power
consumption is crucial when considering wearable/implantable wireless devices. The total power density
of an electrical in vivo device should not exceed 800W/mm? [268]. Current ultralow power MEMS
accelerometers can easily meet this power density requirement, and it is expected that gyroscopes will
achieve this limit within a couple of years. Currently typical power density values for MEMS gyro-
scopes are in the order of ImW/mm? and application specific optimization of the gyroscope can further
decrease the power density. Moreover, the use of gyroscope, jointly with accelerometers, may effectively
contribute on better estimation of intrafraction motion due to internal organ movements. Therefore, the
utilizing of the multi-axial MEMS sensors is advantageous for the simultaneous extraction of the cardio-
vascular and respiration signals.

6.3 Automated Detection of Heart Arrhythmia and Ischaemia

6.3.1 Knowledge-Based Learning for AFib Detection

Timely diagnosis of AFib is crucial to prevent cardioembolic strokes. Automated real-time detection of
heart arrhythmia such as AFib has been widely accomplished by searching abnormalities in the ECG
signal as described in Section 2.2.3. The automated detection of AFib using cardiac mechanical motion
has not been addressed in many research papers. However, one such example is [127], where a bed-
mounted sensor was used to detect cardiac arrhythmia using BCG unobtrusively. New interest in this
study is based on chest-mounted wearable/mobile MCGs where typical behaviour for AFib in the SCG-
GCQG signals are characterized and analysed using knowledge-based and machine learning solutions.
Knowledge-based AFib detection algorithms for MCG signal processing relies on irregularities on
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both the timing and strength of heartbeats during arrhythmia. For example, Figure 6.13 (A) shows that
cardiac mechanical activity during normal sinus rhythm is characterized by relatively constant timing
and amplitude variations, while during AFib an abnormal and fully random behaviour is visible in MCG
signals indicating irregular variations on timing of heartbeats, as well as random variation on the strength
of the LV mechanical action (cardiac impulses). Primary investigations on the behaviour of MCG sig-
nals during cardiac normal and arrhythmic operations revealed that via studying the autocorrelation of
the timing and/or instantaneous amplitudes of heartbeats measured using mechanical sensors it is fea-
sible to detect cardiac abnormalities such as AFib [269]. Autocorrelation is a useful tool to measure
the periodicity of a physical phenomena. With autocorrelation it is possible to investigate the periodic
characteristics of a biosignal. For example, Figure 6.13 (B) shows a sinus rhythm MCG signal, with a
relatively stationary condition, and correspondingly a periodic behaviour can be seen in its autocorrela-
tion plot, but AFib is a random phenomenon and therefore no clear sign of regularity can be seen in the
autocorrelation measurements.

A) Normal Cardiac Acceleration B) Autocorrelation of Normal Cardiac Acceleration
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Figure 6.13: Figure A shows timing variation and amplitude behaviour during sinus rhythm
and AFib mode. Figure B presents the autocorrelation of the SCG measurements in the corre-
sponding modes.

In addition to autocorrelation characteristics of arrhythmic signals in MCGs, the randomness be-
haviour of the AFib can be measured by other parameters such as entropy and HRV. Spectral entropy
(SpEnt) describes the complexity and randomness of cardiac mechanical behaviour and aims at interpret-
ing the degree of disorder or randomness from spectral density analyses. HRV, or variation of successive
cardiac cycles in MCG, represents the timing irregularities as abnormal deviation of heart rate is a re-
markable sign of arrhythmia. SpEnt together with HRV analysis can effectively contribute as potential
predictors of the AFib using MCG derived signals. Previous work on knowledge-based learning of AFib
has been introduced by Hurnanen et al (2016) [270] in which an automated detection framework using a
linear least-squares classifier with spectral entropy and heart rate variability measure as input parameters
on a small group of subjects. The proposed method tolerates well interpersonal variations in the signal
morphology as well as noise, because it does not require direct heartbeat detection from the SCG signal.
The method relies on autocorrelation for cardiac cycle estimation in short episodes of SCG signals and
considers power spectral density changes in sinus and fibrillatory rhythms. An extended version of this
method was later developed for smartphone AFib detection in a blinded clinical trial (NCT03274583)
with 300 cardiac disease patients (AFib positive=150) [128]. The method revealed an average accuracy
of 96%.

6.3.2 Machine Learning for AFib Detection

An effective detection of previously undiagnosed AFib patients constitutes one of the most current chal-
lenges in the medical sector. To meet the challenge, cheap, simple, reliable, and convenient methods are
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needed to detect asymptomatic AFib so that the benefit for those who are detected earlier as a result of
screening can be maximized. Efficient and low-cost approaches to screen AFib are yet to be introduced.
There is a great clinical demand for precise detection and classification of AFib with much faster and
smarter algorithms.

Machine learning or artificial intelligence based arrhythmia detection is a recently widely used ap-
proach to discriminate cardiac abnormalities with the help of multidisciplinary features as well as ad-
vanced and complex classification models. Machine learning focuses on the computational challenges of
building statistical models from a massive amount of data and seeks to learn relationships from data. A
considerable amount of theory exists for learning algorithms and complex modeling techniques that aim
at exploring effective solutions for problems in medicine, specifically in cardiology. The ultimate goal
of MCG research as described in this work is to develop a cheap, ubiquitous, and noninvasive method
(which requires neither electrical contact to skin nor additional equipment) suitable for screening hidden
AFib from large masses.

To this end, and in addition to knowledge-based approach for AFib detection in SCGs, Lahdenoja
et al. (2017) [113] presented a novel combination of smartphone SCG and GCG signals for automated
detection of AFib using machine learning. The study revealed improved detection of AFib when joint
smartphone SCG and GCG signals are fully exploited. The use of gyroscope together with accelerometer
allows a comprehensive study of the heart activity as there are specific changes during AFib in both time
domain and magnitudes of beats that are not always visible in SCG signal. These findings create a foun-
dation for the development of smartphone MCG-based AFib detection algorithms. Figure 6.14 shows
6-axis motion sensing and corresponding ECG recording during AFib and sinus rhythm. As can be seen,
Figure 6.14 (A) shows dominant characteristic changes in the mechanical signals as compared to Fig-
ure 6.14 (B). Additionally, Figure 6.14 (A) shows that GCG signals remain recognizable and ventricular
or systolic complexes in each heartbeat are explicitly irregular. In contrast, SCG signals although appear
irregular during AFib, in their texture the cardiac operation is barely visible. This implies further benefits
of using multidimensional MCG for AFib detection as GCG and SCG offer different characteristics of
signal complexity and randomness during a specific arrhythmia.
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Figure 6.14: Figure A shows timing variation and amplitude behaviour during AFib. Figure B
presents the autocorrelation of the SCG measurements during normal sinus rhythm.

In continuation of the previously developed methods in MCG processing [113,270], the focus of
Study V is to use a supervised learning for classifying AFib patients. In this study, a large dataset (n=435
subjects including 340 cardiac patients and 95 healthy volunteers) is considered, and various feature
engineering and machine learning techniques are used to evaluate the diagnostic performance of the
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smartphone MCG in detecting and quantifying AFib.

A fully automated AFib detection framework consisting of various signal processing and data anal-
ysis steps is designed to detect the existence of AFib in individual patients. The purpose of this work
was to extend previous works towards efficient operation among the full adult population range, and to
present a novel algorithm and additional machine learning features for smartphone based AFib detection.
Figure 6.15 shows the overall view of the machine learning pipeline including pre-processing, feature
engineering, feature matrix, and classification methods.

6.3.3 Feature Extraction from MCGs

Feature extraction starts from a similar framework as described in [113]. A preliminary signal pre-
processing (including SSA filtering and wavelet-based envelope extraction) is performed by first seg-
menting the signals from each of the six axes (AccX, Accy, ..., GyroZ) into certain lengths, subsequently
various features are extracted — incorporated into three feature matrices as 6-axis SCG-GCG, 3-axis
SCG, and 3-axis GCG — and finally different classification techniques are used to distinguish AFib. A
full list of features with their characteristic details is presented in Table 6.1.
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Figure 6.15: General schematic of machine learning pipeline.

6.3.4 Cardiac Ischemia Detection with MCGs

Early detection of coronary artery disease is extremely important in order to guide the patients into med-
ical treatment. The detection of CAD is also a key requirement towards improved treatment, reduction
in mortality and morbidity, and to the reduce the healthcare costs which are rapidly increasing. Detec-
tion of indications of CAD and acute myocardial infarction (AMI) using precordial accelerations has
been previously investigated [145, 147,149, 151]. AMI is a serious heart condition as part of the heart
muscle tissue is damaged (irreversible injury) due to insufficient oxygen supply by coronary arteries.
When a person feels obscure acute chest pain, it may be caused due to for example a heartburn or it may
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be a symptom of AMI (angina pectoris). A coronary angioplasty operation can be used to remove the
blockage from coronary arteries to reduce the damages caused by the loss of oxygen into the heart.

Another aspect of heart motion analysis using MCGs is to enhance detection accuracy for AMI and
related diseases. The aim of this part of research was to develop a solution which could either be in-
tegrated into a medical app for the use of telemedicine/smartphone cardiography by a trained medical
personnel or as a standalone solution to wearable users in order to help recognizing this life-threatening
condition earlier. The developed solution similarly extracts the heart vibration signals of a patient using
the accelerometer and gyroscope sensors that are embedded into a smartphone. The main hypothesis
for AMI/CAD studies comes from the fact that ischemia is a disease dealing with the mechanical func-
tionality of the heart muscle and therefore MEMS motion signals should be potentially able to reveal
corresponding mechanical failure due to ischemic changes. Figure 6.16 shows mechanical signals ob-
tained during AMI (STEMI) and normal conditions.
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Figure 6.16: Figure A shows cardiac vibration signals during AMI. Figure B demonstrates
joint SCG-GCG signals during normal conditions [from [166] with permission © IEEE].

In order to detect AMI or more precisely STEMI, 1D local binary pattern (LBP) [271] technique was
considered to explore waveform changes in the multidimensional MCG signals and compare these patho-
logical changes with normal conditions. Figure 6.17 illustrates the overall process of feature extraction
and classification framework for MI detection in MCG recordings. The origin of LBP methodology lies
in texture mining in image processing (2D-LBP), but it has been tried for various other image analysis
tasks, such as face recognition, biometrics, and beyond (see [272] [273]). LBP is invariant to signal
bias, which is believed to make it suitable for the analysis of the actual shape of the underlying signal
and its small scale micro-structure. The idea behind 2D-LBP is based on evaluating the neighbourhood
pixels — in terms of intensity differences — found at certain angles when we rotate from 0-360 de-
grees in anti-clockwise direction. The neighbourhood pixel coordinates around a point g. are found by
(=R x sin(2mp/P), R x cos(2mp/P))

P-1

LBPp R = Y s(gp — 8)2°, (6.12)
p=0

where g. and gp are respectively values of the central point ¢, and the surrounding point P in the circle
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Figure 6.17: Overall diagram of the machine learning part of the STEMI detection (two-class
case). Signal acquisition is made with a smartphone and subsequently data pre-processed (in-
cluding motion artifact removal and filtering). A feature vector includes one LBP histogram
with fine spacing (r=3) of the original signal segment and one LBP histogram for an integrated
version of the same signal (chest’s angular displacement) with fine spacing. Additionally, the
same procedure is applied to signal with a coarse spacing (r=21). In total there are four LBP
histograms of length 59 bins corresponding to single segment and axis (P=4%59). The length of
the overall histogram for six axes is 6*P features. Feature matrix is fed into the classifier and
subsequently using a LOOCV and majority voting scheme STEMI condition is discriminated
from other conditions [from [166] with permission © IEEE].

neighbourhood with a radius R, and function s(z) is defined as:

1,z >0
_ = 6.13
5(x) {O7x<0 ( )

Those coordinates which do not exist are assigned a value using interpolation. Apart from being
faster to calculate, rotation invariance is another well known property of the LBPs [272]. An efficient
variant of 2D-LBP called uniform 2D-LBP which includes only those binary patterns which change only
once, either from 0-1 or from 1-0. Uniform patterns have minimum transitions and as such act as pattern
templates for interesting features in an image. These uniform LBPs are thought to cover the fundamental
properties of most textures observed in a neighbourhood around a center point [272].

For the purpose of AMI detection via MCG, we used 1D-LBPs variant as it is suitable for input
vector data types. For any time index in the input vector the neighbourhood we consider is, d pixels
(samples) before and after the index position being analyzed. An additional parameter called spacing is
also used to speed up the computation and to extend the used local neighborhood.

6.3.5 Multiclass Learning for Cardiovascular Condition Assessment

In addition to independent detection of AFib and AMI, Study VI presents a multi-class classification
learning approach to assess various heart conditions (Normal, AFib, CAD, STEMI) using a smartphone-
only solution. The motivation behind this approach is that abnormal morphological changes in car-
diogenic vibrations — possibly due to hypoxic myocardium tissue — are recognizable and therefore can
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improve detection of heart arrhythmia and ischemic heart diseases. A potential impact of this approach
is efficient prevention and follow-up of patients with various heart conditions, enabled by mobile tech-
nology.
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Figure 6.18: Figure A shows overall waveform characteristics of normal heart functioning,
Figure B shows irregular and random LV contraction due to atrial fibrillation, and Figure C
and D show CAD condition with ischemic changes: T-wave inversion (C) and ST segment
depression (D) in ECG (lead I), GCG, and SCG signals.

As described in the previous sections and Figure 6.18 shows, during the normal condition both
electrical and mechanical signals follow a regular rhythm and monomorphic repeating patterns while
in AFib condition ventricular contractions appear irregular in terms of rhythm and morphology. More
precisely, due to the atria failure in mechanical function, the left and right ventricles may response with
abnormal systolic-diastolic functioning. In CAD condition, although regular rhythm is visible in SCG-
GCQG, cardiac motion pattern has undergone considerable changes such as poor contractility (amplitude
reduction), larger diastolic activity, and widened systolic complex (as shown in D multiple wide wavelets
are visible in the onset of systole), potentially due to the artery blockage.

This multi-class learning approach benefits from features generated in [113,166]. In total, 18 AFib
features, 11 spectral energy features, and 4 uniform local binary patterns (LBP) histograms of length 59
are considered for multiclass learning in MCG recordings. The LBP histograms are formed by applying
different spacing between the bits (of 3, 21) and using the same two spacing with an integrated ver-
sion of the input signal. Table 6.2 represents different categories of features selected for the multiclass
classification task.

As described in [166] the classification results are made with majority voting, which means that all
segments in a particular measurement (person) are used to vote for the final class. In the multiclass
framework, this simply means that the class which is the most common among the evaluated segments
is chosen to be the final result. In the two-class case, the class which is more common is also chosen as
the detection result.

6.3.6 Classification and Cross Validation

Kernel support vector machines (KSVM) and random forest (RF) were the main classifiers used in this
work for discriminating cardiac conditions (Study V and VI). These learning algorithms were used based
on their mathematical characteristics in differentiating cardiovascular disorders using the previously ex-
plained features for AFib, AMI, and multi-disease detection. A majority voting learner (MV) was also
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Table 6.2: Four major groups of features based on heart rate variability (HRV), signal energy,
spectral entropy (SpEn), approximation entropy (ApEn), turning-point ratios (TPR), and local
binary patterns (LBP) for multiclass learning.

Feat. | Abbr. Description Dim.
1 SPEN Entropy of the signal frequency spectrum 1

2 HRV Heart rate variability from short-term autocorrelation 3

3 HR Heart rate (from short-term autocorrelation) 1

4 TPR Turning-point ratios (extracted with different filters and without filter) 11
5 RRI-TPR Turning-point ratio of beat-to-beat intervals 1

6 APEN Approximate entropy 1

7 ENE_FEATS | Energy of signal segment with different bandpass filters 11
8 1D-LBP 1D-Uniform LBP histogram (ULBP) with spacing 3 59
9 1D-LBP 1D-ULBP with spacing 21 59
10 1D-LBP 1D-ULBP of integrated signal (Matlab’s cumtrapz) with spacing 3 59
11 1D-LBP 1D-ULBP histogram of integrated signal (Matlab’s cumtrapz) with spacing 21 | 59
All (single vector) 265

defined in Study V which practically combined predication probabilities made by multiple classifiers
including RF, KSVM, and Robust Boosting (RB) which is an ensemble of classification trees. The RB
algorithm is an effective classification approach by which results from many weak learners, for instance,
decision trees, are melded into one high-quality ensemble predictor.

Cross-validation study, which is a process to test how the trained model or classifier performs with
respect to the given training set, was considered subsequently. In practice, cross validation is used to
assess the performance of the model by predicting the error rate of a learning technique. With cross
validation, the given data set is generally split into two partitions named as frain and fest and thereby the
classification error is calculated by training the learned model with the train subset and testing it with the
unseen fest subset. There are several standard ways to perform cross validation such as k-fold (k< num-
ber of samples) where the data is divided into fixed number of folds/partitions, and leave-one-out cross
validation (LOOCV) which is n-fold cross validation, where n is the number of observations/samples
in the dataset. With LOOCYV, the model is fitted with n — 1 samples to predict the probability of the
outcome with the one sample which has been excluded. This process is repeated, excluding a different
sample until all of the samples in the given data set had a predicted probability obtained from a model
trained to all of the others.

In this Ph.D. work, a leave-one-person-out cross validation is adapted to evaluate the generalization
performance (the sensitivity and specificity) of classification algorithms. Accordingly, cross validation
process relies on excluding one subject from the total number of subjects and the learning model is trained
with the remaining subjects’ data. It is worth noting that choosing the right approach for cross validation
scheme is of high importance, as for example in the case of AFib detection, it is very crucial to detect
an individual diseased subject at a time. Quantitative evaluation of the classification performance using
LOOCYV is expected to be slightly affected resulting in more pessimistic predictions, but this approach
— apart from obtaining learning error rates with lower bias — prevents over-fitting problems. This is
important to consider specifically when we deal with a small set of training data. LOOCYV is, however,
computationally expensive and tends to have a high variance [274].
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Chapter 7

Results

7.1 Validation of Accelerometer-Based Cardiac and Respira-
tory Gating Signals

Study I presents an accelerometer-based system was presented as a potential solution for dual gating
in nuclear medicine imaging and validated with a reference ECG and a respiration belt. Deterministic
cardiac time interval estimation algorithms were used to estimate systolic and diastolic phases of the
mechanical cardiac cycles (SCGs). Additionally, ADR signals were compared to a reference respiration
belt during three different breathing patterns, namely normal, slow, and fast pacing. The correlation
coefficients (r) between ADR and respiration belt measurements were 0.9945, 0.9981, and 0.9941 for
normal breathing, slow-paced breathing, and fast-paced breathing, respectively. Figure 7.1 shows that

ADR signals follow the reference respiration belt traces during different breathing patterns with a high
agreement.
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Figure 7.1: Respiratory cycles obtained from ADR (dashed blue line) and reference respiration
belt (red solid line) in three different patterns, normal breathing, slow-paced breathing, and
fast-paced breathing [from [224] reprint under @@ ].

57



Results

7.2 Stand-alone Heartbeat Detection in SCG and GCG

Study II presents HABIT approach adapted for the detection of heartbeat timings and interbeat time
intervals in SCG is tested on 29 healthy volunteers in three different positions, namely supine, left and
right recumbent [263]. The average true positive rate (TPR), positive prediction rate (PPR) and detection
error rate (DER) for different positions are as follows (TPR, PPR, and DER): supine (95.8%, 96.0% and
~ 0.6%), left (99.3%, 98.8% and ~ 0.001%) and right (99.53%, 99.3%, and ~ 0.01%). High correlation
and agreement is observed between SCG and ECG interbeat intervals (r>0.99) for all positions which
highlights the capability of the algorithm for SCG heart monitoring from different positions. HABIT
algorithm was later tested on gyroscopic signals obtained from the same dataset in [263] to delineate
cardiac mechanical waveforms in GCG. The average TPR, PPR and DER for different positions were
as follows (TPR, PPR, and DER): supine (99.4%, 99.5% and ~ 0.038% ), left (99.66%, 99.7% and ~
0.034%) and right (98.9%, 96.6%, and ~ 0.049%).

In continuation of the HABIT algorithm, Study VII presents a standalone heart beat detection [275]
in which the above-mentioned study group (Dataset I, n=29) and a group of CAD patients (Dataset II,
n=12) were tested. For Dataset I the TPR and PPV rates were 99.9 % and 99.6 %, respectively with
improved performance compared to the earlier contribution [263]. The same metrics for Dataset II were
92.0 % and 92.2 %, respectively.

Apart from heart rate monitoring, joint SCG-GCG monitoring allowed measuring an electromechan-
ical delay (EMD) which is defined as the time interval between the onset of the ECG QRS-complex and
the onset of the systolic wave in MCG [276]. Figure 7.2 shows the statistics of the mean EMD and the
standard deviation of the beat-to-beat EMD from Dataset 1. In comparison to SCG, the GCG derived
EMDs had smaller bias and variability, which means a better approximation for relative PEP can be
obtained by GCG.
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Figure 7.2: EMD between ECG R-peaks and MCG’s mechanical activation points.

7.3 Characterization and Analysis of Gyrocardiography and
Waveforms Annotation

Study III presents simultaneous recordings of ECG, GCG, and echocardiography in order to annotate
underlying fiducial points in GCG in a group of subjects consisting of nine healthy volunteer men. Ac-
cordingly, these concurrent measurements together with complementary quantitative and qualitative in-
spections revealed the following outcomes.

Around the ECG R-wave and during the systole, a fast downward notch in the GCG y-axis wave
pattern is visible that is denoted by gyror (gr). Subsequently, another major maximum peak in the GCG
y-axis is denoted by gyroy (g7); this peak occurs slightly after the ECG R-wave and is considered to
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be the mechanical activation of LV contraction. Further in the middle of the cardiac cycle and roughly
after the ECG T-wave (around the second heart sound (S2)), a lower magnitude up-down wave (almost
A shape) is visible which consists of two reproducible and repeating notches just before and after the
A wave peak. This waveform is mostly visible in the signal obtained from the z-axis of the GCG, and
are therefore nominated the by gyrox (g9x), and gyror, (gr1.), respectively. With distinguishing of GCG
g1, 97, 9x» and gp, points in every cardiac cycle, the IVCT and the IVRT are estimated. Additionally,
other significant systolic time intervals and indexes of cardiac contractility such as QS2, LVET, and
PEP are estimated. It was shown that GCG can estimate pre-ejection period, left ventricular ejection
time, isovolumetric contraction and relaxation times, and systolic-diastolic peak velocity points. GCG
signal was also compared to tissue velocity (TV) and strain curves obtained by TDI and speckle tracking
analyses, and it was shown that the timing of the maximal strain is correlated with certain waveforms in
the GCG signal. Figure 7.3 illustrates the annotated GCG waveforms and the corresponding cardiac time
intervals. Table 7.1 shows estimated cardiac time intervals, error rates (RMS), and correlations measured
by reference echocardiography, ECG, and GCG based annotated cardiac events.
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Figure 7.3: Waveform annotation and cardiac time interval estimation in GCG signal. Figure
A shows aortic (left) and mitral (right) valve opening and closure moments as measured by PW
Doppler and in GCG signal. Figure B specifies waveform annotation in GCG and correspond-
ing time intervals with respect to ECG peaks [from [163] reprint under @® ].

Echocardiography | Mean + SD | GCG Mean +SD | > | RMSE
HR (bpm) 59+12 |HR 58 £11 099 | 0.95
R-MVC (ms) 20+ 6 R-g; 18+5 0.66 | 3.5
R-AVO (ms) 49 £+ 10 R-g, 474+10 | 096 | 22
R-AVC (ms) 359 +£32 | R-gx 35836 | 095| 7.5
R-MVO (ms) 427 £44 | R-g; 432 +£41 | 097 | 7.6
IVCT (ms) 29 £ 12 IVCT 3010 | 0.85| 45
IVRT (ms) 68 £ 14 | IVRT 74 £9 059 | 9.4
QS2 (ms) 393 +34 | QS2 394 £38 | 0.78 19
LVET (ms) 31026 | LVET 310£32 | 093 | 7.7
PEP (ms) 82+ 10 | PEP 83+ 8 0.84 | 45
Q-Sa (ms) 134 £20 | Q-SPV 132426 | 089 | 7.6
Q-Ea (ms) 467 £44 | Q-DPV 460 =49 | 0.87 16
Q-Max Strain (ms) 367432 Q-Max Ang Disp 371431 0.91 10

Table 7.1: US and GCG derived information for underlying cardiac time intervals.
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7.4 MEMS Dual Gating for Cardiac PET

Study IV presents the applicability of MEMS dual gating for cardiac PET imaging with two atheroscle-
rosis patients. Dual gated PET images are successfully reconstructed using only MEMS signals. With
MEMS cardiac gating approach, SCG-GCG signals are divided into 3 bins, two small systolic and one
larger diastolic bin, while ADR and GDR signals are segmented into 5 bins of equal height. For MEMS-
based respiratory gating, amplitude-based approach is used as it allows accurate derivation of gating
intervals for patients with irregular respirations [277]. Figure 7.4 shows cardiac dual-gated PET images
with non-gated, ECG-RPM, and MEMS dual gating. The myocardium appears less blurred in both RPM
and MEMS gated images as compared to non-gated images indicating a reduced partial volume effect
due to gating. Notably, the MEMS gated image shows less noise as compared to the ECG-RPM gated
image due to improved separation of the quiescent periods of cardiac and respiratory cycles.
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Figure 7.4: Transaxial view of non-gated (A), ECG-RPM (B), and MEMS (C) dual gated car-
diac PET images obtained via ECG-RPM and MEMS gating for Patient 1 (left) and Patient 2
(right). Notable blurring in the myocardium is visible in non-gated images which is reduced by
dual gating.

Results in Table 7.2 show that MEMS-gating preserves more data in cardiac PET imaging than
conventional dual-gating using ECG and RPM. It also improves the signal-to-noise ratio (SNR) and
yields similar target-to-background ratio (TBR) than the ECG-RPM method as shown in Table 7.3.

Table 7.2: Gating statistics indicating the percentage of data saved compared to non-gated PET.

Subject RPM ECG | ECG-RPM | MEMS Respiration | MEMS Cardiac | MEMS Dual
Patient 1 (male) | 14.1% | 31.8 % 39 % 17.4 % 60.0 % 10.4 %
Patient 2 (female) | 21.3 % | 45.8 % 10.4 % 26.0 % 59.4 % 15.4 %

Table 7.3: Quantitative analysis of PET images.

Subject No Gating | ECG-RPM | MEMS
patient 1 (male) | SNR | 2491 785 12.93
TBR| 157 178 1.75

: ) SNR| 2372 1157 | 1243
Patient 2 (female) | rpp | 7y 75 2.43 233
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7.5 Cardiovascular Condition Assessment

7.5.1 AFib Detection with Machine Learning

Study V aims at assessing the diagnostic performance of a joint SCG-GCG method by considering 435
subjects including 190 AFib and 245 sinus rhythm cases. A fully automated AFib detection algorithm
consisting of multidisciplinary features and machine learning steps is developed and evaluated through a
leave-one-out-cross-validation study with a large set of patients (n=300, 150 AFib). The trained models
including KSVM, RF, and RB are further tested on an unseen test set of size 135 (40 AFib). The ex-
perimental results revealed that the method could discriminate AFib and SR with accuracy, sensitivity,
and specificity of approximately 97%, 99%, and 95% for the cross-validation study and 95%, 93%, and
97% for the cross-database test experiment, respectively. A positive predictive value of approximately
95% and 92% was obtained respectively for the LOOCYV and test set suggesting high reproducibility and
repeatability for mobile AFib detection. Additionally, the F; scores were respectively 97% and 96% for
the cross-validation and test studies, and the Cohen’s kappa scores were 0.94 and 0.88 indicating a near-
perfect agreement in rhythm classification between the smartphone algorithm and visual interpretation
of telemetry ECG recordings.

Table 7.4 and 7.5 present the achieved results respectively for the cross-validation and cross-database
studies where three sets of classification quality metrics are reported, each correspond to a feature group.
Figure 7.5 shows the overall performance of the AFib detection method using receiver operating curves
(ROC) in combined SCG-GCG, only SCG, and only GCG features obtained with 10 second segmenta-
tion. As shown, the area under the curve (AUC) obtained by RF is superior (0.987-0.991) as compared to
KSVM (0.972-0.983), and RB (0.968-0.976) in all cases. As can be seen from the tables and ROC plots,
the six-axis feature combination derived from 10 sec segments represents a slightly higher discriminative
performance than the two other feature groups, namely SCG/GCG derived features.
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Figure 7.5: ROCs and AUC values obtained with RF, KSVM and RB classifiers with 10 second
episodes.

Table 7.4: Classification performance results for the cross validation study with different seg-
mentation and feature groups.

Feawre 6-axis SCG-GCG 3-axis SCG 3-axis GCG

matrix
(besljzf;"ggr“;::‘;mup) SE SP PR kappa F, ACC AUC| SE SP PR kappa F; ACC AUC| SE SP PR kappa F, ACC AUC
10 sec (RE/RE/MV) 986 95 95 094 97 97 099 [973 947 948 092 94 96 099 973 93 93 09 945 95 099
20sec MVMV/MY) | 986 93 93 092 96 96 096 |98 94 942 092 96 96 096 |96 93 93 087 94 94 093
30sec MV/MV/MY) | 973 927 93 090 95 95 095 |97.3 947 948 092 956 96 096 | 967 92 924 088 94 943 094
40sec (MV/MV/MY) |98 93 93 090 945 95 095 |98 92 92 09 958 95 095 |97.3 933 935 091 95 953 096
50 sec (RF/RF/RF) 97 92 924 089 945 95 099 |96 933 935 089 93 947 099 |973 927 93 09 945 95 099
60 sec (RF/MV/RF) 973 927 93 090 95 95 099 |98 933 936 091 955 96 096 |96 933 935 0.89 946 95 099

The best performing features — derived from 10s episodes of cross-validation study — which

yielded to the highest discriminative performance were selected using a simple filter approach described
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Table 7.5: Classification performance results for the Cross-database test study with different
segmentation and feature groups

Feature
matrix
Segmentation

(best classifier per group)
10 sec (MV/RF/MV) 90 968 923 088 96 948 094 90 968 923 088 956 948 093 |88 979 946 087 963 948 0.93
20 sec (MV/RF/RF) 925 958 902 088 95 948 092 |925 884 775 077 91 093 90 90 926 83.7 08 94 919 093
30 sec (MV/MV/MV) 85 947 872 079 94 9185 093 [875 926 833 079 925 91.1 093 | 825 979 943 0.82 954 926 093
40 sec (MV/MV/MV) 85 9370 8 079 937 9L1 090 825 926 825 075 926 89.6 087 |85 916 805 073 926 89.0 0.90
50 sec (MV/MV/MV) 925 926 841 082 95 926 092 |85 905 79 0.7 92 889 091 |90 937 857 082 92 92,6 0.92
60 sec (RF/RF/RF) 90 893 782 075 915 895 092 [90 8 77 075 89 89 091 |90 88 77 074 92 89 0.92

6-axis SCG-GCG 3-axis SCG 3-axis GCG

SE SP PR kappa F; ACC AUC| SE SP PR kappa F; ACC AUC| SE SP PR kappa F; ACC AUC

by [278]. Accordingly, an accuracy of 97% was obtainable with only 39 joint SCG-GCG features.
Figure 7.6 shows how frequently these features are selected among the total 39 best features as the can-
didate features may obtain from different measurement orientations. As shown, among these attributes,
the RMSSD (26%), HNR (15%), Fy (18%), and spectral flux (15%) had the greatest contribution in AFib
classification.

Median HRV (3%) Spectral Spread (5%)
Spectral Rol-off (3%)

Spectral Centroid (5%)

RMSSD (26%)

Specral Flux (15%)

Skewness (5%) HRV power (5%)

1 1 0,
Fundamental Frequency (18%) Harmonic Ratio (15%)

Figure 7.6: Contribution of best SCG-GCG features in AFib detection.

7.5.2 Arrhythmia and Ischemia Detection with Multiclass Learning

Study VII suggests that smartphone mechanocardiography could be used to separate cardiovascular con-
ditions such as normal sinus rthythm, AFib, CAD, and possibly ST-segment elevated myocardial infarc-
tion (STEMI) in a multiclass setting. This study considers two class (AFib versus sinus rthythm, CAD
versus healthy sinus rhythm, and CAD versus STEMI), three-class (Normal, STEMI, CAD), and four
class (Normal-AFib-STEMI-CAD) using KSVM and RF classifiers. With the binary classification tasks,
an accuracy of 98% was obtained for AFib detection, 86% accuracy in discriminating CAD patients from
healthy subjects, and 72% accuracy for classifying AMI from CAD. Figure 7.7 shows classification ac-
curacy for the binary discrimination of different cardiovascular conditions. The accuracy of the 3-class
classifier was 73% without majority voting and 78.46% with majority voting. The accuracy of the 4-class
classifier was 71.17% without majority voting and 75.24% with majority voting.
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Figure 7.7: ROCs for multiple cardiac condition classifications [from [279] reprint under ©@®)].

In addition to the accuracy calculation, another metric so-called F} score was calculated which is
an average [ value from the classification types. Accordingly, Tables. 7.6 and 7.7 represent I scores
calculated for 3- and 4-class setting with and without majority voting, respectively. As such, for the
3-class setting the best F score achieved by KSVM without majority voting (78%), while for the 4-class
setting the best score was given by RF classifier (74%) again without majority voting.

F score Without Majority Voting | With Majority Voting |
RF KSVM RF KSVM
Fln 0.88 0.91 0.84 0.86
Flm 0.74 0.75 0.75 0.72
Flp 0.56 0.67 0.57 0.56
F1 0.72 0.78 0.72 0.72

Table 7.6: Classification F1 scores for 3-class

Fscore  Without Majority Voting | With Majority Voting
RF KSVM RF KSVM
Filn  0.82 0.89 0.80 0.85
Fla  0.77 0.81 0.75 0.77
Flm  0.65 0.62 0.56 0.57
Flp  0.70 0.60 0.60 0.59
F1 0.74 0.73 0.68 0.70

Table 7.7: Classification F1 scores for 4-class
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Chapter 8

Discussion

The findings of this study suggest that wearable/mobile mechanocardiography based heart monitoring
has impressive clinical implications. With multidimensional MCGs, analysis of heart motion becomes
achievable to a new dimension, a dimension which is based on solely precordial vibrations originated
from myocardial wall motion. The overall findings of this Ph.D. work, while preliminary, suggests
that measuring the mechanical movement of the heart muscle offers an entirely new and innovative
method to evaluate cardiovascular status as MCG-based cardiac monitoring can reliably detect cardiac
abnormalities without any additional hardware and provides a new easy-to-use and accessible concept
for screening purposes.

Due to the potential advantages of personalized health monitoring systems, a growing number of mo-
bile/wearable devices would benefit from reliable monitoring of the heart. A personal smart monitoring
platform can assess the health risks by early detection of cardiovascular disorders. For instance, MEMS
gyroscopes and accelerometers can be either embedded into a monitoring patch or implantable device
for long term usage or be employed from smart devices. These sensors are not subjected to intervention
from electrical monitoring or implantable stimulating signals generated by ECG, pacemakers, and car-
dioverter defibrillators and therefore may be used for wearable continuous cardiac function monitoring
in the future.

Smartphones are fast becoming ubiquitous, even among the elderly people, and the number of smart-
phone users is also increasing at a rapid rate in developing countries, where low-cost healthcare solutions
are particularly crucial. The readily available smartphones provide a unique opportunity for cost-effective
screening of cardiovascular disease, if they can be harnessed to reliably detect the symptoms. The perfor-
mance of our smartphone MCG-based algorithms compares favourably to the various ECG (single-lead)
algorithms in detection of cardiovascular disorders such as AFib and AML.

For STEMI diagnosis, the clinical issue with ECG-based methods is the high frequency of false
positive ECG findings such as early repolarization as well as ECG findings hindering ischemia detec-
tion such as the left bundle branch block, pacemaker rhythm or significant left ventricular hypertrophy.
Current computer-aided algorithms for STEMI diagnosis possess a limited sensitivity (of 30-70%) and
specificity (of 70-100%) [280]. Although the presented measuring approach revealed inband sensitivity
and specificity values, its diagnostic performance for STEMI detection must be analysed not only with
ECG data, but when taking clinical symptoms and coronary angiography findings into account. Such
a holistic contextual analysis is routine for diagnosing mechanical wall motion abnormalities found in
STEMI patients and heart failure patients with reduced ejection fraction (HFrEF).

Heart rate monitoring using MCG helps to assess the functionality and condition of the cardiovascu-
lar system. Current heart rate monitors are widely used for monitoring heart rhythm, heart rate variability
analysis, fitness and stress test, sleep tracking, and many other healthcare applications [281]. For exam-
ple, measuring physiological parameters such as the heart rate and blood pressure is recently conducted
using smart devices (e.g. smart watches and smartphones), Google glass, wristband, weighing-scale, and
cheststrap [169, 170, 179, 282-285]. Such cheap, noninvasive (and possibly disposable) vital sign moni-
tors capable of long-term and frequent monitoring of the cardiac activity in an unnoticeable manner are an
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attractive choice for massive screening purposes as they provide immediate feedback on cardiovascular
function for example during fitness activities and stress tests. This study introduced robust and stan-
dalone algorithms for heartbeat detection in SCG and GCG signals for potential health and well-being
applications. The presented algorithms combine linear and rotational cardiogenic signals derived from
MEMS sensors and benefit from three main features that can significantly improve heart rate monitoring
with MCGs as: 1) automatic axis selection, 2) motion artefact removal, and 3) standalone delineation of
heartbeat in SCG-GCG signals.

Disturbing artifacts or noise in cardiac signals can be originated from various sources, such as body
movement or environmental disturbances. Usually, there is a need to perform advanced pre-processing in
order to separate the noisy signal segments (such as motion artifacts) from multi-dimensional MCG sig-
nals. Apart from noise, with joint accelerometers and gyroscopes, both intra and inter-subject variability
between persons is large (in comparison with ECG). We presented a novel machine learning approach
for ranking of cardiac signals according to their quality [286]. The method selects the best performing
axis and sensor in terms of noise and waveform as the quality of the signal is defined how well the heart
beats can be identified. A pairwise learning to rank approach base on ranking support vector machines
algorithm was used to solve this issue. Learning to rank is used to SCG and GCG channels based on
their relative importance with respect to each other as shown in Figure 8.1.
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Figure 8.1: An example of ordering six IMU (3-accelerometer and 3-gyroscope) axes with
respect to their relevance/quality. Derived cardiac signals from each channel on the left and
right are highlighted with the same color. The length of each segment is 10 seconds at 200 Hz
sampling rate of the smartphone. © Reprint with permission

Complementary to the clinical applications of the MCG, intensive considerations on gyrocardiogra-
phy technique revealed that the gyroscopic signals are able to give reliable information on cardiac time
interval measurements such as systolic and diastolic time intervals. STIs including left ventricular ejec-
tion time and pre-ejection period can be measured by detecting particular indicative mechanical cardiac
events, for example, instants of MVC, AVO, MVO, and AVC in GCG signal. Moreover, newly-identified
GCG points, namely systolic peak velocity and diastolic peak velocity, are indicative of cardiac mechan-
ical performance (as research showed good temporal correlations between GCG and echocardiography
velocity measurements) and can potentially provide functional information related to systolic and dias-
tolic activities. Furthermore, it is shown that the time from ECG onset Q to the maximal TDI strain
is correlated to the time interval from ECG onset Q to maximal point of GCG angular displacement.
This electromechanical delay may bring new insights into the assessment of myocardial function as its
variation, known as myocardial mechanical dispersion, can potentially help in detection of arrhythmias
and myocardial infarction [79]. Therefore, wearable/mobile GCG as a promising mechanical cardiac
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monitoring tool can be used in quantification of beat-by-beat dynamics of cardiac time intervals and can
potentially represent information related to the hemodynamic variables and myocardial contractility.

In addition to heartbeat detection and cardiac time interval estimation by MEMS sensors, this work
introduced a novel dual gating technique, for example, MEMS gating, for simultaneous acquisition of
cardiac and respiratory signals using only mechanical sensors. Primary investigations showed a promis-
ing approach for motion correction using only gyroscope- and accelerometer-derived respiratory and
cardiac signals for dual gated cardiac PET studies. Results indicated that MEMS-based dual gating im-
proves image quality and reduces quantification errors. Figure 8.2 shows the line profiles drawn along
the myocardium from RPM and MEMS gated PET images in both patients. The improvement of the
contrast is seen by MEMS gating in patient 1, while the profile of the MEMS gated image is very similar
with the profile of RPM gated in patient 2. Both MEMS gated images show better signal-to-noise ratio
and smoother profile curves due to less noise [287].
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Figure 8.2: Count profiles along myocardium achieved by dual RPM-ECG (left) and MEMS
gating (right) reconstructions (© Reprint with permission)

The advantage of using multi-axis MEMS motion detectors is two fold. Multidimensional mechan-
ical sensing allows selection of the best axis in terms of signal quality and waveform stability for both
cardiac and respiratory gating. Compared to the methods which rely on only ECG, the 6-axis motion
sensing offers more freedom to derive gating information. Depending on the type of imaging, CT or PET,
the x- and y-axis of gyroscope offer fairly robust rotational precordial vibrations and respiration curves,
simultaneously. With the accelerometer, the z-axis provides high quality translational cardiomechanical
vibrations, while the x- and y-axis comprise mainly respiration signals.

A major limitation for MCG based monitoring is its susceptibility to aggravated situations with
high degree of the appearance of movement artefacts in the recorded signals, as the performance of the
algorithms, that rely on waveform characteristics of heartbeats, in very low quality or noisy signals is
affected considerably. The use of gyroscope can to some extent mitigate the influence of motion artifacts
as it is less prone to the linear acceleration in the recorded signal [165]. In practice, the gyroscopes have
higher tolerance to noise [164] and the obtained waveforms remain more monomorphic and stationary
compared to accelerometer signals. Another limitation of this study is the noise level of the accelerometer
sensors used in this Ph.D. work. The MMA8451Q and Bosch Sensortec BMI160 accelerometers — with
an RMS noise of respectively 99 and 180 jg/v/Hz — tend to have a higher noise floor as compared to
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the currently available sensors. Considering various technical aspects which fall beyond the scope of this
study, MMA8451Q sensor appeared to be a suitable counterpart with Max21000 gyroscope at the time
when the first generation of the SCG-GCG data recorder was designed, while the BMI160 was found a
very low-power sensor (990uA with accelerometer and gyroscope in full operation mode) suitable for
long-term recording.

This study indicated that it is feasible to implement advanced classification frameworks possibly aid-
ing in the diagnosis of multiple heart conditions. However, smartphones or in general wearable MEMS
motion detectors have not been systematically targeted toward the heart measurements, and therefore
further validation and risk assessment must be conducted in order to evaluate real end-use of final prod-
ucts based on mechanical motion sensing solutions. For example, in the form of smartphone application
developments, medical approvals from authorized organizations such as US Food and Drug Adminis-
tration (FDA) are required to consider various clinical aspects of mobilephone cardiography. Currently
only AliveCor has US FDA approval.

Due to the global availability of smartphones, it could be possible to develop a professional diagnosis
system as a part of an efficient global prevention and detection of strategy to deal with heart diseases.
However, there is an evident need for further studies such as controlled blinded investigation as well as
further clinical considerations for the usage of the envisioned system in limited distribution in the full
supervision of trained medical staff, before any such system could be made available.

Another possible area for further clinical investigations is the reliability of the multidimensional
MEMS motion detectors as a tool for observing cardiac motion in the context of dual cardiac and respi-
ratory gating in nuclear medicine imaging for a larger subject population. Based on the primary results
of this work, MEMS motion sensors are able to give accurate information concerning cardiac and res-
piratory quiescence phases that are advantageous for cardiac PET imaging. First clinical results with a
small patient group revealed images with less image blurring and significantly reduced motion-related
inaccuracies. The qualitative and quantitative improvements show promise for the new gating solution
and warrant further investigations for oncological and radiotherapy applications.

The three most crucial items to be addressed in the future works are i) increasing the number of
subjects considered in clinical trials for MCG-based detection of cardiovascular diseases specifically for
data hungry approaches, for example, deep neural networks, that their performance is dependent on the
amount of available training data, ii) expanding the potential applications of MCG monitoring for other
cardiovascular abnormalities such as various types of arrhythmia, heart failure, cardiac resynchronization
therapy, and other diseases, as well as detecting the simultaneous presence of multiple heart diseases in
cardiac disease subjects using multilabel learning techniques, and iii) automation of MEMS dual gating
system for robust organ’s intrafraction variation detection and prediction and quantifying the potential
improvements in diagnostic quality resulting from such system with a larger group of patients.

Having a new recording modality which requires as minimum professional knowledge and special
equipment as possible is favourable for two major reasons. First, such a recording can be quickly accom-
plished in every clinic by experts yielding a more accurate diagnosis and treatment plan. Second, this
method can further be adapted for self-monitoring outside clinical environment. Self-screening method
which could be used directly by the patients themselves outside the hospital environment would be highly
beneficial for early interventions. Therefore, a clinically proven and applicable heart monitoring method
may facilitate in time diagnosis of cardiac abnormalities resulting in less medical complications, de-
crease the hospital readmissions and unnecessary emergency department visits, and reduce morbidity
and healthcare costs.

The research conducted in the field of mechanocardiography is still characterized by critical standard-
ization issues with health and wellness mobile/wearable devices used in the home and clinical environ-
ments. For instance, smartphone applications or equivalent wearables — despite of possible precautions
and instructions — require appropriate testing and verification guidance for proper diagnostic quality
assurance as well as data storage, processing, safety, and protection plans. Moving forward, it will be
demanding to obtain patient safety while supporting innovation in the development and use of mobile
medical applications [288].
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Chapter 9

Conclusion

In conclusion, this Ph.D. work addressed the globally important issues of detecting cardiovascular disor-
ders, mainly arrhythmia and ischemic heart diseases, with multidimensional MEMS motion sensors em-
bedded into either a small wearable system or a smartphone. Cardiovascular diseases are major causes of
death and other comorbidities such as stroke. The outcomes of this study together with related previous
investigations in the field acknowledge the capabilities of the miniaturized inertial sensors to reliably
identify indications of multiple cardiovascular conditions, without any external complementary equip-
ment such as ECG. Furthermore, primary considerations for motion correction in PET imaging using
MEMS dual cardiac and respiratory gating revealed promising outcomes that warrant further investiga-
tions in nuclear medicine imaging.
This thesis concentrated closely on four specific tasks as follows:

I Validating the feasibility and reliability of the non-invasive MEMS motion detectors in MCG and
medical imaging applications.

II New knowledge on exploitation of combined sensory data to establish a theoretical basis for me-
chanical cardiac monitoring based on linear and rotational aspects of the precordial vibrations.

III Strengthening sensory data analytics via biomedical signal processing and machine learning tech-
niques to trace heart and lungs intrafraction motions.

IV New knowledge on clinical applications such as heart disease detection and cardiac PET imaging
by adopting related experimental and computational methods for joint SCG-GCG data processing.

Accordingly, the main conclusions of this study are summarized as follows:

e Primary proof of concept experiments demonstrated that MEMS accelerometers and gyroscopes
offer reliable and unobtrusive cardiac and respiratory monitoring by automatically tracking the
axis of interest and removing data invalidated by subjects’ movement.

e A robust signal processing framework can provide reliable and accurate delineation of cardiac
mechanics using SCGs and GCGs. Automated and standalone detection of heartbeats from seis-
mocardiograms and gyrocardiograms is feasible by fusion of chest-accelerations and angular ve-
locities in three different orientations, a Hilbert transform, and a complementary adaptive thresh-
olding technique. Furthermore, sensor fusion and unsupervised learning can effectively improve
heart rate estimations with wearable/smartphone MCGs.

e Gyrocardiography, a new heart monitoring modality, can indicate rotational characteristics of pre-
cordial vibrations induced by myocardial wall movements and left ventricular function. Echocar-
diography interrogations in Study III revealed that GCG may potentially indicate the timing of
opening and closure of heart valves during the systolic and diastolic phases. GCG systolic and
diastolic waveform annotations may help in better approximations for the cardiac time intervals.
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e Chest-derived translational and angular rates due to cardiac and respiratory motion, measurable
by gyroscopes and accelerometers, correlate closely to the heart and lungs movements. Findings
of Study IV acknowledge potential benefits of MEMS inertial sensors for cardiac and respiratory
gating in PET. MEMS cardiac and respiratory derived signals can provide better mechanical infor-
mation concerning intrafraction movement changes that cause quantitative inaccuracy in cardiac
PET imaging. Clinical experiments with cardiac patients showed a very promising performance
for MEMS gating in eliminating image artifacts and preserving PET data statistics for image re-
construction.

e Multidimensional MEMS sensors embedded in smartphones/wearables can be used for detecting
indications of cardiovascular diseases. MCG monitoring reliably detects AFib and provides an
easy-to-use and accessible concept for AFib screening. Knowledge-based learning as well as
machine learning tools detect AFib episodes with high accuracy. Moreover, MCG can aid in the
diagnosis of ischemic heart diseases such as cardiomyopathy and coronary artery disease. With
advanced machine learning algorithms, it is possible to detect multiple chronic heart diseases
when using a smartphone mechanocardiogram.
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