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1 INTRODUCTION 

1.1 Background 

Investors tend to prefer domestic assets in their portfolio selection even though the 

diversification benefits are widely known. This phenomenon is called home bias and it 

occurs when the capabilities of processing information are limited. When the home bias 

holds investors invest exclusively on domestic assets in lack of relevant information of 

global diversification benefits. (Mukherjee, Paul and Shankar 2017) Successful investors 

should understand the importance of diversification not only globally but also accross 

industries and asset classes (Markowitz 1952; Mukherjee et al. 2017). 

Investors that are aware of the modern portfolio theory developed by Markowitz 

(1952) should not exhibit home bias or preferences for investing in a specific asset class 

or industry. The modern portfolio theory is one of the main finance theories and the theory 

of Markowitz (1991) together with the capital asset pricing model developed by Sharpe 

(1964) and Lintner (1965) have established the theory of microeconomics of the capital 

markets. 

The basic idea of the modern portfolio theory is that rational investors seek to 

maximize the expected return under uncertainty. Based on the theory investors would 

choose a diversified portfolio to reduce risk. Without the assumption of uncertainty 

investors would select portfolios only based on the expected return. (Markowitz 1991) 

The asset allocation decisions reflect investors’ individual risk preferences by means of 

risk aversion (Riley & Chow 1992). As investors make decisions only based on the 

expected return (mean) and the risk (variance) of the portfolio the model is also called 

”mean-variance model” (Fama & French 2004). There are several extensions to the 

traditional mean-variance model. For example Kraus and Litzenberger (1976) have 

included the effect of skewness to the model. However the traditional mean-variance 

remains the most useful version of the model and any additional moments added to the 

model do not increase attractiveness of the model significantly (Elton & Gruber 1998). 

One of the main findings of the modern portfolio theory is that investors should not focus 

only on the return and risk characteristics of the individual assets but instead understand 

the co-movement, namely covariance, of the assets. Taking this into account leads to a 

portfolio with less risk than in a situation where only the individual risk is considered. 

(Elton & Gruber 1998) 

The return-risk trade-off is presented with the concept of efficient frontier which 

represents all the optimal portfolios that offer either the maximum return or minimum 

risk. The efficient frontier has different shapes depending on the correlation of the assets. 

When considering the riskless borrowing and lending, represented by capital market line, 
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investors can combine the riskless asset with the risky asset in their portfolio selection. 

(Markowitz 1952) This is called two-fund separation theorem and it involves finding the 

greatest slope that combines the efficient frontier and the capital market line. The greatest 

slope is referred as Sharpe ratio or alternatively tangency portfolio. More generally the 

two-fund separation theorem refers to holding any two assets. (Elton 2011)  

According to Markowitz (1991) the modern portfolio theory was developed to 

describe how the investors should behave when optimizing their portfolio while the 

capital asset pricing model (CAPM) developed by Sharpe (1964) and Litner (1965) is 

concerned of finding the equilibrium when the investors behave as the modern portfolio 

theory suggests. CAPM model describes the relationship between the expected return and 

the risk of the asset. It is a widely used tool to calculate the firm’s cost of the capital and 

to measure portfolio performance. (Fama & French 2004) In this research CAPM model 

is used to calculate inputs for the Black–Litterman model. Sharpe (1964) and Litner 

(1965) extent the model of Markowitz (1952) so that they include two additional 

assumptions to the model. Firstly it is assumed that investors have an identical return 

distribution over a one-period horizon. Secondly it holds that investors can borrow and 

lend at riskless rate.   

The Black–Litterman model was introduced by Fischer Black and Robert Litterman 

originally in 1990 to overcome several issues related to the modern portfolio theory (He 

& Litterman 1999). The main issues of the modern portfolio theory are large quantity of 

required input data, extreme portfolio weights, sensitivity of weights and inability to 

distinguish the strong views from the weak ones. (Drobetz 2001) The model combines 

the equilibrium market returns with the subjective investors’ views on asset performance 

compared to a benchmark and uses Bayesian inference to estimate both the revised vector 

of expected returns and the optimal weights. (Black & Litterman 1990; Beach & Orlov 

2007). In practice the Black–Litterman model combines the traditional mean-variance 

optimization model with the CAPM model (Black & Litterman 1992).  

The Black–Litterman model is widely applied and estimated with different 

approahces. The perspectives vary based on the method used to incorporate investors’ 

views. One could use analysts’ recommendations as a reference and estimate the 

confidence on these views so that more weight is given to a view received from a skillful 

analyst (Idzorek 2005). Beach and Orlov (2007) argue that application of GARCH model 

for the forecast estimates might be preferable compared to the use of analyst views as 

GARCH models can take many empirical properties of asset returns into account. 

Beach and Orlov (2007) and Duqi, Franci and Torluccio (2014) have estimated the 

Black–Litterman model by using an extension of General Autoregressive Conditional 

Heteroscedasticity model (GARCH) in forecasting the investors’ views on volatility. 

Their argument for the selection of this model is that with the use of GARCH models, 

one can get better understanding of the regularities in the stock returns. For example it is 
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known that asset returns tend to exhibit strong leptokurtosis and volatility clustering and 

GARCH models can be used to capture these kind of properties of the asset returns. (Duqi 

et al. 2014; Fama 1965) As an alternative to the volatility prediction models Bessler and 

Wolff (2017) build a portfolio optimization model that uses macroeconomic factors to 

predict industry returns. Their major finding is that when utilizing the industry-based 

returns it results to a higher portfolio performance compared to a situation where the 

estimation is done with the historical return estimates. Examples of more complex 

methods are described in the articles of Palomba (2008), which used Flexible Dynamic 

Conditional Correlations developed by Billio, Caporin and Gobbo (2006), and Lejeune 

(2009), which used VaR (Value at Risk) model to construct a fund-of-funds with an 

absolute return in the Black–Litterman context.  

1.2 Aim of the study 

This study is inspired by the articles of Beach and Orlov (2007) and Duqi et al. (2014) 

which appliy an exponential GARCH-in-mean model (EGARCH-M) to generate inputs 

to be used as views in the Black–Litterman model. EGARCH-M model generates 

estimates for the asset returns as well as variances and the views are formulated based on 

them. Moreover the residuals of the EGARCH-M model are used as an input for the 

uncertainty matrix of the investors’ views. In the articles of Beach and Orlov (2007) and 

Duqi et al. (2014) the global portfolio is built from various asset classes but in this study 

we focus on equity indices. The data covers twelve Morgan Stanley Capital International 

(MSCI) country equity índices.  

According to Beach and Orlov (2007) and Duqi et al. (2014) the purpose of their 

study is to select an econometric model which reflects the properties of the excess returns 

and volatility in the global portfolio, to utilize this model to generate volatility and return 

forecasts and to use the Black–Litterman model to generate returns and weights for the 

optimal portfolio. Both articles show that the risk-adjusted returns based on the Black–

Litterman model exceed the CAPM returns. As a result they concluded that the Black–

Litterman model can be understood as a useful tool to build global investment strategies. 

The actual research questions of this study are: 

• What are the benefits for an investor when applying a strategy based on the 

Black–Litterman model? 

• Can we consider EGARCH-M model a good method to estimate investors’ 

views for the Black–Litterman model?  

It is known that asset returns exhibit for example leptokurtosis, volatility clustering, 

asymmetry effect, mean reversion, leverage effect and heteroscedasticity. Beach and 

Orlov (2007) detect strong volatility clustering in their research and therefore modeling 
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of conditional volatility is reasonable. GARCH models are used to capture the tendency 

of heteroscedasticity and leptokurtosis. Moreover exponential GARCH incorporates 

asymmetry effect and leverage effect in the estimation model. As EGARCH model takes 

most of the statistical properties of asset returns into account it is reasonable to use it in 

this research as well.  

In the research of Beach and Orlov (2007) and Duqi et al. (2014) exponential GARCH 

model is extended with the arch-in-mean effect which adds the impact of variance to the 

mean equation. When including arch-in-mean effect it adds variance to the mean equation 

and the investors’ views can be formulated from the expected returns estimated with 

EGARCH-M model. In the articles of Beach and Orlov (2007) and Duqi et al. (2014) the 

portfolio based on the Black–Litterman model beats the portfolio based on the traditional 

mean-variance optimization. 

One of the aims of GARCH models is to estimate the future variance with the use of 

past variance and the forecast of variance in past periods. The choice of concentrating on 

predicting volatility is reasonable. It is important to understand not only the returns of 

assets but also the risk. Investors may focus too much on the asset returns without 

understanding the high risk. Volatility prediction is important in investment and risk 

management and it captures efficiently the international equity market risk. Moreover the 

volatility forecasts are able to take the time-varying property of asset return confidence 

intervals into account. (Beach & Orlov 2007) 

The data used in this study consists of twelve MSCI total return equity indices 

covering the time horizon of 10 years (14.3.2008 – 14.3.2018). Due to the fact of using 

indices the effect of different biases, including home bias, is reduced. The benchmark 

used in this study is naïve allocation which means that each asset is given an equal weight 

(1/N) at the beginning of the estimation. In this case there are twelve assets so each asset 

gets a weight of (1/12). Based on the estimated implied equilibrium returns the assets are 

sorted to three different risk portfolios according to their performance at t. When sorting 

the assets to these three portfolios we can formulate three views. We aim to find assets 

from lower categories outperforming assets in the higher category. EGARCH-M model 

is used to generate excess returns which form the base for the investors’ subjective views. 

Moreover the diagonal matrix for the uncertainty of the views is calculated from the 

variance-covariance matrix of the residuals of the EGARCH-M derived excess returns. 

Finally these inputs are used to estimate the revised vector of expected returns and the 

asset weights for the Black–Litterman model. ´For simplicity, the forecast horizon used 

in this study covers only two consecutive periods. In practice this means that the study is 

conducted twice for the same dataset but with different time horizons to get the out-of-

sample forecasts for two subsequent periods. The results show how the forecasted Black–

Litterman based returns and weights vary from one period to another.  
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The theory of this study is restricted to modern portfolio theory, capital asset pricing 

model and the Black–Litterman model. In addition the basic theory behind the GARCH 

models is introduced briefly. The background of the portfolio theory including the utility 

theory is not covered. Furthermore it is assumed that the reader has a basic knowledge of 

finance and is familiar with different models and parameters. The most complex 

mathematical formulas are not derived but their objective and parameters are explained.  

1.3 Structure of the thesis 

The study consists of theoretical background, empirical research and analysis of the 

results. The theoretical framework is divided into two chapters. The chapter 2 covers the 

modern portfolio theory, capital asset pricing model and the Black–Litterman model. 

With regard to the modern portfolio theory, the concept of risk and return, the efficient 

frontier and the principles of mean–variance optimization are explained. We discuss on 

the issues related to the modern portfolio theory and introduce the Black–Litterman model 

as a response to overcome these problems. The main concepts of the Black–Litterman 

model, the equilibrium market portfolio and the investors’ views on the asset returns, are 

discussed and the model construction is explained. The subsequent chapter provides a 

short presentation to the GARCH models that are used in the empirical research. 

The theoretical part is followed by the empirical section that aims to build a 

theoretical model to estimate the expected returns and weights in the framework of the 

Black–Litterman model. This is done by calculating the equilibrium implied returns and 

the historical variance-covariance matrix and incorporating the investors’ views predicted 

with the EGARCH-M model as a proxy for the views. In the last part the main results of 

the empirical research are discussed.  
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2 THEORETICAL BACKGROUND 

2.1 Capital asset pricing model and modern portfolio theory 

2.1.1 Main concepts of portfolio management 

Return and risk of the portfolio are the main concepts related to portfolio management. 

Campbell, Lo and MacKinlay (1997) argue that there are two main reasons to use returns 

instead of prices. Firstly returns are considered as a complete summary of the investment 

opportunity since the amount that an average investor invests does not affect the price 

changes in perfectly competitive markets. Secondly returns have more desirable statistical 

properties than prices.  

The most common forms of returns are one-period simple return and continuosly 

compounded returns. One-period simple return can be calculated as follows:  

 

 𝑅𝑡 =
𝑃𝑡 − 𝑃𝑡−1

𝑃𝑡−1
=

𝑃𝑡

𝑃𝑡−1
− 1, (  1 ) 

 

where 𝑅𝑡 is return at time t, 𝑃𝑡 is the asset price at time t and 𝑃𝑡−1 is the asset price at time 

t-1. When dividends are taken into account the one-period simple return is computed in 

the following way:  

 𝑅𝑡 =
𝑃𝑡 + 𝐷𝑡

𝑃𝑡−1
− 1, (  2 ) 

 

where 𝐷𝑡 denotes the dividend paid at time t. Continuosly compounded returns are 

computed as follows:  

 

 𝑟𝑡 = ln(1 + 𝑅𝑡) = ln (
𝑃𝑡 + 𝐷𝑡

𝑃𝑡−1
), (  3 ) 

 

where 𝑟𝑡 is the continuosly compounded return at time t. These logarithmic returns are 

considered superior to simple returns for two main reasons. Continuosly compounded 

returns have more attractive statistical properties than simple returns. In addition the 

calculation of multi-period sum of returns is easier for continuosly compounded returns. 

The multi-period returns for simple returns and continuosly compounded returns are 

computed in the following way respectively:  
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𝑅𝑖,𝑡 = ∏(𝑅𝑖𝑡 + 1) − 1

𝑇

𝑡=1

 
 

 

 

 
𝑟𝑖,𝑡 = ∑ 𝑟𝑖𝑡

𝑇

𝑡=1

. (  4 ) 

 

As shown in Equation (4) the multi-period simple return is a product of simple one-period 

gross returns while the equivalent multi-period return for logarithmic returns can be 

computed simply as a sum of one-period logarithmic returns. (Tsay 2005) 

It is reasonable to use variance or it’s square root, standard deviation, as a measure 

for the deviation from the average return. This is because the deviations from the average 

return can be either positive or negative and variance takes this into account by using 

squared values instead of original ones. Therefore all the deviations can be considered as 

positive values. (Elton 2011, 44-45)   

When computing the variance of a portfolio, the concept of covariance has to be taken 

into consideration. Covariance is the measure of how the returns of two asset returns 

behave together. It gets positive values when the two asset returns go to the same direction 

simultaneously, either positive or negative. On the other hand it gets negative values when 

the returns move to the opposite directions. Zero covariance means that the asset returns 

are not linearly dependent on each other. Covariance can be computed in the following 

way:  

 

 𝜎𝑖𝑗 = 𝜌𝑖𝑗𝜎𝑖𝜎𝑗 , 
(  5 ) 

   

where 𝜎𝑖𝑗 is covariance between the returns of asset i and j, 𝜌𝑖𝑗  is their correlation and 𝜎𝑖 

and 𝜎𝑗 refer to standard deviations of assets i and j, respectively. This equation can be 

rewritten as follows:  

 𝜌𝑖𝑗 =
𝜎𝑖𝑗

𝜎𝑖𝜎𝑗
. (  6 ) 

 

In Equation (6) the correlation between two assets is explained as a quotient of covariance 

and the product of individual standard deviations. The variable 𝜌𝑖𝑗  is called correlation 

coefficient. In fact, the only difference between the covariance and the correlation 

coefficient is that the latter one scales the values between -1 and 1. (Elton 2011, 51-52) 
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2.1.2 Capital asset pricing model  

Capital asset pricing model (CAPM) was first introduced by Sharpe (1964). According 

to the theory there are four basic assumptions that should hold so that the model is valid. 

The first one states that all the investors aim to maximize the wealth only based on mean 

and variance of the portfolios. Secondly the effect of taxes or transaction costs should be 

eliminated. Thirdly it is assumed that the investors have homogenous expectations 

regarding the asset returns. This means that all the investors have the same expectations 

and an identical set of choices. Fourthly there are no limitations for investors to borrow 

and lend at the riskless rate of return. (Black, Jensen & Scholes 1972; Walters 2007) 

Lending at riskless rate is consideded as a purchase of a riskless asset, e.g. a short-term 

Treasury bill that has a certain return. Borrowing can be understood as selling this asset 

short. (Elton 2011, 83) 

The main idea of CAPM model is the assumption of a linear correlation between the 

risk and the return of the asset. It can be written as follows:  

 

 𝐸(𝑅𝑖) = 𝑟𝑓 + 𝛽𝑖(𝑟𝑚 − 𝑟𝑓), 
(  7 ) 

 

where 𝐸(𝑅𝑖) is the expected return of the asset i, 𝑟𝑓 is a risk-free rate of return, 𝛽𝑖 is beta 

coefficient representing the risk of the asset i and 𝑟𝑚 is the return of the market portfolio. 

Beta coefficient represents the idiosyncratic risk, i.e. the asset-specific risk and can be 

rewritten as follows:  

 

 𝛽𝑖 = 𝜌
𝜎𝑖

𝜎𝑚
=

𝐶𝑜𝑣(𝑟𝑖 , 𝑟𝑚)

𝑉𝑎𝑟(𝑟𝑚)
, (  8 ) 

 

where 𝜌 is the correlation coefficient, 𝜎𝑖 is the variance of the returns of asset i and 𝜎𝑚 is 

the variance of the market portfolio. (Walters 2011) 

The total risk of an individual asset i can be expressed with the following equation:   

 

 𝜎𝑖 = 𝛽𝑖𝜎𝑚 + 𝜎𝑒𝑖 , 
(  9 ) 

 

where 𝜎𝑖 is the variance of the security i, 𝛽𝑖 is the beta coefficient, 𝜎𝑚 is the market risk 

and 𝜎𝑒𝑖 is the residual risk. The last term approaches zero when the number of the 

securities held in the portfolio gets large enough. Thus the first term on the right side of 

Equation (9) defines the risk of the security. This is market volatility multiplied by beta 

coefficient which cannot be diversified away. Therefore the term 𝛽𝑖𝜎𝑚 is called non-

diversifiable systematic risk and the term 𝜎𝑒𝑖 diversifiable risk. (Elton 2011, 134-135) 



 17 

2.1.3 Background of the modern portfolio theory 

According to Markowitz (1952) portfolio selection consists of two stages. The first one 

involves observation and experience followed by forecasts on future performance of the 

assets. The second stage starts with these forecasts and ends up with the selection of the 

optimal portfolio. The modern portfolio theory focuses on the second stage of this 

portfolio selection process.  

The modern portfolio theory starts by rejecting the assumption that an optimal 

portfolio is the one that maximizes the expected return. This would imply that the 

investors would invest only on the asset that gives the highest return. However this 

approach does not take the risk into account. The portfolio that gives the highest return 

does not automatically guarantee the minimum risk. It suggests that any non-diversified 

portfolio is more desirable thant a diversified one. However investors cannot know the 

future returns with certainty. Therefore diversification should be taken into account to 

reduce uncertainty.  When assuming that investors both maximize the expected return and 

diversify the portfolio, we can find a portfolio that gives the highest expected return and 

minimum risk. (Markowitz 1952) 

Markowitz introduced the concept of efficient frontier that represents the efficient 

portfolios that maximize the expected return while minimizes the variance. In this 

framework investors can benefit from a higher return by taking additional risk or they can 

reduce risk by accepting a lower expected return. According to Markowitz the expected 

return and the variance of the portfolio can be constructed as follows:  

 

 
𝐸 = ∑ 𝑋𝑖𝜇𝑖

𝑁

𝑖=1

 
 

(  10 ) 

 

 
𝑉 = ∑ ∑ 𝜎𝑖𝑗𝑋𝑖𝑋𝑗

𝑁

𝑗=1

𝑁

𝑖=1

, (  11 ) 

 

 

where 𝑋𝑖 and 𝑋𝑗 are the weights invested in the assets i and j respectively, 𝜇𝑖 is the mean 

return of the asset i and 𝜎𝑖𝑗 is the covariance between the two assets. Based on Equation 

(10) the expected return is calculated as a sum of the weighted mean returns.  Equation 

(11) represents the risk of all the assets together. It is denoted as a sum of the product of 

the asset weights and their covariance. (Markowitz 1952) 

When short-sales are not allowed it is assumed that all the wealth is invested, i.e. the 

sum of the proportions invested equals to one and that all the weights are zero or positive:  
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∑ 𝑋𝑖 = 1

𝑁

𝑖=1

 

 

 

 𝑋𝑖 ≥ 0. 
(  12 ) 

  

The optimal diversification is done by combining assets from different industries as their 

covariances are lower than within the same industry. This is simply because the 

performance of the assets in the same industry tend to move together. (Markowitz 1952) 

2.1.4 Efficient frontier 

Efficient frontier represents all the efficient portfolios that are consistent with the 

assumption of risk averse investors that prefer more to less. The efficient portfolios are 

the combinations of risky assets that either offer the highest return for the minimum level 

of risk or the lowest risk for the desired expected return. Graphically, the efficient frontier 

is the curve that determines the efficient portfolios in the return-standard deviation space. 

All the efficient portfolios are between the global minimum variance portfolio and the 

maximum return portfolio. Figure 1 represents the efficient frontier that starts from the 

point B and ends at the point C:  

 

 

Figure 1: Efficient frontier 

(Elton, 2011, 292) 
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In Figure 1 the point B represents the global mínimum variance portfolio and the point C 

is the maximum return portfolio. When short sales are allowed, the upper bound is 

infinite.  (Elton 2011, 292) 

It is assumed that investors can lend and borrow at a riskless rate which gives them a 

certain return with zero risk. Lending at riskless rate is consideded as a purchase of a 

riskless asset, e.g. a short-term Treasury bill that has a certain return. Borrowing can be 

understood as selling this asset short. Figure 2 represents the line that represents all the 

combinations of the risky portfolios with riskless lending and borrowing. The line starts 

from the point where standard deviation equals zero since the asset has zero risk. Moving 

to the right or left from the point A means that the risky portfolio is combined with riskless 

lending or borrowing respectively. The line starting from the point 𝑅𝑓 is called capital 

market line and all the efficient portfolios lie on this line. (Elton 2011, 82-83; Walters 

2011) 

 

 

Figure 2: Capital market line with riskless lending and borrowing  

(Elton, 2011, 83) 

 

The portfolio risk consists of the individual risk of each asset and the covariance 

between all the individual asset pairs. It can be shown that when including a riskless asset 

the risk of the portfolio actually diminishes so that it only involves the risk of the risky 

asset. Equation (13) demonstrates how the average return of the portfolio is divided 

between a risky asset and a riskless asset:   

 

 �̅�𝑃 = (1 − 𝑋)𝑅𝐹 + 𝑋�̅�𝐴, 
(  13 ) 
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where �̅�𝑃 is the average return of the portfolio, 𝑋 is the weight of the asset in the portfolio, 

𝑅𝐹 is the return of the risk-free asset and �̅�𝐴 is the average return of the risky asset A. The 

risk of the portfolio consisting of a risky asset and a riskless asset is demonstrated in 

Equation (14):  

 

 𝜎𝑃 = √(1 − 𝑋)2𝜎𝐹
2 + 𝑋2𝜎𝐴

2 + 2𝑋(1 − 𝑋)𝜎𝐹𝜎𝐴𝜌𝐹𝐴, (  14 ) 

 

where 𝜎𝐹 is the standard deviation of the riskless asset, 𝜎𝐴 is the standard deviation of the 

risky asset A and 𝜌𝐹𝐴 is the correlation between these two assets. After eliminating the 

terms that equal zero the risk of the portfolio becomes as follows:   

 

 𝜎𝑃 = 𝑋𝜎𝐴. (  15 ) 

 

Equation (15) implies that the risk of the portfolio equals the risk of the risky asset A. 

When solving this equation with respect to the parameter X, we see that the weight of the 

risky asset X can be expressed as a quotient of the standard deviations of the portfolio 

and the risky asset A respectively:  

 

 𝑋 =
𝜎𝑃

𝜎𝐴.
 (  16 ) 

 

By replacing this in Equation (13)  we get the following equation for the return of the 

portfolio:  

 

  �̅�𝑃 = 𝑅𝐹 +
(�̅�𝐴 − 𝑅𝐹)

𝜎𝐴
𝜎𝑃. (  17 ) 

 

 

(Elton 2011, 82-83) 

Figure 3 shows how the capital market line and efficient frontier determine the 

optimal allocation of riskless and risky asset:  
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Figure 3: Efficient frontier with riskless lending and borrowing 

(Elton, 2011, 293) 

 

In Figure 3 the point P represents the market portfolio, i.e. the combination of all the risky 

assets. This usually refers to CAPM portfolio. It is assumed that all the investors have 

homogenous expectations and therefore their efficient frontier is identical. Furthermore 

all the investors have the same rate for riskless borrowing and lending. Investors may 

choose the optimal combination of portfolios from the capital market line depending on 

their risk preferences. They can choose to hold a combination of the market portfolio and 

riskless borrowing or lending. Alternatively they can invest only on the market portfolio 

or they may choose a combination of risky assets. (Elton 2011, 292-293) 

When an investor holds a riskless asset and a risky market portfolio we can refer to 

the two-fund separation theorem. The optimal combination of these two assets can be 

found by identifying the greatest slope that connects capital market line and efficient 

frontier by starting from the riskless asset 𝑅𝑓. This is computed by maximizing the 

quotient of the excess return on top of the riskless return divided by the standard return 

of the portfolio:   

 

 𝜃 =
�̅�𝑃 − 𝑅𝐹

𝜎𝑃
, (  18 ) 

 

where �̅�𝑃 is average return of the market portfolio, 𝑅𝐹 is riskless return and 𝜎𝑃 is standard 

deviation of the market portfolio. In fact, this equation is the same as the latter term in 

Equation (17). This formula is called Sharpe ratio or alternatively tangency portfolio. 

When maximizing this equation all the wealth has to be invested so that Equation (19) 

holds:    
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∑ 𝑋𝑖 = 1

𝑁

𝑖=1

. (  19 ) 

 

 

(Elton, 2011). Fabozzi, Focardi and Kolm (2010) introduce two main stages  for the two-

fund separation theorem: asset allocation and risky portfolio construction. The first one 

involves the decision of how to divide the investor’s wealth between the riskless asset 

and the risky assets. The second one refers to the decision of how to allocate the wealth 

among risky assets.  

The correlation between two assets determines the shape of the efficient frontier. 

When the correlation between two assets is 1, this means that the two assets are perfectly 

correlated and the efficient frontier is a straight line as depicted in Figure 4: 

 

 

Figure 4: Efficient frontier when the correlation is 𝝆 = 𝟏 

(Elton, 2011, 68) 

 

In Figure 4, the points S and C are examples of portfolios that lie on the efficient frontier. 

By contrast, when the correlation between the securities is -1 this implies perfectly 

negative correlation. When this occurs, investors can combine two efficient portfolios so 

that the total risk is zero. Figure 5 shows how this is depicted in the return-standard 

deviation space:  
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Figure 5: Efficient frontier when the correlation is 𝝆 = −𝟏 

(Elton, 2011, 71) 

 

In case when the correlation between two assets is zero and the assets are not correlated, 

this is represented as a curve as in Figure 6:   

 

 

Figure 6: Efficient frontier when the correlation is 𝝆 = 𝟎 

(Elton, 2011, 72) 
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2.1.5 Mean-variance optimization 

Mean-variance optimization is performed by combining the estimated returns, volatilities 

and correlations of the selected assets and taking into consideration the investment 

choices of the investor. This results to the mean-variance efficient frontier that gives the 

best portfolios in terms of return-risk space. (Fabozzi, Gupta & Markowitz 2002) Figure 

7 illustrates this process: 

 

 

Figure 7: Mean-variance optimization process 

(Fabozzi, Gupta & Markowitz, 2002, 8) 

 

When assuming that there are N risky assets in the portfolio the proportion of each 

asset held in the portfolio is expressed with Nx1 vector w = (𝑤1, 𝑤2 , … , 𝑤𝑁) where each 

parameter represents the weight of an individual asset i in the portfolio. As for the risk of 

the assets we need to specify the variance-covariance matrix which is constructed by 

calculating the variance of each asset and the covariance of each asset pair in the portfolio. 

The variance-covariance matrix is constructed as follows:  

 

 
𝚺 = (

𝜎11 ⋯ 𝜎1𝑁

⋮ ⋱ ⋮
𝜎𝑁1 ⋯ 𝜎𝑁𝑁

), (  20 ) 

 

where 𝜎11 is the variance of the asset 1,  𝜎𝑁𝑁 the variance of the asset N and 𝜎1𝑁 and 𝜎𝑁1 

are the covariances between these two assets. In fact, the covariance of a pair of assets is 

represented twice since 𝜎1𝑁 equals 𝜎𝑁1. (Fabozzi et al. 2002, 317) 

When using the weight vector and the covariance matrix, we can form equations for 

the expected return and the variance of the portfolio. Equation (21) represents the vector 

of expected returns:  
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 𝝁𝑝 = 𝒘′𝝁, 
(  21 ) 

 

where 𝒘 is the weight vector and 𝝁 is the mean return vector. The superscript refers to 

the transpose of the vector. The calculation for the variance of the portfolio is 

demonstrated in Equation (22):  

 

 𝜎𝑝
2 = 𝒘′𝚺𝒘, 

(  22 ) 

 

where 𝚺 represents the variance-covariance matrix. The purpose of the mean-variance 

optimization is to minimize the variance of the portfolio. The function is minimized with 

respect to some constraints. One of them is the budget constraint which implies that the 

weights of the assets in the portfolio sum up to 1. Another constraint shows the average 

expected return 𝜇0 that an optimal portfolio should reach. The optimization problem and 

its constraints are constructed in the following way: 

 

 min
𝒘

1

2
𝒘′𝚺 𝒘 

 

 

 𝑠. 𝑡. 𝒘′𝝁 = 𝜇0 

 

 

 𝑤′1 = 1. 
(  23 ) 

 

This is called risk minimization problem and can be solved by using Lagrangian 

multipliers. Equation (24) shows the Lagrangian function:  

 

 𝐿 =
1

2
𝒘′𝚺𝒘 + 𝜆(1 − 𝒘′1) + 𝛾(𝝁0 − 𝒘′𝝁), (  24 ) 

 

where 𝜆 and 𝛾 are Lagrangian multipliers to be used in estimation. (Fabozzi 2002, 317-

318) 

Lagrangian function is solved by using first order conditions which are partial 

derivatives with respect to each parameter.  This starts by taking partial derivatives with 

respect to each parameter in Equation (24). Different equations are formed with respect 

to parameters w,  𝜆 and 𝛾: 

 

 𝜕𝐿

𝜕𝑤
= 𝚺𝒘 − 𝜆1 − 𝛾𝝁0 = 0 
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 𝜕𝐿

𝜕𝜆
= 1 − 𝒘′𝟏  

  
 

 
𝜕𝐿

𝜕𝛾
= 𝝁0 − 𝒘′𝝁. (  25 ) 

  

When solving the first-order condition equation with respect to the vector w it gets the 

following form: 

 

 𝒘 =  𝜆𝚺−11 + 𝛾𝚺−1𝝁. 
(  26 ) 

 

Moreover the other two first-order condition equations are solved as follows: 

 

 1 = 𝒘′𝟏  

   

 𝝁0 = 𝒘′𝝁. 
(  27 ) 

  

Equation (26) can be solved by using Equation (27): 

 

 𝒘′𝟏 = 𝜆𝟏′𝚺−1𝟏 + 𝛾𝟏′𝚺−1𝝁 = 1  

 

 𝒘′𝝁 =  𝜆𝝁𝚺−1𝟏 +  𝛾𝝁′𝚺−1𝝁 = 𝝁0. (  27 ) 

  

These equations can be solved by using the following matrix form:  

 

 (
𝑨 𝑩
𝑩 𝑪

) (
𝝀

𝜸
) = (

𝟏

𝝁𝟎
), (  28 )  

 

where A = 𝟏′𝚺−1𝟏, B = 𝟏′𝚺−1𝝁 and C = 𝝁′𝚺−1𝝁. When combining Equation (22) and 

Equation (29) we can get the following equation for the variance equation:   

 

 𝝈0
2 = 𝒘′𝚺𝒘 =

𝐴𝝁0
2 − 2𝐵𝝁0 + 𝐶

Δ
, ( 30 ) 

 

where Δ = 𝐴𝐶 − 𝐵2. One can find each portfolio on the efficient frontier by calculating 

the value for the variance when the value for the mean return is known. Similarly we can 

derive an equation for the global mínimum variance portfolio:  
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 𝑑𝜎0
2

𝑑𝜇0
=

2𝐴𝝁0 − 2𝐵

Δ
= 0. (  31 ) 

 

As shown in Equation (31) the global mínimum variance portfolio is actually the 

derivative with respect to the parameter 𝝁0. The optimal portfolio weights can expressed 

as follows:  

 w=
𝚺−1𝟏

𝟏𝚺−1𝟏
. (  32 ) 

 

(Fabozzi et al. 2010, 317-319) Equation (29), Equation (30) and Equation (31) are not 

derived here.  

The portfolio optimization requires the definition of expected returns and variance-

covariance matrix used. The most common way is to use historical estimates. However 

using historical information as a source of estimating future parameters is questionable. 

When focusing on information from a certain historical period, one can make false 

expectations about the future. (Fabozzi et al. 2002) There are also other methods, for 

example James-Stein estimators, Bayes-Stein estimators and CAPM based estimators. 

There is no common way to determine the method used but the choice can be evaluated 

in each context. For example, Grauer and Hakansson (1995) studied the use of all the 

above mentioned estimators in two settings: industry rotation and global asset allocation. 

They found out that James-Stein and Bayes-Stein estimators performed better than 

historical returns in industry rotation context but in the global asset allocation context it 

was the opposite. By contrast the CAPM estimators performed worse than historical 

estimators in both settings.  

Another question to solve is the use of variance-covariance matrix. According to 

Ledoit and Wolf (2003) one should not use historical variance-covariance matrix but 

instead a shrinkage variance-covariance matrix. Historical variance-covariance matrix 

produces large estimation errors and this can be improved by the shrinkage method that 

pushes the extreme values closer to the average values to systematically reduce risk.   
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2.2 The Black-Litterman model   

2.2.1 Theoretical background 

In the framework of global portfolio management investors need to make important 

decisions on how to allocate the wealth accross different asset classes as well as the degree 

of hedging the currencies. Mostly the decision-making is done with a simple rule: 

maximize return and minimize risk. (Black & Litterman 1992) One major problem related 

to the traditional mean-variance optimization is that it often provides weights that imply 

large short position in some asset classes. When restricting the model only to long 

positions, this often results in zero weights as well as large weights in assets of small-cap 

markets. (Black & Litterman 1992) Moreover the estimation of the expected returns is 

complex and requires investors to have wide expertise in all the asset classes. Investors 

tend to rely on the historical average returns which are poor estimates for the future 

returns. The traditional models follow strictly the return distribution and the distinction 

between strong and weak views is not clear. (Black & Litterman 1992) Moreover, the use 

of traditional mean-variance optimization often leads to weights that do not make sense. 

The Black–Litterman model was developed to overcome most of these issues. (He & 

Litterman 1999)  

The usefulness of the traditional models can be improved by incorporating the 

investors’ views that move the neutral weights given by the market equilibrium portfolio 

to the direction of the investors’ perceptions. This is the main contribution of the Black–

Litterman model. (Black & Litterman 1992) The model was introduced by Fischer Black 

and Robert Litterman in 1990 to provide a new improved perspective to asset allocation. 

According to the model there exists an equilibrium market portfolio that should be used 

as a reference point to estimate the expected returns. Another contribution of the model 

is that it incorporates the investors’ views on the asset returns. (Walters 2011) According 

to Cheung (2010) the Black–Litterman model is a portfolio construction tool that converts 

the investors’ views into expected returns. The Black–Litterman model is based on 

Bayesian estimation method which relates the implied equilibrium market returns to the 

investor views to produce a revised vector of expected returns. (He & Litterman 1999) 

The equilibrium market portfolio is the global equilibrium that is based on CAPM 

returns and it implies neutral weights. In the context of Black–Litterman model the 

investors can have either relative or absolute views on asset returns and adjust these 

neutral equilibrium values according to those views. Moreover they can evaluate their 

confidence on the views. If the investor has no views on assets, the weights are equal to 

the market equilibrium weights. (Black & Litterman 1992) In fact, the Black–Litterman 

portfolio is a combination of market equilibrium portfolio and the weighted sum of 
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portfolios that incorporate the investors’ views. A positive view represents bullish view 

i.e. the investor believes that the stock price will increase compared to the equilibrium 

and other stocks. (He & Litterman 1999) The weights can reflect the market equilibrium 

weights or they can be extreme compared to them depending on the investors’ confidence 

on the views. Naturally the risk-taking tendency of the investor affects the weights. 

(Beach & Orlov 2007). The Black–Litterman model generates the optimal weights by 

estimating the certainty of the view and by computing the covariance both between the 

view and the equilibrium and among the views. (He & Litterman 1999) 

The main benefit of the model is that it helps to avoid extreme values, i.e. it eliminates 

extreme corner solutions with extremely high expected return or a low estimate for 

volatility.  The confidence of the views defines how much the estimates differ from the 

global equilibrium. (He & Litterman 1999) In practice the Black–Litterman model has 

been utilized by Goldman Sachs investment bank and it has been available for 

institutional investors and financial advisors worldwide. However the model has not 

reached too much attention in the literature mainly because of the complexity of the 

formulation of the view vector for the model. (Beach & Orlov 2007) 

2.2.2 The parameters of the Black–Litterman model 

According to the the Black–Litterman model, the expected returns are a combination of 

the equilibrium risk premiums and the expected returns based on the investors’ subjective 

views. The construction of the model is depicted in Figure 8: 
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Figure 8: The construction of the Black-Litterman model 

(Idzorek, 2005, 16) 

 

On the left side of the figure, the formula for the implied equilibrium return vector is 

constructed from the risk aversion coefficient 𝜆, covariance matrix 𝚺 and market weights 

𝒘𝑚𝑘𝑡. In fact, the implied equilibrium return vector represents the parameter around 

which the mean of the expected returns is distributed. The implied equilibrium return 

vector represents the prior distribution in the Black–Litterman model. The right side of 

Figure 8 shows the distribution of the investors’ views.  The view distribution requires 

the specification of the parameters Q and 𝛀 where Q  represents the view-based returns 

and 𝛀 represents the uncertainty relating to them, in other words, variance. Therefore the 

views are distributed around the mean value of Q and variance of 𝛀. Putting together the 

implied equilibrium return vector and the investors’ views in a formula, we get the revised 

vector of expected returns:  
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 E[𝐑] = [(τ𝚺)−1 + 𝐏𝐓𝛀−𝟏𝐏]−1[(τ𝚺)−1𝚷 + 𝐏𝐓𝛀−𝟏𝐐], 
(  33 ) 

 

where E[𝐑] is the vector of revised expected returns, 𝛀 is the confidence matrix, 𝜏 is a 

multiplier related to uncertainty, 𝚺 is covariance matrix, 𝐏 represents the weights that 

include views, 𝐐 is a vector for actual views and 𝚷 is refers to the vector of implied 

equilibrium returns. (Idzorek 2005)   

2.2.3 Implied equilibrium returns 

The Black–Litterman model starts by assuming that investors can construct a portfolio of 

N assets including equities, bonds, currencies etc. This serves as the equilibrium portfolio 

for the prior distribution. This concept is based on the general equilibrium theory which 

states that in case the global portfolio lies at the equilibrium all the components must be 

at the equilibrium as well. The most common case is to use equilibrium model which is 

based on a quadraric utility function with an assumption of a risk-free rate of return. This 

leads to the application of CAPM model as an equilibrium market portfolio. (Walters 

2011) These assets in the portfolio generate returns that follow the normal distirbution as 

follows:  

 

 𝒓~𝑁(𝝁, 𝚺). 
(  34 ) 

 

In Equation (34), the asset returns are denoted as a vector of returns of different assets. 

They are normally distributed around the mean return 𝝁 and the risk of the portfolio which 

is represented by variance-covariance matrix 𝚺.  

As for the expected returns 𝝁, they are unobservable but normally distributed around 

the equilibrium risk premiums. This is denoted as follows:  

 

 𝝁~𝑁(𝚷, 𝜏𝚺), 
(  35 ) 

 

where 𝚷 represents the equilibrium risk premiums and 𝜏𝚺 is a product of the historical 

covariance matrix 𝚺 and the multiplier 𝜏. This represents the fact that the variance-

covariance matrix for the estimated returns is proportional to the historical variance-

covariance matrix of the returns. Therefore the parameter 𝜏 actually represents this 

proportionality and hence uncertainty. (Walters 2011) When there is no uncertainty 

involved, the parameter 𝜏 gets value of zero. The parameter 𝝁 can be rewritten as an 

equation as follows:  
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 𝝁 =  𝚷 + ε, 
(  36 ) 

 

where 𝜇 is a 1x1 vector of mean return, 𝚷 is a vector of equilibrium risk premiums and ε 

is error term. The latter one has a normal distribution with a mean value of zero and 

standard deviation of 𝚺. Moreover it is assumed that the error term is uncorrelated with 

the parameter 𝝁 (Walters 2011) 

The equilibrium risk premiums are the exceess returns compared to CAPM. They 

represent the global supply and demand of assets and currencies. The equation for the 

equilibrium risk premiums is constructed in Equation (37):   

 

 𝚷 = 𝜆𝚺𝒘𝑚𝑘𝑡 + 𝒓𝒇, 
(  37 ) 

where 𝜆 is the investor’s risk aversion,  𝚺 is the variance-covariance matrix, 𝒘𝑚𝑘𝑡 

represents the weights of equilibrium market portfolio and  𝒓𝒇 is 1x1 vector of risk-free 

rate. (He & Litterman 1999) The concept of the equilibrium portfolio means that in the 

long-run the expected returns cannot differ significantly from the equilibrum values as 

the market inbalancies make them move closer to each other. (Black & Litterman 1992) 

Calculation for the risk aversion factor is shown below:  

 

 𝜆 =
𝐸(𝑅) − 𝑅𝑓

𝜎
. (  38 ) 

 

In fact, this measure is Sharpe Ratio as it has excess returns as a numerator and the 

measure of risk as denumerator. (Idzorek 2005) 

A common approach is to use CAPM as a prior for the Black–Litterman model (He 

& Litterman 1999). CAPM model can be rewritten as shown in Equation (39) the first 

one presenting the conditional expected returns for the asset i and the latter one 

representing that of the market portfolio:  

 

 𝐸[𝑟𝑖,𝑡+1|𝛀𝑡] = 𝜆𝑚𝐶𝑜𝑣(𝑟𝑖,𝑡+1, 𝑟𝑚,𝑡+1|𝛀𝑡) 
  

 

 𝐸[𝑟𝑚,𝑡+1|𝛀𝑡] = 𝜆𝑚𝑉𝑎𝑟(𝑟𝑚,𝑡+1|𝛀𝑡), 
(  39 ) 

 

where 𝐸[𝑟𝑖,𝑡+1|𝛀𝒕] is the conditional expected return for the asset i, 𝐸[𝑟𝑚,𝑡+1|𝛀𝒕] is the 

conditional expected return for the market portfolio, 𝜆𝑚 is the risk aversion factor, 

𝐶𝑜𝑣(𝑟𝑖,𝑡+1, 𝑟𝑚,𝑡+1|𝛀𝑡) is the conditional covariance between the return of the asset i and 

the market return and 𝑉𝑎𝑟(𝑟𝑚,𝑡+1|𝛀𝑡) is the variance of the market portfolio. The returns 
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are conditional on the information at time t and this is repsesented with the symbol 𝛀𝑡. 

The parameter 𝜆𝑚 and the variance of the market returns can be estimated by using 

GARCH-in-mean model. As shown in Equation (39) in this case the parameter 𝜆 is 

considered time-variant even though commonly it is assumed to be independent on time. 

(Antell & Vaihekoski 2007)  

2.2.4 Investors’ views on asset returns 

The investors’ views are modelled as a conditional distribution with respect to the 

estimated excess returns. It is assumed that all the views are uncorrelated with each other. 

The investors may have either absolute or relative views on the asset returns that differ 

from the equilibrium returns. Moreover the investors can express their confidence on the 

views which relate to the Bayesian nature of the investment risk. The confidence or in 

other words the quality of these investors views are presented as the matrix of uncertainty 

which is a diagonal matrix presenting the confidence estimates on the diagonal and setting 

the non-diagonal values zero. (Beach & Orlov 2007) According to Walters (2011) this 

assumption holds for two main reasons. Firstly the correlation of the views would make 

the view matrix very complex. Secondly all the views sum up to either 0 or 1 in case of 

relative and absolute views, respectively.   

The views are normally distributed: 

 

 𝑷~𝑁(𝑸, 𝛚),  
(  40 ) 

 

where P represents the weights of the assets that are given an active view, Q is the 

expected return and ω is the standard deviation of the view. In relation to the expected 

returns, the views can be expressed with the following equation:  

 

 𝑷𝐸[𝑹] = 𝑸 + 𝒆,  
(  41 ) 

 

where P is a vector of the weights for the assets that are given an active view, 𝐸[𝑹] is a 

vector of the expected returns, Q is the absolute or relative view and e includes the error 

related to the investors’ views (He & Litterman 1992). When n represents the number of 

assets and k is the number of views, we can specify that P is a k x n matrix, Q is k x 1 

matrix and 𝛀 is k x k matrix. (Walters 2011) The vector e is normally distributed with the 

following setting:  
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 𝒆~𝑁(𝟎, 𝛀), 
(  42 ) 

 

where 𝛀 is a diagonal matrix that indicates the covariance of the views. The inverse 

matrix 𝛀 −𝟏 refers to the confidence of the views. As the views are assumed to be 

independent their covariance is zero. Therefore the off-diagonal values in the matrix are 

zero and diagonal values represent the variances of the views. The covariance matrix of 

the error term is formed in Equation (43):   

 

 
Ω = (

𝜔1 … 0
⋮ ⋱ ⋮
0 … ω𝑘

), (  43 ) 

 

 

where ω𝑘 is the variance of the error term of the view k. This assumption of independence 

of the views results to more stabile and simple results. (Walters 2011) The variance of the 

error term ω𝑘 has an inverse relationship with the investor’s confidence on the view. This 

means that when the variance of the error term is zero, the confidence of the view is 100 

% (Idzorek 2005). A zero value on the diagonal therefore refers to a view of which the 

investor is fully certain (Walters 2011).  

When expressing the confidence matrix in terms of variances of the views, we get the 

following matrix:  

 

 
Ω = (

𝒑1𝚺𝒑1
′ … 0

⋮ ⋱ ⋮
0 … 𝒑𝑘𝚺𝒑𝑘

′
), (  44 ) 

 

 

where 𝑝𝑘 is the weight of an individual active view in the 𝐏 matrix and 𝚺 is the covariance 

matrix. This variance of a view portfolio affects the confidence that is given to a specific 

view. The higher the certainty of the views, the closer the revised expected return vector 

is to the views. By contrast, when the value for certainty gets lower, the revised expected 

return vector approaches the implied equilibrium returns. (Idzorek 2005) 

The equation for the investor views can be understood by having a look at the 

example of Walters (2011). In the example, there are four assets and two views. The first 

view is that the asset 1 will outperform the asset 3 by 2 %. The second view is that the 

asset 2 will yield 3 %. The first view is relative and the second one is absolute. This can 

be expressed with the vector notations as follows:  
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 𝑷 = (
1 0
0 1

     
−1 0
0 0

)  

 𝑸 =  (
2
3

)  

 𝛀 = (
𝜔1 0
0 𝜔2

). (  45 ) 

 

Moreover the sum of the weights needs to be consistent so that in case of relative views, 

the sum equals zero and in case of absolute views, it equals one. (Walters 2011) 

In case the investor has no views on a specific asset and there is zero confidence on 

the views the parameters P and 𝜏 are zero and it holds that the expected returns are equal 

to the implied returns from the prior distribution:  

 

 𝐸(𝑅) =  𝚷, 
(  46 ) 

 

where 𝐸(𝑅) is the expeceted return and 𝚷 is the implied return (Beach and Orlov 2007). 

When combining the implied equilibrium returns and the distribution for the investor 

views the Black–Litterman returns can be calculated with Equation (33).  

2.2.5 The Black–Litterman weights 

Once the vector of revised expected returns is consructed the weights can be calculated 

as follows:  

 

 𝑾𝐢 = 𝚺𝐸(𝑅), 
(  47 ) 

 

where 𝑾𝑖 is 1x1 vector representing weight of the asset i, 𝚺 is NxN vector of the historical 

variance-covariance matrix and 𝐸(𝑅) is the vector of revised expected returns. The 

proportional weights are calculated by dividing the weight of the asset by the sum of all 

the weights of the assets:  

 

 𝑤𝑖 =
𝑊𝑖

∑ 𝑊𝑖
𝑛
𝑖=1

. (  48 ) 

 

(Beach & Orlov 2007)  

According to He and Litterman (1992) the optimal weights are influenced by the 

investors’ views in three ways. Firstly, it is obvious that the stronger the view is the more 
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it impacts the optimal portfolio. Secondly it can be showed that the covariance between 

the view portfolio and the market portfolio reduces the impact of the view on the optimal 

portfolio. This is because the prior distribution already includes all the information about 

the market equilibrium and therefore the view would be considered as a less informative 

one. Thirdly the covariance between different views diminishes the effect of views on the 

final portfolio. The covariance between views would mean that the same information is 

included many times.  

2.2.6 Issues related to the Black–Litterman optimization 

One of the most controversial issues relating to the Black–Litterman optimization is the 

estimation of the parameter 𝜏 which represents the uncertainty of the mean in the prior 

distribution. Black and Litterman (1992) recommend to use the value zero because the 

uncertainty in the returns is considered higher than in the mean.  By contrast, Satchell and 

Scowcroft (2000) suggests the value to be one. The smaller the value for this parameter 

is the larger is the weight given to the equilibrium implied returns. When 𝜏 is closer to 

zero it gives more weight to the market equilibrium. (Beach & Orlov 2007).  

According to Beach and Orlov (2007) a good practice to analyze whether the 

parameter 𝜏 has a reasonable value is to calculate the portfolio variance as follows:  

 

 𝜎 = 𝑤′𝚺w, (  49 ) 

 

where w is the weight of the asset and 𝚺 is the historical variance-covariance matrix. 

When calculating this value it can be easily observed whether the risk of the portfolio is 

more than allowed. In that case the investor can adjust the parameter 𝜏 so that the risk 

reaches the desired level.  

Another problematic parameter to estimate is the confidence matrix 𝛀. He and 

Litterman (1999) suggest that there is a relationship between the confidence matrix 𝛀 and 

the parameter 𝜏. This relationship is defined so that the variance of the view portfolio 

equals the ratio that divides the variance of the error term 𝜔𝑘 by the parameter 𝜏: 

 

 𝑝𝑘𝚺𝑝𝑘
′ =

𝜔𝑘

𝜏
. (  50 ) 

 

This implies that the confidence matrix gets the following form:  
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𝛀 = (

(𝑝1𝚺𝑝1
′ )𝜏 … 0

⋮ ⋱ ⋮
0 … (𝑝𝑘𝚺𝑝𝑘

′ )𝜏
). (  51 ) 

 

 

In fact when using this expression the value of the parameter 𝜏 becomes insignificant 

since only the ratio 
𝜔𝑘

𝜏⁄  is incorporated in the model. (Idzorek 2005) 

Walters (2011) presents four different methods to compute the uncertainty matrix 𝛀. 

Firstly we can assume that the confidence matrix is proportional to the variance of the 

prior distribution. Secondly one can use confidence interval to estimate the variance 

around the mean return estimate. Thirdly the investors may use the variance of the 

residuals from the factor model used to derive the excess returns. Fourthly one could use 

the method introduced by Idzorek (2005) in which the confidence of the view is presented 

as a percentage shift of the weights from 0 % to 100 %.  

Satchell and Scowcroft (2000) have studied the Black–Litterman model in the non-

Bayesian context. They introduce a model which is based on point estimation in terms of 

prior distribution and investors’ views and they adjust the parameters 𝝉 and 𝛀 according 

to shrinkage of views to the prior point estimates. This model was widely used in the 

literature until the publication of the model by Meucci (2005). The latter one is referred 

as a shrinkage model in which the parameter 𝛀 is varying freely and the parameter 𝜏 is 

complex. Idzorek (2005) introduces an approach to specify the value of  𝛀 so that it gets 

a shrinkage percentage value between 0 % and 100 %.  
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3 ECONOMETRIC APPROACH 

3.1 Introduction for applying GARCH models in tactical asset allocation 

To study the applicability of the Black–Litterman model one needs estimates for the 

returns and the volatility. There is no common way to predict investors’ views but 

estimates for returns and variances can be jointly estimated with GARCH model. The 

main reason to apply GARCH models to generate inputs for the investors’ views for the 

Black–Litterman model is that there often exist statistical regularities in asset returns and 

this impact can be captured when using a time-varying volatility estimation model. 

(Palomba 2008) This study follows the steps of the articles of Beach and Orlov (2007) 

and Duqi et al. (2014) which use EGARCH-in-mean model to predict investors’ views 

for the Black–Litterman model.  

The return and variance estimates enter the Black–Litterman model in the form of 

parameters P, Q and 𝛀. The parameter P represents the weights for each view and the 

parameter Q includes the views. By contrast the parameter 𝛀 refers to the confidence in 

views. In this research we apply an exponential GARCH-in-mean model to get these 

estimates and to test the Black–Litterman model in reality. The estimates for the 

parameters P and Q can be generated from the return estimates and the parameter 𝛀 can 

be estimated from the residuals of the results of EGARCH-M. These views are then used 

as inputs to calculate the revised vector of returns as in Equation (33).   

In practice the EGARCH-M model consists of two equation: mean equation and 

variance equation. When running the model we get estimates for different parameters of 

these equations and these parameters are used to calculate estimated returns and 

variances. In this study these estimates are then used when formulating theoretical 

investors’ views for the Black–Litterman model. In practice this means specifying the 

matrices P, Q and 𝛀. We form three relative views so that we compare the performance 

of two different assets at two consecutive periods. The weights of the active assets are 

included in the matrix P and the variance of the returns of the active assets are represented 

in matrix Q.  

EGARCH-M model can be considered as a good tool to generate inputs for the 

investors’ views in the Black–Litterman model as it provides simultaneously return and 

variance forecasts for the future subsequent periods. The model is complex and has a lot 

of different parameters but it is easy to apply with R program as in this study.  
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3.2 ARCH and GARCH models  

One of the basic assumptions of the ordinary least squares estimation is homoscedasticity, 

i.e. the expected value of the squared error term gets the same value at all the points. In 

case the values of these error terms differ the data exhibits heteroscedasticity. As a result 

one could use ARCH or GARCH models which predict the variance of each error term 

separately. (Engle 2011)  

Momentum refers to persistence in variance, i.e. the current variance is explained by 

the past variance. This determines the effect of volatility on the stock prices. (Lamoureux 

& Lastrapes 1990) To estimate this persistence of variance, GARCH model was 

developed by Engle (1982) and Bollerslev (1986). Engle introduces the concept of ARCH 

model which captures the effect of momentum in variance to test whether the error term 

of an autoregressive model (AR) depends on its lagged values. This model was 

generalized by Bollerslev to autoregressive moving average models (ARMA) so that the 

effect of the lagged variance is taken into account as well. According to Engle (2001) 

GARCH models are practical when estimating volatility and the magnitude of errors 

especially when the time series exhibit strong heteroscedasticity. GARCH models are a 

common tool for forecasting the volatility as a function of a long-term volatility trend, 

the estimate of volatility from preceding periods and the information about volatility from 

past periods.  

The first order ARCH model, ARCH(1,1), can be presented as follows:  

 

 𝑟𝑡 = 𝒙𝑡
′ 𝛾 + 휀𝑡 

 

 𝜎𝑡
2 = 𝜔 + 𝛼휀𝑡𝑡−1

2 , 
(  52 ) 

 

where 𝑟𝑡 represents the estimated return, 𝒙𝑡
′  is a vector of all the independent variables 

and  휀𝑡 is the error term. It is assumed that the error term has a normal distribution so that 

휀𝑡~𝑁(0, 𝜎𝑡
2).The latter equation represents how the variance of the error term depends 

on the mean 𝜔 and the preceding error term 휀𝑡−1
2 . The first order GARCH model, namely 

GARCH(1,1) model, extends this by adding another regressor to the variance equation. 

Equation (53) represents this dependence:  

 

 𝑟𝑡 = 𝑥𝑡
′𝛾 + 휀𝑡  

 

 𝜎𝑡
2 = 𝜔 + 𝛼휀𝑡−1

2 + 𝛽𝜎𝑡−1
2 , 

(  53 ) 
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where the latter equation has a new parameter 𝜎𝑡−1
2  which represents the variance from 

the last period. GARCH(1,1) is the simplest form of GARCH model. It refers to a model 

in which the parameters have only one lagged value so that the values are from the 

preceding period. The model can be extended so that it includes more lagged values to 

capture the effect of a longer period of time.    

3.3 EGARCH-in-mean model 

Introduced by Engle, Lilien and Robins (1987) ARCH-in-mean model extends the 

original ARCH model so that it adds the effect of variance to the mean equation. As a 

result the fluctuations in the conditional variance have a direct impact on the return of the 

portfolio. This is demonstrated with the following equation:  

   

 𝑟𝑡 = 𝜇 + 𝛿�̂�𝑡
2 + 휀𝑡 , 

( 54 ) 

 

where 𝑟𝑡 represents the mean return at time t, σ̂t
2 is the estimate of variance, 𝛿 is the 

coefficient that determines the effect of variance on the mean return and 휀𝑡 is the error 

term. When applying this to the original GARCH model, we get the following equations:  

 

 𝑟𝑡 = 𝑥𝑡
′𝛾 + 𝛿�̂�𝑡

2 + 휀𝑡  

   

 𝜎𝑡
2 = 𝜔 + 𝛼휀𝑡−1

2 + 𝛽𝜎𝑡−1
2 , 

(  55 ) 

 

where the new paramater 𝛿 determines the impact of variance �̂�𝑡
2 on the return (risk-return 

trade-off). The above equations prove that the inclusion of ARCH-in-mean has an effect 

on the mean equation and the variance equation remains the same as in the original 

GARCH model. 

EGARCH model was developed by Nelson (1991) to take into consideration the 

tendency of negative shocks to increase the volatility and the positive shocks to decrease 

it. The ordinary GARCH models give importance only to the size of the shocks regardless 

their direction. The simple EGARCH model can be expressed as follows:  

 

 𝑟𝑡 = 𝑥𝑡
′𝛾 + 휀𝑡  

   

 log 𝜎𝑡
2 = 𝜔 + 𝛽 log 𝜎𝑡−1

2 + 𝛼 |
휀𝑡−1

𝜎𝑡−1
| + 𝛾

휀𝑡−1

𝜎𝑡−1
, (  56 ) 
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where 𝜔 is the mean, log 𝜎𝑡−1
2  is the logarithmic first-order lagged value of the volatility,  

𝜀𝑡−1

𝜎𝑡−1
 is the quotient of the past value for the error term and the past value for the volatility 

and |
𝜀𝑡−1

𝜎𝑡−1
| is the absolute value of this. As Equation (56) shows the conditional variance 

depends on three effects. The first one is autoregressive effect captured by the term 

𝛽 log 𝜎𝑡−1
2 . This determines the persistence of volatility over time. The parameter β 

determines how fast the past shocks have an impact on the future volatility. The 

persistence coefficient is set to get values between 0 and 1 to be stationary. The second 

term represents the leverage effect which captures the negative correlation between 

volatility and investor’s reaction to shocks. This can be understood so that a decrease in 

the stock price makes the firm’s debt to equity ratio higher and similarly an increase 

makes it lower. As a result, this affects the volatility inversely. This is represented with 

the term  𝛼 |
𝜀𝑡−1

𝜎𝑡−1
| in Equation (56). The third effect captures the asymmetry effect, i.e. the 

fact that negative and positive shocks cannot have the same impact on volatility. Asset 

returns tend to behave so that negative shocks have larger effect on volatility than 

equivalent positive shocks. This is the term 𝛾
𝜀𝑡−1

𝜎𝑡−1
 in Equation (56). (Duqi et al. 2014; 

Indro, Jiang & Lee 2002)  

Putting the two models, exponential GARCH and GARCH-in-mean, together we get 

the following presentation:  

 

 𝑟𝑡 = 𝑥𝑡
′𝛾 + 𝛿�̂�𝑡

2 + 휀𝑡  

 

 log 𝜎𝑡
2 = 𝜔 + 𝛽 log 𝜎𝑡−1

2 + 𝛼 |
𝜀𝑡−1

𝜎𝑡−1
| + 𝛾

𝜀𝑡−1

𝜎𝑡−1
. 

(  57 ) 

 

This model is estimated to obtain inputs for the view vector in this research. However the 

model is extended with one external regressor, the change in the price of oil.  

3.4 Previous studies of GARCH models in the Black–Litterman context 

Beach and Orlov (2007) have used monthly data from 15 years to estimate EGARCH-M 

model to predict volatility forecast for the period of 120 months. They use country-

specific data for a set of Morgan Stanley Capital International equity indices. Moreover 

they add a number of explanatory macroeconomic factors to the model including the 

growh of industrial production, the return of the US dollar index compared to other 

currencies, the difference between two different credit ratings from Moody’s and the 

change in the price of oil. The purpose of their research is to select en econometric model 

which reflects the properties of the asset returns and their volatilities and to apply this 

model in the context of the Black–Litterman model. They use EGARCH-M model to 
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generate proxies for the views and then calculate the optimal weights for the global 

portfolio by using these inputs. As a result of their study they find out that by using 

EGARCH-M method for the investor views we can get higher returns for the assets with 

the same risk level as in the equilibrium. Moreover, they compare the results from the 

risk-adjusted Black–Litterman weights to the traditional Markowitz weights and the 

major finding is that the weights estimated with the Black–Litterman are less extreme in 

both minimum and maximum values. Duqi et al. (2014) used a similar approach but with 

a different data set. They use daily data from US markets covering a period of 10 years. 

The data consists of 30 indices that are included in Dow Jones Industrial Index.  

In their research, Beach and Orlov (2007) find out that the deviations between any 

two subsequent months is correlated with the past periods. Therefore they emphasize the 

importance of predicting conditional variance and they focus on examining volatility 

clustering. This makes the use of GARCH models a logic choice. The reason for using 

EGARCH-M is that the exponential effect takes the asymmetry of the volatility shocks 

into account and the arch-in-mean effect relates the expected return and the risk. In fact 

including the exponential term in GARCH model is very reasonable as in equity markets 

it is common that the volatility reacts more sensitively to negative shocks in markets than 

to the equivalent positive shocks. According to Duqi et al. (2014) EGARCH models can 

be used to estimate conditional variance of individual assets and this helps to analyze the 

risk-return trade-off of the stocks. It allows the estimation of medium-term stock risk as 

well as the speed of volatility to approach the mean-reverting value.  

The articles of Beach and Orlov (2007) and Duqi et al. (2014) start by assuming that 

the global equilibrium portfolio is built on the actual market capitalization weights. 

Equilibrium expected returns are generated by using reverse optimization, assets are 

sorted based on their performance and the views are formulated with the use of 

EGARCH-M model. These equilibrium expected returns and investor views define the 

vector of expected returns. This vector together with the covariance matrix is used to 

predict the Black–Litterman weights. As a measure for analyzing the risk of different 

assets Duqi et al. (2014) use the half-life index introduced by Bollerslev (1994). Half-life 

index is a measure for persistance in volatility, i.e. the tendency of volatility to approach 

the long-term average. It is used to determine the risk of the stock as the higher the 

absorption speed of past volatility the higher is the risk. Half-life index defines the number 

of days required to halve the gap between the unconditional volatility and the conditional 

one. It can be calculated with the following equation:  

 

 half-life index =
ln(0,5)

ln(𝛽)
, 

(  58 ) 

 



 43 

where β is the parameter in EGARCH-M model that defines the effect of the past variance 

to the variance equation.  

According to Beach and Orlov (2007) the hedging for the foreign currency is not 

necessary in the context where the purchasing power parity holds as the currency returns 

would be reversed by impact of inflation. Black (1989) advices to hedge all the foreign 

investments equally so that the hedging is less than 100 %. In fact there is no specific 

hedging ratio and it may vary between 0 and 100 %. Black and Litterman (1992)  suggest 

a hedging ratio of 80 %. Beach and Orlov (2007) argue that including the hedging ratio 

in their research context is not necessary as the benefits are marginal and there are other 

major issues to overcome when estimating the Black–Litterman model.   
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4 DATA, RESEARCH METHOD AND DESCRIPTIVE STATISTICS 

4.1 Data and research method 

The data used in this study covers time series of twelve MSCI total return indices of 

different market cap sizes. As the study is conducted from an US investor’s point of view 

all the indices are presented in US currency. The data is collected from Thomson Reuters 

Datastream and it covers daily data from the period of 3.10.2008–3.10.2018. In this study 

we estimate Black–Litterman weights for two subsequent periods out-of-sample by using 

the same dataset with different time horizons. The first set covers the period of eight years 

and the second one nine years. The purpose is to find out the benefit or loss for the investor 

who is expected to follow a “buy and hold strategy”. This strategy is based on the efficient 

market hypothesis and it means that an investor purchases an asset to hold it for a long 

period of time (Hui & Yam 2012).  

The total return indices are selected randomly from three different categories: 

developed markets, emerging markets and frontier markets. The purpose is to build a 

diversified portfolio of assets from different economic backgrounds and geographical 

areas. For simplicity the study is restricted to cover only equity indices but the same study 

could be broadened to include other asset classes as well. The classification is done based 

on MSCI annual market classification review (MSCI Inc 2018) and the indices selected 

are presented in Table 1. 

  

Table 1:Classification of equity indices 

 

Developed markets Emerging markets Frontier markets 

MSCI Australia MSCI Brazil MSCI Argentina 

MSCI Norway MSCI China MSCI Kuwait 

MSCI Portugal MSCI India MSCI Morocco 

MSCI United Kingdom MSCI Russia MSCI Vietnam 

 

Emerging markets are known to exhibit high volatility, low correlations and high long-

term returns. The main contribution of investing in emerging markets is the 

diversification benefit. They are easily exposed to political conflicts, flunctuations in 

exchange rates and regulatory changes. In the mean-variance optimization context the 

inclusion of emerging markets moves the efficient frontier to the right. In fact the mean-

variance optimization is not the most optimal tool to be applied for emerging markets as 
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it takes only the mean and the variance of the asset returns into account while the assets 

in emerging markets exhibit strong skewness and kurtosis. (Bekaert, Erb, Harvey & 

Viskanta 1998) In this research we concentrate on BRIC countries, namely Brazil, Russia, 

India and China. These countries are large emerging markets with an average income 

which are expected to increase the world economic growth. These countries differ from 

each other for example by their structural attributes, economic practices and geopolitical 

influence. In China and India the majority of the people live in the countryside while in 

Brazil and Russia most of the population is focused on urban areas. The capital markets 

of China and India are more closed and state-oriented than in Brazil and Russia. 

(Bianconi, Yoshino & Machado de Sousa 2012) 

The new emerging markets, namely frontier markets, have grown recently and they 

are a great opportunity to increase the risk-return trade-off of the portfolio. (Groot, Pang 

& Swinkels 2012) The term frontier markets was established by the International Finance 

Corporation in 1992. It describes small economies that are economically less developed 

than emerging markets. (Fowler 2010) Similarly as emerging markets frontier markets 

offer great diversification benefits. They can offer even higher expected returns but this 

is compensated with higher risk. (Pop, Bozdog & Calugaru 2013) Goetzmann, Li and 

Rouwenhorst (2001) argue that the diversification benefits can be mainly reached when 

investing on emerging markets. However according to Bekaert et al. (1998) the assets 

from emerging markets should not be analyzed in the same way as the assets from 

developed markets because of the high volatility and the non-normality of the returns. For 

simplicity this assumption is ignored and all the assets are treated equally in this study. 

As a risk-free rate of return, 10-Year US Treasury Bond rate is used. This is 

subtracted from the asset returns to obtain the excess returns. Since the logarithmic returns 

have better statistical properties, the returns are transformed to logarithmic. The time 

series of the assets in developed markets, emerging markets and frontier markets during 

the period of 2008-2018 are presented in Appendix 1.  

It can be easily observed that all the time series represent a similar pattern showing 

stock market crashes in years 2008 and 2011. The crash in 2008 relates to the subprime 

crisis and the collapse of Lehman Brothers investment bank (The New York Times, 

2008). Falling stock prices in 2011 was affected by the debt crisis in Europe and the 

collapse of the stock market in 2016 was mainly influenced by the referendum about 

Brexit. The emerging markets were mainly influenced by the increase of the US dollar. 

(Financial Times 2011; CNBC 2016) When looking at the time series of developed 

markets the asset returns of Australia and UK seem to have a similar pattern. The asset 

returns of Norway move similarly but there is a larger relative decrease from 2014 to 

2016. The asset returns of Portugal are varying more largely. As for the asset returns of 

BRIC countries there are clear similarities between China and India and some similarities 

between Brazil and Russia. These findings match with the expectations about the capital 
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markets and the state orientation discussed previously. The time series of the asset returns 

of the frontier markets look all different but we can find some similarities at the peaks.    

A common way to define the benchmark market portfolio is to use a frequently-used 

stock market index, e.g. S&P 500 or MSCI World index. However, for simplicity, this 

study applies naive allocation (1/N) which gives an equal weight to each asset. According 

to DeMiguel et al. (2009) the naive allocation should be considered as the most attractive 

option to define the benchmark since it is  easy to apply and it has a relatively small error 

compared to other options.  

This study applies quantitative research methods to conduct a scientific research in 

the context of the Black–Litterman model. The methods applied in the research are 

econometric. All the calculations and programming are done with R programming 

language. The codes used are presented in Appendix 2. We use two different methods to 

calculate the implied returns: CAPM and another method based on risk aversion and 

covariance between the assets. EGARCH-M model is used to estimate proxies to be used 

as inputs for the view vector. Finally the revised vector of expected returns is calculated 

so that the views estimated with EGARCH-M are incorporated. The estimation is done 

with maximum likelihood method and it is assumed that the errors have a normal 

distribution. 

4.2 Descriptive statistics 

Descriptive statistics are calculated to analyze the properties of the time series and to 

analyze the differences between different MSCI country indices. The descriptive statistics 

computed in this research are mean, standard deviation, Sharpe ratio, skewness, kurtosis 

and the first-order autocorrelation AC(1). Table 2 shows descriptive statistics for the 

twelve assets in the portfolio as well as for the portfolio when using naïve allocation.     
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Table 2:Descriptive statistics 

 

 
Mean 

(%) 
SD (%) Sharpe Skewness Kurtosis AC(1) 

Argentina 0.158 36.673 0.159 -0.348 6.433 0.082 

Australia 0.388 25.580 0.123 -0.998 11.064 0.020 

Brazil 0.107 35.419 0.086 -0.231 9.683 0.042 

China 0.493 25.584 0.123 -0.067 9.138 0.029 

India 0.400 25.002 0.124 0.337 14.312 0.056 

Kuwait -0.116 20.283 0.147 -1.037 14.497 0.051 

Morocco -0.087 16.119 0.186 -0.013 4.082 0.104 

Norway 0.351 32.431 0.096 -0.363 7.819 -0.016 

Portugal -0.110 25.979 0.115 -0.135 6.155 0.078 

Russia 0.177 37.777 0.081 -0.710 15.196 0.076 

UK 0.290 23.242 0.132 -0.326 11.491 0.017 

Vietnam 0.173 23.480 0.130 -0.214 1.758 0.139 

1/N  

PORTFOLIO 

0.185 27.298 0.125 -0.342 9.302 0.057 

 

The statistics are calculated for continuously compounded daily returns. Mean and 

standard deviation are annualized assuming 260 trading days per year. The descriptive 

statistics for the total portfolio are computed for the naive allocation 1/N so that each asset 

has an equal weight 1/12. Based on the results in Table 2 we can observe that China has 

the largest mean value (0.493 %) while Kuwait has the smallest value (-0.116 %). As for 

the standard deviation values Russia has the largest deviation (37.777 %) among the 

return series and Morocco has the smallest deviation (16.119 %).  

Sharpe ratio measures the excess return of the investment to it’s standard deviation. 

It can be calculated as follows:  
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 𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝜇 − 𝑅𝑓

𝜎
 (  59 ) 

 

 (Lo 2002). The risk-free rate used in this case is the expected value of the yearly risk-

free rate of return from 10-years Government Treasury Bill time series. Based on the 

results in Table 2 Sharpe ratio is the largest for Morocco (0.186) and smallest for Russia 

(0.081). These results reflect that none of the assets have a strong risk-adjusted return. A 

positive value for Sharpe ratio means that the mean value for the asset returns is larger 

than the risk-free rate of return and in a case of a negative it is viceversa.  

As for the skewness of the asset returns it is easy to observe that most of the assets 

have a negative skewness. Only India has a positive skewness. Skewness measures 

asymmetry of the return distribution. Basically this means that for the negative skewed 

asset returns the tail of the return distribution is on the left and for the positive skewed 

asset returns the tail is on the right side. Kuwait has the strongest negative skewness (-

1.037) and Morocco has the weakest (-0.013). Kurtosis is the measure of tailedness and 

the values can be similarly positive or negative. The larger the value the larger the less 

peak the asset distribution has. A large positive value for kurtosis is called leptokurtic and 

it means that the distribution has a high peak. By contrast a large negative value for the 

kurtosis means that the asset distribution has a flatter form. As for the results obtained in 

Table 2 we can conclude that all the assets have a positive kurtosis. Russia has the largest 

value (15.196) and Vietnam has the smallest (1.759).  

AC(1) refers to the first-order autocorrelation. Based on the results in Table 2, 

Norway is the only one with a negative first-order autocorrelation value (-0.016). It means 

that the dependence of returns on it’s first-order lagged value is negative. This is also the 

smallest dependence among all the assets in the portfolio. Vietnam has the largest value 

(0.139) so the returns of this index have the strongest correlation with the past values.    

As a part of descriptive statistics also the correlation matrix is calculated to see how 

the assets are correlated with each other. In the Black–Litterman context we are interested 

in the excess returns. Therefore the correlation matrix is calculated for excess returns 

instead of simple asset returns. Table 3 shows the correlation matrix for the twelve test 

assets:  
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According to Table 3 the strongest correlation is between Russia and Norway (0.818). 

Accordingly the weakest correlation is between Brazil and Vietnam (0.080). The 

correlation between assets tell how the assets move together. When two assets have a 

large value for the correlation they tend to move together at the same time.  

4.3 Prior distribution in the Black–Litterman model 

The analysis of the Black–Litterman model starts by defining the prior distribution which 

is used to estimate the posterior distribution along with the additional information. This 

additional information is the investors’ views that will be estimated in this study with 

EGARCH-M methodology. (He & Litterman 1999). In this study the prior distribution is 

naive allocation based on CAPM. This means that each one of the twelve asset is given a 

weight of (1/12) at the beginning of the estimation.  

When estimating the implied returns, a similar approach is used as in the article of 

Duqi, Franci and Torluccio (2014). The calculation of risk aversion coefficient involves 

defining the parameters for market return, risk-free return and volatility. As a proxy for 

market return we use the realized average return of the twelve test assets in the portfolio 

and as a measure of volatility we use the average variance of the stocks in the portfolio. 

The current 10-years Government Treasury Bill is used as a proxy for the risk-free rate. 

Table 4 summarizes the parameters used to calculate the risk aversion coefficient. 

 

Table 4:Parameters for the risk aversion coefficient 

 

Parameter 𝑬[𝑹𝒎
𝒈

] 𝑹𝒇 𝝈𝟐 

Value 0.185 -0.030 1.341 

 

In this case 𝐸[𝑅𝑚
𝑔

] represents global equally weighted portfolio of twelve equity índices. 

The value for 𝜆 obtained with these parameters is 0.173.   

The next step is to calculate the historical variance-covariance matrix. It reflects the 

fact that the assets from the emerging markets have a small covariance with the assets 

from the developed markets and with the other assets from the emerging markets. 

(Bekaert et al. 1998) The last parameter needed for implied equilibrium returns is market 

weights. Table 5 summarizes the results for the implied returns using naïve allocation. 
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Table 5:Implied returns 

  𝚷 

Argentina 23.420 % 

Australia 20.139 % 

Brazil 29.134 % 

China  17.016 % 

India 15.991 % 

Kuwait 3.895 % 

Morocco 4.297 % 

Norway 29.868 % 

Portugal 20.694 % 

Russia 32.518 % 

UK 20.496 % 

Vietnam 4.998 % 

AVERAGE 18.539 % 

 

Russia has the largest value for implied returns (32.518 %) while Kuwait has the smallest 

value (3.895 %). Alternatively this can be calculated with CAPM. The parameters needed 

are risk-free rate of return, average rate of return of the market portfolio and beta 

coefficient. The last one is calculated with the use of variance of the market portfolio and 

covariance of each asset with the market portfolio. The variance of the market portflio is 

1.245 and the covariance is calculated for each asset in the first column in Table 6. The 

second column shows the beta coefficients that are calculated with these parameters.  
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Table 6:Calculation of beta coefficients for CAPM 

 𝒄𝒐𝒗(𝒓𝒊𝒓𝒎) 𝜷 

Argentina 1.527 1.227 

Australia 1.337 1.074 

Brazil 1.857 1.492 

China 1.157 0.929 

India 1.100 0.882 

Kuwait 0.399 0.320 

Morocco 0.422 0.339 

Norway 1.899 1.526 

Portugal 1.370 1.100 

Russia 2.053 1.649 

UK 1.358 1.091 

Vietnam 0.463 0.372 

 

The average return of the market portfolio is 0.185 and the risk-free rate of return at the 

last observation day is -0.03.  The results for the implied returns calculated with CAPM 

are presented in Table 7. 
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Table 7:CAPM results 

 CAPM  

Argentina 23.420 % 

Australia 20.139 % 

Brazil 29.134 % 

China 17.016 % 

India 15.991 % 

Kuwait 3.895 % 

Morocco 4.297 % 

Norway 29.868 % 

Portugal 20.694 % 

Russia 32.518 % 

UK 20.496 % 

Vietnam 4.998 % 

AVERAGE 18.539 % 

 

The results in Table 5 and in Table 7 prove that the results for the implied returns are 

equal with both calculation methods. These results are used in prior distribution when 

calculating the Black–Litterman returns.  

 

4.4 EGARCH-M modeling 

EGARCH-M modeling is done to estimate the two-period forecasts for the asset returns. 

The periods are specified as t and t+1. It is assumed that a theoretical investor invests at 

period t-1 which refers to the eighth year. The aim is to find out if the investor benefits 

when using this strategy. The estimation is done with EGARCH-M model with one 

regressor: the change in the price of oil. The external regressor is a daily time series data 

of the oil price from the same period as the index returns and represented in USD 

currency. When adding one external regressor to both the mean equation and the variance 

equation in EGARCH-M model it can be presented as follows:  
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 𝑟𝑡 = 𝛿�̂�𝑡
2 + 𝜑𝑧𝑡 + 휀𝑡  

 

 log 𝜎𝑡
2 = 𝜔 + 𝛽 log 𝜎𝑡−1

2 + 𝛼 |
휀𝑡−1

𝜎𝑡−1
| + 𝛾

휀𝑡−1

𝜎𝑡−1
+ 𝜓𝑧𝑡−1, (  60 ) 

 

where 𝜑𝑧𝑡 represents the effect of the external regressor, the change in the price of oil, 

on the mean equation and 𝜓𝑧𝑡 represents the effect of this on the variance equation. The 

presentation is similar to the articles of Beach and Orlov (2007) and Duqi et al. (2014). 

However in their articles there are more external regressors. The inclusion of the oil price 

is reasonable as the oil price is one of the major factors influencing the economic growth. 

(Gisser & Goodwin 1986) Moreover all the assets selected for this study are representing 

oil producing countries except Portugal. Hammoudeh, Dibooglu and Aleisa (2004) have 

studied the impact of oil volatility on the stock volatility. According to the study investors 

should invest on stocks which correspond to their risk tolerance and hedge against this 

risk with a derivative. Table 8 and Table 9 summarize the results of jointly estimating 

EGARCH-M with one regressor as shown in Equation (60). The estimation is done with 

an estimation windows of eight years and nine years.  
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 Table 8:EGARCH-M results with one external regressor at period t 

 

According to the results presented in Table 8 arch-in-mean (parameter 𝜇) has the 

strongest effect on Argentina (-2.355) and the weakest effect on Kuwait (-0.013) The 

effect varies among the assets and is either negative or positive. UK (-0.107) has the 

largest leverage effect (parameter 𝛼) and Morocco has the smallest (-0.013). According 

to the parameter β Brazil has the strongest persistence in volatility (0.9643) and Morocco 

has the weakest (0.2684). All the values of the parameter β are considered stationary as 

they are between the values 0 and 1. The parameter γ defines the asymmetry effect and it 

is the strongest for Argentina (0.429) and weakest for Morocco (0.074).  

 𝝁 𝜹 𝝋 𝝎 𝜶 𝜷 𝜸 𝝍 

Argentina -2.355 

(0.000) 

1.327 

(0.000) 

0.274 

(0.000) 

0.573 

(0.000) 

-0.051 

(0.133) 

0.588 

(0.000) 

0.429 

(0.000) 

-0.038 

(0.015) 

Australia -0.082 

(0.000) 

0.081 

(0.000) 

0.138 

(0.000) 

0.013 

(0.000) 

-0.098 

(0.000) 

0.980 

(0.000) 

0.146 

(0.000) 

-0.001 

(0.831) 

Brazil -0.042 

(0.027) 

0.023 

(0.204) 

0.386 

(0.000) 

0.0186 

(0.054) 

-0.067 

(0.000) 

0.986 

(0.000) 

0.143 

(0.210) 

-0.010 

(0.128) 

China 0.030 

(0.734) 

0.006 

(0.928) 

0.100 

(0.000) 

0.014 

(0.000) 

-0.054 

(0.000) 

0.983 

(0.000) 

0.120 

(0.000) 

-0.013 

(0.003) 

India 0.019 

(0.582) 

0.011 

(0.699) 

0.113 

(0.000) 

0.017 

(0.000) 

-0.058 

(0.000) 

0.984 

(0.000) 

0.165 

(0.000) 

-0.012 

(0.000) 

Kuwait -0.013 

(0.650) 

-0.003 

(0.939) 

0.031 

(0.002) 

0.011 

(0.000) 

-0.036 

(0.000) 

0.995 

(0.000) 

0.101 

(0.000) 

-0.012 

(0.000) 

Morocco 0.037 

(0.177) 

-0.047 

(0.115) 

0.046 

(0.000) 

0.002 

(0.141) 

-0.013 

(0.114) 

0.996 

(0.000) 

0.074 

(0.000) 

-0.010 

(0.001) 

Norway -0.040 

(0.410) 

0.029 

(0.450) 

0.327 

(0.000) 

0.015 

(0.000) 

-0.087 

(0.000) 

0.986 

(0.000) 

0.125 

(0.000) 

-0.007 

(0.104) 

Portugal -0.144 

(0.000) 

0.089 

(0.002) 

0.222 

(0.000) 

0.035 

(0.000) 

-0.073 

(0.000) 

0.957 

(0.000) 

0.131 

(0.000) 

-0.018 

(0.002) 

Russia -0.172 

(0.357) 

0.094 

(0.480) 

0.367 

(0.000) 

0.025 

(0.000) 

-0.083 

(0.000) 

0.983 

(0.000) 

0.128 

(0.000) 

0.001 

(0.791) 

UK -0.128 

(0.000) 

0.133 

(0.000) 

0.199 

(0.000) 

0.013 

(0.000) 

-0.107 

(0.000) 

0.968 

(0.000) 

0.172 

(0.000) 

-0.016 

(0.004) 

Vietnam -0.242 

(0.000) 

0.157 

(0.000) 

0.008 

(0.514) 

0.048 

(0.514) 

-0.023 

(0.098) 

0.941 

(0.000) 

0.241 

(0.000) 

0.001 

(0.839) 
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 When analyzing the effect of the price of the oil it is easily observable that this impact 

is larger in the mean equation (parameter 𝜑) than in the variance equation (parameter 𝜓). 

The mean-effect is the strongest for Brazil (0.386) and weakest for Vietnam (0.008). By 

contrast the variance-effect is the strongest for Argentina (-0.038) and weakest for 

Australia (-0.001), Russia (0.001) and Vietnam (0.001).  

 

Table 9: EGARCH-M results with one external regressor at period t+1 

 

 

 

 𝝁 𝜹 𝝋 𝝎 𝜶 𝜷 𝜸 𝝍 

Argentina 0.015 

(0.927) 

0.018 

(0.845) 

0.216 

(0.000) 

0.137 

(0.000) 

-0.057 

(0.000) 

0.910 

(0.000) 

0.315 

(0.000) 

-0.028 

(0.000) 

Australia -0.097 

(0.000) 

0.097 

(0.000) 

0.119 

(0.000) 

0.011 

(0.000) 

-0.087 

(0.000) 

0.981 

(0.000) 

0.136 

(0.000) 

-0.002 

(0.601) 

Brazil -1.116 

(0.000) 

0.616 

(0.000) 

0.347 

(0.000) 

0.869 

(0.000) 

-0.182 

(0.000) 

0.347 

(0.000) 

0.468 

(0.000) 

0.011 

(0.183) 

China 0.129 

(0.000) 

-0.063 

(0.006) 

0.073 

(0.000) 

0.011 

(0.000) 

-0.051 

(0.000) 

0.986 

(0.000) 

0.117 

(0.000) 

-0.013 

(0.000) 

India 0.069 

(0.042) 

-0.025 

(0.380) 

0.092 

(0.000) 

0.015 

(0.000) 

-0.058 

(0.000) 

0.985 

(0.000) 

0.156 

(0.000) 

-0.014 

(0.002) 

Kuwait -0.021 

(0.123) 

0.024 

(0.090) 

0.032 

(0.000) 

0.012 

(0.000) 

-0.021 

(0.002) 

0.993 

(0.000) 

0.103 

(0.000) 

-0.014 

(0.000) 

Morocco 0.108 

(0.000) 

-0.112 

(0.006) 

0.038 

(0.000) 

0.003 

(0.060) 

-0.002 

(0.793) 

0.990 

(0.000) 

0.104 

(0.000) 

-0.009 

(0.014) 

Norway 0.001 

(0.993) 

0.011 

(0.814) 

0.286 

(0.000) 

0.010 

(0.000) 

-0.073 

(0.000) 

0.100 

(0.000) 

0.103 

(0.000) 

-0.008 

(0.054) 

Portugal 0.073 

(0.768) 

-0.053 

(0.755) 

0.199 

(0.000) 

0.027 

(0.328) 

-0.072 

(0.000) 

0.964 

(0.000) 

0.135 

(0.000) 

-0.020 

(0.033) 

Russia -0.037 

(0.667) 

0.021 

(0.733) 

0.332 

(0.000) 

0.018 

(0.000) 

-0.078 

(0.000) 

0.987 

(0.000) 

0.127 

(0.000) 

0.002 

(0.662) 

UK -0.092 

(0.000) 

0.110 

(0.000) 

0.160 

(0.000) 

0.008 

(0.000) 

-0.102 

(0.000) 

0.973 

(0.000) 

0.168 

(0.000) 

-0.015 

(0.006) 

Vietnam -0.083 

(0.049) 

0.053 

(0.142) 

0.013 

(0.326) 

0.027 

(0.000) 

-0.022 

(0.049) 

0.965 

(0.000) 

0.208 

(0.000) 

-0.001 

(0.927) 
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shows the impact of different parameters at t+1. The arch-in-mean effect is the strongest 

for Brazil (-1.116) and weakest for Norway (0.001). The leverage effect is strongest for 

Brazil (-0.182) and weakest for Morocco (-0.002). Similarly the strongest asymmetry 

effect is for Brazil (0.468) and weakest for Kuwait and Norway (0.103). When looking at 

the effect of the price of the oil the values are somewhat similar to those at period t. As a 

conclusion from Table 8 and Table 9 Brazil is affected most by all the three effects and 

the frontier markets are least affected. These effects capture the effect of the volatility of 

the returns so we can assume that the asset returns of Brazil have high volatility.   

4.5 Formulating the investors’ views 

In their study Beach and Orlov (2007) and Duqi et al. (2014) use EGARCH-M -model to 

form the investor views, i.e. to get the inputs for the matrices Q and 𝛀. Including arch-

in-mean effect in the GARCH model allows to predict jointly the expected returns 

together with the volatility estimates. These expected returns are then used to form 

relative investor views. The matrix 𝛀 is the “uncertainty matrix” which represents the 

variances of the views. The inputs for this parameter can be obtained with the estimates 

of variance in the EGARCH-M model. Based on the EGARCH-M results presented in 

Table 8 and Table 9 we get estimates for the expected return and variances to be used as 

an input for the investors’ views in the Black–Litterman model. Table 10 shows the 

expected returns that are weighted based on naïve allocation.  
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Table 10:Equally weighted returns estimated with EGARCH-M 

 Expected return t Expected return t+1 

Argentina 11.000 % 0.468 % 

Australia 0.274 % 0.274 % 

Brazil 0.104 % 0.104 % 

China 0.331 % 0.331 % 

India 0.311 % 0.311 % 

Kuwait -0.135 % -0.135 % 

Morocco -0.014 % -0.001 % 

Norway 0.127 % 0.001 % 

Portugal -0.248 % -0.002 % 

Russia 0.510 % 0.005 % 

UK 0.282 % 0.003 % 

Vietnam -0.568 % -0.006 % 

TOTAL 11.974 % 1.353 % 

 

The estimates for the expected returns are calculated as a function of different parameters 

in the mean equation of EGARCH-M model. It includes arch-in-mean term as well as oil 

as an external regressor. The estimates for the variances are calculated as a function of 

the variance equation in the EGARCH-M model including the effect of past variance, 

asymmetry effect, leverage effect as well as the price of the oil. Based on the results 

presented in Table 10 we see that Argentina has the largest return estimate at time t 

(11.000 %) while Vietnam has the smallest (-0.568 %). In fact the expected return at t for 

Argentina is extremely large compared to the expected returns of the other assets in 

portfolio. As for the expected returns at t+1 Argentina has still the largest value (0.468 

%) and Kuwait has the smallest (-0.135 %). These values are used when forming the 

matrices for the views, namely the matrices Q and .  

The method to formulate the views for the Black–Litterman portfolio is similar to the 

method of Duqi et al. (2014). The assets are sorted according to their implied returns to 

three different portfolios: high-risk, medium-risk and low risk. In Table 11 both implied 

returns and the estimated returns are weighted based on naïve allocation so that each asset 

is given an equal weight (1/12). Based on the results in Table 5 three portfolios were built.  
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Table 11:Construction of portfolios based on the expected returns 

 
Index CAPM 

Expected 

return t 

Expected 

return t+1 

Portfolio 1: high 

risk 

Russia 2.710 % 0.510 % 0.054 % 

Norway 2.489 % 0.127 % 0.160 % 

Brazil 2.428 % 0.104 % 15.459 % 

Argentina 1.952 % 11.000 % 0.468 % 

Portfolio 2: 

medium risk 

Portugal 1.725 % -0.248 % -0.000 % 

UK 1.708 % 0.282 % 0.318 % 

Australia 1.678 % 0.274 % 0.002 % 

China 1.418 % 0.331 % 0.331 % 

Portfolio 3: Low 

risk 

India 1.333 % 0.311 % 0.298 % 

Vietnam 0.417 % -0.568 % -0.200 % 

Morocco 0.358 % -0.014 % -0.108 % 

Kuwait 0.325 % -0.135 % 0.051 % 

TOTAL 

PORTFOLIO 

 18.541 % 19.6372 % 16.833 % 

 

In the Black–Litterman context we can form two different kinds of views: absolute or 

relative views. In this study only relative views are formed. Based on the results in Table 

10 we can form the following relative views for the period t:  

 

• China will outperform Norway by 0.204 % 

• India will outperform Brazil by 0.207 % 

• Morocco will outperform Portugal by 0.234 % 

 

Similarly the below views are formed for the period t+1: 

 

• China will outperform Norway by 0.171 % 

• India will outperform Russia 0.244 % 

• Kuwait will outperform Australia by 0.049 % 

 

The comparision is done by comparing the assets in different risk portfolios. These views 

form the matrix Q. Now that we have the results of different parameters of EGARCH-M 

model as well as the estimated implied equilibrium returns, the Black–Litterman adjusted 
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returns can be calculated. This starts by specifying the matrices P and Q. In this case there 

are 12 assets and 3 views. Therefore P matrix is 3 x 12. As Q matrix includes the actual 

views it has 3 components. Those assets that are not given any active view will be 

presented as zero in the matrix. Based on the results obtained in Table 11 we can form 

these matrices as follows:  

 

 
𝑷𝒕 = (

0
0
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0
0
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(  61 ) 

 

 
𝑸𝒕 =  ( 

0.204
0.207
0.234

 ) 

 

 

 
𝑸𝒕+𝟏 =  ( 

0.171
0.244
0.049

 ) 

 

(  62 ) 

 

 
𝛀 = (

𝜔1 0 0
0 𝜔2 0
0 0 𝜔3

). 

 

(  63 ) 

 

To form the uncertainty matrix  we need the variance-covariance matrix for the views. 

In this study we use the variance-covariance matrix of the residuals of the excess returns 

estimated with EGARCH-M model. By multiplying this with the single k rows from the 

view vector we get the following form for the uncertainty matrix:  

 

 
𝛀𝒕 = (

3.850 0 0
0 4.510 0
0 0 2.562

) 

 

 

 
𝛀𝒕+𝟏 = (

3.539 0 0
0 4.541 0
0 0 0.693

) 

(  64 ) 

The values presented in Equation (64) are percentage values.  
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4.6 The Black–Litterman returns and weights 

To calculate the returns based on the Black–Litterman model we need to specify the 

parameter  𝜏. As there is no consensus on this value in the literature, we perform the 

equation for multiple values of the parameter, varying from 0.01 to 0.1. When there is no 

uncertainty, this value would be zero. Table 12 summarizes the results of Black–

Litterman returns with different values for the parameter 𝜏. 
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Table 12: Black–Litterman returns with different values for the parameter 𝝉 

(% values) 

  t t+1 

 CAPM 𝝉=0.01 𝝉=0.05 𝝉=0.1 𝝉 =0.1 𝝉=0.05 𝝉=0.1 

Argentina 1.952 0.914 0.527 0.457 -3.277 -5.447 -5.879 

Australia 1.678 0.668 0.469 0.431 -3.747 -4.652 -4.796 

Brazil 2.428 1.179 0.474 0.344 -3.988 -6.652 -7.157 

China 1.418 0.588 0.601 0.612 1.985 3.288 3.485 

India 1.333 0.370 0.379 0.389 3.875 9.096 10.818 

Kuwait 0.325 -1.841 -1.881 -1.886 0.133 0.050 0.010 

Morocco 0.358 -1.556 -1.587 -1.597 -3.411 -4.153 -4.302 

Norway 2.489 1.336 0.674 0.556 -8.285 -12.326 -12.932 

Portugal 1.725 -0.943 -1.674 -1.729 -6.316 -8.589 -8.878 

Russia 2.710 2.630 2.236 0.217 -4.718 -8.881 -9.851 

UK 1.708 0.390 0.096 -0.059 -5.880 -8.979 -9.607 

Vietnam 0.417 -1.587 -1.604 -1.605 -1.591 -1.242 -1.124 

Average 1.545 0.179 -0.110 -0.323 -2.935 -4.041 -4.185 

SD 0.826 1.377 1.279 1.037 3.514 6.009 6.626 

Max 2.710 2.630 2.236 0.612 3.875 9.096 10.818 

Min 0.325 -1.841 -1.881 -1.886 -8.285 -12.326 -12.932 

SR -2.082 -1.789 -1.578 -1.533 0.712 0.986 0.996 

 

According to the results in Table 12 we can see that the parameter  𝝉 and Sharpe ratio 

have a positive correlation so that when the parameter 𝝉 gets larger values it increases 

Sharpe ratio. This dependence is obvious as the parameter 𝝉 specifies the uncertainty 

and Sharpe ratio measures the risk-adjusted returns. Therefore it is clear that when the 

risk-adjusted returns increase more risk is involved. At period t all the asset returns get 

lower values than at the equilibrium. Kuwait, Morocco, UK, Portugal and Vietnam have 
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negative values while the other countries have positive values. Russia has the largest 

values but they are decreased from the CAPM based returns. At the period t+1 all the 

assets excluding India and China lose. In fact India and China are the only winners in 

the portfolio with this setting. At this period there are more assets to get negative values. 

By contrast Kuwait has positive values at t+1 regardless the value of the parameter 𝜏.  

The average return at the period t is between -0.323 % to 0.179 % depending on the 

value of the parameter 𝜏 and the equivalent average return at period t+1 is between -

4.185 % to -2.935 %. Therefore it means that the investor loses approximately this 

much when applying “buy and hold strategy”. In the equilibrium the investor would get 

an average return of 1.545 % so the strategy is not profitable. When looking at the 

results in Table 12 it can be observed that the return devitations get larger when the 

parameter 𝜏 increases and when the time passes. In practice this means that the 

maximum value gets larger while the mínimum value decreases. Therefore even though 

the investor would benefit from larger returns in some assets the loss in the other assets 

would clear this benefit and the investor would end up with a smaller return than in the 

equilbrium.   

The results at period t+1 reflect the fact that the assets that were to outperform other 

assets, namely China, India and Kuwait, get higher returns while those assets to be 

outperformed, Norway, Russia and Australia, have smaller returns which are negative in 

this case. However the same does not apply at period t. Moreover it is interesting to 

notice that the assets have different trends when comparing to the change of the 

parameter 𝜏. All the other assets have a decreasing trend except China and India at 

period t. The same applies at period t+1 but in addition Vietnam has a decreasing trend.  

The results shown in Table 12 are used to calculate the Black–Litterman weights as 

shown in Equation (48). The results for the Black–Litterman allocations are presented in 

Table 13.  
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Table 13:Equilibrium weights and Black–Litterman weights (% values) 

  t t+1 

 𝒘𝒎𝒌𝒕 𝝉=0.01 𝝉=0.05 𝝉=0.1 𝝉=0.01 𝝉=0.05 𝝉=0.1 

Argentina 8.333 12.605 17.987 23.884 10.220 10.635 10.735 

Australia 8.333 9.229 11.480 14.071 8.647 8.465 8.434 

Brazil 8.333 15.715 20.382 25.440 13.059 13.431 13.515 

China 8.333 7.637 10.724 14.319 5.818 5.522 5.445 

India 8.333 7.289 9.883 12.920 5.325 4.714 4.505 

Kuwait 8.333 -1.505 -10.164 -19.817 1.734 1.702 1.697 

Morocco 8.333 1.161 -2.006 -5.584 2.938 2.920 2.910 

Norway 8.333 15.426 19.138 23.211 14.623 14.855 14.913 

Portugal 8.333 11.836 3.017 -6.744 15.198 15.155 15.146 

Russia 8.333 11.710 17.036 22.934 10.018 10.256 10.319 

UK 8.333 10.649 13.265 16.109 10.335 10.560 10.630 

Vietnam 8.333 -1.746 -10.742 -20.742 2.085 1.795 1.741 

 

As the results show in Table 13 the weights have bigger changes at period t than at period 

t+1.  Brazil has the largest weights at period t while Vietnam has the smallest. As the 

weights for Vietnam and Kuwait are negative it means that these assets are sold short. 

The largest weights at the period t+1 are for Portugal and smallest weights for Vietnam. 

For most of the assets the weight increases when the parameter 𝜏 gets higher values. In 

the research of Duqi et al. (2014) the weights are influenced most when the parameter 𝜏 

gets larger values. Moreover in their research only those assets which were given an active 

view were influenced by a weight change while the other assets stayed in the equilibrium 

weights. This result was the aim of this study as well but the results were different most 

probably due to a calculation error. In general we can conclude that the weights increase 

for the countries from developed economies and emerging markets but they decrease for 

those countries that are from frontier markets. China is the only exception from the 

emerging markets that has a decreasing weight at the estimation periods.  

To answer the actual research questions we can see based on Table 12 and Table 13 

that the investor loses when applying “buy and hold strategy”. The returns have 
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decreasing values and in most cases they get negative values. However the results might 

change when considering a longer period of time, different dataset or other assumptions. 

Even though some assets tend to have increasing values the negative impacts are 

canceling the benefits.  

The results of this study were not exactly what was expected and this might be due 

to a calculation error in one of the calculation steps. After all the Black–Litterman model 

can be considered as a useful tool to analyze the returns of the portfolio at different 

periods. When using EGARCH-M method we can get forecasts of how the asset returns 

behave in the future periods and get a good understanding of how the asset returns change 

from one period to another. The Black–Litterman model is a complex method that has a 

lot of steps which makes it exposed to errors.  Moreover what makes it complex to study 

is the fact that the literature is full of different methods and perspectives for the model 

which makes it hard to make decisions of how to conduct one’s study.   
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CONCLUSION 

In the international portfolio management context it is important to understand different 

methods for analyzing asset returns and risk. This study focused on the Black–Litterman 

model which provides a new perspective for the global asset allocation. The main 

contribution is that it allows investors to make subjective views on asset returns and 

variances. Moreover the model overcomes many issues related to the traditional mean-

variance optimization. Overall the model can be very useful in the portfolio management 

as it takes the perspective of the subjective views into account.  

This study used a similar approach as in the articles of Beach and Orlov (2007) and 

Duqi et al. (2014) with a data consisting of randomly picked MSCI country indices. The 

data covered 12 MSCI country indices from the period of 3.10.2008-3.10.2018. We sorted 

assets based on their economic development to three categories: developed markets, 

emerging markets and frontier markets. Each category had four assets from different 

geographical areas. We calculated the prior distribution, i.e. the equilibrium implied 

returns and the historical variance-covariance matrix. We found out that there were clear 

differences in asset returns between the assets. Russia, Brazil and Argentina had the 

largest values while Vietnam, Morocco and Kuwait had the smallest. This reflects the fact 

that the assets were selected from different economic backgrounds. As for the variance-

covariance matrix we found clear covariances between the asset classes.  

The assets were sorted to three portfolios based on prior CAPM results: high-risk 

portolio, medium-risk portfolio and low-risk portfolio. Exponential GARCH-in-mean 

model was used to compute estimates for expected returns and variances. The investors’ 

views were formulated based on these results. Three subjective views were expressed 

based on the estimates of the expcted returns. Moreover the uncertainty matrix was 

constructed based on the residuals of the EGARCH-M model. These inputs were used 

when calculating the returns and weights based on the Black–Litterman model. We used 

two-period forecast in this study to estimate returns for two consecutive periods. First we 

used the data from eight years to make forecasts for the asset returns at ninth year and 

secondly we used data from nine years to make these for the tenth year.  

The results of this study were close to what was expected. The aim was to find Black–

Litterman weights which would reflect the theoretical investors’ views which were 

derived with EGARCH-M model. The expectations were that the Black–Litterman 

weights would change for those assets that were given an active view based on the views. 

The assets that were to outperform other assets would have increased weights while the 

assets that were being outperformed would have decreased weights. Moreover the effect 

would increase when the uncertainty parameter 𝜏 gets larger values. However in this study 

the results didn’t reflect this. Also the weights of the assets with passive views were 

affected which was not the purpose of the study. Although this study followed the 
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calculation steps of Beach and Orlov (2007) and Duqi et al. (2014) there might be a 

calculation error or different calculation methods at different stages of the calculation 

process. Despite the fact that the results were not fully as expected we can conclude that 

EGARCH-M model is a useful method to derive the investors’ views for the Black–

Litterman model. It is relatively simple to apply even though it requires a lot of different 

steps due to which the results are exposed to calculation errors.  

For simplicity this study used the forecast period of two years. However when 

comparing only two periods it does not provide a whole picture of how the returns and 

the weights evolve in the Black–Litterman context. This can be used as a reference of 

how the model works but if we seek to understand the real performance of our assets we 

would need a longer forecast period. For example in the research of Beach and Orlov 

(2007) the rolling forecast period was 10 years which gives a broader understanding of 

the returns and asset allocation. To get the best benefit of the Black–Litterman model  

This study was conducted only to equity indices. However it would be interesting to 

see how the inclusion of different asset classes would change the results. For example, 

including bonds, currencies and commodities would bring a new inspiring perspective for 

this study. Another perspective could be to use individual stocks instead of indices. This 

approach was used by Duqi et al. (2014). Another restriction in this study was that only 

the change in the price of oil was included as an exgernal regressor in this study. However 

there are several factors that could be included in future studies. The approach applied in 

this study was EGARCH-M model but when using a different method one could get 

different results. There are several return and volatility forecast models available to be 

applied for the Black–Litterman context. However using EGARCH-M model is 

reasonable as it takes many statistical properties into account and it is relatively simple to 

apply.  
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APPENDIX  

Appendix 1: Time series of MSCI country indices from the period of 

14.3.2008-14.3.2018 
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Appendix 2: R code for the empirical study 

#UPLOAD DATA 

 

library(fGarch) 

library(timeDate) 

library(timeSeries) 

library(fBasics) 

library(forecast) 

library(quantmod) 

library(TSA) 

library(zoo) 

library(dplyr) 

library(rugarch) 

library(MASS) 

library(tseries) 

 

data_argentina = read.table("MSCI_ARGENTINA.txt", header = TRUE, fill = TRUE, 

dec = ",") 

 

data_australia = read.table("MSCI_AUSTRALIA.txt", header = TRUE, fill = TRUE, dec 

= ",") 

 

data_brazil = read.table("MSCI_BRAZIL.txt", header = TRUE, fill = TRUE, dec = ",") 

 

data_china = read.table("MSCI_CHINA.txt", header = TRUE, fill = TRUE, dec = ",") 

 

data_india = read.table("MSCI_INDIA.txt", header = TRUE, fill = TRUE, dec = ",") 

 

data_kuwait = read.table("MSCI_KUWAIT.txt", header = TRUE, fill = TRUE, dec =",") 

 

data_morocco = read.table("MSCI_MOROCCO.txt", header =TRUE, fill = TRUE, dec 

=",") 

 

data_norway = read.table("MSCI_NORWAY.txt", header = TRUE, fill =TRUE, dec 

=",") 

 

data_portugal = read.table("MSCI_PORTUGAL.txt", header = TRUE, fill = TRUE, dec 

=",") 

 

data_russia = read.table("MSCI_RUSSIA.txt", header = TRUE, fill = TRUE, dec =",") 

 

data_uk = read.table("MSCI_UK.txt", header = TRUE, fill = TRUE, dec =",") 

 

data_vietnam = read.table("MSCI_VIETNAM.txt", header = TRUE, fill = TRUE, dec 

=",") 

 

data_rf = read.table("RISKFREE.txt", header = TRUE, fill =TRUE, dec =",") 

 

data_oil = read.table ("OIL.txt", header = TRUE, fill = TRUE, dec =",") 
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data_argentina_8y = read.table("MSCI_ARGENTINA_8y.txt", header = TRUE, fill = 

TRUE, dec = ",") 

 

data_australia_8y = read.table("MSCI_AUSTRALIA_8y.txt", header = TRUE, fill = 

TRUE, dec = ",") 

 

data_brazil_8y = read.table("MSCI_BRAZIL_8y.txt", header = TRUE, fill = TRUE, dec 

= ",") 

 

data_china_8y = read.table("MSCI_CHINA_8y.txt", header = TRUE, fill = TRUE, dec 

= ",") 

 

data_india_8y = read.table("MSCI_INDIA_8y.txt", header = TRUE, fill = TRUE, dec = 

",") 

 

data_kuwait_8y = read.table("MSCI_KUWAIT_8y.txt", header = TRUE, fill = TRUE, 

dec = ",") 

 

data_morocco_8y = read.table("MSCI_MOROCCO_8y.txt", header = TRUE, fill = 

TRUE, dec = ",") 

 

data_norway_8y = read.table("MSCI_NORWAY_8y.txt", header = TRUE, fill = TRUE, 

dec = ",") 

 

data_portugal_8y = read.table("MSCI_PORTUGAL_8y.txt", header = TRUE, fill = 

TRUE, dec = ",") 

 

data_russia_8y = read.table("MSCI_RUSSIA_8y.txt", header = TRUE, fill = TRUE, dec 

= ",") 

 

data_uk_8y = read.table("MSCI_UK_8y.txt", header = TRUE, fill = TRUE, dec = ",") 

 

data_vietnam_8y = read.table("MSCI_VIETNAM_8y.txt", header = TRUE, fill = TRUE, 

dec = ",") 

 

data_rf_8y = read.table("RISKFREE_8y.txt", header = TRUE, fill = TRUE, dec = ",") 

 

data_oil_8y = read.table("OIL_8y.txt", header = TRUE, fill = TRUE, dec = ",") 

 

data_oil_9y = read.table("OIL_9y.txt", header = TRUE, fill = TRUE, dec = ",") 

 

data_argentina_9y = read.table("MSCI_ARGENTINA_9y.txt", header = TRUE, fill = 

TRUE, dec = ",") 

 

data_australia_9y = read.table("MSCI_AUSTRALIA_9y.txt", header = TRUE, fill = 

TRUE, dec = ",") 

 

data_brazil_9y = read.table("MSCI_BRAZIL_9y.txt", header = TRUE, fill = TRUE, dec 

= ",") 
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data_china_9y = read.table("MSCI_CHINA_9y.txt", header = TRUE, fill = TRUE, dec 

= ",") 

 

data_india_9y = read.table("MSCI_INDIA_9y.txt", header = TRUE, fill = TRUE, dec = 

",") 

 

data_kuwait_9y = read.table("MSCI_KUWAIT_9y.txt", header = TRUE, fill = TRUE, 

dec = ",") 

 

data_morocco_9y = read.table("MSCI_MOROCCO_9y.txt", header = TRUE, fill = 

TRUE, dec = ",") 

 

data_norway_9y = read.table("MSCI_NORWAY_9y.txt", header = TRUE, fill = TRUE, 

dec = ",") 

 

data_portugal_9y = read.table("MSCI_PORTUGAL_9y.txt", header = TRUE, fill = 

TRUE, dec = ",") 

 

data_russia_9y = read.table("MSCI_RUSSIA_9y.txt", header = TRUE, fill = TRUE, dec 

= ",") 

 

data_uk_9y = read.table("MSCI_UK_9y.txt", header = TRUE, fill = TRUE, dec = ",") 

 

data_vietnam_9y = read.table("MSCI_VIETNAM_9y.txt", header = TRUE, fill = TRUE, 

dec = ",") 

 

data_rf_9y = read.table("RISKFREE_9y.txt", header = TRUE, fill = TRUE, dec = ",") 

 

#DEFINE PARAMETERS 

 

argentina = ts(data_argentina$ARGENTINA) 

 

argentina_8y = ts(data_argentina_8y$ARGENTINA) 

 

argentina_9y = ts(data_argentina_9y$ARGENTINA) 

 

date_argentina = as.Date(data_argentina$DATE) 

 

australia = ts(data_australia$AUSTRALIA) 

 

australia_8y = ts(data_australia_8y$AUSTRALIA) 

 

australia_9y = ts(data_australia_9y$AUSTRALIA) 

 

date_australia = as.Date(data_australia$DATE) 

 

brazil = ts(data_brazil$BRAZIL) 

 

brazil_8y = ts(data_brazil_8y$BRAZIL) 

 

brazil_9y = ts(data_brazil_9y$BRAZIL) 
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date_brazil = as.Date(data_brazil$DATE) 

 

china = ts(data_china$CHINA) 

 

china_8y = ts(data_china_8y$CHINA) 

 

china_9y = ts(data_china_9y$CHINA) 

 

date_china = as.Date(data_china$DATE) 

 

india = ts(data_india$INDIA) 

 

india_8y = ts(data_india_8y$INDIA) 

 

india_9y = ts(data_india_9y$INDIA) 

 

date_india = as.Date(data_india$DATE) 

 

kuwait = ts(data_kuwait$KUWAIT) 

 

kuwait_8y = ts(data_kuwait_8y$KUWAIT) 

 

kuwait_9y = ts(data_kuwait_9y$KUWAIT) 

 

date_kuwait = as.Date(data_kuwait$DATE) 

 

morocco = ts(data_morocco$MOROCCO) 

 

morocco_8y = ts(data_morocco_8y$MOROCCO) 

 

morocco_9y = ts(data_morocco_9y$MOROCCO) 

 

date_morocco = as.Date(data_morocco$DATE) 

 

norway = ts(data_norway$NORWAY) 

 

norway_8y = ts(data_norway_8y$NORWAY) 

 

norway_9y = ts(data_norway_9y$NORWAY) 

 

date_norway = as.Date(data_norway$DATE) 

 

portugal = ts(data_portugal$PORTUGAL) 

 

portugal_8y = ts(data_portugal_8y$PORTUGAL) 

 

portugal_9y = ts(data_portugal_9y$PORTUGAL) 

 

date_portugal = as.Date(data_portugal$DATE) 
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russia = ts(data_russia$RUSSIA) 

 

russia_8y = ts(data_russia_8y$RUSSIA) 

 

russia_9y = ts(data_russia_9y$RUSSIA) 

 

date_russia = as.Date(data_russia$DATE) 

 

uk = ts(data_uk$UK) 

 

uk_8y = ts(data_uk_8y$UK) 

 

uk_9y = ts(data_uk_9y$UK) 

 

date_uk = as.Date(data_uk$DATE) 

 

vietnam = ts(data_vietnam$VIETNAM) 

 

vietnam_8y = ts(data_vietnam_8y$VIETNAM) 

 

vietnam_9y = ts(data_vietnam_9y$VIETNAM) 

 

date_vietnam = as.Date(data_vietnam$DATE) 

 

rf = ts(data_rf$RISKFREE) 

 

rf = ts(data_rf$RISKFREE) 

 

rf_8y = ts(data_rf_8y$RISKFREE) 

 

rf_9y = ts(data_rf_9y$RISKFREE) 

 

rf_daily = (1+rf)^(1/2600)-1 

 

rf_daily_8y = (1+rf)^(1/2600)-1 

 

rf_daily_9y = (1+rf)^(1/2600)-1 

 

oil = ts(data_oil_8y$OIL) 

 

oil_9y = ts(data_oil_9y$OIL) 

 

combined_vector = cbind(argentina, australia, brazil, china, india, kuwait, morocco, 

norway, russia, uk, portugal, vietnam) 

 

combined_vector_9y = cbind(argentina_9y, australia_9y, brazil_9y, china_9y, india_9y, 

kuwait_9y, morocco_9y, norway_9y, russia_9y, uk_9y, portugal_9y, vietnam_9y) 
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#PLOT TIME SERIES 

 

plot_argentina = plot(argentina, ylab = "Index", xlab = "Date", x = date_argentina, type 

= "l", main = "Argentina") 

 

plot_australia = plot(australia, ylab = "Index", xlab = "Date", x = date_australia, type = 

"l", main = “Australia”) 

 

plot_brazil = plot(brazil, ylab = "Index", xlab = "Date", x = date_brazil, type = "l", main 

= “Brazil”) 

 

plot_china = plot(china, ylab = "Index", xlab = "Date", x = date_china, type = "l", main 

= “China”) 

 

plot_india = plot(india, ylab = "Index", xlab = "Date", x = date_india, type = "l", main = 

“India”) 

 

plot_kuwait = plot(kuwait, ylab = "Index", xlab = "Date", x = date_kuwait, type = "l", 

main = “Kuwait”) 

 

plot_morocco = plot(morocco, ylab = "Index", xlab = "Date", x = date_morocco, type = 

"l", main = “Morocco”) 

 

plot_norway = plot(norway, ylab = "Index", xlab = "Date", x = date_norway, type = "l", 

main = “Norway”) 

 

plot_portugal = plot(portugal, ylab = "Index", xlab = "Date", x = date_portugal, type = 

"l", main = “Portugal”) 

 

plot_russia = plot(russia, ylab = "Index", xlab = "Date", x = date_russia, type = "l", main 

= ”Russia”) 

 

plot_uk = plot(uk, ylab = "Index", xlab = "Date", x = date_uk, type = "l", main = “UK”) 

 

#CALCULATE CONTINUOSLY COMPOUNDED RETURNS 

 

log_argentina = log(argentina) 

 

rt_argentina = 100*diff(log_argentina) 

 

log_argentina_8y = log(argentina_8y) 

 

rt_argentina_8y = 100*diff(log_argentina_8y) 

 

log_argentina_9y = log(argentina_9y) 

 

rt_argentina_9y = 100*diff(log_argentina_9y) 

 

log_australia = log(australia) 

 

rt_australia = 100*diff(log_australia) 
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log_australia_8y = log(australia_8y) 

 

rt_australia_8y = 100*diff(log_australia_8y) 

 

log_australia_9y = log(australia_9y) 

 

rt_australia_9y = 100*diff(log_australia_9y) 

 

log_brazil = log(brazil)  

 

rt_brazil = 100*diff(log_brazil) 

 

log_brazil_8y = log(brazil_8y) 

 

rt_brazil_8y = 100*diff(log_brazil_8y) 

 

log_brazil_9y = log(brazil_9y) 

 

rt_brazil_9y = 100*diff(log_brazil_9y) 

 

log_china = log(china) 

 

rt_china = 100*diff(log_china) 

 

log_china_8y = log(china_8y) 

 

rt_china_8y = 100*diff(log_china_8y) 

 

log_china_9y = log(china_9y) 

 

rt_china_9y = 100*diff(log_china_9y) 

 

log_india = log(india) 

 

rt_india = 100*diff(log_india) 

 

log_india_8y = log(india_8y) 

 

rt_india_8y = 100*diff(log_india_8y) 

 

log_india_9y = log(india_9y) 

 

rt_india_9y = 100*diff(log_india_9y) 

 

log_kuwait = log(kuwait) 

 

rt_kuwait = 100*diff(log_kuwait) 

 

log_kuwait_8y = log(kuwait_8y) 
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rt_kuwait_8y = 100*diff(log_kuwait_8y) 

 

log_kuwait_9y = log(kuwait_9y) 

 

rt_kuwait_9y = 100*diff(log_kuwait_9y) 

 

log_morocco = log(morocco) 

 

rt_morocco = 100*diff(log_morocco) 

 

log_morocco_8y = log(morocco_8y) 

 

rt_morocco_8y = 100*diff(log_morocco_8y) 

 

log_morocco_9y = log(morocco_9y) 

 

rt_morocco_9y = 100*diff(log_morocco_9y) 

 

log_norway = log(norway) 

 

rt_norway = 100*diff(log_norway) 

 

log_norway_8y = log(norway_8y) 

 

rt_norway_8y = 100*diff(log_norway_8y) 

 

log_norway_9y = log(norway_9y) 

 

rt_norway_9y = 100*diff(log_norway_9y) 

 

log_portugal= log(portugal) 

 

rt_portugal = 100*diff(log_portugal) 

 

log_portugal_8y = log(portugal_8y) 

 

rt_portugal_8y = 100*diff(log_portugal_8y) 

 

log_portugal_9y = log(portugal_9y) 

 

rt_portugal_9y = 100*diff(log_portugal_9y) 

 

log_russia = log(russia) 

 

rt_russia = 100*diff(log_russia) 

 

log_russia_8y = log(russia_8y) 

 

rt_russia_8y = 100*diff(log_russia_8y) 

 

log_russia_9y = log(russia_9y) 
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rt_russia_9y = 100*diff(log_russia_9y) 

 

log_uk = log(uk) 

 

rt_uk = 100*diff(log_uk) 

 

log_uk_8y = log(uk_8y) 

 

rt_uk_8y = 100*diff(log_uk_8y) 

 

log_uk_9y = log(uk_9y) 

 

rt_uk_9y = 100*diff(log_uk_9y) 

 

log_vietnam = log(vietnam) 

 

rt_vietnam = 100*diff(log_vietnam) 

 

log_vietnam_8y = log(vietnam_8y) 

 

rt_vietnam_8y = 100*diff(log_vietnam_8y) 

 

log_vietnam_9y = log(vietnam_9y) 

 

rt_vietnam_9y = 100*diff(log_vietnam_9y) 

 

log_rf = log(rf_daily) 

 

rt_rf= 100*diff(log_rf) 

 

mean_rf = mean(rt_rf)*sqrt(260) 

 

log_rf_8y = log(rf_daily_8y) 

 

rt_rf_8y = 100*diff(log_rf_8y) 

 

log_rf_9y = log(rf_daily_9y) 

 

rt_rf_9y = 100*diff(log_rf_9y) 

 

mean_rf_9y = mean(rt_rf_9y)*sqrt(260) 

 

log_oil = log(oil) 

 

rt_oil = 100*diff(log_oil) 

 

matrix_oil = matrix(rt_oil) 

 

log_oil_9y = log(oil_9y) 
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rt_oil_9y = 100*diff(log_oil_9y) 

 

matrix_oil_9y = matrix(rt_oil_9y) 

 

naive_portfolio = (1/12) * rt_argentina + (1/12) * rt_australia + (1/12) * rt_brazil+(1/12) 

* rt_china + (1/12) * rt_india + (1/12) * rt_kuwait + (1/12) * rt_morocco + (1/12) * 

rt_norway + (1/12) * rt_portugal + (1/12) * rt_russia + (1/12) * rt_uk + (1/12) * 

rt_vietnam 

 

log_combined_vector = log(combined_vector) 

 

rt_combined_vector = 100*diff(log_combined_vector) 

 

log_combined_vector_9y = log(combined_vector_9y) 

 

rt_combined_vector_9y = 100*diff(log_combined_vector_9y) 

 

#CALCULATE EXCESS RETURNS 

 

E_argentina = rt_argentina - rf_daily 

 

E_australia = rt_australia - rf_daily 

 

E_brazil = rt_brazil - rf_daily 

 

E_china = rt_china - rf_daily 

 

E_india = rt_india - rf_daily 

 

E_kuwait = rt_kuwait - rf_daily 

 

E_morocco = rt_morocco - rf_daily 

 

E_norway = rt_norway - rf_daily 

 

E_portugal = rt_portugal - rf_daily 

 

E_russia = rt_russia - rf_daily 

 

E_uk = rt_uk - rf_daily 

 

E_vietnam = rt_vietnam - rf_daily 

 

E_argentina_8y = rt_argentina_8y - rf_daily_8y 

 

E_australia_8y = rt_australia_8y - rf_daily_8y 

 

E_brazil_8y = rt_brazil_8y - rf_daily_8y 

 

E_china_8y = rt_china_8y - rf_daily_8y 
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E_india_8y = rt_india_8y - rf_daily_8y 

 

E_kuwait_8y = rt_kuwait_8y - rf_daily_8y 

 

E_morocco_8y = rt_morocco_8y - rf_daily_8y 

 

E_norway_8y = rt_norway_8y - rf_daily_8y 

 

E_portugal_8y = rt_portugal_8y - rf_daily_8y 

 

E_russia_8y = rt_russia_8y - rf_daily_8y 

 

E_uk_8y = rt_uk_8y - rf_daily_8y 

 

E_vietnam_8y = rt_vietnam_8y - rf_daily_8y 

 

E_oil = rt_oil - rf_daily_8y 

 

E_argentina_9y = rt_argentina_9y - rf_daily_9y 

 

E_australia_9y = rt_australia_9y - rf_daily_9y 

 

E_brazil_9y = rt_brazil_9y - rf_daily_9y 

 

E_china_9y = rt_china_9y - rf_daily_9y 

 

E_india_9y = rt_india_9y - rf_daily_9y 

 

E_kuwait_9y = rt_kuwait_9y - rf_daily_9y 

 

E_morocco_9y = rt_morocco_9y - rf_daily_9y 

 

E_norway_9y = rt_norway_9y - rf_daily_9y 

 

E_portugal_9y = rt_portugal_9y - rf_daily_9y 

 

E_russia_9y = rt_russia_9y - rf_daily_9y 

 

E_uk_9y = rt_uk_9y - rf_daily_9y 

 

E_vietnam_9y = rt_vietnam_9y - rf_daily_9y 

 

E_oil_9y = rt_oil_9y - rf_daily_9y 

 

E_combined_vector = rt_combined_vector - rf_daily 

 

#DESCRIPTIVE STATISTICS 

 

mean_argentina = mean(rt_argentina)*sqrt(260) 

 

mean_australia = mean(rt_australia) *sqrt(260) 
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mean_brazil = mean(rt_brazil) *sqrt(260) 

 

mean_china = mean(rt_china) *sqrt(260) 

 

mean_india = mean(rt_india) *sqrt(260) 

 

mean_kuwait = mean(rt_kuwait) *sqrt(260) 

 

mean_morocco = mean(rt_morocco) *sqrt(260) 

 

mean_norway = mean(rt_norway) *sqrt(260) 

 

mean_russia = mean(rt_russia) *sqrt(260) 

 

mean_uk = mean(rt_uk) *sqrt(260) 

 

mean_portugal = mean(rt_portugal) *sqrt(260) 

 

mean_vietnam = mean(rt_vietnam) *sqrt(260) 

 

mean_naive_portfolio = mean(naive_portfolio) *sqrt(260) 

 

sd_argentina = sd(rt_argentina) *sqrt(260) 

 

sd_australia = sd(rt_australia) *sqrt(260) 

 

sd_brazil = sd(rt_brazil) *sqrt(260) 

 

sd_china = sd(rt_china) *sqrt(260) 

 

sd_india = sd(rt_india) *sqrt(260) 

 

sd_kuwait = sd(rt_kuwait) *sqrt(260) 

 

sd_morocco = sd(rt_morocco) *sqrt(260) 

 

sd_norway = sd(rt_norway) *sqrt(260) 

 

sd_uk = sd(rt_uk) *sqrt(260) 

 

sd_portugal = sd(rt_portugal) *sqrt(260) 

 

sd_russia = sd(rt_russia) *sqrt(260) 

 

sd_vietnam = sd(rt_vietnam) *sqrt(260) 

 

sd_naive_portfolio = sd(naive_portfolio) *sqrt(260) 

 

sd_argentina_8y = sd(rt_argentina_8y) *sqrt(260) 
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sd_argentina_8y_daily = sd(rt_argentina_8y) 

 

sd_australia_8y = sd(rt_australia_8y) *sqrt(260) 

 

sd_australia_8y_daily = sd(rt_australia_8y) 

 

sd_brazil_8y = sd(rt_brazil_8y) *sqrt(260) 

 

sd_brazil_8y_daily = sd(rt_brazil_8y)  

 

sd_china_8y = sd(rt_china_8y) *sqrt(260) 

 

sd_china_8y_daily = sd(rt_china_8y)  

 

sd_brazil_8y_daily = sd(rt_brazil_8y) 

 

sd_india_8y = sd(rt_india_8y) *sqrt(260) 

 

sd_india_8y_daily = sd(rt_india_8y) 

 

sd_kuwait_8y = sd(rt_kuwait_8y) *sqrt(260) 

 

sd_kuwait_8y_daily = sd(rt_kuwait_8y) 

 

sd_morocco_8y = sd(rt_morocco_8y) *sqrt(260) 

 

sd_morocco_8y_daily = sd(rt_morocco_8y) 

 

sd_norway_8y = sd(rt_norway_8y) *sqrt(260) 

 

sd_norway_8y_daily = sd(rt_norway_8y) 

 

sd_portugal_8y = sd(rt_portugal_8y) *sqrt(260) 

 

sd_portugal_8y_daily = sd(rt_portugal_8y) 

 

sd_russia_8y = sd(rt_russia_8y) *sqrt(260) 

 

sd_russia_8y_daily = sd(rt_russia_8y) 

 

sd_uk_8y = sd(rt_uk_8y) *sqrt(260) 

 

sd_uk_8y_daily = sd(rt_uk_8y) 

 

sd_vietnam_8y = sd(rt_vietnam_8y) *sqrt(260) 

 

sd_vietnam_8y_daily = sd(rt_vietnam_8y) 

 

sd_vietnam = sd(rt_vietnam) *sqrt(260) 

 

sd_naive_portfolio = sd(naive_portfolio) *sqrt(260) 
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sd_argentina_9y = sd(rt_argentina_9y) *sqrt(260) 

 

sd_argentina_9y_daily = sd(rt_argentina_9y) 

 

sd_australia_9y = sd(rt_australia_9y) *sqrt(260) 

 

sd_australia_9y_daily = sd(rt_australia_9y) 

 

sd_brazil_9y = sd(rt_brazil_9y) *sqrt(260) 

 

sd_brazil_9y_daily = sd(rt_brazil_9y)  

 

sd_china_9y = sd(rt_china_9y) *sqrt(260) 

 

sd_china_9y_daily = sd(rt_china_9y)  

 

sd_brazil_9y_daily = sd(rt_brazil_9y) 

 

sd_india_9y = sd(rt_india_9y) *sqrt(260) 

 

sd_india_9y_daily = sd(rt_india_9y) 

 

sd_kuwait_9y = sd(rt_kuwait_9y) *sqrt(260) 

 

sd_kuwait_9y_daily = sd(rt_kuwait_9y) 

 

sd_morocco_9y = sd(rt_morocco_9y) *sqrt(260) 

 

sd_morocco_9y_daily = sd(rt_morocco_9y) 

 

sd_norway_9y = sd(rt_norway_9y) *sqrt(260) 

 

sd_norway_9y_daily = sd(rt_norway_9y) 

 

sd_portugal_9y = sd(rt_portugal_9y) *sqrt(260) 

 

sd_portugal_9y_daily = sd(rt_portugal_9y) 

 

sd_russia_9y = sd(rt_russia_9y) *sqrt(260) 

 

sd_russia_9y_daily = sd(rt_russia_9y) 

 

sd_uk_9y = sd(rt_uk_9y) *sqrt(260) 

 

sd_uk_9y_daily = sd(rt_uk_9y) 

 

sd_vietnam_9y = sd(rt_vietnam_9y) *sqrt(260) 

 

sd_vietnam_9y_daily = sd(rt_vietnam_9y) 
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sharpe_argentina = (mean_argentina - mean_rf/sd_argentina) 

 

sharpe_australia = (mean_australia- mean_rf/sd_australia) 

 

sharpe_brazil = (mean_brazil - mean_rf/sd_brazil) 

 

sharpe_china = (mean_china - mean_rf/sd_china) 

 

sharpe_india = (mean_india - mean_rf/sd_india) 

 

sharpe_kuwait = (mean_kuwait - mean_rf/sd_kuwait) 

 

sharpe_morocco = (mean_morocco - mean_rf/sd_morocco) 

 

sharpe_norway = (mean_norway - mean_rf/sd_norway) 

 

sharpe_portugal = (mean_portugal - mean_rf/sd_portugal) 

 

sharpe_russia = (mean_russia - mean_rf/sd_russia) 

 

sharpe_uk = (mean_uk - mean_rf/sd_uk) 

 

sharpe_vietnam = (mean_vietnam - mean_rf/sd_vietnam) 

 

sharpe_naive_portfolio = (mean_naive_portfolio - mean_rf/sd_naive_portfolio) 

 

skew_argentina = skewness(rt_argentina) 

 

skew_australia = skewness(rt_australia) 

 

skew_brazil = skewness(rt_brazil) 

 

skew_china = skewness(rt_china) 

 

skew_india = skewness(rt_india) 

 

skew_kuwait = skewness(rt_kuwait) 

 

skew_morocco = skewness(rt_morocco) 

 

skew_norway = skewness(rt_norway) 

 

skew_russia = skewness(rt_russia) 

 

skew_uk = skewness(rt_uk) 

 

skew_portugal = skewness(rt_portugal) 

 

skew_vietnam = skewness(rt_vietnam) 

 

skew_naive_portfolio = skewness(naive_portfolio) 
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kurt_argentina = kurtosis (rt_argentina) 

 

kurt_australia = kurtosis (rt_australia) 

 

kurt_brazil = kurtosis(rt_brazil) 

 

kurt_china = kurtosis(rt_china) 

 

kurt_india  = kurtosis(rt_india) 

 

kurt_kuwait  = kurtosis(rt_kuwait) 

 

kurt_morocco  = kurtosis(rt_morocco) 

 

kurt_norway  = kurtosis(rt_norway) 

 

kurt_russia  = kurtosis(rt_russia) 

 

kurt_uk  = kurtosis(rt_uk) 

 

kurt_portugal  = kurtosis(rt_portugal) 

 

kurt_vietnam  = kurtosis(rt_vietnam) 

 

kurt_naive_portfolio = kurtosis(naive_portfolio) 

 

acf_argentina = acf(rt_argentina, lag.max=1) 

 

acf_australia = acf(rt_australia, lag.max=1) 

 

acf_brazil = acf(rt_brazil, lag.max=1) 

 

acf_china = acf(rt_china, lag.max=1) 

 

acf_india = acf(rt_india, lag.max=1) 

 

acf_kuwait = acf(rt_kuwait, lag.max=1) 

 

acf_morocco = acf(rt_morocco, lag.max=1) 

 

acf_norway = acf(rt_norway, lag.max=1) 

 

acf_portugal = acf(rt_portugal, lag.max=1) 

 

acf_russia = acf(rt_russia, lag.max=1) 

 

acf_uk = acf(rt_uk, lag.max=1) 

 

acf_vietnam = acf(rt_vietnam, lag.max=1) 
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acf_naive_portfolio = acf(naive_portfolio, lag.max=1) 

 

cor_combined_vector = cor(E_combined_vector) 

 

#CALCULATE IMPLIED RETURNS 

 

mean_naive_portfolio = mean(naive_portfolio) 

 

var_naive_portfolio  = var(naive_portfolio) 

 

lambda = (mean_naive_portfolio-mean_rf)/var(naive_portfolio) 

 

sigma = cov(rt_combined_vector) 

 

sigma_9y = cov(rt_combined_vector_9y) 

 

sigma_matrix = matrix(cov(rt_combined_vector), 12) 

 

weights = c(1/12, 1/12, 1/12, 1/12, 1/12, 1/12, 1/12, 1/12, 1/12, 1/12, 1/12, 1/12) 

 

pii1 = weights %*% sigma_matrix 

 

pii2 = lambda * pii1 

 

pii3 = pii2 + mean_rf 

 

#CALCULATE EXPECTED RETURNS (CAPM) 

 

cov_argentina = cov(rt_argentina, naive_portfolio) 

 

cov_australia = cov(rt_australia, naive_portfolio) 

 

cov_brazil = cov(rt_brazil, naive_portfolio) 

 

cov_china = cov(rt_china, naive_portfolio) 

 

cov_india = cov(rt_india, naive_portfolio) 

 

cov_kuwait = cov(rt_kuwait, naive_portfolio) 

 

cov_morocco = cov(rt_morocco, naive_portfolio) 

 

cov_norway = cov(rt_norway, naive_portfolio) 

 

cov_russia = cov(rt_russia, naive_portfolio) 

 

cov_uk = cov(rt_uk, naive_portfolio) 

 

cov_portugal = cov(rt_portugal, naive_portfolio) 

 

cov_vietnam = cov(rt_vietnam, naive_portfolio) 



 93 

 

beta_argentina = (cov_argentina)/(var_naive_portfolio) 

 

beta_australia = (cov_australia)/(var_naive_portfolio) 

 

beta_brazil = (cov_brazil)/(var_naive_portfolio) 

 

beta_china = (cov_china)/(var_naive_portfolio) 

 

beta_india = (cov_india)/(var_naive_portfolio) 

 

beta_kuwait = (cov_kuwait)/(var_naive_portfolio) 

 

beta_morocco = (cov_morocco)/(var_naive_portfolio) 

 

beta_norway = (cov_norway)/(var_naive_portfolio) 

 

beta_russia = (cov_russia)/(var_naive_portfolio) 

 

beta_uk = (cov_uk)/(var_naive_portfolio) 

 

beta_portugal = (cov_portugal)/(var_naive_portfolio) 

 

beta_vietnam = (cov_vietnam)/(var_naive_portfolio) 

 

capm_argentina = mean_rf + (mean_naive_portfolio - mean_rf) * beta_argentina 

 

capm_argentina_weighted = (1/12) * capm_argentina 

 

capm_australia = mean_rf + (mean_naive_portfolio - mean_rf) * beta_australia 

 

capm_australia_weighted = (1/12) * capm_australia 

 

capm_brazil = mean_rf + (mean_naive_portfolio - mean_rf) * beta_brazil 

 

capm_brazil_weighted = (1/12) * capm_brazil 

 

capm_china = mean_rf + (mean_naive_portfolio - mean_rf) * beta_china 

 

capm_china_weighted = (1/12) * capm_china 

 

capm_india = mean_rf + (mean_naive_portfolio - mean_rf) * beta_india 

 

capm_india_weighted = (1/12) * capm_india 

 

capm_kuwait = mean_rf + (mean_naive_portfolio - mean_rf) * beta_kuwait 

 

capm_kuwait_weighted = (1/12) * capm_kuwait 

 

capm_morocco = mean_rf + (mean_naive_portfolio - mean_rf) * beta_morocco 
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capm_morocco_weighted = (1/12) * capm_morocco 

 

capm_norway = mean_rf + (mean_naive_portfolio - mean_rf) * beta_norway 

 

capm_norway_weighted = (1/12) * capm_norway 

 

capm_portugal = mean_rf + (mean_naive_portfolio - mean_rf) * beta_portugal 

 

capm_portugal_weighted = (1/12) * capm_portugal 

 

capm_russia = mean_rf + (mean_naive_portfolio - mean_rf) * beta_russia 

 

capm_russia_weighted = (1/12) * capm_russia 

 

capm_uk = mean_rf + (mean_naive_portfolio - mean_rf) * beta_uk 

 

capm_uk_weighted = (1/12) * capm_uk 

 

capm_vietnam = mean_rf + (mean_naive_portfolio - mean_rf) * beta_vietnam 

 

capm_vietnam_weighted = (1/12) * capm_vietnam 

 

#EGARCH-M MODELING WITH ONE REGRESSOR 

 

spec = ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(1,1), 

external.regressors = matrix_oil), mean.model=list(armaOrder=c(0,0), archm = TRUE, 

include.mean = TRUE, external.regressors = matrix_oil))  

 

spec_9y = ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(1,1), 

external.regressors = matrix_oil_9y), mean.model=list(armaOrder=c(0,0), archm = 

TRUE, include.mean = TRUE, external.regressors = matrix_oil_9y))  

 

egarch_argentina  = ugarchfit(spec, E_argentina_8y, solver = 'hybrid') 

 

egarch_australia = ugarchfit(spec, E_australia_8y, solver = 'hybrid') 

 

egarch_brazil = ugarchfit(spec, E_brazil_8y, solver = 'hybrid') 

 

egarch_china = ugarchfit(spec, E_china_8y, solver = 'hybrid') 

 

egarch_india = ugarchfit(spec, E_india_8y, solver = 'hybrid') 

 

egarch_kuwait = ugarchfit(spec, E_kuwait_8y, solver = 'hybrid') 

 

egarch_morocco = ugarchfit(spec, E_morocco_8y, solver = 'hybrid') 

 

egarch_norway = ugarchfit(spec, E_norway_8y, solver = 'hybrid') 

 

egarch_portugal = ugarchfit(spec, E_portugal_8y, solver = 'hybrid') 

 

egarch_russia = ugarchfit(spec, E_russia_8y, solver = 'hybrid') 
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egarch_uk = ugarchfit(spec, E_uk_8y, solver = 'hybrid') 

 

egarch_vietnam = ugarchfit(spec, E_vietnam_8y, solver = 'hybrid') 

 

egarch_argentina_9y  = ugarchfit(spec_9y, E_argentina_9y, solver = 'hybrid') 

 

egarch_australia_9y = ugarchfit(spec_9y, E_australia_9y, solver = 'hybrid') 

 

egarch_brazil_9y = ugarchfit(spec_9y, E_brazil_9y, solver = 'hybrid') 

 

egarch_china_9y = ugarchfit(spec_9y, E_china_9y, solver = 'hybrid') 

 

egarch_india_9y = ugarchfit(spec_9y, E_india_9y, solver = 'hybrid') 

 

egarch_kuwait_9y = ugarchfit(spec_9y, E_kuwait_9y, solver = 'hybrid') 

 

egarch_morocco_9y = ugarchfit(spec_9y, E_morocco_9y, solver = 'hybrid') 

 

egarch_norway_9y = ugarchfit(spec_9y, E_norway_9y, solver = 'hybrid') 

 

egarch_portugal_9y = ugarchfit(spec_9y, E_portugal_9y, solver = 'hybrid') 

 

egarch_russia_9y = ugarchfit(spec_9y, E_russia_9y, solver = 'hybrid') 

 

egarch_uk_9y = ugarchfit(spec_9y, E_uk_9y, solver = 'hybrid') 

 

egarch_vietnam_9y = ugarchfit(spec_9y, E_vietnam_9y, solver = 'hybrid') 

 

#Coefficients Argentina 

 

coef_argentina = coef(egarch_argentina) 

 

coef_argentina_matrix = matrix(coef_argentina) 

 

mu_argentina = coef_argentina_matrix[1, 1] 

 

archm_argentina = coef_argentina_matrix[2, 1] 

 

mxreg1_argentina = coef_argentina_matrix[3, 1] 

 

omega_argentina = coef_argentina_matrix[4, 1] 

 

alpha1_argentina = coef_argentina_matrix[5, 1] 

 

beta1_argentina = coef_argentina_matrix[6, 1] 

 

gamma1_argentina = coef_argentina_matrix[7, 1] 

 

vxreg_1_argentina = coef_argentina_matrix[8, 1] 

 

resid_argentina = residuals(egarch_argentina) 
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resid_argentina_matrix = matrix(tail(resid_argentina, n = 1)) 

 

resid_argentina_t = resid_argentina_matrix[1, 1] 

 

coef_argentina_9y = coef(egarch_argentina_9y) 

 

coef_argentina_matrix_9y = matrix(coef_argentina_9y) 

 

mu_argentina_9y = coef_argentina_matrix_9y[1, 1] 

 

archm_argentina_9y = coef_argentina_matrix_9y[2, 1] 

 

mxreg1_argentina_9y = coef_argentina_matrix_9y[3, 1] 

 

omega_argentina_9y = coef_argentina_matrix_9y[4, 1] 

 

alpha1_argentina_9y = coef_argentina_matrix_9y[5, 1] 

 

beta1_argentina_9y = coef_argentina_matrix_9y[6, 1] 

 

gamma1_argentina_9y = coef_argentina_matrix_9y[7, 1] 

 

vxreg_1_argentina_9y = coef_argentina_matrix_9y[8, 1] 

 

resid_argentina_9y = residuals(egarch_argentina_9y) 

 

resid_argentina_matrix_9y = matrix(tail(resid_argentina_9y, n = 1)) 

 

resid_argentina_t_9y = resid_argentina_matrix_9y[1, 1] 

 

#Coefficients Australia 

 

coef_australia = coef(egarch_australia) 

 

coef_australia_matrix = matrix(coef_australia) 

 

mu_australia = coef_australia_matrix[1, 1] 

 

archm_australia = coef_australia_matrix[2, 1] 

 

mxreg1_australia = coef_australia_matrix[3, 1] 

 

omega_australia = coef_australia_matrix[4, 1] 

 

alpha1_australia = coef_australia_matrix[5, 1] 

 

beta1_australia = coef_australia_matrix[6, 1] 

 

gamma1_australia = coef_australia_matrix[7, 1] 

 

vxreg_1_australia = coef_australia_matrix[8, 1] 
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resid_australia = residuals(egarch_australia) 

 

resid_australia_matrix = matrix(tail(resid_australia, n = 1)) 

 

resid_australia_t = resid_australia_matrix[1, 1] 

 

coef_australia_9y = coef(egarch_australia_9y) 

 

coef_australia_matrix_9y = matrix(coef_australia_9y) 

 

mu_australia_9y = coef_australia_matrix_9y[1, 1] 

 

archm_australia_9y = coef_australia_matrix_9y[2, 1] 

 

mxreg1_australia_9y = coef_australia_matrix_9y[3, 1] 

 

omega_australia_9y = coef_australia_matrix_9y[4, 1] 

 

alpha1_australia_9y = coef_australia_matrix_9y[5, 1] 

 

beta1_australia_9y = coef_australia_matrix_9y[6, 1] 

 

gamma1_australia_9y = coef_australia_matrix_9y[7, 1] 

 

vxreg_1_australia_9y = coef_australia_matrix_9y[8, 1] 

 

resid_australia_9y = residuals(egarch_australia_9y) 

 

resid_australia_matrix_9y = matrix(tail(resid_australia_9y, n = 1)) 

 

resid_australia_t_9y = resid_australia_matrix_9y[1, 1] 

 

#Coefficients Brazil 

 

coef_brazil = coef(egarch_brazil) 

 

coef_brazil_matrix = matrix(coef_brazil) 

 

mu_brazil = coef_brazil_matrix[1, 1] 

 

archm_brazil = coef_brazil_matrix[2, 1] 

 

mxreg1_brazil = coef_brazil_matrix[3, 1] 

 

omega_brazil = coef_brazil_matrix[4, 1] 

 

alpha1_brazil = coef_brazil_matrix[5, 1] 

 

beta1_brazil = coef_brazil_matrix[6, 1] 

 

gamma1_brazil = coef_brazil_matrix[7, 1] 
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vxreg_1_brazil = coef_brazil_matrix[8, 1] 

 

resid_brazil = residuals(egarch_brazil) 

 

resid_brazil_matrix = matrix(tail(resid_brazil, n = 1)) 

 

resid_brazil_t = resid_brazil_matrix[1, 1] 

 

coef_brazil_9y = coef(egarch_brazil_9y) 

 

coef_brazil_matrix_9y = matrix(coef_brazil_9y) 

 

mu_brazil_9y = coef_brazil_matrix_9y[1, 1] 

 

archm_brazil_9y = coef_brazil_matrix_9y[2, 1] 

 

mxreg1_brazil_9y = coef_brazil_matrix_9y[3, 1] 

 

omega_brazil_9y = coef_brazil_matrix_9y[4, 1] 

 

alpha1_brazil_9y = coef_brazil_matrix_9y[5, 1] 

 

beta1_brazil_9y = coef_brazil_matrix_9y[6, 1] 

 

gamma1_brazil_9y = coef_brazil_matrix_9y[7, 1] 

 

vxreg_1_brazil_9y = coef_brazil_matrix_9y[8, 1] 

 

resid_brazil_9y = residuals(egarch_brazil_9y) 

 

resid_brazil_matrix_9y = matrix(tail(resid_brazil_9y, n = 1)) 

 

resid_brazil_t_9y = resid_brazil_matrix_9y[1, 1] 

 

#Coefficients China 

 

coef_china = coef(egarch_china) 

 

coef_china_matrix = matrix(coef_china) 

 

mu_china = coef_china_matrix[1, 1] 

 

archm_china = coef_china_matrix[2, 1] 

 

mxreg1_china = coef_china_matrix[3, 1] 

 

omega_china = coef_china_matrix[4, 1] 

 

alpha1_china = coef_china_matrix[5, 1] 
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beta1_china = coef_china_matrix[6, 1] 

 

gamma1_china = coef_china_matrix[7, 1] 

 

vxreg_1_china = coef_china_matrix[8, 1] 

 

resid_china = residuals(egarch_china) 

 

resid_china_matrix = matrix(tail(resid_china, n = 1)) 

 

resid_china_t = resid_china_matrix[1, 1] 

 

coef_china_9y = coef(egarch_china_9y) 

 

coef_china_matrix_9y = matrix(coef_china_9y) 

 

mu_china_9y = coef_china_matrix_9y[1, 1] 

 

archm_china_9y = coef_china_matrix_9y[2, 1] 

 

mxreg1_china_9y = coef_china_matrix_9y[3, 1] 

 

omega_china_9y = coef_china_matrix_9y[4, 1] 

 

alpha1_china_9y = coef_china_matrix_9y[5, 1] 

 

beta1_china_9y = coef_china_matrix_9y[6, 1] 

 

gamma1_china_9y = coef_china_matrix_9y[7, 1] 

 

vxreg_1_china_9y = coef_china_matrix_9y[8, 1] 

 

resid_china_9y = residuals(egarch_china_9y) 

 

resid_china_matrix_9y = matrix(tail(resid_china_9y, n = 1)) 

 

resid_china_t_9y = resid_china_matrix_9y[1, 1] 

 

#Coefficients India 

 

coef_india = coef(egarch_india) 

 

coef_india_matrix = matrix(coef_india) 

 

mu_india = coef_india_matrix[1, 1] 

 

archm_india = coef_india_matrix[2, 1] 

 

mxreg1_india = coef_india_matrix[3, 1] 

 

omega_india = coef_india_matrix[4, 1] 
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alpha1_india = coef_india_matrix[5, 1] 

 

beta1_india = coef_india_matrix[6, 1] 

 

gamma1_india = coef_india_matrix[7, 1] 

 

vxreg_1_india = coef_india_matrix[8, 1] 

 

resid_india = residuals(egarch_india) 

 

resid_india_matrix = matrix(tail(resid_india, n = 1)) 

 

resid_india_t = resid_india_matrix[1, 1] 

 

coef_india_9y = coef(egarch_india_9y) 

 

coef_india_matrix_9y = matrix(coef_india_9y) 

 

mu_india_9y = coef_india_matrix_9y[1, 1] 

 

archm_india_9y = coef_india_matrix_9y[2, 1] 

 

mxreg1_india_9y = coef_india_matrix_9y[3, 1] 

 

omega_india_9y = coef_india_matrix_9y[4, 1] 

 

alpha1_india_9y = coef_india_matrix_9y[5, 1] 

 

beta1_india_9y = coef_india_matrix_9y[6, 1] 

 

gamma1_india_9y = coef_india_matrix_9y[7, 1] 

 

vxreg_1_india_9y = coef_india_matrix_9y[8, 1] 

 

resid_india_9y = residuals(egarch_india_9y) 

 

resid_india_matrix_9y = matrix(tail(resid_india_9y, n = 1)) 

 

resid_india_t_9y = resid_india_matrix_9y[1, 1] 

 

#Coefficients Kuwait 

 

coef_kuwait = coef(egarch_kuwait) 

 

coef_kuwait_matrix = matrix(coef_kuwait) 

 

mu_kuwait = coef_kuwait_matrix[1, 1] 

 

archm_kuwait = coef_kuwait_matrix[2, 1] 

 

mxreg1_kuwait = coef_kuwait_matrix[3, 1] 
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omega_kuwait = coef_kuwait_matrix[4, 1] 

 

alpha1_kuwait = coef_kuwait_matrix[5, 1] 

 

beta1_kuwait = coef_kuwait_matrix[6, 1] 

 

gamma1_kuwait = coef_kuwait_matrix[7, 1] 

 

vxreg_1_kuwait = coef_kuwait_matrix[8, 1] 

 

resid_kuwait = residuals(egarch_kuwait) 

 

resid_kuwait_matrix = matrix(tail(resid_kuwait, n = 1)) 

 

resid_kuwait_t = resid_kuwait_matrix[1, 1] 

 

coef_kuwait_9y = coef(egarch_kuwait_9y) 

 

coef_kuwait_matrix_9y = matrix(coef_kuwait_9y) 

 

mu_kuwait_9y = coef_kuwait_matrix_9y[1, 1] 

 

archm_kuwait_9y = coef_kuwait_matrix_9y[2, 1] 

 

mxreg1_kuwait_9y = coef_kuwait_matrix_9y[3, 1] 

 

omega_kuwait_9y = coef_kuwait_matrix_9y[4, 1] 

 

alpha1_kuwait_9y = coef_kuwait_matrix_9y[5, 1] 

 

beta1_kuwait_9y = coef_kuwait_matrix_9y[6, 1] 

 

gamma1_kuwait_9y = coef_kuwait_matrix_9y[7, 1] 

 

vxreg_1_kuwait_9y = coef_kuwait_matrix_9y[8, 1] 

 

resid_kuwait_9y = residuals(egarch_kuwait_9y) 

 

resid_kuwait_matrix_9y = matrix(tail(resid_kuwait_9y, n = 1)) 

 

resid_kuwait_t_9y = resid_kuwait_matrix_9y[1, 1] 

 

#Coefficients Morocco 

 

coef_morocco = coef(egarch_morocco) 

 

coef_morocco_matrix = matrix(coef_morocco) 

 

mu_morocco = coef_morocco_matrix[1, 1] 

 

archm_morocco = coef_morocco_matrix[2, 1] 
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mxreg1_morocco = coef_morocco_matrix[3, 1] 

 

omega_morocco = coef_morocco_matrix[4, 1] 

 

alpha1_morocco = coef_morocco_matrix[5, 1] 

 

beta1_morocco = coef_morocco_matrix[6, 1] 

 

gamma1_morocco = coef_morocco_matrix[7, 1] 

 

vxreg_1_morocco = coef_morocco_matrix[8, 1] 

 

resid_morocco = residuals(egarch_morocco) 

 

resid_morocco_matrix = matrix(tail(resid_morocco, n = 1)) 

 

resid_morocco_t = resid_morocco_matrix[1, 1] 

 

coef_morocco_9y = coef(egarch_morocco_9y) 

 

coef_morocco_matrix_9y = matrix(coef_morocco_9y) 

 

mu_morocco_9y = coef_morocco_matrix_9y[1, 1] 

 

archm_morocco_9y = coef_morocco_matrix_9y[2, 1] 

 

mxreg1_morocco_9y = coef_morocco_matrix_9y[3, 1] 

 

omega_morocco_9y = coef_morocco_matrix_9y[4, 1] 

 

alpha1_morocco_9y = coef_morocco_matrix_9y[5, 1] 

 

beta1_morocco_9y = coef_morocco_matrix_9y[6, 1] 

 

gamma1_morocco_9y = coef_morocco_matrix_9y[7, 1] 

 

vxreg_1_morocco_9y = coef_morocco_matrix_9y[8, 1] 

 

resid_morocco_9y = residuals(egarch_morocco_9y) 

 

resid_morocco_matrix_9y = matrix(tail(resid_morocco_9y, n = 1)) 

 

resid_morocco_t_9y = resid_morocco_matrix_9y[1, 1] 

 

#Coefficients Norway 

 

coef_norway = coef(egarch_norway) 

 

coef_norway_matrix = matrix(coef_norway) 

 

mu_norway = coef_norway_matrix[1, 1] 
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archm_norway = coef_norway_matrix[2, 1] 

 

mxreg1_norway = coef_norway_matrix[3, 1] 

 

omega_norway = coef_norway_matrix[4, 1] 

 

alpha1_norway = coef_norway_matrix[5, 1] 

 

beta1_norway = coef_norway_matrix[6, 1] 

 

gamma1_norway = coef_norway_matrix[7, 1] 

 

vxreg_1_norway = coef_norway_matrix[8, 1] 

 

resid_norway = residuals(egarch_norway) 

 

resid_norway_matrix = matrix(tail(resid_norway, n = 1)) 

 

resid_norway_t = resid_norway_matrix[1, 1] 

 

coef_norway_9y = coef(egarch_norway_9y) 

 

coef_norway_matrix_9y = matrix(coef_norway_9y) 

 

mu_norway_9y = coef_norway_matrix_9y[1, 1] 

 

archm_norway_9y = coef_norway_matrix_9y[2, 1] 

 

mxreg1_norway_9y = coef_norway_matrix_9y[3, 1] 

 

omega_norway_9y = coef_norway_matrix_9y[4, 1] 

 

alpha1_norway_9y = coef_norway_matrix_9y[5, 1] 

 

beta1_norway_9y = coef_norway_matrix_9y[6, 1] 

 

gamma1_norway_9y = coef_norway_matrix_9y[7, 1] 

 

vxreg_1_norway_9y = coef_norway_matrix_9y[8, 1] 

 

resid_norway_9y = residuals(egarch_norway_9y) 

 

resid_norway_matrix_9y = matrix(tail(resid_norway_9y, n = 1)) 

 

resid_norway_t_9y = resid_norway_matrix_9y[1, 1] 

 

#Coefficients Portugal 

 

coef_portugal = coef(egarch_portugal) 

 

coef_portugal_matrix = matrix(coef_portugal) 
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mu_portugal = coef_portugal_matrix[1, 1] 

 

archm_portugal= coef_portugal_matrix[2, 1] 

 

mxreg1_portugal = coef_portugal_matrix[3, 1] 

 

omega_portugal = coef_portugal_matrix[4, 1] 

 

alpha1_portugal = coef_portugal_matrix[5, 1] 

 

beta1_portugal = coef_portugal_matrix[6, 1] 

 

gamma1_portugal = coef_portugal_matrix[7, 1] 

 

vxreg_1_portugal = coef_portugal_matrix[8, 1] 

 

resid_portugal = residuals(egarch_portugal) 

 

resid_portugal_matrix = matrix(tail(resid_portugal, n = 1)) 

 

resid_portugal_t = resid_portugal_matrix[1, 1] 

 

coef_portugal_9y = coef(egarch_portugal_9y) 

 

coef_portugal_matrix_9y = matrix(coef_portugal_9y) 

 

mu_portugal_9y = coef_portugal_matrix_9y[1, 1] 

 

archm_portugal_9y = coef_portugal_matrix_9y[2, 1] 

 

mxreg1_portugal_9y = coef_portugal_matrix_9y[3, 1] 

 

omega_portugal_9y = coef_portugal_matrix_9y[4, 1] 

 

alpha1_portugal_9y = coef_portugal_matrix_9y[5, 1] 

 

beta1_portugal_9y = coef_portugal_matrix_9y[6, 1] 

 

gamma1_portugal_9y = coef_portugal_matrix_9y[7, 1] 

 

vxreg_1_portugal_9y = coef_portugal_matrix_9y[8, 1] 

 

resid_portugal_9y = residuals(egarch_portugal_9y) 

 

resid_portugal_matrix_9y = matrix(tail(resid_portugal_9y, n = 1)) 

 

resid_portugal_t_9y = resid_portugal_matrix_9y[1, 1] 

 

#Coefficients Russia 

 

coef_russia = coef(egarch_russia) 
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coef_russia_matrix = matrix(coef_russia) 

 

mu_russia = coef_russia_matrix[1, 1] 

 

archm_russia = coef_russia_matrix[2, 1] 

 

mxreg1_russia = coef_russia_matrix[3, 1] 

 

omega_russia  = coef_russia_matrix[4, 1] 

 

alpha1_russia = coef_russia_matrix[5, 1] 

 

beta1_russia = coef_russia_matrix[6, 1] 

 

gamma1_russia = coef_russia_matrix[7, 1] 

 

vxreg_1_russia = coef_russia_matrix[8, 1] 

 

resid_russia = residuals(egarch_russia) 

 

resid_russia_matrix = matrix(tail(resid_russia, n = 1)) 

 

resid_russia_t = resid_russia_matrix[1, 1] 

 

coef_russia_9y = coef(egarch_russia_9y) 

 

coef_russia_matrix_9y = matrix(coef_russia_9y) 

 

mu_russia_9y = coef_russia_matrix_9y[1, 1] 

 

archm_russia_9y = coef_russia_matrix_9y[2, 1] 

 

mxreg1_russia_9y = coef_russia_matrix_9y[3, 1] 

 

omega_russia_9y  = coef_russia_matrix_9y[4, 1] 

 

alpha1_russia_9y = coef_russia_matrix_9y[5, 1] 

 

beta1_russia_9y = coef_russia_matrix_9y[6, 1] 

 

gamma1_russia_9y = coef_russia_matrix_9y[7, 1] 

 

vxreg_1_russia_9y = coef_russia_matrix_9y[8, 1] 

 

resid_russia_9y = residuals(egarch_russia_9y) 

 

resid_russia_matrix_9y = matrix(tail(resid_russia_9y, n = 1)) 

 

resid_russia_t_9y = resid_russia_matrix_9y[1, 1] 
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#Coefficients UK 

 

coef_uk = coef(egarch_uk) 

 

coef_uk_matrix = matrix(coef_uk) 

 

mu_uk = coef_uk_matrix[1, 1] 

 

archm_uk= coef_uk_matrix[2, 1] 

 

mxreg1_uk = coef_uk_matrix[3, 1] 

 

omega_uk = coef_uk_matrix[4, 1] 

 

alpha1_uk = coef_uk_matrix[5, 1] 

 

beta1_uk = coef_uk_matrix[6, 1] 

 

gamma1_uk = coef_uk_matrix[7, 1] 

 

vxreg_1_uk = coef_uk_matrix[8, 1] 

 

resid_uk = residuals(egarch_uk) 

 

resid_uk_matrix = matrix(tail(resid_uk, n = 1)) 

 

resid_uk_t = resid_uk_matrix[1, 1] 

 

coef_uk_9y = coef(egarch_uk_9y) 

 

coef_uk_matrix_9y = matrix(coef_uk_9y) 

 

mu_uk_9y = coef_uk_matrix_9y[1, 1] 

 

archm_uk_9y= coef_uk_matrix_9y[2, 1] 

 

mxreg1_uk_9y = coef_uk_matrix_9y[3, 1] 

 

omega_uk_9y = coef_uk_matrix_9y[4, 1] 

 

alpha1_uk_9y = coef_uk_matrix_9y[5, 1] 

 

beta1_uk_9y = coef_uk_matrix_9y[6, 1] 

 

gamma1_uk_9y = coef_uk_matrix_9y[7, 1] 

 

vxreg_1_uk_9y = coef_uk_matrix_9y[8, 1] 

 

resid_uk_9y = residuals(egarch_uk_9y) 

 

resid_uk_matrix_9y = matrix(tail(resid_uk_9y, n = 1)) 
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resid_uk_t_9y = resid_uk_matrix_9y[1, 1] 

 

#Coefficients Vietnam 

 

coef_vietnam = coef(egarch_vietnam) 

 

coef_vietnam_matrix = matrix(coef_vietnam) 

 

mu_vietnam = coef_vietnam_matrix[1, 1] 

 

archm_vietnam= coef_vietnam_matrix[2, 1] 

 

mxreg1_vietnam = coef_vietnam_matrix[3, 1] 

 

omega_vietnam = coef_vietnam_matrix[4, 1] 

 

alpha1_vietnam = coef_vietnam_matrix[5, 1] 

 

beta1_vietnam = coef_vietnam_matrix[6, 1] 

 

gamma1_vietnam = coef_vietnam_matrix[7, 1] 

 

vxreg_1_vietnam = coef_vietnam_matrix[8, 1] 

 

resid_vietnam = residuals(egarch_vietnam) 

 

resid_vietnam_matrix = matrix(tail(resid_vietnam, n = 1)) 

 

resid_vietnam_t = resid_vietnam_matrix[1, 1] 

 

coef_vietnam_9y = coef(egarch_vietnam_9y) 

 

coef_vietnam_matrix_9y = matrix(coef_vietnam_9y) 

 

mu_vietnam_9y = coef_vietnam_matrix_9y[1, 1] 

 

archm_vietnam_9y = coef_vietnam_matrix_9y[2, 1] 

 

mxreg1_vietnam_9y = coef_vietnam_matrix_9y[3, 1] 

 

omega_vietnam_9y = coef_vietnam_matrix_9y[4, 1] 

 

alpha1_vietnam_9y = coef_vietnam_matrix_9y[5, 1] 

 

beta1_vietnam_9y = coef_vietnam_matrix_9y[6, 1] 

 

gamma1_vietnam_9y = coef_vietnam_matrix_9y[7, 1] 

 

vxreg_1_vietnam_9y = coef_vietnam_matrix_9y[8, 1] 

 

resid_vietnam_9y = residuals(egarch_vietnam_9y) 
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resid_vietnam_matrix_9y = matrix(tail(resid_vietnam_9y, n = 1)) 

 

resid_vietnam_t_9y = resid_vietnam_matrix_9y[1, 1] 

 

#EGARCH-M EQUATIONS 

 

oil_t = tail(matrix_oil/100, n=1) 

 

oil_t_9y = tail(matrix_oil_9y/100, n=1) 

 

log_sigma_argentina = 

omega_argentina+beta1_argentina*log(sd_argentina_8y_daily)^2+alpha1_argentina*ab

s(resid_argentina_t/sd_argentina_8y_daily)+gamma1_argentina*(resid_argentina_t/sd_

argentina_8y_daily)+oil_t*vxreg_1_argentina 

 

sigma_argentina = exp(log_sigma_argentina) 

 

r_argentina = mu_argentina + oil_t * mxreg1_argentina + archm_argentina * 

sigma_argentina 

 

r_argentina_weighted = (1/12)*r_argentina 

 

log_sigma_argentina_9y = 

omega_argentina_9y+beta1_argentina_9y*log(sd_argentina_9y_daily)^2+alpha1_argen

tina_9y*abs(resid_argentina_t_9y/sd_argentina_9y_daily)+gamma1_argentina_9y*(resi

d_argentina_t_9y/sd_argentina_9y_daily)+oil_t_9y*vxreg_1_argentina_9y 

 

sigma_argentina_9y = exp(log_sigma_argentina_9y) 

 

r_argentina_9y = mu_argentina_9y + oil_t_9y * mxreg1_argentina_9y + 

archm_argentina_9y * sigma_argentina_9y 

 

r_argentina_weighted_9y = (1/12)*r_argentina_9y 

 

log_sigma_australia = 

omega_australia+beta1_australia*log(sd_australia_8y_daily)^2+alpha1_australia*abs(re

sid_australia_t/sd_australia_8y_daily)+gamma1_australia*(resid_australia_t/sd_australi

a_8y_daily)+oil_t*vxreg_1_australia 

 

sigma_australia = exp(log_sigma_australia) 

 

r_australia = mu_australia + oil_t * mxreg1_australia + archm_australia * 

sigma_australia 

 

r_australia_weighted = (1/12)*r_australia 

 

log_sigma_australia_9y = 

omega_australia_9y+beta1_australia_9y*log(sd_australia_9y_daily)^2+alpha1_australi

a_9y*abs(resid_australia_t_9y/sd_australia_9y_daily)+gamma1_australia_9y*(resid_au

stralia_t_9y/sd_australia_9y_daily)+oil_t_9y*vxreg_1_australia_9y 
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sigma_australia_9y = exp(log_sigma_australia_9y) 

 

r_australia_9y = mu_australia_9y + oil_t_9y * mxreg1_australia_9y + 

archm_australia_9y * sigma_australia_9y 

 

r_australia_weighted_9y = (1/12)*r_australia_9y 

log_sigma_brazil = 

omega_brazil+beta1_brazil*log(sd_brazil_8y_daily)^2+alpha1_brazil*abs(resid_brazil_

t/sd_brazil_8y_daily)+gamma1_brazil*(resid_brazil_t/sd_brazil_8y_daily)+oil_t*vxreg

_1_brazil 

 

sigma_brazil = exp(log_sigma_brazil) 

 

r_brazil = mu_brazil + oil_t * mxreg1_brazil + archm_brazil * sigma_brazil 

 

r_brazil_weighted = (1/12)*r_brazil 

 

log_sigma_brazil_9y = 

omega_brazil_9y+beta1_brazil_9y*log(sd_brazil_9y_daily)^2+alpha1_brazil_9y*abs(r

esid_brazil_t_9y/sd_brazil_9y_daily)+gamma1_brazil_9y*(resid_brazil_t_9y/sd_brazil

_9y_daily)+oil_t_9y*vxreg_1_brazil_9y 

 

sigma_brazil_9y = exp(log_sigma_brazil_9y) 

 

r_brazil_9y = mu_brazil_9y + oil_t_9y * mxreg1_brazil_9y + archm_brazil_9y * 

sigma_brazil_9y 

 

r_brazil_weighted_9y = (1/12)*r_brazil_9y 

 

log_sigma_china = 

omega_china+beta1_china*log(sd_china_8y_daily)^2+alpha1_china*abs(resid_china_t/

sd_china_8y_daily)+gamma1_china*(resid_china_t/sd_china_8y_daily)+oil_t*vxreg_1

_china 

 

sigma_china = exp(log_sigma_china) 

 

r_china = mu_china + oil_t * mxreg1_china + archm_china * sigma_china 

 

r_china_weighted = (1/12)*r_china 

 

log_sigma_china_9y = 

omega_china_9y+beta1_china_9y*log(sd_china_9y_daily)^2+alpha1_china_9y*abs(res

id_china_t_9y/sd_china_9y_daily)+gamma1_china_9y*(resid_china_t_9y/sd_china_9y

_daily)+oil_t_9y*vxreg_1_china_9y 

 

sigma_china_9y = exp(log_sigma_china_9y) 

 

r_china_9y = mu_china_9y + oil_t_9y * mxreg1_china_9y + archm_china_9y * 

sigma_china_9y 

 

r_china_weighted_9y = (1/12)*r_china_9y 
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log_sigma_india = 

omega_india+beta1_india*log(sd_india_8y_daily)^2+alpha1_india*abs(resid_india_t/s

d_india_8y_daily)+gamma1_india*(resid_india_t/sd_india_8y_daily)+oil_t*vxreg_1_in

dia 

 

sigma_india = exp(log_sigma_india) 

 

r_india = mu_india + oil_t * mxreg1_india + archm_india * sigma_india 

 

r_india_weighted = (1/12)*r_india 

 

log_sigma_india_9y = 

omega_india_9y+beta1_india_9y*log(sd_india_9y_daily)^2+alpha1_india_9y*abs(resi

d_india_t_9y/sd_india_9y_daily)+gamma1_india_9y*(resid_india_t_9y/sd_india_9y_d

aily)+oil_t_9y*vxreg_1_india_9y 

 

sigma_india_9y = exp(log_sigma_india_9y) 

 

r_india_9y = mu_india_9y + oil_t_9y * mxreg1_india_9y + archm_india_9y * 

sigma_india_9y 

 

r_india_weighted_9y = (1/12)*r_india_9y 

 

log_sigma_kuwait = 

omega_kuwait+beta1_kuwait*log(sd_kuwait_8y_daily)^2+alpha1_kuwait*abs(resid_ku

wait_t/sd_kuwait_8y_daily)+gamma1_kuwait*(resid_kuwait_t/sd_kuwait_8y_daily)+oi

l_t*vxreg_1_kuwait 

 

sigma_kuwait = exp(log_sigma_kuwait) 

 

r_kuwait = mu_kuwait + oil_t * mxreg1_kuwait + archm_kuwait * sigma_kuwait 

 

r_kuwait_weighted = (1/12)*r_kuwait 

 

log_sigma_kuwait_9y = 

omega_kuwait_9y+beta1_kuwait_9y*log(sd_kuwait_9y_daily)^2+alpha1_kuwait_9y*a

bs(resid_kuwait_t_9y/sd_kuwait_9y_daily)+gamma1_kuwait_9y*(resid_kuwait_t_9y/s

d_kuwait_9y_daily)+oil_t_9y*vxreg_1_kuwait_9y 

 

sigma_kuwait_9y = exp(log_sigma_kuwait_9y) 

 

r_kuwait_9y = mu_kuwait_9y+ oil_t_9y * mxreg1_kuwait_9y + archm_kuwait_9y * 

sigma_kuwait_9y 

 

r_kuwait_weighted_9y = (1/12)*r_kuwait_9y 

 

log_sigma_morocco = 

omega_morocco+beta1_kuwait*log(sd_morocco_8y_daily)^2+alpha1_morocco*abs(re

sid_morocco_t/sd_morocco_8y_daily)+gamma1_morocco*(resid_morocco_t/sd_moroc

co_8y_daily)+oil_t*vxreg_1_morocco 
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sigma_morocco = exp(log_sigma_morocco) 

 

r_morocco = mu_morocco + oil_t * mxreg1_morocco + archm_morocco * 

sigma_morocco 

r_morocco_weighted = (1/12)*r_morocco 

 

log_sigma_morocco_9y = 

omega_morocco_9y+beta1_kuwait_9y*log(sd_morocco_9y_daily)^2+alpha1_morocco

_9y*abs(resid_morocco_t_9y/sd_morocco_9y_daily)+gamma1_morocco_9y*(resid_m

orocco_t_9y/sd_morocco_9y_daily)+oil_t_9y*vxreg_1_morocco_9y 

 

sigma_morocco_9y = exp(log_sigma_morocco_9y) 

 

r_morocco_9y = mu_morocco_9y + oil_t_9y * mxreg1_morocco_9y + 

archm_morocco_9y * sigma_morocco_9y 

 

r_morocco_weighted_9y = (1/12)*r_morocco_9y 

 

log_sigma_norway = 

omega_norway+beta1_kuwait*log(sd_norway_8y_daily)^2+alpha1_norway*abs(resid_

norway_t/sd_norway_8y_daily)+gamma1_norway*(resid_norway_t/sd_norway_8y_dai

ly)+oil_t*vxreg_1_norway 

 

sigma_norway = exp(log_sigma_norway) 

 

r_norway = mu_norway + oil_t * mxreg1_norway + archm_norway * sigma_norway 

 

r_norway_weighted = (1/12)*r_norway 

 

log_sigma_norway_9y = 

omega_norway_9y+beta1_kuwait_9y*log(sd_norway_9y_daily)^2+alpha1_norway_9y

*abs(resid_norway_t_9y/sd_norway_9y_daily)+gamma1_norway_9y*(resid_norway_t

_9y/sd_norway_9y_daily)+oil_t_9y*vxreg_1_norway_9y 

 

sigma_norway_9y = exp(log_sigma_norway_9y) 

 

r_norway_9y = mu_norway_9y + oil_t_9y * mxreg1_norway_9y + archm_norway_9y 

* sigma_norway_9y 

 

r_norway_weighted_9y = (1/12)*r_norway_9y 

 

log_sigma_portugal = 

omega_portugal+beta1_portugal*log(sd_portugal_8y_daily)^2+alpha1_portugal*abs(re

sid_portugal_t/sd_portugal_8y_daily)+gamma1_portugal*(resid_portugal_t/sd_portugal

_8y_daily)+oil_t*vxreg_1_portugal 

 

sigma_portugal = exp(log_sigma_portugal) 

 

r_portugal = mu_portugal + oil_t * mxreg1_portugal + archm_portugal * 

sigma_portugal 
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r_portugal_weighted = (1/12)*r_portugal 

 

log_sigma_portugal_9y = 

omega_portugal_9y+beta1_portugal_9y*log(sd_portugal_9y_daily)^2+alpha1_portugal

_9y*abs(resid_portugal_t_9y/sd_portugal_9y_daily)+gamma1_portugal_9y*(resid_port

ugal_t_9y/sd_portugal_9y_daily)+oil_t_9y*vxreg_1_portugal_9y 

 

sigma_portugal_9y = exp(log_sigma_portugal_9y) 

 

r_portugal_9y = mu_portugal_9y + oil_t_9y * mxreg1_portugal_9y + 

archm_portugal_9y * sigma_portugal_9y 

 

r_portugal_weighted_9y = (1/12)*r_portugal_9y 

 

log_sigma_russia = 

omega_russia+beta1_russia*log(sd_russia_8y_daily)^2+alpha1_russia*abs(resid_russia

_t/sd_russia_8y_daily)+gamma1_russia*(resid_russia_t/sd_russia_8y_daily)+oil_t*vxre

g_1_russia 

 

sigma_russia = exp(log_sigma_russia) 

 

r_russia = mu_russia + oil_t * mxreg1_russia + archm_russia * sigma_russia 

 

r_russia_weighted = (1/12)*r_russia 

 

log_sigma_russia_9y = 

omega_russia_9y+beta1_russia_9y*log(sd_russia_9y_daily)^2+alpha1_russia_9y*abs(r

esid_russia_t_9y/sd_russia_9y_daily)+gamma1_russia_9y*(resid_russia_t_9y/sd_russia

_9y_daily)+oil_t_9y*vxreg_1_russia_9y 

 

sigma_russia_9y = exp(log_sigma_russia_9y) 

 

r_russia_9y = mu_russia_9y + oil_t_9y * mxreg1_russia_9y + archm_russia_9y * 

sigma_russia_9y 

 

r_russia_weighted_9y = (1/12)*r_russia_9y 

 

log_sigma_uk = 

omega_uk+beta1_uk*log(sd_uk_8y_daily)^2+alpha1_uk*abs(resid_uk_t/sd_uk_8y_dai

ly)+gamma1_uk*(resid_uk_t/sd_uk_8y_daily)+oil_t*vxreg_1_uk 

 

sigma_uk = exp(log_sigma_uk) 

 

r_uk = mu_uk + oil_t * mxreg1_uk + archm_uk * sigma_uk 

 

r_uk_weighted = (1/12)*r_uk 

 

log_sigma_uk_9y = 

omega_uk_9y+beta1_uk_9y*log(sd_uk_9y_daily)^2+alpha1_uk_9y*abs(resid_uk_t_9y
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/sd_uk_9y_daily)+gamma1_uk_9y*(resid_uk_t_9y/sd_uk_9y_daily)+oil_t_9y*vxreg_1

_uk_9y 

 

sigma_uk_9y = exp(log_sigma_uk_9y) 

 

r_uk_9y = mu_uk_9y + oil_t_9y * mxreg1_uk_9y + archm_uk_9y * sigma_uk_9y 

 

r_uk_weighted_9y = (1/12)*r_uk_9y 

 

log_sigma_vietnam = 

omega_vietnam+beta1_vietnam*log(sd_vietnam_8y_daily)^2+alpha1_vietnam*abs(resi

d_vietnam_t/sd_vietnam_8y_daily)+gamma1_vietnam*(resid_vietnam_t/sd_vietnam_8

y_daily)+oil_t*vxreg_1_vietnam 

 

sigma_vietnam = exp(log_sigma_vietnam) 

 

r_vietnam = mu_vietnam + oil_t * mxreg1_vietnam + archm_vietnam * sigma_vietnam 

 

r_vietnam_weighted = (1/12)*r_vietnam 

 

log_sigma_vietnam_9y = 

omega_vietnam_9y+beta1_vietnam_9y*log(sd_vietnam_9y_daily)^2+alpha1_vietnam_

9y*abs(resid_vietnam_t_9y/sd_vietnam_9y_daily)+gamma1_vietnam_9y*(resid_vietna

m_t_9y/sd_vietnam_9y_daily)+oil_t_9y*vxreg_1_vietnam_9y 

 

sigma_vietnam_9y = exp(log_sigma_vietnam_9y) 

 

r_vietnam_9y = mu_vietnam_9y + oil_t_9y * mxreg1_vietnam_9y + 

archm_vietnam_9y * sigma_vietnam_9y 

 

r_vietnam_weighted_9y = (1/12)*r_vietnam_9y 

 

#THE BLACK–LITTERMAN RETURNS  

 

tau1 = 0.01 

 

sigma_tau1 = tau1 * cov(rt_combined_vector) 

 

sigma_tau1_9y = tau1 * cov(rt_combined_vector_9y) 

 

tau2 = 0.05 

 

sigma_tau2 = tau2 * cov(rt_combined_vector) 

 

sigma_tau2_9y = tau2 * cov(rt_combined_vector_9y) 

 

tau3 = 0.1 

 

sigma_tau3 = tau3 * cov(rt_combined_vector) 

 

sigma_tau3_9y = tau3 * cov(rt_combined_vector_9y) 
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views1 = c(0,0,0,1,0,0,0,-1,0,0,0,0) 

 

views2 = c(0,0,-1,0,1,0,0,0,0,0,0,0) 

 

views3 = c(0,0,0,0,0,0,1,0,-1,0,0,0) 

views1_9y = c(0,0,0,1,0,0,0,-1,0,0,0,0) 

 

views2_9y = c(0,0,0,0,1,0,0,0,0,-1,0,0) 

 

views3_9y = c(0,-1,0,0,0,1,0,0,0,0,0,0) 

 

views = c(views1, views2, views3) 

 

views_9y = c(views1_9y, views2_9y, views3_9y) 

 

P = matrix(views,12,3) 

 

P_9y = matrix(views_9y,12,3) 

 

P_rotate = t(P) 

 

P_rotate_9y = t(P_9y) 

 

p1 = matrix(views1, 1,12) 

 

p2 = matrix(views2, 1,12) 

 

p3 = matrix(views3, 1,12) 

 

p1_9y = matrix(views1_9y, 1,12) 

 

p2_9y = matrix(views2_9y, 1,12) 

 

p3_9y = matrix(views3_9y, 1,12) 

 

p1_rotate = t(p1) 

 

p2_rotate = t(p2) 

 

p3_rotate = t(p3) 

 

p1_rotate_9y = t(p1_9y) 

 

p2_rotate_9y = t(p2_9y) 

 

p3_rotate_9y = t(p3_9y) 

 

views_percentages = c(0.00204, 0.00207, 0.00234) 

 

views_percentages_9y = c(0.171, 0.244, 0.049) 
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Q = matrix(views_percentages, 3,1) 

 

Q_9y = matrix(views_percentages_9y, 3,1) 

 

sigma_matrix = matrix(sigma_9y, 12,12) 

sigma_matrix_9y = matrix(sigma_9y, 12,12) 

residuals = matrix(cbind(resid_argentina, resid_australia, resid_brazil, resid_china, 

resid_india, resid_kuwait, resid_morocco, resid_norway, resid_portugal, resid_russia, 

resid_uk, resid_vietnam),2086,12) 

 

residuals_9y = matrix(cbind(resid_argentina_9y, resid_australia_9y, resid_brazil_9y, 

resid_china_9y, resid_india_9y, resid_kuwait_9y, resid_morocco_9y, resid_norway_9y, 

resid_portugal_9y, resid_russia_9y, resid_uk_9y, resid_vietnam_9y),2347,12) 

 

cov_matrix_residuals = cov(residuals) 

 

cov_matrix_residuals_9y = cov(residuals_9y) 

 

omega_1 = p1%*%cov_matrix_residuals%*%p1_rotate 

 

omega_2 = p2%*%cov_matrix_residuals%*%p2_rotate 

 

omega_3 = p3%*%cov_matrix_residuals%*%p3_rotate 

 

omega_1_9y = p1_9y%*%cov_matrix_residuals_9y%*%p1_rotate_9y 

 

omega_2_9y = p2_9y%*%cov_matrix_residuals_9y%*%p2_rotate_9y 

 

omega_3_9y = p3%*%cov_matrix_residuals_9y%*%p3_rotate_9y 

 

omega_combined = matrix(cbind(omega_1, omega_2, omega_3)) 

 

omega_combined_9y = matrix(cbind(omega_1_9y, omega_2_9y, omega_3_9y)) 

 

omega = matrix(cbind(omega_1, 0,0,0,omega_2,0,0,0,omega_3), 3,3) 

 

omega_9y = matrix(cbind(omega_1_9y, 0,0,0,omega_2_9y,0,0,0,omega_3_9y), 3,3) 

 

omega_percentage = omega/100 

 

omega_percentage_9y = omega_9y/100 

 

capm_matrix = matrix(c(capm_argentina, capm_australia, capm_brazil, capm_china, 

capm_india, capm_kuwait, capm_morocco, capm_norway, capm_portugal, capm_russia, 

capm_uk, capm_vietnam), 12,1) 

 

#Black-Litterman returns with tau parameter 0.01 

 

blreturns_step1_tau1 = ginv(tau1*sigma_matrix) 
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blreturns_step2_tau1 = P%*%ginv(omega_percentage)%*%P_rotate 

 

blreturns_step3_tau1 = ginv(blreturns_step1_tau1+blreturns_step2_tau1) 

 

blreturns_step4_tau1 = 

blreturns_step1_tau1%*%capm_matrix+P%*%ginv(omega_percentage)%*%Q 

blreturns_step5_tau1 = blreturns_step3_tau1%*%blreturns_step4_tau1 

 

blreturns_step1_tau1_9y = ginv(tau1*sigma_matrix_9y) 

 

blreturns_step2_tau1_9y = P_9y%*%ginv(omega_percentage_9y)%*%P_rotate_9y 

 

blreturns_step3_tau1_9y = ginv(blreturns_step1_tau1_9y+blreturns_step2_tau1_9y) 

 

blreturns_step4_tau1_9y = 

blreturns_step1_tau1_9y%*%capm_matrix+P_9y%*%ginv(omega_percentage_9y)%*

%Q_9y 

 

blreturns_step5_tau1_9y = blreturns_step3_tau1_9y%*%blreturns_step4_tau1_9y 

 

#Black-Litterman returns with tau parameter 0.05 

 

blreturns_step1_tau2 = ginv(tau2*sigma_matrix) 

 

blreturns_step2_tau2 = P%*%ginv(omega_percentage)%*%P_rotate 

 

blreturns_step3_tau2 = ginv(blreturns_step1_tau2+blreturns_step2_tau2) 

 

blreturns_step4_tau2 = 

blreturns_step1_tau2%*%capm_matrix+P%*%ginv(omega_percentage)%*%Q 

 

blreturns_step5_tau2 = blreturns_step3_tau2%*%blreturns_step4_tau2 

 

blreturns_step1_tau2_9y = ginv(tau2*sigma_matrix_9y) 

 

blreturns_step2_tau2_9y = P_9y%*%ginv(omega_percentage_9y)%*%P_rotate_9y 

 

blreturns_step3_tau2_9y = ginv(blreturns_step1_tau2_9y+blreturns_step2_tau2_9y) 

 

blreturns_step4_tau2_9y = 

blreturns_step1_tau2_9y%*%capm_matrix+P_9y%*%ginv(omega_percentage_9y)%*

%Q_9y 

 

blreturns_step5_tau2_9y = blreturns_step3_tau2_9y%*%blreturns_step4_tau2_9y 

 

#Black-Litterman returns with tau parameter 0.1 

 

blreturns_step1_tau3 = ginv(tau3*sigma_matrix) 

 

blreturns_step2_tau3 = P%*%ginv(omega_percentage)%*%P_rotate 
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blreturns_step3_tau3 = ginv(blreturns_step1_tau3+blreturns_step2_tau3) 

 

blreturns_step4_tau3 = 

blreturns_step1_tau3%*%capm_matrix+P%*%ginv(omega_percentage)%*%Q 

 

blreturns_step5_tau3 = blreturns_step3_tau3%*%blreturns_step4_tau3 

 

blreturns_step1_tau3_9y = ginv(tau3*sigma_matrix_9y) 

 

blreturns_step2_tau3_9y = P_9y%*%ginv(omega_percentage_9y)%*%P_rotate_9y 

 

blreturns_step3_tau3_9y = ginv(blreturns_step1_tau3_9y+blreturns_step2_tau3_9y) 

 

blreturns_step4_tau3_9y = 

blreturns_step1_tau3_9y%*%capm_matrix+P_9y%*%ginv(omega_percentage_9y)%*

%Q_9y 

 

blreturns_step5_tau3_9y = blreturns_step3_tau3_9y%*%blreturns_step4_tau3_9y 

 

#Black–Litterman weights 

 

w_i_tau1 = sigma_matrix%*%blreturns_step5_tau1 

 

sum_weights_tau1 = sum(w_i_tau1) 

 

bl_weights_tau1 = w_i_tau1/sum_weights_tau1 

 

w_i_tau2 = sigma_matrix%*%blreturns_step5_tau2 

 

sum_weights_tau2 = sum(w_i_tau2) 

 

bl_weights_tau2 = w_i_tau2/sum_weights_tau2 

 

w_i_tau3 = sigma_matrix%*%blreturns_step5_tau3 

 

sum_weights_tau3 = sum(w_i_tau3) 

 

bl_weights_tau3 = w_i_tau3/sum_weights_tau3 

 

w_i_tau1_9y = sigma_matrix_9y%*%blreturns_step5_tau1_9y 

 

sum_weights_tau1_9y = sum(w_i_tau1_9y) 

 

bl_weights_tau1_9y = w_i_tau1_9y/sum_weights_tau1_9y 

 

w_i_tau2_9y = sigma_matrix_9y%*%blreturns_step5_tau2_9y 

 

sum_weights_tau2_9y = sum(w_i_tau2_9y) 

 

bl_weights_tau2_9y = w_i_tau2_9y/sum_weights_tau2_9y 
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w_i_tau3_9y = sigma_matrix_9y%*%blreturns_step5_tau3_9y 

 

sum_weights_tau3_9y = sum(w_i_tau3_9y) 

 

bl_weights_tau3_9y = w_i_tau3_9y/sum_weights_tau3_9y 
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