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            Make a plan. 
Set a goal. 

Work toward it. 
But every now and then, look around. 

Drink it in. 
Breathe it out. 

Smile. 
Love. 

Break the law. 
 

Because this is it. 
It might all be gone tomorrow. 

 
To my past and present fluffies. 

 
 



4 Abstract  

ABSTRACT 

UNIVERSITY OF TURKU 
Faculty of Medicine 
Turku PET Centre 
MediCity Research Laboratory 
Jatta Takkinen: Imaging glucose metabolism, neuroinflammation, and cannabinoid receptor 1 
in transgenic mouse models of Alzheimer’s disease 
Doctoral Dissertation, 176 pp. 
Doctoral Programme in Clinical Research − Clinical Physiology and Nuclear Medicine 
March 2019 

The pathophysiological cascade leading to Alzheimer’s disease is characterized by the 
accumulation of destructive β-amyloid in the brain. Convincing evidence has also shown that 
cerebral energy hypometabolism and an overproduction of translocator protein during 
neuroinflammation, as well as deficits in the endocannabinoid system, play major roles in 
progression of the disease. Monitoring temporal changes inside the diseased brain with non-
invasive positron emission tomography (PET) would be a unique translational tool, bridging the 
gap between disease models and patients and aiding in the discovery of disease-modifying 
therapies against Alzheimer’s disease. 

The aim of this thesis was to evaluate the translational feasibility of cerebral glucose metabolism 
targeting PET tracer 18F-FDG in APPswe-PSIdE9, Tg2576, and APP/PS1-21 mouse models of 
Alzheimer’s disease. In addition, this thesis aimed to examine the suitability of 
neuroinflammation-specific protein targeting tracer 18F-DPA-714 for longitudinal follow-up in 
aging APP/PS1-21 mice and whether it correlates with changes in glucose metabolism. 
Furthermore, the translational applicability of 18F-FMPEP-d2 was evaluated as a tool to assist in 
preclinical research targeting cannabinoid receptor 1 (CB1R) in wild-type and APP/PS1-21 mice. 

Of the tested models, APP/PS1-21 mice demonstrated the most aggressive β-amyloid pathology. 
Furthermore, repeated PET scans with 18F-FDG and 18F-DPA-714 detected progressive glucose 
hypometabolism and neuroinflammation in the APP/PS1-21 model as the mice aged. However in 
the APPswe-PSIdE9 and Tg2576 mouse models, only a weak or non-altered glucose metabolism 
was observed. 18F-FMPEP-d2 was able to reveal altered CB1R availability when aging APP/PS1-
21 mice were followed with repeated PET scans. 

This thesis work demonstrated that Alzheimer’s disease mouse models differ in terms of 
amyloidosis and cerebral glucose metabolism, which creates challenges when comparing the 
research results between the models. The feasibility of 18F-FDG small animal PET depends on 
the chosen disease model and environmental factors. In the APP/PS1-21 model, longitudinal 18F-
FMPEP-d2 and 18F-DPA-714 PET scans were able to demonstrate pathological features related 
to Alzheimer´s disease, which were confirmed by ex vivo examinations. 

Keywords: Alzheimer’s disease; positron emission tomography; small animal imaging; cerebral 
glucose metabolism; neuroinflammation; cannabinoid receptor; transgenic mouse model  
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TIIVISTELMÄ 

TURUN YLIOPISTO 
Lääketieteellinen tiedekunta 
Turun PET-keskus 
MediCity-tutkimuslaboratorio 
Jatta Takkinen: Aivojen energia-aineenvaihdunnan, tulehduksen ja tyypin 1 
kannabinoidireseptorin kuvantaminen Alzheimerin taudin muuntogeenisissä hiirimalleissa 
Väitöskirja, 176 s. 
Turun Kliininen tohtoriohjelma − Kliininen fysiologia ja isotooppilääketiede 
Maaliskuu 2019 

Alzheimerin taudin keskeisimmät aivomuutokset ovat sakkautuvien β-amyloidipeptidien 
muodostuminen plakeiksi, aivojen heikentynyt energia-aineenvaihdunta, tulehduksen 
lisääntyminen ja endokannabinoidijärjestelmässä tapahtuvat muutokset, jotka lopulta johtavat 
hermosolujen vaurioitumiseen ja tyypillisten kognitiivisten häiriöiden ilmentymiseen. 
Aivomuutoksia on mahdollista seurata elävässä tutkittavassa kajoamattoman 
positroniemissiotomografia (PET)-kuvantamisen avulla.  Muuntogeenisten Alzheimerin taudin 
eläinmallien PET-kuvantaminen antaa ainutlaatuisen mahdollisuuden selvittää sairauden 
monimutkaisia patologisia tapahtumia ja seurata uusien lääkeaineiden vaikutusta ja turvallisuutta. 

Tämän tutkimuksen tavoitteena oli arvioida aivojen glukoosiaineenvaihduntaa mallintavan 18F-
FDG-merkkiaineen soveltuvuutta muuntogeenisten APPswe-PSIdE9, Tg2576 ja APP/PS1-21 
hiirimallien pieneläinPET-kuvantamiseen. Toisena tavoitteena oli arvioida tulehdusproteiiniin 
sitoutuvan PET-merkkiaineen, 18F-DPA-714, soveltuvuutta aivoissa etenevän tulehduksen 
seuraamiseen muuntogeenisessä APP/PS1-21 hiirimallissa. Kolmantena tavoitteena oli tutkia 
tyypin 1 kannabinoidireseptori-PET-merkkiaineen, 18F-FMPEP-d2, soveltuvuutta 
pieneläinkuvantamiseen villityypin hiirillä ja Alzheimerin taudin reseptorimuutosten 
seuraamiseen APP/PS1-21 hiirimallilla. 

APP/PS1-21 hiirimallin β-amyloidipatologia eteni muita malleja nopeammin. Lisäksi hiirimallin 
aivojen glukoosiaineenvaihduntaa mallintavan merkkiaineen kertymä heikentyi ja 
tulehdusproteiiniin sitoutuvan merkkiaineen määrä kasvoi, kun hiiriä kuvattiin toistuvasti PET-
menetelmällä. Vastaavasti APPswe-PSIdE9 ja Tg2576 hiirimalleilla havaittiin vain lievää tai 
olematonta glukoosiaineenvaihdunnan heikkenemistä. 18F-FMPEP-d2 PET-tutkimukset osoittivat 
alentunutta merkkiainekertymää APP/PS1-21 hiirimallissa verrattuna terveisiin eläimiin, ja 
soveltuvuutta tuleviin pieneläinkuvantamistutkimuksiin. 

Tutkimustulokset osoittivat, että muuntogeeniset eläinmallit eroavat merkittävästi toisistaan, 
mikä asettaa haasteita tutkimustulosten vertaamiseen mallien kesken. Aivojen 18F-FDG-kertymä 
vaihtelee tautimallin ja ympäristötekijöiden mukaan, mikä tuo rajoitteita pieneläinkuvantamisen 
toteuttamiseen. Sekä 18F-DPA-714- ja 18F-FMPEP-d2-merkkiaineet pystyivät osoittamaan 
Alzheimerin taudille tyypillisiä aivomuutoksia APP/PS1-21 hiirissä, mitkä voitiin varmentaa ex 
vivo menetelmin hiirten aivoleikkeistä. 

Avainsanat: Alzheimerin tauti; positroniemissiotomografia; pieneläinkuvantaminen; energia-
aineenvaihdunta; tulehdus; kannabinoidireseptori; muuntogeeniset hiirimallit 
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  ethylamino)-1-(4-trifluoromethylphenyl)-pyrrolidin-2-one) 
18F-DPA-714 18F-N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethyl- 
  pyrazolo[1,5-α]pyrimidine-3-yl)acetamide 
2-AG  2-arachidonoylglycerol 
%ID/g  normalized percentage of the injected radiotracer dosage per weight of  
  the animal 
γ  gamma 
μ  micro 
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AEA  N-arachidonoylethanolamide 
am  ante meridiem 
APOE  apolipoprotein E 
APP  amyloid precursor protein 
ATP  adenosine triphosphate 
BC  before Christ 
BSA  bovine serum albumin 
CBR  cannabinoid receptor 
CERARD Consortium to Establish a Registry for Alzheimer’s Disease 
CNS  central nervous system 
COX  cyclo-oxygenase 
CSF  cerebrospinal fluid 
CT  computed tomography 
DTT  dithiothreitol 
ECS  the endocannabinoid system 
EO-FAD early-onset familial Alzheimer’s disease 
FAAH  fatty acid amide hydrolase 
fMRI  functional magnetic resonance imaging 
glu  glucose 
GABA  gamma-aminobutyric acid 
GFAP  the glial fibrillary acidic protein 
GLUT  glucose uptake transporter 
HCl  hydrochloride 
Ki  equilibrium constant 
Iba1  ionized calcium-binding adapter molecule 1 
IL  interleukin 
IFN  interferon 
IP  intraperitoneal 
IV  intravenous 
keV  kiloelectron volt 
LOAD  late-onset Alzheimer’s disease 
LogP  partition coeffient 
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MAGL  monoacylglycerol lipase 
MAPT  microtubule-associated protein tau 
MAO-B  monoamine oxidase B 
MCI  Mild Cognitive Impairment 
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MRI  magnetic resonance imaging 
mRNA  messenger RNA 
mtDNA  mitochondrial DNA 
mtRNA  mitochondrial RNA 
NIA-AA  the National Institute on Aging and Alzheimer’s Association 
NFT  neurofibrillary tangle 
p.i.  post injection 
PET  positron emission tomography 
pH  pondus hydrogenii 
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PSEN  presenilin 
PSL/mm2 photostimulated luminescence intensity per square millimeter 
p-tau  phosphorylated tau 
Rf  retention factor 
ROI  region of interest 
ROS  reactive oxygen species 
SDS  sodium dodecyl sulfate 
SPM  statistical parametric mapping 
SUV  standardized uptake value 
SUVglu  standardized uptake value corrected for the individual baseline blood 
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T½  half-life 
TBS-T  Tween Tris-buffered saline 
TG  transgenic 
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TNF  tumor necrosis factor 
T-tau  total tau 
TREM2  the triggering receptor expressed on myeloid cells 2 
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1 INTRODUCTION 

Alzheimer’s disease (AD) is the most common memory disorder in the aging population and is 
characterized by a progressive cognitive decline and loss of memory, eventually leading to the 
need for institutional care and the development of terminal secondary illnesses. In Finland, the 
number of people stricken with age-related dementia is estimated to be over 190 000, with that 
number increasing by approximately 14 500 new cases every year due to the increasing numbers 
of elderly (THL muistisairauksien yleisyys). AD is traditionally explained by an aggressive 
accumulation of abnormally formed β-amyloid (Aβ) peptide outside the cells and intracellular 
aggregation of hyperphosphorylated tau protein in paired helical filaments, eventually forming 
dense neuritic plaques and neurofibrillary tangles (NFTs), respectively, and leading to synaptic 
disruption and neuronal cell death (Braak and Braak 1997). Previously, these histopathological 
hallmarks were detected only via post mortem from brain autopsy samples dissected from 
deceased AD patients. In addition to the proteinopathological changes, years of in-depth research 
have produced a convincing body of evidence indicating that other pathological changes are 
involved in progression of the disease and, thus, in the cognitive decline. These complex signaling 
pathways include proinflammatory revival, mitochondrial dysfunction, altered cerebral glucose 
metabolism, and deficits in several aspects of the neurotransmitter machinery, including the 
endocannabinoid system (ECS), many of which are thought to be present decades before the first 
symptoms (Bedse et al. 2015; Clarke et al. 2018; Hansen et al. 2018). Currently, no single method 
is available that can help in making a reliable AD diagnosis, although several tools have been 
utilized for examining human memory and cognition, as well as revealing structural alterations in 
the brain, and changes in the levels of cerebrospinal fluid (CSF) biomarkers (Käypä Hoito A 
2016). 

Positron emission tomography (PET) is a nuclear medical imaging method that can be used for 
real-time monitoring of tissue metabolism or neurotransmitter function in a living human or 
animal. PET is based on the administration of tracers labelled with radioactive isotopes, which 
target a specific biological system. Consequently, PET has represented a noninvasive way to 
follow changes in cerebral energy metabolism or Aβ plaque formation inside the brain of a living 
AD patient. Even though PET is beneficial in clinical research, this imaging method is still too 
laborious to be used in routine diagnostics, although it is applied to examine borderline cases 
(Rabinovici et al. 2007; Foster et al. 2007; Minoshima et al. 2001; Bohnen et al. 2012). 2-Deoxy-
2-18F-fluoro-D-glucose (18F-FDG) is a glucose analogue that can be used to detect in vivo 
decreases in cerebrocortical glucose metabolism, which are considered to be one of the major 
pathological hallmarks in the AD brain. The severity of the hypometabolic features has been 
correlated with the temporal pattern of cognitive decline. For this reason, 18F-FDG PET findings 
have been included into the small pool of the AD diagnostic biomarkers (Jack et al. 2013 and 
2018). However, disease models of AD have revealed fluctuating cerebral metabolism in response 
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to the variable methodological and analytical procedures, as well as genetic differences between 
the models. Nevertheless, the deterioration in glucose utilization within human neurons has been 
postulated to originate mainly from a functional impairment of mitochondria, the energy 
powerhouse of the cell. Mitochondrial respiration is thought to be detrimentally affected by the 
upregulation of translocator protein (TSPO; Papadopoulos et al. 2006). TSPO is abundantly 
present on the glial cell membrane in a known neuroinflammatory process in trauma and 
neurodegenerative diseases (Chen and Guilarte 2008). Currently, non-specific TSPO increase in 
AD cascade can be monitored by PET in clinical and preclinical research. One of the many 
radiotracers useful for this purpose is 18F-N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-
dimethyl-pyrazolo[1,5-α]pyrimidine-3-yl)-acetamide (18F-DPA-714), which possesses useful 
characteristics, including the ability to discriminate AD patients from healthy controls (Hamelin 
et al. 2016). This differentiating property has also been demonstrated in an AD transgenic (TG) 
mouse model (Sérrière et al. 2015; Chaney et al. 2018). However, the search for a reliable PET 
imaging agent that targets neuroinflammation is still a work in progress, underlining the need for 
further evaluation studies with different tracers and neuroinflammation targets with respect to AD. 
The type 1 cannabinoid receptor (CB1R) may be one of these targets; this system has been 
suggested to participate in the pathological pathways involving mitochondrial dysfunction and 
neuroinflammation. CB1R is one of the most abundant receptors in the brain, and is present not 
only in the neuronal membranes but also at the mitochondrial membrane (Brailoiu et al. 2011). 
These receptors are part of the complex cerebral system that controls excitatory and inhibitory 
neurotransmitter release, synaptic plasticity, memory, and the immune system (Freund et al. 2003; 
Benard et al. 2012). Disturbances within this system have been shown to enhance proinflammatory 
responses via glia cells that may provide an indirect measurement of neuroinflammation in the 
diseased brain (Bedse et al. 2015). However, despite researchers investigating PET tracers 
targeting CB1Rs for the past 10 years, progress has been slow, and monitoring changes in receptor 
availability in neurodegenerative diseases has been challenging. One of the most recently designed 
radioligands, ((3R,5R)-5-((3-(18F-fluoromethoxy-d2)phenyl)-3-((R)-1-phenyl-ethylamino)-1-(4-
trifluoromethyl-phenyl)-pyrrolidin-2-one) (18F-FMPEP-d2), has demonstrated to possess superior 
tracer qualities, including reduced lipophilicity compared to the previously developed CB1R PET 
ligands (Terry 2009a; Terry et al. 2010). Thus, the applicability of this tracer would be interesting 
to evaluate in laboratory mice and preclinical studies related to AD. If it proves capable of 
revealing temporal CB1R changes in AD disease models then hopefully it could be applied in AD 
patients in the future.  

Disease-modifying therapeutics are not yet available for AD. Anti-amyloid targeting drug 
discovery has been unsuccessful, perhaps because of the large number of unresolved questions 
regarding the neurodegeneration in both the human brain and animal models. Thus, there is an 
urgent need to clarify the pathogenic profile beyond amyloid plaques in a causal and temporal 
manner, and to unravel the interplay between different pathological pathways leading to AD. 
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Therefore, the aim of this thesis work was to evaluate the translational usability of cerebral glucose 
utilization, TSPO-based neuroinflammation, and CB1Rs targeting PET radioligands for use in 
preclinical in vivo imaging studies in AD mouse models. Three TG mouse models (APPswe-PSIdE9, 
Tg2576, and APP/PS1-21) were evaluated using the cerebral glucose metabolism targeting PET 
tracer 18F-FDG with cross-sectional APPswe-PSIdE9 and Tg2576; Study I) or longitudinal 
(APP/PS1-21; Study II) study protocols. The longitudinal follow-up suitability of TSPO targeting 
tracer 18F-DPA-714 (Study II) and CB1R targeting tracer 18F-FMPEP-d2 (Study III) were 
examined in aging APP/PS1-21 mice. In addition, prior to the follow-up study in APP/PS1-21 
mice, the applicability of 18F-FMPEP-d2 was evaluated in mice focusing on metabolism, 
distribution, and specificity with the respect of future preclinical in vivo imaging studies (Study 
III). The relationships between Studies I-III are illustrated in Figure 1. 

 
Figure 1. The interconnections between the Studies I−III. 
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2 REVIEW OF LITERATURE 

2.1 FROM COGNITIVE DECLINE TO ALZHEIMER’S DISEASE 

“Diseases of all kind dance around the old man in a troop. But worse than any loss in the body is 
the failing mind, which forgets the names of slaves, and cannot recognize the face of the old friend who 

dined with him last night, nor those of the children whom he has begotten and brought up.” 
                                                                                                                         Juvenal, 1st century 

The history of dementia extends almost 3000 years back to the ancient Mediterranean cities. One 
of the oldest descriptions of human memory deficits originates from the ancient Egyptian maxim 
from the 8th century before Christ (BC), which further puzzled several famous Greek 
philosophers, Pythagoras, Plato, and Aristoteles. In the late era of the Greek-Roman medicine in 
the 2nd century BC, a famous doctor Galenos postulated the most popular theory for cognitive 
decline, dementia senilis, which referred to an inevitable cognitive decline due to aging 
(Berchtold and Cotman 1998; Haltia 2003). Unfortunately, many individuals with dementia were 
most often viewed as being mentally insane and therefore, were kept incarcerated in prisons. It 
was not until the beginning of the 19th century, when a French physician, Philippe Pinel, 
suggested that insanity was not a crime, but more often a disease. Ultimately, this humanitarian 
reform led to identification of different forms of mental disorders with dementia being subdivided 
into different categories (McGrew 1985). In late 19th century, the progress in clarifying the brain 
anatomy as well as advances in instrumentation and microscopy increased our understanding of 
the relationship between brain weight loss and arteriosclerotic atrophy with the symptoms of 
dementia. The German psychiatrist and neuropathologist, Alois Alzheimer, observed in the 
1890’s that atheromatous blood vessel degeneration accompanied with stroke was a crucial 
triggering event for the development of brain atrophy and senile dementia (Forstl and Howard 
1991). In 1906, by applying recently developed staining methods, Alzheimer was able to reveal 
startling neuropathological features, such as abnormal fibrils and deposits, in the brain of his 
deceased 51-year-old patient, Auguste Deter. After years of following the progression of the 
cognitive impairment in his patient, and finally confirming that the abnormal histopathological 
brain changes were related to the symptoms, Alzheimer was able to publish the first clinical 
description of new brain disease, which we currently recognize as AD. 

Cognitive decline and dementia 

Cognition is a process in which knowledge and understanding are involved when a person is 
thinking, feeling, or experiencing. Subtle declines in cognition are a common feature during 
healthy aging in terms of learning, remembering, or performing executive functions (Salthouse 
2012), however the kinds of declines in cognitive functions that affect an individual’s everyday 
life, are considered as abnormal and feared. Abnormal cognitive decline consists of impairments 
in inductive reasoning, spatial orientation, perceptual speed, and abilities in numeric and verbal 
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understanding (Ray and Davidson 2014). One of the stops on the continuum of the cognitive 
decline is Mild Cognitive Impairment (MCI) with healthy aging at one end of the spectrum and 
diagnosed dementia at the other. The prevalence of MCI is between 10% to 20% in adults aged 
65 or over, and it is a clinical stage, in which although a cognitive impairment is evident, it does 
not interfere with the person’s abilities to perform everyday life tasks (Knopman and Petersen 
2014; Plassman et al. 2008). In contrast, clinical dementia is a progressive heterogenic syndrome 
that is composed of a complex deterioration in cognitive function caused by a variety of different 
diseases or brain injuries (Figure 2). The most characteristic dementia symptoms are memory 
loss, an inability to manage straightforward tasks, and changes in mood and personality. To date, 
there are over 100 causative forms of dementia, with the most common being AD, vascular 
dementia, dementia with Lewy bodies, Parkinson’s dementia, and frontotemporal dementia; all 
of these diseases cause temporal brain damage and loss in memory via different mechanisms with 
different disease onsets. Currently, 50 million people worldwide have been diagnosed with some 
kind of clinical dementia, but it is believed that many more are never diagnosed. It is projected 
that the total number of dementia patients will reach nearly 152 million by 2050, and the majority, 
approximately 60−70% of all dementia cases are attributable to AD (Patterson 2018; WHO 2018 
Dementia). 

AD is an irreversible, progressive neurodegenerative syndrome that abnormally affects the aging 
brain by destroying cognition, deteriorating episodic memory, causing abnormal behavior and 
mood, and increasing the difficulties in coping with everyday life. While the disease progresses, 
the ability to recognize time and place becomes impossible (Jack et al. 2018). Traditionally, AD 
has been divided in the clinic into three different phases according to the symptoms: preclinical, 
prodromal, and AD dementia. Preclinical AD refers to a stage where pathological processes in 
the brain have begun to progress but there is no signs of symptoms crossing any clinical diagnostic 
threshold. Only recently, preclinical AD has been divided further into three sub-stages according 
to CSF biomarkers, which include abnormal amyloid markers (stage 1), with a combination with 
tau markers (stage 2), and the presence of a subtle cognitive decline (stage 3) (Sperling et al. 
2011). Prodromal AD refers to a predementia phase, where mild cognitive alterations have 
already occurred with confirmed brain imaging markers. The differentiation between prodromal 
AD and MCI is suggested to be somewhat mercurial, since in both cases, there is a decline in one 
or more distinguished cognitive domains. In AD dementia, cognitive impairments have become 
so obvious that they pass the threshold for a clinical diagnosis since individual’s abilities to 
perform simple daily duties have become evidently restricted (Dubois et al. 2014). Not 
surprisingly, these stages might overlap with one and another, and the different stages are difficult 
to distinguish. Thus, the recent proposals issued by the National Institute on Aging and 
Alzheimer’s Association (NIA-AA) state that AD should regarded as a continuum, and not 
separated into distinct stages (Vos et al. 2013; Dubois et al. 2014; Jack et al. 2018). 
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Figure 2. Typical warning signs related to dementia syndromes. Characteristical symptoms may become evident 
already at the early disease phase or during progressed dementia. 

In histopathological aspect, the most known characteristic findings in the AD brain are a 
shrinkage in the cortical and hippocampal gray matter, and an enlargement of the ventricles. 
These pathological hallmarks progress for decades, and start long before there are signs of 
cognitive decline. In neuropathological level, AD is characterized by an abnormal aggregation of 
extracellular Aβ peptide fragments and intracellular NFTs of paired helical filaments composed 
of hyperphosphorylated tau proteins (Braak and Braak 1997). Temporally, Aβ pathogenesis 
begins in the neocortex, then extends to the subcortical structures and cerebellum as the disease 
progresses, whereas NFTs have been shown to originate from the transentorhinal cortex and 
extend to the hippocampus and neocortical area (Braak and Braak 1997; Thal et al. 2002). 

This review of literature will focus on AD, especially on the risk and protective factors of the 
disease, and then proceed to examine the complex pathophysiological mechanisms behind the 
cognitive dysfunctions. Finally, in conjunction with the expanding knowledge of current AD 
diagnostics and the potential of using PET for this task, we will justify the thinking behind the 
experiments conducted and described in the original publications. 

Risk factors 

The causality of AD is still a matter of debate even though it has been investigated for decades. 
While age is known to be the greatest risk factor for developing AD, there are also numerous 
genetic and environmental risk factors involved with the disease. Since AD is a heterogenic 
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disease with no curative treatment available, confirming the potential risk factors would enable 
the early detection in the establishment of the disease in individuals even before irreparable 
damage had occurred. In the end, this could open new vistas for drug discoveries. 

Genetic risks 

The characteristic differentiation into either early-onset familial (EO-FAD) or late-onset AD 
(LOAD) is based on an evaluation of risk factors of the disease - age and genetic background. 
Only 1−5% of the patients have an EO-FAD profile, which affects individuals already at an age 
between 30 to 60 years (Reltz 2011). EO-FAD is considered to be a more severe and aggressive 
form of the disease and is usually linked with autosomal dominant mutations in one of the three 
genes: Amyloid precursor protein (APP, in chromosome 21), presenilin-1 (PSEN1, in 
chromosome 14) or presenilin-2 (PSEN2, in chromosome 1). These genes encode APP and 
presenilin proteins 1 (PS1) and 2 (PS2) that are involved in the proteolytic processes, which 
eventually lead to the Aβ peptide production, the principal compound in the protein aggregates 
found in the brains of AD patients (Goate et al. 1991; Sherrington et al. 1995; Levy-Lahad et al. 
1995). Mutations in PSEN1 represent the majority of the EO-FAD cases, while APP and PSEN2 
mutations are rarer (Tanzi 2012). Furthermore, recent findings also suggest that there are different 
risk genes other than APP, PSEN1, or PSEN2 involved in the heritability of AD (Rademakers et 
al. 2005; Ostojic et al. 2004), and a protective APP gene variant against amyloid pathology 
exclusively among Icelandic and Scandinavian people (Jonsson et al. 2012). 

The majority of the AD patients are considered to have LOAD i.e. a sporadic profile, with the 
symptoms usually developing after the age of 65. From the clinical point-of-view, EO-FAD and 
LOAD are generally agreed to be the same disease, although there are distinguishable differences 
in the underlying temporal pathogenesis. Although the origin of LOAD is still unresolved, there 
is a convincing body of evidence that the onset of the disease is composed of complex interactions 
between genetic risk factors and the environmental risks and lifestyle choices, which together 
determine the lifetime risk for developing clinical AD (Tanzi 2012). It is apparent that no specific 
gene is responsible for the establishment of LOAD, however, one gene variant, an ε4 allele of the 
apolipoprotein E gene (APOEε4, in chromosome 19) has been demonstrated to increase the 
LOAD risk (Strittmatter et al. 1993; Tanzi 2012). A single ε4 allele increases the risk by 
approximately 3-fold, whereas two copies elevates the risk for AD nearly by 16-fold. However, 
the precise mechanism by which APOEε4 elevates the AD risk is not totally understood, but the 
presence of this allele is not considered to be necessary for developing LOAD since not all 
APOEε4 carriers are destined to suffer AD (Myers et al. 1996). In addition to APOEε4, numerous 
genome-wide association studies have shown that there are other risk gene variants involved in 
the pathogenesis of LOAD, such as neuronal sortilin-related receptor gene (Rogaeva et al. 2007), 
the clusterin gene, the complement component (3b/4b) receptor encoding gene, the PI-binding 
clathrin assembly protein encoding gene (Harold et al. 2009; Lambert et al. 2009), and the 



18 Review of literature 

bridging integrator 1 gene (Tan et al. 2013). Furthermore, the discovery of an AD-variant of the 
triggering receptor expressed on myeloid cells 2 gene (TREM2) as being highly expressed by 
microglia cells in the AD brain emphasized the crucial role of neuroinflammatory markers in AD 
onset (Guerreiro et al. 2013; Jonsson et al. 2013; Reltz 2011; Onyango 2018). 

Environmental risks 

Several environmental risk factors and lifestyle choices have been linked to the dementia 
pathway, affecting the disease etiology or the overall outcome. Figure 3 represents the wheel of 
the potential modifiable dementia risk factors, which are collected from several epidemiological 
cohort studies and reported annually by the global Alzheimer’s Disease International federation 
(www.alz.co.uk). Females are more likely than males to develop sporadic AD; this difference has 
been speculated to be related to the APOEε4 allele, metabolic factors, and estrogen interaction 
during the menopause (Duarte et al. 2018). Traumatic brain injury, depression, physical 
inactivity, midlife obesity, and low educational attainment have shown to further exert an impact 
on overall health and the prevalence of AD (Fleminger et al. 2003; Hartman et al. 2002; Franz et 
al. 2003; Norton et al. 2014; Reitz and Mayeux 2014), together with alcohol overconsumption 
and smoking (Harwood et al. 2010; Norton et al. 2014; Käypä Hoito A 2016). Cerebrovascular 
impairments in response to severe vascular disorders, such as ischemic stroke, atherosclerosis, 
mid-life hypertension, and cardiac diseases, have also been shown to be linked to dementia by 
increasing the overall risk (Kivipelto et al. 2001; Whitmer et al. 2005; Morović et al. 2009; 
Viswanathan et al. 2009; De la Torre 2009; Skoog and Gustafson 2003). In addition, there is 
evidence emphasizing the strong relationship between type 2 diabetes and AD, indicating that 
insulin resistance or impairments in insulin signaling promote neurodegenerative pathology and 
double the risk for disease prevalence (Takeda et al. 2010; Leibson et al. 1997; Mehla et al. 2014) 
via neuroinflammatory or oxidative stress related mechanisms (Bharadwaj et al. 2017). 
Consequently, according to a population-based and proof-of-concept randomized controlled trial, 
risk factors involved in midlife obesity and hypertension, type 2 diabetes, smoking, depression, 
and low education could potentially be prevented if an individual was better informed, motivated, 
or treated (Ngandu et al. 2015; Reitz and Mayeux 2014). Exercise might assist controlling the 
body weight as well as promoting mental and brain health. Physical activity triggers continuous 
oxidative stress that induces a series of counteractive mechanisms enhancing mitochondrial 
function to combat the effects of reactive oxygen species (ROS) (Onyango et al. 2010; Radak et 
al. 2016). Some dietary choices, such as a diet rich in vegetables, fruits, and polyunsaturated fatty 
acids but low in red meat and added sugar, have been shown to reduce the incidence of metabolic 
disorders and thus, AD (Scarmeas et al. 2006). Other beneficial factors preserving health and 
cognition include an active social network and lifestyle, and high education (Reitz and Mayeux 
2014). 
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Figure 3. Wheel of the evidence-based, modifiable dementia risk factors targeted especially to middle-aged 
people. Strongest evidence of the association to dementia risk has been found with the type 2 diabetes, smoking, low 
education, physical inactivity, and mid-life obesity. Moderate association to dementia risk has been identified with mid-
life hypertension and unfavorable dietary choices. Weak evidence-based association has been demonstrated with alcohol 
overconsumption, suffered depression, and hyperlipidemia for overall dementia risk. Modified from the World 
Alzheimer’s Report 2014. 

2.2 ALZHEIMER’S DISEASE − PATHOGENESIS 

The complexity of AD pathophysiology has been investigated for decades, yet the origin of the 
disease is still a mystery, emphasizing the complexity of the undiscovered mechanisms behind 
the pathological processes of this disease. It is, however, recognized that AD is not due to a single 
culprit, which is responsible for the neuronal cell loss, instead several mechanisms have been 
shown to play a role in the etiology of AD. Therefore, the ongoing AD research has concentrated 
on seeking new mechanisms in addition to the well-known amyloid cascade. 

2.2.1 Proteinopathies 

The amyloid cascade hypothesis has greatly influenced AD research such as the search for 
therapeutic interventions, perhaps due to its undoubted benchmark status in the etiology of AD. 
According to the original hypothesis, the amyloid cascade consists of a complex series of events 
in which the production and accumulation of pathological microaggregates of Aβ1-42 lead to the 
formation of hyperphosphorylation of tau, and eventually to neuronal cell loss and  the appearance 
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of clinical dementia (Hardy and Higgins 1992; Hardy and Selkoe 2002). 

Type I glycosylated transmembrane protein APP is involved in several neuronal functions 
including neural stem cell development, neuronal survival and repair, and synaptic plasticity 
(Dawkins and Small 2014) even though the main physiological function of APP remains 
unknown. The APP gene is located in chromosome 21, and the corresponding APP protein is 
considered to be the precursor of the main pathological component of amyloid plaques in AD, 
Aβ peptide. APP is synthetized in the endoplastic reticulum from where it is first transported to 
the trans-Golgi-network and then to the cell surface (Zhang et al. 2011), where it is cleaved by α-
secretase (non-amyloidogenic pathway) or β-secretase (amyloidogenic pathway). Cleavage by α-
secretase produces soluble APP ectodomains (sAPPα), which have been linked to neuronal 
plasticity and cell survival, whereas cleavage by β-secretase forms APP ectodomains releasing 
soluble APPβ, which have been shown to mediate neuronal cell death (Nikolaev et al. 2009). 
After the cleavage by β-secretase, the remaining carboxyl terminal fragment of APP (CTFβ) in 
the cell membrane is further cleaved by γ-secretase, which is composed of active PS1 and PS2, 
and generates soluble Aβ1-40 and Aβ1-42 while releasing the intracellular APP domain (AICD) 
(Figure 4). Aβ1-42 is more prone to fibril formation and further aggregation into soluble Aβ 
oligomers. An Aβ1-42 or Aβ1-42/Aβ1-40 ratio increase will trigger the formation of Aβ amyloid 
fibrils, which further develop into senile plaques. This event is suggested to be the main cause in 
the establishment of neurotoxicity and tau pathology, as well as neuronal cell death, oxidative 
stress, and glia cell activation (Hardy and Higgins 1992; Zhang et al. 2011; Kametani and 
Hasegawa 2018). 

The amyloid cascade hypothesis has been supported by the discovery of autosomal dominant 
mutations in three genes APP, PSEN1, and PSEN2, all of which enhance the production of Aβ in 
EO-FAD. However, this hypothesis has faced criticism with regard to the biased pathological 
mechanisms and their relationship to the disease onset and cognition (Aizenstein et al. 2008; 
Mintun et al. 2006), and thus, evidence emerging in the last two decades has brought new 
perspectives into our understanding of AD. Aβ peptide, while being the key component in neuritic 
plaques in AD, is also a typical APP secretion product during normal cellular metabolism (Haass 
et al. 1992). It has also been postulated that insoluble Aβ1-42 fibrils would not be responsible for 
the synaptic dysfunction, but instead the culprits are the soluble Aβ oligomers that are impossible 
to detect in amyloid plaque immunohistochemical stainings (Selkoe 2000; Hardy and Selkoe 
2002). Furthermore, some evidence has proposed that Aβ accumulation and tau pathology are 
two interacting independent series of events (Duyckaerts 2011). This proposal is supported with 
the fact that genetic mutations in Aβ production lead to clinical AD, whereas a genetic tauopathy 
does not cause AD (Goate et al. 1991; Hutton et al. 1998). Aβ accumulation has been shown to 
impair cerebral blood flow, which lowers the availability of glucose within the neurons,  further 
worsening  the  cerebral blood  flow  and  activating neuronal  cell  death   (Popa-Wagner et  al. 
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Figure 4. Amyloid precursor protein (APP) processing by two different pathways. In non-amyloidogenic pathway, 
a cleavage by α- and γ-secretase will produce secreted (sAPPα) and intracellular (AICD) APP domains. In the 
amyloidogenic pathway, the cleavage by β- and γ-secretase will produce an intracellular APP domain (sAPPβ), but also 
a variety of β-amyloid (Aβ) peptides of different lengths, of which Aβ1-40 and Aβ1-42 are related to Alzheimer’s disease. 
The figure was inspired by Fig. 1 in Amtul 2016. 

 2015). Indeed, Aβ is known to speed up the AD pathogenesis, however, on its own, it might be 
unable to trigger neurodegeneration or cognitive decline (Jack et al. 2018). The most recent data 
from a longitudinal follow-up study with asymptomatic at-risk individuals for AD indicated that 
Aβ should not be considered as a cause of AD, but rather as one of the risk factors (Dubois et al. 
2018). These discrepancies in the amyloid cascade hypothesis might partly explain the failures 
of anti-amyloid treatment clinical trials, and emphasize the need to examine the possible benefits 
of non-amyloid treatment approaches. 

Neurodestructive tau depositions, i.e. intracellular NFTs in the brain, are the earliest 
neuropathological feature and a hallmark of the AD pathogenesis, being detectable as early as 
before the age of ten (Braak and Del Tredici 2011). It has been suggested to be one of the variants 
leading to cognitive impairment in later adulthood, because studies have revealed a correlation 
between NFT and gray matter atrophy loci, i.e. neurodegeneration, seen in the early AD (Braak 
et al. 2006). NFTs are formed from aggregates of filamentous tau protein, which is an unfolded 
protein that binds to the axonal (Binder et al. 1985) or dendritic (Tashiro et al. 1997; Klein et al. 
2002) microtubules in order to stabilize the cell structure. Tau has a total of six isoforms, which 
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are expressed as three (3R) or four (4R) replicates and produced via alternative splicing of 
microtubule-associated protein tau gene (MAPT) in chromosome 17 (Goedert et al. 1989). The 
microtubule binding properties of tau are dependent on its phosphorylation status and the 
resulting conformation, as well as being linked with the activities of the related kinases and 
phosphatases (Hanger et al. 2009). Excessive phosphorylation of tau as a result of conformational 
changes, MAPT mutations, or interactions with other proteins, such as Aβ, is speculated to lead 
to neuronal dysfunction and eventually to its accumulation and aggregation into paired helical 
filament structures (Braak and Braak 1997; Lewis et al. 2000). The tau hypothesis in AD, on the 
other hand, differs from the mainstream amyloid hypothesis; it postulates that the dendritic 
accumulation of tau makes neurons more vulnerable to Aβ depositions, and thus, accelerates the 
pathogenetic processes leading to AD (Kametani and Hasegawa 2018). This hypothesis is 
supported by the evidence of the appearance of the tau lesions preceding earlier than amyloid 
deposition (Braak and Del Tredici 2014; Bennett et al. 2004). 

2.2.2 Neurodegeneration 

Synaptic impairment and neuronal cell loss are very early events in the pathogenesis of AD, being 
present in the preclinical stage of the disease. The cell loss progresses to gray matter atrophy, 
which initiates in the hippocampal cell layer CA1 and entorhinal cortex layer 2 (Bali 1977; 
Gómez-Isla et al. 1996). Atrophy further spreads to the temporal gyrus, and frontal and parietal 
cortices (Coleman and Flood 1987), and during the late stage of the disease, to the entire brain. 
Synaptic loss and neuronal damage are thought to be derived from several factors, such as 
synaptic protein malfunction or decreased mitochondrial RNA (mtRNA) levels (Callahan et al. 
1999; Gylys et al. 2004) but most prominently from the accumulation of NFTs, which correlates 
well to the gray matter atrophy and progressive cognitive decline (Jack et al. 2013). In contrast, 
convincing evidence for a correlation between neuronal loss and Aβ pathology is still missing 
(Jack et al. 2018). 

2.2.3 Metabolic impairments 

The indisputable causal role of the abnormal protein aggregation in the EO-FAD poorly explains 
the underlying causes for sporadic AD. Thus, alternative hypotheses have emerged in response 
to the growing body of evidence postulating that AD is far more complex than being simply a 
proteinopathy. Findings from clinical and animal studies have revealed that a variety of metabolic 
impairments begin to develop within several biological systems related to energy production and 
insulin-related activities (Clarke et al. 2018). The metabolic disturbances related to obesity and 
diabetes have also been shown to be associated with AD, sharing many similar biological features 
(Bharadwaj et al. 2017; De Felice 2013; De Felice and Ferreira 2014). In normal circumstances, 
neuronal energy metabolism and brain glucose utilization include mitochondrial-generated 
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oxidative phosphorylation, insulin signaling pathways, and glucose transporter mediated energy 
uptake. Together these form a complex of synergistic and symbiotic processes involving multiple 
signaling pathways, metabolites, enzymes, transporters, and other compounds, which all work in 
parallel to maintain neuronal functionality. In terms of energy metabolism, AD is traditionally 
characterized by decreased neuronal glucose uptake, impaired insulin signaling, and altered 
receptor functions related to energy production or transfer; these will be briefly discussed in the 
following chapters (Yin et al. 2016; Clarke et al. 2018).  

During normal cell homeostasis, mitochondria play a key role in energy metabolism and 
apoptosis, transferring and storing the energy that cells need via adenosine triphosphate (ATP). 
It is vital for the cell survival that these organelles function efficiently and there is an equilibrium 
between mitochondrial fusion and fission reactions. This ensures steady energy production, cell 
homeostasis, Ca2+ signaling, normal production of ROS, and regulation of apoptosis (Chan 2006; 
Chen et al. 2005; McBride et al. 2006; Yu et al. 2006). In neurons, mitochondria have been 
demonstrated to be involved in neurotransmission by regulating the ATP levels in the nerve 
endings (Smith et al. 2016; Pathak et al. 2015). Thus, not surprisingly, impairments in this crucial 
energy metabolic system lead to disruption of neuronal function and structure. 

Mitochondrial dysfunction and oxidative stress are early signs in the pathogenesis of AD, which 
are considered to be consequence behind the glucose dysmetabolism detected in both AD patients 
and disease models (Yao et al. 2009; Du et al. 2010; Sultana et al. 2011; Reddy 2011). This 
important finding has encouraged researchers to speculate on the causes of sporadic AD. The best 
known explanation, the mitochondrial cascade hypothesis, postulates that in LOAD, 
bioenergetic dysfunction as a result of genetic mutations in mitochondrial DNA and 
environmental factors, together with the impact of age, determine the rate of the pathological 
mitochondrial changes (Swerdlow and Khan 2004; Swerdlow et al. 2014; Stewart and Chinnery 
2015). These detrimental mitochondrial changes can lead to overexpression of oxidative stress 
markers, tau phosphorylation, inflammasome activation, alterations in APP processing, and the 
synthesis of Aβ1-42 (Blass et al. 1990; Zhou et al. 2011; Swerdlow et al. 2014). Oxidative stress 
further increases the production of ROS and reactive nitrogen species including superoxide 
radical anions, nitric oxide, and peroxynitrile to levels capable of triggering the 
neurodegeneration while decreasing the production of ATP (Tönnies and Trushina 2017) (Figure 
5). In contrast to the hypothesis explaining metabolic impairments in LOAD, Aβ is thought to be 
the key mediator leading to mitochondrial impairments in EO-FAD as a consequence of the 
autosomal dominant mutations causing mitochondrial impairments, which further trigger the 
characteristic series of metabolic events leading to AD. However, the mitochondrial cascade may 
not be the complete story since previous studies with cells, disease models, and post mortem 
samples related to AD have shown that Aβ accumulates into the mitochondrial compartment, 
which may result in mitochondrial dysfunction and further neuronal cell death (Devi et al. 2006; 
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Figure 5. Mitochondrial dysfunction in Alzheimer’s disease. Mitochondrial cascade is suggested to be originated 
from the intracellular β-amyloid (Aβ) accumulation, inherited and unfavorable genetic factors, mutations in mitochondrial 
DNA (mtDNA), or oxidative stress induced from the environmental factors. Mitochondrial dysfunction is suggested to 
manifest pathological events related to apoptosis, production of reactive oxygen species (ROS), Ca2+ channel 
impairments, opening in mitochondrial permeability transition pore (mPTP), and inhibition of respiratory enzyme 
complex, which are further increasing oxidative stress, inflammatory signaling, and abnormal proteinopathies including 
Aβ and phosphorylated tau (p-tau). Eventually, these changes enhance neuronal cell damage. Cyt C, cytochrome C. 

(Anandatheerthavarada and Devi 2007). Even though there is no consensus about the main reason 
in evoking metabolic impairments in AD, i.e. Aβ or mitochondrial deficits, mitochondria are 
known to be structurally and functionally altered in AD (Burte et al. 2015; Cai and Tammineni 
2016; Onyango 2018). Post mortem experiments have further shown that mitochondrial enzymes 
are underexpressed, mitochondrial mass is decreased, and the amount of mitochondrial DNA 
(mtDNA) increased in the intracellular fluid (Terni et al. 2010; Maurer et al. 2000; Clarke et al. 
2018). Mitochondrial dysfunction has further shown to be accompanied by a release of pro-
apoptotic proteins via Ca2+-induced events, which leads to cellular apoptosis and vascular defects, 
and metabolic disturbances (Moreira et al. 2001 and 2002). 

In addition to energy metabolic impairments, brain insulin signaling has been reported to be 
impaired in AD not only in the human brain but also in the TG disease models (De Felice 2013; 
De Felice and Ferreira 2014; Talbot et al. 2012; Sancheti et al. 2013). Brain insulin resistance has 
been shown to be an early marker in AD pathogenesis with a characteristic features related to 
altered signaling pathways promoting tau hyperphosphorylation and synaptic destruction (Liu et 
al. 2011; Grillo et al. 2015). Insulin and insulin-like growth factor receptors are highly expressed 
in the brain, especially in the hippocampus and neocortex, where they participate in 
neuroprotective processes and mediate mitochondrial function. Unfortunately, AD-related insulin 
resistance and its underlying mechanisms are still poorly understood but they bear resemblances 
with the biomechanical disturbances encountered in type 2 diabetes, and are accompanied by 
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mitochondrial dysfunction (Bonfirm et al. 2012; Ott et al. 2011; Pitt et al. 2017; de la Monte and 
Wands 2005). Altered insulin signaling has also been demonstrated to be derived from 
inflammatory and stress related signaling activations, which might contribute to the impairments 
in memory (Yoon et al. 2012; Bonfirm et al. 2012). 

Glucose is transported passively or actively into the cell depending on the metabolic demands of 
the cell. Active uptake is conducted with the help of glucose uptake transporters (GLUTs). 
In post mortem AD studies, reductions in the levels of GLUT1 and GLUT3 have been observed 
in different brain regions. These changes have been associated with altered glucose metabolism 
and correlated with hyperphosphorylation of tau (Simpson et al. 1994; Liu et al. 2008). TG 
disease models have also revealed reduced GLUT1, GLUT3, and GLUT4 expression in specific 
brain regions in relation to disease model and gender (Hooijmans et al. 2007; Sancheti et al. 
2013). Deficits in the signaling pathway regulating glucose transportation system are not well 
characterized, however, it is possible that there are complex interactions between the 
mitochondrial and insulin related pathological cascades. 

2.2.4 Neuroinflammation 

Neuroinflammation is involved in the vicious cycle in the pathogenesis of AD, which triggers a 
destructive pathway characterized by protein accumulation, activation of resident phagocytes 
known as glia cells, and release of inflammatory mediators leading to disease progression. 
Several types of immune cells have been associated with neuroinflammation, such as 
lymphocytes, monocytes, and macrophages in the hematopoietic system, and glial cells in the 
central nervous system (CNS). Neuroinflammation can be divided into acute and chronic 
inflammation. Acute neuroinflammation refers to the activation of the resident immune cells, 
which eventually leads to destruction of damaged cells in order to limit the injury within the 
tissue. In contrast, chronic neuroinflammation is a deleterious, self-perpetuating response, which 
persists long after the initial tissue injury. A chronic neuroinflammatory cycle refers to a sustained 
response in which peripherally infiltrated cluster of differentiation 4 –positive T cells (Goverman 
2009) accompanied by microglial and astroglial activation in the CNS exert amplified 
destructive effects on neurons. These events cause further release of inflammatory mediators 
through the mitogen-activated protein kinase activation and nuclear factor κB cascade (Munoz 
and Ammit 2010), which eventually lead to damage within the nervous tissue (Cai et al. 2014). 

Microglia have a central role in the inflammatory processes during aging and neurodegenerative 
diseases. In normal circumstances, microglia are resident, but extremely motile phagocytic 
macrophages that comprise nearly 15% of the total cells in the CNS. Their primary mission is to 
support and maintain neuronal plasticity, to protect and remodel synapses, and to destroy and 
clear foreign material via an innate immune response utilizing phagocytic and cytotoxic 
mechanisms (Cai et al. 2014). Microglial phagocytosis and proliferation are stimulated by the cell 
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surface receptor TREM2, which has also been shown to be involved in the uptake of Aβ 
(Takahashi et al. 2005). Alois Alzheimer was the first to describe the abnormalities within the 
microglial structure in the AD brain (Hansen et al. 2018). Now, after decades of research, 
microglia are recognized to have a dual-edged function in the AD pathway, even though their 
ability to bind soluble and fibrillar Aβ is considered to be one of the key processes triggering 
inflammatory mechanisms (Perry and Teeling 2013). During the very early stages of the disease, 
microglia are considered to be neuroprotective rather than proinflammatory as they promote Aβ 
clearance from the neuronal tissues. However, abnormal microglial activation and disturbances 
in their morphology and proliferation due to their enhanced sensitivity to inflammatory stimuli 
eventually prevents the microglia from acting in a neuroprotective manner. The dual role of 
activated microglia has been explained by the proportion of the proinflammatory (M1) and non-
inflammatory (M2) microglial cell phenotypes (Varrone and Nordberg 2015), i.e. an 
overexpression of the M1 activation state is thought to be related to the worsening of AD. 
However, recent evidence has revealed a novel protective subtype of microglia, which express 
genes in a spatial manner to modify the lipid metabolic pathway and microglial inflammatory 
actions, at first without and then via TREM2 both in mouse and human AD brain (Keren-Shaul 
et al. 2017). 

In AD, Microglial activation is a dynamic procedure, in which overexpression of microglial-
related proteins is fundamentally affected by the microglial phenotype stage among other AD 
factors (Figure 6). Binding to Aβ triggers the microglia cells into an activation mode via cell-
surface receptors known as cluster of differentiation 36 and Toll-like receptors 4 and 6, resulting 
in the release of free radicals and thus of various inflammatory molecules such as interleukins 
(ILs) 1 and 6, interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), complement components, 
and chemokines that contribute Aβ production and accumulation (Sochocka et al. 2013; Li et al. 
2013; McGeer and McGeer 2010; Veerhuis et al. 1999). The ongoing Aβ formation and sustained 
exposure of inflammatory mediators further activate proinflammatory factors, which eventually 
evoke a chronic neuroninflammatory cycle (Bianca et al. 1999; Stewart et al. 2010). Microgliosis 
further leads to the establishment of the abnormal expression and function of several other 
components during neuroinflammation. Among different molecules, the expression of 18-kDa 
TSPO (formerly known as the peripheral benzodiazepine receptor) has been shown to be 
elevated during inflammatory revival and glial activation. TSPO is an outer mitochondrial 
membrane protein in glial cells that has been identified both in periphery and CNS at relatively 
low levels in non-pathological circumstances. The exact pharmacological functions of the 
peripheral and brain TSPO are yet to be elucidated. However, TSPO has been associated with a 
variety of different cellular functions such as cell growth and proliferation, calcium flow, 
apoptosis, and cholesterol transport (Papadopoulos et al. 2006; Veenman et al. 2007; Chen and 
Guilarte 2008; Gulyás et al. 2009). Therefore, the upregulation of TSPO in the 
neuroinflammatory pathway leading to AD is considered to affect also mitochondrial respiration 
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Figure 6. Microglial activation in chronic neuroinflammation related to Alzheimer’s disease. Microglial function 
has suggested to have dual-faced role during inflammatory processes, in which resting microglia cells become activated, 
and the proinflammatory phenotype (M1) takes over the anti-inflammatory features (M2). Factors influencing this cascade 
are suggested to be involved in mitochondrial dysfunction, overproduction of reactive oxygen species (ROS), abnormal 
proteinopathies including β-amyloid (Aβ) and phosphorylated tau (p-tau) dominance, and peripheral inflammation 
leakage through blood-brain barrier (BBB). As a result, activated microglia and astrocytes trigger proinflammatory 
component production, which further manifests Aβ and p-tau processing.  

and ROS production since the protein is part of the mitochondrial permeability transition pore. In 
contrast, it has been suggested that TSPO and inflammatory factors, such as ILs and TNF-α, can 
interact with each other, enhancing each other’s pathological pathways (Bourdiol et al. 1991; Oh 
et al. 1992; Choi et al. 2002). In addition to that of TSPO, upregulation of the microglial 
purinergic receptor P2X7 (P2X7R) expression has also been demonstrated in AD patient-derived 
cells, in an Aβ-infused rat model, and in a mouse model of AD (McLarnon et al. 2006; 
Parvathenani et al. 2003). P2X7R is an ATP-gated ion channel that controls Ca2+ and Na+ influx 
and K+ efflux. In pathological conditions, these receptors play an important role in inflammatory 
signaling, e.g. overactivation of P2X7Rs results in the formation and release of IL-1β, and this  
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further increases Ca2+ levels in the cytoplasm, elevating oxidative stress, and evoking a neuronal 
injury (Hide et al. 2000). 

Neuroinflammation is not only characterized by the presence of activated microglia but also of 
astrocyte hyperthrophy and atrophy, which might be triggered by the accumulation of Aβ and 
microglia (Figure 6). In the presence of an abnormal trigger, reactive astrocytes overproduce 
proinflammatory cytokines and chemokines, and increase the expression of glial fibrillary acidic 
protein (GFAP) (Heneka et al. 2015). Overexpression of TSPO has also been detected in the 
reactive astrocytes, however, the contribution to the overexpression of TSPO during 
inflammation between astrocytes and microglia is yet to be confirmed. Nonetheless in non-
pathological conditions, astrocytes maintain neuronal function and Aβ clearance, which they 
mediate via APOE expression (Koistinaho et al. 2004). Furthermore, astrocytes are part of the 
energy supply to the neurons via glucose transportation and the regulation of cerebral blood flow 
(Morgello et al. 1995; Magistretti and Pellerin 1999). However in AD, when they are activated 
in the neuroinflammatory pathway, astrocytes are known to contribute to neurodegeneration, 
oxidative stress, and destruction of the signaling between glia cells and neurons (Acosta et al. 
2017). Due to the pathogenic activation by increased levels of proinflammatory markers, there 
has also been reported to be elevated expression levels of monoamine oxidase B (MAO-B) 
enzyme within the activated astrocytes that is considered to be one of the astrogliotic biomarkers 
of neuroinflammation (Gulyás et al. 2011). 

2.2.5 Endocannabinoid deficits 

The ECS has attracted strong interest as a promising therapeutic target in AD due to the 
convincing evidence that it is one of the key mediators in the brain. The ECS acts at many levels 
for the cerebral function, many of which seem to be altered in AD (Aso and Ferrer 2014; Bedse 
et al. 2015). In general, the ECS is an endogenous lipid signaling system, which mediates the 
neurotransmitter release and regulates the functions of ion channels and other neuronal activities 
(Piomelli 2003). This complex system is composed of G-protein coupling cannabinoid receptors 
(CBRs), the endogenous ligands targeting the receptors, and the enzymes required for ligand 
biosynthesis and degradation. The ECS ligands are very lipophilic molecules that have crucial 
roles in regulating or controlling neurotransmission, e.g. the receptors are involved in 
neuroprotection, immune system, memory, synaptic plasticity, emotions, and even appetite and 
pain (Eljaschewitsch et al. 2006; Kano et al. 2009; Marsicano et al. 2002; Martin et al. 2002; 
Piomelli 2003). The endogenous ligands are postsynaptically produced from membrane 
phospholipids and released only via an on-demand request. These agents can modulate synaptic 
plasticity and promote neuronal activation. Upon release, they act in a retrograde manner to 
activate synaptic CBRs, which reduce either the short- or long-term neurotransmitter release at 
excitatory and inhibitory synapses. The two most abundant ECS ligands in the brain are 2-
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arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide (AEA) (Mechoulam et al. 1995; 
Devane et al. 1992); these compounds are synthetized in various cells types such as macrophages, 
glial cells, endothelial cells, and adipocytes (Walter et al. 2003; Gonthier et al. 2007). 2-AG is a 
full agonist, i.e. receptor activating ligand, for the cannabinoid receptors CB1R and CB2R, 
whereas AEA is a partial agonist for only CB1R (Sugiura et al. 2000). Both 2-AG and AEA are 
very sensitive to enzymatic breakdown; their actions in neurotransmission signaling are 
terminated via cellular intake and enzymatic hydrolysis by serine hydrolases. The principal 
enzymes involved in metabolizing 2-AG and AEA are the presynaptic monoacylglycerol lipase 
(MAGL) and postsynaptic fatty acid amide hydrolase (FAAH). 2-AG is also metabolized to a 
lesser extent by FAAH, serine hydrolases α/β hydrolase domain 6 and 12, and cyclo-oxygenase 
2 (COX2) (Hwang et al. 2010). The ECS receptors are seven-transmembrane domain proteins 
that, after a stimulus, trigger an intracellular cascade of protein inhibition or activation and ion 
channel function, ultimately affecting virtually every neuronal and cellular function. CB1Rs are 
found throughout the body but are mainly localized in the brain both intracellularly in the 
endosomes and also in excitatory and inhibitory presynaptic terminals as well as to a lesser extent 
in postsynaptic terminals and mitochondrial membranes (Mackie 2005; Onaivi et al. 2012; 
Brailoiu et al. 2011). The brain can be said to be replete with these receptors; they are present 
within the neurons and glia cells and are principally localized in the cerebral cortex, cerebellum, 
hippocampus, and basal ganglia with low levels in the thalamus, pons, and medulla, but absent 
in the white matter (Herkenham et al. 1990). The CB1Rs alter neurotransmitter inhibition in 
several ways i.e. adenylate cyclase inactivation, inhibition of calcium influx, and regulating 
mitochondrial activity (Freund et al. 2003; Benard et al. 2012). In contrast, CB2Rs are widely 
expressed in the immune system and CNS, but seem to be only detectable within the microglia 
and astrocytes after an inflammatory signal (Onaivi et al. 2006; Stella 2009). 

The ECS has been linked both causally and temporal manner to AD, however, a complete 
understanding of the complex mechanisms within this interaction is still missing. The ECS seems 
to possess a double-edged role in AD, i.e. exerting neuroprotective actions via CB1R signaling 
mechanisms in the early disease stage, but as the AD progresses, pathological abnormalities 
within the ECS lead to decreased CB1Rs levels, and overproduction and overactivation of the 
CBRs and ECS ligands, which can trigger inflammatory processes via microglial activation 
(Figure 7). Both in vitro and in vivo animal studies have shown that endogenous cannabinoids, 
synthetic receptor agonists, and the ECS reuptake inhibitors are able to diminish the Aβ-triggered 
destruction and neuroinflammatory mechanisms (Chen et al. 2011; Ramirez et al. 2005; Milton 
2002; Esposito et al. 2007; Ehrhart et al. 2005). However, the role of CB1Rs in AD is somewhat 
contradictory according to previous reports from investigations of AD patients and preclinical 
data: Human post mortem AD studies have demonstrated unchanged levels of CB1Rs and CB1R 
messenger RNA (mRNA) in the brain (Westlake et al. 1994; Benito et al. 2003; Mulder et al. 
2011;  Lee  et  al.  2010),  but  also  reduced  CB1R agonist  autoradiographical  binding  in  the 
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Figure 7. Type 1 cannabinoid receptor (CB1R) involvement in the pathogenesis of Alzheimer’s disease. CB1Rs are 
suggested to be affected by the pathological events related to neuroinflammation, β-amyloid (Aβ) accumulation, post-
transcriptional or proliferation changes, and receptor G-coupling dysfunction that cause abnormalities within the receptor 
signaling system. In neurons, levels of CB1Rs and endocannabinoids (eCBs) have shown to be decreased, which prevents 
the CB1R neuroprotective actions. In microglia, due to the proinflammatory response, the function of eCBs via CB1Rs 
seems to be limited, which triggers the production of proinflammatory markers, such as interleukins (ILs), tumor necrosis 
factor α (TNF-α), cyclo-oxygenase 2 (COX2), and inducible nitric oxide synthase (iNOS). In mitochondria, due to the 
overexposure for reactive oxygen species (ROS), CB1R-mediated functions are shown to be limited, which increases the 
function of caspases, Ca2+ influx, and cytochrome C (Cyt C) production that promotes abnormal apoptosis. 

hippocampus, substantia nigra, and globus pallidus (Westlake et al. 1994), as well as decreased 
CB1R expression levels in the cerebral cortex (Ramirez et al. 2005; Solas et al. 2013). However, 
increased CB1R activation (Manuel et al. 2014) and density (Farkas et al. 2012) have been 
reported in the prefrontal cortex and hippocampus in the early disease stage, but this seems to 
decline in the advanced AD stages. In TG animal models for AD, decreased hippocampal CB1R 
levels in association with proinflammatory elevations (Kalifa et al. 2011) or unchanged receptor-
dependent Gi-protein activation (Kärkkäinen et al. 2012) have been observed in the hippocampus 
of the APPswe-PSIdE9 mouse model, whereas in the 3xTg-AD mice, CB1R protein levels were 
markedly decreased (Bedse et al. 2014). In an Aβ1-42-insulted rat model, decreases in the levels 
of cerebral CB1R and its mRNA have also been demonstrated (Esposito et al. 2007), suggesting 
that amyloid pathology alters the ECS. In contrast to the conflicting reports with CB1Rs, CB2Rs 
are clearly upregulated following microglial activation in response to the brain injury, with these 
changes being detected in post mortem AD brain sections. In more detail, cortical protein and 
mRNA levels of CB2R have been shown to be upregulated both in post mortem AD human and 
APPswe-PSIdE9 mouse brain (Benito et al. 2003; Ramirez et al. 2005; Solas et al. 2013; Horti et al. 
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2010; Nunez et al. 2008). Abnormal changes in the expression levels of ECS ligands and enzymes 
have also been reported: the FAAH activity appears to be elevated around neuritic Aβ plaques, a 
process associated with reactive astrocytes and microgliosis of post mortem AD brain samples 
(Benito et al. 2003; Jung et al. 2012; Nunez et al. 2008). Reduced AEA levels in the cortical post 
mortem AD human (Jung et al. 2012) and striatal APPswe-PSIdE9 brain (Maroof et al. 2014) have 
been detected, whereas there are increases in AEA and 2-AG levels in the PS1/AβPP mouse brain 
(Piro et al. 2012). The 2-AG association with AD has further produced somewhat conflicting 
results, since its levels seem to be unchanged in the post mortem AD brain (Jung et al. 2012). 
Hence, there is increasing evidence that the ECS could be a promising interventional target for 
AD, and pharmacological approaches targeting this system have exerted both neuroprotective 
and anti-inflammatory effects, and resulted in reduced Aβ neurotoxicity (Milton 2002) and 
inflammation (Benito et al. 2012; Pihlaja et al. 2015), as well as increased Aβ clearance 
(Bachmeier et al. 2013) with these effects mediated through several synaptic and signaling 
pathways (Bedse et al. 2015). In vitro and in vivo proof-of-principle findings on the 
neuroprotective, anti-inflammatory, and antioxidant effects of the ECS ligand and a non-
psychoactive phytocannabinoid, cannabidiol, have shown that it should be considered as a 
primary candidate for evaluation in an ECS-based treatment strategy to combat AD (Watt and 
Karl 2017). 

2.3 ALZHEIMER’S DISEASE – DISEASE MODELS 

Artificially manifested disease models can be enlightening in revealing the pathological events 
underpinning disease progression at the cellular level. Disease models represent a valuable tool 
in drug discovery research as well as in the evaluation of novel PET radioligands. Many disease 
models for AD have been developed during the past 25 years in attempts to create the perfect 
model, which would capture the typical pathological changes in the brain of human AD patients. 
According to the Alzforum Research Model Database, there are 156 murine and 4 rat models 
available for AD research (Alzforum). Mice have been the favored species since they reproduce 
easily, and they have a short lifespan and modifiable genomes, which make them inexpensive 
and effective research animals (Kitazawa et al. 2012). At present, AD models have been 
predominantly developed as single- or multitransgene-driven murine models based on mutating 
the genes postulated to be involved in the amyloid cascade hypothesis in EO-FAD, i.e. APP, 
PSEN1, and PSEN2. As a result, the majority of the models exhibit overexpression of human APP 
carrying familial AD mutations to promote the Aβ pathology in the brain together with the other 
characteristical features, including glial activation and behavioral changes (Epis et al. 2010; 
Gulyaeva et al. 2017). 

Mouse models expressing human mutant form of APP have been generated by employing one 
or more of the common types EO-FAD mutations into the human transgene; these are 
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implemented into the target model genome under the control of a specific promoter that is 
required for regulating the spatial and temporal transgene expression (Haruyama et al. 2009). The 
most common APP mutations from the dozens of recognized ones are the double KM670/671NL 
“Swedish” (Mullan et al. 1992), V717I “London” (Goate et al. 1991), V717F “Indiana” (Murrell 
et al. 1991), and E693G “Arctic” (Nilsberth et al. 2001) mutations, which have displayed temporal 
Aβ pathology together with the increases in the Aβ1-42/Aβ1-40 proportion in the TG murine brain 
as well as subtle gliosis and impairments in the cognitive abilities of the animals. Dense-core Aβ 
plaques start to develop in these type of TG models at different times – 6 months (APP23, 
Sturchler-Pierrat et al. 1997 and PDAPP, Games et al. 1995), 11-13 months (Tg2576, Hsiao et 
al. 1996), or 13-18 months (APPV717I, Moechars et al. 1999). APP mouse models have also 
revealed increases in the TSPO and MAO-B PET radioligand uptake in the brain when the uptake 
results were compared to age-matched wild-type (WT) control mice (Maeda et al. 2011; 
Rodriguez-Vieitz et al. 2015; James et al. 2015; López-Picón et al. 2018). The other EO-FAD 
genes, PSEN1 and PSEN2, have also been mutated and used to prepare humanized transgenes, 
but the mouse models generated exclusively from these transgenes, such as PS1M146L (Duff et al. 
1996) have not demonstrated AD-like pathology in terms of plaque formation or hypometabolism 
(Poisnel et al. 2012). Subsequently, human APP and PSEN mouse models have been crossed in 
order to produce double TG mouse models, which display an aggressive Aβ aggregation 
pathology (Epis et al. 2010) as an initial signs of Aβ pathology already at the age of 6 weeks 
(APP/PS1-21, Radde et al. 2006) and 6 months (APPswe-PS1dE9, Jankowsky et al. 2001; 
PS2APP, Ozmen et al. 2009; TASTPM, Howlett et al. 2004), together with gliosis, neuronal cell 
loss, and impairments in cognition. The implementation of PSEN gene might proceed the AD 
pathology, which APP does not seem to be able to drive alone. The amount of mutated genes 
lowers the amyloid burden in the murine brain if both APP and PSEN are targeted, as has been 
observed in 5xFAD mouse models, which express Swedish, Florida, and London mutations in 
human APP together with two human PSEN1-mutations (Oakley et al. 2006). However, even 
though amyloid mouse models have offered a robust and relatively reliable reproduction of many 
AD-related features, none of them is a direct replicate of the human AD. The current models 
mimic the human inherited EO-FAD form, which represents only a minor proportion of the total 
number of the cases without focusing on LOAD, which is the disease suffered by the vast majority 
of patients. Furthermore, models tend to fail to manifest some crucial pathological changes, which 
are encountered in the human disease i.e. evidence of neurodegeneration such as the formation of 
NFT, subsequent neuronal cell loss, and gross atrophy. The different levels of Aβ depositions 
present in some TG murine brain do not seem to be sufficient to induce other pathological 
processes nor cause the extent of neuronal loss seen in the human AD brain. These failures might 
be attributed to the differences in the Aβ sequencing and thus, the dissimilar pathologies present 
in the different strains (Epis et al. 2010). Examining cognitive decline with behavioral murine 
studies on AD models must also be carefully considered and evaluate the reliability of the possible 
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study outcomes compared to human disease. Hence, even though the production of AD-like 
features with human EO-FAD mutations has been a gold standard, other approaches have been 
applied with respect to the pathogenesis of LOAD, proceeding to the establishment of more 
realistic AD disease models. As a conclusion, mutations in MAPT variant have been utilized 
either alone to investigate tauopathy or combined with the human TREM2, APP, PSEN1, and/or 
PSEN2 mutations to study AD pathogenesis in a more sophisticated way. Combination models, 
such as 3xTg-AD (Oddo et al. 2003) with human APP Swedish, MAPT P301L, and PSEN1 
M146V mutations and TauPS2APP with human APP Swedish, MAPT P301L, and PSEN2 
N141I, have demonstrated early cerebral Aβ pathology as well as late NFT accumulation together 
with cognitive impairments at a very early disease stage, which seems to mirror the prognosis of 
human AD (Grueninger et al. 2010). Introduction of AD rat models have enhanced the research 
methods and analysis, including ease of arterial blood sampling for biomarker quantification, due 
to larger body size. The APP+PS1 rat model expresses Swedish and Indiana mutations in human 
APP and a single L166P mutation in PSEN1; these animals show cerebral amyloid depositions at 
19 months of age, whereas the APP21 rat mode, which has similar APP mutations without 
PSEN1, does not show any amyloidosis, although there are some signs of neurodegeneration 
(Agca et al. 2016). Much more recent rat models that express aggressive Aβ pathology, 
homozygous McGril-R-Thy1-APP (Leon et al. 2010) and TgF344-AD (Cohen et al. 2013), have 
also demonstrated temporal increases in amyloidosis and microgliosis from 6 months of age, with 
significant neuronal loss and a cognitive decline in much older animals. The TgF344-AD model 
further displays NFT formation at 15 months of age via Swedish APP and delta exon 9 mutation 
in PSEN1 without genetic mutations on MAPT. 

Animals with genetic manipulation of known LOAD risk genes, such as TREM2 and APOEε4, 
have also been generated; these show reduced TREM2 expression around Aβ plaques in 4-month-
old TREM2 R47H KI x APP/PS1-21 mice (Cheng-Hathaway et al. 2018) and delayed Aβ 
pathology in E4FAD mice (Youmans et al. 2012). Furthermore, rodent models involving an 
infusion of Aβ (Van Dam and De Deyn 2011), endotoxin (Hauss-Wegrzyniak et al. 1998), 
synthetic double-stranded RNA (Krstic et al. 2012), or proinflammatory cytokines (Wenk et al. 
2003) have been studied extensively. These animals display novel evidence about the 
involvement of neuroinflammation in the induction of both Aβ and tau. However, these 
experiments will require further validation and standardization especially in minimizing 
procedural artefacts before they can become reliable research models for AD (Van Dam and De 
Deyn 2011). 

2.4 ALZHEIMER’S DISEASE − BIOMARKER-BASED DIAGNOSIS 

Probable AD is traditionally diagnosed by the clear presence of gradually progressing symptoms, 
such as memory problems and difficulties in performing daily tasks, for at least of 6 months. The 
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current AD diagnosis relies on the NINCDS-ADRDA criteria (Mckhann et al. 1984), which with 
respect to probable AD, highlight the importance of exclusion of other reasons for a progressive 
cognitive decline. Nowadays, clinical observations include tests on cognition and memory, such 
as Consortium to Establish a Registry for Alzheimer’s Disease (CERARD) and Mini-Mental 
State Examination (MMSE) in more advanced stages (Käypä Hoito A 2016), which are used to 
obtain an initial test score at the onset of the symptoms and to follow the rate of decline for several 
years. However, the certainty of clinical in vivo diagnosis of probable AD might be lower than 
70%, and a clear diagnosis still needs to be verified by post mortem confirmation with 
neuropathological findings of protein aggregation (Wang et al. 2016; McKhann et al. 2011). This 
emphasizes the importance of finding ways to improve the accuracy of the present clinical 
diagnostics. 

2.4.1 Cerebrospinal fluid biomarkers 

The symptom-based diagnosis has been refined by the knowledge that there are novel biological 
markers, which associate with AD decades before the clinical onset (Jack et al. 2010 and 2013). 
Alterations in the levels of three CSF biomarkers, i.e. decreases in Aβ1-42, and increased total tau 
(T-tau) and phosphorylated tau (p-tau), were the first measurable markers, which could help to 
confirm the symptomatic diagnosis of probable AD (Käypä Hoito A 2016; Blennow and 
Zetterberg 2018). CSF Aβ1-42 changes are more common than CSF tau, and are associated with 
the fibrillar Aβ deposits in the brain. Similarly, increases in the amounts of CSF p-tau reflect 
abnormal NFT burden in the AD brain. Even though alterations in CSF Aβ1-42 begin to develop 
5−10 years before cognitive decline, changes in the CSF Aβ1-42 levels are found also in 
cognitively normal people, which has raised criticisms of this biomarker. Therefore, the CSF Aβ1-

42/1-40 ratio has been considered to be more reliable biomarker for AD due to its stronger diagnostic 
accuracy than CSF Aβ1-42 (Lewczuk et al. 2017). Hence recently, there has been a rising interest 
in finding more reliable biomarkers for AD, including synaptic biomarkers (Blennow and 
Zetterberg 2018), including the dendritic spine protein neurogranin (Reddy et al. 2005), the 
presynaptic terminal synaptosomal-associated protein 25 (Brinkmalm et al. 2014), and the 
presynaptic plasma protein synaptotagmin-1 (Öhrfelt et al. 2016) that have been studied 
extensively, since their levels in CSF have been shown to be drastically changed in AD. 

2.4.2 Magnetic resonance imaging biomarkers 

Magnetic resonance imaging (MRI) is based on mapping the location of the protons, i.e. hydrogen 
atoms, which exist abundantly in water and fat rich regions of the body. By introducing a strong 
magnetic field with a resonating frequency via an MRI device, the hydrogen atoms begin to spin 
and emit radiosignals according to the frequency pulses. The MRI device detects the equilibrium 
phase of the excited atoms, producing digitized MRI images showing contrast differences 
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between different tissues according to the rate of changes in this balance stage (Vlaardingerbroek 
and Boer 2003). 

One of the main findings for probable AD is clear gray matter atrophy in the medial temporal 
lobes and hippocampus, which can be detected with structural MRI. The extent of gray matter 
atrophy correlates with both neuronal loss and tau-related neurodegeneration (Jack et al. 2013). 
Recent evidence has further demonstrated disturbances in the task-associated functional brain 
networks, detected with task-free functional MRI (fMRI), not only in AD, but also in MCI, 
asymptomatic APOEe4 carriers, and asymptomatic individuals carrying high amyloid burden 
(Sperling et al. 2009). Furthermore, findings from different MRI experiments, such as perfusion-
weighted MRI, have also yielded additional information about the heterogeneity of AD pathology 
in terms of changes in cerebral blood flow (Luckhaus et al. 2008), hypoperfusion in multiple brain 
regions (Alsop et al. 2000), and their association with vascular brain injuries (Riekse et al. 2004). 

2.4.3 Positron emission tomography biomarkers 

PET is a quantitative molecular imaging method, which can be utilized for noninvasive image 
measurements of biological functions in a living individual. The PET method relies on short-lived 
radioisotope-labelled molecules, i.e. radioligands or tracers, which are targeted exclusively to 
the desired compound, protein, or receptor of interest in the body. The most common radioactive 
isotopes are 11C (half-life T½ = 20.4 min), 15O (T½ = 2.04 min), and 18F (T½ = 109.8 min), and 
they have to be produced in cyclotrons. In brief, the presence of a high-energy beam in a strong 
magnetic field causes positively charged particles to collide with a stable atomic nucleus, 
producing a positron emitting radioactive isotope with an extra proton. The radioactive isotope 
is then incorporated into a specific molecule i.e. it is called a radiolabeled tracer, which is then 
administered to the living subject intravenously (IV), intraperitoneally (IP), or in an inhalation 
form (Phelps 2000). Immediately after the irradiation, the radioactive isotope begins to decay 
through positron emission or via electron capture. In electron capture, the added proton captures 
an intraelectron of the atom, becoming converted into a neutron while releasing one electron 
neutrino. In contrast, in positron emission, the additional proton inside the radioisotope 
nucleus is converted into a neutron, releasing a positron and an undetectable electron neutrino. 
After the radioligand administration, the positron travels in matter only for a short distance of 
under 1 mm while the total kinetic energy of the positron is consumed. At this point, the positron 
is able to interact with its antiparticle, i.e. an electron, causing an event called annihilation. The 
collision of positron and electron annihilates the masses producing an emission of an 
electromagnetic energy in the form of two gamma photons (á 511 keV) moving co-linearly in 
opposite directions (Figure 8). The emission of the photons is detected by the scintillators in the 
detector ring of the PET imaging device, and since the energy burst is a two-directional event, 
the spatial location of  the annihilation can  be determined  (Phelps 2000;  Cherry and Dahlblom 
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Figure 8. Annihilation. Positron emitting radionuclides are introduced into a living subject in a tracer formula, e.g. via 
intravenous injection. The radionuclide emits a positron (e+) when it travels a few millimeters in a tissue while consuming 
its total kinetic energy. At this point, the positron is able to interact with its antiparticle, an electron (e-), causing an event 
called annihilation. This reaction produces two 511 keV photons, which can be detected at nearly 180° inside the detector 
ring of the PET imaging device. The line of response can be defined via co-incidence of the registered annihilations, and 
a 3D PET/computed tomography (CT) image of the radioactivity distribution can be obtained via corrections and 
reconstructions. 

2004). The PET imaging device can register up to 1010 coincident events during the PET scan, 
which are corrected according to the attenuation and scatter post scan. The imaging data is 
reconstructed into three dimensional tomographic images of voxels, in which the annihilation 
signal intensity is proportional to the amount of the tracer within the voxel (Cherry and Dahlblom 
2004). 

PET isotopes can be incorporated into biologically active molecules being administered to a 
living biological system. This feature can be considered to be one of the greatest advantages of 
PET compared to other imaging techniques. PET is a highly sensitive and selective modality, i.e. 
it can be utilized to select a specific target of choice, and measure very low concentrations of 
radioactivity. These features increase the image quality with a relatively small spatial resolution, 
but also lessen the radiation dose to which the subject is exposed and reduce the scanning time. 

The typical spatial resolution in clinical PET device ranges between 4−6 mm, whereas in 
preclinical µPET, the spatial resolution can be even below 1.5 mm (Saha 2016). Spatial resolution 
is the best known limiting factor for reliable PET imaging. Spatial resolution is clearly limited by 
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detector-dependent factors, but also by the positron range and the annihilation acollinearity 
(Moses 2011; Saha 2016). The positron range is an isotope-dependent event in which different 
annihilation positions create a blurring effect of the radioactivity decay, and acollinearity is 
caused from the standard deviation of two-tailed 0.25% from the theoretical 180° angle of the 
annihilated γ rays (Moses 2011). Furthermore, achieving a proper PET scan faces also other 
challenges. A successful PET ligand should possess some beneficial characteristics in order to be 
an applicable imaging tool for clinical and research purposes: Radiolabeling should be 
straightforward and fast to save the radioactivity of the short-lived isotopes. The radioligand 
should possess a high radioactivity concentration, high molar activity, and a reliable and high 
target uptake. The safety of the compound must also be investigated, and its selectivity for the 
target must be studied carefully. In addition, a high signal-to-noise ratio, and low non-specific 
binding are characteristics of a good radioligand. In neuroreceptor imaging, the radioligand 
should have reversible binding to the target and the capability of washing out from the target 
within a reasonable time. A successful PET tracer should not be metabolized into radioactive 
compounds that would confound the quantification (Terry 2009a; Pike 2009) nor be too lipophilic 
to the cost of feasible brain penetration. Lipophilicity is most often expressed as a LogP value, 
which corresponds to the partition coefficient between n-octanol and water. Radiotracer 
lipophilicity is usually reported as the corresponding distribution coefficient at physiological pH 
and termed as D7.4. Thus in general, a successful tracer should possess a LogD7.4 value between 
2.0 and 3.5, since this should enable passive brain penetration and prevent excessive blood protein 
binding. However, some tracers that express higher lipophilicity than the above range have been 
shown to enter the brain without causing any undesirable side effects (Pike 2009; Donohue et al. 
2008a; Terry et al. 2008). 

Glucose PET findings 

With the advances in molecular imaging, researchers have been able to monitor and quantify 
molecular and biological processes of interest in the brain of living subjects. Imaging biomarkers 
can be utilized to identify underlying pathology regardless of the symptomatic stage of the 
neurodegenerative disease. Molecular imaging biomarkers are also tools for monitoring disease 
progression and possible intervention efficacy in disease-modifying trials by applying a 
longitudinal assessment. Therefore, PET has been incorporated into the diagnostic criteria of AD, 
primarily utilizing the most widely used tracer 18F-FDG. 18F-FDG is a measure of cerebral 
glucose uptake, i.e. energy consumption metabolism and it is a derivative of one of the earliest 
radioligands, 14C-labelled 2-deoxyglucose (14C-DG) (Sokoloff et al. 1977), which is a reversible 
competitive inhibitor of glucose-6-phosphate in a complex glycolytic pathway. The distinctive 
pattern of altered regional glucose metabolism has been demonstrated in multiple 
neurodegenerative diseases, such as dementia with Lewy Bodies, frontotemporal dementia, and 
AD.  For diagnosing AD,  18F-FDG PET has become established  feature as being able to detect  
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Figure 9. Changes in cerebral 18F-FDG retention in a dementia continuum. A cognitively asymptomatic (normal) 
individual (left) has greater tracer retention in the brain compared to an individual with mild cognitive impairment (MCI; 
center). Decreases in the 18F-FDG retention can be detected in the posterior cingulate cortex at early disease stage. In a 
patient with diagnosed Alzheimer’s disease (AD) dementia (right), the 18F-FDG retention has further declined in the 
bilateral temporo-parietal and frontal lobes, and basal ganglia compared to individual with MCI. Modified from Rice and 
Bisdas 2017. 

regional metabolic changes reflecting glucose utilization. 18F-FDG PET measurement provides 
also an indirect detection of regional synaptic and neuronal activity, since glucose is the primary 
energy substrate used by this system. The most characteristic PET distribution pattern is a 
regional hypometabolism visualized primarily in the posterior cingulate cortex during the early 
disease stage, and in the bilateral temporo-parietal and frontal lobes, and basal ganglia in 
advanced AD (Garibotto et al. 2017) (Figure 9). With respect to the hippocampus, which is one 
of the earliest sites experiencing AD pathology, the spatial resolution of PET imaging scanner is 
not sufficient to allow detection of a hypometabolic pattern within this region (Chételat et al. 
2008). The pattern in the occipital cortex, which usually demonstrates significant 
hypometabolism in dementia with Lewy Bodies, is preserved in AD (Garibotto et al. 2017). 

The diagnostic accuracy of 18F-FDG PET is well examined; it has been proved to be able to 
distinguish AD patients from healthy controls with a pooled sensitivity of 86% and a specificity 
of 84% (Data pooled from the meta-analysis in Frisoni et al. 2013). Changes in the glucose 
metabolism correlate well with the cognitive decline and symptoms in AD progression. Thus, the 
regional hypometabolic pattern can predict the prognosis from MCI to AD (Villemagne et al. 
2011; Ito et al. 2015; Zhang S et al. 2012) and distinguish AD from other forms of dementia 
(Foster et al. 2007; Minoshima et al. 2001; Bohnen et al. 2012). Therefore, 18F-FDG PET has met 
the criteria for being a suitable biomarker for AD. However recently, this technique has been 
subjected to increasing criticism; it has been claimed that cerebral dysmetabolism is not 
sufficiently specific to be a biomarker for AD since other neurodegenerative diseases demonstrate 
similar phenomena, and thus, it represents a poor indicator of the underlying brain pathogenesis. 
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In addition, 18F-FDG uptake in the brain has been speculated to reflect the progressive loss of 
neuropils (i.e. interwoven complex of dendrites, axons, and glial cells without soma, Braak 1986), 
rather than the metabolic impairments within the neurons, which may account for some of the 
conflicting results from imaging studies. However, due to the strong body of evidence supporting 
both the specificity and the accuracy of 18F-FDG PET imaging in terms of AD diagnosis, and 
since 18F-FDG provides additional information about the pathological stage during AD onset, 
NIA-AA recommends that it can keep its status as a neurodegenerative biomarker (Jack et al. 
2018). In contrast, preclinical 18F-FDG studies have yielded problematic outcomes, which will 
be further discussed in detail in Chapter 2.5.1. 

Amyloid PET imaging 

According to the most recent suggestions, a positive amyloid PET finding should be included 
into the future diagnostic criteria for AD (Jack et al. 2018). Currently, amyloid PET imaging is 
mostly only utilized for research purposes, although a positive amyloid burden detected with in 
vivo imaging is considered as a supporting feature for probable AD (Käypä Hoito A 2016). 
Amyloid PET can also be used for distinguishing AD from other forms of dementia, such as 
frontotemporal dementia, where Aβ is not a pathological feature (Rabinovici et al. 2007). 

The first amyloid PET tracer, 11C-labelled Pittsburgh Compound B (11C-PiB) demonstrated 
excellent binding properties for insoluble fibrillary forms of Aβ1-40 and Aβ1-42 in human brain 
(Klunk 2001 and 2004). The typical 11C-PiB PET finding in AD patients is an increased tracer 
retention in frontal cortex, and to a lesser extent in the parietal and lateral temporal cortices, along 
with binding in the striata (Rice and Bisdas 2017). The binding loci have been shown to correlate 
significantly with the post mortem histopathological findings of high amyloid burden (Thal et al. 
2002; Leinonen et al. 2008). At present, three 18F-labelled tracers, 18F-florbetabir, 18F-
flutemetamol, and 18F-florbetaben, have been approved for clinical use by the Food and Drug 
Administration of the United States Department of Health and Human Services and the European 
Medicines Agency in regard to sufficiently sensitive (88%) and specific (85%) outcome of 
amyloid PET imaging to allow it to be used as an early diagnostic biomarker for AD (Pooled 
meta-analysis in accordance of Frisoni et al. 2013). However, even though these tracers have 
successfully discriminated AD patients from healthy controls, and predicted the MCI progression 
to AD with great specificity and sensitivity in multiple studies (Clark et al. 2012; Rowe et al. 
2008; Vandenberghe et al. 2010), they have also demonstrated off-target binding to cerebellar 
white matter, limiting a more comprehensive clinical application (Vandenberghe et al. 2010). 
Several studies have further observed contradictory results on whether amyloid detected by PET 
appropriately correlates with the temporal course of the cognitive decline (Engler et al. 2006; 
Strodant et al. 2009; Aizenstein et al. 2008), since the amyloid pathology eventually plateaus 
while hypometabolism, as detected with 18F-FDG, continues to progress (Förster et al. 2012; 
Landau et al. 2012). Criticism has also been aimed at whether amyloid tracers would be able to 
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detect AD variants that are characterized predominantly by diffuse plaques, and of the fact that 
approximately 25−35% of elderly individuals older than 75 years carry a high amyloid burden 
that is not accompanied by brain atrophy or cognitive problems (Mintun et al. 2006; Villemagne 
et al. 2013 and 2018), while conversely, some diagnosed AD patients may show negative amyloid 
PET retention in the brain (Cairns et al. 2009). Thus at present, for a possible AD diagnosis, 
amyloid PET imaging becomes relevant only in unclear cases; it is not an appropriate tool to 
diagnose those who are asymptomatic and cognitively normal subjects, individuals with normal 
cognition and tested autosomal dominant mutation in one of the AD-associated genes, nor in lieu 
of meeting the primary criteria for possible AD. Nevertheless, amyloid targeting PET imaging 
offers a valuable tool for early AD diagnosis, especially if anti-amyloid therapeutics capable of 
preventing disease progression become available in the future, as these would hopefully reduce 
the costs to society of the burgeoning AD epidemic. 

Tau PET imaging 

Noninvasive tau PET imaging is the newest modality added to the AD research battery; cortical 
binding of tau tracer has been postulated to be a biomarker for fibrillar tau according to the newest 
proposal for AD diagnostic criteria (Jack et al. 2018). This seems reasonable since the presence 
of amyloid deposits and paired helical filament tau deposits are both required to fulfill the 
neuropathological AD criteria (Montine et al. 2012; Hyman et al. 2012). Unfortunately, the 
heterogeneous isoformic phenotype and rather low tau concentration in the brain pose challenges 
in finding a suitable radioligand target region within the tau conformation. The current tau tracers 
are used exclusively for research purposes, requiring validation for in vivo purposes. The first-
generation tau tracer 18F-flortaucipir has been shown to be specific for the 3R/4R isoform of tau 
deposits, and its binding correlates with the NFT staging by Braak and CSF tau levels (Chien et 
al. 2013; Marquié 2017b; Brier et al. 2016). Unfortunately, it suffers from high off-target binding 
in regions devoid of tau and there have been discrepancies noted between in vitro and in vivo 
human imaging results (Marquié et al. 2015; Lowe et al. 2016), as well as between ante mortem 
and post mortem findings (Marquié 2017a and 2017b). 18F-THK5351, 18F-THK5317, and 11C-
PBB3, have been shown to possess similar limiting features including low binding affinity, low 
binding site concentration and as a result, an undetectable threshold for the PET scanner, and high 
non-specific binding to MAO-B (Villemagne et al. 2018). Fortunately, the second-generation tau 
tracers have improved characteristics, including reduced off-target binding (18F-RO69558948) 
or no off-target binding (18F-MK6240 and 18F-PI2620) at all (Walji et al. 2016; Gobbi et al. 2017; 
Stephens 2017). As a summary, tau PET imaging has revealed that NFTs are in a tight association 
with the other neurodegeneration biomarkers, such as lower 18F-FDG uptake and cortical gray 
matter atrophy (Xia et al. 2017; Chiotis 2018), and together they can be considered to be an 
excellent biomarker for disease progression. In contrast to amyloid pathology, from the 
neuropathological  point-of-view,  tau levels do not seem to be as  crucial  as  the  topographical 
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Figure 10. Temporal course of dynamic biomarkers during the cascade of Alzheimer’s disease. Abnormal detection 
of β-amyloid (Aβ) as Aβ1-42 cerebrospinal fluid (CSF) biomarker and positron emission tomography (PET) findings are 
the earliest events to be measured in Alzheimer’s disease diagnosis that precede CSF tau changes, 18F-FDG PET findings 
on hypometabolism or magnetic resonance imaging (MRI) findings in hippocampal atrophy (Lo et al. 2011). However, 
post mortem experiments have shown that tau pathology precedes Aβ pathology, and thus, it should be viewed as the 
initial benchmark in the pathophysiological cascade of Alzheimer’s disease (Braak and Braak 1997; Braak and Del Tredici 
2011). Hence, Aβ markers are considered as the initial detectable biomarkers, which are followed by biomarkers of 
neurodegeneration – tau, gray matter atrophy, and glucose hypometabolism -  and finally by the cognitive decline. 
Modified from Jack 2013. 

distribution of the neurofibrillary tau deposits (As discussed by Royall 2007; Swerdlow 2007). 

Aforementioned biomarkers of AD become abnormal at different times during the disease 
progression and the manifestation of symptoms. Decades of evidence from patient samples have 
produced a hypothetical model of the dynamic relationship between AD biomarkers during the 
temporal course of the disease (Jack et al. 2013). The hypothesis is not ideal for all forms of 
LOAD, but it does indicate the clinical threshold at which an abnormal biomarker can be detected 
and this may well differ from the actual underlying pathogenesis (Figure 10). Furthermore, the 
rate of change of the pathological biomarkers varies between individuals and changes in a non-
linear manner during the temporal course of the disease. Hence, more studies are needed, 
especially to confirm the temporal course of CSF tau, 18F-FDG PET and structural MRI, as well 
as the development of better PET radioligands both in AD patients and disease models. 

2.5 TRANSLATIONAL PET FOR ALZHEIMER’S DISEASE 

AD offers a variety of alternative targets for PET radioligand development, including proteins, 
enzymes, and brain receptors, some of which also represent promising medical intervention 
targets to combat the disease. Proteins like α-synuclein and β-secretase, the former being 
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significantly overexpressed in AD and the latter involved in processing APP to Aβ, have been a 
focus of interest in PET imaging technology as possible in vivo targets (Mathis et al. 2017; Zhang 
L et al. 2018). Furthermore, according to the AD metal hypothesis, the concentrations of certain 
metal ions, such as Zn2+, are abnormally increased at the site of accumulated Aβ plaques (Bush 
2008). These pathological findings have stimulated the search for ligands targeting metal, such 
as the ion chelator clioquinol (Vasdev et al. 2012). On the other hand, the cholinergic hypothesis 
postulates that declines in acetylcholine release and the degeneration of cholinergic neurons result 
in neuronal cell loss and cognitive decline (Bartus et al. 1982). The current treatment strategy for 
AD is based on this hypothesis, and three drugs targeting cholinergic and one glutamate 
neurotransmission are in clinical use to temporally alleviate the symptoms (Käypä Hoito B 2016). 
Thus, not surprisingly, PET ligands modified from acetylcholinesterase inhibitors, including 11C-
donepezil (De Vos et al. 2000), or acetylcholine esters, such as 11C-PMP (Snyder et al. 1998), 
have been developed for imaging the in vivo abnormalities within this neurotransmitter system; 
these have enjoyed some significant successes when administered to AD patients (Iyo et al. 1997; 
Mochida et al. 2017). In addition to the acetylcholine system, the evidence of the involvement of 
the neuronal metabotropic glutamate receptors, muscarinic acetylcholine receptors, nicotinic 
acetylcholine receptors, and gamma-aminobutyric acid (GABA) subtype A receptors in AD brain 
has been utilized in the development of novel PET radioligands (Holland et al. 2014). Next, the 
applications and current research knowledge of translational PET targeting brain glucose 
hypometabolism, neuroinflammation, and CB1Rs in relation to AD will be discussed in depth. 

2.5.1 Targeting brain glucose metabolism 
18F-FDG is the only available in vivo radioligand targeting glucose energy metabolism; it was 
initially derived directly from glucose and 2-DG by labelling the second carbon atom of 
cyclohexane structure of glucose with fluorine-18 instead of hydroxyl (glucose) or hydrogen (2-
DG). This substitution does not change the desired functions of the compound nor prevent its  
passage through the blood-brain barrier (Figure 11) (Sokoloff 1979). The biochemical features 
of 18F-FDG mimic those of glucose i.e. it can access the metabolic pathway utilizing glucose as 
an energy source for cells called glycolysis: After the initial delivery into the body, both glucose 
and 18F-FDG are phosphorylated by hexokinase. Glucose is then transformed into glucose-6-
phosphate, metabolized into fructose-6-phosphate by phosphohexose isomerases, and eventually 
pyruvate, ATP, and nicotinamide adenine dinucleotide molecules remain as total end-products 
that can be stored as energy sources by cells. However, 18F-FDG is only metabolized up to the 
hexokinase-catalyzed reaction (Figure 12), after which it does not proceed down the glycolytic 
pathway. Instead, the accumulated phosphorylated 18F-FDG is further metabolized to radioactive 
metabolites, especially in aggressive sarcomas (Suolinna et al. 1986; Rokka et al. 2017) and 
trapped intracellularly emitting the radioactive signal, which can be detected by the PET scanner 
(Fowler and Ido 2003). 
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Figure 11. Molecular chair structures for glucose, 2-deoxyglucose (2-DG), and 2-deoxy-2-18F-fluoro-D-glucose (18F-
FDG). 

Table 1 represents in chronological order previous in vivo 18F-FDG µPET studies with different 
AD mouse models from the past decade. Reductions of cerebral glucose metabolism in the 
posterior temporoparietal and later in the frontotemporal lobes in AD are well established features 
in clinical 18F-FDG imaging, and these can also be correlated with the level of brain glutamatergic 
synaptic activity, i.e. neuronal loss in AD (Sibson et al. 1998). Replication of the detected regional 
hypometabolism with 18F-FDG µPET has, unfortunately, proved to be challenging. According to 
the previous studies, TASTPM (Waldron et al. 2015a and 2017; Deleye et al. 2016) and 
APP/PS1-21 (Waldron et al. 2015b; Deleye et al. 2017) models have successfully replicated the 
hypometabolic pattern in the AD brain, as demonstrated in the clinical 18F-FDG outcome. Six-
month-old TASTPM mice, which have been fasted for 8−12 hours in each study, displayed 
decreased 18F-FDG retention in several brain regions when assessed as the individually 
normalized percentage of the injected radiotracer dosage per weight of the animal (%ID/g) or as 
standardized uptake values (SUVs) to blood glucose. In the APP/PS1-21 mice, hypometabolism 
have been measured in thalamus and striata at 12-month-old TG mice with prolonged fasting of 
8−12 hours (Waldron et al. 2015b), whereas overall genotype-dependent decrease in the 18F-FDG 
retention was quantified in untreated TG mice in a combinational intervention PET study (Deleye 
et al. 2017). In contrast, increased 18F-FDG retention has been reported in APP751SL/PS1M146L 

(Poisnel et al. 2012) and PS2APP (Brendel et al. 2016) mouse models compared to WT 
littermattes. In these studies, SUVs relative measures to the individual cerebellar radioactivity 
showed enhanced tracer levels in the forebrain (Brendel et al. 2016), and cerebral cortex and 
hippocampus (Poisnel et al. 2012), which might have originated from an artefact attributable to 
the use of cerebellum as a reference region.  

Some models have shown controversial results on the temporal course of the glucose metabolism 
in the brain: Tg2576 mice have displayed no differences in the 18F-FDG uptake compared to age-
matched WT mice (Kuntner et al. 2009; Coleman et al. 2017), whereas at 7 months, it has been 
reported that there are hypermetabolic brain regions including hippocampus, thalamus, and 
cortical lobes, which was converted into a WT-like metabolic profile at 19 months of age (Luo et 
al. 2012). 
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Figure 12. Utilization of glucose and 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) in the intracellular glycolytic 
pathway. Glucose or 18F-FDG are actively transported inside the cell via glucose transporters (GLUT), and then 
metabolized into 6-phosphate forms. Glucose-6-phosphate further metabolizes in the glycolytic path that produces 
adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NADH), and pyruvate, whereas 18F-FDG-6-phosphate 
radiometabolizes into tissue-specific metabolites, which does not follow the glycolytic pathway. 

Similarly, 10- to 11-month old 5×FAD mice have displayed increased (Rojas et al. 2013) or 
alternatively decreased glucose metabolism both at 5 months (DeBay et al. 2017) and 13 months 
of age (Macdonald et al. 2014). PLB1triple mice have exhibited regional differences, with either 
a hyper- or hypometabolic pattern present at 5 months of age, but these changes had disappeared 
at 17 months of age (Platt et al. 2011). The APPswe-PS1dE9 model has also demonstrated brain 
hypermetabolism as regional radioactivity measurements relative to the cerebellar radioactivity 
2 to 8 months in different regions (Li et al. 2016), but unchanged glucose retention in 9-month-
old female mice (Liu et al. 2017). These controversial results in specific models might be 
attributable to the obvious differences in methodological and quantification procedures (Table 1). 

2.5.2 Targeting neuroinflammation 

Neuroinflammation is a complex progressive event involving various cell types, which form an 
interactive, net-like signaling pathway in which, surprisingly, microglial TSPO expression has a 
small role. Nevertheless, current in vivo neuroinflammation imaging relies heavily on targeting 
TSPO, since its upregulation has been found to be selective and measurable in several brain 
diseases including in patients with stroke and AD. Thus, TSPO may not only be a potential 
diagnostic biomarker but it may also be a therapeutic target for neuroinflammatory-based brain 
diseases.  In healthy brain tissue,  the expression level of  TSPO in  glial  and  endothelial cells is 
relatively low, whereas in AD, enhanced TSPO expression has been found in several brain 
regions affected by amyloid depositions and hypometabolism in the post mortem AD brain 
(Papadopoulos et al. 2006; Cosenza-Nashat et al. 2009; Venneti et al. 2009a). Furthermore, TSPO 
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Table 1. Regional glucose retention detected with small animal 18F-FDG μPET in transgenic mouse models of Alzheimer's disease.  

Reference 

Kuntner et al. 2009 

Platt et al. 2011 

Poisnel et al. 2012 

Luo et al. 2012 

Rojas et al. 2013 

Macdonald et al. 
2014 

Waldron et al. 2015a 

Waldron et al. 2015b 

Brendel et al. 2016 

Note: (-) Decreased 18F-FDG uptake in transgenic Alzheimer mice compared to wild-type mice; (+) increased 18F-FDG uptake in transgenic Alzheimer mice compared to wild-
type mice; Abbreviations: B, brain; CB, cerebellum; CTX, cortex; dyn, dynamic; F, female; glu, glucose; HIP, hippocampus; HYPO, hypothalamus; IP, intraperitoneal; IV, 
intravenous; M, male; mo, months; NA, not applicable ; NS, non-specific; QU, quantification unit; SPM, statistical parametric mapping; stat, static; STR, striatum; SUV, standard 
uptake value; SUVglu, glucose-corrected SUV; THA, thalamus 

QU 

%ID/ kg/g + 
VOI/B 

SPM 

SUVR 
CB 

SUV 

VOI/CB 

SUV 

%ID/g × glu, 
SPM 

%ID/g × glu, 
SPM 

SUVR CB 

Target brain 
region 

NA 

CTX, 
STR, THA 

HIP, CTX 

HIP, CTX, THA 

CTX 

B, THA, 
HYPO, CB 

THA, brain stem 

THA, STR 

Forebrain 

18F-FDG 
uptake 

NS 

5 mo (-), 
5 mo (+) 

6 + 12 mo (+) 

7 mo (+), 
19 mo (-) 

(+) 

13 mo (-) 

(-) 

(-) 

(+) 

PET 

60-90 min stat 

55-95 min stat 

60 min dyn 

60 min dyn 

50-80 min stat 

30-60 min stat 

45-65 min stat 

45-65 min stat 

30-60 min stat 

Anesthesia 
maintenance 

1.5% 
isoflurane 

Vetalar, 
Medet., 
Domitor 

1−1.5% 
isoflurane 

Medet., 
ketamine 

1.5% 
isoflurane 

1.5 −2% 
isoflurane 

2% 
isoflurane 

2% 
isoflurane 

NA 

Injection 

IV in 
anesthesia 

IP 
awake 

IV in 
anesthesia 

IV in 
anesthesia 

IV in 
anesthesia 

IV 
awake 

IV 
awake 

IV 
awake 

NA 

Blood 
glucose 
control 

No 

No 

Yes 

No 

No 

No 

Yes 

Yes 

NA 

Fasting 

8h 

Over- 
night 

No 

6h 

No 

No 

8-12h 

8-12h 

NA 

Sex 

M, F 

M, F 

F 

F 

NA 

M 

M 

F 

NA 

Age (mo) 

13-15 

5, 17 

3, 6, 12 

7, 19 

10-11 

2, 5, 13 

13.5 

12 

5, 8, 13, 16 

Strain 

Tg2576 

PLB1triple 

APP751SL/ 

PS1M146L 
 

Tg2576 

5×FAD 

5×FAD 

TASTPM 

APP/PS1-21 

PS2APP 
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Continuum of Table 1. Regional glucose retention detected with small animal 18F-FDG μPET in transgenic mouse models of Alzheimer's disease.  

Reference 

Deleye et al. 
2016 

Li et al. 2016 

II 

Waldron et al. 
2017 

DeBay et al. 
2017 

Liu et al. 2017 

Coleman et al. 
2017 

Deleye et al. 
2017 

I 

Note: (-) Decreased 18F-FDG uptake in transgenic Alzheimer mice compared to wild-type mice; (+) increased 18F-FDG uptake in transgenic Alzheimer mice compared to wild-
type mice; Abbreviations: B, brain; CB, cerebellum; CTX, cortex; dyn, dynamic; F, female; FC, frontal cortex; glu, glucose; HIP, hippocampus; HYPO, hypothalamus; IP, 
intraperitoneal; IV, intravenous; M, male; mo, months; NA, not applicable; NS, non-specific; QU, quantification unit; stat, static; STR, striatum; SUV, standard uptake value; 
SUVglu, glucose-corrected SUV; THA, thalamus 

QU 

%ID/g, SUV, 
SUVR CB, glu 

SUVR CB 

SUV 

SUVglu 

SUV 

%ID/g 

SUVglu 

SUVglu 

SUV, SUVglu 

Target brain 
region 

All 

CTX, HIP, FC, 
THA, STR 

HIP, CTX, THA, 
STR, CB 

All 

All, except CB 

NA 

NA 

THA, HIP 

B, FC, HIP, STR, 
THA, CB 

FDG 
uptake 

(-) or NS 

(+) 

6 > 12 mo 
(-) 

(-) 

(-) 

NS 

NS 

(-) 

(-) or NS 

PET 

45-65 min stat 

40-63 min stat 

60 min dyn 

45-65 min stat 

30-60 min stat 

40- X min stat 

60-120 min stat 

45-65 min stat 

60 min dyn 

Anesthesia 
maintenance 

2% 
isoflurane 

2% 
isoflurane 

2.5% 
isoflurane 

2% 
isoflurane 

1.5−2% 
isoflurane 

NA 
isoflurane 

2.5% 
isoflurane 

2% 
isoflurane 

2.5% 
isoflurane 

Injection 

IV awake 

IV 
awake 

IV in 
anesthesia 

IV awake 

IV awake 

IP 
awake 

IP 
awake 

IV 
awake 

IV in 
anesthesia 

Blood 
glucose 
control 

Yes 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Fasting 

10/20h 

+6h 

90 min 

8-12h 

No 

12h 

24h 

10-14h 

3 

Sex 

NA 

F 

M, F 

M 

M 

F 

M, F 

F 

F 

Age (mo) 

+14 

2, 3.5, 5, 8 

6-15 

6-15 

5 

9 

+18 

1.5-1.75,  
4, 7-8, 12-
13 

6, 12, 17 

Strain 

TASTPM 

APPswe-PS1dE9 

APP/PS1-21 

TASTPM 

5×FAD 

APPswe-PS1dE9 

Tg2576 

APP/PS1-21 

APPswe-PS1dE9, 
Tg2576 
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PET imaging can be utilized for monitoring trans-synaptic glial cell activation in relation to 
physiological neuroplasticity and synaptic remodeling (Banati et al. 2001). 

PET ligands targeting TSPO 

The first PET ligand to target TSPO was an isoquinoline carboxamide 11C-(R)-PK11195, which 
demonstrated to be selective for TSPO and revealed glial activation through the TSPO elevation 
pattern in the AD brain (Junck et al. 1989; Cagnin et al. 2001). The development of new 
radioligands with similar short 11C half-lives, but with more specific binding and better blood-
brain barrier permeability, such as the N-benzyl-N-(2-phenoxyaryl)acetamides 11C-DAA1106 
and 11C-PBR28 (Maeda et al. 2004; Brown et al. 2007) and an alpidem derivative 11C-DPA-713 
(James et al. 2005), have been able to improve the signal intensity and affinity to TSPO in the 
brain. However, the short half-life of the 11C-labelled radioligands has practical limitations, which 
prevents tracer production for broader commercial utilization or within research centers without 
on-site radiochemistry. Thus, a variety of 18F-labelled TSPO PET tracers have been developed, 
and their applicability in imaging of TSPO in animal models and human brain has been studied 
extensively. Many candidates, such as N-benzyl-N-(2-phenoxyaryl)acetamides, 18F-PBR06 
(Briard et al. 2005), 18F-FEDAA1106 (Zhang et al. 2004), 18F-FEMPA (Varrone et al. 2015), 
18F-FEPPA (Wilson et al. 2008), and tricyclic indoles 18F-GE-180 (Wadsworth et al. 2012) and 
11C-ER176 (Ikawa et al. 2017), have, by far, proved to be applicable for imaging TSPO in vivo 
(Extensively reviewed in Cumming et al. 2018 and Edison et al. 2018). Furthermore, one of the 
alpidem derivatives (Figure 13), 18F-DPA-714, has shown to possess high specific binding and 
rapid brain uptake in non-human primates and rats with an affinity of Ki as 7.0 (0.4) nM (James 
et al. 2008). 18F-DPA-714 has also displayed superior features compared to 11C-PK11195 in terms 
of binding potential in an acute inflammation rat model (Chauveau et al. 2009), as well as good 
stability and a rapid clearance rate during the first 30 min with a peak uptake at 5 min after the 
tracer injection in the first in-human evaluation in vivo experiment (Arlicot et al. 2012). In mice, 
no radioactive metabolites have been detected in the brain 60 min after injection (Vicidomini et 
al. 2015; Keller et al. 2017), whereas in rat brain, a carboxylic acid radiometabolite constitutes 
15% of the total 18F-radioactivity (Peyronneau et al. 2013). Recently, a structural fluoroaryl 
analogue of 18F-DPA-714, named as 18F-FDPA, has been developed and evaluated in WT rats 
(Keller et al. 2017) and in the APP/PS1-21 mouse model of AD (Keller et al. 2018), 
demonstrating fast washout and superior sensitivity for detecting activated glia cells in the AD 
mouse brain. 

TSPO PET findings in AD patients 

The feasibility of the gold standard TSPO tracer, 11C-(R)-PK11195, was examined for the first 
time in AD patients by Cagnin et al. (Cagnin et al. 2001). The tracer was able to to differentiate 
AD and MCI patients from healthy controls, a finding further confirmed by other investigators 
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Figure 13. Molecular structure of 18F-N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethyl-pyrazolo[1,5-
α]pyrimidine-3-yl)-acetamide (18F-DPA-714). 

(Edison et al. 2008; Fan et al. 2015; Parbo et al. 2017; Passamonti et al. 2018). In the recent 
imaging study, increased binding of 11C-PK11195 was demonstrated to overlap with the cortical 
brain atrophy, and thus it has been suggested to be associated more tightly with neuronal loss 
(Kreisl et al. 2017). In contrast, other studies have shown no differences in the 11C-PK11195 
binding potentials between AD patients and healthy volunteers, nor did it correlate with cognitive 
scores (Schuitemaker et al. 2013; Parbo et al. 2018). In terms of the potential utilization of 11C-
DAA1106 and 18F-FEDAA1106 in human imaging, the former has revealed significantly greater 
uptake in AD and MCI patients as compared to healthy controls (Yasuno et al. 2008a), whereas 
the latter compound failed to distinguish AD patients from the controls perhaps due to the slow 
washout from the brain (Varrone et al. 2013). Nonetheless, increased 11C-PBR28 binding in the 
cerebral cortical regions has been successfully measured in the brain of genotype-corrected AD 
patients as compared to MCI and cognitively healthy controls (Kreisl et al. 2013; Lyoo et al. 
2015). Genotype examinations in patients have been conducted prior to TSPO PET scans, because 
there is a genetic polymorphism in the TSPO gene rs6971, which affects the radioligand binding 
properties and thus, the data interpretation. Sensitivity to TSPO polymorphism is a characteristic 
of most of the second generation TSPO tracers except for 11C-PK11195 and 18F-GE-180, which 
show no or little sensitivity towards rs6971 (Largeau et al. 2017). In a consequence for the genetic 
stratification method, novel TSPO tracers, 18F-FEMPA and 18F-FEPPA, have displayed 
elevations in the tracer binding in AD patients as compared to healthy controls (Varrone et al. 
2015; Suridjan et al. 2015). 

One of the quantification method for analyzing human TSPO PET data has been the kinetic two-
tissue compartment model with arterial input function; this has yielded promising results for 18F-
GE-180 (Fan et al. 2016; Feeney et al. 2016) and 18F-DPA-714. For 18F-GE-180, the imaging 
applicability in the human brain has been evaluated in non-diseased conditions, yielding a poor 
distribution volume (VT) and restricted penetration into the brain compared to 11C-PBR28 
(Zanotti-Fregonara et al. 2018). On the contrary, significantly increased 18F-DPA-714 uptake has 
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been reported in high and mixed affinity binders in AD patients compared to controls after rs6971 
genotyping (Hamelin et al. 2016), which was not shown in an older study, which might have been 
attributable to the lack of genotyping of the subjects (Golla et al. 2015). 

TSPO PET findings in AD animal models 

The most widely used AD mouse models express an upregulated form of APP and thus of Aβ 
pathology, representing a perfect disease model for amyloidosis in the prognosis of AD. 
However, neuroinflammation is not genetically implemented into these models, but previous 
preclinical imaging and histology data have revealed that TSPO-related microgliosis is an 
ongoing event in the TG mouse brain, preceding the accumulation of Aβ (López-Picón et al. 
2018). Table 2 shows in chronological order the in vivo µPET studies targeting 
neuroinflammation using TSPO radioligands in different AD mouse models. Studies using the 
first generation TSPO ligands, such as 11C-AC-5216, have revealed increased TSPO levels in the 
hippocampal and cortical regions in APP23 and APPE693d mice older than 23 months of age 
(Maeda et al. 2011), whereas 11C-PK11195 studies have shown that 13-month-old APPswe-PS1dE9 
mice exhibited undetectable TSPO alterations in the brain (Rapic et al. 2011), but at 16 to 19 
months of age, the TSPO levels were remarkably increased (Venneti et al. 2009a). Others groups 
have also employed the same mouse model, and similar increases in the regional TSPO tracer 
uptake have been detected using longitudinal 18F-DPA-714 (Sérrière et al. 2015; Chaney et al. 
2018) and cross-sectional 18F-GE-180 imaging (Liu et al. 2015). In the longitudinal 18F-DPA-714 
studies, the brain regions affected have been cerebral cortex in the 12- to 19-month-old APPswe-
PS1dE9 mice (Sérrière et al 2015), whereas in over 18-month-old mice, significant differences 
have been detected in hippocampus, cortical region, and thalamus of TG mice (Chaney et al. 
2018). In both studies, the results were obtained by normalizing the regional radioactivity levels 
with a pseudo-reference region − cerebellum. Liu et al. utilized 18F-GE-180 for the quantification 
using a unit of %ID/ml, which has not been used in newer studies with PS2APP (Brendel et al. 
2016 and 2017b) and APP23 (López-Picón et al. 2018) models with the same tracer. In these 
studies, the white matter region including cerebellum and cerebellum alone were used as pseudo-
reference regions, respectively, and increased TSPO levels were detected at 5 months in the 
forebrain (Brendel et al. 2016 and 2017b) and in the cortical, hippocampal, and thalamic regions 
between 17 to 26 months of age (López-Picón et al. 2018). Furthermore, young 6-month-old 
5×FAD mice have exhibited significantly higher 11C-PBR28 uptake in their brains as compared 
to WT mice (Mirzaei et al. 2016), whereas  APPL/S  have displayed increases in the  18F-PBR06 
uptake in cerebral cortex and hippocampus only at the age of 15-16 months (James et al. 2015). 
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Table 2. Regional TSPO tracer retention detected with small animal μPET in transgenic mouse models of Alzheimer's disease.   

Reference 

Venneti et al. 2009 

Maeda et al. 2011 

Rapic et al. 2013 

Sérrière et al. 2015 

Liu et al. 2015 

James et al. 2015 

Mirzaei et al. 2016 

Note: (+) increased TSPO tracer uptake in transgenic Alzheimer mice compared to wild-type mice; +, positive staining result; Abbreviations: AUC, area under the curve; B, brain; 
CB, cerebellum; CTX, cortex; dyn, dynamic; F, female; HIP, hippocampus; IHC, immunohistochemistry; IV, intravenous; M, male; mo, months; NA, not applicable; NS, non-
specific; QU, quantification unit; STR, striatum; SUV, standard uptake value; THA, thalamus; VOI, volume of interest     
  

IHC 

Iba1+, 
GFAP+ 

TSPO+ 

CD11+ 

CD38+ 
at 19 mo 

TSPO+, 
CD38+, 
CD40+ 
at 26 mo 

CD38+, 
TSPO+ 
from 9 mo 

Iba1+ 

QU 

%ID/kg x g 

VOI/STR 

%ID/cc, SUV 

SUVR CB 

%ID/ml, 
B/THA 

VOI/muscle, 
VOI/B, %ID/g 

VOI/heart, 
SUV, AUC 

Target brain 
region 

B at 16-19 mo 

HIP, CTX 

NS 

CTX 12 + 19 
mo, HIP 19 
mo 

B, 
HIP 

CTX, HIP 

B 

Tracer 
uptake 

(+) 

(+) / 
NS 

NS 

(+) 

(+) 

(+) 

(+) 

PET 

60 min dyn 

60/90/60 
min dyn 

30 min dyn 

50 min dyn 

120 min dyn 

60 min dyn 

60 min dyn 

Anesthesia 

Isoflurane 

Isoflurane 

Isoflurane 

Isoflurane 

Isoflurane 

Isoflurane 

Isoflurane 

Injection 

IV in 
anesthesia 

IV in 
anesthesia 

IV in 
anesthesia 

IV in 
anesthesia 

IV in 
anesthesia 

IV in 
anesthesia 

IV in 
anesthesia 

Tracer 

11C-PK11195 

11C-AC-5216, 
18F-FEDAA11106, 
11C-AC-5216 
 

11C-PK11195 

18F-DPA-714 

18F-GE-180 

18F-PBR06 

11C-PBR28 

Sex 

NA 

NA 

F 

M 

M 

NA 

F 

Age (mo) 

13-19 

23-29, 
25 

13 

6-19 

4, 26 

5-6, 9-10, 
15-16 

6 

Strain 

APPswe/ 
PS1dE9 

APP23, 
APPE693d 

APP/PS1 
 

APPswe/ 
PS1dE9 

APPswe/ 
PS1dE9 

APPL/S 

5×FAD 
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Continuum of Table 2. Regional TSPO tracer retention detected with small animal μPET in transgenic mouse models of Alzheimer's disease.  

Reference 

II 

Brendel et al. 
2016 

Brendel et al. 
2017 

Deleye et al.  
2017 

Chaney et al. 
2018 

López-Picón et 
al. 2018 

Keller et al. 
2018 

Note: (+) increased TSPO tracer uptake in transgenic Alzheimer mice compared to wild-type mice; +, positive staining result; Abbreviations: B, brain; CB, cerebellum; CTX, 
cortex; dyn, dynamic; F, female; FC, frontal cortex; HIP, hippocampus; IHC, immunohistochemistry; IV, intravenous; M, male; mo, months; QU, quantification unit; stat, 
static; STR, striatum; SUV, standard uptake value; THA, thalamus; VOI, volume of interest; WM, white matter. 

IHC 

Iba1+ 

Iba1+, 
TSPO+ 

Iba1+, 
TSPO+ 

Iba1+, 
GFAP+ 

GFAP+, 
TSPO+, 
CD11b+ 

Iba1+ 
at 26 mo 

Iba1+ 

QU 

VOI/CB 

Forebrain/CB, 
Forebrain/WM 

Forebrain/CB, 
Forebrain/WM 

SUV 

VOI/CB 

VOI/CB, SUV 

SUV 

Target brain 
region 

CTX, HIP, 
THA, STR 

Forebrain 
at 5 mo 

Forebrain at 5 
mo; B with SPM 

CTX, THA, HIP 

HIP, subCTX at 
18 mo 

FC, PTC at 17 
mo, HIP at 20 
mo, THA at 26 
mo 

FC, B, HIP 
at 12 mo 

Tracer 
uptake 

(+) 

(+) 

(+) 

(+) 

(+) 

(+) 

(+) 

PET 

60 min dyn 

90 min dyn 

90 min dyn 

40-60 min 
stat 

60 min dyn 

60 min dyn 

60 min dyn 

Anesthesia 

Isoflurane 

Isoflurane 

Isoflurane 

Isoflurane 

Isoflurane 

Isoflurane 

Isoflurane 

Injection 

IV in 
anesthesia 

IV in 
anesthesia 

IV in 
anesthesia 

IV awake 

IV in 
anesthesia 

IV in 
anesthesia 

IV in 
anesthesia 

Tracer 

18F-DPA-714 

18F-GE-180 

18F-GE-180 

18F-PBR111 

18F-DPA-714 

18F-GE-180 

18F-FDPA 

Sex 

M, F 

NA 

F 

F 

M 

M, F 

M, F 

Age (mo) 

6-15 

5, 8, 13, 16 

5, 8, 13, 16 

1.5-1.75, 4, 
7-8, 12-13 

6, 12, 18 

17-23 

4.5-19 

Strain 

APP/PS1-21 

PS2APP 

PS2APP 

APP/PS1-21 

APPswe/ 
PS1dE9 

APP23 

APP/PS1-21 
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Despite the successful imaging results gained from the aforementioned experiments, a criticism 
has been raised against TSPO - it should not be considered as a marker for overall 
neuroinflammation. TSPO tracers have also demonstrated several limitations, including high non-
specific binding, low brain uptake, susceptibility to human polymorphism, and inabilities to 
discriminate between the activation stages of the glial cells (Janssen et al. 2018), which is 
accompanied with the limitations of the target itself. Furthermore, TSPO is differently expressed 
between species; it shows 9-fold increases in rodents, but not in humans (Owen et al. 2017). 
Therefore, other radioligands targeting different aspects of neuroinflammation have been 
explored due to the complex nature of the inflammatory pathway. Targets with great interest 
include MAO-B, COX2 (Shukuri et al. 2016), adenosine receptors, CB2R, matrix 
metalloproteinases 2 and 9, P2X7R, P2Y7R, and B-lymphocyte antigens 19 and 20 (Shukuri et al. 
2016; Moldovan et al. 2017; Beaino et al. 2016; Ory et al. 2016; Han et al. 2017; Janssen et al. 
2018). The MAO-B ligand 11C-deuterium-L-deprenyl, has already been extensively used for 
imaging AD patients, showing significantly increased tracer retention in the patients as compared 
to healthy controls (Santillo et al. 2011; Carter et al. 2012), a result confirmed in the Tg2576 
mouse model, which demonstrated an increased tracer uptake in the cortical region and 
hippocampus of young animals (Rodriguez-Vieitz e al. 2015). 

2.5.3 Targeting cannabinoid receptor 1 

Radioligand development procedures have to follow many guidelines before PET tracer can be 
successfully used for in vivo imaging. Desirable features of the ideal ligand include low 
lipophilicity, and high affinity and molar activity among many other characteristics. The 
developmental path in creating reliable PET ligands targeting cerebral CB1Rs has attracted 
increasing interest because of the involvement of this receptor in neuropsychiatric and 
neurodegenerative diseases, but obstacles due to the undesirable molecular features of these 
compounds. CB1Rs are one of the most abundant receptors in the brain, which means that the 
affinity of the radioligand has to be subtle for the receptors compared to low-expressing receptors 
in the brain. This requires careful data quantification to avoid non-specific and misinterpretations 
of the tracer binding. In addition, CB1R radioligands tend to have a transmembrane domain 
binding site, which makes them more lipophilic than the other types of ligands, which in turn, 
might lead to non-specific lipid or protein binding in the brain (Terry 2009a). Not surprisingly, 
all of the first generation CB1R radioligands, which were radiolabeled tetrahydrocannabinol ((-)-
5’-18F-fluoro-∆9-THC, Charalambous et al. 1991) or rimonabant analogues (Gatley et al. 1998; 
Berding et al. 2004), suffered from extremely high lipophilicity, low affinity, high non-specific 
binding, and low brain uptake.  However, a rimonabant analogue 18F-SR-14485  has  displayed 
good molar activity and excellent brain penetration in mice, but no further evaluation has been  
conducted (Mathews et al. 1999 and 2000). Finally, after 15 years since the description of the 
first  CB1R radioligand, a  group of second generation radioligands was shown  to  possess more 
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Figure 14. Molecular structures of type 1 cannabinoid receptor inverse agonist 18F-FMPEP-d2, a full agonist 
tetrahydrocannabinol, i.e. Cannabis Saliva, and the major compound of cannabis, cannabidiol. 

feasible features for imaging purposes. A cyano-des-methyl derivative of a CB1R antagonist 
(NIDA-41020) 11C-OMAR was developed in 2006 (Horti et al. 2006) demonstrating lower 
lipophilicity, greater binding affinity for CB1Rs, and rapid kinetics as compared to the older 
compounds, but only moderate brain uptake in the baboon brain. In the human studies, healthy 
men exhibited greater cerebral 11C-OMAR SUVs, but lower mean VT values than females, 
revealing gender-related differences in CB1R PET binding (Normandin et al. 2015). Similar 
findings were obtained with another second generation CB1R PET ligand, 18F-MK9470, when 
healthy aging was examined in humans (Van Laere et al. 2008). In this study, males exhibited 
increased tracer uptake in the brain as compared to females, whereas age-dependent increases in 
18F-MK9470 binding were detected only in females. However, a comprehensively low cerebellar 
uptake was evident, which is in contrast to the histological distribution pattern since this area has 
high CB1R density (Van Laere et al. 2008). A third reversible CB1R tracer, 11C-MePPEP, has 
though demonstrated superior monkey brain uptake compared to the previous two new generation 
CB1R radioligands with a moderate lipophilicity (Yasuno et al. 2008b), and a test-retest 
reproducibility of 15−16%, depending on the quantification method (Terry et al. 2009b; Riaño 
Barros et al. 2014). Unfortunately, 11C-MePPEP has some limitations, including a low free 
fraction in plasma and unknown radiometabolite status in the brain (Terry 2009a; Terry et al. 
2010). Hence, in an attempt to develop an analogue from 11C-MePPEP with an extended half-
life, a CB1R inverse agonist 18F-FMPEP-d2, was produced and evaluated in the monkey and 
human brain (Donohue 2008a and 2008b). 18F-FMPEP-d2 (Figure 14) has similar lipophilic 
properties, but better brain uptake and higher affinity than 11C-MePPEP or other 18F-labelled 
candidates. In addition, 18F-FMPEP-d2 showed approximately 90% specific binding to CB1Rs 
and stable VT already within 90 min after the injection, properties not seen with the previous 
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tracers. With this ligand, the plasma free fraction was found to be similarly low as with 11C-
MePPEP, however, the peak uptake was shown to reach SUV near 5 (Terry et al. 2010), which 
might be due to the reversible binding to plasma proteins. 

At present, the role of CB1R in the pathogenesis in AD is still controversial. Previous post mortem 
studies from AD brain tissue sampling have yielded heterogeneous results, which has been also 
the case in preclinical studies with AD mouse models. The conflicting results might originate 
from the discrepancies between the study protocols and the stage of the disease under 
investigation. Hence, monitoring CB1R in a living brain could provide a noninvasive way to 
examine the possible changes within the receptor system and to monitor the effects of future 
disease modulatory interventions targeting CB1Rs. However to date, the distribution of CB1Rs in 
the AD human brain has been examined only once using 18F-MK9470 (Ahmad et al. 2014). In 
that cross-sectional study, 11 AD patients and 7 healthy volunteers aged between 57−81 years 
were imaged with 18F-MK9470 and 11C-PiB to compare the CB1R distribution with the amyloid 
burden. Unfortunately, no differences were detected between AD patients and healthy controls 
with regard to in vivo CB1R availability. These results might suffer from the non-discrimination 
of the genders in the different cohorts, or from the broad age spectrum of the study subjects 
between 57 and 81 years that could have diminished to discriminate different AD disease stages. 
In terms of preclinical animal studies, before III, no AD model has been examined with CB1R 
PET. In the future, however, since there are significant differences in the regional CB1R 
distribution and signaling between human and mouse brain, extrapolating imaging results from 
preclinical experiments to clinical outcome will need to be done carefully (Herkenham et al. 
1990). 

As a summary of this review of the literature, PET offers a broad spectrum of applications that 
may help to improve the diagnostic accuracy of AD. Accurate and early detection of AD are 
crucial if one wishes to make an early diagnosis in differentiating healthy subjects from subjects 
suffering from neurodegenerative diseases. This could eventually lead to progress in intervention 
studies targeting AD progression. Hence, the present thesis work was initially generated based 
on the lack of 18F-FDG PET imaging data on cerebral glucose metabolism in APPswe-PS1dE9 and 
Tg2576 mouse models, which nowadays are widely used and commercially available disease 
models for AD. Secondly, this thesis work aimed to evaluate for the first time changes in cerebral 
glucose metabolism in a novel AD mouse model, APP/PS1-21, because past imaging findings 
with different disease models had shown to be sparse and incomparable. In addition to validating 
disease models, this study also included experiments on evaluating modern PET radiotracers 
targeted for neuroinflammation and CB1R for future preclinical imaging studies with mice. 
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3 AIMS OF THE STUDY 

The overall aim of this thesis was to evaluate the translational applicability of disease models 
tailored for AD-related amyloidosis and PET tracers targeting cerebral glucose utilization, 
neuroinflammation, and CB1R in preclinical in vivo imaging studies. 

The following specific objectives were determined for this thesis: 

I Evaluate differences in cerebral glucose metabolism in APPswe-PS1dE9 and Tg2576 mouse 
models of AD using an equivalent and cross-sectional in vivo 18F-FGD PET study design 
and experimental protocols. The secondary objective was to examine the correlation 
between cerebral glucose metabolism and the stage of amyloidosis and microgliosis using 
ex vivo methods. 

II Follow and quantify the relationship between temporal changes in cerebral glucose 
metabolism and glial activation in the APP/PS1-21 mouse model of AD using longitudinal 
in vivo 18F-FDG and 18F-DPA-714 PET imaging and ex vivo digital autoradiography. 

III Evaluate the applicability of 18F-FMPEP-d2 for preclinical in vivo imaging studies (i.e. 
interventional studies and basic research) using pretreatment experiments and 
radiometabolite analysis in WT mice. Secondly, to follow and quantify temporal changes 
in cerebral CB1R availability in the APP/PS1-21 mouse model of AD using longitudinal 
in vivo 18F-FMPEP-d2 PET imaging and ex vivo experiments, including digital 
autoradiography and Western blot.
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4 MATERIALS AND METHODS 

4.1 EXPERIMENTAL STUDY FLOW (I-III) 

In Study I, brain glucose utilization was examined in two TG mouse models of AD using cross-
sectional 18F-FDG-PET imaging. Different animal models as well as TG and WT animals at 
different ages, which were exhibiting an early (6 months) and late (12 months or 17 months) stage 
of amyloidosis, were used as explanatory variables in the experimental units. The 18F-FDG uptake 
was compared to underlying Aβ and microglial pathology determined with immunohistological 
quantification. 

Study II was a continuation of Study I. Brain glucose utilization in accordance with the glial 
activation was examined with longitudinal PET imaging with 18F-FDG and 18F-DPA-714 in a 
novel mouse model of AD. Individual TG and WT mice were repeatedly imaged with both tracers 
at four different time points of 6, 9, 12, and 15 months. Animal groups allocated according to 
different ages were treated as experimental units in the analyses. The temporal change and in-
between correlation of the tracer uptake in the brain regions were used as primary outcomes to 
measure the relationship of pathological events. 

Study III was a continuation of Study II with regard to the animal model evaluation. The 
pharmacological profile and metabolism of 18F-FMPEP-d2 were evaluated in WT mice. 
Afterwards, temporal changes in the availability of CB1Rs during amyloidosis in a mouse model 
of AD were examined using longitudinal 18F-FMPEP-d2 PET imaging. TG and WT mice were 
repeatedly examined at four different time points of 6, 9, 12, and 15 months, and the experimental 
units consist of animal groups at different ages. Changes in the 18F-FMPEP-d2 uptake were 
compared to the underlying CB1R expression determined with Western blot and 
immunohistological examination. 

4.2 EXPERIMENTAL ANIMALS (I-III) 

All animal experiments of this thesis were approved by the State Provincial Office of Southern 
Finland (permission numbers ESAVI/3899/04.10.07/2013 and ESAVI/4499/04.10.07/2015). 
Animal wellbeing complied with the ethical guidelines of the International Council of Laboratory 
Animal Science (ICLAS). In addition, Studies II and III were performed in compliance with the 
Animal Research: Reporting of In Vivo Experiments guidelines with the principles of the 3Rs 
(Replacement, Reduction and Refinement) by using longitudinal PET imaging to examine the 
same animals repeatedly. 

All animals were group-housed according to their sex in individual ventilated cages in the Central 
Animal Laboratory at University of Turku. Animals were living at a consistent temperature of 21 
(1.2) °C and humidity of 55 (5) %  with  a  diurnal rhythm of 12-hour light phase between  6  am 
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Table 3. Experimental animals with the descriptive statistics as arithmetic means (standard deviation) used 
for Studies I-III. 
Study I II III 
Strain APPswe-PS1dE9 WT Tg2576 WT APP/PS1-21 WT C57 APP/PS1-21 WT 
n total 12 15 15 9 61 38 19 44 40 
n dropouts 0 1 1 0 1 1 0 1 2 
n failures 0 0 0 0 10 11 0 2 0 

Sex F F F F 23 F, 
38 M 

21 F, 
17 M M 13 F, 

31 M 
13 F, 
27 M 

Age (months) 6, 12 6, 12 6, 17 6, 17 6, 9, 
12, 15 

6, 9, 
12, 15 2-4 6, 9, 

12, 15 
6, 9, 
12, 15 

Weight (g) 26.1 
(4.5) 

27.6 
(4.0) 

25.0 
 (2.3) 

26.2 
(6.0) 

31.9 
(7.8) 

39.8 
(9.2) 

31.9 
(4.0) 

34.6 
(7.2) 

44.4 
(8.4) 

PET tracer 18F-FDG 
18F-FDG, 
18F-DPA-714 

18F-FMPEP-d2 

Injected dose 
(MBq) 

6.6 
(1.4) 

6.7 
(1.0) 

6.4 
(1.2) 

5.9 
(0.9) 

7.9 
(0.6)*,             
5.1 
(1.4)** 

8.0 
(0.3)*,             
5.8 
(1.1)** 

1.6 
(1.0) 

2.3 
(0.9) 

2.3 
(0.8) 

Experiment 
Cross PET x x x x   x   
Long PET     x x  x x 
ARG x x x x x x x x x 
Pretreatment       x   
RadioTLC       x   
Western blot        x x 
Thio S     x x  x x 
IHC x x x x x x  x x 
Note: *18F-FDG; **18F-DPA-714 
Abbreviations: ARG, autoradiography; C57, C57Bl/6N mouse line; Cross PET, cross-sectional PET 
imaging; F, female; IHC, immunohistochemistry; Long PET, longitudinal PET imaging; M, male; 
RadioTLC, thin-layer chromatography on radioactive compounds; Thio S, Thioflavine S; WT, wild-type 

and 6 pm. The mice had free access to tap water and certified standard laboratory soy-free chow 
(RM3 soya-free, 801710, Special Diets Service, Essex, UK). Animals were weighed at the 
beginning of each experimental session, and in studies I and II, their body temperature and fasting 
blood glucose were measured before and after every 18F-FDG injection with a microprobe rectal 
thermometer (Physitemp Instruments, Inc., USA) and Accu-Chek Aviva Nano (Roche 
Diagnostics, USA), respectively. The number of experimental animals used in each study and in 
experiments with additional details are presented in Table 3. 

4.2.1 Wild-type animals 

C57BL/6N mice were bred in the Central Animal Facility of University of Turku and used for 
breeding with APP/PS1-21 mice (II and III), and were also used for the radiometabolite analysis 
and pretreatment experiments (III). 
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Table 4. The genetic and phenotype features of the transgenic mouse models used in Studies I−III. Data are 
collected from the Alzforum Research Model Database on November 2018. 

Strain APPswe-PS1dE9 Tg2576 APP/PS1-21 

Transgenes APP, PSEN1 APP APP, PSEN1 

Mutations hu/moAPP695swe,  hu/moAPP695swe,  huAPPswe, 

  PSEN1dE9   PSEN1L116P 

Promoter Murine prion Hamster PrP Murine Thy1 

Known pathological features       
Amyloid deposits 4 months 11-13 months 6 weeks 

Microgliosis 4 months 17 months 6 weeks 

Astrocytosis 3 months NA 6 weeks 

Neurofibrillary tangles No No No 

Phosphorylated tau Yes Yes Yes 

Neuronal loss No No 17 months 

Behavioral changes 12 months 6, 12 months 7-8, 12 months 

4.2.2 Transgenic mouse models 

APPswe-PS1dE9 

APPswe-PS1dE9 (B6.Cg(APPswe, PSEN1d9E)85Dbo/Mmjax; The Jackson Lab., JAX MMRRC) 
and the corresponding WT mice were obtained from Jackson Laboratories Inc., for Study I. The 
investigated time points for this model were 6 and 12 months. The APPswe-PS1dE9 mouse model 
expresses mouse APP with humanized Aβ region and the Swedish mutation at amino acids 
595/596, and human PSEN1 with exon 9 deletion (Jankowsky et al. 2001). The mice exhibit Aβ1-

42-type peptide aggregations over Aβ1-40 in the brain, which primarily accumulate into abundant 
plaques at 6 months of age in the cortical region and hippocampus, and eventually to other brain 
regions (Garcia-Alloza et al. 2006; Brendel et al. 2015; Sérrière et al. 2015). This model also 
expresses other characteristical AD features such as gliosis, but does not display any NFT changes 
(Table 4; Jackson et al. 2016; Alzforum). 

Tg2576 

Tg2576 (B6;SJL-Tg(APPswe)2476Kha; Taconic Inc.) and corresponding WT mice were 
obtained from Taconic Farms Inc. for Study I. The examined time points of this mouse model 
were 6 and 17 months. Tg2576 mice express the 695-amino acid isoform of human APP carrying 
the Swedish mutation KM670/671NL (Hsiao et al. 1996). This model exhibits a 5-fold increase 
in Aβ1-40 and a 14-fold increase in Aβ1-42 peptides in the brain, forming weak plaques by the age 
of 11-13 months in the cortical and limbic regions. In addition, Tg2576 mice show increased 
signs of microgliosis and astrocytosis around the Aβ plaques at a very old age (Table 4). 
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APP/PS1-21 

APP/PS1-21 (B6.Cg-Tg(Thy1-APPswe, Thy1-PSEN1*L166P)21Jckr) mice were originally 
purchased from Koesler, Germany. The animals were further bred in the Central Animal 
Laboratory of University of Turku with C57BL/6N mice to enlarge the colony. Breeding 
produced heterozygote TG and the corresponding WT mice. The genotype of each newborn 
animal was tested and confirmed by Clinical Research Service Turku for Studies II and III. This 
model was examined at different time points of 1, 2, 3, 6, 9, 12, and 15 months. The APP/PS1-
21 mice co-express human APP with the Swedish double mutation KM670/671NL and the L166P 
mutated human PSEN1 under the control of a neuron-specific murine Thy-1 (Radde et al. 2006). 
These mutations initiate primarily Aβ1-42-driven plaque formation in an aggressive manner in 6-
week-old animals, which worsen as the mice age. The Aβ deposits appear first in the neocortex, 
and later in the hippocampus, striatum, thalamus, and brainstem by the age of 5 months. The 
plaques are accompanied by microglia proliferation, astrocytosis, and the presence of 
phosphorylated tau trajectory protein with a modest neuronal loss (Table 4; Rupp et al. 2011; 
Unpublished data). 

4.3 RADIONUCLIDE AND TRACER PRODUCTION (I-III) 

The radionuclide 18F was produced via 18O (p, n) 18F in a nuclear reaction in the Accelerator 
Laboratory of Turku PET Centre by using CC-18/9 cyclotron (Efremov Scientific Institute of 
Electrophysical Apparatus, St. Petersburgh, Russia). 

18F-FDG, 18F-DPA-714, and 18F-FMPEP-d2 were synthetized in the Radiopharmaceutical 
Chemistry Laboratory of Turku PET Centre as described previously (Hamacher et al. 1986; James 
et al. 2008; Donohue et al. 2008). The molar activities, batches, and radiochemical purities of the 
tracers used in Studies I-III are presented in Table 5. 

4.4 IN VIVO PET IMAGING (I-III) 

All in vivo PET/computed tomography (CT) scans were conducted with the Inveon Multimodality 
PET/CT device (Siemens Medical Solutions, Knoxville, TN, USA), which has a spatial resolution 
of 1.3 mm. 

The CT modality preceded PET scan, and it was used as a transmission phase for primary 
anatomical reference and attenuation correction for PET imaging data. In Studies I and II, 
dynamic 60-min 3D PET list mode scans were conducted in tandem with the tracer injection, 
whereas in Study III, 3D PET list modes were recorded as 30-min static modalities at 90 min 
after the 18F-FMPEP-d2 injection. Afterwards, the PET list mode data were reconstructed as 
described   previously   (I  and  II)  using  Fourier-rebinning  and  2D   filtered   back-projection 
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Table 5. Radioactive tracer and imaging quantification specifics used in Studies I−III. 
Study I II III 

PET tracer 18F-FDG 18F-FDG 18F-DPA-714 18F-FMPEP-d2 

AmEOS (GBq/µmol) > 100 > 100 > 1000 > 500 
AmInj (GBq/µmol) NA NA 541 (220) 359 (71) 
Injected mass (ng) NA NA 4.5 (2.1) 3.2 (1.1) 
Radiochemical purity (%) > 98 > 98 > 99.5 > 95 
Number of batches 37 27 16 34 
PET imaging dynamic dynamic dynamic static 
Duration (min) 60 60 60 30 
Quantification ∆T (min p.i.) 20-35 30-60 30-50 90-120 
Quantification unit SUV, SUVglu SUV SUV, VOI/CB SUV, VOI/THA 
Ex vivo autoradiography       
Quantification ∆T (min p.i.) 30 60 60 120 
Quantification unit ROI/WB ROI/CB ROI/CB ROI/THA 

Note: Mean molar activity and injected mass are presented with standard deviation. Abbreviations: Am, 
molar activity; CB, cerebellum; EOS, end of synthesis; Inj, injection; NA, not applicable; p.i., post injection; 
ROI, region of interest; SUV, standardized uptake value; THA, thalamus; VOI, volume of interest; WB, whole 
brain 

reconstruction algorithm, and divided into 51 time frames (30*10 s, 15*60 s, 4*300 s, and 2*600 
s) in Studies I and II or 10 time frames (5*60s and 5*300s) in Study III. All PET scans and tracer 
injections were performed in animals anesthetized with an inhalation of 2.5% isoflurane/oxygen 
mixture on fasted (I, II with 18F-FDG) or nonfasted (II with 18F-DPA-714, III) mice. The tracer 
injections were delivered via IV cannula inserted in the mouse tail vein (left or right). The full in 
vivo PET imaging work flow is illustrated in Figure 15 containing the details of fasting (I, II), 
anesthesia (I-III), and glucose and temperature measurements (I, II). 

PET imaging data were analyzed as volumes of interest (VOIs) using Inveon Research Workplace 
Image Analysis software v. 4.1 and 4.2 (Siemens Medical Solutions). VOIs were first predefined, 
then uploaded and manually adjusted to an individual PET image after a coregistration of the 
corresponding anatomical CT image and a representative MRI mouse brain template (Mouse MRI 
brain template), which guided the anatomical 3D orientation of the following analyzed brain 
regions (Figure 16): the whole brain including the olfactory bulbs, cortex, frontal cortex, 
parietotemporal cortex, hippocampus, striata, thalamus, hypothalamus (III) and cerebellum. PET 
imaging data were semi-quantified as SUVs (I-III), which refers to a division of the regional 
radioactivity by the ratio of injected dose and mouse body weight. In Studies I and II, SUVs were 
also normalized with the individual blood glucose value measured before 18F-FDG injection in 
order to obtain the SUVglu (SUV*prescan blood glucose value). In addition, regional radioactivity 
concentration ratios relative to the reference region were also determined (II and III). Details of 
the study-specific quantification time period and units as well as the reference regions are 
presented in Table 5. 
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Figure 15. In vivo PET imaging work flow for studies I-III in accordance to the tracer injection time at 0. 18F-FDG 
was used in studies I and IIa, whereas 18F-DPA-714 was used in IIb. For Study III, 18F-FMPEP-d2 was utilized for PET 
imaging. A, anesthesia; CT, computed tomography; dyn, dynamic; GLU, glucose; IV, intravenous injection of the tracer; 
PET, positron emission tomography; stat, static; T, body temperature. 

4.5 EX VIVO BRAIN AUTORADIOGRAPHY (I-III) 

All tracer injections were administered to the fasted (I, II with 18F-FDG) or non-fasted (II with 
18F-DPA-714, III) animals in anesthetized with 2.5 % isoflurane/air mixture via an IV cannulated 
mouse tail vein (left or right). The specific or non-specific regional 18F-FDG uptake was measured 
in the brains of 6- to 17-month-old TG and WT mice with a distribution time of 30 (I) or 60 min 
(II) after the tracer injection. The 18F-DPA-714 binding (II) was examined in the brains of 1- to 
15-month-old TG and WT mice with a distribution time of 60 min after the tracer injection. The 
specific regional 18F-FMPEP-d2 binding (III) was evaluated in the brain of 6- to 15-month-old 
TG and WT mice with a distribution time of 120 min after the injection. After the distribution 
time (Figure 17), animals were anesthetized with 4.0% isoflurane/air mixture to perform cardiac 
puncture and transcardial perfusion with physiological saline. Brains were removed from the 
skull, weighed, and measured for the radioactivity using 2480 Wizard2 automatic gamma counter 
(Perkin Elmer, Turku, Finland). Ex vivo tissue counting was also performed with cardiac blood 
sample, tail, and additional organs (I; Unpublished data). Brains were rapidly frozen in 
isopentane, which was chilled with solid carbon dioxide. Shortly, the brains were cut into coronal 
20 µ-thick cryosections with a cryostat (Leica CM3050S, Leica Biosystems, Nußloch, Germany) 
at the bregma levels from -6.00 to +2.60. Cryosections on the microscope slides were air-dried 
and exposed to imaging plates (Fuji Imaging Plate BASTR2025, Fuji Photo Film Co., Japan) for 
two half-lives of 18F. The 18F-radioactivity distribution on the plate was digitized using the 
BAS5000 analyzer (Fujifilm Lifesciences, Japan). Digital autoradiography data were analyzed as 
regions of interest (ROI) using Aida Image Analysis software (Image Analyzer v. 4.22; Raytest 
Isotopenmeßgeräte GmbH, Straubenhardt, Germany). ROIs were manually drawn on the 
digitized autoradiographs over the following brain regions: frontal cortex, parietal cortex (I), 
temporal  cortex  (I),  parietotemporal  cortex,  striatum,  thalamus,  hippocampus  (I),  anterior  
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Figure 16. Mouse brain MRI template aligned with a representative mouse computed tomography with 
representative volumes of interest used for PET image quantification in I-III. CB, cerebellum; FC, frontal cortex; 
HIPPO, hippocampus; HYPO, hypothalamus; PTC, parietotemporal cortex; STR, striata; THA, thalamus. 

hippocampus (II, III), posterior hippocampus (II, III), hypothalamus (III), cerebellum (I, II), 
cerebellar  gray  matter (III), and  cerebellar white matter (III) (Figure 18). The digital 
autoradiograph ROIs were analyzed for count densities and expressed as background-erased 
photostimulated luminescence intensity per square millimeter (PSL/mm2) ratios relative to the 
selected reference region (Table 5). 

4.6 PRETREATMENT EXPERIMENT (III) 

The specific binding of 18F-FMPEP-d2 in mouse brain was evaluated with a CB1R inverse agonist, 
rimonabant (SR141716; No. 9000484, Cayman Chemical, MI, USA) to determine the 
preliminary usability of this tracer in murine imaging studies. C57BL/6N mice were first 
anesthetized with 2.5% isoflurane/air mixture 20 min prior to pretreatment. Mice were IV 
cannulated via a tail vein and pretreated with rimonabant (2 mg/kg) or with vehicle 10 min prior 
to 18F-FMPEP-d2 IV injection. 18F-FMPEP-d2 (3.4 (0.2) MBq) was administered and a dynamic 
90-min 3D PET/CT list mode scan was initiated in tandem. After the scan, the mice were 
sacrificed as described in chapter 4.5. The ex vivo autoradiography experiment was used for the 
visual examination and in vivo PET for the quantification of the pretreatment experiment. The 
equivalent size of VOI was manually drawn over the whole brain, and the radioactivity of the 
VOI was semi-quantified as SUV. The in vivo data was verified with ex vivo tissue counting of 
the brain and quantified as %ID/g. 
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Figure 17. Ex vivo autoradiography work flow for studies I-III in accordance to the tracer injection time at 0. 18F-
FDG was used in studies I and IIa, whereas 18F-DPA-714 was used in IIb. For Study III, 18F-FMPEP-d2 was utilized for 
autoradiography. A, anesthesia; GLU, glucose; IV, intravenous; T, temperature. 

4.7 RADIOMETABOLITE ANALYSIS (III) 

The amounts of unchanged 18F-FMPEP-d2 and its radiometabolites were examined in the mouse 
plasma and brain using thin-layer chromatography (TLC) and digital autoradiography with 
distribution time points between 5 and 240 min.  Brains of the C57BL/N mice were dissected as 
described earlier in Chapter 4.5. Plasma samples were collected by centrifuging the cardiac 
puncture blood and separating the supernatant. Brain homogenates were prepared by manually 
homogenizing brain tissue samples from the parietotemporal cortical region into acetonitrile. 
After centrifugation, the supernatants of both brain and plasma samples were collected and 
pipetted on top of Silica Gel High-performance RP-18 TLC plates (Merck, Darmstadt, Germany). 
18F-FMPEP-d2 from the same batch was used as a reference standard in the analyses. The TLC 
plates were developed in 1% trifluoroacetic acid/acetonitrile (40:60 v/v) mobile phase, after 
which the plates were dried and exposed to imaging plates for two half-lives of 18F, and the 
radioactivity in the plates was digitized with the BAS5000 Analyzer. The proportions of 
unchanged and metabolized 18F-FMPEP-d2 in the plasma and brain total 18F-radioactivity and 
their retention factors (Rf) were calculated from the autoradiograms using Aida Image Analysis 
software. 

 

 
Figure 18. Regions of interest drawn over the digital autoradiographs in Studies I−III. 
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4.8 WESTERN BLOT (III) 

The in vivo 18F-FMPEP-d2 binding was validated with ex vivo Western blot to examine whether 
the CB1R expression is altered in APP/PS1-21 mouse model of AD in comparison to non-diseased 
WT mice. Following brain regions were examined: frontal cortex, parietotemporal cortex, 
hippocampus, and thalamus. Nine-month-old female and male APP/PS1-21 and WT mouse brain 
samples were assessed separately to quantify the gender difference within the CB1R protein 
levels. Brain samples were dissected during the ex vivo digital autoradiography and tissue 
counting experiments, and immediately frozen in liquid nitrogen. Samples were mechanically 
homogenized on ice with an equal volume of lysis buffer as described in detail in III. In brief, 
the homogenates were boiled for 5 min at 95°C and centrifuged for 25 min in 12,000 rpm from 
which the supernatants were collected to determine the total protein concentration of the 
homogenates using the Pierce™ BCA protein assay kit (Thermo Scientific). The samples were 
denatured with a master buffer for 5 min at 95°C and equal amounts of protein were pipetted onto 
a 10% SDS-polyacrylamide gel lanes. Proteins were first separated according to their weight by 
electrophoresis and transferred onto nitrocellulose pure transfer membranes (UltraCruz®, Santa 
Cruz Biotechnology, Texas, US) using a Mini Trans-Blot cell electroblotter (BIO-RAD Life 
Science Group, CA). Membranes were blocked either in 3% (w/v) bovine serum albumin (BSA, 
Sigma Aldrich) diluted in 0.1% Tween Tris-buffered saline (TBS-T) at 4°C overnight or in 5% 
(w/v) dry skim milk diluted in TBS-T for 90 min at room temperature depending on the following 
primary antibody. Overnight incubation at 4°C was performed first with anti-CB1R primary 
antibody (1:500 dilution in 3% BSA TBS-T) and secondly with a housekeeping primary anti-β-
actin antibody (1:1000 dilution in 5% skim milk TBS-T). Membranes were washed with TBS-T 
and incubated with the secondary antibody (Donkey anti-Rabbit IgG H+L, 1:2000 dilution in 
TBS-T) for 1 h at room temperature. Membranes were washed again with TBS-T before detecting 
the fluorescent signal using LI-COR Odyssey® CLx Imaging System (LI-COR, Inc.). The 
fluorescent signals of the membranes were analyzed using Image Studio Software Lite software 
v. 5.2 (LI-COR, Inc.). The signal intensities of the CB1R bands were normalized to a reference 
band of the β-actin housekeeping protein in each membrane, and membranes normalized to the 
protein marker before being compared with each other. 

4.9 IMMUNOHISTOCHEMISTRY (I-III) 

Immunohistochemical stainings were performed with fresh frozen mouse brain 20-µm thick 
coronal cryosections collected from the ex vivo digital autoradiography experiments in Studies 
I−III. The sections were stored at -20°C before proceeding to staining according to previously 
described protocols and employed reagents within Studies I-III. In Study I, APPswe-PS1dE9 and 
Tg2576 brain cryosections were stained with a monoclonal antibody against Aβ (6E10, 1:400) 
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and ionized calcium-binding adapter molecule 1 (Iba1, 1:1000), whereas in Study II, APP/PS1-
21 brain cryosections were dyed with Thioflavine S (0.025%) and stained with antibodies against 
Aβ1-42 and Iba1 (1:500 for both). In Study III, anti-CB1R (1:500) and GFAP (1:500, unpublished) 
were used for staining the APP/PS1-21 mouse brain sections. Stained sections were imaged using 
the 3DHISTECH Midi Scanner (Thioflavine S) or Slide Scanner 250 (antibodies). In Study I, the 
amounts of regional Aβ and microgliosis were determined in different brain regions of APPswe-
PS1dE9 and Tg2576 mice with primary evaluation procedures using CaseViewer software v. 1.3 
(3DHISTECH, Budapest, Hungary) and quantified using Image J software (Wayne Rasband, 
National Institute of Health, MD, USA). In Studies II and III, no quantification procedures were 
conducted. 

4.10 STATISTICAL ANALYSES (I-III) 

Descriptive statistics, i.e. molar activity at the time of injection, injected dose, weight of the 
animals, glucose values, and in vivo PET imaging and ex vivo results from Studies II and III are 
presented as arithmetic means with standard deviation in brackets after the mean values. Due to 
the normal distribution of the numeric data in Study I, in vivo and ex vivo results are presented as 
medians and interquartile ranges. 

In Study I, cross-sectional in vivo and ex vivo differences in regional glucose tracer uptake and 
microglial staining between TG and WT mice in various time points were examined with 
Kruskal-Wallis test, following Dunn’s multiple comparison. The non-parametric Mann-Whitney 
U-test was used for exploring the differences in the formation of amyloid in TG mice in various 
ages. In Studies II and III, longitudinal PET data were examined using hierarchical mixed linear 
model with a compound symmetry covariance structure, including one within-factor (time), one 
between-factor (genotype), and an interaction term (time × genotype). Interactions were 
investigated by examining whether the mean change during the longitudinal study was different 
between the genotypes. When a significant interaction was encountered, contrasts were 
programmed to study when the interaction occurred between TG and WT animals. The normal 
distribution assumption was checked based on the studentized residuals. Ex vivo results in Studies 
II and III were examined using the non-parametric Mann-Whitney U-test or 2-way ANOVA 
based on the distribution parameters of the data set. Examinations of correlation conducted in 
Studies I−III were quantified with the Pearson test or with the Spearman’s test based on the 
normal distribution of the data set. All statistical tests were performed as two-sided with the 
statistical significance level set at 0.05. The distribution of data and statistical analyses were 
performed using GraphPad Prism v. 5.01 and 6.00 (GraphPad Software, San Diego, CA, USA), 
SAS System v. 9.3 for Windows (SAS Institute Inc., Cary, NC, US), and SPSS Statistics v. 23 
(IBM). 
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5 RESULTS 

5.1 AMYLOIDOSIS IN THE TRANSGENIC MOUSE MODELS 

At 6 months of age, both APPswe-PS1dE9 mice and APP/PS1-21 mice exhibited extensive 6E10- 
and Aβ1-42-positive amyloid deposition, respectively, mainly in the cerebral cortex and 
hippocampus (Figure 19). Amyloidosis further expanded to the other brain regions, including 
thalamus, striata, and cerebellum with the highest burden observed when older animals at the age 
of 12 or 15 months were examined (I, II). In APP/PS-21, the number of Aβ1-42-positive plaques 
seemed to grow as the mice aged, but the size of the plaques did not increase in a temporal manner, 
whereas in APPswe-PS1dE9 mice, 6E10-positive depositions formed dense Aβ-positive groups 
and/or accumulated more to create larger plaques. 

When compared to the APP/PS1-based models, Tg2576 mice showed a much slower temporal 
course of amyloidosis: Sparsely located single Aβ deposits were found randomly in the brain of 
6-month-old Tg2576 mice. Not until the age of 17 months, increases in the numbers of the Aβ-
positive deposits in the cortical and hippocampal region were measurable in this AD mouse 
model. 

 
Figure 19. Temporal amyloidosis in the transgenic mouse models used in studies I-III. mo, months. Scale bar 200 
μm. 
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5.2 CEREBRAL GLUCOSE METABOLISM DETECTED WITH 18F-FDG 

The three AD mouse models were examined to search if there were differences in their cerebral 
glucose metabolism compared to the corresponding WT mice by using dynamic 18F-FDG PET 
imaging and ex vivo brain autoradiography. 

18F-FDG accumulated into the brain rapidly, having a peak uptake as assessed by the SUV 
between 1.5 and 2.0 approximately at 4 min after the IV injection, after which, a washout began 
slowly. In APPswe-PS1dE9 and APP/PS1-21 mice, the peak uptake plateaued more rapidly within 
the first 20 min of the dynamic scan, whereas in Tg2576 mice, the washout stage was more 
profound during the last 30 min of the modality without losing the plateau phase (Figure 20). 18F-
FDG mainly remained in the brain at 60 min, and was eventually eliminated by radioactive decay, 
and only partly eliminated through the renal system. In all models, 18F-FDG accumulated 
predominantly into the midbrain region and cerebellum, concentrating in the vessel-enriched 
regions (Figure 21). In addition, the tracer underwent significant accumulation into the Harderian 
glands in all mice causing a partial volume effect in frontal brain. 

The APPswe-PS1dE9 and APP/PS1-21 models showed significantly decreased 18F-FDG SUVs (p 
< 0.05) at different ages in the brain compared to WT mice (Fig. 2 and 3 in I; Table 2 in I; Fig. 
1 in II). APPswe-PS1dE9 mice demonstrated a moderate hypometabolic pattern already at the age 
of 6 months, whereas in APP/PS1-21 mice, altered glucose utilization was significant at 12 
months. In the late disease stage at 12 and 15 months, both APPswe-PS1dE9 and APP/PS1-21 mice 
exhibited further declines in the 18F-FDG retention as compared to their WT littermates, the latter 
showing statistically significant (p < 0.05) changes in all analyzed brain regions. In detail, the 
most profound regional differences between the genotypes and age groups were examined in 
subcortical regions, hippocampus, striata, thalamus, and cerebellum in both models (p < 0.05). 
However in APPswe-PS1dE9 mice, when SUVs were normalized to the individual blood glucose 
values, the intragroup variation increased, which prevented the detection of a significant 
difference between the genotypes. On the contrary, 15-month-old, but not 6-month-old APP/PS1-
21 mice showed significantly (p < 0.005) larger declines in the cerebral 18F-FDG retention after 
the SUVs were normalized to the blood glucose values (Figure 20), even though the intragroup 
variation was parallely increased. Tg2576 did not demonstrate differences in the cerebral glucose 
metabolism when compared to WT mice (Table 3 in I). 

An increased trend in the temporal 18F-FDG retention within the same strain was observed in 
studies I and II. APPswe-PS1dE9 and WT mice showed age-related glucose hypermetabolism from 
6 to 12 months in different brain regions (Table 2 in I), whereas the same APP/PS1-21 and WT 
mice demonstrated significant (p < 0.05) cerebral hypermetabolism, when they were examined 
from 6 to 15 months of age (Unpublished data for Study II). 
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Figure 20. Mean cerebral time activity curves for 18F-FDG retention in transgenic mouse models of Alzheimer’s 
disease and the corresponding wild-type (WT) control mice. An early disease stage (6 months) and a late disease stage 
(12, 17, or 15 months respectively) as standard uptake values (SUV) and normalized SUVs against the individual blood 
glucose values 20 min before the IV injection were examined. Dashed lines represent the time frame used for 
quantification of the summed PET images post injection. Percentage of the mean 18F-FDG uptake in transgenic mice 
compared to the mean tracer uptake of WT mice in presented above the quantified time frame. 
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Figure 21. Cerebral 18F-FDG retention in transgenic mouse models of Alzheimer’s disease and the corresponding 
wild-type (WT) mice. An early (6 months) and late (12, 15, or 17 months) examination stages were investigated and 
represented as summed 60-min PET/CT images aligned with an illustrative MRI-template of an adult mouse brain with 
the colors adjusted according to the genotype-dependent standard uptake minimum and maximum values. mo, months; 
SUV, standardized uptake values. 

The ex vivo 18F-FDG uptake in the murine brain showed a similar pattern of the tracer distribution 
seen in the in vivo data under enhanced spatial resolution (Figure 22). However, the ex vivo 
quantification as ratios relative to the pseudo-reference region cerebellum (II) or the whole brain 
estimate (I) did not fully confirm the in vivo hypometabolism detected with PET imaging due to 
the obvious differences in the quantification method between PET and autoradiography. Instead, 
hypermetabolic cortical and hippocampal changes were detected in 12- to 15-month-old 
APP/PS1-21 and 6- and 12-month-old APPswe-PS1dE9 mice as compared to age-matched WT mice 
when relative measures were applied (Table S1 in I; Fig. 3 in II).  

 

 
Figure 22. Representative coronal 18F-FDG autoradiographs of young (6 months) and old (12, 15, or 17 months) 
transgenic mice of Alzheimer’s disease and the corresponding wild-type (WT) mouse brain cryosections. mo, 
months; HIPPO, hippocampus; HYPO, hypothalamus; THA, thalamus. 
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Figure 23. Basal and 60-min in vivo 18F-FDG-PET post injection (p.i.) blood glucose values. The tail blood glucose 
of transgenic (TG) mice of Alzheimer’s disease and the corresponding wild-type (WT) mice were measured before and 
after every in vivo experiment in studies I and II. 

In vivo, cerebral glucose hypometabolism was shown to correlate negatively in a moderate 
manner with the Aβ depositions in 12-month-old APPswe-PS1dE9 mice, whereas no such 
correlation was detected in Tg2576 mice (Fig. 4 in I). The amyloidosis in APP/PS1-21 mice was 
not quantified in this study, however, Aβ1-42-positive deposits were localized abundantly already 
at the age of 6 months in cortical lobes and thalamus, which escalated in number and size to the 
other brain regions as the mice aged, at the same time as the regional hypometabolism detected 
with in vivo 18F-FDG was developing. 

Changes in the blood glucose values and temperatures during 18F-FDG-PET 

In studies I and II, the basal blood glucose values of any TG and WT mice i.e. 20 min before the 
in vivo 18F-FDG-PET imaging did not differ compared to the post injection (p.i.) blood glucose 
values measured immediately after the 60-min dynamic PET scan. However, the basal blood 
glucose measurements between 12-month-old APP/PS1-21 and age-matched WT mice differed 
significantly (Figure 23). APP/PS1-21 showed further increased intragroup variations in their 
glucose values after the PET scan, which was not seen in either APPswe-PS1dE9 or Tg2576 mice. 
The body temperature of mice was measured before (basal) and immediately after the 18F-FDG 
scan. Under basal circumstances, murine rectal temperatures did not differ between TG and WT 
mice nor between different models, whereas a significant decrease (p < 0.01) was detected after  
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Figure 24. Mean basal and 60-min post injection (p.i.) temperature values with standard deviation for transgenic 
(TG) mouse models of Alzheimer’s disease and the corresponding wild-type (WT) mice. Temperature was measured 
before and after in vivo 18F-FDG-PET imaging in studies I and II. 

the 60-min dynamic PET scan when all data from studies I and II were pooled together (Figure 
24). 

5.3 CEREBRAL GLIOSIS DETECTED WITH 18F-DPA-714 AND GLIAL 

ANTIBODIES 

Glial activation was utilized as a biomarker for AD-related neuroinflammation in Studies I and 
II by using specific glial antibodies targeting microgliosis and astrocytosis, and 
immunohistochemistry. Gliosis was also monitored in vivo with the TSPO radionuclide 18F-DPA-
714 in the APP/PS1-21 mouse model (II), and verified with ex vivo autoradiography with 
enhanced spatial resolution with the same tracer. 

The brain uptake of 18F-DPA-714 peaked between 2 and 4 min after the tracer injection, which 
was characterized by low brain radioactivity as the peak uptake reached approximately a SUV of 
1 (Figure 25). The washout phase began immediately after the peak without reaching a stable 
plateau, and finally, 18F-DPA-714 was excreted via the hepatobiliary pathway. 

Although the brain uptake of 18F-DPA-714 was low, it was concentrated into the cerebellar and 
thalamic regions. Enhanced uptake into the Harderian and pituitary glands was evident both in 
TG and WT mice,  affecting the spillover into  the  frontal lobes and hypothalamus,  respectively 
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Figure 25. Cortical time activity curves for 18F-DPA-714 retention in APP/PS1-21 mouse model of Alzheimer’s 
disease and the corresponding wild-type (WT) control mice. An early (6 months) and late disease stage (15 months) 
as cortical (CTX) ratios relative to the cerebellum (CB) and standard uptake values (SUV) are represented. Dashed lines 
represents the time frame used for quantification of summed PET images 30-50 min post-injection. 

(Figure 26). In APP/PS1-21 mice, TSPO PET showed elevated (p < 0.05) relative levels when 
assessed against cerebellum in the cerebral cortex and striata already at the age of 6 months as 
compared to the age-matched WT mice. The differences between TG and WT mice spread to the 
other brain regions, but not to the hypothalamus due to the spillover effect outside the brain, when 
mice aged. The temporal elevation of tracer binding from 6 to 9 months in the same TG mouse 
brain was statistically significant, a phenomenon not seen in WT mice (Fig. 2 in II; Table 2 in 
II). When comparing the different quantification methods for 18F-DPA-714 uptake in the brain, 
ratios relative to the cerebellum displayed lower variation within the groups than SUVs (Figure 
25). The variation increased in 15-month-old animals in terms of SUV, which was not seen in the 
relative measures. Ex vivo studies confirmed the PET findings at 15 months, showing 
significantly (p < 0.05) increased 18F-DPA-714 uptake ratios relative to the cerebellum in cerebral 
cortex and hippocampal region, and striata. Even in very young TG mice at 1 and 3 months, 
elevated TSPO tracer binding was evident in the same brain regions as seen in the older TG mice 
when compared to 2-month-old WT mice (Fig. 3 in II). 
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Figure 26. Gliosis in transgenic mouse models of Alzheimer’s disease at ages between 6 and 17 months. Gliosis was 
assessed via an in vivo and ex vivo 18F-DPA-714 tracer measurement in 6-, 9-, 12- and 15-month old APP/PS1-21 mice. 
Astrocytosis assessed as a GFAP-reactive immunostaining is visualized in the same-aged APP/PS1-21 mice. Microgliosis 
assessed as an Iba1-reactive immunostaining is visualized in all three mouse models. Scale bar 100 μm. 

When investigating the age-related effect on tracer accumulation, 18F-DPA-714 cerebellar ratios 
were significantly increased in frontal and parietotemporal cortices between 1-month-old and 15-
month-old TG mice (p < 0.05) and in hypothalamus between 3- and 10-month-old  TG mice (p < 
0.005), demonstrating that even the 1-month-old TG mice can be discriminated from the 2-month-
old WT mice with 18F-DPA-714, and the TSPO-related pathology further worsens until the age 
of 15 months (Fig. 3 in II; Unpublished statistics). When the employed quantification method for 
measuring the 18F-DPA-714 uptake was evaluated from the pooled data from all analyzed brain 
regions of 15-month-old animals, there was a moderately strong positive correlation (r = 0.40, n 
= 48, two tailed p = 0.005) between in vivo and ex vivo relative measures to cerebellar uptake 
confirming the advantage of using cerebellum as a pseudo-reference region (Figure 27A). In 
addition, when in vivo quantification as relative measurement against cerebellar uptake and SUVs 
were examined in terms of interaction, a moderate correlation was found (r = 0.34, n = 64, two 
tailed p = 0.0066) (Figure 27B). 

Reactive microgliosis as assessed as Iba1-positive staining was detected in all animal models. In 
the APPswe-PS1dE9 and Tg2576 models, the IHC quantification revealed significantly larger and 
abundant  Iba1-driven microgliosis in the cortical lobes and hippocampus at 12 months of age 
compared to 6 month-old TG or 6- and 12-month-old WT mice (Fig. 5 in I). In the APP/PS1-21 
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Figure 27. Correlation between different quantification methods used for the 18F-DPA-714 analysis. Pooled data 
from 15-month-old APP/PS1-21 and wild-type group means of all analyzed brain regions were examined. Regions of 
interest (ROISs) from ex vivo digital autoradiography and volumes of interest (VOIs) from in vivo PET imaging data were 
inspected as relative measures against cerebellar radioactivity (A), and VOIs against cerebellar radioactivity and 
standardized uptake values (SUVs) (B) were used for the Spearman correlation examination. 

mice, even though the Iba1 quantification was not performed in this study, the staining revealed 
a clear distinction between TG and WT mice already at the age of 6 months, with Iba1-
immunoreactive staining further intensifying in the cerebral cortex, hippocampus, thalamus, and 
striata of TG mouse cryosections from 9 to 15 months. On the contrary in the WT mice, the Iba1-
driven microgliosis was not detectable in any of the age groups (Fig. 4 and supplemental data in 
II). 

The GFAP-immunoreactive detection of astrocytosis displayed a similar enhanced pattern during 
aging in the APP/PS1-21 model. At 6 months, APP/PS1-21 mice already showed evidence of 
large GFAP-positive astrocytes in the cerebral cortex (Figure 26), thalamus, and hippocampus 
(Data not shown). By the age of 15 months, the size of the astrocytes was enlarged even further; 
they formed dense accumulation groups with a visibly increased number of reactive astrocytes. 

5.4 CEREBRAL CB1RS DETECTED WITH 18F-FMPEP-D2 AND CB1R 

ANTIBODY 

Cerebral CB1R occupancy was examined using 18F-FMPEP-d2 PET imaging and ex vivo methods 
utilizing 18F-FMPEP-d2 and CB1R antibodies. Dynamic 120-min 18F-FMPEP-d2 scan showed that 
the tracer accumulated slowly in the murine brain, reaching a peak uptake approximately at 30 
min after the tracer injection (Unpublished data). The washout phase of 18F-FMPEP-d2 
progressed slowly, clearly and quickly plateauing, never reaching SUV below 1.5 (Figure 28). In 
the brain, the initial binding of 18F-FMPEP-d2 was located in the whole brain during the first 90 
min, specifically in the central gray during the peak uptake (Figure 28). After 90 min, the tracer 
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Figure 28. Cerebral time activity curve and the corresponding summed PET images for 18F-FMPEP-d2 retention 
in wild-type control mouse. In the time-activity curve (below), the arrow represents the peak uptake, and dashed lines 
represent the time frame mimicing for quantification of the summed PET images 90-120 min post injection used in the 
Study III. 

became eliminated from the midbrain and thalamic region, lingering longer in the cortical and 
cerebellar area for up to 120 min. No significant exterior cranial uptake was observed, which 
hindered the interpretation of the possible partial volume effect nor was there any spillover effect 
in the regional quantification. While the tracer elimination was proceeding, 18F-FMPEP-d2 
produced two radioactive metabolites in the plasma, which were detected with TLC examination 
time windows between 5 to 240 min. One of the radiometabolites also gained access into the brain 
(Fig. 3 in III). Eventually, 18F-FMPEP-d2 was taken up into the gallbladder and thus, excreted 
via bile and also through the renal system.  

Pretreatment ex vivo experiment showed that a 2 mg/kg dose of rimonabant blocked the 18F-
radioactivity of 18F-FMPEP-d2 in treated mice approximately 67% (2.5 (0.1) %ID/g, n = 2) 
compared to vehicle treated mice (7.5 (0.1) %ID/g, n = 2), when decay-corrected measurements 
with γ-counter were conducted and analyzed on dissected mouse brains (Fig. 4 in III). 

In the longitudinal Study III, static 30-min PET modalities, 90 min after the 18F-FMPEP-d2 
injection, were quantified in the plateau phase. The longitudinal assessment revealed that in 6-
month-old male APP/PS1-21 mice, the relative thalamic measures in hypothalamus were 
significantly lower (p < 0.05) than in age-matched male WT mice, which were then replaced by 
significantly lower tracer binding ratios in the other brain regions including frontal and 
parietotemporal cortices, hippocampus, and cerebellum by the age of 9 months. During the last 
examination at age 15 months, TG mice had approximately 10% lower thalamic ratios only in the 
cerebral cortex when compared to WT mice of the same age (Table 2 in III). On the contrary, the 
assessment of the in vivo quantification as SUV could not discriminate TG mice from their WT 
counterparts, even though there was a very strong correlation (r = 0.84, n = 64, two tailed p < 
0.0001) between in vivo SUV and relative thalamus measurements when all analyzed brain 
regions of 6-, 9-, 12-, and 15-month-old TG and WT mice were pooled together and examined 
(Figure 29A). 
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Figure 29. Correlation between in vivo and ex vivo 18F-FMPEP-d2 quantification methods used in Study III. 
Correlation between in vivo standard uptake values (SUVs) and in vivo radioactivity ratios relative to the thalamic 
radioactivity concentration (A) and the correlation between ex vivo and in vivo quantification as radioactivity ratios 
relative to the thalamic radioactivity concentration were examined in male APP/PS1-21 and WT mice, when all quantified 
brain regions and age groups were pooled together. 

The decreasing trend in the 18F-FMPEP-d2 retention in male TG mice was also examined in the 
ex vivo autoradiographical experiments, however, striata were the only brain region to show a 
significant difference between 15-month-old TG and WT mice. On the contrary, female 
APP/PS1-21 mice demonstrated a higher degree of decreased tracer binding, showing 
significantly lower thalamic ratios in parietotemporal cortex, striata, and posterior hippocampus 
at 9 months when compared to the female WT mice (Fig. 2 in III). While male and female mice 
displayed different 18F-FMPEP-d2 binding patterns in the brain between genotypes, 
distinguishing TG mice from WT mice significantly during aging, no such differences were 
observed in terms of CB1R expression as assessed by Western blot. Instead, female mice 
exhibited significantly higher levels of CB1R in cortical and thalamic samples when compared to 
their male counterparts, but no differences were detected between TG and WT mice of both sexes 
(Fig. 5 in III). 

The autoradiographical data confirmed that thalamus was virtually devoid of specific tracer 
binding at 120 min, underlining the justification of using thalamus as a pseudo-reference region 
for preclinical 18F-FMPEP-d2 quantification (Figure 30). This proposal was also confirmed by 
the strong correlation (r = 0.60, n = 56, two tailed p < 0.0001) between in vivo and ex vivo results 
as tracer binding ratios relative to thalamic radioactivity when all analyzed brain regions of 6-, 9-
, 12-, and 15-month-old male TG and WT mice were pooled together and examined (Figure 29B). 
Similarly, the discrimination between cerebellar white and gray matter was detectable in the 
autoradiographs, and cerebellar gray matter showed nearly 4-fold higher thalamic ratios as 
compared to cerebellar white matter at 120 min after the 18F-FMPEP-d2 injection in both TG and 
WT mice at all ages (when all data were pooled together from III). 
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Figure 30. CB1R availability and location detected with in vivo and ex vivo 18F-FMPEP-d2 experiments and CB1R-
reactive immunohistochemistry. An early (6 months) and late (15 months) examination stage in APP/PS1-21 mouse 
model are presented (left column). Classical anatomical references from Allen Brain Atlas (accessed 09/2013) were 
utilized to justify the use of thalamus (THA) as a pseudo-reference region for the 18F-FMPEP-d2 quantification in murine 
brain (right column). CB, cerebellum; CBG, cerebellar gray matter; CBW, cerebellar white matter; CTX, cortex; HIPPO, 
hippocampus. 

5.5 PATHOLOGICAL CHANGES IN AGING APP/PS1-21 MICE 

APP/PS1-21 mice were examined longitudinally to clarify if there were temporal changes in 
glucose metabolism, glial activation, and CB1R availability in studies II and III. Even though the 
mice, which were followed and examined with repeated scans, were not the same as examined in 
studies II and III, the interconnection could be analyzed due to the relatively large group sizes 
and the longitudinal aspect of the experiments. Hence, when glucose hypometabolism as detected 
with 18F-FDG and glial activation assessed with 18F-DPA-714 were examined, APP/PS1-21 mice 
showed a moderate positive correlation (r = 0.51, n = 24, two tailed p = 0.01), when all ages and 
brain regions were pooled (Figure 31). When individual age groups were examined, 12-month (r 
= 0.76, n = 8, two tailed p = 0.03) and 15-month-old (r = 0.74, n = 8, two tailed p = 0.04) TG 
mice exhibited a strong positive correlation between 18F-FDG and 18F-DPA-714 uptake, when all 
brain regions were pooled together (Data not shown). When the correlation between the glial 
activation as assessed with in vivo 18F-DPA-714 and CB1R availability as assessed with in vivo 
18F-FMPEP-d2 was examined, a moderate negative correlation (r = -0.40, n = 24, two tailed  p = 
0.05)  was observed, when all age groups  and  quantified brain regions were pooled together 
(Figure 31). 
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Figure 31. Correlation between in vivo hypometabolism, TSPO upregulation, and CB1R availability in APP/PS1-
21 mice detected with longitudinal PET imaging. In vivo 18F-FMPEP-d2 binding and 18F-DPA-714 uptake in aging 
APP/PS1-21 male mice revealed a temporal negative relationship between CB1R abnormalities and TSPO upregulation. 
In vivo 18F-FDG and 18F-DPA-714 uptake displayed a moderate correlation with each other, mirroring a significant 
relationship between brain glucose hypermetabolism and TSPO upregulation in the same TG mice. 
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6 DISCUSSION 

6.1 CEREBRAL GLUCOSE METABOLISM 

6.1.1 18F-FDG µPET findings in Alzheimer models 

In this thesis work, all three TG mouse models of AD were examined with 18F-FDG to discover 
the possible changes in the cerebral glucose metabolism in relation to normal changes during 
aging. At the time of the beginning of each study, no previous reports of the cerebral 18F-FDG 
uptake profile of the employed mouse models were available. Thus, it was considered crucial to 
evaluate possible AD-related metabolic alterations in these models regarding future 
interventional imaging studies. Consequently, it was observed that the mouse models exhibited 
different regional metabolic patterns in the brain: Female Tg2576 mice showed no abnormalities 
in the 18F-FDG uptake as SUVs nor SUVglus compared to WT mice at either 6 or 17 months of 
age, although amyloidosis and microgliosis were detectable at the late stage of 17 months (Fig. 
2-5 in I). Similar findings have been obtained previously with 13-to-15-month-old male and 
female Tg2576 mice, after a prolonged 8-hour fasting and 30-min static PET modality, 60 min 
after the IV tracer injection, and the results quantified as %IDkg/g values and radioactivity ratios 
relative to the whole brain estimate (Kuntner et al. 2009). On the contrary, at the time when Study 
I was being performed, Luo et al. reported that female Tg2576 mice had greater SUVs in 
hippocampus, cortical region, and thalamus at 7 months of age, but lower SUVs in the same 
regions at 19 months compared to age-matched WT mice, when a 6-hour fasting and 
medetomidine/ketamine anesthesia were utilized prior to the dynamic 60 min modality (Luo et 
al. 2012). A recent report, however, failed to detect differences between 18-month-old Tg2576 
mice and age-matched WT mice, when a 24-hour fasting and isoflurane anesthesia were used 
prior to the static 60 min scans (Coleman et al. 2017). In that study, 18F-FDG results were reported 
as glucose-corrected SUVs, which decreased the intragroup variation, but did not differentiate 
TG from WT mice. On the contrary, the benefits of normalizing SUVs with the individual blood 
glucose values were not that evident in the results from I and II; there was increased intragroup 
variation in both APPswe-PSIdE9 and APP/PS1-21 mouse models at all age groups (Figure 20). As 
a summary, the Tg2576 model has failed in the previous and present studies to mimic the 
hypometabolic pattern present in the AD patient brain, and therefore, does not seem to be a 
feasible disease model for examining glucose metabolism in preclinical AD studies. In the 
APPswe-PS1dE9 model, however, regional hypometabolism exhibited in various brain structures, 
such as frontal cortex, striata, thalamus, hippocampus, and cerebellum (I). At the late examination 
age, APPswe-PS1dE9 mice had abundant Aβ plaques, which had spread into various brain regions 
accompanied by elevated Iba1-reactive microgliosis. The imaging results are in line with the 
human PET data obtained with 18F-FDG, but not with the previous preclinical imaging studies. 
Until recently, female APPswe-PSIdE9 mice had not displayed altered %ID/g values in their brains 
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at 9 months (Liu et al. 2017), but have shown increased SUV ratios, assessed relative to the 
cerebellar uptake, in the cortical region and hippocampus at 2−3.5 months, and in thalamus and 
striata at 3.5−8 months (Li et al. 2016), when conscious mice had received either an IP or an IV 
tracer injection, respectively. Both studies were conducted after prolonged fasting of 6 (Li et al. 
2016) or 12 hours (Liu et al. 2017). As a result, the conflicting results from the past and the 
present studies with this model are not truly comparable due to the different quantification units 
as well as the different durations of fasting and tracer delivery. Therefore, the temporal glucose 
metabolism of APPswe-PS1dE9 remains unresolved. 

In Study II, the APP/PS1-21 model showed the most evident hypometabolism in the brain during 
the longitudinal follow-up period. Decreases in the 18F-FDG uptake as SUVs were seen by the 
age of 12 months, with the most affected regions being cerebral cortex, hippocampus, striata, 
thalamus, and cerebellum (Fig. 1 in II). When SUVs were normalized against the individual 
blood glucose values, intragroup variation as well as the mean group differences increased (p < 
0.005) in the whole brain (Figure 20). Our imaging results are in line with the human findings 
and a previous preclinical study, in which female APP/PS1-21 mice were examined at 12 months 
of age undergoing 8-to-12-hour fasting and a non-anesthetic IV injection protocol 20 min before 
being subjected to static 45-min scans (Waldron et al. 2015b). Significantly lower statistical tracer 
uptake were shown in thalamus and striata, whereas glucose-corrected %ID/g-values failed to 
reveal any differences between TG and WT mice. A more recent study confirmed this 
hypometabolic feature in thalamus and hippocampus of aging female APP/PS1-21 mice when the 
SUVs were normalized to the 10-to14-hour fasting blood glucose level (Deleye et al. 2017). Thus, 
when considering all of the animal models examined in these studies, the APP/PS1-21 model 
seems to be the most promising model to mimic the human PET findings. However, from a 
clinical point-of-view, the aggressive amyloidosis in this model might exaggerate temporal 
glucose dysfunction, which would not be comparable with the pathogenesis occurring in human 
AD. 

APPswe-PS1dE9, APP/PS1-21, and their corresponding WT littermates revealed age-related 
increases in 18F-FDG retention, which has also previously been observed in APP/PS1-21 mice 
between 1.5 and 12 months of age (Deleye et al. 2017), as well as in WT mice (Brendel et al. 
2016 and 2017a). In the TG mice, the temporal changes in the hypermetabolism could originate 
from the elevated levels of amyloidosis and microgliosis in response to the genetic manipulation. 
However since the WT mice for APPswe-PS1dE9 in the present study as well as WT mice from the 
previous studies displayed similar increases in the 18F-FDG uptake, the temporal changes might 
be a consequence of age-related increases in TSPO upregulation and microglial soma 
enlargement occurring during non-AD aging (Brendel et al. 2017). Another aspect to be 
considered is the obvious metabolic differences between humans and mice (Fueger et al. 2006).  
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6.1.2  Challenges in 18F-FDG μPET 
18F-FDG imaging poses many challenges, although it is the most widely utilized PET radioligand 
with many clinical applications, e.g. in oncology and neurology. The tracer does not bind to any 
specific target, instead it mimics cellular glucose metabolism. For this reason, while stringent 
regulation of experimental procedures between individuals is extremely difficult, it is nonetheless 
crucial. In human brain studies, a period of 6-hour fasting is used to prevent competition reactions 
between any consumed food and 18F-FDG. This also tends to decrease the endogenous glucose 
utilization in skeletal and cardiac muscle, and brown adipose tissue, which increases the cerebral 
18F-FDG uptake (Toyama et al. 2004; Fueger et al. 2006). In cardiac imaging, prolonged fasting 
periods of 10 to 12 hours are used in order to fine-tune the metabolic profile. Patients are also 
advised to avoid strenuous exercise and alcohol consumption 24 hours before the scan, since the 
muscular glucose uptake might be elevated, which could affect the interpretation of the PET 
imaging data due to spillover. A resting phase is initiated approximately 30-60 min before the 
18F-FDG injection to prevent the metabolic acceleration, and blood glucose levels are measured 
to ensure that they are suitable for PET/CT scan with a limiting value of 10 mmol/l (Surasi et al. 
2014; VSSHP guidelines for PET/CT experiment). As a result, the PET imaging data is visualized 
and quantified as arterial input function. 

On the contrary, animal 18F-FDG studies differ from their human counterparts due to the species 
related differences in both metabolism and behavior (Deleye et al. 2017). Imaging TG mouse 
models introduces variables, including genotype and genotype*age related differences between 
the models. Previous 18F-FDG studies using AD mouse models have yielded varying results that 
are most probably due to the differences in the models, age of the study subjects, and study 
protocols, such as fasting time, use of anesthesia, 18F-FDG route, and quantification method. At 
a fundamental level, it is apparent that humans and mice are already discriminated by their 
metabolism: An average mouse has an almost 7-fold faster metabolic rate as compared to humans 
at the thermoneutral temperature of these animals, which is between 30 to 34 degrees. However 
at room temperature of 21 degrees, an additional 1.66-fold increase in the murine metabolic rate 
has been measured (Kleiber 1975; Schmidt-Nielsen 1984; Gordon 1993). Fasting has a major 
impact on the overall metabolism of mice, triggering changes in the hormone and fatty acid 
signaling, increasing stress, and if prolonged, even causing a substantial decrease in the body 
weights of the animals, all of which can lead to misinterpretation of the changes in the cerebral 
metabolic rate (Wingfield and Kitaysky 2002; Deleye et al. 2016). Fasting mice before the 18F-
FDG scan could offer similar benefits as seen in the human imaging studies. However in the 
previous 18F-FDG-µPET studies with AD models, fasting was less frequently incorporated into 
the study protocol, and the mice were allowed to eat ad libitum (Poisnel et al. 2012; Rojas et al. 
2013; Macdonald et al. 2014; DeBay et al. 2017). If fasted, duration of fasting between 8 to 12 
hours has been applied more frequently (Kuntner et al. 2009; Waldron et al. 2015 and 2017; 
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Deleye et al. 2016; Liu et al. 2017) with the exception of overnight (Deleye et al. 2016; Coleman 
et al. 2017) or shorter fasting times (Luo et al. 2012; Li et al. 2016). In studies I and II, it was 
ensured that environmental factors were similar within the experimental groups. In both studies, 
short fasting periods of 3 (I) and 1.5 hours (II) were utilized to guarantee balancing the 
endogenous glucose levels while minimizing the stress reactions, which would occur if there were 
to be prolonged fasting. In general, mice have a nocturnal circadian rhythm, i.e. they consume 
two thirds of their daily food intake in the night time, thus short fasting times were used to sustain 
the normal rhythm and minimize stress by starting the fasting at sunrise, when the murine food 
intake would naturally decrease (Jensen et al. 2013). By restricting the food and water intake, and 
removing the bedding supplements from the cages, it was anticipated that fasting would decrease 
the basal blood glucose values of the mice while minimizing the intragroup variance. 
However in I, APPswe-PS1dE9 mice exhibited somewhat greater basal glucose values than Tg2576 
mice with increased intragroup variation in comparison with the corresponding WT mice (Figure 
23; Table 1 in I). After the scan, glucose values were slightly, but not significantly, elevated in 
APPswe-PS1dE9 and WT mice, whereas in the Tg2576 mice, glucose levels remained at the basal 
level or lower with the exception of 17-month-old WT mice, which displayed elevated glucose 
levels. The APP/PS1-21 model and its corresponding WT mice differed from the other models, 
showing higher glucose values after the 18F-FDG scan with relatively greater intragroup variation, 
especially in the TG mice (Figure 23; Supplemental data in II). The increased variability between 
groups before and after the 18F-FDG-PET scans might be a consequence of the isoflurane-based 
anesthesia and an inappropriate fasting duration for the TG model, which eventually affected the 
18F-FDG outcome. 

Anesthetic compounds used in the Studies I-III were inhalation isoflurane/air or 
isoflurane/oxygen mixtures, which were intended to reduce the variation between the individual 
activity levels and to minimize stress. Isoflurane, as such, tends to increase endogenous glucose 
levels, especially in the heart, while decreasing the brain and brown adipose tissue uptake of 
glucose (Toyama et al. 2004; Fueger et al. 2006). Isoflurane has been the most popular inhalation 
anesthetic in previous preclinical 18F-FDG studies with AD models, however, only a few of them 
(Kuntner et al. 2009; Poisnel et al. 2012; Luo et al. 2012; Rojas et al. 2013) have administered 
18F-FDG under anesthesia. In general, human 18F-FDG PET studies are not conducted under 
anesthesia, instead the individuals are scanned awake. Hence in the preclinical studies, as 
isoflurane decreases the cerebral glucose utilization, it might reduce the spatial tracer uptake 
differences between different brain regions and underestimate the study outcome. However, 
handling awake mice might increase stress among animals and further alter the 18F-FDG retention 
such that more goes to brown adipose tissue, Harderian glands, muscle, and heart (Fueger et al. 
2006), which lessens the brain uptake. The extensive Harderian gland accumulation might further 
cause spillover into the brain, interfering with the results of the PET analysis. In addition, low 
body temperature can trigger similar changes as stress. Therefore in Studies I-III, a heating pad 
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was used for the body temperature maintenance, when mice were anesthetized. 
Unfortunately, the temperature measurements revealed that a significant decrease from the basal 
body temperature occurred after the PET scan when all imaging data were pooled together 
(Figure 24). However, no statistically significant intergroup differences were detected, except for 
the 9-month-old APP/PS1-21 and their corresponding WT mice, which showed significantly 
elevated body temperatures and cerebral 18F-FDG uptake due to a malfunction of the heating pad 
inside the PET/CT scanner at the time of the experiment. Therefore, this age group was eliminated 
from the published quantification data, but was taken into the relevant Results section of this 
thesis. 

The ex vivo findings in I and II on the cerebral glucose metabolism were not applicable to confirm 
the in vivo 18F-FDG PET data due to the fact that 18F-FDG lacks an appropriate reference 
region. Therefore, the use of a pseudo-reference region is also questionable in terms of 
preclinical imaging studies, although pons has been proposed to be reasonable reference region 
as it is part of the encephalon, but posses high number of axons crossing over one to another 
(Lowe et al. 2009; Scheltens et al. 2018). This means that the ex vivo autoradiography results 
obtained in Studies I and II must be viewed as descriptive features of the 18F-FDG biodistribution 
in the murine brain, and not as a confirmative variable for the in vivo data. Previous studies with 
APP751SL/PS1M146L; PS1M146L (Poisnel et al. 2012), 5×FAD (Rojas et al. 2013), PS2APP (Brendel 
et al. 2016), and APPswe-PS1dE9 (Li et al. 2016) mouse models of AD have used cerebellum as a 
reference region for quantifying 18F-FDG data, but this has led to erroneously increased uptake 
ratios for TG mice as compared to WT mice. In addition to the relative measures, %ID/g has also 
been employed as a descriptive unit in preclinical 18F-FDG studies with Tg2576 (Kuntner et al. 
2009) and APPswe-PS1dE9 (Liu et al. 2017) models but this parameter was unable to discriminate 
TG from WT mice. However, when %ID/g values have been normalized with the individual 
blood glucose values of the fasted mice, decreased 18F-FDG uptake has been observed in thalamus 
and midbrain of TASTPM mice at 13.5 months (Waldron et al. 2015a) and in thalamus and striata 
of APP/PS1-21 mice at 12 months (Waldron et al. 2015b). When taking into account the possible 
differences in the body weight of the animals, SUV has been demonstrated to be a valuable 
parameter in previous 18F-FDG μPET studies, revealing decreased tracer retention not only in II, 
but already in 5- (DeBay et al. 2017) and 13-month-old 5×FAD mice (Macdonald et al. 2014) 
even without fasting. In the TASTPM mouse model, a hypometabolic pattern after 6 months of 
age is detectable only after correcting the SUVs with the blood glucose values (Deleye et al. 2016; 
Waldron et al. 2017), but in Tg2576 mice (Coleman et al. 2017), no single quantification unit has 
been able to demonstrate a hypometabolic pattern in the brains of these animals (Coleman et al. 
2017; I). 

When considering the results obtained from the present and previous 18F-FDG studies with AD 
mouse models, it is evident that adjusting for environmental factors (i.e. temperature, handling, 
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fasting, and anesthesia) and monitoring blood glucose values at multiple time points before, 
during, and after the PET modality are crucial in order to produce reliable imaging results, which 
truly reflect cerebral glucose metabolism. This means that TG models might require individually 
adjusted fasting periods, suitable resting temperatures, and standardized anesthesia conditions, 
which will need to be further evaluated in future imaging studies. Hence, even though different 
mouse models have been used for exploring the pathogenesis behind the cerebral dysmetabolism, 
with the results being further extrapolated to the condition of the human AD brain, based on the 
current knowledge obtained from the present and previous studies, none of the models can be 
viewed as being reliable enough to be considered as a proper disease model for screening 
alterations in glucose metabolism in AD. 

6.2 NEUROINFLAMMATION 

6.2.1 Glial activation in Alzheimer models 

The APP/PS1-21 model was the only model to be examined with TSPO PET for measuring the 
overall extent of gliosis in the AD mouse brain. The longitudinal 18F-DPA-714 imaging study 
revealed increased radioactivity concentration ratios relative to the cerebellum in the different 
cortical lobes, thalamic and striatal regions, and part of a limbic system, already at the beginning 
age of the experiment of 6 months in TG mice. Furthermore, from 6 to 15 months, the differences 
between TG and WT did not expand further because the mean radioactivity ratios between the 
genotypes had reached their limit. Hence, at 6 months, TSPO upregulation seemed to be already 
significantly discriminating the genotypes from each other, suggesting that the pathology has 
begun in much younger animals, reached its peak, and then plateaued as the mice aged. On the 
contrary, Iba1-reactive microglia were present at low levels at 6 months as compared to 15 month-
old TG mice, whereas GFAP-positive astrocytes seemed to reach their peak number in the 
cerebral cortex already at 6 months, but did not seem to expand further during aging (Figure 26). 
These consumptions need to be verified in the future quantification experiments, although a 
previous 18F-PBR111 PET study with the same APP/PS1-21 model demonstrated a low positive 
correlation between tracer uptake and Iba1-reactive microgliosis, but a trend towards a weak 
negative correlation between tracer uptake and GFAP-driven astrocytosis (Deleye et al. 2017). 
On the contrary, the brains of 2-month-old female APP/PS1-21 mice have displayed enhanced 
levels of GFAP-positive astrocytosis; this progressed until the age of 8-months throughout the 
entire neocortex, and was distinct from the amyloid plaques, but in parallel to microgliosis (Radde 
et al. 2006). Beyond, female APP/PS1-21 mice showed overall 18F-PBR111 SUV increases in the 
cortex, thalamus, and hippocampus, when 6-to-7-week-old and 4-, 7-to-8-, and 12-to-13-month-
old TG mice were compared to their age-matched WT counterparts (Deleye et al. 2017). It was 
recently shown in vivo using a novel TSPO tracer and analogue for 18F-DPA-714, 18F-FDPA, that 
12-month-old APP/PS1-21 mice expressed increased SUVs in the whole brain, frontal cortex, 
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and hippocampus, whereas ex vivo autoradiography ratios relative to hypothalamus showed 
increases in the tracer uptake in the frontal cortex of much younger, 4.5-month-old TG mice. 
Similarly to the present study, Keller et al. observed age-related increases in the 18F-FDPA uptake 
between 4.5- and 15-month-old APP/PS1-21 mice, but not in WT mice (Keller et al. 2018). 

Even though female APPswe-PSIdE9 mice were not examined with 18F-DPA-714 in the present 
study, differences have been evaluated previously in two longitudinal follow-up studies, in which 
male TG mice demonstrated increased relative measurements against cerebellum in the cortical 
region and hippocampus at 18 months (Chaney et al. 2018), which was confirmed in older study 
with 19-month-old TG mice (Sérrière et al. 2015). These studies also evaluated the PET imaging 
results with the antibody-reactive microgliosis (Sérrière et al. 2015) and overall gliosis with 
astrocyte- and microglial-specific antibodies (Chaney et al. 2018) at the same experimental age. 
In study I, female APPswe-PSIdE9 mice showed microgliosis with Iba1-immunohistological 
experiments at 6 and 12 months of age, and a similar finding was noted in female Tg2576 mice 
at 17 months, which confirmed the previously published findings with the same animal models 
(Figure 26). In terms of neuroinflammation, Tg2576 mice have previously been studied only with 
the MAO-B targeting radionuclide, 11C-DED, in order to image the extent of astrocytosis in the 
brain (Rodriguez-Vieitez et al. 2015). Six-month-old Tg25786 mice showed increased binding 
potentials in several brain regions as compared to either 8- to 15-month-old or 18- to 24-month-
old TG or WT mice; this finding was confirmed with GFAP-positive immunostaining only at the 
ages between 18-24 months. Progressive microgliosis in the Tg2576 brain, which was shown in 
I with Iba1 immunohistochemistry, has been demonstrated previously, indicative of an increase 
in microglial magnitude and density near to Aβ plaques at 10- and 16-month-old TG mice 
(Frautschy et al. 1998). 

6.2.2 Challenges in TSPO μPET 

TSPO has been the most widely investigated target for imaging neuroinflammation over the past 
decade. Even though upregulation of TSPO in the brain indicates possible pathological conditions 
related to glial activation and thus, neuroinflammation in several neurological disorders, it also 
suffers from many limitations in its ability to demonstrate applicable features, especially in terms 
of TSPO tracer specificity and its usefulness in preclinical imaging studies involving small rodent 
brains. Caution is needed in the attribution of cerebral TSPO binding exclusively to microglia, 
since it is not possible to determine whether the PET signal in the brain contributes from microglia 
or astrocytes. In addition, the disruption in the blood-brain barrier, which occurs in some 
pathological conditions, might cause an abnormal leakage of mononuclear-phagocytes from the 
periphery into the brain, expressing TSPO more as its own levels and affecting the interpretation 
of the radioactive signal detection (Anholt et al. 1986). However, according to the 11C-PBR28 
findings in a 5×FAD mouse model (Mirzaei et al. 2016) as well as the 18F-PBR111 uptake results 
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in the APP/PS1-21 model (Deleye et al. 2017), microglia seem to be the predominant source of 
the tracer uptake rather than astrocytes; a proposal which was confirmed with 
immunohistochemical procedures. Thus, the contribution of the glial cell division in each animal 
model should be examined in parallel to TSPO PET imaging studies, which has been suggested 
previously (Venneti et al. 2013). TSPO PET imaging further lacks the ability to discriminate 
between the different subtypes of microglial cells, which are involved in temporal changes during 
inflammatory processes, and whose pro-, anti-inflammatory, or combination stage might be 
crucial for understanding the microglial functions during the neuroinflammation. Instead, TSPO 
PET might reflect the changes in the glial cell density, which is known to vary among different 
species (Owen et al. 2017). However, there are some benefits associated with utilizing small 
animal TSPO PET, including the lack of the functional polymorphism of TSPO gene in mice or 
rats, which limits the human TSPO PET sensitivity with most of the tracers. In order to increase 
the value of translational small animal PET in the clinic and serve as a reliable research tool for 
human healthcare purposes, other targets related to the complex neuroinflammatory pathway, 
such as COX, CB2R, P2X7R, are being evaluated as novel imaging agents targeting AD and other 
neurodegenerative disorders (Janssen et al. 2018). 

Small animal 18F-DPA-714 PET data quantification faces similar problems as 18F-FDG as 
there is really no proper reference region in the brain for TSPO. Throughout the healthy brain, 
there is a constant low TSPO expression in gray and white matter, and blood vessel walls (Lyoo 
et al. 2015). In human PET studies, the quantitative analysis of 18F-DPA-714 involves the 
determination of relative measurement against cerebellar uptake or an arterial input function in a 
two-compartment model, which is corrected for the presence of possible radioactive metabolites. 
The latter leads to a total VT of the tracer, which is composed of specific and non-specific binding. 
Unfortunately, in preclinical imaging studies with mice, it is not feasible nor would it be ethical 
to conduct arterial sampling during the PET scan due to the small total blood volume of these 
species. Therefore, other quantification techniques has been applied, and in the previous TSPO 
μPET studies (Table 2), %ID/g from the 11C-PK11195, 18F-GE-180, and 18F-PBR06 uptake 
(Venneti et al. 2009a; Liu et al. 2015; James et al. 2015), SUV from the 11C-PK11195, 18F-
PBR111, and 18F-FDPA uptake (Rapic et al. 2013; Deleye et al. 2017; Keller et al. 2018), and 
statistical parametric mapping (SPM) from the 18F-GE-180 uptake (Brendel et al. 2017b) have 
been used as the main values extracted from the TSPO imaging data, since they are non-invasive 
ways of assessing the regional uptake of the tracer in a specific time frame. These experiments 
have demonstrated increased TSPO tracer uptake in the TG mouse brain compared to WT mice, 
except for APP/PS1 model examined at 13 months with 11C-PK1195 (Rapic et al. 2013). Relative 
measures have also been applied in previous μPET studies, with cerebellum being the most 
attractive pseudo-reference region as was applied in Study II. Using this approach, 18F-DPA-714 
(Sérrière et al. 2015; Chaney et al. 2018) and 18F-GE-180 (Brendel et al. 2016 and 2017) have 
discriminated APPswe-PS1dE9, PS2APP, and APP23, respectively, mice from their age-matched 
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WT littermates. In addition to cerebellum, relative measures to the whole brain (James et al. 
2015), striatal (Maeda et al. 2011), thalamic (Liu et al. 2015), muscle (James et al. 2015), and 
heart (Mirzaei et al. 2016) estimates have been reported with other TSPO radioligands, which 
have demonstrated increases in the tracer uptake in favor of AD mice. In conclusion from the past 
studies, a pseudo-reference region inside the brain might be applicable if the chosen mouse model 
exhibits relatively low TSPO tracer uptake in the selected region, and the radioactivity 
concentration measured with SUV in that site does not differ between TG and WT mice, when 
equivalent radioactivity doses are delivered to equal-sized animals. Additional experiments, 
including immunohistochemical and protein extraction procedures, for detecting TSPO in the 
brain, however, are desirable due to the obvious limitations of TSPO imaging. 

6.3 CANNABINOID RECEPTOR 1 

6.3.1 18F-FMPEP-d2 μPET findings in APP/PS1-21 mice 

The longitudinal follow-up study III showed age- and genotype-dependent alterations in the 
relative measurements of 18F-FMPEP-d2 binding assessed against thalamic radioactivity 
concentrations in male APP/PS1-21 mice. The differences between TG and WT mice were more 
evident in the cortical and hippocampal region, striata, and cerebellum at 9 months, which then 
plateaued. The in vivo data was confirmed with the ex vivo measurements that revealed a 
significant reduction in the relative measurements for only striatum in 15-month-old male TG 
mice (Supplemental data 3 in III). In female APP/PS1-21 mice, which were only examined using 
ex vivo 18F-FMPEP-d2 autoradiography, significantly lower thalamic ratios were measured in the 
parietotemporal cortex, striata, and posterior hippocampus of 9-month-old TG mice when the 
ratios were compared to the age-matched female WT mice. With regard to the above mentioned 
results, CB1R expression was examined in 9-month-old mice to evaluate the 18F-FMPEP-d2 
values in both male and female mice, when the genotype related differences started to appear. 
The total amount of CB1R protein was determined using Western blot; these indicated that female 
mice had 2- to 4-fold higher levels of CB1R protein in different brain regions, excluding 
hippocampus (Fig. 5 in III) than male mice, whereas there were no differences between TG and 
WT mice. It is concluded that CB1R PET imaging studies should be conducted as single-gender 
modalities or alternatively should examine female and male subjects as separate variables. 
According to Study III, there are either alterations in the 18F-FMPEP-d2 binding capability to the 
cell membrane and/or endogenous CB1Rs in the APP/PS1-21 G-protein coupling system, or there 
are alterations in the CB1R receptor conformation on the membrane or inside the cell. The 
contradictory results from the PET imaging and Western blot experiments in Study III might 
also be explained if the concentrations of the endogenous CB1R ligands had changed due to the 
genetic mutation of TG mouse model or if intracellular CB1Rs are affected by other lysosomal 
pathological factors. Indeed, there is no data to which part of the cell 18F-FMPEP-d2 actually 
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binds. Neuronal studies have previously shown that the major proportion, up to 85%, of the total 
CB1Rs are located endogenously in the intracellular vesicles and constantly migrate between the 
membrane and endosomes (Leterrier et al. 2006). However, it has been claimed that some 
endogenous CB1Rs do not reach to the cell surface, instead they might have a distinct, yet 
unrevealed, functions compared to the membrane receptors i.e. what was previously thought of 
as down-regulation may in fact be the receptors becoming involved in different physiological 
process (Grimsey et al. 2010). One of those actions has been shown to be related to the modulation 
of the neuronal energy production, since CB1Rs have been detected in the neuronal mitochondria 
and they signal pathways, which target ATP production (Hebert-Chatelain et al. 2016). Since 
CB1Rs are harnessed only on-demand, disruption of this signaling system might also affect the 
18F-FMPEP-d2 binding to these receptors. Nonetheless, evidence to support these hypotheses is 
lacking and hence, further studies are urgently needed to clarify the binding properties of 18F-
FMPEP-d2 and other CB1R targeting radioligands, such as 18F-MK9470 (Van Laere et al. 2008), 
for both animal and human brain CB1Rs. The results from Study III showed that there was an 
undefined pathological event proceeding related to the CB1R function in the APP/PS1-21 mouse 
brain, but this was not related to the total CB1R levels with regard to the regional co-localization. 
These results join the line of controversial findings from the previously published non-PET data, 
in which fluctuating CB1R properties have been reported in different AD mouse models: Male 
APPswe-PS1dE9 have shown decreased CB1R-immunoreactivity in the neocortex at 6 months (Aso 
et al. 2012) or hippocampus at 10 and 12 months of age (Kalifa et al. 2011). Other groups have 
claimed, however, that male 14-month-old APPswe-PS1dE9 had elevated CB1R levels in the cortex 
(Mulder et al. 2011), but no changes in the redox-dependent receptor function of female TG mice 
at the same age as evaluated with 35S-GTPγS autoradiography (Kärkkäinen et al. 2012). A recent 
study detected increased G-protein coupling of CB1Rs in frontal cortex and striata of male 
APPswe-PS1dE9 compared to age-matched WT animals (Maroof et al. 2014). Male 3 x Tg-AD 
mouse model, on the other hand, have demonstrated significantly higher CB1R mRNA expression 
in the prefrontal cortex, dorsal hippocampus, and basolateral amygdala complex at 6 and 12 
months, but decreased protein immunoreactivity in the basolateral amygdala complex and dorsal 
hippocampus when the animals were aged 12 months (Bedse et al. 2014). Furthermore, the CB1R 
activity as a 35S-GTPγS measurement was examined in young (4 months) and old (15 months) 
male 3 x Tg-AD mice; there was evidence of upregulated thalamic activity at 4 months, but 
downregulated receptor activity in the nucleus basalis of Meynert (Manuel et al. 2016). In 4-
month-old Tg2576 mouse model, hippocampal CB1R membrane distribution and functional 
activity were restricted, which did not affect the expression levels of CB1Rs (Maccarrone et al. 
2018). When comparing between the AD mouse model and a CB1R-knockout model, 
APP23/CB1-/- mice have demonstrated reductions in mutated APP levels and Aβ levels (Stumm 
et al. 2013), and 5-fold lower plaque formation abilities than in the APP23 mice, whereas APPswe-
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PS1dE9/CB1+/- mice showed no differences in amyloid pathology when compared to non-knockout 
animals (Aso et al. 2018). 

Study III revealed additional information with regard to age-related increases in the CB1R in vivo 
PET tracer binding in WT male mouse brain, which has also been demonstrated in human PET 
18F-MK9470 studies with healthy female gender (Van Laere et al. 2008). Further increases in the 
CB1R total levels have been observed in aging male rat dentate gyrus (Berrendero et al. 1998) 
and cortical region (Liu et al. 2003). The region-dependent CB1R upregulation might be related 
to the compensatory reaction against endocannabinoid dysfunction based on normal aging 
(Maccarone et al. 2001). In contrast, other studies suggest that CB1R gene expression either 
declines with aging in both the rodent and human brain (Berrendero et al. 1998, Westlake et al. 
1994) or is preserved (Belue et al. 1995; Wang et al 2003). On the contrary, age-dependent 
changes in receptor function have been less frequently studied in female subjects, even though 
significant differences have been observed between the CB1R abundances in male and female 
human (Van Laere et al. 2008) and rodent (Burston et al. 2010; Castelli et al. 2014; Gonzalez et 
al. 2005) brain, which might originate from the hormonal lipid differences among sexes. The 
female sex hormone, estrogen, regulates the expression of CB1R in the brain via cerebral 
activation of GABA, dopaminergic, and glutamate pathways (Mani et al. 2001; Riebe et al. 2010; 
Wilson and Nicoll 2001). Hence, the CB1R profile needs to be well characterized in both genders 
before one can determine whether an ECS-related pathogenic pathway is involved in the 
prognosis of AD. Should this prove to be the case, then it might lead to the establishment of novel 
diagnostic AD biomarkers, which can be subsequently monitored using functional PET imaging 
agents targeting ECS. Preferably, to combine different modalities, such as novel PET radioligands 
targeting GABA-A, dopamine, and opioid receptors, which are closely associated with the 
function of the CB1R and endocannabinoid release, would provide an important tool for 
expanding the in vivo AD imaging research to the next level (Horti and Van Laere 2008). 

6.3.2 Considerations for CB1R μPET 

Even though the current CB1R targeting radioligands possess high receptor affinity, they are 
highly lipophilic compounds with logD7.4 values above 4, which is considered as an undesired 
feature of a ligand. Hence, the applicability of CB1R PET tracers remain limited with regard to 
non-specific tracer binding or a tendency to bind plasma proteins. High plasma protein binding 
tends to lower the availability to target radioactivity concentration and to cause weaker first pass 
extraction, which was seen with the previous 11C-OMAR imaging study (Normandin et al. 2015). 
In humans, by applying a threshold value, quantification procedures can be modified to take into 
account the estimates of compartment modelling, but in small animal brain quantification, this 
approach faces many challenges. In Study III, relative measures were applied to compare the 18F-
FMPEP-d2 binding between APP/PS1-21 and WT mice. Thalamus was chosen as the pseudo-
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reference region because of the extremely low murine CB1R expression in that region (Figure 
30). The ex vivo data further revealed another candidate, cerebellar white matter, that could be 
used as a reference region. However, the poor spatial resolution of the PET imaging device makes 
it impossible to discriminate between the cerebellar white and gray matters. Therefore, in order 
to analyze the tracer data equivalently in every in vivo and ex vivo experiment, thalamus was 
chosen instead of the white matter. In contrast, previous 18F-MK-9470 PET imaging studies with 
in rodents have normalized target brain region values to an estimate of the whole brain instead of 
choosing a pseudo-reference region (Casteels et al. 2010 and 2011; Miederer et al. 2013; 
Vandeputte et al. 2012). Nevertheless, the fast clearance of 18F-FMPEP-d2 from the thalamus 
confirmed the benefits of this brain region as a feasible reference, since the PET quantification 
showed approximately 20% lower tracer levels as confirmed by autoradiography data (40% lower 
tracer radioactivity concentration) in that region when compared to CB1R-rich brain regions, such 
as cortex and cerebellum (Data not shown). Furthermore, SUVs detected with PET and CB1R 
expression as assayed with Western blot did not differ between the genotypes. Similar features 
were observed in a previous CB1R PET study, in which the clearance rate of 11C-JHU75528 was 
much higher in thalamus and brain stem than in the other brain regions (Horti et al. 2006). 
Therefore, based on the findings from Study III, thalamus is a suitable pseudo-reference region 
for murine 18F-FMPEP-d2 PET studies. However, with regard to the future PET studies with 
humans, PET images cannot be analyzed similarly, because there are differences in the CB1R 
distributions pattern between mouse and human brain, which means that the quantification 
method has to be based on a function derived from the arterial input. 

6.4 RESEARCH MATERIAL AND METHODS 

6.4.1 Animal models 

The commercially available Tg2576 model showed the most modest pathological profile with 
regard to slow amyloidosis and microgliosis accompanied by the lack of hypometabolic features, 
which makes this model an unattractive research tool for future preclinical studies targeting 
longitudinal assessment of the disease course or drug discovery in AD. APPswe-PS1dE9, on the 
other hand, exhibited fast and aggressive amyloidosis, accompanied in parallel with microgliosis 
and cerebral hypometabolism, which mirrors the pathological features seen in AD patients. 
Similarly, the other double mutated mouse model, APP/PS1-21, featured equivalent pathological 
changes in the brain, but in a much more aggressive manner. 

In Studies II and III, monitoring cerebral glucose consumption, TSPO upregulation, and CB1Rs 
should have started in much younger APP/PS1-21 mice in order to observe the initiation of the 
pathology related to these conditions. An ideal disease model should demonstrate similar aspects 
as the human disease, which none of the AD models currently have. On the other hand, an 
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exaggerated disease onset in mouse models could overestimate the temporal course of the 
pathological events in the brain, which might lead to misinterpreted results in future studies. The 
involvement of tau should be incorporated into the pathological profile of a good disease model 
of AD, because it is one of the hallmarks of the disease and the primary cause of the 
neurodegeneration. Preferably, the genetic factors involved in LOAD accompanied with pro-
inflammatory phenotype could offer an interesting way to study the sporadic form of AD, and 
models targeting LOAD should be further developed and evaluated, distinct from EO-FAD 
disease models. With regard to small animal imaging studies, the small size of the mouse brain 
and the poor spatial resolution of PET imaging devices pose challenges for reliable investigation 
of the pathological events in tiny brain regions, such as hippocampus. Hence, imaging AD rat 
models could be more feasible, because of the larger body size and their pathological profiles, 
which are more comparable to human disease, as has been shown in the TgF344-AD rat model 
of AD (Cohen et al. 2013). 

6.4.2  Quantification of the μPET data 

In Studies I-III, a MRI mouse brain template was used for the spatial guidance to localize the 
smallest brain regions in the murine brain. However, the spatial resolution of the PET/CT device 
is only 1.3 mm, which leads to the partial volume effect due to the relatively large pixel size. The 
spillover effect from the adjacent brain structures with high radioactivity uptake is also 
manifested in small regions, including hippocampus and hypothalamus, leading to some 
overestimation of radioactivity concentrations in these regions. In addition, high uptake from the 
tissues outside the brain, such as the Harderian gland and pituitary gland, might have increased 
the extrapolation of the frontotemporal and hypothalamic activities in 18F-FDG and 18F-DPA-714 
PET studies, respectively. 

Small animal PET has traditionally been validated with ex vivo autoradiography experiments to 
obtain more precise information about the spatial biodistribution of the tracer of interest. 
Aforementioned experiments should share similarities within the quantification, i.e. same 
reference region should be utilized in order to compare the ligand retention results. Unfortunately, 
this type of comparison could not be conducted in Studies I and II due to the lack of a reference 
region for 18F-FDG. In the experiments with 18F-DPA-714 and 18F-FMPEP-d2, the use of a 
pseudo-reference region was justified and ex vivo experiments were able to confirm the in vivo 
trend. As a result to summarize the usefulness of preclinical PET imaging studies conducted in 
this thesis work, APPswe-PS1dE9 and APP/PS1-21 are suitable for future longitudinal studies to 
unravel both the temporal aspects and causal features of AD-like pathogenesis during Aβ 
pathogenesis. This also means that these models can be disease mimicking tools in interventional 
drug discovery research with some limitations. Hence, in future studies similar to this thesis work, 
the following recommendations are provided: 
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1. The pathogenetic profile of AD animal model must be monitored in temporal manner 
before the initiation of any pathological events, if a PET method is being applied. 

2. Longitudinal PET imaging studies should be evaluated with antibody-based ex vivo 
experiments with appropriate agents and age-matched replicates related to the PET 
radioligand target. 

3. Justification of using 18F-FDG in small animal PET should be thoroughly considered. 

4. Small animal studies harnessing 18F-FDG should be conducted with careful 
considerations regarding the chosen animal model and the appropriate environmental 
factors influencing the model (i.e. fasting, anesthesia, quantification technique). 

5. Imaging small animals with TSPO targeting PET radioligand should include antibody-
based ex vivo experiments for the detection of microglial, astroglial, and TSPO 
expression, and these experiments should be compared retrospectively. 

6. Monitoring CB1R system with targeting PET radioligands should include the 
discrimination of female and male test subjects due to the differences in receptor 
expression and functional properties between the genders. 

7. The exploitation of 18F-FMPEP-d2 for monitoring cerebral CB1Rs must be evaluated 
with concomitant experiments regarding the receptor expression (ELISA, Western blot) 
and function (35S-GTPγS) to validate the meaning of the tracer binding in the brain. 

6.5 STUDY LIMITATIONS 

Specific limitations of the studies: 

I The small number of animals limited the possibility to conduct longitudinal 
investigations and hence, to detect the earlier pathological phase prior to Aβ pathology, which 
would have been rather informative. Larger number of animals would have provided the 
opportunity to investigate different fasting durations and thus, tolerance for food deprivations and 
effects on blood glucose. Blood glucose should have been measured more frequently, i.e. before 
the fasting and 18F-FDG injection. However, such procedures might increase the stress imposed 
on the mice, which should be avoided in 18F-FDG imaging studies. Additional immunoreactive 
staining on neuronal and synaptic markers could have provided a secondary marker to be 
compared to the imaging data. 

II  One obvious limitation was the ex vivo quantification in 18F-FDG studies, in which an 
inappropriate reference region was utilized that could not be mirrored with the longitudinal in 
vivo PET data. The longitudinal assessment should have been initiated in much younger animals, 
because ex vivo 18F-DPA-714 revealed that TSPO upregulation had already occurred in 1-month-
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old APP/PS1-21 mice. Furthermore, immunoreactive TSPO staining, and Iba1 and GFAP 
quantification would have given more information about the PET ligand specificity and possibly 
revealed differences in the activation of different glial cell types between TG and WT mice. 
Correlation between Aβ pathology and temporal changes in glucose metabolism and glial 
activation detected with PET should have been examined in order to reliably investigate the 
pathological profile of APP/PS1-21 model. 

III The limited animal availability in ex vivo experiments prevented the investigation of 
gender-related differences in the CB1R expression and availability at various ages. As described 
in Study II, the amyloidosis of APP/PS1-21 mouse model should have been quantified in order 
to correlate these changes to 18F-FMPEP-d2 binding detected with longitudinal PET. Additional 
immunohistochemical and immunoblotting experiments with antibodies targeting other ECS 
agents would have added value to the imaging results. The greatest limitations of 18F-FMPEP-d2 
was the radioactive metabolite in the murine brain, which represented part of the total 18F-
radioactivity detected with PET. 

6.6 FUTURE PROSPECTS 

The basis of AD has been the vicious cycle of the production of Aβ molecules, which aggregate 
into toxic oligomers, and then proceed into aggressive accumulation of neuritic plaques within 
the neurons. Post mortem findings of this recognized proteinopathy have been summarized via 
the amyloid cascade hypothesis, which has been a dogma directing research and subsequently 
drug discovery programs. As a consequence of technological improvements and intensive 
scientific efforts, other theories have been postulated to explain the metabolic and inflammatory 
changes in AD beyond the amyloid pathology. At present, many hypotheses, which have been 
generated from the post mortem, ex vivo, and in vitro based evidence, need further evaluation 
through novel in vivo biomarkers targeting these theoretical culprits. One of the main theories, 
i.e. that the pathogenetic course involves heavily on immunoreactive tau aggregates and NFT 
accumulation, cannot yet be assessed by PET as there are no reliable radioligands, which would 
reveal the presence of tauopathy in young individuals as well as in asymptomatic AD patients. 
Current AD PET imaging has focused on targeting dense amyloid plaques for confirming the 
diagnosis of the disease or for re-evaluating the treatment efficacy in clinical trials. Even though 
such studies have yielded some promising results, which do mirror post mortem findings with 
proteinopathy markers, strategies toward detecting the soluble, more neurodestructive Aβ 
oligomers have gained more interest both in imaging ligand development and drug discovery 
(Jack et al. 2013; Sehlin et al. 2016). 

The perfect timing to examine AD disease stage sets great challenges. Biases may be encountered 
whether known or novel disease biomarkers are monitored at the “wrong” disease stage during 
the temporal course of AD. The expression tone and timing of the different proteins and receptors 
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involved in the disease pathway may fluctuate from the initiation of AD as well as during its 
progression, and hence, the onset of different biomarkers must be investigated in prospective 
longitudinal assessments, which cannot be captured in cross-sectional settings. In clinical point-
of-view, early disease detection targeting amyloid and non-amyloid pathology in non-
symptomatic patients would be valuable for the initiation of disease modifying intervention, if 
ever applicable. Interest toward new interventional targets should include neuroinflammation and 
the ECS, especially the novel subtargets such as P2X7R, TREM2, interleukins, and CB2R 
(Holland et al. 2014; Janssen et al. 2018), which are also captivating targets for the further PET 
radioligand development. Imaging in vivo of amyloid protofibrils has also suggested to be 
valuable target for in-depth recognition of amyloid formation (Syvänen et al. 2017). In the end, 
new imaging agents could, in addition to monitoring drug efficacy in follow-up trials, ease on 
patient selection and characterization in a multidimensional way. Multitracer PET studies within 
the same subject could also provide in-depth information about the disease onset on an individual 
level, which could potentially offer a biomarker-based diagnosis for tailored combination 
treatment strategy in patient care. However, even though the development of new PET tracers 
targeting AD has been accelerated during the past decade, strong efforts must be conducted in 
terms of establishing effective drugs against the disease progression both against amyloid and 
other targets. These sort of investigations require reliable preclinical disease models and 
longitudinal assessments to gather the temporal and causal events in the AD-like brain. Current 
mouse and rat models need further evaluation to be able to be utilized for nonclinical drug 
discovery, and preferably, to be combined with LOAD models or EO-FAD models with 
additional LOAD phenotype. The validity of amyloid murine models in drug development must 
be carefully considered, and the selected disease model must be thoroughly evaluated as a feasible 
model for interventional studies. Nevertheless, despite the obvious limitations surrounding the 
applicability of the amyloid mouse models, these models have allowed researchers to investigate 
the AD brain at the cellular level, which is not feasible in AD patients. As an example, the 
pathogenesis affecting synaptic plasticity could previously only be evaluated via ex vivo 
examinations, but at present, it is possible to administer imaging ligands targeting synaptic 
proteins to visualize the condition of synapses in vivo both in AD models and patients (Nabulsi 
et al. 2016; Rabiner 2018). In my point of view, PET offers a unique way to track changes in a 
living brain that can be considered as the most important measurement in AD. However, imaging 
of AD is still in its infancy, and finding of reliable radioligands and imaging methods need further 
development and evaluation both in patients and disease models. The metabolic and 
proinflammatory changes in AD involve complex signaling pathways, which are independent, 
yet interacting with each other and are affected by the production of Aβ. However, the precise 
mechanisms and relationships between oxidative stress, neuroinflammation, glial cell 
abnormalities, and proteinopathies are still not clear, underlining the urgent desire for narrowing 
the gap between the underlying disease onset,  the development  of  possible  disease-modifying 
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therapeutics, and imaging modalities for studying these pathways in vivo (Heneka et al. 2015). 

In regard to imaging cerebral glucose utilization, 18F-FDG is a well-established feature in patients, 
however in rodent models, the full applicability is yet to be confirmed. Hence, other targets in 
energy metabolism should be established, and the potential feasibility to monitor their role during 
the disease progression in living subjects should be investigated. Evidence from past decades 
have shown that mitochondria and oxidative stress possess a greater role in AD than was earlier 
thought, and they share an additional impact on proinflammatory processes in the brain. Thus, 
novel imaging ligands targeting ROS and mitochondrial complex I have been established, and 
the feasibility of these new tracers are awaiting utilization in AD (Zhang et al. 2016; Tsukada et 
al. 2014). Neuroinflammation, on the other hand, as a potential target for drug discovery and 
tracer development, has encountered more interest and developmental leaps than energy 
metabolism. While TSPO has been dominating the overall PET imaging of neuroinflammation 
ever since the introduction of 11C-PK11195 in 1986 (Charbonneau et al. 1986), but producing 
more questions than answers regarding the complexity of the pro-inflammatory signaling 
pathway, the establishment of other ligands targeting purinergic receptors, astrocytes, or 
interleukins, have been a welcome breath of fresh air in the inflammation research (Janssen et al. 
2018). However, it is still wise to think that the temporal and causal role of microglial function is 
one of the most important events in AD progression, which is, unfortunately, impossible to 
examine using PET alone. Other research methods, including immunohistochemical staining, are 
needed to establish the phenotype status and the corresponding activations stage of these cells. In 
the meantime, PET has been acting as a prize-winning working horse in clinical drug trials by 
adjusting the patient selection criteria, monitoring the treatments effectiveness and study 
outcomes, and proofing the target engagement. Currently, major phase I-III studies on antibody-
based anti-amyloid as well agents targeting metabolism, inflammation and cannabinoid-based 
treatment strategies are ongoing, and the first long-awaited results are not estimated to arrive 
earlier than 2020 (Cummings et al. 2018). The hope for the positive results from these trials has 
not diminished, even though there has been no success in the past clinical drug discoveries 
targeting the AD progression. Failures have, however, increased the interest in finding other drug 
targets. One of these exotic candidates has been the ECS, which offers a variation of potential, 
but challenging and controversial routes and molecules. Cannabinoid treatment strategies are 
suggested to ease on symptomatic features of AD while decreasing the amyloid burden. By far, 
findings from cannabinoid-based treatments in AD mouse models have demonstrated decreased 
Aβ levels and reduced gliosis and proinflammatory markers in Tg2576 and APP/PS1 models 
(Martín-Moreno et al. 2012; Aso et al. 2015). A non-psychoactive phytocannabinoid, 
cannabidiol, has further shown to downregulate proinflammatory responses and glial activation 
both in vitro and in vivo (summarized in Watt and Karl 2017). These novel findings, however, 
need further confirmation since the general guidelines for using these controversial compounds 
are stricter compared to other drug targets. Imaging of safety and efficacy of potential 
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cannabinoids with longitudinal 18F-FMPEP-d2 or other CB1R PET modalities might lighten the 
fear of these intervention strategies. Furthermore, in vivo imaging might adjust the possible 
treatment planning, accuracy, and whether to use receptor agonist or antagonists in a case manner. 

Despite all the effort made so far, AD is still an unknown disease, which affects millions of people 
in later life. However, our knowledge on the diseased brain has enhanced, which brings light to 
the possibility of finding effective medical treatment. This long journey might be relieved by 
utilizing longitudinal studies with a multitracer PET approach. These imaging tools could perhaps 
elucidate the independent and synergistic processes behind the neuropathological cascade 
regarding different signaling pathways in AD progression. The most complex, yet crucial 
cascades are related to energy metabolism, neuroinflammation, and the ECS that also serve as 
new insights into the disease as well as a broad platform of potential targets for disease-modifying 
therapies to be combined with the upcoming anti-amyloid treatment plan. The one thing left to 
do is to work hard, and never give up. 

“You gain strength, courage, and confidence by every experience in which you really stop to look 
fear in the face. You are able to say to yourself, 

‘I lived through this horror. I can take the next thing that comes along’.” 
                       - Eleanor Roosevelt 
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7 CONCLUSIONS 

Studies I−III of this thesis work demonstrated that, not only do TG mouse models of AD differ 
in terms of the extent of amyloidosis, but they also exhibit different patterns of cerebral glucose 
metabolism in the early and late disease stages. The exploitation of 18F-FDG μPET is limited with 
regard to standardized environmental factors and examination of the characteristic features of the 
chosen AD model. The APPswe-PS1dE9 and APP/PS1-21 models demonstrated hypometabolic 
features in the brain and are more suitable than the Tg2576 model for longitudinal 18F-FDG 
imaging studies intended to evaluate interventions targeting AD pathology and their effect on 
cerebral glucose metabolism, and thus neuronal function. 18F-DPA-714 successfully showed 
elevated glial activation in the brains of the APP/PS1-21 model at a very young age. This model 
further demonstrated the most aggressive pathology regarding amyloidosis and the decreased 
CB1R availability detected with PET. 18F-FMPEP-d2 demonstrated feasible features for future 
imaging studies in mice if gender- and tracer-related limitations are carefully taken into 
consideration. 

Specific conclusions of the studies: 

I The APPswe-PS1dE9 and Tg2576 mouse models differed with regard to Aβ pathology, 
microgliosis, and glucose metabolism when equivalent experimental protocols and 
quantification methods were applied. The amyloidosis correlated moderately with glucose 
hypometabolism in old APPswe-PS1dE9 mice, whereas with microgliosis, it correlated 
weakly in old APPswe-PS1dE9 and Tg2576 mice. This study underlines the need for 
standardized 18F-FDG μPET protocols, individually adjusted for each strain. 

II The APP/PS1-21 model had temporal changes in the Aβ-driven glucose hypometabolism 
and glial activation in the brain when longitudinal 18F-FDG and 18F-DPA-714 PET 
modalities were utilized. These changes were accompanied by progressive amyloidosis 
and microgliosis. The PET results are comparable to clinical AD findings, which makes 
this model an attractive research tool for future interventional studies targeting AD 
pathology. 

III Age- and genotype-dependent alterations in 18F-FMPEP-d2 binding were demonstrated in 
male APP/PS1-21 mice with unchanged total CB1R expression. 18F-FMPEP-d2 presented 
encouraging evidence of its applicability for monitoring cerebral CB1Rs in preclinical 
studies with other disease models, as well as AD patients. However, evaluation of the 
binding differences between the genders and confirmation of the benefits of 18F-FMPEP-
d2 as a PET tracer for imaging CB1Rs in AD or other neurodegenerative diseases requires 
further research. 
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UNIVERSITY OF TURKU

Faculty of Medicine

Turku PET Centre

MediCity Research Laboratory

Jatta Takkinen: Imaging glucose metabolism, neuroinflammation, and cannabinoid receptor 1 in transgenic mouse models of Alzheimer’s disease

Doctoral Dissertation, 176 pp.

Doctoral Programme in Clinical Research  Clinical Physiology and Nuclear Medicine

March 2019

The pathophysiological cascade leading to Alzheimer’s disease is characterized by the accumulation of destructive β-amyloid in the brain. Convincing evidence has also shown that cerebral energy hypometabolism and an overproduction of translocator protein during neuroinflammation, as well as deficits in the endocannabinoid system, play major roles in progression of the disease. Monitoring temporal changes inside the diseased brain with non-invasive positron emission tomography (PET) would be a unique translational tool, bridging the gap between disease models and patients and aiding in the discovery of disease-modifying therapies against Alzheimer’s disease.

The aim of this thesis was to evaluate the translational feasibility of cerebral glucose metabolism targeting PET tracer 18F-FDG in APPswe-PSIdE9, Tg2576, and APP/PS1-21 mouse models of Alzheimer’s disease. In addition, this thesis aimed to examine the suitability of neuroinflammation-specific protein targeting tracer 18F-DPA-714 for longitudinal follow-up in aging APP/PS1-21 mice and whether it correlates with changes in glucose metabolism. Furthermore, the translational applicability of 18F-FMPEP-d2 was evaluated as a tool to assist in preclinical research targeting cannabinoid receptor 1 (CB1R) in wild-type and APP/PS1-21 mice.

Of the tested models, APP/PS1-21 mice demonstrated the most aggressive β-amyloid pathology. Furthermore, repeated PET scans with 18F-FDG and 18F-DPA-714 detected progressive glucose hypometabolism and neuroinflammation in the APP/PS1-21 model as the mice aged. However in the APPswe-PSIdE9 and Tg2576 mouse models, only a weak or non-altered glucose metabolism was observed. 18F-FMPEP-d2 was able to reveal altered CB1R availability when aging APP/PS1-21 mice were followed with repeated PET scans.

This thesis work demonstrated that Alzheimer’s disease mouse models differ in terms of amyloidosis and cerebral glucose metabolism, which creates challenges when comparing the research results between the models. The feasibility of 18F-FDG small animal PET depends on the chosen disease model and environmental factors. In the APP/PS1-21 model, longitudinal 18F-FMPEP-d2 and 18F-DPA-714 PET scans were able to demonstrate pathological features related to Alzheimer´s disease, which were confirmed by ex vivo examinations.

Keywords: Alzheimer’s disease; positron emission tomography; small animal imaging; cerebral glucose metabolism; neuroinflammation; cannabinoid receptor; transgenic mouse model 
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TURUN YLIOPISTO

Lääketieteellinen tiedekunta

Turun PET-keskus

MediCity-tutkimuslaboratorio

Jatta Takkinen: Aivojen energia-aineenvaihdunnan, tulehduksen ja tyypin 1 kannabinoidireseptorin kuvantaminen Alzheimerin taudin muuntogeenisissä hiirimalleissa

Väitöskirja, 176 s.

Turun Kliininen tohtoriohjelma  Kliininen fysiologia ja isotooppilääketiede

Maaliskuu 2019

Alzheimerin taudin keskeisimmät aivomuutokset ovat sakkautuvien β-amyloidipeptidien muodostuminen plakeiksi, aivojen heikentynyt energia-aineenvaihdunta, tulehduksen lisääntyminen ja endokannabinoidijärjestelmässä tapahtuvat muutokset, jotka lopulta johtavat hermosolujen vaurioitumiseen ja tyypillisten kognitiivisten häiriöiden ilmentymiseen. Aivomuutoksia on mahdollista seurata elävässä tutkittavassa kajoamattoman positroniemissiotomografia (PET)-kuvantamisen avulla.  Muuntogeenisten Alzheimerin taudin eläinmallien PET-kuvantaminen antaa ainutlaatuisen mahdollisuuden selvittää sairauden monimutkaisia patologisia tapahtumia ja seurata uusien lääkeaineiden vaikutusta ja turvallisuutta.

Tämän tutkimuksen tavoitteena oli arvioida aivojen glukoosiaineenvaihduntaa mallintavan 18F-FDG-merkkiaineen soveltuvuutta muuntogeenisten APPswe-PSIdE9, Tg2576 ja APP/PS1-21 hiirimallien pieneläinPET-kuvantamiseen. Toisena tavoitteena oli arvioida tulehdusproteiiniin sitoutuvan PET-merkkiaineen, 18F-DPA-714, soveltuvuutta aivoissa etenevän tulehduksen seuraamiseen muuntogeenisessä APP/PS1-21 hiirimallissa. Kolmantena tavoitteena oli tutkia tyypin 1 kannabinoidireseptori-PET-merkkiaineen, 18F-FMPEP-d2, soveltuvuutta pieneläinkuvantamiseen villityypin hiirillä ja Alzheimerin taudin reseptorimuutosten seuraamiseen APP/PS1-21 hiirimallilla.

APP/PS1-21 hiirimallin β-amyloidipatologia eteni muita malleja nopeammin. Lisäksi hiirimallin aivojen glukoosiaineenvaihduntaa mallintavan merkkiaineen kertymä heikentyi ja tulehdusproteiiniin sitoutuvan merkkiaineen määrä kasvoi, kun hiiriä kuvattiin toistuvasti PET-menetelmällä. Vastaavasti APPswe-PSIdE9 ja Tg2576 hiirimalleilla havaittiin vain lievää tai olematonta glukoosiaineenvaihdunnan heikkenemistä. 18F-FMPEP-d2 PET-tutkimukset osoittivat alentunutta merkkiainekertymää APP/PS1-21 hiirimallissa verrattuna terveisiin eläimiin, ja soveltuvuutta tuleviin pieneläinkuvantamistutkimuksiin.

Tutkimustulokset osoittivat, että muuntogeeniset eläinmallit eroavat merkittävästi toisistaan, mikä asettaa haasteita tutkimustulosten vertaamiseen mallien kesken. Aivojen 18F-FDG-kertymä vaihtelee tautimallin ja ympäristötekijöiden mukaan, mikä tuo rajoitteita pieneläinkuvantamisen toteuttamiseen. Sekä 18F-DPA-714- ja 18F-FMPEP-d2-merkkiaineet pystyivät osoittamaan Alzheimerin taudille tyypillisiä aivomuutoksia APP/PS1-21 hiirissä, mitkä voitiin varmentaa ex vivo menetelmin hiirten aivoleikkeistä.

Avainsanat: Alzheimerin tauti; positroniemissiotomografia; pieneläinkuvantaminen; energia-aineenvaihdunta; tulehdus; kannabinoidireseptori; muuntogeeniset hiirimallit
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11C-PiB		11C-labelled Pittsburgh Compound B

14C-DG		14C-2-deoxyglucose

18F-FDG		2-deoxy-2-18F-fluoro-D-glucose

18F-FMPEP-d2	((3R,5R)-5-((3-(18F-fluoromethoxy-d2)phenyl)-3-((R)-1-phenyl-			ethylamino)-1-(4-trifluoromethylphenyl)-pyrrolidin-2-one)

18F-DPA-714	18F-N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethyl-			pyrazolo[1,5-α]pyrimidine-3-yl)acetamide

2-AG		2-arachidonoylglycerol

%ID/g		normalized percentage of the injected radiotracer dosage per weight of 

		the animal

γ		gamma

μ		micro

Aβ		β-amyloid

AD		Alzheimer’s disease

AEA		N-arachidonoylethanolamide

am		ante meridiem

APOE		apolipoprotein E

APP		amyloid precursor protein

ATP		adenosine triphosphate

BC		before Christ

BSA		bovine serum albumin

CBR		cannabinoid receptor

CERARD	Consortium to Establish a Registry for Alzheimer’s Disease

CNS		central nervous system

COX		cyclo-oxygenase

CSF		cerebrospinal fluid

CT		computed tomography

DTT		dithiothreitol

ECS		the endocannabinoid system

EO-FAD	early-onset familial Alzheimer’s disease

FAAH		fatty acid amide hydrolase

fMRI		functional magnetic resonance imaging

glu		glucose

GABA		gamma-aminobutyric acid

GFAP		the glial fibrillary acidic protein

GLUT		glucose uptake transporter

HCl		hydrochloride

Ki		equilibrium constant

Iba1		ionized calcium-binding adapter molecule 1

IL		interleukin

IFN		interferon

IP		intraperitoneal

IV		intravenous

keV		kiloelectron volt

LOAD		late-onset Alzheimer’s disease

LogP		partition coeffient

MAGL		monoacylglycerol lipase

MAPT		microtubule-associated protein tau

MAO-B		monoamine oxidase B

MCI		Mild Cognitive Impairment

MMSE		Mini-Mental State Examination

MRI		magnetic resonance imaging

mRNA		messenger RNA

mtDNA		mitochondrial DNA

mtRNA		mitochondrial RNA

NIA-AA		the National Institute on Aging and Alzheimer’s Association

NFT		neurofibrillary tangle

p.i.		post injection

PET		positron emission tomography

pH		pondus hydrogenii

pm		post meridiem

PSEN		presenilin

PSL/mm2	photostimulated luminescence intensity per square millimeter

p-tau		phosphorylated tau

Rf		retention factor

ROI		region of interest

ROS		reactive oxygen species

SDS		sodium dodecyl sulfate

SPM		statistical parametric mapping

SUV		standardized uptake value

SUVglu		standardized uptake value corrected for the individual baseline blood

		glucose value

T½		half-life

TBS-T		Tween Tris-buffered saline

TG		transgenic

TLC		thin-layer chromatography

TNF		tumor necrosis factor

T-tau		total tau

TREM2		the triggering receptor expressed on myeloid cells 2

TSPO		translocator protein

VOI		volume of interest

VT		distribution volume

WT		wild-type

w/v		percentage of weight of solution in the total volume of solution
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Alzheimer’s disease (AD) is the most common memory disorder in the aging population and is characterized by a progressive cognitive decline and loss of memory, eventually leading to the need for institutional care and the development of terminal secondary illnesses. In Finland, the number of people stricken with age-related dementia is estimated to be over 190 000, with that number increasing by approximately 14 500 new cases every year due to the increasing numbers of elderly (THL muistisairauksien yleisyys). AD is traditionally explained by an aggressive accumulation of abnormally formed β-amyloid (Aβ) peptide outside the cells and intracellular aggregation of hyperphosphorylated tau protein in paired helical filaments, eventually forming dense neuritic plaques and neurofibrillary tangles (NFTs), respectively, and leading to synaptic disruption and neuronal cell death (Braak and Braak 1997). Previously, these histopathological hallmarks were detected only via post mortem from brain autopsy samples dissected from deceased AD patients. In addition to the proteinopathological changes, years of in-depth research have produced a convincing body of evidence indicating that other pathological changes are involved in progression of the disease and, thus, in the cognitive decline. These complex signaling pathways include proinflammatory revival, mitochondrial dysfunction, altered cerebral glucose metabolism, and deficits in several aspects of the neurotransmitter machinery, including the endocannabinoid system (ECS), many of which are thought to be present decades before the first symptoms (Bedse et al. 2015; Clarke et al. 2018; Hansen et al. 2018). Currently, no single method is available that can help in making a reliable AD diagnosis, although several tools have been utilized for examining human memory and cognition, as well as revealing structural alterations in the brain, and changes in the levels of cerebrospinal fluid (CSF) biomarkers (Käypä Hoito A 2016).

Positron emission tomography (PET) is a nuclear medical imaging method that can be used for real-time monitoring of tissue metabolism or neurotransmitter function in a living human or animal. PET is based on the administration of tracers labelled with radioactive isotopes, which target a specific biological system. Consequently, PET has represented a noninvasive way to follow changes in cerebral energy metabolism or Aβ plaque formation inside the brain of a living AD patient. Even though PET is beneficial in clinical research, this imaging method is still too laborious to be used in routine diagnostics, although it is applied to examine borderline cases (Rabinovici et al. 2007; Foster et al. 2007; Minoshima et al. 2001; Bohnen et al. 2012). 2-Deoxy-2-18F-fluoro-D-glucose (18F-FDG) is a glucose analogue that can be used to detect in vivo decreases in cerebrocortical glucose metabolism, which are considered to be one of the major pathological hallmarks in the AD brain. The severity of the hypometabolic features has been correlated with the temporal pattern of cognitive decline. For this reason, 18F-FDG PET findings have been included into the small pool of the AD diagnostic biomarkers (Jack et al. 2013 and 2018). However, disease models of AD have revealed fluctuating cerebral metabolism in response to the variable methodological and analytical procedures, as well as genetic differences between the models. Nevertheless, the deterioration in glucose utilization within human neurons has been postulated to originate mainly from a functional impairment of mitochondria, the energy powerhouse of the cell. Mitochondrial respiration is thought to be detrimentally affected by the upregulation of translocator protein (TSPO; Papadopoulos et al. 2006). TSPO is abundantly present on the glial cell membrane in a known neuroinflammatory process in trauma and neurodegenerative diseases (Chen and Guilarte 2008). Currently, non-specific TSPO increase in AD cascade can be monitored by PET in clinical and preclinical research. One of the many radiotracers useful for this purpose is 18F-N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethyl-pyrazolo[1,5-α]pyrimidine-3-yl)-acetamide (18F-DPA-714), which possesses useful characteristics, including the ability to discriminate AD patients from healthy controls (Hamelin et al. 2016). This differentiating property has also been demonstrated in an AD transgenic (TG) mouse model (Sérrière et al. 2015; Chaney et al. 2018). However, the search for a reliable PET imaging agent that targets neuroinflammation is still a work in progress, underlining the need for further evaluation studies with different tracers and neuroinflammation targets with respect to AD. The type 1 cannabinoid receptor (CB1R) may be one of these targets; this system has been suggested to participate in the pathological pathways involving mitochondrial dysfunction and neuroinflammation. CB1R is one of the most abundant receptors in the brain, and is present not only in the neuronal membranes but also at the mitochondrial membrane (Brailoiu et al. 2011). These receptors are part of the complex cerebral system that controls excitatory and inhibitory neurotransmitter release, synaptic plasticity, memory, and the immune system (Freund et al. 2003; Benard et al. 2012). Disturbances within this system have been shown to enhance proinflammatory responses via glia cells that may provide an indirect measurement of neuroinflammation in the diseased brain (Bedse et al. 2015). However, despite researchers investigating PET tracers targeting CB1Rs for the past 10 years, progress has been slow, and monitoring changes in receptor availability in neurodegenerative diseases has been challenging. One of the most recently designed radioligands, ((3R,5R)-5-((3-(18F-fluoromethoxy-d2)phenyl)-3-((R)-1-phenyl-ethylamino)-1-(4-trifluoromethyl-phenyl)-pyrrolidin-2-one) (18F-FMPEP-d2), has demonstrated to possess superior tracer qualities, including reduced lipophilicity compared to the previously developed CB1R PET ligands (Terry 2009a; Terry et al. 2010). Thus, the applicability of this tracer would be interesting to evaluate in laboratory mice and preclinical studies related to AD. If it proves capable of revealing temporal CB1R changes in AD disease models then hopefully it could be applied in AD patients in the future. 

Disease-modifying therapeutics are not yet available for AD. Anti-amyloid targeting drug discovery has been unsuccessful, perhaps because of the large number of unresolved questions regarding the neurodegeneration in both the human brain and animal models. Thus, there is an urgent need to clarify the pathogenic profile beyond amyloid plaques in a causal and temporal manner, and to unravel the interplay between different pathological pathways leading to AD. Therefore, the aim of this thesis work was to evaluate the translational usability of cerebral glucose utilization, TSPO-based neuroinflammation, and CB1Rs targeting PET radioligands for use in preclinical in vivo imaging studies in AD mouse models. Three TG mouse models (APPswe-PSIdE9, Tg2576, and APP/PS1-21) were evaluated using the cerebral glucose metabolism targeting PET tracer 18F-FDG with cross-sectional APPswe-PSIdE9 and Tg2576; Study I) or longitudinal (APP/PS1-21; Study II) study protocols. The longitudinal follow-up suitability of TSPO targeting tracer 18F-DPA-714 (Study II) and CB1R targeting tracer 18F-FMPEP-d2 (Study III) were examined in aging APP/PS1-21 mice. In addition, prior to the follow-up study in APP/PS1-21 mice, the applicability of 18F-FMPEP-d2 was evaluated in mice focusing on metabolism, distribution, and specificity with the respect of future preclinical in vivo imaging studies (Study III). The relationships between Studies I-III are illustrated in Figure 1.
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Figure 1.	The interconnections between the Studies IIII.
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“Diseases of all kind dance around the old man in a troop. But worse than any loss in the body is the failing mind, which forgets the names of slaves, and cannot recognize the face of the old friend who dined with him last night, nor those of the children whom he has begotten and brought up.”

                                                                                                                         Juvenal, 1st century

The history of dementia extends almost 3000 years back to the ancient Mediterranean cities. One of the oldest descriptions of human memory deficits originates from the ancient Egyptian maxim from the 8th century before Christ (BC), which further puzzled several famous Greek philosophers, Pythagoras, Plato, and Aristoteles. In the late era of the Greek-Roman medicine in the 2nd century BC, a famous doctor Galenos postulated the most popular theory for cognitive decline, dementia senilis, which referred to an inevitable cognitive decline due to aging (Berchtold and Cotman 1998; Haltia 2003). Unfortunately, many individuals with dementia were most often viewed as being mentally insane and therefore, were kept incarcerated in prisons. It was not until the beginning of the 19th century, when a French physician, Philippe Pinel, suggested that insanity was not a crime, but more often a disease. Ultimately, this humanitarian reform led to identification of different forms of mental disorders with dementia being subdivided into different categories (McGrew 1985). In late 19th century, the progress in clarifying the brain anatomy as well as advances in instrumentation and microscopy increased our understanding of the relationship between brain weight loss and arteriosclerotic atrophy with the symptoms of dementia. The German psychiatrist and neuropathologist, Alois Alzheimer, observed in the 1890’s that atheromatous blood vessel degeneration accompanied with stroke was a crucial triggering event for the development of brain atrophy and senile dementia (Forstl and Howard 1991). In 1906, by applying recently developed staining methods, Alzheimer was able to reveal startling neuropathological features, such as abnormal fibrils and deposits, in the brain of his deceased 51-year-old patient, Auguste Deter. After years of following the progression of the cognitive impairment in his patient, and finally confirming that the abnormal histopathological brain changes were related to the symptoms, Alzheimer was able to publish the first clinical description of new brain disease, which we currently recognize as AD.

Cognitive decline and dementia

Cognition is a process in which knowledge and understanding are involved when a person is thinking, feeling, or experiencing. Subtle declines in cognition are a common feature during healthy aging in terms of learning, remembering, or performing executive functions (Salthouse 2012), however the kinds of declines in cognitive functions that affect an individual’s everyday life, are considered as abnormal and feared. Abnormal cognitive decline consists of impairments in inductive reasoning, spatial orientation, perceptual speed, and abilities in numeric and verbal understanding (Ray and Davidson 2014). One of the stops on the continuum of the cognitive decline is Mild Cognitive Impairment (MCI) with healthy aging at one end of the spectrum and diagnosed dementia at the other. The prevalence of MCI is between 10% to 20% in adults aged 65 or over, and it is a clinical stage, in which although a cognitive impairment is evident, it does not interfere with the person’s abilities to perform everyday life tasks (Knopman and Petersen 2014; Plassman et al. 2008). In contrast, clinical dementia is a progressive heterogenic syndrome that is composed of a complex deterioration in cognitive function caused by a variety of different diseases or brain injuries (Figure 2). The most characteristic dementia symptoms are memory loss, an inability to manage straightforward tasks, and changes in mood and personality. To date, there are over 100 causative forms of dementia, with the most common being AD, vascular dementia, dementia with Lewy bodies, Parkinson’s dementia, and frontotemporal dementia; all of these diseases cause temporal brain damage and loss in memory via different mechanisms with different disease onsets. Currently, 50 million people worldwide have been diagnosed with some kind of clinical dementia, but it is believed that many more are never diagnosed. It is projected that the total number of dementia patients will reach nearly 152 million by 2050, and the majority, approximately 6070% of all dementia cases are attributable to AD (Patterson 2018; WHO 2018 Dementia).

AD is an irreversible, progressive neurodegenerative syndrome that abnormally affects the aging brain by destroying cognition, deteriorating episodic memory, causing abnormal behavior and mood, and increasing the difficulties in coping with everyday life. While the disease progresses, the ability to recognize time and place becomes impossible (Jack et al. 2018). Traditionally, AD has been divided in the clinic into three different phases according to the symptoms: preclinical, prodromal, and AD dementia. Preclinical AD refers to a stage where pathological processes in the brain have begun to progress but there is no signs of symptoms crossing any clinical diagnostic threshold. Only recently, preclinical AD has been divided further into three sub-stages according to CSF biomarkers, which include abnormal amyloid markers (stage 1), with a combination with tau markers (stage 2), and the presence of a subtle cognitive decline (stage 3) (Sperling et al. 2011). Prodromal AD refers to a predementia phase, where mild cognitive alterations have already occurred with confirmed brain imaging markers. The differentiation between prodromal AD and MCI is suggested to be somewhat mercurial, since in both cases, there is a decline in one or more distinguished cognitive domains. In AD dementia, cognitive impairments have become so obvious that they pass the threshold for a clinical diagnosis since individual’s abilities to perform simple daily duties have become evidently restricted (Dubois et al. 2014). Not surprisingly, these stages might overlap with one and another, and the different stages are difficult to distinguish. Thus, the recent proposals issued by the National Institute on Aging and Alzheimer’s Association (NIA-AA) state that AD should regarded as a continuum, and not separated into distinct stages (Vos et al. 2013; Dubois et al. 2014; Jack et al. 2018).
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Figure 2.	Typical warning signs related to dementia syndromes. Characteristical symptoms may become evident already at the early disease phase or during progressed dementia.

In histopathological aspect, the most known characteristic findings in the AD brain are a shrinkage in the cortical and hippocampal gray matter, and an enlargement of the ventricles. These pathological hallmarks progress for decades, and start long before there are signs of cognitive decline. In neuropathological level, AD is characterized by an abnormal aggregation of extracellular Aβ peptide fragments and intracellular NFTs of paired helical filaments composed of hyperphosphorylated tau proteins (Braak and Braak 1997). Temporally, Aβ pathogenesis begins in the neocortex, then extends to the subcortical structures and cerebellum as the disease progresses, whereas NFTs have been shown to originate from the transentorhinal cortex and extend to the hippocampus and neocortical area (Braak and Braak 1997; Thal et al. 2002).

This review of literature will focus on AD, especially on the risk and protective factors of the disease, and then proceed to examine the complex pathophysiological mechanisms behind the cognitive dysfunctions. Finally, in conjunction with the expanding knowledge of current AD diagnostics and the potential of using PET for this task, we will justify the thinking behind the experiments conducted and described in the original publications.

Risk factors

The causality of AD is still a matter of debate even though it has been investigated for decades. While age is known to be the greatest risk factor for developing AD, there are also numerous genetic and environmental risk factors involved with the disease. Since AD is a heterogenic disease with no curative treatment available, confirming the potential risk factors would enable the early detection in the establishment of the disease in individuals even before irreparable damage had occurred. In the end, this could open new vistas for drug discoveries.

Genetic risks

The characteristic differentiation into either early-onset familial (EO-FAD) or late-onset AD (LOAD) is based on an evaluation of risk factors of the disease - age and genetic background. Only 15% of the patients have an EO-FAD profile, which affects individuals already at an age between 30 to 60 years (Reltz 2011). EO-FAD is considered to be a more severe and aggressive form of the disease and is usually linked with autosomal dominant mutations in one of the three genes: Amyloid precursor protein (APP, in chromosome 21), presenilin-1 (PSEN1, in chromosome 14) or presenilin-2 (PSEN2, in chromosome 1). These genes encode APP and presenilin proteins 1 (PS1) and 2 (PS2) that are involved in the proteolytic processes, which eventually lead to the Aβ peptide production, the principal compound in the protein aggregates found in the brains of AD patients (Goate et al. 1991; Sherrington et al. 1995; Levy-Lahad et al. 1995). Mutations in PSEN1 represent the majority of the EO-FAD cases, while APP and PSEN2 mutations are rarer (Tanzi 2012). Furthermore, recent findings also suggest that there are different risk genes other than APP, PSEN1, or PSEN2 involved in the heritability of AD (Rademakers et al. 2005; Ostojic et al. 2004), and a protective APP gene variant against amyloid pathology exclusively among Icelandic and Scandinavian people (Jonsson et al. 2012).

[bookmark: _GoBack]The majority of the AD patients are considered to have LOAD i.e. a sporadic profile, with the symptoms usually developing after the age of 65. From the clinical point-of-view, EO-FAD and LOAD are generally agreed to be the same disease, although there are distinguishable differences in the underlying temporal pathogenesis. Although the origin of LOAD is still unresolved, there is a convincing body of evidence that the onset of the disease is composed of complex interactions between genetic risk factors and the environmental risks and lifestyle choices, which together determine the lifetime risk for developing clinical AD (Tanzi 2012). It is apparent that no specific gene is responsible for the establishment of LOAD, however, one gene variant, an 4 allele of the apolipoprotein E gene (APOE4, in chromosome 19) has been demonstrated to increase the LOAD risk (Strittmatter et al. 1993; Tanzi 2012). A single 4 allele increases the risk by approximately 3-fold, whereas two copies elevates the risk for AD nearly by 16-fold. However, the precise mechanism by which APOE4 elevates the AD risk is not totally understood, but the presence of this allele is not considered to be necessary for developing LOAD since not all APOE4 carriers are destined to suffer AD (Myers et al. 1996). In addition to APOE4, numerous genome-wide association studies have shown that there are other risk gene variants involved in the pathogenesis of LOAD, such as neuronal sortilin-related receptor gene (Rogaeva et al. 2007), the clusterin gene, the complement component (3b/4b) receptor encoding gene, the PI-binding clathrin assembly protein encoding gene (Harold et al. 2009; Lambert et al. 2009), and the bridging integrator 1 gene (Tan et al. 2013). Furthermore, the discovery of an AD-variant of the triggering receptor expressed on myeloid cells 2 gene (TREM2) as being highly expressed by microglia cells in the AD brain emphasized the crucial role of neuroinflammatory markers in AD onset (Guerreiro et al. 2013; Jonsson et al. 2013; Reltz 2011; Onyango 2018).

Environmental risks

Several environmental risk factors and lifestyle choices have been linked to the dementia pathway, affecting the disease etiology or the overall outcome. Figure 3 represents the wheel of the potential modifiable dementia risk factors, which are collected from several epidemiological cohort studies and reported annually by the global Alzheimer’s Disease International federation (www.alz.co.uk). Females are more likely than males to develop sporadic AD; this difference has been speculated to be related to the APOEε4 allele, metabolic factors, and estrogen interaction during the menopause (Duarte et al. 2018). Traumatic brain injury, depression, physical inactivity, midlife obesity, and low educational attainment have shown to further exert an impact on overall health and the prevalence of AD (Fleminger et al. 2003; Hartman et al. 2002; Franz et al. 2003; Norton et al. 2014; Reitz and Mayeux 2014), together with alcohol overconsumption and smoking (Harwood et al. 2010; Norton et al. 2014; Käypä Hoito A 2016). Cerebrovascular impairments in response to severe vascular disorders, such as ischemic stroke, atherosclerosis, mid-life hypertension, and cardiac diseases, have also been shown to be linked to dementia by increasing the overall risk (Kivipelto et al. 2001; Whitmer et al. 2005; Morović et al. 2009; Viswanathan et al. 2009; De la Torre 2009; Skoog and Gustafson 2003). In addition, there is evidence emphasizing the strong relationship between type 2 diabetes and AD, indicating that insulin resistance or impairments in insulin signaling promote neurodegenerative pathology and double the risk for disease prevalence (Takeda et al. 2010; Leibson et al. 1997; Mehla et al. 2014) via neuroinflammatory or oxidative stress related mechanisms (Bharadwaj et al. 2017). Consequently, according to a population-based and proof-of-concept randomized controlled trial, risk factors involved in midlife obesity and hypertension, type 2 diabetes, smoking, depression, and low education could potentially be prevented if an individual was better informed, motivated, or treated (Ngandu et al. 2015; Reitz and Mayeux 2014). Exercise might assist controlling the body weight as well as promoting mental and brain health. Physical activity triggers continuous oxidative stress that induces a series of counteractive mechanisms enhancing mitochondrial function to combat the effects of reactive oxygen species (ROS) (Onyango et al. 2010; Radak et al. 2016). Some dietary choices, such as a diet rich in vegetables, fruits, and polyunsaturated fatty acids but low in red meat and added sugar, have been shown to reduce the incidence of metabolic disorders and thus, AD (Scarmeas et al. 2006). Other beneficial factors preserving health and cognition include an active social network and lifestyle, and high education (Reitz and Mayeux 2014).
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Figure 3.	Wheel of the evidence-based, modifiable dementia risk factors targeted especially to middle-aged people. Strongest evidence of the association to dementia risk has been found with the type 2 diabetes, smoking, low education, physical inactivity, and mid-life obesity. Moderate association to dementia risk has been identified with mid-life hypertension and unfavorable dietary choices. Weak evidence-based association has been demonstrated with alcohol overconsumption, suffered depression, and hyperlipidemia for overall dementia risk. Modified from the World Alzheimer’s Report 2014.

[bookmark: _Toc2602222]Alzheimer’s disease  pathogenesis

The complexity of AD pathophysiology has been investigated for decades, yet the origin of the disease is still a mystery, emphasizing the complexity of the undiscovered mechanisms behind the pathological processes of this disease. It is, however, recognized that AD is not due to a single culprit, which is responsible for the neuronal cell loss, instead several mechanisms have been shown to play a role in the etiology of AD. Therefore, the ongoing AD research has concentrated on seeking new mechanisms in addition to the well-known amyloid cascade.

[bookmark: _Toc2602223]Proteinopathies

The amyloid cascade hypothesis has greatly influenced AD research such as the search for therapeutic interventions, perhaps due to its undoubted benchmark status in the etiology of AD. According to the original hypothesis, the amyloid cascade consists of a complex series of events in which the production and accumulation of pathological microaggregates of Aβ1-42 lead to the formation of hyperphosphorylation of tau, and eventually to neuronal cell loss and  the appearance

of clinical dementia (Hardy and Higgins 1992; Hardy and Selkoe 2002).

Type I glycosylated transmembrane protein APP is involved in several neuronal functions including neural stem cell development, neuronal survival and repair, and synaptic plasticity (Dawkins and Small 2014) even though the main physiological function of APP remains unknown. The APP gene is located in chromosome 21, and the corresponding APP protein is considered to be the precursor of the main pathological component of amyloid plaques in AD, Aβ peptide. APP is synthetized in the endoplastic reticulum from where it is first transported to the trans-Golgi-network and then to the cell surface (Zhang et al. 2011), where it is cleaved by α-secretase (non-amyloidogenic pathway) or β-secretase (amyloidogenic pathway). Cleavage by α-secretase produces soluble APP ectodomains (sAPPα), which have been linked to neuronal plasticity and cell survival, whereas cleavage by β-secretase forms APP ectodomains releasing soluble APPβ, which have been shown to mediate neuronal cell death (Nikolaev et al. 2009). After the cleavage by β-secretase, the remaining carboxyl terminal fragment of APP (CTFβ) in the cell membrane is further cleaved by -secretase, which is composed of active PS1 and PS2, and generates soluble Aβ1-40 and Aβ1-42 while releasing the intracellular APP domain (AICD) (Figure 4). Aβ1-42 is more prone to fibril formation and further aggregation into soluble Aβ oligomers. An Aβ1-42 or Aβ1-42/Aβ1-40 ratio increase will trigger the formation of Aβ amyloid fibrils, which further develop into senile plaques. This event is suggested to be the main cause in the establishment of neurotoxicity and tau pathology, as well as neuronal cell death, oxidative stress, and glia cell activation (Hardy and Higgins 1992; Zhang et al. 2011; Kametani and Hasegawa 2018).

The amyloid cascade hypothesis has been supported by the discovery of autosomal dominant mutations in three genes APP, PSEN1, and PSEN2, all of which enhance the production of Aβ in EO-FAD. However, this hypothesis has faced criticism with regard to the biased pathological mechanisms and their relationship to the disease onset and cognition (Aizenstein et al. 2008; Mintun et al. 2006), and thus, evidence emerging in the last two decades has brought new perspectives into our understanding of AD. Aβ peptide, while being the key component in neuritic plaques in AD, is also a typical APP secretion product during normal cellular metabolism (Haass et al. 1992). It has also been postulated that insoluble Aβ1-42 fibrils would not be responsible for the synaptic dysfunction, but instead the culprits are the soluble Aβ oligomers that are impossible to detect in amyloid plaque immunohistochemical stainings (Selkoe 2000; Hardy and Selkoe 2002). Furthermore, some evidence has proposed that Aβ accumulation and tau pathology are two interacting independent series of events (Duyckaerts 2011). This proposal is supported with the fact that genetic mutations in Aβ production lead to clinical AD, whereas a genetic tauopathy does not cause AD (Goate et al. 1991; Hutton et al. 1998). Aβ accumulation has been shown to impair cerebral blood flow, which lowers the availability of glucose within the neurons,  further worsening  the  cerebral blood  flow  and  activating neuronal  cell  death   (Popa-Wagner et  al.
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Figure 4.	Amyloid precursor protein (APP) processing by two different pathways. In non-amyloidogenic pathway, a cleavage by α- and γ-secretase will produce secreted (sAPPα) and intracellular (AICD) APP domains. In the amyloidogenic pathway, the cleavage by β- and γ-secretase will produce an intracellular APP domain (sAPPβ), but also a variety of β-amyloid (Aβ) peptides of different lengths, of which Aβ1-40 and Aβ1-42 are related to Alzheimer’s disease. The figure was inspired by Fig. 1 in Amtul 2016.

 2015). Indeed, Aβ is known to speed up the AD pathogenesis, however, on its own, it might be unable to trigger neurodegeneration or cognitive decline (Jack et al. 2018). The most recent data from a longitudinal follow-up study with asymptomatic at-risk individuals for AD indicated that Aβ should not be considered as a cause of AD, but rather as one of the risk factors (Dubois et al. 2018). These discrepancies in the amyloid cascade hypothesis might partly explain the failures of anti-amyloid treatment clinical trials, and emphasize the need to examine the possible benefits of non-amyloid treatment approaches.

Neurodestructive tau depositions, i.e. intracellular NFTs in the brain, are the earliest neuropathological feature and a hallmark of the AD pathogenesis, being detectable as early as before the age of ten (Braak and Del Tredici 2011). It has been suggested to be one of the variants leading to cognitive impairment in later adulthood, because studies have revealed a correlation between NFT and gray matter atrophy loci, i.e. neurodegeneration, seen in the early AD (Braak et al. 2006). NFTs are formed from aggregates of filamentous tau protein, which is an unfolded protein that binds to the axonal (Binder et al. 1985) or dendritic (Tashiro et al. 1997; Klein et al. 2002) microtubules in order to stabilize the cell structure. Tau has a total of six isoforms, which are expressed as three (3R) or four (4R) replicates and produced via alternative splicing of microtubule-associated protein tau gene (MAPT) in chromosome 17 (Goedert et al. 1989). The microtubule binding properties of tau are dependent on its phosphorylation status and the resulting conformation, as well as being linked with the activities of the related kinases and phosphatases (Hanger et al. 2009). Excessive phosphorylation of tau as a result of conformational changes, MAPT mutations, or interactions with other proteins, such as Aβ, is speculated to lead to neuronal dysfunction and eventually to its accumulation and aggregation into paired helical filament structures (Braak and Braak 1997; Lewis et al. 2000). The tau hypothesis in AD, on the other hand, differs from the mainstream amyloid hypothesis; it postulates that the dendritic accumulation of tau makes neurons more vulnerable to Aβ depositions, and thus, accelerates the pathogenetic processes leading to AD (Kametani and Hasegawa 2018). This hypothesis is supported by the evidence of the appearance of the tau lesions preceding earlier than amyloid deposition (Braak and Del Tredici 2014; Bennett et al. 2004).

[bookmark: _Toc2602224]Neurodegeneration

Synaptic impairment and neuronal cell loss are very early events in the pathogenesis of AD, being present in the preclinical stage of the disease. The cell loss progresses to gray matter atrophy, which initiates in the hippocampal cell layer CA1 and entorhinal cortex layer 2 (Bali 1977; Gómez-Isla et al. 1996). Atrophy further spreads to the temporal gyrus, and frontal and parietal cortices (Coleman and Flood 1987), and during the late stage of the disease, to the entire brain. Synaptic loss and neuronal damage are thought to be derived from several factors, such as synaptic protein malfunction or decreased mitochondrial RNA (mtRNA) levels (Callahan et al. 1999; Gylys et al. 2004) but most prominently from the accumulation of NFTs, which correlates well to the gray matter atrophy and progressive cognitive decline (Jack et al. 2013). In contrast, convincing evidence for a correlation between neuronal loss and Aβ pathology is still missing (Jack et al. 2018).

[bookmark: _Toc2602225]Metabolic impairments

The indisputable causal role of the abnormal protein aggregation in the EO-FAD poorly explains the underlying causes for sporadic AD. Thus, alternative hypotheses have emerged in response to the growing body of evidence postulating that AD is far more complex than being simply a proteinopathy. Findings from clinical and animal studies have revealed that a variety of metabolic impairments begin to develop within several biological systems related to energy production and insulin-related activities (Clarke et al. 2018). The metabolic disturbances related to obesity and diabetes have also been shown to be associated with AD, sharing many similar biological features (Bharadwaj et al. 2017; De Felice 2013; De Felice and Ferreira 2014). In normal circumstances, neuronal energy metabolism and brain glucose utilization include mitochondrial-generated oxidative phosphorylation, insulin signaling pathways, and glucose transporter mediated energy uptake. Together these form a complex of synergistic and symbiotic processes involving multiple signaling pathways, metabolites, enzymes, transporters, and other compounds, which all work in parallel to maintain neuronal functionality. In terms of energy metabolism, AD is traditionally characterized by decreased neuronal glucose uptake, impaired insulin signaling, and altered receptor functions related to energy production or transfer; these will be briefly discussed in the following chapters (Yin et al. 2016; Clarke et al. 2018). 

During normal cell homeostasis, mitochondria play a key role in energy metabolism and apoptosis, transferring and storing the energy that cells need via adenosine triphosphate (ATP). It is vital for the cell survival that these organelles function efficiently and there is an equilibrium between mitochondrial fusion and fission reactions. This ensures steady energy production, cell homeostasis, Ca2+ signaling, normal production of ROS, and regulation of apoptosis (Chan 2006; Chen et al. 2005; McBride et al. 2006; Yu et al. 2006). In neurons, mitochondria have been demonstrated to be involved in neurotransmission by regulating the ATP levels in the nerve endings (Smith et al. 2016; Pathak et al. 2015). Thus, not surprisingly, impairments in this crucial energy metabolic system lead to disruption of neuronal function and structure.

Mitochondrial dysfunction and oxidative stress are early signs in the pathogenesis of AD, which are considered to be consequence behind the glucose dysmetabolism detected in both AD patients and disease models (Yao et al. 2009; Du et al. 2010; Sultana et al. 2011; Reddy 2011). This important finding has encouraged researchers to speculate on the causes of sporadic AD. The best known explanation, the mitochondrial cascade hypothesis, postulates that in LOAD, bioenergetic dysfunction as a result of genetic mutations in mitochondrial DNA and environmental factors, together with the impact of age, determine the rate of the pathological mitochondrial changes (Swerdlow and Khan 2004; Swerdlow et al. 2014; Stewart and Chinnery 2015). These detrimental mitochondrial changes can lead to overexpression of oxidative stress markers, tau phosphorylation, inflammasome activation, alterations in APP processing, and the synthesis of Aβ1-42 (Blass et al. 1990; Zhou et al. 2011; Swerdlow et al. 2014). Oxidative stress further increases the production of ROS and reactive nitrogen species including superoxide radical anions, nitric oxide, and peroxynitrile to levels capable of triggering the neurodegeneration while decreasing the production of ATP (Tönnies and Trushina 2017) (Figure 5). In contrast to the hypothesis explaining metabolic impairments in LOAD, Aβ is thought to be the key mediator leading to mitochondrial impairments in EO-FAD as a consequence of the autosomal dominant mutations causing mitochondrial impairments, which further trigger the characteristic series of metabolic events leading to AD. However, the mitochondrial cascade may not be the complete story since previous studies with cells, disease models, and post mortem samples related to AD have shown that Aβ accumulates into the mitochondrial compartment, which may result in mitochondrial dysfunction and further neuronal cell death (Devi et al. 2006;
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Figure 5.	Mitochondrial dysfunction in Alzheimer’s disease. Mitochondrial cascade is suggested to be originated from the intracellular β-amyloid (Aβ) accumulation, inherited and unfavorable genetic factors, mutations in mitochondrial DNA (mtDNA), or oxidative stress induced from the environmental factors. Mitochondrial dysfunction is suggested to manifest pathological events related to apoptosis, production of reactive oxygen species (ROS), Ca2+ channel impairments, opening in mitochondrial permeability transition pore (mPTP), and inhibition of respiratory enzyme complex, which are further increasing oxidative stress, inflammatory signaling, and abnormal proteinopathies including Aβ and phosphorylated tau (p-tau). Eventually, these changes enhance neuronal cell damage. Cyt C, cytochrome C.

(Anandatheerthavarada and Devi 2007). Even though there is no consensus about the main reason in evoking metabolic impairments in AD, i.e. Aβ or mitochondrial deficits, mitochondria are known to be structurally and functionally altered in AD (Burte et al. 2015; Cai and Tammineni 2016; Onyango 2018). Post mortem experiments have further shown that mitochondrial enzymes are underexpressed, mitochondrial mass is decreased, and the amount of mitochondrial DNA (mtDNA) increased in the intracellular fluid (Terni et al. 2010; Maurer et al. 2000; Clarke et al. 2018). Mitochondrial dysfunction has further shown to be accompanied by a release of pro-apoptotic proteins via Ca2+-induced events, which leads to cellular apoptosis and vascular defects, and metabolic disturbances (Moreira et al. 2001 and 2002).

In addition to energy metabolic impairments, brain insulin signaling has been reported to be impaired in AD not only in the human brain but also in the TG disease models (De Felice 2013; De Felice and Ferreira 2014; Talbot et al. 2012; Sancheti et al. 2013). Brain insulin resistance has been shown to be an early marker in AD pathogenesis with a characteristic features related to altered signaling pathways promoting tau hyperphosphorylation and synaptic destruction (Liu et al. 2011; Grillo et al. 2015). Insulin and insulin-like growth factor receptors are highly expressed in the brain, especially in the hippocampus and neocortex, where they participate in neuroprotective processes and mediate mitochondrial function. Unfortunately, AD-related insulin resistance and its underlying mechanisms are still poorly understood but they bear resemblances with the biomechanical disturbances encountered in type 2 diabetes, and are accompanied by mitochondrial dysfunction (Bonfirm et al. 2012; Ott et al. 2011; Pitt et al. 2017; de la Monte and Wands 2005). Altered insulin signaling has also been demonstrated to be derived from inflammatory and stress related signaling activations, which might contribute to the impairments in memory (Yoon et al. 2012; Bonfirm et al. 2012).

Glucose is transported passively or actively into the cell depending on the metabolic demands of the cell. Active uptake is conducted with the help of glucose uptake transporters (GLUTs). In post mortem AD studies, reductions in the levels of GLUT1 and GLUT3 have been observed in different brain regions. These changes have been associated with altered glucose metabolism and correlated with hyperphosphorylation of tau (Simpson et al. 1994; Liu et al. 2008). TG disease models have also revealed reduced GLUT1, GLUT3, and GLUT4 expression in specific brain regions in relation to disease model and gender (Hooijmans et al. 2007; Sancheti et al. 2013). Deficits in the signaling pathway regulating glucose transportation system are not well characterized, however, it is possible that there are complex interactions between the mitochondrial and insulin related pathological cascades.

[bookmark: _Toc2602226]Neuroinflammation

Neuroinflammation is involved in the vicious cycle in the pathogenesis of AD, which triggers a destructive pathway characterized by protein accumulation, activation of resident phagocytes known as glia cells, and release of inflammatory mediators leading to disease progression. Several types of immune cells have been associated with neuroinflammation, such as lymphocytes, monocytes, and macrophages in the hematopoietic system, and glial cells in the central nervous system (CNS). Neuroinflammation can be divided into acute and chronic inflammation. Acute neuroinflammation refers to the activation of the resident immune cells, which eventually leads to destruction of damaged cells in order to limit the injury within the tissue. In contrast, chronic neuroinflammation is a deleterious, self-perpetuating response, which persists long after the initial tissue injury. A chronic neuroinflammatory cycle refers to a sustained response in which peripherally infiltrated cluster of differentiation 4 –positive T cells (Goverman 2009) accompanied by microglial and astroglial activation in the CNS exert amplified destructive effects on neurons. These events cause further release of inflammatory mediators through the mitogen-activated protein kinase activation and nuclear factor κB cascade (Munoz and Ammit 2010), which eventually lead to damage within the nervous tissue (Cai et al. 2014).

Microglia have a central role in the inflammatory processes during aging and neurodegenerative diseases. In normal circumstances, microglia are resident, but extremely motile phagocytic macrophages that comprise nearly 15% of the total cells in the CNS. Their primary mission is to support and maintain neuronal plasticity, to protect and remodel synapses, and to destroy and clear foreign material via an innate immune response utilizing phagocytic and cytotoxic mechanisms (Cai et al. 2014). Microglial phagocytosis and proliferation are stimulated by the cell surface receptor TREM2, which has also been shown to be involved in the uptake of Aβ (Takahashi et al. 2005). Alois Alzheimer was the first to describe the abnormalities within the microglial structure in the AD brain (Hansen et al. 2018). Now, after decades of research, microglia are recognized to have a dual-edged function in the AD pathway, even though their ability to bind soluble and fibrillar Aβ is considered to be one of the key processes triggering inflammatory mechanisms (Perry and Teeling 2013). During the very early stages of the disease, microglia are considered to be neuroprotective rather than proinflammatory as they promote Aβ clearance from the neuronal tissues. However, abnormal microglial activation and disturbances in their morphology and proliferation due to their enhanced sensitivity to inflammatory stimuli eventually prevents the microglia from acting in a neuroprotective manner. The dual role of activated microglia has been explained by the proportion of the proinflammatory (M1) and non-inflammatory (M2) microglial cell phenotypes (Varrone and Nordberg 2015), i.e. an overexpression of the M1 activation state is thought to be related to the worsening of AD. However, recent evidence has revealed a novel protective subtype of microglia, which express genes in a spatial manner to modify the lipid metabolic pathway and microglial inflammatory actions, at first without and then via TREM2 both in mouse and human AD brain (Keren-Shaul et al. 2017).

In AD, Microglial activation is a dynamic procedure, in which overexpression of microglial-related proteins is fundamentally affected by the microglial phenotype stage among other AD factors (Figure 6). Binding to Aβ triggers the microglia cells into an activation mode via cell-surface receptors known as cluster of differentiation 36 and Toll-like receptors 4 and 6, resulting in the release of free radicals and thus of various inflammatory molecules such as interleukins (ILs) 1 and 6, interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), complement components, and chemokines that contribute Aβ production and accumulation (Sochocka et al. 2013; Li et al. 2013; McGeer and McGeer 2010; Veerhuis et al. 1999). The ongoing Aβ formation and sustained exposure of inflammatory mediators further activate proinflammatory factors, which eventually evoke a chronic neuroninflammatory cycle (Bianca et al. 1999; Stewart et al. 2010). Microgliosis further leads to the establishment of the abnormal expression and function of several other components during neuroinflammation. Among different molecules, the expression of 18-kDa TSPO (formerly known as the peripheral benzodiazepine receptor) has been shown to be elevated during inflammatory revival and glial activation. TSPO is an outer mitochondrial membrane protein in glial cells that has been identified both in periphery and CNS at relatively low levels in non-pathological circumstances. The exact pharmacological functions of the peripheral and brain TSPO are yet to be elucidated. However, TSPO has been associated with a variety of different cellular functions such as cell growth and proliferation, calcium flow, apoptosis, and cholesterol transport (Papadopoulos et al. 2006; Veenman et al. 2007; Chen and Guilarte 2008; Gulyás et al. 2009). Therefore, the upregulation of TSPO in the neuroinflammatory pathway leading to AD is considered to affect also mitochondrial respiration
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Figure 6.	Microglial activation in chronic neuroinflammation related to Alzheimer’s disease. Microglial function has suggested to have dual-faced role during inflammatory processes, in which resting microglia cells become activated, and the proinflammatory phenotype (M1) takes over the anti-inflammatory features (M2). Factors influencing this cascade are suggested to be involved in mitochondrial dysfunction, overproduction of reactive oxygen species (ROS), abnormal proteinopathies including β-amyloid (Aβ) and phosphorylated tau (p-tau) dominance, and peripheral inflammation leakage through blood-brain barrier (BBB). As a result, activated microglia and astrocytes trigger proinflammatory component production, which further manifests Aβ and p-tau processing. 

and ROS production since the protein is part of the mitochondrial permeability transition pore. In contrast, it has been suggested that TSPO and inflammatory factors, such as ILs and TNF-α, can interact with each other, enhancing each other’s pathological pathways (Bourdiol et al. 1991; Oh et al. 1992; Choi et al. 2002). In addition to that of TSPO, upregulation of the microglial purinergic receptor P2X7 (P2X7R) expression has also been demonstrated in AD patient-derived cells, in an Aβ-infused rat model, and in a mouse model of AD (McLarnon et al. 2006; Parvathenani et al. 2003). P2X7R is an ATP-gated ion channel that controls Ca2+ and Na+ influx and K+ efflux. In pathological conditions, these receptors play an important role in inflammatory signaling, e.g. overactivation of P2X7Rs results in the formation and release of IL-1β, and this 


further increases Ca2+ levels in the cytoplasm, elevating oxidative stress, and evoking a neuronal injury (Hide et al. 2000).

Neuroinflammation is not only characterized by the presence of activated microglia but also of astrocyte hyperthrophy and atrophy, which might be triggered by the accumulation of Aβ and microglia (Figure 6). In the presence of an abnormal trigger, reactive astrocytes overproduce proinflammatory cytokines and chemokines, and increase the expression of glial fibrillary acidic protein (GFAP) (Heneka et al. 2015). Overexpression of TSPO has also been detected in the reactive astrocytes, however, the contribution to the overexpression of TSPO during inflammation between astrocytes and microglia is yet to be confirmed. Nonetheless in non-pathological conditions, astrocytes maintain neuronal function and Aβ clearance, which they mediate via APOE expression (Koistinaho et al. 2004). Furthermore, astrocytes are part of the energy supply to the neurons via glucose transportation and the regulation of cerebral blood flow (Morgello et al. 1995; Magistretti and Pellerin 1999). However in AD, when they are activated in the neuroinflammatory pathway, astrocytes are known to contribute to neurodegeneration, oxidative stress, and destruction of the signaling between glia cells and neurons (Acosta et al. 2017). Due to the pathogenic activation by increased levels of proinflammatory markers, there has also been reported to be elevated expression levels of monoamine oxidase B (MAO-B) enzyme within the activated astrocytes that is considered to be one of the astrogliotic biomarkers of neuroinflammation (Gulyás et al. 2011).

[bookmark: _Toc2602227]Endocannabinoid deficits

The ECS has attracted strong interest as a promising therapeutic target in AD due to the convincing evidence that it is one of the key mediators in the brain. The ECS acts at many levels for the cerebral function, many of which seem to be altered in AD (Aso and Ferrer 2014; Bedse et al. 2015). In general, the ECS is an endogenous lipid signaling system, which mediates the neurotransmitter release and regulates the functions of ion channels and other neuronal activities (Piomelli 2003). This complex system is composed of G-protein coupling cannabinoid receptors (CBRs), the endogenous ligands targeting the receptors, and the enzymes required for ligand biosynthesis and degradation. The ECS ligands are very lipophilic molecules that have crucial roles in regulating or controlling neurotransmission, e.g. the receptors are involved in neuroprotection, immune system, memory, synaptic plasticity, emotions, and even appetite and pain (Eljaschewitsch et al. 2006; Kano et al. 2009; Marsicano et al. 2002; Martin et al. 2002; Piomelli 2003). The endogenous ligands are postsynaptically produced from membrane phospholipids and released only via an on-demand request. These agents can modulate synaptic plasticity and promote neuronal activation. Upon release, they act in a retrograde manner to activate synaptic CBRs, which reduce either the short- or long-term neurotransmitter release at excitatory and inhibitory synapses. The two most abundant ECS ligands in the brain are 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide (AEA) (Mechoulam et al. 1995; Devane et al. 1992); these compounds are synthetized in various cells types such as macrophages, glial cells, endothelial cells, and adipocytes (Walter et al. 2003; Gonthier et al. 2007). 2-AG is a full agonist, i.e. receptor activating ligand, for the cannabinoid receptors CB1R and CB2R, whereas AEA is a partial agonist for only CB1R (Sugiura et al. 2000). Both 2-AG and AEA are very sensitive to enzymatic breakdown; their actions in neurotransmission signaling are terminated via cellular intake and enzymatic hydrolysis by serine hydrolases. The principal enzymes involved in metabolizing 2-AG and AEA are the presynaptic monoacylglycerol lipase (MAGL) and postsynaptic fatty acid amide hydrolase (FAAH). 2-AG is also metabolized to a lesser extent by FAAH, serine hydrolases α/β hydrolase domain 6 and 12, and cyclo-oxygenase 2 (COX2) (Hwang et al. 2010). The ECS receptors are seven-transmembrane domain proteins that, after a stimulus, trigger an intracellular cascade of protein inhibition or activation and ion channel function, ultimately affecting virtually every neuronal and cellular function. CB1Rs are found throughout the body but are mainly localized in the brain both intracellularly in the endosomes and also in excitatory and inhibitory presynaptic terminals as well as to a lesser extent in postsynaptic terminals and mitochondrial membranes (Mackie 2005; Onaivi et al. 2012; Brailoiu et al. 2011). The brain can be said to be replete with these receptors; they are present within the neurons and glia cells and are principally localized in the cerebral cortex, cerebellum, hippocampus, and basal ganglia with low levels in the thalamus, pons, and medulla, but absent in the white matter (Herkenham et al. 1990). The CB1Rs alter neurotransmitter inhibition in several ways i.e. adenylate cyclase inactivation, inhibition of calcium influx, and regulating mitochondrial activity (Freund et al. 2003; Benard et al. 2012). In contrast, CB2Rs are widely expressed in the immune system and CNS, but seem to be only detectable within the microglia and astrocytes after an inflammatory signal (Onaivi et al. 2006; Stella 2009).

The ECS has been linked both causally and temporal manner to AD, however, a complete understanding of the complex mechanisms within this interaction is still missing. The ECS seems to possess a double-edged role in AD, i.e. exerting neuroprotective actions via CB1R signaling mechanisms in the early disease stage, but as the AD progresses, pathological abnormalities within the ECS lead to decreased CB1Rs levels, and overproduction and overactivation of the CBRs and ECS ligands, which can trigger inflammatory processes via microglial activation (Figure 7). Both in vitro and in vivo animal studies have shown that endogenous cannabinoids, synthetic receptor agonists, and the ECS reuptake inhibitors are able to diminish the Aβ-triggered destruction and neuroinflammatory mechanisms (Chen et al. 2011; Ramirez et al. 2005; Milton 2002; Esposito et al. 2007; Ehrhart et al. 2005). However, the role of CB1Rs in AD is somewhat contradictory according to previous reports from investigations of AD patients and preclinical data: Human post mortem AD studies have demonstrated unchanged levels of CB1Rs and CB1R messenger RNA (mRNA) in the brain (Westlake et al. 1994; Benito et al. 2003; Mulder et al. 2011;  Lee  et  al.  2010),  but  also  reduced  CB1R agonist  autoradiographical  binding  in  the
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Figure 7.	Type 1 cannabinoid receptor (CB1R) involvement in the pathogenesis of Alzheimer’s disease. CB1Rs are suggested to be affected by the pathological events related to neuroinflammation, β-amyloid (Aβ) accumulation, post-transcriptional or proliferation changes, and receptor G-coupling dysfunction that cause abnormalities within the receptor signaling system. In neurons, levels of CB1Rs and endocannabinoids (eCBs) have shown to be decreased, which prevents the CB1R neuroprotective actions. In microglia, due to the proinflammatory response, the function of eCBs via CB1Rs seems to be limited, which triggers the production of proinflammatory markers, such as interleukins (ILs), tumor necrosis factor α (TNF-α), cyclo-oxygenase 2 (COX2), and inducible nitric oxide synthase (iNOS). In mitochondria, due to the overexposure for reactive oxygen species (ROS), CB1R-mediated functions are shown to be limited, which increases the function of caspases, Ca2+ influx, and cytochrome C (Cyt C) production that promotes abnormal apoptosis.

hippocampus, substantia nigra, and globus pallidus (Westlake et al. 1994), as well as decreased CB1R expression levels in the cerebral cortex (Ramirez et al. 2005; Solas et al. 2013). However, increased CB1R activation (Manuel et al. 2014) and density (Farkas et al. 2012) have been reported in the prefrontal cortex and hippocampus in the early disease stage, but this seems to decline in the advanced AD stages. In TG animal models for AD, decreased hippocampal CB1R levels in association with proinflammatory elevations (Kalifa et al. 2011) or unchanged receptor-dependent Gi-protein activation (Kärkkäinen et al. 2012) have been observed in the hippocampus of the APPswe-PSIdE9 mouse model, whereas in the 3xTg-AD mice, CB1R protein levels were markedly decreased (Bedse et al. 2014). In an Aβ1-42-insulted rat model, decreases in the levels of cerebral CB1R and its mRNA have also been demonstrated (Esposito et al. 2007), suggesting that amyloid pathology alters the ECS. In contrast to the conflicting reports with CB1Rs, CB2Rs are clearly upregulated following microglial activation in response to the brain injury, with these changes being detected in post mortem AD brain sections. In more detail, cortical protein and mRNA levels of CB2R have been shown to be upregulated both in post mortem AD human and APPswe-PSIdE9 mouse brain (Benito et al. 2003; Ramirez et al. 2005; Solas et al. 2013; Horti et al. 2010; Nunez et al. 2008). Abnormal changes in the expression levels of ECS ligands and enzymes have also been reported: the FAAH activity appears to be elevated around neuritic Aβ plaques, a process associated with reactive astrocytes and microgliosis of post mortem AD brain samples (Benito et al. 2003; Jung et al. 2012; Nunez et al. 2008). Reduced AEA levels in the cortical post mortem AD human (Jung et al. 2012) and striatal APPswe-PSIdE9 brain (Maroof et al. 2014) have been detected, whereas there are increases in AEA and 2-AG levels in the PS1/AβPP mouse brain (Piro et al. 2012). The 2-AG association with AD has further produced somewhat conflicting results, since its levels seem to be unchanged in the post mortem AD brain (Jung et al. 2012). Hence, there is increasing evidence that the ECS could be a promising interventional target for AD, and pharmacological approaches targeting this system have exerted both neuroprotective and anti-inflammatory effects, and resulted in reduced Aβ neurotoxicity (Milton 2002) and inflammation (Benito et al. 2012; Pihlaja et al. 2015), as well as increased Aβ clearance (Bachmeier et al. 2013) with these effects mediated through several synaptic and signaling pathways (Bedse et al. 2015). In vitro and in vivo proof-of-principle findings on the neuroprotective, anti-inflammatory, and antioxidant effects of the ECS ligand and a non-psychoactive phytocannabinoid, cannabidiol, have shown that it should be considered as a primary candidate for evaluation in an ECS-based treatment strategy to combat AD (Watt and Karl 2017).

[bookmark: _Toc2602228]Alzheimer’s disease – disease models

Artificially manifested disease models can be enlightening in revealing the pathological events underpinning disease progression at the cellular level. Disease models represent a valuable tool in drug discovery research as well as in the evaluation of novel PET radioligands. Many disease models for AD have been developed during the past 25 years in attempts to create the perfect model, which would capture the typical pathological changes in the brain of human AD patients. According to the Alzforum Research Model Database, there are 156 murine and 4 rat models available for AD research (Alzforum). Mice have been the favored species since they reproduce easily, and they have a short lifespan and modifiable genomes, which make them inexpensive and effective research animals (Kitazawa et al. 2012). At present, AD models have been predominantly developed as single- or multitransgene-driven murine models based on mutating the genes postulated to be involved in the amyloid cascade hypothesis in EO-FAD, i.e. APP, PSEN1, and PSEN2. As a result, the majority of the models exhibit overexpression of human APP carrying familial AD mutations to promote the Aβ pathology in the brain together with the other characteristical features, including glial activation and behavioral changes (Epis et al. 2010; Gulyaeva et al. 2017).

Mouse models expressing human mutant form of APP have been generated by employing one or more of the common types EO-FAD mutations into the human transgene; these are implemented into the target model genome under the control of a specific promoter that is required for regulating the spatial and temporal transgene expression (Haruyama et al. 2009). The most common APP mutations from the dozens of recognized ones are the double KM670/671NL “Swedish” (Mullan et al. 1992), V717I “London” (Goate et al. 1991), V717F “Indiana” (Murrell et al. 1991), and E693G “Arctic” (Nilsberth et al. 2001) mutations, which have displayed temporal Aβ pathology together with the increases in the Aβ1-42/Aβ1-40 proportion in the TG murine brain as well as subtle gliosis and impairments in the cognitive abilities of the animals. Dense-core Aβ plaques start to develop in these type of TG models at different times – 6 months (APP23, Sturchler-Pierrat et al. 1997 and PDAPP, Games et al. 1995), 11-13 months (Tg2576, Hsiao et al. 1996), or 13-18 months (APPV717I, Moechars et al. 1999). APP mouse models have also revealed increases in the TSPO and MAO-B PET radioligand uptake in the brain when the uptake results were compared to age-matched wild-type (WT) control mice (Maeda et al. 2011; Rodriguez-Vieitz et al. 2015; James et al. 2015; López-Picón et al. 2018). The other EO-FAD genes, PSEN1 and PSEN2, have also been mutated and used to prepare humanized transgenes, but the mouse models generated exclusively from these transgenes, such as PS1M146L (Duff et al. 1996) have not demonstrated AD-like pathology in terms of plaque formation or hypometabolism (Poisnel et al. 2012). Subsequently, human APP and PSEN mouse models have been crossed in order to produce double TG mouse models, which display an aggressive Aβ aggregation pathology (Epis et al. 2010) as an initial signs of Aβ pathology already at the age of 6 weeks (APP/PS1-21, Radde et al. 2006) and 6 months (APPswe-PS1dE9, Jankowsky et al. 2001; PS2APP, Ozmen et al. 2009; TASTPM, Howlett et al. 2004), together with gliosis, neuronal cell loss, and impairments in cognition. The implementation of PSEN gene might proceed the AD pathology, which APP does not seem to be able to drive alone. The amount of mutated genes lowers the amyloid burden in the murine brain if both APP and PSEN are targeted, as has been observed in 5xFAD mouse models, which express Swedish, Florida, and London mutations in human APP together with two human PSEN1-mutations (Oakley et al. 2006). However, even though amyloid mouse models have offered a robust and relatively reliable reproduction of many AD-related features, none of them is a direct replicate of the human AD. The current models mimic the human inherited EO-FAD form, which represents only a minor proportion of the total number of the cases without focusing on LOAD, which is the disease suffered by the vast majority of patients. Furthermore, models tend to fail to manifest some crucial pathological changes, which are encountered in the human disease i.e. evidence of neurodegeneration such as the formation of NFT, subsequent neuronal cell loss, and gross atrophy. The different levels of Aβ depositions present in some TG murine brain do not seem to be sufficient to induce other pathological processes nor cause the extent of neuronal loss seen in the human AD brain. These failures might be attributed to the differences in the Aβ sequencing and thus, the dissimilar pathologies present in the different strains (Epis et al. 2010). Examining cognitive decline with behavioral murine studies on AD models must also be carefully considered and evaluate the reliability of the possible study outcomes compared to human disease. Hence, even though the production of AD-like features with human EO-FAD mutations has been a gold standard, other approaches have been applied with respect to the pathogenesis of LOAD, proceeding to the establishment of more realistic AD disease models. As a conclusion, mutations in MAPT variant have been utilized either alone to investigate tauopathy or combined with the human TREM2, APP, PSEN1, and/or PSEN2 mutations to study AD pathogenesis in a more sophisticated way. Combination models, such as 3xTg-AD (Oddo et al. 2003) with human APP Swedish, MAPT P301L, and PSEN1 M146V mutations and TauPS2APP with human APP Swedish, MAPT P301L, and PSEN2 N141I, have demonstrated early cerebral Aβ pathology as well as late NFT accumulation together with cognitive impairments at a very early disease stage, which seems to mirror the prognosis of human AD (Grueninger et al. 2010). Introduction of AD rat models have enhanced the research methods and analysis, including ease of arterial blood sampling for biomarker quantification, due to larger body size. The APP+PS1 rat model expresses Swedish and Indiana mutations in human APP and a single L166P mutation in PSEN1; these animals show cerebral amyloid depositions at 19 months of age, whereas the APP21 rat mode, which has similar APP mutations without PSEN1, does not show any amyloidosis, although there are some signs of neurodegeneration (Agca et al. 2016). Much more recent rat models that express aggressive Aβ pathology, homozygous McGril-R-Thy1-APP (Leon et al. 2010) and TgF344-AD (Cohen et al. 2013), have also demonstrated temporal increases in amyloidosis and microgliosis from 6 months of age, with significant neuronal loss and a cognitive decline in much older animals. The TgF344-AD model further displays NFT formation at 15 months of age via Swedish APP and delta exon 9 mutation in PSEN1 without genetic mutations on MAPT.

Animals with genetic manipulation of known LOAD risk genes, such as TREM2 and APOEε4, have also been generated; these show reduced TREM2 expression around Aβ plaques in 4-month-old TREM2 R47H KI x APP/PS1-21 mice (Cheng-Hathaway et al. 2018) and delayed Aβ pathology in E4FAD mice (Youmans et al. 2012). Furthermore, rodent models involving an infusion of Aβ (Van Dam and De Deyn 2011), endotoxin (Hauss-Wegrzyniak et al. 1998), synthetic double-stranded RNA (Krstic et al. 2012), or proinflammatory cytokines (Wenk et al. 2003) have been studied extensively. These animals display novel evidence about the involvement of neuroinflammation in the induction of both Aβ and tau. However, these experiments will require further validation and standardization especially in minimizing procedural artefacts before they can become reliable research models for AD (Van Dam and De Deyn 2011).

[bookmark: _Toc2602229]Alzheimer’s disease  biomarker-based diagnosis

Probable AD is traditionally diagnosed by the clear presence of gradually progressing symptoms, such as memory problems and difficulties in performing daily tasks, for at least of 6 months. The current AD diagnosis relies on the NINCDS-ADRDA criteria (Mckhann et al. 1984), which with respect to probable AD, highlight the importance of exclusion of other reasons for a progressive cognitive decline. Nowadays, clinical observations include tests on cognition and memory, such as Consortium to Establish a Registry for Alzheimer’s Disease (CERARD) and Mini-Mental State Examination (MMSE) in more advanced stages (Käypä Hoito A 2016), which are used to obtain an initial test score at the onset of the symptoms and to follow the rate of decline for several years. However, the certainty of clinical in vivo diagnosis of probable AD might be lower than 70%, and a clear diagnosis still needs to be verified by post mortem confirmation with neuropathological findings of protein aggregation (Wang et al. 2016; McKhann et al. 2011). This emphasizes the importance of finding ways to improve the accuracy of the present clinical diagnostics.

[bookmark: _Toc2602230]Cerebrospinal fluid biomarkers

The symptom-based diagnosis has been refined by the knowledge that there are novel biological markers, which associate with AD decades before the clinical onset (Jack et al. 2010 and 2013). Alterations in the levels of three CSF biomarkers, i.e. decreases in Aβ1-42, and increased total tau (T-tau) and phosphorylated tau (p-tau), were the first measurable markers, which could help to confirm the symptomatic diagnosis of probable AD (Käypä Hoito A 2016; Blennow and Zetterberg 2018). CSF Aβ1-42 changes are more common than CSF tau, and are associated with the fibrillar Aβ deposits in the brain. Similarly, increases in the amounts of CSF p-tau reflect abnormal NFT burden in the AD brain. Even though alterations in CSF Aβ1-42 begin to develop 510 years before cognitive decline, changes in the CSF Aβ1-42 levels are found also in cognitively normal people, which has raised criticisms of this biomarker. Therefore, the CSF Aβ1-42/1-40 ratio has been considered to be more reliable biomarker for AD due to its stronger diagnostic accuracy than CSF Aβ1-42 (Lewczuk et al. 2017). Hence recently, there has been a rising interest in finding more reliable biomarkers for AD, including synaptic biomarkers (Blennow and Zetterberg 2018), including the dendritic spine protein neurogranin (Reddy et al. 2005), the presynaptic terminal synaptosomal-associated protein 25 (Brinkmalm et al. 2014), and the presynaptic plasma protein synaptotagmin-1 (Öhrfelt et al. 2016) that have been studied extensively, since their levels in CSF have been shown to be drastically changed in AD.

[bookmark: _Toc2602231]Magnetic resonance imaging biomarkers

Magnetic resonance imaging (MRI) is based on mapping the location of the protons, i.e. hydrogen atoms, which exist abundantly in water and fat rich regions of the body. By introducing a strong magnetic field with a resonating frequency via an MRI device, the hydrogen atoms begin to spin and emit radiosignals according to the frequency pulses. The MRI device detects the equilibrium phase of the excited atoms, producing digitized MRI images showing contrast differences between different tissues according to the rate of changes in this balance stage (Vlaardingerbroek and Boer 2003).

One of the main findings for probable AD is clear gray matter atrophy in the medial temporal lobes and hippocampus, which can be detected with structural MRI. The extent of gray matter atrophy correlates with both neuronal loss and tau-related neurodegeneration (Jack et al. 2013). Recent evidence has further demonstrated disturbances in the task-associated functional brain networks, detected with task-free functional MRI (fMRI), not only in AD, but also in MCI, asymptomatic APOEe4 carriers, and asymptomatic individuals carrying high amyloid burden (Sperling et al. 2009). Furthermore, findings from different MRI experiments, such as perfusion-weighted MRI, have also yielded additional information about the heterogeneity of AD pathology in terms of changes in cerebral blood flow (Luckhaus et al. 2008), hypoperfusion in multiple brain regions (Alsop et al. 2000), and their association with vascular brain injuries (Riekse et al. 2004).

[bookmark: _Toc2602232]Positron emission tomography biomarkers

PET is a quantitative molecular imaging method, which can be utilized for noninvasive image measurements of biological functions in a living individual. The PET method relies on short-lived radioisotope-labelled molecules, i.e. radioligands or tracers, which are targeted exclusively to the desired compound, protein, or receptor of interest in the body. The most common radioactive isotopes are 11C (half-life T½ = 20.4 min), 15O (T½ = 2.04 min), and 18F (T½ = 109.8 min), and they have to be produced in cyclotrons. In brief, the presence of a high-energy beam in a strong magnetic field causes positively charged particles to collide with a stable atomic nucleus, producing a positron emitting radioactive isotope with an extra proton. The radioactive isotope is then incorporated into a specific molecule i.e. it is called a radiolabeled tracer, which is then administered to the living subject intravenously (IV), intraperitoneally (IP), or in an inhalation form (Phelps 2000). Immediately after the irradiation, the radioactive isotope begins to decay through positron emission or via electron capture. In electron capture, the added proton captures an intraelectron of the atom, becoming converted into a neutron while releasing one electron neutrino. In contrast, in positron emission, the additional proton inside the radioisotope nucleus is converted into a neutron, releasing a positron and an undetectable electron neutrino. After the radioligand administration, the positron travels in matter only for a short distance of under 1 mm while the total kinetic energy of the positron is consumed. At this point, the positron is able to interact with its antiparticle, i.e. an electron, causing an event called annihilation. The collision of positron and electron annihilates the masses producing an emission of an electromagnetic energy in the form of two gamma photons (á 511 keV) moving co-linearly in opposite directions (Figure 8). The emission of the photons is detected by the scintillators in the detector ring of the PET imaging device, and since the energy burst is a two-directional event, the spatial location of  the annihilation can  be determined  (Phelps 2000;  Cherry and Dahlblom
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Figure 8.	Annihilation. Positron emitting radionuclides are introduced into a living subject in a tracer formula, e.g. via intravenous injection. The radionuclide emits a positron (e+) when it travels a few millimeters in a tissue while consuming its total kinetic energy. At this point, the positron is able to interact with its antiparticle, an electron (e-), causing an event called annihilation. This reaction produces two 511 keV photons, which can be detected at nearly 180° inside the detector ring of the PET imaging device. The line of response can be defined via co-incidence of the registered annihilations, and a 3D PET/computed tomography (CT) image of the radioactivity distribution can be obtained via corrections and reconstructions.

2004). The PET imaging device can register up to 1010 coincident events during the PET scan, which are corrected according to the attenuation and scatter post scan. The imaging data is reconstructed into three dimensional tomographic images of voxels, in which the annihilation signal intensity is proportional to the amount of the tracer within the voxel (Cherry and Dahlblom 2004).

PET isotopes can be incorporated into biologically active molecules being administered to a living biological system. This feature can be considered to be one of the greatest advantages of PET compared to other imaging techniques. PET is a highly sensitive and selective modality, i.e. it can be utilized to select a specific target of choice, and measure very low concentrations of radioactivity. These features increase the image quality with a relatively small spatial resolution, but also lessen the radiation dose to which the subject is exposed and reduce the scanning time.

The typical spatial resolution in clinical PET device ranges between 46 mm, whereas in preclinical µPET, the spatial resolution can be even below 1.5 mm (Saha 2016). Spatial resolution is the best known limiting factor for reliable PET imaging. Spatial resolution is clearly limited by detector-dependent factors, but also by the positron range and the annihilation acollinearity (Moses 2011; Saha 2016). The positron range is an isotope-dependent event in which different annihilation positions create a blurring effect of the radioactivity decay, and acollinearity is caused from the standard deviation of two-tailed 0.25% from the theoretical 180° angle of the annihilated  rays (Moses 2011). Furthermore, achieving a proper PET scan faces also other challenges. A successful PET ligand should possess some beneficial characteristics in order to be an applicable imaging tool for clinical and research purposes: Radiolabeling should be straightforward and fast to save the radioactivity of the short-lived isotopes. The radioligand should possess a high radioactivity concentration, high molar activity, and a reliable and high target uptake. The safety of the compound must also be investigated, and its selectivity for the target must be studied carefully. In addition, a high signal-to-noise ratio, and low non-specific binding are characteristics of a good radioligand. In neuroreceptor imaging, the radioligand should have reversible binding to the target and the capability of washing out from the target within a reasonable time. A successful PET tracer should not be metabolized into radioactive compounds that would confound the quantification (Terry 2009a; Pike 2009) nor be too lipophilic to the cost of feasible brain penetration. Lipophilicity is most often expressed as a LogP value, which corresponds to the partition coefficient between n-octanol and water. Radiotracer lipophilicity is usually reported as the corresponding distribution coefficient at physiological pH and termed as D7.4. Thus in general, a successful tracer should possess a LogD7.4 value between 2.0 and 3.5, since this should enable passive brain penetration and prevent excessive blood protein binding. However, some tracers that express higher lipophilicity than the above range have been shown to enter the brain without causing any undesirable side effects (Pike 2009; Donohue et al. 2008a; Terry et al. 2008).

Glucose PET findings

With the advances in molecular imaging, researchers have been able to monitor and quantify molecular and biological processes of interest in the brain of living subjects. Imaging biomarkers can be utilized to identify underlying pathology regardless of the symptomatic stage of the neurodegenerative disease. Molecular imaging biomarkers are also tools for monitoring disease progression and possible intervention efficacy in disease-modifying trials by applying a longitudinal assessment. Therefore, PET has been incorporated into the diagnostic criteria of AD, primarily utilizing the most widely used tracer 18F-FDG. 18F-FDG is a measure of cerebral glucose uptake, i.e. energy consumption metabolism and it is a derivative of one of the earliest radioligands, 14C-labelled 2-deoxyglucose (14C-DG) (Sokoloff et al. 1977), which is a reversible competitive inhibitor of glucose-6-phosphate in a complex glycolytic pathway. The distinctive pattern of altered regional glucose metabolism has been demonstrated in multiple neurodegenerative diseases, such as dementia with Lewy Bodies, frontotemporal dementia, and AD.  For diagnosing AD,  18F-FDG PET has become established  feature as being able to detect 
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Figure 9.	Changes in cerebral 18F-FDG retention in a dementia continuum. A cognitively asymptomatic (normal) individual (left) has greater tracer retention in the brain compared to an individual with mild cognitive impairment (MCI; center). Decreases in the 18F-FDG retention can be detected in the posterior cingulate cortex at early disease stage. In a patient with diagnosed Alzheimer’s disease (AD) dementia (right), the 18F-FDG retention has further declined in the bilateral temporo-parietal and frontal lobes, and basal ganglia compared to individual with MCI. Modified from Rice and Bisdas 2017.

regional metabolic changes reflecting glucose utilization. 18F-FDG PET measurement provides also an indirect detection of regional synaptic and neuronal activity, since glucose is the primary energy substrate used by this system. The most characteristic PET distribution pattern is a regional hypometabolism visualized primarily in the posterior cingulate cortex during the early disease stage, and in the bilateral temporo-parietal and frontal lobes, and basal ganglia in advanced AD (Garibotto et al. 2017) (Figure 9). With respect to the hippocampus, which is one of the earliest sites experiencing AD pathology, the spatial resolution of PET imaging scanner is not sufficient to allow detection of a hypometabolic pattern within this region (Chételat et al. 2008). The pattern in the occipital cortex, which usually demonstrates significant hypometabolism in dementia with Lewy Bodies, is preserved in AD (Garibotto et al. 2017).

The diagnostic accuracy of 18F-FDG PET is well examined; it has been proved to be able to distinguish AD patients from healthy controls with a pooled sensitivity of 86% and a specificity of 84% (Data pooled from the meta-analysis in Frisoni et al. 2013). Changes in the glucose metabolism correlate well with the cognitive decline and symptoms in AD progression. Thus, the regional hypometabolic pattern can predict the prognosis from MCI to AD (Villemagne et al. 2011; Ito et al. 2015; Zhang S et al. 2012) and distinguish AD from other forms of dementia (Foster et al. 2007; Minoshima et al. 2001; Bohnen et al. 2012). Therefore, 18F-FDG PET has met the criteria for being a suitable biomarker for AD. However recently, this technique has been subjected to increasing criticism; it has been claimed that cerebral dysmetabolism is not sufficiently specific to be a biomarker for AD since other neurodegenerative diseases demonstrate similar phenomena, and thus, it represents a poor indicator of the underlying brain pathogenesis. In addition, 18F-FDG uptake in the brain has been speculated to reflect the progressive loss of neuropils (i.e. interwoven complex of dendrites, axons, and glial cells without soma, Braak 1986), rather than the metabolic impairments within the neurons, which may account for some of the conflicting results from imaging studies. However, due to the strong body of evidence supporting both the specificity and the accuracy of 18F-FDG PET imaging in terms of AD diagnosis, and since 18F-FDG provides additional information about the pathological stage during AD onset, NIA-AA recommends that it can keep its status as a neurodegenerative biomarker (Jack et al. 2018). In contrast, preclinical 18F-FDG studies have yielded problematic outcomes, which will be further discussed in detail in Chapter 2.5.1.

Amyloid PET imaging

According to the most recent suggestions, a positive amyloid PET finding should be included into the future diagnostic criteria for AD (Jack et al. 2018). Currently, amyloid PET imaging is mostly only utilized for research purposes, although a positive amyloid burden detected with in vivo imaging is considered as a supporting feature for probable AD (Käypä Hoito A 2016). Amyloid PET can also be used for distinguishing AD from other forms of dementia, such as frontotemporal dementia, where Aβ is not a pathological feature (Rabinovici et al. 2007).

The first amyloid PET tracer, 11C-labelled Pittsburgh Compound B (11C-PiB) demonstrated excellent binding properties for insoluble fibrillary forms of Aβ1-40 and Aβ1-42 in human brain (Klunk 2001 and 2004). The typical 11C-PiB PET finding in AD patients is an increased tracer retention in frontal cortex, and to a lesser extent in the parietal and lateral temporal cortices, along with binding in the striata (Rice and Bisdas 2017). The binding loci have been shown to correlate significantly with the post mortem histopathological findings of high amyloid burden (Thal et al. 2002; Leinonen et al. 2008). At present, three 18F-labelled tracers, 18F-florbetabir, 18F-flutemetamol, and 18F-florbetaben, have been approved for clinical use by the Food and Drug Administration of the United States Department of Health and Human Services and the European Medicines Agency in regard to sufficiently sensitive (88%) and specific (85%) outcome of amyloid PET imaging to allow it to be used as an early diagnostic biomarker for AD (Pooled meta-analysis in accordance of Frisoni et al. 2013). However, even though these tracers have successfully discriminated AD patients from healthy controls, and predicted the MCI progression to AD with great specificity and sensitivity in multiple studies (Clark et al. 2012; Rowe et al. 2008; Vandenberghe et al. 2010), they have also demonstrated off-target binding to cerebellar white matter, limiting a more comprehensive clinical application (Vandenberghe et al. 2010). Several studies have further observed contradictory results on whether amyloid detected by PET appropriately correlates with the temporal course of the cognitive decline (Engler et al. 2006; Strodant et al. 2009; Aizenstein et al. 2008), since the amyloid pathology eventually plateaus while hypometabolism, as detected with 18F-FDG, continues to progress (Förster et al. 2012; Landau et al. 2012). Criticism has also been aimed at whether amyloid tracers would be able to detect AD variants that are characterized predominantly by diffuse plaques, and of the fact that approximately 2535% of elderly individuals older than 75 years carry a high amyloid burden that is not accompanied by brain atrophy or cognitive problems (Mintun et al. 2006; Villemagne et al. 2013 and 2018), while conversely, some diagnosed AD patients may show negative amyloid PET retention in the brain (Cairns et al. 2009). Thus at present, for a possible AD diagnosis, amyloid PET imaging becomes relevant only in unclear cases; it is not an appropriate tool to diagnose those who are asymptomatic and cognitively normal subjects, individuals with normal cognition and tested autosomal dominant mutation in one of the AD-associated genes, nor in lieu of meeting the primary criteria for possible AD. Nevertheless, amyloid targeting PET imaging offers a valuable tool for early AD diagnosis, especially if anti-amyloid therapeutics capable of preventing disease progression become available in the future, as these would hopefully reduce the costs to society of the burgeoning AD epidemic.

Tau PET imaging

Noninvasive tau PET imaging is the newest modality added to the AD research battery; cortical binding of tau tracer has been postulated to be a biomarker for fibrillar tau according to the newest proposal for AD diagnostic criteria (Jack et al. 2018). This seems reasonable since the presence of amyloid deposits and paired helical filament tau deposits are both required to fulfill the neuropathological AD criteria (Montine et al. 2012; Hyman et al. 2012). Unfortunately, the heterogeneous isoformic phenotype and rather low tau concentration in the brain pose challenges in finding a suitable radioligand target region within the tau conformation. The current tau tracers are used exclusively for research purposes, requiring validation for in vivo purposes. The first-generation tau tracer 18F-flortaucipir has been shown to be specific for the 3R/4R isoform of tau deposits, and its binding correlates with the NFT staging by Braak and CSF tau levels (Chien et al. 2013; Marquié 2017b; Brier et al. 2016). Unfortunately, it suffers from high off-target binding in regions devoid of tau and there have been discrepancies noted between in vitro and in vivo human imaging results (Marquié et al. 2015; Lowe et al. 2016), as well as between ante mortem and post mortem findings (Marquié 2017a and 2017b). 18F-THK5351, 18F-THK5317, and 11C-PBB3, have been shown to possess similar limiting features including low binding affinity, low binding site concentration and as a result, an undetectable threshold for the PET scanner, and high non-specific binding to MAO-B (Villemagne et al. 2018). Fortunately, the second-generation tau tracers have improved characteristics, including reduced off-target binding (18F-RO69558948) or no off-target binding (18F-MK6240 and 18F-PI2620) at all (Walji et al. 2016; Gobbi et al. 2017; Stephens 2017). As a summary, tau PET imaging has revealed that NFTs are in a tight association with the other neurodegeneration biomarkers, such as lower 18F-FDG uptake and cortical gray matter atrophy (Xia et al. 2017; Chiotis 2018), and together they can be considered to be an excellent biomarker for disease progression. In contrast to amyloid pathology, from the neuropathological  point-of-view,  tau levels do not seem to be as  crucial  as  the  topographical
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Figure 10.	Temporal course of dynamic biomarkers during the cascade of Alzheimer’s disease. Abnormal detection of β-amyloid (Aβ) as Aβ1-42 cerebrospinal fluid (CSF) biomarker and positron emission tomography (PET) findings are the earliest events to be measured in Alzheimer’s disease diagnosis that precede CSF tau changes, 18F-FDG PET findings on hypometabolism or magnetic resonance imaging (MRI) findings in hippocampal atrophy (Lo et al. 2011). However, post mortem experiments have shown that tau pathology precedes Aβ pathology, and thus, it should be viewed as the initial benchmark in the pathophysiological cascade of Alzheimer’s disease (Braak and Braak 1997; Braak and Del Tredici 2011). Hence, Aβ markers are considered as the initial detectable biomarkers, which are followed by biomarkers of neurodegeneration – tau, gray matter atrophy, and glucose hypometabolism -  and finally by the cognitive decline. Modified from Jack 2013.

distribution of the neurofibrillary tau deposits (As discussed by Royall 2007; Swerdlow 2007).

Aforementioned biomarkers of AD become abnormal at different times during the disease progression and the manifestation of symptoms. Decades of evidence from patient samples have produced a hypothetical model of the dynamic relationship between AD biomarkers during the temporal course of the disease (Jack et al. 2013). The hypothesis is not ideal for all forms of LOAD, but it does indicate the clinical threshold at which an abnormal biomarker can be detected and this may well differ from the actual underlying pathogenesis (Figure 10). Furthermore, the rate of change of the pathological biomarkers varies between individuals and changes in a non-linear manner during the temporal course of the disease. Hence, more studies are needed, especially to confirm the temporal course of CSF tau, 18F-FDG PET and structural MRI, as well as the development of better PET radioligands both in AD patients and disease models.

[bookmark: _Toc2602233]Translational PET for Alzheimer’s disease

AD offers a variety of alternative targets for PET radioligand development, including proteins, enzymes, and brain receptors, some of which also represent promising medical intervention targets to combat the disease. Proteins like α-synuclein and β-secretase, the former being significantly overexpressed in AD and the latter involved in processing APP to Aβ, have been a focus of interest in PET imaging technology as possible in vivo targets (Mathis et al. 2017; Zhang L et al. 2018). Furthermore, according to the AD metal hypothesis, the concentrations of certain metal ions, such as Zn2+, are abnormally increased at the site of accumulated Aβ plaques (Bush 2008). These pathological findings have stimulated the search for ligands targeting metal, such as the ion chelator clioquinol (Vasdev et al. 2012). On the other hand, the cholinergic hypothesis postulates that declines in acetylcholine release and the degeneration of cholinergic neurons result in neuronal cell loss and cognitive decline (Bartus et al. 1982). The current treatment strategy for AD is based on this hypothesis, and three drugs targeting cholinergic and one glutamate neurotransmission are in clinical use to temporally alleviate the symptoms (Käypä Hoito B 2016). Thus, not surprisingly, PET ligands modified from acetylcholinesterase inhibitors, including 11C-donepezil (De Vos et al. 2000), or acetylcholine esters, such as 11C-PMP (Snyder et al. 1998), have been developed for imaging the in vivo abnormalities within this neurotransmitter system; these have enjoyed some significant successes when administered to AD patients (Iyo et al. 1997; Mochida et al. 2017). In addition to the acetylcholine system, the evidence of the involvement of the neuronal metabotropic glutamate receptors, muscarinic acetylcholine receptors, nicotinic acetylcholine receptors, and gamma-aminobutyric acid (GABA) subtype A receptors in AD brain has been utilized in the development of novel PET radioligands (Holland et al. 2014). Next, the applications and current research knowledge of translational PET targeting brain glucose hypometabolism, neuroinflammation, and CB1Rs in relation to AD will be discussed in depth.

[bookmark: _Toc2602234]Targeting brain glucose metabolism

18F-FDG is the only available in vivo radioligand targeting glucose energy metabolism; it was initially derived directly from glucose and 2-DG by labelling the second carbon atom of cyclohexane structure of glucose with fluorine-18 instead of hydroxyl (glucose) or hydrogen (2-DG). This substitution does not change the desired functions of the compound nor prevent its  passage through the blood-brain barrier (Figure 11) (Sokoloff 1979). The biochemical features of 18F-FDG mimic those of glucose i.e. it can access the metabolic pathway utilizing glucose as an energy source for cells called glycolysis: After the initial delivery into the body, both glucose and 18F-FDG are phosphorylated by hexokinase. Glucose is then transformed into glucose-6-phosphate, metabolized into fructose-6-phosphate by phosphohexose isomerases, and eventually pyruvate, ATP, and nicotinamide adenine dinucleotide molecules remain as total end-products that can be stored as energy sources by cells. However, 18F-FDG is only metabolized up to the hexokinase-catalyzed reaction (Figure 12), after which it does not proceed down the glycolytic pathway. Instead, the accumulated phosphorylated 18F-FDG is further metabolized to radioactive metabolites, especially in aggressive sarcomas (Suolinna et al. 1986; Rokka et al. 2017) and trapped intracellularly emitting the radioactive signal, which can be detected by the PET scanner (Fowler and Ido 2003).

[image: ]

Figure 11.	Molecular chair structures for glucose, 2-deoxyglucose (2-DG), and 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG).

Table 1 represents in chronological order previous in vivo 18F-FDG µPET studies with different AD mouse models from the past decade. Reductions of cerebral glucose metabolism in the posterior temporoparietal and later in the frontotemporal lobes in AD are well established features in clinical 18F-FDG imaging, and these can also be correlated with the level of brain glutamatergic synaptic activity, i.e. neuronal loss in AD (Sibson et al. 1998). Replication of the detected regional hypometabolism with 18F-FDG µPET has, unfortunately, proved to be challenging. According to the previous studies, TASTPM (Waldron et al. 2015a and 2017; Deleye et al. 2016) and APP/PS1-21 (Waldron et al. 2015b; Deleye et al. 2017) models have successfully replicated the hypometabolic pattern in the AD brain, as demonstrated in the clinical 18F-FDG outcome. Six-month-old TASTPM mice, which have been fasted for 812 hours in each study, displayed decreased 18F-FDG retention in several brain regions when assessed as the individually normalized percentage of the injected radiotracer dosage per weight of the animal (%ID/g) or as standardized uptake values (SUVs) to blood glucose. In the APP/PS1-21 mice, hypometabolism have been measured in thalamus and striata at 12-month-old TG mice with prolonged fasting of 812 hours (Waldron et al. 2015b), whereas overall genotype-dependent decrease in the 18F-FDG retention was quantified in untreated TG mice in a combinational intervention PET study (Deleye et al. 2017). In contrast, increased 18F-FDG retention has been reported in APP751SL/PS1M146L (Poisnel et al. 2012) and PS2APP (Brendel et al. 2016) mouse models compared to WT littermattes. In these studies, SUVs relative measures to the individual cerebellar radioactivity showed enhanced tracer levels in the forebrain (Brendel et al. 2016), and cerebral cortex and hippocampus (Poisnel et al. 2012), which might have originated from an artefact attributable to the use of cerebellum as a reference region. 

Some models have shown controversial results on the temporal course of the glucose metabolism in the brain: Tg2576 mice have displayed no differences in the 18F-FDG uptake compared to age-matched WT mice (Kuntner et al. 2009; Coleman et al. 2017), whereas at 7 months, it has been reported that there are hypermetabolic brain regions including hippocampus, thalamus, and cortical lobes, which was converted into a WT-like metabolic profile at 19 months of age (Luo et al. 2012).
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Figure 12.	Utilization of glucose and 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) in the intracellular glycolytic pathway. Glucose or 18F-FDG are actively transported inside the cell via glucose transporters (GLUT), and then metabolized into 6-phosphate forms. Glucose-6-phosphate further metabolizes in the glycolytic path that produces adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NADH), and pyruvate, whereas 18F-FDG-6-phosphate radiometabolizes into tissue-specific metabolites, which does not follow the glycolytic pathway.

Similarly, 10- to 11-month old 5×FAD mice have displayed increased (Rojas et al. 2013) or alternatively decreased glucose metabolism both at 5 months (DeBay et al. 2017) and 13 months of age (Macdonald et al. 2014). PLB1triple mice have exhibited regional differences, with either a hyper- or hypometabolic pattern present at 5 months of age, but these changes had disappeared at 17 months of age (Platt et al. 2011). The APPswe-PS1dE9 model has also demonstrated brain hypermetabolism as regional radioactivity measurements relative to the cerebellar radioactivity 2 to 8 months in different regions (Li et al. 2016), but unchanged glucose retention in 9-month-old female mice (Liu et al. 2017). These controversial results in specific models might be attributable to the obvious differences in methodological and quantification procedures (Table 1).

[bookmark: _Toc2602235]Targeting neuroinflammation

Neuroinflammation is a complex progressive event involving various cell types, which form an interactive, net-like signaling pathway in which, surprisingly, microglial TSPO expression has a small role. Nevertheless, current in vivo neuroinflammation imaging relies heavily on targeting TSPO, since its upregulation has been found to be selective and measurable in several brain diseases including in patients with stroke and AD. Thus, TSPO may not only be a potential diagnostic biomarker but it may also be a therapeutic target for neuroinflammatory-based brain diseases.  In healthy brain tissue,  the expression level of  TSPO in  glial  and  endothelial cells is relatively low, whereas in AD, enhanced TSPO expression has been found in several brain regions affected by amyloid depositions and hypometabolism in the post mortem AD brain (Papadopoulos et al. 2006; Cosenza-Nashat et al. 2009; Venneti et al. 2009a). Furthermore, TSPO

		Table 1. Regional glucose retention detected with small animal 18F-FDG μPET in transgenic mouse models of Alzheimer's disease. 

		Reference

		Kuntner et al. 2009

		Platt et al. 2011

		Poisnel et al. 2012

		Luo et al. 2012

		Rojas et al. 2013

		Macdonald et al. 2014

		Waldron et al. 2015a

		Waldron et al. 2015b

		Brendel et al. 2016

		Note: (-) Decreased 18F-FDG uptake in transgenic Alzheimer mice compared to wild-type mice; (+) increased 18F-FDG uptake in transgenic Alzheimer mice compared to wild-type mice; Abbreviations: B, brain; CB, cerebellum; CTX, cortex; dyn, dynamic; F, female; glu, glucose; HIP, hippocampus; HYPO, hypothalamus; IP, intraperitoneal; IV, intravenous; M, male; mo, months; NA, not applicable ; NS, non-specific; QU, quantification unit; SPM, statistical parametric mapping; stat, static; STR, striatum; SUV, standard uptake value; SUVglu, glucose-corrected SUV; THA, thalamus



		

		QU

		%ID/ kg/g + VOI/B

		SPM

		SUVR

CB

		SUV

		VOI/CB

		SUV

		%ID/g × glu,

SPM

		%ID/g × glu,

SPM

		SUVR CB

		



		

		Target brain region

		NA

		CTX,

STR, THA

		HIP, CTX

		HIP, CTX, THA

		CTX

		B, THA,

HYPO, CB

		THA, brain stem

		THA, STR

		Forebrain

		



		

		18F-FDG uptake

		NS

		5 mo (-),

5 mo (+)

		6 + 12 mo (+)

		7 mo (+),

19 mo (-)

		(+)

		13 mo (-)

		(-)

		(-)

		(+)

		



		

		PET

		60-90 min stat

		55-95 min stat

		60 min dyn

		60 min dyn

		50-80 min stat

		30-60 min stat

		45-65 min stat

		45-65 min stat

		30-60 min stat

		



		

		Anesthesia maintenance

		1.5% isoflurane

		Vetalar,

Medet., Domitor

		11.5% isoflurane

		Medet., ketamine

		1.5% isoflurane

		1.5 2% isoflurane

		2%

isoflurane

		2%

isoflurane

		NA

		



		

		Injection

		IV in

anesthesia

		IP

awake

		IV in

anesthesia

		IV in

anesthesia

		IV in

anesthesia

		IV

awake

		IV

awake

		IV

awake

		NA

		



		

		Blood glucose

control

		No

		No

		Yes

		No

		No

		No

		Yes

		Yes

		NA

		



		

		Fasting

		8h

		Over-

night

		No

		6h

		No

		No

		8-12h

		8-12h

		NA

		



		

		Sex

		M, F

		M, F

		F

		F

		NA

		M

		M

		F

		NA

		



		

		Age (mo)

		13-15

		5, 17

		3, 6, 12

		7, 19

		10-11

		2, 5, 13

		13.5

		12

		5, 8, 13, 16

		



		

		Strain

		Tg2576

		PLB1triple

		APP751SL/

PS1M146L



		Tg2576

		5×FAD

		5×FAD

		TASTPM

		APP/PS1-21

		PS2APP

		



		Continuum of Table 1. Regional glucose retention detected with small animal 18F-FDG μPET in transgenic mouse models of Alzheimer's disease. 

		Reference

		Deleye et al. 2016

		Li et al. 2016

		II

		Waldron et al. 2017

		DeBay et al. 2017

		Liu et al. 2017

		Coleman et al. 2017

		Deleye et al. 2017

		I

		Note: (-) Decreased 18F-FDG uptake in transgenic Alzheimer mice compared to wild-type mice; (+) increased 18F-FDG uptake in transgenic Alzheimer mice compared to wild-type mice; Abbreviations: B, brain; CB, cerebellum; CTX, cortex; dyn, dynamic; F, female; FC, frontal cortex; glu, glucose; HIP, hippocampus; HYPO, hypothalamus; IP, intraperitoneal; IV, intravenous; M, male; mo, months; NA, not applicable; NS, non-specific; QU, quantification unit; stat, static; STR, striatum; SUV, standard uptake value; SUVglu, glucose-corrected SUV; THA, thalamus



		

		QU

		%ID/g, SUV, SUVR CB, glu

		SUVR CB

		SUV

		SUVglu

		SUV

		%ID/g

		SUVglu

		SUVglu

		SUV, SUVglu

		



		

		Target brain region

		All

		CTX, HIP, FC, THA, STR

		HIP, CTX, THA, STR, CB

		All

		All, except CB

		NA

		NA

		THA, HIP

		B, FC, HIP, STR, THA, CB

		



		

		FDG uptake

		(-) or NS

		(+)

		6 > 12 mo (-)

		(-)

		(-)

		NS

		NS

		(-)

		(-) or NS

		



		

		PET

		45-65 min stat

		40-63 min stat

		60 min dyn

		45-65 min stat

		30-60 min stat

		40- X min stat

		60-120 min stat

		45-65 min stat

		60 min dyn

		



		

		Anesthesia maintenance

		2%

isoflurane

		2%

isoflurane

		2.5% isoflurane

		2%

isoflurane

		1.52% isoflurane

		NA

isoflurane

		2.5% isoflurane

		2%

isoflurane

		2.5% isoflurane

		



		

		Injection

		IV awake

		IV

awake

		IV in

anesthesia

		IV awake

		IV awake

		IP

awake

		IP

awake

		IV

awake

		IV in anesthesia

		



		

		Blood glucose

control

		Yes

		No

		Yes

		Yes

		No

		Yes

		Yes

		Yes

		Yes

		



		

		Fasting

		10/20h

		+6h

		90 min

		8-12h

		No

		12h

		24h

		10-14h

		3

		



		

		Sex

		NA

		F

		M, F

		M

		M

		F

		M, F

		F

		F

		



		

		Age (mo)

		+14

		2, 3.5, 5, 8

		6-15

		6-15

		5

		9

		+18

		1.5-1.75,  4, 7-8, 12-13

		6, 12, 17

		



		

		Strain

		TASTPM

		APPswe-PS1dE9

		APP/PS1-21

		TASTPM

		5×FAD

		APPswe-PS1dE9

		Tg2576

		APP/PS1-21

		APPswe-PS1dE9, Tg2576

		





PET imaging can be utilized for monitoring trans-synaptic glial cell activation in relation to physiological neuroplasticity and synaptic remodeling (Banati et al. 2001).

PET ligands targeting TSPO

The first PET ligand to target TSPO was an isoquinoline carboxamide 11C-(R)-PK11195, which demonstrated to be selective for TSPO and revealed glial activation through the TSPO elevation pattern in the AD brain (Junck et al. 1989; Cagnin et al. 2001). The development of new radioligands with similar short 11C half-lives, but with more specific binding and better blood-brain barrier permeability, such as the N-benzyl-N-(2-phenoxyaryl)acetamides 11C-DAA1106 and 11C-PBR28 (Maeda et al. 2004; Brown et al. 2007) and an alpidem derivative 11C-DPA-713 (James et al. 2005), have been able to improve the signal intensity and affinity to TSPO in the brain. However, the short half-life of the 11C-labelled radioligands has practical limitations, which prevents tracer production for broader commercial utilization or within research centers without on-site radiochemistry. Thus, a variety of 18F-labelled TSPO PET tracers have been developed, and their applicability in imaging of TSPO in animal models and human brain has been studied extensively. Many candidates, such as N-benzyl-N-(2-phenoxyaryl)acetamides, 18F-PBR06 (Briard et al. 2005), 18F-FEDAA1106 (Zhang et al. 2004), 18F-FEMPA (Varrone et al. 2015), 18F-FEPPA (Wilson et al. 2008), and tricyclic indoles 18F-GE-180 (Wadsworth et al. 2012) and 11C-ER176 (Ikawa et al. 2017), have, by far, proved to be applicable for imaging TSPO in vivo (Extensively reviewed in Cumming et al. 2018 and Edison et al. 2018). Furthermore, one of the alpidem derivatives (Figure 13), 18F-DPA-714, has shown to possess high specific binding and rapid brain uptake in non-human primates and rats with an affinity of Ki as 7.0 (0.4) nM (James et al. 2008). 18F-DPA-714 has also displayed superior features compared to 11C-PK11195 in terms of binding potential in an acute inflammation rat model (Chauveau et al. 2009), as well as good stability and a rapid clearance rate during the first 30 min with a peak uptake at 5 min after the tracer injection in the first in-human evaluation in vivo experiment (Arlicot et al. 2012). In mice, no radioactive metabolites have been detected in the brain 60 min after injection (Vicidomini et al. 2015; Keller et al. 2017), whereas in rat brain, a carboxylic acid radiometabolite constitutes 15% of the total 18F-radioactivity (Peyronneau et al. 2013). Recently, a structural fluoroaryl analogue of 18F-DPA-714, named as 18F-FDPA, has been developed and evaluated in WT rats (Keller et al. 2017) and in the APP/PS1-21 mouse model of AD (Keller et al. 2018), demonstrating fast washout and superior sensitivity for detecting activated glia cells in the AD mouse brain.

TSPO PET findings in AD patients

The feasibility of the gold standard TSPO tracer, 11C-(R)-PK11195, was examined for the first time in AD patients by Cagnin et al. (Cagnin et al. 2001). The tracer was able to to differentiate AD and MCI patients from healthy controls, a finding further confirmed by other investigators
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Figure 13.	Molecular structure of 18F-N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethyl-pyrazolo[1,5-α]pyrimidine-3-yl)-acetamide (18F-DPA-714).

(Edison et al. 2008; Fan et al. 2015; Parbo et al. 2017; Passamonti et al. 2018). In the recent imaging study, increased binding of 11C-PK11195 was demonstrated to overlap with the cortical brain atrophy, and thus it has been suggested to be associated more tightly with neuronal loss (Kreisl et al. 2017). In contrast, other studies have shown no differences in the 11C-PK11195 binding potentials between AD patients and healthy volunteers, nor did it correlate with cognitive scores (Schuitemaker et al. 2013; Parbo et al. 2018). In terms of the potential utilization of 11C-DAA1106 and 18F-FEDAA1106 in human imaging, the former has revealed significantly greater uptake in AD and MCI patients as compared to healthy controls (Yasuno et al. 2008a), whereas the latter compound failed to distinguish AD patients from the controls perhaps due to the slow washout from the brain (Varrone et al. 2013). Nonetheless, increased 11C-PBR28 binding in the cerebral cortical regions has been successfully measured in the brain of genotype-corrected AD patients as compared to MCI and cognitively healthy controls (Kreisl et al. 2013; Lyoo et al. 2015). Genotype examinations in patients have been conducted prior to TSPO PET scans, because there is a genetic polymorphism in the TSPO gene rs6971, which affects the radioligand binding properties and thus, the data interpretation. Sensitivity to TSPO polymorphism is a characteristic of most of the second generation TSPO tracers except for 11C-PK11195 and 18F-GE-180, which show no or little sensitivity towards rs6971 (Largeau et al. 2017). In a consequence for the genetic stratification method, novel TSPO tracers, 18F-FEMPA and 18F-FEPPA, have displayed elevations in the tracer binding in AD patients as compared to healthy controls (Varrone et al. 2015; Suridjan et al. 2015).

One of the quantification method for analyzing human TSPO PET data has been the kinetic two-tissue compartment model with arterial input function; this has yielded promising results for 18F-GE-180 (Fan et al. 2016; Feeney et al. 2016) and 18F-DPA-714. For 18F-GE-180, the imaging applicability in the human brain has been evaluated in non-diseased conditions, yielding a poor distribution volume (VT) and restricted penetration into the brain compared to 11C-PBR28 (Zanotti-Fregonara et al. 2018). On the contrary, significantly increased 18F-DPA-714 uptake has been reported in high and mixed affinity binders in AD patients compared to controls after rs6971 genotyping (Hamelin et al. 2016), which was not shown in an older study, which might have been attributable to the lack of genotyping of the subjects (Golla et al. 2015).

TSPO PET findings in AD animal models

The most widely used AD mouse models express an upregulated form of APP and thus of Aβ pathology, representing a perfect disease model for amyloidosis in the prognosis of AD. However, neuroinflammation is not genetically implemented into these models, but previous preclinical imaging and histology data have revealed that TSPO-related microgliosis is an ongoing event in the TG mouse brain, preceding the accumulation of Aβ (López-Picón et al. 2018). Table 2 shows in chronological order the in vivo µPET studies targeting neuroinflammation using TSPO radioligands in different AD mouse models. Studies using the first generation TSPO ligands, such as 11C-AC-5216, have revealed increased TSPO levels in the hippocampal and cortical regions in APP23 and APPE693d mice older than 23 months of age (Maeda et al. 2011), whereas 11C-PK11195 studies have shown that 13-month-old APPswe-PS1dE9 mice exhibited undetectable TSPO alterations in the brain (Rapic et al. 2011), but at 16 to 19 months of age, the TSPO levels were remarkably increased (Venneti et al. 2009a). Others groups have also employed the same mouse model, and similar increases in the regional TSPO tracer uptake have been detected using longitudinal 18F-DPA-714 (Sérrière et al. 2015; Chaney et al. 2018) and cross-sectional 18F-GE-180 imaging (Liu et al. 2015). In the longitudinal 18F-DPA-714 studies, the brain regions affected have been cerebral cortex in the 12- to 19-month-old APPswe-PS1dE9 mice (Sérrière et al 2015), whereas in over 18-month-old mice, significant differences have been detected in hippocampus, cortical region, and thalamus of TG mice (Chaney et al. 2018). In both studies, the results were obtained by normalizing the regional radioactivity levels with a pseudo-reference region  cerebellum. Liu et al. utilized 18F-GE-180 for the quantification using a unit of %ID/ml, which has not been used in newer studies with PS2APP (Brendel et al. 2016 and 2017b) and APP23 (López-Picón et al. 2018) models with the same tracer. In these studies, the white matter region including cerebellum and cerebellum alone were used as pseudo-reference regions, respectively, and increased TSPO levels were detected at 5 months in the forebrain (Brendel et al. 2016 and 2017b) and in the cortical, hippocampal, and thalamic regions between 17 to 26 months of age (López-Picón et al. 2018). Furthermore, young 6-month-old 5×FAD mice have exhibited significantly higher 11C-PBR28 uptake in their brains as compared to WT mice (Mirzaei et al. 2016), whereas  APPL/S  have displayed increases in the  18F-PBR06 uptake in cerebral cortex and hippocampus only at the age of 15-16 months (James et al. 2015).

		Table 2. Regional TSPO tracer retention detected with small animal μPET in transgenic mouse models of Alzheimer's disease.		

		Reference

		Venneti et al. 2009

		Maeda et al. 2011

		Rapic et al. 2013

		Sérrière et al. 2015

		Liu et al. 2015

		James et al. 2015

		Mirzaei et al. 2016

		Note: (+) increased TSPO tracer uptake in transgenic Alzheimer mice compared to wild-type mice; +, positive staining result; Abbreviations: AUC, area under the curve; B, brain; CB, cerebellum; CTX, cortex; dyn, dynamic; F, female; HIP, hippocampus; IHC, immunohistochemistry; IV, intravenous; M, male; mo, months; NA, not applicable; NS, non-specific; QU, quantification unit; STR, striatum; SUV, standard uptake value; THA, thalamus; VOI, volume of interest						



		

		IHC

		Iba1+, GFAP+

		TSPO+

		CD11+

		CD38+

at 19 mo

		TSPO+, CD38+, CD40+

at 26 mo

		CD38+, TSPO+

from 9 mo

		Iba1+

		



		

		QU

		%ID/kg x g

		VOI/STR

		%ID/cc, SUV

		SUVR CB

		%ID/ml,

B/THA

		VOI/muscle, VOI/B, %ID/g

		VOI/heart, SUV, AUC

		



		

		Target brain region

		B at 16-19 mo

		HIP, CTX

		NS

		CTX 12 + 19 mo, HIP 19 mo

		B,

HIP

		CTX, HIP

		B

		



		

		Tracer uptake

		(+)

		(+) /

NS

		NS

		(+)

		(+)

		(+)

		(+)

		



		

		PET

		60 min dyn

		60/90/60 min dyn

		30 min dyn

		50 min dyn

		120 min dyn

		60 min dyn

		60 min dyn

		



		

		Anesthesia

		Isoflurane

		Isoflurane

		Isoflurane

		Isoflurane

		Isoflurane

		Isoflurane

		Isoflurane

		



		

		Injection

		IV in

anesthesia

		IV in

anesthesia

		IV in

anesthesia

		IV in

anesthesia

		IV in

anesthesia

		IV in

anesthesia

		IV in

anesthesia

		



		

		Tracer

		11C-PK11195

		11C-AC-5216,

18F-FEDAA11106,

11C-AC-5216



		11C-PK11195

		18F-DPA-714

		18F-GE-180

		18F-PBR06

		11C-PBR28

		



		

		Sex

		NA

		NA

		F

		M

		M

		NA

		F

		



		

		Age (mo)

		13-19

		23-29,

25

		13

		6-19

		4, 26

		5-6, 9-10,

15-16

		6

		



		

		Strain

		APPswe/

PS1dE9

		APP23,

APPE693d

		APP/PS1



		APPswe/

PS1dE9

		APPswe/

PS1dE9

		APPL/S

		5×FAD

		



		Continuum of Table 2. Regional TSPO tracer retention detected with small animal μPET in transgenic mouse models of Alzheimer's disease. 

		Reference

		II

		Brendel et al. 2016

		Brendel et al. 2017

		Deleye et al.  2017

		Chaney et al. 2018

		López-Picón et al. 2018

		Keller et al. 2018

		Note: (+) increased TSPO tracer uptake in transgenic Alzheimer mice compared to wild-type mice; +, positive staining result; Abbreviations: B, brain; CB, cerebellum; CTX, cortex; dyn, dynamic; F, female; FC, frontal cortex; HIP, hippocampus; IHC, immunohistochemistry; IV, intravenous; M, male; mo, months; QU, quantification unit; stat, static; STR, striatum; SUV, standard uptake value; THA, thalamus; VOI, volume of interest; WM, white matter.



		

		IHC

		Iba1+

		Iba1+, TSPO+

		Iba1+, TSPO+

		Iba1+, GFAP+

		GFAP+, TSPO+, CD11b+

		Iba1+

at 26 mo

		Iba1+

		



		

		QU

		VOI/CB

		Forebrain/CB, Forebrain/WM

		Forebrain/CB, Forebrain/WM

		SUV

		VOI/CB

		VOI/CB, SUV

		SUV

		



		

		Target brain region

		CTX, HIP,

THA, STR

		Forebrain

at 5 mo

		Forebrain at 5 mo; B with SPM

		CTX, THA, HIP

		HIP, subCTX at 18 mo

		FC, PTC at 17 mo, HIP at 20 mo, THA at 26 mo

		FC, B, HIP

at 12 mo

		



		

		Tracer uptake

		(+)

		(+)

		(+)

		(+)

		(+)

		(+)

		(+)

		



		

		PET

		60 min dyn

		90 min dyn

		90 min dyn

		40-60 min stat

		60 min dyn

		60 min dyn

		60 min dyn

		



		

		Anesthesia

		Isoflurane

		Isoflurane

		Isoflurane

		Isoflurane

		Isoflurane

		Isoflurane

		Isoflurane

		



		

		Injection

		IV in

anesthesia

		IV in

anesthesia

		IV in

anesthesia

		IV awake

		IV in

anesthesia

		IV in

anesthesia

		IV in

anesthesia

		



		

		Tracer

		18F-DPA-714

		18F-GE-180

		18F-GE-180

		18F-PBR111

		18F-DPA-714

		18F-GE-180

		18F-FDPA

		



		

		Sex

		M, F

		NA

		F

		F

		M

		M, F

		M, F

		



		

		Age (mo)

		6-15

		5, 8, 13, 16

		5, 8, 13, 16

		1.5-1.75, 4, 7-8, 12-13

		6, 12, 18

		17-23

		4.5-19

		



		

		Strain

		APP/PS1-21

		PS2APP

		PS2APP

		APP/PS1-21

		APPswe/

PS1dE9

		APP23

		APP/PS1-21

		





Despite the successful imaging results gained from the aforementioned experiments, a criticism has been raised against TSPO - it should not be considered as a marker for overall neuroinflammation. TSPO tracers have also demonstrated several limitations, including high non-specific binding, low brain uptake, susceptibility to human polymorphism, and inabilities to discriminate between the activation stages of the glial cells (Janssen et al. 2018), which is accompanied with the limitations of the target itself. Furthermore, TSPO is differently expressed between species; it shows 9-fold increases in rodents, but not in humans (Owen et al. 2017). Therefore, other radioligands targeting different aspects of neuroinflammation have been explored due to the complex nature of the inflammatory pathway. Targets with great interest include MAO-B, COX2 (Shukuri et al. 2016), adenosine receptors, CB2R, matrix metalloproteinases 2 and 9, P2X7R, P2Y7R, and B-lymphocyte antigens 19 and 20 (Shukuri et al. 2016; Moldovan et al. 2017; Beaino et al. 2016; Ory et al. 2016; Han et al. 2017; Janssen et al. 2018). The MAO-B ligand 11C-deuterium-L-deprenyl, has already been extensively used for imaging AD patients, showing significantly increased tracer retention in the patients as compared to healthy controls (Santillo et al. 2011; Carter et al. 2012), a result confirmed in the Tg2576 mouse model, which demonstrated an increased tracer uptake in the cortical region and hippocampus of young animals (Rodriguez-Vieitz e al. 2015).

[bookmark: _Toc2602236]Targeting cannabinoid receptor 1

Radioligand development procedures have to follow many guidelines before PET tracer can be successfully used for in vivo imaging. Desirable features of the ideal ligand include low lipophilicity, and high affinity and molar activity among many other characteristics. The developmental path in creating reliable PET ligands targeting cerebral CB1Rs has attracted increasing interest because of the involvement of this receptor in neuropsychiatric and neurodegenerative diseases, but obstacles due to the undesirable molecular features of these compounds. CB1Rs are one of the most abundant receptors in the brain, which means that the affinity of the radioligand has to be subtle for the receptors compared to low-expressing receptors in the brain. This requires careful data quantification to avoid non-specific and misinterpretations of the tracer binding. In addition, CB1R radioligands tend to have a transmembrane domain binding site, which makes them more lipophilic than the other types of ligands, which in turn, might lead to non-specific lipid or protein binding in the brain (Terry 2009a). Not surprisingly, all of the first generation CB1R radioligands, which were radiolabeled tetrahydrocannabinol ((-)-5’-18F-fluoro-9-THC, Charalambous et al. 1991) or rimonabant analogues (Gatley et al. 1998; Berding et al. 2004), suffered from extremely high lipophilicity, low affinity, high non-specific binding, and low brain uptake.  However, a rimonabant analogue 18F-SR-14485  has  displayed good molar activity and excellent brain penetration in mice, but no further evaluation has been  conducted (Mathews et al. 1999 and 2000). Finally, after 15 years since the description of the first  CB1R radioligand, a  group of second generation radioligands was shown  to  possess more
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Figure 14.	Molecular structures of type 1 cannabinoid receptor inverse agonist 18F-FMPEP-d2, a full agonist tetrahydrocannabinol, i.e. Cannabis Saliva, and the major compound of cannabis, cannabidiol.

feasible features for imaging purposes. A cyano-des-methyl derivative of a CB1R antagonist (NIDA-41020) 11C-OMAR was developed in 2006 (Horti et al. 2006) demonstrating lower lipophilicity, greater binding affinity for CB1Rs, and rapid kinetics as compared to the older compounds, but only moderate brain uptake in the baboon brain. In the human studies, healthy men exhibited greater cerebral 11C-OMAR SUVs, but lower mean VT values than females, revealing gender-related differences in CB1R PET binding (Normandin et al. 2015). Similar findings were obtained with another second generation CB1R PET ligand, 18F-MK9470, when healthy aging was examined in humans (Van Laere et al. 2008). In this study, males exhibited increased tracer uptake in the brain as compared to females, whereas age-dependent increases in 18F-MK9470 binding were detected only in females. However, a comprehensively low cerebellar uptake was evident, which is in contrast to the histological distribution pattern since this area has high CB1R density (Van Laere et al. 2008). A third reversible CB1R tracer, 11C-MePPEP, has though demonstrated superior monkey brain uptake compared to the previous two new generation CB1R radioligands with a moderate lipophilicity (Yasuno et al. 2008b), and a test-retest reproducibility of 1516%, depending on the quantification method (Terry et al. 2009b; Riaño Barros et al. 2014). Unfortunately, 11C-MePPEP has some limitations, including a low free fraction in plasma and unknown radiometabolite status in the brain (Terry 2009a; Terry et al. 2010). Hence, in an attempt to develop an analogue from 11C-MePPEP with an extended half-life, a CB1R inverse agonist 18F-FMPEP-d2, was produced and evaluated in the monkey and human brain (Donohue 2008a and 2008b). 18F-FMPEP-d2 (Figure 14) has similar lipophilic properties, but better brain uptake and higher affinity than 11C-MePPEP or other 18F-labelled candidates. In addition, 18F-FMPEP-d2 showed approximately 90% specific binding to CB1Rs and stable VT already within 90 min after the injection, properties not seen with the previous tracers. With this ligand, the plasma free fraction was found to be similarly low as with 11C-MePPEP, however, the peak uptake was shown to reach SUV near 5 (Terry et al. 2010), which might be due to the reversible binding to plasma proteins.

At present, the role of CB1R in the pathogenesis in AD is still controversial. Previous post mortem studies from AD brain tissue sampling have yielded heterogeneous results, which has been also the case in preclinical studies with AD mouse models. The conflicting results might originate from the discrepancies between the study protocols and the stage of the disease under investigation. Hence, monitoring CB1R in a living brain could provide a noninvasive way to examine the possible changes within the receptor system and to monitor the effects of future disease modulatory interventions targeting CB1Rs. However to date, the distribution of CB1Rs in the AD human brain has been examined only once using 18F-MK9470 (Ahmad et al. 2014). In that cross-sectional study, 11 AD patients and 7 healthy volunteers aged between 5781 years were imaged with 18F-MK9470 and 11C-PiB to compare the CB1R distribution with the amyloid burden. Unfortunately, no differences were detected between AD patients and healthy controls with regard to in vivo CB1R availability. These results might suffer from the non-discrimination of the genders in the different cohorts, or from the broad age spectrum of the study subjects between 57 and 81 years that could have diminished to discriminate different AD disease stages. In terms of preclinical animal studies, before III, no AD model has been examined with CB1R PET. In the future, however, since there are significant differences in the regional CB1R distribution and signaling between human and mouse brain, extrapolating imaging results from preclinical experiments to clinical outcome will need to be done carefully (Herkenham et al. 1990).

As a summary of this review of the literature, PET offers a broad spectrum of applications that may help to improve the diagnostic accuracy of AD. Accurate and early detection of AD are crucial if one wishes to make an early diagnosis in differentiating healthy subjects from subjects suffering from neurodegenerative diseases. This could eventually lead to progress in intervention studies targeting AD progression. Hence, the present thesis work was initially generated based on the lack of 18F-FDG PET imaging data on cerebral glucose metabolism in APPswe-PS1dE9 and Tg2576 mouse models, which nowadays are widely used and commercially available disease models for AD. Secondly, this thesis work aimed to evaluate for the first time changes in cerebral glucose metabolism in a novel AD mouse model, APP/PS1-21, because past imaging findings with different disease models had shown to be sparse and incomparable. In addition to validating disease models, this study also included experiments on evaluating modern PET radiotracers targeted for neuroinflammation and CB1R for future preclinical imaging studies with mice.
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[bookmark: _Toc2602237]Aims of the study

The overall aim of this thesis was to evaluate the translational applicability of disease models tailored for AD-related amyloidosis and PET tracers targeting cerebral glucose utilization, neuroinflammation, and CB1R in preclinical in vivo imaging studies.

The following specific objectives were determined for this thesis:

I	Evaluate differences in cerebral glucose metabolism in APPswe-PS1dE9 and Tg2576 mouse models of AD using an equivalent and cross-sectional in vivo 18F-FGD PET study design and experimental protocols. The secondary objective was to examine the correlation between cerebral glucose metabolism and the stage of amyloidosis and microgliosis using ex vivo methods.

II	Follow and quantify the relationship between temporal changes in cerebral glucose metabolism and glial activation in the APP/PS1-21 mouse model of AD using longitudinal in vivo 18F-FDG and 18F-DPA-714 PET imaging and ex vivo digital autoradiography.
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III	Evaluate the applicability of 18F-FMPEP-d2 for preclinical in vivo imaging studies (i.e. interventional studies and basic research) using pretreatment experiments and radiometabolite analysis in WT mice. Secondly, to follow and quantify temporal changes in cerebral CB1R availability in the APP/PS1-21 mouse model of AD using longitudinal in vivo 18F-FMPEP-d2 PET imaging and ex vivo experiments, including digital autoradiography and Western blot.

[bookmark: _Toc2602238]Materials and methods

[bookmark: _Toc2602239]Experimental study flow (I-III)

In Study I, brain glucose utilization was examined in two TG mouse models of AD using cross-sectional 18F-FDG-PET imaging. Different animal models as well as TG and WT animals at different ages, which were exhibiting an early (6 months) and late (12 months or 17 months) stage of amyloidosis, were used as explanatory variables in the experimental units. The 18F-FDG uptake was compared to underlying Aβ and microglial pathology determined with immunohistological quantification.

Study II was a continuation of Study I. Brain glucose utilization in accordance with the glial activation was examined with longitudinal PET imaging with 18F-FDG and 18F-DPA-714 in a novel mouse model of AD. Individual TG and WT mice were repeatedly imaged with both tracers at four different time points of 6, 9, 12, and 15 months. Animal groups allocated according to different ages were treated as experimental units in the analyses. The temporal change and in-between correlation of the tracer uptake in the brain regions were used as primary outcomes to measure the relationship of pathological events.

Study III was a continuation of Study II with regard to the animal model evaluation. The pharmacological profile and metabolism of 18F-FMPEP-d2 were evaluated in WT mice. Afterwards, temporal changes in the availability of CB1Rs during amyloidosis in a mouse model of AD were examined using longitudinal 18F-FMPEP-d2 PET imaging. TG and WT mice were repeatedly examined at four different time points of 6, 9, 12, and 15 months, and the experimental units consist of animal groups at different ages. Changes in the 18F-FMPEP-d2 uptake were compared to the underlying CB1R expression determined with Western blot and immunohistological examination.

[bookmark: _Toc2602240]Experimental animals (I-III)

All animal experiments of this thesis were approved by the State Provincial Office of Southern Finland (permission numbers ESAVI/3899/04.10.07/2013 and ESAVI/4499/04.10.07/2015). Animal wellbeing complied with the ethical guidelines of the International Council of Laboratory Animal Science (ICLAS). In addition, Studies II and III were performed in compliance with the Animal Research: Reporting of In Vivo Experiments guidelines with the principles of the 3Rs (Replacement, Reduction and Refinement) by using longitudinal PET imaging to examine the same animals repeatedly.

All animals were group-housed according to their sex in individual ventilated cages in the Central Animal Laboratory at University of Turku. Animals were living at a consistent temperature of 21 (1.2) °C and humidity of 55 (5) %  with  a  diurnal rhythm of 12-hour light phase between  6  am

Table 3. Experimental animals with the descriptive statistics as arithmetic means (standard deviation) used for Studies I-III.

		Study

		I

		II

		III



		Strain

		APPswe-PS1dE9

		WT

		Tg2576

		WT

		APP/PS1-21

		WT

		C57

		APP/PS1-21

		WT



		n total

		12

		15

		15

		9

		61

		38

		19

		44

		40



		n dropouts

		0

		1

		1

		0

		1

		1

		0

		1

		2



		n failures

		0

		0

		0

		0

		10

		11

		0

		2

		0



		Sex

		F

		F

		F

		F

		23 F,

38 M

		21 F,

17 M

		M

		13 F,

31 M

		13 F,

27 M



		Age (months)

		6, 12

		6, 12

		6, 17

		6, 17

		6, 9,

12, 15

		6, 9,

12, 15

		2-4

		6, 9,

12, 15

		6, 9,

12, 15



		Weight (g)

		26.1

(4.5)

		27.6

(4.0)

		25.0

 (2.3)

		26.2 (6.0)

		31.9

(7.8)

		39.8

(9.2)

		31.9

(4.0)

		34.6

(7.2)

		44.4

(8.4)



		PET tracer

		18F-FDG

		18F-FDG,

18F-DPA-714

		18F-FMPEP-d2



		Injected dose (MBq)

		6.6

(1.4)

		6.7

(1.0)

		6.4

(1.2)

		5.9 (0.9)

		7.9

(0.6)*,             5.1

(1.4)**

		8.0 (0.3)*,             5.8 (1.1)**

		1.6

(1.0)

		2.3

(0.9)

		2.3

(0.8)



		Experiment



		Cross PET

		x

		x

		x

		x

		

		

		x

		

		



		Long PET

		

		

		

		

		x

		x

		

		x

		x



		ARG

		x

		x

		x

		x

		x

		x

		x

		x

		x



		Pretreatment

		

		

		

		

		

		

		x

		

		



		RadioTLC

		

		

		

		

		

		

		x

		

		



		Western blot

		

		

		

		

		

		

		

		x

		x



		Thio S

		

		

		

		

		x

		x

		

		x

		x



		IHC

		x

		x

		x

		x

		x

		x

		

		x

		x





Note: *18F-FDG; **18F-DPA-714

Abbreviations: ARG, autoradiography; C57, C57Bl/6N mouse line; Cross PET, cross-sectional PET imaging; F, female; IHC, immunohistochemistry; Long PET, longitudinal PET imaging; M, male; RadioTLC, thin-layer chromatography on radioactive compounds; Thio S, Thioflavine S; WT, wild-type

and 6 pm. The mice had free access to tap water and certified standard laboratory soy-free chow (RM3 soya-free, 801710, Special Diets Service, Essex, UK). Animals were weighed at the beginning of each experimental session, and in studies I and II, their body temperature and fasting blood glucose were measured before and after every 18F-FDG injection with a microprobe rectal thermometer (Physitemp Instruments, Inc., USA) and Accu-Chek Aviva Nano (Roche Diagnostics, USA), respectively. The number of experimental animals used in each study and in experiments with additional details are presented in Table 3.

[bookmark: _Toc2602241]Wild-type animals

C57BL/6N mice were bred in the Central Animal Facility of University of Turku and used for breeding with APP/PS1-21 mice (II and III), and were also used for the radiometabolite analysis and pretreatment experiments (III).

Table 4. The genetic and phenotype features of the transgenic mouse models used in Studies IIII. Data are collected from the Alzforum Research Model Database on November 2018.

		Strain

		APPswe-PS1dE9

		Tg2576

		APP/PS1-21



		Transgenes

		APP, PSEN1

		APP

		APP, PSEN1



		Mutations

		hu/moAPP695swe, 

		hu/moAPP695swe, 

		huAPPswe,



		 

		PSEN1dE9

		 

		PSEN1L116P



		Promoter

		Murine prion

		Hamster PrP

		Murine Thy1



		Known pathological features

		 

		 

		 



		Amyloid deposits

		4 months

		11-13 months

		6 weeks



		Microgliosis

		4 months

		17 months

		6 weeks



		Astrocytosis

		3 months

		NA

		6 weeks



		Neurofibrillary tangles

		No

		No

		No



		Phosphorylated tau

		Yes

		Yes

		Yes



		Neuronal loss

		No

		No

		17 months



		Behavioral changes

		12 months

		6, 12 months

		7-8, 12 months





[bookmark: _Toc2602242]Transgenic mouse models

APPswe-PS1dE9

APPswe-PS1dE9 (B6.Cg(APPswe, PSEN1d9E)85Dbo/Mmjax; The Jackson Lab., JAX MMRRC) and the corresponding WT mice were obtained from Jackson Laboratories Inc., for Study I. The investigated time points for this model were 6 and 12 months. The APPswe-PS1dE9 mouse model expresses mouse APP with humanized Aβ region and the Swedish mutation at amino acids 595/596, and human PSEN1 with exon 9 deletion (Jankowsky et al. 2001). The mice exhibit Aβ1-42-type peptide aggregations over Aβ1-40 in the brain, which primarily accumulate into abundant plaques at 6 months of age in the cortical region and hippocampus, and eventually to other brain regions (Garcia-Alloza et al. 2006; Brendel et al. 2015; Sérrière et al. 2015). This model also expresses other characteristical AD features such as gliosis, but does not display any NFT changes (Table 4; Jackson et al. 2016; Alzforum).

Tg2576

Tg2576 (B6;SJL-Tg(APPswe)2476Kha; Taconic Inc.) and corresponding WT mice were obtained from Taconic Farms Inc. for Study I. The examined time points of this mouse model were 6 and 17 months. Tg2576 mice express the 695-amino acid isoform of human APP carrying the Swedish mutation KM670/671NL (Hsiao et al. 1996). This model exhibits a 5-fold increase in Aβ1-40 and a 14-fold increase in Aβ1-42 peptides in the brain, forming weak plaques by the age of 11-13 months in the cortical and limbic regions. In addition, Tg2576 mice show increased signs of microgliosis and astrocytosis around the Aβ plaques at a very old age (Table 4).

APP/PS1-21

APP/PS1-21 (B6.Cg-Tg(Thy1-APPswe, Thy1-PSEN1*L166P)21Jckr) mice were originally purchased from Koesler, Germany. The animals were further bred in the Central Animal Laboratory of University of Turku with C57BL/6N mice to enlarge the colony. Breeding produced heterozygote TG and the corresponding WT mice. The genotype of each newborn animal was tested and confirmed by Clinical Research Service Turku for Studies II and III. This model was examined at different time points of 1, 2, 3, 6, 9, 12, and 15 months. The APP/PS1-21 mice co-express human APP with the Swedish double mutation KM670/671NL and the L166P mutated human PSEN1 under the control of a neuron-specific murine Thy-1 (Radde et al. 2006). These mutations initiate primarily Aβ1-42-driven plaque formation in an aggressive manner in 6-week-old animals, which worsen as the mice age. The Aβ deposits appear first in the neocortex, and later in the hippocampus, striatum, thalamus, and brainstem by the age of 5 months. The plaques are accompanied by microglia proliferation, astrocytosis, and the presence of phosphorylated tau trajectory protein with a modest neuronal loss (Table 4; Rupp et al. 2011; Unpublished data).

[bookmark: _Toc2602243]Radionuclide and tracer production (I-III)

The radionuclide 18F was produced via 18O (p, n) 18F in a nuclear reaction in the Accelerator Laboratory of Turku PET Centre by using CC-18/9 cyclotron (Efremov Scientific Institute of Electrophysical Apparatus, St. Petersburgh, Russia).

18F-FDG, 18F-DPA-714, and 18F-FMPEP-d2 were synthetized in the Radiopharmaceutical Chemistry Laboratory of Turku PET Centre as described previously (Hamacher et al. 1986; James et al. 2008; Donohue et al. 2008). The molar activities, batches, and radiochemical purities of the tracers used in Studies I-III are presented in Table 5.

[bookmark: _Toc2602244]In vivo PET imaging (I-III)

All in vivo PET/computed tomography (CT) scans were conducted with the Inveon Multimodality PET/CT device (Siemens Medical Solutions, Knoxville, TN, USA), which has a spatial resolution of 1.3 mm.

The CT modality preceded PET scan, and it was used as a transmission phase for primary anatomical reference and attenuation correction for PET imaging data. In Studies I and II, dynamic 60-min 3D PET list mode scans were conducted in tandem with the tracer injection, whereas in Study III, 3D PET list modes were recorded as 30-min static modalities at 90 min after the 18F-FMPEP-d2 injection. Afterwards, the PET list mode data were reconstructed as described   previously   (I  and  II)  using  Fourier-rebinning  and  2D   filtered   back-projection

Table 5. Radioactive tracer and imaging quantification specifics used in Studies IIII.

		Study

		I

		II

		III



		PET tracer

		18F-FDG

		18F-FDG

		18F-DPA-714

		18F-FMPEP-d2



		AmEOS (GBq/µmol)

		> 100

		> 100

		> 1000

		> 500



		AmInj (GBq/µmol)

		NA

		NA

		541 (220)

		359 (71)



		Injected mass (ng)

		NA

		NA

		4.5 (2.1)

		3.2 (1.1)



		Radiochemical purity (%)

		> 98

		> 98

		> 99.5

		> 95



		Number of batches

		37

		27

		16

		34



		PET imaging

		dynamic

		dynamic

		dynamic

		static



		Duration (min)

		60

		60

		60

		30



		Quantification ∆T (min p.i.)

		20-35

		30-60

		30-50

		90-120



		Quantification unit

		SUV, SUVglu

		SUV

		SUV, VOI/CB

		SUV, VOI/THA



		Ex vivo autoradiography

		 

		

		

		 



		Quantification ∆T (min p.i.)

		30

		60

		60

		120



		Quantification unit

		ROI/WB

		ROI/CB

		ROI/CB

		ROI/THA





Note: Mean molar activity and injected mass are presented with standard deviation. Abbreviations: Am, molar activity; CB, cerebellum; EOS, end of synthesis; Inj, injection; NA, not applicable; p.i., post injection; ROI, region of interest; SUV, standardized uptake value; THA, thalamus; VOI, volume of interest; WB, whole brain

reconstruction algorithm, and divided into 51 time frames (30*10 s, 15*60 s, 4*300 s, and 2*600 s) in Studies I and II or 10 time frames (5*60s and 5*300s) in Study III. All PET scans and tracer injections were performed in animals anesthetized with an inhalation of 2.5% isoflurane/oxygen mixture on fasted (I, II with 18F-FDG) or nonfasted (II with 18F-DPA-714, III) mice. The tracer injections were delivered via IV cannula inserted in the mouse tail vein (left or right). The full in vivo PET imaging work flow is illustrated in Figure 15 containing the details of fasting (I, II), anesthesia (I-III), and glucose and temperature measurements (I, II).

PET imaging data were analyzed as volumes of interest (VOIs) using Inveon Research Workplace Image Analysis software v. 4.1 and 4.2 (Siemens Medical Solutions). VOIs were first predefined, then uploaded and manually adjusted to an individual PET image after a coregistration of the corresponding anatomical CT image and a representative MRI mouse brain template (Mouse MRI brain template), which guided the anatomical 3D orientation of the following analyzed brain regions (Figure 16): the whole brain including the olfactory bulbs, cortex, frontal cortex, parietotemporal cortex, hippocampus, striata, thalamus, hypothalamus (III) and cerebellum. PET imaging data were semi-quantified as SUVs (I-III), which refers to a division of the regional radioactivity by the ratio of injected dose and mouse body weight. In Studies I and II, SUVs were also normalized with the individual blood glucose value measured before 18F-FDG injection in order to obtain the SUVglu (SUV*prescan blood glucose value). In addition, regional radioactivity concentration ratios relative to the reference region were also determined (II and III). Details of the study-specific quantification time period and units as well as the reference regions are presented in Table 5.
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Figure 15.	In vivo PET imaging work flow for studies I-III in accordance to the tracer injection time at 0. 18F-FDG was used in studies I and IIa, whereas 18F-DPA-714 was used in IIb. For Study III, 18F-FMPEP-d2 was utilized for PET imaging. A, anesthesia; CT, computed tomography; dyn, dynamic; GLU, glucose; IV, intravenous injection of the tracer; PET, positron emission tomography; stat, static; T, body temperature.

[bookmark: _Toc2602245]Ex vivo brain autoradiography (I-III)

All tracer injections were administered to the fasted (I, II with 18F-FDG) or non-fasted (II with 18F-DPA-714, III) animals in anesthetized with 2.5 % isoflurane/air mixture via an IV cannulated mouse tail vein (left or right). The specific or non-specific regional 18F-FDG uptake was measured in the brains of 6- to 17-month-old TG and WT mice with a distribution time of 30 (I) or 60 min (II) after the tracer injection. The 18F-DPA-714 binding (II) was examined in the brains of 1- to 15-month-old TG and WT mice with a distribution time of 60 min after the tracer injection. The specific regional 18F-FMPEP-d2 binding (III) was evaluated in the brain of 6- to 15-month-old TG and WT mice with a distribution time of 120 min after the injection. After the distribution time (Figure 17), animals were anesthetized with 4.0% isoflurane/air mixture to perform cardiac puncture and transcardial perfusion with physiological saline. Brains were removed from the skull, weighed, and measured for the radioactivity using 2480 Wizard2 automatic gamma counter (Perkin Elmer, Turku, Finland). Ex vivo tissue counting was also performed with cardiac blood sample, tail, and additional organs (I; Unpublished data). Brains were rapidly frozen in isopentane, which was chilled with solid carbon dioxide. Shortly, the brains were cut into coronal 20 µ-thick cryosections with a cryostat (Leica CM3050S, Leica Biosystems, Nußloch, Germany) at the bregma levels from -6.00 to +2.60. Cryosections on the microscope slides were air-dried and exposed to imaging plates (Fuji Imaging Plate BASTR2025, Fuji Photo Film Co., Japan) for two half-lives of 18F. The 18F-radioactivity distribution on the plate was digitized using the BAS5000 analyzer (Fujifilm Lifesciences, Japan). Digital autoradiography data were analyzed as regions of interest (ROI) using Aida Image Analysis software (Image Analyzer v. 4.22; Raytest Isotopenmeßgeräte GmbH, Straubenhardt, Germany). ROIs were manually drawn on the digitized autoradiographs over the following brain regions: frontal cortex, parietal cortex (I), temporal  cortex  (I),  parietotemporal  cortex,  striatum,  thalamus,  hippocampus  (I),  anterior 
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Figure 16.	Mouse brain MRI template aligned with a representative mouse computed tomography with representative volumes of interest used for PET image quantification in I-III. CB, cerebellum; FC, frontal cortex; HIPPO, hippocampus; HYPO, hypothalamus; PTC, parietotemporal cortex; STR, striata; THA, thalamus.

hippocampus (II, III), posterior hippocampus (II, III), hypothalamus (III), cerebellum (I, II), cerebellar  gray  matter (III), and  cerebellar white matter (III) (Figure 18). The digital autoradiograph ROIs were analyzed for count densities and expressed as background-erased photostimulated luminescence intensity per square millimeter (PSL/mm2) ratios relative to the selected reference region (Table 5).

[bookmark: _Toc2602246]Pretreatment experiment (III)

The specific binding of 18F-FMPEP-d2 in mouse brain was evaluated with a CB1R inverse agonist, rimonabant (SR141716; No. 9000484, Cayman Chemical, MI, USA) to determine the preliminary usability of this tracer in murine imaging studies. C57BL/6N mice were first anesthetized with 2.5% isoflurane/air mixture 20 min prior to pretreatment. Mice were IV cannulated via a tail vein and pretreated with rimonabant (2 mg/kg) or with vehicle 10 min prior to 18F-FMPEP-d2 IV injection. 18F-FMPEP-d2 (3.4 (0.2) MBq) was administered and a dynamic 90-min 3D PET/CT list mode scan was initiated in tandem. After the scan, the mice were sacrificed as described in chapter 4.5. The ex vivo autoradiography experiment was used for the visual examination and in vivo PET for the quantification of the pretreatment experiment. The equivalent size of VOI was manually drawn over the whole brain, and the radioactivity of the VOI was semi-quantified as SUV. The in vivo data was verified with ex vivo tissue counting of the brain and quantified as %ID/g.

[image: ]

Figure 17.	Ex vivo autoradiography work flow for studies I-III in accordance to the tracer injection time at 0. 18F-FDG was used in studies I and IIa, whereas 18F-DPA-714 was used in IIb. For Study III, 18F-FMPEP-d2 was utilized for autoradiography. A, anesthesia; GLU, glucose; IV, intravenous; T, temperature.

[bookmark: _Toc2602247]Radiometabolite analysis (III)

The amounts of unchanged 18F-FMPEP-d2 and its radiometabolites were examined in the mouse plasma and brain using thin-layer chromatography (TLC) and digital autoradiography with distribution time points between 5 and 240 min.  Brains of the C57BL/N mice were dissected as described earlier in Chapter 4.5. Plasma samples were collected by centrifuging the cardiac puncture blood and separating the supernatant. Brain homogenates were prepared by manually homogenizing brain tissue samples from the parietotemporal cortical region into acetonitrile. After centrifugation, the supernatants of both brain and plasma samples were collected and pipetted on top of Silica Gel High-performance RP-18 TLC plates (Merck, Darmstadt, Germany). 18F-FMPEP-d2 from the same batch was used as a reference standard in the analyses. The TLC plates were developed in 1% trifluoroacetic acid/acetonitrile (40:60 v/v) mobile phase, after which the plates were dried and exposed to imaging plates for two half-lives of 18F, and the radioactivity in the plates was digitized with the BAS5000 Analyzer. The proportions of unchanged and metabolized 18F-FMPEP-d2 in the plasma and brain total 18F-radioactivity and their retention factors (Rf) were calculated from the autoradiograms using Aida Image Analysis software.
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Figure 18.	Regions of interest drawn over the digital autoradiographs in Studies IIII.

[bookmark: _Toc2602248]Western Blot (III)

The in vivo 18F-FMPEP-d2 binding was validated with ex vivo Western blot to examine whether the CB1R expression is altered in APP/PS1-21 mouse model of AD in comparison to non-diseased WT mice. Following brain regions were examined: frontal cortex, parietotemporal cortex, hippocampus, and thalamus. Nine-month-old female and male APP/PS1-21 and WT mouse brain samples were assessed separately to quantify the gender difference within the CB1R protein levels. Brain samples were dissected during the ex vivo digital autoradiography and tissue counting experiments, and immediately frozen in liquid nitrogen. Samples were mechanically homogenized on ice with an equal volume of lysis buffer as described in detail in III. In brief, the homogenates were boiled for 5 min at 95°C and centrifuged for 25 min in 12,000 rpm from which the supernatants were collected to determine the total protein concentration of the homogenates using the Pierce™ BCA protein assay kit (Thermo Scientific). The samples were denatured with a master buffer for 5 min at 95°C and equal amounts of protein were pipetted onto a 10% SDS-polyacrylamide gel lanes. Proteins were first separated according to their weight by electrophoresis and transferred onto nitrocellulose pure transfer membranes (UltraCruz®, Santa Cruz Biotechnology, Texas, US) using a Mini Trans-Blot cell electroblotter (BIO-RAD Life Science Group, CA). Membranes were blocked either in 3% (w/v) bovine serum albumin (BSA, Sigma Aldrich) diluted in 0.1% Tween Tris-buffered saline (TBS-T) at 4°C overnight or in 5% (w/v) dry skim milk diluted in TBS-T for 90 min at room temperature depending on the following primary antibody. Overnight incubation at 4°C was performed first with anti-CB1R primary antibody (1:500 dilution in 3% BSA TBS-T) and secondly with a housekeeping primary anti-β-actin antibody (1:1000 dilution in 5% skim milk TBS-T). Membranes were washed with TBS-T and incubated with the secondary antibody (Donkey anti-Rabbit IgG H+L, 1:2000 dilution in TBS-T) for 1 h at room temperature. Membranes were washed again with TBS-T before detecting the fluorescent signal using LI-COR Odyssey® CLx Imaging System (LI-COR, Inc.). The fluorescent signals of the membranes were analyzed using Image Studio Software Lite software v. 5.2 (LI-COR, Inc.). The signal intensities of the CB1R bands were normalized to a reference band of the β-actin housekeeping protein in each membrane, and membranes normalized to the protein marker before being compared with each other.

[bookmark: _Toc2602249]Immunohistochemistry (I-III)

Immunohistochemical stainings were performed with fresh frozen mouse brain 20-µm thick coronal cryosections collected from the ex vivo digital autoradiography experiments in Studies IIII. The sections were stored at -20°C before proceeding to staining according to previously described protocols and employed reagents within Studies I-III. In Study I, APPswe-PS1dE9 and Tg2576 brain cryosections were stained with a monoclonal antibody against Aβ (6E10, 1:400) and ionized calcium-binding adapter molecule 1 (Iba1, 1:1000), whereas in Study II, APP/PS1-21 brain cryosections were dyed with Thioflavine S (0.025%) and stained with antibodies against Aβ1-42 and Iba1 (1:500 for both). In Study III, anti-CB1R (1:500) and GFAP (1:500, unpublished) were used for staining the APP/PS1-21 mouse brain sections. Stained sections were imaged using the 3DHISTECH Midi Scanner (Thioflavine S) or Slide Scanner 250 (antibodies). In Study I, the amounts of regional Aβ and microgliosis were determined in different brain regions of APPswe-PS1dE9 and Tg2576 mice with primary evaluation procedures using CaseViewer software v. 1.3 (3DHISTECH, Budapest, Hungary) and quantified using Image J software (Wayne Rasband, National Institute of Health, MD, USA). In Studies II and III, no quantification procedures were conducted.

[bookmark: _Toc2602250]Statistical analyses (I-III)

Descriptive statistics, i.e. molar activity at the time of injection, injected dose, weight of the animals, glucose values, and in vivo PET imaging and ex vivo results from Studies II and III are presented as arithmetic means with standard deviation in brackets after the mean values. Due to the normal distribution of the numeric data in Study I, in vivo and ex vivo results are presented as medians and interquartile ranges.

In Study I, cross-sectional in vivo and ex vivo differences in regional glucose tracer uptake and microglial staining between TG and WT mice in various time points were examined with Kruskal-Wallis test, following Dunn’s multiple comparison. The non-parametric Mann-Whitney U-test was used for exploring the differences in the formation of amyloid in TG mice in various ages. In Studies II and III, longitudinal PET data were examined using hierarchical mixed linear model with a compound symmetry covariance structure, including one within-factor (time), one between-factor (genotype), and an interaction term (time × genotype). Interactions were investigated by examining whether the mean change during the longitudinal study was different between the genotypes. When a significant interaction was encountered, contrasts were programmed to study when the interaction occurred between TG and WT animals. The normal distribution assumption was checked based on the studentized residuals. Ex vivo results in Studies II and III were examined using the non-parametric Mann-Whitney U-test or 2-way ANOVA based on the distribution parameters of the data set. Examinations of correlation conducted in Studies IIII were quantified with the Pearson test or with the Spearman’s test based on the normal distribution of the data set. All statistical tests were performed as two-sided with the statistical significance level set at 0.05. The distribution of data and statistical analyses were performed using GraphPad Prism v. 5.01 and 6.00 (GraphPad Software, San Diego, CA, USA), SAS System v. 9.3 for Windows (SAS Institute Inc., Cary, NC, US), and SPSS Statistics v. 23 (IBM).
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[bookmark: _Toc2602251]Results

[bookmark: _Toc2602252]Amyloidosis in the transgenic mouse models

At 6 months of age, both APPswe-PS1dE9 mice and APP/PS1-21 mice exhibited extensive 6E10- and Aβ1-42-positive amyloid deposition, respectively, mainly in the cerebral cortex and hippocampus (Figure 19). Amyloidosis further expanded to the other brain regions, including thalamus, striata, and cerebellum with the highest burden observed when older animals at the age of 12 or 15 months were examined (I, II). In APP/PS-21, the number of Aβ1-42-positive plaques seemed to grow as the mice aged, but the size of the plaques did not increase in a temporal manner, whereas in APPswe-PS1dE9 mice, 6E10-positive depositions formed dense Aβ-positive groups and/or accumulated more to create larger plaques.

When compared to the APP/PS1-based models, Tg2576 mice showed a much slower temporal course of amyloidosis: Sparsely located single Aβ deposits were found randomly in the brain of 6-month-old Tg2576 mice. Not until the age of 17 months, increases in the numbers of the Aβ-positive deposits in the cortical and hippocampal region were measurable in this AD mouse model.
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Figure 19.	Temporal amyloidosis in the transgenic mouse models used in studies I-III. mo, months. Scale bar 200 μm.





[bookmark: _Toc2602253]Cerebral glucose metabolism detected with 18F-FDG

The three AD mouse models were examined to search if there were differences in their cerebral glucose metabolism compared to the corresponding WT mice by using dynamic 18F-FDG PET imaging and ex vivo brain autoradiography.

18F-FDG accumulated into the brain rapidly, having a peak uptake as assessed by the SUV between 1.5 and 2.0 approximately at 4 min after the IV injection, after which, a washout began slowly. In APPswe-PS1dE9 and APP/PS1-21 mice, the peak uptake plateaued more rapidly within the first 20 min of the dynamic scan, whereas in Tg2576 mice, the washout stage was more profound during the last 30 min of the modality without losing the plateau phase (Figure 20). 18F-FDG mainly remained in the brain at 60 min, and was eventually eliminated by radioactive decay, and only partly eliminated through the renal system. In all models, 18F-FDG accumulated predominantly into the midbrain region and cerebellum, concentrating in the vessel-enriched regions (Figure 21). In addition, the tracer underwent significant accumulation into the Harderian glands in all mice causing a partial volume effect in frontal brain.

The APPswe-PS1dE9 and APP/PS1-21 models showed significantly decreased 18F-FDG SUVs (p < 0.05) at different ages in the brain compared to WT mice (Fig. 2 and 3 in I; Table 2 in I; Fig. 1 in II). APPswe-PS1dE9 mice demonstrated a moderate hypometabolic pattern already at the age of 6 months, whereas in APP/PS1-21 mice, altered glucose utilization was significant at 12 months. In the late disease stage at 12 and 15 months, both APPswe-PS1dE9 and APP/PS1-21 mice exhibited further declines in the 18F-FDG retention as compared to their WT littermates, the latter showing statistically significant (p < 0.05) changes in all analyzed brain regions. In detail, the most profound regional differences between the genotypes and age groups were examined in subcortical regions, hippocampus, striata, thalamus, and cerebellum in both models (p < 0.05). However in APPswe-PS1dE9 mice, when SUVs were normalized to the individual blood glucose values, the intragroup variation increased, which prevented the detection of a significant difference between the genotypes. On the contrary, 15-month-old, but not 6-month-old APP/PS1-21 mice showed significantly (p < 0.005) larger declines in the cerebral 18F-FDG retention after the SUVs were normalized to the blood glucose values (Figure 20), even though the intragroup variation was parallely increased. Tg2576 did not demonstrate differences in the cerebral glucose metabolism when compared to WT mice (Table 3 in I).

An increased trend in the temporal 18F-FDG retention within the same strain was observed in studies I and II. APPswe-PS1dE9 and WT mice showed age-related glucose hypermetabolism from 6 to 12 months in different brain regions (Table 2 in I), whereas the same APP/PS1-21 and WT mice demonstrated significant (p < 0.05) cerebral hypermetabolism, when they were examined from 6 to 15 months of age (Unpublished data for Study II).
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Figure 20.	Mean cerebral time activity curves for 18F-FDG retention in transgenic mouse models of Alzheimer’s disease and the corresponding wild-type (WT) control mice. An early disease stage (6 months) and a late disease stage (12, 17, or 15 months respectively) as standard uptake values (SUV) and normalized SUVs against the individual blood glucose values 20 min before the IV injection were examined. Dashed lines represent the time frame used for quantification of the summed PET images post injection. Percentage of the mean 18F-FDG uptake in transgenic mice compared to the mean tracer uptake of WT mice in presented above the quantified time frame.
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Figure 21.	Cerebral 18F-FDG retention in transgenic mouse models of Alzheimer’s disease and the corresponding wild-type (WT) mice. An early (6 months) and late (12, 15, or 17 months) examination stages were investigated and represented as summed 60-min PET/CT images aligned with an illustrative MRI-template of an adult mouse brain with the colors adjusted according to the genotype-dependent standard uptake minimum and maximum values. mo, months; SUV, standardized uptake values.

The ex vivo 18F-FDG uptake in the murine brain showed a similar pattern of the tracer distribution seen in the in vivo data under enhanced spatial resolution (Figure 22). However, the ex vivo quantification as ratios relative to the pseudo-reference region cerebellum (II) or the whole brain estimate (I) did not fully confirm the in vivo hypometabolism detected with PET imaging due to the obvious differences in the quantification method between PET and autoradiography. Instead, hypermetabolic cortical and hippocampal changes were detected in 12- to 15-month-old APP/PS1-21 and 6- and 12-month-old APPswe-PS1dE9 mice as compared to age-matched WT mice when relative measures were applied (Table S1 in I; Fig. 3 in II). 
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Figure 22.	Representative coronal 18F-FDG autoradiographs of young (6 months) and old (12, 15, or 17 months) transgenic mice of Alzheimer’s disease and the corresponding wild-type (WT) mouse brain cryosections. mo, months; HIPPO, hippocampus; HYPO, hypothalamus; THA, thalamus.
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Figure 23.	Basal and 60-min in vivo 18F-FDG-PET post injection (p.i.) blood glucose values. The tail blood glucose of transgenic (TG) mice of Alzheimer’s disease and the corresponding wild-type (WT) mice were measured before and after every in vivo experiment in studies I and II.

In vivo, cerebral glucose hypometabolism was shown to correlate negatively in a moderate manner with the Aβ depositions in 12-month-old APPswe-PS1dE9 mice, whereas no such correlation was detected in Tg2576 mice (Fig. 4 in I). The amyloidosis in APP/PS1-21 mice was not quantified in this study, however, Aβ1-42-positive deposits were localized abundantly already at the age of 6 months in cortical lobes and thalamus, which escalated in number and size to the other brain regions as the mice aged, at the same time as the regional hypometabolism detected with in vivo 18F-FDG was developing.

Changes in the blood glucose values and temperatures during 18F-FDG-PET

In studies I and II, the basal blood glucose values of any TG and WT mice i.e. 20 min before the in vivo 18F-FDG-PET imaging did not differ compared to the post injection (p.i.) blood glucose values measured immediately after the 60-min dynamic PET scan. However, the basal blood glucose measurements between 12-month-old APP/PS1-21 and age-matched WT mice differed significantly (Figure 23). APP/PS1-21 showed further increased intragroup variations in their glucose values after the PET scan, which was not seen in either APPswe-PS1dE9 or Tg2576 mice. The body temperature of mice was measured before (basal) and immediately after the 18F-FDG scan. Under basal circumstances, murine rectal temperatures did not differ between TG and WT mice nor between different models, whereas a significant decrease (p < 0.01) was detected after 
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Figure 24.	Mean basal and 60-min post injection (p.i.) temperature values with standard deviation for transgenic (TG) mouse models of Alzheimer’s disease and the corresponding wild-type (WT) mice. Temperature was measured before and after in vivo 18F-FDG-PET imaging in studies I and II.

the 60-min dynamic PET scan when all data from studies I and II were pooled together (Figure 24).

[bookmark: _Toc2602254]Cerebral gliosis detected with 18F-DPA-714 and glial antibodies

Glial activation was utilized as a biomarker for AD-related neuroinflammation in Studies I and II by using specific glial antibodies targeting microgliosis and astrocytosis, and immunohistochemistry. Gliosis was also monitored in vivo with the TSPO radionuclide 18F-DPA-714 in the APP/PS1-21 mouse model (II), and verified with ex vivo autoradiography with enhanced spatial resolution with the same tracer.

The brain uptake of 18F-DPA-714 peaked between 2 and 4 min after the tracer injection, which was characterized by low brain radioactivity as the peak uptake reached approximately a SUV of 1 (Figure 25). The washout phase began immediately after the peak without reaching a stable plateau, and finally, 18F-DPA-714 was excreted via the hepatobiliary pathway.

Although the brain uptake of 18F-DPA-714 was low, it was concentrated into the cerebellar and thalamic regions. Enhanced uptake into the Harderian and pituitary glands was evident both in TG and WT mice,  affecting the spillover into  the  frontal lobes and hypothalamus,  respectively
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Figure 25.	Cortical time activity curves for 18F-DPA-714 retention in APP/PS1-21 mouse model of Alzheimer’s disease and the corresponding wild-type (WT) control mice. An early (6 months) and late disease stage (15 months) as cortical (CTX) ratios relative to the cerebellum (CB) and standard uptake values (SUV) are represented. Dashed lines represents the time frame used for quantification of summed PET images 30-50 min post-injection.

(Figure 26). In APP/PS1-21 mice, TSPO PET showed elevated (p < 0.05) relative levels when assessed against cerebellum in the cerebral cortex and striata already at the age of 6 months as compared to the age-matched WT mice. The differences between TG and WT mice spread to the other brain regions, but not to the hypothalamus due to the spillover effect outside the brain, when mice aged. The temporal elevation of tracer binding from 6 to 9 months in the same TG mouse brain was statistically significant, a phenomenon not seen in WT mice (Fig. 2 in II; Table 2 in II). When comparing the different quantification methods for 18F-DPA-714 uptake in the brain, ratios relative to the cerebellum displayed lower variation within the groups than SUVs (Figure 25). The variation increased in 15-month-old animals in terms of SUV, which was not seen in the relative measures. Ex vivo studies confirmed the PET findings at 15 months, showing significantly (p < 0.05) increased 18F-DPA-714 uptake ratios relative to the cerebellum in cerebral cortex and hippocampal region, and striata. Even in very young TG mice at 1 and 3 months, elevated TSPO tracer binding was evident in the same brain regions as seen in the older TG mice when compared to 2-month-old WT mice (Fig. 3 in II).
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Figure 26.	Gliosis in transgenic mouse models of Alzheimer’s disease at ages between 6 and 17 months. Gliosis was assessed via an in vivo and ex vivo 18F-DPA-714 tracer measurement in 6-, 9-, 12- and 15-month old APP/PS1-21 mice. Astrocytosis assessed as a GFAP-reactive immunostaining is visualized in the same-aged APP/PS1-21 mice. Microgliosis assessed as an Iba1-reactive immunostaining is visualized in all three mouse models. Scale bar 100 μm.

When investigating the age-related effect on tracer accumulation, 18F-DPA-714 cerebellar ratios were significantly increased in frontal and parietotemporal cortices between 1-month-old and 15-month-old TG mice (p < 0.05) and in hypothalamus between 3- and 10-month-old  TG mice (p < 0.005), demonstrating that even the 1-month-old TG mice can be discriminated from the 2-month-old WT mice with 18F-DPA-714, and the TSPO-related pathology further worsens until the age of 15 months (Fig. 3 in II; Unpublished statistics). When the employed quantification method for measuring the 18F-DPA-714 uptake was evaluated from the pooled data from all analyzed brain regions of 15-month-old animals, there was a moderately strong positive correlation (r = 0.40, n = 48, two tailed p = 0.005) between in vivo and ex vivo relative measures to cerebellar uptake confirming the advantage of using cerebellum as a pseudo-reference region (Figure 27A). In addition, when in vivo quantification as relative measurement against cerebellar uptake and SUVs were examined in terms of interaction, a moderate correlation was found (r = 0.34, n = 64, two tailed p = 0.0066) (Figure 27B).

Reactive microgliosis as assessed as Iba1-positive staining was detected in all animal models. In the APPswe-PS1dE9 and Tg2576 models, the IHC quantification revealed significantly larger and abundant  Iba1-driven microgliosis in the cortical lobes and hippocampus at 12 months of age compared to 6 month-old TG or 6- and 12-month-old WT mice (Fig. 5 in I). In the APP/PS1-21
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Figure 27.	Correlation between different quantification methods used for the 18F-DPA-714 analysis. Pooled data from 15-month-old APP/PS1-21 and wild-type group means of all analyzed brain regions were examined. Regions of interest (ROISs) from ex vivo digital autoradiography and volumes of interest (VOIs) from in vivo PET imaging data were inspected as relative measures against cerebellar radioactivity (A), and VOIs against cerebellar radioactivity and standardized uptake values (SUVs) (B) were used for the Spearman correlation examination.

mice, even though the Iba1 quantification was not performed in this study, the staining revealed a clear distinction between TG and WT mice already at the age of 6 months, with Iba1-immunoreactive staining further intensifying in the cerebral cortex, hippocampus, thalamus, and striata of TG mouse cryosections from 9 to 15 months. On the contrary in the WT mice, the Iba1-driven microgliosis was not detectable in any of the age groups (Fig. 4 and supplemental data in II).

The GFAP-immunoreactive detection of astrocytosis displayed a similar enhanced pattern during aging in the APP/PS1-21 model. At 6 months, APP/PS1-21 mice already showed evidence of large GFAP-positive astrocytes in the cerebral cortex (Figure 26), thalamus, and hippocampus (Data not shown). By the age of 15 months, the size of the astrocytes was enlarged even further; they formed dense accumulation groups with a visibly increased number of reactive astrocytes.

[bookmark: _Toc2602255]Cerebral CB1Rs detected with 18F-FMPEP-d2 and CB1R antibody

Cerebral CB1R occupancy was examined using 18F-FMPEP-d2 PET imaging and ex vivo methods utilizing 18F-FMPEP-d2 and CB1R antibodies. Dynamic 120-min 18F-FMPEP-d2 scan showed that the tracer accumulated slowly in the murine brain, reaching a peak uptake approximately at 30 min after the tracer injection (Unpublished data). The washout phase of 18F-FMPEP-d2 progressed slowly, clearly and quickly plateauing, never reaching SUV below 1.5 (Figure 28). In the brain, the initial binding of 18F-FMPEP-d2 was located in the whole brain during the first 90 min, specifically in the central gray during the peak uptake (Figure 28). After 90 min, the tracer
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Figure 28.	Cerebral time activity curve and the corresponding summed PET images for 18F-FMPEP-d2 retention in wild-type control mouse. In the time-activity curve (below), the arrow represents the peak uptake, and dashed lines represent the time frame mimicing for quantification of the summed PET images 90-120 min post injection used in the Study III.

became eliminated from the midbrain and thalamic region, lingering longer in the cortical and cerebellar area for up to 120 min. No significant exterior cranial uptake was observed, which hindered the interpretation of the possible partial volume effect nor was there any spillover effect in the regional quantification. While the tracer elimination was proceeding, 18F-FMPEP-d2 produced two radioactive metabolites in the plasma, which were detected with TLC examination time windows between 5 to 240 min. One of the radiometabolites also gained access into the brain (Fig. 3 in III). Eventually, 18F-FMPEP-d2 was taken up into the gallbladder and thus, excreted via bile and also through the renal system. 

Pretreatment ex vivo experiment showed that a 2 mg/kg dose of rimonabant blocked the 18F-radioactivity of 18F-FMPEP-d2 in treated mice approximately 67% (2.5 (0.1) %ID/g, n = 2) compared to vehicle treated mice (7.5 (0.1) %ID/g, n = 2), when decay-corrected measurements with γ-counter were conducted and analyzed on dissected mouse brains (Fig. 4 in III).

In the longitudinal Study III, static 30-min PET modalities, 90 min after the 18F-FMPEP-d2 injection, were quantified in the plateau phase. The longitudinal assessment revealed that in 6-month-old male APP/PS1-21 mice, the relative thalamic measures in hypothalamus were significantly lower (p < 0.05) than in age-matched male WT mice, which were then replaced by significantly lower tracer binding ratios in the other brain regions including frontal and parietotemporal cortices, hippocampus, and cerebellum by the age of 9 months. During the last examination at age 15 months, TG mice had approximately 10% lower thalamic ratios only in the cerebral cortex when compared to WT mice of the same age (Table 2 in III). On the contrary, the assessment of the in vivo quantification as SUV could not discriminate TG mice from their WT counterparts, even though there was a very strong correlation (r = 0.84, n = 64, two tailed p < 0.0001) between in vivo SUV and relative thalamus measurements when all analyzed brain regions of 6-, 9-, 12-, and 15-month-old TG and WT mice were pooled together and examined (Figure 29A).
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Figure 29.	Correlation between in vivo and ex vivo 18F-FMPEP-d2 quantification methods used in Study III. Correlation between in vivo standard uptake values (SUVs) and in vivo radioactivity ratios relative to the thalamic radioactivity concentration (A) and the correlation between ex vivo and in vivo quantification as radioactivity ratios relative to the thalamic radioactivity concentration were examined in male APP/PS1-21 and WT mice, when all quantified brain regions and age groups were pooled together.

The decreasing trend in the 18F-FMPEP-d2 retention in male TG mice was also examined in the ex vivo autoradiographical experiments, however, striata were the only brain region to show a significant difference between 15-month-old TG and WT mice. On the contrary, female APP/PS1-21 mice demonstrated a higher degree of decreased tracer binding, showing significantly lower thalamic ratios in parietotemporal cortex, striata, and posterior hippocampus at 9 months when compared to the female WT mice (Fig. 2 in III). While male and female mice displayed different 18F-FMPEP-d2 binding patterns in the brain between genotypes, distinguishing TG mice from WT mice significantly during aging, no such differences were observed in terms of CB1R expression as assessed by Western blot. Instead, female mice exhibited significantly higher levels of CB1R in cortical and thalamic samples when compared to their male counterparts, but no differences were detected between TG and WT mice of both sexes (Fig. 5 in III).

The autoradiographical data confirmed that thalamus was virtually devoid of specific tracer binding at 120 min, underlining the justification of using thalamus as a pseudo-reference region for preclinical 18F-FMPEP-d2 quantification (Figure 30). This proposal was also confirmed by the strong correlation (r = 0.60, n = 56, two tailed p < 0.0001) between in vivo and ex vivo results as tracer binding ratios relative to thalamic radioactivity when all analyzed brain regions of 6-, 9-, 12-, and 15-month-old male TG and WT mice were pooled together and examined (Figure 29B). Similarly, the discrimination between cerebellar white and gray matter was detectable in the autoradiographs, and cerebellar gray matter showed nearly 4-fold higher thalamic ratios as compared to cerebellar white matter at 120 min after the 18F-FMPEP-d2 injection in both TG and WT mice at all ages (when all data were pooled together from III).
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Figure 30.	CB1R availability and location detected with in vivo and ex vivo 18F-FMPEP-d2 experiments and CB1R-reactive immunohistochemistry. An early (6 months) and late (15 months) examination stage in APP/PS1-21 mouse model are presented (left column). Classical anatomical references from Allen Brain Atlas (accessed 09/2013) were utilized to justify the use of thalamus (THA) as a pseudo-reference region for the 18F-FMPEP-d2 quantification in murine brain (right column). CB, cerebellum; CBG, cerebellar gray matter; CBW, cerebellar white matter; CTX, cortex; HIPPO, hippocampus.

[bookmark: _Toc2602256]Pathological changes in aging APP/PS1-21 mice

APP/PS1-21 mice were examined longitudinally to clarify if there were temporal changes in glucose metabolism, glial activation, and CB1R availability in studies II and III. Even though the mice, which were followed and examined with repeated scans, were not the same as examined in studies II and III, the interconnection could be analyzed due to the relatively large group sizes and the longitudinal aspect of the experiments. Hence, when glucose hypometabolism as detected with 18F-FDG and glial activation assessed with 18F-DPA-714 were examined, APP/PS1-21 mice showed a moderate positive correlation (r = 0.51, n = 24, two tailed p = 0.01), when all ages and brain regions were pooled (Figure 31). When individual age groups were examined, 12-month (r = 0.76, n = 8, two tailed p = 0.03) and 15-month-old (r = 0.74, n = 8, two tailed p = 0.04) TG mice exhibited a strong positive correlation between 18F-FDG and 18F-DPA-714 uptake, when all brain regions were pooled together (Data not shown). When the correlation between the glial activation as assessed with in vivo 18F-DPA-714 and CB1R availability as assessed with in vivo 18F-FMPEP-d2 was examined, a moderate negative correlation (r = -0.40, n = 24, two tailed  p = 0.05)  was observed, when all age groups  and  quantified brain regions were pooled together (Figure 31).
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Figure 31.	Correlation between in vivo hypometabolism, TSPO upregulation, and CB1R availability in APP/PS1-21 mice detected with longitudinal PET imaging. In vivo 18F-FMPEP-d2 binding and 18F-DPA-714 uptake in aging APP/PS1-21 male mice revealed a temporal negative relationship between CB1R abnormalities and TSPO upregulation. In vivo 18F-FDG and 18F-DPA-714 uptake displayed a moderate correlation with each other, mirroring a significant relationship between brain glucose hypermetabolism and TSPO upregulation in the same TG mice.
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[bookmark: _Toc2602257]Discussion

[bookmark: _Toc2602258]Cerebral glucose metabolism

[bookmark: _Toc2602259]18F-FDG µPET findings in Alzheimer models

In this thesis work, all three TG mouse models of AD were examined with 18F-FDG to discover the possible changes in the cerebral glucose metabolism in relation to normal changes during aging. At the time of the beginning of each study, no previous reports of the cerebral 18F-FDG uptake profile of the employed mouse models were available. Thus, it was considered crucial to evaluate possible AD-related metabolic alterations in these models regarding future interventional imaging studies. Consequently, it was observed that the mouse models exhibited different regional metabolic patterns in the brain: Female Tg2576 mice showed no abnormalities in the 18F-FDG uptake as SUVs nor SUVglus compared to WT mice at either 6 or 17 months of age, although amyloidosis and microgliosis were detectable at the late stage of 17 months (Fig. 2-5 in I). Similar findings have been obtained previously with 13-to-15-month-old male and female Tg2576 mice, after a prolonged 8-hour fasting and 30-min static PET modality, 60 min after the IV tracer injection, and the results quantified as %IDkg/g values and radioactivity ratios relative to the whole brain estimate (Kuntner et al. 2009). On the contrary, at the time when Study I was being performed, Luo et al. reported that female Tg2576 mice had greater SUVs in hippocampus, cortical region, and thalamus at 7 months of age, but lower SUVs in the same regions at 19 months compared to age-matched WT mice, when a 6-hour fasting and medetomidine/ketamine anesthesia were utilized prior to the dynamic 60 min modality (Luo et al. 2012). A recent report, however, failed to detect differences between 18-month-old Tg2576 mice and age-matched WT mice, when a 24-hour fasting and isoflurane anesthesia were used prior to the static 60 min scans (Coleman et al. 2017). In that study, 18F-FDG results were reported as glucose-corrected SUVs, which decreased the intragroup variation, but did not differentiate TG from WT mice. On the contrary, the benefits of normalizing SUVs with the individual blood glucose values were not that evident in the results from I and II; there was increased intragroup variation in both APPswe-PSIdE9 and APP/PS1-21 mouse models at all age groups (Figure 20). As a summary, the Tg2576 model has failed in the previous and present studies to mimic the hypometabolic pattern present in the AD patient brain, and therefore, does not seem to be a feasible disease model for examining glucose metabolism in preclinical AD studies. In the APPswe-PS1dE9 model, however, regional hypometabolism exhibited in various brain structures, such as frontal cortex, striata, thalamus, hippocampus, and cerebellum (I). At the late examination age, APPswe-PS1dE9 mice had abundant Aβ plaques, which had spread into various brain regions accompanied by elevated Iba1-reactive microgliosis. The imaging results are in line with the human PET data obtained with 18F-FDG, but not with the previous preclinical imaging studies. Until recently, female APPswe-PSIdE9 mice had not displayed altered %ID/g values in their brains at 9 months (Liu et al. 2017), but have shown increased SUV ratios, assessed relative to the cerebellar uptake, in the cortical region and hippocampus at 23.5 months, and in thalamus and striata at 3.58 months (Li et al. 2016), when conscious mice had received either an IP or an IV tracer injection, respectively. Both studies were conducted after prolonged fasting of 6 (Li et al. 2016) or 12 hours (Liu et al. 2017). As a result, the conflicting results from the past and the present studies with this model are not truly comparable due to the different quantification units as well as the different durations of fasting and tracer delivery. Therefore, the temporal glucose metabolism of APPswe-PS1dE9 remains unresolved.

In Study II, the APP/PS1-21 model showed the most evident hypometabolism in the brain during the longitudinal follow-up period. Decreases in the 18F-FDG uptake as SUVs were seen by the age of 12 months, with the most affected regions being cerebral cortex, hippocampus, striata, thalamus, and cerebellum (Fig. 1 in II). When SUVs were normalized against the individual blood glucose values, intragroup variation as well as the mean group differences increased (p < 0.005) in the whole brain (Figure 20). Our imaging results are in line with the human findings and a previous preclinical study, in which female APP/PS1-21 mice were examined at 12 months of age undergoing 8-to-12-hour fasting and a non-anesthetic IV injection protocol 20 min before being subjected to static 45-min scans (Waldron et al. 2015b). Significantly lower statistical tracer uptake were shown in thalamus and striata, whereas glucose-corrected %ID/g-values failed to reveal any differences between TG and WT mice. A more recent study confirmed this hypometabolic feature in thalamus and hippocampus of aging female APP/PS1-21 mice when the SUVs were normalized to the 10-to14-hour fasting blood glucose level (Deleye et al. 2017). Thus, when considering all of the animal models examined in these studies, the APP/PS1-21 model seems to be the most promising model to mimic the human PET findings. However, from a clinical point-of-view, the aggressive amyloidosis in this model might exaggerate temporal glucose dysfunction, which would not be comparable with the pathogenesis occurring in human AD.

APPswe-PS1dE9, APP/PS1-21, and their corresponding WT littermates revealed age-related increases in 18F-FDG retention, which has also previously been observed in APP/PS1-21 mice between 1.5 and 12 months of age (Deleye et al. 2017), as well as in WT mice (Brendel et al. 2016 and 2017a). In the TG mice, the temporal changes in the hypermetabolism could originate from the elevated levels of amyloidosis and microgliosis in response to the genetic manipulation. However since the WT mice for APPswe-PS1dE9 in the present study as well as WT mice from the previous studies displayed similar increases in the 18F-FDG uptake, the temporal changes might be a consequence of age-related increases in TSPO upregulation and microglial soma enlargement occurring during non-AD aging (Brendel et al. 2017). Another aspect to be considered is the obvious metabolic differences between humans and mice (Fueger et al. 2006). 

[bookmark: _Toc2602260] Challenges in 18F-FDG μPET

18F-FDG imaging poses many challenges, although it is the most widely utilized PET radioligand with many clinical applications, e.g. in oncology and neurology. The tracer does not bind to any specific target, instead it mimics cellular glucose metabolism. For this reason, while stringent regulation of experimental procedures between individuals is extremely difficult, it is nonetheless crucial. In human brain studies, a period of 6-hour fasting is used to prevent competition reactions between any consumed food and 18F-FDG. This also tends to decrease the endogenous glucose utilization in skeletal and cardiac muscle, and brown adipose tissue, which increases the cerebral 18F-FDG uptake (Toyama et al. 2004; Fueger et al. 2006). In cardiac imaging, prolonged fasting periods of 10 to 12 hours are used in order to fine-tune the metabolic profile. Patients are also advised to avoid strenuous exercise and alcohol consumption 24 hours before the scan, since the muscular glucose uptake might be elevated, which could affect the interpretation of the PET imaging data due to spillover. A resting phase is initiated approximately 30-60 min before the 18F-FDG injection to prevent the metabolic acceleration, and blood glucose levels are measured to ensure that they are suitable for PET/CT scan with a limiting value of 10 mmol/l (Surasi et al. 2014; VSSHP guidelines for PET/CT experiment). As a result, the PET imaging data is visualized and quantified as arterial input function.

On the contrary, animal 18F-FDG studies differ from their human counterparts due to the species related differences in both metabolism and behavior (Deleye et al. 2017). Imaging TG mouse models introduces variables, including genotype and genotype*age related differences between the models. Previous 18F-FDG studies using AD mouse models have yielded varying results that are most probably due to the differences in the models, age of the study subjects, and study protocols, such as fasting time, use of anesthesia, 18F-FDG route, and quantification method. At a fundamental level, it is apparent that humans and mice are already discriminated by their metabolism: An average mouse has an almost 7-fold faster metabolic rate as compared to humans at the thermoneutral temperature of these animals, which is between 30 to 34 degrees. However at room temperature of 21 degrees, an additional 1.66-fold increase in the murine metabolic rate has been measured (Kleiber 1975; Schmidt-Nielsen 1984; Gordon 1993). Fasting has a major impact on the overall metabolism of mice, triggering changes in the hormone and fatty acid signaling, increasing stress, and if prolonged, even causing a substantial decrease in the body weights of the animals, all of which can lead to misinterpretation of the changes in the cerebral metabolic rate (Wingfield and Kitaysky 2002; Deleye et al. 2016). Fasting mice before the 18F-FDG scan could offer similar benefits as seen in the human imaging studies. However in the previous 18F-FDG-µPET studies with AD models, fasting was less frequently incorporated into the study protocol, and the mice were allowed to eat ad libitum (Poisnel et al. 2012; Rojas et al. 2013; Macdonald et al. 2014; DeBay et al. 2017). If fasted, duration of fasting between 8 to 12 hours has been applied more frequently (Kuntner et al. 2009; Waldron et al. 2015 and 2017; Deleye et al. 2016; Liu et al. 2017) with the exception of overnight (Deleye et al. 2016; Coleman et al. 2017) or shorter fasting times (Luo et al. 2012; Li et al. 2016). In studies I and II, it was ensured that environmental factors were similar within the experimental groups. In both studies, short fasting periods of 3 (I) and 1.5 hours (II) were utilized to guarantee balancing the endogenous glucose levels while minimizing the stress reactions, which would occur if there were to be prolonged fasting. In general, mice have a nocturnal circadian rhythm, i.e. they consume two thirds of their daily food intake in the night time, thus short fasting times were used to sustain the normal rhythm and minimize stress by starting the fasting at sunrise, when the murine food intake would naturally decrease (Jensen et al. 2013). By restricting the food and water intake, and removing the bedding supplements from the cages, it was anticipated that fasting would decrease the basal blood glucose values of the mice while minimizing the intragroup variance. However in I, APPswe-PS1dE9 mice exhibited somewhat greater basal glucose values than Tg2576 mice with increased intragroup variation in comparison with the corresponding WT mice (Figure 23; Table 1 in I). After the scan, glucose values were slightly, but not significantly, elevated in APPswe-PS1dE9 and WT mice, whereas in the Tg2576 mice, glucose levels remained at the basal level or lower with the exception of 17-month-old WT mice, which displayed elevated glucose levels. The APP/PS1-21 model and its corresponding WT mice differed from the other models, showing higher glucose values after the 18F-FDG scan with relatively greater intragroup variation, especially in the TG mice (Figure 23; Supplemental data in II). The increased variability between groups before and after the 18F-FDG-PET scans might be a consequence of the isoflurane-based anesthesia and an inappropriate fasting duration for the TG model, which eventually affected the 18F-FDG outcome.

Anesthetic compounds used in the Studies I-III were inhalation isoflurane/air or isoflurane/oxygen mixtures, which were intended to reduce the variation between the individual activity levels and to minimize stress. Isoflurane, as such, tends to increase endogenous glucose levels, especially in the heart, while decreasing the brain and brown adipose tissue uptake of glucose (Toyama et al. 2004; Fueger et al. 2006). Isoflurane has been the most popular inhalation anesthetic in previous preclinical 18F-FDG studies with AD models, however, only a few of them (Kuntner et al. 2009; Poisnel et al. 2012; Luo et al. 2012; Rojas et al. 2013) have administered 18F-FDG under anesthesia. In general, human 18F-FDG PET studies are not conducted under anesthesia, instead the individuals are scanned awake. Hence in the preclinical studies, as isoflurane decreases the cerebral glucose utilization, it might reduce the spatial tracer uptake differences between different brain regions and underestimate the study outcome. However, handling awake mice might increase stress among animals and further alter the 18F-FDG retention such that more goes to brown adipose tissue, Harderian glands, muscle, and heart (Fueger et al. 2006), which lessens the brain uptake. The extensive Harderian gland accumulation might further cause spillover into the brain, interfering with the results of the PET analysis. In addition, low body temperature can trigger similar changes as stress. Therefore in Studies I-III, a heating pad was used for the body temperature maintenance, when mice were anesthetized. Unfortunately, the temperature measurements revealed that a significant decrease from the basal body temperature occurred after the PET scan when all imaging data were pooled together (Figure 24). However, no statistically significant intergroup differences were detected, except for the 9-month-old APP/PS1-21 and their corresponding WT mice, which showed significantly elevated body temperatures and cerebral 18F-FDG uptake due to a malfunction of the heating pad inside the PET/CT scanner at the time of the experiment. Therefore, this age group was eliminated from the published quantification data, but was taken into the relevant Results section of this thesis.

The ex vivo findings in I and II on the cerebral glucose metabolism were not applicable to confirm the in vivo 18F-FDG PET data due to the fact that 18F-FDG lacks an appropriate reference region. Therefore, the use of a pseudo-reference region is also questionable in terms of preclinical imaging studies, although pons has been proposed to be reasonable reference region as it is part of the encephalon, but posses high number of axons crossing over one to another (Lowe et al. 2009; Scheltens et al. 2018). This means that the ex vivo autoradiography results obtained in Studies I and II must be viewed as descriptive features of the 18F-FDG biodistribution in the murine brain, and not as a confirmative variable for the in vivo data. Previous studies with APP751SL/PS1M146L; PS1M146L (Poisnel et al. 2012), 5×FAD (Rojas et al. 2013), PS2APP (Brendel et al. 2016), and APPswe-PS1dE9 (Li et al. 2016) mouse models of AD have used cerebellum as a reference region for quantifying 18F-FDG data, but this has led to erroneously increased uptake ratios for TG mice as compared to WT mice. In addition to the relative measures, %ID/g has also been employed as a descriptive unit in preclinical 18F-FDG studies with Tg2576 (Kuntner et al. 2009) and APPswe-PS1dE9 (Liu et al. 2017) models but this parameter was unable to discriminate TG from WT mice. However, when %ID/g values have been normalized with the individual blood glucose values of the fasted mice, decreased 18F-FDG uptake has been observed in thalamus and midbrain of TASTPM mice at 13.5 months (Waldron et al. 2015a) and in thalamus and striata of APP/PS1-21 mice at 12 months (Waldron et al. 2015b). When taking into account the possible differences in the body weight of the animals, SUV has been demonstrated to be a valuable parameter in previous 18F-FDG μPET studies, revealing decreased tracer retention not only in II, but already in 5- (DeBay et al. 2017) and 13-month-old 5×FAD mice (Macdonald et al. 2014) even without fasting. In the TASTPM mouse model, a hypometabolic pattern after 6 months of age is detectable only after correcting the SUVs with the blood glucose values (Deleye et al. 2016; Waldron et al. 2017), but in Tg2576 mice (Coleman et al. 2017), no single quantification unit has been able to demonstrate a hypometabolic pattern in the brains of these animals (Coleman et al. 2017; I).

When considering the results obtained from the present and previous 18F-FDG studies with AD mouse models, it is evident that adjusting for environmental factors (i.e. temperature, handling, fasting, and anesthesia) and monitoring blood glucose values at multiple time points before, during, and after the PET modality are crucial in order to produce reliable imaging results, which truly reflect cerebral glucose metabolism. This means that TG models might require individually adjusted fasting periods, suitable resting temperatures, and standardized anesthesia conditions, which will need to be further evaluated in future imaging studies. Hence, even though different mouse models have been used for exploring the pathogenesis behind the cerebral dysmetabolism, with the results being further extrapolated to the condition of the human AD brain, based on the current knowledge obtained from the present and previous studies, none of the models can be viewed as being reliable enough to be considered as a proper disease model for screening alterations in glucose metabolism in AD.

[bookmark: _Toc2602261]Neuroinflammation

[bookmark: _Toc2602262]Glial activation in Alzheimer models

The APP/PS1-21 model was the only model to be examined with TSPO PET for measuring the overall extent of gliosis in the AD mouse brain. The longitudinal 18F-DPA-714 imaging study revealed increased radioactivity concentration ratios relative to the cerebellum in the different cortical lobes, thalamic and striatal regions, and part of a limbic system, already at the beginning age of the experiment of 6 months in TG mice. Furthermore, from 6 to 15 months, the differences between TG and WT did not expand further because the mean radioactivity ratios between the genotypes had reached their limit. Hence, at 6 months, TSPO upregulation seemed to be already significantly discriminating the genotypes from each other, suggesting that the pathology has begun in much younger animals, reached its peak, and then plateaued as the mice aged. On the contrary, Iba1-reactive microglia were present at low levels at 6 months as compared to 15 month-old TG mice, whereas GFAP-positive astrocytes seemed to reach their peak number in the cerebral cortex already at 6 months, but did not seem to expand further during aging (Figure 26). These consumptions need to be verified in the future quantification experiments, although a previous 18F-PBR111 PET study with the same APP/PS1-21 model demonstrated a low positive correlation between tracer uptake and Iba1-reactive microgliosis, but a trend towards a weak negative correlation between tracer uptake and GFAP-driven astrocytosis (Deleye et al. 2017). On the contrary, the brains of 2-month-old female APP/PS1-21 mice have displayed enhanced levels of GFAP-positive astrocytosis; this progressed until the age of 8-months throughout the entire neocortex, and was distinct from the amyloid plaques, but in parallel to microgliosis (Radde et al. 2006). Beyond, female APP/PS1-21 mice showed overall 18F-PBR111 SUV increases in the cortex, thalamus, and hippocampus, when 6-to-7-week-old and 4-, 7-to-8-, and 12-to-13-month-old TG mice were compared to their age-matched WT counterparts (Deleye et al. 2017). It was recently shown in vivo using a novel TSPO tracer and analogue for 18F-DPA-714, 18F-FDPA, that 12-month-old APP/PS1-21 mice expressed increased SUVs in the whole brain, frontal cortex, and hippocampus, whereas ex vivo autoradiography ratios relative to hypothalamus showed increases in the tracer uptake in the frontal cortex of much younger, 4.5-month-old TG mice. Similarly to the present study, Keller et al. observed age-related increases in the 18F-FDPA uptake between 4.5- and 15-month-old APP/PS1-21 mice, but not in WT mice (Keller et al. 2018).

Even though female APPswe-PSIdE9 mice were not examined with 18F-DPA-714 in the present study, differences have been evaluated previously in two longitudinal follow-up studies, in which male TG mice demonstrated increased relative measurements against cerebellum in the cortical region and hippocampus at 18 months (Chaney et al. 2018), which was confirmed in older study with 19-month-old TG mice (Sérrière et al. 2015). These studies also evaluated the PET imaging results with the antibody-reactive microgliosis (Sérrière et al. 2015) and overall gliosis with astrocyte- and microglial-specific antibodies (Chaney et al. 2018) at the same experimental age. In study I, female APPswe-PSIdE9 mice showed microgliosis with Iba1-immunohistological experiments at 6 and 12 months of age, and a similar finding was noted in female Tg2576 mice at 17 months, which confirmed the previously published findings with the same animal models (Figure 26). In terms of neuroinflammation, Tg2576 mice have previously been studied only with the MAO-B targeting radionuclide, 11C-DED, in order to image the extent of astrocytosis in the brain (Rodriguez-Vieitez et al. 2015). Six-month-old Tg25786 mice showed increased binding potentials in several brain regions as compared to either 8- to 15-month-old or 18- to 24-month-old TG or WT mice; this finding was confirmed with GFAP-positive immunostaining only at the ages between 18-24 months. Progressive microgliosis in the Tg2576 brain, which was shown in I with Iba1 immunohistochemistry, has been demonstrated previously, indicative of an increase in microglial magnitude and density near to Aβ plaques at 10- and 16-month-old TG mice (Frautschy et al. 1998).

[bookmark: _Toc2602263]Challenges in TSPO μPET

TSPO has been the most widely investigated target for imaging neuroinflammation over the past decade. Even though upregulation of TSPO in the brain indicates possible pathological conditions related to glial activation and thus, neuroinflammation in several neurological disorders, it also suffers from many limitations in its ability to demonstrate applicable features, especially in terms of TSPO tracer specificity and its usefulness in preclinical imaging studies involving small rodent brains. Caution is needed in the attribution of cerebral TSPO binding exclusively to microglia, since it is not possible to determine whether the PET signal in the brain contributes from microglia or astrocytes. In addition, the disruption in the blood-brain barrier, which occurs in some pathological conditions, might cause an abnormal leakage of mononuclear-phagocytes from the periphery into the brain, expressing TSPO more as its own levels and affecting the interpretation of the radioactive signal detection (Anholt et al. 1986). However, according to the 11C-PBR28 findings in a 5×FAD mouse model (Mirzaei et al. 2016) as well as the 18F-PBR111 uptake results in the APP/PS1-21 model (Deleye et al. 2017), microglia seem to be the predominant source of the tracer uptake rather than astrocytes; a proposal which was confirmed with immunohistochemical procedures. Thus, the contribution of the glial cell division in each animal model should be examined in parallel to TSPO PET imaging studies, which has been suggested previously (Venneti et al. 2013). TSPO PET imaging further lacks the ability to discriminate between the different subtypes of microglial cells, which are involved in temporal changes during inflammatory processes, and whose pro-, anti-inflammatory, or combination stage might be crucial for understanding the microglial functions during the neuroinflammation. Instead, TSPO PET might reflect the changes in the glial cell density, which is known to vary among different species (Owen et al. 2017). However, there are some benefits associated with utilizing small animal TSPO PET, including the lack of the functional polymorphism of TSPO gene in mice or rats, which limits the human TSPO PET sensitivity with most of the tracers. In order to increase the value of translational small animal PET in the clinic and serve as a reliable research tool for human healthcare purposes, other targets related to the complex neuroinflammatory pathway, such as COX, CB2R, P2X7R, are being evaluated as novel imaging agents targeting AD and other neurodegenerative disorders (Janssen et al. 2018).

Small animal 18F-DPA-714 PET data quantification faces similar problems as 18F-FDG as there is really no proper reference region in the brain for TSPO. Throughout the healthy brain, there is a constant low TSPO expression in gray and white matter, and blood vessel walls (Lyoo et al. 2015). In human PET studies, the quantitative analysis of 18F-DPA-714 involves the determination of relative measurement against cerebellar uptake or an arterial input function in a two-compartment model, which is corrected for the presence of possible radioactive metabolites. The latter leads to a total VT of the tracer, which is composed of specific and non-specific binding. Unfortunately, in preclinical imaging studies with mice, it is not feasible nor would it be ethical to conduct arterial sampling during the PET scan due to the small total blood volume of these species. Therefore, other quantification techniques has been applied, and in the previous TSPO μPET studies (Table 2), %ID/g from the 11C-PK11195, 18F-GE-180, and 18F-PBR06 uptake (Venneti et al. 2009a; Liu et al. 2015; James et al. 2015), SUV from the 11C-PK11195, 18F-PBR111, and 18F-FDPA uptake (Rapic et al. 2013; Deleye et al. 2017; Keller et al. 2018), and statistical parametric mapping (SPM) from the 18F-GE-180 uptake (Brendel et al. 2017b) have been used as the main values extracted from the TSPO imaging data, since they are non-invasive ways of assessing the regional uptake of the tracer in a specific time frame. These experiments have demonstrated increased TSPO tracer uptake in the TG mouse brain compared to WT mice, except for APP/PS1 model examined at 13 months with 11C-PK1195 (Rapic et al. 2013). Relative measures have also been applied in previous μPET studies, with cerebellum being the most attractive pseudo-reference region as was applied in Study II. Using this approach, 18F-DPA-714 (Sérrière et al. 2015; Chaney et al. 2018) and 18F-GE-180 (Brendel et al. 2016 and 2017) have discriminated APPswe-PS1dE9, PS2APP, and APP23, respectively, mice from their age-matched WT littermates. In addition to cerebellum, relative measures to the whole brain (James et al. 2015), striatal (Maeda et al. 2011), thalamic (Liu et al. 2015), muscle (James et al. 2015), and heart (Mirzaei et al. 2016) estimates have been reported with other TSPO radioligands, which have demonstrated increases in the tracer uptake in favor of AD mice. In conclusion from the past studies, a pseudo-reference region inside the brain might be applicable if the chosen mouse model exhibits relatively low TSPO tracer uptake in the selected region, and the radioactivity concentration measured with SUV in that site does not differ between TG and WT mice, when equivalent radioactivity doses are delivered to equal-sized animals. Additional experiments, including immunohistochemical and protein extraction procedures, for detecting TSPO in the brain, however, are desirable due to the obvious limitations of TSPO imaging.
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The longitudinal follow-up study III showed age- and genotype-dependent alterations in the relative measurements of 18F-FMPEP-d2 binding assessed against thalamic radioactivity concentrations in male APP/PS1-21 mice. The differences between TG and WT mice were more evident in the cortical and hippocampal region, striata, and cerebellum at 9 months, which then plateaued. The in vivo data was confirmed with the ex vivo measurements that revealed a significant reduction in the relative measurements for only striatum in 15-month-old male TG mice (Supplemental data 3 in III). In female APP/PS1-21 mice, which were only examined using ex vivo 18F-FMPEP-d2 autoradiography, significantly lower thalamic ratios were measured in the parietotemporal cortex, striata, and posterior hippocampus of 9-month-old TG mice when the ratios were compared to the age-matched female WT mice. With regard to the above mentioned results, CB1R expression was examined in 9-month-old mice to evaluate the 18F-FMPEP-d2 values in both male and female mice, when the genotype related differences started to appear. The total amount of CB1R protein was determined using Western blot; these indicated that female mice had 2- to 4-fold higher levels of CB1R protein in different brain regions, excluding hippocampus (Fig. 5 in III) than male mice, whereas there were no differences between TG and WT mice. It is concluded that CB1R PET imaging studies should be conducted as single-gender modalities or alternatively should examine female and male subjects as separate variables. According to Study III, there are either alterations in the 18F-FMPEP-d2 binding capability to the cell membrane and/or endogenous CB1Rs in the APP/PS1-21 G-protein coupling system, or there are alterations in the CB1R receptor conformation on the membrane or inside the cell. The contradictory results from the PET imaging and Western blot experiments in Study III might also be explained if the concentrations of the endogenous CB1R ligands had changed due to the genetic mutation of TG mouse model or if intracellular CB1Rs are affected by other lysosomal pathological factors. Indeed, there is no data to which part of the cell 18F-FMPEP-d2 actually binds. Neuronal studies have previously shown that the major proportion, up to 85%, of the total CB1Rs are located endogenously in the intracellular vesicles and constantly migrate between the membrane and endosomes (Leterrier et al. 2006). However, it has been claimed that some endogenous CB1Rs do not reach to the cell surface, instead they might have a distinct, yet unrevealed, functions compared to the membrane receptors i.e. what was previously thought of as down-regulation may in fact be the receptors becoming involved in different physiological process (Grimsey et al. 2010). One of those actions has been shown to be related to the modulation of the neuronal energy production, since CB1Rs have been detected in the neuronal mitochondria and they signal pathways, which target ATP production (Hebert-Chatelain et al. 2016). Since CB1Rs are harnessed only on-demand, disruption of this signaling system might also affect the 18F-FMPEP-d2 binding to these receptors. Nonetheless, evidence to support these hypotheses is lacking and hence, further studies are urgently needed to clarify the binding properties of 18F-FMPEP-d2 and other CB1R targeting radioligands, such as 18F-MK9470 (Van Laere et al. 2008), for both animal and human brain CB1Rs. The results from Study III showed that there was an undefined pathological event proceeding related to the CB1R function in the APP/PS1-21 mouse brain, but this was not related to the total CB1R levels with regard to the regional co-localization. These results join the line of controversial findings from the previously published non-PET data, in which fluctuating CB1R properties have been reported in different AD mouse models: Male APPswe-PS1dE9 have shown decreased CB1R-immunoreactivity in the neocortex at 6 months (Aso et al. 2012) or hippocampus at 10 and 12 months of age (Kalifa et al. 2011). Other groups have claimed, however, that male 14-month-old APPswe-PS1dE9 had elevated CB1R levels in the cortex (Mulder et al. 2011), but no changes in the redox-dependent receptor function of female TG mice at the same age as evaluated with 35S-GTPγS autoradiography (Kärkkäinen et al. 2012). A recent study detected increased G-protein coupling of CB1Rs in frontal cortex and striata of male APPswe-PS1dE9 compared to age-matched WT animals (Maroof et al. 2014). Male 3 x Tg-AD mouse model, on the other hand, have demonstrated significantly higher CB1R mRNA expression in the prefrontal cortex, dorsal hippocampus, and basolateral amygdala complex at 6 and 12 months, but decreased protein immunoreactivity in the basolateral amygdala complex and dorsal hippocampus when the animals were aged 12 months (Bedse et al. 2014). Furthermore, the CB1R activity as a 35S-GTPγS measurement was examined in young (4 months) and old (15 months) male 3 x Tg-AD mice; there was evidence of upregulated thalamic activity at 4 months, but downregulated receptor activity in the nucleus basalis of Meynert (Manuel et al. 2016). In 4-month-old Tg2576 mouse model, hippocampal CB1R membrane distribution and functional activity were restricted, which did not affect the expression levels of CB1Rs (Maccarrone et al. 2018). When comparing between the AD mouse model and a CB1R-knockout model, APP23/CB1-/- mice have demonstrated reductions in mutated APP levels and Aβ levels (Stumm et al. 2013), and 5-fold lower plaque formation abilities than in the APP23 mice, whereas APPswe-PS1dE9/CB1+/- mice showed no differences in amyloid pathology when compared to non-knockout animals (Aso et al. 2018).

Study III revealed additional information with regard to age-related increases in the CB1R in vivo PET tracer binding in WT male mouse brain, which has also been demonstrated in human PET 18F-MK9470 studies with healthy female gender (Van Laere et al. 2008). Further increases in the CB1R total levels have been observed in aging male rat dentate gyrus (Berrendero et al. 1998) and cortical region (Liu et al. 2003). The region-dependent CB1R upregulation might be related to the compensatory reaction against endocannabinoid dysfunction based on normal aging (Maccarone et al. 2001). In contrast, other studies suggest that CB1R gene expression either declines with aging in both the rodent and human brain (Berrendero et al. 1998, Westlake et al. 1994) or is preserved (Belue et al. 1995; Wang et al 2003). On the contrary, age-dependent changes in receptor function have been less frequently studied in female subjects, even though significant differences have been observed between the CB1R abundances in male and female human (Van Laere et al. 2008) and rodent (Burston et al. 2010; Castelli et al. 2014; Gonzalez et al. 2005) brain, which might originate from the hormonal lipid differences among sexes. The female sex hormone, estrogen, regulates the expression of CB1R in the brain via cerebral activation of GABA, dopaminergic, and glutamate pathways (Mani et al. 2001; Riebe et al. 2010; Wilson and Nicoll 2001). Hence, the CB1R profile needs to be well characterized in both genders before one can determine whether an ECS-related pathogenic pathway is involved in the prognosis of AD. Should this prove to be the case, then it might lead to the establishment of novel diagnostic AD biomarkers, which can be subsequently monitored using functional PET imaging agents targeting ECS. Preferably, to combine different modalities, such as novel PET radioligands targeting GABA-A, dopamine, and opioid receptors, which are closely associated with the function of the CB1R and endocannabinoid release, would provide an important tool for expanding the in vivo AD imaging research to the next level (Horti and Van Laere 2008).

[bookmark: _Toc2602266]Considerations for CB1R μPET

Even though the current CB1R targeting radioligands possess high receptor affinity, they are highly lipophilic compounds with logD7.4 values above 4, which is considered as an undesired feature of a ligand. Hence, the applicability of CB1R PET tracers remain limited with regard to non-specific tracer binding or a tendency to bind plasma proteins. High plasma protein binding tends to lower the availability to target radioactivity concentration and to cause weaker first pass extraction, which was seen with the previous 11C-OMAR imaging study (Normandin et al. 2015). In humans, by applying a threshold value, quantification procedures can be modified to take into account the estimates of compartment modelling, but in small animal brain quantification, this approach faces many challenges. In Study III, relative measures were applied to compare the 18F-FMPEP-d2 binding between APP/PS1-21 and WT mice. Thalamus was chosen as the pseudo-reference region because of the extremely low murine CB1R expression in that region (Figure 30). The ex vivo data further revealed another candidate, cerebellar white matter, that could be used as a reference region. However, the poor spatial resolution of the PET imaging device makes it impossible to discriminate between the cerebellar white and gray matters. Therefore, in order to analyze the tracer data equivalently in every in vivo and ex vivo experiment, thalamus was chosen instead of the white matter. In contrast, previous 18F-MK-9470 PET imaging studies with in rodents have normalized target brain region values to an estimate of the whole brain instead of choosing a pseudo-reference region (Casteels et al. 2010 and 2011; Miederer et al. 2013; Vandeputte et al. 2012). Nevertheless, the fast clearance of 18F-FMPEP-d2 from the thalamus confirmed the benefits of this brain region as a feasible reference, since the PET quantification showed approximately 20% lower tracer levels as confirmed by autoradiography data (40% lower tracer radioactivity concentration) in that region when compared to CB1R-rich brain regions, such as cortex and cerebellum (Data not shown). Furthermore, SUVs detected with PET and CB1R expression as assayed with Western blot did not differ between the genotypes. Similar features were observed in a previous CB1R PET study, in which the clearance rate of 11C-JHU75528 was much higher in thalamus and brain stem than in the other brain regions (Horti et al. 2006). Therefore, based on the findings from Study III, thalamus is a suitable pseudo-reference region for murine 18F-FMPEP-d2 PET studies. However, with regard to the future PET studies with humans, PET images cannot be analyzed similarly, because there are differences in the CB1R distributions pattern between mouse and human brain, which means that the quantification method has to be based on a function derived from the arterial input.
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The commercially available Tg2576 model showed the most modest pathological profile with regard to slow amyloidosis and microgliosis accompanied by the lack of hypometabolic features, which makes this model an unattractive research tool for future preclinical studies targeting longitudinal assessment of the disease course or drug discovery in AD. APPswe-PS1dE9, on the other hand, exhibited fast and aggressive amyloidosis, accompanied in parallel with microgliosis and cerebral hypometabolism, which mirrors the pathological features seen in AD patients. Similarly, the other double mutated mouse model, APP/PS1-21, featured equivalent pathological changes in the brain, but in a much more aggressive manner.

In Studies II and III, monitoring cerebral glucose consumption, TSPO upregulation, and CB1Rs should have started in much younger APP/PS1-21 mice in order to observe the initiation of the pathology related to these conditions. An ideal disease model should demonstrate similar aspects as the human disease, which none of the AD models currently have. On the other hand, an exaggerated disease onset in mouse models could overestimate the temporal course of the pathological events in the brain, which might lead to misinterpreted results in future studies. The involvement of tau should be incorporated into the pathological profile of a good disease model of AD, because it is one of the hallmarks of the disease and the primary cause of the neurodegeneration. Preferably, the genetic factors involved in LOAD accompanied with pro-inflammatory phenotype could offer an interesting way to study the sporadic form of AD, and models targeting LOAD should be further developed and evaluated, distinct from EO-FAD disease models. With regard to small animal imaging studies, the small size of the mouse brain and the poor spatial resolution of PET imaging devices pose challenges for reliable investigation of the pathological events in tiny brain regions, such as hippocampus. Hence, imaging AD rat models could be more feasible, because of the larger body size and their pathological profiles, which are more comparable to human disease, as has been shown in the TgF344-AD rat model of AD (Cohen et al. 2013).

[bookmark: _Toc2602269] Quantification of the μPET data

In Studies I-III, a MRI mouse brain template was used for the spatial guidance to localize the smallest brain regions in the murine brain. However, the spatial resolution of the PET/CT device is only 1.3 mm, which leads to the partial volume effect due to the relatively large pixel size. The spillover effect from the adjacent brain structures with high radioactivity uptake is also manifested in small regions, including hippocampus and hypothalamus, leading to some overestimation of radioactivity concentrations in these regions. In addition, high uptake from the tissues outside the brain, such as the Harderian gland and pituitary gland, might have increased the extrapolation of the frontotemporal and hypothalamic activities in 18F-FDG and 18F-DPA-714 PET studies, respectively.

Small animal PET has traditionally been validated with ex vivo autoradiography experiments to obtain more precise information about the spatial biodistribution of the tracer of interest. Aforementioned experiments should share similarities within the quantification, i.e. same reference region should be utilized in order to compare the ligand retention results. Unfortunately, this type of comparison could not be conducted in Studies I and II due to the lack of a reference region for 18F-FDG. In the experiments with 18F-DPA-714 and 18F-FMPEP-d2, the use of a pseudo-reference region was justified and ex vivo experiments were able to confirm the in vivo trend. As a result to summarize the usefulness of preclinical PET imaging studies conducted in this thesis work, APPswe-PS1dE9 and APP/PS1-21 are suitable for future longitudinal studies to unravel both the temporal aspects and causal features of AD-like pathogenesis during Aβ pathogenesis. This also means that these models can be disease mimicking tools in interventional drug discovery research with some limitations. Hence, in future studies similar to this thesis work, the following recommendations are provided:

1. The pathogenetic profile of AD animal model must be monitored in temporal manner before the initiation of any pathological events, if a PET method is being applied.

2. Longitudinal PET imaging studies should be evaluated with antibody-based ex vivo experiments with appropriate agents and age-matched replicates related to the PET radioligand target.

3. Justification of using 18F-FDG in small animal PET should be thoroughly considered.

4. Small animal studies harnessing 18F-FDG should be conducted with careful considerations regarding the chosen animal model and the appropriate environmental factors influencing the model (i.e. fasting, anesthesia, quantification technique).

5. Imaging small animals with TSPO targeting PET radioligand should include antibody-based ex vivo experiments for the detection of microglial, astroglial, and TSPO expression, and these experiments should be compared retrospectively.

6. Monitoring CB1R system with targeting PET radioligands should include the discrimination of female and male test subjects due to the differences in receptor expression and functional properties between the genders.

7. The exploitation of 18F-FMPEP-d2 for monitoring cerebral CB1Rs must be evaluated with concomitant experiments regarding the receptor expression (ELISA, Western blot) and function (35S-GTPγS) to validate the meaning of the tracer binding in the brain.

[bookmark: _Toc2602270]Study limitations

Specific limitations of the studies:

I	The small number of animals limited the possibility to conduct longitudinal investigations and hence, to detect the earlier pathological phase prior to Aβ pathology, which would have been rather informative. Larger number of animals would have provided the opportunity to investigate different fasting durations and thus, tolerance for food deprivations and effects on blood glucose. Blood glucose should have been measured more frequently, i.e. before the fasting and 18F-FDG injection. However, such procedures might increase the stress imposed on the mice, which should be avoided in 18F-FDG imaging studies. Additional immunoreactive staining on neuronal and synaptic markers could have provided a secondary marker to be compared to the imaging data.

II	 One obvious limitation was the ex vivo quantification in 18F-FDG studies, in which an inappropriate reference region was utilized that could not be mirrored with the longitudinal in vivo PET data. The longitudinal assessment should have been initiated in much younger animals, because ex vivo 18F-DPA-714 revealed that TSPO upregulation had already occurred in 1-month-old APP/PS1-21 mice. Furthermore, immunoreactive TSPO staining, and Iba1 and GFAP quantification would have given more information about the PET ligand specificity and possibly revealed differences in the activation of different glial cell types between TG and WT mice. Correlation between Aβ pathology and temporal changes in glucose metabolism and glial activation detected with PET should have been examined in order to reliably investigate the pathological profile of APP/PS1-21 model.

III	The limited animal availability in ex vivo experiments prevented the investigation of gender-related differences in the CB1R expression and availability at various ages. As described in Study II, the amyloidosis of APP/PS1-21 mouse model should have been quantified in order to correlate these changes to 18F-FMPEP-d2 binding detected with longitudinal PET. Additional immunohistochemical and immunoblotting experiments with antibodies targeting other ECS agents would have added value to the imaging results. The greatest limitations of 18F-FMPEP-d2 was the radioactive metabolite in the murine brain, which represented part of the total 18F-radioactivity detected with PET.

[bookmark: _Toc2602271]Future prospects

The basis of AD has been the vicious cycle of the production of Aβ molecules, which aggregate into toxic oligomers, and then proceed into aggressive accumulation of neuritic plaques within the neurons. Post mortem findings of this recognized proteinopathy have been summarized via the amyloid cascade hypothesis, which has been a dogma directing research and subsequently drug discovery programs. As a consequence of technological improvements and intensive scientific efforts, other theories have been postulated to explain the metabolic and inflammatory changes in AD beyond the amyloid pathology. At present, many hypotheses, which have been generated from the post mortem, ex vivo, and in vitro based evidence, need further evaluation through novel in vivo biomarkers targeting these theoretical culprits. One of the main theories, i.e. that the pathogenetic course involves heavily on immunoreactive tau aggregates and NFT accumulation, cannot yet be assessed by PET as there are no reliable radioligands, which would reveal the presence of tauopathy in young individuals as well as in asymptomatic AD patients. Current AD PET imaging has focused on targeting dense amyloid plaques for confirming the diagnosis of the disease or for re-evaluating the treatment efficacy in clinical trials. Even though such studies have yielded some promising results, which do mirror post mortem findings with proteinopathy markers, strategies toward detecting the soluble, more neurodestructive Aβ oligomers have gained more interest both in imaging ligand development and drug discovery (Jack et al. 2013; Sehlin et al. 2016).

The perfect timing to examine AD disease stage sets great challenges. Biases may be encountered whether known or novel disease biomarkers are monitored at the “wrong” disease stage during the temporal course of AD. The expression tone and timing of the different proteins and receptors involved in the disease pathway may fluctuate from the initiation of AD as well as during its progression, and hence, the onset of different biomarkers must be investigated in prospective longitudinal assessments, which cannot be captured in cross-sectional settings. In clinical point-of-view, early disease detection targeting amyloid and non-amyloid pathology in non-symptomatic patients would be valuable for the initiation of disease modifying intervention, if ever applicable. Interest toward new interventional targets should include neuroinflammation and the ECS, especially the novel subtargets such as P2X7R, TREM2, interleukins, and CB2R (Holland et al. 2014; Janssen et al. 2018), which are also captivating targets for the further PET radioligand development. Imaging in vivo of amyloid protofibrils has also suggested to be valuable target for in-depth recognition of amyloid formation (Syvänen et al. 2017). In the end, new imaging agents could, in addition to monitoring drug efficacy in follow-up trials, ease on patient selection and characterization in a multidimensional way. Multitracer PET studies within the same subject could also provide in-depth information about the disease onset on an individual level, which could potentially offer a biomarker-based diagnosis for tailored combination treatment strategy in patient care. However, even though the development of new PET tracers targeting AD has been accelerated during the past decade, strong efforts must be conducted in terms of establishing effective drugs against the disease progression both against amyloid and other targets. These sort of investigations require reliable preclinical disease models and longitudinal assessments to gather the temporal and causal events in the AD-like brain. Current mouse and rat models need further evaluation to be able to be utilized for nonclinical drug discovery, and preferably, to be combined with LOAD models or EO-FAD models with additional LOAD phenotype. The validity of amyloid murine models in drug development must be carefully considered, and the selected disease model must be thoroughly evaluated as a feasible model for interventional studies. Nevertheless, despite the obvious limitations surrounding the applicability of the amyloid mouse models, these models have allowed researchers to investigate the AD brain at the cellular level, which is not feasible in AD patients. As an example, the pathogenesis affecting synaptic plasticity could previously only be evaluated via ex vivo examinations, but at present, it is possible to administer imaging ligands targeting synaptic proteins to visualize the condition of synapses in vivo both in AD models and patients (Nabulsi et al. 2016; Rabiner 2018). In my point of view, PET offers a unique way to track changes in a living brain that can be considered as the most important measurement in AD. However, imaging of AD is still in its infancy, and finding of reliable radioligands and imaging methods need further development and evaluation both in patients and disease models. The metabolic and proinflammatory changes in AD involve complex signaling pathways, which are independent, yet interacting with each other and are affected by the production of Aβ. However, the precise mechanisms and relationships between oxidative stress, neuroinflammation, glial cell abnormalities, and proteinopathies are still not clear, underlining the urgent desire for narrowing the gap between the underlying disease onset,  the development  of  possible  disease-modifying

therapeutics, and imaging modalities for studying these pathways in vivo (Heneka et al. 2015).

In regard to imaging cerebral glucose utilization, 18F-FDG is a well-established feature in patients, however in rodent models, the full applicability is yet to be confirmed. Hence, other targets in energy metabolism should be established, and the potential feasibility to monitor their role during the disease progression in living subjects should be investigated. Evidence from past decades have shown that mitochondria and oxidative stress possess a greater role in AD than was earlier thought, and they share an additional impact on proinflammatory processes in the brain. Thus, novel imaging ligands targeting ROS and mitochondrial complex I have been established, and the feasibility of these new tracers are awaiting utilization in AD (Zhang et al. 2016; Tsukada et al. 2014). Neuroinflammation, on the other hand, as a potential target for drug discovery and tracer development, has encountered more interest and developmental leaps than energy metabolism. While TSPO has been dominating the overall PET imaging of neuroinflammation ever since the introduction of 11C-PK11195 in 1986 (Charbonneau et al. 1986), but producing more questions than answers regarding the complexity of the pro-inflammatory signaling pathway, the establishment of other ligands targeting purinergic receptors, astrocytes, or interleukins, have been a welcome breath of fresh air in the inflammation research (Janssen et al. 2018). However, it is still wise to think that the temporal and causal role of microglial function is one of the most important events in AD progression, which is, unfortunately, impossible to examine using PET alone. Other research methods, including immunohistochemical staining, are needed to establish the phenotype status and the corresponding activations stage of these cells. In the meantime, PET has been acting as a prize-winning working horse in clinical drug trials by adjusting the patient selection criteria, monitoring the treatments effectiveness and study outcomes, and proofing the target engagement. Currently, major phase I-III studies on antibody-based anti-amyloid as well agents targeting metabolism, inflammation and cannabinoid-based treatment strategies are ongoing, and the first long-awaited results are not estimated to arrive earlier than 2020 (Cummings et al. 2018). The hope for the positive results from these trials has not diminished, even though there has been no success in the past clinical drug discoveries targeting the AD progression. Failures have, however, increased the interest in finding other drug targets. One of these exotic candidates has been the ECS, which offers a variation of potential, but challenging and controversial routes and molecules. Cannabinoid treatment strategies are suggested to ease on symptomatic features of AD while decreasing the amyloid burden. By far, findings from cannabinoid-based treatments in AD mouse models have demonstrated decreased Aβ levels and reduced gliosis and proinflammatory markers in Tg2576 and APP/PS1 models (Martín-Moreno et al. 2012; Aso et al. 2015). A non-psychoactive phytocannabinoid, cannabidiol, has further shown to downregulate proinflammatory responses and glial activation both in vitro and in vivo (summarized in Watt and Karl 2017). These novel findings, however, need further confirmation since the general guidelines for using these controversial compounds are stricter compared to other drug targets. Imaging of safety and efficacy of potential cannabinoids with longitudinal 18F-FMPEP-d2 or other CB1R PET modalities might lighten the fear of these intervention strategies. Furthermore, in vivo imaging might adjust the possible treatment planning, accuracy, and whether to use receptor agonist or antagonists in a case manner.

Despite all the effort made so far, AD is still an unknown disease, which affects millions of people in later life. However, our knowledge on the diseased brain has enhanced, which brings light to the possibility of finding effective medical treatment. This long journey might be relieved by utilizing longitudinal studies with a multitracer PET approach. These imaging tools could perhaps elucidate the independent and synergistic processes behind the neuropathological cascade regarding different signaling pathways in AD progression. The most complex, yet crucial cascades are related to energy metabolism, neuroinflammation, and the ECS that also serve as new insights into the disease as well as a broad platform of potential targets for disease-modifying therapies to be combined with the upcoming anti-amyloid treatment plan. The one thing left to do is to work hard, and never give up.

“You gain strength, courage, and confidence by every experience in which you really stop to look fear in the face. You are able to say to yourself,

‘I lived through this horror. I can take the next thing that comes along’.”

							                - Eleanor Roosevelt
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Studies IIII of this thesis work demonstrated that, not only do TG mouse models of AD differ in terms of the extent of amyloidosis, but they also exhibit different patterns of cerebral glucose metabolism in the early and late disease stages. The exploitation of 18F-FDG μPET is limited with regard to standardized environmental factors and examination of the characteristic features of the chosen AD model. The APPswe-PS1dE9 and APP/PS1-21 models demonstrated hypometabolic features in the brain and are more suitable than the Tg2576 model for longitudinal 18F-FDG imaging studies intended to evaluate interventions targeting AD pathology and their effect on cerebral glucose metabolism, and thus neuronal function. 18F-DPA-714 successfully showed elevated glial activation in the brains of the APP/PS1-21 model at a very young age. This model further demonstrated the most aggressive pathology regarding amyloidosis and the decreased CB1R availability detected with PET. 18F-FMPEP-d2 demonstrated feasible features for future imaging studies in mice if gender- and tracer-related limitations are carefully taken into consideration.

Specific conclusions of the studies:

I	The APPswe-PS1dE9 and Tg2576 mouse models differed with regard to Aβ pathology, microgliosis, and glucose metabolism when equivalent experimental protocols and quantification methods were applied. The amyloidosis correlated moderately with glucose hypometabolism in old APPswe-PS1dE9 mice, whereas with microgliosis, it correlated weakly in old APPswe-PS1dE9 and Tg2576 mice. This study underlines the need for standardized 18F-FDG μPET protocols, individually adjusted for each strain.

II	The APP/PS1-21 model had temporal changes in the Aβ-driven glucose hypometabolism and glial activation in the brain when longitudinal 18F-FDG and 18F-DPA-714 PET modalities were utilized. These changes were accompanied by progressive amyloidosis and microgliosis. The PET results are comparable to clinical AD findings, which makes this model an attractive research tool for future interventional studies targeting AD pathology.

III	Age- and genotype-dependent alterations in 18F-FMPEP-d2 binding were demonstrated in male APP/PS1-21 mice with unchanged total CB1R expression. 18F-FMPEP-d2 presented encouraging evidence of its applicability for monitoring cerebral CB1Rs in preclinical studies with other disease models, as well as AD patients. However, evaluation of the binding differences between the genders and confirmation of the benefits of 18F-FMPEP-d2 as a PET tracer for imaging CB1Rs in AD or other neurodegenerative diseases requires further research.
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