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Abstract

Cardiovascular disease and diabetes are two of the most dangerous diseases
as they are the leading causes of death in all ages. Unfortunately, they
cannot be completely cured with the current knowledge and existing tech-
nologies. However, they can be effectively managed by applying methods of
continuous health monitoring. Nonetheless, it is difficult to achieve a high
quality of healthcare with the current health monitoring systems which often
have several limitations such as non-mobility support, energy inefficiency,
and an insufficiency of advanced services. Therefore, this thesis presents a
Fog computing approach focusing on four main tracks, and proposes it as
a solution to the existing limitations. In the first track, the main goal is
to introduce Fog computing and Fog services into remote health monitoring
systems in order to enhance the quality of healthcare.

In the second track, a Fog approach providing mobility support in a
real-time health monitoring IoT system is proposed. The handover mecha-
nism run by Fog-assisted smart gateways helps to maintain the connection
between sensor nodes and the gateways with a minimized latency. Results
show that the handover latency of the proposed Fog approach is 10%-50%
less than other state-of-the-art mobility support approaches.

In the third track, the designs of four energy-efficient health monitoring
IoT systems are discussed and developed. Each energy-efficient system and
its sensor nodes are designed to serve a specific purpose such as glucose
monitoring, ECG monitoring, or fall detection; with the exception of the
fourth system which is an advanced and combined system for simultane-
ously monitoring many diseases such as diabetes and cardiovascular disease.
Results show that these sensor nodes can continuously work, depending on
the application, up to 70-155 hours when using a 1000 mAh lithium battery.

The fourth track mentioned above, provides a Fog-assisted remote health
monitoring IoT system for diabetic patients with cardiovascular disease. Via
several proposed algorithms such as QT interval extraction, activity status
categorization, and fall detection algorithms, the system can process data
and detect abnormalities in real-time. Results show that the proposed sys-
tem using Fog services is a promising approach for improving the treatment
of diabetic patients with cardiovascular disease.
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Tiivistelma

Sydan- ja verisuonitaudit sekd diabetes ovat johtavia kuolinsyitd kaikissa
ikaryhmissé jonka takia niita pidetaan yleisesti vakavina sairauksina. Valitet-
tavasti sydén -ja verisuonitauteja tai diabetesta ei voida tédysin parantaa
nykyisen tietotaidon ja olemassa olevan teknologian avulla. Naité sairauksia
voidaan kuitenkin tehokkaasti hoitaa soveltamalla jatkuvan terveydenseu-
rannan menetelmia. Terveydenhuollon korkeaa laatua on kuitenkin vaikeaa
saavuttaa nykyisten terveydentilanseurantajarjestelmien avulla, silld mon-
esti nama seurantajarjestelmét sisdltavit useita puutteita. Puutteet jarjestel-
missé liittyvat lilkkuvuuden rajoittuneisuuteen, energiatehokkuuden puut-
teeseen ja kehittyneiden palveluiden riittamattomyyteen. Téassa tutkiel-
massa esitetdan neljan paaluvun avulla ehdotuksia ratkaisuiksi edella es-
itetyille puutteille. Ensimmainen kappale késittelee sumutietojenkasittelyn-
ja sumupalveluiden kayttoa etaterveyden seurantajarjestelmissa terveyden-
huollon laadun parantamiseksi.

Toinen kappale késittelee sumutietoverkkoa kayttavaa jarjestelméd, joka
tukee liikkkuvuutta ja reaaliaikaista lahestymistapaa terveystilanteen seuran-
nassa. Sumu-avusteisten dlykkéiden yhdyskaytavien yllapitama luovutus-
mekanismi auttaa yllapitaméaan yhteytta anturisolmujen ja yhdyskaytavien
vililld, joiden vélisessé tiedonsiirrossa on vahainen viive. Tulokset osoitta-
vat, ettd ehdotetun sumuteknologiaan perustuvan lahestymistavan kanavan-
vaihdon viive on 10% - 50% vahemmén verrattuna nykyiseen, liitkkuvuuden
mahdollistavaan, huipputeknologiaan.

Kolmas kappale kasittelee ja kehittda eteenpain neljaa energiatehokasta
terveydenseurantamenetelmad. Kolme energiatehokasta jarjestelméa seko
niiden anturisolmut, on suunniteltu palvelemaan erityisesti veren glukoosipi-
toisuutta, EKG-valvontaa tai kaatumisen havaitsemista. Neljannessa jarjest-
elmassa on yhdistetty useiden sairauksien, kuten diabeteksen ja sydan- ja
verisuonitautien samanaikainen seuranta. Tulokset osoittavat, ettd tdmé
jarjestelma voi yhtajaksoisesti toimia, kaytetysta sovelluksesta riippuen, jopa
70-155 tuntia, kiytettdessd 1000 mAh: n litiumparistoa.

Neljas kappale kasittelee sydan- ja verisuonitautia sairastavien diabeetik-
oiden sumuavusteisen etédterveyden seuranta-loT-jarjestelmad. Useiden ehd-
otettujen algoritmien, kuten QT-intervallin poiston, aktiivisuustasojen lu-
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okittelun ja kaatumisen tunnistamisalgoritmien kautta, jarjestelma voi kasi-
telld tietoja ja havaita epadnormaaleja tekijoita reaaliaikaisesti. Tulokset
osoittavat, ettd ehdotettu jarjestelmé, jossa kaytetdan sumupalveluita, on
lupaava lahestymistapa diabetesta sairastavien sydéan- ja verisuonitautipoti-
laiden hoidon laadun parantamiseen.
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Chapter 1

Introduction

This chapter presents an overview of the most common high-risk diseases
such as cardiovascular disease, diabetes, and falls which are the reason for
many death and serious injuries around the world. In addition, it discusses
the possible method and the current state-of-the-art technologies to deal
with these diseases. Finally, the chapter presents the thesis outline. This
chapter consists of four sections: (i) high-risk diseases and pervasive health-
care, (ii) Internet-of-Things and Fog computing, (iii) research questions and
the target platform, and (iv) thesis outline.

1.1 High-risk Disease and Pervasive Healthcare

Cardiovascular disease is a dangerous disease and the leading cause of death
in all ages. Approximately 83.6 million American people have heart-related
diseases and 610 thousand people living in the US die every year [1]. It
is projected that the number of people with heart diseases will dramat-
ically increase. Cardiovascular disease is a medical term denoting many
heart-related diseases with the most common being Coronary Artery Disease
(CAD), heart attack, heart failure, arrhythmia, and stroke. For instance,
33 million people had a stroke in 2010, and of these it was the first stroke
for 16.9 million people [2]. In [2,3], the authors show the benefits of con-
tinuous health monitoring systems for dealing with heart-related diseases.
For instance, these systems help to enable early detection of deterioration,
enhance diagnosis, and improve the efficiency of the prescription process.
Atrial fibrillation, in particular, seems to be the primary cause of strokes
but it is often undiscovered due to the asymptomatic and irregular nature
of the disease [2]. Continuous Electrocardiogram (ECG) monitoring systems
have increased the possibility of identifying atrial fibrillation in patients.
Diabetes occurs when insulin cannot be adequately produced by the
pancreas or the produced insulin cannot be effectively used by the body.
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Insulin is a hormone in the body which regulates the amount of glucose in the
blood [4]. Diabetes was ranked 7" in the list of the most dangerous disease
in the world in 2014 [5]. In 2015, diabetes directly caused 1.6 million deaths.
In addition, it is one of the primary causes of stroke, kidney damage, eye
diseases, heart attack, heart failure, lung failure and other severe diseases [6].

Diabetes can be categorized into three types including type 1, type 2,
and an exceptional type named gestational diabetes. In general, type 1 and
type 2 diabetes are more dangerous than gestational diabetes that occurs
during pregnancy and disappears after the child is born. Type 1 diabetes
is the most severe among all diabetes types because the cause of type 1
is undiscovered and it cannot be prevented with the existing knowledge [4].
The number of type 1 diabetes cases is much less than type 2 diabetes cases,
which often occur in adults due to overweight and lack of activity. Nonethe-
less, any person can develop diabetes regardless of gender, age and health
status. Currently, the number of children with diabetes is increasing. For ex-
ample, around 200 thousand Americans under 20 years old have diabetes [7].
Based on the statistics, the number of people with diabetes has significantly
increased from 108 million in 1990 to around 422 million in 2014 [4, 5].
This number is projected to escalate by two or three times in the next 15
years [4]. These numbers indicate an alarming state of health. Therefore,
healthcare and solutions for issues related to diabetes have to be carefully
considered. Although diabetes cannot be cured with existing knowledge, it
can be continuously monitored for on-time actions from responsible persons
such as caregivers. The dangerous consequences of diabetes especially, can
be lessened or avoided by properly controlling the blood glucose level.

Falls cannot be underestimated because they can cause serious injuries
such as head injuries, brain damages, and bone fracture [8,9]. More than
2.8 million adults who are over 65 years old have fall injuries annually. In
addition, falls are an indirect cause of reducing the quality of life because
people who have fallen often have a fear of falling which makes them lose
their confidence and want to avoid physical activities [10,11]. Although
problems after fall are significant, only a half of the fall cases are reported.
The hazard consequences of a fall can be cured easier or become less severe
when a fall case is reported and treated in real-time.

Cardiovascular disease, diabetes, falls, and ageing have direct and indi-
rect linkages. Old people who are over 65 years old are likely to fall more
often and the number of these people having diabetes and cardiovascular
disease is higher than in younger groups. Diabetes is one of the risk factors
for cardiovascular disease and falls [4,12,13]. Heart repolarization and other
cardiac arrhythmia’s may occur when the blood glucose goes below certain
levels such as 60 mg/dl. These diseases cannot be underestimated since they
can cause sudden deaths. [14,15]. Based on the statistics, three quarters of
65-years-old people with diabetes die from heart-related diseases [13].
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One of the widely-used methods to scope for cardiovascular disease and
diabetes is to continuously monitor bio-signals such as electrocardiogram
(ECG), blood oxygen saturation (SpO2), and blood glucose. Currently,
these signals are often collected and analyzed a few times per day by a
nurse or a physiology specialist. However, this method has several drawbacks
such as inconvenience, high possibility of inaccurate disease analysis, high
costs, and low possibility of detecting emergencies in time. A particular
problem is that, a diabetic patient cannot eat anything for a few hours
before a blood sample is taken. To some extent, it might be inaccurate to
provide a treatment procedure for diabetes based on the glucose information
from the latest blood sample because blood glucose levels depend on the
time of day of the blood withdrawal. In the current health monitoring
protocols, each nurse can merely collect and analyze e-health signals from
a patient at a specific moment. This can lead to a waste labor resources
which is one of the reasons for high hospital’s costs. In particular, 555
billion US dollars have been spent treating cardiovascular disease in which
healthcare labor costs can be up to 50 percent of the hospitals’ total expenses
[16,17]. High hospital costs reduce the possibility of providing healthcare
delivery to low income and developing countries where non-communicable
diseases such as diabetes and cardiovascular are increasing dramatically [18].
In addition, emergencies cannot be detected in real-time by the existing
monitoring protocols; accordingly, this can cause serious consequences such
as death.

Currently, hospitals often apply their own medical systems to identify
patients and record patients’ data. As a result, it is challenging for exter-
nal doctors to access patients’ data. In cases of emergency, this drawback
becomes more serious. For instance, unconscious patients involved in car
accidents may die due to the injected of medicines to which they have al-
lergies. Such unforeseen cases can be avoided when patients’ data such
as medicine allergies, history of medicine usage and current health status
is globally accessible in real-time. Based on the statistics, more than 100
thousand Americans die due to medical errors such as the wrong provision
of medicine, prescriptions with the wrong dosages, the inaccessibility of the
history of medicine usage and allergies, and prescriptions with the wrong
treatment series [19].

To summarize, it is crucial to have a reliable and enhanced health mon-
itoring system which overcomes the above mentioned disadvantages of the
current health motoring approach. In addition, the system should be able
to provide advanced services for improving the quality of healthcare.
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1.2 Internet-of-Things and Fog Computing

Internet-of-Things (IoT) is a prominent technology for solving the problems
mentioned. IoT can be defined as an infrastructure or platform where virtual
and physical objects are interconnected and intercommunicated with each
other [20]. IoT consists of many advanced technologies such as wireless
sensor networks (WSN), wireless body sensor networks (WBSN), sensing
and Cloud computing. This makes IoT the most ubiquitous and preferred
choice in many applications and fields such as entertainment, education, and
healthcare. In general, an IoT system shown in Figure 1.1 often comprises
three main components such as sensor nodes, gateways, and a back-end
system. Sensor nodes are used to collect and transmit data wirelessly to
gateways; these act as a hub to receive data from multiple nodes and forward
the data to Cloud servers via the Internet. Via an IoT system, data can be
globally monitored in real-time. For instance, medical doctors can access
real-time ECG, blood glucose levels, or motion-related data in both graphical
and textual forms via a laptop browser or a mobile application [21,22,23,24].
In addition, the system can provide the necessary services such as data
analysis and global data storage [25]. Medical doctors can access a patient’s
historical data and information such as allergies, diseases, and blood type.
Lastly, IoT systems can use international standard formats for storing data
and identifying users. Consequently, external doctors with proper rights
can access a patient’s data easily and globally at anytime. By applying IoT
systems to healthcare, costs can be significantly reduced and the inadequacy
problems of medical caregivers in many countries (e.g., developing countries)
can be partially solved. For instance, caregivers do not need to visit patients
physically to monitor the patient’s health status and one doctor can be
responsible in general cases for many patients.

Sensor Layer I )))

Room! B ,,)))

Sensor Layer

Room 2 ) )))) / I
Sensor Layer

Gateway Terminal

Py

Cloud Layer

Room 3

Figure 1.1: Typical architecture of an IoT system for health monitoring



In order to proffer high quality healthcare services, a healthcare IoT sys-
tem must fulfill many strict requirements such as reliability, interoperability,
security, low latency, and energy efficiency. When the system is not qualified
for these prerequisites, it can cause serious consequences. For instance, delay
in monitoring can cause an inaccuracy in the disease analysis and diagnosis.
In addition, delay in detecting and informing serious abnormalities such as
stroke and heart attack can cause danger to a patient. When the system’s
security is not guaranteed, the patient’s data can be lost and even the pa-
tient’s life can be endangered. An IoT-based insulin pumper, in particular,
can be hacked and controlled within a range of 100 meters [26]. When some
services are interrupted or they do not work properly, the quality of services
cannot be maintained. Currently, the IoT systems for healthcare merely
fulfill one or some of the requirements. It is challenging to combine all the
services in complete harmony so as to address the objectives because of the
trade-off relationship between the requirements and the limitations of the
existing technologies.

For example, a high quality of data cannot be achieved when low resolu-
tions and data rates are applied. However, when high resolutions and data
rates are used, they can cause high energy consumption and the high latency
of data transceiving. For instance, EMG signals should be collected with a
data rate of 500 samples/s or higher to achieve high-quality signals [25]. In
order to improve the accuracy of disease diagnosis and analysis, e-health sig-
nals and contextual data have to be considered because e-health data varies
in different contexts. For example, heart rates during standing and running
are different and an ambient temperature affects the pulse rate variability
in young adults [27]. Nonetheless, obtaining all these data may increase the
energy consumption of the sensor nodes.

One solution for coping with these problems mentioned is to apply ad-
vanced technologies and a new system architecture which can enhance sen-
sor nodes, gateways, and services. The new architecture should be evolved
from the existing IoT system architecture to save costs (i.e., replacement
and deployment costs). Fog computing, which is the extra layer between
conventional gateways and Cloud servers, is a suitable candidate. Fog com-
puting can be described as a convergence network of smart gateways in
which the gateways are interconnected and can intercommunicate with each
other [28,29]. Fog computing empowers the edge of the network to enable the
capability of location awareness, geographical distribution, interoperability,
online analytic and other augmented, smart features. For instance, Fog com-
puting helps to save network bandwidth by reducing the volume of the data
transmitted over the network (e.g., data compression) while maintaining
the high quality of services. In addition by bringing the Cloud computing
paradigm to the edge of the network, Fog computing provides a means to
address the unsupported fundamental features of Cloud computing.
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1.3 Research Questions and Thesis Structure

Although Fog computing is able to provide some enhancements to IoT sys-
tems, the question still remains: ”Is Fog computing applicable to healthcare,
especially to the existing healthcare systems in order to augment the quality
of the services?”. When addressing this question, some challenges arise.

e [s it feasible to enhance the quality of service in healthcare IoT systems
by leveraging Fog computing at the edge of the network?

e Is it possible to support mobility in healthcare IoT systems without
diminishing quality of service by utilizing Fog computing?

e Is a dramatic improvement in the energy efficiency of the system
achievable, especially the energy efficiency of wearable sensor nodes
by combining energy saving methods and Fog computing?

e Is it possible to monitor and analyze diabetes, cardiovascular disease,
and human falls simultaneously via an IoT system without infringing
healthcare requirements of latency, security, and high-quality signals?

This thesis aims to answer the above questions by proposing a design for
energy-efficient and reliable Fog-assisted healthcare Iot systems. The pro-
posed design is built by considering various aspects of hardware design,
system architecture, Fog services, and algorithms. Figure 1.2 presents an
overview of the research work encompassed in this thesis. The four primary
tracks in this thesis are Fog approach for enhancing the quality of service in
health monitoring IoT systems, mobility support, energy efficiency, and Fog-
assisted IoT systems for monitoring diabetics with cardiovascular disease.
These tracks are discussed in the followings:

This thesis presents a Fog-assisted architecture for healthcare IoT sys-
tems. The thesis particularly presents a Fog layer which is an extra layer
between traditional gateways and Cloud servers. The proposed architec-
ture consists of sensor nodes, Fog-assisted smart gateways, Cloud servers,
and end-user terminals. By exploiting the proposed architecture, advanced
Fog services can be provided in order to improve the quality of healthcare
service. In addition, the thesis introduces advanced Fog services consist-
ing of local distributed database, push notification, categorization, channel
management, data compression, security, mobility support and interoper-
ability which are published in Paper I, II, and III. In this thesis, this track
is presented in Chapter 4.

Mobility support is a necessary feature of health monitoring IoT systems
because a patient can change location at anytime. When a system does not
support mobility, data cannot be continuously monitored. However, it is
challenging to support mobility in healthcare due to the strict requirements
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of latency. The mobility support issue becomes more challenging when deal-
ing with Fog-assisted IoT health monitoring systems because Fog-services
must be properly maintained during mobility. In this case, a mobility sup-
port mechanism not only considers mobility aspects (e.g. disconnection and
re-connection) but also guarantees the continuation and stability of Fog ser-
vices. In order to deal with issue, the thesis proposes a Fog approach for
mobility support in health monitoring IoT systems which was published in
Paper IV. In this thesis, this approach is presented in Chapter 5.

Sensor nodes for collecting bio-signals are often implanted or wearable.
Therefore, their size and weight including the battery should be small and
light in order to avoid interference with the user’s daily activity. With the
current state-of-the-art battery technology, small and light batteries cannot
have a large capacity. Correspondingly, sensor nodes cannot continuously
operate and provide high-quality signals over a long period of time. For
instance, ECG sensor nodes can only work up to 13.6 hours with a 1700
mAh battery [30]. When sensor nodes do not function, the whole moni-
toring system cannot operate. In contrast, other parts of the system (i.e.,
gateways and a back-end system) do not have issues of sensor nodes. Hence,
enhancing the energy efficiency of sensor nodes is one of the ultimate goals.
To address this target, this thesis proposes energy-efficient Fog-assisted IoT
healthcare systems for ECG monitoring, fall detection, and diabetic pa-
tients with cardiovascular disease. These systems consist of ultralow-power
wearable sensor nodes and Fog-assisted smart gateways which help to save
energy consumption of the wearable sensor nodes. The sensor nodes pro-
vide a high quality of signals and can work from 141 to 155 hours with a
1000 mAh battery depending on the systems published in Paper II, V, VI,
and VII. These sensor nodes are small, light-weight and can be used with-
out interfering with the user’s daily activity. In these systems, the primary
energy consumption sources of sensor nodes such as sampling rate, com-
munication bus interface, transmission protocol, and transmission rate are
investigated in order to achieve a high level of energy efficiency. In addition,
many energy saving techniques related to both hardware and software are
customized and applied. In this thesis, these energy-efficient Fog-assisted
IoT health monitoring systems are presented in Chapter 6.

As mentioned previously, diabetes, cardiovascular disease, and falls are
often related problems. A solution for dealing with these diseases is to mon-
itor blood glucose level, ECG, and motion-related data in real-time. When
abnormalities occur, the system should inform caregivers in real-time. In
order to target the solution, this thesis proposes an advanced Fog-assisted
system for diabetic patients with cardiovascular disease. The proposed sys-
tem is combined and customized from several health monitoring systems
(e.g., an ECG and contextual data monitoring system, a glucose monitoring
system, a fall detection system, a system for diabetic patients with cardio-
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vascular disease) published in Paper II, V, VI, and VII. The proposed system
can monitor many types of data including bio-signals (e.g., ECG, blood glu-
cose, body temperature) and contextual data (i.e., air quality and room
temperature). In addition, the system can process the data in real-time via
algorithms (e.g., fall detection, ECG feature extraction, and activity status
categorization) and send push messages to caregivers in real-time to pro-
vide information on abnormalities such as high blood glucose, falls, or an
abnormal ECG waveform. In this thesis, the proposed system is presented
in Chapter 7.
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Chapter 2

Related work

Many types of health monitoring IoT-based systems have been proposed
for both hospital and home, such as, bio-signals based and camera-based
systems. However, bio-signals based systems are more ubiquitous since they
have more advantages; for instance, these bio-signals based systems do not
limit, in most of the cases, a patient’s movement. In addition, they can
accurately monitor all primary vital signs (i.e., body temperature, pulse rate,
respiration rate, and blood pressure) which are necessary for disease analysis.
In bio-signals based IoT systems, bio-signals are collected via wearable or
implanted sensors attached or implanted into the body. The acquired signals
are wirelessly transmitted to a gateway which then sends the raw or pre-
processed data to Cloud for storing, global accessing, and further analysis.
Most of the commonly used bio-signals are ECG, body temperature, SpO2,
blood pressure, blood glucose, heart rate, and respiration rate as they can be
used to assess the body’s most basic functions and diagnose common diseases
such as cardiovascular disease, and diabetes. However, other bio-signals
such as EMG and EEG can be targeted depending on the applications.
For instance, EMG is mainly used in pain assessment applications while
EEG is used for brain-related applications. Hence, the thesis focuses on
bio-signals based IoT systems for health monitoring. The state-of-the-art
ToT-related approaches for fall detection, mobility support, energy efficiency
enhancement, and cardiovascular disease monitoring are discussed as follows:

2.1 Fall detection device and system

Many approaches have been proposed for detecting a human fall. For in-
stance, a smart watch can be used to collect acceleration rates from a user’s
wrist and send the acquired data via Bluetooth Low Energy (BLE) to a
smartphone. In the smartphone, the data is processed with a fall detection
algorithm. When a fall case is detected, the phone uses 3G/4G to send

13



push notification messages to Cloud servers which forward the messages to
caregivers [31].

In [32], the authors used wearable sensors equipped with low-power
micro-electromechanical systems (MEMS) for collecting acceleration from
the waist and transmitting the collected data to a mobile mote or a base
station via radio frequency (RF). The system can estimate a fall location
based on the RF signal strength. The received data is processed with a
simple fall detection algorithm.

Acceleration is often used in many fall detection applications. For in-
stance, three-dimension (3-D) acceleration is collected via an ADXL345 sen-
sor equipped in a small, light wearable device [33]. The collected data is
transmitted wirelessly to a gateway for further processing with a fall de-
tection algorithm. In another example, a GSM-based device collecting 3-D
acceleration is used for fall detection [34]. The device processes the collected
data with a fall detection algorithm. When a fall case is detected, it sends
an SMS (short message service) message containing a universal resource lo-
cator (URL) link to a caregiver who checks the fall location by accessing the
URL link. Another system based on 3-D acceleration is a fall detection IoT
system for elderly people [35]. The system consists of sensor devices, a smart
gateway, and Cloud services. The sensor device uses an ARM 32-bit Cortex-
M3 processor for achieving high computational performance. In addition, a
sensor device is equipped with a MEMS sensor (i.e., LSM6DS0) to acquire
3-D acceleration. The sensor device runs Contiki operating system (OS) to
manage resources efficiently. Furthermore, the sensor device uses an IPv6
over Low-Power Wireless Personal Area Networks (6LoWPAN) protocol for
transmitting the collected data to a smart gateway which processes the data
and trains the model. As a result, events including fall or ASL events are
classified. When a fall event is detected, the gateway sends a notification
message to a caregiver.

In other fall detection applications, 3-D acceleration is used together with
3-D angular velocity. For example, a complex fall detection algorithm based
on the kNN algorithm and sliding window is applied and run at a gateway
based on smartphone [36]. The fall detection algorithm uses 3-D acceleration
and 3-D angular velocity which are collected from a custom-made vest and
sent to a gateway via BLE. When a fall case is detected, the gateway sends an
alert message and the fall location to responsible people via SMS messages.
Another fall detection system also uses 3-D acceleration and 3-D angular
velocity [37]. The motion-related data is collected by a device equipped
with MEMS sensors (i.e., MMA7431 and ITG3200) and transmitted to a
computer via Zigbee. In the computer, the data is processed for detecting
a fall.

In [24,38,39], general purpose devices such as TelosW, Arduino Fio and
LilyPad collect motion-related data (e.g., acceleration or angular velocity)
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from MEMS sensors. The devices then transmit the collected data via a
wireless protocol such as Bluetooth or BLE to a gateway for further pro-
cessing with a fall detection algorithm. As a result, a fall case can be de-
tected and information about the case is sent to a caregiver via a real-time
notification message.

2.2 Glucose monitoring systems

Many efforts have been devoted to develop remote glucose monitoring sys-
tems. For example, a continuous glucose monitoring system has been pro-
posed for patients in intensive care units (ICUs) [40]. The system consists
of glucose sensors, glucose clients and the hospital’s servers. A glucose sen-
sor collects blood glucose data every six hours and transmits the data to a
glucose client via a wire cable. The glucose client, which is a personal dig-
ital assistant (PDA) device, forwards the glucose data via a Health Level-7
(HL7) message to the hospital’s servers. Medical doctors can access the glu-
cose data via a bedside device. Another proposal is an implantable glucose
monitoring system [41]. Glucose is collected via an implanted sensor which
transmits the data to an external unit placed on the skin. The data is then
transmitted to a smartphone via BLE. Other research work has proposed a
glucose monitoring system for diabetic patients using an implanted glucose
sensor which can stay inside the body or under the skin for a long period
of time, i.e. up to 180 days [42]. Glucose data is collected and transmitted
every two minutes to an external unit placed on the skin.

Recently, IoT-based systems for blood glucose monitoring have been in-
troduced. A blood glucose monitoring IoT system is presented in [43]. The
system consists of glucose sensors, gateways, Cloud servers, and applica-
tions. A glucose sensor collects blood glucose and sends the data via Zigbee
to a gateway which is a combination of Arduino Uno, Zigbee, and a com-
puter. At the gateway, data can be locally stored or sent to Cloud servers.
Medical caregivers can access the glucose data via a web-page or an ap-
plication running on the computer. In another piece of research work, a
blood glucose monitoring system for type 2 diabetic patients has been pro-
posed [44]. This system consists of blood glucose sensors, gateways, and
Cloud servers. Patient glucose can be collected via a glucose sensor or a
blood glucose analyzer which forwards the data to a gateway. The gateway
then sends the collected data to Cloud servers which can be accessed by a
medical doctor anywhere and at anytime. In another glucose monitoring IoT
system [45], glucose is collected from a non-invasive opto-physiological sensor
connected to a TelosB device which sends the acquired data to a gateway via
6LoWPAN. The data is then forwarded to Cloud servers for remote access.
In [46], the authors propose a glucose monitoring and management IoT-
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based system. The system encompasses sensor devices, gateways, servers,
and terminal applications. Blood glucose is acquired and transmitted by a
sensor device to a gateway via 6LoWPAN. The gateway then forwards the
data to Cloud servers for storing and remote access. In addition, the system
supports RFID for checking a patient profile and a caregiver authority. Only
an authorized person can access the collected data via a web-page.

2.3 ECG monitoring systems

Many approaches have been proposed for remotely monitoring ECG in real-
time. In [21,22], remote ECG monitoring systems are presented. The sys-
tems consist of wearable sensor nodes, smart gateways, Cloud servers, and
terminal applications. A sensor node was built from a low-power wireless
micro-controller (TT CC2538) and an analog front-end (ADS1292). The sen-
sor node collects and transmits 2-channel ECG data to a smart gateway via
6LoWPAN. The sensor node is managed by Contiki OS, which efficiently
controls the tasks. The smart gateway was constructed by a combination of
TT CC2238, SmartRF06 board, and Pandaboard forwards the collected data
to Cloud servers for remote access. In addition, the smart gateway proffers
some services such as local data storage and data tunneling. A caregiver
can remotely access ECG in real-time via a web-page.

In other research, the authors have proposed a remote health monitoring
IoT system [47]. The system encompasses wireless sensor nodes, smart gate-
ways, a back-end system consisting of Cloud servers, and end-user terminals.
The sensor node collects not only e-health data (e.g., body temperature and
ECG) but also contextual data such as room temperature and humidity.
The collected data can be sent to a smart gateway via one of the proto-
cols such as BLE, 6LoWPAN, and Wi-Fi. At the smart gateway, the data
is processed, compressed, and locally stored in a distributed database. In
addition, the smart gateway offers some services for detecting abnormalities
(e.g., high or low heart rate) and sending a push notification message to
the responsible persons in real-time. Caregivers such as medical doctors can
remotely access contextual and e-health data in both textual and graphical
forms.

A remote ECG monitoring IoT system is introduced [48]. The system
includes sensor nodes, a conventional gateway, Cloud servers, and end-user
applications. A sensor node is built from Arduino UNO, AD8232, and Rasp-
berry Pi. The sensor node collects and sends 2-channel ECG to Rasberry
Pi which transmits the data to a gateway. The gateway then sends the data
to Cloud servers. An end-user can remotely access the real-time ECG data
via a web page.

An ECG monitoring ToT-cloud based system consisting of sensor nodes,
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a traditional gateway, and Cloud servers is presented in [49]. Sensor node
acquires ECG via an AD8323 sensor, then transmit the data to a traditional
gateway. At the gateway, the data is forwarded to Cloud servers for stor-
ing and processing such as data cleaning and analysis. Real-time data be
accessed via GUI shown in a web page.

In further research, the authors have introduced a remote ECG monitor-
ing system for cardiovascular disease [50]. The system has three main layers
consisting of sensing, transport, application layers. The sensing layer with
wireless sensor nodes is responsible for collecting and transmitting ECG and
SpO2 to the transport layer which is built from a computer or a PDA device.
An end-user can access real-time e-health data via a graphical user interface
(GUI) which retrieves the data from remote Cloud servers.

In [51], the authors present a remote ECG monitoring system consisting
of sensor nodes, a local controller, a router, Cloud servers, and a remote
controller. The sensor node includes both sensing and actuating nodes. The
sensing node collects 3-D acceleration and ECG, then transmits the data to
a local controller via RF while the actuating node is responsible for receiving
commands from the local controller supporting local data storage. An end-
user such as a caregiver can use the remote controller to access the real-time
e-health data and control the actuating nodes.

2.4 Mobility support for remote health monitor-
ing systems

A mobility awareness approach for remote health monitoring system is pro-
posed in [52]. The approach is based on an efficient hand-over protocol and
a wireless body sensor node network. The approach helps to dramatically
reduce the lost packet rate when a patient moves at a low speed such as 0.5
m/s. Results show that the performance of the approach is influenced by
the wireless body area sensor network (WBASN) coordinator’s position.

In other research [53, 54, 55], the authors present mobility awareness
approaches for remote health monitoring 6LoWPAN-based systems in hos-
pitals. These approaches help to maintain the connection between a sensor
node and the remote monitoring system without infringing the latency re-
quirements. In these approaches, Neighbour Discovery messages are used to
avoid any additional exchange of messages. Correspondingly, the workload
of the sensor node can be alleviated in order to save energy consumption.
In addition, these approaches support fault tolerance.

A mobility support approach for remote health monitoring ZigBee-based
systems is proposed in [56]. The approach using a Zigbee mobile manager
helps to reduce management costs and enables the patient movement be-
tween different places covered by a fixed ZigBee network.
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A design framework for mobility support in wearable health monitoring
systems is presented in [57]. The framework is based on a multi-layer archi-
tecture consisting of hardware, communication, low-level processing, seman-
tic processing, system operation, and front-end layers. The framework can
be used as a starting point for providing the full mobility support in wireless
body sensor networks. The framework proposes to consider patient context
constraints during mobility for achieving an accurate evaluation. In addi-
tion, the framework provides conceptual recommendations on a three-tier
architecture system consisting of sensor nodes, gateways, and a back-end
part.
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Chapter 3

Bio-signals and collecting
approaches

In remote health monitoring IoT applications, in order to achieve real-time
data streaming and a high quality of data, requirements of latency and data

rate must be fulfilled. Disease analysis and diagnosis might be inaccurate

when these requirements are not completely satisfied. Each bio-signal has its
own requirements of latency and data rate which are shown in Table 3.1 [58].

In some critical or particular applications which require the high quality of

data and accuracy of analysis, a minimum sampling rate requirement can be
stricter than the commonly used values shown in Table 3.1. For instance,
the ECG of a baby should be acquired with a data rate of at least 500

samples/s whilst the ECG of an adult can be obtained with a data rate of

125 samples/s [59].

Table 3.1: Requirements of latency and data

Bio-signal Latency Data rate
Acceleration 300 ms 20 samples/s
Angular Velocity 300 ms 20 samples/s
Body Temperature 1s 1 sample/s
Blood Glucose several minutes 1 sample/ 10 minutes
Blood Pressure 1s 1 sample/s
ECG 250 ms per channel | 125 samples/s per channel
EEG 350 ms per channel | 240 samples/s per channel
EMG 15.6 ms per channel | 500 samples/s per channel
Pulse Oximeter ls 1 sample/s
Heart Rate 1s 1 sample/s

Table 3.1 shows that ECG, EMG, and EEG must be acquired with high
sampling rates and the latency requirements of these signals are strict to
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a few hundreds of milliseconds. Therefore, dealing with these signals is
more challenging than other signals such as blood glucose whose maximum
latency can be in minutes. When the number of sensor nodes and the
number of monitoring channels increase, the bandwidth requirement is raised
proportionally. For instance, the minimum bandwidth of a sensor node for
successfully monitoring 9-channel ECG is equal or higher than 18 kbps.

3.1 Bio-signals

Depending on the remote health monitoring applications, particular bio-
signals such as ECG, EMG, EEG, EOG, blood glucose, and body temper-
ature can be collected. This thesis simply focuses on bio-signals which are
primarily used by our proposed remote health monitoring systems shown in
the later chapters. Detailed information about the bio-signals are discussed
in the following:

3.1.1 ECG

Electrocardiography (ECG) interchangeable with electrocardiogram (EKG)
was firstly introduced by Einthoven in the years between 1890-1900 [60].
ECG can be defined as a measurement recording electrical activities in the
heart during a certain time period. ECG is often used by medical experts
to detect cardiovascular disease. An example of an ECG cycle is shown in
Figure 3.1.
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Figure 3.1: An ECG waveform [61]
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ECG consists of several waves such as Q, R, S, P, T, and U. Each wave
indicates the distinct activities in a particular area of the heart. Some waves
such as Q, R, S appear clearly in every ECG cycle while some other waves
such as U wave may not appear.

P wave

The P wave reflects atrial depolarization. Its amplitude is often between
0.05 and 0.25 mV. The P wave is often a small and smooth wave and during
a sinus rhythm, the P wave is always positive in lead II. The P wave may
represent two humps such as depolarization of the right and left atrium be-
cause the atria are not simultaneously depolarizing. The P wave duration
is often less than 80 ms [61]. Two primary types of abnormal P-wave are P
mitrale and P pulmonale which are the consequence of left and right atrial
enlargement, respectively.

PR interval

The PR interval is measured from the onset of the P wave to the onset of the
QRS complex. The PR interval represents the interval between the start of
atrial depolarization and the start of ventricular depolarization. The normal
PR interval is between 120 and 200 ms [61].

QRS complex

The QRS complex reflects the ventricular depolarization. QRS duration is
between 80 and 100 ms. When QRS duration is larger than 120 ms, it in-
dicates that a patient may have a bundle branch block, hyperkalemia, or
pre-excitation. The amplitude of the R wave in the QRS complex should be
less than 2.6 mV in V5 and V6 while the amplitude of the R wave in lead I,
IT, TIT should be less than 2 mV.

T wave

The T wave reflects ventricular repolarization. The T wave of an adult is
often positive in most of the leads. In some cases, a negative T wave called
an inverted T wave occurs. The inverted T wave is concordant with the QRS
complex. The T wave’s amplitude is the largest in lead V2-V3. However,
the T wave’s amplitude should be less than 0.8 and 1 mV for women and
men in lead V2-V3, respectively. In lead II, the positive T wave is often less
than 0.6 mV. The T wave appears after the occurrence of the QRS com-
plex. When the T wave’s amplitude is higher than the mentioned values, it
indicates that it is highly possibly that the patient has hyperkalemia.
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QT interval

The QT interval reflects the total time for depolarization and repolarization.
When the QT interval is prolonged, it indicates that there is a highly possibly
that the patient has a life-threatening ventricular arrhythmia. The QT
interval is the opposite of the heart rate. The QT interval decreases at high
heart rates and vice versa. The QT interval can be used to calculate a
corrected QT duration. There are different formulas to calculate corrected
QT. Currently, Bazett’s QTc (QTcB) is used as a clinical standard formula
which is expressed as follows:

QTc=QT/(VRR)

where QT: QT interval (s)
RR: RR interval (s)

ST segment

The ST segment reflects the early part of the ventricular repolarization. The
normal ST segment is often flat and isoelectric.

U wave

The U wave occasionally appears in an ECG wave. The U wave is the most
visible in leads V2-V3 and more prominent during a slow heart rate. The
amplitude of the U wave is often equal to one-third of the T wave amplitude.
A negative U wave is rare. The U wave is a strong indicator of hypertension
and ischemic heart disease.

ECG monitoring system

ECG is often measured via electrodes attached to body skin at specific
locations. Depending on the number of electrodes, ECG monitoring systems
are specifically named such as 3-lead, 5-lead and 12-lead ECG systems.
These systems are noninvasive recording medical equipment widely used
in many healthcare centers. A 3-lead ECG monitoring system is often used
in pre-hospital care while other ECG systems are often preferred in hospitals
since they can provide more detailed information about ECG. The electrode
placements of 3-lead and 12-lead ECG monitoring systems are shown in
Figure 3.2 and 3.3, respectively.
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Figure 3.2: The 3-lead ECG monitoring system [62]

Figure 3.3: The 12-lead ECG monitoring system [63]

In order to avoid or lessen the effects of surrounding noise sources which
negatively impact on the quality of ECG signals, it is recommended that
all electrical devices around ECG monitoring systems should be powered off
during the monitoring process; this helps to avoid or lessen for instance the
strong electromagnetic energy emitted by the cellular phone.
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3.1.2 Heart rate

Heart rate can be expressed as the number of heartbeats per minute (bpm).
The heart rate is one of the vital signs indicating the status of the body’s
primary functions. The heart rate can vary depending on physical activities
such as sleeping, resting, walking, running or body-building. In general,
when the intensity level of physical activities increases, the heart rate is
raised. The heart rate particularly varies according to the volume of oxygen
needed during each activity. For instance, the normal heart rate range
during sleeping is between 40 and 50 bpm whilst the normal heart rate
of a 40-year-old person during running is between 89 and 125 bpm [64]. In
addition, the heart rate can vary according to the air temperature, emotions,
body size, and meditations. There are many studies of heart rate [59,65,66].
Some show that the normal heart rate of an adult during resting is between
50 and 90 bpm whilst American Heart Association (AHA) mentions that
the normal heart rate range of an adult is 60-100 bpm. However, the range
of the normal heart rate defined by the AHA is more commonly used in
many health monitoring applications in hospitals. Therefore, this range
proposed by the AHA is also used in this thesis. When the heart rhythm is
abnormal, this is referred to as arrhythmia. The primary types of arrhythmia
are atrial fibrillation, ventricular fibrillation, heart block, bradycardia, and
tachycardia. When a heart rate is lower than 60 bpm or higher than 100
bpm during resting, it is called bradycardia or tachycardia, respectively [67].
Arrhythmia can occur in all ages but elderly people are more likely to have
atrial fibrillation which is one of the primary causes of stroke.

Table 3.2: Target heart rate based on age during exercise

Agel | Target Heart Rate zone (50-85%) | Predicted maximum heart rate
20 100-170 200
25 98-166 195
30 95-162 190
35 93-157 185
40 90-153 180
45 88-149 175
50 85-145 170
95 83-140 165
60 80-136 160
65 78-132 155
70 75-128 150
75 73-123 145
80 70-119 140
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There have been many efforts to measure and calculate the maximum
heart rate of a person [68,69,70]. The formula by Fox and Haskell is com-
monly used. The formula is expressed as follows:

HRmax = 220 — age

Based on medical experiments, the target heart rate is often equal to 50-
85% of the maximum heart rate [71]. Results of these heart rate types are
shown in Table 3.2. The results indicate that the target heart rate and the
maximum heart rate reduce with age.

3.1.3 Acceleration, Angular velocity, fall detection

Acceleration and angular velocity can be explained as the changing rate of
velocity and angular position of an object with respect to time. Three di-
mensional (3-D) acceleration and 3-D angular velocity can be used to detect
human falls since a sudden fall can cause a dramatic change of acceleration
and angular velocity. In particular, the sum vector magnitude (SVM) of 3-D
acceleration and the sum vector magnitude of 3-D angular velocity remain
at 1 g and 0 deg/s during resting, respectively. When a person falls, these
values rise rapidly to a peak value then drop, as shown in Figure 3.4. By
applying threshold-based methods, a human fall can be properly detected.
Threshold values specially, are set in between normal values (i.e., 1 g and
0 deg/s) and peak values (e.g., 1.7 g and 1.8 deg/s). These sum vector
magnitude values can be calculated by the following formulas.

SVM; =\ x;? + y2 + 22 (1)
2, .2
\VYi T 7 180
o = t A — 2
arctan £ * H ( )
DSVM; = /(z; —xi1)2+ (yi — 1)+ (2 — 2i-1)2 (3)

SVM: Sum vector magnitude

1: sample number

x,y,2z . accelerometer value or gyroscope value of x, y, z axis
® : the angle between y-axis and vertical direction

DSVM: Differential sum vector magnitude

In order to collect both 3-D acceleration and 3-D angular velocity, ac-

celerometer and gyroscope sensors are used and placed on particular loca-
tions on the body such as the wrist, chest, or waist.
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Figure 3.4: Acceleration and angular velocity change during a fall

3.1.4 Glucose and Blood glucose level

Glucose is produced, stored and released by the liver depending on the need
of the body. Glucose is important for the body as it is the primary energy
source of cellular respiration, the brain and other parts of the body.

The blood glucose level is the amount of glucose in human blood. The
blood glucose level is regulated by the body as a part of metabolic home-
ostasis [72]. When the blood glucose level is low, glucagon is released by
alpha cells in the pancreas. Correspondingly, glucose is released by the liver
into the blood. In contrast, insulin is released by beta cells in the pancreas
when the blood glucose level is high. Accordingly, glucose from the blood is
taken in by fat cells.

The blood glucose level can vary depending on the time of the day and
on the meals eaten. For instance, the blood glucose level is often low in the
morning and before the first meal of the day. In contrast, the blood glucose
level increases after meals. The blood glucose level can also vary depending
on certain drugs [73].

Instances of a persistently high blood glucose level over a period of time
is referred to as hyperglycemia. In contrast, a persistently low blood glucose
level over a period of time is referred to as hypoglycemia. Diabetes mellitus,
which is often called as diabetes, is a dangerous disease in which high blood
glucose levels occur over a long period of time. Diabetes is one of the primary
causes of many severe and life-threatening diseases such as cardiovascular
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disease, stroke, and kidney failure.

The three main types of diabetes are type 1, type 2 and gestational
diabetes [72]. Type 1 diabetes can be expressed as a loss of beta cells in the
pancreas, which leads to a deficiency of insulin. Type 2 diabetes is a type of
insulin resistance. When a person has this type of diabetes, his or her body
does not use insulin properly. In type 2 diabetes, sufficient insulin cannot
be created to maintain the blood glucose at the appropriate level. Excessive
body weight and insufficient exercise are considered to be two of the most
common reasons for developing type 2 diabetes. Gestational diabetes occurs
when a pregnant woman has a high blood glucose level. Unlike other types
of diabetes, gestational diabetes often disappears after the baby is born.
However, it is recommended that women with gestational diabetes need to
be continuously monitored by caregivers.

3.1.5 Body temperature

The human body temperature known as normothermia or euthermia is one
of the vital signs of life. The normal human body temperature range is be-
tween 36.5-37.5 degrees Celsius [74]. In most cases, the body temperature
is 37 degrees Celsius. Body temperature varies according to many aspects
such as age, infection, activity level, and emotional level. Body tempera-
ture has a relationship with many severe diseases. For instance, a human
body temperature of under 36.5 degrees Celsius is associated with increased
mortality and organ failure in cases of patients with severe sepsis [75].

Body temperature can be measured at different places on the body such
as in the rectum, in the mouth, under the arm, in the ear, and in the nose.
The measurement location may affect the measurement result. In addition,
the measurement can be taken via different methods or tools such as a
medical thermometer or temperature sensor. In this thesis, temperature
sensors are used because they can be integrated into a wireless sensor node
and provide accurate values.

Some concepts related to body temperature are fever, hyperthermia,
hypothermia, and basal body temperature. A person has a fever when the
body temperature is higher than his or her own normal body temperature.
For instance, when an early morning temperature of a person is 38 degrees
Celsius which is higher than his/her normal temperature (i.e., 37.2 degrees
Celsius), this person might have a fever.

A person has hyperthermia when the body dissipates less heat than
the produced or absorbed heat. Hyperthermia with a temperature of 40
degrees Celsius is severe and needs to be immediately cared for by medical
professionals. When hyperthermia occurs, it can cause fatigue, headache,
confusion and many other symptoms.

Hypothermia occurs when the body temperature is below the normal
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body temperature about 1-2 degrees Celsius. A person with hypothermia
often feels cold.

Basal body temperature is the lowest body temperature maintained dur-
ing sleeping or resting. The basal body temperature is often measured im-
mediately when a person wakes up. Although this method cannot provide
an actual basal body temperature accurately, it is accepted by healthcare
centers.

3.2 Wireless protocols in health monitoring IoT
systems

In health monitoring IoT systems, sensor nodes collect and transmit data
via a wireless protocol (e.g., 6LoOWPAN, nRF, or BLE) which has several
advantages and disadvantages. Depending on the application such as glucose
or EEG monitoring, a specific protocol is chosen. For instance, 48-channel
EEG systems often use Wi-Fi as a primary wireless communication protocol
as it needs to transmit a large amount of data whilst glucose monitoring
systems can use BLE to save energy consumption. Information about widely
used wireless protocols in health monitoring IoT systems is shown in Table
3.3 [58]. In this chapter, a focus is not placed on some long-range protocols
such as 3G, 4G, and 5G because they are not often used for Fog-assisted
smart gateways.

Generally, there are two perspectives to the categorization of wireless
protocols. From the first perspective, wireless protocols for healthcare ap-
plications are categorized into short and long-range protocols whilst from
the second, wireless protocols for health monitoring are categorized into low
and high bandwidth/data rate protocols. Short-range wireless protocols are
preferred because they are more energy efficient than long-range protocols
when applying a similar data rate. For instance, Wi-Fi is more preferable
than 4G when both protocols are available. Similarly, low data rate proto-
cols are preferred because they are more energy efficient than high data rate
protocols.

3.3 Overview of e-health sensors

E-health sensors (devices) can be categorized into different types such as
implanted, wearable or digestive sensors. However, this thesis only focuses
on wearable and implanted sensors which are widely used in many remote
health monitoring IoT systems including our proposed systems [76,77,78].
For instance, implanted glucose sensors can be used for blood glucose level
monitoring while wearable sensors such as accelerometer and gyroscope are
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Table 3.3: Target heart rate based on age during exercise

Technology| Frequency Data Distance | Peak Network
Rate Cur- Topol-
rent ogy
Zighee 868/ 915 | 250 Kbp | 10-200 | < 20 | Star/
MHz, 2.4 m mA Mesh
GHz
Classic 2.4 GHz 1-3 Mbps | 10-100 < 40 | Scannet
Bluetooth m mA net/Star
Bluetooth | 2.4 GHz 1/2 Mpbs | 10-100m | < 18 | Star/
4.0 (BLE) mA Mesh
Lora 433/ 868/ | 27 Kbps | 22 Km < 39 | Star
915 Mhz mA
nRF 2.5 GHz 250 Kbps, | 1-1000 < 17 | Star/
1/2Mbps | m mA Mesh
Wi-Fi 94 /5GHz |11/ 54/ |50m < 330 | Star
450 Mbps mA
MICS 402-405 MHz | 500 Kbps | 2 m 2.7-35 Star
mA

used for motion tracking applications.
Wearable sensors

Wearable sensors (devices) can be used for collecting different bio-signals
such as ECG, blood pressure, body temperature, heart rate, and motion-
related data [76,77,78]. Many efforts have been dedicated to develop these
wearable sensors. For instance, Emotive presents a wearable device for
multi-channel EEG monitoring in which each channel can support a data
rate of 128 samples/s. The device can work for up to 4 hours and transmits
the collected data via BLE. Sarker et al. proposes a wearable device for
collecting ECG and EMG. The device is small, lightweight and equipped
with a Bluetooth communication chip. In [79], the authors present a wear-
able device for fall detection. The wearable device equipped with GSM can
send information about a fall case to a caregiver in real-time. Depending
on the applications, a specific wearable sensor or a group of sensors can
be integrated into a wearable device. For example, our sensor nodes for
fall detection, ECG monitoring, and body temperature consists of an ana-
log front-end device, temperature sensors, a 3-D accelerometer, and a 3-D
gyroscope.

Wearable devices are usually powered by a battery. Therefore, it is re-
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quired that wearable devices have to be energy efficient for operating over a
long period of time. The working duration of a wearable device can vary ac-
cording to the battery capacity, the data rate of signals and the transmission
rate. For example, with the same battery, a wearable device for heart rate
monitoring can function longer than a wearable device for ECG monitoring
because ECG has to be acquired at a high data rate (125-250 samples/s)
while the heart rate can be collected with a data rate of 1 sample/s. In addi-
tion, wearable devices have to be small and lightweight to avoid interfering
with the user’s daily activities.

In remote health monitoring systems, data collected from wearable sen-
sors are transmitted to a gateway via one of the wireless communication
protocols such as Bluetooth Low Energy (BLE), Wi-Fi, nRF, Zigbee, or
6LoWPAN. As mentioned, the choice of a wireless protocol depends on
healthcare applications.

Implanted sensor

Currently, implanted sensors (devices) are widely used in many health mon-
itoring applications such as core body temperature monitoring and glucose
monitoring. Due to the tiny size and long working duration, implanted sen-
sors can be used in specific applications where wearable and other sensors
cannot be deployed or it is difficult to collect bio-signals. For instance, the
traditional method of testing blood glucose level needs a blood sample from
a patient. This method may have some limitations. For example, a blood
sample at the collected time cannot accurately reflect the glucose patterns
affiliated with daily activities. In addition, it may cause some pain and
panic for a patient, especially for a child. Implanted sensors can help to
overcome these limitations. Implanted sensors are often equipped with one
or several types of energy harvesting such as thermal and radio frequency
energy harvesting [80,81]. Implanted sensors often use the medical implant
communication service which operates at a frequency band between 401 and
406 MHz and supports bi-directional communication.
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Chapter 4

Fog computing for enhancing
quality of service

Many IoT-based systems for remote health monitoring have been proposed
[21,25]. In these IoT systems, the 3-layer architecture including sensor
nodes, gateways, and a back-end layer is often used. Sensor nodes can consist
of e-health nodes, contextual sensor nodes or both. E-health sensor nodes
collect e-health and e-health-related data such as ECG, heart rate, body
temperature, blood glucose, 3-D acceleration, and 3-D gyroscope while con-
textual sensor nodes acquire information about surrounding environments
and contextual statuses such as room temperature, humidity, and air qual-
ity. It is recommended that both e-health and contextual data should be
collected since they help to improve the accuracy of disease analysis and di-
agnosis. For instance, heart rate can vary due to the air quality. The heart
rate variability, in particular, can be large when the air is polluted [82,83].
However, some of the health monitoring systems merely collect e-health data
without considering contextual data. These sensor nodes send the collected
data to a conventional gateway which simply forwards the data to Cloud
servers for storing and further processing. Although the 3-layer architec-
ture helps to overcome some challenges of the tradition health monitoring
systems, it still has some limitations. For instance, many systems cannot
support mobility, local data storage, and fault tolerance. Accordingly, the
monitoring service can be interrupted when a gateway does not function or
patient movement occurs. One proper solution for such challenges is to add
an extra layer called a Fog layer between smart gateways and the Cloud
layer. Fog can be defined as a convergent network of smart gateways where
gateways are interconnected and can intercommunicate with each other.
Each smart gateway in a Fog layer has information about other gateways in
the network such as gateway ID and gateway status (e.g., active or inactive).
A Fog layer not only helps to overcome the existing limitations but also prof-
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Figure 4.1: Fog-assisted IoT system for health monitoring

fers advanced services to enhance the quality of healthcare. For instance,
a Fog layer provides local distributed data storage and location awareness.
Fog can help to dramatically reduce the volume of transmitted data in order
to save network bandwidth between smart gateways and Cloud servers. In
addition, Fog can provide interoperability to support sensor nodes equipped
with different wireless communication protocols. Furthermore, Fog proffers
real-time online analysis at smart gateways and real-time notification of the
emergency. Paper I introduces a Fog-based 4-layer architecture system for
health monitoring, as shown in Figure 4.1. The Fog-based architecture is
used as the primary architecture for the proposed energy-efficient and reli-
able healthcare IoT systems. The proposed systems provide the advanced
Fog services shown in Figure 4.2. These Fog services are located on the top
of the software stack of smart gateways. These proposed Fog services are
discussed in detail in the following:

Distributed Databases

The distributed database of Fog-assisted smart gateways helps to main-
tain a high quality of service. For instance, the distributed database helps
to maintain a continuous real-time monitoring when a connection between
smart gateways and Cloud servers is temporarily interrupted. In this case,
e-health and other data in the distributed database can be directly accessed
by authorized persons or devices. The distributed database is involved in
many Fog services such as security, channel management, categorization ser-
vice, and mobility support. The distributed database can be considered as
one of the most important elements of Fog services.

Each Fog-assisted smart gateway has its own distributed database con-
sisting of static database and temporary database. The static database
stores parameters and configurations used by algorithms and mechanisms.
For instance, sensor nodes’ id, sensor nodes’ MAC address, users’ id, and
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users’ password are stored in the static database. In most cases, static data
is kept intact except for modification by the system administrators, other
Fog services or an update from the system. For instance, after a user changes
a password in a graphical interface, the system updates the password table
in the static database. In another example, one part of the static database of
a Fog-assisted smart gateway such as ”connected device” table is updated
and synchronized with the similar table in a static database of adjacent
smart gateways when a mobility support service occurs. The temporary
database stores e-health and contextual data such as ECG, blood glucose
level, body temperature, motion-related data (i.e., 3-D acceleration, and
3-D angular velocity), room temperature, humidity, and air quality. The
temporary database only stores new coming data during a short period of
time and the oldest data will be replaced by the new coming data. The data
of this database is always forwarded and stored on Cloud servers. The type
of the distributed database can be SQL or NoSQL depending on the appli-
cations while the maximum supported volume size of the database can vary
depending on a structure and an operating system of Fog-assisted smart
gateways.
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ECG Feature Extraction

As mentioned previously, ECG consists of different waves such as P, Q, R, S,
T, U waves. Each wave can be used to diagnose the functionality of specific
areas of the heart. Therefore, it is necessary to extract the ECG features.
Depending on the applications, more focus can be placed on specific ECG
features. For instance, prominent U wave and prolonged QRS duration
indicate hypokalemia or P wave can be used to detect valvular heart disease.
One of the most concerning ECG features is the heart rate because it is a
risk factor for many cardiovascular diseases and it can be used for many
applications. For instance, training individuals should reduce the workout
intensity level when their heart rate is much higher than the accepted values
(i.e., the target heart rate) for a long period of time.

An ECG feature extraction service is implemented at Fog-assisted smart
gateways in order to extract heart rate, P wave, and T wave. The extrac-
tion service uses an ECG feature extraction template shown in Figure 4.3.
The template consists of several stages such as movement artifact removal,
wavelet transformation, threshold estimation, P wave, and T wave detection.
The movement artifact removal stage includes band-pass filters and moving
average filters to remove noise from surrounding environments (e.g., 50 Hz
noise from the local power-line in Europe). The filtered data from the move-
ment artifact removal stage is used as inputs for wavelet transformation that
decomposes the ECG into another waveform presenting details of signals and
trends as a time function. Daubechies-4 wavelet transformation is used be-
cause it is suitable for extracting P-wave and T wave while a computation
latency is not large in terms of milliseconds. For instance, it takes 101 ms for
successfully running the ECG extraction algorithm using Daubechies-4 with
an input of 1000 samples on a Pandaboard-based gateway [84]. Therefore,
the strict latency requirements of real-time e-health monitoring system can
be fulfilled. Several thresholds for R, P, and T wave are estimated based
on the results of the wavelet transformation stage. Thresholds for R wave
are higher in terms of milliVolt than thresholds of P and T wave. For in-
stance, 1 mV can be used as a threshold value for R peaks in lead I while
0.08 mV and 0.1 mV can be used as threshold values for P and T wave in
lead I, respectively. These threshold values can vary depending on the ECG
leads. Based on the threshold values, R peak, R-R interval, P, and T wave
are detected. From the R-R interval, heart rate can be calculated via the
following formula:

60
R — R interval

Heart rate =
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Figure 4.3: ECG feature extraction template

Wayvelet transformation in the proposed ECG feature extraction can help
to efficiently utilize network bandwidth between Fog-assisted smart gateways
and Cloud servers. The number of data samples reduces by a half for each
discrete wavelet transform level. Instead of sending raw ECG data, the data
after the wavelet transformation stage and the coefficient values can be sent
from smart gateways to Cloud servers. This method can help to save 40-80%
network bandwidth depending on wavelet transformation types and levels
but it may increase a system latency. The higher wavelet transform level
data is processed with, the higher error possibility in an inverse transforma-
tion process may occur. Therefore, wavelet transform types and levels must
be appropriately chosen depending on the applications.

Graphical user interface with management access

When a user such as a caregiver is using the same local network as the
system network, he or she can access patient data via a graphical interface
implemented at a smart gateway’s Fog services. In this case, the graphical
interface directly retrieves real-time data from Fog-assisted smart gateways.
This helps to reduce the latency of data transmission from Fog-assisted
smart gateways to Cloud servers and traversing back from Cloud servers
to smart gateways. As a result, real-time data with the lowest latency can
be monitored and fast responses can be given by local caregivers who are
close to patients. Furthermore, the graphical user interface at Fog-assisted
smart gateways helps to maintain the real-time data visualization when the
connection between Fog-assisted smart gateways and Cloud servers is in-
terrupted. The data shown in the interface is different depending on the
user’s authority set by system administrators. In order to access to data
shown in the user interface, an authorized user needs to provide username,
password, and a confirmation from his or her phone. This access manage-
ment method helps to increase the security level. Although a user (e.g., a
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patient) can monitor his or her own data via the graphical interface, it is not
recommended because patients can overreact when they see their disease or
health status.

Real-time push notification

The push notification service is responsible for informing the responsible
persons (i.e., caregivers) about abnormalities in real-time for on-time re-
sponses such as first-aid treatments. The push notification service can be
triggered when the heart rate or ECG signals are abnormal (i.e., long dura-
tion of P wave or high amplitude of T wave). In addition, when the internal
temperature of a smart gateway is higher than a predefined threshold or
the smart gateway does not receive any incoming data from sensor nodes
during a certain time period, push notification messages are sent to system
administrators. The content and the priority level of the push message vary
depending on specific events. For instance, when the heart rate is higher
than 80 bpm, a message with priority level 1 is sent. When the heart rate
of the same person increases higher than 120 bpm, a message with priority
level 3 is sent. Depending on the applications, the push notification can be
implemented and triggered at Fog-assisted smart gateways, Cloud servers, or
both. In the proposed systems, the push notification service is implemented
and triggered at both Fog-assisted smart gateways and Cloud servers be-
cause this helps to maintain stability of the push notification service when
the connection between Fog-assisted smart gateways and Cloud servers is
interrupted.

Interoperability

Interoperability is the capability of supporting various sensor nodes which
are equipped with different sensors and wireless communication protocols.
Fog-assisted smart gateways are designed to support sensor nodes using
6LoWPAN, Wi-Fi, Bluetooth, nRF, LoraWan, ZigBee regardless of the pro-
ducers such as Zolertia or Zigduino. Briefly, several different threads are cre-
ated and run on an embedded operating system installed at a Fog-assisted
smart gateway in which each thread is used for a sensor node type such as
6LoWPAN-based or Wi-Fi-based sensor nodes. When a sensor node type is
not used, a thread is deleted in order to save gateway resources. The process
of creating and deleting threads is managed by a system administrator or
an autonomous program implemented at the smart gateway. The program
regularly checks a table of connected devices and the connection protocols
from the gateway’s database. When it detects that a wireless connection
protocol is unused but a thread for this protocol still exists, it deletes the
thread.
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IP tunneling

This service is used for connecting 6LoWPAN with IPv4/IPv6. The service
was implemented at the smart gateways’ Fog services by a combination of
”gogoc” services and a router advertisement daemon service. The services
are used for querying a tunneling between a server and the smart gateway
are "gogoc” services, while the router advertisement daemon service is used
for listening to router solicitations and sending router advertisements. As
regards the advertisements, hosts can configure their address and choose a
default router.

Categorization service

Categorization service helps to classify end-users’ devices (i.e. local and ex-
ternal devices). Local devices use a local network and are geographically
close to smart gateways whilst all other devices are external devices. The
categorization service regularly scans the connected devices and updates a
table of the connected devices. A scan interval is often small in order to
ensure the table of the connected device is updated on time. When a device
tries to access data, the categorization service checks the table. If infor-
mation of the device is not in the table, it is categorized as an external
connected device and vice versa. When the local devices access data, data
is directly retrieved from Fog-assisted smart gateways . In contrast, data is
retrieved from Cloud servers in case of external devices. This mechanism
helps to reduce the latency overhead of data travelling via Cloud servers in
case of local devices.

Channel managing

An nRF protocol has a working frequency range from 2.4 to 2.525 GHz
which is classified into 125 channels. It is required to manage these chan-
nels to avoid channel conflict which leads to incorrect data at a receiving
side (e.g., gateways). An advanced Fog service called a channel manag-
ing service is proposed and implemented at Fog-assisted smart gateways of
the proposed systems. The service combines a channel conflict avoidance
mechanism, push notification, and a local storage database. The conflict
avoidance mechanism checks available channels by scanning all free-to-use
channels and compares them with used channels stored in the local database.
When a new sensor node is connected to the system, an available channel will
be assigned for that node. In some cases, channels of the health monitoring
systems conflict with channels of other systems. Therefore, the mechanism
checks and verifies channels regularly. When it detects a channel conflict, it
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sends push notification messages to the system administrators and tries to
assign a newly available channel to the sensor node.

Data filtering

In order to provide the a high quality of data, a data filtering service is run
by a Fog-assisted smart gateway. Data consisting of e-health and contextual
data is filtered to remove noise and incorrect values. Bandpass filters and
filtering algorithms are applied to remove 50 Hz noise and abnormal values
(e.g., a heart rate of 500 bpm or 20 g acceleration). Principally, a filtering
algorithm compares a value with its neighbor values and an acceptable range
(i.e, 30-200 bpm for a human heart rate). When the value is totally different
from its neighbor values and the acceptable range, it is removed.

Data compression

In order to save the network bandwidth and reduce the latency of data trans-
ferring, data is compressed before being sent to Cloud servers or between
Fog-assisted smart gateways. Two types of data compression algorithms are
lossy and lossless compression. In most of the cases, lossless compression
methods are often applied at the Fog-assisted smart gateways because the
decompressed data is the same as the compressed data. However, lossless
compression algorithms often run complex computational algorithms which
can cause an increase in energy consumption and latency. Therefore, the
specific choice of lossless compression methods or algorithms running at the
smart gateways’ Fog services is important. The lossless compression algo-
rithm not only reduces the data volume significantly but also has to guar-
antee a low latency to fulfill the latency requirements of a real-time health
monitoring system. A LZW lossless compression algorithm is applied in the
proposed systems [85]. The algorithm has a compression rate of 10:1 and
the compression latency is small. The compression rate can increase when
the data volume is larger. The LZW algorithm helps to reduce the data
volume from 8400 Bytes to 808 Bytes and the transmission latency by 80%.

Security

Security is a vital issue in IoT systems on the ground that in invulnera-
ble systems, sensitive data or actuators can be occupied or controlled by
unauthorized persons. Consequently, this can cause undesired negative con-
sequences such as loss of trust and property. In healthcare IoT systems,
security is even more important since unsecured systems can cause serious
issues. For instance, disease diagnosis can be incorrect because e-health data
in unsecured monitoring systems can be edited by unauthorized persons. In
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the worse case, it can cause a danger to the patient’s life. For example, an
insulin level injected into the patient blood from an insulin pump can be
hacked within 100 meters [26]. When the insulin level in the blood is much
higher than a recommended level, it can lead to death. Therefore, security
must be diligently maintained. In order to provide some levels of security
in the smart gateways’ Fog layer, IPtables and IPFW which regulate sets
of rules for managing incoming and outgoing network packages are applied
and implemented at Fog-assisted smart gateways. They can be configured to
block and only allow specific communication ports in the network. Although
they provide some benefits, they cannot completely protect the system. For
example, the connection between sensor nodes and smart gateways cannot
be protected. In order to secure the system completely, these tools must
be used together with other robust security tools or methods [86, 87, 88].
Nevertheless, the conventional security methods often require processing
power and resources (e.g., memory). Therefore, it cannot be suitable for
resource-constrained sensor nodes. The proposed systems applies a light-
weight data encryption mechanism where the data is encrypted at sensor
nodes and the encrypted data is decrypted at smart gateways. Results show
that the encryption mechanism is suitable for Fog-based real-time moni-
toring IoT systems as the latency of the systems with the data encryption
mechanism is only approximately 210 ps higher than the systems without
the mechanism. Energy consumption of a sensor node when applying the
mechanism is 1.6 mW higher than conventional sensor nodes which do not
apply the mechanism. Recently, we have proposed advanced end-to-end ef-
ficient and secure authentication and authorization methods for healthcare
IoT systems [86,87,88]. These methods help to secure systems whilst they
do not cause a large increase in system latency and sensor nodes’ energy
consumption.

To summarize up, applying a Fog computing concept to healthcare IoT
systems helps to overcome the existing limitations of these systems and
significantly improve the quality of healthcare services. Correspondingly, the
patients’ health is taken care of while their daily activities are not disturbed.
The proposed Fog services can be applied for many IoT systems used in
different fields and areas.
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Chapter 5

Mobility support in IoT
systems

A case of delayed or lost data cannot be neglected in remote monitoring IoT
systems because it can lead to undesired consequences such as an inaccurate
analysis or decision. One of the reasons causing such a case is mobility. An
IoT system often mainly consists of several gateways to cover the whole
geographical area used because each gateway in the system only covers a
specific area. When a movement distance is large and out of the covered
range of a gateway, the system needs to switch the connection of a moving
person to another gateway which covers the area to which the person is
going. If the system is not equipped with a handover mechanism, the switch
latency is high and it breaches the latency requirement of the system. In
order to minimize the switch latency, IoT systems must have a handover
or hand-off mechanism to support mobility. For example, when a patient
moves from one place covered by a source gateway to another place covered
by a destination gateway, a handover mechanism de-registers the sensor node
attached to a human body from the source gateway and registers the sensor
node to the destination gateway. The handover mechanism should ensure
the lowest handover latency to fulfill the requirements of real-time health
monitoring systems. However, it is arduous to develop and implement a
handover mechanism which supports full mobility especially in healthcare
IoT systems [89, 90] because there are strict requirements (e.g., latency,
reliability, and security) for these systems [91]. In the case of Fog-based
healthcare 10T systems, it is much more challenging to support full mobility
due to the smart gateways’ Fog services. The handover mechanism must
guarantee that all Fog services must not be interrupted during mobility.
For instance, the mobility mechanism must update the local distributed
database of smart gateways during the mobility.

Currently, conventional Fog-based approaches [92,93,94] cannot support
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full mobility especially in the case of high data rate applications such as
real-time multi-channel ECG monitoring systems. In some cases, these ap-
proaches are not efficient in terms of latency when there is an interruption
between Fog and Cloud servers. This chapter proposes an advanced han-
dover mechanism for full mobility which supports Fog-based high data rate
health monitoring IoT systems. The proposed mechanism addresses unfit
or unsolved issues related to mobility support in Fog-based systems. For
instance, oscillating nodes which move back and forth between locations
covered by adjacent gateways during a short period of time are carefully
considered in the proposed mechanism. The oscillating nodes cannot be
neglected because they can lead to large network overheads or reduce the
system performance.

Mobility tree

In order to provide an overview of mobility in IoT systems, this chapter
presents a mobility classification tree shown in Figure 5.1.

Mobility in loTs

Physical-based Mobility [Architectural-based MobilityJ

Movement Type Entity Handler Mobility Protocol

Pre-ordered || Controlled Sink Node | | Node-based || Network-based || Hybrid-based Mobility at Mobility at
Mobility Mobility Mobility Handler Handler Handler Network layer MAC layer

Node
Mobility

Random
Mobility

Figure 5.1: Overview of mobility

Mobility can be classified into two primary types including physical-
based and architecture-based mobility. It is more arduous to deal with the
architecture-based mobility than the physical-based mobility. Fortunately,
in healthcare monitoring applications, the physical-based mobility primar-
ily occurs because only the sensor nodes move while the gateways are fixed
in particular places such as rooms or corridors. The physical-based mobil-
ity can be divided into two groups which are the movement type and the
movement element. The movement type group encompasses pre-ordered,
controlled and random mobility. The most challenging to deal with is the
random mobility because many parameters (e.g., moving path, moving time,
and moving destination) needed for a handover mechanism are unknown in
advanced. When the system supports the random mobility, it is capable of
supporting other movement types. The movement element group includes
node mobility and sink node mobility in which the sensor node mobility
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primarily occurs. To summarize, random mobility and node mobility both
occur in most of the mobility cases in healthcare centers. The proposed han-
dover mechanism focuses on the node mobility and the random mobility.

Gateway placement

In order to cover all physical areas of a healthcare center, gateways have
to be deployed in such a way that there is at least an overlapping area
between two adjacent gateways. This chapter presents a placement of two
adjacent gateways, as shown in Figure 5.2 and Figure 5.3, in which each
gateway’s area is divided into 4 zones including personal zone, weak zone,
shared zone, and sensitive zone.

Gateway 1 Gateway 2
1. Personal Zone 3. Shared Zone
2. Weak Zone 4. Sensitive Zone

Figure 5.2: Setting up two adjacent gateways

The handover mechanism is based on radio-related values and triggered
in a shared zone. Consequently, the results of the handover mechanism can
be significantly affected by areas of the zones. In Paper IV, formulas for
calculating all zones are explained in detail. In addition, Paper IV present
different experimented cases where areas of zones vary. In most the cases,
the handover mechanism is primarily triggered in the personal zone when
the shared area is larger than the threshold value. In contrast, the handover
mechanism is triggered in the pink area shown in Figure 5.3 in many cases
when the shared zone area is smaller than the recommended threshold.

Results show that there are no specific requirements for zone areas. All
zone areas can be flexibly defined based on specific applications. It is recom-
mended that the personal zone and the shared zone should be large enough
to avoid triggering missed and unnecessary handover mechanism. Paper
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Figure 5.3: Setting up two adjacent gateways

IV recommends that the area of the shared zone should be larger than a
threshold value defined by the following formula:

tv=spxspx2/3

where t_v: threshold value

s_p: speed of sensor node (m/s)

In order to provide an overview of the proposed mobility support approach,
the proposed mobility handover mechanism is discussed in the following:

Handover mechanism

The proposed handover mechanism shown in Figure 5.4 consists of 16
blocks. The following only discusses the primary blocks of the mechanism.

A. Defining gateway zones and scanning RSSI, LQI in all gateways

The soft radius, the actual radius, and the distance between two adja-
cent gateways are important because they directly affect the area of zones
and the efficiency of the handover mechanism. The actual radius R can be
defined based on the coverage radius of a gateway. Often the actual radius
R is slightly smaller than the coverage radius of a gateway to avoid service
interruption due to error offsets. The weak zone’s area will be smaller when
the soft radius r is larger. In contrast, the shared zone will be larger when
the soft radius r is larger. Therefore, the soft radius r has to be to properly
defined. In order to achieve good results, the areas of the shared zone and
the personal zone should be sufficiently large since these areas occupy a large
portion of the whole coverage area of a gateway. Fortunately, the distance
between two adjacent gateways is static in time and can be easily measured.
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B. Obtaining RSSI at weak zone’s border, filtering and selecting appro-
priate values

After the soft radius, the actual radius and distance between gateways
are defined or measured, RSSI values at the weak zone’s border can easily be
obtained via the scanning and eliminating mechanism. In the mechanism,
the RSSI values at the weak zone’s border is scanned 10 times during a short
period of time and the most common value is selected.

C. Comparing RSSI with threshold values, comparing RSSI, LQI between
adjacent gateways and estimating node position

The RSSI and LQI of a sensor node are collected via a scanning method
in which the scanning interval can be defined. In the proposed system, the
scanning interval is low for collecting data in real-time and responding on-
time to the sensor node’s movement. Similar to the other scanning steps,
these values are often scanned my times during a short period of time. Only
the most common value is used and stored in the database. These RSSI
and LQI values of a sensor node between two adjacent gateways are used
to estimate the position of the sensor node. For instance, RSSI values of
the weak zone area are between -75 dBm and -65 dBm. When the collected
RSSI values of a sensor node between two adjacent gateways are -62 dBm
and -55 dBm, the sensor node might be in the shared zone of these gateways.
In addition, the sensor node is closer to the gateway having the value of -55
dBm. It should be noted that all gateways discussed are similar. In the
case of indoor and outdoor gateways, offset values are used to maintain the
balance and similarity of the gateways.

D. Comparing with a middle line of the shared area and starting the han-
dover process

In most of the cases, when the sensor is in the shared zone and it has just
passed the middle line AB shown in Figure 5.3, the handover mechanism
is triggered. To target the address, the handover mechanism compares the
RSSI values of the sensor node with the RSSI values of the middle line AB.
In the proposed mechanism, the RSSI values of the middle line AB are set
when RSSI values of a sensor node between two adjacent gateways are equal.
During the mobility process, the source gateway will send its data related to
the sensor node to the destination gateway. when the transmitting occurs,
the sensor node is still associated with the source gateway. Correspondingly,
data will not be missed during the mobility process.

In addition, the system checks the LQI value regularly. When the LQI
value is smaller than the pre-defined values such as 70%, the system triggers
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the push notification service to send messages to system administrators. The
pre-defined LQI values can be flexibly set depending on the applications and
geographical areas covered by the system. In some places where there are
many noise sources, the LQI values can be set smaller.

E. Creating a virtual node, disassociating and associating with the source
and destination gateway, respectively

During the mobility process, a moving sensor node must be deregistered
from the source gateway and registered to the destination gateway due to
the fact that a sensor node can only associate with a gateway at a single mo-
ment. However, the switching between the source and destination gateways
causes large latency. In order to minimize the switching latency, a virtual
sensor node is created at the destination gateway. The virtual sensor node
using the MAC address of the moving sensor node registers with the des-
tination gateway by exchanging messages required for setting up a Wi-Fi
connection. The number of exchanging messages depends on the security
method of Wi-Fi (i.e., WPA + AES, WEP). When the virtual node is regis-
tering with the destination gateway, the sensor node still associates with the
source gateway to maintain the data transmission between the sensor node
and the system. When the registration process of the virtual node com-
pletes, the sensor node deregisters the source gateway immediately. Thus,
the sensor node is already registered with the destination gateway, and it
can transmit the data to the gateway.

F. Oscillation event handling

The handover mechanism checks an oscillating node by inspecting the
isassociating and associating time. When the interval of two continuous
dissociating and associating times is less than a pre-defined threshold, the
oscillating node is detected. The pre-defined threshold can be flexibly set
depending on the shared zone area. When the oscillating event occurs, the
sensor node maintains the association with the gateway in whose location the
sensor stays longer. Accordingly, the handover mechanism is not triggered
for saving the gateways’ resources. In this situation, when the sensor node
moves further away from a gateway, there is still enough time to trigger the
handover mechanism because the scanning method interval is short.
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Figure 5.5: Latency of IoT systems with different configurations

Results of the experiments with the proposed handover mechanism are
shown in Figure 5.5. Results show that the handover mechanism has a
minimized latency to maintain a connection between a sensor node and
Fog-assisted smart gateways. When compared with the other state-of-the-
art approaches [52,53,54,55,95,96], the proposed handover mechanism has
the least latency. In addition, the proposed handover mechanism supports
oscillating nodes whilst the other mechanisms do not properly consider os-
cillating nodes.
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Chapter 6

Design of energy-eflficient
IoT systems

A remote health monitoring system cannot be considered as a reliable system
when it cannot fulfill the strict requirements of energy efficiency, and latency.
In Chapter 5, latency issues due to the mobility have been comprehensively
discussed. In this chapter, energy efficiency issues are investigated.

Energy consumption is one of the most significant issues for battery-
powered devices or systems utilizing these devices. When the energy con-
sumption of these devices is high, it can cause serious consequences such as
low-quality services, service interruption or the short lifespan of the battery
pack. In health monitoring systems especially, energy inefficiency cannot
be underestimated because it can lead to serious results such as incorrect
disease analysis or push notification service interruption. Therefore, a wear-
able sensor node must be designed that will achieve a high level of energy
efficiency.

This chapter presents an advanced energy-efficient health monitoring
system which can be considered as a combined and customized system from
four energy-efficient systems published in Paper II, V, VI, and VII. The
proposed system applies Fog-based approaches for saving the energy con-
sumption of sensor nodes while maintaining the high quality of the services.
There are different types of sensor nodes in the proposed system such as
e-health sensor nodes and contextual sensor nodes. The e-health sensor
nodes can collect one or several bio-signals at different data rates (e.g., 125
samples/s ECG, 50 samples/s body motion-related data, and 1 sample per
5 minutes blood glucose). Contextual sensor nodes can acquire room tem-
perature, humidity, and air quality. Depending on the applications, specific
sensor nodes are used.

In order to achieve a high level of energy efficiency, both the software
and hardware structure of sensors nodes must be carefully designed. For ex-
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ample, e-health and contextual sensor nodes have to avoid running complex
data processing algorithms (e.g., ECG feature extraction based on wavelet
transformation), therefore, these will instead be run by Fog-assisted smart
gateways. By applying this approach, the workload of the sensor nodes can
be reduced and a high level of energy efficiency can be obtained.

The sensor nodes in the proposed system consist of three primary parts:
a micro-controller, sensors, and a wireless transmission part. In addition,
some sensor nodes include additional parts such as a power management
unit, and an energy harvesting unit. Depending on particular healthcare
applications, the choice of these parts can vary.

A micro-controller is a core component in a sensor node. It performs
all important tasks such as sensor controlling, and I/O interface manage-
ment. Correspondingly, a micro-controller uses a greater amount of the
sensor node’s energy. When the micro-controller does not perform its tasks
efficiently, the energy consumption of the sensor node increases dramati-
cally. Therefore, the micro-controller must be energy-efficient in both terms
of hardware and software design. The two most commonly used micro-
controller families for health monitoring applications are 8-bit AVR ATmega
and 32-bit ARM Cortex MO since these micro-controller types are ultra-low
power. However, these micro-controllers are not equipped with large mem-
ories (e.g., RAM and ROM). Therefore, complex algorithms cannot be im-
plemented with these micro-controller families. Based on the experiments
performed by Atmel [97], a 32-bit ARM Cortex M0 micro-controller is less
efficient in terms of memory usage and energy than an 8-bit AVR ATmega
micro-controller when running hardware-near functions. An ARM Cortex
MO in particular requires 33 cycles to receive a byte of data via SPI by
using interrupt while an 8-bit AVR micro-controller needs merely 12 cycles
to run the same task. In the same experiment, a 32-bit ARM Cortex MO
consumed 48 pA while an 8-bit AVR micro-controller expended 36.1 pA
while receiving 80 kbps data via SPI. In another example, a 32-bit ARM
Cortex MO needed 192 bytes in stack memory while an 8-bit AVR Atmega
micro-controller needed 70 bytes of stack memory to run a recursive 15-stage
Fibonacci algorithm. In [21], the authors prove that an 8-bit AVR Atmega
is able to gather high-resolution e-health data and run some simple data
processing algorithms without breaching the requirements of the system la-
tency. Hence, an 8-bit ultra-low power AVR Atmega micro-controller is an
appropriate micro-controller for healthcare IoT applications. Therefore, an
8-bit ultra-low power AVR, Atmega micro-controller is used in sensor nodes
of the proposed system. Depending on the applications, the micro-controller
is equipped with a specific circuit and runs at different frequencies.

In order to communicate with Fog-assisted smart gateways, sensor nodes
use nRF which is a low-power wireless protocol supporting many-to-many
communications. In another word, by applying nRF sensor nodes can con-
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nect to several Fog-assisted smart gateways simultaneously. When one of
the connections is interrupted, Fog-assisted smart gateways still receive real-
time data from sensor nodes. In addition, nRF supports different data rates
such as 250 kbps, 1 Mbps and, 2 Mbps. Therefore, it can be suitable for
different healthcare applications such as glucose monitoring, 2-channel ECG
monitoring, and fall detection. It was noticed that a sensor node consumes
more energy when the transmission data rate is higher. Therefore, low data
rates are always considered first. In some cases when a system is updated
for higher data resolutions, nRF can be reconfigured to achieve the target
without the need for any other hardware. For instance, a 250 kbps data rate
is suitable for 250 samples/s 2-channel ECG systems. When the system is
updated to obtain 500 samples/s 8-channel ECG, 2 Mbps data rate can still
be used. One of the nRF benefits is a capability of supporting many chan-
nels which correspond to specific frequencies. The nRF in particular can
support 126 channels which can then be efficiently utilized by Fog services.
For instance, some channels can be reserved for certain important tasks such
as a confirmation or password exchange while some channels can be used
for 3-way handshaking tasks or data transmitting. Last but not least, nRF
can operate with a long voltage range from 1.9 V to 3.6 V. Therefore, it can
be supplied with the same voltage supply as a micro-controller without the
need for a voltage regulator.

Sensors play an important role because they directly affect the sensor
nodes’ energy consumption, signal quality, service quality, and latency. For
example, missing data may occur when a sensor does not respond on-time to
an instruction command sent by a micro-controller. Therefore, low-power
and high-quality sensors with a fast response capability must be used in
a sensor node. Sensors are often connected to a micro-controller via wire
communication protocols such as 12C or SPI. However, the impact of these
protocols on the energy consumption of sensor nodes has not been properly
investigated. In order to explore the impact, experiments with wearable
sensor nodes are carried out and presented in this chapter.

In order to investigate the energy consumption of sensor nodes used in
health monitoring applications, several sensor nodes are built and experi-
mented. A wearable sensor node for real-time glucose and body temperature
monitoring is built. The sensor node collects both the blood glucose level and
the body temperature simultaneously because insulin is linked to the core
body temperature [98]. The data rate of the glucose sensor and the body
temperature sensor is 1 sample per 10 minutes and 1 sample per 1 minute,
respectively. Similar to other proposed sensor nodes, a micro-controller (i.e.,
AVR ATmega328P) and an nRF transceiver (i.e., nRF24L01) are used in
the sensor node. The micro-controller runs at 1 MHz and is supplied with
2 V. In addition to the primary parts just mentioned, the sensor node is
equipped with an energy harvesting unit and a power management unit.
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Since the sensor node is attached to a human body, an energy harvesting
unit can harvest both human powered and ambient energy (i.e., thermal and
radio frequency energy). However, only the RF energy harvesting unit is
integrated in the sensor node. The harvesting unit consists of four parts such
as an antenna, matching network, RF to DC rectifier and storage element. A
miniaturized printed elliptical nested fractal multiband antenna proposed in
[99] covers different frequency bands such as GSM 900, 2.4 GHz (Bluetooth,
Wi-Fi, 6LoWPAN, nRF), 3.2 GHz (radio-location and 3G), 3.8 GHz (LTE
and 4G), and 5 GHz Wi-Fi bands. The antenna supports an omni-directional
feature which allows collection of the RF signals from many directions. A
matching network circuit is designed for focusing on the widely used radio
frequency bands previously mentioned. In an RF to DC rectifier circuit,
Schottky diodes are utilized due to the low forward voltage drop (e.g., 0.2-
0.3 V). The energy harvesting unit is able to provide 2.1 V at 0 dBm input
power (925 MHz RF input signals). Correspondingly, the energy harvesting
unit is suitable for the sensor node which runs at 1 MHz with 2 V.

The power management unit is built from a voltage sensor which can be
formed by utilizing a low-power Schmidt trigger circuit. The power manage-
ment unit is used to monitor power and battery level. When the battery level
is low, it sends information to the micro-controller triggering push notifica-
tion messages requesting a recharge or replacement of the battery. With the
information retrieved from the power management unit, a micro-controller
can shutdown unnecessary or unused components.

Table 6.1: Power consumption of nRF transceiver, sensor node

Average
Device Voltage Current
supply (V) (mA)
nRF transmitter (nRF + 9 0.5
Atmega328P) ’
Sensor node 2 1.4

Results from the experiments presented in Table 6.1 show that the sensor
node is energy-efficient. By applying a 1000 mAh lithium battery, the sensor
node can continuously work for up to approximately 700 hours in a daily
living or working environment such as office and apartment.

An energy-efficient wearable sensor node for ECG and body tempera-
ture monitoring is built for the experiments. The sensor node encompasses
ADS1292, BME280, AVR ATmega328P, and nRFL2401. As mentioned, the
choice of these devices is crucial because it can dramatically affect the total
energy consumption of a sensor node. ADS1292 is a low-power and low-
noise analog front-end device for gathering ECG at high data rates (e.g.,
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Table 6.2: Average power consumption of the health monitoring device at a
data rate of 18 kbps

Voltage Average power
Mode v) (mW)
Idle 3 1.2
Active without AES-256 3 19.5
Active with AES-256 3 21.03

1000 16-bit samples/s). However, it is sufficient to collect ECG at a data
rate of 250 samples/s while maintaining a high level of signal quality [100].
BME280 is a low-power and precise sensor for gathering both temperature
and humidity. These sensors are connected to a micro-controller via SPI.
The micro-controller runs at 8 MHz and is supplied with 3 V. The micro-
controller sends the collected data to Fog-assisted smart gateways via an
nRF protocol. For providing some levels of security, AES-256 - a light-
weight encryption algorithm is applied. Results presented in Table 6.2 show
that the sensor node is energy-efficient even though AES-256 is used. By
using a 1000 mAh lithium button cell, the sensor node can be used for up
to 155 hours in a daily working environment such as office.

In the experiments, an energy-efficient sensor node for fall detection sys-
tems is built. Similar to other sensor nodes presented above, this sensor
node consists of a micro-controller (ATmega328P) and a wireless communi-
cation chip (nRF24L01). In addition, the sensor node is equipped with an
MPU-9250 sensor which is a low-power and high precision sensor consisting
of a 3-D accelerometer, a 3-D gyroscope, and a 3-D magnetometer. The
sensor node runs at 8 MHz and collects data (e.g., acceleration, angular
velocity, and compass data) via SPI with different configurations shown in
Table 6.3.

Table 6.3: Scenarios setup

Configuration (Conf) | Accelerometer | Gyroscope | Magnetometer
Configuration 1 X

Configuration 2 X

Configuration 3 X
Configuration 4 X X

Configuration 5 X X
Configuration 6 X X
Configuration 7 X X X
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In addition, energy consumption of the sensor node was measured with
several scenarios such as different sampling rates (e.g., 50, 100, 500 sam-
ples/s), and transmission distances (i.e., 5, 10, and 20 meters). All exper-
imental results are presented and discussed in detail in Paper VI. Results
shown in Table 6.4 and Figure 6.1 indicate that watchdog timers, and SPI are
more energy-efficient than other types in the same categories. In addition,
the results show that in order to dramatically save energy consumption,
unneeded modules such as UART, brownout, and ADC must be disable.
Furthermore, the results show that energy consumption of a sensor node
can be significantly saved when a transmitting unit of an nRF transceiver
is primarily used whilst a receiving unit of the transceiver is disabled. In
the harsh conditions (such as long communication distance, many objects
in between the sensor node and a gateway), the sensor node can continu-
ously work up to 76 hours when using a 1000 mAh lithium battery to collect
motion-related data at a data rate of 50 samples/s via 1 Mbps SPI. The en-
ergy consumption of the sensor nodes shown in Table 6.5 indicates the sensor
node is energy efficient. When comparing with other fall detection sensor
nodes presented in the state-of-the-art works [33,34,38,101], the sensor node
is more energy efficient.

32

315
31 250 kbps SPI
B 500 kbps 5PI
305 B 1 MbpsSPI
W 4 Mbps 5P
N 400 kbps 12C
30 +—
295 4
1 2 3 4 5 5 7

Configuration

Energy Consumed (mJ)

Figure 6.1: Energy consumption of sensor nodes when collecting data from
multiple sensors at 50 samples/s using SPI and 12C

54



Table 6.4: Energy consumption when collecting 50 samples/s acceleration
data with different techniques

8bit timer (mJ) 16b(11tn gl)mer Watdl(i??)tlmer
Conf 1 30.47 30.86 22.58
Conf 2 30.69 31.08 23.80
Conf 3 31.39 31.79 23.57
Conf 4 30.83 31.22 22.95
Conf 5 31.72 32.11 23.95
Conf 6 31.62 32.06 23.88
Conf 7 31.8 32.23 24.11

Table 6.5: Energy consumption of the sensor node when collecting 50 sam-
ples/s motion data and transmitting the data via nRF with a distance of 20
meters in different configurations

Configuration Energy consumption (mJ)
Conf 1 30.72
Conf 2 30.95
Conf 3 32.1
Conf 4 34.53
Conf 5 35.56
Conf 6 35.35
Conf 7 36.68

In order to investigate the energy consumption of sensor nodes for health-
care applications using both low and high data rate bio-signals, a sensor
node for monitoring diabetic patients with cardiovascular disease is design
and implemented. The proposed e-health sensor node can be considered as
an advanced and customized version of the sensor nodes presented above.
Methods for energy saving applied in the sensor nodes mentioned above are
reused and customized. The proposed customized sensor node can simul-
taneously collect several types of data such as ECG, blood glucose, body
temperature, and body motion with different data rates. Similar to the
aforementioned sensor nodes, these sensor nodes are equipped with an AVR
ATmega3d28P micro-controller and an nRF241.01 transceiver. However, the
micro-controller only runs at 1 MHz. In addition, the e-health sensor node
is equipped with a glucose sensor, a temperature sensor (i.e., BME280),
a low-power ECG analog front-end (AD8232), and a motion sensor (i.e.,
MPU-9250) consisting of 3-D accelerometer, 3-D gyroscope, and 3-D com-
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Conf C: 1 sample/s body temperature, 1 sample/s glucose data, and
120 samples/s ECG data

Figure 6.2: Power consumption and working hours of sensor nodes in differ-
ent configurations with AES-256

pass. The data rate of the glucose sensor and the body temperature sensor
are 1 sample per 5 minutes and 1 sample per 2 minutes while the data rate
of MPU-9250 and AD8232 is 50 samples/s and 125 samples/s, respectively.
Experiments concerning the energy consumption of the sensor node were
conducted using several configurations as shown in Paper VII.

Experimental results presented in Figure 6.2 show that the e-health sen-
sor node is energy-efficient. When using a 1000 mAh lithium battery, the
e-health sensor node, which runs AES-256 and collects all data (e.g., ECG,
glucose, body temperature and body motion), can accurately work up to
approximately 141 hours in a daily living environment such as office or
apartment having electronic devices and computers. When comparing with
other sensor nodes proposed in other state-of-the-art works [21,102,103,104],
the proposed e-health sensor node is more energy-efficient even though the
sensor node can collect different types of data simultaneously.

To summarize up, the proposed systems and sensor nodes are energy
efficient. It is possible to use several proposed sensor nodes in a system
since all the proposed sensor nodes have similar structures and use the same
nRF protocol. Depending on the applications, a particular sensor node or a
group of sensor nodes can be used.
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Chapter 7

Fog-assisted IoT systems for
diabetic patients with
cardiovascular disease

An advanced remote health monitoring system for diabetes having cardio-
vascular disease is necessary due to serious consequences of diabetes and
cardiovascular disease, and the large number of people having these diseases.
The system must be reliable and capable of providing enhanced services such
as real-time and accurate data analysis, and security. In Chapter 5 and 6,
the reliability of remote health monitoring systems in terms of latency and
energy efficiency have been presented. This chapter discusses enhanced Fog
services and algorithms analyzing bio-signals (e.g., ECG, 3-D acceleration,
3-D gyroscope and glucose) in real-time in order to improve a quality of
healthcare, particularly in diabetes, cardiovascular disease monitoring and
fall detection.

This chapter shows several remote health monitoring systems presented
in 4 papers (i.e., paper II, V, VI, and VII). The first three papers present
monitoring systems for particular diseases such as ECG monitoring for CVD,
blood glucose for diabetes, and fall detection while Paper VII proposes an
advanced monitoring system for several diseases such as diabetes and car-
diovascular disease. The system presented in Paper VII can be considered
as the customized and augmented version of the systems presented in the
other papers. These four systems use the same architecture including sensor
nodes, Fog-assisted smart gateways, Cloud servers, and end-user terminals.
In addition, these systems utilize the same nRF wireless communication
protocol. Therefore, the advanced services related to nRF and sensor nodes
of one system are also suitable for other systems. A combination of all the
systems presented in the papers can create an advanced monitoring system
for diabetic patients with cardiovascular disease.
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The combined system is capable of providing many advanced Fog services
such as distributed local data storage, interoperability, channel managing,
push notification, categorization service, data compression, and an early
warning score system. These services are discussed in detail in Chapter
4. In addition, the combined system can inherit the typical features of the
member systems for the treatment of diabetic patients with cardiovascular
disease. These features are discussed in the following paragraphs:

On feature that can be utilized is the abnormal glucose warning feature
presented in Paper V where the collected blood glucose is compared with
the recommended pre-defined values stored in the local distributed storage.
When the collected glucose is in an abnormal range, the system sends push
notification messages to caregivers. The recommended pre-defined glucose
values are shown in Figure 7.1 and 7.2. These recommended values can be
changed by an authorized person (e.g., a system administrator or a doctor)
depending on the specific situations.

Tvpe Before meals |2 hours after meals] Wake up ST
{low blood glucose)
Healthy Person (4 to 5.9 mmol/L [under 7.8 mmol/L under 4 mmol/L
Type [ diabetes | 4 to TmmolL | 5to 9mmolL |5 to 7 mmolL under 4 mmol/L
Type 2 dhabetes | 4 to 7mmolL |under 8.5 mmolL under 4 mmol/L
fﬁ:?lz;;‘eﬁl 4to TmmolL | 5to 9mmolL |4 to 7 mmolL under 4 mmol L

Figure 7.1: Recommended glucose levels [105, 106]
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Plasma glucose test

Random
200 mg/dl or more

Fasting

Below 6.1 mmol/1

Below 108 mg/dl

6.1 to 6.9 mmol/l
128 t0 125 mg/dl

7.0 mmoll or more
126 mg/dl or more

2 hour post-prandial

Below 7.8 mmol/l
Below 140 mg/dl

7.8 to 11.0 mmol/l
140 to 199 md/dl

111 mmol/l or more
200 mg/dl or more

Figure 7.2: Blood glucose levels in diagnosing diabetes [105, 106]

The algorithm for extracting ECG features in the system presented in
Paper I can also be utilized for the combined system. In the algorithm, raw
ECG data is processed with a baseline wander removal method, allowing
for noise and movement artifacts to be filtered out of ECG signals via 50
Hz notch filters, and 5-15 Hz bandpass filters. The filtered ECG is then
processed with a wavelet transformation mechanism based on Debauches-4
wavelet shown in Figure 7.3 in order to extract R peaks, R-R intervals, P
waves, and T waves. The results of detecting R peaks and R-R intervals are
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Figure 7.3: Four-level Discrete Wavelet Decomposition
cAy: Level k approximation coefficients, cDy: Level k detail coefficients
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Figure 7.4: Signal processing with one lead ECG
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shown in Figure 7.4. The results show that the algorithm is able to extract
ECG features accurately.

In order to investigate the algorithm’s sensitivity, the algorithm was run
120 times with ECG extracted from a data set (e.g., 3-D acceleration, 3-D
angular velocity, and ECG) collected by a sensor node presented in Paper
VII. The data set was acquired during 60 minutes from a 30-year-old healthy
male person performing different activities including lying, standing, walking
and running in which each activity lasts 5 minutes. In each experiment time,
the algorithm extracted ECG features from 30-second ECG. The results
show that the algorithm can correctly detect R peaks, R-R intervals, P
waves, and T waves up to 58 times in a total of 60 experimental times
including lying on the bed and standing cases. The sensitivity in these cases
is about 0.966. In each incorrect extraction case, 1 P wave was missed.
One of the reasons causing the incorrect detection cases was the monitored
person’s moving artifacts during the experiments. In walking and running
cases, the algorithm successfully detected ECG features including R peaks,
R-R intervals, P waves, and T waves in 25 and 2 times, respectively in which
each case was carried out in 30 times. The sensitivity for the walking case
and the running case is 0.83 and 0.066, respectively. The results show that
the ECG feature extraction algorithm might not function correctly when a
user walks fast or runs. The results imply that ECG needs to be measured
alongside with a user’s activity status in order to obtain a high quality of
service.

In addition to ECG features mentioned above, other ECG features (e.g.,
QT length) are needed for an analysis of cardiovascular disease. Therefore,
a QT length extraction algorithm proposed in Paper VII is utilized for the
combined system. In the proposed QT length extraction algorithm, the low-
est interval IP is first located in which the P wave reaches its maximum. A
similar procedure is applied for calculating IP, IR, IS and IT. Finally, the
QT length is calculated by applying the formula: 1QT= IR+ IQ+IS+IT.
The proposed QT length extraction algorithm applies the lowest interval
computing algorithm, which is shown in Algorithm 1. The lowest interval
computing algorithm computes the lowest interval in which a function f(x)
reaches its local maximum. The lowest interval computing algorithm re-
quires two inputs including x; and t; - where t; is the instant of time t. The
lowest interval computing algorithm is light-weight and fast. Therefore, it
is suitable for real-time data analysis and resource-constrained devices.

The QT length extraction algorithm was run 120 times with the data set
mentioned above in which each 30 times were used for a particular activity
such as lying on bed, standing, walking or running. The QT lengths were
successfully extracted up to 57 times in both cases of lying on bed and
standing whilst there were only 26 and 2 successful times for the walking
case and the running case, respectively. The sensitivity of the algorithm
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Table 7.1: Formulas for calculating corrected QT interval

Algorithm Formula

Bazett (QTcB) [108] QTc = QT / (VRR)

Fridericia (QTcFri) [109] | QTc = QT / (VRR)

Framingham QTc = QT + 0.154 x (1 - RR)
(QTcFra) [110]

Hodges (QTcH) [111] QTc = QT + 0.00175 x ([60 / RR] - 60)

Rautaharju (QTcR) [112] | QTc = QT -0.185 * (RR-1) + k
(k=+40.006 seconds for men and +0 sec-
onds for women)

for the walking case, the running case and both cases of lying on bed and
standing is 0.86, 0.06 and 0.95, respectively. Based on the results, it is
recommended an user should not walk or run when extracting QT length.
The results prove that there is a need of other algorithms to enhance a
quality of service.

Algorithm 1 Algorithm to compute local maximum of a function f(x)

procedure MAX-ALGORITHM(z;, t;)

if (x;—1 =0 and z; > 0) then
Il — 1
M +— X;

else if (I; # 0 and z; > 0) then
M = Max(x;, M)

else if (I; # 0 and z; = 0) then
12 — t;
break

return M, Iy, 5]

where x: value of ECG
t: specific time(s)

The QT interval can be used to calculate a corrected QT interval (QTc)
via the state-of-the-art algorithms shown in Table 7.1. In hospitals, Bazett’s
QTc (QTcB) is commonly used as a stand algorithm. However, the authors
in [107] show that Fridericia’s QTc might be considered as the next standard

algorithm replacing the current standard QTcB.

A fall detection algorithm, shown in Figure 7.5, used in the system pre-
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sented in Paper VI can be utilized for the combined system. The algorithm
requires inputs of 3-D acceleration and 3-D angular velocity. These motion-
related signals often contain noise and movement artifact. Therefore, they
have to be eliminated via 50 Hz filters and moving average filters. The fil-
tered data is used to calculate the fall feature parameters via the formula
shown in Chapter 3.

f ( ) (Calculate fall\\
Obtain data Filter =3 feature
‘%

/ﬁ(_ [ Determine ) (Compare with)
ible fall <€ the first
POSSIDE TAES _threshold
Combine and
analyze fall Compare Wil ) _
feature Determine
the second =
parameters actual falls
threshold

from several -
sensors I
Compare with | > Trigger

& history of data notiﬁcatioy

Figure 7.5: Fall detection algorithm flow

The fall feature parameters are compared with the first thresholds which
are 1.6 g and 160 deg/s for SVM 3-D acceleration and SVM 3-D angular
velocity, respectively. There are two possible results: (i) if all the param-
eters are higher than their first threshold values, they are compared with
the second threshold values which are 1.9 g and 190 deg/s for SVM 3-D
acceleration and SVM 3-D angular velocity, respectively. If one of the pa-
rameters is higher than the second threshold, a fall case is detected and the
push notification service is triggered to inform the responsible person such
as the caregiver; (ii) if one of the fall feature parameters (i.e., SVM of 3-D
acceleration or SVM of 3-D angular velocity) is higher than its first thresh-
old value while the other parameter is lower, both parameters are compared
with their historical values which were collected 1 and 2 seconds before. If a
similar pattern is detected, malfunctioned sensors are detected and the push
notification is triggered.

In order to investigate the functionality of the fall detection algorithm,
3-D acceleration and 3-D angular velocity in two cases - with and without
falling were acquired and analyzed. In each case, the data was collected
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during different movement activities such as standing still, standing with
body movements, sitting still, sitting with body movements, and walking.
Results are shown in Figure 7.6 and 7.7.

stand still stand with body movements sit still
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Figure 7.6: Accelerometer’s and Gyroscope’s data at the gateway’s nRF
receiver during daily activities
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sit and fall stand and fall stand, fall and lie down
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Figure 7.7: Accelerometer’s and Gyroscope’s data at the gateway’s nRF
receiver during daily activities and fall

The results show that the proposed fall detection algorithm functioned
properly in different cases. In a case of where one of the sensors is mal-
functioned, the algorithm still functions. In addition, the results reveal that
relying on a single sensor may lead to an incorrect fall detection. For exam-
ple, the 3-D accelerometer provided incorrect data in the case of a walk and
fall in the experiment.

In order to evaluate a sensitivity of the fall detection algorithm, the data
set mentioned above is still used. In the experimental process collecting
the 60-minute data set, a user wearing the sensor node arbitrarily falls 1
to 2 times in each activity such as lying, standing, walking and running.
Falls can be forward falls, backward falls or side falls. The fall detection
algorithm was run 480 times in which a range window of 7.5-second 3-D
acceleration and 7.5-second 3-D angular velocity was applied for each time.
The algorithm accurately detected actual fall events in cases of lying on bed,
standing, and walking. The algorithm detected incorrectly 12 times where
there was no actual fall event but fall events were detected. One of the
reasons causing the incorrect detection was a fast moving transition between
activities. A sensitivity of the fall detection of algorithm in these cases is
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Figure 7.8: Activity status and fall detection algorithm

0.975. The algorithm detected incorrectly 62 times in a running activity
case. Particularly, the algorithm detected all events including actual and
not actual falls. A sensitivity of the algorithm in the running case is 0.87.
The algorithm’s sensitivity in the running case can vary depending on the
specific type of running. The results show that the fall detection algorithm
has be customized and run together with an activity status categorization
algorithm in order to achieve a high quality of service.

In Paper VII, the proposed algorithm for both fall detection and activ-
ity status categorization can be considered as a customized and extended
version of the previous fall algorithm shown in Paper VI. The proposed al-
gorithm shown in Figure 7.8 can be also utilized for the combined system.
Both algorithms have similar blocks such as data acquisition (3-D accelera-
tion and 3-D angular velocity), data filtering and activity-related parameter
calculating. In the customized algorithm, the activity related parameters
are compared with both activity and fall threshold values. If the param-
eters surpass the first set of threshold values, the data is labelled as the
”possibility” values and compared with the second set of threshold values
and the historical data. If one of the parameters surpasses the second fall
threshold value, a fall case is detected. For the activity status categorization,
the number of values, which surpasses the first and second activity status
categorization thresholds, is counted. In the customized algorithm, the first
and second activity status categorization thresholds are 1.2 g, 1.6 g for 3-D
acceleration, and 30 deg/s, 100 deg/s for 3-D angular velocity, respectively.
The second activity status thresholds are set with high values for categoriz-
ing the activity status more accurately. In most of the cases, the activity
parameters cannot surpass the second activity status categorization thresh-
olds when a user is walking with a common speed of 1.4-1.6 m/s. However,
the number of parameters surpassing the first activity status categorization
thresholds, in this case, is large. When a user is running, the number of
parameters surpassing the second activity status categorization thresholds
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is large. Comparing the acquired activity-related parameters with their his-
torical values helps to improve the accuracy of the customized algorithm
and detect malfunctioning sensors more accurately.

All collected data is simultaneously compared and analyzed by the sys-
tem’s Fog services presented in Paper VII. The results shown in Figure 7.9
and 7.10 demonstrate that the system stably works in different scenarios.
The quality of ECG signals is high even when a user is walking, but when a
user is running, the ECG waveform fluctuates dramatically; however, R-R
peaks can still be detected. The moment when a user falls, ECG fluctuates
but in a few seconds after a fall, an ECG waveform becomes appropriate
again. Body temperature and blood glucose are not shown in Figure 7.9
and 7.10. They are shown in a text form in a user’s interface. Data shown
in these figures above is collected in the daily working environment.
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Figure 7.9: Acceleration, angular velocity and ECG in different activity
status
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Figure 7.10: Acceleration, angular velocity and ECG when a user falls in
different cases

The proposed algorithm for both fall detection and activity status cat-
egorization was run 480 times in which each running time operates with
a range window of 7.5-second 3-D acceleration and 7.5-second 3-D angu-
lar velocity retrieved from the data set mentioned above. The algorithm
accurately categorized different activities including lying on bed, standing,
walking and running. In addition, the algorithm accurately detected fall
events in cases of lying on bed, standing, and walking. A sensitivity of the
fall detection part of the algorithm is 0.979 due to 10 incorrect detection
times in which the algorithm detected 10 fall events while there was no ac-
tual fall. In case of running, a sensitivity of the fall detection part of the
proposed algorithm is 0.877 because of 59 incorrect detection times.

The system proposed in Paper VII has most of the Fog services presented
in Chapter 4. Accordingly, raw data and processed data can be monitored in
real-time via end-user terminals such as a web browser and a mobile appli-
cation. When abnormalities (i.e., high blood glucose, long QT intervals, fall,
or a malfunctioned sensor) are detected, the system sends push notification
messages to responsible individuals such as caregivers or system adminis-
trators. These Fog services can be utilized for the combined system. Based
on the results of the experiments shown in Paper II, V, VI, and VII, the
customized system which combines all the systems presented in these papers
constitutes promising approaches for the treatment of diabetic patients with
cardiovascular diseases. The system not only provides advanced services to
enhance the quality of healthcare but also helps to improve the quality of
life and reduce healthcare costs.
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Chapter 8

Discussion and Conclusion

In this dissertation, we discussed and introduced Fog computing as a mean
of enhancing the quality of services of the health monitoring IoT systems.
Via the system implementation and verification in health monitoring case
studies such as ECG monitoring and fall detection, the dissertation demon-
strated that Fog computing is an appropriate approach particularly for en-
hancing remote health monitoring IoT systems and improving the quality of
healthcare in general. By exploiting Fog computing which can be described
as an extra Fog layer in between conventional gateways and Cloud servers,
the health monitoring systems shown in this thesis proffered many advanced
Fog services. These services include such features as distributed local data
storage, ECG feature extraction, graphical interface with management ac-
cess, interoperability, real-time push notification, data processing, channel
managing, and security. These services will not only solve the challenges
of the current health monitoring IoT systems (e.g., high latency and ser-
vice interruption) but also help to improve the quality of healthcare and
reduce healthcare costs. Via these services, caregivers will be able to moni-
tor patient health remotely and respond to abnormalities such as high body
temperature, and long QT intervals of an ECG wave in real-time in order
to save a patient’s life. In addition, these services will help to improve the
accuracy of disease diagnosis via real-time analysis the current and historical
data including both e-health data and contextual data. Furthermore, the
services protect the information health privacy of patients, and the strict
requirements of low latency has been fulfilled.

In addition to supporting advanced Fog services, an advanced remote
health monitoring needs to be capable of mobility support in order to im-
prove the quality of healthcare services. Therefore, mobility support was
thoroughly discussed and considered. The mobility support issue becomes
more difficult when dealing with Fog-assisted health monitoring IoT sys-
tems. It is required that a mobility support approach not only guaran-
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tees that data is continuously monitored without any interruption but also
ensures that the Fog services are properly maintained. The dissertation
proposed a Fog approach for mobility support in health monitoring IoT sys-
tems. The approach did not limit the patient’s movement while fulfilling the
latency requirements of real-time data monitoring systems. The handover
mechanism in the mobility support approach carefully considered oscillat-
ing nodes which often happen in many real-time monitoring IoT systems.
By exploiting the Fog approach, the burdens on the sensor nodes were re-
duced while enhanced Fog services such as distributed local data storage and
push notification were proffered. The results from evaluating the proposed
Fog approach for mobility support are promising as the latency of switch-
ing between Fog-assisted smart gateways are 10%-50% smaller than other
state-of-the-art approaches.

The high quality of healthcare services cannot be maintained when re-
mote health monitoring systems are energy inefficient. Therefore, the design
of energy efficient health monitoring systems was discussed. In particular,
energy efficient fall detection, ECG monitoring, and glucose monitoring sys-
tems were proposed. Each system applied the Fog computing concept at
the edge of the network for shifting the burdens of sensor nodes to Fog-
assisted smart gateways in order save energy consumption of sensor nodes.
In addition, the sensor nodes of these sensors were designed to achieve a
high level of energy efficiency while high-quality data is being collected and
transmitted. Each power consumption source of the sensor nodes was specif-
ically and carefully considered. Results from the design of energy efficient
health monitoring IoT systems show that the proposed sensor nodes for
ECG monitoring, fall detection, and blood glucose monitoring consume low
energy and are 20-50% more energy efficient than other state-of-the-art sen-
sor nodes. These sensor nodes could run for up to 70-155 hours depending
on the particular sensor node when using a 1000 mAh lithium battery.

In order to improve the quality of healthcare particularly for human fall,
diabetes and cardiovascular disease, advanced Fog-assisted health monitor-
ing IoT systems were designed and developed. These systems could monitor
contextual and e-health data such as ECG, blood glucose, body motion,
body temperature, room temperature, and air quality in real-time without
infringing healthcare requirements of latency, security, and high-quality sig-
nals. In addition, these systems equipped with light-weight algorithms such
as QT length extraction, fall detection, and activity status categorization
could accurately analyze the data in real-time. The results show that the
proposed systems are reliable and they are a promising solution for over-
coming the existing challenges of health monitoring systems particularly in
relation to diabetes, cardiovascular disease, and human fall.
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Chapter 9

Overview of Original
Publications

This chapter provides an overview of the original published articles which
have been included in the thesis.

9.1 Paper I: Fog Computing in Healthcare Inter-
net of things: A Case Study on ECG Feature
Extraction

In this paper, an energy-efficient IoT-based system architecture leveraging
the Fog concept is proposed. A convergent network of smart gateways is
specifically proposed where each gateway is equipped with Fog computing
services as a core feature of the system architecture. The paper presented
a complete architecture (i.e., physical and operational structures) of these
smart gateways. These smart gateways can support many types of sen-
sor nodes using different wireless communication protocols. Via the system
architecture, advanced services can be deployed to improve the quality of
services. For instance, the proposed algorithm for ECG feature extraction
and other data processing methods can be implemented at the Fog-assisted
gateway to provide real-time analyses and utilize network bandwidth effi-
ciently. In detail, ECG features such as heart rate, P wave, and T wave
can be extracted, analyzed and monitored in real-time. When these ECG
features are abnormal, caregivers are informed in real-time. In addition, the
system architecture and Fog services help to save the energy consumption of
sensor nodes by shifting the burdens of the sensor nodes to smart gateways.

Author’s contribution: The author is the main author of this paper.
The author proposed and implemented the complete Fog-assisted IoT-based
system for remote health monitoring. In addition, the author designed a
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low-latency algorithm for ECG feature detection. The author analyzed and
evaluated latency and network bandwidth of the systems with and without
Fog computing. Furthermore, the author augmented Fog-assisted gateway’s
services.

9.2 Paper II: Low-cost Fog-assisted Health-care
IoT System with Energy-efficient Sensor Nodes

In this paper, a low-cost Fog-assisted IoT-based system for health moni-
toring is proposed. The system comprises sensor nodes, Fog-assisted smart
gateways, a back-end system with terminals such as a web browser and
a mobile application. A wearable sensor node collects both e-health data
(e.g., body temperature and Electrocardiography) and contextual data such
as room temperature and humidity. Then, it sends the data to Fog-assisted
smart gateway for further processing. The proposed sensor node is wearable,
low-cost and energy-efficient. When using a 1000 mAh battery, the sensor
node can operate for up to 155 hours. Fog-assisted gateways combining
with Cloud servers proffer many advanced services such as a categorization
service, channel managing, and data processing for improving the quality of
healthcare service. For instance, these services help to reduce latency and
avoid data corruption during transmission. In addition, the system con-
stantly checks the patient’s heart rate which is extracted from ECG. When
the heart rate is abnormal, the system will inform caregivers in real-time.

Author’s contribution: The author is the main author of this paper.
The author proposed and implemented the complete Fog-assisted IoT sys-
tem based on nRF for remote health monitoring. The author designed and
built energy-efficient wearable sensor nodes. Furthermore, the author pro-
posed and implemented the Fog-assisted gateway and its augmented services
(e.g., data processing, categorization and channel managing). The author
configured the Cloud servers and built a mobile application for monitoring
ECG and receiving push notification messages in real-time.

9.3 Paper III: Exploiting Smart E-health Gate-
ways at the Edge of Healthcare Internet-of-
things: a Fog Computing Approach

This paper presents a smart e-health IoT system which exploits Fog com-

puting at the edge of the network for improving the quality of services. The

paper provides proof of the concepts of healthcare services at Fog-assisted

gateways such as embedded data mining, real-time data processing, syntac-
tic interoperability, and security. The paper demonstrates that Fog com-
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puting approaches are practical solutions for challenges in IoT-based health
monitoring systems. For instance, the system architecture and Fog services
help to enhance the security level, save energy consumption of sensor nodes,
and efficiently utilize network bandwidth. In addition, the system provides
early warning score services which analyze e-health data and send informa-
tion to caregivers about abnormalities.

The main contribution of this paper is presented as follows:

e Demonstrating the feasibility of practically applying Fog computing
into the existing IoT-based health monitoring system

e Providing the proof of the concept of healthcare services at Fog assisted
gateways and enhancing the existing healthcare services

e Presenting mobility and interoperability support in Fog-assisted smart
gateways

e Presenting a case study of an early warning score in Fog-based systems
for healthcare monitoring

Author’s contribution: The author is the second author of this paper.
The author implemented the sensor nodes and Fog-assisted smart gateways.
In detail, the author constructed several e-health and contextual sensor
nodes which use different communication protocols such as 6LoWPAN, Blue-
tooth, and Wi-Fi. In order to support these protocols, the author designed
and implemented both the physical and operational structure of the Fog-
assisted smart gateways. In addition, the author designed and implemented
several Fog-based services such as interoperability, security, data filtering,
data compression and local data storage. The author partly built the early
warning score system. Furthermore, via practical experiments, the author
demonstrated the possibility of saving the energy consumption of sensor
nodes by shifting the burdens of sensor nodes to Fog-assisted gateways.

9.4 Paper 1V: Fog Computing Approach for Mo-
bility Support in Internet-of-Things Systems

In this paper, a Fog-based approach for mobility support in health monitor-
ing IoT systems is presented. The proposed Fog computing approach has
a handover mechanism which keeps the connection between sensor nodes
and gateways with a low latency even though sensor nodes moves between
several coverage areas of the system. Furthermore, the handover mechanism
is able to handle oscillating nodes which move back and forth between the
coverage areas of gateways over a short time period. In the proposed ap-
proach, heavy computation tasks are shifted to Fog-assisted smart gateway
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in order to save energy consumption in the sensor nodes and maintain the
high-quality services. Results from experiments show that the latency of the
Fog-based approach is 10% - 50% less than other state-of-the-art approaches
for mobility support.

Author’s contribution: The author is the main author of this paper. In
this paper, the author discusses the mobility type in IoT systems and an-
alyzes important metrics used in handover mechanism especially for Wi-Fi
connection. The author designed and built the complete Fog-based health
motoring system consisting of sensor nodes, Fog-assisted smart gateways
and Cloud servers with terminals. In addition, the author designed, imple-
mented, and evaluated the Fog-based approach for mobility support.

9.5 Paper V: IoT-based Continuous Glucose Mon-
itoring System: A Feasibility Study

This paper presents an IoT-based system for continuous glucose monitoring.
Via the system, caregivers can monitor glucose levels from many patients
simultaneously and remotely in real-time while the patient’s movements are
not limited or intervened. The proposed system provides many advanced
services (e.g., local distributed data storage) at smart mobile gateways to
improve the quality of healthcare services. Historical and current motion-
related data in particular can be accessed at any time remotely even though
the connection between gateways and Cloud servers is occasionally inter-
rupted. In addition, the system sends push notification messages to inform
responsible persons such as caregivers when abnormalities such as high blood
glucose level occur. In this paper, a wearable sensor device using the nRF
protocol for glucose monitoring and its energy harvesting unit are proposed.
The sensor device is energy-efficient with 1.4 mA current consumption.
The main contributions of this paper are:

e proposing a smart loT-based system architecture using a smartphone-
based gateway for remote continuous glucose monitoring in real-time

e designing an energy harvesting unit for a wearable glucose monitoring
sensor device

e proposing an energy-efficient wearable sensor device for glucose and
body temperature monitoring

Author’s contribution: The author is the primary author of this paper.
The author proposed and implemented the complete smart loT-based system
for remote continuous glucose monitoring. Specifically, the author designed
and built energy-efficient wearable sensor devices for collecting glucose and
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body temperature in real-time. Furthermore, the author proposed and im-
plemented a smart mobile gateway and its advanced services (e.g., local
distributed data storage, push notification, data filtering and localhost with
user interface). The author configured the Cloud servers and constructed a
mobile application to monitor data and receive push notification messages
in real-time.

9.6 Paper VI: Energy-efficient Wearable Sensor
Node for IoT-based Fall Detection Systems

In this paper, an IoT-based fall detection system is proposed and imple-
mented. The completed system consists of sensor nodes, smart gateways
and Cloud servers with end-user terminals. The sensor node collects three-
dimensional (3-D) acceleration, 3-D angular velocity and, 3-D magnetic
forces and then sends to the smart gateway. The wearable sensor node
is energy-efficient, small, light-weight and does not interfere with a user’s
daily activity. A smart gateway can detect a fall case in real-time with
a light-weight fall detection algorithm. It then sends instant messages to
inform caregivers. In order to achieve a high level of energy efficiency, we
set up different configurations of sensor nodes. Each configuration had a
specific sensor or a group of sensors which used several sampling rates to
collect data. Several types of data communication protocols were applied
such as SPI, I12C, and UART which are used for connecting sensors and a
micro-controller. The experiments included several transmission ranges and
types (e.g., line-of-sight and blocked path transmissions) between the sensor
nodes and the gateway. We evaluated the energy consumption of the sensor
nodes in these cases. In addition, acceleration and angular velocity in differ-
ent cases such as sit still, sit and fall, stand still, stand and fall, stand and
fall forward, stand and fall backward, and walk and fall were collected and
analyzed. The experimental results showed that the proposed sensor node
is energy-efficient and it can continuously work for up to 76 hours with a
1000 mAh lithium battery.

Author’s contribution: The author is the primary author of this paper.
The author proposed and implemented the complete fall detection IoT-based
system. The author constructed energy-efficient and wearable sensor nodes.
The author proposed a light-weight fall detection algorithm at a smart gate-
way. In addition, the author evaluated and analyzed the energy consumption
of sensor nodes in different situations and configurations. Furthermore, the
author provided a comprehensive discussion to improve the energy efficiency
of a sensor node for the fall detection system.
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9.7 Paper VII: Energy-efficient Fog-assisted IoT
System for Monitoring Diabetic Patients with
Cardiovascular Disease

In this paper, a Fog-assisted IoT system for monitoring diabetic patients
with cardiovascular disease is presented. The system consists of sensor
nodes, Fog-assisted smart gateways and a Cloud layer with terminals. Sensor
nodes can be categorized into contextual and e-health nodes. The contex-
tual sensor node is used to collect room temperature, humidity, air quality
and other context-related data. The e-health sensor node is able to acquire
Electrocardiography (ECG), blood glucose, body temperature, skin humid-
ity and motion-related data (i.e., 3-D angular velocity and 3-D acceleration).
In this paper, algorithms for ECG feature extraction, fall detection, and sta-
tus activities categorization are presented and implemented at Fog-assisted
smart gateways. When these algorithms detect abnormalities, the push no-
tification service is triggered to inform caregivers. The connection between
sensor nodes and smart gateways are secured via a light-weight cryptography
algorithm which causes a light increase in the power consumption of sensor
nodes. Furthermore, energy-efficient wearable sensor nodes are proposed in
this paper. In most of cases, the sensor nodes can work for up to 157 hours
in a daily working or living environment such as office or apartment. In
addition, we analyzed and evaluated the power consumption, and latency of
sensor nodes in different scenarios.
The main contributions of this paper are:

e Proposing and implementing a complete Fog-assisted healthcare IoT
system

e Designing a light-weight algorithm for ECG feature extraction

e Proposing a light-weight algorithm for fall detection and activity status
categorization

e Designing an energy-efficient wearable sensor node for collecting ECG,
glucose and motion-related data

e Analyzing e-health data in different activity statuses

e Analyzing and evaluating energy consumption of sensor nodes in dif-
ferent scenarios

Author’s contribution: In this paper, the author is the main author and
contributor of all the contributions mentioned except for the ECG feature
extraction algorithm.
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Abstract—Internet of Things technology provides a competent
and structured approach to improve health and wellbeing of
mankind. One of the feasible ways to offer healthcare services
based on IoT is to monitor humans health in real-time using
ubiquitous health monitoring systems which have the ability to
acquire bio-signals from sensor nodes and send the data to the
gateway via a particular wireless communication protocol. The
real-time data is then transmitted to a remote cloud server
for real-time processing, visualization, and diagnosis. In this
paper, we enhance such a health monitoring system by exploiting
the concept of fog computing at smart gateways providing
advanced techniques and services such as embedded data mining,
distributed storage, and notification service at the edge of net-
work. Particularly, we choose Electrocardiogram (ECG) feature
extraction as the case study as it plays an important role in
diagnosis of many cardiac diseases. ECG signals are analyzed in
smart gateways with features extracted including heart rate, P
wave and T wave via a flexible template based on a lightweight
wavelet transform mechanism. Qur experimental results reveal
that fog computing helps achieving more than 90% bandwidth
efficiency and offering low-latency real time response at the edge
of the network.

Keywords—Internet of Things, Healthcare, Smart Gateway,
Sensor Network, Heart Rate, ECG feature extraction, Fog Com-
puting.

I. INTRODUCTION

Internet of Things (IoT) can be considered as a dynamic
global network infrastructure where objects with unique iden-
tities are interconnected for enabling advanced services. Wire-
less Body Area Networks (WBAN), which is one of the
fundamental technologies in healthcare IoT, is ubiquitous used
for acquiring different vital signs such as Electrocardiogram
(ECG), Electromyography (EMG), body temperature, blood
pressure in a real-time, unobtrusive and efficient way. WBAN
can be established from a multitude of implantable or wearable
sensor nodes to sense and transmit the data over a wire-
less network via communication protocols such as Wi-Fi or
IEEE.802.15.4 to end users for visualization and diagnosis.
Low-cost and power efficient WBAN-based systems play
important roles in various areas of healthcare environments
from monitoring, clinical care to chronic disease management
and disease prevention. For example, these systems are used
for monitoring and treating many cardiovascular diseases.

In many health monitoring systems, remote cloud servers
have been used for storing and processing big data collected
from a large number of sensor nodes due to cloud computing
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benefits such as low-cost services, capability of large data
storage volume and superfluous maintenance cost. However,
there exists many challenges in these systems regarding
latency-sensitive issues, location awareness and large data
transmission. Undoubtedly, the more data is transmitted over
a network, the higher possibility of error occurs because bit
error, data transmission latency and packet dropping possi-
bility are proportional with the volume of transmitted data.
Especially, in case of emergency, a single error in analyzed
data causes inaccurate treatment decisions and affect crucially
to a human life. Therefore, there is a need of reducing the
number of transmitted data over a network, on the other hand,
quality of service (QoS) is still guaranteed.

A proper solution for fulfilling the requirement is the provi-
sion of an extra layer in between a conventional gateway and a
remote cloud server. The extra layer denoted as fog layer helps
diminishing the volume of transmitted data for guaranteeing
QoS, and saving network bandwidth by preprocessing data.
In addition, fog computing offers advanced services at the
edge of the network and reduces the burden of cloud [1]. Fog
computing not only brings the cloud computing paradigm to
the edge of the network but also addresses unsupported or unfit
fundamentals in the cloud computing paradigm. For instance,
edge location, low latency, location awareness, geographical
distribution, interoperability, and support for on-line analytics
are some of fundamental characteristics of fog computing. Due
to these characteristics, fog computing can be suitable for sup-
porting human health monitoring WBAN-based systems which
have features of low energy, low bandwidth, low processing
power and include hardware constrained nodes. To this end,
a combination of WBAN-based system, cloud computing and
fog computing can be a sustainable solution for challenges in
the current IoT healthcare systems.

In this paper, we present an efficient loT-enabled healthcare
system architecture which benefits from the concept of fog
computing. Using this architecture, we demonstrate the effec-
tiveness of fog computing in IoT-based healthcare systems in
terms of bandwidth utilization, QoS assurance, and emergency
notification. In addition, we utilize ECG feature extraction at
the edge of the network in our implementation as a case study.
In summary, the key contributions of this work are as follows:

o Low-latency data processing and low bandwidth utiliza-

tion at smart gateways (i.e., edge of the network)
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« Support various sensor node types, communication pro-
tocols, operating systems at smart gateways (i.e., hetero-
geneity, and interoperability)

« Real-time rapid interaction at smart gateways in case of
emergency (i.e., real-time push notification)

« Real-time and on-line analytic at the fog layer even in
case of poor connection with the cloud (i.e., geographical
distribution, location awareness, graphical user interface)

The rest of the paper is organized as follows: In Section II,

the related work and the motivation of the paper are discussed.
The concept of an e-health IoT-based system and a smart e-
health gateway are presented in section III. Section IV presents
an implementation of the smart loT-based gateway. Demon-
strations and experimental results are provided in section V.
Finally, section VI concludes the paper and present discussion
for further researching.

II. RELATED WORK AND MOTIVATION

There have been many efforts in designing smart gateways
for healthcare applications. For instance, Chen et al. [2] intro-
duce a smart gateway for health care system using wireless
sensor network. The proposed gateway acting as a bridge
between wireless sensor network and public communication
networks has a data decision system, a lightweight database
and an ability to notify caregivers in case of emergency. In
addition, the gateway provides a way of diminishing a remote
server’s burden by applying the request and response message
method.

Mohapatra et al. discuss a hybrid framework for remote
patient monitoring via a sensor cloud [3]. Advantages of using
a sensor cloud for patient health status monitoring is demon-
strated in their proposed system. In [4], authors present a
cloud computing solution for patient’s data collection in health
care institutions. The proposed system uses sensors attached to
medical equipments to collect patient data and sends the data
to cloud for providing ubiquitous access. Yang et al. present
a personal health monitoring gateway based on smart phone
[5]. The proposed gateway uses a Bluetooth interface to upload
gathered data to remote servers. In a work presented in [6],
the sensor network system uses sensing servers as gateways in
the system. However, the proposal is expensive, poor scalable,
and inefficient for the number of IoT-based applications. In
[7], authors discuss a prototype of a smart IPv6 Low power
personal area network (6LoWPAN) border router based on
Hidden Markov Model for making decisions of health states.
In [8], authors propose a mobile gateway for ubiquitous health
care system using ZigBee and Bluetooth. The gateway tenders
various services such as alarms and analysis of medical data.
However, the proposed gateway is inefficient in term of power
consumption and it cannot be considered as a novel gateway
for several IoT-based applications. Zhong et al. present a
gateway based on a mobile phone for connecting sensor
network nodes and devices supporting CDMA or Bluetooth
[9]. In another work [10], the proposed architecture acquire
data via multiple personal health devices via USB, ZigBee or
Bluetooth.
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The topic of body area sensor network systems has attracted
a lot of research efforts in recent years. Especially, the number
of works in the healthcare domain has dramatically increased
to explore several undiscovered aspects or overcome existing
drawbacks in health monitoring systems. With the purpose of
novel health monitoring systems provision, some of works try
to expand current systems with more services and functions
while others attempt to propose new platforms or methods.
However, as described in the aforementioned examples, a
large number of systems focus on ZigBee whereas it is a
challenge to assure the quality of service in ZigBee when
monitoring streaming bio-signals such as ECG, EMG and
Electroencephalography (EEG) as the maximum data rate
of ZigBee is 250 kbps. Inversely, Bluetooth technology can
overcome problems of low data rate in ZigBee and other
short range communication protocols. Nevertheless, it might
be more difficult to design a gateway based on Bluetooth
technology for supporting mobility and acquiring data from
multiple targets [8]. The discussed systems basically dispense
conventional gateways for collecting data from nodes and
sending these data to remote servers. More precisely, none of
these works have considered to fully take advantage of the fog
computing paradigm and bring intelligence to the gateways.

Distributed
Database

Fig. 1. Fog computing concept

The main motivation of this paper is to enhance a health
monitoring IoT-based systems used in diversified environments
such as home and hospital by providing a smart gateway [11]
with the fog layer having quantities of advanced services.
The role of fog computing is illustrated in Fig. 1. It is a
middle computing layer between sensors and cloud computing
which consists of gateways and distributed databases. Fog
computing concept is the extension of the cloud computing
paradigm in a view of pointing applications and domains
which the paradigm of the cloud does not fully support. Some
of them consist of i) real-time applications including video
conference applications, and Voice over Internet Protocol
(VoIP) require very low latency because substantial delays may
cause diminishing QoS. ii) large data applications collecting a



ton of data from numerous sensors and transmitting the data
over networks stand in need of very high bandwidth [12]. iii)
monitoring applications, which operate unremittingly, require
uninterrupted data in case of losing connectivity between
monitoring systems and the cloud [13]. Characteristics of
these aforementioned applications are similar to characteristics
of real-time health monitoring systems. In such systems, a
large amount data are acquired from a multitude of bio and
environmental sensors. Then, the large data is transmitted for
networks for being ultimately remote monitoring by end users
such as care-givers or medical doctors. Therefore, fog com-
puting fits these systems marvellously. It is acknowledgeable
that instead of replacing or lessening the role of the cloud in
IoT applications, fog computing is completely cooperated and
compatible with the cloud to enhance existing loT applications
from the aspects of location awareness, low latency, scalability,
real-time interactions, heterogeneity and interoperability [14].

Electrooculography (EOG), EMG, EEG, ECG are important
signals gathered by monitoring systems for diagnosing human
health in both daily activities and medical abnormalities. How-
ever, in this paper, only a case study of ECG is addressed to
present the concept of fog computing and its benefits in health
monitoring IoT applications. In order to efficiently utilize
network bandwidth between a health monitoring system’s
gateway and a cloud server, we present a flexible template with
light-weight algorithms for extracting heart rate, P and T waves
which can be presented at an end-user’s browser. The extracted
heart rate is presented at a secure graphical user interface and
fed to our warning service for real-time notification in cases
of emergency. In addition, a secure graphical user interface at
the smart gateway is used for representing result of P, T waves
after preprocessing and raw ECG data in graphical waveforms
for real-time visualization and analytics. Furthermore, we
introduce a method of providing gateway interoperability in
the interest of supporting Ethernet, Wi-Fi, Bluetooth, ZigBee
and 6LoWPAN.

III. SYSTEM AND GATEWAY ARCHITECTURE

A health monitoring system often comprises of several
devices to collect bio-data from a human body and transmit
the data to a processing or visualization device via wires
and cables for monitoring and diagnosis. Several drawbacks
exist in such system such as unsupported mobility and remote
monitoring which cause many inconveniences for both patients
and doctors. For example, health of diabetes and cardiovaculus
needs to be continuously monitored 24/7. When the conven-
tional system is applied for this procedure, these patients must
carry many devices and cables during long period of moni-
toring hours and incorrect data is acquired due to movement
activities of these patients. A health monitoring system based
on WBAN can handle these drawbacks effectively through its
characteristics of mobility and wireless transmission. Although
there are different types of health monitoring WBAN-based
systems designed for particular bio-data and diseases, they
have three main parts including sensor nodes, a gateway and
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a back-end part. The detailed description of these components
is presented in the following.

EEG
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Blood Prcssurgﬂ o) |ECG Remote Serve @ Cloud
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Fig. 2. The loT-based health monitoring system architecture

1) Medical sensor node: is a composition of several phys-
ical devices including implantable or wearable sensors which
are integrated to a tiny wireless module for gathering contex-
tual and medical data such as temperature, location, humidity,
Sp02, ECG, EMG, and EEG and then transmitting the data
to a gateway via a specific communication protocol such
as Wi-Fi, Bluetooth, ZigBee or 6LoWPAN. Depending on
treatment methods for different diseases, particular bio-data
and the contextual data are intentionally focused in various
health monitoring WBAN-based systems.

2) Gateway: plays an important role in such a WBAN-
based system because it connects a profusion of sensor nodes
with a remote cloud server. When a gateway does not function
properly or bottle-neck occurs at a gateway, the whole system
will be affected. As a result, real-time bio-data cannot be
appropriately accessed at a cloud server.

3) Back-end part: consists of a cloud server and back-
services which can be different from systems to systems
depending on technologies and services offered. A cloud
server is used for storing, processing and broadcasting data
while back-end services are responsible for representing real-
time data for analysis and visualization.

The current human health monitoring WBAN-based sys-
tems containing several existing challenges can be augmented
for shortening the gap towards the novelty level. In order
to achieve this target, smart gateways with fog computing
substituting for gateways in conventional IoT-based health
monitoring systems are introduced. Our proposed IoT-based
health monitoring system architecture is shown in Fig. 2.

A. Smart gateway architecture

In addition to perform functionalities of conventional gate-
ways, the smart gateway should have abilities to offer a high
level of advanced services in the fog computing platform. The
smart gateway architecture including physical and operational
structures is elaborately designed and described in the follow-
ing.

The physical gateway structure shown in Fig. 3 includes
several embedded devices which are an embedded router and



one or several sink nodes. The embedded router supports
some communication protocols such as Bluetooth Low Power
(BLE), Wi-Fi and Ethernet but it cannot offer any possibility to
connect with sensor nodes via low power wireless communica-
tion protocols. With the purpose of handling this challenge and
achieving interoperability, sink nodes, which offers 6LoOWPAN
and other low power communication protocols are integrated
into the gateway. The number of sink nodes does not limit
within one or several ones but it can reach to dozens or even
a hundred depending on specifications of the USB extension,
SPI, 12C connections and the Internet service provider. For
example, the maximum tier for USB extension is tier 7 and
the gogo6 service [15] provider allows a maximum of 256
sink nodes per a network.
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Fig. 3. Physical gateway structure

The embedded router contains different components such
as processor, extendable SD card, USB connection, Ethernet,
GPIO with SPI and I2C support, and a wireless connection
module. Therefore, it can be able to run an operating system
and process some heavy computing, which are clarified via the
operational structure shown in Fig. 4. It presents the gateway
operational structure comprising of a fog computing service
layer, an embedded operating system and a hardware layer.
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Fig. 4. Operational gateway structure

1) Hardware layer: A hardware layer operates as middle-
ware between an embedded operating system and all phys-
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ical components. Middleware receives the operating systems
instructions for allocating physical hardware to gateway ser-
vices. The hardware layer allows only one service to have a
permission to access the component at a time. When two or
more services need to access the same component, the rest
must wait for its turn to acquire permission.

2) Embedded operating system: There are two types of
embedded operating system used in a smart gateway including
one type in the embedded router and another type in sink
nodes. The embedded operating system in a sink node must
be light-weight, compact, and does not require specification
of powerful hardware. Inversely, the operating system in the
embedded gateway does not need to be very compact because
it has to provide various tools, and management mechanisms
to ensure that real-time data is transmitted into a remote cloud
server and all fog computing service function properly.

3) Fog computing service layer: The fog computing service
layer plays the most essential role in a gateway because
it contains a profusion of advanced services for not only
embodying functionalities of a conventional gateway but also
performing characteristics of fog computing. Details of these
services are described in the following.

Distributed databases contain a static look-up storage, a
general purpose storage, and a synchronized storage. The static
look-up storage contains static and essential data required
for several services and algorithms (e.g., security with user-
name and password, references for data accessing and access
management); therefore, the static database is kept intact for
all cases except for the case of system administrators. The
general purpose storage storing high data rate incoming data
is used for both the fog computing service and graphical
user interface. The general purpose database size can vary
depending on specific applications. The synchronized storage
is as an inventory of temporarily environmental data and
bio-data which are sent from sensor nodes with a low data
rate such as temperature, and humidity. Furthermore, it has
responsibility for updating data at a remote server.

ECG feature extraction: ECG feature extraction has been
processed and carried in many researches due to its important
role in many applications, especially in healthcare domain. For
example, in addition to help doctors monitoring and giving
treatments to many diseases related to cardiovascular more
efficiently, it helps to detect some abnormalities of the heart.
Heart rate is one of the most concerned features extracted
from ECG because it provides an overview of the heart
which is necessary for emergency services and diagnosing
many diseases. Furthermore, via heart rate information, some
instant methods might be applied to keep the heart operating
normally. For instance, a workout person can reduce the
workout intensity level when heart rate is very high because
heart rate is proportional with the workout intensity.

In order to extract the ECG feature at a smart gateway,
we design a flexible template shown in Fig. 5. The tem-
plate contains three main parts including ECG preprocessing,
wavelet transformation, and ECG feature extraction. The ECG
preprocessing part contains some filters such as notch filter



or moving average filter in pursuance of movement artifact
removal. The wavelet transformation part encompasses fast
computation methods and wavelet algorithms. Finally, the
ECG extraction part is used for applying various algorithms for
extracting different data such as P-R interval, Q-T interval, S-T
segment, QRS area and QRS energy. In this paper, we design
a light-weight algorithm which is suitable with requirements
of fast computation and low hardware resources consumption
with the purpose of extracting P wave, T wave and heart rate
from original ECG signals for keeping track of the heart’s
activities and verifying the smart gateway’s warning service.
The algorithm includes specifying a proper threshold value via
scanning the whole ECG input signals, extracting the number
of pulses via the help of the threshold value, and calculating
heart rate based on the formula given as

Heart rate = L [16]
R-R interval

The algorithm is designed in such a way that some parts of
the algorithm can be reused for extracting other data besides
R-R interval, P wave, T wave and heart rate. For instance,
steps of scanning ECG signals and the method of calculating
a threshold value are two reusable parts of the algorithm
although parameters of these methods may vary depending on
which parts of ECG signals, medical doctors want to diagnose.

R-R
Raw Movement Wavelet Threshold Peak II:E_T[VM :
ECG Artifact Transfor Estimation Detecti E
; N Beat
signal Removal -mation for R wave on
= Calcula-
tion
Threshold P wave Detection
Estimation
» for P wave
and T .
wave T wave Detection

Fig. 5. The ECG feature extraction template

Graphical user interface with access management:. The
interface can be used by end users such as caregivers, medical
doctors and system administrators for visualizing ECG and
other bio-data at the smart gateway. In order to have an access
to the gateway’s graphical user interface, a user must login
with his/her username and password which are created via
the access management service. The service has a mechanism
which categorizes end users into several groups depending on
their responsibilities. Data available for each group will be
different. For example, some sensitive data can be seen by
medical doctors while the data is unavailable to patients or
their relatives. The main reason for building this mechanism
is to avoid some unexpected situations related to patients
reaction during the disease treatment process. For example,
when a patient knows his/her current status health, the patient
may overreacts or has some strong emotions which may
cause bad effects for disease treatment. With the intention of
avoiding both the brute-force method and flooding the system’s
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database, a user only has three chances during 10 minutes to
login into the system. After three failed times, a user needs
to wait for extra 10 minutes for the next login. Due to the
limitation of the gateway’s resources, all recorded data are
stored in the database within 5 minutes. After that, the database
will be purged for storing new incoming data.

Real-time notification: The notification service is a real-
time notification to inform about abnormal situations. The
gateway sends some real-time signals to a remote cloud which
sends notification messages to an end users device when one
of three following cases occurs. Firstly, the smart gateway
does not receive any data from specific sensor nodes during a
particular period of time. Secondly, an internal temperature
of an embedded gateway or a sink node is higher than a
predefined threshold. Finally, heart rate is not in the range
of normal heart rate which is defined by American Heart
Association. Notification messages are categorized into three
groups having level 1, 2 and 3, respectively. Depending on
particular situations, the push notification generates different
messages with corresponding levels. For example, when the
temperature of the embedded gateway is 50, 60, and 70 Celsius
degrees, the push notification service sends warning messages
level 1, 2, and 3 to system administrators, respectively. The
higher warning level, the more urgent and critical the situation
is. Similarly, this mechanism is applied for other cases.

Location awareness: Location awareness, which is used for
providing information of geographical location of a device, is
supported in our system via a method of tracking a physical
MAC address of the systems gateway. Typically, a single
gateway is setup for serving one or server rooms in the same
corridor with the purpose of diminishing the complexity of
the location awareness service and enhancing QoS. Through
the location awareness service, the system administrators or
caregivers can properly detect a patient location without any
effort, which is necessary in case of emergency. In addition, the
service is in conjunction with a congestion recognition mech-
anism which is used for monitoring an amount of incoming
data of a gateway in an instant time in the direction of avoiding
possibilities of exceeding a gateways bandwidth limit. When
the amount of incoming data is too large, the service sends an
instant signal to the real-time notification service which then
notifies an administrator with real-time messages.

Heterogeneity and Interoperability: Cloud computing phys-
ical infrastructure can be described as a combination of homo-
geneous physical resources which are deployed and managed
in a centralized manner. In contrast, fog computing physical
infrastructure consist of heterogeneous resources managed in a
distributed manner. Therefore, fog computing has possibilities
of supporting interoperability which is an ability of serving
different devices in terms of various manufactures, models,
different operating systems and inconsistent communication
protocols. The gateway architecture is designed in a way of
supporting many operating systems and several versions of
an operating system type. For instance, different versions of
Linux can be installed as an operating system of a gateway.
Moreover, sensor nodes produced from various producers



including Texas Instrument, Zigduino, Arago Systems, and
Zolertia operating under inconsistent communication proto-
col standards such as Wi-Fi, 6LoWPAN, and Bluetooth can
connect with the gateway for establishing a complete hetero-
geneous wireless sensor network.

IP tunneling: 1P tunneling constructed by a combination
of router advertisement daemon and gogoc services is a gate-
way service for connecting 6LoWPAN with IPv4/IPv6. The
router advertisement daemon service has two main functions
including router advertisement provision and router solicitation
listening while the gogoc service is responsible for querying
a tunneling between a gateway and a tunnel server.

IV. SMART GATEWAY IMPLEMENTATION

Our smart gateway is built by combining various embedded
hardware including Pandaboard [17] and a 6LoWPAN sink
node, as shown in Fig. 6. Pandaboard is used in our imple-
mentation because it is constructed from the OMAP 4 platform
which is a power efficiency and high performance system-on-
chip. The processor of the OMAP 4 platform comprises of
dual-core ARM Cortex-A9 MPCore in which the speed of each
core is more than 1 GHz. The processor is suitable with our
application due to its characteristics such as power efficiency,
symmetric multiprocessing, hardware accelerator provision
(i.e., a programmable digital signal processor). Furthermore,
the platform supports non-volatile and volatile memories via
high performance and comprehensive controllers. Therefore,
external memory such as 64 GB SD card can be appended
into Pandaboard for serving as a system storage. Additionally,
Pandaboard is capable of dealing with different communi-
cation protocols such as Ethernet, Wi-Fi, and Bluetooth via
various interfaces and pre-integrated hardware modules.
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Fig. 6. Demonstration of our smart IoT-based healthcare gateway

Moreover, the OMAP4 platform supports different operating
systems and applications such as Symbian, Linux (LiMo, An-
droid, Ubuntu), and Windows Mobile. Convincingly, Ubuntu
is selected as the gateway’s operating system in our imple-
mentation due to its benefits including open-source operating
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system, various software support and high performance. In
addition, Linaro operating system, which is another embedded
Linux operating system, is installed in another gateway for
proving the gateway’s interoperability in terms of operating
system support. Furthermore, we experiment heterogeneity and
interoperability in our gateway by applying various hardware
including Arduino with Wi-Fi shield, TI CC2538, Zigduino,
Z1, and Arduino with HC-05 Bluetooth module as wireless
sensor network nodes for collecting and sending data to the
gateway via different communication protocols such as Wi-Fi,
6LoWPAN, ZigBee and Bluetooth.

MySQL comprising of sub-databases and tables is used as
a main inventory for storing configurations of services and
mechanisms, e-health and environmental data. The MySQL
ensures that the data in a remote server is always updated
regularly via the support of the third party tool (i.e., xXSQL
Lite database synchronization tool).
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Fig. 7. Four-level Discrete Wavelet Decomposition

In a direction of implementing fog computing in the smart
e-health gateway, many services and tools including gogoc,
tunslip, router advertisement, socket receiver, push notifica-
tion, graphical interface with access management are applied
or constructed.

With a view of gateway workload reduction, a push noti-
fication service is completely implemented in a cloud server
by using WebSocket. In the gateway, only a push notification
mechanism is created. When the push notification service in
cloud receives a desired signal from the gateway, it sends a
notification to end users or system administrators.

With the interest of ECG heart rate, P wave, T wave
extraction, we applied our proposed template. As mentioned
above, the template has several phases including movement ar-
tifact removal, wavelet transform and ECG feature extraction.
Initially, the baseline drift elimination step is implemented
with a 20-points moving average filter. Then Discrete Wavelet
Decomposition (DWT) with db 4 wavelet, which is in the
family of Daubechies, is used as the mother wavelet. With the
purpose of achieving proper results, a 4-level DWT shown in



Fig. 7, is applied. Finally, R-R interval value, P wave, T wave
and heart rate can be extracted.

Graphical user interface is built by MySQL database, PHP
used as server-side scripting and JavaScript (JQuery) for
HTML content generation such as plotting charts. All mecha-
nisms for access management, verifying username, password
and checking the number of login times are built in PHP with
the assistance of MySQL database.

A 6LoWPAN sink node consists of three components such
as the Olimex Ethernet module [18], the TI Smart RF06
board, and the CC2538 module [19], shown in Fig. 6. The
Ethernet module is used for data communicating between the
6LoWPAN sink node and Pandaboard. The CC2538 module
takes responsibility for receiving data from sensor nodes
through 6LoWPAN while the TI Smart RF06 board is used
for interface provision and debugging.

V. EXPERIMENTAL RESULTS AND DEMONSTRATION

According to MIT-BIT Arrhythmia database [20], ECG
signals were recorded from 47 subjects by two-channel ambu-
latory ECG system and the recordings were digitized at 360
samples per second per channel with 11-bit resolution over
a 10 mV range. In addition, the database recorded a large
number of statistics and records related to ECG data such as a
total number of normal heart beats and other types heat beats
during 30 minutes recording time of each person. Due to these
statistics, ECG data in the MIT-BIT Arrhythmia database is
a suitable candidate for our experiments. Initially, ECG data
was stored in the gateway storage and then processed with the
fog computing service. Finally, ECG features (e.g., heart rate,
P wave and T wave) were extracted. In order to have a closer
view to our proposed template functionality, we applied the file
”101” from MIT-BIT Arrhythmia database into the template.
The result is shown in Fig. 8.
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Fig. 8. ECG processing implementation

With the intention of presenting benefits of fog comput-
ing towards a healthcare 10T system, latency of transmitting
various raw ECG data from the gateway to a remote cloud
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is compared with a total latency of processing the fog com-
puting service and transmitting preprocessed ECG data. The
comparison results shown in Table I are achieved via Wi-
Fi whose information such as network condition, data rate,
frequency and link quality are provided in Table II. In case
of fog computing, a volume of data transmitted over Wi-Fi is
small on the grounds that processed data including heart rate,
P wave, and T wave is transmitted.

TABLE I
DATA RATE AND LATENCY COMPARISON
E:léd Raw data Fog computing Improvement
(Mb/s) Data Latenc
Data  Latency| Data Process- Transmit; size re duc—y
size(B) (ms) size(B) ing(ms) ting(ms) | reduc- .
. tion(%)
tion(%)
18 106.6 <6.6 235
12 240000 152.2 <15840~ 963  <9.5 >93 >30.5
9 213.3 <135 >48.5

TABLE I
INFORMATION OF WI-FI NETWORK

Network condition — Data rate  Frequency  Link quality
Not busy 18Mbit/s  2.437GHz 53/70
Busy 12Mbit/s  2.412GHz 51/70
Busiest OMbit/s  2.402GHz 50/70
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Fig. 9. ECG waveforms

Throughout these reported results, the fog computing ser-
vice is efficient in terms of transmission latency minimization.
In addition, the fog computing service helps to reduce the
number of data transmitted over a network. As a consequence,
a volume of transmitted data reduce dramatically, which leads
to efficient utilization of network bandwidth.

As mentioned above, users can log in to our gateway
graphical user interface by their usernames and passwords for
visualizing and diagnosing real-time ECG data shown in Fig.
9, P wave, T wave and heart rate. In this experiment, instead of
using ECG data from the MIT-BIT Arrhythmia database, ECG
data is collected from nodes and sent to the smart gateway via
Wi-Fi. In addition, the gateway user interface is designed for



achieving user friendliness with several functional buttons for
manipulating ECG waveforms.

VI. CONCLUSION AND DISCUSSION

In this paper, we present fog computing at a gateway for
augmenting health monitoring systems. We have implemented
fog computing services including interoperability, distributed
database, real-time notification mechanism, location awareness
and graphical user interface with access management. In ad-
dition, we introduce a flexible, light-weight template for ECG
feature (e.g. heart rate, P wave, and T wave) extraction. The
demonstration and results show the achievements provided by
the smart gateway. The template based on wavelet transform
can be used for extracting various ECG features by detecting
different parts of ECG waveforms (e.g. PR interval, and QT
interval), or extracting EMG, EEG features.
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Abstract—A better lifestyle starts with a healthy heart. Unfor-
tunately, millions of people around the world are either directly
affected by heart diseases such as coronary artery disease and
heart muscle disease (Cardiomyopathy), or are indirectly having
heart-related problems like heart attack and/or heart rate irreg-
ularity. Monitoring and analyzing these heart conditions in some
cases could save a life if proper actions are taken accordingly.
A widely used method to monitor these heart conditions is
to use ECG or electrocardiography. However, devices used for
ECG are costly, energy inefficient, bulky, and mostly limited to
the ambulatory environment. With the advancement and higher
affordability of Internet of Things (IoT), it is possible to establish
better health-care by providing real-time monitoring and analysis
of ECG. In this paper, we present a low-cost health monitoring
system that provides continuous remote monitoring of ECG
together with automatic analysis and notification. The system
consists of energy-efficient sensor nodes and a fog layer altogether
taking advantage of IoT. The sensor nodes collect and wirelessly
transmit ECG, respiration rate, and body temperature to a smart
gateway which can be accessed by appropriate care-givers. In
addition, the system can represent the collected data in useful
ways, perform automatic decision making and provide many
advanced services such as real-time notifications for immediate
attention.

Keywords— Internet-of-Things, low-cost, wearable, fog

computing, health monitoring, energy-efficient, low energy.

I. INTRODUCTION

More than 422 million people in the world are related to
diabetes and cardiovascular diseases which can directly or
indirectly cause serious consequences such as congestive heart
failure, other irregular heart rhythms, heart attack, stroke, and
kidney failure [1, 2]. Delay or incorrectness in the treatment
of these abnormalities can endanger a patient. Therefore,
it is necessary to monitor these patients’ health and notify
abnormal situations to doctors in real-time. Continuous health
monitoring systems can be considered as a solution for this
issue. However, they are often high-cost with several limita-
tions such as non-support advanced services including remote
monitoring, or real-time notification.

Internet of Things (IoT) can be described as a convergent
network infrastructure where physical and virtual objects are
interconnected together [3]. With the involvement of many ad-
vanced technologies such as wireless sensor network, wireless
body area network, wearable and implanted sensor, IoT shows
its capabilities of solving existing problems or difficulties

978-1-5090-4372-9/17/$31.00 ©2017 IEEE

in health-care monitoring systems. It can help to improve
the quality of service i.e. offering remote monitoring, push
notification whilst reducing health-care costs.

In order to monitor patients’ health, wireless sensor devices
(i.e. implanted or wearable sensors) acquiring bio-signals
from a human body and wirelessly sending the signals to a
gateway are popularly applied. These sensor devices are small
and resource constraint (i.e. limited power supply capacity).
Accordingly, it is important to achieve some levels of energy
efficiency in sensor devices. However, it is a challenge to
reduce power consumption of sensor devices dramatically
while maintaining the high quality of signals. Also, when high
resolution signals are needed, it costs high power consumption
for data acquisition and wireless transmission.

In conventional IoT-based systems, primary tasks of gate-
ways are data receiving and transmitting. To improve the
quality of health-care service, gateways can be upgraded by
the assistance of Fog computing which can be described as a
virtual platform extending the Cloud computing paradigm to
the edge of the network and reducing burdens of Cloud [4—
6]. For example, diversified advanced services such as edge
location, low latency, geographical distribution, and mobility
support can be provided with the assistance of Fog.

In order to reduce health-care costs and improve the quality
of health-care service, we propose a novel low-cost remote
health monitoring IoT-based system with Fog computing and
energy-efficient wearable sensor devices. The wearable device,
which is small and low-cost, is able to collect and wirelessly
transmit the large number of high resolution signals (i.e.
ECG and respiration rate) to a smart gateway. Furthermore,
the wearable device’s power consumption is dramatically
reduced by a combination of hardware design and software-
based techniques. In the system, smart gateways are integrated
with the Fog layer providing a large number of advanced
services such as data analysis and data processing at gateways,
decision making, notifications and local data storage. Real-
time decision making is regularly carried out for checking
abnormal situations. When abnormality such as too low or
high heart rate is detected, it sends real-time notifications to
the patient and his/her doctor. Accordingly, the early stage
of deterioration can be timely detected. Last but not least,
doctors can remotely monitor patients’ health represented in
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text and graphical forms in real-time via an end-terminal i.e. a
smart-phone or a computer’s browser. To summarize, the key
contributions of this work are as follows:

o A design of energy-efficient, low-cost and wearable sen-
sor device for collecting and wirelessly transmitting ECG,
respiration rate, humidity, body temperature and room
temperature

o A complete remote health monitoring system based on
IoT and customized ultra low power 2.4GHz radio fre-
quency protocol (nRF)

o Fog services for representing bio-signals in graphical
waveforms, performing decision making, categorization,
real-time notifications, and channel managing

This paper is organized as follows. Section II discusses

related works and motivations. Section IIT describes the system
architecture in details. Section IV presents a design of a low-
cost and energy-efficient wearable sensor device. Section V
presents the system’s gateway architecture and a back-end
system. Section VI shows an implementation of the entire
health monitoring system. Section VII shows the experimental
results. Section VIII concludes the work.

II. RELATED WORK AND MOTIVATION

There have been a lot of efforts in developing remote
health monitoring IoT-based systems. Gia et al. [7] propose
a continuous health monitoring system based on customized
6LoWPAN. The system enables remote and real-time ECG
monitoring via a reliable network.

Jiang et al. [8] propose an IoT-based system for remote fa-
cial expression monitoring. The system’s sensor nodes acquire
Electromyography (EMG) and transmit the data to a gateway
via Wi-Fi. The bio-signals are processed and classified in
Cloud with the assistance of LabVIEW.

Gomez et al. [9] introduce a patient monitoring system
based on IoT for monitoring health status and recommend-
ing workouts to patients with chronic diseases. The system
acquires not only bio-signals (i.e. ECG) but also contextual
data (i.e. time and location). Doctor and patient can access
collected data via an Android app.

Nemati et al. [10] propose a wireless wearable ECG sensor
for long-term applications. The small-size sensor node can be
conveniently deployed in T-shirt or undergarment for collect-
ing and transmitting ECG data wirelessly via an ANT protocol.
A patient carrying the sensor can perform his or her daily
activities without any disturbance.

Fanucci et al. [11] present an integrated information and
communication technology system for monitoring patients at
home. The system collects ECG, SpO2, blood pressure, and
a patient’s weight via biomedical sensors. The collected data
is transmitted to the hospital information system for remote
monitoring. The system helps to reduce the number of sub-
sequence hospitalization via its capability of supporting early
detection of the alterations in vital signs.

In [12], authors present a smart health-care system using
Internet of Things. The system is able to monitor different
signals such as glucose level, ECG, blood pressure, body

temperature, SpO2 and transmit the collected data wirelessly
to Raspberry Pie via Zigbee. End-users such as doctors and
care-givers can monitor the data via a mobile application.

Other systems based on Bluetooth Low Energy and IoT [13,
14] are capable of acquiring and transmitting ECG wirelessly
with low power consumption. By applying these systems at
home and hospital, doctors can monitor ECG and heart rate
of patients in real-time.

Although these systems can improve the quality of health-
care service via their advancement (i.e. remote and real-time
monitoring), they still have limitations such as high power
consumption of sensor nodes or lack of necessary services
(i.e. push notification, and local storage). Some systems based
on Wi-Fi and Bluetooth are not energy-efficient because
these protocols consume high power. Although other systems
pay attention to reducing transmission power consumption
of sensor nodes by using low power wireless transmission
protocols (i.e. ANT, 6LoWPAN, and BLE), sensor nodes are
still not energy-efficient due to high power consumption of
other components (i.e. memory, micro-controller, and volt-
age regulator). By applying a comprehensive combination
of software and hardware design methods altogether with a
customized low-power wireless transmission protocol, power
consumption of sensor nodes can be considerably reduced. In
most of the systems, the quality of health-care service cannot
be considered as comprehensive since the number of advanced
services is limited.

This paper aims to provide an enhanced real-time and
remote health monitoring [oT system. The major difference
of this system from previous works is the adoption of energy-
efficient sensor nodes based on the customized nRF protocol.
The sensor nodes are carefully designed in terms of both soft-
ware and hardware for reducing power consumption as much
as possible. In addition, the system overcomes previously
mentioned limitations in other systems. With the assistance of
Fog computing in smart gateways, the quality of health-care
service is dramatically improved.

III. HEALTH MONITORING IOT-BASED SYSTEM
ARCHITECTURE

The proposed health monitoring IoT-based system, whose
architecture is shown in Fig. 1, is comprised of sensor nodes,
gateways, and a back-end system. The sensor node acquires
bio-signals (i.e. ECG, respiration, human temperature) and
contextual data (i.e. room humidity and temperature). Then, it
transmits the collected data to a gateway via an nRF module
which is low-power, low-cost (about 1 Euro) and has fully
customizable parameters. A selection of low transmission data
rate is preferred for reducing energy consumption of the sensor
node. Depending on particular signals and usages, signals
can be kept intact or preprocessed before transmitting. The
gateway in the system receives incoming data from the sensor
nodes and transmits the data to Cloud. Similarly, data can be
raw or processed data. In addition, the gateway with Fog can
provide the large number of advanced services shown in Fig.
3 for improving the quality of health-care service.
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Fig. 1. A IoT-based e-health monitoring system architecture

A back-end system consisting of Cloud and an end-user ap-
plication performs several tasks such as storage, data analysis
and graphing, and push notification. End-users (e.g. doctors)
can monitor their patients remotely by accessing real-time and
history data in Cloud via an Internet browser or a mobile app.

IV. SENSOR NODE DESIGN

A sensor node in the system primarily consists of a micro-
controller, an nRF block, and specified sensors which are
connected via SPI or I2C. The SPI protocol is preferred in the
design due to its benefits of high data rate support and low
energy consumption [15]. However, the more components are
connected via SPI, the more difficult the issues get in terms
of data categorization and verification. If the issues cannot be
appropriately handled, the quality of data reduces.

Obviously, surrounding temperature, humidity, and body
temperature do not change rapidly in seconds. Therefore, these
can be acquired with a low data rate (i.e. 1 sample/s or 1
sample/30s). According to [16], a slight difference of 15 wuJ
energy consumption is observed when communicating with
low data rate via SPI and I2C. Hence, I2C is used for connect-
ing temperature and humidity sensors to the micro-controller
while SPI is applied for connecting other components. The
architecture of the sensor node is shown in Fig. 2.

SPI SPI
|ADSIZ92 ;(PS:C\( Micro-controller '%‘ nRF |

SPI/12C| |Power supply control (PSC)

|3Vsupply ‘Temperature + Humidity Sensor |

Fig. 2. Architecture of Sensor Node
Sensors including bio-potential and contextual measure-
ment sensors must fulfill the requirement of low energy
consumption. In addition, sensors must be capable of fast
response and data sampling with low-noise, high precision and
accurateness.

A micro-controller plays the most important role in the
sensor node. It acquires data from sensors and transmits
the data to the nRF block via SPI. In addition, it controls
power supply of sensors and the nRF block. Therefore, a high
performance and ultra-low-power micro-controller with power
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Categorization | [ Local database || Local host |

| Security | [ Channel managing |
Fog services

\ Embedded Operating System |
CPU| NRF| Memory| [HD card| Bluetooth | -

Hardware

Fig. 3. Gateway structure

management modes such as several sleep modes is suitable
for the sensor node.

an nRF module consisting of an nRF integrated circuit
(IC) and an on-PCB printed antenna is chosen for the design
because it consumes low energy while supporting high data
rates and communication bandwidth. In addition, it can be
fully customized for the system. For example, it supports on-
air data rate up to 2Mbps but 250kbps can be selected for
reducing power consumption.

V. GATEWAY STRUCTURE

A gateway is supplied by a wall power outlet and fixed at a
single room (i.e. a hospital room). The gateway integrated with
Fog services shown in Fig. 3 is designed for serving several
sensor nodes (i.e. 5-10 nodes). Detailed information of these
services are explained as follows:

A. Data transceiving

To receive data via an nRF, the gateway is equipped with
an nRF transceiver component. The component includes a
micro-controller and an nRF module which are similar to the
ones used in the sensor node. All collected data from the
nRF transceiver is transmitted via UART to the gateway’s
primary MCU for further processing because the gateway’s
MCU is more powerful. The processed data is sent to Cloud
via Ethernet or Wi-Fi. Accordingly, real-time data can be
stored and monitored at Cloud servers.

B. Data processing

Processing of bio-signals includes pre-processing to elimi-
nate noise from signals and extract useful features for further
interpretation. Data processing service in the system is similar
to ECG feature extraction presented in [17]. Data processing
helps to improve the quality of health-care service and save
transmission bandwidth between gateways and Cloud.
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C. Local database

Local database includes two distinct databases which are
internal and external usage databases. Internal usage database
stores intact information which is only edited or updated
by system administrators. For example, reference data (i.e.
reference tables) used in algorithms or services (i.e. data
processing and push notification) is stored in this database.
The internal database is not synchronized with Cloud in most
of the cases except a case of back-up data. In this case, data is
encoded before being sending to Cloud. These specifications
of the internal usage database help to avoid some unexpected
security attacks from outsiders. Oppositely, the external usage
database stores bio-medical signals and contextual data which
are real-time synchronized with Cloud servers. Due to a
limited storage capacity, the data is stored in the database for
a period of time (i.e. several hours or a day), then replaced
by new-coming data. Accordingly, the real-time data can be
accessed at the Fog layer or at Cloud. For monitoring data in
history, Cloud must be accessed.
D. Security

In order to protect information and resources of the sys-
tem from unauthorized accesses, security and cryptography
methods are applied in the Fog layer. It is a challenging task
because the methods must not cause a dramatic increase in the
system’s latency.
E. Localhost with user interface

In order to provide real-time health monitoring at the
gateway, localhost with user interface is integrated into the
Fog layer. Concisely, a web server is run at the gateway for
hosting a web-page which is user-friendly and able to represent
both raw and processed data in text and graphical forms. The
web-page provides functions such as a log-in form with a user-
name and a password, or a searching tool.

F. Categorization service

In the Fog layer, a mechanism for classifying connected de-
vices is integrated. The system regularly performs the mecha-
nism for categorizing local and external connected devices. For
local connected devices, real-time monitored data is directly
retrieved from the Fog layer’s local database instead of Cloud.
This mechanism helps to reduce latency of the monitored data
because the data transmission’s path is shorter. When devices
do not connect to the local network, data monitored at an
end-user’ s terminal (i.e. an Internet browser, or a mobile
application) is retrieved from Cloud.

G. Push notification

Push notification is used for notifying end-users in case of
abnormality. For example, when body temperature of a patient
is too high over a threshold value, the push notification is
triggered to send real-time messages to the patient and a doctor
responsible for the patient.

H. Channel managing

It is important to provide a channel managing service in the
Fog layer because it helps to avoid channel conflicting which
causes incorrect data at a gateway’s receiver. The service
manages 126 channels of an nRF protocol to guarantee that

each specific channel is reserved for a sensor node or a group
of sensor nodes in which a channel with a higher frequency
(channel with a higher number) will be given first. There
is a table for recording assigned and unassigned channels.
Unassigned channels will be verified for availability before
being assigned for a device. The main purpose is to avoid
channel conflicting between nRF channels. In the future work,
channel conflicting between nRF and other technologies based
on 2.4 GHz such as Wi-Fi will be investigated. Some channels
(i.e. channel 116-126) are reserved for emergency notification
and future usage. The channel managing service verifies
incoming data regularly. When it detects some abnormality
at a specific channel, it sends a request message to the
channel and waits for an acknowledgement message(s) from
a sensor node or a group of sensor nodes. By analyzing and
investigating the acknowledgement message(s), it can detect
channel conflicting. In case of a conflict, a push notification
is triggered to notify the problem to system administrators.

VI. IMPLEMENTATION

The implementation of the system is divided into two parts
described in detailed as follows:

A. Node implementation

ADS1292 is a low-cost (about 11 Euros), low-noise, and
low-power analog front-end device for acquiring multichannel
ECG with high data rates (i.e. 1000 samples/s). In the imple-
mentation, 2 ECG channels with a data rate of 250 samples/s
are used. According to [18], the high quality of ECG signals
can be obtained when sampling at 250 samples/s and higher
data rates.

For acquiring humidity, environmental and body tempera-
ture, two BME280 sensors are used. These sensors are low-
cost (5 Euros for each) and low-power while they provide high
precision data and accurate measurements.

A low cost (1 Euro) and ultra-low power AVR AT-
MEGA328P micro-controller is used in the sensor node. It
can support up to 20 MHz but power consumption is high. To
reduce power consumption, 8 MHz is applied. As mentioned,
the micro-controller controls voltage supply of sensors and an
nRF block. Therefore, voltage supply must be appropriately
chosen. In our implementation, 3V is the best voltage supply as
suiting to all components. When the voltage supply is slightly
less than 3V (i.e. 2.7V) due to a voltage drop characteristic of
a battery, the sensor node is able to operate appropriately.

an nRF24L.01 transceiver is used in the sensor node because
of its low power consumption and low cost. As mentioned, it
is customized for sending and receiving data with a data rate
of 250kbps for reducing power consumption.

In order to protect data transmitted over an nRF network,
AES-256 [19], which is a block cipher utilizing a 256-bit
symmetric key for encryption and decryption, is implemented
in the sensor node. The AES-256 is used because the algorithm
is strong and the sensor node can perform the encryption
algorithm fast. However, applying the algorithm increases
power consumption of the sensor node and latency of the
system. Results are shown in Section VII.
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B. Gateway and back-end system implementation

In our implementation, Orange Pi One (about 14 Euros) is
used as a core of the gateway for providing all mentioned
services. Orange Pi One consists of Quad-core Cortex-A7
at 600 MHz each, 512MB low power memory, high speed
and high capacity SD card (64GB), and several types of
connectivity including Ethernet. As mentioned, in order to
provide a capability of nRF wireless communication, the nRF
component is added to Orange Pi via a UART port. The
nRF component in the gateway including nRFL2401 [20] and
AT-Mega328P [21] is similar to the nRF component in the
sensor node. In order to receive data from the nRF component,
a Python application is constructed in Orange Pi One. The
application reads available data from the UART port then
stores the data into the synchronized database. Simultaneously,
the application transmits the collected data to Cloud.

Data processing is implemented in the Fog layer via several
filtering and advanced processing algorithms. For example,
moving average filter is first applied on raw ECG signal to
remove baseline wander. Then 50 Hz notch Butterworth filter
is applied to eliminate powerline interference. Finally, R peaks
in ECG waveform are detected with conditional peak detection
and R to R intervals are calculated for further application spe-
cific feature extraction. All of the data processing algorithms
are implemented in Python.

Local database including both reference and synchronized
database is implemented with the assistance of MySQL and
a local SD card. For example, bio-signals and contextual data
altogether with the recorded time are stored in the MySQL
database. In addition, the MySQL database stores usernames
and passwords of all users.

IPtables [22] and AES-256 used at Fog are implemented in
C. IPtables is tables containing chains of rules for the treatment
of incoming and outgoing packets at a gateway.

For implementing the web-page and server in the Fog
layer, several up-to-date technologies such as HTMLS, CSS,
JavaScript, JSON, Python, and XML are used. The web-page
is user-friendly and it is able to represent real-time data in text
and graphical forms.

A channel managing service is implemented at Fog in C
and Python. C is mainly used at an nRF receiving part while
Python is used at Orange Pi One.

Categorization is implemented by a combination of a scan-
ning service and database. By customizing an “iw” package
provided in Linux kernel, information of all devices connect-
ing to a specific gateway via Wi-Fi can be acquired without
any effort. The “iw” package based on CLI configuration
utility supports all new drivers of wireless devices. Although
the ”iw” package has been in a further development process,
it is suitable for the categorization service. The acquired infor-
mation of connected wireless devices is recorded in tables in
the database. The scanning service triggers an ”iw” command
to update the information of connected devices regularly. The
latency of running the “iw” package regularly is not high
because each gateway only serves several connected devices
in a single room.
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Push notification is implemented in both the fog layer and
Cloud. When an end-user such as a doctor currently connects a
local network (i.e. the same network with gateway’s network),
the push notification service at the Fog layer is triggered for
sending notification messages to the end-user directly via a
TCP server installed in the gateway. When an end-user does
not connect to a local network, the push notification service in
Cloud implemented by a Google push service API is triggered
for sending real-time notification messages.

VII. EXPERIMENTAL RESULTS

Results of ECG signal processing at the system’s gateway
is presented in Fig. 4. It depicts the ECG data presented at
Fog’s interface in graphical waveforms. The data includes
raw data and processed data i.e. R-R intervals for calculating
the heart rate.The ECG is acquired with one channel from
a healthy person at a sample rate of 1000 samples/s, where
the two electrodes are placed on the left wrist and the right
wrist, respectively. Although the sensor node is designed for
acquiring ECG with a data rate of 250 samples/s, a data rate
of 1000 samples/s is applied in the experiment for testing the
sensor node’s capability of sampling and transmitting with
higher data rates. Results show that the quality of signals is
still high when acquiring and transmitting at 1000 samples/s.

In order to measure power consumption of a sensor node,
the developed prototype is tested while in operation. Results
shown in Table I indicate that average current of the sensor
node is very low about 6.5 mA for gathering and transmitting
all data including ECG, body temperature, environment tem-
perature, and humidity. In case of applying AES-256, average
current of the node increases up to 7.01 mA.

The developed prototype of the sensor node shown in Fig.
5 approves its small physical size beside a two Euro coin for
comparison. The actual size of the sensor node can be reduced
dramatically since the prototype has extra many components
for debugging purposes. The device and its battery are light-
weight. With a 1000 mAbh lithium button cell, the sensor node
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TABLE I
AVERAGE POWER CONSUMPTION OF THE HEALTH MONITORING DEVICE
AT A DATA RATE OF 18 KBPS

Mode Voltage (V) Average power (mW)
Idle 3 1.2
Active without AES-256 3 19.5
Active with AES-256 3 21.03

TABLE II
LATENCY OF RUNNING AES-256 FOR ENCRYPTING AND DECRYPTING 16
BYTES DATA AT SENSOR NODES AND GATEWAYS

Device Algorithm (V) Latency (us)
sensor node AES-256 encryption 170

Gateway AES-256 decryption 38

Gateway AES-256 encryption 42
Cloud server AES-256 decryption 8

can operate up to 155 hours. Furthermore, the cost of the
sensor node and the gateway is low, around 26 Euros and
20 Euros, respectively. Hence, the sensor node can be as a
wearable device.

For testing the quality of data during transmission, two types
of data including fixed data and actual data collected from
sensors are used during experiments. Results show that data
loss does not occur during communicating and longer range
transmission requires higher power.

Fig. 5. Prototype of a sensor node

Table II shows that, when using AES-256 in a sensor node,
average latency of the sensor node and the system increases
about 170 pus and 260 ps, respectively. However, these small
increases do not cause dramatically negative impacts on the
system’s performance and latency.

VIII. CONCLUSIONS

In this paper, a low-cost remote health monitoring IoT-based
system with the Fog layer has been proposed. The designed
system is able to acquire data including bio-signals (i.e. ECG
and respiration) and contextual data (i.e. environment temper-
ature and humidity) and transmit the data wirelessly for real-
time and remote monitoring. In addition, with the assistance of
the Fog layer, the system provides advanced services such as
data processing, categorization, push notification and channel
management for improving the quality of health-care service.
Furthermore, a design of a low-cost and portable sensor node
has been presented. The sensor node is able to operate for a
long period of time reaching up to 155 hours due to its high
energy efficiency. By applying this system at hospitals and
homes, emergencies (i.e. related to cardiovascular diseases)
can be notified in real-time to medical doctors for in time
action to avoid serious consequences.
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Current developments in ICTs such as in Internet-of-Things (IoT) and Cyber-Physical Systems (CPS)
allow us to develop healthcare solutions with more intelligent and prediction capabilities both for daily
life (home/office) and in-hospitals. In most of IoT-based healthcare systems, especially at smart homes
or hospitals, a bridging point (i.e., gateway) is needed between sensor infrastructure network and the
Internet. The gateway at the edge of the network often just performs basic functions such as translating
between the protocols used in the Internet and sensor networks. These gateways have beneficial knowl-
edge and constructive control over both the sensor network and the data to be transmitted through the
Internet. In this paper, we exploit the strategic position of such gateways at the edge of the network to
offer several higher-level services such as local storage, real-time local data processing, embedded data
mining, etc., presenting thus a Smart e-Health Gateway. We then propose to exploit the concept of Fog
Computing in Healthcare IoT systems by forming a Geo-distributed intermediary layer of intelligence
between sensor nodes and Cloud. By taking responsibility for handling some burdens of the sensor
network and a remote healthcare center, our Fog-assisted system architecture can cope with many
challenges in ubiquitous healthcare systems such as mobility, energy efficiency, scalability, and reliability
issues. A successful implementation of Smart e-Health Gateways can enable massive deployment of
ubiquitous health monitoring systems especially in clinical environments. We also present a prototype
of a Smart e-Health Gateway called UT-GATE where some of the discussed higher-level features have
been implemented. We also implement an IoT-based Early Warning Score (EWS) health monitoring to
practically show the efficiency and relevance of our system on addressing a medical case study. Our proof-
of-concept design demonstrates an loT-based health monitoring system with enhanced overall system
intelligence, energy efficiency, mobility, performance, interoperability, security, and reliability.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

the quality and cost of medical care can be improved by automating
tasks previously performed by humans [5-7]. In that sense, IoT

Internet of Things (IoT) is getting a wide acceptance and a
growing adoption in many aspects of our daily life [1,2]. [oT tech-
nology provides a competent and structured approach to improve
health and wellbeing of mankind. It is predicted that IoT-based
systems will remodel the healthcare sector in terms of social
benefits and penetration as well as cost-efficiency [3,4]. Due to
the ubiquitous computing nature of IoT, all the healthcare system
entities (individuals, appliances, medicine) can be monitored and
managed continuously. By applying IoT technologies to healthcare,

* Corresponding author at: Department of Computer Science, University of Cali-
fornia Irvine, USA.
E-mail address: amirr1@uci.edu (A.M. Rahmani).

http://dx.doi.org/10.1016/j.future.2017.02.014
0167-739X/© 2017 Elsevier B.V. All rights reserved.

enables Electronic Health (eHealth), Mobile Health (mHealth) and
Ambient Assisted Living (AAL) that allow remote monitoring and
tracking of patients living alone at home or treated in hospitals,
and creates a continuum among these through cloud access [4,8].

It is no longer sufficient enough to design just standalone
wearable devices, instead it becomes vital to create a complete
ecosystem in which sensors in a body area network seamlessly
synchronize data to cloud services through the IoT infrastructure
[9-11]. The architectural elements generally needed in healthcare
[oT systems (Health-10T) are illustrated in Fig. 1. The architecture
includes three main components: (i) body area sensor network,
(ii) Internet-connected gateways, and (iii) cloud and big data sup-
port. Various applications provide services to different stakehold-
ers in the system through this platform. Data generated from
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Fig. 1. General IoT-based health monitoring system.

sensors attached to users is made available to caregivers, family
members and authorized parties giving them the ability to check
the subject’s vital signs from anywhere at any time.

According to predictions, the current hospital-centered health-
care systems will evolve first to hospital-home-balanced in 2020,
and then ultimately to home-centered in 2030 [12]. In order to
realize such evolution, new system architectures, technologies,
and computing paradigms are required, particularly in the smart
spaces and e-Health domains. It should be noted that the paradigm
shift towards smart ubiquitous healthcare systems results in new
challenges to manifest themselves in fulfilling different system re-
quirements such as reliability, interoperability, energy-efficiency,
low-latency response, mobility, security, etc.

Gateways generally act as a hub between a sensor layer and
cloud services. With an in-depth observation of a gateway’s role
in a smart home/hospital, where the mobility and location of users
and things are confined to the hospital premises or the building,
it can be noticed that the stationary nature of gateways empowers
them with the luxury of being non-resource constrained in terms of
processing power, power consumption and communication band-
width. Such a valuable characteristics can be exploited by reinforc-
ing the gateways with sufficient processing power, intelligence,
and orchestrated networking capabilities, thus becoming a smart
e-Health gateway.

However, the advantageous services that can be potentially of-
fered by a smart gateway will be limited if the gateway is deployed
in a standalone and independent fashion. Scalability and mobility
issues can easily arise and the efficacy of the solution will be
significantly limited. This reveals the demand for an intermediary
layer of computation where a geo-distributed network of smart
gateways provides intelligence at the edge of the network and
facilitates the interplay between sensors layer and cloud layer.
This paradigm, which is also called fog or edge computing [ 13-15],
enables the system to support seamless mobility, load balancing,
efficient scalability, low-latency response, and developing applica-
tions utilizing services offered by multiple sensors and gateways,
just to mention a few.

In this paper, which is a major extension of our recent works
published in [16], we present a fog computing-based solution
to enhance different characteristics of IoT architectures used
for healthcare applications in terms of energy-efficiency, perfor-
mance, reliability, interoperability, to name a few. The main con-
tributions of this article are as follows:

e Presenting a practical solution to take advantage of fog
computing in IoT-health systems.

e Elaborating the features of a fog computing based health-IoT
system and its services from different perspectives.

e Proposing fog-based mobility support to enable seamless
connectivity for mobile sensors.

e Providing a proof of concept full-system implementation
from development of cloud services to hardware-software
demonstration of our prototype of Smart e-Health Gate-
ways.

e Demonstrating the system with a medical case study called
Early Warning Scores (EWS) with hierarchical fog-assisted
cloud computing.

The rest of the paper is organized as follows: In Section 2,
related work and motivation of this paper are presented. Section 3
describes the architecture of a fog-assisted [oT based e-Health plat-
form using Smart e-Health Gateways. The properties and features
of the networked smart e-Health gateways are presented in more
detail in Section 4. Demonstration of our Smart e-Health Gateways
on a medical case study along with experimental results are pro-
vided and discussed in Section 5. Finally, Section 6 concludes the

paper.
2. Related work and motivation

In the healthcare context, designing an efficient IoT-based
system is a challenging task due to the following main issues.
First, the chosen sensor networking technology must be resource-
efficient and customized for e-Health applications. Medical sensor
nodes, especially implanted ones, have much lower processing
power, memory, transmission speed, and energy supply than sen-
sors in other sensor networks domain. Second, unlike common
sensor networks where interval-based data transmission is used
(e.g., temperature and humidity monitoring), e-Health applica-
tions often need to manage streaming-based transmissions where
realtime requirements need to be considered. Consequently a con-
siderable energy is dissipated during the transmission process. For
instance, Electrocardiogram (ECG) signal transmission requires 4
kbps bandwidth per channel. Third, in multi-patient applications
such as in smart hospitals, hardware platforms with a high pro-
cessing power and parallel processing features (e.g., multi-core
processors) are needed in the gateway due to concurrent nature of
the workloads. However, as we discuss in this section, the existing
general-purpose gateways are not designed for such scenarios.
Fourth, reliability in e-Health application is of utmost importance
and even short system unavailability often cannot be tolerated.
Thus, as we discuss in the following, the limited resources of
medical sensor nodes render the use of general purpose gateways
inefficient in most circumstances with respect to delay, energy, and
reliability.

Using a three tier architecture, with varying computational
capacity, for IoT applications is common in both industry and
research. The focal point of most of the related works is the gate-
way used in the middle tier of the IoT architecture. One of many
such efforts is presented in [17,18], which proposes gateways to
transparently connect sensor networks with different protocols
such as ZigBee, Bluetooth, and Ethernet to the Internet. However,
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these gateways have limited flexibility as they cannot be cus-
tomized for different applications. In a different category of related
work, Mueller et al. [ 19] present a gateway called SwissGate which
handles and optimize the operation of a sensor network. They
specifically apply SwissGate on home automation applications
such as measuring heating, ventilation, and air conditioning con-
trol (HVAC) parameters. Bimschas et al. [20] aim at providing some
levels of intelligence to gateways by enabling them to execute
application code. They propose a middleware for the gateway to
offer four possible services: protocol conversion, request caching,
intelligent caching, and discovery.

Another work by Jong-Wan et al. [21] present a sensor network
system comprising of a main server and several sensing-servers
acting as gateways and connecting with different sensor networks.
Using network-dependent sensing-servers as gateways results in
high implementation and hardware cost as well as poor scalability,
making such a design inefficient for many IoT applications. In a
related work presented in [22], a plug-configurable-play service-
oriented generic gateway is proposed in order to provide simple
and rapid deployment of various external sensor network ap-
plications. The gateway offers a proper level of interoperability
by facilitating heterogeneous sensor networks to work together.
However, the middleware presented in their work lacks intel-
ligence and runs on PC, limiting its applicability for many IoT
applications. In a similar attempt, Guogiang et al. [23] propose a
general purpose smart gateway. It provides pluggable architecture
which enables communication among different protocols, unified
external interfaces fitting for flexible software development, and
flexible protocol to translate different sensor data.

In order to save energy and reduce the cost of smart home, Bian
et al. [24] present a new type of intelligent home control system,
using an Android Phone as a temporary home gateway instead of
the default home gateway. The aim of the work is to automatically
shut down the unused devices by predicting user behavior. In a
different application domain, the work presented in [25] proposes
a prototype of a smart 6LoWPAN (IPv6 over Low power Wireless
Personal Area Networks) border router which makes local deci-
sions of health states using a Hidden Markov Model.

In another work, Satyanarayanan et al. [26] propose that mobile
devices can use complex algorithms such as facial recognition
and language translation to augment human cognition. However,
limitations in processing power and long WAN latency are unac-
ceptable. The authors then propose cloudlets which consist of a
computer with wireless connectivity in the vicinity of the mobile
device. Abase virtual machine (VM) s installed in the cloudlets. VM
instances are launched from the cloudlets and configured using an
overlay script from the mobile device with desired application. The
VMs are designed to migrate from one cloudlet to another to allow
ubiquity. The authors claim that applications run faster with this
configuration due to lower latencies and higher processing power.
However, the authors face challenges regarding long launching
times. In [27], Stantchev et al. present the benefits of three-level
(i.e., fog based) architecture for a smart healthcare infrastructure
from servitization and business point of view. However, they only
focus on high level architectural modeling aspects and do not
discuss real world implementation and experimental evaluation of
the services.

Although efforts of using a gateway in IoT have been greatly
expanded in recent years, there are only small improvements
towards realizing smart gateways streamlined specifically for the
healthcare domain. Most of the presented efforts focus on gen-
eral purpose gateway designs which affects the provided level
of intelligence due to lack of information about the application
domain. Some of these efforts limit their level of intelligence only
for the sake of plug-and-play ability, or reconfigurability to various
domains. Some others just focus on specific domains such as smart
home.

Existing contributions using a gateway as an intermediary be-
tween sensors and cloud storage, consider a minimal role for the
gateway, for example applying simple set of rules. In few cases,
a gateway is leveraged for domain specific purposes. However,
such platforms fail to satisfy the requirements of other domains.
In the healthcare sector, particularly for remote health monitoring,
a high level of reliability, availability and robustness is demanded.
Moreover, security and privacy issues are of critical importance.
The purpose of our smart e-Health gateway is to satisfy these
domain-specific requirements by customizing gateways for the
healthcare domain and providing intelligence closer to patients.

Our proposal is motivated by the fact that in a smart hospital or
in-home healthcare, the gateway is in the unique position between
both the BAN/PAN/LAN and the wide area network (WAN). This
promising opportunity can be exploited by different means such
as collecting health and context information from these networks
and providing different services accordingly. By geographically
distributing and networking smart e-Health gateways, a smart
intermediary layer can be formed to provide smooth and efficient
healthcare services without limiting the mobility of patients. In
general, the motivations of utilizing a Geo-distributed network of
smart e-Health gateways for Health-IoT are manifold. The major
ones are:

1. To provide local data processing for real-time notification
for medical professionals as described in Sections 4.1, 4.3
and 4.4.

2. Tosecure the sensitive medical data gathered by sensors and
keep the privacy of patients, discussed in Section 4.5.

3. To give interoperability for heterogeneous platforms and
communication protocols used in medical sensor networks,
elaborated in Section 4.6.

4. To provide mobility of patients across the area of coverage
of the Fog layer for hospital and home based care, discussed
in Section 4.7.

5. To enable the underlying sensor network to be more ef-
ficient in terms of energy and communication bandwidth
presented in Section 4.8.

The following section provides the system architecture of the
overall Health-IoT system.

3. System architecture and the role of fog computing

The large scale implementation of IoT is expected to introduce
billions of additional resource-constrained devices connected to
the Internet. The majority of these devices, for example wearable
and implantable medical sensors, are not capable of storing data
they generate. A straightforward design approach is to transfer
this data to a cloud for processing. Given the large number of
connected devices, the latency of the connection with the cloud
could be significant. Moreover, these devices are power and band-
width constrained, that make them unfit directly to the cloud
architecture. Fog Computing [13] is an essential paradigm shift
towards a hierarchical system architecture and a more responsive
design. As shown in Fig. 2, Fog is an intermediate computing
layer between the cloud and end devices that complements the
advantages of cloud computing by providing additional services for
the emerging requirements in the field of IoT. This intermediate
layer is discussed in different terms in various articles, such as Mo-
bile Edge computing [28], Micro-clouds [29], or simply just Edge
Computing [30]. The concept behind our smart e-Health gateway
is to provide different services at the edge of the network between
the smart objects and the cloud.

Fig. 3 shows a detailed view on how the components of a
Health-IoT system can be organized in a distributed manner across
the three layers to be used in smart hospitals or home. In such
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Fig. 2. Generic fog-based IoT architecture.

systems, patient health related information is recorded by body-
worn or implanted sensors, with which the patient is equipped
for personal monitoring of multiple parameters. This health data
can be also supplemented with context information (e.g., date,
time, location, temperature). Context-awareness enables to iden-
tify unusual patterns and make more precise inferences about the
situation. Other sensors and actuators (e.g., medical equipment)
can be also connected to the systems to transmit data to medical
staff such as high-resolution images (e.g., CAT scan, magnetic res-
onance imaging). The system architecture includes the following
main components:

1. Medical Sensors and Actuators Network: Enabled by the
ubiquitous identification, sensing, and communication ca-
pability, biomedical and context signals are captured from
the body and room. The data is then transmitted to the
gateway via wireless or wired communication protocols
such as Bluetooth, Wi-Fi, ZigBee or 6LoWPAN.

2. Network of Smart e-Health Gateways: This layer is built
from multiple geographically distributed smart e-Health
gateways, i.e., forming the fog. Each gateway, which

supports different communication protocols, acts as a dy-
namic touching point between a sensor network and the
local switch/Internet. It receives data from different sub-
networks, performs protocol conversion, and provides other
higher level services such as data aggregation, filtering and
dimensionality reduction.

3. Back-End System: Back-end system consists of a cloud com-
puting platform that implements broadcasting, data ware-
house and data analytics. Finally, it provides demonstrations
for web client as a graphical user interface for final visual-
ization and feedback. The collected health and context data
represents a source of big data [31,32] for statistical and epi-
demiological medical research (e.g., detecting approaching
epidemic diseases).

As can be observed from Fig. 3, the intermediate layer is com-
posed of a network of smart e-Health gateways at a strategic
location to offer many higher level services to enhance the system
characteristics in different aspects. The following section gives an
overview of the advantages of this layer in [oT systems.

4. Properties and features of smart e-Health gateways at the fog
layer

As mentioned before, the main role of a gateway is to support
various wireless protocols and take care of inter-device commu-
nication. In this section, we extend its role to become fog enabler
by (i) forming an orchestrated network of gateways and (ii) im-
plementing several features such as acting as repository (i.e., lo-
cal database) to temporarily store sensors’ and users’ data, and
incorporating it with data fusion, aggregation, and interpretation
techniques. These are essential to provide local pre-processing of
sensors’ data, becoming thus a Smart e-Health Gateway.

4.1. Local data processing

As a key feature of fog computing, local data processing is
implemented to provide intelligence at the gateway by which the
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streaming data is analyzed locally. According to the system archi-
tecture, fog layer requires to continuously handle a large amount
of sensory data in a short time and response appropriately with
respect to various conditions. This task becomes more important
in medical cases by enabling the system to react as fast as possible
in medical emergencies [33]. Fig. 4 illustrates a conceptual archi-
tecture of a smart e-Health gateway utilizing a local processing unit
for data filtering, data compression, data fusion, and data analysis.

4.1.1. Data filtering

Receiving data from various sensors makes it essential to imple-
ment appropriate pre-processing at the edge before any more ad-
vanced processing such as data analysis is performed. Bio-signals
(e.g.,ECG, EEG and EMG) collected from users’ body are the primary
sources of information for assessing a patient health status. They
usually contain complicated shapes with small amplitude (i.e., in
the range of millivolts) and various frequencies. During the sensing
of human body, noise is also accumulated to the bio-signals and
distort the signal quality. Such noises are produced by different
sources such as oscillations of alternating current in the electric
power grid, electromagnetic interference from other electrical de-
vices, and improper attachment of sensors to users’ body.

The smart e-Health gateway at the fog layer can address this
issue as it interfaces sensors directly. The fog layer receives digi-
talized signals from sensors via various communication protocols.
Although sensors may implement light-weight filtering to remove
some noises at the data collection phase, more robust and complex
data filtering is still required at the fog layer.

4.1.2. Data compression

In the context of data communication, data compression is used
for reducing communication latency and energy consumed during
transaction. Both lossy and lossless data compression are widely
used in the IoT domain depending on the application. Lossless
data compression has the shortcoming of requiring rather heavy
computation for performing complex algorithms. Therefore, there
are processing power requirements in terms of processor speed
and memory size when using a lossless data compression method.

In device layer of Health-IoT systems, both lossy and lossless
compression methods are useful. However, in many cases lossy
data compression is more suitable for resource-constrained sen-
sors due to limitations such as battery life time and available

processing power. For instance, many popular lossless ECG com-
pression methods [34-36] do not fit to many types of sensors while
lossy compression methods, for example a method introduced by
Yu et al. [37], are feasible in terms of hardware requirements.
However, for applications such as real-time ECG monitoring, it is
desirable to have lossless compression to ensure that all features
of the signals all observable with a high precision. Fog computing
provides the required computational power for efficiently running
complex lossless data compression algorithms by offloading the
burden from device layer. Furthermore, it enables real-time oper-
ation while using lossless data compression.

4.1.3. Data fusion

Data fusion enables the system to effectively decrease the vol-
ume of data, and consequently reduce the energy needed for data
transmission. Data fusion is categorized into three classes: comple-
mentary, competitive, and cooperative [38]. Complementary data
fusion can be performed at the fog layer to achieve better global
knowledge. Obtaining temperature difference between body and
the environment is an instance provided from two sensory data.
Competitive data fusion can be also utilized at the edge in a
way that data from a single parameter is collected from different
sources to improve the accuracy and consistency of results in case
of sensors’ failure. Finally, cooperative data fusion can also provide
benefits at the edge in a way that new information is extracted
in smart gateways from the heterogeneous data collected from
diverse sources. For instance, cooperative data fusion can provide
comprehensive information about the medical state of a patient
from his/her vital signs.

4.1.4. Data analysis

The sensitivity of the system is improved by applying local
data analysis at the edge. It can assist the system to detect and
predict emergency situations. For instance, in case of fall detection
for elderly people, fog layer can locally offer fall-detection related
processing rather than sending parameters to a cloud and waiting
for the responses. Consequently, the system reacts to the emer-
gency situation faster and more reliable and implements real-time
responses. In addition to the sensitivity of the system, utilizing
data analysis in the fog layer enables the system to minimize the
processing latencies of critical parameters.
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Furthermore, local data analysis and local feedback from the
sensory data improve the system reliability and consistency in
case of unavailability of Internet connection. For long-term remote
monitoring of individuals suffering from chronic diseases, Internet
disconnection may occur frequently. In this case, fog computing
enables to keep the functionality of the system operational locally.
Moreover, it is possible to save the sensory data and processing
results in a local storage at the fog layer and synchronize them with
the Cloud later.

4.2. Adaptivity

Considering the application of fog layer in various cases, some
predefined parameters (e.g., transmission rate from sensors to the
cloud) are set depending on the use case. However, it is also essen-
tial for the fog layer to be reconfigurable and adaptive over time,
particularly when critical events take place. The reconfiguration
can be dynamically applied for various services utilizing incre-
mental machine learning algorithms such as incremental support
vector machine and incremental neural networks.

Data transmission at the fog layer needs to be adaptively tuned.
This includes not only data requests from sensors but also data
transmission rate from the fog layer to the cloud. For instance,
in long-term monitoring of a patient suffering from a cardiovas-
cular disease, the system should learn to increase the request
rates (priority) for heart-related parameters when detecting an
abnormal heart-related sign. Furthermore, transmission rate to the
cloud is performed by assigning priorities to different services and
parameters. The priority of data transmission rate to the cloud for
patients with acute diseases needs to be higher, while patients suf-
fering from chronic diseases require a lower transmission rate. As a
result, adaptive fog computing improves the system performance
by increasing sensitivity and specificity of critical parameters.

4.3. Local storage

To ensure that the system can smoothly recover the data,
gateways should store the incoming data in a local storage. The
operating system on a gateway handles the local repository and
stores the data in a non-volatile memory. Based on the type and
significance, data can be stored in local storage in a compressed or
encrypted way. Data in the repository can be exported to medical
standard formats such as Health Level-7 (HL7) [39] if required.

Data storage is also necessary for other functionalities of the
gateway. As discussed earlier, gateway is responsible for data
analysis, compression, filtering, and encryption, all these functions
need a local temporary storage. Because the speed to transfer data
from the gateway to the cloud is limited by network bandwidth,
and computations are limited by processing power of the gateway,
in case of inequality of data processing and data transfer, local
storage will act as a cache to implement a continuous data flow.
Data storage on gateways makes the system reliable and robust
even when network is unavailable. The local repository is handled
by the database manager unit shown in Fig. 4.

4.4. Local actuation

In [oT-based healthcare system, actuation can be classified into
different forms. It can be used in the form of information streaming,
controlling medical actuators, and sensor network reconfiguration.
In most of these cases, a predictable and fast response time is
demanded. Examples for fast response actuations are adjusting the
frequency of electrical nerve stimulation based on the heart rate,
or adjusting insulin release rate in automatic pumps based on the
patient blood Glucose and other vital signs.

Streaming patient medical signals in real-time to a control panel
for medical experts is also a sensitive case to transmission delay
where a minimum samples per second rate needs to be met. Using
the local processing power and networking facilities, the gateway
is able to stream real-time signals such as ECG and PPG (photo-
plethysmogram) to a client device (i.e., tablet), without relying on
the Internet connectivity.

Notifications are also necessary features for smart e-Health
gateways at the edge of the network. Health monitoring systems
often need to inform and warn medical teams, caregivers, and the
patient about an emergency situations. Any failure in the notifi-
cation service may cause serious problems for both patients and
medical treatments. Compared to a cloud server which is able to
send notifications via several methods, a gateway has limited re-
sources and can only notify via some specific media. However, the
advantage is that gateway-based notifications act independently
(e.g., via the local network or GSM) even during unavailability
of cloud server, to maximize the reliability of the system and to
ensure that users can receive critical notifications in time.

4.5. Security

Security can be considered as one of the most essential require-
ments in Health-IoT applications on the ground that an unsecured
systems can have serious vulnerabilities. In order to provide a high
level of security, operating system level techniques can be uti-
lized at gateways such as IPtable offered by Linux. More precisely,
[Ptables and IPFW provided by Linux kernel firewall can be used
for configuring IP packet table which is basically a set of rules
for network packets. Typically, IP tables are configured to grant
permissions to some ports for communication while other ports
are blocked for preventing unnecessary traffic [40]. As the gateway
can also act as an embedded web server during network unavail-
ability or whenever needed, it can communicate over secure HTTPS
and authenticate sensor nodes to maintain the confidentiality,
integrity, and authenticity of the system. Although IPtables provide
some advantages, they cannot be considered as a robust tool for
security. In order to have a higher level of security, [IPtables must be
in cooperation with other advanced security methods. To address
these issues, different approaches have been recently proposed in
the literature [41-43]. However, cryptographic operations in these
approaches are heavy in terms of required processing power and
energy making them unfeasible for resource-constrained devices.
In a recent proposal focused on security, Rahimi et al. [44,45]
introduced a secure and efficient authentication and authorization
approach for Health-IoT systems which requires some processing
power at the edge. More precisely, on the contrary of running se-
cure methods at resource-constrained sensor nodes, the approach
exploits properties of a smart gateway in fog computing for heavy
and security-related jobs.

4.6. Interoperability and reconfigurability

Besides the standardization efforts, it is evident that interoper-
ability plays a key role to the success of Health-IoT systems. With
such heterogeneous mix of networking technologies, protocols and
platform choices to implement IoT-based system, integrating these
application silos is an evident challenge. Our smart e-Health gate-
way plays a key role in providing interoperability for the various
sensors connected via distinct network interfaces. As shown in
Fig. 4, the health sensors and the context sensors are connected
to the Smart e-Health Gateway using either wireless network or
wired connections while using different standards (e.g., ZigBee,
6LoWPAN, Bluetooth, Wi-Fi) to communicate with the gateway.
The smartness of the gateway comes here in the form of easy inte-
gration of these heterogeneous networking technologies, protocols
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Fig. 5. Node mobility in fog computing.

and standards thereby enabling them to exchange information and
work seamlessly.

Technical Interoperability: The various system components in
IoT-based system are built by different vendors, and hence they use
different network interfaces and standards. In our smart e-Health
gateway implementation, technical interoperability is achieved by
directing exchanged information to the smart e-Health gateway
which has multiple interfaces. Adaptation layers in the gateway
facilitate inter protocol exchange of messages and format conver-
sion, which is part of the syntactic interoperability discussed later.
One should not have all the possible interfaces in the gateway
unless they are used by sensor nodes. This dynamic inclusion or
removal of such interfaces is managed by the reconfigurability
feature of the smart gateway.

Syntactic Interoperability: Syntactic interoperability layer relies
on the previous, technical interoperability layer. It deals with the
format of messages exchanged between systems. Once a message
is delivered, the receiver has to identify the content of the message
and hence the need for the protocol support modules in the central
gateway. Variations in protocols result in differences in the format
of the message. One common example of tunneling is the case
when a 6LoWPAN edge router needs to tunnel between 6LoWPAN
and IPv4/IPv6 protocols [46]. Protocol translators can also be used
to buffer an incoming message and forward in another format.
These functions are realized using the two modules, IP based
tunneling interface and non-IP based translation module, shown
in Fig. 4.

In addition to network level protocols, medical data is formated
in a specific format. Data in any of the Electronic Health Record
(EHR) standards, such as HL7 [39], is re-formatted when necessary
by the smart gateway, in the standardization module shown in
Fig. 4. Sensor nodes can be free from processing overhead that
results in formatting the data into standards. In addition, the over-
head on the communication channel due to the standards related
information that could be sent with the data is removed. This
makes the sensor nodes to be energy and bandwidth efficient by
sending unformatted data to the gateway.

Semantic Interoperability: To have this common understanding
of the meaning of a certain data, a vocabulary (i.e., ontology [47])
of the terms used in that specific context has to be shared first. In
addition to the definition of the terms exchanged, the relationship
among these terms has to be drawn. Our smart e-Health gateway

is designed to provide semantic interoperability in two ways. The
first interoperability is for other devices interested in the data
collected from sensor nodes. On the other side, the gateway is
connected to the Internet and human readable data should be
presented.

4.7. Device discovery and mobility support

Mobility in general involves two main processes, handover and
roaming, that are needed in order to avoid data loss and service
interruptions, and to maintain quality of service (QoS). In a mobile
host, handover arises in case of switching from a connection chan-
nel to another channel while roaming takes place when moving
from one network to another. Mobility can also be categorized
into macro and micro types which are defined as mobility between
different network domains and within a network domain, respec-
tively [48].

There exists a few methods supporting mobility at edge
routers [49]. However, there is no comprehensive method avail-
able at the moment to fully address the challenges in the IoT
realm. For example, incompatibility with multihop routing, and
requirements of NS (Neighbor Solicitation)/NA (Neighbor Adver-
tisement) exchanges are two open issues in the proxy mobile
IPv6. NEMO becomes more complicated when different types of
mobility (micro and macro) happen simultaneously. There are
also some mobility-related mechanisms in the literature handling
the mobility support either at the cloud or via additional remote
assistant servers. This results in increased handover latency due to
often a long distance from a mobile node to the cloud. Particularly
in healthcare environments, latency of the network and services
need to follow some standards, for example IEEE 1073 [50]. This
clearly shows the demand for additional layer between the nodes
and the cloud to enhance mobility.

A simplified view of how smart gateways are used in the fog
layer to assist nodes during mobility from one geographic location
to another domain is shown in Fig. 5. Device discovery helps in
identifying a new node entering to the domain under primary
control of the associated gateway. Taking a single node that intends
to move from gateway #1 to gateway #6, in the path shown by the
arrow, each gateway utilizes device discovery and mobility support
module to provide uninterrupted service for the node. The initial
configuration shows that each gateway manages a set of nodes.
In [51], we show in detail how to provide device discovery and
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mobility at the edge, in particular for interoperability purposes. As
a node moves, it receives a broadcast message from the gateways
regarding its identity. When the node receives the broadcast mes-
sage it replies with a discovery request to the respective gateway,
which is processed by the device discovery and mobility support
module in the gateway. At the fog layer, the two gateways (the
source and destination) exchange information regarding the pro-
file of the node and handle the handover process.

4.8. Energy efficiency for sensor nodes

Data processing at sensor nodes has several drawbacks due to
sensor nodes’ resource constraints. In some cases, complex algo-
rithms might be successfully executed at sensor nodes, however at
a high cost of energy. Therefore, shifting selective signal processing
tasks from sensor nodes to smart gateways at the fog layer can
be an effective solution to address the aforementioned issues,
particularly when gateways are not battery-powered.

Recently, several approaches [52,53] have focused on providing
energy efficiency for Health-IoT applications. In [52], Otto et al.
perform real-time signal processing on sensor nodes while Gia et
al. [53] utilize a low power transmission protocol to save transmis-
sion energy for sensor nodes. Although such techniques enhance
energy efficiency of sensor nodes, a considerable amount of energy
can be still saved via fog computing by outsourcing some loads
from sensor nodes to smart gateways.

4.9. Latency

For a continuous 24/7 remote health monitoring system, rapid
decision making and agile responses are essential for several acute
diseases and emergencies, where data processing and transmission
time should be minimized. In cloud computing where raw data
is transferred from sensor nodes to cloud, if network condition is
unpredictable, it may cause uncertainty to response latencies. The
situation is more critical when streaming-based data processing is
needed (e.g., signal processing on ECG or EEG signals). Compar-
atively, implementing high priority data analytics in distributed
smart gateways and making critical and time-sensitive decisions
within the local network make the system more robust and pre-
dictable. The processed data can be then transmitted to the cloud
for storage and further analysis. Moreover, in a large scale sensor
network, local signal processing at the fog layer can minimize the
traffic between gateways and the cloud.

5. Demonstration and evaluation

To demonstrate our hypothesis, an enhanced healthcare IoT sys-
tem realized through the use of a network of smart e-Health gateways
at the fog layer, a set of demonstrations and evaluations are pre-
sented in this section. It starts with demonstrators and evaluations
that show the characteristics and performance of the smart gate-
way and the benefits they provide. These demonstrations show
the behavior of a single gateway in a standalone condition as well
as the collaborative benefits which can be provided via a layer
of networked smart gateways. A medical case study follows the
features of the gateways to demonstrate a medical early warning
scenario, where a network of gateways forming a fog layer.

To begin with the demonstrations, we present the architecture
of our demonstration system and evaluate the system characteris-
tics including higher-level functions developed on the gateway. In
our architecture, the system implementation is divided into three
major phases: node implementation, networked smart gateways
implementation, and back-end and user interface implementa-
tion. Our Smart e-Health Gateway, called UT-GATE, collaborates
with sensor nodes, other smart gateways, remote server, and

clients. The implemented system architecture is shown in Fig. 6. To
demonstrate the device and protocol level interoperability of UT-
GATE, we have implemented different network topologies, such as
mesh and star topologies, using several wireless sensor technolo-
gies, like 6LoOWPAN, Wi-Fi and Bluetooth, so that each sensor in
each subnetwork utilizes different platform but works in harmony
with UT-GATE. The tunneling interface module in UT-GATE is used
by the Mesh-based 6LoWPAN network to interoperate with the
rest of the system i.e., to tunnel between 6LoWPAN and IPv4/IPv6
protocols. The non-IP based translation module supports the star-
based Bluetooth network to interoperate with the IP-based system,
i.e., to translate between Bluetooth and IPv4/IPv6 protocols.

As shown in Fig. 7, UT-GATE is constructed from combination
of Pandaboard [54] and Texas Instruments (TI) SmartRFO6 board
integrated with CC2538 module [55] and MOD-ENC28]60 Ethernet
Module [56]. The Pandaboard is low-power, low-cost single-board
computer development platform based on TI OMAP4430 system-
on-chip following OMAP architecture and fabricated using 45 nm
technology for providing high-performance [54]. OMAP4430 pro-
cessor is composed of microprocessor unit (MPU) subsystem in-
cluding dual-core ARM Cortex-A9 cores with symmetric multipro-
cessing at up to 1.2 GHz each. Pandaboard can support different op-
erating systems such as Windows CE, WinMobile, Symbian, Linux,
and Palm, and integrate on-chip memory and external memory
interfaces, and support memory management and connecting pe-
ripherals. In our implementation, 8 GB external memory added to
the Pandaboard and powered by Ubuntu operating system which
allows to control devices and services such as local storage and
notification. Furthermore, it supports different network interfaces
such as 802.11 b/g/n (based on WiLink 6.0), Bluetooth v2.1 + En-
hanced Data Rate (BDR) (based on WiLink 6.0), and Onboard
10/100 Ethernet.

Bluetooth sink node is created by configuring Bluetooth module
(WiLink 6.0) while Bluetooth sensor node is constructed by the
combination of Bluetooth module, Arduino Due and analog front-
end (AFE) devices. E-health data collected from the AFE devices is
sent to the Arduino Due through SPI connection after digitization
and then the data is transferred to the sink node through the
Bluetooth module. All operations in the Arduino Due are executed
on FreeRTOS [57], an open source real-time operating system.

A Wi-Fi network is built by the combination of a sink node
constructed by configuring the Wi-Fi Module (WiLink 6.0) in the
Pandaboard and a Wi-Fi sensor node formed by using an RTX4140
module [58] which includes micro controller unit (EMF32), Wi-Fi
module (Atheros) and the AFE devices. Similar to the Bluetooth
module, AFE devices are connected to the RTX module through SPI
connection. Unlike Bluetooth, a UDP client running on RTXOS [59],
an operating system for the RTX module, sends the data to the Wi-
Fi sink node.

The SmartRF06 along with the CC2538 module form the sink
node for the 6LoOWPAN network collect data from other 6LoOWPAN
nodes and forward to the Pandaboard through the Ethernet port.
Wi-Fi is used for data exchange between the Pandaboard and the
remote server.

The SmartRFO6 board is the motherboard for low-power RF
ARM Cortex M3 based SoCs from Texas Instruments [55]. As shown
in Fig. 7, the board is plugged to the CC2538 module to collect the
data from the 6LoOWPAN subnetwork and then send the data to
the Pandaboard via the plugged MOD-ENC28]60 Ethernet Module.
To enable communication between the 6LoWPAN nodes and UT-
GATE, we used RPL (IPv6 Routing Protocol for Low-power and Lossy
Networks) implementation in Contiki OS [60] which is an open
source operating system focusing on low-power IoT devices.

The sensor nodes receive Electrocardiogram (ECG), Electroen-
cephalogram (EEG), and Electromyogram (EMG) digital signals
through 2 SPI connectors from AFE devices (i.e., TI ADS1292 [61]
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Table 1

Hardware specification of sensor nodes and UT-GATE.
Device Micro-controller Flash (KB) RAM (KB) EEPROM (KB) Clock (MHz) Voltage (V)
Zigduino R2 ATMega 128 128 16 4 16 33
Arduino Uno R3 ATMega 328P 32 2 1 16 5
Arduino Mega ATMega 1280 128 8 4 16 5
Arduino Due ARM CortexM3 512 86 - 84 33
Zolertia Z1 MSP430 92 8 - 16 33
TI-CC2538 ARM Cortex M3 Upto512 32 - 32 33
Pandaboard Dual-core ARM Cortex-A9 Up to 32 000 1000 - 1200 5

Table 2

Power consumption of sensor nodes when transmitting at 8.7 kbps.

Communication type Current (mA) Voltage (V) Power consumption (mW)
6LoWPAN node 246 33 81.2

Wi-Fi node 114 33 376.2

Bluetooth 2.0 node 56.9 33 187.7

BLE node 31.6 3.3 104.4

and TI ADS1298 [62]). The analog front-end devices get analog
values from electrodes and perform analog to digital conversion. In
SPI connection between a node and ADS1292, a node (i.e., CC2538
module) acts as the master while the ADS129x module act as

the slave. The specification and power consumption of the sensor
nodes are respectively shown in Tables 1 and 2.

In our IoT-based health monitoring system, the remote server is
responsible for handling client requests by providing the requested
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Table 3

Sensing to actuation latency comparison for local fog based vs. remote cloud based

scenarios.

Latency of the sensing-to-actuation loop

using Wi-Fi (ms)  using BLE (ms)

Fog-based (locally via UT-GATE)
Cloud-based (remotely via the Cloud)

21 33
161 176

data along with graphical user interface. For the remote server
over the cloud implementation, we used the free service provided
by “heliohost.org” including MySQL server with remote access
facility. The database along with tables are created in the server
and the server side scripts are developed in PHP.

As shown in Fig. 8, we have implemented an IoT-based health
monitoring system including 6LoWPAN, Wi-Fi and Bluetooth sub-
networks to practically demonstrate the features of UT-GATE. The
currently implemented functionalities of UT-GATE such as data
compression, data fusion, WebSocket server and local storage are
discussed in detail in the following subsections.

Table 3 shows benefits of the local fog-based decision making
compared to that of the centralized cloud computing scenario in
terms of latency. As can be seen from the table, the latency for
the sense-decide-act loop for the local scenario is considerably
lower then its counterparts making it a viable option for real-time
streaming or actuation purposes.

5.1. Compression at UT-GATE

Applying data compression into remote e-Health monitoring
systems helps reducing the size of data transmitted over a network.
The amount of compressed data varies depending on a particular
data compression method. Some methods can achieve a high com-
pression ratio, for example 8:1, 9:1 or even higher, while others
cannot reach to these ratios. The key requirement when applying
data compression in real-time monitoring systems is computa-
tion time of the compression and decompression process because
maximum latency for ECG, EMG, EEG signals have to be less than
500ms, according to IEEE 1073 [63]. With the purpose of fulfilling
this latency requirement, a LZW [64] algorithm is implemented.
LZW is a lossless data compression method which provides rapid
compression and decompression. In addition, balanced execution
time for compression and decompression in this method helps
keeping harmony between input and output. In order to provide a

general view of data compression in a real-time e-Health monitor-
ing system, data compression is applied at both sensor nodes and
gateways in distinct processes. Even though these compression
algorithms are among the least expensive methods available in
the literature in terms of minimum hardware requirements, it is
still not feasible nor efficient to implement them at sensor nodes.
Therefore, data compression is operated at the fog layer as a unit
in the smart e-Health gateway.

The LZW algorithm reacts differently to various data sizes. It is
more efficient with a higher input size in terms of computation
time. For example, when the size of input data increases 10 times,
computation time increases about 8 times. However, the compu-
tation cost in terms of latency rapidly grows by increasing the data
size. Therefore, the data size needs to be carefully chosen to meet
the real-time requirements of e-Health data.

Table 4 shows the time required for compression and de-
compression and compressed, and data size with the number of
connected sensor nodes to UT-GATE varying from 1 to 50. Data
is collected from sensor nodes having 8 channels for EMG with
sampling rate of 1000 samples/second. In addition, other signals
including environmental data is obtained resulting to a sample
size of approximately 70B. When 120 samples are used as an
input, the compression takes around 3.1ms. Transmission time
for sending 70B data using 6LoOWPAN technology from a sensor
node to a gateway, is around 40 j.s when transmission rate is 250
kbps. This shows that the transmission time is negligible compared
to the compression/decompression time, and total required time
for compression, transmission, and decompression is tolerable for
real-time transmission of e-Health data. It can be also observed
that the smart gateway at the fog has the ability to serve a large
number of sensor nodes with still reasonable compression and
decompression time.

5.2. Benefits of data processing at UT-GATE

In an IoT-based health monitoring system, as presented in Fig. 3,
there are options to apply signal processing at each layer of the
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Table 4
Compression results at UT-GATE and latency reduction.
Number of senors nodes connected to UT-GATE 1 2 5 10 50
Number of analog channels 8 8 8 8 8
Data size (120 samples) (B) 8400 16 800 42 000 84 000 420 000
Compressed data size (B) 808 1597 3893 7696 38333
Compression time (ms) 3.1 4.4 9.2 16.6 73.0
Decompression time (ms) 33 4.6 113 23.0 83.9
Total time of comp., tran., and decomp. (ms) 12.86 21.77 51.64 101.16 463.5
Transmission time of non-processed data (ms) 67.2 134.4 336 672 3360
Total latency reduction (%) 80.8 83.8 84.6 84.8 86.1
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Fig. 9. ECG processing implementation.

system architecture. As introduced in Sections 4.8 and 4.9, fog layer
has adequate computational resource and can bring benefits to
both sensor node energy efficiency and data transmission time in
the system.

As a widely used function in health monitoring applications, we
chose to implement ECG signal processing for movement artifact
removal and feature extraction (i.e., heart rate calculation from R to
Rinterval, P wave, and T wave). We implement this function under
three different scenarios: (i) on a sensor node, where the processed
data and extracted features are sent to the cloud through UT-GATE,
(ii) on a UT-GATE where the raw data is received from sensor nodes
and the results are sent to a cloud (fog-assisted cloud computing),
and (iii) on the cloud, where raw data is passed from two prior
layers. For all these scenarios, we measured energy consumption
of sensor node, the size of samples transmitting from UT-GATE to
cloud, and the latency of data delivery between them.

We use MIT-BIT Arrhythmia database [65] which includes
abundant ECG data sources sampled at 360 samples per second in
11-bit over 10 mV. Data is pre-stored in sensor node or UT-GATE
before being processed. The ECG threshold-based feature extrac-
tion algorithm is applied after moving average filter and four level
discrete wavelet transformation with Daubechies 4 wavelet. Dis-
crete wavelet transformation is a time-frequency method which
is suitable for non-stationary signal processing. With each level
of transformation, the signal is divided into approximation coef-
ficients and detail coefficients in even data sizes which represent
low and high part of the signal respectively. ECG features lie in the
low frequency part, so approximation coefficients are kept in each
level for the next level transformation. ECG signal processing and
peak detection are shown in Fig. 9.

To access the overheads of local processing on sensor nodes
in terms of energy consumption, application execution time and
energy consumption are measured from Arduino Due acting as a
sensor node. Sensor node in real-time application needs to accu-
mulate data for a few seconds before processing. In our case, the
collection time for 1000 samples is 2.78 s. A low-cost Wi-Fi module
ESP8266 is utilized to transmit data from the sensor node to the
UT-GATE. The energy consumption calculation and comparison for
the above mentioned three scenarios are presented in Table 5. As
can be seen from the table, by outsourcing the processing burden
from the sensor node to the smart gateway, about 55.7% of energy
is saved thanks to fog computing.

As shown in Table 6, fog computing considerably reduces the
data transmission to the cloud due to local data processing. For
every 1000 raw samples, it provides 74.1% reduction in sample size,
due to sample downsizing through wavelet decomposition in gate-
way. Meanwhile, essential information about ECG, including wave-
form and extracted features, are kept and sent to cloud, instead of
transmitting raw samples. Consequently, data transmission time
from gateway to cloud is reduced, especially for large data sets. The
latency reduction when transmitting 240 KB raw samples of data
between gateways and the cloud under different Wi-Fi network
conditions are presented in Table 7. It can be observed from the
table that fog computing can reduce the communication traffic in
particular in high-traffic network conditions.

5.3. Local storage, notification, and security at UT-GATE

The UDP server running at the gateway on port 5700 receives
data modules for the 6LoOWPAN network and under RTXOS on
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Table 5
Providing energy efficiency for sensor nodes.
Time Current Energy
Processing at sensor node (collection + execution) 2.78 s 4+ 101 ms 10.1 mA + 106.8 mA 127.34 m]
Process at UT-GATE/cloud (transmitting raw data) 95 ms 180 mA 56.34 mJ

Table 6
Number of transmitted samples from fog to cloud.

Processing at sensor node or UT-GATE

Processing at cloud Improvement (%)

No. of samples 259

1000 74.1

Table 7
Latency reduction between gateways and cloud server for 240 KB of raw samples.

Network condition Data rate Raw samples Raw samples proc. time + Latency reduction
(Mbits/s) trans. time (ms) trans. time of processed samples (ms) (%)
Light load 18 106.6 96.3 + 6.6 3.5
Medium load 12 152.2 96.3+9.5 30.5
Heavy load 9 2133 96.3 4+ 13.5 48.5
Table 8 o form of code and description. Currently, gateway responds with
XML status code and description. 3 status codes; the codes along with its description are given in
Code Description Table 8. When mobile application receives response, at first it will
0 Invalid request or Error check the code in status header and if status returns ‘1’, it will
1 Notification — {total in number} proceed with content section, otherwise it will deliver the status
2 No new notification

RTX Wi-Fi modules for the Wi-Fi network. Similarly, the Bluetooth
nodes send data to the Bluetooth module in UT-GATE. Received
data is processed and stored in the local repository apart from for-
warding the same data to the remote server. We have implemented
a local repository on UT-GATE using MySQL database which offers
several engines. Federated engine is one such kind of engine used
to create references to the tables in the remote server without
the requirement of database mirroring or replication. The tables
created with federated engine on local repository will hold of the
same structure and record as in the remote server. Whenever new
rule is added or existing rule is updated in remote server, the
same information is available in the local repository which helps
to give least priority to synchronization process on rules. During
processing, if the received data does not conform to the rules, a
notification will be logged in the repository. The notification table
will be populated directly from local repository and the notification
mechanism configured in the remote server will act accordingly.

The gateway purges the locally stored information in reposi-
tory, which is received 30 min earlier ensuring that data synchro-
nization with the remote server has been successfully completed.
If the connection with the remote server is not available, it will
store the data as long as possible and begin to delete old data to
accommodate new data, if it runs out of memory. During network
unavailability, UT-GATE can also act as a local web server by
handling the client application’s request along with notifications
taking its operation to a higher level. While acting as local web
server, it will send responses either in XML or JSON format as
requested, leaving the user interface rendering at the client-end
by utilizing the client resources efficiently to minimize its resource
usage.

Notification mechanism configured in the gateway can be used
on permanent basis parallel to remote server or whenever the
connection to the remote server is unavailable. For notification
implementation, we have developed an Android application which
communicates with UT-GATE over Wi-Fi on demand. If new notifi-
cation exists, the gateway communicates with the respective node
with a message along with node ID and timestamp in XML format.

The XML format has two sections: header and content. The
header section contains the status of the current request in the

header description as message.

As mentioned before, UT-GATE has been powered by the
Ubuntu operating system which comes with a firewall called Un-
complicated Firewall (UFW) which is used to restrict the accessibil-
ity of protocols and ports. With proper configuration, the gateway
can be tuned to achieve certain degree of security level. For our
implementation, we blocked all ports and protocols except TCP and
UDP over ports 80, 443, 3306 and 5700.

5.4. WebSocket server on UT-GATE

An embedded WebSocket server was implemented on UT-GATE
using the Tornado non-blocking Web server framework for Python.
The server receives data as a UDP server directly from the sensor
nodes functioning as a UDP client. Another configuration involves
receiving the signal from the MySQL database configured to serve
as a streaming database. The benefit of this approach is multi-user
support for the WebSocket server since the signal is always stored
and can be retrieved many times. On the client side, a WebSocket
enabled browser accesses an HTML page hosted at the gateway
that offers the JavaScript interface and necessary parameters to
establish the two-way asynchronous WebSocket link between the
browser and the gateway. The ECG signal is buffered to 400 sam-
ples and sent as WebSocket messages of 800 bytes each averaging
a data rate of 1.1 KB/s. In our LAN setup, it takes 32 ms for the Web
client to receive the packet and render the continuous chart. The
buffer size can be decreased to lower the latency at the expense of
higher processing overhead for the Web Client. A JavaScript client
plots the near real-time chart and a set of commands is imple-
mented to control transmission start-stop. Future work includes
the expansion of the command set into a complete API for gateway
management and a generic library capable of listening to different
transport layer protocol sockets for easy interoperability of variety
of nodes with different protocols.

5.5. Medical early warning scores: A case study

Early Warning System is a guide tool in hospitals for estimating
the degree of illness and predicting the risk of deterioration to re-
duce the complications and prevent intensive care unit admission.
It is based on recording patient’s medical parameters periodically
to find abnormal signs. This guide system works based on the fact
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Table 9

A typical early warning score model [70].
Physiological parameters 3 2 1 0 1 2 3
Respiration rate (breaths/min) <8 9-10 12-20 21-24 >25
Oxygen saturation (%) <91 | 92-93 94-95 >96
Temperature (°C) <35.0 35.1-36.0 | 36.1-38.0 | 38.1-39.0 >39.1
Systolic BP (mmHg) <90 |91-100 | 101-110 | 111-219 >220
Heart rate (beats/min) <40 41-50 51-90 91-110  111-130 >131
Level of consciousness A* | V,P or U*

that clinical deterioration is a visible pattern in patient’s vital sign
up to 24 h before deterioration happens [66,67,68]. The system
is designed based on a method called Early Warning Score (EWS)
which calculates a total score using a set of values related to some
medical parameter. This score reflects the health status of a patient
with respect to her/his vital signs. To find the score, a nurse should
measure and record the vital signs of a patient in an observation
chart. The nurse marks a vital sign with a score, based on its value
in its range. A higher score means more abnormalities of a specific
vital sign and the sum of all scores indicates the overall health
status of a patient [69]. Table 9 shows a typical EWS model.

Considering a patient’s final calculated score, medical staff can
modify the therapy orders and recording intervals. Such a scoring
method for medical early warning was presented for first time in
1997 [71]. Initial versions of the EWS were using five vital signs:
heart pulse, respiration rate, blood pressure, body temperature,
and blood Oxygen level (Sp0O2). Several years after first imple-
mentations of this method in hospitals, some enhancements were
proposed and applied to the original EWS algorithm. Modified
early warning system (MEWS) [72], standardized early warning
system (SEWS) [73], and a national early warning system in UK
(NEWS) [74] are some examples. The main difference of these en-
hanced methods is the number of parameters they use to calculate
the final score. Also they customize the threshold values of vital
signs based on the average property value in the target country.

Despite many benefits offered by EWS in hospitals in terms
of reduced mortality rate and healthcare costs, some researchers
have reported false diagnosis and errors mainly caused by inac-
curate records. The necessity of implementing an accurate early
warning system drives hospitals to move towards automatic elec-
tronic solutions [75].

The objective of this case study is to demonstrate an in-home
early warning system using the discussed system architecture and
the concepts of fog computing. Therefore, we implemented an in-
home EWS system where patients are supposed to be provided
with medically acceptable services and environments. To this end,
it is essential to monitor environmental properties as well as pa-
tient’s activities to consider their effect on patient’s vital signs. The
components in our proposed system comprises three layers shown
in Fig. 10.

At the first layer, we implemented a network of sensors which
are divided into three groups. The first and main group includes
medical sensors to monitor vital signs such as heart rate, respira-
tion rate, body temperature, blood pressure, blood oxygen level,
and ECG. The second group of sensors contains environmental
sensors for recording light, temperature, and humidity of the room.
Activity sensors are in the last group for recording the patterns of
movements, posture, and total daily steps of the patient.

At the second layer, data received from sensor network is
handled by UT-GATE via wireless communication. The gateway
receives data from several type of medical sensors via a UDP
server implemented by Node.js. This UDP server stores data for
each sensor in separate files considering the information of patient
whom the data is coming from. Another service running on UT-
GATE with Apache server reads data from locally created files for
further processings using a Python script. As properties of the
collected data are not similar, an adaptation is needed to unify the

data structure. The frequency of data collection is not the same for
all the sensors, ranging from 250 samples per second (e.g., ECG)
to about 5 samples per day (e.g., step counts). Communication
protocols also differs for different sensors (e.g., Bluetooth and Wi-Fi
with UDP and TCP transmission protocols).

Node.js UDP server is responsible for handling different data
transmission protocols while continuously receiving data from
sensor network. In the gateway, using Python, preliminary data
analysis is implemented to detect critical conditions before per-
forming detailed analysis at the cloud. UT-GATE first filters the
data for noise reduction. A bandpass filter (0.5-100 Hz) with Finite
Impulse Response (FIR) is implemented in the gateway to reduce
noises from the incoming ECG signal (250 samples per second).
Then, heart rate data is extracted from the signal considering RR
intervals. Fig. 11 demonstrates a window of raw and filtered ECG
data.

Moreover, the gateway applies data fusion on the sensory data.
In this regard, two heart rate signals from the monitored person
are collected using two different devices. Due to the presence of
inevitable noises (e.g., movement’s noises) on the acquired signals,
two obtained data may not be identical during the monitoring.
To reduce the noise impact, first, outliers and meaningless data
are removed using an anomaly detection method. Considering a
threshold for the minimum value of heart rate, zero values are
removed. In our case, outliers in heart rate data sources are mainly
because of improper probe connections, often due to loose connec-
tion or low conductivity between the probe and the patient’s skin
(low moisture). Second, a weighted average is implemented for
two sources values to achieve more reliable heart rate (see Fig. 12).
The weight of each data set is determined by the sensor accuracy
mentioned in the sensor’s datasheet.

After the aforementioned steps, real-time EWS calculation,
based on the constraints and rules shown in Table 9, are performed
at the fog layer. We believe EWS is a proper case study for fog
computing in healthcare, as it demands reliability, rapid response,
and real-time processing, and deals with heterogeneous sensory
data which calls for pre-processing. To calculate the EWS score,
a window of collected vital signs are chosen. Using a rule-based
system defined based on Table 9, the score is calculated at UT-
GATE. In our use case, a 35 years old male subject (BMI = 28.3)
is monitored for 8 h. Fig. 13 shows one minute of monitoring in
which the subject encountered a sudden variation in his vital signs.
Fig. 14 also demonstrates the calculated score. The increasing score
indicates the higher probability of the patient’s health deteriora-
tion for this specific window. Therefore, in this case, the medical
experts are notified about the critical state of the patient for further
considerations.

In parallel with the real-time analysis and notification, the
gateway applies compression and encryption to the filtered and
processed data, sends feedback and notifications to the sensor
network and cloud respectively, and stores the data in UT-GATE’s
local storage (see Fig. 10).

We compress processed data in the gateway to have a backup
for the situation when Internet connectivity drops off. The com-
pression method we used here is different with the method de-
scribed earlier for the real-time data compression during trans-
missions. In this case study, we use tar method to create a file
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as temporary location for collected data and use tar.gz method to
compress temporary file when the size of file reaches to a certain
value (e.g., 500 KBytes). The effect of temporary file size on the

60 T T

compression ratio is shown in Fig. 15. The larger the size of tem-
porary file, the higher the compression ratio would be. However,
the compression ratio shows an insignificant improvement for
temporary files larger than 500 KByte.

To keep stored data secure, we use an asymmetric encryption
method using Crypto library [76] in Python. All the compressed files
on the gateway are encrypted with a public key and only the data
collector service in the cloud has the private key to decrypt the files.

The gateway adjusts the sampling rate according to the calcu-
lated EWS score. When the score increases, the gateway considers
priority for patient’s health situation by increasing the sensor’s
sampling rate to track the momentary changes more accurately.
On the other hand, when the score is zero or within the normal
range, the sampling rate is reduced by sending feedback to sensor
network in order to improve the energy efficiency.

Local storage consists of a file storage and database to keep the
properties and indexes of the files. In the last phase, the gateway
checks the availability of the Internet connection and sends the
data to the could server. In case of connectivity issues, it tags the
unsent data to be sent in future. A process in local storage service
checks and synchronizes the stored data with the cloud server and
removes old and duplicated files from the storage, and deletes their
indexes from the database.

The third layer of our in-home early warning system consists
of a cloud server and user interface for patients, caregivers, and
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medical experts. At this layer, the cloud server receives and records
gateway’s data (e.g., EWS score, vital signs and notifications) for
further processing. Using the incoming data from the gateway
and the patient medical history data, the server provides reports,
suggestions and possible alerts for medical experts and caregivers.
Cloud server also has a user interface to provide data access for
health professionals. Fig. 16 shows a snapshot of the developed
HTML5 web-based user interface which is used as a control panel.

In addition, patients and caregivers have also access to an Android-
based smartphone application to receive notes and notifications.

6. Conclusions

In this paper, the concept of fog computing and Smart e-Health
Gateways in the context of Internet-of-Things based healthcare
systems was presented. Smart gateways at the close proximity of
sensor nodes in smart home or hospital premises can exploit their
unique strategic position to tackle many challenges in IoT-based
health systems such as mobility, energy efficiency, scalability, in-
teroperability, and reliability issues. We investigated in detail a
range of high level services which can be offered by smart gateways
to sensors and end-users in a Geo-distributed fashion at the edge of
the network (e.g., local processing, storage, notification, standard-
ization, firewall, web services, compression, etc.). We presented a
proof of concept implementation of an IoT-based remote health
monitoring system which includes our demonstration of a Smart
e-Health Gateway called UT-GATE. By exploiting a number of UT-
GATEs, we formed an intermediary processing layer to demon-
strate the fog computing concept for loT-based healthcare systems.
Our fog-assisted system was applied to a medical case study called
Early Warning Scores, targeted to monitoring patients with acute
illnesses. Our full system demonstration includes all the data flow
processes from data acquisition at sensor nodes to the cloud and
end-users.
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ABSTRACT Handover mechanism for mobility support in a remote real-time streaming IoT system was
proposed in this paper. The handover mechanism serves to keep the connection between sensor nodes
and a gateway with a low latency. The handover mechanism also attentively considers oscillating nodes
which often occur in many streaming IoT systems. By leveraging the strategic position of smart gateways
and Fog computing in a real-time streaming IoT system, sensor nodes’ loads were alleviated whereas
advanced services, like push notification and local data storage, were provided. The paper discussed and
analyzed metrics for the handover mechanism based on Wi-Fi. In addition, a complete remote real-time
health monitoring IoT system was implemented for experiments. The results from evaluating our mobility
handover mechanism for mobility support shows that the latency of switching from one gateway to another
is 10% - 50% less than other state-of-the-art mobility support systems. The results show that the proposed
handover mechanism is a very promising approach for mobility support in both Fog computing and IoT
systems.

INDEX TERMS Mobility, Fog Computing, IoT, Health Monitoring, Handover, Latency, Energy efficiency.

I. INTRODUCTION

NTERNET-OF-THINGS (IoT) [1]-[3] can be described

as a worldwide network where humans and objects from
different disciplines in both physical and virtual world can be
interconnected and interact with each other. IoT is considered
a key enabler to address problems in many fields ranging
from healthcare to smart spaces and transportation. Remote
monitoring loT-based systems often use wireless sensor net-
work to collect and transfer data to the Cloud where the
data is retrieved in real-time via terminals such as a web
browser or mobile applications [4]-[9]. Wireless protocols
such as Wi-Fi, classic Bluetooth, LORAWAN, Bluetooth Low
Energy (BLE), nRF, or IEEE 802.15.4 are commonly applied
in many applications [10]-[12]. For example, environment
monitoring for agriculture often uses low data rate wireless
protocols such as LoORaWAN or 6LoWPAN because informa-
tion of environments such as temperature and humidity does
not change rapidly. In contrast, remote real-time health mon-
itoring applications demanding high-fidelity multi-channel
bio-signals often use high data rates wireless protocols such
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as Wi-Fi or IEEE 802.11ah [13].

Although the conventional IoT systems [14], [15] have
shown some advantages such global data access and real-time
monitoring, they still have several limitations in terms of la-
tency, reliability, communication bandwidth, and accessibil-
ity. In these systems, conventional gateways merely receive
data from sensor nodes and forward the data to the Cloud.
There has been a growing tendency towards the three-layer
architecture applying Fog computing which is a convergence
network of interconnected and distributed smart gateways.
The three-layer sensor-Fog-Cloud architecture provides a
proper solution for mentioned limitations [16]-[18]. Fog is
capable of reducing the burdens of the Cloud and tendering
variety of services such as geographical distribution, loca-
tion awareness, and real-time interaction. As shown in [19],
[20], Fog enables low-power consumption at sensor nodes as
well as bandwidth savings (from sensors to the Cloud) for
data-intensive applications. Fog have been applied in many
systems [20]-[24] to solve existing challenges.

Mobility support is a key requirement for many real-time

1

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2848119, IEEE Access

IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[Physical—based Mobility]

Movement Type

Mobility in loTs

[Architectural—based MobilityJ

Entity Handler Mobility Protocol

Node Sink Node
Mobility Mobility

Random
Mobility

Mobility Mobility

[Movement Element]
Pre—orderedJ [Controlled

Node-based || Network-based
Handler

Mobility at

Mobility at
Network layer|| MAC layer

Handler

Hybrid-based
Handler

FIGURE 1. Mobility in loT

IoT systems as missed or delayed data during mobility can
lead to severe consequences. In order to support mobility,
an IoT system needs to be equipped with a handover or
hand-off mechanism which is responsible for de-registering
a sensor node from a source access-point and registering it
to a new access-point seamlessly. It is a challenging task
to implement an advanced handover mechanism for full
mobility support in critical domains such as healthcare [25],
[26] due to strict requirements of security, latency, network
coverage, and reliability [27]. This issue becomes much
more challenging for fog-assisted [oT systems because smart
gateways at the edge provide distributed storage and Fog
services. When handling mobility, a handover mechanism
needs to effectively cooperate with Fog services to update
and synchronize the distributed storage.

Currently, existing Fog-based methods [28]-[30] cannot
completely solve problems in Fog-based systems especially
for high data rate applications. For instance, mobility man-
agement cannot be guaranteed when the connection between
Fog and the Cloud is interrupted. Oscillating nodes which
move back-and-forth between gateways during a short time
period are not considered. The node oscillation is critical
to the handover mechanism as it can cause overloading the
gateways. In some cases, it might cause the connectivity
interruption between other sensor nodes and gateways. In
this paper, we propose a mobility support approach for Wi-
Fi-based real-time IoT health monitoring systems through
an efficient handover mechanism. Exploiting the proposed
approach, objects/persons can be remotely monitored in real-
time without any interruption in the mobility. Our approach
addresses primary types of mobility together with a node
oscillation phenomenon. The main contributions of this work
are summarized as follows:

o Novel handover mechanism for remote real-time moni-
toring with a negligible latency overhead.

« Real-time notification services for emergency or other
irregular situations such as a dead node.

o Light-weight solution to address node oscillation.

o Analysis of the handover mechanism characteristics,
particularly latency, through a hardware-software pro-
totype.

The remainder of the paper is organized as follows:
Section 2 covers background and motivation. In section 3,
metrics in handover mechanism are presented. In section 4,
impact factors on mobility support are discussed. Section
5 presents the proposed handover mechanism. Section 6
presents the test-bed setup. Section 7 covers implementation
of the proposed system. Section 8 presents evaluation the pro-
posed system. Section 9 covers discussion. Finally, Section
10 concludes the work.

Il. BACKGROUND AND MOTIVATION

Mobility in IoT systems can be hierarchically classified into
primary mobility types shown in Fig. 1. In order to provide
an elaborated view of mobility, each type is discussed in this
section with proper details.

Movement type can be categorized into random, pre-
defined, and controlled classes. Dealing with random mo-
bility is the most challenging because mobility parameters
of the random mobility such as moving paths, destination
points, and movement duration are unknown. When a han-
dover mechanism can handle the random mobility, it can also
control other movement types.

Movement elements can be categorized further into sink
node movement [31], [32] and sensor node movement.
Among these movements, dealing with the sink node move-
ment is more complicated because it causes changes in the
network topology and the network’s coverage areas. Fortu-
nately, sink nodes or gateways (access-points) in applications
in different fields such as manufacturing industry, education,
and healthcare centers are often fixed in particular places
because several costs (e.g., setup, management and mainte-
nance) can be reduced while maintaining the high quality
of services. Smart-phone-based sink nodes or access-points
are used in some systems [33], [34] but they are not widely
applied. In such systems, the quality of services cannot be
guaranteed when the gateway’s battery level goes low. In
practice, most of the mobility cases are caused by the sensor
node movement. Therefore, we focus on the sensor node
movement in the paper. It is noted that access-point and
gateway are interchangeable terms in this paper.

According to Raja et al. [35], node mobility can be cat-
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egorized into weak and strong mobility. Weak mobility is
primarily caused by hardware failures or the depletion of bat-
tery. If weak mobility is not detected in time, the connectivity
of sensor nodes will be disrupted. Strong mobility occurs
when a node moves from a gateway to another one in the
same network by intention or external interactions such as
wind, water, or rain. From another viewpoint [36], micro and
macro mobility are two categories of node mobility. Micro
mobility arises when a sensor node moves from a gateway
to another one in the same network. Macro mobility occurs
when a node moves from one network to another network.
It is recognized that a single viewpoint among mentioned
alternatives cannot cover all cases of mobility. In this paper,
we consider both strong mobility and micro mobility as node
mobility while weak mobility is considered as a malfunction
case. In the paper, weak mobility discussed in [35] is not
considered as a type of node mobility because a static node
may deplete their battery or crash. However, dead devices and
malfunction cases due to hardware failures or the depletion
of the battery are considered in this work for avoiding the
discontinuation of services.

In most of the cases, dealing with healthcare applications
requirements (e.g. latency and quality of bio-signals) are
often more challenging than the requirements in other fields
such as farming. For example, additional efforts are required
for mobility support in e-health applications due to strict
requirements of medical systems such as critical response
time [37]. Accordingly, many examples and discussed appli-
cations in this paper are related to healthcare.

Due to the demand for mobility awareness in remote health
monitoring systems, many approaches have been recently
proposed. In this context, Valenzuela et al. [38] present a mo-
bility support approach for in-home health monitoring sys-
tems using wearable sensors. In their approach, continuous
monitoring of in-home patients is facilitated via an efficient
hand-off protocol. In [39]-[41], Jara et al. propose a mobility
support solution based on 6LoWPAN protocol for in-hospital
health monitoring systems. By deploying sink nodes and
gateways in their proposed architecture, intra-mobility and
fault tolerance are also supported. In [42], authors present a
mobility support solution for wireless sensor network (WSN)
and wireless body sensor networks. The approach uses the
sensor velocity and the received signal strength (RSS) as vital
parameters for the handover mechanism. One shortcoming
of their approach is the overhead of the presented continu-
ous message exchange algorithm which causes transmission
overhead and high power consumption.

The discussed approaches show several benefits such as
reasonable handover latency in the context of healthcare,
however, they are not designed for fog-enabled IoT systems.
More precisely, distributed storage and push notifications
cannot be maintained or updated during mobility in the
aforementioned approaches.

For dealing with mobility in smart cities, Chen et al. [43]
propose a mobility management method using follow-me
Cloud-Cloudlet [44] in Fog-based radio access networks. In
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this approach, the handover for mobility support is triggered
when a user moves between transportation infrastructures
of smart cities (e.g., bus, train, etc.). As this technique is
designed for city-scale mobility support, the mobility mech-
anism in this approach happens through the Cloud infrastruc-
ture rather then gateway-to-gateway data/control handover.
The approach necessitates a large volume of data exchange
between the edge and the Cloud and also under-utilizes
the benefits of Fog computing (e.g., Internet connection to
the Cloud is needed for mobility support). However, this
approach is not efficient for mobility support in infrastruc-
tures such as hospitals, nursing homes, etc. where users’
movement happens within the premises (i.e., between gate-
ways) and is expected to be more frequent compared to
city-scale travels. Such short-scale scenario calls for more
efficient local mobility support mechanisms. Bittencourt et
al. [28] address scheduling issues during mobility in the Fog
layer. However, they do not provide a fog-based handover
mechanism for mobility support.

In this paper, Wi-Fi is focused due to the following rea-
sons: i) In the continuous e-health monitoring systems such
as multi-channel ECG, EMG, and EEG monitoring, high
transmission data rates are the prerequisites to achieve the
high quality of signals. For example, each sensor node often
collects about 90 kbps, 190 kbps, and 96 kbps for 8-channel
ECG, 8-channel EMG, and 24-channel EEG applications,
respectively [45]. Comparing to the other popular wireless
communication protocols such as classic Bluetooth, Blue-
tooth Low Energy (BLE), IEEE 802.15.4, Wi-Fi supports
much higher data rate and throughput. For example, data
rates of IEEE 802.11b are up to 11 Mbps while data rates
supported by other protocols such as Zigbee, 6LoWPAN
(IPv6 over Low-Power Wireless Personal Area Networks),
and BLE are about 250 kbps [46]. In practice [47], these
protocols merely support a data rate up to 160 kbps. ii)
Wi-Fi supports multiple connection simultaneously whilst
BLE and classic Bluetooth cannot support. iii) Wi-Fi-based
systems are ubiquitously applied in many fields. Therefore, a
solution for mobility issues of these systems can play a large
contribution to the society.

The rationale behind this work is the demand for the
design and implementation of mobility aware service with
a robust handover mechanism customized for IoT systems
based on Wi-Fi. In detailed, the proposed approach will focus
on real-time remote health monitoring IoT systems gathering
a large amount of data, such as the scenario shown in Fig.
2. The Fog-based system shown in Fig. 2 has 3 main layers
including a layer of sensor nodes, a layer of smart gateways
with Fog computing and a layer of the Cloud and terminals.
Sensor nodes collect contextual and e-health data such as
ECG, EMG, room temperature, humidity and transmit the
data to smart gateways for distributed storage, processing,
and analysis. The processed or raw data is then transmitted
to the Cloud for global storage and further processing. End-
users such as medical doctors can access to real-time data via
a mobile application or a web browser. The mobility-aware
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FIGURE 2. Remote real-time monitoring loT system

service needs to support different movement types (pre-
defined, controlled, and random type), and node mobility.
In addition, the burdens of sensor nodes cannot be increased
when the system deals with mobility. To address these targets,
the handover mechanism should be completely implemented
at the Fog. Furthermore, the handover mechanism should
reduce the handover latency to fulfill time requirements of
critical applications such as real-time remote health monitor-
ing IoT systems.

lll. METRICS IN HANDOVER MECHANISM

Handover mechanisms often rely on one or several metrics
such as Received Signal Strength Indicator (RSSI), velocity
of objects and Link Quality Indicator (LQI) for making
handover processes. These metrics are discussed in detail as
follows:

Received Signal Strength Indicator (RSSI) indicates the
signal power of a message received by a node. RSSI is one
of the most popular metrics used in handover mechanisms
[48], [49]. In optimal cases, RSSI can be used for directly
estimating the distance between a sender and a receiver.
However, it is not a simple task to calculate the distance in
practice when merely relying on RSSI because it is not linear
and it is affected by interference from the surrounding en-
vironment [50]. Therefore, surrounding environments, con-
text, and network deployment must be attentively considered
when building a handover mechanism based on RSSI.

General handover approaches are often based on the best
RSSI value and a threshold value [50]. RSSI values of a
sensor node towards two or more gateways are compared
when the node moves to an overlapping area which is an
area covered by two adjacent gateways. Correspondingly, the
stronger RSSI value indicates that the node may be close
to one gateway and it is likely to move to that gateway.
Therefore, the node is instructed to connect and register to
that gateway. This approach has advantages of simplicity but
it has several drawbacks such as instability and inaccuracy in

4

W

el
I

Analyzed
Data

)

Data Synchronisation

Remote Control Panel

many cases. For example, it is not reasonable to directly com-
pare RSSI values when an overlapped area is covered by an
indoor gateway and an outdoor gateway. In order to overcome
some of the mentioned drawbacks, another approach uses a
threshold value for deciding an instant moment to register to a
new gateway. When an RSSI value of a sensor node towards
a gateway is smaller than a threshold value, the node starts
to look for other gateways via active or passive scanning
discussed in Section I'V. If the RSSI value from the scanning
is larger than the threshold value, it registers with the gateway
corresponding to this RSSI value. Although this approach
provides some advantages, there are several disadvantages.
For instance, a node may continuously search for a gateway
when it does not find an RSSI value larger than the threshold
value. Accordingly, it causes a large overhead of network
transmission and energy consumption. Hence, RSSI should
not be used as a standalone metric for assessing link quality
or qualifying handover mechanism [51].

Link Quality Indicator (LQI): In addition to RSSI, LQI
can be used for handover mechanisms [52] as the second
parameter. LQI is based on signal-to-noise ratio and indicates
the quality of each received packet via average correlation
values. In general, the LQI value depends on the distance
between a sensor node and a gateway. When the distance
increases, the LQI value decreases, and vice versa. Similar
to RSSI, the LQI value is influenced by the surrounding
environment. The usage of LQI is similar to the discussed
RSSI based approaches.

Signal to Interference plus Noise Ratio (SINR) can be
calculated by dividing the sum of the interference power from
all interfering signals and the power of background noise.
SINR can be considered as one of the most proper metrics
for assessing link quality [S1], [53]. However, it is difficult to
retrieve an accurate SINR due to interference from unknown
devices.

Packet Delivery Ratio (PDR) is the ratio between the num-
ber of received packets at a receiver and the number of sent
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packets. It can be approximately estimated by utilizing the
history of PDR or by counting the number of received packets
in a short period of time [54]. PDR is commonly used as a
metric for calculating the best route and transmission rate.
In many handover mechanisms, PDR is used alongside with
RSSI or LQI for providing appropriate handover decisions
and assessing link quality [51].

Bit Error Rate (BER): represents the ratio of error bits
towards received bits during a certain time window. However,
this metric is not often used in handover mechanisms because
it is not simple to measure BER where a pseudo-random data
sequence transmission must be considered during measure-
ments [55].

Velocity is used alongside with RSSI or LQI in han-
dover mechanisms [S0]. When the velocity of a sensor node
increases, a handover latency proportionally rises [56]. In
general, it is not simple to capture the speed of a sensor
node in an instant time. In order to measure the speed of a
sensor node, other technologies such as dual loop detector,
or magnetic sensor [57] should be implemented in the sensor
node. Correspondingly, it causes large energy consumption.
Despite the difficulties, velocity is used as a supplementary
metric in many handover mechanisms for improving han-
dover decisions. Fortunately, the node velocity in some appli-
cations does not vary dramatically and can be estimated. For
example in healthcare, the speed of a sensor node attached to
a patient is approximately 1-2 m/s in normal cases [50].

Moving direction: It is an advantage for a handover mech-
anism when the movement direction of a sensor node is
detected, as it can be used to predict the next destination gate-
way. As a result, overheads of network transmission caused
by broadcasting or multicasting from the source gateway to
other gateways can be avoided. The movement direction of
a sensor node can be possibly estimated via methods such as
the triangulation [58], [59], angle of arrival [60], and the time
of arrival [61].

Global position: Possibly, sensor nodes are equipped with
global positioning systems. Corresponding, a map of sensor
nodes can be tracked and a handover mechanism can use
GPS values (global locations) for performing its handover
decisions. However, GPS has several major drawbacks: (i)
when a GPS device enters indoor or underground areas,
GPS signals get blocked easily, (ii)) GPS signals are highly
influenced by interference when a GPS device is located near
tall buildings, (iii) continuously collecting GPS signals costs
high energy consumption [62]. Therefore, it is not commonly
used in handover mechanisms for mobility support in many
I0Ts systems.

IV. IMPACT FACTORS ON MOBILITY SUPPORT

In order to provide a comprehensive view of a handover
mechanism, factors impacting on mobility support in IoT
systems using the 802.11 technology are discussed. These
factors are mobility scenarios, handshaking messages for
802.11 connection, and network deployment.
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A. MOBILITY SCENARIOS

With the purpose of achieving an accurate and precise han-
dover mechanism, we categorize health monitoring related
mobility into two scenarios: (i) node mobility between in-
door or outdoor locations, (ii) node mobility between in-
door and outdoor locations. In the first scenario, vital metrics
(e.g. RSSI and LQI) can be directly used for the handover
mechanism. In the second scenario, these parameters must
be recalculated by adding effects from the surrounding envi-
ronment such as temperature and interference signals. For ex-
ample, a temperature of a hospital room is usually stable. In
contrast, out-door temperature varies depending on particular
geographical locations and weather conditions. According
to Xu et al. [63], RSSI varies approximately 5.0 dBm for
a change of 10 Centigrade. The differences between two
adjacent contexts (indoor and outdoor) are complementary by
offsets. These offset values must be periodically updated due
to potentially rapid changes in surrounding environments.

B. MESSAGE HANDSHAKING IN 802.11 CONNECTION

When a Wi-Fi client wants to connect to a network, it must
register to a Wi-Fi access-point or a gateway. The registering
process consists of several request and response messages
shown in Fig. 3. First, the client searches for nearby access-
points via a passive or active scanning. Particularly in the
passive scanning, the client listens to beacon frames which
are periodically sent by the access-points. In the active scan-
ning, the client sends probe requests to nearby access-points
and waits for probe responses from these access-points. After
receiving beacon frames or probe responses, the client has
detailed information of these access-points such as SSID,
capability information and supported data rates. Based on the
information, the client can choose the most suitable access-
point to associate with. In order to achieve a successful con-
nection, the client must fulfill network security requirements.
For instance, a client must exchange the correct WPA2 key
with an access-point to connect to a Wi-Fi network which is
secured with a WPA2-personal type. In order to provide se-
curity information, the client sends an authentication request
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frame and waits for an authentication response frame from
the access-point. The number of the authentication request
and response frames depends on network security types. For
example, it requires a couple of authentication request frames
and an authentication response frame in an open access
network while it exchanges two couples of those frames in
a network with WEP security. In other complex mechanisms
like 802.1X/EAP, the number of exchanged authentication
frames is higher. After authentication steps are completed,
the client can associate with the access-point by sending
an association request frame. The client is registered to the
access-point when it receives an association response frame
from the access-point. These registering steps are expensive
in terms of latency and energy consumption; especially in
case of deregistering a sensor node from one access-point and
registering the node to a new access-point during mobility.

C. GATEWAY DEPLOYMENT

In order to maintain a continuous connection between a
device and a network, the device must be located inside
the network coverage areas. In most of the cases, adjacent
gateways have some overlapping areas. In this paper, we
propose an arrangement for adjacent gateways as shown in
Fig. 5. In the setting, there are four zones including personal
zone, weak zone, sensitive zone and shared zone. To main-
tain the consistency for the whole article, gateways in the
following discussions are similar in terms of type, model,
and specification such as in-door smart gateways based on
Pandaboard devices [64].

Personal Zone: The personal zone, shown in Fig 5, has
the best values of metrics (i.e. RSSI value and link quality
indicator) among all zones. In the personal zone, a connection
between a sensor node and a gateway is maintained with-
out any interruption in most of the cases. Therefore, it is
unnecessary to run the handover algorithm. In some cases
such as hardware failure (e.g. malfunction node or gateway)
or the depletion of the power supply, the connection can
be interrupted or disconnected. In order to deal with such
cases, an investigation service implemented in Fog checks
both hardware failure (e.g. malfunction node or gateway)
and a status of the connection between sensor nodes and
gateways. When a gateway does not receive any data from a
sensor node during a short time period (e.g. about 5-10 s), the
service sends some pre-defined signals (e.g. "status" signals)
to a node and waits for responses. In the configuration of
sensor nodes, when a sensor node receives a specific signal
or a command (e.g. "status" signals) from an associated
gateway, it will reply to the gateway with a specific message
such as "alive node" or "low battery level". If there is no
response from the sensor node, "double checking" method is
performed by continuously sending 3 more signals in every
3 s. If there is still no response, the service invokes the
notification service to inform about the malfunction node to
network administrators. The investigation service is applied
to all sensor nodes in all zones.

6

Shared zone: The shared zone, shown in Fig. 5, is the
center area of the overlapping area between two or several
gateways. In this area, RSSI, link quality, and other metrics
values of a sensor node towards these gateways are almost
similar. The handover mechanism starts when a sensor node
moves to this zone and it is likely to pass by the middle line
"AB" shown in Fig. 6, with the opposite direction towards its
connected gateway.

Weak zone: In the weak zone, shown in Fig. 5, all radio-
related parameters are worse than those radio-related pa-
rameters in the personal zone and the shared zone. For-
tunately, the weak zone is located in the outermost area
of the coverage area. Therefore, when a node moves to
the weak zone, it already passed through the shared zone
where the handover mechanism is actually triggered and the
sensor node is already associated with a new gateway. The
weak zone is important in detecting a relative position of
a sensor node in a gateway’s coverage area and confirming
the connection status of a sensor node. Particularly, when
a sensor node located in the weak zone, a gateway, which
the sensor node is used to associate with before triggering
the handover mechanism, informs adjacent gateways about
the disconnection by messages. When the adjacent gateways
receive the messages, they will update their "neighbouring"
tables which contain the information of connections between
adjacent gateways and sensor nodes. In some cases, when the
overlapping area of two adjacent gateways is very small, the
weak zone is used for triggering the handover mechanism.
Fortunately, these cases can be avoided by properly defining
zones’ areas.

Sensitive zone: The sensitive zone shown in Fig. 5 is a
special case of the weak zone. The sensitive zone is an
overlapping area of weak zones of several adjacent gateways.
When a sensor node located in this zone, its status is recorded
in a "sensitive zone" table. In this case, corresponding gate-
ways are informed via messages by the handover service. In
addition, the handover service will associate the sensor node
with a gateway which the sensor node is likely to move to.

In a viewpoint of a network of gateways, adjacent gate-
ways can be located as a square topology, a hexagon topol-
ogy, or a random topology, shown in Fig. 4. In practice, a
random topology is the most popular among three topologies
whilst square and hexagon topologies merely occur in well-
organized networks such as in a corporation or an institute.
Therefore, the paper primarily focuses on a random topology.
When the mobility algorithm can support mobility in a ran-
dom topology, it is definitely able to support mobility in other
topologies as well. However, with the purpose of providing a
comprehensive view of the handover service in Fog, the han-
dover service is evaluated with square, hexagon, and random
topologies. Among the mentioned topologies, the random
topology is the worst one in terms of mobility management
because it has many disadvantages (e.g. undefined coverage
areas and undefined overlapping areas between gateways)
that do not exist in the square and hexagon topologies. Except
for the information that the handover service is likely to be
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FIGURE 5. Setting up two adjacent gateways

triggered at the shared zone in most of the cases, there is no
specific pattern for triggering the handover mechanism in the
random topology.

D. AREA OF GATEWAY’S ZONES

As mentioned above, each gateway has its own personal,
shared, weak and sensitive zones. Depending on a particu-
lar network topology and a distance between two adjacent
gateways, the area of these zones can be flexibly defined
for reducing undesirable issues such as incorrect handover
triggering or missing mobility events. For example, when
the shared zone of two adjacent gateways is small (e.g. 1-2
square meters), a possibility of missing a mobility event may
be high. In this case, a sensor node already passes through
the shared zone while the system may not react in time
and the handover mechanism is not triggered properly. The
issues become more severe in case of an oscillating node.
For example, the number of handover triggering times in
such an oscillation event increases dramatically. As a result,
it causes large overheads for the system performance and
can cause serious problems such as missing mobility cases.
For example, other simultaneous mobility cases cannot be
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FIGURE 6. Areas of two adjacent gateways

handled properly because most of the system resources are
occupied by a process of handling the oscillating node. In
contrast, when the shared zone is very large, the personal
zones of the gateways become smaller. Corresponding, the
number of handover triggering times may increase dramat-
ically. Therefore, it is important to specify all zones’ areas
precisely. These areas can be calculated by the formulas
below whose parameters are shown in Fig. 6.

Angles «, (8, v, and 0 in Fig. 6 are calculated by the
following formulas:

_ |Ol_02|, o |01—02|
cos(af2) = R ;cos(v/2) = o
|01 = O] |01 = O
cos(/2) = R, ;c08(0/2) = oy

where |01 — Os|: distance between two adjacent gateways
R1, Ro: radius of a whole coverage area of gateway 1 and
gateway 2, respectively

r1, T2: soft radius of coverage area of gateway 1 and gateway
2, respectively

The radius R; and R, are retrieved by scanning the max-
imum actual radius of coverage area of a gateway. The soft
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radius r; and ro are software-based values defined based on
the radius R; and the radius R,. For example, if the radius
R and the radius R are 20 meters and 22 meters, the soft
radius 77 and the soft radius 75 can be set as 18 meters and
20 meters, respectively. These soft radiuses can be flexibly
defined and it is recommended that they should be slightly
lesser or larger than the radius R; and the radius Ro.

1) Area of two different adjacent gateways
The shared zone area of two adjacent gateways (Agshq)
includes two adjacent parts Agpq(O1) and Agpq(O02).

Asha = Asha(O1) + Aspa(02)
2 2

_TL (TxY s, T*0
- 2*(180 sin(y ))+2 (180

The area of a sensitive zone (Ag.y,) including an area of two
separate zones shown in Fig. 6 is calculated by the following
equation:

- sm(a))

2

TEQ o o T (TxY
(50 (FE=7D) + < > * (s Sl”('y)))
R? /mxa _ TP, 5 5
N (2 * ( 180 Sm(a))) + ( 360 (F2—72)
n ﬁ . T*x0
2 180
Gateway 1’s weak zone (A (O1)) and gateway 2’s weak
zone (Aw (O2)) are calculated as below:

§ ASen E ASen _overlapped

w(01) = m* (R} —r?)

A (02) - 7T'>l< R2 - TZ Z Agen— Z Asen _overlapped
where n: a minimal number of adjacent gateways

m: a number of Sensitive areas are overlapped

k: a number of all adjacent gateways

ASen_overlapped: the area where sensitive zone’s areas of
gateway 1 and 2 are overlapped with sensitive zone area of
gateway 1 and another adjacent gateway when there are more
than two adjacent gateways.

In practice, a possibility of having Agsen_overiapped 1S
low but it may happen. Therefore, Agen_overiapped Must be
included in the formulas. In case that Agen_overiapped €XiSts,
its area is really small.

In order to provide detailed information related to the weak
zone, an apart area of the weak zone of gateway 1 named
(aAw (O7)) which is a pink area shown in Fig. 6 is calculated
by the below equation:

:Ap,nk:m*(R%—T%)

adw (01) 360

- ASen

_ sin(5)>> - (Ff . (”1205 - sm(ﬁ)))

Similarly, an apart area of a weak zone of gateway 2
(aAw (O2))is calculated by:

w* 3
550 * (B2 = 72) -

Personal zone area of gateway 1 (Ap(O
zone area of gateway 2 (Ap(0O3)) are:

aAW (02) =

ASen

1)) and personal

k k
2
P(Ol) =Ty kT = E ASha - E ASh{z_overlapped

n=1 m=0

k k
P(OQ) = T% T — Z ASha - z ASha_overlapped
n=1 m=0
where n: a minimal number of adjacent gateways
m: a number of shared areas are overlapped
k: a number of all adjacent gateways
ASha_overlapped: area where a shared area of gateway 1 and
gateway 2 is overlapped with a shared area of gateway 1
and another gateway when there are more than 2 adjacent
gateway

In addition, an area which is a blue area in Fig. 6, is
important. The area named as Apy,. is calculated as below:

2 T *Q

ABlue =Ty * % - ASha

2) Area of two identical adjacent gateways

When two gateways are identical, in terms of brand and
model, we have: a« = [ ;v = d ;11 = ro = 15
R; = Ry = R. The above formulas for calculating areas
can be simplified :

Shared area:

Agna =17 * (% * () — 51”(7))

Sensitive area:

T *

Asen = ( mo (B - fi){j (TZ * (% - Sm(”)))
— <R2 * (TSO — sm(a)))

X7

180

= R? x sin(a) +

Weak area:

k
Aw =7 * (R2 - TZ) —n* Asen — Z ASen_overlap
m=0
where n: a number of all adjacent gateways
m: a number of sensitive areas are overlapped
An apart of weak area (a pink area in Fig. 6):
« (R* —1r?)

aAW = - ASen

360
Personal area:

k k
2
Ap=r"*m— E ASha - g ASha?overlapped

n=1 m=0
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where n: a minimal number of adjacent gateways

m: a number of Sensitive areas are overlapped

k: a number of all adjacent gateways

ABjye in this case is identical to A gy, area in a general case.

Mg — 25 750
Blue =T % 7360

V. THE HANDOVER MECHANISM

The main target of the proposed handover mechanism is
to achieve both energy efficiency of sensor nodes and a
seamless mobility with the minimized handover latency. The
mechanism is based on a combination of several methods
such as signal strength and quality measurement (RSSI, link
connection quality), multilevel thresholds, and frame injec-
tion. Although RSSI is one of the most important metrics for
a handover mechanism, it should not be used as a standalone
metric. Therefore, other metrics such as link connection
quality, the number of connected nodes per each gateway,
a bandwidth utilization rate are used in conjunction with
RSSI. Using these supplementary metrics does not cost extra
overhead while they are helpful to achieve better handover
decisions.

In this paper, all gateways are identical in terms of cover-
age area, geographical location type (indoor gateways), and
specification. In case that gateways are dissimilar such as an
indoor gateway and an outdoor gateway, or heterogeneous
gateways from several providers, offset values must be used
for precise calculations in the handover mechanism. Offset
values are calculated by comparing metrics collected from
those gateways in different environments and contexts. In this
paper, a gateway, which a sensor node associates with and is
likely to move away from, is named as a source gateway. In
contrast, a gateway to which a sensor node is likely to move
to is named as a destination gateway.

The proposed mobility handover mechanism flow having
16 blocks is shown in Fig. 7. In the following paragraphs,
some blocks are explained in detailed whilst other blocks are
briefly discussed.

Defining gateway zones and scanning RSSI, LQOI in all
gateways: Before the gateway zones are defined, an appro-
priate radius (r) must be chosen because it has a significant
impact on all zones’ areas. When the radius (r) is larger,
the weak zone will be smaller and vice versa. When the
zones and their areas are not properly defined, the quality of
the handover mechanism such as efficiency and preciseness
can be reduced. For achieving good results, shared zone’s
area and personal zone’s area should be large enough and
these areas should be equivalent to a large portion of the
whole coverage area of a gateway. These zones’ areas depend
on both distances, including a distance between a gateway
and its weak zone’s border, and distance between two the
adjacent gateways. Fortunately, even in a random topology,
the distance between two adjacent gateways is static and it
can be measured easily. Therefore, the distance between a
gateway and its weak zone’s border is considered. To find
an appropriate distance, equations presented in section IV

- ASha
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are applied. Results from the formulas provide some piece
of evidence (e.g. a ratio of the shared area and the whole
coverage area of a gateway) for finding several most suitable
candidates.

Obtaining RSSI at weak zone’s border, filtering and choos-
ing appropriate values: When the distance between a gate-
way and its weak zone’s border is decided, threshold values
(e.g. RSSI) at the weak zone’s border can be obtained via
the scanning method. In order to avoid corrupted values
during the scanning, the gateway scans 10 times and chooses
appropriate values.

Comparing RSSI with threshold values, comparing RSSI,
LQI between adjacent gateways and estimating node posi-
tion: Moving sensor nodes are regularly checked by compar-
ing a set of metrics values such as RSSI and threshold values
of the associated gateways. These values are obtained via
scanning processes. A scanning interval between scanning
processes can be flexibly defined or edited depending on
particular applications. In our application, a short interval is
preferred for enabling fast response to movements of sensor
nodes. In the proposed mechanism, all gateways perform the
scanning process simultaneously for achieving high accuracy
in estimating the position of sensor nodes. In order to avoid
corrupted data, each scanning process has 3 scanning rounds
without any delay between the rounds. Results from the
scanning process are filtered and stored in a scanning table of
the gateway. Values belonging to the same category from the
scanning table are compared with each other and with values
from the previous scanning process. Inappropriate values are
possibly eliminated. The filtered data is multicasted to adja-
cent gateways which the gateway shares some overlapping
areas. Correspondingly, each gateway has several RSSI and
LQI values from its own scanning and adjacent gateways’
scanning after each scanning process. These values are used
for estimating the position of sensor nodes. For example,
each gateway has its own weak zone having RSSI values
from -75 dBm to -65 dBm. If RSSI values of a sensor node
measured by two adjacent gateways are -55 dBm and -62
dBm, then the sensor node must be in the shared zone of
these two gateways, being closer to the gateway having -55
dBm from the scanning.

Comparing with a middle line of the shared area and start-
ing the handover process: The handover process is triggered
when a sensor node located in the shared area of two adjacent
gateways and it is likely to pass through the middle line of
the shared area, see Fig. 6, line AB. The middle line’s RSSI
values are set when RSSI values of the sensor node towards
these adjacent gateways are equal. During the handover
process, the data in the database of the source gateway is
also sent to the destination gateway. During mobility, when
a sensor node is still associated with the source gateway, the
collected e-health data is sent to the source gateway which
immediately forwards the data to the destination gateway.
This method helps to avoid missing data during mobility.

As mentioned, link quality also plays an important role
in the handover mechanism and quality of service. If link
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quality is worse than some pre-defined requirements (e.g.
70%), Fog sends a notification to a system administrator.
Depending on particular gateways and the condition of the
surrounding context (e.g. interference), the pre-defined LQI
requirements can be different. However, it is recommended
that LQI value should be high for achieving a high level of
QoS.

Creating a virtual node, disassociating and associating
with the source and destination gateway, respectively: For
maintaining the connection between a sensor node and its
system network during mobility, the moving sensor node
must be deregistered by the source gateway and registered
by the destination gateway because a node cannot be as-
sociated with more than one gateway. In order to perform
these tasks, an advanced method of creating a virtual node
is used. As mentioned, the handover mechanism is triggered
when a moving node is in the shared area of two gateways.
Correspondingly, the MAC address of the moving node can
be collected by these gateways. Based on the MAC address,
the destination gateway creates a virtual node which is used
as a representative of the moving node. The virtual node
registers itself with the destination gateway by exchanging
messages described in Section IV. In the proposed handover
mechanism, the exchanging of messages is performed via the
packet injection method. Particularly, the virtual node starts
by injecting probe request packets and it waits for the probe
response packet. When it receives the response packet, it
continues to inject other packets (i.e. authentication request,
association request). Depending on a Wi-Fi configuration,
the number of exchanged messages varies. Importantly, dur-
ing the registration of the virtual node with the destination
gateway, the moving node maintains its registration with the
source gateway. Therefore, all data sent by the moving node
can be collected without any interruption and the handover
latency is minimal. When the virtual node has just been
registered with the destination node, the moving node is
simultaneously deregistered from the source gateway. As
a result, the moving node is already registered with the
destination gateway and it can transmit data to the destination
gateway without any delay.

Oscillation event handling: During mobility, oscillating
event is always considered via a mechanism that checks the
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disassociating and associating time. When the time periods
of the most two recent events are short and less than a
pre-defined threshold, the sensor node is detected as a pre-
oscillating node. When the handover mechanism confirms
that the pre-oscillating node only moves in the shared area,
the sensor node is detected as an oscillating node. The pre-
defined threshold can be set based on shared zone area of
two gateways and the movement speed of the sensor node.
For example, if a shared zone area of two gateways is about
10 m?, a distance (CD line in Fig. 6) should be about 3.5
m. In addition, the sensor node attached to a patient often
moves with an average speed less than 2 m/s. Based on
the information, the threshold value can be approximately
3 seconds. Correspondingly, for maximum distance which
a sensor node can move is 3 m (i.e. this is a multiplying
result of 1.5 s and 2 m/s) for a single way from the source
gateway to the destination gateway. This threshold can be
flexibly changed depending on particular applications. For
example, in other environments such as a factory where
sensor nodes attached to vehicles can move with a faster
speed, the threshold value should be smaller.

When an oscillating node is detected, the handover mecha-
nism compares several parameters of two adjacent gateways
including information in oscillation tables, RSSI tables and
RSSI values of a line AB shown in Fig. 6. For example, the
handover uses line AB as a vertical border of two gateways
in this case. If a sensor node located on the left side of the
border in a longer time period than the right sight of the
border, the left gateway will be chosen for remaining the
association with the sensor node. It is unnecessary to perform
the handover mechanism if the sensor node moves within the
shared zone and remains the moving pattern.

VI. TESTBED SETUP
For evaluating mobility support and other services of Fog,
the system architecture shown in Fig. 2 was implemented.
The system consists of medical sensor nodes, smart e-health
gateways with Fog computing, a remote server and end-user
terminals (e.g. mobile applications and browsers).

In the implementation, four setups, shown in Fig. 8, based
on square, hexagon and random topologies are applied. In
the first three setups (shown in Fig. 8(a), Fig. 8(b) and Fig.
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FIGURE 8. Gateway placement in a room

(a) Square topology

(b) Hexagon topology

(c) Random topology (setup 1)

(d) Random topology (setup 2)

(- -) indicates adjacent gateways having overlapping areas

8(c)) 6 gateways are deployed while in the fourth setup Fig.
8(d), 7 gateways are deployed. It is noted that a gateway
"G6" is not shown in Fig. 8(b) due to the limited width
of the presented paper. By adding one more gateway (G7)
into the network shown in Fig. 8(d), the network becomes
much more complex and the number of shared areas between
adjacent gateways increases dramatically. This setup is used
for evaluating the efficiency of the handover mechanism in
a dense network where several areas of many gateways are
overlapped.

In each experiment, 5 sensor nodes are used in which two
of them move freely without any pattern from a gateway
to another simultaneously. With the purpose of analyzing
impacts of the software-based radius (r) and the distance
between gateways on the proposed algorithm, two groups
of configurations (i.e. group 1 and group 2) are applied.
The first group including 3 configurations (i.e. Conf 1(a),
Conf 1(b) and Conf 1(c)) is applied to both square and
hexagon topologies while the second group including 12
configurations (i.e. from Conf 2(a) to Conf 2(1)) is applied for
the random topology. These configurations help to reveal the
relationship between several parameters (i.e. the software-
based radius (r), the actual radius (R), the distance between
adjacent gateways) and areas of gateways zones.

The radius of the coverage area of a gateway in practice
can be about 17 m or a bit further (e.g. 25 m) depending on
particular gateways. In the experiments, an actual radius of
coverage area of gateways is around 18 m. However, it is
difficult for achieving the same experimented environment
(e.g. noise, interference and wireless transmission conditions
) when deploying many gateways with their actual coverage
areas. Therefore, three parameters including the actual radius
(R) of the whole coverage area of a gateway, the software-
based radius (r) counting from a gateway to its weak zone’s
border and the distance between two gateways are scaled
down three times. In the experiments, the radius (R) is 6
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m after scaling down. The RSSI values and other radio-
related parameters (e.g. LQI) applied in the experiments are
measured according to these scaled points and distances.

VIl. IMPLEMENTATION

For performing experiments, a complete remote real-time
health monitoring IoT system is built. The system consists of
several sensor nodes, Fog-assisted smart gateways, a Cloud
server, and an end-user terminal. The implementation of the
system is presented as below

A. SENSOR NODE IMPLEMENTATION

This work focuses on mobility support. Therefore, sensor
nodes are built from general purposes devices. In our im-
plementation, two sets of devices are used as sensor nodes.
The first set includes Arduino Mega [65], ADS1299 [45],
ESP8266 [66] and sensors. Arduino Mega is equipped with
16 MHz ATmegal280 micro-controller, 8 Kb SRAM, 4 Kb
EEPROM and 128 Kb Flash memory. ADS1299 is a low-
noise and multichannel device produced by Texas Instru-
ments for acquiring medical data (e.g. ECG, EMG, EEG)
with a high data rate up to 16k samples per second per chan-
nel. ADS1299 enables scalable medical systems with small
size, low power, and a reasonable overall cost. ESP8266
is a low-cost Wi-Fi chip with a full TCP/IP stack. Several
medical and environmental sensors such as SpO2, heart rate,
temperature and humidity sensors are utilized. Integration of
these devices creates a sensor node capable of acquiring data
(multi-channel ECG, medical signals, and contextual data)
with high data rates and transmitting the data in real-time to
the smart gateway via Wi-Fi. However, this set is only used in
the final experiment for showing real-time ECG data during
mobility. Another simple set consisting of Arduino Uno [67]
and Wi-Fi shield [68] is used as a sensor node in most of the
experiments to reduce complexity.

Arduino Uno is equipped with 16MHz ATmega328P, 2Kb
SRAM, 1Kb EEPROM and 32Kb SRAM. It generates data
and transmits the generated data to the gateway with high
data rates via the Wi-Fi shield. Correspondingly, the mo-
bility support capability could be successfully verified by
comparing generated data with data received from an end-
user browser. In this paper, the node is set up to merely
perform the primary tasks of collecting and sending data to
the smart gateway while other tasks such as data processing,
data analytics, and mobility support are implemented in the
Fog layer of smart gateways.

B. GATEWAY IMPLEMENTATION

A smart gateway [10] consists of Pandaboard [64] and a
300Mbps wireless USB adapter [69]. The Pandaboard is low
cost, low power platform based on OMAP4430 processors.
Pandaboard is equipped with a dual-core 1.2 GHz CPU,
384 MHz GPU, Ethernet, wireless chip-set (Bluetooth and
80211), and a set of I/O ports. In addition, the board supports
up to 32GB SDHC card. Correspondingly, different oper-
ating systems (Windows, Ubuntu, Android) and databases
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(MySQL, MongoDB, PostgreSQL) can be installed in the
Pandaboard for managing the gateway and enhancing gate-
way'’s services.

In our implementation, the MySQL database is used for
storing medical and context data received from sensor nodes
and recording vital information used for Fog services such
as the push notification service and visualization of real-
time ECG data. Accordingly, the database is persistently
maintained and real-time updated.

Furthermore, due to the limited capacity of the distributed
database, it is purged every 30 minutes after receiving a
confirmation of the synchronization from Cloud. As men-
tioned, the gateway with its distributed database can act as
a local web server when the connection between Fog and
Cloud is disrupted. In this case, when the distributed database
runs out of available storage capacity, the new incoming
data overwrites the old one. Fortunately, in general, the
disconnection usually does not last for a long period of time
because when the disconnection occurs, the push notification
service is triggered to inform network administrators in real-
time. While the gateway acts as a local web server, it will
send responses either in XML or JSON format as requested
and leave all rendering tasks to the client.

We implemented a parallel notification method in both Fog
and Cloud. In general, the notification service is primarily
implemented in Cloud whilst in a few cases, it is run at
Fog. By applying this method, all emergency cases can be
notified whereas it does not cost significant resources in Fog.
For implementing the notification service on a client-side,
an Android application, which can communicate with both
smart gateways and Cloud, is developed. When the notifi-
cation service is triggered, the Android application receives
real-time push-messages. In addition, a web browser can be
also used as a client for visualizing real-time e-health data.

In our implementation, the Ubuntu operating system is
used in smart gateways because Ubuntu not only manages
hardware resources and Fog services but also provides useful
daemon services, libraries and applicable tools such as the
firewall. For example, Uncomplicated Firewall (UFW) [70]
in Ubuntu can be used for constructing accessibility rules
such as protocols blocking and ports blocking. In our imple-
mentation, all unnecessary ports and protocols are blocked
except for ones used by Fog services. However, applying
firewall does not guarantee a high level of security. We also
applied an end-to-end security scheme for healthcare IoT
mobility proposed in [71].

In our implementation, all gateways are configured to have
the same Service Set Identifier (SSID). Thanks to this setup,
the configuration of sensor nodes is kept intact during mo-
bility. Correspondingly, high power consumption and latency
caused by reconfiguring sensor nodes during mobility can be
partly avoided. In the paper, RSSI and LQI are periodically
collected via a scanning method which is constructed by
utilizing iw, iwlist, iwconfig packages and API provided in
Ubuntu OS.

In order to construct virtual nodes, 300 Mbps wireless
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USB adapters are used in the system in which each adapter
is attached to a gateway. Due to the simple configuration of
the adapters, it is not challenging to integrate these adapters
into the system. When receiving instructions from the han-
dover mechanism, the adapter at a destination gateway acts
as a representative of a virtual node by utilizing its actual
hardware for performing registering tasks mentioned earlier.
In our implementation, registration between a virtual node
and a destination gateway is performed by a packet injection
method. We implemented the method with the Libtins library
[72] which is a high-level, multi-platform C++ network
packet sniffing and crafting library. The library is open-
source and supports popular protocols such as IEEE 802.11,
IEEE 802.3, IEEE 802.1q, Ethernet, ARP, IP, IPv6UDP, and
TCP. In addition, the library is reliable because it has been
tested with 624 unit tests.

There are two approaches of utilizing the actual hardware
(adapter) for implementing packet injection during node reg-
istration. In a simple approach, a mobility buffer with the
first-come-first-served strategy or a mobility buffer with an
arbiter can be used. When a node is detected as a moving
node, it is added to the mobility buffer and waits for its
turn. In case of using the first-come-first-served strategy,
the first moving node is always given the right to use the
actual hardware. When the buffer is used with the arbiter,
the higher priority node has the right to use the actual
hardware. In our implementation, zero is the highest priority.
A priority of a node is decided by the arbiter via a mechanism
based on time and RSSI. Accordingly, when the RSSI value
of the second node is less than a pre-defined threshold,
the second node is set with the highest priority and it is
given the right to use the actual hardware. Although the
mobility handling in these methods is based on the mobility
buffer, it is possible to support mobility for approximately
10 moving nodes while fulfilling latency requirements of
real-time health monitoring. For a complex approach, instead
of using the mobility buffer, threading (multi-threading) is
applied. The advantages of this method are asynchronous
and non-blocking behavior. Each sensor node is handled by
a single thread. Correspondingly, it is possible to handle
mobile health monitoring for the large number of moving
nodes simultaneously. However, it is difficult to deal with
debugging. For testing and assessing QoS (mobility support),
we implemented the second approach using multi-threading.

VIIl. EVALUATION
In this section, several experiments have been carried out.
These experiments are explained in details as follows:

A. GATEWAY’S SIGNAL LEVEL

In the experiments, RSSI and LQI of a sensor node in dif-
ferent positions towards a single gateway are measured. Each
distance has been experimented with for 10 times and average
values are reported. All of these experiments are carried out
in the same environment (i.e. located in the same single ware-
house’s room and affected by the same interference noise).
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FIGURE 9. Gateway’s signal level and link quality

Results are shown in Fig. 9. The results indicate that the RSSI
and LQI values do not decrease linearly when the distance
between the sensor node and the gateway increases linearly.
When the sensor node is far away from the gateway, the RSSI
and LQI values are low. Therefore, it is recommended that
RSSI and LQI values of a gateway’s coverage border must
be measured. If the values at the border show low quality of
signals (e.g. LQI less than 60%), system administrators need
to use a lower value for the radius R to avoid low-quality
signals and transmission loss. In our experiments, when LQI
is less than 60%, there are lost packages in transmission.
Therefore, 60% LQI is used as the threshold for defining the
radius R. For instance, if the actual radius R of the coverage
area is 18 m and the LQI value at the border is less than
60%, the radius R used in the configurations and the handover
mechanism should be around 16 m for achieving 70% LQI.
The threshold values (e.g. 60% LQI) are flexibly defined by
system administrators depending on particular applications
and environments.

B. IMPACT OF MOBILITY SUPPORT AND FOG
SERVICES ON THE SYSTEM LATENCY

Based on our knowledge, the current state-of-the-art real-
time continuous e-health monitoring 10T systems based on
Fog computing do not support mobility completely. There-
fore, we would like to propose the IoT system with fully
mobility support based on Fog computing. Although it is
unfair to compare between the systems with and without the
mobility support, it is valuable to provide an overview of the
impact of the proposed algorithm on latency.

We evaluated the impact of the mobility support and Fog
services on the system latency by constructing a health
monitoring IoT system based on Fog computing. In details,
the system is setup with three different cases. The first one
is a typical IoT system without mobility support. In this
configuration, each gateway has a distinct SSID. The second
configuration is similar to the first one except that all gate-
ways have the same SSID and overlapping areas. The third
configuration is an upgraded version of the second one with
the mobility support service. In all cases, only the first three
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setups shown in Fig. 8 are applied. For fair comparisons,
metrics (radius R, software-based r, distance between gate-
ways) in each case are the same. There are 10 experiments
in each case and average values are reported. The results
of handover latency are shown in Fig. 10. Results indicate
that the proposed system with the handover mechanism
for complete mobility support reduces the system latency
for reestablishing/remaining the connection between sensor
nodes and a gateway during mobility dramatically. The han-
dover mechanism helps to save approximately 98% and 95%
comparing to the system without mobility support and the
system in the second configuration, respectively. In addition,
the system latency in the second configuration is equal to
a half of the latency of the first configuration. Therefore, it
is recommended that if the system cannot be configured or
equipped with the handover mechanism, its gateways should
be configured to have the same SSID to reduce the system
latency for reestablishing the connection between sensor
nodes and gateways. In addition, results show that a topology
type such as square, hexagon, and random topology does not
affect the handover latency. In these experiments, a few cases
of abnormal values have occurred. For example, handover la-
tency in a hexagon topology in the first case once reached up
to 10.42 s. Some of the reasons for having such a high latency
are that some exchanged packages may be lost or incoming
packages at the gateway are corrupted during handshaking.
Corresponding, the sensor node and the gateway must send
many packages for handshaking that causes the increase of
latency. Although abnormality does not occur in other cases
in the experiments, this issue may happen anytime in any
cases. In the experiments, the surrounding noise sources are
not considered. However, all of the experiments are done in
the same warehouse room. Therefore, these results are all
affected by the same surrounding noise sources. The effects
of the noise sources are much larger if the noise sources have
similar frequencies as the sensor nodes’.
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TABLE 1. Area of gateway zones in different configurations in case of a single adjacent gateway

R(@m) | r(m) Distance between | Shared zone | Sensitive Weak  zone | Ap;,i area | Personal ABlue
two gateways | (Aghna) zone (Agen) | (Aw) (m2) @) (m?2) zone (Ap) | area (ii)
(0102) (m) (m?) (m?) (m?) (m?)
Conf 1(a) 6 5.25 8 11.635 1.048 25.458 6.048 74.954 11.5467
Conf 1(b) 6 5.25 9.5 3.0110 1.60365 24.9035 3.9419 83.5791 15.1048
Conf 1(c) 6 5.5 8.25 13.7126 0.4870 17.5770 4.1862 81.3204 10.8731
Conf 2(a) 6 5 7.5 11.332 1.677 32.879 8.174 67.2070 11.0588
Conf 2(b) 6 5.25 7.5 15.1757 0.9303 25.5768 6.6268 71.4143 9.5109
Conf 2(c) 6 5.5 7.5 19.4680 0.4084 17.6556 4.7416 75.5651 7.6257
Conf 2(d) 6 5.75 7.5 24.1987 0.1010 9.1273 2.5299 79.6701 5.4141
Conf 2(e) 6 5 8.25 6.7179 2.0263 32.5311 6.9139 71.8218 13.6009
Conf 2(f) 6 5.25 8.25 9.9727 1.1157 25.3914 5.7418 76.6173 12.4288
Conf 2(g) 6 5.5 8.25 13.7126 0.4870 17.5770 4.1862 81.3204 10.8731
Conf 2(h) 6 5.75 8.25 17.9172 0.1199 9.1085 2.2675 85.9516 8.9544
Conf 2(i) 6 5 9 2.9362 2.51722 32.0402 5.4328 75.6035 15.1320
Conf 2(j) 6 5.25 9 5.4906 1.3675 25.1396 4.7305 81.0995 14.4297
Conf 2(k) 6 5.5 9 8.599 0.5912 17.4728 3.5644 86.4341 13.2636
Conf 2(1) 6 5.75 9 12.2176 0.1444 9.0839 1.9785 91.6512 11.6777

(i) pink area and (ii) light blue area in Fig. 6
total coverage area of a gateway in call cases: 113.097 m?

C. THE RELATIONSHIP OF THE SOFTWARE-BASED
RADIUS R, AREAS OF DIFFERENT ZONES AND THE
DISTANCE BETWEEN ADJACENT GATEWAYS

As mentioned, 2 groups of different configurations are ap-
plied in the experiments. Areas of gateways’ zones in each
configuration are calculated based on the formula set pre-
sented in Section IV and results are shown in Table 1.
The results reveal the information of the relationship of the
software-based radius r and areas of different zones and
the distance between adjacent gateways. Particularly, results
from the first three configurations of group 1( i.e. from Conf
I(a) to Conf 1(c)) provide some general information about
the relationship. Based on the results from these config-
urations, we know that these configurations might not be
the most optimal because the shared zone areas are very
small. Currently, there are no specific requirements for zones’
areas. Depending on particular applications, zones and their
areas can be flexibly set. However, it is recommended that
shared zones’ areas should be large enough for avoiding
the missed handover triggering cases while the personal
area should be large for avoiding overheads of utilizing
resources for unnecessary handover triggering. Based on our
experiments and results discussed in the following paragraph,
it is recommended that the shared zone’s area should be
greater than a value calculated by a formula: value =
speed_of_sensor_node? x 2/3.

We carried out more than 100 experiments for achieving
the requirements of minimum areas of the shared zone. The
random topology shown in Fig. 8 is applied for these ex-
periments. In these experiments, there are 10 different cases
and each case is carried out for 10 times. In each case, a
sensor node moves freely from a gateway into an adjacent
gateway. As mentioned, the handover mechanism is triggered
in a shared zone and it relies on the scanning interval. In order
to have correct and fair measurements, several parameters
including short scanning interval of 0.1 s, distance of 8
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m between two adjacent gateways, radius (R) of 6 m, and
movement speed of S5m/s are applied for all experiments.
The recommended minimum value of personal zone’s area
calculated by the formula above is 16.6666 m?. The shared
zone area is changed by increasing the software-based radius
(r) a value of 0.1 m starting from 5 m. Correspondingly, the
latter case has a larger shared zone area than the previous
case. Results of these experiments are shown in Table 2.

Results from Table 2 show that when the shared area is
larger than the recommended minimum area of the personal
zone, all mobility events are triggered in the personal zone. In
contrast, when the share zone area is smaller than the recom-
mended minimum area, some mobility events are triggered
in a pink zone which is apart of the weak zone shown in
Fig. 6. Although there is no difference between triggering
the handover mechanism in the shared zone and in the pink
zone in terms of handover latency, triggering the handover
mechanism in the shared zone is still expected especially
in case of low quality of signals (e.g. LQI and RSSI). In
these cases, the handover mechanism may not be triggered
correctly in the weak zone whilst it is highly possible to
trigger the handover mechanism correctly in the shared zone
because the quality of signals in the shared zone is often
high due to the close proximity to the gateway. In addition,
the shared zone is the main zone for triggering the handover
mechanism while the weak zone can be used as a backup
zone for the handover mechanism. For example, when a
mobility case is missed in the shared zone, there is still a
chance and time for triggering the handover mechanism in
the weak zone.

D. VERIFYING THE ACCURACY OF THE HANDOVER
MECHANISM

For verifying the accuracy of the handover mechanism, some
complex cases of mobility are applied. In these cases, a sen-
sor node moves from the personal zone of a source gateway
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TABLE 2. Experimental case

Experimental | r (m) Shared zone | Weak zone | Sensitive Personal total shared | Triggering times | Missed
case (Asha) (Aw) (m?) | zone (Ag) | zone (Ap) | zone and | in shared zone vs | Triggering time
(m?2) (m?2) (m?2) pink area (i) | in pink zone (i) in both shared
amd pink zones
@
Case 1 5 8.1750 30.7601 1.8987 62.1897 15.528 4-6 0
Case 2 5.1 9.5012 28.3325 1.5259 62.7102 16.3774 5-5 0
Case 3 5.2 10.9048 25.7546 1.1969 63.1388 17.2437 6-4 0
Case 4 5.3 12.3843 23.0295 0.9102 63.4785 18.1269 7-3 0
Case 5 5.4 13.9385 20.1594 0.6645 63.7317 19.0269 7-3 0
Case 6 5.5 15.5662 17.1467 0.4587 63.9006 19.9436 8-2 0
Case 7 5.6 17.2666 13.9931 0.2919 63.9870 20.8772 10-0 0
Case 8 5.7 19.0388 10.7003 0.1633 63.9925 21.8276 10-0 0
Case 9 5.8 20.8822 7.2697 0.0722 63.9186 22.7948 10-0 0
Case 10 5.9 22.7960 3.7025 0.0179 63.7666 23.7789 10-0 0

(1) pink area and (ii) light blue area in Fig. 6
total coverage area of a gateway in call cases: 113.097 m?

to the weak zone of a destination gateway with a direction
of 60 degrees counterclockwise measured from the line-of-
sight line between these gateways. In the moving path, the
sensor node passes the middle line of the shared zone of two
gateways. However, the duration and path distance which
the sensor node has been located in the right part of the
shared zone is very short. Due to the short scanning interval
(i.e. 0.1 s - 0.3 s). This case is detected and the handover
mechanism is triggered successfully. Another tough case is a
case that a sensor node moves within the sensitive zone and
it passes the middle line of this zone. In our experiments, this
case (i.e. moving within the sensitive zone) have not been
experimented with the handover mechanism because these
sensitive zone areas shown in Table 2 are very small. Based
on our experiments, a case that a sensor node moves within
the sensitive zones of two adjacent gateways is seldom and it
can be avoided when setting up the configuration suitably. In
this case, the sensitive area is often really small (e.g. less than
1 m?). In critical applications, a new gateway can be added
in between these adjacent gateways for avoiding mentioned
"tough" cases. Although this method is not recommended
due to wasting resources, it helps to avoid tough cases above
because the sensitive zones will be overlapped with the
shared or the personal zone of the new gateway.

In case of Conf 2(a) and Conf 2(d), when the distance of
gateways is 25% larger than the radius R, and the software-
based radius r increases about 12.5%, the shared zone area
and the personal zone area increase about 11.3% and 11%,
respectively whilst the weak zone area and the Ap;,. area
decrease 21% and 5%, respectively. Results of the com-
parison between Conf 2(d) and each of two configurations
(i.e. Conf 2(b) and Conf 2(c)) have the same pattern as the
comparison one from Conf 2(d) and Conf 2(a). In case that
the distance between two gateways is about 25% larger than
the radius R and the gateway only has an adjacent gateway
sharing some overlapping areas, Conf 2(d) is better than
Conf 2(a) because the shared zone and the personal zone
of Conf 2(d) are larger. There are no specific requirements
for the shared zone areas and other zones’ areas. Depending
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on particular applications, the shared zone area is differently
set. For example, the shared zone area should be large for
applications in which the sensor node moves with a high
speed. Based on the above experiments, a large personal area
and a small weak zone area together with an appropriate
shared zone area are the most suitable option for the handover
mechanism. When the personal zone is small, a possibility
to trigger the handover mechanism during a movement of
a sensor node is higher. The most important target of the
system is to keep the connection between sensor nodes and
the system while reducing the number of handover triggering
times as much as possible.

Results from the comparison between different pairs in a
group of 4 configurations (i.e. Conf 2(e), Conf 2(f), Conf
2(g), Conf 2(h)) have the same pattern as the results from
the group of Conf 2(a), Conf 2(b), Conf 2(c) and Conf
2(d), respectively. Similarly, it is valid for pairs of another
group (i.e. Conf 2(i), Conf 2(j), Conf 2(k), Conf 2(1)). It
can be inferred that small changes in a software-based radius
r can cause dramatically impacts on different zones’ areas.
It can be concluded the shared zone area increases and the
weak zone area decreases when increasing the software-
based radius r regardless of a distance between two gateways.

Results from Conf 2(d), Conf 2(h) and Conf 2(1) indicate
that when the distance between two gateways are smaller
and the same software-based radius r is used, the shared
zone area increases and the personal zone area decreases.
Although the conf 2(1) is the best configuration in its group
(i.e. Conf 2(i), Conf 2(j), Conf 2(k), and Conf 2(1)), it is still
not the optimal configuration because its shared zone area
is still small (i.e. 12.2176 m?). As mentioned, the handover
mechanism is triggered when a sensor node passes the middle
line AB of the shared area. It implies that the system only
has about 6 m? to complete the handover mechanism. In
this case, if the movement of the sensor is high (e.g. 8 m/s),
the sensor node only needs about 250 ms to pass the shared
area. In most cases, the handover latency is less than this
time. However, in some special cases (e.g. many lost pack-
ages), the latency of the handover mechanism may be higher.

15

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2848119, IEEE Access

IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3. Handover latency of transmitting data between distributed database
of gateways

Data size (Byte) | Latency (ms)
10 2.176
50 2.321
100 2.787
500 3.275
1000 3.524
5000 4.462

Therefore, depending on the distance between gateways, the
software-based radius r should be carefully chosen. Among
all configurations, Conf 2(d) seems to be the best one since
its shared zone area is large while its personal zone area still
occupies the large portion of the whole coverage area of a
gateway.

E. LATENCY, RELIABILITY EVALUATION AND
COMPARISON WITH OTHER STATE-OF-THE-ART
WORKS

For evaluating the latency of data synchronization between
distributed databases, various data sets having different sizes
are applied. The result shown in Table 3 displays that the
synchronization latency is low in most of the cases and it
is not proportionally linear with regard to data size. Corre-
spondingly, the latency of data synchronization does not have
a significant impact on the total latency of the system during
mobility.

For assessing the reliability of the handover mechanism,
more than 50 mobility cases including node oscillation are
tested. In most of the cases, the connection between sensor
nodes and the system is maintained without any interruption.
Fig. 11 shows ECG waveforms at an end-user browser when
connecting to Fog’s web service during mobility. A user is a
30 year-old male volunteer. The result shows that real-time
monitoring with the high quality of signals can be guaran-
teed with Fog’s services during mobility. In rare cases, the
push notification is triggered when the handover mechanism
cannot handle unexpected situations.

Finally, we compared our proposed method for mobility
support with the recent state-of-the-art works for mobility
support. Results are shown in Table 4. Results show that
our method is the most efficient in terms of handover la-
tency among all mentioned works and the proposed han-
dover method does not cause overloads of sensor nodes.
Correspondingly, sensor node’s battery cycle time does not
decrease. In addition, our method concerns oscillating nodes
during mobility whilst others do not consider that attentively.

IX. DISCUSSION

For detecting a position of a particular sensor node, several
adjacent gateways have to scan the RSSI values and exchange
the collected values with each other. This may over-utilize
network bandwidth. Fortunately, the system performance
does not decrease due to a large network bandwidth (40 Mbps
- 54 Mbps) of Wi-Fi.
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FIGURE 11. Graphical ECG waveforms at a remote browser

The paper primarily focuses on mobility support and the
handover mechanism. Therefore, for reducing complexity,
several software packages provided in Ubuntu (e.g. "iw",
"iwlist" and "iwconfig") are applied for scanning RSSI and
LQI. However, these packages are not optimal in terms of la-
tency for scanning RSSI. In some cases, when the number of
sensor nodes including both sensor nodes belonging and not
belonging to the system is numerous, results from scanning
parameters from sensor nodes will be large and some of the
nodes may not appear in the result list. We recommend that
other state-of-the-art methods for obtaining RSSI and LQI
should be used.

In general, the method of injecting wireless packages may
cause some severe issues related to security and gateways’
performance if it is misused. For example, by using the
package injection method, the Wi-Fi network can be hacked.
In details, a hacker can use a Wi-Fi-based device for scanning
MAC address of other devices using Wi-Fi around his/her
geographical location. Then, the hacker can use found MAC
addresses for injecting several types of packages to the net-
work. Correspondingly, there are two severe consequences.
Firstly, the network channels are fully occupied. Therefore,
other devices cannot connect or associate with the network
gateway. Secondly, if a hacker injects disassociation pack-
ages, gateways will disassociate with real devices. Then,
for re-establishing the connection with the network, the real
devices have to re-associate with gateways via exchanging
packages. At this moment, the hacker will be a man in the
middle to monitor all packages exchanged between the real
devices and the network gateways. In our experiments, we
occasionally tracked information of adjacent Wi-Fi-based
devices and we are able to collect their transmitted data.

If the injection method does not precisely inject packages
in time, there is no guarantee that the connectivity between
a sensor node and smart gateways is maintained with low
latency even though the handover mechanism is successfully
triggered. Therefore, it is recommended that the injection
method has to be carefully designed and implemented.

In practice, the measurements related to latency are mostly
relative because they rely on different parameters such as
network channels, interference of different radio sources, and
transmission conditions. Similarly, applying the proposed
handover method in different places may provide different
handover latency. Therefore, a network administrator needs
to consider mentioned parameters for achieving a high qual-
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TABLE 4. A comparison between available handover mechanisms for health monitoring systems

Approach Handover management Movement Metrics in Handover mechanism Oscillating Handover

type node latency (ms)
management

Valenzula et al. [38] Hybrid (focus on node side) Random RSSI No moderate(*)

Jara et al. [39]-[41] Network-based handler Random RSSI and movement direction No 173.5

Fotouhi et al. [42] Hybrid-based handler (focus | Random RSSI, velocity,hop number, traffic | No 130-200

on node side) load, energy level, and LQI
Silva et al. [37] Network-based handler Random LQI No >220
Our proposed mechanism Network-based handler Random RSSI, LQI velocity Yes 127.5

(¥) Information related to handover latency cannot retrieve from the paper. But the handover Iatency should be moderate since many
messages/packages must be exchanged during the handover process [38]

ity of service.

Although the proposed handover mechanism does not in-
tensively use broadcasting, it often uses multicasting between
adjacent gateways. When the number of connected devices is
large (e.g. 100 devices) and they are moving simultaneously,
the system performance may decrease.

It can be seen in Fig. 10 that the handover mechanism and
the system latency for maintaining the connection between
sensor nodes and gateways are not dependent on the network
topology. In addition, the hexagon topology provides the
largest coverage areas among all mentioned topologies when
the same number of gateways and the same configuration are
applied. Based on our experiments, the hexagon topology is
the best option for setting up a new network of gateways.
Although is difficult to build such a hexagon network in prac-
tice, it is recommended that network administrators should
apply the hexagon topology if it is possible.

X. CONCLUSION

In the paper, we proposed the handover mechanism for
complete mobility support in a remote real-time streaming
IoT system. The handover mechanism helped to remain the
connection between the sensor nodes and the system with
the low latency. The handover mechanism also attentively
considered oscillating nodes which often occur in many
streaming IoT systems. By leveraging the strategic posi-
tion of smart gateways and Fog computing in a real-time
streaming [oT system, sensor nodes’ loads were alleviated
whereas advanced services (e.g. push notification and local
data storage) were provided. The paper discussed and ana-
lyzed popular metrics for the handover mechanism based on
Wi-Fi. In addition, the complete remote real-time e-health
monitoring [oT system was implemented for experiments.
The results from evaluating our mobility handover mecha-
nism for mobility support shows that the latency of switching
from one gateway to another is 10% - 50% smaller than other
state-of-the-art mobility support systems. The results show
that the proposed handover mechanism is a very promising
approach for mobility support in both Fog computing and IoT
systems.
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Abstract

Health monitoring systems based on Internet-of-things (IoT) have been recently introduced to improve the quality of health care
services. However, the number of advanced IoT-based continuous glucose monitoring systems is small and the existing systems
have several limitations. In this paper we study feasibility of invasive and continuous glucose monitoring (CGM) system utilizing
IoT based approach. We designed an IoT-based system architecture from a sensor device to a back-end system for presenting
real-time glucose, body temperature and contextual data (i.e. environmental temperature) in graphical and human-readable forms
to end-users such as patients and doctors. In addition, nRF communication protocol is customized for suiting to the glucose
monitoring system and achieving a high level of energy efficiency. Furthermore, we investigate energy consumption of the sensor
device and design energy harvesting units for the device. Finally, the work provides many advanced services at a gateway level such
as a push notification service for notifying patient and doctors in case of abnormal situations (i.e. too low or too high glucose level).
The results show that our system is able to achieve continuous glucose monitoring remotely in real-time. In addition, the results
reveal that a high level of energy efficiency can be achieved by applying the customized nRF component, the power management
unit and the energy harvesting unit altogether in the sensor device.

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Internet-of-Things, wearable, health monitoring, energy harvesting, energy efficient, power management, glucose monitoring

1. Introduction

Internet of Things (IoT) can be viewed as a dynamic network where physical and virtual objects are interconnected
together!. IoT encompassing advanced technologies such as wireless sensor networks (WSN), artificial intelligence,
and cloud computing plays an important role in many domains comprising of robotics, logistics, transportation, and
health-care. For instance, loT-based systems for health-care consisting of sensing, WSN, smart gateways, and Cloud
provide a way to remote and real-time e-health monitoring.

Advances in WSNs have created an innovative ground for e-health and wellness application development. Ambient
assisted living, ambient intelligence, and smart homes are becoming increasingly popular?. These can be combined
to other health solutions such as fitness and wellness, chronic disease management and diet or nutrition monitoring
applications. The new initiatives tend to be integrated into the patient information ecosystem instead of being sepa-
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rated into monitoring and decision processes. There are potential benefits to ageing population, where elderly people
could be monitored and treated at the comfort of their own homes.

Fully autonomous health monitoring wireless systems can have many useful applications. Among those applica-
tions is glucose level measurement for diabetics. Diabetes is a major health concern. According to a WHO report, the
number of people with diabetes has exceeded 422 millions and in 2012, over 1.5 million people died because of dia-
betes. The WHO classified diabetes as a top ten causes of mortality. Diabetes has serious effects on the well-being of
a person and the society. Unfortunately, there is still no known permanent cure for diabetes®. However, one solution
to this problem is to continuously measure blood glucose levels and close the loop with appropriate insulin delivery.
Statistics published by the UK Prospective Diabetes Group demonstrate that CGM can reduce the long term compli-
cations between 40 % and 75 %.*. Hence, CGM equipped with alarm systems can help patients to take corrective
action(s) such as decisions on their diet, physical exercise and when to take medication.

Energy harvesters incorporated into wearable devices allow powering wireless sensor operated applications , thereby
making them autonomously operated. This regime has many useful implications on patients and heath-care providers,
specially for implanted sensors where battery changing could cause pain and discomfort. Cautious design of both
low-power electronic circuitry and efficient energy harvesting scheme is pivotal to fully autonomous wearable sys-
tems.

In this paper, the presented work aims to study the feasibility of invasive and secure CGMS using [oT. The work is
to design an IoT-based system architecture from a sensor device to a back-end system for presenting real-time glucose,
body temperature and contextual data (i.e. environmental temperature) in graphical and text forms to end-users such
as patient and doctor. Moreover, the work customizes the nRF communication protocol for suiting to the glucose
monitoring system and achieving a high level of energy efficiency. Furthermore, we investigate energy consumption
of a sensor device and design energy harvesting units for the device. Finally, we present a push notification service
for notifying patient and doctors in case of abnormal situations such too low or too high glucose level. In summary,
our main contributions in this paper are as follows:

e proposing continuous glucose monitoring loT-based system
e designing an energy efficient sensor device using nRF protocol
e designing an energy harvesting unit for the sensor device to extend the sensor device’s battery life

The remainder of the paper is organized as follows: In section 2 related works are presented. Section 3 presents
the continuous glucose monitoring IoT-based system architecture. In section 4, an implementation of the glucose
monitoring system is shown. In section 5, experimental results are discussed. Section 6 concludes the work.

2. Related works

Many research applications in glucose monitoring are not based on IoT-based architectures. Correspondingly,
doctors or caregivers cannot monitor glucose levels of a patient remotely in real-time. Murakami et al.> present a
CGM system in critical cardiac patients in the intensive care unit. The system is built by a disposable subcutaneous
glucose sensor, a glucose client, and a server. The system collects glucose data four times per day and stores in a
hospital information system. Doctors can use the bedside monitor to monitor the glucose data.

Ali et al.® propose a Bluetooth low energy (BLE) implantable glucose monitoring system. Glucose data collected
from the system is transmitted via BLE to a PDA (smart-phone, or Ipad) which represents the received data in text
forms for visualization. The system shows some achievements in reducing power consumption of an external power
unit and an implantable unit.

Lucisano et al.” present a glucose monitoring in individuals with diabetes using long-term implanted sensor system
and model. Glucose data is sent every two minutes to external receivers. The system shows its capability of continuous
long-term glucose monitoring. In addition, the system proves that implanted sensors can be placed inside a human
body for a long period time (i.e. 180 days) for managing diabetes and other diseases.

Menon et al.® propose a non-invasive blood glucose monitoring system using near-infrared (NIR). Glucose in blood
is predicted based on the analysis of the variation in the received signal intensity obtained from a NIR sensor. The
predicted glucose data is sent wirelessly to a remote computer for visualization.

Recently, some IoT-based applications for glucose monitoring have been built. However, those systems do not
attentively consider energy efficiency of sensor nodes and the communication between sensor devices and a gateway.
Rasyid et al.® propose a blood glucose level monitoring system based on wireless body area network for detecting
diabetes. The system is built by using a glucometer sensor, Arduino Uno, and a Zigbee module. Doctor and caregiver
can access to a web-page to monitor glucose levels of a patient remotely. However, the system is not energy efficient
due to high power consumption of the Arduino Uno board and the Zigbee module.

Wang et al. ! introduce a monitoring system for types 2 diabetes mellitus. The system is able to make decision on
the statues of diabetes control and predict future glucose of an individual. Obtained glucose data can be monitored
remotely by medical staffs via wide area networks.
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Although these systems show their advantages in continuous glucose monitoring, there are still many limitations.
For example, some systems do not consider real-time and remote monitoring while other systems do not pay attention
on energy efficiency sensor devices/nodes. In addition, they are not able to inform to medical doctors in real-time in
cases of emergency.

The main motivation of the paper is to provide an advanced IoT-based system for real-time and remote continu-
ous monitoring glucose, contextual data, and body temperature. The differences between our work and others are
energy efficient sensor devices integrated with an energy harvesting unit, a power management unit and an ultra low
energy nRF wireless communication, together with dedicated gateways equipped with advanced services such as push
notification for real-time notifying both doctor and patient in case of abnormality.

3. System architecture

In the furtherance of providing continuous glucose monitoring in real-time locally and remotely, the CGMS archi-
tecture shown in Fig .1 is based on an 10T architecture. The system includes three main components such as a portable
sensor device, a gateway and a back-end system.

Sensor Layer

Cloud

Administrator
Control
D Panel

/’ Android Gateway

Glucose 9™

sensor

\

/" Vital Signs
Sensorsr e -— -
Contextual ki) o-/-
Sensor i ))

Notification

. Notification
A ) \ Local Storage Local Storage
Data Processing Data Processing

Fig. 1: Continuous Glucose Monitoring using IoT

3.1. Sensor device structure

The sensor device whose structure is shown in Fig .2 consists of primary component blocks such as sensors, a micro-
controller, a wireless communication block, energy harvesting and management components. The micro-controller
performs primary tasks of the device such as data acquisition and transmission. Therefore, it consumes a large part
of the device’s total power consumption. Reducing power consumption micro-controller can save a lot of power
consumption of the device. The ultra low power micro-controller capable of operating with sleep modes is a suitable
candidate for the target. In the device, the micro-controller receives glucose data from an implantable glucose sensor
via a wireless inductive link receiver while it collects environmental and body temperature via data link wires such
as UART, SPI or I2C. In the system, SPI is more preferable due to its lowest power consumption between these
interfaces'!.

The nRF wireless communication block is responsible for transmitting data from the micro-controller to the gateway
equipped with an nRF transceiver. The block includes a RF transceiver IC for the 2.4GHz ISM band and an embedded
antenna. Due to 2Mbps supporting, nRF completely fulfills the requirements of transmission data rates in a CGM
system. Transmission data rates of nRF can be configured for achieving some levels of energy efficiency. For example,
instead of using 2Mbps, a data rate of 256kbps can be used for saving power when sending glucose, temperature,
and contextual data. In addition, nRF is capable of both short and long range transmission from a few centimeters
to a hundred of meters. Depending particular applications, the transmission range and transmission power can be
configured. With a short range communication, nRF consumes lower energy.

In the sensor node, the energy harvesting unit and the power management unit described in the followings are two
of the most important components because they directly impact on energy consumption and an operating duration of
the sensor node.

‘ Energy Harvesting ‘ | Temperature Sensors } ‘NRF Wireless Communication ‘ ‘ Glucose Sensors |
A

! ! !

‘Power Management }<—>{ Micro-controller }<—>[ Inductive link Receiver |

Fig. 2: Portable sensor device structure

3.1.1. Energy harvesting unit

The exponential advancements in WSNs, WBANSs and the emerging field of IoT have opened the doors wide for
numerous intelligent applications. Unfortunately, this development is not reflected at the battery capacity side. A
major limitation of untethered nodes is a limited battery capacity which limits the operation time of the nodes. The
finite lifetime of a node implies the nite lifetime of the applications or additional costs and complexity to regularly
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Matching Network RF to DC rectifier Storage Element
Fig. 3: RF energy harvesting system

change batteries. Nodes could possibly use large batteries for longer lifetimes, but will have to deal with increased
size, weight and cost. Nodes may also opt to use low-power hardware like a low-power processor and radio, at the
cost of lesser computation ability and lower transmission ranges. Several solution techniques have been proposed to
maximize the lifetime of battery-powered sensor nodes. Some of these include energy-aware MAC protocols, power
aware storage, routing and data dissemination protocols, duty-cycling strategies, adaptive sensing rate, tiered system
architectures and redundant placement of nodes. While all the above techniques optimize and adapt energy usage to
maximize the lifetime of a sensor node, the lifetime remains bounded and nite. The above techniques help prolong

the application lifetime and/or the time interval between battery replacements but do not preclude energy related
12

inhibitions '~.

Energy harvesting could be a solution to the above mentioned dilemma. Energy harvesting refers to harnessing en-
ergy from the environment or other energy sources (body heat, foot strike, nger strokes) and converting it to electrical
energy. If the harvested energy source is large and periodically/continuously available, a sensor node can be powered
perpetually. Energy sources can be broadly classified into the following two categories, (i) Ambient Energy Sources:
Sources of energy from the surrounding environment, e.g., solar energy, wind energy and RF energy, and (ii) Human
Power: Energy harvested from body movements of humans. Passive human power sources are those which are not
user controllable. Some examples are blood pressure, body heat and breath. Active human power sources are those
that are under user control, and the user exerts a specic force to generate the energy for harvesting, e.g., nger motion,
paddling and walking. No single energy source is ideal for all applications. The choice depends on every applications
requirements and constraints.

To power the glucose sensor node a combination of ambient and human powered sources is selected. Due to its
ubiquitous availability RF energy is an adequate source for this application. Also, since the sensor is mounted on
human body it makes sense to exploit this medium a source of energy. Through the use of a Thermoelectric Generator
(TEG), thermal energy can be converted into electrical energy. The conversion process is based on the See-beck effect
where electricity can be generated from the temperature gradient across two conductors connected together. In this
paper the RF energy harvesting system is presented, thermal energy harvesting will be integrated into harvesting in
future work.

The RF energy harvesting system illustrated in Fig. 3 is designed . A first step in designing the RF energy harvesting
system is deciding on the frequencies at which power will be harvested. The wireless spectrum is full of signals with
different frequencies and power levels, ranging from cellular standards, WLANs and TV signals. The criteria that
control the selection of certain frequencies for the purpose of energy harvesting are wide deployment and power level.
GSM 900/1800 and DTV signals cover most of the world. Thus it is almost guaranteed that GSM signals would be
available wherever the harvesting system is placed. On the other hand, the power level of GSM signals can be very low
reaching -102 dBm at receiver sensitivity, and transmitting power of DTV stations can be as high as 70 dBm 3. Wi-Fi
and Bluetooth signals abounds in urban environments, hence they can be exploited as well. A miniaturized printed
elliptical nested fractal multiband antenna (PENF) was designed for this purpose in!3. The proposed antenna covers
GSM 900, 2.4 GHz Bluetooth/WLAN, 3.2 GHz (Radiolocation, 3G), 3.8 GHz (for LTE, 4G) and 5 GHz Wi-Fi bands.
The antenna was designed and fabricated using FR4 substrate. The measured radiation patterns of PENF antenna in
different planes verify the omni-directional feature of the proposed antenna. This feature is of interest in RF energy
harvesting applications to receive the ambient signals from all directions.
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Fig. 4: RF-DC rectifier schematic and test bench
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Fig. 5: Rectifier output voltage Vs. input power level

Due to their low forward voltage drop Schottky diodes are used in designing the rectifier and voltage doubler
circuits. A Schottky diode is a rectifying metal semiconductor junction which is fabricated by depositing an n-type or
p-type semiconductor material on a variety of metals. While the threshold voltage of a P-N diode is around 0.6 V to
0.7 V, Schottky diodes can achieve similar performance at lower threshold levels (0.2 V to 0.3 V). Fig. 4 illustrates
the RF-DC rectifier schematic and test bench used in evaluating its performance. The rectifier unit itself shown at the
right corner of Fig. 4 consists of a single unit voltage doubler constructed using a non-linear model for HSMS285
Schottky diode. Using a single patch antenna integrated into the schematic as a layout component is tested. At 925
MHz RF input signal, the corresponding output voltage for a wide range of input power levels is shown in Fig. 5.
The sensor node constructed at this work requires 2 volts input for proper operation, the RF energy harvesting system
designed was able to achieve this voltage at 0 dBm input power which corresponds to 1 mW.

3.1.2. power management unit

In battery powered wireless sensor network, the sensor goes to the idle status to prevent power draining. However,
in case the sensor receives an incoming message (packet), the sensor should go from idle to active status. Duty-
cycling is an efficient approach that reduces idle-mode power consumption '#. There are three-types of duty cycling:
() synchronous, (II) pseudo-synchronous and (II) asynchronous. The latter scheme has the lowest power dissipation.

A number of circuit techniques have been proposed to implement the wake-up unit. In '3, the author laid the
foundation for radio-triggered wake-up circuit. The circuit consists of passive components (antenna, resistance, diode,
capacitance and inductance). The circuit has low-sensitivity and may cause false wake-up.

The authors of ' describe a dual source energy scavenging circuits for wireless sensor network. The power man-
agement system is composed of both a radio-triggered wake-up circuit and a voltage sensor. The latter pushes the
sensor into a sleep-mode should the voltage level across the storage capacitor drops below a predefined voltage level.
The wake-up circuit is implemented using a low-power Schmitt trigger circuit. The voltage sensor is implemented
using a differential amplifier with positive feedback.

3.1.3. Proposed power management unit

The communication between the sensor and the gateway is quasi-unidirectional in which the information is relayed
from the sensor towards the rest of the system. This unique characteristics makes the need for a radio-triggered wake-
up circuit. However, the power management unit for the sensor needs to efficiently use the collected energy. To prevent
an abrupt shutdown and to enable a better resource utilization, in case the power management unit descries insufficient
amount of energy in the capacitor, drives the sensor into a deep-sleep mode and grants the energy scavenging unit
enough time to charge the capacitor.

The core of the power management unit is the voltage sensor, which can be realized using the low-power Schmitt

trigger circuit reported in !7. Fig. 6 details the transistor level circuit for the PMU.

3.2. Gateway and back-end structure

Similar to conventional gateways in IoT systems, the proposed gateway collects data from wireless sensor devices
and transmits the data to Cloud servers. The gateway performs its tasks by using a nRF transceiver and a wireless
IP-based transceiver (i.e. Wifi, GPRS or 3G). The nRF transceiver, which is a plug-able component, is compatible
with all types of smart devices (i.e. Android, Iphone, tablet). It is possible to use smart phones and fixed gateways as
the system gateways. However, in this work, gateways based on smart-phones are more focused. The nRF transceiver
consists of a micro-controller and a low power RF transceiver IC, and a FTDI component. The micro-controller and
the nRF components are the same as the ones used in the sensor device. The FTDI chip is used for converting from an
UART connection to an USB connection. All physical connections of an nRF component and a smart phone (Android)
are shown in Fig.7.
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In addition to mentioned tasks, the gateway provides advanced services such as data processing, local database,
local host with user interface and push notification shown in Fig.8. For example, the collected data might consist of
noise and corrupted data. In order to provide a high quality of data, the noise and corrupted data must be filtered. In
the gateway, the data processing unit not only performs filtering tasks but also run algorithms to process data such as
decision making and categorization of diabetes statuses.

Local database in the gateway consists of an intact database and a real-time database. The intact database stores
algorithms’ information and configuration data while the real-time database is used for storing e-health and contextual
data. Therefore, the intact database is only used for internal usage and managed by system administrators while the
real-time database is regularly updated and synchronized with Cloud’s database. Due to a small amount of collected
data (i.e. 4-8 samples per 10 minutes), local database can store the data during a long period of time (i.e. several days)
before getting full.

By supplying a local host with user interface, real-time data can be monitored directly from the gateway without
requiring Cloud servers. In this case, this helps to eliminate an unnecessary latency of transmitting and receiving data
to and from Cloud, respectively.

In the gateway, decision making and push notification services work together to provide real-time notifications to
doctors or caregivers. For example, when a monitored glucose level is higher and lower than an acceptable level,
the decision making service triggers the push notification to send messages for notifying a doctor in real-time. The
back-end part comprises of Cloud and an user accessible terminal. Doctor can access real-time data in Cloud remotely
via a web browser or a mobile application.

4. Implementation

With the purpose of evaluating feasibility of the CGM system using 10T, the entire system shown in Fig. 1 is
implemented. First, the interaction of the biological tissue under investigation is studied. Since the glucose sensor will
be subcutaneous, the electrical characteristics of the biological tissue i.e. skin will be evaluated from which the amount
of power loss and absorption due to propagation through the biological tissue will be estimated.It is imperative to make
sure that subjecting the human body to this continuous signals is within the safe specified measures. The guidelines
for Electromagnetic Field exposure (EMF) are in terms of Specific Absorption Rate (SAR) and the equivalent plane
wave power density (SW/m2). SAR is a measure of the rate of energy absorption per unit mass due to exposure to an
RF source. SAR is normalized to mass and is defined as '®:

SAR = (.ffEms®)[(W/Kg) ey

Where . f f is the effective conductivity of the biological material such as skin and is proportional to the frequency
of the applied field, is the mass density which is approximately 1000 kg/m® for most biological tissues,and E,ms is
the root mean square value of the electric field E at the measurement point. As specified in'® at an operating frequency
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Table 1: Glucose levels
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Table 2: Blood glucose levels in diagnosing diabetes

Tvpe

Before meals

2 hours after mealg

Walke up

Risk of hypoglycaemia
(low blood glucose)

Plasma glucose test

Normal

Prediabetes

Diabetes

Healthy Person

4 to 5.9 mmolL

under 7.8 mmol/L

under 4 mmolL

Random

Below 11.1 mmol1
Below 200 mg/dl

11.1 mmol/l or more
200 mg/dl or more

Type I diabetes

4 to 7 mmolL

5 to 9 mmolL

5 to 7 mmolL

under 4 mmolL

Type 2 diabetes

4 to 7 mmolL

under 8.5 mmol/L

under 4 mmolL

Fasting

Below 6.1 mmol/l
Below 108 mg/dl

6.1 to 6.9 mmol/l
128 to 125 mg/dl

7.0 mmol/l or more
126 mg/dl or more

Children with
type 1 diabetes

4 to 7 mmolL

5 to 9 mmolT

4 to 7 mmolL

under 4 mmolL

2 hour post-prandial

Below 7.8 mmol/l
Below 140 mg/dl

7.8 to 11.0 mmol1
140 to 199 md/dl

11.1 mmol/1 or more
200 mg/dl or more

of 2.4 GHz, the maximum E and S are 61 V/m and 10 W/m? respectively which are well below the targeted operation
power of the wireless sensor node.

In the sensor device, an ATMega328P micro-controller is used because it can achieve a high level of energy effi-
ciency. The micro-controller can run at 16Mhz. However, it needs to use an external oscillator and requires 5V power
supply for running at this clock. In contrast, it merely uses 1Mhz internal oscillator and requires 2V power supply
for operating at IMhz. On the grounds that the sensor device does not perform any heavy computation, IMHz clock
speed and 2V power supply are suitable. In the implementation, the sensor device is in a deep sleep mode in most
of the time. It is waken up regularly i.e. for receiving incoming data from a glucose sensor and temperature sensors.
Then, it wakes up a nRF component for transmitting the data to a gateway. After all, it goes back to the deep sleep
mode.

The nRF24L.01 IC is an ultra low power 2Mbps RF transceiver IC for the 2.4GHz ISM band. It is built-in with an
advanced power management method. The nRF24L.01 IC communicates with the micro-controller via a SPI interface.
For the reason that it is no required a high transmission data rate to collect glucose, body temperature and environment
temperature every 10 minutes, SPI with a data rate of 250kbps is applied in the implementation.

The gateway includes a nRF transceiver and a smart phone in which the nRF transceiver is connected to the phone
via a USB port. In terms of the hardware implementation, the nRF transceiver is implemented by an ATMega328P
micro-controller and a nRF24L.01 IC. Similar to the micro-controller in the sensor device, the micro-controller of
the nRF transceiver also run at 1Mhz. The micro-controller is supplied with 3.3V from the FTDI component which
converts 5V from the phone’s USB port to 3.3V. For saving power consumption, it is in a deep sleep mode in most
of the time. It is only waken up by an interrupt for receiving incoming data from a sensor device and immediately
forwarding to the smart phone. After completing these tasks, it goes back to a deep sleep node. When it is in a sleep
mode, the nRF component is also in a sleep mode.

An Android app is built in the gateway for receiving data from the nRF component and performing other services.
When data is available at one-end of the USB port, the app automatically reads the data and performs the data pro-
cessing service. In addition, the app is capable of representing the processed data in text and graphical forms and
triggering a push notification service.

The push notification service is implemented by a Google push notification API. When the mobile app detects
abnormal situations (i.e. too low or too high glucose level), the push notification service in the gateway is triggered
for sending notification messages to Cloud which then notifies doctors and an end-user wearing the sensor device.

Local database in gateways is implemented by MySQL database, and local storage (HD card). For example, the
table of glucose levels based on the Australian and UK national diabetes service scheme and the global diabetes
community 2°-2! shown in TABLE .1-2 is stored MySQL tables.

The server is implemented by HTMLS5, Web-Socket and Node.js because they support real-time and streaming data.
In addition, MySQL database for storing synchronized data and Javascipt for plotting graphical charts are utilized.

5. Experiments and Results

In order to verify the quality of data transmitted via nRF from a sensor node to a gateway, two sets of data including
random and predefined data are used. The data collected at the sensor node and the received data at the gateway is
compared in several cases such as the sensor node and the gateway in pockets, or the gateway in the environment
less than O degree Celsius. In the experiments, the distance between the sensor node and the gateway is in a range
of a few meters although in most of the cases, the distance is less than 1 meter. The results show that the sent and
received data (i.e. environmental temperature and body temperature) is the same, and there is no lost during the
transmission for all cases. In some cases when radio signals are blocked, the sensor node tries to send the data with
a higher power. Fortunately, average power consumption of the sensor node does not vary dramatically due to a long
interval (i.e. every 10 minutes) between transmission times. Power consumption of components and devices used in
the implementation is shown in Table .3.

Table 3: Power consumption of nRF transceiver, sensor node and gateway

Device Voltage supply (V) Average Current (mA)
nRF transmitter (nRF + ATMEGA328P) 2 0.5
nRF receiver (NnRF + ATMEGA328P + FTDI board) 5 5
Sensor node 2 1.4
gateway(Android phone without nRF receiver) 5 70
Android phone with nRF receiver 5 75
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To the best of our knowledge, our sensor node consumes the least power than other sensor nodes existing in the mar-
ket and proposed by other authors. Most of existing energy efficient sensor nodes for CGM consume more than SmA
while the proposed sensor node consume merely around 1.4mA. Table 3 shows that power consumption of the Android
phone increases about 6.5% when attaching an nRF receiver prototype including nRF transceiver, ATMEGA328P and
FTDI components. The power consumption can be reduced when the prototype is replaced by an entire circuit device.
In this case, surplus components such as LEDs, and IO ports can be removed for saving power consumption. For
testing functionality of the application in the gateway, several glucose values including low, medium and high glucose
levels altogether with temperature values are sent from the sensor node to the gateway. The result shows that data is
categorized and represented in text forms accurately. In addition, the push notification service operates accurately in
real-time when abnormality (e.g. too high or too low glucose levels) is detected.

6. Conclusion

In this paper, we presented a real-time remote IoT-based continuous glucose monitoring system. The implemented
IoT-based architecture is complete system starting from sensor node to a back-end server. Through the system, doctors
and caregivers can easily monitor their patient anytime, anywhere via a browser or a smart-phone application. Sensor
nodes of the system are able to obtain several types of data (i.e. glucose, body temperature, and environmental data)
and transmit the data wirelessly to the gateway efficiently in term of energy consumption. In addition, the sensor node
is integrated with the power management unit and the energy harvesting unit for extending operating duration of the
sensor device. With the assistance of the customized nRF receiver, a patient’s smart-phone becomes a gateway for
receiving data from sensor nodes. In addition, the gateway with its application provides advanced services to users,
such as a notification service. The result showed that it is feasible to remote monitor glucose continuously in real-time
and the system can be made energy efficient.
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ARTICLE INFO ABSTRACT

Falls can cause serious traumas such as brain injuries and bone fractures, especially among elderly people. Fear
of falling might reduce physical activities resulting in declining social interactions and eventually causing de-
loT pression. To lessen the effects of a fall, timely delivery of medical treatment can play a vital role. In a similar
Ea" dete(f:;lo.n scenario, an IoT-based wearable system can pave the most promising way to mitigate serious consequences of a
nergy etrelency fall while providing the convenience of usage. However, to deliver sufficient degree of monitoring and relia-

Wearable devices . i . . . .
bility, wearable devices working at the core of fall detection systems are required to work for a prolonged period

Keywords:
Internet-of-Things

Accelerometer § . o ) >
Gyroscope of time. In this work, we focus on energy efficiency of a wearable sensor node in an Internet-of-Things (IoT)
Magnetometer based fall detection system. We propose the design of a tiny, lightweight, flexible and energy efficient wearable

nRF device. We investigate different parameters (e.g. sampling rate, communication bus interface, transmission
protocol, and transmission rate) impacting on energy consumption of the wearable device. In addition, we
provide a comprehensive analysis of energy consumption of the wearable in different configurations and op-
erating conditions. Furthermore, we provide hints (hardware and software) for system designers implementing
the optimal wearable device for IoT-based fall detection systems in terms of energy efficiency and high quality of
service. The results clearly indicate that the proposed sensor node is novel and energy efficient. In a critical

condition, the wearable device can be used continuously for 76 h with a 1000 mAh li-ion battery.

1. Introduction

Fall is one of the most trivial reasons causing traumas and serious
injuries (e.g. bone fractures or traumatic brain damages caused by head
traumas) [1,2]. Elderly people are likely to fall and they often have
more serious consequences after falling than people of other ages. Ac-
cording to statistics, 30% of those over 65 and 50% of those over 80
years old fall every year with hazardous results [1]. Because of high
morbidity (almost 20% of fall lead to serious traumas), about 40% of all
nursing home admissions are related to fall [3].

Treatment of injuries from a fall often lasts over a long period of
time and is very costly (e.g. 30,000 US dollars for a serious case in
hospital) [4,5]. The proportion is as follows: 63% of fall-related costs
accounts for hospitalizations, 21% is for emergency department visits
and 16% is for outpatient visits. However, despite the high significance
of the problem, timely aid is only delivered in half of the cases. Un-
reported cases lead to the deterioration of injury which might compli-
cate treatments later.

* Corresponding author.

Fear of falling amplifies the negative post-fall consequences and
might decrease patient’s confidence [6]. As a result, it limits the pa-
tient’s activities, reduces social interactions and eventually causes de-
pression [7,8]. Thus, there is an urgent need of fall detection systems. A
quick response to the incident might decrease the risk of serious con-
sequences after a fall. Correspondingly, it helps to reduce treatment
costs and to increase chance of recovery. In [9], authors have separated
fall detection systems into three groups based on wearable devices,
ambiance sensors, and cameras. Systems based on wearable devices
seem to be more popular because they can detect a fall more accurately
regardless of the patient’s location (i.e. indoor and outdoor) and do not
interfere the patient’s privacy and daily activities. Wearable devices
often acquire parameters related to motion such as acceleration, rota-
tion and the direction of motion [10].

It is a challenge for wearable sensor nodes to differentiate between
fall events and casual daily activities, or to notify doctors in real-time.
Due to their resource constraints (e.g. limited power and storage ca-
pacity), it is required to have an advanced system which helps to reduce
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computationally heavy loads on wearable sensor nodes, while main-
taining or improving quality of service. Internet-of-Things (IoT) is one
of the most suitable candidates for such systems as it consists of a wide
range of advanced technologies such as sensing, wireless sensor net-
work and cloud computing for interconnecting virtual objects with
physical objects. IoT-based systems can help to reduce wearable de-
vices’ burdens by shifting high-computational tasks from wearable de-
vices to their smart gateways. For example, the gateways can perform
complex fall detection algorithms (i.e. algorithms based on discrete
wavelet transform or data mining). In addition, smart gateways help to
improve quality of service by providing advanced services i.e. local
storage for storing temporary data or push notification for informing
abnormality in real-time.

It is inevitable that IoT can comprehensively help to reduce power
consumption of wearable devices by sharing the work load. However,
IoT cannot always guarantee a high level of energy efficiency in
wearable devices. Other primary issues (i.e. data acquisition and data
transmission) causing high energy consumption in wearable sensor
nodes must be attentively considered. When a wearable sensor node is
energy inefficient, it possibly causes unreliability and reduces quality of
service.

In the previous work [11], we have proposed an IoT-based fall de-
tection system. The system comprises of energy efficient sensor nodes, a
smart gateway, and a back-end system. The gateway with a Fog layer
[12,13] helps to achieve energy efficiency at sensor nodes. In that
paper, a sensor node attached to human chest acquires data from a
three-dimensional (3-d) accelerometer and transmits the data to the
smart gateway via BLE (Bluetooth Low Energy). The main computation
(i.e. a customized fall detection algorithm) is performed at the smart
gateway since the gateways are powerful in terms of hardware speci-
fication and it is supplied by a wall power outlet. The work shows
several analysis of primary communication interface buses’ power
consumption. The results show that SPI (Serial Peripheral interface)
consumes less power than 12C (Inter-Integrated Circuit) and UART
(universal asynchronous receiver/transmitter) while SPI’s data rates are
higher than others (e.g., SPI can support a high data rate of 4 Mbps and
more).

The work presented in this paper is a major extension of our recent
work published in [11]. In the paper, we aim to study and minimize
energy consumption of the wearable sensor node in an IoT-based fall
detection system. Furthermore, we analyze undisclosed issues in the
previous work. For example, the analysis of advantages and dis-
advantages of software-based SPI and its impact on energy consumption
of a sensor node are presented. Moreover, we analyze energy con-
sumption of the sensor node in various transmission distances and
different transmission conditions (e.g. line-of-sight transmission, and
transmission via objects). We also investigate and discuss impacts of
different sensors (e.g. accelerometer, gyroscope and magnetometer) on
both total energy consumption of the sensor node and an accuracy of
the fall detection mechanism. We analyze the accuracy of the fall de-
tection system in exceptional cases such as users having abnormal
postures. In addition, we discuss and provide comprehensive methods
for overcoming limitations (e.g. P2P communication) in the previous
work. In this paper, we present the design and implementation of an
energy efficient wearable sensor node based on a customized nRF
module. The design helps to solve the limitation of P2P communication
by offering many-to-many communication between sensor nodes and
gateways. Unlike BLE used in the previous work [11] which is con-
nected to the micro-controller via UART, the nRF module in the pro-
posed design uses SPI as its communication bus. Therefore, it incurs a
new issue of using several SPI buses simultaneously by a single micro-
controller (i.e., SPI communication buses for collecting data from sen-
sors and for transmitting the data via nRF). Therefore, these issues are
discussed to find out the most appropriate solution in terms of energy
efficiency, feasibility, and complexity. The proposed wearable sensor
node is low-cost, lightweight, tiny, energy efficient and flexible. It can
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be configured to suit to different fall detection algorithms based on
motion (e.g. acceleration or angle). The wearable sensor node can
provide a viable solution for everyday use without interfering user’s
daily life. Furthermore, we customize the fall detection algorithm pre-
sented in our previous paper for suiting to the proposed sensor node
and improving QoS (e.g. the accuracy of the fall detection system).

The rest of the paper is organized as follows: Section 2 includes
related work and motivation for this work. Section 3 provides an
overview of the IoT-based fall detection system’s architecture. Section 4
emphasizes on design principles and reasons behind component and
technology selection. Section 5 illustrates the implementation details of
the proposed sensor node. Section 6 provides insights about experi-
mental setup and results. Section 7 discusses various issues and find-
ings, and proposes possible solutions. Finally, Section 8 concludes the
work.

2. Related work and motivation

Several efforts have been devoted in proposing wearable sensor
nodes for fall detection systems. For instance, Casilari et al. use an
accelerometer in a smart watch to detect a fall. Accelerometer data is
transmitted via BLE from the smart watch to a smart phone which
processes data and detects a fall. Then, the smart phone, which acts as a
gateway, sends a notification to Cloud via 3G/4G [14]. In another work
[15], authors use a depth camera (Kinect) with an accelerometer-based
wearable to improve the accuracy of fall detection. Collected data is
processed at PandaBoard for detecting a fall in real-time.

Pivato et al. [16] present a wearable wireless sensor node for fall
detection. The wearable node whose size is about three times larger
than a 2 Euro coin, requires low average current about 15mA and
25 mA at 50% and 100% duty cycle, respectively. The node is equipped
with a 3-d accelerometer ADXL345 and a wireless chip (i.e. CC2420) for
gathering and sending acceleration data to a gateway, respectively.

Chen et al. [17] present wearable sensors for a reliable fall detection
system. The sensors collect data from low-cost and low-power MEMS
accelerometers and send the data via RF. By deploying the sensors at
home, the position of the fallen person can be detected.

Biros et al. [18] propose a wearable sensor for a smart household
environment. The wearable sensor collects 3-d acceleration and angles
from an accelerometer and a gyroscope, respectively. The sensor sends
the collected data via ZigBee to Arduino Uno connected to a computer
for further processing and detecting a fall.

Erdogan et al. [19] discuss a data mining approach by using k-
nearest neighbors for a fall detection system. A wearable device in the
system is based on a general purpose board equipped with motion
Sensors.

In another work [20], the authors present a sensor node based on
GSM communication and 3-d accelerometer for a fall detection system.
A fall location can be easily detected by the system.

In other works [21,22], authors utilize general purpose boards (e.g.
Arduino Uno, Arduino Fio) as the core of fall detection sensor nodes.
Although the sensor nodes are low-cost and provide some useful ser-
vices, they still have several drawbacks such as high power consump-
tion and large physical size. It is known that general purpose boards are
often equipped with extra components such as a voltage regulator and a
FTDI USB to UART chip ultimately resulting in energy inefficiency.

In several works [14,16-20], fall detection sensor nodes based on
motion data often utilizes one or several types of sensors such as ac-
celerometer, gyroscope or magnetometer. The selection of a sensor type
or a combination of several sensor types in a single sensor node is
mainly focused on functions and features of the sensor(s) while energy
consumption of the sensor(s) is not attentively considered. For example,
the accelerometer and the gyroscope are often used together in the fall
detection applications so as to improve the accuracy of fall detection.

It is known that energy consumption of a sensor node dramatically
impacts quality of service. When energy consumption is high, it may
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cause or lead to negative consequences such as a short operating
duration, discontinuation of services or unreliability. However, to the
best of our knowledge, the actual issues limiting energy efficiency of a
sensor node in an IoT-based fall detection system have not been ela-
borately investigated. For example, energy consumption of commu-
nication buses between a micro-controller and its slave devices (i.e.
sensors or a wireless communication module) is not considered in many
sensor node designs. Therefore, we investigate energy consumption of
communication bus interfaces such as SPI, 12C, and UART. The results
showing the impact of primary communication buses on energy con-
sumption of a sensor node can be used as a premise to design the high
energy efficient sensor node suiting for different fall detection appli-
cations.

The relationship between an IoT-based fall detection sensor node’s
sampling rate and energy consumption has not been examined in other
works. Therefore, in this paper, we analyze the relationship with dif-
ferent configurations and discuss optimal solutions for achieving both
high levels of energy efficiency and fall detection accuracy.

A low-power sensor node in fall detection applications often uses
BLE as a primary wireless communication protocol [11,23-25]. Al-
though BLE provides many advantages (e.g. low power, fast cyclic re-
dundancy check, and connection improvements), it still has several
limitations (e.g. p2p communication, a complex stack with several
profiles) which may increase service costs and may not guarantee the
highest level of energy efficiency. Therefore, we analyze another low
power wireless communication protocol which helps to avoid the lim-
itations of BLE while maintaining high quality of service.

In the paper, we also investigate factors impacting on energy con-
sumption of a wearable sensor device. These factors are such as a micro-
controller, motion sensors (accelerometer, gyroscope, and magnet-
ometer), sampling rate, wireless transmission data rate, transmission
distance, and software. By applying an optimal combination of hard-
ware design and software techniques, it is possible to provide a novel
tiny, and light-weight wearable sensor node with a high level of energy
efficiency.

3. Overview of an IoT-based fall detection system’s architecture

An overview of an IoT-based fall detection system is presented with
the purpose of showing the role and the hierarchical position of
wearable devices in the system. The system architecture shown in Fig. 1
consists of three main parts including wearable sensor nodes, a gateway
and a back-end system.

A sensor node of an IoT-based fall detection system is responsible
for acquiring motion data (i.e. acceleration or rotation angle) and
transmitting the data via a wireless communication protocol to a smart
gateway. Depending on particular fall detection systems, the collected
data can be pre-processed or kept intact before being transmitted. In
most of the cases, collected data (raw data) is transmitted without pre-
processing by complex algorithms or methods (i.e. wavelet transfor-
mation or neural filtering) [26] because pre-processing with complex
mechanisms like fall detection based on k-nearest neighbor algorithm
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requires significant computational power. Correspondingly, energy ef-
ficiency must be sacrificed and latency dramatically increases for run-
ning such complex algorithms at a sensor node. In order to avoid these
issues, complex algorithms are implemented and run at smart gateways
[27,28].

In addition to primary tasks of receiving data from sensors and
transmitting the data to Cloud servers, a smart gateway with a fog layer
provides advanced services such as push notifications, local storage,
web-host, and fall detection. Complex algorithms can be run effectively
with low latency at the fog layer of a smart gateway due to their ad-
vantages of the constant power supply, embedded operating system,
and powerful hardware (e.g. a gateway is often about 50-100 times
more powerful than a sensor node). Correspondingly, fall can be de-
tected and notified to doctors or caregivers in real-time.

A back-end system consists of Cloud servers and terminals (i.e. end-
user’s Internet browsers or mobile phone applications). Via the back-
end system, doctors, and caregivers can monitor a patient in real-time
or history of patient records remotely. In addition, the back-end system
may help doctors in disease treatment by providing analyzed data and
history of records.

4. Sensor node design

A sensor node for an IoT-based fall detection system primarily
comprises of a micro-controller, a motion sensor or sensors, and an nRF
block whose connections are shown in Fig. 2. The micro-controller
performs main tasks of gathering data from sensors, formatting and
transmitting the collected data to the nRF block, and controlling sensors
and 1/0 interfaces (i.e. SPI, I2C or UART). It consumes a large portion of
total power consumption of the sensor node. Therefore, it is important
to apply an optimal micro-controller for performing mentioned tasks
efficiently in terms of latency and energy consumption.

In our application, a 8-bit micro-controller is more suitable than a
32-bit micro-controller. Based on experiments run by Atmel [29], an
Atmel 8-bit AVR device is more efficient than an Atmel ARM Cor-
tex®MO + based 32-bit MCU in terms of hardware near-functions. For
example, an Atmel 8-bit AVR device requires 12 cycles to receive one
byte from SPI using interrupt while an Atmel ARM Cortex®MO0 + based
32-bit MCU requires 33 cycles for performing the same task. When
running a recursive 15-stage Fibonacci algorithm, a 8-bit AVR micro-
controller needs 70 bytes of stack while the 32-bit ARM-based device
needs 192 bytes [29]. In simple applications such as receiving data from
SPI using interrupt, assuming a SPI data bandwidth of 80 kbps, the 8-bit
AVR micro-controller consumes 36.1 uA while the 32-bit ARM-based
micro-controller consumes 48.1 uA. During sleep mode, a 8-bit AVR
micro-controller consumes 100 nA while a 32-bit ARM-based micro-
controller consumes 200 nA [29].

In [11], we have shown that a 8-bit AVR ATMega micro-controller is
capable of successfully performing several tasks (e.g. data gathering
and data transceiving) without infringing latency requirements of real-
time monitoring systems. The 8-bit AVR micro-controller supports
several clock frequencies such as 4, 8, 16 and 20 MHz which completely
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Fig. 1. The three layers of system architecture: edge, fog and cloud. Measurements collected by wearable devices in the edge layer are processed in the fog layer while cloud layer provide

information to caregivers.
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Fig. 2. Connection of sensor node’s primary components.

fits to our fall detection application using a few hundred samples per
second. In addition, it consumes low power in an active mode, and
supports several sleep modes and advanced features for saving power
consumption. The micro-controller supports all popular communication
bus interfaces (e.g. UART, SPI, and 1?C). Furthermore, it is small and
low-cost (around 1-2 dollars). Therefore, it is completely suitable for
our fall detection application.

Depending on particular fall detection algorithms running on smart
gateways, one or several types of motion sensors (such as accelerometer
and gyroscope) can be integrated in a sensor node [30]. A combination
of several types of motion sensors (e.g. accelerometer, gyroscope, and
magnetometer) altogether may help to improve the accuracy of a fall
detection system but it causes higher energy consumption. Fortunately,
these sensors can be controlled by software (e.g. entering sleep mode)
for saving energy. For example, replacing a 3-d accelerometer (e.g.
ADXL345 accelerometer) in a sensor node by a combination of a 3-d
accelerometer, a 3-d gyroscope and a temperature sensor (e.g.
ADXL345, Kionix KXG07, and STML20), energy consumption during
the idle mode in a second only increases about a few uW (e.g. less than
10 puW). In this paper, in order to provide a flexible and low-energy
wearable sensor node suiting to different IoT-based fall detection sys-
tems, three motion sensors including 3-d accelerometer, 3-d gyroscope,
and 3-d magnetometer are integrated in our sensor node. When sensors
are not in use, they are forced to sleep. In addition, in order to provide
the optimal sensor node in terms of both energy efficiency and the fall
detection accuracy, a comprehensive analysis and a discussion of sensor
node in different configurations are presented in Section 6 and
Section 7. It is known that sampling rates and communication protocols
(UART, I°C and SPI) dramatically impact on energy consumption of
sensors [11]. Often, these sensors support several sampling rates of
which low sampling rates (50-100 Hz) can be run in a low-power mode
and high sampling rates are run in a normal mode. However, when the
sampling is too low, it negatively impacts on the accuracy of fall de-
tection. A relationship between sensors sampling rate and energy con-
sumption is investigated in Section 6 for finding an appropriate sam-
pling rate which provides a high level of fall detection accuracy while
consuming low energy.

An nRF module consisting of an nRF integrated circuit (IC) and an
on-PCB printed antenna is chosen for the design because it consumes
less energy while supporting high data rates. Also, comparing to Wi-Fi,
XBee and Bluetooth, nRF is more suitable for the sensor node because it
consumes the least power (i.e. about 5-10%, 5-10%, and 80% less
power than BLE, XBee, and Wi-Fi [31]) and it supports software cus-
tomization enhancing a sensor node’s flexibility. Depending on parti-
cular application requirements, a transmission data rate can be custo-
mized. In some cases, it can transmit data with a data rate of 2 Mbps.

According to our previous work [11], SPI consumes less power than
I°C and UART communication interfaces at the same data rate. There-
fore, SPI is utilized for connecting the micro-controller with motion
sensors as well as the nRF module. However, applying multiple SPI
communication bus causes some difficulties in data management and
data verification.
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5. System implementation
5.1. Sensor node implementation

A sensor node must be able to operate reliably for a long period of
time. To achieve this, each component of the sensor node must be en-
ergy-efficient in both hardware and software. Based on our previous
work’s investigation [11] and the specification of an AVR ATMega328P
micro-controller, a 8-bit AVR ATMega328P micro-controller is suitable
for the sensor node. In the implementation, all unneeded interfaces (e.g.
UART, I?C) and internal modules (blocks) of the micro-controller are
intentionally disabled for reducing energy. For example, unneeded in-
ternal modules (i.e. Serial, ADC, or brownout detection) are turned off.
Similarly, necessary interfaces and modules are forced to be disabled in
most of the time. They are merely enabled or waken up only for per-
forming their tasks. Energy consumption of the sensor node with and
without disabling unneeded modules is shown in Table 3.

The micro-controller supports up to 20 MHz. However, the higher
clock frequency is applied, the higher power the sensor node has to be
provided because the micro-controller requires higher voltage supply
and draws more current when running at high frequencies. For in-
stance, at 16 MHz an ATMega328P micro-controller needs 5V and
consumes about 57.6 mJ for running a test function while at 8 MHz an
ATMega328P micro-controller only needs 3V and consumes approxi-
mately 46.8 mJ for running the same test function. In both cases, an
array of 100 values is retrieved and a sum of two adjacent values is
written back to the array. When supplying the micro-controller
2.2-2.5V for running at 4 MHz, the micro-controller consumes less
power than at 8 MHz. However, if applying 2.2V power supply, it
would be incompatible for other primary components of the sensor
node. For example, sensors (e.g. MPU-9250) and nRF require 3 V power
supply for a stable operation. In order to solve the incompatibility issue,
the micro-controller must be supplied with 3 V or the sensor node must
be equipped with a voltage regulator converting a higher voltage down
to 3 V. Correspondingly, in both cases, it may waste 15-30% of total
power consumption while it may not operate stably. Therefore, running
the micro-controller at 8 MHz is suitable for our sensor node because
extra components like voltage regulator(s) can be removed while a high
clock frequency can be utilized. Another reason of choosing 8 MHz and
3V power supply is that when a 3V battery drains, the voltage supply
from the battery may drop until around 2.7 V which is still suitable for
the sensor node. In addition, the choice of 8 MHz and 3V is suitable for
extending the sensor node for the future use such as collecting e-health
data (e.g. ECG, EMG and EEG). Analog front-end ICs for these signals
often require 3 or 3.3 V power supply.

MPU-9250, which is 9-axis MotionTracking sensor combining a 3-d
accelerometer, a 3-d MEMS gyroscope, a 3-d MEMS magnetometer and
a Digital Motion Processor hardware accelerator engine, is used in the
implementation for sensing motion data. The MPU-9250 sensor is fully
programmable and able to support low-power and sleep modes. For
example, the gyroscope sensor consumes 8 pA in sleep mode. One of
advantages is that each internal module such as accelerometer, gyro-
scope, and magnetometer can be controlled separately.
Correspondingly, the sensor node can be customized for particular fall
detection applications without sacrificing energy efficiency of the
sensor node intensively. Depending on the applications or scenarios,
some internal modules can be activated while others can be in sleep
modes. In the implementation, several scenarios described in Section 6
are applied for investigating energy consumption of our sensor nodes
and the accuracy of fall detection. The sensor requires a supply voltage
from 2.4V to 3.6 V. The MPU-9250 sensor supports both SPI and I*C.

An nRFL2401 module, which is a low-power transceiver operating
in ISM frequency band from 2.4 GHz to 2.4835GHz, is used. The
module integrated with an embedded base-band protocol engine sup-
ports several operating modes. For example, the module can operate at
250 kbps, 1 Mbps, and 2Mbps. In the implementation, 250 kbps is
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Fig. 3. Minimal setup of a sensor node using both hardware and software based SPI.

preferred because it fulfills the data rate requirement of the system and
consumes the lowest energy than other data rates. The module is con-
nected to the micro-controller via SPI.

In addition, for evaluating energy consumption of the sensor node
when using SPI and software SPI, two different sensor nodes based on
SPI and software SPI are implemented. The first node uses a combina-
tion of SPI and software SPI while the second node merely uses SPI.
Minimal setup of these nodes is shown in Figs. 3 and 4.

Finally, the proposed wearable sensor node is built, as shown in
Fig. 5. The wearable sensor is tiny, light-weight and low-cost. The total
cost of the wearable sensor node is less than 11 Euros in which a motion
sensor MPU9250 and an nRF24L01 module cost about 5 Euros and 2
Euros, respectively.

5.2. Gateway and back end implementation

A gateway is implemented by a combination of an nRF transceiver
and Raspberry Pi [32]. An nRFL2401 module described above is used as
an nRF transceiver of the gateway. The module is connected to the
Raspberry Pi via SPL

Several algorithms, presented in [11,33], are applied in a smart
gateway for testing functionality of sensor nodes. These algorithms are
chosen because they can be replicated easily in the gateway for the
verification purposes and they provide a high level of accuracy in de-
tecting fall. These algorithms operate based on acceleration and angular
motion which vary in time during a fall, as shown in Fig. 7. In these
algorithms, different types of filters are used for removing noise from
the collected data. Then, the fall-related parameters such as Sum Vector
Magnitude (SVM) and differential SVM (DSVM) are calculated by the
formula shown in Equation (1,2 and 3). It is noted that the Eq. (2) is not
applied for gyroscope.
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Fig. 4. Minimal setup of a sensor node using hardware SPI only.
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Fig. 5. Prototype of proposed sensor node beside a 2 Euro coin for size comparison.
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SVM: Sum vector magnitude

i: sample number

X,Y,2 : accelerometer value or gyroscope value of x, y, z axis

® : the angle between y-axis and vertical direction

DSVM: Differential sum vector magnitude

These fall-related parameters will be further processed or compared
with several pre-defined thresholds. If the processed data or fall-related
parameters are larger than the predefined thresholds, a fall is detected.
In details, each sensor has a specific threshold. For example, SVM of 3-d
acceleration is around 1 g in most of the cases (e.g. standing, sitting or
walking). When a patient falls, the SVM value increases instantly more
than 1.9 g at the fall moment. Therefore, the threshold value can be
defined as 1.6 or 1.7 g. Similarly, the threshold values of 3-d gyroscope
and 3-d magnetometer can be defined. In this paper, we do not focus on
fall detection algorithms in a smart gateway. Therefore, we customize
the threshold-based fall detection algorithm presented in our previous
paper [11]. The customized algorithm includes several stages such as
filtering, calculating fall feature parameters, combining fall feature
parameters from several sensors, and comparing with two-level
thresholds. The detailed flow of the customized fall detection algorithm
is shown in Fig. 6. Based on our experiments and results shown in
Section 6, relying on data collected from a single sensor type does not
provide a high level of accuracy in some cases. Therefore, in the paper,
we add two extra stages to the fall detection algorithm. The first stage
combines and analyzes several fall feature parameters from several
sensors such as 3-d accelerometer, 3-d gyroscope, and 3-d magnet-
ometer. In case that only two sensor types are used (e.g. accelerometer
and gyroscope), the parameters from the absent sensor will be ignored.
After the first stage, there will be two cases: (i) if all fall feature para-
meter values from collected sensors are larger than their own

Calculate fall
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€ possible falls ; e
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Fig. 6. Fall detection algorithm flow.
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thresholds, they are compared with their second thresholds. If one of
the comparison results shows that the fall feature parameter value is
larger than the second threshold, it triggers notification for informing a
fall; (ii) if one of the fall feature parameter values is less than the first
threshold while other parameters are larger, they are compared with
their own values in the past 1 and 2 s for finding dysfunctional or un-
stable sensor(s).

In our implementation, 1.6 and 1.9 g are used as the first and the
second threshold for SVM of 3-d acceleration while 130 and 160 deg/s
are used as the first and the second threshold for SVM of 3-d gyroscope.
Depending on particular requirements of a fall detection system, it is
possible to run one of complex threshold-based algorithms presented in
[34-37] or complex machine-learning based algorithms presented in
[38-40] at our smart gateway. In such cases, our sensor nodes are still
compatible and able to operate efficiently.

The push notification is implemented at Cloud and an Android ap-
plication via Google’s Push API. When the gateway detects a fall, it
sends a message (a patient id and time when the patient falls) to the
Push service at Cloud servers which then remotely notifies responsible
doctors and caregivers in real-time. In addition to mentioned services,
smart gateways are implemented with a Fog layer for providing ad-
vanced services such as local storage, local host with user interface,
data processing, data compression, security, channel managing, cate-
gorization. However, in this paper, these Fog services provided at
smart gateways are not our main focuses. Therefore, only an overview
of Fog and Fog services are presented in the paper while details of
the Fog layer and services including description, structure, design and
implementation are presented in our other papers and book
[26-28,41-44].

In our system, all collected data from sensor nodes are temporarily
stored in local database of smart gateways. The local database helps to
avoid losing data when the connection between smart gateways and
Cloud servers is interrupted. When the connection is re-established,
gateways send all recorded data in the database to Cloud. The database
is implemented with MongoDB. Categorization service is used to dis-
tinguish Intranet users and Internet users with the purpose of reducing
latency of services. For example, when the system detects a fall, it
checks the status of a doctor or a caregiver responsible for the person
falling. If he or she is currently connected to the local network, the
system sends the push notification message directly from smart gate-
ways to him or her. This helps to avoid a long latency of transmission
via Cloud. The service is implemented by a combination of scanning
service and database. The “iw” package helps to check the status of
connected users in the local network. Then, the results are stored in the
database. The categorization service and local host with user interface
allow doctors or caregivers access real-time data directly at the gate-
ways. In order to implement the local host, HTML5, CSS, JavaScript,
JSON, Python, and XML are used. Channel management helps to avoid
channel conflict by assigning free channels for newly connected sensor
nodes. The channel management service triggers the push notification
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service for informing to system administrators in case of channel con-
flict.

6. Experimental setup and results

Energy consumption of a sensor node for a fall detection IoT system
is calculated with Eq. (4) [45]. Total energy consumption of the node is
equal to a sum of energy consumed during operating and waiting.

E=VxIw)xtw)+ VxI(o)Xt(o) 4)

E : Total energy consumption (mJ)

V : Voltage supply

I(w) : Average current draw during waiting time (mA)

I(o) : Average current draw during operating (mA)

t(w) : Waiting time (s)

t(o) : Operating time (s)

In order to provide an overview of sensor nodes used in measure-
ments and comparisons, their hardware specifications are shown in
Table 2. In the experiments, each measurement is carried out during
5-10 min and a professional power monitoring tool from Monsoon
Solution is used [46]. This tool is able to accurately monitor minimum,
maximum and average voltage, current draw, power consumption of a
sensor node. In addition, Monsoon provides an advanced utility for
plotting monitored values in time series, which helps us to detect ab-
normality during measurements. Although average power consumption
in one second and energy consumption per second is identical, to
maintain consistency throughout the paper, energy consumption per
second is reported instead of power consumption retrieved from the
monitor.

In order to determine the suitable method for waking up the micro-
controller from deep sleep or normal sleep modes, several general-
purpose timers and a watchdog timer are used. In the experiment, the
nRF module is not active and the sensor node acquires data from dif-
ferent sensors (i.e. accelerometer, gyroscope, and magnetometer) via
1 Mbps SPI with a data rate of 50 samples/s. Energy consumption of the
sensor node in one second is captured and shown in Fig. 8. Results from
the Fig. 8 show that energy consumption of the sensor node sig-
nificantly decreases when using a watchdog timer instead of general-
purpose timers. The main reason is that a watchdog timer can wake up
the micro-controller from the deepest sleep mode(s) whilst other timers
cannot. Results show that an 8-bit timer is more energy efficient than a
16-bit timer. Since the maximum data rate supported by the watchdog
timer of ATMega328P is 62 samples/s, a data rate of 50 samples/s is
most suitable for the wearable sensor node.

For evaluating energy consumption of the wearable sensor node
when using different protocols, 50 samples/s data is acquired from
several sensors such as accelerometer, gyroscope and magnetometer via
SPI and I°C. In the experiment, the nRF module is not active and energy
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Fig. 8. Energy consumed per second when collecting data from several sensors at 50
samples/s via different techniques.
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Fig. 9. Energy consumed per second of the sensor node when collecting data from mul-
tiple sensors at 50 samples/s using SPI and I°C.

consumption of the sensor node shown in Fig. 9 is measured for one
second. It can be seen that SPI consumes less energy than I°C in most of
the cases.

We compare energy consumption of several sensor nodes based on
general purpose platforms and our sensor node. Energy consumption is
measured when collecting data from a 3-d accelerometer for one second
with a data rate of 50, 100, 200 and 500 samples/s via SPIL In the
experiment, software-based techniques for energy efficiency are not
applied and all modules for wireless communication (e.g. nRF and BLE)
are neither active nor used. Results shown in Fig. 10 indicate that the
proposed sensor node consumes the least energy for collecting 3-d ac-
celeration via SPI in all applied data rates. One of the reasons for a high
level of energy efficiency in the proposed sensor node is that the sensor
node is designed with a minimum number of required components
(unnecessary components e.g. FTDI or voltage regulators are removed
from the design).

In order to analyze energy consumption of the sensor node, several
configurations shown in Table 1 are used. An accelerometer module
MPU9250 [47] can support a data rate up to 4000 Hz. However, the
low-power mode of the accelerometer cannot be applied at this high
data rate. Obviously, the normal operating mode requires more energy
than the low-power mode. Therefore, the low-power mode of the ac-
celerometer, which supports a maximum data rate of 500 Hz is applied.
For investigating energy consumption of the accelerometer module,
several data rates lower than 500 Hz are used in the experiments. Si-
milarly, the low data rate and the low-power mode are applied for
gyroscope and magnetometer. In the experiment, several data rates (i.e.
50, 100, 200, and 500 samples/s) are applied to collect data via 1 Mbps
SPI in different configurations and the nRF module is not active. Results
shown in Fig. 11 indicate that for data rates in a low-power mode, a 3-d
accelerometer consumes the least amount of energy among three sen-
sors while a 3-d magnetometer consumes the most energy. In addition,
the results reveal that utilizing both accelerometer and gyroscope
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Fig. 10. Energy consumption per second of different devices when collecting 3-d accel-
erometer data at different sampling rates via SPIL
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Table 1
Scenarios setup.

Accelerometer Gyroscope Magnetometer
Configuration 1 (Conf 1) X
Configuration 2 (Conf 2) X
Configuration 3 (Conf 3) X
Configuration 4 (Conf 4) X X
Configuration 5 (Conf 5) X X
Configuration 6 (Conf 6) X X
Configuration 7 (Conf 7) X X X
Table 2
Devices specifications.
Device Micro-controller Flash (KB) SRAM (KB) Voltage (V)
(MHz)
Arduino Uno ATmega328P-PU 32 2 5
(16)
Arduino Mega ATMegal280 (16) 128 8 5
Our sensor node  ATmega328P-PU (8) 32 2 3
Arduino Micro ATmega32U4 (16) 32 2.5 5
Sensor node in ATMega32L (8) 256 8 5
[18]
Sensor node in ATMegal28L (8) 128 4 3
[19]
Sensor node in MSP430F2617 (8) 92 8 3.7
[16]
Sensor node in MSP430 (8) 48 10 3
[21]
Sensor node in MSP430F1611 (8) 48 10 3.7
[20]
Z1 MSP430 (8) 92 8 3
Table 3

Energy consumption of the sensor node when collecting 50 samples/s acceleration data
via SPI in Mode 1 and Mode 2 during a second.

Mode 1(mJ) Mode 2(mJ)

Energy consumption of a sensor node 30.47 27.98

Mode 1: when unneeded modules are turned on or enabled
Mode 2: when unneeded modules are turned off or disabled
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Fig. 11. Energy consumed per second when collecting multiple sensor data at different
sampling rates via SPIL

modules at the same time causes a slight increase in energy consump-
tion when compared with applying a single sensor (i.e. 3-d accel-
erometer or 3-d gyroscope).

In order to investigate the impact of software-based techniques on
energy consumption of the sensor node, we measure energy consump-
tion of the sensor node for one second with two cases: (i) when un-
needed modules (e.g. UART, ADC, I°C, and brownout detection) of a
micro-controller are turned on or enabled; (ii) when unneeded modules
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are turned off or disabled. In the experiment, the sensor node collects 3-
d acceleration data at a rate of 50 samples/s in a second via 1 Mbps SPI
and the nRF module is not active. Results from Table 3 show that en-
ergy required by the sensor node can be reduced by about 8-10% when
unneeded internal modules of a micro-controller are disabled.

The nRF module can be configured for two modes of communica-
tion- one-way and two-way. In one way communication, a sensor node
only sends data to a receiver (i.e. a gateway) regardless of the success of
a transmitted package. On the other hand, in two-way communication,
a sensor node sends data to a gateway and waits for an acknowl-
edgement message from the gateway. If it receives an acknowl-
edgement message from the gateway, it continuously sends new data to
the gateway. In contrast, when it does not receive any acknowl-
edgement message from the gateway, it automatically increases trans-
mission power and re-sends the package which was not successfully
received by the gateway in the previous attempt. There is a trade-off
between QoS and energy consumption when applying these commu-
nication types. Two-way communication guarantees that a data
package is received at a gateway after being sent by a sensor node.
However, it causes higher energy consumption because a sensor node’s
down-link must be active to wait for the response package. In contrast,
one-way communication consumes less energy because its down-link is
disabled, however, the best possible QoS cannot be guaranteed.
Correspondingly, these communication types must be attentively in-
vestigated for exposing the optimal configuration providing a high level
of QoS and energy efficiency.

At first, energy consumption of a sensor node in a two-way com-
munication is measured. Several sensor nodes are used during the ex-
periments in which each sensor node is attached to a patient’s clothing
at the middle of the chest area. Sensor nodes collected 3-d accel-
erometer data with a data rate of 50 samples/s via 1 Mbps SPI and
transmit the data via nRF to a gateway which is fixed in a single room.
Several distances between sensor nodes and a smart gateway such as 5,
10 and 20 m are applied for evaluating variations of sensor nodes’ en-
ergy consumption. In each measurement, both cases of the line of sight
transmission and transmission via blocked objects (i.e. door and wall)
are applied. Results of two-way communication are shown in Table 4.
Energy consumption of a sensor node in this case includes both energy
consumption of transmitting and receiving. The results indicate that
energy consumption of the sensor node increases when the distance
between the sensor node and the gateway increases.

Obviously, two-way communication often provides a high level of
QoS because a loss package is always re-transmitted. In case of higher
distances or transmission way blocked, transmission power in two-way
communication is increased for ensuring a successful data transfer. In
the experiments, the transmission power is retrieved effortlessly via the
monitor utility. For achieving such a high level of QoS, the transmission
power used in two-way communication can be re-applied into a case of
one-way communication. Similarly, the same test-bed with similar
distances (5, 10, and 20m) is applied for one-way communication.
Results shown in Table 5 indicate that energy consumption of a sensor
node in case of one way communication is much less than in case of
two-way communication in both situations (e.g. line-of-sight trans-
mission and transmission through blocked objects) even though trans-
mission power of a sensor node in case of one-way communication is
forced to be increased for assuring a high level of QoS.

Table 4
Energy consumption of the sensor node when collecting 50 samples/s acceleration via SPI
and transmitting the data via nRF in two-way communication to a gateway during a
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Table 5
Energy consumption of the sensor node when collecting 50 samples/s acceleration via SPI
and transmitting the data via nRF to a gateway (one-way communication) during a
second.

Distance 5 m(mJ) 10 m(mJ) 20 m(mJ)
Line-of-sight transmission 28.71 29.01 30.72
Transmission through blocked objects 29.81 30.48 32.61

Although many slave devices (i.e. sensors) can be connected to a
master (i.e. micro-controller) via a single SPI interface, it is challenging
to perform such a connection in some cases. For example, hangout
wires may occur in the layout design when connecting several devices
to a single SPI port or SPI libraries of slave devices may conflict. In
order to avoid these issues, software SPI which written in C utilizes
Pulse Width Modulation (PWM) pins for replicating an SPI transmis-
sion, can be used. In the experiments, energy consumption of two dif-
ferent sensor nodes is measured in which the first node uses only SPI
and the second node uses a combination of SPI and software SPI. Both
nodes use their watchdog timer for waking up the micro-controller from
the deep sleep mode(s). Several distances (5, 10, 20 m) are applied and
the data is transmitted via nRF with a line of sight transmission during
these experiments. Results shown in Table 6 show that hardware SPI is
more energy efficient than software SPI in all experimental cases. For
avoiding missing package when applying one-way communication, we
apply the same method of reusing transmission power in case of two-
way communication into one-way communication for both sensor
nodes (nodes using hardware SPI and nodes using both hardware and
software SPI) in each measurement. Depending on particular distances,
the transmission power is different.

With the purpose of providing a complete view of energy con-
sumption of the sensor node, we investigate energy consumption of the
sensor node in different configurations shown in Table 1. In the ex-
periments, the sensor node acquires different data from one or several
sensor types with a sampling rate of 50 samples/s and transmits the
data via nRF with a line-of-sight transmission condition. Energy con-
sumption is measured for one second. Results of the experiments shown
in Table 7 show that 3-d accelerometer consumes the least energy while
3-d gyroscope and 3-d magnetometer consume higher and the most
energy, respectively. In addition, the results reveal that applying two
types of sensors in the sensor node consumes about 12-16% more en-
ergy and energy consumption of the sensor node equipped with two or
three types of sensors is slightly different, approximately 3-5%.

When supplying with a 1000 mAh 3V lithium battery having a size
of 32mm * 43mm * 5mm and a weight of 30 g, the wearable sensor
node can operate for about 76-90 h depending on particular conditions.
In the paper, we simply categorize into three conditions including the
worst, normal and the best condition. In the worst condition, trans-
mission path between a sensor node and a gateway is blocked with
different indoor objects and doors. For example, the sensor node is
placed is a room while a gateway is located in another room and these
rooms are separated by walls and doors. In normal situation, there are
very few objects in transmission path. In the experiment, some high
wardrobes are placed in a room. In the best situation, the transmission
path is clear (i.e. line-of-sight) and the experimentation room is almost

Table 6
Energy consumption of the sensor node when collecting 50 samples/s acceleration and
transmitting the data to an nRF block via software and hardware SPI during a second.

second. Distance
Distance 5 m(mJ) 10 m(mJ) 20 m(mJ) Method 5 m (mJ) 10 m (mJ) 20 m (mJ)
Line-of-sight transmission 41.96 42.28 43.99 Software SPI 30.98 31.93 33.7
Transmission through blocked objects 43.21 43.94 45.80 Hardware SPI 28.68 29.01 30.72
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Table 7

Energy consumption of the sensor node when col-
lecting 50 samples/s motion data via SPI and trans-
mitting the data via nRF with a distance of 20 m in
different configurations.

\Distance 20m (mJ)
Conf 1 30.72
Conf 2 30.95
Conf 3 321

Conf 4 34.53
Conf 5 35.56
Conf 6 35.35
Conf 7 36.68

empty (e.g. only short tables and chairs). In these experiments, the
sensor node is placed on the top the battery for forming a compact
device and it takes about 2-5 h to charge the battery depending on the
current supplied. The sensor node collects data from 3-d accelerometer,
3-d gyroscope, and 3-d magnetometer with a data rate of 50 samples/s
via 1 Mbps SPI and transmits the data via nRF. When the sensor node is
not active (e.g. all modules such as nRF and sensors are disabled), it
consumes about 3.6 mW. Results of these experiments are shown in
Fig. 14. It can be seen that the sensor node can operate up to 76 h in the
worst condition while its operating time can reach up to 90 h in the best
condition. It is recommended that, the transmission power of the sensor
node should be configured for suiting the worst condition because it can
provide a high level of QoS for all cases. In the worst condition, some
levels of energy efficiency (about 5-8%) must be sacrificed.

For providing a comprehensive view of the wearable sensor node,
the sensor node is compared with other nodes proposed by other re-
search in terms of energy consumption, size, weight and flexibility. In
our context, high flexibility indicates that a sensor node can be custo-
mized easily and flexibly for suiting to different fall detection IoT-based
systems and vice versa. Results shown in Table 8 summarize that our
wearable sensor node is tiny, light-weight and energy efficient. In ad-
dition, the sensor node, which is highly flexible, suits to different IoT-
based fall detection systems using motion data whilst other nodes are
not completely suitable for other fall detection systems. Correspond-
ingly, a user can wear the sensor node 24/7 without interfering daily
activities.

In addition to the previous experiments, to evaluate quality of ac-
quired signals at the gateway, 6 more measurements have been carried
out. In details, each measurement uses 5 separate sensor nodes placed
on the body of five volunteers for acquiring both 3-d accelerometer data
and 3-d gyroscope data. Then the data is transmitted via nRF to the
gateway with a line-of-sight transmission path condition. Each mea-
surement is carried out for 30 min. Data received at the gateway is
applied for the fall detection algorithms mentioned in Section 5.2.
Results from the experiments shown in Fig. 12 reveal that the sensor
node operates reliably in different scenarios (i.e. different daily

Table 8
Devices specifications.

Device Energy consumption  Size Weight Flexibility
Arduino Uno High Large Medium  Partly
Arduino Mega High Large Medium  Partly
Arduino Micro Medium Small Light Partly
Sensor node in [18]  Low Medium  Medium  Partly
Sensor node in [19]  Medium Medium  Medium  Partly
Sensor node in [16] Low Medium Light Partly
Sensor node in [21] Low Medium Medium Partly
Sensor node in [20]  High Large Medium  Partly

Z1 Low Medium  Medium  Partly
Our sensor node Low Small Light Completely
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activities) in most of the cases. In order to provide an incisive view of
the data received at the gateway, the data is graphed in MatLab. In
addition, the exceptional case is shown in Fig. 13.

Fig. 12 shows 3-d accelerometer data and 3-d gyroscope data whose
sampling rate is 50 samples/s during a user’s daily activities such as
standing, sitting and walking. As seen in Fig. 12, quality of data col-
lected from 3-d accelerometer and 3-d gyroscope is high in different
cases such as “stand still”, “sit still”, “stand with body movements”, “sit
with body movements” and “walking”. Due to some movements of the
upper part of the body when walking, SVM of 3-d accelerometer values
and 3-d gyroscope values fluctuate. However, the fluctuation of SVM of
3-d accelerometer values and 3-d gyroscope values is not large enough
to dramatically impact on the result of fall detection since a variation of
the fluctuation is much smaller than the peak magnitude of SVM of 3-d
accelerometer values and 3-d gyroscope values when a user falls shown
in Fig. 13. In other cases, the fluctuation of SVM from 3-d accelerometer
and 3-d gyroscope is small, around 1 g and 0°s, respectively, which are
similar to expected values discussed in Section 5.

Fig. 13 shows SVM of 3-d accelerometer values and 3-d gyroscope
values with a sampling rate is 50 samples/s when a volunteer falls. It
can be seen that magnitude of SVM increases dramatically in all cases.
In case of 3-d accelerometer, the peak of SVM goes over 1.6 g for all of
considered cases. In some of cases, the peak even reaches up to 2.5 g or
3 g. In case of “walk and fall”, when a person falls, SVM of 3-d accel-
erometer reaches up to 3.5 g. However, when a person stands still after
falling, the SVM value does not go back to 1 g (the expected value) but
it remains at 2 g. However, in reality, the 2 g value is not the correct
value. The reason might be incorrect calibration in the 3-d accel-
erometer or the large movement of the body when standing up. In this
case, if the fall detection algorithm sets the threshold for detecting a fall
at 1.8 g, the fall detection results are completely incorrect. In contrast,
SVM from 3-d gyroscope, which is around 0°s, is correct as expected.

It is known that all artifacts with large angles negatively impact on
the fall detection decision of the gyroscope-based system because the
noise amplitude caused by movement artifacts are sometime larger that
pre-defined thresholds used for determining a fall case. Therefore, to
validate the system in such a case, the system is applied to a person who
has an unbalance stance (e.g. moving his shoulder, hands and an upper
part of his body with large angles) while walking. The results of the
experiment are shown in Figs. 15 and 16. It can be seen that, SVM
values in all experiment cases except the case “walking”, which are
around 1 g from SVM of 3-d accelerometer values and 0deg/s from
SVM of 3-d gyroscope values, are as expected. In case of walking, SVM
of 3-d accelerometer values is 1 g as expected while SVM of 3-d gyro-
scope values varies dramatically. At some instances, the SVM values are
even larger than 100deg/s. In those cases, it is obvious that if the
system applies a low threshold value close to 100 deg/s, an incorrect
alarm will be triggered. Defining threshold values for a fall detection
system based on accelerometer and gyroscope is not an easy task. Low
threshold values help to reduce missing cases when SVM of 3-d accel-
erometer values or 3-d gyroscope values are not large. However, they
may cause incorrect alarms or notifications. In contrast, high threshold
values may cause missing fall detection cases, but they help to reduce
incorrect alarms of falling cases. In addition, the results in a walking
case in Fig. 15 unveil that replying on merely 3-d gyroscope may lead to
incorrect alarms of falling cases. Comparing between results from
“walking” in Fig. 15 and “walk and fall forward” in Fig. 16, it can be
seen that SVM of 3-d gyroscope values are slightly different (i.e. around
105 versus 130 deg/s) while SVM of 3-d accelerometer values are lar-
gely different. In this case, values from a 3-d accelerometer are better in
terms of the fall detection accuracy. To sum up, in order to avoid an
incorrect fall detection alarm, many types of sensors (i.e. 3-d accel-
erometer, 3-d gyroscope and 3-d magnetometer) and two-level thresh-
olds should be considered to be applied in a sensor node.



T. Nguyen Gia et al.

Microprocessors and Microsystems 56 (2018) 34-46

stand still stand with body movements sit still Fig. 12. Accelerometer’s and Gyroscope’s data at the
400 4 400 4 400 4 gateway’s nRF receiver during daily activities.
300 3 300 3 300 3
% 200 2 200 2 200 2
>
< 100 1 100 1 100 1
>
Lo e
2 0 0o o0 0o 0 0
< 0 5 10 15 0 5 10 15 5 10 15
|
Nt sit with body movements walking
S 400 4 400 4
=
300 3 300 3
2 —— Gyroscope
200 2 200 2
— Accelerometer
0 0 0 0
0 5 10 15 0 5 10 15
Time / Second
sit and fall stand and fall stand, fall and lie down stand and fall forward Fig. 13. Accelerometer’s and Gyroscope’s data at the
400 4 400 4 400 4 400 4 gateway’s nRF receiver during daily activities and fall.
300 300 3 300 3 300 3
g 200 2 200 2 200 2 200 2
§ 100 1100 1 100 1100 1
© 0 0o o 0o o 0o 0 0
% 0 2 4 6 0 2 4 0 5 10 o 2 4 6
o stand and fall backward stand and fall to right walk and fall
S 400 4400 4 400 4
=
5 %00 3 300 3 300 3 Gyroscope
200 2 200 2 200 2 —— Accelerometer
100 1100 1 100 1
0 0o o 0o o 0
0 2 4 0 2 4 0 2 4
Time / Second
oes 7. Discussions
@
2 tomal cos . .
8 o Designing an energy efficient sensor node for fall detection and
Worst other health-care systems is not a simple task because the sensor node
& 5 - P - e & must fulfill strict requirements of healthcare IoT systems (e.g. latency
Operating time (hours) and high quality of signal) while consuming low energy.
Fig. 14. Operating duration of the wearable sensor node supplied with a 1000 mAh II} or.der to achieve a high level Of. energy ef'ﬁc1ency,. wireless com-
battery when collecting data from accelerometer, gyroscope and magnetometer with a munication protocols are often attentively considered first. Before ap-
data rate of 50 samples/s via SPI and sending the data via nRF during a second under plying nRF for our sensor nodes, some of ESP8266 chips are integrated
different conditions. in sensor nodes for the experiments. Sensor nodes communicate via Wi-
Stand still Stand with body movements Sit still Fig. 15. Accelerometer and Gyroscope data
300 300 300 at the gateway’s nRF receiver during daily
activities and fall.
200 200 200
100 100 100
%) 1 1 1
3 _—
=
S o 0o 0 ——— 0o o 0
‘£ 0 10 20 0 5 10 0 5 10
©
o Sit with body movements Walking
© 300 300
=
>
n
200 200
2 2 —— Gyroscope
Accelerometer
100 100
N 1 ;ﬁm —W&t\w il
/
0 0 o W vj
0 5 10 0 20

Time / Second

43



T. Nguyen Gia et al.

Microprocessors and Microsystems 56 (2018) 34-46

Walk and fall forward Walk and fall right Walk and fall left
300 300 3 300
32 200 200 200
]
2
4
FH ’ 2 2 2
o
s 100
@ ; L el
\ \/ \ —— Gyroscope
N -
0 0 5 Accelerometer
0 1 4 5

Tlmze ! Secsond

Fig. 16. Accelerometer and Gyroscope data at the gateway’s nRF receiver during daily activities and fall.

Fi with a gateway fixed at the roof of the room and the transmission is
line-of-sight with a distance of 7m. When applying those ESP8266
chips, energy consumption during a second of a sensor node equipped
with ESP8266 is about 270.6 mJ and the sensor node requires
460-480 mW for sending a packet. In the experiments, the sensor nodes
collect data from a 3-d accelerometer, a 3-d gyroscope with a data rate
of 50 samples/s. They accumulate the collected data and send one
packet per second assuming that the maximum latency is 1 s. In case of
other sampling rates (i.e. 50, 100 and 200 samples/s) of 3-d accel-
erometer and 3-d gyroscope, the maximum volume of data which the
sensor node can accumulate for a single packet is 1800 Bytes, 3600
Bytes, or 7200 Bytes, respectively. The sensor node cannot accumulate
more data for a single packet because the maximum latency (i.e. 1 s)
requirement will be infringed. In case of the sensor node equipped with
nRF, it is required 75, 150 and 300 packets to transmit the same amount
of data in one second because the sensor node with nRF can send the
maximum of 24 Bytes per packet. Energy consumption of the sensor
node for transmitting 75, 150 and 300 packets in a second with nRF is
around 31-50 mJ. Hence, in an IoT-based fall detection application,
nRF is more suitable than Wi-Fi. In other applications (e.g.
Electroencephalography (EEG) real-time monitoring), Wi-Fi might be
more suitable due to a large amount of data (e.g. 10,000 Bytes/s per
channel) is collected in a short period of time.

In terms of energy efficiency between low-power wireless commu-
nication protocols (i.e. BLE, ANT, 6LoWPAN and nRF) nRF and BLE are
more energy efficient [48,49]. Precisely, nRF is more energy efficient
than BLE [50,51]. For example, power consumption of a BLE chip and
an nRF chip is around 46.2 mW and 37.29 mW at 0 dBm output power,
respectively [50,51]. One of the main reasons of low energy in nRF is
that nRF does not use any software stack. In our experiments, by re-
placing BLE in the sensor node presented in our previous work [11] by
nRF, approximately 10% energy can be saved. In terms of connectivity,
nRF is more suitable for IoT-based fall detection systems than BLE be-
cause BLE supports peer-to-peer communication while nRF supports
many-to-many communication. Although nRF is energy efficient, it has
several limitations (e.g. difficulty for a gateway to handle data sent
simultaneously by many sensor nodes). When applying nRF, a trans-
mission payload must be attentively considered for achieving energy
efficiency and accuracy. In default, nRF uses a maximum payload of 32
Bytes as a static payload in each packet. When data is less than 32 Bytes
(e.g. 4 Bytes), the nRF protocol automatically adds extra Bytes for
filling up 32 Bytes payload (e.g. adding 28 Bytes). However, sending
data with a size of 32 Bytes is not an optimal choice because some bytes
of data may be collapsed at the receiver(s). Therefore, it is re-
commended to send the data with a size of 20-24 Bytes per packet.

8. Conclusions

We presented the design and implementation of an energy efficient
wearable device for IoT-based fall detection systems. The device is tiny,
light-weight and flexible hence suits to different IoT-based fall detec-
tion systems and can be used regularly without interfering user’s daily
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activities. In this paper, we evaluated energy consumption of wearable
sensor nodes in different configurations and scenarios to find optimal
solutions for improving energy efficiency. We investigated configura-
tion parameters (i.e. communication bus interface, and sampling rate)
affecting energy consumption of the wearable device. In addition, im-
portant hardware and software factors or techniques impacting on the
life-time of the sensor node are investigated. Besides, we evaluated
energy consumption of the device in different transmission conditions
for providing hints to system administrators for avoiding missed data
while maintaining a high level of energy efficiency in the wearable
device. Furthermore, we compared the wearable device with different
devices proposed by others. The result shows that our wearable sensor
node is the best among compared nodes. The results from conducted
experiments conclude that our sensor node can operate around 76 h
with a 1000 mAh battery in a tough transmission condition. Moreover,
we implemented a complete IoT-based fall detection system consisting
of smart gateways with Fog computing and a back-end system. When a
fall occurs, the system can detect and remotely inform responsible
personnel such as a doctor or caregiver in real-time. It can be concluded
that the proposed wearable device is a solution to drawbacks of typical
sensor nodes in IoT-based fall detection systems.
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ARTICLE INFO ABSTRACT

Article history: Blood glucose plays an important role in maintaining body’s activities. For example, brain only uses
Rece?ved }4Jur}e 2018 glucose as its energy source. However, when blood glucose level is abnormal, it causes some serious
Received in revised form 21 August 2018 consequences. For instance, low-blood glucose phenomenon referred to as hypoglycemia can cause heart
Accepted 18 October 2018 repolarization and induce cardiac arrhythmia causing sudden cardiac deaths. Diabetes, which can be
Available online 2 November 2018 . . . R . K . .
viewed as a high-blood glucose level for a long period of time, is a dangerous disease as it can directly

Keywords: or indirectly cause heart attack, stroke, heart failure, and other vicious diseases. A solution for reducing
Glucose the serious consequences caused by diabetes and hypoglycemia is to continuously monitor blood glucose
Diabetes level for real-time responses such as adjusting insulin levels from the insulin pump. Nonetheless, it is
ECG

a misstep when merely monitoring blood glucose without considering other signals or data such as
Electrocardiography (ECG) and activity status since they have close relationships. When hypoglycemia
occurs, a fall can easily occur especially in case of people over 65 years old. Fall's consequences are

Hypoglycemia
Fall detection
Health monitoring

IoT more hazardous when a fall is not detected. Therefore, we present a Fog-based system for remote health
Fog/edge computing monitoring and fall detection. Through the system, both e-health signals such as glucose, ECG, body
Energy efficiency temperature and contextual data such as room temperature, humidity, and air quality can be monitored

remotely in real-time. By leveraging Fog computing at the edge of the network, the system offers many
advanced services such as ECG feature extraction, security, and local distributed storage. Results show
that the system works accurately and the wearable sensor node is energy efficient. Even though the node
is equipped with many types of sensors, it can operate in a secure way for up to 157 h per a single charge
when applying a 1000 mAh Lithium battery.

© 2018 Published by Elsevier B.V.

1. Introduction an abnormal high-blood glucose level (e.g. 100-125 mg/dI as pre-
diabetes and higher than 126 mg/dl as diabetes). Heart repo-

Hypoglycemia describes an abnormal phenomenon when the larization Fime is altered. by hyperglycemia [5,6]}. Similarly, hy-
blood glucose level goes below 60 mg/dl. Hypoglycemia causes ~ Perglycemia can be predicted by measuring QT-interval length,
heart repolarization and may induce cardiac arrhythmia which is ~ QI-interval variability (QTV) and corrected QT interval variability
one of the primary causes of sudden cardiac deaths [1,2]. According ~ (QT€V). According to WHO, this number increased dramatically
to Centers for Disease Control and Prevention [3], millions of peo-  {rom 108 to 422 million during 1990-2014 [7] and is projected
ple are affected by arrhythmia. Especially, people with the age of 0 Taise up to at two or three times by 2030 [8]. People from any
60 or more are at high risk of arrhythmia or atrial fibrillation (AF). gender and any age can have diabetes. For example, approximately
QT-interval lengthening of ECG is a sign of arrhythmia. Recently, 200,000 people who live in the USA and are under 20 years old have

research works have proposed the prediction of hypoglycemia by diabetes [9]. Diabetes not only occurs in developed countries but

- . - . also in developing countries. According to National Vital Statistics
- - 1,4]. : ;
analyzing QT-period and T-Wave [1,4]. Hyperglycemia describes Reports (NVSR), diabetes has a rank of 7 among the 15 leading

causes of deaths in 2014 [7]. The number of deaths directly caused
* Corresponding author. by diabetes is approximately 1.5 million in 2014 [8]. In addition,
E-mail address: tunggi@utu.fi (T. Nguyen Gia). diabetes can directly or indirectly cause heart attack, stroke, heart
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failure, kidney failure, blindness and other vicious diseases which
are primary causes of deaths [10]. Unfortunately, diabetes cannot
be cured with the existing knowledge. One of the methods for
reducing the serious consequences caused by diabetes is to con-
tinuously monitor the blood glucose level and adjusting the insulin
level in real-time.

Fall and its consequences cannot be neglected or underesti-
mated because they might be the cause of serious injuries and
traumas. For instance, bone fracture, broken knee, neck fracture,
head bruises and head traumas can be caused by falls [11,12]. The
injuries require a long period of time to be healed and fully re-
covered. Correspondingly, they cause significant costs and reduce
the quality of life [13]. However, merely 50% of the falling cases
are reported and in-time aided. Unreported cases might cause
difficulty and complication in treatments later.

Diabetes, cardiovascular diseases, fall and old people often have
some relationships. Diabetes has been identified as a risk factor
for falls [14,15]. For example, people who are over 65 years old
are like to have diabetes, cardiovascular diseases and fall more
often. According to statistics, more than 25% of people who are over
65 years old have diabetes and more than 30% of these people fall
every year with hazardous consequences [11,16]. In addition, more
than 68% of these people having diabetes die from cardiovascular
diseases [15]. Therefore, it is required to have a system which can
both monitor diabetes, ECG and inform abnormalities (e.g., a fall,
very low or high glucose level, and abnormal heart rate) in real-
time without interfering the patient’s daily activities.

Internet of Things (IoT) can be considered as one the most
suitable candidates for addressing the target. IoT can be expressed
as a platform where physical and virtual objects are interconnected
and communicate together. IoT consisting of many advanced tech-
nologies such as sensing, sensor network, Internet and Cloud com-
puting is capable of providing remote health monitoring in real-
time while the quality of life can be maintained. Via IoT systems,
collected data is stored in Cloud servers. Therefore, real-time data
and the historical data can be accessed remotely in anytime. In
addition, IoT systems are able to perform real-time responses or
actions. For example, an insulin pump of IoT systems can auto-
matically or be remotely controlled for injecting insulin into the
patient’s blood when the blood glucose is high.

Although glucose monitoring IoT systems have advantages such
as remote real-time monitoring and global data storage, they have
limitations. For example, most of them are not secured because the
data transmitted over the network is not protected and encrypted.
The transmitted data can be listened and altered by unauthorized
parties [ 17]. Furthermore, many health monitoring IoT systems do
not provide advanced services such as distributed local storage,
push notification, and data analysis. Correspondingly, incorrect
diagnosis and treatments of diseases may occur when both contex-
tual data and patient’s activity status are not analyzed altogether
with e-health data. As a result, caregivers such as doctors might not
be able to save a patient life. Most of the existing [oT health mon-
itoring systems do not consider the close relationship of diabetes,
cardiovascular disease, and fall cases.

A proper approach to solve the challenges in IoT systems is
to enhance sensor nodes and apply an extra layer named as Fog
between gateways and Cloud servers. Fog layer is run on the top
of smart gateways to provide advanced services for enhancing
the quality of services. For example, Fog helps to save network
bandwidth between gateways and Cloud servers by processing and
compressing data [18,19]. Furthermore, Fog helps to reduce the
burdens of Cloud servers by pre-processing data at smart gateways.
Fog provides distributed local storage for temporarily storing data.
In addition to mentioned services, Fog helps to facilitate many
other advanced services such as system fault detection, database

synchronization, interoperability, mobility-awareness [20]. More-
over, Fog creates a convergent network of interconnected and in-
tercommunicated gateways, that helps to overcome service inter-
ruption. For instance, when a connection between a smart gateway
and Cloud servers is interrupted, real-time data streaming is still
maintained. In this case, data is sent to Cloud servers via adjacent
smart gateways which are directly connected and geographically
close to the “interrupted” gateway. With the benefits of advanced
services, Fog not only solves many challenges of IoT systems but
also enhances the quality of services dramatically.

In this paper, a smart IoT system based on Fog for remote
healthcare monitoring is introduced. For improving the accuracy
of diseases analysis and diagnosis, the system monitors not only
e-health data such as blood glucose, ECG, patient’s movement and
body temperature but also contextual data such as room tem-
perature, humidity, and air quality. The system is secured with
cryptography algorithms for protecting the collected data. Partic-
ularly, data is encrypted at sensor nodes before being transmitted
and decrypted at smart gateways. The system with the Fog layer
offers advanced services such as interoperability, distributed local
storage, data processing (i.e., QT intervals extracted from an ECG
waveform, activity status categorization, and fall detection via
lightweight algorithms). Last but not least, the enhanced energy-
efficient sensor node for monitoring vital signals is presented. The
main contributions of this work are summarized as follows:

e A complete implementation of a Fog-assisted IoT system for
monitoring diabetes patients with cardiovascular diseases

e Light-weight algorithm at Fog-assisted gateways for ECG fea-
ture extraction

e Light-weight algorithm at Fog-assisted gateways for activity
status categorization and fall detection

e Designing and implementing energy efficient wearable sen-
sor nodes for collecting ECG, glucose, body temperature and
motion-related data

e Analysis of e-health data in different scenarios and patient’s
activities

The rest of the paper is organized as follows: Section 2 includes
related work and motivation for this work. Section 3 provides an
overview architecture of the health monitoring IoT system having
Fog assistance. Section 4 emphasizes on Fog services such as the
algorithm for extracting QT intervals from an ECG waveform, fall
detection, and activity status categorization. Section 5 presents
test-bed and the system implementation. Section 6 provides in-
sights about experimental results. Finally, Section 7 concludes the
work.

2. Related work and meotivations

Many efforts have been made for proposing real-time and re-
mote health monitoring IoT-based systems. In [21,22], an ECG
monitoring loT-based system using 6LoWPAN is proposed. The
system consists of smart gateways and energy efficiency sensor
nodes. In [23,24], authors present [oT systems for fall detection. The
systems use wearable sensor nodes for collecting 3-dimensional
(3-D) acceleration and 3-D angular velocity. The systems with
smart gateways offer push notification services for informing a
fall to caregivers. In [25], authors present an IoT system with
a smart gateway for e-health monitoring. The gateway supports
interoperability with Bluetooth Low Energy (BLE), Wi-Fi, and IPv6
over Low-Power Wireless Personal Area Networks (6LoWPAN).
In addition, the gateway provides many advanced services such
as data compression, data storage, and security. In [26], authors
present a glucose monitoring loT-based system which shows some
levels of energy efficiency by applying 6LoWPAN and RFID. The sys-
tem can distinguish non-fasting and fasting cases for an accurate



200 T. Nguyen Gia et al. / Future Generation Computer Systems 93 (2019) 198-211

diagnosis. In [27], authors propose an [oT system for non-invasive
glucose level sensing. The system uses a laptop as a gateway for
receiving data from 6LoWPAN nodes and sending the data to Cloud
servers. In most of the discussed work, security is not attentively
considered. Especially, the connection between sensor nodes and
the smart gateway is not fully protected. Some of the works provide
smart gateways. However, services provided at the smart gateways
are limited. Some of the works do not support interoperability
which limits the flexibility and ubiquity of the health monitoring
systems.

Other works [28,29] consider high levels of security for health
monitoring IoT systems. The connection between sensor nodes
and smart gateways are secured by light-weight cryptography
algorithms. However, the energy efficiency of sensor nodes is not
attentively considered.

Recently, researchers have proposed health monitoring IoT sys-
tems with Fog computing. The Fog-based systems have advantages
such as bandwidth saving, energy efficiency, and a high level of
security. In[30], authors apply a smart gateway and Fog computing
into an ECG monitoring [oT system. The system provides many
services such as categorization, push notification and distributed
local storage. In [31], authors propose an IoT system with Fog
computing for continuous glucose monitoring system. The system
uses a mobile-based gateway for processing and analyzing data.
When the smart gateway detects abnormalities such as too low or
too high blood glucose level, it sends push messages for inform-
ing medical doctors in real-time. In [18,19], authors propose Fog
approaches for ECG monitoring systems. The systems can extract
ECG features at Fog and achieve some levels of energy efficiency at
sensor nodes. In [32,33], health monitoring IoT systems with Fog
computing are proposed. These systems provide many advanced
Fog services such as data analysis, data fusion, distributed local
data storage, and data compression. By using a web-browser, real-
time ECG data can be remotely and real-time monitored. In [34],
authors propose a Fog approach for enhancing telehealth big data.
The system analyzes ECG data for finding similar patterns. In [35],
authors present a Fog approach for a fall detection IoT system.
Fog computing and Cloud servers run the U-fall algorithms for
detecting fall automatically in real-time. In [36], a Fog approach
for a medical warning system is proposed. ECG is analyzed at Fog
for early-detecting patient deterioration. In [37] Fog computing
for reliable e-health applications (i.e., human fall detection) is
applied. The system has both e-health and contextual sensor nodes
which are built from general purpose devices (e.g., Arduino Uno
and Lilypad). These sensor nodes transmit the collected data to
a computer for processing. In [38], authors present a Fog-based
fall detection system. In the system, a set of fall detection algo-
rithms is developed and proposed. In the system, tasks are split
between edge devices and Cloud servers to achieve real-time anal-
ysis. In [39], authors present a Fog-based system for monitoring
mild dementia and chronic obstructive pulmonary disease (COPD)
patients. The system consists of e-health, contextual nodes and Fog
nodes. An environment node of the system based on Arduino Uno
collects temperature, humidity, gas, CO2, and oxygen information
while e-health node acquires 3-D acceleration. The data is sent
via Zigbee. The Fog node is responsible for real-time processing
and notification. In [40], authors claimed that cloud-based health-
care services with intermediate Fog nodes can help to improve
quality of healthcare. For instance, health insights can be acquired
accurately while information privacy is protected. The Fog node
running a privacy middle-ware helps to reduce the burden of
IoT sensor nodes. Accurate results provided by the system can
benefit both caregivers and end-users. In [41], authors propose a
system for monitoring and adjusting the oxygen level in real-time
for obstructive pulmonary disease patients. The system is able to

acquire different types of data including both contextual and e-
health data. In addition, the system is equipped with a Fog-to-
Cloud (F2C) service to process the data and adjust an oxygen level
in real-time.

Although the mentioned Fog-based approaches provide ad-
vanced services for enhancing health monitoring systems, none
of them consider all aspects of sensor node’s energy efficiency,
security, and the relationship of diabetes, cardiovascular disease
and patient fall together. Energy efficiency is a vital characteristic
of healthcare IoT systems. When a sensor node is not energy effi-
cient, it can cause service interruption which is one of the reasons
for reducing the accuracy of disease analysis. When the system
is not secured, patient’s information can be stolen or the system
can be instructed for doing unacceptable actions. Disease analysis
and diagnosis might be inaccurate when standalone e-health data
is used without considering contextual data or activity status.
For instance, heart rate during sitting and training is different.
In this paper, we propose an IoT system with Fog computing for
health monitoring. The system not only monitors e-health data
(i.e., blood glucose, ECG, and body temperature), daily activity,
and contextual data (i.e., room temperature, humidity, air quality)
but also provides advanced services for improving the accuracy of
disease analysis and informing abnormalities (i.e., hypoglycemia,
hyperglycemia, and cardiac disease). In addition, many techniques
and Fog approaches are applied to achieve a high level of energy
efficiency while the connection between sensor nodes and smart
gateways is protected by an AES algorithm.

3. Architecture

The architecture of the proposed system shown in Fig. 1 has 3
layers including sensor node layer, Fog computing layer consisting
of Fog-assisted smart gateways, and Cloud servers with end-user
terminals. Each layer is discussed as follows:

3.1. Sensor layer

Sensor layer includes different types of sensor nodes such
as contextual sensor nodes, e-health sensor nodes, and actuator
nodes. Contextual sensor nodes can be fixed at a single room for
gathering contextual data from surrounding environments such
as a room temperature, humidity, time, location and air quality.
The contextual data plays an important role in achieving accurate
analysis. For example, human pulse rate is likely to increase when
the temperature rises. In [42], from the experiments with more
than 30 thousand children, authors showed pulse rate increases
more than 20 pulses when the temperature rises from 35 to 40
Celsius degrees.

E-health sensor nodes can be categorized into different types
depending on the given health monitoring application. In this
paper, three types of e-health sensor nodes such as low data rate
sensor nodes, high data rate sensor nodes and hybrid sensor nodes
equipped with both low and high data rate sensors. Low data
rate sensor nodes can be used for acquiring blood glucose, body
temperature, and humidity. High data rate sensor nodes can be
used for collecting ECG and body motion (e.g., acceleration and
angular velocity). Hybrid sensor nodes equipped with both low
and high data rate sensors can be used for collecting all types of
data such as ECG, body temperature, glucose, humidity, and body
motion.

Actuator nodes are used for controlling actions related to health
or the surrounding environment. Actuator nodes often receive in-
structions from a smart gateway. For example, an atmosphere con-
trolling actuator can adjust a room’s temperature and humidity.

The collected data from sensor nodes is sent to smart gate-
ways via one of several wireless protocols. A choice of a specific



T. Nguyen Gia et al. / Future Generation Computer Systems 93 (2019) 198-211 201

Sensor layer
N N

Fog computing layer

Room 1
Gateway
Sensor layer

N g

Fog-assmted? — d(—)

Dlstnbuted local storage

Room 2
Sensor layer Fog services
N N Fall detection Heart rate
QT interval extraction Activity status
ReoiN Interoperability Security

—

Synchmm/auon I

l—’l

Global Data Storage

Real-time ECG

Fig. 1. Architecture of Fog-assisted IoT system for monitoring diabetes patients with cardiovascular disease.

wireless protocol depends on the application’s requirements. For
example, Wi-Fi is used for high data rate monitoring applications
(e.g., 8-channel EMG monitoring in which each channel collects
1000 24-bit samples/s [43,44]). Bluetooth Low Energy (BLE) or
IPv6 over Low-Power Wireless Personal Area Networks (6LoW-
PAN) is used for low data rate health monitoring applications (1-
channel ECG monitoring in which each channel collects 125 16-
bit samples/s [21,22]). In the proposed system, an nRF protocol,
which is ultra low power 2.4 GHz ISM band wireless protocol, is
utilized because of its flexibility of data rate support and energy
efficiency [45]. The nRF protocol supports data rates of 250 kbps,
1 Mbps, and 2 Mbps. The collected data can be kept intact or pre-
processed before being transmitted. Particularly, some of the data
(i.e., body temperature, and blood glucose) can be filtered with
light-weight filters based on threshold. For instance, a human body
temperature cannot be higher 47 Celsius degrees. This value can be
used as a threshold value. When a measured sample value is higher
than this threshold and the sample value is different than the his-
torical values which were measured in a minute before. The sample
is considered as dummy data and it is eliminated. When the sam-
ple value is similar to the historical values. The push notification
message, which inform the abnormal case such as extremely high
body temperature or malfunctioned body temperature sensors,
will be sent to administrators via gateways and Cloud. Similarly,
400 mg/dl is used as a threshold value for blood glucose. In other
cases, data (i.e., ECG, 3-D acceleration, and 3-D angular velocity) is
keptin tact and sent to Fog-assisted smart gateways which perform
heavy computational tasks such as wavelet transform and ECG
feature extraction [18,19]. For providing some levels of security,
data can be encrypted at sensor nodes before being sent to Fog-
assisted smart gateways which decrypt the data and perform heavy
processing.

3.2. Fog computing layer consisting of fog-assisted gateways

Smart gateways can be fixed or movable depending on the given
application. In many health monitoring applications in hospitals,
fixed gateways are more preferred because they can use power and
Ethernet from wall sockets. Accordingly, fixed gateways can serve
many sensor nodes simultaneously and offer advanced services
running heavy computational algorithms whilst movable gate-
ways are not capable due to limited battery capacity. In addition,
fixed gateways are more secured because they are kept intact and
can perform advanced security algorithms.

In addition to conventional tasks of receiving and transmitting
data, Fog-assisted smart gateways proffer many advanced services
for enhancing the quality of healthcare services. Some of the Fog
services are distributed local storage, data compression, localhost
with user interface, categorization service, and push notification.

Distributed local storage often consists of synchronized and in-
tact databases. The synchronized database stores real-time contex-
tual and e-health data while the intact database stores data used for

algorithms, services and the system’s configurations such as user-
name and password and algorithm’s parameters. The synchronized
database is synchronized with Cloud servers’ database while data
in the intact database is only updated by system administrators.
Due to the limited storage of the synchronized database, the oldest
data is purged for storing incoming data.

Data compression helps to save network bandwidth. Although
compressing and decompressing cost some resources and latency,
they do not affect the performance of other services and only
increase the total latency slightly [25].

Categorization service is used to categorize local users and
external users. Particularly, the categorization service scans Wi-
Fi devices around smart gateways. As a result, local devices are
stored in smart gateways’ database. When a user tries to connect
to smart gateways, the system checks the database. If the user is a
local user, the smart gateways send real-time data directly to the
user’s terminal without going through Cloud servers.

Push notification is one of the most important services in Fog.
Push notification is used for informing abnormalities in real-time
to responsible people such as system administrators or caregivers.

These services are explained in detail in our previous works [32,
30,33]. Although these services are not the main focus of this paper,
they are still implemented in the system.

In addition to mentioned services, there are vital services such
as data analysis, data processing, interoperability, and security.
Detailed information of these services is discussed in Section 4.

3.3. Cloud layer with end-user terminal

Cloud layer provides many benefits such as centralized global
storage, scalability, data security and data processing. Heavy com-
putational tasks, which cannot be run at Fog, can be processed
smoothly in Cloud servers which are the core of the Cloud layer. For
example, Cloud servers support modern machine learning services
with pre-trained models. In addition, Cloud servers support power-
ful search, discovery and image analysis. E-health and other related
data (e.g., records of patient’s health status) can be stored at Cloud
servers. Different technologies (e.g., WebSockets and JSON) can be
installed at Cloud for hosting a comprehensive website showing
real-time data in both textual and graphical interfaces [46,47].
Furthermore, Cloud servers support push notification sending the
instant messages to an end-user in real-time. In the proposed sys-
tem, push notification is used for informing abnormalities (i.e., re-
lated to patient health and the system’s technical problems) to
responsible people such as caregivers or system administrators.
End-users can use terminals such as smart phone’s app or web
browsers to access both real-time data and the historical data. In
addition, end-users such as caregivers can provide instructions or
advice via the terminals.
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4. Fog services

As mentioned, smart gateways in Fog computing can offer many
advanced services (e.g., localhost, categorization, and push notifi-
cation) and thereby potentially enhance the quality of healthcare
services. In this paper, interoperability, security, data processing
are investigated and explained as follows:

4.1. Data processing

Data processing and data analysis in Fog-assisted smart gate-
ways play important roles in health monitoring systems. They
not only help to reduce the burden of Cloud servers but also
help to extract important information which can be used for real-
time critical decision making and push notification. In this pa-
per, heart rate, QT intervals, corrected QT intervals are extracted
from an ECG waveform. The extracted information combined with
other e-health data such as blood glucose level, body temperature,
and body motion is used for detecting hypoglycemia and hyper-
glycemia in real-time.

4.1.1. Heart rate and the QT interval extraction algorithm

ECG can be defined as a periodic signal in which each normal
ECG waveform represents the electrical events in one cardiac cycle.
A normal ECG waveform, shown in Fig. 2, often consists of several
waves named as P, Q,R, S, T, and U. If the baseline of the ECG is zero,
the three waves P, R, and T often have positive peaks whereas the
waves Q and S often have negative peaks.

From an ECG signal, heart rate can be calculated based on the
formula: Heart rate = 60/RR interval [48]. RR interval can be easily
calculated since R peaks have the highest amplitude among all
waves.

Peak detection can be computed using a linear time algorithm
that seeks the determination of local extreme. The algorithm to
determine the QT-period starts by first locating the lowest interval
Ip in which the P-wave reaches its maximum. Then, the same
procedure is applied to compute Ip, I, Is and I, where the subscript
inI designed the type of the wave. The QT-length is then computed
using Ior = Iz + 1o +Is + Ir. The pseudo-algorithm to compute the
lowest interval in which a function f(x) reaches its local maximum
is shown in Algorithm 1. The algorithm takes two inputs: x; = f(t;),
where ¢t; is the instant of time t;. The algorithm is a stream type,
consequently, does not consume memory which makes it suitable
for tiny devices.

When QT interval is extracted, corrected QT (QTc) interval can
be easily calculated by one of the formulas shown in Table 1.
Currently, Bazett’s QTc (QTcB) is used as a clinical standard but
authors [54] showed that Fridericia’s QTc (QTcFri) might become
the next clinical standard replacing for QTcB. In this paper, Bazett’s
QTcB is applied for the experiments.

Algorithm 1 Algorithm to compute local maximum of a function
f(x)

procedure MAX-ALGORITHM(X;, t;)

if (x;_1 = 0and x; > 0) then
I] <~ t;
M <« x;

else if (I; # 0 and x; > 0) then
M = Max(x;, M)

else if (I; # 0 and x; = 0) then
L <t

break

return M, (I, I5]

where x: value of ECG
t: specific time(s)

4.1.2. Activity status categorization and fall detection algorithm

It is inaccurate to analyze only ECG without considering an
activity status because ECG signals change dramatically based on
the current activity status. For example, ECG of a person during
resting and running is different. Therefore, ECG and activity status
must be monitored and analyzed simultaneously.

Activity status representing daily physical activities of a person
can consist of three primary groups such as non-moving/resting,
walking, and training exercises. Each group can have many activ-
ities (e.g., sleeping, lying, standing and sitting belong to a non-
moving/resting group or running, push up, weight lifting and other
heavy activities belong to a training group). Activities belong to
the same group have similar effects to the ECG waveform. Miao
et al. [55] show that ECG of a person during standing and sitting
are almost similar. Therefore, the paper only focuses on standing,
walking and running where each activity represents for each group
of three mentioned groups, respectively.

A person’s activity status can be detected by using camera or
wearable motion sensors. In this paper, wearable motion sensors
are used because it does not limit a person’s activities. In addition,
wearable motion sensors can be used to detect a human fall [56,23].
A person’s activity status and a human fall are detected by the
algorithm shown in Fig. 3.

The algorithm includes many steps such as the acquisition
of 3-D acceleration and 3-D angular velocity, data filtering and
fall detection. The algorithm uses both 3-D acceleration and 3-D
angular velocity because according to Gia et al. [56], they help to
improve the accuracy of a fall algorithm. Similar to ECG signals,
motion-based signals are affected by surrounding noise. Therefore,
noise must be removed by using filters (e.g., moving average and
50 Hz low pass) to achieve a high quality of signals. The filter data
is used to calculate activity-related parameters by the following
formulas [56]:

SVM; = /X2 + yi2 + z2 (1)
VYi+ZE) 180

@ =arctan | —— | ¥ — (2)
Xi I1

SVM: Sum vector magnitude

i: sample number

x,y,z . accelerometer value or gyroscope value of X, y, z axis
@ : the angle between y-axis and vertical direction
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Table 1
Formulas for calculating corrected QT interval.
Algorithm Formula

QTc=QT/(v/RR)
QTc=QT/ (VRR)

Bazett (QTcB) [49]
Fridericia (QTcFri) [50]
Framingham (QTcFra) [51]
Hodges (QTcH) [52]
Rautaharju (QTcR) [53]

QTc= QT +0.154x (1 — RR)
QTc = QT + 0.00175 x ([60 /| RR] — 60)
QTc = QT — 0.185 * (RR — 1) + k (k = +0.006 s for men and +-0 s for women)

The calculated parameters are compared with a first set of
thresholds including activity status categorization threshold and
fall detection threshold. For example, activity status categorization
threshold consists of 1.2 g and 30 deg/s for 3-D acceleration and
3-D angular velocity, respectively. For detecting a human fall,
the first fall detection threshold is 1.6 g and 100 deg/s for 3-D
acceleration and 3-D angular velocity, respectively. If the collected
data surpasses the first set of thresholds, they are marked as
“possibility” data and they are compared with both the second
set of thresholds and the historical data. For instance, 1.6 g and
100 deg/s can be used as the second activity status categorization
thresholds while 1.8 g and 130 deg/s can be used as the second fall
detection thresholds for 3-D acceleration and 3-D angular velocity,
respectively. If one of the values surpasses the second fall detection
thresholds, a human fall is detected. Simultaneously, the activity
status is detected based on the number of values surpassing the
first and second activity status categorization threshold. In most
of the cases, motion data only surpasses the first activity status
threshold when a person is walking. When the person is running,
the number of values which are higher than the second activity
status threshold is large. The results of comparing the data with
the history data help to categorize activity status more accurately.
For instance, some periods of the 3-D acceleration should have
a similar pattern (i.e., rising up to peak then decreasing) when
a person walks or runs. In addition, the results help to detect
the malfunctioned sensors. If one of the sensors (accelerometer
or gyroscope) and its historical data do not provide the expected
values (i.e.,, 1 g and 0 deg/s for acceleration and angular velocity,
respectively when standing or lying in bed), the push notification
service is triggered.

4.2. Interoperability

In general, most of the traditional monitoring systems merely
support a specific type of sensor nodes such as Wi-Fi-based node
for EMG monitoring [43], 6LOWPAN-based node for ECG monitor-
ing [21,22], classic Bluetooth-based node for ECG, EMG monitor-
ing [44] or BLE-based node for human fall detection [23]. Some
other systems can support some of the wireless communication
protocols such as Wi-Fi and BLE [25]. These systems are not suit-
able for sensor nodes using other communication protocols such as
LoraWan, Zigbee or nRF. Fog computing with its capability offers
interoperability to solve these challenges. The interoperability is
a capability of supporting not only sensors from different man-
ufacturers but also different communications protocols includ-
ing wire and wireless protocols. For example, Fog-assisted smart
gateways can support Ethernet, Wi-Fi, classic Bluetooth, BLE, nRF,
and 6LoWPAN. Depending on applications, other wire or wireless
communication protocols can be added into Fog-assisted smart
gateways. For instance, LoraWan can be added for supporting
long-range distance related applications. When the new hardware
(i.e., LoraWan chip) is added to a smart gateway, the operating
system of the gateway automatically detects a new device or
component. A new thread can be created for transmitting the data
via the added component. Sensor nodes in the Fog-based system
can work both independently and cooperatively. The sensor nodes
can communicate with each other via Fog-assisted smart gateways.
In this work, smart gateways support Wi-Fi, BLE, Ethernet, and nRF.

4.3. Security with lightweight cryptography

In health monitoring IoT systems, the connection between sen-
sor nodes and gateways is often the most vulnerable part of the
system. The main reason is that the sensor nodes are wearable and
resource-constrained devices. Therefore, they cannot run complex
security algorithms. Even though complex security algorithms can
be run successfully at sensor nodes, they are not applied because
latency requirements of the system might be infringed and their
battery is depleted. In many IoT systems [24,23,56], raw data is of-
ten transmitted for saving sensor nodes’ battery life. This approach
is dangerous because data can be listened by unauthorized parties.
In the worst case, they can instruct commands to cause a harm to
a patient. For example, Klonoff [57] uses his software to steal the
security credential of the glucose monitoring system. As a result, he
has a full control to an insulin pump. In order to avoid such cases,
lightweight security algorithm must be run at sensor nodes. The
algorithm must provide some levels of security while sensor node’s
battery life cannot be reduced significantly. In the paper, the AES
algorithms [58] are applied. The AES algorithm consists of four ba-
sic primary operations (i.e., SubBytes, ShiftRows, MixColumns, and
AddRoundKey). Each sensor node or a group of sensor nodes has its
private keys for encrypting the data while a gateway has all private
keys of all sensor nodes and groups of sensor nodes. The keys are
hard-coded in the sensor node’s firmware and their length can be
128, 192 or 256 bits. In detail, each sensor node has three different
private keys where each private key has an ID and is used during
a period of time (e.g., 1 h). Before a new key is applied, the sensor
node sends messages to inform a corresponding gateway about the
key ID. At a smart gateway, the encrypted data received will be
decrypted by the correct private key which has been retrieved from
a table of all private keys based on the received ID.

5. Test-bed and system implementation

A complete IoT-based system with Fog computing for continu-
ous glucose, ECG, body temperature and body motion monitoring is
implemented. The system includes 4 smart gateways, 6 contextual
sensor nodes, 4 e-health sensor nodes, Cloud servers, and end-
user terminals such as mobile apps. Two gateways are placed in
two adjacent rooms while other two are placed at corridors. These
gateways are connected to the Internet via Ethernet cables and
supplied with power from wall sockets. Each of the rooms has 3
contextual sensor nodes placed at middle, top and back corners
of the room. Each e-health sensor node is attached to a chest of
volunteers who are about 30 years old and healthy male and female
people. The e-health sensor node collects ECG data via electrodes
placed at left arm, right arm, and left leg. The experimented rooms
are office rooms consisting of computers and furniture such as
tables and chairs. The detailed setup is shown in Fig. 4. Detailed
information of the system’s components are explained as follows:

5.1. Sensor layer implementation

The system has two types of sensor nodes consisting of contex-
tual sensor nodes and e-health sensor nodes. Each sensor node has
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five primary components including microcontroller, sensors, en-
ergy harvesting unit, power management unit and wireless com-
munication chip. These sensor nodes are discussed in detail as
follows:

An ultralow power ATmega328P-8-bit AVR microcontroller is
used in sensor nodes. The microcontroller flexibly supports dif-
ferent frequencies (e.g., up to 20 MHz) and various sleep modes
for saving energy. In the proposed system, a sensor node merely
performs simple computational tasks whilst heavy computational
tasks are processed at Fog. Therefore, the sensor node does not
need to run at a high clock frequency for saving energy consump-
tion. In the implementation, 1 MHz clock frequency is applied to
all sensor nodes.

The microcontroller supports different communication inter-
faces such as SPI, 12C, UART and many GPIO ports (i.e., digital and
analog ports). Correspondingly, it can connect to various sensors
and components produced by different manufacturers. Further-
more, the microcontroller has 1 kB EEPROM and 2 kB internal
SRAM. Hence, it is capable of supporting many libraries for col-
lecting data from different sensors. In [56], authors show that SPI
is more energy-efficient and has a higher bandwidth than other
interfaces. Therefore, SPI is used in most of the cases such as the
connection between the microcontroller and other components
(i.e., wireless communication chip and sensors). In case of unavail-
able SPI, 12C is preferred.

Contextual sensor nodes are equipped with BME280, SNS-MQ2,
SNS-MQ7, SNS-MQ135 for collecting room temperature, humidity,

and air quality levels. DHT22 is a small size humidity and tem-
perature sensor which outputs the calibrated digital signals. With
a high operating range (i.e., 0%-100% for humidity and —40-80
Celsius degrees), the sensor can operate in harsh environments.
The sensor has a high resolution (0.1% RH for humidity and 0.1
Celsius for temperature) and it is accurate (e.g., +—2%RH and
+—0.5 Celcius). SNS-MQ2, SNS-MQ7, and SNS-MQ135 are air sen-
sors for collecting LPG, propane, hydrogen, methane, CO, NH3, NOx,
alcohol, benzene, smoke, CO2 from the air. These contextual sensor
nodes are fixed in a room. Therefore, the contextual sensor nodes
can use power from a large capacity battery (e.g., 3.7 V 10000
mAh Lithium battery having a size of 5 x 120 x 90 mm) or from
a wall socket with a voltage adaptor. The detailed information of
power consumption of these contextual sensor nodes is presented
in Section 6.

E-health sensor node can be categorized into low data rate, high
data rate, and hybrid nodes where hybrid node consists of both
low and high data rate sensors. Low data rate nodes are equipped
with a glucose sensor and a body temperature sensor. The glucose
sensor includes an implantable sensor under a patient’s skin and
a transmitter placed on a top of the skin. In the implementation,
the transmitter is connected to the microcontroller via SPI. The
glucose sensor collects glucose level every 5 min as the glucose
level does not change rapidly. Similarly, the body temperature
sensor (i.e., BME280 produced by Bosch) is connected to the micro-
controller via SPI. The temperature data is collected every 2 min.

High data rate e-health sensor nodes are equipped with a
motion sensor and an ECG analog front-end. A motion sensor
(i.e., MPU-9250) is an ultralow power sensor for collecting 3-D ac-
celeration, 3-D angular velocity, and 3-D magnetism. The data rate
of the motion sensor is 50 samples/s. The low-power ECG analog
front-end can be TI ADS1292 or AD8232. In the implementation, a
data rate of 125 samples/s is used.

A power managing unit is a low-power Schmitt trigger based
circuit having several super-capacitors. The power managing unit
can detect the energy level of the battery, power, and current via
INA226 which is a current shunt and power monitor produced by
TI.

The wireless communication chip is nRF24L01 which is an
ultralow power RF transceiver supporting many-to-many commu-
nications. The nRF24L01 chip supports up to 2 Mbps. However, 250
kbps is used for saving energy consumption. The chip can run with
low-power, average-power or maximum power. In this paper, it is
configured to run at low-power mode and is connected with the
microcontroller via SPL

5.2. Smart gateway and fog services implementation
A smart gateway of the system is built with Pandaboard which

has a 1.2 GHz dual-core Arm Cortex microprocessor and 1 GB low-
power DDR2-RAM. Pandaboard supports several communication
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interfaces such as Wi-Fi, Bluetooth, and Ethernet by built-in com-
ponents. In addition, it supports a 32 GB SD-card which can be used
for installing embedded operating systems. In the implementation,
a lightweight version of Ubuntu based on Linux is used. Many ser-
vices such as security (AES), data decompression, data processing
and data analysis have built on the operating system.

For providing interoperability, several wireless communication
components are added into Pandaboard. To receive data from the
sensor nodes which are equipped with nRF, an nRF24L01 chip is
connected to Pandaboard via SPI. The nRF24L01 chip in the gate-
way is similar to the nRF24L01 chip used in sensor nodes except
that it has some extra circuits and uses a large external antenna.
Using a large antenna costs higher energy consumption, but it
increases the quality of collected signals. For supporting 6LoWPAN,
a composition of a CC2538 module and a SmartRF06 board is added
into Pandaboard. The detailed information of the connection can
be seen in our previous works [21,22]. These components are con-
nected to Pandaboard via Ethernet and USB ports because Ethernet
can provide high transmission bandwidth. To support several BLE
sensor nodes, the smart gateway can be equipped with BLE compo-
nents (i.e., CYBLE-202007-01 provided by Cypress Semiconductor).
The number of added BLE components depends on the available
UART ports of Pandaboard. However, these UART ports are lim-
ited. To overcome the issue, an FTDI chip and an ATmega328P
microcontroller are added to Pandaboard. These components can
facilitate 7 BLE components which are connected via software-
based or hardware-based UART. When the number of BLE sensor
nodes is larger, more components can be added to Pandaboard via
USB hubs. Due to a built-in Wi-Fi chip in Pandaboard, it can support
high-speed Wi-Fi based sensor nodes.

Since sensor nodes run the AES algorithm for encrypting trans-
mitted messages, the smart gateway has to run the AES algorithm
for decrypting the received messages. For being compatible with
other services, the AES algorithm run in the smart gateway is
implemented in Python. Decrypted messages are stored in the
smart gateway'’s database which is built from MongoDB and JSON
objects. The database combines with HTML5, XML, Django, CSS,
JavaScript to provide a localhost with user interface. When a user
accesses the data, the system categorizes the user as a local user
or an external user via the categorization service. When a user
belongs to a local network, the system directly sends the data from
Fog to the user. When a user does not belong to a local network,
data is sent to the user via Cloud servers. This method helps to
reduce the large latency of transmitting real-time data via Cloud
servers when a user belongs to a local network. The categorization
service is implemented by Python and Linux packages such as “iw”
and “iwconfig”.

For protecting the smart gateways, Iptables and a part of our
advanced security methods presented in [28,59] are implemented
in the system. Particularly, the part of these methods for protecting
the connection between the smart gateways and Cloud servers is
merely applied. Other parts are not utilized because they can cause
an increase in latency and energy consumption of sensor nodes.

In the smart gateway implementation, the QT detection al-
gorithm, data filtering, and data processing are implemented in
Python because it remains the consistency with other services.
For instance, moving average filters and 50 Hz low pass filters for
removing noise out of ECG signals are implemented in Python.

5.3. Cloud servers and end-user terminals

In the implementation, Google Cloud servers, API, and Cloud’s
services are used for storing, processing data and providing ad-
vanced services. For instance, the push notification service of the
system is primarily implemented at Cloud. Similar to localhost
in Fog, Cloud servers host the global web-pages which can show

both real-time data and the historical data in textual and graphical
forms. For accessing data, end-users can use the global web-pages
or a mobile app which is built by PhoneGap for supporting both 10S
and Android.

6. Experimental results

At Fog-assisted smart gateways, collected e-health data such as
acceleration, angular velocity, and ECG is processed with 3 primary
steps, shown in Figs. 5 and 6, including data filtering, baseline
detection, and baseline wander removal. As mentioned, raw data
is filtered to eliminate noise from surrounding environment. In
most of the cases, the filtered data has a different baseline than
the reference baseline which is 1 g, 0 deg/s, and 0 voltage for
acceleration, angular velocity, and ECG, respectively. Therefore,
baseline detection and baseline wander removal are applied for
shifting the signals’ baselines into the expected ones. Fig. 5 does
not show the baseline detection step because the signals and the
detected baseline overlapped in several periods. Two different
methods are applied for detecting the baseline of different signals.
A mean value is applied for detecting the baseline of acceleration
and angular velocity while Daubechies d4 wavelet transform is
applied for detecting the baseline of ECG. The processed data has
the same magnitude and waveform as the filtered data and are
used as inputs for algorithms such as fall detection, heart rate
calculation and QT wave's length extraction shown in Section 4.1.

Parameters of the experimented room environment are 22 de-
grees Celsius, 31% humidity, 0.6 ppm for CO, around 8 ppb for NO,,
and 6 ppb for SO,. These values indicate that the room environ-
ment is good. Body temperature and glucose are collected but it
is not used for the comparison because its value merely slightly
changes during different activities. For instance, the collected body
temperature and glucose of a volunteer are around 37 degrees
Celsius and around 100 mg/dl for all activities except for training
(e.g., running), respectively. When a volunteer intensively runs,
the core temperature increases. The blood glucose level varies
depending on the monitoring time. For instance, the glucose level
in the morning is lower than in the afternoon and after lunch. In
our experiments, the glucose level of that person fluctuates around
90-98 mg/dl for all measurement cases.

Fig. 7 shows acceleration, angular velocity, and ECG data from
the experiment. The data is collected from different activities such
as standing, lying in bed, walking and running. Data in the same
category is presented in the same scale for fair comparisons. Data
in both cases of lying in bed and standing is stable and similar
(e.g., 1 g acceleration, 0 deg/s angular velocity, and stable ECG
waveform). The ECG waveform has waves such as P wave, Q, wave,
R wave, S wave and T wave which are needed for algorithms
(e.g., heart rate calculation and QT’s length extraction). In case of
lying and standing, results of the algorithms show that heart rate
is 59 beats/minute, the length of QT and QTcB is around 390 and
387, respectively. In Fig. 7(a), acceleration and angular velocity
slightly changes (i.e., 1.08 g acceleration and 10 deg/s angular
velocity) at some moments (i.e., around 166-172th samples and
235-240th samples). These variations are expected as the user
slightly moves his body two times during lying in bed. Fortunately,
the ECG waveform in those moments remains stable (e.g., ECG
before and during those moments is similar in terms of the number
of waves, waves’ magnitude, and shape of the waves such as P wave
and QRS waves).

Although acceleration and angular velocity fluctuate during
walking, the amplitude of the fluctuation is small when comparing
to pre-defined thresholds (i.e., 2 g and 200 deg/s for acceleration
and angular velocity, respectively) in the fall detection algorithm.
However, the fluctuation helps to identify a walking status and cal-
culate the number of steps of a user (e.g., by counting the number
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of top peaks of the fluctuation). Angular velocity can be used as
the compliment parameter to distinguish different activities such
as movement and non-movement. The shape of angular velocity
waveform can be different depending on the walking or running
style of the user (e.g., swinging arms and hands during walking).
ECG moderately changes during walking. QRS wave, T wave, and
QT’s length can be detected in most of the ECG cycles whilst P
wave merely appears in some of the ECG cycles (i.e., one per every
6-8 ECG cycles). In this case, QT’s length and QTcB’s length is
around 395 and 392 ms, respectively. Comparing with ECG waves
in standing and lying in bed, the ECG wave during walking is not
as good as others in terms of stability.

In case of running, data fluctuates dramatically when compared
with their baseline. Acceleration, in this case, shows the number of

steps of a user (i.e., top peaks have much higher amplitude than
the amplitude of the acceleration baseline which is 1 g). At a mo-
ment of 87-92th samples, the acceleration is higher than the pre-
defined acceleration thresholds 2 g in the fall detection algorithm.
However, the fall case is not detected by the system in this case
because of two reasons. First, during 87-92th samples, angular
velocity is not higher than angular velocity thresholds in the fall
detection algorithm. Second, historical data shows that none of the
sensors is malfunctioned. Similarly, the case of angular velocity at
58-64th samples is higher than angular velocity threshold but the
fall event is not detected. ECG during walking is not as good as
ECG in other statuses such as standing and lying in bed. However,
P, Q, R, S and T waves appear in some of the ECG cycles (i.e., at
140-150th samples). The value of QT’s length and QTcB’s length
varies dramatically. Therefore, it is not recommended to monitor
ECG during intensive activities such as running or jumping.

In some of the experiments, a user falls in some random mo-
ments. There are 3 different falling cases during walking such as
fall forward, fall back and fall aside. In this paper, fall cases during
walking are focused because people are more likely to fall during
activities than in static cases such as lying in bed and standing.
In addition, when fall cases during activities (e.g., walking) can be
detected, fall cases in other static statuses (e.g., lying in bed and
standing) can be also successfully detected. Acceleration, angular
velocity and ECG of these fall cases during walking are shown in
Fig. 8. In most of the cases, a person tends to sit up or stand up
after falling. When he sits up or stands up, the acceleration should
increase to peak values. Correspondingly, two peaks including a
falling peak and a standing/sitting up peak (i.e., having a higher
amplitude compared to other peaks) are expected to appear in both
acceleration and angular velocity waveform. In all experimented
cases, these two peaks appear in the collected data. For example,
two peaks of acceleration and two peaks of angular velocity appear
58-65th samples and 110-115th samples in the fall forward case.
The first peak representing a fall moment often has the highest am-
plitude while the amplitude of the second peak varies depending
on specific situations such as sitting up, standing up or crawling
up. Therefore, the second peak can be smaller or larger than pre-
defined thresholds. A distance between two peaks varies depend-
ing on different situations. In case of fall aside, at a moment after
falling, angular velocity (at 125-1130th samples) does not change
dramatically (i.e., reaching to a peak value) while acceleration
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Fig. 7. Acceleration, angular velocity and ECG in different activity status.

reaches to a peak value. The reason is that a user slowly crawls and
sits up after falling. It can be concluded that during fall moments,
ECG fluctuates whilst ECG remains good during other moments.
In the experiments, power consumption of an e-health sensor
node in different configurations is measured. In each configuration,
a sensor or a group of several sensors is integrated into a sensor
node. Data collected from the sensor(s) is transmitted to a gateway
via nRF. Detailed information of the configurations and results of
power consumption are shown in Table 2 and Fig. 9, respectively.
In Table 2, the first four configurations (i.e., from Conf 1_E to Conf
4_E) are the configurations of high data rate e-health sensor nodes
while the other three configurations (i.e., from Conf 5_E to Conf
7_E) are the configurations of low data rate e-health sensor nodes.
The last configuration (i.e., Conf 8_E) is for the hybrid sensor nodes
having low and high data rate sensors. Results show that high data
rate sensors (i.e., motion sensor and ECG sensor) consume a large
amount of energy while low data rate sensors consume a small
amount. By using 1000 mAh Lithium battery (a size of 60 x 32
x7 mm), the low data rate sensor node (i.e., Conf 7_E) can be used

up to 1639 h while the high data rate sensor node (i.e., Conf 4_E)
can be used up to 173 h. In case of the hybrid sensor node, it can be
used up to 157.5 h with the same battery.

Contextual sensor nodes collect and send data in every second
to a gateway. Configurations and power consumption of the sensor
nodes are showed in Table 3 and Fig. 10. Results show that these
sensors for collecting air-related parameters (i.e., Mq2, MQ7, and
MQ125) consume a large amount of power. When applying the
10000 mAh battery having a size of 5 x 120 X 90 mm, contextual
sensor nodes can operate up to 46 h. As mentioned, contextual
sensor nodes are fixed in a room. Therefore, it is recommended
that contextual sensor nodes should be supplied with wall-socket
power. The battery is only used for a case of electricity cut.

In the experiments, sensor nodes in different configurations are
applied with AES-256. Power consumption of the sensor nodes
with and without is shown in Fig. 11. The results show that power
consumption of the sensor nodes increases slightly (i.e., about 11%
of total power of the e-health hybrid sensor node) when applying
encrypting with AES-256. In this case, the hybrid sensor node can
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Fig. 8. Acceleration, angular velocity and ECG when a user falls in different cases.

Table 2
Configurations and average current draw of e-health sensor nodes.
Configuration Conf1_E Conf2_E Conf3_E Conf4_E Conf5_E Conf6_E Conf7_E Conf8_E
BME280 X X X
Samples/minute 1 1 1
Glucose sensor X X X
Sample/minute(s) 1 1 1
MPU-9250 X X X
Sample/second(s) 50 50 50
ADS8320 X X X X X
Sample/second(s) 60 120 60 120 120
Voltage (V) 33 33 33 33 33 33 33 33
Current (mA) 1.65 3.15 4.58 5.76 0.22 0.45 0.61 6.35
Table 3
Configurations and average current draw of contextual sensor nodes.
Configuration Conf 1_C Conf2_C Conf3_C Conf4_C Conf5_C
MQ2 X X
MQ7 X X
MQ135 X X
DHT22 X X
Voltage (V) 33 33 33 33 33
Current (mA) 843 66.1 73.6 1.68 216.5
Table 4 . STATIE
Latency of sensor nodes and smart gateways when applying AES-256. =t 20.955
Device Algorithm Latency (jus) 20
Our sensor node AES-256 encryption 1358 15
Smart gateway AES-256 decryption 43 10365 o
Smart gateway AES-256 encryption 52 10 . 2222.2
Cloud server AES-256 decryption 10 1639.3
5
317.5 1.485 2.01
0

operate up to 183 h. In case of contextual sensor nodes, power o 1y o o % I G
r > 7% “F, s 77, K8 2,

consumption of the nodes increases less then 0.01%. The contextual 20 T N Se  Se 2e $e
sensor nodes still operate up to 46 h when they are supplied with B Power consumption (mW) B Working hours

the 10000 mAh battery.
Results of latency for encrypting and decryption with AES- Fig. 9. Power consumption of e-health sensor node (in different configurations)
256 shown in Table 4 indicate that the latency of the sensor with 1000 mAh battery.
node increases slightly (i.e., about 1.358 ms). Correspondingly,
the requirements of latency (e.g., less than 500 ms for ECG and
approximately in seconds for glucose) are still fulfilled. sensor nodes even though our sensor node is equipped with many
In this paper, power consumption of our sensor node is com-
pared with other state-of-the-art nodes. Results shown in Table 5
indicate that our sensor node is one of the most energy-efficient temperature, and glucose.

types of sensors for collecting motion-related data, ECG, body
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Comparisons of the proposed sensor node and other state-of-the-art sensor nodes.
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Sensor node  Microcontroller (MHz)  Flash (kB)  SRAM (kB)  Sensor (s) Voltage (V)  Power consumption
in [60] ATmega32L (8) 256 8 Motion 5 Low
in[61] ATmega128L (8) 128 4 Motion 3 Medium
in [62] MSP430F2617 (8) 92 8 Motion 3.7 Low
in [63] MSP430 (8) 48 10 Motion 3 Low
in [64] MSP430F1611 (8) 48 10 Motion 3.7 High
in [24] ATmega328P (8) 32 2 Motion 3 Low (36.68 mW)
in[21] Arm Cortex M3 (24) 512 32 ECG 33 Ultralow
in [65] MSP430 (8) 48 10 ECG 33 Low (36 mW)
in [66] ATmega328 (8) 32 2 ECG 33 Low
in [67] MSP430 (8) 48 10 ECG 33 Medium (64 mW)
in [30] ATmega328P-PU (8) 32 2 Motion, ECG, body temperature 3 Ultralow (21.3 mW)
in our work ATmega328P-PU (1) 32 2 Motion, ECG, body temperature, glucose 3.3 Ultralow (23.4 mW)
7000 were alleviated whilst augmented services (e.g., local data storage,
0504 secur‘ity, interoperabili.ty) were proyided. In addition, we propo‘sed
6000 = algorithms for calculating the duration of QT length, fall detection,
and activity status detection, respectively. These algorithms com-
5000 bining with the push notification service helped to improve quality
of healthcare services. Results from the experiments showed that
4000 the complete sensor node for gathering glucose, ECG, motion-
related signals and body temperature is one of the most energy-
3000 efficient sensor nodes and it can operate in a secured way up to
157.5 h with a 1000 mAh Lithium battery.
2000 The future directions of this work involve diverse field. As
mentioned above the sensor node battery lasts around a week. Fre-
1000 714.45 quent battery replacement is undesirable especially with wearable
278.19 218.13 242.88 sensors as this might cause inconvenience, discomfort and even
B L6 gmlol3 g3 554 .4_6-2 pain in case of implanted sensors.
Conf1 C Conf2 C Conf3 C  Conf4 C Conf5 C Energy harvesting of ambient sources can be exploited for pow-

B Power consumption (mW) B Working hours

Fig. 10. Power consumption and working hours of contextual sensor nodes (in
different configurations) with 10000 mAh battery.
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Fig. 11. Power consumption and working hours of sensor nodes in different con-
figurations with AES-256.

7. Conclusion and future directions

In this paper, we presented a novel and smart Fog-based system
for continuous, remote monitoring glucose, ECG and other signals
in real-time. The complete IoT system consisting of sensor nodes,
smart gateways with Fog computing and a back-end server was im-
plemented. By simultaneous monitoring different types of signals
from bio-signals (i.e., glucose, ECG, and body temperature) to con-
textual signals (i.e., air quality, room humidity and temperature),
the accuracy of disease analysis was improved. By leveraging smart
gateways and Fog computing in the system, loads of sensor nodes

ering, recharging or extending the time between recharging of
wearable micro-power sensor nodes. It involves converting the
ambient energy inherent in the sensor node’s environment into
electrical energy. By doing so, a sensor node will have the oppor-
tunity to extend its life to a range determined by the failure of its
own components rather than by its previously limited power sup-
ply. Several sources have been investigated for supplying energy
to wearable sensors nodes such as solar, electromagnetic waves,
indoor light, and even harvesting energy from the body of the
person wearing the sensor, like piezoelectric energy from footfalls
and thermal energy from temperature gradients on the skin. In pre-
vious works [31], the feasibility of RF energy harvesting has been
investigated as a source for powering to the sensor. The targeted
frequency band for harvesting was 925 MHz GSM band, and due
to their low threshold voltage (0.2-0.3 V), Schottky diodes were
utilized as rectifying element. Despite this low turn-on voltage, the
rectifier will not be able to deliver any power to the load unless
a voltage of 0.2 V or higher is available for forward driving the
Schottky diode. For this reason, in the current work in progress, low
threshold voltage diodes connected transistors are being equipped
with mini solar panels attached to the transistors’ gates aiding in
securing the required turn-on voltage for the transistor rendering
the harvesting circuit more sensitive and able to operate even
at very low RF signals available at its antenna, —15 dBm [68].
While RF energy harvesting is currently able to directly power
the sensor in a standard alone scenario, it can be exploited along
with an efficient power management unit to recharge the battery
and extend the life of the sensor node. On the other hand, the
contextual sensor nodes and gateways can be completely powered
autonomous when being powered by a solar along with a much
simple power management unit consisting of a boost converter, a
buck converter and a voltage regulator.

The use of flexible wearable and printed sensors is also being
investigated, other than low fabrication cost, lightweight, better
mechanical and thermal properties compared to rigid non-flexible
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sensors, they are more convenient and comfortable when being
used for monitoring on bendable surfaces like arms and thighs.
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