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ABSTRACT

Mycotoxin contamination in food is a serious concern for human and animal
health. Today, we do not know how to detoxify food materials that are
contaminated with mycotoxins in ways that retain their edibility. Therefore,
avoiding mycotoxins from entering the food chain is an important approach. This
needs early and easy identification, detection, and quantification of mycotoxin-
producing fungi. The conventional methods for the identification, taxonomy,
detection, and quantification of toxigenic fungi are challenging because they
require a high level of expertise and a set of sophisticated equipment.

The aim of current study was to use molecular-based approaches (as they are
practical, rapid, and more reliable) to identify, classify, detect, and quantify
mycotoxin-producing fungi including aflatoxin-producing Aspergillus and
fumonisin- and trichothecene (TC)-producing Fusarium species. The results
obtained from this study suggested that there are 2 main populations of F.
graminearum in Europe. The population of the 3-acetyl-deoxynivalenol (3ADON)
chemotype is dominant in northern Europe and it has probably recently been
spreading from Finland to north-western Russia, while the population of the
15ADON chemotype is dominant in the central and southern Europe and it has
been spreading to the Denmark and Norway.

The results also suggested that the homogenization of the oat flour by milling
with a 1 mm sieve is important for the reproducibility of deoxynivalenol (DON)
and F. graminearum DNA levels, which is evident from a higher correlation
between the DON and F. graminearum DNA levels in oat grain samples that
were sieved after milling.

In the thesis, the F. langsethiae isolate obtained from Iranian wheat was re-
identified as F. sibiricum, and the identification was confirmed by IGS
sequencing. This work reports the first record of F. sibiricum from Iran, outside
northern Asia and Norway, and the first isolation of F. langsethiae (a European
pathogen) from western Siberia.

Large variations in the DON content and the amounts of F. graminearum DNA,
and poor coefficient of determination (R2) between these were detected in oat
grain when the RIDA®QUICK SCAN kit was used for DON content estimation.
This study confirmed that the coefficient of determination was usually less when
DNA or DON levels were estimated from oat flour that was not ground with 0.8
mm or 1 mm sieves. DON levels obtained with the Rida®Quick method were
usually higher than those obtained with accredited GC-MS method in the
Finnish oat, barley, and wheat samples. The homogenization of the oat flour by
sieving is therefore likely to be connected to the variations in the DON detection.
Also, it was suggested that the amounts of DON close to the legislative limits
should be reconfirmed with accredited quantitative analyses.

9
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In addition, isolation, identification, detection, and quantification of Fusarium and
Aspergillus isolates from Egypt and the Philippines maize, wheat, and soil
samples were implemented in this thesis. A. parasiticus isolates, which
produced higher amounts of aflatoxins, were only found in the Philippines.
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TIIVISTELMÄ
Elintarvikkeiden sisältämät mykotoksiinit ovat vakava huolenaihe ihmisten ja
eläinten terveydelle. Nykyään emme tiedä, miten mykotoksiineja sisältäviä
elintarvikkeita voi puhdistaa niin, että niiden käyttökelpoisuus säilyy. Siksi on
tärkeää välttää mykotoksiinien pääsyä elintarvike-ketjuun. Tämä vaatii
mykotoksiineja tuottavien sienten varhaista tunnistamista, detektointia ja
kvantifiointia helposti käyttöönotettavilla menetelmillä. Perinteiset menetelmät
tunnistusta, taksonomiaa, detektointia ja toksigeenisten sienten kvantifiointia
varten ovat hyvin haastavia, koska ne vaativat huippuluokan osaamista ja
laitteita.

Työn tarkoituksena oli käyttää molekyylibiologisia menetelmiä, koska ne ovat
käytännöllisiä, nopeita ja luotettavia tunnistamaan, luokittelemaan,
havaitsemaan ja kvantifioimaan mykotoksiinia tuottavia sieniä, mukaan lukien
aflatoksiinia tuottavia Aspergillus-homeita sekä fumonisiinia ja trikotekeeneitä
tuottavia Fusarium-punahomeita. Väitöskirjatyön tulosten perusteella esitetään,
että Euroopassa on kaksi F. graminearum-populaatiota. 3ADON-kemotyyppi on
vallalla Pohjois-Euroopassa ja se on ilmeisesti levinnyt hiljattain Suomesta
Luoteis-Venäjälle, kun taas 15ADON-kemotyyppi on vallalla Keski- ja Etelä-
Euroopassa, ja se on hiljattain levinnyt Tanskaan ja Norjaan.

Lisäksi esitetään, että kauranäytteiden homogenointi jauhamalla 1 mm:n
seulalla näyttää olevan tärkeä DON- ja F. graminearum-DNA-
pitoisuusmittausten toistettavuudelle, mikä on osoitettu kauran korkeammalla
korrelaatiolla DON ja F. graminearum-DNA-pitoisuuksien välillä.

F. langsethiae -kanta, joka eristettiin Iranissa vehnästä, tunnistettiin myöhemmin
F. sibiricumiksi ja tunnistus varmistettiin IGS-sekvensoinnilla. Työssä
raportoidaan tästä ensimmäisestä iranilaisesta F. sibiricum-kannasta, joka oli
alun perin määritetty F. langsethiae-lajiin, sekä ensimmäisestä Euroopan
ulkopuolelta löydetystä F. langsethiae-kannasta, joka löytyi Länsi-Siperiasta.

Aikaisemmin on usein havaittu, että kauranjyvän F. graminearum-DNA- ja DON-
pitoisuuksien välillä on melko huono korrelaatio. Nyt saadut tulokset vahvistivat,
että korrelaatio F. graminearum-DNA ja DON-pitoisuuden välillä oli pienempi,
kun ne uutettiin kauroista, jota ei oltu jauhettu käyttäen 0,8 mm: n tai 1 mm:n
seuloja. Rida®Quick-pikamääritysmenetelmällä mitatut DON-pitoisuudet, olivat
tavallisesti korkeammat kuin akreditoitujen GC-MS-menetelmällä mitatut DON-
pitoisuudet suomalaisessa kaura-, ohra- ja vehnänäytteessä. Kaurajauhojen
homogenointi seulan avulla on siten todennäköisesti yhteydessä Fusarium-DNA
ja DON-määrien vaihteluihin. Pikamääritysmenetelmillä havaitut lähellä suurinta

11
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sallittua määrää olevat DON-pitoisuudet olisikin vahvistettava akreditoiduilla
kvantitatiivisilla kromatografisilla analyyseillä.

Ensimmäisessä julkaisussa Egyptistä ja Filippiineiltä peräisin olevista maissi-,
vehnä- ja maaperänäytteistä eristettiin Fusarium–isolaatteja. Lisäksi Fusarium-
punahomeita tunnistettiin ja fumonisiinia tuottavien Fusarium-punahomeiden
DNA:n määrää mitattiin Egyptistä ja Filippiineiltä peräisin olevista maissi- ja
vehnänäytteistä. A. parasiticus-isolaatteja, jotka tuottivat suurimmat mitatut
aflatoksiinimäärät, löydettiin vain Filippiineiltä.

12
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1. INTRODUCTION

1.1 Mycotoxins
Mycotoxins are low-molecular-weight natural toxic chemicals produced by molds
(a type of fungi), especially Aspergillus, Penicillium, and Fusarium species. The
fungi can contaminate the food-chain with mycotoxins either directly by
contaminating the plant-based food and feed materials with mycotoxins or
indirectly by growing on food and feed products. Mycotoxins contamination can
occur in all agricultural commodities including maize, wheat, barley, soybeans,
sorghum, and nuts in the fields, during transportation, or during storage, if
conditions are suitable for fungal growth (Alshannaq and Yu, 2017; Streit et al.,
2012). Currently, more than 300 mycotoxins are known; however, only a few of
them are commonly found in food and feed materials. The most common
mycotoxins are Aflatoxins (AFs), Fumonisins (FBs), ochratoxins (OT), patulin,
zearalenone (ZEA), trichothecenes (TCs), Deoxynivalenol (DON), and T-2 toxin
(Pereira et al., 2014). Mycotoxins cause worries all over the world not only
because of the risk related to the health of humans and animals but also
because of the economic losses that occur due to mycotoxin-contaminated food
and feed materials (Ostry et al., 2017). In African countries, several mycotoxins
are encountered, especially AFs and FBs, but in European countries, TCs, OT,
and ZEA are mostly encountered. However, with the increase in international
trade, all types of mycotoxins might be detected in different areas of the world
(Bhat et al., 2010). The exposure of humans and animals to mycotoxins like
AFs, TCs, and FBs, usually occur through the ingestion of contaminated
materials. Such exposer can cause both acute and chronic toxicities. In fact,
mycotoxins have several toxic effects including carcinogenic, hepatotoxic,
nephrotoxic, neurotoxic, mutagenic, teratogenic, estrogenic, and
immunosuppressive effects (Kensler et al., 2011; Pereira et al., 2014). Due to
the toxic effects of mycotoxins, many countries have set-up strict limits for the
amounts of mycotoxins in the food and feed materials and have established
legislation for controlling their possible contamination (Juan et al., 2012; Moretti
et al., 2017). For example, EU mycotoxin limits in Cereals are 4–15, 2–10, 200–
1000, 200–500 µg/kg for total AFs, OT, FBs, and DON, respectively (Alshannaq
and Yu, 2017).

1.2 Fusarium species
Several teleomorph genera have been found for the species of the anamorph
genus Fusarium. Most of them belong to the phylum–Ascomycota, class–
Ascomycetes, order–Hypocreales, and genus–Gibberella (Nelson et al. 1994;

13
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Leslie and Summerell, 2006). At the Nomenclature Session of the Botanical
Congress meeting in Melbourne in 2011, it was decided that all names,
irrespective of being typified by an anamorph or a teleomorph, will be on equal
footing in terms of priority. This means that the second-class nomenclatural
status of Fusarium as an anamorph genus has ended, allowing the use of the
name Fusarium without additional teleomorph names. Historically, taxonomic
treatments of Fusarium have stressed the anamorph nomenclature, because
teleomorphs are unknown for most of the species and anamorphs are usually
found by plant pathologists and other applied biologists in different cultures
(Geiser et al., 2013). Fusarium graminearum (anamorph) is the major causative
agent of fusarium head blight (FHB) in many regions, worldwide. The
teleomorph of this fungus is known as Gibberella zeae. In future, only one name
should be used for different fungal species (Hawksworth, 2011). According to
Geiser et al., 2013), the anamorph name–Fusarium should be used as the only
genus name for all Fusarium species instead of the different teleomorph names,
including the Gibberella.

The genus Fusarium is widespread in all habitats and has both pathogenic and
saprophytic species (Liddell, 1991; Nelson et al., 1994; Sandoval-Denis et al.,
2018). Many Fusarium species cause plant disease in a huge number of crops
and cereals. Also, some species of this genus have the ability to become
pathogenic for both humans and animals. The isolation of Fusarium species can
be performed from plant material and soil samples (Summerell et al., 2003; Aoki
et al., 2013). The plant diseases, which are caused mainly by the Fusarium
genus, appear in 80% of all the cultivated plants (Leslie and Summerell, 2006).
The symptoms of the infection caused by Fusarium species can be recognized
at all stages of the plant growth, starting from seed germination to the
vegetation, based on the Fusarium species involved and the host plant. Several
Fusarium species can co-infect one host plant causing infection with an ability to
produce mycotoxins as secondary metabolites (Desjardins, 2003; Logrieco et
al., 2007).

The main mycotoxins produced by Fusarium species include TCs and FBs. F.
graminearum, together with other closely related species of F. graminearum
species complex, is the most common cause of FHB and the most important
TCs producer worldwide. The main species of F. graminearum species complex
in Europe is F. graminearum sensu stricto, which is also the most important
DON producer in most countries in Europe (Pasquali and Migheli, 2014;
Pasquali et al., 2016; Yli-Mattila and Gagkaeva, 2016).

14
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New T-2/HT-2 toxin-producing Fusarium species such as F. langsethiae (Torp
and Nirenberg) and F. sibiricum (Gagkaeva, Burkin, Kononenko, Gavrilova,
O'Donnell, T. Aoki, and Yli-Mattila) have been recently found in northern Europe
and Asia (Torp and Nirenberg, 2004; Yli-Mattila et al., 2011). Up to now, F.
langsethiae isolates have only been found in Europe (except one isolate in
western Siberia), while F. sibiricum is mainly distributed in Siberia and Russian
Far East, except for one isolate in Norway (Yli-Mattila et al., 2011; Yli-Mattila,
2012) (and one isolate from Iran, Paper IV), which was considered as an
intermediate between F. sporotrichioides and F. langsethiae.

F. verticillioides and F. proliferatum are considered the main producers of FBs
(Marin et al., 2004). They belong to Gibberella fujikuroi species complex and the
identification of this complex based on morphological characteristics is
challenging, even for experts (Leslie and Summerell, 2006; Rossi et al., 2009).
The early detection and identification of Fusarium species infection are
substantial in predicting the toxicological risk and in preventing the formation of
toxic metabolites (Desjardins, 2003; Hong et al 2018).

1.2.1 Fumonisins
The FBs are an important group of mycotoxins produced mainly by F.
verticillioides and F. proliferatum. They have a long-chain hydrocarbon in their
structure, which is considered the source of FBs toxicity (Rheeder et al., 2002).
There are around 12 types of FBs including FB1, FB2, and FB3. All of them
have similar chemical structures and can contaminate corn (Sydenham et al.,
1996), wheat, and barley (Aziz et al., 2004; Levasseur-Garcia, 2018). The FBs
can also be detected in rice, sorghum, triticale, cowpea seeds, soybeans, and
asparagus (Desjardins, 2006; Schatzmayr and Streit, 2013). The mycotoxins in
this group are thermostable even under cooking conditions, but their
concentration can be reduced by processing at a high temperature (above
150ºC) (Marasas, 2001).

The main factors promoting FBs production are the infestation of plants by
insects, high temperature, and water activities. The FBs are mainly produced
under field condition before harvest and during the beginning of drying, but in
rare cases, they may be produced during storage under extreme temperature
conditions (Mannaa and Kim, 2017).

The FB1 and FB2 (Figure 1) are considered the most important FBs. The FB1 is
considered highly toxic for mammals. The International Agency for Research on
Cancer (IARC) has classified FB1 as Group 2B mycotoxin (IARC, 2002). The
FBs have been reported to cause many health problems in animals, like the

15
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equine leukoencephalomalacia (ELEM) in horse and pulmonary edema in swine
(CAST, 2003; Piva et al., 2005). In humans, a relationship has been observed
between the occurrence of esophageal cancer and the consumption of corn
containing FBs (CAST, 2003). Moreover, FB1 has been reported to possess
teratogenic (Marasas et al., 2004) and carcinogenic (Boppana et al., 2017;
Gelderblom et al., 2001; Lemmer et al., 1999) properties. Several surveys have
raised concerns regarding the extent of FB1 contamination and its impact on
mammal’s health and productivity (Rodrigues and Naehrer, 2012; Boutigny et
al., 2014; Cendoya et al., 2014; Abd-El Fatah el al., 2015).

Figure 1. Chemical structures of FB1 (A) and FB2 (B) (modified from Mohamed, 2010).

Table 1 shows the morphological identification and FB production of 51 isolates
from maize grains that were collected from three big governorates of Egypt’s
delta region (B: Al Beheira, K: Al Qalyubia, and D: Al Dakahlia). The most
frequent species was Fusarium verticillioides that represented 96% of the
isolates. Only 4% of the isolates (2 isolates) belonged to Fusarium proliferatum.

Table 1. Morphological identification of Fusarium, detection and identification of fumonisin-
producing fungi, and analysis of FB production by HPLC (Abd-El Fatah et al., 2015).

Isolate
code

Morphological
and
microscopic
identification

Molecular detection and identification
of FB-producing fungi

HPLC
analysis of
fumonisin
B1 mg/kgTaqfum-2F

Vpgen-3R
PCR

Verpro-F
VERTI-
R PCR

Fumonisin-
producing
species

B1 F. verticillioides + + F. verticillioides N.D.

B2 F. verticillioides + + F. verticillioides N.D.

B3 F. verticillioides + + F. verticillioides 120

B4 F. verticillioides + + F. verticillioides 100

B5 F. verticillioides + + F. verticillioides 120

B6 F. verticillioides + + F. verticillioides 41

16
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B7 F. verticillioides + + F. verticillioides N.D.

B8 F. verticillioides + + F. verticillioides N.D.

B9 F. verticillioides + + F. verticillioides 5.3

B10 F. verticillioides + + F. verticillioides 4.40

B11 F. verticillioides + + F. verticillioides N.D.

B12 F. verticillioides + + F. verticillioides N.D.

B13 F. verticillioides + + F. verticillioides 30

B14 F. proliferatum + + F. verticillioides 25

B15 F. verticillioides + + F. verticillioides 25

B16 F. verticillioides + + F. verticillioides 380

B17 F. verticillioides + + F. verticillioides 90

B18 F. verticillioides + + F. verticillioides 200

B19 F. verticillioides + + F. verticillioides 59

B20 F. verticillioides + + F. verticillioides 175

K1 F. verticillioides + + F. verticillioides N.D.

K2 F. verticillioides + + F. verticillioides 10.5

K3 F. verticillioides + + F. verticillioides N.D.

K4 F. verticillioides + + F. verticillioides 1.4

K5 F. verticillioides + + F. verticillioides 3.5

K6 F. verticillioides + + F. verticillioides 20

K7 F. verticillioides + + F. verticillioides 100

K8 F. verticillioides + + F. verticillioides 30

K9 F. verticillioides + + F. verticillioides 50

K10 F. verticillioides + + F. verticillioides 555

K11 F. verticillioides + + F. verticillioides 30

K12 F. verticillioides + + F. verticillioides 54

K13 F. verticillioides + + F. verticillioides 75

K14 F. verticillioides + + F. verticillioides 13

K15 F. verticillioides + + F. verticillioides 38
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K16 F. verticillioides + + F. verticillioides 260

K17 F. verticillioides + + F. verticillioides 73.5

K18 F. verticillioides + + F. verticillioides 20

K19 F. verticillioides + + F. verticillioides 8.3

D1 F. verticillioides + + F. verticillioides 35

D2 F. verticillioides + + F. verticillioides 12

D3 F. verticillioides + + F. verticillioides 65

D4 F. verticillioides + + F. verticillioides 175

D5 F. verticillioides + + F. verticillioides 30

D6 F. verticillioides + + F. verticillioides 53

D7 F. verticillioides + + F. verticillioides N.D.

D8 F. verticillioides + + F. verticillioides N.D.

D9 F. verticillioides + + F. verticillioides 30

D10 F. verticillioides + + F. verticillioides 62.5

D11 F. verticillioides + + F. verticillioides 285

D12 F. proliferatum + + F. verticillioides 20

N.D. = not detected

1.2.2 Biosynthesis of Fumonisins
The biosynthesis of FBs in the Fusarium species mainly requires a 15-gene
cluster (FUM1 and FUM6-FUM19) that can be conserved between several
fungal genera (Desjardins, 2006; Proctor et al., 2013). However, unlike the
biosynthetic gene clusters of natural products from fungi, there is no pathway-
specific regulatory gene for FB biosynthesis pathway in the FUM cluster of the
Fusarium species (Woloshuk et al., 1994; Proctor et al., 2003; Flaherty and
Woloshuk, 2004). The proposed biosynthetic pathway for FBs is shown in
Figure 2. The function of some FUM genes are known, for example, FUM13
encodes a C-3 ketoreductase of FBs (Desjardins, 2006; Medina et al., 2013),
FUM3 encodes a 2-ketoglutarate-dependent dioxygenase that catalyzes the
conversion of FB B3 to B1 (Proctor et al., 2003; 2013), and FUM3P catalyzes
the C-5 hydroxylation (Desjardins, 2006; Lazzaro et al., 2012). The known
regulatory genes of FB biosynthesis are not linked to the FUM cluster and
include FCC1, FCK1, PAC1, ZFR1, and GBP1. It has also been reported that A.
niger strains are able to produce FB2 (Frisvad et al., 2007; Aerts et al., 2018).
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Figure 2. Biosynthesis of FBs (modified from Du et al., 2008).

1.2.3 Trichothecenes
The TCs are a big family of toxic fungal secondary metabolites including many
significant mycotoxins related to the crop grains like T-2, NIV, and DON
(McCormick et al., 2011; Proctor et al., 2018). They are tricyclic sesquiterpenoid
chemically and their toxic effects are caused due to the inhibition of the
ribosomal protein biosynthesis. Four main types of TCs have been identified
from TC-producing Fusarium species. These types are named A, B, C, and D.
Types C and D are not linked to FHB. Type A and B are the main toxins
associated with FHB and related human and animal health problems (Foroud
and Eudes, 2009; Ates et al., 2013). The T-2 and HT-2 TCs belong to type A
TCs. F. sporotrichioides and F. langsethiae are considered the main producers
of type A TCs. Type B TCs includes both DON and NIV that are mainly
produced by F. graminearum and F. culmorum. Type A TCs are more toxic for
mammals compared to type B TCs, while type B TCs are more phytotoxic than
type A TCs. For instance, T-2 has been reported to be approximately 10-times
more toxic than DON, which is considered the most important mycotoxin
involved in FHB (Foroud and Eudes, 2009).
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Generally, TCs are stable under high temperature, storage conditions and food
processing (Freire and da Rocha, 2017). The main effects on mammalian health
are reduced feed ingestion, vomiting and immune suppression and the effects
are mainly dependent on the toxin concentration in the commodity (Milićević et
al., 2010; Freire and da Rocha, 2017). Exposures to TCs can cause growth
obstruction and reproduction disorder both in humans and animals, but in
plants, these Fusarium toxins can inhibit seedling growth and plant cells
regeneration. TCs may also cause additional toxic effects such as inhibition of
DNA synthesis and cell multiplication and destruction of mitochondrial function.
Furthermore, these toxins can induce apoptosis of mammals and in plants, they
may stimulate programmed cell death (Foroud and Eudes, 2009; Freire and da
Rocha, 2017). The chemical structures of different types of TCs are presented
in Figure 3.

Figure 3. Chemical structures of T-2 toxin (A), DON (B) and HT-2 (C) (modified from De Ruyck et
al., 2015).

1.2.4 Biosynthesis of Trichothecenes
TCs are toxic secondary metabolites, which were first found in Trichothecium
roseum. Therefore, the name of these mycotoxins came from the name of this
genus (Freeman and Morrison 1949; Alexander et al., 2009), but they are
mainly produced by Fusarium species. More than 180 TCs have been isolated
from different fungi species including Fusarium species, Myrothecium species,
Stachybotrys species, Trichoderma species, and Thrichothecium species
(Eriksen, 2003; Surup et al., 2014). The biosynthesis of different types of TCs is
species- and even strain-specific and based on the suitability of environmental
conditions. However, it is controlled genetically (Desjardins 2006; Paterson and
Lima 2010; Proctor et al 2018).

Primarily, around 15 genes (including catalytic and regulating) take part in the
TCs’ biosynthesis pathway in Fusarium species (Alexander et al., 2009; Merhej
et al., 2011). The responsible genes for TCs’ biosynthesis are located at 3 loci
on various chromosomes in the Fusarium species. The main gene cluster in
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TCs’ biosynthesis pathway (TRI) consists of 12 genes located within a 25-kb
genomic region (Kimura et al., 2001; Maeda et al., 2016). TRI1, TRI16, and
TRI101 loci are responsible for the remaining 3 genes (Gale et al., 2005;
Alexander et al., 2009). During the TCs’ biosynthesis, oxygenation,
isomerization, acetylation, hydroxylation, and esterification are considered the
main steps (Desjardins, 2006; Desjardins and Proctor, 2007; Kimura et al.,
2007; Merhej et al., 2011). Trichodiene synthase, that is encoded by TRI5, first
transforms farnesyl pyrophosphate into trichodiene. Then, during the following 4
stages, isotrichotriol is synthetized via C-2 hydroxylation and 12, 13
epoxidations, followed by two hydroxylation reactions (TRI4 is the responsible
gene as multifunctional cytochrome P450). The following 2 steps are non-
enzymatic and produce isotrichodemol. Finally, the TC skeleton is ready across
the consistency of a C-O bond between the C-2 oxygen and C-11. After that
calonectrin is produced via acetylation at C-3, hydroxylation at C-15 and the
catalytic activity of TRI101, TRI1, and TRI3. The above-mentioned biosynthesis
process is the same for both type-A and -B TCs (Figure 4).

The remaining steps are specific for different Fusarium strains. In the case of
DON production by F. graminearum strains, calonectrin is transformed to either
3-ADON or 15-ADON. Eventually, DON is produced by the catabolic actions of
TRI1 and TRI8. The 3-ADON or 15-ADON production is regulated by variation in
the esterase coding parts of TRI8. On the other hand, the NIV is produced via
hydroxylation at C-4 of DON, or across transformation of calonectrin to 3,15-
diacetoxyscirpenol (3,15-DAS), then adding a ketone at C-8 position with the
help of TRI7 and TRI13 genes (Desjardins, 2006; Desjardins and Proctor, 2007;
Kimura et al., 2007; Merhej et al., 2011; Nakajima et al., 2015; Maeda et al.,
2016). The 3,15-DAS is the core substance for type-A TCs’ biosynthesis in F.
sporotrichioides, (the main source of type-A TCs). In the synthesis T-2 toxin, C-
4 acetylation of 3,15-DAS is implemented by the action of TRI7, TRI8, and TRI1
genes. The 3,15-DAS is also considered the primary substrate for HT-2
production. Due to the absence of TRI7 expression, HT-2 is produced via
hydroxylation of 3,15-DAS followed by addition of isovalerate to C-8 site (Foroud
and Eudes, 2009).

1.3 Toxigenic Aspergillus species
The Aspergillus genus is considered one of the first studied and documented
genera of fungi. These fungi are diverse both ecologically and metabolically
(Pildain et al., 2008; Ehrlich and Brian, 2014; Frisvad et al., 2019). The genus
acquired its name, in 1729, from the microscopic characteristics of the fungi,
spore-bearing constructions that look like an aspergillum (a brush used to spray
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holy water in the Roman Catholic Church). Therefore, any fungi that are able to
produce aspergillum-like asexual spore heads are classified in the genus
Aspergillus.

According to, Geiser et al., 2006 and, Geiser et al., 2008 there are around 250
known Aspergillus species identified and classified inside the phylum of
Ascomycota (Arone et al., 2016). The popular examples of toxigenic Aspergillus
molds are A. parasiticus, A. flavus, A. nidulans, A. fumigatus, A. clavatus, and
A. niger. The Aspergillus section Flavi including A. flavus and A. parasiticus are
able to produce AFs in a huge number of food and feed materials. Some other
mycotoxins producing Aspergillus species include A. nomius, A. pseudotamarii,
A. bombycis, and A. ochraceoroseus (Cotty, 1994; Cotty and Bhatnagar, 1994;
Bhatnagar et al., 2003; Frisvad et al., 2005; Frisvad et al., 2019).

Figure 4. Biosynthesis of trichothecenes (modified from Wang et al., 2015).

Abbreviations: Tri5, the trichodiene synthase gene; Tri4, multifunctional trichodiene
hydroxylase; TRI101, trichothecene 3-O-acetyltransferase; Tri11, isotrichodermin 15-
hydroxylase; Tri3, trichothecene 15-O-acetyltransferase; Tri1, encoded trichothecene 7,8-
dihydroxylase.
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Aspergillus species are ubiquitous and can grow in diverse habitats such as soil,
water, and different food and feed materials. They do not require any specific
nutrients. They play an important role in the natural cycling of nutrients as they
decay the plant debris as saprophytes. Aspergillus section Flavi can grow over a
temperature range of 17°C 42°C but the optimum temperature for AFs’
production is 25°C35°C. Czapek dox agar and potato dextrose agar media can
be used for mold growth under lab conditions (Hara et al., 1974; Hedayati et al.,
2007; Arzanlou et al., 2016).

The Aspergillus colonies morphologically represent powder-like surface and
hyaline septate hyphae with regular sac at their tips. Microscopically, Aspergillus
species can be distinguished based on their structure criteria such as sclerotia
and the colony color. The traditional identification of Aspergillus using culture
characteristics such as colony shape and pigment production is not sufficiently
efficient and reliable. The detection and identification of other AF-producing
fungi are often based on ultraviolet (UV) documentation of secreted toxins in the
agar medium (Lin and Dianese., 1976; Basaran and Demirbas, 2010). However,
the polymerase chain reaction (PCR)-based methods are more efficient and
reliable for identification, detection, and quantification of mycotoxigenic fungi
(Godet and Munaut, 2010; Jurjević et al., 2015; Zarrin and Erfaninejad, 2016).

1.3.1 Aflatoxins
AFs are mainly produced by A. flavus and A. parasiticus species. There are 4
types of AFs, that is, B1, B2, G1, and G2. The chemical structures of these AFs
are shown in Figure 5 (Lerda, 2010). AF-B1 is the most abundant and toxic of
the 4 AF types (European Commission, 2010). Many crops and food products
are susceptible to Aspergillus species infections. For example, corn, peanut,
cottonseed, Brazil nuts, and pistachio nuts are considered to be at the highest
risk of contamination with AFs (Busby and Wogan, 1984; Shephard, 2008; Kara
et al., 2015). The name “aflatoxin” was obtained by combining the letter "A" from
the “Aspergillus” and the letters "fla" from the “flavus”. The suffix “B” of AFs B1
and B2 was taken from the blue color fluorescence under UV, on the other
hand, the “G” letter came from the yellow-green color fluorescence of the toxins
(AFs G1 and G2) under UV light (Nesbitt et al., 1962; Van der Zijden et al.,
1962).

Aflatoxicosis are the diseases caused by AF intake. The disease was reported
for the first time in the United Kingdom, which resulted in the death of 100,000
turkeys and was named ’Turkey X disease’. Acute aflatoxicosis may cause
death and chronic aflatoxicosis may lead to liver cancer, immune suppression,
and other pathological displays (Blount, 1961; Shephard, 2008). AF-producing
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fungi are commonly found in soil habitat worldwide and they commonly infest
crops like maize, groundnut, and wheat. AFs can enter in food and feed
products at any stage of the food production. Due to the increasing
transportation of agricultural products, AF is becoming a serious problem all
over the world. In this regard, many countries have enacted legislation to reduce
the risk of AF in the food and feed materials (Haumann, 1995; Carvajal-Campos
et al., 2017). The maximum allowed limit for total AFs (sum of AFs B1, B2, G1,
and G2) in many countries ranges from 1 to 35 µg/kg for the food products with
an average of 10 µg/kg and from 0 to 50 µg/kg for the feedstuffs with a threshold
of 20 µg/kg (Abbas, 2005; Alshannaq and Yu, 2017). The maximum allowed AF
limit for peanuts in Brazil and USA is 20 µg/kg, while Canada and the European
Union (EU) have established a limit of 15 µg/kg (Fonseca, 2011). In addition, the
European Commission (EC) has established a maximum limit of AF at 0.02
mg/kg for the feed products (EC, 2003).

Figure 5. Chemical structures of AFs B1, B2, G1, and G2 (modified from Lerda, 2010).

1.3.2 Aflatoxin biosynthetic pathway
Genetic information for the biosynthesis of fungal natural products like
mycotoxins is mainly present in gene clusters that can consist over 10,000
bases (Keller et al., 2005; Brakhage, 2012). A cluster generally consists of 2 or
more genes that work together to synthesize a secondary metabolite. In
Aspergillus species, the complete DNA data is included in 8 chromosomes
(Robinow and Caten, 1969; Keller et al., 2005). Within this organization, the
genes responsible for AFs biosynthesis are present in the 54th gene cluster that
has a span of 80 kb and presents on chromosome 3 (Georgianna and Payne,
2009). The gene cluster consists of 30 genes and the AF biosynthesis pathway
is regulated mainly by 2 genes–aflR and aflS (Figure 6) (Chang, 2003; Yu,
2012).

The A. flavus and A. parasiticus are the main species involved in the AFB1
contamination; thus, several studies on the AF biosynthesis pathway have
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utilized gene cluster in these species (Jiujiang et al., 1995; Yu et al., 2004; Ren
et al., 2018). The AF biosynthesis pathway has also been studied in A. nidulans
(the main source of sterigmatocystin) because sterigmatocystin is the precursor
of AFB1 (Ehrlich, 2009). The homology of the AF biosynthesis pathway gene
cluster between A. parasiticus and A. flavus is around 90%–99%, while in the
case of A. parasiticus and A. nidulans, it is about 55%–75% (Yu et al., 2004;
Ehrlich et al., 2005). There is a difference between the genes involved in the
biosynthesis of B-type and G-type AFs. The 3 genes–aflU, aflF, and nadA
participate only in the AFG biosynthesis (Ehrlich et al., 2004; Ehrlich et al.,
2005). The first gene (aflU) is responsible for the production of cytochrome
P450 monooxygenase, the second gene (aflF) for an aryl alcohol
dehydrogenase, and the third gene (nadA) for a reductase. The role of different
genes in AFB1 biosynthesis pathway has been analyzed using advanced
molecular techniques like Gene cloning and Expressed Sequence Tags (EST)
(Zhang et al 2015). The development of these techniques is important in
elucidating and predicting the functions of the genes involved in the AFB1
biosynthesis that take place in the presence of various enzymes (Kistler and
Broz, 2015; Zhang et al., 2015).

1.4 Detection and identification of mycotoxin-producing fungi
Before the discovery of PCR, the detection and identification of mycotoxigenic
fungi were mainly based on conventional mycological methods or chemical
analysis of the secondary metabolites (like mycotoxins) produced by the fungus
(Berbee and Taylor, 2001; Buchheidt et al., 2017). The conventional
mycological methods or chemical analysis-based tests are time-consuming and
labor-intensive. The conventional mycological protocols require isolation and
cultivation of the fungi on several culture media for about 1 week for their
precise identification (Abbas et al., 2004). Furthermore, extensive expertise is
needed for the identification of the fungi species, especially the mycotoxin-
producing fungi species: Fusarium, Penicillium, and Aspergillus. In the case of
chemical analysis of the mycotoxins produced by the fungi, elaborated methods
for sample preparation and expensive laboratory tools/materials are required
(Berbee and Taylor, 2001).

The PCR-based techniques for the identification and detection of mycotoxin-
producing fungi are based on DNA isolation from food/feed materials, which is
followed by execution of PCR reaction using fungi species/strain-specific
primers (Knoll et al., 2002). In addition, the use of new thermocyclers can
reduce the PCR test time to less than 1 hour (Knoll et al., 2002). Nowadays,
quantitative PCR is used for the multiplication of copy numbers of the genes
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responsible for mycotoxin biosynthesis (Schnerr et al., 2001). The presence of a
specific target sequence is the key for the mycotoxigenic fungi detection and
identification by the PCR-based method. Thus, the genes that are critical for the
mycotoxin biosynthetic are used as the target for precise detection and
identification of the fungal species. However, when the genes involved in the
mycotoxin production are identified, many sequences can be used as targets
(White et al., 2015; Lamoth and Calandra, 2017).

Figure 6. AF Biosynthesis Pathway (modified from Yu et al., 2004).

Abbreviations: NOR, norsolorinic acid; AVN, averantin; HAVN, 5′-hydroxyaverantin; OAVN,
oxoaverantin; AVNN, averufanin; AVF, averufin; VHA, versiconal hemiacetal acetate; VAL,
versiconal; VERB, versicolorin B; VERA, versicolorin A; DMST,
demethylsterigmatocystin;.DHDMST, dihydrodemethylsterigmatocystin; ST, sterigmatocystin;
DHST, dihydrosterigmatocystin; OMST, O-methylsterigmatocystin; DHOMST, dihydro-O-
methylsterigmatocystin; AFB1, aflatoxin B1; AFB2, aflatoxin B2; AFG1, aflatoxin G1; AFG2,
aflatoxin G2.
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1.4.1 Detection and identification of Fusarium species
The detection and identification of Fusarium species are still in some ways
dubious. In fact, over 80 species are included in the Fusarium genus and the
number is changing continuously, because of the taxonomy methods
development (Leslie and Summerell, 2006). Therefore, many debates related to
fungal taxonomy is still ongoing among the mycologists (Asan, 2011). This
genus can be distinguished with the help of few morphological characteristics
that are important for the differentiation of the various species. However, only
the experts can discriminate the pathogenic Fusarium species based on the
morphological criteria including macro- and micro-conidia and chlamydospores
(Dongyou, 2009; Maryani et al., 2019).

In Fusarium species, the macroconidia are sickle form with several septa and
look like a banana or a canoebut, while the microconidia are 0–3 septate and
evolve from phialides. The chlamydospores have thick walls and can appear in
several Fusarium species (Leslie and Summerell, 2006). The various forms of
macroconidia are considered the most important trait in Fusarium species
discrimination, which includes the production of asexual spores and the
characteristic banana shaped macroconidia (Moretti, 2009). All researchers
working on fungal taxonomy agree that to achieve the goal of real identification
of the fungal species, single spore should be isolated and grown under optimum
growth condition consisting of the appropriate culture media, temperature, and
pH (Dongyou, 2009).

In contrast, the PCR-based approaches for fungi identification have helped a lot
in revealing the neglected diversity in the Fusarium genus (O’Donnell et al.,
2015). The fungal phylogeny based on molecular analysis has been applied by
many scientists in Fusarium species’ taxonomy. However, several phylogenetic
relationships are still unclear due to the availability of limited data about the
phylogenetic analysis implemented for this genus (Watanabe et al., 2011). DNA
sequencing of a species-specific gene using the PCR tests must be done to
identify a fungus. The internal transcribed spacer (ITS) region was selected as
the official “barcode” locus for the fungi identification (Schoch et al., 2012).
However, the primers based on ITS region are not entirely species-specific,
because some of the F. sporotrichioides isolates have an identical ITS
sequence with F. langsethiae isolates (Yli-Mattila et al., 2004a). This is why for
the Fusarium genus, the translation elongation factor 1-α (TEF) gene has been
chosen as a single-locus marker for the identification of this genus (Geiser et al.,
2004; O’Donnell et al., 2015). In addition, many species-specific PCR assays
have been developed but they need to be validated widely especially for isolates

27

Introduction



I N T R O D U C T I O N | 28

from different plant materials and/or in different geographic locations (Van der
Lee et al., 2015; Rahjoo et al., 2008). Several mycologists have used species-
specific PCR test to identify many Fusarium species, such as F. culmorum
(Nicholson et al., 1998; Sanoubar et al., 2015), F. graminearum (Waalwijk et al.,
2003; Sanoubar et al., 2015), F. poae (Parry and Nicholson, 1996), F.
pseudograminearum (Aoki and O'Donnell, 1999), F. langsethiae (Yli-Mattila et
al., 2004a, 2004c; Konstantinova and Yli-Mattila, 2004), and F. langsethiae
using Random Amplification of Polymorphic DNA (RAPD)-PCR product (Wilson
et al., 2004). The gene FUM1 can be used to detect FB1 production by F.
Verticillioides (López-Errasquín et al., 2007). Some other researchers have
used real-time PCR or quantitative PCR (qPCR) to quantify the contamination of
crop by Fusarium species, for example, determination of the copy number of the
TRI5 gene in relation to the DON content of a grain sample (Kim and Yun, 2011;
Bilska et al., 2018).

1.4.2 Detection and identification of Aspergillus species
AFs may be found in food and feed products even if there is no spoilage in
them. The insects (including wasps and bees) and birds are considered the
main vectors for fungal spore transmission to food and feed materials where the
spores may find the optimal conditions for both growth and AF production (Misra
and Thirumalaisamy, 2012). The infestation of egg cells of plants during the
flowering stage by AF-producing fungi can be another source for seeds
contamination by AFs (Hill et al., 1983).

Although in the Aspergillus species, mycelium can have an endotrophic
relationship without any harmful effect on the crop's health, AFs may be
secreted in the plant in high concentrations, especially during cultivation under
drought conditions. Therefore, plant-based products may already contain AFs at
harvest stage. However, the toxins level during harvest is usually less than that
found in stored commodities and this level can be economically critical (Hansen
and Jung, 1973; Moss, 2002). Therefore, the early and precise
identification/detection of aflatoxigenic fungi is crucial for food security.

There are several methods for fungal identification and detection including
conventional mycological procedures (Pitt and Hocking, 2009), enzyme-linked
immunosorbent assays (Notermans et al., 1986), and PCR-based methods
(Shapira et al., 1996; Haugland et al., 2002; Luo et al., 2012; Frisvad et al.,
2019). The conventional identification and classification of Aspergillus species
are mainly based on the morphological and the macroscopic criteria of the fungi
colony. Initially, the Aspergillus genus was identified without using biochemical
or physiological criteria of the fungi (Raper and Fennell, 1965). Subsequently,
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the colony color and the physiological characteristics were added to the
taxonomic methods, as described by Murakami (1976) and Murakami et al.
(1979). These included several methods such as the production of pigment in
Czapek agar using nitrite as single nitrogen matter, secretion of extracellular
enzymes and acids, and other physiological characteristics (Klich and Pitt,
1988). Later, several fungi secondary metabolites were used for fungi
taxonomy, based on their bioactive properties (Frisvad, 1989; Frisvad et al.,
1998 and 2004; Samson et al., 2004). Aspergillus species secrete many
mycotoxins and other secondary metabolites, which can be used in fungal
taxonomy (Frisvad et al., 2007 and 2008).

However, the conventional mycological taxonomic and identification methods
that were used to test the food spoilage were labor-intensive and required many
facilities including mycological expertise. Furthermore, these methods required
more than 5 days to recognize the fungi infection. After applying the PCR-based
methods for identification and detection of microorganisms under lab condition
using species-specific primers, several protocols were developed for the
detection of fungi in different food commodities (Cocolin et al., 2002; Aymerich
et al., 2003; Amagliani et al., 2006). PCR-based methods including both qPCR
and conventional PCR have been reported to be more precise and specific for
identification, detection, and quantification of mycotoxin-producing fungi
(Shapira et al., 1996; Haugland et al., 2002). Few researchers have described
these protocols, for example, Geisen et al. (1996) and Shapira et al. (1996).
reported a PCR-based method for mycotoxin-producing fungi detection targeting
specific DNA sequences in the AF biosynthesis pathway. Also, multiplex RT-
PCR containing 4–5 primer pairs of various combinations of aflD, aflO, aflP,
aflQ, aflR, and aflS (aflJ) have been used to detect toxigenic fungi (Degola et
al., 2007). In addition, Mayer et al. (2003) were able to study the correlation of
the copy numbers of the nor-1 gene and colony forming units (cfu) of A. flavus in
pepper, paprika, and maize. Recently, Luo et al. (2014) used real-time
quantitative loop-mediated isothermal amplification for rapid detection of AF
producing fungi in food.

Although simple PCR has provided quick and sensitive results, these methods
require specific lab tools, which can make such protocols expensive and time-
consuming for rapid monitoring. The qPCR assessments are much quicker
compared to the simple PCR because the detection is based on the production
of fluorescence during PCR cycles and there is no need for DNA gel
electrophoresis (Jothikumard and Griffiths, 2002). However, the qPCR requires
expensive and sophisticated tools that are not usually available for routine
detection in processing facilities, especially in small food processing units.
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2. AIMS OF THE STUDY
Mycotoxin contamination is a serious concern for human and animal health. To
date, we do not know how to detoxify materials that are contaminated by
mycotoxins in ways that retain their edibility too. Therefore, preventing
mycotoxins from entering the food-chain is an important approach. This needs
early identification, taxonomy, detection, and quantification of mycotoxin-
producing fungi. The conventional methods for the identification, taxonomy,
detection, and quantification of toxigenic fungi are challenging because they
require a high level of expertise and a set of sophisticated equipment. The aim
of this study is to use the practical, rapid, and more reliable molecular
approaches to identify, classify, detect, and quantify the most important
mycotoxin-producing fungi including AF-producing microorganisms, FB-
producing fungi, and TC-producing Fusarium species.

The specific aims were:

1. To isolate, identify, and quantify FB-producing species in maize, wheat,
and soil samples; and to test Potato Dextrose Agar (PDA)-Eppendorf as a
long-term preservation method for F. verticillioides isolates. (Paper I)

2. To monitor Fusarium mycotoxins and the fungal DNA levels, and the
correlation between them in Finnish oat samples; and to investigate the
main populations of F. graminearum isolates in Europe, which may have
specialized to different host plants. (Paper II)

3. To investigate DON levels in Finnish cereal grain with accredited GC-MS
and Rida®Quick methods; to compare these with F. graminearum DNA
levels; and to measure the effects of grain grinding methods on DON and
F. graminearum DNA levels. (Paper III)

4. To confirm the identification of the Iranian F. sibiricum isolate and to find
new ways for clear-cut discrimination of the closely related species, F.
langsethiae and F. sibiricum, by combining morphological characters and
optimized PCR protocols with species-specific primers. (Paper IV)

5. To (a) generate information about AFs production and the diversity of A.
flavus and A. parasiticus species; (b) to test primers designed for AF
detection using these isolates; (c) to utilize PCR results and AFs’ analysis
data in classifying the isolated aflatoxigenic fungi to genotypes and
chemotypes. (Paper V).
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3. METHODOLOGY
An overview of the key methods used in the thesis is provided below. More
comprehensive descriptions of the materials and methods can be found in
Papers I, II, III, IV, and V.

3.1 Samples, fungal isolation, and isolates

3.1.1 Grain samples for Fusarium DNA and trichothecene analyses
a. In Paper II, oat (30), wheat (20), and barley (20) samples from different parts
of Finland were collected for DON and F. graminearum DNA level analysis.

b. In Paper III, 10 oat grain samples of the Year 2010, 15 samples of the Year
2011, and 40 samples of the Year 2012 were analyzed for DON, 3ADON,
15ADON, T-2, and HT-2 toxins at MTT Agrifood Research Finland (Jokioinen,
Finland;). In addition, 20 oat samples of the Year 2012 were analyzed for DON,
3ADON, 15ADON, T-2, and HT-2 toxins.

3.1.2 Samples for isolation of aflatoxin-producing and fumonisin-
producing fungi

Thirty-five samples were collected from each country. The Egyptian samples
were represented by 9 soil, 16 maize, 9 wheat samples, and 1 lab bench swab
sample. In the Philippines, samples were divided into 23 soil, 6 maize, 2
coconut, and 4 peanut samples (Paper I and V).

3.1.3 Fusarium isolates
All isolates analyzed in Paper IV were stored in a collection at All-Russian Plant
Protection Institute (VIZR) (St. Petersburg-Pushkin, Russia). The Iranian
Fusarium isolate, which was previously identified as F. langsethiae (Kachuei et
al., 2009) was kindly provided by Dr. Reza Kachuei. Dr. Simon Edwards
forwarded the isolate to Dr. Tapani Yli-Mattila. Isolate IBT 9959 was kindly
provided by Dr. Ulf Thrane. The DNA of the single spore isolate G243 (F.
graminearum) was used as the standard for quantification of F. graminearum
DNA, while the DNA of the single spore isolates S55 and C192 were used as
the standard for quantification of F. sporotrichioides/F. langsethiae DNA and F.
culmorum DNA as described by Yli-Mattila et al. (2008 and 2011) (Papers II and
III).

3.1.4 Isolation of fumonisin-producing and aflatoxin-producing fungi
The isolation was performed on Potato dextrose agar (PDA) medium or on
Aspergillus flavus and A. parasiticus agar (AFPA) medium:
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(a) For grain samples; 5 grains of maize and 10 grains of wheat samples were
surface-disinfected with 5% sodium hypochlorite (NaOCl) for 1 min followed by
rinsing 3 times with sterile water. The disinfected grains (5 maize and 10 wheat
grains/dish and 3 petri dishes/sample) were placed on PDA or AFPA for 3-5
days at 25°C.

(b) For soil and coconut samples; 2 grams of each sample was suspended in 6
mL sterile distilled water in sterile polystyrene tubes and mixed on a rolling
mixer for 20 min (Donner et al., 2009). 100 μL of each supernatant was
inoculated on 90-mm petri dishes containing PDA or AFPA. After the completion
of the incubation period, the Fusarium colonies were transferred to PDA plates
and single spore was derived from each isolate by serial dilutions of spore
suspension and spreading them on ager-water plates, this was followed by
incubation at 25°C for 12h. Then, 3 single spores were picked under a
microscope and incubated on a PDA medium for 24h. The youngest colony was
used as the source for inoculation of PDA-Eppendorf. A copy of all single spore
isolates was preserved in the small culture collection at the Department of
Biochemistry, University of Turku (UTU), Finland and another copy of them was
sent to the culture collection of the VIZR.

3.2 Identification and preservation of fungal isolates

3.2.1 Identification of fumonisin- and trichothecene-producing Fusarium
isolates

a. Traditional identifications

All FB- and TC-producing Fusarium isolates were identified based on the
macroscopic and microscopic characteristics described by different researchers
(Barnett and Hunter, 1972; Nelson et al., 1983) at the Laboratory of Mycology
and Phytopathology, VIZR (Paper I).

b. Molecular methods for re-identification

Primer pairs, Verprof, and VERTI-R (which are based on specific PCR products
of FB producing F. verticililoides strains); and Taqfum- f2, VPgen- R3 (Paper I)
(which are specific for F. verticillioides, F. proliferatum, F. globosum, and F.
nygamai) were used for the identification of fumonisin-producing fungi as
described by Waalwijk et al. (2008).

For the identification of F. langsethiae and F. sporotrichioides, primer pairs
FlangF3/lanspoR1 and FsporF1/lanspoR1 (Paper IV) (which are based on
species-specific RAPD-PCR products of European F. langsethiae and F.
sporotrichioides isolates) were used as described by Wilson et al. (2004). Bio-
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Rad thermal cycler S1000 was used in VIZR and the PTC-200 DNA Engine
thermal cycler was used at the UTU for PCR amplification. Also, another
protocol of Yli-Mattila et al. (2004a) with a lower annealing temperature was
used. Primer pairs PfusF/FspoR and PfusF/FlanR based on ITS sequences
were also used for the identification of F. sporotrichioides and F. langsethiae as
described by Yli-Mattila et al. (2004a and 2011).

Aliquots (5 μL), from each PCR product, were analyzed by electrophoresis in a
Tris-borate-EDTA (TBE) buffer in 1.0% agarose gels by using the ChemiDoc
MP Imaging System (Bio-Rad) in VIZR and the FluorchemTM Advanced
Fluorescence, Chemiluminescence, and Visible Light Imaging (Alpha Innotech
Corporation) system at the UTU.

3.2.2 Identification of aflatoxins producing fungi
a. Traditional identifications

The positive AF-producing isolates were identified according to phenotypic
characteristics based on the growth patterns on AFPA and Czapek yeast
autolysis (CYA) (Rodrigues et al. 2011).

b. Molecular identification of the isolates

The identity of one strain from each genotype and chemotype were performed
by molecular analysis, which involved the sequencing of their ITS region. The
gene sequence of each isolate was amplified using the primers ITS1 and ITS4
and the PCR cycling conditions were as follows: 3 min pre-denaturation at 94°C,
35 cycles of amplification (30 s at 94°C, 40 s at 55°C, 1 min extension at 72°C),
and a final extension step that was performed for 7 min at 72 °C. The amplified
PCR products were sequenced by The Institute for Molecular Medicine Finland
(FIMM) and the DNA sequences were aligned using advanced BLAST searches
(http://www.ncbi.nlm.nih.gov/). The sequences were submitted to GenBank.

3.2.3 Eppendorf-agar long term preservation
The single spore Fusarium isolates in addition to single spore A. flavus and A.
parasiticus isolates were cultured in an Eppendorf tube containing half mL of
PDA medium for one week at 25°C and then moved to the cold temperature
conditions (4°C). The viability of the isolates was tested by growing them on
PDA petri dishes every 3 months for 27 months (Paper I).
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3.3 DNA extraction and molecular detection and quantification
of mycotoxigenic fungi

3.3.1 DNA extraction from fungi
The Aspergillus and Fusarium isolates were cultured in 0.5 mL of malt extract
broth medium (30 g malt extract and 5 g peptone per liter) in Eppendorf tubes at
25 °C for 3 days, after which the mycelium was transferred to a new Eppendorf
tube. The DNA of the isolates was extracted using both octanol/isopropanol
method as described by Paavanen-Huhtala et al. (1999) and GenElute™ Plant
Genomic DNA Kit (Sigma-Aldrich, St. Louis, MO, USA) as described by Yli-
Mattila et al. (2008). Quality of the DNA was confirmed by using ITS1 and ITS4
(Paper III) primers and amplifying ITS region of fungal DNA as described by Yli-
Mattila et al. (2004). Also, some isolates were cultured on potato dextrose agar
(PDA; Scharlau Chemie S.A., Spain) at 25°C and the DNA was extracted using
a modified CTAB (Hexadecyltrimethylammonium bromide) method according to
Ausubel et al. (2002) (Paper IV). Total DNA was quantified by using a
fluorescence-based Qubit fluorometer (Invitrogen, Carlsbad, USA) as described
by Yli-Mattila et al. (2009).

3.3.2 DNA extraction from grains
Oat grains were ground using a hammer mill, KT-120 (Koneteollisuus Oy) with a
1 mm sieve in MTT, while the food company oat grains were ground at the UTU
without sieving. DNA was extracted from the ground grain samples by using
GenElute™ Plant Genomic DNA kit of Sigma, as described by Yli-Mattila et al.
(2008). In Paper III, the oat grain samples from MTT and Food Company were
ground at the UTU using a mill (Krups KM75 Coffee Grinder) without sieving, as
described by Yli-Mattila et al. (Paper II), and DNA was extracted using
GenElute™ Plant Genomic DNA kit of Sigma. Total DNA was quantified by
using a fluorescence-based Qubit fluorometer (Invitrogen, Carlsbad, USA), as
described by Yli-Mattila et al. (2009).

3.3.3 Molecular detection of aflatoxin-producing fungi
Primers pairs ver-1/ver-2 and ordAF/ordAR (Paper V), which are specific for ver-
1 and ordA genes in AF biosynthesis pathway, respectively, were used for the
detection of AF production by AF-producing isolates, as described by Färber et
al. (1997) and Chang et al. (2005) (Table 2). MJ Research thermal cycler (PTC-
200) was used for PCR amplification. Aliquots (8 μL) of each PCR product were
analyzed by electrophoresis in a TBE buffer in 1.0% agarose gel and visualized
by using Alpha Innotech Corporation MultiImage Light cabinet with camera and
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filters. The gel photos were analyzed by using the GEL program (Patzekin and
Klopov, Petersburg Nuclear Physics Institute, Russia) to determine the
molecular weight of the PCR products and the PCR products’ profile from
different isolates.

3.3.4 Quantitative PCR of fumonisin-producing fungi
The qPCR was performed to quantify the content of FB-producing-fungi DNA in
15 maize samples and 6 wheat samples from Egypt, and in 6 maize samples
from the Philippines, according to Waalwijk et al. (2008) using Taqfum-2f and
Vpgen-3R primer pairs and FUMp probe. Also, the TMFg12 primers and probe
were used for the quantification of F. graminearum DNA in the same samples,
as described by Yli-Mattila et al. (2008). A Bio-Rad IQTM5 Real-Time PCR
Detection System (Bio-Rad, Hercules, CA, USA) was used for running qPCR
samples. The DNA level of Fusarium species in grain samples was counted per
total DNA as described by Yli-Mattila et al. (2011).

3.3.5 Quantitative PCR of trichothecene-producing fungi
The TMFg12 primers and probe have been designed for the F. graminearum
specific RAPD-PCR product (Yli-Mattila et al., 2008). The TMLAN primers and
probe for F. langsethiae/F. sporotrichioides have been designed by Halstensen
et al. (2006) and the culmorum MGB primers and probe for F. culmorum by
Waalwijk et al. (2004). We used these qPCR primers and probes as described
by Yli-Mattila et al. (2008, 2009). A Bio-Rad IQTM5 Real-Time PCR Detection
System (Bio-Rad, Hercules, USA) was used for running qPCR samples. The
DNA level of Fusarium species in grain samples was counted per total DNA
quantified by Qubit fluorometer (Invitrogen, Carlsbad, CA, USA), as described
by Yli-Mattila et al. (2011). Ten grain samples from 2010, 15 samples from
2011, and 38 samples from 2012 were analyzed by using TMFg12 primers and
probe; while only 18 samples from 2012, 18 samples from 2011, and 10
samples from 2010 with high T-2/HT-2 levels were analyzed by using TMLAN
primers and probe (Paper II). Also, 30 oats, 20 barley, and 21 spring wheat
samples that were ground and sieved (except the Year 2013) were analyzed for
F. graminearum DNA content (Paper III).

3.4 Mycotoxins analyses

3.4.1 Rida®Quick DON analysis
Oat (30), wheat (20), and barley (20) samples from different parts of Finland
were analyzed by Rida®Quick DON analysis method at the Turku University of
Applied Sciences (TUAS) and the results were compared with the accredited
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GC-MS in MTT. The reproducibility of the method was tested by running 6
parallel samples in all cereals with 3 different DON levels. Twelve ground oat
samples were obtained from Laboratory 1 and 12 ground wheat samples were
obtained from Laboratory 2. For comparing the 2 methods for measuring DON
levels, grain samples were ground by 3 mills. In the Laboratory 1, the samples
were ground using mill KT 30 (Koneteollisuus OY) without sieving, while in the
Laboratory 2, the samples were ground using mill 3100 Falling number with a
sieve of 0.8 mm. In MTT, a laboratory mill with a sieve of 1 mm was used as
described above. Ground grain sample (1 g) was taken into a Falcon tube and
15 mL of Rida®Quick DON extraction buffer was added. The mixture was
shaken manually for 3 min before centrifugation for 10 min (at 3500 g). The
clear supernatant (100 µl) was pipetted onto the application area of the test strip
and the result was read after 5 min.

3.4.2 GC-MS analyses of trichothecenes
In MTT Agrifood Research Finland, the TCs were extracted and analyzed with
an accredited GC-MS method, as described by Hietaniemi et al. (2004) and Yli-
Mattila et al. (2011). In MTT, the grain samples were ground using a mill and
passed through a 1 mm sieve prior to the mycotoxin and DNA measurements,
to achieve better repeatability.

3.4.3 Fluorescence detection of Aflatoxin-producing isolates
Coconut agar medium (CAM) was used for the detection of isolates producing
AF (Lin and Dianese 1976). Briefly, 100 g of shredded coconut was
homogenized for 5 min with 200 mL of hot distilled water. The homogenate was
filtered through cheesecloth, then agar (2%) was added, and the medium was
autoclaved. The plates were inoculated with PDA plugs of Aspergillus strains
and incubated at 25°C for 5 days. The reverse side of the plates was
periodically observed under 365 nm UV light for blue fluorescence.

3.4.4 Aflatoxins HPLC analyses
Each Aspergillus isolate was inoculated on 500 μL of yeast extract sucrose
(YES) medium in an eppendorf tube and incubated for 7 days. AFs were
extracted as follows: 500μL chloroform was added to each eppendorf and
vortexed well. The chloroform extract was transferred to a new vial and dried
gently under air. The dry film was derivatized according to AOAC method (2000)
and then analyzed quantitatively using HPLC. A 200-μL stock solution of AFs
mix standard in methanol (MeOH) (Supelco, Bellefonte, Pa., USA) containing
200 ng of B1, 60 ng of B2, 200 ng of G1, and 60 ng of G2, was dried under
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nitrogen gas and derivatized. Four concentrations were prepared for HPLC
injection. The HPLC system used for AFs’ analyses was an Agilent 1200 series
system (Agilent, Berks., UK) with a fluorescence detector (FLD G1321A),
autosampler (ALS G1329A, FC/ALS thermo G1330B), Degasser (G1379B), Bin
Bump (G1312A), and a C18 column (Phenomonex, Luna 5 micron, 150 × 4.6
mm) joined to a pre-column (security guard, 4 × 3 mm cartridge, Phenomenex
Luna). The mobile phase used was MeOH/water/acetonitrile (30:60:10, v/v/v)
with an isocratic flow rate of 1 mL/min at 360 nm excitation and 440 nm
emission wavelengths and 25-min run time for each AF analysis.

3.5 Statistical analysis
The R2 (coefficient of determination), regression slope, and p-value (significance
of regression slope) were calculated using the program SigmaPlot, version 12.0
(SPSS Inc., Chicago, IL, USA). The original DNA and toxin concentrations were
transformed to logarithmic values [1 + lg(x)] to obtain a more normal distribution
for the toxin and DNA concentrations. Samples showing values <0.5 mg/kg or
>5.5. mg/kg with Rida®Quick were excluded from the analysis because these
values were not correct. The reproducibility for DON levels estimation with
Rida®Quick in oat was tested using 3 samples with the DON levels of 1.4, 1.7,
and 2.1 ppm (n=6, Table 1) (Paper II). Commercial standard (Check sample
DON in wheat. Romer Labs. 1.431 + 0.2566 ppm) was also used. In barley, the
DON levels were 0.81, 1.30, and 1.60, while in wheat the DON levels were 0.79,
1.00, and 1.40. Rida®Quick results were compared with accredited GC-MS
results by using regression analysis and paired t-test was applied to reveal the
95% significance level. Relative standard deviation (RSD%) was also calculated
(Papers II and III).

Statistical significance was determined using software Statistica Version 9
(StateSoft, Tulsa, OK, USA). The means AFs’ concentrations were compared
using analysis of variance (ANOVA, two-way analyses) (P<0.05). Fisher’s LSD
method (P=0.05) was applied to compare significant differences in AFs
production among the strains (Paper V).
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4. RESULTS

4.1 Isolation, identification, and preservation of fungi

4.1.1 Isolation and identification of FB-producing fungi
In this study, we isolated 43 fungal single-spore isolates (38 from the Egypt and
5 from the Philippines) from the collected samples (Figure 7). Most Fusarium
isolates were from maize (53.4% of the isolates), then wheat (35.4%), and
finally soil (11.2%).  According to the morphological and microscopic
identification (Figure 8), 22 isolates from Egypt and 3 isolates from the
Philippines belonged to F. verticillioides, 2 isolates belonged to F. proliferatum,
and 2 isolates belonged to F. nygamai. The molecular identification showed that
all FB-producing Fusarium species belonged to F. verticillioides (Paper I).

Figure 7. Fusarium isolation process; a: maize sample, b: wheat sample, and c: soil sample.

Figure 8. Microscopical (a) and morphological (b) characters of F. verticillioides (T. Gagkaeva).

a b c

a b
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4.1.2 Isolation and identification of aflatoxin-producing fungi
A total of 160 A. flavus and A. parasiticus isolates that gave a yellow-orange
(reverse) color on AFPA medium (Figure 9) were isolated from 70 samples (32
soil, 22 maize, 9 wheat, 4 peanut, 2 coconut, and 1 lab bench swab). Forty-five
isolates were from the Egyptian samples and 115 isolates were from the
Philippines. Single spore isolates of AF-producing fungi were identified
according to their phenotypic properties on AFPA and Czapek Yeast Extract
Agar media and their AF production profile (Paper V).

Maize sample Wheat sample Soil sample

Figure 9. The isolation of AF-producing fungi on AFPA medium

4.1.3 Re-identification of Fusarium sibiricum
During morphological identification, colonies of F. sibiricum on PSA medium
were showing average mycelial growth rates of 6 mm/day at 24°C. Aerial
mycelium of F. sibiricum was white, typically flocculent, more abundant, and
less powder than in F. langsethiae. On the reverse side, there were white to
cream shades.

Conidiophores of F. sibiricum often consisted of a long and nodose stipe
terminating with a whorl of phialides, intermingled with the short monophialides
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formed directly on the aerial mycelium. Polyphialides were not observed, while
in F. langsethiae polyphialides with 2 loci were present. Microconidia were
apiculate and globose, mostly 0-septate, rarely 1-septate, hyaline, and formed
abundantly in false heads, after a few days. Innumerable conidia of the type
already described might be present at very outset of F. langsethiae colonies
growth. Conidia of F. sibiricum were formed in mycelium after a few days of
growth (Paper IV).

It is interesting to note that in a drop of water under the microscope, false heads
of F. poae microconidia disintegrate easily, exposing phialides. At the same
time, F. langsethiae heads are more stable, while F. sibiricum heads are difficult
to destroy. A noticeable faint sweetish odor was produced by some F. sibiricum
and F. poae strains.

Based on molecular identification, the Iranian Fusarium isolates that were
identified as F. langsethiae had a long TG repeat of 30 bp in its ribosomal IGS
region. The results were achieved when the TG repeat was sequenced and it
was possible to separate it from F. sporotrichioides and F. langsethiae isolates
based on the longer PCR product after the PCR products were run on a
metaphor agarose gel (Paper IV). Otherwise, the partial IGS sequence on both
sides of the TG repeat was identical with known F. sibiricum isolates.

The TG repeat of the Iranian isolates was shorter than the TG repeat of other F.
sibiricum isolates (36 bp or longer), but it was still 10 bp longer than the TG
repeat of any known F. sprorotrichioides or F. langsethiae isolate (Yli-Mattila et
al., 2011).

The DNA from the Iranian F. sibiricum isolates also gave a strong positive signal
with TMLAN primers and probe, which was expected, because the ITS
sequences of known F. sibiricum isolates were identical with F. langsethiae
isolates.

In PCR assays, previously designed to distinguish F. langsethiae, F. poae, and
F. sporotrichioides from other species, none of the 6 primer pairs employed
consistently distinguished the F. sibiricum isolates and representative strains of
F. langsethiae or F. sporotrichioides (Paper IV), but it was possible to identify F.
sibiricum isolates by using a combination of primer pairs.

F. sporotrichioides-specific primer pair Fspor F1/lanspoR1 gave a strong
positive reaction with both F. sporotrichioides and F. sibiricum isolates, while F.
sporotrichioides-specific primer pair PFusF/FspoR gave a positive reaction with
the F. sporotrichioides isolate and a negative reaction with both F. langsethiae
and F. sibiricum isolates, when the protocol of Yli-Mattila et al (2004b) was
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used. A very weak band was also produced in some cases by F.
sporotrichioides-specific primer pair Fspor F1/lanspoR1 with F. langsethiae DNA
(Paper IV). Both F. langsethiae-specific primer pairs gave a positive reaction
with F. langsethiae and F. sibiricum isolates. FlanF3/LanspoR1 also gave a
positive reaction with the F. sporotrichioides isolate when the protocol of Yli-
Mattila et al. (2004b) was used, but the reaction was clearly stronger with F.
langsethiae isolates than with any F. sibiricum and F. sporotrichioides isolates.
PfusF/FlanR gave a positive reaction with F. langsethiae and F. sibiricum
isolates and a negative reaction with the F. sporotrichioides isolate (Paper IV).

When the PCR amplifications were performed with primers specific to F.
sporotrichioides (FsporF1/LanspoR1) and F. langsethiae (FlanF3/LanspoR1)
using the touchdown PCR protocol suggested by Wilson et al. (2004), the F.
sporotrichioides and F. sibiricum isolates gave a positive reaction with the F.
sporotrichioides-specific primer pair as obtained with the PCR protocol of Yli-
Mattila et al. (2004), although the bands were weaker. With the F. langsethiae-
specific primer pair (Paper IV) a weak positive reaction was only obtained with
F. langsethiae strains.

4.1.4 Eppendorf-agar long term preservation
The Eppendorf-agar method showed 100% viability of the preserved fungi
during the 27 months storage period (Paper I).

4.2 Molecular detection and quantification of mycotoxin-
producing fungi

4.2.1 Molecular detection of aflatoxin-producing fungi
All 43 A. flavus and A. parasiticus AF-producing isolates had the ver-1 and ordA
genes in the AF biosynthetic pathway (Paper V). The PCR with ver-1/ver-2
primer pair (Figure 10b) showed 3 different profiles of PCR products: (a) 1 band
at around 537bp (all A. parasiticus isolates and most A. flavus isolates); (b) 1
band at around 700bp (A. flavus isolates 88P, 89P and 90P); and (c) 2 bands– 1
at around 537bp and other at around 700bp (A. flavus isolates 23E, 29E, 35E,
41P, 44P, 45P, 59P, 86P, 87P, 96P, 97P, 107P, 108P, 109P, and 112P).
However, the PCR product of ordAF/ordAR primer pair gave 1 main band at
around 400bp (Figure 10a). Regarding the atoxigenic A. flavus isolates, no
bands were observed with either primer pair, but they produced PCR products
with ITS1/ITS4 primer pair. According to ITS1/ITS4 primer pair, the quality of
DNA from all isolates was good enough for PCR.
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a

b

Figure 10. Band pattern of different Aspergillus species isolates as resulted
from PCR reaction primed by ordAF/ordAR primer pair (a) and ver1/ver2 primer
pair (b)

In the upper part of gel, Lanes: Lane 1 = 1 Kb DNA ladder, Lane 2 = IE, Lane 3 = 3E,
Lane 4 = 16E, Lane 5 = 21E, Lane 6 = 23E, Lane 7 = 29E, Lane 8 = 34E, Lane 9 =
35E, Lane 10 = 40E, Lane 11 = 41E, Lane 12 = 42E, Lane 13 = 43E, Lane 14 =, Lane
15 = 45E, Lane16=6P, Lane17=7P, Lane18=8P, Lane19=9P, Lane20=10P,
Lane21=18P, Lane22=32P, Lane23=33P, Lane24=34P, Lane25=35P, Lane26=36P,
Lane27=41P, Lane28=42P, Lane29=43P, Lane30=1 Kb DNA ladder.

In the lower part of gel, Lanes: Lane 1 = 1 Kb DNA ladder, Lane 2 = 44P, Lane 3 =
45P, Lane 4 = 59P, Lane 5 = 86P, Lane 6 = 87P, Lane 7 = 88P, Lane 8 = 89P, Lane 9
= 90P, Lane 10 = 96P, Lane 11 = 97P, Lane 12 = 107P, Lane 13 = 108P, Lane 14 =
109P, Lane 15 = 110P, Lane16=112P, Lane17=atoxigenic A. flavus, Lane18= positive
control (A. flavus), Lane19=negative control
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4.2.2 Molecular quantification of fumonisin-producing Fusarium species
The qPCR results obtained by using Taqfum-2f, Vpgen-3R primer pairs and
FUMp probe for quantification of the FB-producing Fusarium species showed
that these species were present in 4 maize samples from the Philippines and 8
maize samples from Egypt. The Fusarium DNA levels were in the range of 13 x
10-3 to 61 x 10-1 ng/ng total DNA in positive samples, except in one maize
sample from the Philippines with a high concentration of about 1 ng/ng total
DNA, which suggests that all DNA was Fusarium DNA. No FB-producing
Fusarium DNA was detected in the wheat samples and in the remaining maize
samples (Paper I).

4.3 Mycotoxin analysis results

4.3.1 Aflatoxin production
In general, 23% (43) of the tested isolates (Table 3, Paper III) were able to
produce AFs. Fourteen of them were from Egypt and 29 were from the
Philippines. The toxin-producing Egyptian isolates were morphologically
identified as A. flavus. On the other hand, 21% (6 isolates) of the Philippines
isolates were morphologically identified as A. parasiticus and the remaining as
A. flavus. Complete agreement was found between the qualitative CAM medium
and the quantitative HPLC identification (99.4%). Overall, there was only one
false negative isolate (112P) identified when compared with the HPLC results
(Table 2) (Paper III). Thirty-one percent of the Egyptian isolates (14) and 25% of
the Philippines isolates (29) were able to produce AFs. In general, all AF-
producing isolates were able to produce AFB1 in the range of 0.5 ng/mL to
13189 ng/mL in the media. The highest concentration of AFB1 was produced by
isolate 6P that was isolated from a soil sample of a coconut field in Situbo,
Tampilisan and Mindanao, Philippines. All the 14 Egyptian AF-producing
isolates were unable to produce AFG1 and G2, while 12 isolates from the
Philippines were AFG1 producers and 7 were AFG2 producers.

According to HPLC analysis, there were 4 chemotypes of AFs producers: (1)
isolates producing all 4 AF types (16%, 7 isolates); (2) isolates producing AFB1
only (18.5%, 8 isolates); (3) isolates producing AFB1 and B2 (53.5%, 23
isolates); and (4) isolates producing AFB1 and G1 (12%, 5 isolates). All the 6 A.
parasiticus isolates belonged to chemotype 1 and they produced all types of
AFs (total amount 2400–40400 ng/mL). Whereas, the other isolates (37
isolates) which belonged to A. flavus produced less than 1200 ng/mL total AFs.
Only one A. flavus isolate from the Philippines could produce all four AF types
(Paper III).
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4.3.2 The correlation between trichothecenes and Fusarium DNA Levels
For the Year 2010–2012 samples, the highest levels of DON were found in
Finnish oats in Year 2012 sample, when about 10–25% of oats samples
contained >1.75 mg/kg of DON. In the samples from MTT, the DON levels
varied between <25–10000 ppb (Paper V) and the T-2/HT-2 toxin levels were
between <25 and 3000 μg/kg (Figure 3, Paper V). In the oats samples from a
food company, the DON levels ranged between 530 and >5500 μg/kg (Paper
V). The coefficient of determination (R2) for the relation between F.
graminearum DNA and DON levels was 0.95 (p<0.001) for 15 oats samples of
the year 2011 and 0.87 (p<0.001) for 40 oats samples of the Year 2012, which
were obtained from MTT (Figure 2a, Paper V). The R2 value for 20 oats samples
from a food company was only 0.22 (p<0.05) (Paper V).

For year 2013 Finnish oats samples, the correlation between F. graminearum
DNA analyzed by qPCR (Figure 11) and DON levels was higher (R2 = 0.76)
when the DNA was extracted and measured from grain samples ground in MTT
with a mill having a sieve compared with the same grain samples ground at the
UTU without a sieve (R2 = 0.31, Figure 2, Paper II). The R2 value for 20 oats
samples from a food company was 0.71, which was also lower than in the grain
samples ground in MTT with a mill having a sieve (Paper II). The R2 values for
correlation between DON levels obtained with GC-MS in MTT and Rida®Quick
in TUAS for oats (0.88), barley (0.80), and wheat (0.89) were high, although the
DON levels obtained from Rida®Quick were usually higher. This caused 7 false
positive oats, 5 false positive barley, and 5 false positive wheat samples with
Rida®Quick. There was a good correlation between the DON levels obtained for
30 oats, 20 barleys, and 21 spring wheat samples analyzed using accredited
GC-MS and Rida®Quick methods (Paper II). Pearson correlation values were
0.935, 0.931, and 0.935; and R2 values were 0.88, 0.80, and 0.89 for oats,
barley, and spring wheat, respectively. However, paired t-test (t-values = 5.694,
7.854, and 3.544) showed differences on the 95% significance level between
the Rida®Quick and GC-MS results in all the 3 kinds of cereals. This was mainly
due to the higher DON values obtained by Rida®Quick method.

When the DON levels obtained with accredited GC-MS for oat or wheat grain
samples ground in MTT with a mill having a sieve were compared with those
obtained from Rida®Quick method, the correlation was good (R2 usually above
0.89 both in wheat and oat, Paper II), although DON levels obtained with GC-
MS were usually lower in oat, wheat, and barley (Paper II). The correlation was
also good when DON levels from wheat grain samples ground in Laboratory 2
with a mill having a sieve were compared with Rida®Quick method in 3
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laboratories (R2 >0.9, Paper II). But when DON levels from grain oat samples
ground in Laboratory 1 with a mill without a sieve were compared with those
obtained with Rida®Quick method in 3 laboratories, the correlation was lower
(usually <0.8, Paper II).

Figure 11. qPCR chart for F. graminearum DNA quantification using TMFg12 primers and probe
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5. DISCUSSION

5.1 Fungi isolation, identification, and preservation

5.1.1 Isolation and identification of fumonisin-producing fungi
In this doctoral study, isolates of different FB-producing Fusarium species from
maize, wheat, and soil samples from Egypt and the Philippines were collected.
In addition, several reports have indicated the presence of them in Egyptian
corn and feed samples (El-Habbaa et al., 2003; Heidy Abo El Yazeed, et al.,
2011; Abd-El Fatah el al., 2015) and in the Philippines (Cumagun et al., 2009).
Abd-El Fatah et al. (2015) were also able to find the correlation between
fumonisin production and F. verticillioides isolates in maize samples.

The molecular detection of FB based on Verprof, VERTI-R primer pair for F.
verticilloides and Taqfum-f2, VPgen-R3 for all fumonisin producers using the
method described by Waalwijk et al. (2008) showed that all Fusarium isolates
were able to produce the toxin. Similar results have been reported by Abd-El
Fatah et al. (2015) (Table 1). However, the identification based on
morphological and microscopic characteristics is mainly in agreement with the
PCR results obtained using species-specific primers, except in 4 isolates (2 of
them were identified as F. proliferatum and the others as F. nygamai). This may
be due to difficulties in identifying Fusarium species using the conventional
methods (Leslie and Summerell, 2006, Rossi et al., 2009). The results showed
that we could use PCR based methods as a fast and economical way for the
detection of contamination of grain samples with FB-producing fungi (Paper I).

5.1.2 Isolation and identification of aflatoxin-producing fungi
In the present study, a total of 160 A. flavus and A. parasiticus isolates obtained
from soil, maize, wheat, coconut, and peanut showed yellow-orange (reverse)
color on AFPA medium. These results confirmed the efficiency of this medium
for the detection of A. flavus and A. parasiticus, as reported by Pitt et al. (1983).
A. parasiticus isolates were only found in soil samples from coconut fields in the
Philippines and all of them were able to produce all the 4 types of AFs, while all
Egyptian isolates were identified as A. flavus. The toxin profile of 5 A. flavus
isolates from Philippines producing AFB1 and AFG1 differed from the typical
profile of both species. Similar isolates have been reported in West Africa
(Atehnkeng et al., 2008; Donner et al., 2009); Argentina (Pildain et al., 2008);
and Thailand (Saito and Tsuruta, 1993) (Paper V).
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5.1.3 Re-identification of Fusarium sibiricum
Based on morphological characteristics, F. sporotrichioides can usually be
clearly distinguished from F. langsethiae and F. sibiricum, but F. sibiricum and
F. langsethiae may be confused with each other and with other members of the
section Sporotrichiella. Thus, only molecular methods are reliable enough for
the identification of all isolates of these species. Until now, the only known
reliable species-specific primer pair CNL12/PulvIGSr for F. sibiricum is based on
the length of the IGS sequences. In the present work (Paper IV), it was
confirmed that a combination of 4 F. langsethiae- and F. sporotrichioides-
specific primer pairs can also be used for the identification of F. sibiricum
isolates. The results are in agreement with those of Wilson et al. (2004),
Konstantinova and Yli-Mattila. (2004), Yli-Mattila et al. (2004a, 2011), and
Edwards et al. (2012).

The identification of the F. sibiricum isolates from Iran was confirmed by IGS
sequencing. It could be detected and quantified by the same TMLAN primers
and probe used for the detection and quantification of closely related F.
sporotrichioides and F. langsethiaea isolates. The partial IGS sequence of the
Iranian isolate was identical with other F. sibiricum isolates (Yli-Mattila et al.,
2011), except for the length of the TG repeat, which was variable. However, the
TG repeat of the Iranian isolate was still longer than the TG repeat of any F.
sporotrichioides strain, which made it possible to separate it from F.
sporotrichioides (Paper IV).

The results of the present work (Paper IV) showed that the primer pairs
PfusF/FspoR and Pfusf/FlanR based on ribosomal ITS sequences can be used
for separating F. langsethiae and F. sibiricum isolates from the F.
sporotrichioides isolates. But, according to Yli-Mattila et al. (2004a, 2011),
ribosomal ITS sequences and primers based on ITS sequences cannot be used
for reliable identification of F. sporotrichioides, F. sibiricum, and F. langsethiae,
because ITS sequences of some (4/33 isolates sequenced) F. sporotrichioides
isolates and all known F. sibiricum isolates (1 isolate sequenced) were identical
to those of F. langsethiae isolates (21 isolates sequenced). Thus, the primer
pairs PfusF/FspoR and Pfusf/FlanR cannot be completely species-specific
between all F. sporotrichioides and F. langsethiae/F. sibiricum isolates.

The results obtained with F. langsethiae-specific primer pair Flang F3/lanspoR1
in the present paper (Paper IV) and in the paper of Yli-Mattila et al. (2011) with
the lower annealing temperature (Yli-Mattila et al., 2004c) differ from those
obtained by Edwards et al. (2012), who used the touchdown PCR protocol of
Wilson et al. (2004). When the protocol of Yli-Mattila et al. (2004c) was used, it
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also gave a weak band with F. sibiricum and F. sporotrichioides isolates and a
stronger band with F. langsethiae isolates, while the F. sporotrichioides-specific
primer pair FsoprF1/lanspoR1 gave a strong band only with F. sporotrichioides
isolates. When the touchdown PCR protocol of Wilson et al. (2004) was used
with both primer pairs in the present work, fewer PCR products were obtained,
but the reaction was completely specific to F. langsethiae isolates. Thus, the
touchdown protocol is more specific with F. langsethiae-specific primers, while
the protocol of Yli-Mattila et al. (2004c) is more sensitive because more PCR
product was obtained. With both the protocols it was possible to separate F.
sibiricum from F. langsethiae, but F. sibiricum isolates could not be separated
from F. sporotrichioides isolates. It might be possible to design an F. sibiricum-
specific primer pair by sequencing the PCR product of Wilson et al. (2004) from
more isolates including F. sibiricum isolates.

Based on the present data, F. langsethiae is a European species, which has
been found in the north (Norway, Finland), in the south (Italy), in the west
(France and UK), and in the east (Poland and European part of Russia). The
main distribution of F. sibiricum is in northern Asia. In the present paper (Paper
IV) a new F. sibiricum isolate was found in Iran. The single isolate of F. sibiricum
IBT 9959 was found in Norway (Yli-Mattila et al., 2011) and the single F.
langsethiae isolate was found in Tyumen (in Western Siberia), which is may be
due to sporadic transfers of individual isolates as a result of human activities.
The situation resembles that of F. vorosii, which was first detected in Hungary,
but which according to phylogenetic multilocus sequence data belongs to the
Asian clade and the main area of distribution is in Asia (Starkey et al., 2007).

This means that the actual distribution of F. sibiricum may be much larger in
Eurasia than what is presently known. No F. langsethiae and F. sibiricum
isolates have been found outside Europe and Asia (Paper IV).

5.1.4 Eppendorf-agar long term preservation
The Eppendorf-agar method was found suitable for preserving microorganisms
for more than 2 years and it was assayed for different types of microbes
including fungi, bacteria, and actinomycetes. This method is easy to perform
and reduces the time, cost, and the risk of contamination. Several other
methods have been used for microorganisms like continuous subculturing on
agar slants (Onions, 1971), preservation under mineral or paraffin oil (Perrin,
1979), storage in sterile water (Richter and Bruhn, 1989), drying of fungal
cultures (Nakasone et al., 2004), Freeze-drying (lyophilization) (Tan et al.,
2007), and cryopreservation (Homolka and Lisa, 2008). However, all of them
are more time-consuming and expensive than eppendorf-agar method.
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Nevertheless, further work should be done to study the effect of storage on the
genetic stability of preserved microbes and the suitability of this method for
different microbial species (Paper I).

5.2 Molecular detection and quantification of mycotoxin-
producing fungi

5.2.1 Molecular detection of aflatoxin-producing fungi
Fungal material preparation for DNA isolation was performed over a short time
period (3 days incubation) in 500µL of broth medium in eppendorf tubes. This
approach reduces the time and the amount of the medium used for preparing
mycelium, whereas in most studies 20 mL of medium for 7 days is required
(Rodrigues et al., 2009; Sultan and Magan, 2010).

For molecular detection of AF production, 2 genes were chosen: (a) the ver-1
gene that codes for versicolorin A dehydrogenase, an enzyme that converts the
versicolin A to sterigmatocystin in the middle of the AF biosynthesis pathway
(Yu et al., 2004); and (b) the ord1 gene that is considered to be the only gene
involved in the final step of transforming O-methylsterigmatocystin (OMST) into
AFB1, a crucial step in the AF biosynthesis pathway that seems to be unique to
aflatoxigenic species (Prieto and Woloshuk, 1997).

Molecular detection of AF production by using the ver-1/ver-2 (Färber et al.
,1997) and ordAF/ordAR (Chang et al., 2005) primer pairs agree with the results
obtained from HPLC analysis of AFs and CAM methods. However, the presence
of the AF biosynthesis genes does not always mean that phenotypic production
of AF occurs (Rodrigues et al., 2009). The results implied that we can use PCR
as a fast and economical method for screening the contamination of grain
samples with Aspergillus section Flavi instead of the time-consuming
conventional methods (Degola et al., 2007) or expensive agar-plate methods for
fungal contamination analysis (Zheng et al., 2004).

PCR products profile with ver-1/ver-2 primer pair showed differences in the
isolated A. flavus and A. parasiticus. Two new PCR profiles with ver gene
primers were detected in our isolates. The first one included 1 band at a
molecular weight higher than the reported one, while the second one included 2
bands, 1 at the ordinary place and second at higher than the first one. A similar
PCR product was reported by Geisen (1996) but in Penicillium roqueforti using
primers for the same gene. Based on these results, we introduced the isolates
as new genotypes, which gave two new PCR profiles with ver gene. This
revealed that this primer pair could be used to identify the diversity of AF-
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producing fungi, but it could not be used as a molecular marker for other
aflatoxigenic fungi that contained ver gene in the biosynthesis pathway of the
natural products (Paper V).

5.2.2 Molecular quantification of fumonisin-producing fungi
The qPCR results showed that DNA of FB-producing fungi was detected only in
the maize samples. This is in agreement with the number of isolated Fusarium
isolates from maize, which indicates that corn is a highly susceptible crop for F.
verticillioides and F. proliferatum infection. In addition, no F. graminearum
isolates and DNA was isolated or detected from the samples. This may be due
to the unsuitable weather condition in Egypt and the Philippines for this species
(Paper I).

5.3 Mycotoxins

5.3.1 Correlation between trichothecene and Fusarium DNA Levels
DNA levels of F. graminearum in oats were in agreement with DON levels
measured by accredited GC-MS in all cases. When the Rida®Quick kit results
(for DON level) were compared with DNA levels of F. graminearum, the variation
was much higher. The homogenization of the oats grain with sieving or without
sieving seems to be connected to the variation of DON and F. graminearum
DNA levels. These results (Paper III) are in agreement with previously reported
results (Paper II).

More false-positive results were found in all the 3 kinds of cereals when
Rida®Quick method was used compared with the accredited GC-MS method.
These false-positive results were due to higher DON levels obtained by using
the Rida®Quick method.

The DON levels obtained with Rida®Quick method were usually higher than
those obtained with accredited GC-MS method in all the 3 kinds of cereals.
However, in this study, the semiquantitative Rida®Quick DON method met the
requirement of the Commission regulation (EC) 401/2006 for the quantitative
DON determination (RSD% </=20%) in most cases. Due to the low DON levels
in barley and wheat samples, the RSD% was above 20%. Thus, the results
suggest that Rida®Quick results with the DON content close to the legislative
limits should be reconfirmed with an accredited quantitative analysis.
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5.3.2 Chemotypes of Fusarium species in Finland during the years 2010–
2012

Mycotoxin–3ADON was found in all grain samples with high DON level, but
15ADON was not found (Tables S1-S4, Paper II). This is supporting the results
obtained by other researchers (Yli-Mattila et al., 2008; Nielsen et al., 2011; Yli-
Mattila and Gagkaeva, 2013), according to which the 3ADON molecular
chemotype is dominant in northern Europe. The NIV was probably produced by
F. poae (Parikka et al., 2008; Parikka et al., 2012; Hietaniemi et al., 2013), while
F. langsethiae was found to be the most common T-2/HT-2-producer in Finnish
oats.

The difference in correlation might be caused by different milling methods,
which is supported by our previous results. The correlation between DON and F.
graminearum levels was lower, when DNA was extracted from oat flour ground
using a coffee mill without a sieve (Hietaniemi, 2013) compared with the present
paper, in which both DNA and DON were extracted from the oat flour obtained
using a mill having a 1 mm sieve for homogenization. According to Rauvola et
al. (2013), the correlation between RIDA® QUICK SCAN and GC-MS results
was good, when, DON levels were measured from oat flour ground with a 1 mm
sieve. Finnish food companies, however, have been using RIDA® QUICK SCAN
for oat samples ground without the 1 mm sieve, which might have caused
variation in the results.

According to Rauvola (2013), RIDA® QUICK SCAN often gives oats DON levels
above the EU limit (1.75 mg/kg), while the GC-MS results for the DON levels are
mostly close (1.4–1.7 mg/kg) to the EU limit. This might have partially explained
why according to the food companies 25% of oats samples from the Year 2012
in Finland contained too much DON for human consumption (Hakulin et al.,
2013), while according to the MTT (Nielsen et al., 2011) only 10% of the oats
samples exceeded the limit. Lower DON values with RIDA® QUICK SCAN were
also obtained in wheat and barley (Rauvola 2013), especially close to the EU
limit (1.25 mg/kg) (EC, 2005). It should also be taken into consideration that
there can be some variations in the GC-MS results among different
measurements in different laboratories. These variations may be due to
differences in sample preparation and sample selection.

For consumers, the lower limit for DON values guarantee that the DON values
are below the EU limit, but for farmers, they mean that the yield may be rejected
due to false-positive results. Thus, both RIDA® QUICK SCAN and qPCR can be
used simultaneously for screening DON levels in cereal grain samples, but the
samples with DON levels close to the EU limit, should be checked by GC-MS
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method as well to avoid false positive or false negative results; and even then,
some cases may be difficult to analyze precisely.

Only low levels of F. culmorum DNA were found in a few oat samples (Tables
S1–S5) (Paper II) and no correlation was found between F. culmorum DNA and
DON levels. F. graminearum DNA levels were in agreement with DON levels in
all cases, when DON was measured using GC-MS method. When compared
with RIDA®QUICK SCAN kit results the variation in the DNA levels was much
higher. Thus, the homogenization of the oat flour by sieving seems to be
important for achieving reproducible DON and F. graminearum DNA levels.
According to Gagkaeva and Gavrilova (2013), filtration of oat flour through a 0.4
mm sieve after milling decreases Fusarium biomass connected to the hulls. This
may be because bigger particles are formed during milling from hulls, which
contain more Fusarium DNA than the central part of oats grains. Based on our
results, F. graminearum is clearly the main DON producer in Finnish oats.

There was also a significant correlation (Figure 3) (Paper II) between the
combined T-2 and HT-2 levels and combined F. langsethiae and F.
sporotrichioides DNA levels in samples from the Year 2010–2012. For the
combined data of the years 2010–2012, the R2 value was 0.40. The high DNA
levels in oat samples found by TMLAN primers and probe were mainly due to
high F. langsethiae/F. sporotrichioides contamination in the outer grain layer,
which gets removed during the de-hulling process before they are used for food
(Rämö et al., 2008). These results (Figure 3) (Paper II) are in agreement with
the previously reported results (Yli-Mattila et al., 2008; Suproniene et al., 2010;
Hietaniemi, 2013).

5.3.3 Aflatoxins production
Results obtained from the fluorescence detection on CAM were in agreement
with the results obtained from the HPLC analysis of AFs, except for 1 isolate
(112P) that gave no fluorescence on CMA. Similar results were obtained by
Sultan and Magan (2010) who examined the potential AF production by isolates
of A. flavus and A. parasiticus from Egyptian peanuts. They found that there
was about 90% correlation between the results obtained from the CAM and the
HPLC method. Also, Rodrigues et al. (2009) reported that the analysis of AF
production by fluorescence in CAM showed a good correlation with the HPLC
results (Paper V).

Although the ratio of AF-producing isolates from Egyptian samples was higher
than that of isolates from the Philippine samples, all Egyptian isolates were
unable to produce AFG1 and G2, and the total AF production of the Egyptian
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isolates was less than the Philippine isolates ranging from 0.5 to 852 ng/mL of
the media. This may be because of the difference in the source of isolates; the
Egyptian isolates were mainly from maize, wheat, and soil samples, while most
of the Philippines isolates were from soil samples (associated with coconut or
peanut). The isolates produced high levels of AFs and belonged to A.
parasiticus. The occurrence of A. parasiticus as predominant species in the
coconut field’s soil in the Philippines has been reported for the first time. This
indicates that there is an urgent need to reduce A. parasiticus levels from the
soil through proper soil management in order to address the issue of high AF
content in copra (dried coconut meat), which resulted in the suspension of the
Philippines from exporting the copra to Europe in 2004 (Bawalan, 2004). In
addition, all isolated species from maize, wheat, and soil associated with these
crops have been identified as A. flavus. Thus, this indicates that there is a
relationship between the crop and the type of AF-producing fungi. Data obtained
by Pildain et al. (2004) showed that the frequencies of Aspergillus section Flavi
varied among fields and crops. Even though A. flavus does not apparently have
host specificity (St-Leger et al., 2000), distributions of different A. flavus species
suggest that they may have adapted to specific niches and exhibit competitive
advantages in special soils, hosts, regions, and seasons (Jaime-Garcia and
Cotty 2006). Variation in the quantity and types of produced AFs of each isolate
indicates the diversity of the isolated fungi (Paper V). Similar data was shown by
Cotty (1989).
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6. CONCLUSIONS
The data presented here demonstrate the role of PCR-based detection and
quantification of mycotoxin-producing fungi in reducing the risk of mycotoxin
contamination. The following findings were revealed as part of the thesis work:

 Eppendorf-agar is a suitable method for long-term fungi preservation. The
PCR-based techniques can be used to identify FB-producing Fusarium
species and quantify the risk of grain-contamination using qPCR, especially
in the developing countries.

 The Rida®Quick results indicating the DON content close to the legislative
limits should be reconfirmed with an accredited quantitative analysis.

 Securing the homogenization of the oat flour using a 1mm sieve and the
grinding without a sieve was associated with the variations in the DON and
F. graminearum DNA levels.

 The actual distribution of F. sibiricum may be much larger in Eurasia than
what is currently known. No F. langsethiae and F. sibiricum isolates have
been found outside the Eurasian continent.

 The isolated AF-producing fungi showed variability in the types and the
quantity of AFs production and it was mainly related to the source of
isolation. The PCR results with ver-1/ver-2 primer pair indicate that this
primer pair can be used to study the diversity of AF-producing fungi, but it
cannot be used as a molecular marker for aflatoxigenic fungi. However, the
PCR results with ordAF/ ordAR primer pair imply that PCR reaction can be
used as a fast and economical technique for screening the contaminated
grain samples with Aspergillus section Flavi.
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