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“A smile is a curve that sets everything straight.”
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Abstract

In the recent years, the need of information security has rapidly increased due to an

enormous growth of data transmission. In this thesis, we study the uses of elliptic

curves in the cryptography. We discuss the elliptic curves over finite fields, attempts

to attack; discrete logarithm, Pollard’s rho algorithm, baby-step giant-step algorithm,

Pohlig-Hellman algorithm, function field sieve, and number field sieve. The main cryp-

tographic reason to use elliptic curves over finite fields is to provide arbitrarily large

finite cyclic groups having a computationally difficult discrete logarithm problem.

Key-words: Elliptic Curve, Diffie-Hellman Protocols, Discrete Logarithm, Function Field

Sieve, Number Field Sieve
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Chapter 1

Introduction

Cryptography is the study of secure communication in the presence of an adversary. The

word “kryptos”comes from Greek and means “hidden”as well as “graphein”which means

“to write”. Most of the cryptographic algorithms are based on mathematical problems

that are hard to solve. The first known evidence of cryptography was found in an

inscription carved around 1900 BC, but only about one hundred years ago cryptography

was being studied as a science.

A cipher is an algorithm used for encryption and decryption. In the second half of the

20th century, the ciphers were used substantially. Since then, they have been used in

business, banking, and electronic fund transfers. Nowadays, in the beginning of 21st

century, cryptography is used in everyday life information transmission, like Wifi, Blue-

tooth, 4G security, Transport Layer Security(TLS)/Secure Sockets Layer(SSL) secure

web transactions.

In mathematics, there are many hard problems which are computationally infeasible to

calculate. The elliptic curve discrete logarithm problem is one for which no simplifying

shortcut is known. This motivates the use of elliptic curves to implement cryptographic

systems. The first practical public key cryptosystem was the Diffie-Hellman key ex-

change protocol [27, 31].

Elliptic curve cryptography (ECC) [25] was introduced independently by two mathemati-

cians Neal Koblitz and Victor Miller. In 1985, EC over finite field have been applied

for construction of cryptosystem, factoring integers and primality testing. For at least

150 years elliptic curves have been studied a lot as geometric or algebraic entities. From

that study, many theories have emerged. In 2003, the Pollard’s rho algorithm was used

to compute the elliptic curve DL for an elliptic curve with 109 defining bits. Pollard

proposed the original version of the number field sieve (NFS) in 1988. It appears as the

1
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best advanced factoring method. Daniel Gordon [10] was probably the first to find out

that the number field sieve method provides a good algorithm for discrete logarithm.

In 2005, a 200-digit number factorization using number field sieve (NFS) taking sub-

exponential time was also implemented. In ECC, the experiments seem to indicate for

the same level of security with small parameters than in RSA [21, 24]. In this thesis,

theoretical background justifying this observation will be presented.

The comparison of the EC to RSA can be represented as depicted in Table 1.1.

Table 1.1: Comparing the key size of ECC and RSA

Symmetric key RSA/DLP ECC

64bit 700bit 128bit
80bit 1024bit 160bit
128bit 2048-3072bit 256bit

RSA (Rivest Shamir Adleman) cryptosystem security is based on the integer factoriza-

tion problem. It takes sub-exponential time [38] to solve integer factorization problem

(IFP) but solving ECDLP using the best known algorithm appears somewhat harder.

Consequently, ECC with the same security level takes less memory on devices compared

to RSA. But in this current advanced digital world the public key cryptography segments

are mainly covered by RSA. Moreover, in RSA, the multiplication is computationally an

easy task, whereas the other direction, to find the prime factors of a composite number

n is computationally difficult. This one-way property can also be observed in other

important processes in number theory. The exponentiation in a large finite field is one

important example.

Elliptic Curve Cryptography (ECC) is considered as one of the most advanced techniques

to secure the systems. In 2004–2005, ECC started being used widely. A paper on Elliptic

Curve Cryptography (ECC) [38] ensured a level of security which is equivalent to other

public key systems but having a shorter key length. Examples include: Elliptic Curve

versions of El-Gamal, Diffie-Hellman, etc.

Because of that, ECC has advantages over other systems based on encryption and de-

cryption algorithm and the time lapse on the key generation [24]. Therefore, in a resource

constraint device ECC may be more suitable choice. The main reason for the advantages

provided by elliptic curves is that their rational point groups appear resistant over the

best discrete logarithm algorithms designed for finite fields [38, 24].

The outline of the thesis is as follows. In Chapter 2, the cryptographic protocols

are presented. In Chapter 3, the Diffie-Hellman Protocol is introduced. Chapter 4

continues with the Diffie-Hellman and presents attempts to break it. In Chapter 5, the
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main focus of the thesis, elliptic curves, and the example of implementing elliptic curves

are illustrated. In Chapter 6, the main uses of elliptic curve cryptography are described.

In Chapter 7, this thesis is summed up and we discuss future aspects.

Standard Notations

Throughout this thesis, the symbols

Q,C,R,Fq, n,N,Z, and O

are used to denote the rational numbers, complex numbers, real numbers, a field with

q elements, bit length (of a group element), group size, integers, and ordo-notation,

respectively.



Chapter 2

Cryptographic Protocols

2.1 Symmetric Cryptography

Modern cryptography is divided into two types, symmetric and asymmetric. Symmetric-

key cryptography provides message confidentiality, using single key for both encryption

and decryption system. More precisely, to encrypt and decrypt the both parties use the

same key to communicate. In symmetric cryptography, absolute information security

can be achieved (for example One-time pad, OTP, for short).

An OTP encrypts and decrypts as follow: Generate a random bit string as long as the

message, this will serve as a key. Calculate the exclusive or (XOR) of the plain text and

the key to create the cipher text. For decryption, XOR the cipher text with the original

key. Thus, one-time pad as presented here is a symmetric and reciprocal cipher. Other

functions (e.g. addition modulo n) could be used to combine the plain text and the key

to yield the cipher text, although the outcome system may not be a reciprocal cipher.

Symmetric cryptography has a disadvantage, as the communicating parties must meet

prior to communication to share the key.

Example 1. (The following simple example is from [20]) If we are using the 26-letter

alphabet A-Z with numerical equivalents 0− 25. Let the letter P ∈ {0, 1, ....., 25} stand
for a plain text message unit. Define a function f from the set {0, 1, ....., 25} to itself by

the rule

f(P ) =

{
p+ 3, if x < 23

p− 23, if x ≥ 23.

4
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In simple way, f adds 3 modulo 26: f(P ) ≡ P + 3 (mod 26). We see it is convenient to

use modulo. For example, to encipher the word “YES”, we add 3 modulo 26 and obtain

1, 7, 21. Then translating back to letters we obtain “BHV”. More generally, C ≡ P +B

(mod 26), where the shift B serves as an encryption and decryption key. Decryption is

simply P ≡ C −B (mod 26).

Example 2. This example is also from [20]. Let us consider an affine matrix transfor-

mation of pairs of digraphs

C ≡

(
a b

c d

)
P +

(
e

f

)
(mod N2),

where

0 ≤ a, b, c, d, e, f < N2.

Here a column vector P corresponds to the numerical equivalents of two consecutive

plain text digraphs in an N -letter alphabet. However, we choose k between 0 and N12

where k is a randomly chosen integer, and a, b, c, d, e, f to be the six digits in k written

to the base N2. Here the matrix and the column vector together serve as an encryption

key. The decryption is done by computing

P ≡

(
a b

c d

)−1(
C −

(
e

f

))
(mod N2),

Use the explicit forms of A and g as above.

2.2 Asymmetric Cryptography

Public-key cryptography, also known as asymmetric-key cryptography provides good

key distribution and key management systems. The technique provides authentication,

confidentiality and integrity of information transformation.

Asymmetric key encryption uses two separate keys for the encryption (public key) and

decryption (private key). Mainly, one key is used to encrypt the message and different

key is used to decrypt it.

The security of asymmetric cryptography is based on the assumption that it should

be computationally very difficult to obtain the private key from the public one. The

advantage of asymmetric cryptography is obvious: The communicating parties do not

need to meet before the communication. Unfortunately, the disadvantage is that there
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is no absolute information security. The security is merely based on computational

hardness. Here is RSA as an example.

Example 3. (RSA keys) In public-key cryptosystems the key is divided into two parts

e and d, where e is the encryption exponent and d is used for decryption. Here, idea is

that e can be published while only d is kept secret.

• Let n = pq, where p and q are two large primes. Then we have ϕ(n) = (p−1)(q−1)
where ϕ is Euler’s totient function.

• Public key: pair of (n, e), where gcd(e, ϕ(n)) = 1.

• Private key: pair of (n, d), where d is the inverse of e modulo ϕ(n), i.e., ed = 1

(mod ϕ(n)).

Mathematical descriptions

• Symmetric cryptosystem: Let P , C, and K be the set of all plain texts, cipher

texts, and keys, respectively. The encryption can be then viewed as a function

e : P ×K → C, e(p, k) = c

and the decryption as a function

d : C ×K → P, d(c, k) = p.

Then encryption and decryption can be done by anyone knowing the key.

• Asymmetric cryptography: Let P , C, andK be as above, but now it is assumed

that each k ∈ K is divided into two parts, k = (kpubl, kpriv). The encryption can

be seen as a function

e : P ×K → C, e(p, kpubl) = c,

and the decryption as a function

d : C ×K → P, d(c, kpriv) = p.

Now anyone knowing kpubl can perform the encryption, but decryption is possi-

ble only for those knowing also kpriv. It is supposed that it is computationally

intractable to compute kpriv from kpubl.
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2.3 Key distribution protocols

The public key cryptosystems implementations appear slow when compared to those of

symmetric-key cryptosystems [13]. However, the procedure of concurring on a key for

a classical cryptosystem can be accomplished impartially and efficiently using a public

key system. One of the first such proposals was the system of Diffie-Hellman [13], and

its security was based on the Discrete Logarithm Problem.

Rounds of asymmetric protocols are used to form a shared key between communicating

parties. Once the shared key is established, it can be used in a symmetric protocol.

An advantage that there is no need to meet in advance, and the disadvantage of key

distribution that there is no absolute security. The security of the key distribution

protocols depend on the belief that nobody can extract confidential information (easily)

from the information being sent from communicating parties to each other. Diffie-

Hellman key distribution [20] is one of the most famous protocols for key distribution

and would logically belong to this subsection, but as it includes so many aspects relevant

to the study, the Diffie-Hellman key exchange system is explained in the next chapter.



Chapter 3

Diffie-Hellman Protocol

3.1 Background

In 1976 Diffie and Hellman suggested digital signature and public key cryptography.

The publication of their paper New directions in cryptography leads to beginning of

public-key cryptography. Nowadays their protocol plays a vital role on the internet

because most of the security foundation stands on it. It is protecting daily internet

communication and financial transactions [9]. We mentioned in the previous chapter

that the Diffie-Hellman is a protocol to transfer cryptographic key through unsecure

communication channel. In this chapter, we present the protocol in details and show

that its security depends on the hardness of DLP.

3.2 Implementation

The protocol can be implemented for any cyclic group G = ⟨g⟩. Let N = |G| be the

cardinality of G and n ≈ log2N the number of bits needed to present an element of G.

Group generator g can be public. Both Alice and Bob know the group (also the public

audience may know the group). Alice picks random x ∈ {0, 1, . . . , N − 1}, computes

x→ gx and sends gx to Bob via a public channel. Bob picks random y ∈ {0, 1, . . . , N−1},
computes y → gy and sends gy to Alice via a public channel. As now Alice has both

x and gy, she can compute (gy)x = gxy. Equally, Bob has gx and y, and hence he can

compute (gx)y = gxy. Hence, gxy can be used as a common key, which is shared by

Alice and Bob. However, an eavesdropper knows only gx and gy. Without computing

the DLP, it seems impossible to compute gxy knowing just gx and gy. In what follows,

the algorithm is explained in more details.

8
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Diffie-Hellman Protocol for key distribution

For the protocol, it is supposed that G = ⟨g⟩ is a cyclic group of order N = |G|.

1. Alice chooses random x ∈ {0, 1, . . . , N − 1}.

2. Alice computes x→ gx and sends it to Bob (via a public channel).

3. Bob chooses random y ∈ {0, 1, . . . , N − 1}.

4. Bob computes y → gy and sends it to Alice (via a public channel).

5. Alice computes (gy)x = gxy.

6. Bob computes (gx)y = gxy.

Figure 3.1: Diffie Hellman Protocol

3.3 Feasibility and security

As protocol users must compute x → gx, the (discrete) exponential function should be

feasible, i.e. easy to compute in the group. Indeed, it can always be computed efficiently

via squaring method.
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As also gx (and gy) will be available for public audience, the operation gx → x (the

discrete logarithm, will be discussed in next chapter) should not be feasible, meaning that

is should be difficult to compute. The aforementioned assumption is not straightforward

for all cyclic groups.

Repeated Squaring Method for gk

Modular exponentiation, i.e. calculating gk mod N , is time consuming operation and

frequent task, see [18]. For very large integers, the repeated squaring can be used. In

the following examples, we discuss the repeated squaring method and compare it to the

trivial one.

Example 4. Compute g100 directly as g100 = g · . . . · g. Here 99 multiplications are

needed.

Example 5. Compute g100 by first finding the binary expansion 100 = 26 + 25 + 22.

Then compute g2 = g · g, g4 = g2 · g2, g8 = g4 · g4, . . . , g64 = g32 · g32,

and finally

g100 = g64 · g32 · g4.

The number of multiplications needed to calculate g100 by this method is only 8.

In a general case, calculating gk using the trivial method requires k− 1 simple multipli-

cations. Hence, as k may be close to the order N of the group, too many multiplications

are needed. In any case, we may assume the number of multiplications is k < N ≈ 2n,

where n is the number of bits needed to represent a group element.

The repeated squaring procedure goes as follow: g2 = g · g, g4 = g2 · g2, · · · , g2L =

g2
L−1 · g2L−1

requires L multiplications where L is length of the binary representation of

k and

gk = gkL2
L+kL−12

L−1+···+k12+k0 = (g2
L
)kL · (g2L−1

)kL−1 · · · (g2)k1 · gk0

requires L multiplications. Therefore we need at most 2L ≤ 2 log2N multiplications.

Since in a binary representation,

k = kL2
L + kL−12

L−1 + · · ·+ k12
1 + k02

0 ≥ 2L,
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it follows that log2 k ≥ L. This implies that L ≤ log2 k ≤ log2N , which is approximately

log2 2
n = n. The complexity of the repeated squaring multiplications for computing gk

is O(L+ L) = O(log2N) = O(n).

Example 6. For G = ZN = ⟨g⟩ the exponentiation becomes x → xg (mod N), and

the discrete logarithm becomes a problem of resolving x when xg (mod N) is known.

Here N is the cardinality of the group, and n = log2N is the number of bits required

to present group elements.

The Euclidean algorithm helps to find x from xg. In fact, the inverse of g (mod N) can

be computed in time O(n3) by standard Euclidean algorithm. Hence, in this group, the

discrete logarithm problem can be solved in polynomial time, when measured in terms

of the representation length of the elements. In any case, the discrete logarithm in this

group is feasible, and the group cannot therefore be used to implement any cryptographic

protocol.

Example 7. Consider the multiplicative group G = F∗
p = Fp \ {0} of the finite field

Fp with p ∈ P elements. To compute, the discrete logarithm ga → a appears to be

problematic because no fast (general) algorithm is known. Here N = p − 1, and the

number of bits needed to present an element is n = log2(p− 1) = log2N .

Example 8. Let Alice and Bob agree on p = 37 and g = 2. The following example is

from [2], and it demonstrates the Diffie-Hellman key exchange.

Alice chooses x = 14 and sends to Bob

A = 214 (mod 37) ≡ 30.

Bob chooses y = 23 and sends to Alice

B = 223 (mod 37) ≡ 5.

Bob receives 30 and calculates

Ky ≡ 3023 (mod 37) ≡ 28.

Alice receives 5 and computes

Kx ≡ 514 (mod 37) ≡ 28.

Alice and Bob now agree on 28 as their shared key.
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As the modular exponentiation can be computed quickly, the Diffie-Hellman key ex-

change protocol can be executed efficiently.

3.4 ElGamal

Neal Koblitz [20] stated that the encryption of ElGamal system is an asymmetric key

encryption algorithm for public-key cryptography, which is based on the Diffie-Hellman

key exchange. In this section, we shortly discuss ElGamal.

ElGamal encryption can be defined over any cyclic group G. The security of ElGamal

depends on the difficulty of a certain problem in G related to computing DL. In the

forthcoming explanation, we will use multiplicative notations, and g is the generating

element.

If the problems appearing in Diffie-Hellman are hard, then the ElGamal public key

cryptosystems are secure [14].

The security of other protocols for instance Diffie-Hellman key exchange, pairing-based

cryptosystems, and digital signature schemes depend on intractability of solving Diffie-

Hellman problems. Thus, in the point of view of practical cryptography, the study of

the hardness of Diffie-Hellman problems is extremely important [23].

ElGamal encryption

This following algorithm is originally from the book of applied cryptography [27].

Alice (A) creates public and private keys by the following steps:

• Step 1: Create a large random prime p and a generator g of the multiplicative

group Z∗
p of the integers modulo p.

• Step 2: Select a random integer a, 1 ≤ a ≤ p− 2, and calculate ga mod p

• Step 3: Alice’s public key is (p, g, ga); Alice’s private key is a.

Encryption: Bob (B) follows these steps

• Receive Alice’s authentic public key (p, g, ga).

• Encode the message as an integer m in the range {0, 1, · · · , p− 1}.

• Choose a random integer k, 1 ≤ k ≤ p− 2.
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• Calculate g1 = gk mod p and δ = m · (ga)k mod p.

• Send the ciphertext c = (g1, δ) to Alice.

Decryption: Alice’s should follow these steps:

• Using a as a private key, calculate gp−1−a
1 mod p (note: gp−1−a

1 = g−a
1 = g−ak).

• Recover m by calculating (g−a
1 ) · δ mod p.



Chapter 4

Attempts to break Diffie-Hellman

4.1 Discrete Logarithm

Interest in studying the discrete logarithm problem rose in the mid-1970s with the public

key cryptography. While the ordinary (continuous) logarithm on real numbers is not

difficult to compute, its discrete version in many groups appears hard. The routine

applications of discrete logarithms in small or large fields depend on computer algebra

system [32].

Now let there be a finite group, such as F∗
q . Let β be an element of the form αx and

assume that the base α is fixed. So the question comes that how can we get the power

of α that gives β, that is, how can we calculate x = logα β?

This problem is called the discrete logarithm problem (DLP).“Discrete” is the word

distinguishing the finite group case from the classical or continuous case [20].

Definition 4.1 (Discrete logarithm). Let G be a finite cyclic group of order N and

let g1 be a generator of G, and let g ∈ G. The discrete logarithm of g to the base g1,

denoted by logg1 g, is the unique integer x ∈ {0, 1, . . . , N − 1}, such that g = gx1 .

Remark 4.2. The above definition uses the multiplication notation for the group opera-

tion. In additive notation, the discrete logarithm of g to the base g1, denoted by logg1 g

is the unique integer x ∈ {0, 1, . . . , N − 1}, such that g = xg1.

A group where the additive notation is used by default, is the group of rational points

of an EC defined later.

Remark 4.3. In group F∗
p, we use the the multiplicative notation. On the other hand, in

a group such as ZN , the additive notation is used.

14
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Example 9. Consider the group F∗
11, in which we can choose g = 2 as generator. Since

26 ≡ 9 (mod 11), it follows that log2 9 = 6 in Z∗
11. Also, 2

6 ≡ 216 ≡ 226 ≡ 9 (mod 11).

Example 10. Consider another group F∗
97 in which, we can choose 5 as a generator.

Computing 532 ≡ 35, we obtain that log5 35 = 32 in Z∗
97.

Example 11. Consider the generator g = 2 of F∗
19. The successive powers of 2 are then

2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1. Then the DL of 7 to the base 2

is hence 6.

By the following theorem, any algorithm that evaluates logarithm in some base can also

be apply to calculate it in different base which is generator of G.

Theorem 4.4. Suppose g and g1 are two generators of G, where G is a cyclic group

and β ∈ G. Any efficient algorithm to evaluate logg β can be converted to an efficient

algorithm to evaluate logg1 β.

Proof. We can write β = g
logg1 β

1 = (glogg g1)logg1 β. On the other hand we know that

β = glogg β. Hence, we have logg β = (logg g1)(logg1 β).

The group Z∗
n is used in many cryptographics mechanisms, such as in the identification

scheme of the Girault, and in the key agreement protocols of the McCurley and Yacobi

[24, 12]. Moreover in the Diffie-Hellman problems in a cyclic subgroup Z∗
n, discrete

logarithm and the problems of factoring n have a connection to cryptography.

In the next sections we will study various algorithms for discrete logarithm. These

include the brute force technique, Pollard’s rho, baby-step, Pohlig-Hellman algorithm,

function field sieve and the number field sieve.

The four first algorithms can be apply in any cyclic group. The performance of Pohlig-

Hellman depends very much on the factorization of the credential of the cardinality N

of the group; it is especially efficient if N can be present as a product of small primes.

Furthermore, the function field sieve algorithm is especially designed for groups Fpn

where p is a prime for computing the problem of DL and cannot be implemented in a

general cyclic group.
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4.2 Brute-Force

The Brute-Force attempt has been introduced as the most obvious way to attack DLP.

Consider a cyclic group G = ⟨r⟩ with a generator g and cardinality N . Let h = gx be

the element of which logarithm logg h we are trying to calculate.

Compute gy for all y ∈ {0, 1, . . . , N − 1}, stopping when we get a match with h.

If x is selected randomly and uniformly, then in average one must compute N/2 powers of

g to find the correct x with at least 50 % probability. This exhaustive search algorithm

is clearly exponential in the input size as we can represent each member of G using

log2(N) binary digits. Notice that for finding the correct power absolutely surely, you

must, in the worst case, check gx for all x ∈ {0, 1, . . . , N − 1}. Thus, if this were the

best-known algorithm for finding the DLP, then our systems would be secure [50].

4.3 Pollard’s rho algorithm for discrete logarithm

Pollard’s rho algorithm for the DLP is a randomized algorithm just like baby-step giant-

step algorithm (it will be discussed in section 4.4) but it takes negligible amount of

storage. That is why in practical problems the Pollard’s rho algorithm is used, see [27].

In this algorithm we are trying to calculate logα β. As described in the book, see [27],

the group G is partitioned into three same size disjoint subsets, S0, S1 and S2. Selection

process of subsets is important; for instance, we require 1 /∈ S2. Describe a sequence of

group elements x0, x1, x2, . . . by x0 = 1 and

xi+1 = f(xi) =

⎧⎪⎪⎨⎪⎪⎩
β · xi, if xi ∈ S0

x2i , if xi ∈ S1

α · xi, if xi ∈ S2

for i ≥ 0. Using this sequence, we may define two new ones a0, a1, . . . and b0, b1, . . .

satisfying as follows: a0 = b0 = 0 and for i ≥ 0 we have

ai+1 =

⎧⎪⎪⎨⎪⎪⎩
ai, if xi ∈ S0

2ai (mod n), if xi ∈ S1

ai + 1 (mod n), if xi ∈ S2
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and

bi+1 =

⎧⎪⎪⎨⎪⎪⎩
bi + 1 (mod n), if xi ∈ S0

2bi (mod n), if xi ∈ S1

bi, if xi ∈ S2

Floyd’s cycle-finding algorithm [27] can be used to find two elements xi and x2i so that

xi = x2i. Thus α
aiβbi = αa2iβb2i and we have βbi−b2i = αa2i−ai .

Calculating the logarithms to the base α for both sides of this last equation provides

(bi − b2i) · logα β ≡ (a2i − ai) (mod n).

It can be seen that bi ̸= b2i (mod n). Note that bi ≡ b2i appears with a vanishing

probability.

Algorithm: Pollard’s rho algorithm for computing discrete logarithms

The previous discussion leads to the following algorithm [27].

Input: a generator α of a subgroup G, and an element β ∈ G

Output: the discrete logarithm x = logα β

• Set x0 ← 1, a0 ← 0, b0 ← 0.

• For i = 1, 2, . . ., compute the values xi, ai, bi and x2i, a2i, b2i using the quantities

xi−1, ai−1, bi−1 and x2i−2, a2i−2, b2i−2 (as calculated earlier).

– If xi = x2i, then the algorithm proceeds as follows:

∗ Set r ← bi − b2i (mod n)

∗ If r = 0 then the algorithm leads to fail; otherwise, calculate r−1(a2i−ai)

(mod n) and return x.

Example below illustrates Pollard’s rho algorithm with small parameters from lecture

notes, see [39].

Example 12. (Pollard’s rho algorithm for logarithms in a subgroup of F∗
503 )

We choose α = 2 as the generator of the subgroup G of F∗
503. The order of G is 251.

Also, β = 169 belongs to this subgroup. Divide G to the partitions as follows: x ∈ S0 if

x ≡ 1 (mod 3), x ∈ S1 if x ≡ 0 (mod 3), and x ∈ S2 if x ≡ 2 (mod 3). Below the table

describes xi, ai, bi, x2i, a2i, and b2i. Calculations show that x14 = x28 = 263. We gain
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by computing the r = b14 − b28 = 247 (mod 251), r−1 = 247−1 = 188 (mod 251), and

r−1(a28 − a14) = 123 (mod 251). Hence, log2 169 = 123.

Table 4.1: Pollard’s rho

i xi ai bi x2i a2i b2i

1 169 0 1 393 0 2
2 393 0 2 205 0 5
3 28 0 4 323 0 12
4 205 0 5 286 2 12
5 441 0 6 229 2 14
6 323 0 12 443 3 15
7 143 1 12 263 5 15
8 286 2 12 46 7 15
9 46 2 13 473 7 17
10 229 2 14 383 9 17
11 473 2 15 23 11 17
12 443 3 15 229 12 18
13 383 4 15 443 13 19
14 263 5 15 263 15 19

The following lemma is from [27].

Lemma 4.5. Let G be a group of order N , where N is a prime. Assuming the function

f : G→ G of the Pollard’s rho algorithm behaves like a random function, the anticipated

running time of Pollard’s rho algorithm for discrete logarithms in G is O(
√
N) group

operations. In addition, the algorithm requires negligible storage.

4.4 Baby-step giant-step Algorithm

We are trying to compute logα β. Let m = [
√
N ], where N is the order of α. If β = αx,

then it is possible to write x = im+ j, where 0 ≤ i, j < m. Thus, αx = αimαj implying

β(α−mi) = αj . This proposes the following algorithm for calculating x, see [27].

Computing the DL by baby-step giant-step algorithm

Input: A generator α of a cyclic group G of order N , and an element β ∈ G

Output: the discrete logarithm (DL) x = logα β.

1. Denote m = [
√
N ].

2. Construct a table with items (j, αj) for 0 ≤ j < m and arrange it according to the

second component.
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3. Calculate α−m and let γ ← β.

4. For i from 0 to m− 1 do

(a) Check whether γ is the second component of some entry in the table.

(b) If γ = αj then return x = im+ jv.

(c) Otherwise, let γ ← γ · α−m.

4.5 Pohlig-Hellman Algorithm

Pohlig-Hellman Algorithm for solving logarithms uses the factorization of the order N

of the group G. We represent here the Pohlig-Hellman algorithm from [27].

Assume that N = pe11 pe22 · · · perr is the prime factorization of N . If x = logα β, next the

aim is to find xi = x (mod peii ) for 1 ≤ i ≤ r, and after that apply the CRT (Chinese

remainder theorem) to calculate x =
∑k

i=1 aiNiMi (mod n), where Ni = N/Ni, and

Mi = N−1
i (mod Ni). These calculations can be executed with O(logN)2 bit operations.

Each integer xi is found by solving the digits l0, l1, ...., lei−1 in a pi - ary representation:

xi = l0 + l1pi + ....+ lei−1p
ei−1

i , where 0 ≤ lj ≤ pi − 1.

Pohlig-Hellman algorithm for computing discrete logarithms

Input: A generator α of a cyclic group G of order N and an element β ∈ G.

Output: The discrete logarithm x = logα β.

1. Determine the prime factorization of N : N = pe11 pe22 .....perr , as ei ≥ 1

2. For i from 1 to r do the following:

Calculate xi = l0 + l1pi + ....+ lei−1p
ei−1
i , where xi = x (mod pi

ei).

• Let q ← pi and e← ei.

• Let r ← l and l−1 ← 0.

• Calculate ᾱ← αn/q.

– For j from 0 to e− 1 do the following:

– Calculate γ ← γαlj−1q
j−1

and β̄ ← (βγ−1)n/q
j+1

– Calculate lj ← logᾱ β̄

• Set xi ← l0 + l1q + ....+ le−1q
e−1.
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3. Apply the Chinese Remainder Theorem to find an integer x, 0 ≤ x ≤ N − 1,

so that x ≡ xi (mod pi
ei) for 1 ≤ i ≤ r.

4. Return(x).

4.6 Function field sieve

The function field sieve was introduced by Ming-Deh A. Huang and Leonard M. Adleman

in 1994, see [17], for solving the discrete logarithms in Fpn with small values of p. Notice

that here the number of vertices in the multiplicative group of Fn
p is N = pn − 1. It is

quite similar to the number field sieve which we will discuss in next section 4.7, and it

has a complexity of the same order Lpn [
1
3 ] [17].

Let Fpn denote the finite field of pn elements, and suppose x is a generator of the

multiplicative group of Fpn . We take the general principle of function field sieve from a

paper [16].

Step 1: Select a subset S = {γ, ...., γ|S|} of Fpn ≃ Fp[t] which is known as the factor base

(here t is an element of degree n over Fp). Try to find relations between products of S

elements ∑
(ϵ,γ)∈Z×S

ϵ logx γ = 0,

where x is the generator of the multiplicative subgroup of order l in Fpn . When sufficient

number of such connections are known, one acquires logx γ via the corresponding linear

system.

Step 2: To calculate the discrete logarithm of y, which is not in S, choose random

integers v until xvy is a product of elements of S. Then

logx y = −v +
∑

(ϵ,γ)∈Z×S

ϵ logx γ (mod l).

The method to select the factor base S is determined to individual variation. In the

original Function Field Sieve, the factor base is the image of a morphism φ in Fpn of the

generators Sα and Sβ.

The set Sα is exactly the set of Fp-rational principal places in the rational function field

Fp(t) whereas Sβ is the set of Fp-rational principal places in an algebraic function field.

When a random polynomial µ(t) ∈ Fp[t], this function field is defined by an absolutely

irreducible bivariate polynomial
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H(t,X) =
d∑

i=0

d́∑
j=0

hi,jX
itj ,

so that H(t, µ(t)) = 0 (mod f(t)). The mapping φ from this algebraic function field to

Fpn is then defined by X → µ(t). The algorithm, seeks for pairs (r(t), s(t)) ∈ Fp[t]
2,

where r(t) and s(t) are relatively prime, so that the polynomial r(t)µ(t)+s(t) corresponds

to a product of irreducible polynomials in Sα, and so that the divisor associated to the

function r(t)X + s(t) is a sum of places in Sβ. Following Adleman and Huang [3],

such a pair (r(t), s(t)) is known “doubly smooth” since r(t)µ(t) + s(t) is smooth and

r(t)X + s(t) is smooth in the sense that the norm over Fp[t] of r(t)X + s(t) is smooth

[16]. The function field sieve will split n (heuristically) in expected time, where c is the

constant

exp[(c+ o(1))(log n)1/3(log n)2/3).

The faster algorithm for factoring integers is described in [3]. The method gives the

complexity exp(logN)
1
3
+ϵ where ϵ > 0 is arbitrary. The function field sieve “is an

analog of the number field sieve method originally developed for factoring integers. It is

asymptotically faster than the previously known algorithms when applied to finite fields

Fpn , where p6 ≤ n” [3].

Pohling-Hellman defined how to resolve the DL modulo the group order N [5]. In

addition, Pollard’s rho algorithm enable to solve the DL for small prime numbers.

The FFS is dedicated to computing discrete logarithms in a finite field Fpn , where q = pn

and p is a small prime. In this case, this gives the reason to believe that ECC method

may be more useful. We observed that FFS use to solve DL in Fpn in short time

comparing for DLP in field of a similar size of the form Fp (with p prime) and for F2n

(with n prime), see [17].

4.7 Number field sieve

In order to compute the DL, the NFS can be implemented for G = F∗
p, for a prime

number p. The number field sieve method provides a good algorithm for DL in F∗
p. A

good presentation is found in [11].

For describing the number field sieve complexity, the following notation will be useful:

Lp[ν, δ] = exp(δ(log p)ν log log p1−ν)
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The number field sieve is inspired by the index calculus methods.

The number field sieve over F∗
p is outlined as follows.

• Firstly, find the factors of p− 1 by using the factorization version of the NFS [33].

• After that, find the discrete logarithm modulo each l | p− 1 as follows:

– Choose two irreducible polynomials f1, f2 ∈ Z[x] of small degree with a

common root. One potential method is as follows [11]

– Choose number d ∈ Z and m = ⌊p
1
d ⌋, then find an m-adic expansion for

p =
∑

aim
i

– Select f1 =
∑

aix
i and f2 = x −m. For other methods selecting f1 and f2,

see [11]. Notice that then f(m) ≡ 0 (mod p), where f is a polynomial

f =
d∑

i=0

aiX
i

• Suppose α ∈ C is a root of f1. For a set S ⊆ Z × Z (explained later), find

representations

βl =
∏

(a,b)∈S

(a+ bα)
xa,b

and

ol = txtg
∏

(a,b)∈S

(a+ bm)xa,b ,

where β ∈ Z[α], o ∈ Z, t, g ∈ Z.

• By slight abuse of notations, we have then

(oβ−1)l = txtg,

and because oβ−1 = tb for some b, we have tbl = txtg, which implies that

bl = xt + logt g

in F∗
p. Since l is a divisor of p− 1, we have

logt g = −xt (mod l).

After finding the discrete logarithm for each l, apply the Chinese remainder theorem to

find k ≡ logt g (mod p − 1). Thus, set S and the representations related to S above
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remain to be explained. S should be selected so that numbers a + bm and a + bα are

smooth in the sense that their prime factors are small. Selection procedure is known as

lattice sieving, see [11].

The expected running time of the algorithm is proportional to

Lp[
1

3
, (
64

9
)
1
3 ] = exp(((

64

9
)
1
3 + o(1))(log p)

1
3 (log log p)

2
3 ) ≤ exp(c(log p)

1
3
+ε),

where c = (649 )
1
3 = 1.9229994 . . . and ϵ > 0 is arbitrary, see [11].

Comparison

Here N = p− 1, and when comparing the complexity to some power Nα (where α > 0)

we have

ln
ec(log p)

1
3+ε

Nα
= c(log p)

1
3
+ε − α log(p− 1).

Due to the cube root in the first term, we can conclude that the above expression tends

to −∞ as p→∞. It follows that for each α > 0,

ec(log p)
1
3+ε

= o(Nα) = o(2αn)

where n = log2N is the representation length of Fp element in bits. The above estimation

shows that the number field sieve provides a sub-exponential algorithm for the DLP.

4.8 On Victor Shoup’s lower bound

Current knowledge on computational difficulty does not allow any absolute lower bound

for the complexity of solving DL. In the additive group ZN discrete logarithm problem

can be solved in polynomial time

O(n3) = O((logN)3)

with the Euclidian algorithm (polynomial in n where n is the bit size). Pollard’s rho

(works in every cyclic group) gives the complexity of O(
√
N) = O(

√
2
n
), which is expo-

nential in n (bit size).

As discussed before, the number field sieve gives complexity which is subexponential,

but still worse than polynomial. However, the NFS cannot be applied to any group,

obviously only to F∗
p and its variant FFS to F∗

pn .
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Victor Shoup has shown [44] that for a generic group (aka black box group), the com-

plexity for computing the DL requires Ω(
√
N) group operations. Hence there is a strong

reason to believe that the e.g. Pollard’s rho is the foremost one can achieve without

knowing any details of the group structure.

As a generic (or black box) group above we mean a group where the group operations

(multiplication and the inverse) are not computed algoritmically but are given via an

external agent called oracle, see [44].



Chapter 5

Elliptic Curves

5.1 Background

The term “elliptic curve”here refers to a set of points in a Cartesian plane. As we will

see, there are natural subsets of the elliptic curve points for which we can define a group

operation. EC have no direct relation to the ellipses. EC appear in different areas of

mathematics, such as cryptography, mathematical physics, number theory, and complex

analysis, see [45]. Elliptic curves were not used in cryptography before 1984. The name

“elliptic”itself was coined in the 19th century. The first application in cryptography is

found in integer factorization method by Lenstra [4]. Since then, EC have been used for

different cryptographic purposes, e.g. primality proving, and integer factorization.

A mathematical problem related to elliptic curves (as known today) was first mentioned

by Diophantus. Differential, and integral calculus were developed in the end of the

17th century, and it was possible to exhibit the arc length of an ellipse as an integral.

However, it was not so straightforward how to calculate the integral.

The study on the ellipse arc length typically leads to integral of form

F (x) =

∫ x

0
R(t,

√
P (t)) dt,

where P (t) is a polynomial, and R a rational function. It was noticed in the 19th

century that it may be fruitful to study the inverse function F−1 instead of F ; those

inverse functions were named elliptic functions subsequently [37, 32].

Weierstrass ℘-function

Weierstrass showed that an elliptic function satisfies a differential equation (℘′)2 =

4℘3 − g2℘− g3, where g2 and g3 are constants. That means, the point (℘′(z), ℘(z)) lies

25
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in curve y2 = 4x3 − g2x− g3. In general, an elliptic curve is y2 = p(x), where p(x) is a

cubic polynomial with distinct roots. Weierstrass normal form y2 = x3 + ax+ b for any

elliptic curve can be achieved if the field characteristic is not 2 or 3, see [21].

5.2 The addition formulas for the Curve

Diophantine method of finding new rational points in a curve is based on drawing a

secant through known rational points, and finding another intersection of the line, and

the curve. This gives rise to the addition law on the EC. By introducing the projective

geometry, we can also introduce a special rational point “at the infinity”, see [45]. The

rational points in the EC together with the infinity point form an abelian group.

Definition 5.1. The following definition is from the book, see [21]. Let E be an elliptic

curve and consider points P and Q on E. Then the inverse of P and the sum P +Q are

defined by the following principle: the sum of the three intersection points of the curve

and a line is zero. The explicit presentations of the inverse and the sum are as follows:

Assume first that the field F has characteristic 0. Then any elliptic over F has form

y2 = x3 + ax+ b. Let P = (x1, y1), −P = (x1,−y1). And Q = (x2, y2) ̸= −P. Sum P +

Q = (x3, y3) is then defined as x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3)− y1 where

λ =

{
y2−y1
x2−x1

, if P ̸= Q
3x2

1+a
2y1

, if P = Q
.

Suppose then that Fq is a field of characteristic 2. Then there are two types of elliptic

curves. In so-called supersingular case the form is

y2 + cy = x3 + ax+ b,

where a, b, c ∈ Fq, c ̸= 0, jointly with the point at ∞. The other type is

y2 + xy = x3 + ax2 + b,

where a, b ∈ Fq, b ̸= 0, together with the point at infinity. In both cases, E is an

(additive) abelian group with the point infinity serving as the identity. For these two

categories the addition formulas of curves over F2m are explained below.

For the supersingular case, let P = (x1, y1) ∈ E; then −P = (x1, y1 + c). If Q =

(x2, y2) ∈ E and Q ̸= −P , P +Q = (x3, y3), then P +Q = (x3, y3), where
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Figure 5.1: EC Addition

x3 =

{
( y1+y2
x1+x2

)2, if P ̸= Q
x4
1+a2

c2
, if P = Q

and

y3 =

{
y1+y2
x1+x2

(x1 + x3) + y1 + c, if P ̸= Q
x2
1+a
c (x1 + x3) + y1 + c, if P = Q

.

Let P = (x1, y1) ∈ E; thus −P = (x1, y1 + x1).

In the second category,

x3 =

⎧⎨⎩ ( y1+y2
x1+x2

) + y1+y2
x1+x2

+ x1 + x2 + a, if P ̸= Q

x21 +
b
x2
1
, if P = Q

and

y3 =

{
( y1+y2
x1+x2

)(x1 + x3) + x3 + y1, if P ̸= Q

x21 + (x1 +
y1
x1
)x3 + x3, if P = Q

.

The characteristic 3 is not treated in this thesis. The example below is from the book

by Neal Koblitz, see [21].

Example 13. Consider an EC E : y2 = x3+x+1 over F23. We will see that #E(Z23) =

28, E(F23) has a cyclic subgroup, and that a generator of E(F23) is P = (0, 1). The
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points in of E(F23), depicted as multiples of P, are illustrated below.

P = (0, 1) 7P = (11, 3) 13P = (9,−7) 19P = (4, 5) 25P = (3, 10)

2P = (6,−4) 8P = (5,−4) 14P = (4, 0) 20P = (5, 4) 26P = (6, 4)

3P = (3,−10) 9P = (−4,−5) 15P = (9, 7) 21P = (11,−3) 27P = (0,−1)
4P = (−10, 7) 10P = (12, 4) 16P = (−6, 3 22P = (7,−11) 28P =∞
5P = (−5, 3) 11P = (1,−7) 17P = (1, 7) 23P = (−5,−3)
6P = (7, 11) 12P = (−6,−3) 18P = (12,−4) 24P = (−10, 7)

Given any elliptic curve, the point multiplication is a fast operation, since it can be

performed by using the repeated squaring method presented in section 3.3. For example,

to reach 400P = 256P + 128P + 16P , compute the following:

P → 2P 16P → 32P

2P → 4P 32P → 64P

4P → 8P 64P → 128P

8P → 16P 128P → 256P

The “division” problem Q = nP is the same as the discrete logarithm problem.

Figure 5.2: ECDLP
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5.3 Group of rational points

The inverse and the addition law introduced in the previous section guarantee that the

rational points of an elliptic curve form an abelian group.

The rational point group of an elliptic group over a finite field is always finite (as there

are only finitely many points in Fq × Fq), but a (large) cyclic subgroup is of special

interest.

Mordell showed, in 1922, that the abelian group of the rational points of elliptic curve

over Q is finitely generated. It means that the finite “torsion group” consists of rational

points having finite order. In addition, the finite number of points of infinite order

generate a subgroup. Hence

E(Q) = Etors ⊕ Zr,

where r is called rank.

Example 14. Rong-Jaye Chen illustrated an example for the EC over finite fields, see

[15]. With y2 = x3 + x+ 1 over F5. | E(F5) |= 9.

Table 5.1: EC over Fq

x x3 + x+ 1 Points y

0 1 (0,1), (0,4) ±1
1 3 - -
2 1 (2,1),(2,4) ±1
3 1 (3,1),(3,4) ±1
4 4 (4,2),(4,3) ±2
∞ ∞ ∞

5.4 Diffie-Hellman protocol on Elliptic Curves

In this section we discuss elliptic curves E over finite fields, see [49]. Assume that the

Fq has a characteristics greater than 3. An elliptic curve E over Fq is then the set of all

solutions (x, y) ∈ Fq × Fq to an equation

y2 = x3 + ax+ b,

where a, b ∈ F, and 4a3 + 27b2 ̸= 0, together with a special point ∞ called the point

at q infinity. E is known to be an abelian group with the infinity point as the identity

element.
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Definition 5.2. (Discrete logarithm on elliptic curves). Let P be a generating element

of a subgroup G of rational points of E, and B ∈ G. The discrete logarithm problem on

E is then to discover n from equality B = nP .

The discrete logarithm problem on EC appears more difficult than the DLP in finite

fields. Moreover, the most powerful approaches in the finite fields do not seems to run

on elliptic curves.

The key distribution method here is the same Diffie-Hellman as introduced before: As

Alice and Bob agree on elliptic curve domain parameters on an elliptic curve Ep, where

a, and b and a generator G are given. The protocol itself is the same: Alice randomly

chooses a private integer a for calculating the point aG. That is sent to Bob, whereas

Bob also chooses a private integer b randomly, and calculates the point abG, and sends

it to Alice. Thus, both Alice and Bob calculate a mutual key K = abG.

The description of the algorithm is hence as follows:

1. Alice and Bob choose a and b randomly.

2. Next Alice, and Bob calculate aG and bG before sending it to each other.

3. Both Alice, and Bob calculate the shared secret k

K = a(bG) = a(bG) = abG

Example 15. Let implement Diffie-Hellman protocol using the EC. Select the generator

as above, G = (35, 7), Alice chooses a number a arbitrarily between 0-41, and Bob

chooses a number b arbitrarily between 0-41.

• Alice choose number as her secret key a = 3, computes A = 3G = 3(35, 7) is

A = (19, 40).

• Bob choose number as his secret key b = 5, computes B = 5G = 5(35, 7) is

B = (24, 21).

Alice receives B = 5G = 3(5G) = 15G.

Bob receives A = 3G = 5(3G) = 15G.

Example 16. Let there be an EC over Fp whereas p = 41, and parameters a = 7, b = 20.

Then △ = −16(4a3 + 27b2) = −194752 = 39 (mod 41) ̸= 0. This example is from [25].
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The elliptic curve E y2 = x3 + 7x + 20 (mod 41). The points on the EC are depicted

below:

∞, (0, 15), (0, 26), (2, 1), (2, 40), (5, 4), (5, 37), (6, 14),

(6, 27), (7, 17), (7, 24), (9, 19), (9, 22), (14, 19), (14, 22), (16, 13),

(16, 28), (17, 3), (17, 38), (18, 19), (18, 22), (19, 1), (19, 40), (20, 1),

(20, 40), (21, 11), (21, 30), (22, 11), (22, 30), (24, 20), (24, 21), (26, 5),

(26, 36), (31, 4), (31, 37), (35, 7), (35, 34), (37, 16), (37, 25), (39, 11),

(39, 30)

Figure 5.3: EC y2 = x3 + 7x+ 20
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Figure 5.4: EC E41(7, 20)



Chapter 6

Other uses in cryptography

Diffie-Hellman Key distribution works in an EC group that provides a secure protocol

for authenticated key agreement, see [35]. In general, a large amount of Diffie-Hellman

protocols have been proposed over the years and many protocols are analyzed by the

following attributes:

• Known Key Security: In every run of a protocol between A and B we establish a

unique secret key. A key agreement protocol must achieve its goal in front of an

adversary who has learned some other session key.

• (Perfect) Forward Secrecy: This security notifies that by disclosing the long-term

private key of A and B or a single user, the adversary cannot obtain the previous

session keys.

• Key Compromise Impersonation: Supposing A’s long-term private key is disclosed,

an adversary can obviously impersonate A. However, it may be wanted that an

adversary cannot impersonate any other party.

• Unknown Key-Share: Here A shares a key with B, but B believes that he has

shared a key with another party C ̸= A.

• Key Control: Neither A or B can choose the session key to be a preselected value.

Password-based authenticated key exchange (PAKE) protocols: PAKE protocols are

used in many applications such as remote login, database management systems, and

internet. It is based on key agreement protocols, in this case, two parties agree on a

high-entropy cryptographic key using a pre-shared low entropy password, see [8]. PAKE

is the best method for the client-server based applications, but not good in large-scale

environments. It is costly and inefficient. However, PAKE protocols are vulnerable to

33
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the brute-force attack for the reason that each user remembers a weak password for the

key agreement protocols and authentication.



Chapter 7

Conclusion

In this thesis, the elliptic curve cryptography(ECC) is considered in detail. Different

advantages of ECC like quick key generation, smaller key, signature and ciphertext along

with the security of ECC which lies in the hardness of discrete logarithm having a high

complexity are explained in the previous sections. Discrete logarithm problem is used

as a common feature of the Diffie-Hellman key protocol. In the same way, ECC is an

asymmetric key cryptosystem which is most suitable for a memory constrained device.

In this thesis, we compared function-field sieve and number-field sieve and concluded

both as the fastest method for computing the discrete logarithm in finite fields. The

attacks we performed are as follows, Pollard’s rho, baby-step giant-step, Pohlig-Hellman,

function field sieve, number field sieve, and the aforesaid are techniques for solving the

discrete logarithm. The comparison of attacks is demonstrated in Table 7.1.

Table 7.1: Attacks Compare Complexity

Attacks Complexity

Number field sieve ec(log p)
1
3+ε

Function field sieve exp[(c+ o(1))(log n)1/3(log n)2/3)
Pollard’s rho O(logN)2

Baby-step giant step O(logN)2

Pohling-Hellman O(logN)2

In this thesis, we have examined different cryptographic protocols. In present situation,

information security is the main problem in network communication. A large num-

ber of devices use cryptographic algorithm, while the rapid advancement in computers

have made the previous algorithms insecure. With the advent of emerging multimedia

applications and inter-connected devices, internet security becomes an integral part of

the security setup. Quantum computing has been discussed for three decades. The

idea was expressed by the Richard Feynman in 1982, and Deutsch in 1985. The most

35
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famous algorithm was designed by Shor’s in 1994 and Grover’s algorithm in 1996 for

polynomial time factoring, and the discrete logarithm. Quantum Computing established

reformulating information and computation in the mechanical quantum framework. The

mathematical description of quantum information is much more complicated than that

of classical information, containing the structure of Hilbert Spaces.

The developments in quantum information have been remarkable for the last twenty

years. Quantum computing is now a well-developed discipline, however, its implemen-

tation is a big challenge. Its primitives include also the secure cryptography in the

quantum information processing. Researchers have been working to find out how to

implement large-scale quantum computing and quantum cryptography in practice.

When quantum computers are available, there is a chance that cryptography will rely on

the quantum protocols, such as protocols for digital signatures: KKNY05, GC01, and

the quantum key distribution protocols BB84, BBM92, and B92. Also, the quantum

zero-knowledge proof, oblivious transfer, and quantum commitment all make the present

public-key cryptosystems unreliable. It is already well known due to Deutsch, that the

quantum computer cannot compute functions that are not computable on a classical

computer. On the other hand, Quantum computer can compute efficiently functions that

cannot be computed efficiently on a classical computer. In other words, the quantum

algorithm provides quicker methods than the best known classical computer algorithms.

For an algorithm based on the quantum Fourier transformation, see [42]. Some quantum

Fourier transform based algorithms are known to be exponentially better than the best

known classical algorithms. Anyway quantum computers allow faster searching for the

solution of the computational problem. Thus cryptosystems have to keep developing

different mechanism constantly. Richard Feynman suggested that quantum mechanics

work in the optimization of the simulation of the quantum system with the computer.

These simulations are now studied and experimented, see [42].

Cryptographic systems are mechanisms developed to protect our important information

from an intruder. An intruder may use advanced technologies to breach the system

security. There are a lot of significant innovations in quantum computing that are yet

to be addressed. In the end, using elliptic curves we would establish effective algorithms

to improve computation.
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