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1 Introduction

Official economic time series require significant effort to produce and as a
result are typically released with a lag measured not in days or even weeks
but months. This lag in availability presents difficulties for decision-makers
in government and business as judgement has to be made with outdated
information.

Scott and Varian (2014) present a Bayesian structural time series method
for short-term forecasting or "nowcasting" economic time series with the help
of hundreds of explanatory variables obtained from search engine query data.
The presented main advantage of their approach is that a large number of
potential explanatory variables can be used to forecast the immediate future,
potentially improving both the timeliness of forecasts and accuracy of the
predictions in the case of structural breaks such as recessions.

In this thesis the predictive performance of the original models nowcast-
ing U.S. initial unemployment claims and U.S. retail sales are examined for
the five years of data accumulated since the publication of Scott and Varian
(2014). When nowcasting initial unemployment claims, Google data is found
to reduce prediction root mean squared error when compared to a stand-
ard ARIMA model out of the original sample. Conversely, no notable per-
formance improvements are found from using Google search query data in a
Bayesian structural time series model to nowcast retail sales.

Possible causes for these disparities in prediction performance are studied,
and the most compelling explanation found is that a highly informative prior
was used in the original study in the case of the reference time series without
any regression component. It seems that the original prior decreased the pre-
dictive performance of the baseline time series model and thus increased the
comparative advantage of the models augmented with Google data. When a
noninformative prior is used in the retail sales analysis over the original study
period, the predictive performance of the baseline model increases to be on
par with the models with Google data, eliminating the perceived advantage

of models with Google data over a pure time series model.



2 Web data 1n economics

2.1 Nowcasting with big data

To avoid using yesterday’s data for today’s inference and decisions, research-
ers have found ways of utilising newly available data sources, often referred
to in the popular media with the term "big data". One of the more explored
avenues has been using private-sector search engine data to augment official
statistics. This data is available with a lag of days, which is a consider-
able improvement to typical government statistics, which often have release
lags of months and are routinely updated long after publication. The term
"nowcasting" is used to emphasise the near-real-time availability and to dis-
tinguish from longer forecasting periods.

In addition to rapid after-the-fact availability, statistics have several fea-
tures that are almost always desirable:, completeness, low cost, granularity,
representativeness and, in the case of time series, temporal length. While this
thesis focuses on studying how economic indicators can be updated faster,
researchers have suggested and demonstrated several other ways in which
non-traditional data sources can help analysis.

Mohebbi et al. (2011) note that search query data is often available in time
series with shorter aggregation intervals and more fine-grained geographical
information than official statistics. Thus missing time periods and regions
can be augmented with search data. Query data is also available publicly
at no cost to researchers, which contrasts starkly with the expenses of tradi-
tional surveys and other data collection methods. This free availability eases
replication efforts (see section 2.5).

More generally, private-sector data can allow researchers to examine the
inner workings of companies and markets and presents opportunities for ran-
domised experiments. On the public side, moving from relying on surveys to
using administrative data gives researchers access to the complete or nearly
complete population, allows them to research variation in characteristics such
as wages, education, health and productivity in different subpopulations and

makes it easier to create more consistent and longer index time-series. New



quasi-experimental research and tracking outcomes of both natural and con-

trolled experiments becomes more feasible. (Einav and Levin 2014.)

2.2 Search engine data in econometrics

Search engine data, often from Google, has been used in numerous studies
to nowcast or examine economic phenomena. Kristoufek (2013) uses search
query data for stock portfolio diversification. He uses searches of the stock’s
ticker as a measure of its popularity and decreases the weight of popular
stocks in the portfolio to decrease portfolio riskiness. Similarly Da et al.
(2011) examine the search volumes of companies’ stock tickers and main
products. They employ a vector autoregression model finding that search
volumes predict stock prices. Goel et al. (2010) predict movie revenues and
video game sales with a linear regression model incorporating Yahoo search
volume as an explanatory variable. Preis et al. (2010) investigate the links
between internet searches and stock market transaction volumes. Mohebbi
et al. (2011) research the rate of mortgage refinancing in the United States.

In addition to the retail sales nowcasting in Scott and Varian (2014),
private consumption has been forecasted with Google data by Kholodilin et
al. (2010) in Germany and Vosen and Schmidt (2011) in the U.S. Both study
year-on-year growth rates of private consumption with autoregressive models
augmented with Google data.

While diverse in subject matter, the literature is also geographically het-
erogeneous: Artola et al. (2015) forecast tourism inflows to Spain, Askitas
and Zimmermann (2009) examine German unemployment and Carriére-Swallow
and Labbé (2013) nowcast automobile sales in Chile.

In addition to economic problems, search engine data has been used for
predicting and nowcasting the rates of numerous diseases such as influenza
(Lampos et al. 2015). Mohebbi et al. (2011) list several other examples.

In earlier literature, the predictive queries were usually picked by the re-
searchers. With large datasets or numerous models this becomes impractical.
The Bayesian structural time series model examined in this thesis was intro-

duced by Scott and Varian (2014) for nowcasting economic time series with
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Google Correlate data characterised by numerous individual keywords. One
of the attractive features of this model is that it performs variable selection,
which is useful when using search engine data with hundreds of potential pre-
dictors. In addition to nowcasting economic time series, Bayesian structural
time series have been used for causality inference in advertising and studying
the effects of security patrolling on crime (Brodersen et al. 2015; Liu and
Fabbri 2016).

2.3 Google search queries

Google offers a service, Google Correlate, for finding the 100 queries aggreg-
ated by week or month that have the highest correlations with an input time
series. Google Correlate ceased updating new data in 2017, but data from
January 2004 to March 2017 is still accessible through the website. The
service is based on an approximate nearest neighbour algorithm, where each
week is represented as a dimension in space. The system finds the approx-
imate nearest neighbours (scaled query volumes that correlate the most with
the scaled input series) and calculates the exact correlation coefficients on
the top results (Mohebbi et al. 2011). The results can be narrowed down
by region and time range, and are scaled to have mean of 0 and a standard

deviation of 1.

Google Trends is the main Google portal for accessing Google query data.
Individual keyword search volumes can be obtained, and the service also
has over a thousand different categories or "verticals" for grouping search
queries. Searches can be narrowed down by region as well, and similarly to
Google Correlate each output is scaled, this time by normalising and scaling
to have values between 0 and 100 (Scott and Varian 2014, 7). Because of
the normalisation, the output of the system is dependent on when the data
is fetched and varies slightly over time. Both Trends and Correlate data are

used in this thesis.
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2.4 Problems and limitations with search engine data

While search engine query data can be utilised in econometrics, the lim-
itations have to be borne in mind. As always, correlation does not imply
causation, and spurious correlations are abundant in the results of Google
Correlate. There is a high risk of overfitting when a large dataset of highly
correlating variables is used as a predictor for a time series, and multicollin-
earity in predictors might cause problems with inference.

Mohebbi et al. (2011) list several other reasons for caution. User search
behaviour may change over time, altering or overturning a previous pattern
of correlation. An example of this is the Google Flu model which has had
mixed results in different years (Lampos et al. 2015). The underlying motiv-
ation of a person entering a search query can also be quite different from the
explanation that seems obvious to the researcher. The data is not a random
sample from the whole population, and time series with low or regular vari-
ation typically yield no meaningful correlations. More generally, Einav and
Levin (2014) state that possibly the greatest challenge in using big data is
finding ways to respect privacy and confidentiality.

New data sources and sophisticated methodologies can also trick us to
believe that complexity automatically offers increased performance in com-
parison to simpler models. In some cases, this hypothesis is quite probably
true (the first example in Scott and Varian (2014) might well be one of those
cases), but complexity in methodology can also increase the opacity of ana-
lyses and make replication of previous studies more difficult even when freely

available data eases replication efforts.

2.5 Replication issues in scientific literature: why open

data matters

This thesis started as an attempt to use Bayesian structural time series,
introduced by Scott and Varian (2014), to nowcast Finnish economic time
series with the aid of Google search data. To familiarise myself with the

method and software 1 tried to reproduce the second example, nowcasting
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U.S. retail sales, of the original paper. My efforts were unsuccessful until a
probable misspecification of prior hyperparameters in the original study was
identified.

The encountered problems in replicating the original study were unex-
pected and, at first, puzzling. However, recent research into the level of
replicability in science has shown that failures in reproducing the results of
peer-reviewed studies are quite common.

To rigorously assess the replicability of published research in well-regarded
journals, the Open Science Collaboration (2015) shows massive effort in rep-
licating one hundred experimental and correlational studies in psychology
with new experiments and data. While replication success is assessed in
several ways, only 39% of the new studies are subjectively rated as having
reproduced the original findings. The general conclusion is that the majority
of replications offer weaker evidence supporting the original conclusions than
the original results.

Economics is not immune to replication problems. In fact, Duvendack et
al. (2017) posit that economics is behind several other fields in the practice
of replicating studies. They cite psychology and, somewhat less, political
science as spearheading replication practices in social sciences. Measuring
the rate of reproducibility in economics, Chang and Li (2015) have a success
percentage of 49 when trying to replicate the original analysis using author-
provided replication code and data. Their measure of replication success is
different from the Open Science Collaboration (2015) or this thesis, a failure
being an instance where original code or data cannot be obtained, but the
study highlights problems in reproduction even when the publishing journals
supposedly require complete replication files as a prerequisite for publication.

In light of the frequency of replication problems, the issues presented in
the section 5 are not so surprising as first. I want to thank both Mr. Scott
and Mr. Varian for generously answering my questions and Mr. Scott in
particular in suggesting the possibility that the default values of priors in
the bsts package might have changed since the article’s publication. Priors
had occurred to me as a possible source for the error, but before Mr. Scott’s

suggestion I had dismissed the idea as the paper stated that default values
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in bsts were used.

[ also applaud the authors for supplying the code and data (Scott 2017b)
for replicating the first analysis in their paper. This practice of publishing
the code and data used in scientific papers is exemplary and helped me
in producing my analysis. Finally, Google should be thanked as well for

providing access to its data, easing both replication efforts and new studies.

13



3 Bayesian structural time series

3.1 The structural time series model

Scott and Varian (2015) describe Bayesian structural time series as a com-
bination of three statistical methods: a basic structural time series model,
variable selection with spike and slab regression and Bayesian model aver-
aging. The authors die not invent the underlying concepts, but rather com-
bined them together in a novel way in a comprehensive method and supplied
software as well as practical examples for its usage.

The model takes as its inputs the time series to be predicted and time
series of several hundred Google search queries correlated with it. The intro-
duction of a regression component into the analysis has two potential benefits:
the earlier availability of search query data can help make predictions faster,
and introduction of search activity data can aid in the detection of structural
breaks in the time series being predicted. The method is designed to reduce
the number of utilised explanatory query variables from hundreds to a hand-
ful, which is valuable when using Google data where the amount of available
variables is large.

Scott and Varian (2014, 8) present their model in state space form:

Y — ZtTO[t + € € ~~ N(07 Ue) (1>
a1 = Loy + Ry ne ~ N(0,Q). (2)

Here (1) is the observation equation, linking the observations y; with the
unobserved latent state a;. Equation (2) is the transition equation, explain-
ing how the latent state vector a evolves over time. 7Z;, T, and R; are model
matrices the arrangements of which can achieve different specifications of the
model.

Durbin and Koopman (2001, 1-2) define structural time series as models
in which the observations consist of several components: trend, seasonal,
cycle, regression and error terms. The Bayesian structural time series model
being inserted into equations (1) and (2) can be presented by the components

forming a local linear trend model, augmented with a regression component:
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Ye = Mt + ﬁTXt + €
ft = =1 + Or—1 + Uy (3)
Op = 041 + v¢

Here fi; is the present level of the trend, d; is the slope of the trend and 8%,
is the regression component. ¢, u; and v; are independent random noise
components, initially assumed to be Gaussian with zero expected value. The
Gaussian assumption is relaxed in section 4.

In equation (3) the basic local linear trend model is expanded by the re-
gression vector component 537x,. In our application the regression component
contains the search queries from Google Correlate and categories from Google
Trends. The parameters to be estimated in equation (3) are the variances

of the noise terms 02,02 and o2 (with Q = diag(c?2,02)) and the regression

coefficients 5. More detailed information on the model specification can be
found in Scott and Varian (2014), and the Bayesian aspect of the model is

explained in the following sections.

3.2 Bayesian econometrics

In the Bayesian framework data is fixed, while the parameters of the model
are the random variables the distributions of which are estimated. Bayesian

inference rests on the Bayes theorem:

P(B | A) P(A)

Substituting probabilities with conditional density functions we have

P(A|B) =

P01 y) = W (5)

where @ is the parameter (or vector of parameters) we wish to estimate and y
is the observed data. Here p(@ | y) is called the posterior density function of 6
given observations y. f(y | @) is the likelihood function, which is the density

function of ohservations y given the parameter value 8. When vectors of
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parameters are estimated, we speak of joint functions. (Greenberg 2013,
13-15, 23.)

p(0) is called the prior density function, or prior in short, which introduces
the researcher’s prior beliefs and knowledge about the distribution of 6. These
subjective priors are not arbitrary and can be based on preceding empirical
work. The updating of existing information, introduced to the analysis with
the prior density function, is a central theme in Bayesian analysis.

The denominator f(y) in equation (5) is equal to [ f(y | 0)p(0)d0o. Its
function is to normalise the posterior distribution so that the integral [ p(@ |
y)df (or the sum in the case of discrete distributions) is equal to one as
dictated by Kolmogorov’s second axiom.

Of the elements of equation (5), the prior is the subject to controversy
because of its subjective nature. Sivia and Skilling (2006, 12) state that while
the assigning of prior probability distributions might seem like it would make
a large impact on the results, in practice the effect is usually not crucial.
Generally the impact of the prior on the posterior distribution decreases
when the size of the sample grows (Greenberg 2013, 17). These statements,
however, refer to noninformativel priors that are designed to impact the
posterior distribution as little as possible. While the statements about the
lowering impact of the prior are true in the limit, when a highly informative
prior is used results can be distorted substantially even with moderately
high observation counts. This phenomena is central to the issues analysed
in section 5, and it is why highly informative priors are typically only used
explicitly and when there is a need to include in the analysis a large amount
of earlier evidence or research that suggests a specific value for the parameter
in question.

An important but less controversial decision is also made when choosing
the likelihood function, where an explicit function is required to be able to
derive the posterior distribution. This decision of functional form can also

be seen as a part of prior information but it is represented in the likelihood

!The term "noninformative" is used throughout the thesis in the sense of being as
little informative as possible, to be distinguished from noninformative priors in the strict
mathematical sense as described by Greenberg (2013)
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function by convention. Because the posterior distribution is proportional
to the prior distribution and the likelihood function, the chosen form of the
likelihood is an important factor in the final inference. Nevertheless, as the
sample size grows, the posterior distribution converges towards a Gaussian
distribution and the impact of the chosen functional form of the likelihood
function decreases. (Greenberg 2013, 21-23; 29.)

3.3 Obtaining the posterior

Equation (5) gives us the foundation of Bayesian inference. Combining the
prior and the likelihood function yields us the posterior density function. In
the case of a multivariate distribution, say that we are interested primarily in
the parameter #;. In this situation we would want to find out the marginal
density p(f; | y) by integrating out the other parameters from the joint
posterior distribution (Greenberg 2013, 23):

p(6) | y) = / P01, 00 | )by - - Oy, (6)

This seems straightforward, but unfortunately in many cases the integrals
cannot be found analytically. In more complex instances such as Bayesian
structural time series, Markov chain Monte Carlo (MCMC) methods are used
instead to simulate the posterior distribution. Regardless of the computa-

tional method the principles of inference remain the same.

3.4 Prior selection

Time series often have relatively small sample sizes, as the number of obser-
vations is limited by the length of the data collection period and serial correl-
ation reduces the effective sample size (Stigler 2016, 60). In the Bayesian case
this has implications to the impact of the prior on the results, as the posterior
distribution is greatly influenced by the prior in small samples (Greenberg
2013, 43). An example of the dangers of unmindful prior selection is given
in section 5, where the results of Scott and Varian (2014) are found to be

substantially inflated by a prior distribution unsuitable to the situation.
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Any probability distribution can be chosen as the prior distribution as
long as it can be integrated to unity. If a prior has this property it is called
proper. If possible, the prior distribution is typically chosen from the same
family (same form but different parameters) as the posterior distribution.
These priors are called conjugate to the posterior distribution. (Greenberg
2013, 45-47.) The parameters of the prior distribution are called hyperpara-
meters to differentiate from the parameters of the posterior distribution we
are calculating.

In Bayesian structural time series the prior depends on whether or not
a regression component is present. In a pure time series model, the prior is
defined with an inverse gamma distribution. The gamma function and its
sibling inverse gamma function have desirable properties for a prior distribu-
tion, as they have great diversity in the shapes obtainable by changing the
hyperparameters. The exponential and y? distributions are special cases of
the gamma distribution, for example. The normal distribution is in the same
family of exponential distributions as the gamma distribution (Nielsen and
Garcia 2009), making them conjugate and simplifying analytical solutions in

Bayesian inference.

3.5 Variable selection: the spike and slab prior

Because there are thousands of Google search verticals and queries that can
be ingerted into the regression component in equation (3), some kind of auto-
mated variable selection has to be performed. In the Bayesian paradigm the
preferred way to do this is to use a "spike and slab" prior on the regres-
sion coefficients. The name is indicative of its central idea and graphical
representation: for each regression coefficient’s inclusion in the model, there
is a "spike" of high probability mass at zero. The "slab" indicates that the
prior distribution for the value of each regression coefficient 3y is very weakly
informative and thus close to flat. (Scott and Varian 2014, 10.)
The spike and slab prior is formally represented by

p(B3,7,02) = p(Byly, o2)p(ay)p(v). (7)
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Here ~ is a vector of zeroes and ones indicating the inclusion of parameters
in 3 to the regression, with vy, = 1 if B # 0 and v, = 0 if B = 0. 3, is the
subset of elements where v, = 1 and f; # 0.

The marginal distribution p(v) represents the spike and is Bernoulli dis-
tributed:

e LA = mtn ®)

7 in equation (8) represents the expected model size, so that © = p/ K when
p is the expected number of predictors that have 5, # 0 and K is the number
of total input regression variables.

The "slab"™ portion of the prior is expressed by a pair of conditionally

conjugate distributions:
11— 1 vV 8S
Balo? 1~ NO, O Sy~ Gall, ). 9

To obtain Q7' we need to define Q7" as the symmetric full-model prior in-
formation matrix obtained by setting Q' = x(wX” X+ (1—w)diag(X* X)) /n.
Here X is the observation matrix where predictor x; is on row ¢, w = 1/2 and
k = 1 are hyperparameters with the values used by Scott and Varian (2014)
and diag(X*X) denotes the diagonal matrix with diag(X'X)s; = (X' X)s.
Now, (07 Lin equation (9) denotes the rows and columns of Q! that corres-
pond to v = 1.

GA(r, s) is the gamma distribution with mean r/s and variance of r/s%.
The prior sample size or weight given to the prior is represented by the
hyperparameter v, and the prior sum of squares of the regression by ss. The
prior sum can be set with the expected R? from the regression and v by
setting ss/v = (1 — R?)s?, where s is the marginal standard deviation of
the dependent variable.

The spike and slab prior, presented here in slightly simplified form, has
numerous hyperparameters and can seem complicated; however, the the most
important hyperparameters in this thesis are the expected model size p, ex-

pected R? and sample size v. The values of these hyperparameters and their
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impact on the results of the analysis are discussed further in section 5.2. The
MCMC algorithm that utilises equations (7) to (9) to simulate draws from
the posterior distribution p(, 02, 02,02 a|y) is described in more detail by
Scott and Varian (2014).

3.6 Pure time series prior

When the regression component 37x; is dropped from equation (3) for pure

time series analysis, the prior can be expressed in simpler terms. Now,

% ~ Ga(v, \). (10)

O¢

In the absence of a regression component, prior information is entered to
the bsts function as a prior guess at the value of the residual standard devi-
ation and a weight given to this guess, interpretable as the number of prior
observations (Scott 2017a; Scott 2018). These inputs are then translated into
hyperparameters v and A of an inverse gamma distribution, analogous with
equation (10):

o2 ~ InvGa(v, \). (11)

There is no explicit explanation in any of the relevant software packages
or the original paper of how the software input values of the prior guess
at the size on the residual standard deviation and the weight given to it
translate into values of v and A in equation (11). Derivation of the exact
analytical form of this relationship is outside the scope for this thesis, so in
subsequent sections the intuitively easily interpretable "prior guess at the
value of the residual standard deviation" and "prior observation count" are
used. This convention has the added benefit of being synonymous with the
sigma.guess and sample.size argument values in the SdPrior function of
the Boom package used in the analysis, simplifying programming if the reader
wishes to test the results. Unless otherwise stated, pure time series models
in this thesis set the prior on the residual standard errors to 1 and the prior

observation count to 0.01, the default values in the current bsts package.
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4 Does Google data help in nowcasting eco-

nomic time series?

4.1 Evaluation of forecasting model performance

Scott and Varian (2014) use cumulative absolute one step ahead prediction
errors to illustrate the in-sample performance of Bayesian structural time
series in nowcasting monthly seasonally adjusted retail sales excluding food
services in the United States (figure 1). The upper panel of the graph shows
the cumulative errors, while the lower panel shows the scaled values of the
actual time series that is being predicted.

In figure 1 the "pure.time.series" graph denotes a pure time series model
on the retail sales data where the regression component from equation (3)
is omitted. The "correlate" model has as its regression component the one
hundred Google Correlate search queries matching the retail sales time series
most closely, as explained in section 2.3. The "econ" model utilises both
Google Correlate and Google Trends data, where the Trends categories have
been hand-picked by the authors according to their potential relevancy to
retail sales. The "all" model utilises the Correlate data and all (over 600)
Google Trends verticals available at the time of the release of the study. The
deseasonalised versions of the models have the same data with the difference
that the regression components have been deseasonalised before fitting the
models.

The approach in figure 1 compares only the in-sample performance of the
models. The question of how well the predictions would fare in out-of-sample
forecasting is not answered. Luckily, almost five years of Google Correlate
data was collected between the final observation of the original analysis and
the ceasing of the Correlate service’s updating. This creates a natural way of
testing how a model trained using data from the original period from January
2004 to August 2012 would have fared in predicting retail sales in consequent
years.

Inoue and Kilian (2006) compare two forecasting model selection meth-

ods: simulated out-of-sample (SOOS) prediction root mean squared error
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Figure 1: Original U.S. retail sales analysis: cumulative absolute prediction
errors (upper panel) and the actual time series (lower panel), from Scott and
Varian (2013)

(RMSE) and information criteria based approaches. They find that under
specific conditions the information criteria based approach is consistent and
preferable to the more standard SOOS method.

However, the information criteria approach uses the number of paramet-
ers in the forecast model as an input. Because Bayesian structural time
series already performs variable selection by placing most regression coef-
ficients’ probability mass at zero (section 3.5), it is not immediately clear
which number should represent the correct number of parameters. For ex-
ample, should the researcher use the number of input explanatory factors,

the predicted model size or the mode or median of the posterior distribution
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of model size? The RMSE method is used here because it is less ambiguous
in the present case. Most importantly, since we have five years of new data at
our disposal, we can perform true out-of-sample measurements of prediction
errors and compare different models directly with the RMSE.

The prediction RMSE is obtained by fitting each model on the first S ob-
servations, using the fit to forecast observation S + A and repeating this for
S=R,R+1,R+2,...,T—h where T is the number of total observation peri-
ods, 159. (Inoue and Kilian 2006.) In our nowcasting example, the forecast
horizon h is equal to 1. As we are interested in the model performance after
the original study was conducted, the value for the starting sample size R is
chosen to be the number of observations in the original study period from
January 2004 to August 2012: R = 104. The method is computationally
intensive, with the calculations taking over four hours in the retail sales case
and over fifteen hours in the unemployment claims example on a four-core
1.7 GHz laptop running GNU/Linux Debian 9 and R version 3.3.3.

It should be noted that fitting a Bayesian structural time series model
multiple times with different training period lengths results in 7" — R = 55
posterior distributions that have different probability densities for their re-
gression parameters. This approach is thus not quite identical to a process
where variables of model ¢ are predetermined and thus have a inclusion prob-
ability of 1. However, for our purpose of assessing the prediction performance

of different models, the RMSE method is adequate and easy to understand.

4.2 Retail sales prediction accuracy

The prediction accuracy of the different models are compared using the
RMSE method described in section 4.1. The training period is that of the
original study, from January 2004 to August 2012. The test period ranges
from September 2012 to the end of Google Correlate data in March 2017, a
total of 55 monthly observations.

An ARIMA model is also fit to obtain a baseline for model comparison.
The Box-Jenkins method was used for model selection and an ARIMA(2, 1,
0) model produced a good fit to the training data. Here an ARIMA(p,d, q)
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model means an autoregressive integrated moving average model where p
denotes the order of the autogergressive (AR) term, d is the order of dif-
ferencing and ¢ is the order of the moving average (MA) term. Diagnostics
plots for the ARIMA model fit on the training period can be found in fig-
ure 2 and a table with coefficient estimates, standard errors and p-values can
be found in table 1. None of the coefficients are statistically significant at
the p = 0.05 level, but as the function of the ARIMA model is to serve as
a point of comparison for the Bayesian models, its statistical properties are
not of primary interest in any case. The model could possibly be improved
by, for example, using year-on-year growth rates instead of absolute values
as in Vosen and Schmidt (2011). For comparison purposes, however, using
the same unmodified time series as the Bayesian models is attractive, and in
any case the ARIMA model is sufficient to provide a competitive alternative

to the Bayesian models.

Table 1: U.S. retail sales ARIMA(2, 1, 0) training period coefficient estim-

ates, standard errors and p-values

Estimate SE  p.value
AR1 0.1396 0.0965 0.1510
AR2 0.1915 0.0969 0.0509

constant 0.0216 0.0137 0.1175

All the bayesian models were based on equation (3), omitting the regres-
sion component 37x, in the pure time series case. The default, noninformat-
ive prior hyperparameter values in bsts were used, as specified in section 3.
Two new models are added: only Trends and only Trends with deseasonalised
regressors. These include only the economically relevant Google Trends ver-
ticals and no Google Correlate queries. The two models are added for testing
how well just Trends data can perform since Correlate ceased updating in
March 2017. The models with all Trends categories and the full Correlate
dataset were not obtained due to the download limitations of Google Trends.

There are over 1000 categories in Google Trends, and obtaining all of them
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Figure 2: Diagnostics plots for the retail sales ARIMA(2, 1, 0) model from
January 2004 to August 2012
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proved to be impractical. The omission of the last two models should not
radically influence the conclusions presented here.

As before, the "Correlate and Trends" models utilise both Trends and
Correlate data, and the Correlate models have as regression components the
Google Correlate query volumes from January 2004 to March 2017 that cor-
related with the U.S. retail sales data most highly during the original period
of study, from 2004 to August 2012. The Correlate queries are selected this
way purposefully to test how well the queries selected by Google Correlate
during the original period would have predicted consequent out-of-sample
retail sales volumes. If retail sales data from the whole period of Google
Correlate’s operation time would have been used as an input to the service,
the forecasting performance would have been inflated because by definition
Google Correlate finds the searches that are most highly correlated with the
mput time series. The regression components would have had a very high
correlation and probably a lower RMSE with retail sales data for the whole
period, but a significant part of this performance would very likely have been
spurious. Another approach would have been to obtain a separate Correlate
dataset for each S, but as Correlate has ceased operating and this method is
not applicable in future studies, this approach is not chosen. The retail sales
data is provided by the U.S. Bureau of the Census.

The performance of different models is compared in table 2. A lower
RMSE indicates better performance. As the table shows, the models with
Google data do not generally outperform the baseline ARIMA model, and
performance is quite similar between different models. The lowest overall
RMSE is obtained with the newly added model that only uses Google Trends
data, dropping all Correlate variables. The model with just Trends data also
performs slightly better than the ARIMA(2, 1, 0) model, but the difference is
so small that the utility of the added complexity of the regression component
is questionable. Moreover, the Correlate and Trends model that has the same
Trends verticals as the only Trends model as a subset of its regressors has the
poorest performance of all the available models. This suggests that if some
predictors do indeed include information about retail sales, the Bayesian

structural time series model is not efficient enough to separate the signal
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Table 2: Prediction root mean squared errors (RMSE) for September 2012
to March 2017 U.S. retail sales

Model RMSE Difference to baseline
Baseline ARIMA(2, 1, 0) 0.0645

Pure time series 0.0658 +1.98 %

Correlate 0.0658 +1.99 %

Correlate, deseasonalised 0.0654 +1.45 %

Correlate and Trends 0.0668 +3.62 %

Correlate and Trends, deseasonalised  0.0654 +1.44 %

Only Trends 0.0643 —0.36 %

Only Trends, deseasonalised 0.0668 +3.60 %

from the noise in this case.

The effect of deseasonalising the predictors is not as uniformly positive as
in the original study. Both of the models with Correlate data perform better
with deseasonalised predictors, but the model with just Trends data performs
better with raw data. In addition to possible different seasonal mechanics of
Trends and Correlate data, another possible reason might be in a different
deseasonalising method even though the original study is followed as closely
as ig possible with the information at hand. In this analysis the whole dataset
was desasonalised before any modeling, which is a minor violation of the
iterative one-step-ahead prediction approach. The theoretical direction of
the effect of this would be to improve the results of deseasonalised data
as the seasonal decomposition is conducted with the maximum time series
length and should be more accurate than when done with S observations on

each iteration.

The differences in RMSE do not provide clear evidence that introducing
Google data can help in predicting U.S. retail sales, regardless of whether
the regression models are compared to the pure time series model or the
ARIMA model. The differences between models are so small that for example

switching the performance metric from the root mean squared error to mean
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absolute error flipped many of the relative advantages and disadvantages
that can be seen in table 2. This demonstrates that the models perform
quite similarly, which is in line with figure 9 in that Google data does not
seem to offer a significant performance boost for predictions. The identified
probable reason for the difference in performance with Scott and Varian
(2014), namely the prior used in the pure time series model, is examined in

detail in section 5.

4.3 Unemployment claims prediction accuracy

To examine whether or not the inability to improve nowcasting with Google
data extends beyond retail sales, the U.S. initial unemployment claims ex-
ample is examined with the same approach using data from the U.S. Em-
ployment and Training Administration. The model from equation (12) is
used. R is set to the value 456, letting the final observation of the training
period to fall on 23.9.2012. This corresponds to the last date in the iclaims
dataset from the bsts package that is quite likely the exact data used in
the original study. T = 688, so there are a total of 232 one-step-ahead
nowcasts for each model with the final observation of the test period falling
on 05.03.2017. Because of the seasonality present in the data, a seasonal
ARIMA(p, d, q)| P, D, Q] model was used where the length of of the season
was set to 52 weeks to catch annual patterns in the time series. As before, p
denotes the order of the autogergressive term, d is the order of differencing
and ¢ is the order of the moving average term. The seasonal components are
denoted inside the square brackets where P denotes the order of the seasonal
autogergressive term, ) is the order of seasonal differencing and @) is the or-
der of the seasonal moving average term. An ARIMA(1, 1, 2)[0, 1, 1] model
was selected as a baseline. The ARIMA model diagnostics are provided in
table 3 and figure 3.

For the bayesian models, equation (3) is expanded with a seasonal com-
ponent 7; to obtain equation (12). As before, the regression component 37x;

is omitted in the pure time series model.
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Figure 3: Diagnostics plots for the unemployment claims ARIMA(1, 1, 2)[0,
1, 1] model on the training period from January 2004 to August 2012
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Table 3:  U.S. unemployment claims ARIMA(1, 1, 2)[0, 1, 1] training period

coefficient estimates, standard errors and p-values

Estimate SE  p.value
AR1 0.9159 0.0463  0.0000
MA1 -1.6014  0.0529  0.0000

MA2 0.6631 0.0414 0.0000
SMA1 -0.1555 0.0495 0.0018

yt:/!tJthJrﬁTXtJrGt
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6,5 = 6,5_1 -+ (& (12>
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==Y Teetw, o S§=52
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The results of comparing the ARIMA and Bayesian models for nowcast-
ing unemployment claims data are presented in table 4. As can be seen from
the percentage differences in RMSE, the Bayesian model without a regression
component performed somewhat worse than the baseline ARIMA. However,
the Bayesian model augmented with Correlate data outperformed both mod-
els substantially, with close to 14% smaller RMSE than the next-best ARIMA
forecasts. The difference to the retail sales predictions is sizeable, and the
results seem to suggest that Google Correlate data and Bayesian structural
time series are indeed helpful in nowcasting U.S. unemployment claims.

A closer examination of the residuals brings some nuances to the analysis.
Figure 4 shows the residuals for the ARIMA and Correlate models, omitting
the pure time series model for readability. Visual inspection suggests that
the Correlate model has fewer extreme mispredictions than the ARIMA fore-
casts, indicating that Google data can perhaps help in indicating when the
underlying series is subject to structural shocks that cause larger deviations

from the trend.
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Table 4:  Prediction root mean squared errors (RMSE) for 2012-2017 U.S.

unemployment claims forecasting models

Model RMSE Difference to baseline
Baseline ARIMA(1, 1, 2)[0, 1, 1]  0.2534

Pure time series 0.2644 +4.34 %

Correlate 0.2188 —13.64 %

Conversely, the density plots in figure 5 show that while there are more
extreme values in the ARIMA residuals, they are still more closely concen-
trated around zero than in the Bayesian models when the absolute values of
the residuals are small. Overall, neither figure 4 or figure 5 can be claimed
to offer unambiguous evidence for the supremacy of either of the models, but
they do highlight one of the reasons for the better RMSE of the Correlate
model: the squaring in the process of calculating the RMSE makes the meas-
ure react porpotionately more to larger absolute values of residuals. This is,
of course, a deliberate choice in the development of RMSE, as a few massive
forecast errors can often be disproportionately worse for decisionmakers than
many marginally larger but still small forecast errors. This analysis might
be a case where the type of error the analyst wants to minimise guides the

analysis method.

Could the models be improved upon? Figures 6 to 8 show the autocor-
relation funcions and partial autocorrelation functions for the residuals of
three models. While a p-value analysis on the residuals of a Bayesian model
might not be theoretically quite consistent, such a review was nevertheless
conducted and indicates that there is statistically significant autocorrelation
between residuals in the first and third degrees (p = 0.05) in the Google Cor-
relate model but not in the ARIMA or pure time series models. This suggests
that there might still be room for improvement in the model, although the
differences in the ACF and PACF results are not drastic between models nor

are the significant p-values much under the p = 0.05 treshold.

There are several possible reasons for why Bayesian structural time series
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seem to perform worse in the retail sales case than in the U.S. unemploy-
ment claims example. The most important is the granularity of data. The
unemployment data is weekly, whereas retail sales data is monthly. The finer
resolution of the data allows for more observations, creating a larger effective
sample size.

Another possible reason is that filing for an unemployment claim is a
specific action that has a narrower set of possible Correlate search queries
related to it. There are millions of different products that contribute to retail
sales and can be sought online, whereas thinking of even a hundred different
ways to search for information on how to file for unemployment benefits
would prove a challenge to most people.

The third variable is temporal. People might search online for different
products months before the purchase to gain information for the purchase
decision or after years of ownership for service instructions. In contrast, there
seems to be few intuitive reasons for people to conduct unemployment-related
searches if they are not either economists or expecting to be unemployed in
the immediate future. In this light the relatively poor performance of Google
data in predicting retail sales is not as surprising as at first. But why did
the retail sales analysis show good results in Scott and Varian (2014), when
search engine data does not improve predictions in subsequent years? The
next chapter examines a potential reason why the results of the original
retail sales analysis might have appeared more impressive than the actual

prediction performance of Google data would have warranted.
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5 Performance disparities with Scott and Varian
(2014)

5.1 Inflated errors in the U.S. retail sales pure time

series model

The inability of Google data to help predict U.S. retail sales presented in
section 4.2 contrasts with the results of Scott and Varian (2014). The ques-
tion is, what is the cause of the performance differences? After all, figure 1
from the original study shows significant decrease in prediction errors when
regression components with Google data are added to the pure time series
model. A reasonable expectation would be that this difference in prediction

performance would hold in out-of-sample nowcasting as well.

However, using the rsxfs dataset from the bsts R package (released by
the same authors and at least visually the exact same data as that used by
Scott and Varian) as an input to Google Correlate and the pure time series
model produces results resembling the original study only if a highly inform-
ative prior 1s used on the pure time series model. 1t seems probable that the
original study used a highly informative prior where a noninformative would
have been more appropiate, inflating the prediction errors and increasing the

perceived comparative advantage of the models with regression components.

Scott and Varian (2014, 11) mention the default hyperparameter values
the bsts package used at the time of the writing of the paper in the case
of the models with regression components. However, they do not mention
any specific values for pure time series prior hyperparameters, only that the
defaults in bsts were used (Scott and Varian 2014, 17). Using the current
default priors in the bsts package greatly decreases the differences in per-
formance of the different models, suggesting that at the time of the original

paper’s writing bsts used a different and highly informative prior.

In figure 9 the black pure time series graph with the informative prior,
practically identical to the original pure time series graph in figure 1, is

recreated by setting the prior on the residual standard errors to 1 and the
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observation count of the prior to 100 as explained in section 3.6. Testing with
different hyperparameter values showed that an observation count of 50, for
example, was not sufficiently large to closely mimic figure 1. The model from
equation (3) is used with the dropping of the regression component 57x;.

The pure time series model with the noninformative prior is created by
setting the prior guess on the residual standard errors to 1 and the prior
observation count to 0.01, the default values in the current bsts package.
As can be seen, as the impact of the prior on the posterior is decreased by
making the prior observation count small the performance of the pure time
series model is increased drastically and ends up on par with the models
with regression components. As of the models with Google data, similarly
noninformative prior hyperparameter values of expected R? = 0.5, v — 0.01
and p = 5 (the default values in the current version of the bsts package; see
section 3.5) are used.

In light of figure 9 it seems that the prior used for the original pure
time series model was highly informative and increased its prediction errors
significantly. A large amount of the perceived advantage of using Google
Correlate and Trends data looks like it was in fact caused by the prior on

the pure time series model.

5.2 Modifying the regression model priors

Interestingly, figure 9 shows much smaller differences between the models
with regression components as well, even though these models have the exact
hyperparameter values cited by Scott and Varian (2014, 11). This can be
caused by different input data. As explained in section 2.3, Google Correlate
and Trends output differ somewhat from week to week, so reproducing the
exact data used by the original research is impossible. There is now more
Trends categories than when the original study was written, and the Trends
categories used for the original study were not listed comprehensively, so the
categories used for analysis here were selected either if they were explicitly
mentioned by Scott and Varian (2014) or if they seemed to have economic

relevance. The categories used were fetched with the gtrendsR package and
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ive and noninformative priors in the pure time series models: cumulative
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panel)
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are listed in table 5.

Table 5:  Google Trends categories used in all econ models

Home Financing Welfare & Unemployment

Social Services Spas & Beauty Services

Real Estate Computers & Electronics

Shopping Shopping Portals & Search Engines
Autos & Vehicles Auto Financing

Business Education Home Insurance

Hybrid & Alternative Vehicles Off-Road Vehicles

Motorcycles Finance

Insurance

Still, the problems with the priors in the pure time series case raise ques-
tions about the priors on the models with regression components as well. To
illustrate that figure 1 could be more closely approximated by manipulat-
ing the hyperparameters of the prior distributions of the regression models,
figure 10 is created by setting the expected R? of the model to 0.001, prior
degrees of freedom v to 10 and prior information weight s to 2 (see sec-
tion 3.5).

Figure 10 is by no means a perfect match to the original figure 1, but non-
etheless resembles it more closely than figure 9. There are wider differences
between different models, and deseasonalising seems to have a larger impact
on performance. If desired, with individual tailoring of hyperparameters to
each different model the match could be made closer still. Figure 10 serves
the purpose of highlighting that the hyperparameters in the regression pri-
ors could also have been different at the time of the writing of the original
study, but because (conversely to the pure time series model) the regres-
sion input data has changed substantially between the original analysis and
the replication, further inference on the reasons of discrepancies in results is

impossible.
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5.3 Replicating the U.S. initial unemployment claims

example

To demonstrate that the issues with the priors explained above are indeed
in the original source and not in the code written for this paper, the first
example in Scott and Varian (2014), nowcasting weekly initial U.S. unem-
ployment claims with Google Correlate, is replicated basing the code on Scott
(2017Dh) as in the retail sales analysis above. The data is obtained from the
bsts package directly, but using data from the U.S. Employment and Train-
ing Administration as an input to Google Correlate yields identical results.

The original graph is shown in figure 11 and the replication in figure 12.
As before, the black solid line in the upper part of the graphs shows the
cumulative absolute errors of the pure time series model, and the dotted red
line denoted "Google Trends" shows the cumulative absolute errors of the
model with a Google Correlate regression component.

The replication seems to follow the original closely, but careful exam-
ination shows that the cumulative absolute errors of the pure time series
model are indeed somewhat lower in figure 12 where an noninformative prior
is used. This seems to communicate two things: the original analysis did
indeed use informative priors that different from those that are currently in
use in bsts, and the initial unemployment claims example is less sensitive to
the prior than the retail sales example. The smaller sensitivity to the prior is
probably explained by the larger sample size of the unemployment example

(456 observations versus 104 in the retail sales example).
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6 Conclusions

In this thesis Bayesian structural time series using Google search query data
is tested as a method for nowcasting U.S. retail sales and U.S. initial unem-
ployment claims. Google data seems to improve prediction performance in
the case of unemployment data, but no meaningful evidence that Google data
can improve predicting U.S. retail sales is found. A potential cause, the usage
of a highly informative prior in Scott and Varian (2014), is examined and the
differences between the original analysis and this thesis are attributed to this
hypothesized usage of a highly informative prior in the former.

Several possible opportunities for further research can be found. One
possible avenue is examining refining the U.S. initial unemployment claims
model, as the analysis in 4.3 identified autocorrelation in the residuals of
the model over the test period. Another potential research area could be
testing how well the positive results of Kholodilin et al. (2010) and Vosen
and Schmidt (2011) in nowcasting private consumption would fare after the
release of the studies and whether or not their methods would improve upon
the ones detailed in this thesis. While they examine private consumption,
not retail sales, their methods could still be useful in the latter case.

There are numerous additional studies where Google search data is used
to forecast different time series, and the efficacy of Bayesian structural time
series could be compared to the methods used in these papers as well. In
addition to replication efforts, novel ways to employ Bayesian structural time
series and Google data can be found in any subject where a connection

between the statistic and search engine usage is at least plausible.

46



References

Artola, Concha — Pinto, Fernando — Pedraza Garcia, Pablo de (2015) Can
internet searches forecast tourism inflows? International Journal of Man-
power, vol. 36 (1), 103-116.

Askitas, Nikolaos — Zimmermann, Klaus F. (2009) Google econometrics and
unemployment forecasting. Applied Fconomics Quarterly, vol. 55 (2), 107—
120.

Brodersen, Kay H. — Gallusser, Fabian — Koehler, Jim — Remy, Nicolas —
Scott, Steven L. (2015) Inferring causal impact using Bayesian structural
time-series models. The Annals of Applied Statistics, vol. 9 (1), 247-274.

Carriére-Swallow, Yan — Labbé, Felipe (2013) Nowcasting with Google Trends
in an emerging market. Journal of Forecasting, vol. 32 (4), 289-298.

Chang, Andrew C. — Li, Phillip (2015) Is economics research replicable?
sixty published papers from thirteen journals say "usually not". Board of
Governors of the Federal Reserve System (U.S.), Finance and Economics
Discussion Series: 2015-83, 2015, 25 pp., 25.

Da, Zhi — Engelberg, Joseph — Gao, Pengjie (2011) In search of attention.
The Journal of Finance, vol. 66 (5), 1461-1499.

Durbin, James — Koopman, Siem Jan (2001) Time series analysis by state

space methods. Oxford: Oxford University Press.

Duvendack, Maren — Palmer-Jones, Richard — Reed, W. Robert (2017) What
is meant by "replication" and why does it encounter resistance in econom-

ics? American Economic Review, vol. 107 (5), 46-51.

Einav, Liran — Levin, Jonathan (2014) FEconomics in the age of big data.
Science, vol. 346 (6210).

47



Goel, Sharad — Hofman, Jake M. — Lahaie, Sébastien — Pennock, David M. —
Watts, Duncan J. (2010) Predicting consumer behavior with web search.
Proceedings of the National academy of sciences, vol. 107 (41), 17486—
17490.

Google Correlate (2011). Google Inc. https://www.google.com/trends/

correlate.
Google Trends. Google Inc. https://trends.google.com/trends/.

Greenberg, Edward (2013) Introduction to Bayesian econometrics. 2nd ed.

New York: Cambridge University Press.

Inoue, Atsushi — Kilian, Lutz (2006) On the selection of forecasting models.
Journal of Economeltrics, vol. 130 (2), 273-306.

Kholodilin, Konstantin A. — Podstawski, Maximilian — Siliverstovs, Boriss
(2010) Do Google searches help in nowcasting private consumption? a
real-time evidence for the US. KOF Swiss Economic Institute Working
Paper No. 256; DIW Berlin Discussion Paper No. 997.

Kristoufek, Ladislav (2013) Can Google Trends search queries contribute to
risk diversification? Scientific Reports, vol. 3 (2713).

Lampos, Vasileios — Miller, Andrew C. — Crossan, Steve — Stefansen, Chris-
tian (2015) Advances in nowcasting influenza-like illness rates using search

query logs. Scientific Reports, vol. 5 (12760).

Liu, Paul — Fabbri, Marco (2016) More eyes, (no guns,) less crime: estimating
the effects of unarmed private patrols on crime using a Bayesian structural
time-series model. Social Sience Research Network. https://ssrn.com/
abstract=2739270, accessed 27.12.2017.

48



Massicotte, Philippe — Eddelbuettel, Dirk (2018) gtrendsR: perform and dis-
play Google Trends queries. The Comprehensive R Archive Network. https:

//cran.r-project.org/web/packages/gtrendsR/index . html, ac-
cessed 26.2.2018.

Mohebbi, Matt — Vanderkam, Dan — Kodysh, Julia — Schonberger, Rob — Ku-
mar, Hyunyoung Choi Sanjiv (2011) Google Correlate whitepaper. Google
Inc. https://www.google. com/trends/correlate/whitepaper . pdf,
accessed 7.1.2018.

Nielsen, Frank — Garcia, Vincent (2009) Statistical exponential families: a
digest with flash cards. CoRR, vol. abs/0911.4863.

Open Science Collaboration (2015) Estimating the reproducibility of psycho-
logical science. Science, vol. 349 (6251).

Preis, Tobias — Reith, Daniel — Stanley, H. Fugene (2010) Complex dynamics
of our economic life on different scales: insights from search engine query
data. Philosophical Transactions: Mathematical, Physical and FEngineer-
ing Sciences, vol. 368 (1933), 5707-5719.

Scott, Steven L. (2017a) Bsts: Bayesian structural time series R package,
version 0.7.1. The Comprehensive R Archive Network. https://cran.r-
project.org/package=bsts, accessed 10.12.2017.

Scott, Steven L. (2017b) Fitling Bayesian structural time series with the
bsts R package. The Unofficial Google Data Science Blog. http://www.
unofficialgoogledatascience . com/2017 /07 /fitting - bayesian-

structural-time-series.html, accessed 20.11.2017.

Scott, Steven L. (2018) Bayesian object oriented modeling. The Comprehens-
ive R Archive Network. https://cran.r-project.org/package=Boomn,
accessed 27.5.2018.

49



Scott, Steven L. — Varian, Hal R. (2013) Predicting the present with Bayesian
structural time series. https : //static . googleusercontent . com/
media/research . google . com/en/ /pubs/archive /41335 . pdf, ac-
cessed 6.2.2018. Draft version of Scott and Varian (2014) used for sourcing

graphs with colour.

Scott, Steven L. — Varian, Hal R. (2014) Predicting the present with Bayesian
structural time series. International Journal of Mathematical Modelling
and Numerical Optimisation, vol. 5 (1/2), 4-23.

Scott, Steven L. — Varian, Hal R. (2015) Bayesian variable selection for now-
casting economic time series. Fconomic Analysis of the Digital FEconomy.
National Bureau of Economic Research. University of Chicago Press, 119—
135.

Sivia, Devinderjit — Skilling, John (2006) Data analysis. A Bayesian tutorial.
2nd ed. Oxford: Oxford University Press.

Stigler, Stephen M. (2016) The seven pillars of statistical wisdom. Cambridge,

Massachusetts: Harvard University Press.

U.S. Bureau of the Census (2018) Retail sales: retail (excluding food services)
[mrtssm44000uss]. Federal Reserve Bank of St. Louis. https://fred.
stlouisfed.org/series/MRTSSM44000USS, accessed 3.5.2018.

U.S. Employment and Training Administration (2018) Initial claims [icnsa).
Federal Reserve Bank of St. Louis. https://fred. stlouisfed. org/
series/ICNSA, accessed 1.4.2018.

Vosen, Simeon — Schmidt, Torsten (2011) Forecasting private consumption:
survey-based indicators vs. Google Trends. Journal of Forecasting, vol. 30
(6), b65-5H78.

50



