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Abstract 

The world is becoming more prominent and more complex every day. 

The resources are limited and efficiently use them is one of the most 

requirement. Finding an Efficient and optimal solution in complex 

problems needs to practical methods. During the last decades, several 

optimization approaches have been presented that they can apply to 

different optimization problems, and they can achieve different 

performance on various problems. Different parameters can have a 

significant effect on the results, such as the type of search spaces. Between 

the main categories of optimization methods (deterministic and stochastic 

methods), stochastic optimization methods work more efficient on big 

complex problems than deterministic methods. But in highly complex 

problems, stochastic optimization methods also have some issues, such as 

execution time, convergence to local optimum, incompatible with 

distributed systems, and dependence on the type of search spaces. 

Therefore this thesis presents a distributed and lightweight meta-

heuristic optimization method (MICGA) for complex problems focusing 

on four main tracks. 1) The primary goal is to improve the execution time 

by MICGA. 2) The proposed method increases the stability and reliability 

of the results by using the multi-population strategy in the second track. 3) 

MICGA is compatible with distributed systems. 4) Finally, MICGA is 

applied to the different type of optimization problems with other kinds of 

search spaces (continuous, discrete and order based optimization 

problems). 

MICGA has been compared with other efficient optimization 

approaches. The results show the proposed work has been achieved enough 

improvement on the main issues of the stochastic methods that are 

mentioned before. 
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Tiivistelmä 

Maailmasta on päivä päivältä tulossa yhä monimutkaisempi. Resurssit 

ovat rajalliset, ja siksi niiden tehokas käyttö on erittäin tärkeää. Tehokkaan 

ja optimaalisen ratkaisun löytäminen monimutkaisiin ongelmiin vaatii 

tehokkaita käytännön menetelmiä. Viime vuosikymmenien aikana on 

ehdotettu useita optimointimenetelmiä, joilla jokaisella on vahvuutensa ja 

heikkoutensa suorituskyvyn ja tarkkuuden suhteen erityyppisten 

ongelmien ratkaisemisessa. Parametreilla, kuten hakuavaruuden tyypillä, 

voi olla merkittävä vaikutus tuloksiin. Optimointimenetelmien pääryhmistä 

(deterministiset ja stokastiset menetelmät) stokastinen optimointi toimii 

suurissa monimutkaisissa ongelmissa tehokkaammin kuin deterministinen 

optimointi. Erittäin monimutkaisissa ongelmissa stokastisilla 

optimointimenetelmillä on kuitenkin myös joitain ongelmia, kuten korkeat 

suoritusajat, päätyminen paikallisiin optimipisteisiin, 

yhteensopimattomuus hajautetun toteutuksen kanssa ja riippuvuus 

hakuavaruuden tyypistä. 

Tämä opinnäytetyö esittelee hajautetun ja kevyen metaheuristisen 

optimointimenetelmän (MICGA) monimutkaisille ongelmille keskittyen 

neljään päätavoitteeseen: 1) Ensisijaisena tavoitteena on pienentää 

suoritusaikaa MICGA:n avulla. 2) Lisäksi ehdotettu menetelmä lisää 

tulosten vakautta ja luotettavuutta käyttämällä monipopulaatiostrategiaa. 3) 

MICGA tukee hajautettua toteutusta. 4) Lopuksi MICGA-menetelmää 

sovelletaan erilaisiin optimointiongelmiin, jotka edustavat erityyppisiä 

hakuavaruuksia (jatkuvat, diskreetit ja järjestykseen perustuvat 

optimointiongelmat). 

Työssä MICGA-menetelmää verrataan muihin tehokkaisiin 

optimointimenetelmiin. Tulokset osoittavat, että ehdotetulla menetelmällä 

saavutetaan selkeitä parannuksia yllä mainittuihin stokastisten 

menetelmien pääongelmiin liittyen. 
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Chapter 1 

Introduction 

As the level of computing complexity become larger, artificial intelligence 

has shown enormous power in decreasing this complexity.  

Generally, improving one parameter in a complex problem (e.g. 

accuracy in the machine learning problem), might have some side effects 

on other parameters. Therefore, optimization techniques in solving 

complex problems are the best solution to reduce such side effects. 

Therefore, evolutionary algorithms are selected as a meta-heuristic 

approach to optimization problems.  

Evolutionary algorithms (EAs) are population-based search 

optimization methods that mimic the processes of natural selection and 

evaluation. They work based on the combination of some random 

operations with guided ideas. The guided ideas Inspired from 

understandable samples in natural competitions. They do not need 

particular assumptions like differentiability or continuity.  They are really 

suitable for dealing with multi-objective-problems (MOP). In the past few 

decades, plenty of evolutionary algorithms have been proposed by 

researchers.   

The main aim of an EA is to find the nearest optimal solution for some 

real-world problems [1]. The algorithm keeps on producing multiple 

generations of solutions until a generation achieves the most optimal 

solution.  EA's first step is to establish a convertible link between the real 

world and a computational world of EA. This step relies on two 

fundamental concepts: phenotype and genotype.  

A candidate solution (called an individual) is phenotype in the real world 

and the corresponding sample in the algorithm is a genotype that is called 

a chromosome in the genetic algorithm (GA). If the algorithm wants to 

optimize an equation integer variable, the algorithm can make a binary code 

of integer digits as a genotype. Also, a representation of a phenotype by a 

genotype is called encoding, while mapping of a genotype to a phenotype 

is called decoding. 

In fact, the performance of EAs highly depends on multiple factors like 

a search space area, the number of optimization objects, the behaviour of 
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the problem (dynamic and static), and the complexity to evaluate a solution. 

So such factors are the origin of emerging new EAs.  

The majority of EA starts from the stochastic generation of the initial 

population of genotypes in the overall search space according to a specific 

probability distribution. We can evaluate the fitness function for each 

genotype, which describes the requirements to which the population should 

adopt. A fitness function allocates quality measures to the genotypes and 

forces the population improvement. An evaluation of a fitness function 

typically requires decoding of a genotype into the corresponding phenotype 

and computing a certain quality measure. 

An EA estimates the fitness function for all genotypes of a given 

population. The genotypes with the greater values of the fitness function 

take the higher probability to be accepted as the parents of the next 

generation. The chosen parents undergo variation to create offsprings. A 

variation consists of mutation and recombination [2]. The mutation is a 

unary operator applied to a genome to create a mutated mutant – a child 

(offspring). The mutation is stochastic, for instance, the child depends on 

the outcomes of random choices. EAs usually follow the same structures 

but they make a change by the ability of the operations and competition 

idea between populations.  

In this thesis, different EAs have been reviewed while the behaviour of 

each EA is explored within the different context of problems. 

1.1 Contributions of the Thesis 

This thesis has dealt with the following open problems:  

 EAs are not enough fast to apply for extremely complex problems 

and real-time applications. How can we reduce their execution 

time? 

 EAs can converge to local optimum in complex problems. How can 

we improve the reliability of their results? 

 Usually, EAs work based on the main population. How can we 

make them fit for distributed systems?  

 EAs have different performance on different problems. How can we 

introduce an EA to apply to different applications? 

To tackle these problems, the following solutions have been presented 

in this thesis: 

 To reduce the execution time, we have implemented the parallel 

implementations of ICA and GA on Paper I and II.  
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 To improve the accuracy of our parallel method, we have 

introduced Paper II and tested our methods in two different areas. 

 To make it fit for distributed systems we have selected multi-

population method and tested it on different application domains on 

papers III, IV, V and VI. 

 Finally, we have introduced a hybrid method, an efficient 

combination of multi-population ICA (PICA) and Multi-population 

GA (MPGA), to reduce the execution time, improve the accuracy 

of results, and make the ability to apply on different application 

domains and have tested on Paper VII and VIII. 

Figure 1.1 illustrates the general overview of the works accomplished in 

this thesis and the cohesion of the publications. 

 

Distributed Evolutionary Algorithms

Improve the Accuracy

Multi-population ICA
Paper I

Efficient Parallelization Methods
Paper II

Different Application
Domains

Non-linear & MICA
Paper III

Placement of SMAP
Paper V & VI

Task Scheduling for Distributed 
Real-Time Environments

Paper IV

Reducing the Execution Time

NoMeS
Paper VIII

MICGA
Paper VII

 
Figure 1.1 Illustration of papers cohesion. Each category is labelled with 

different colors. 
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Chapter 2 

Related Works 

Optimization problems have different levels of complexity and various 

search spaces. To optimize NP problems, the execution time is the primary 

objective. By growing the size of NP problems, optimization takes lots of 

time, so generally, ECs are more popular than other optimization problems 

because they are faster than other methods. In the last decades, many 

different ECs have been presented such as genetic algorithm (GA) [4], 

particle swarm optimization (PSO) [79], ant colony optimization (ACO) 

[18], simulated annealing (SA) [80], and grey wolf optimization (GWO) 

[81]. Also, krill herd (KH) [82] is proposed for solving optimization tasks. 

The KH algorithm is based on the simulation of the herding behaviour of 

krill individuals. The minimum distances of each individual krill from food 

and from the highest density of the herd are considered as the objective 

function for the krill movement [82]. The interior search algorithm (ISA) 

[83] as a novel method for solving optimization tasks achieves high accurate 

results. 

Among them, GA is selected as an efficient and straightforward method 

for discrete problems, and imperialist competitive algorithm (ICA) [6] is 

chosen as a highly accurate method for continuous problems. Also, the 

parallel implementation of different EC methods has been studied to 

analyze how the execution time and accuracy of an EC method can be 

improved. This chapter introduces GA, ICA and some of the well-known 

parallel EA methods.  

2.1 Genetic Algorithm (GA) 

Genetic algorithms are population-based search methods that mimic the 

process of natural selection and evolution, which some of their 

characteristics can help researchers for optimization [3]. Each serial GA has 

an initial population (several random chromosomes that each one is an 

individual) and executes routine operations, such as selection, crossover, 

mutation, and replacement [3]. All operations are repeated until leading to 

a proper result or ending in a specific generation.  

The simple model of GA was presented in 1970 by Goldberg and Holand 

[4]. In the last 40 years, plenty of research studies have been carried out to 

improve GA. These improvements make the GA more applicable to 

complex problems. The standard GA works with binary coding [5], which 

is suitable for discrete problems [3]. However, the performance on 

continuous data and convergence to local optimums are the key bottlenecks 

of GA. 
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2.2 Imperialist Competitive Algorithm (ICA) 

In 2008, the Imperialist Competitive Algorithm (ICA) was introduced by E. 

Atashpaz and C. Lucas [6], inspired by imperialistic competition. ICA is an 

EA to optimize the linear and nonlinear NP-complete problems. It is a 

population-based method in which each possible solution is a country, 

corresponding to the chromosome concept in the genetic algorithm [6]. The 

algorithm starts by generating a set of countries, as the initial population. 

Then all countries are separated into two classes: imperialist and colonies. 

Imperialistic competition is the main operation of this algorithm, and the 

expectation is that the colonies converge to the global optimum of the cost 

function, or at least very close to this optimum. 

The primary sorting of the countries is based on their fitness function 

values. The best countries are elected to be the imperialists, and the rest of 

the countries will be the colonies of these imperialists (Figure 2.1, step 1) 

and they (imperialist and colonies) make different empires.  

After distributing all colonies among the imperialists, colonies move 

toward their relevant imperialist countries. This movement operated by 

assimilation and revolution operations (Figure 2.1, step 2). In the 

assimilation, colonies change their positions in the search space to some 

places that are closer to their imperialist. This operation is similar to 

recombination operation in EAs and crossover in GA. Ordinarily, 

assimilation does exploitation in the search space and helps to have a more 

accurate search around the solutions. Using the assimilation (exploitation) 

alone as the recombination operation in the EAs can push our solution to 

the local optimum.  As the best solution for this problem, the revolution 

operation as an exploration method can force the algorithm to try another 

part of the search area and avoid converging to a local optimum. 

T.C.n=Cost(Imperialistn)+ mean{Cost(colonies of empiren)} 

START
Is there a colony that is 

dominating its relevant 

imperialist?

Is there a colony that is 

dominating its relevant 

imperialist?

Are Stop 

Conditions 

satisfied?

Are Stop 

Conditions 

satisfied?

1.Initialize the Empires1.Initialize the Empires 2.Assimilation

3.Exchange Imperialist 

and the best Colony

4.Compute Total Cost
5.Imperialistic Competitive

END

2

N
O

YES

N
O

YES

Imperialist 1

Imperialist 2

Imperialist 3

Empire 1
Empire 2

Empire 3

The Weakest Empire 

 
Figure 2.1 ICA Flowchart 

For each colony in each iteration, two random real numbers ranging 

between zero and one are generated. Then these values are compared with 

the probabilities of assimilation and revolution (i.e. revolution rate). If the 

generated numbers are lower than these probabilities, the procedure of 

assimilation or revolution is performed. In the next step, ICA calculates the 

total power of each empire and the imperialistic competition begins. The 

weakest empire loses its weakest colony and randomly one imperialist 
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capture this colony. These steps are repeated until the termination condition 

is satisfied.  

The ICA is a suitable method for a variety of optimization problems, but 

there exist certain challenges concerning the evolutionary algorithms in 

general such as convergence to local optimum or long execution time. 

2.3 Parallel Evolutionary Algorithms 

EAs can help to solve various problems, but there are some disadvantages 

associated with them. For instance, if the search space is very large, it is 

possible that an EA does not converge towards the global optimum or even 

to near-optimal solutions. To improve the result in such cases, the initial 

population should be expanded. The execution time of EAs is another 

challenge which can be intolerably high in complex cases. Parallelization 

can enhance the quality of decisions and reduce the time of obtaining 

results.  

Several parallel EA methods have been proposed to achieve better results 

(e.g., parallel genetic algorithm [3][7][8][9], parallel ant colony 

optimization (PACO) [10][11][12],  parallel memetic algorithm [13], 

parallel ABC (PABC) [14][15], and parallel PSO [16][17]). Parallel EAs 

are categorized into four main groups [3], master-slaves, multi-population, 

fine-grain and hierarchical methods. They have different usage based on 

different problems, goals, and computational resources. The master-slave 

method applies to problems that have a complex fitness function [18] to 

improve computation time (execution time). The execution time of EAs is 

not the only concern, but the reliability of the results and avoiding to 

converge to local optimums are two important challenges in EAs which can 

be enhanced by Multi-population (Coarse-grain) method.  The fine-grain 

parallel method is similar to multi-population, but require huge 

computational resources [3]. The hierarchical method can be designed as a 

combination of the other three methods (e.g. using the multi-population 

strategy on the top layer and master-slaves on the lower level). Both the 

fine-grain and hierarchical methods are resources hungry. 

2.3.1 Parallel Genetic Algorithm 

Here we will explore different types of parallel GA [3]. In coarse-grain 

methods, several processors are available and each of which has 

independent initial populations; and each processor runs a serial GA. After 

a definite number of iterations, all processors will stop and transfer some 

chromosomes (the migration operation) with a predefined strategy, e.g., 

worse or best. By this operation, the processors share the results of solutions 

among each other. In the coarse-grain, the most three important parameters 

are migration gap (the number of iterations between two migration), 

migration rate (the number of chromosomes that migrate at each the 

migration time), and interconnection topologies such as the ring or fully 

connected topology. 

Another parallel GA method is master-slave. In this method, one 

processor is specified as a “master” to do the more complex computations 

of GA, such as replacement, and selection, whereas the other processors 

(slaves) evaluate the fitness function and transfer the results to the master 
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processor. The fitness function defines the quality of each individual 

(chromosome). Master-slave nodes can be implemented either 

synchronously or asynchronously.  In the asynchronous method, the master 

processor proceeds with its work without waiting for the transferred data of 

slave nodes. In the synchronous method, the master node holds until it 

receives the results of all tasks from slaves.  

Fine-grain methods are suitable for parallel computing with a massive 

number of processors where each processor is able to communicate with the 

neighboring processors where each chromosome can recombine with each 

chromosome on the neighborhood of processors. This method is faster than 

the master-slave method but the required resource (such as the number of 

processors and communication rate) is too high. 

The hybrid method is composed of 2 levels: the upper level uses the 

coarse-grain method while the lower level utilizes either the master-slave, 

the multi-population, or the fine-grain method. This is more efficient and 

faster than other methods because it can utilize the advantages of two 

methods at the different levels of hierarchy. 

2.3.2 Parallel Ant Colonies  

Ant colony optimization (ACO) [19] is a technique for approximate 

optimization. The inspiring source of ACO algorithm is real ant colonies. 

More specifically, ACO is inspired by the ants’ foraging behaviour. At the 

core of this behaviour is the indirect communication between the ants by 

means of chemical pheromone trails, which enables them to find short paths 

between their nest and food sources. This characteristic of real ant colonies 

is exploited in ACO algorithms in order to solve, e.g., discrete optimization 

problems. Two main parallel implementations of ACO are PACO [11] and 

PACO-CGD [10]. 

PACO is applied to different optimization problems and is based on the 

multi-population method, where each processor has an independent 

population and runs the standard ACO independently. After a specified 

number of generations, a processor transfers some useful information to 

other processors. In PACO-CGD, the constructor graph decomposes into 

smaller pieces and each part is assigned to a processor, and then each 

processor runs the ACO method by itself; this method is faster than the 

PACO. 

2.3.3 Parallel ABC 

Artificial Bee Colony (ABC) [20] is inspired by honeybees. The ABC, as 

an optimization mechanism, provides a population-based search function in 

which the artificial bees modify individuals called food positions as time 

passes. The bees aim to explore the places of good quality and food sources 

with high nectar amounts and finally the one with the highest nectar 

amount.  ABC can be parallelised in three ways: based on either the coarse-

grain, master-slave, or hybrid method. Similar to the master-slave method 

for GA, one processor is selected as the master and others as the slaves. 

There is also the same similarity between multi-population and hybrid 

method of ABC with GA. 
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2.3.4 Parallel PSO 

Many applications have taken advantage of particle swarm optimization 

(PSO) [21]. The PSO emulates the behaviour of animal societies that do not 

have any unique leader in their swarm, such as fish schooling and bird 

flocking. The PSO is used efficiently for continuous search space problems. 

Parallel PSO is an efficient method for optimal task scheduling in 

distributed systems [16], which has been implemented with two different 

multi-population techniques: Multi-population PSO (MPSO) and Multi-

population Repulsive PSO (MRPSO). 

MPSO runs like other coarse-grain methods where each processor has an 

independent population, and the simple PSO runs on its population 

independently [16]. The migration operation is also similar to GA. 

The MRPSO is the enhanced MPSO method that combines an extra 

component to MPSO called "repulsive component". Trying to make a 

diverse population in each processor is the primary rule of this component. 

This causes a high degree of diversity in PSO which helps obtain better 

results. 

2.3.5 Parallel Memetic Algorithm 

Memetic algorithms (MAs) [22] are population-based and heuristic search 

approaches for optimization problems similar to GAs. GAs, however, rely 

on the concept of biological evolution but MAs mimic cultural evolution. 

Parallel MA [13] is implemented as a coarse-grain approach called 

PARME. It is used on optimization problems in the work of Vanneschi. 

Typically, parallel MA is implemented as a coarse-grain method called 

PARME [13].  

The PARME is a coarse-grain method that uses a different population in 

each processor that runs a serial MA independently. One of the processors 

is selected as the master processor. This is the main difference between 

PARME and the other methods as mentioned earlier in parallel GAs. The 

master processor controls the tasks of other processors and generates a task 

table in each iteration and shared it with other processors. This task table 

has the information of significant parameters such as the fitness value of the 

best and the worst populations while the table will update in each iteration. 
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Chapter 3 

Thesis Contributions and Case Studies 

It is clear that different problems should be solved by different optimization 

methods. Here, we have improved our optimization method and use 

different types of coding, encoding, fitness functions and other needed 

operations based on the requirement of problems.  

3.1 Thesis Contributions and the Hybrid Evolutionary 

Algorithm 

As mentioned before, there are several open questions about the EAs that 

this thesis has addressed some of them. Today, due to the complexity of 

modern applications in IoT (internet of things) and CPS (cyber physical 

systems) domains, optimization methods have emerged as a vital solution. 

Generally, EAs are time-demanding computational models for complex 

problems, particularly when search spaces, and the number of objectives are 

increased. So, in the first effort, we did some research to select a fast 

evolutionary method, and we selected ICA due to its performance and 

accuracy. 

ICA is an optimization method based on imperialistic competition. In 

this method, all countries (same as chromosomes in the GA) are divided 

into two categories: colonies and imperialist states. The main part of this 

method is imperialistic competition which causes the colonies to converge 

to the global minimum. 

ICA can converge to the global optimum in the smaller iteration 

compared to other EA methods but was not fast enough for our use-cases. 

To improve the execution time of ICA, we decided to find a parallel solution 

where we have presented two different parallel implementations of ICA. In 

the first try (Paper I), we have proposed a multi-population implementation 

of ICA. We have connected the processors with the ring topology and tested 

our method on some well-known benchmarks. The results of these 

implementations show that we got considerable improvement in the 

execution time and accuracy in which super-linear performance [23] and 

system of nonlinear equations (in Paper III) achieved the best results. This 

improvement indicates that the migration operation has enough effect on 

getting the algorithm out from the local optimum and help the algorithm to 

have more exploration and exploitation in the search space.  

Next, we implemented the multi-population and master-slave models of 

ICA in Paper II and evaluated it with different benchmarks. The results 

show that the master-slave can only improve the performance, while the 

multi-population can increase the accuracy at the same time. 

We evaluated this method with another case study as a multi-objective 

problem. We introduced the concept of smart mobile access points 
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(SMAPs) to enhance node placement in wireless sensor networks (WSN). 

Finding the best placement of SMAPs is a multi-objective problem, and our 

algorithm should obtain the most coverage and connectivity of the network 

at the same time. The search space simulated as a 3-D mesh and each SMAP 

can select one point in the mesh. We used PICA to solve this problem (Paper 

V).   However, as this problem requires a discrete-based EA, we presented 

an MPGA (Paper VI). With this, the execution time has been improved by 

using fast and straightforward exploration and exploitation operations 

(crossover and mutation) but could not guarantee the convergence to global 

optimum as PICA is able to do. This motivated us to discover why GA-

based solutions cannot converge easily and accurately to the global 

optimum. 

The GA operations are fundamentally suitable for discrete problems 

therefore not suitable for the convergence strategy in continuous problems 

is not useful [24], because the selection operation in GA misses some 

chromosomes that have a probability to become potential genes for 

obtaining the best results.  However, In the ICA, we use countries as the 

population, all the countries will be available in all iterations; they may only 

move to other places in the search space. However, the selection operation 

highly depends on random functions which can easily converge to a local 

optimum. Therefore, we use an efficient convergence strategy in order to 

improve the reliability of results. 
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Figure 3.1 Flowchart MICGA 

 

To make this combination, we have selected and combined the best parts 

of each method (ICA and GA) and proposed MICGA (PICA & GA). 

MICGA uses the following steps from ICA: generates countries and creates 
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empires and imperialistic competition. Then the crossover and mutation will 

be executed from GA. With this combination, we take advantage of ICA’s 

efficiency in the convergence of global-optimum along with the fast 

exploration and exploitation operation of GA. We have tested the proposed 

method on task graph scheduling problem as another multi-objective 

optimization problem (in Paper VII and IV). The results show that we have 

a considerable improvement in accuracy and performance. Finally, we 

adopted the proposed hybrid method on task scheduling for real and 

complex applications [Paper VIII]. 

3.2 list of case studies  

In this thesis, different types of case studies with various level of complexity 

have been used.  

3.2.1 Synthetic benchmarks 

Generally, several well-known benchmarks have been used to assess EC 

methods. In the Paper I and II, eight test functions (mathematical benchmark 

functions) along with three case studies have been used and presented in 

Table 2.1, in order to analyse and compare the proposed method with the 

sequential ICA and some other parallel EC methods. 

Table 3.1    MATHEMATICAL BENCHMARKS 
 Name Equation Min. 

Value 

Bounds 

𝒇𝟏 𝐺1 𝑥. sin(𝑥) + 1.1𝑦. sin(2𝑦) -18.5547 0 < x, y <10 

𝒇𝟐 𝐺2 
0.5 +

sin√𝑥2 + 𝑦2 − 0.5

1 + 0.1(𝑥2 + 𝑦2)
 

-0.5231 -∞ < 𝑥, 𝑦 < ∞ 

𝒇𝟑 Sphere 
∑ 𝑥𝑖

2
𝐷

𝑖=1
 

0 -∞ < 𝑥𝑖 < ∞ 

𝒇𝟒 Rosenbrock 
∑100(𝑥𝑖+1 − 𝑥𝑖

2)2
𝑛−1

𝑖=1

+ (𝑥𝑖 − 1)2 
0 𝑥𝑖 ∈ [-50, 50] 

𝒇𝟓 Rastrigin 
∑ 𝑥𝑖

2
𝑛

𝑖=1
− 10 cos(2𝜋𝑥𝑖) + 10 

0 𝑥𝑖 ∈ [-5. 2, 5.2] 

𝒇𝟔 Akley 

20 + 𝑒 − 20exp⁡(−0.2√
1

𝐷
∑ 𝑥𝑖

2
𝐷

𝑖=1
− exp(

1

𝐷
∑ cos(2𝜋𝑥

𝐷

𝑖=1
) 

0 𝑥𝑖 ∈ [-32, 32] 

𝒇𝟕 Ellipse 
∑104

𝑖−1
𝐷−1

𝐷

𝑖=1

𝑥𝑖
2 

0 𝑥𝑖 ∈ [-5, 5] 

𝒇𝟖 Griewank 1

4000
∑ 𝑥𝑖

2
𝑛

𝑖=1
−∏cos(

𝑥𝑖

√𝑖
)

𝑛

𝑖=1

+ 1 
0 𝑥𝑖 ∈[-600, 600] 

 3.2.2 Nonlinear equations 

Solving nonlinear equations are one of the NP-Hard problems [25], which 

match the categories of multi-objective optimization problems. Systems of 

nonlinear equations are used in a large range of engineering applications, 

such as petroleum geological prospecting, weather forecast, control fields 

and computational mechanics. In the classic methods, the quality of answers 

depends on the initial guess of the solution. The Newton-type methods are 

an example of classic methods. However, choosing suitable initial solutions 

for the systems of nonlinear equations is extremely complex and takes a lot 

of time and computations. 

Therefore, to improve the performance several methods have been 

introduced for optimization problems. These methods can be categorized 

into two major categories: mathematical methods and evolutionary 
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computing (EC) methods where a large group of them are implemented in 

a serial mode and some of them are in a parallel mode. 

Serial methods are more popular than other mathematical methods in 

nonlinear equations. However, the serial implementation does not always 

provide sufficient accuracy while parallel implementation can improve 

accuracy.  

First, we explore some of the serial implementations of EAs. El-Emary 

and El-Kareem used Gauss-Legendre integration as a serial method to the 

system of nonlinear equations and used GA to find the results without 

turning the nonlinear equations to linear equations [26]. Mastorakis applied 

GA to solve a nonlinear equation as well as systems of nonlinear equations 

[27]. 

For solving a set of nonlinear equations, Li and Zeng [28] trained a 

neural-network algorithm. A simple gradient descent rule with variable 

step-size levels used to carry out the computation [28].  

Huan-Tong et al. introduced an improved evolution strategy based on a 

probability ranking system to solve difficult nonlinear systems of equations 

problems [29]. ICA was implemented for solving nonlinear systems of 

equations by M. Abdollahi et al.  [30]. The PSO method focuses more 

on”exploration”, but the Nelder-Mead simplex system adjusts on 

“exploitation” [31]. Wu et al. used a new turn of the social-emotional 

optimisation method called MSEOA, principally inspired by the Metropolis 

Rule [32]. In another try, M. Abdollahi et al. used a cuckoo optimization for 

solving nonlinear systems equations [33] [34]. 

Luo et al. introduced an efficient combination of the Newton-type 

method and Chaos search [35]. Grosan and Abraham used a new 

perspective of the EA [36], Mo et al. introduced a simple combination of 

the conjugate direction method (CD) [37], and M. Jaberipour used the 

standard implementation of PSO [38]. Pourjafari et al. [39], and Henderson 

at al. [40] proposed a methodology based on a polarization and novel 

optimization methods using Invasive Weed Optimization for finding all 

roots of a system of nonlinear equations. 

Wu and Kang applied a parallel elite subspace EA for solving systems of 

nonlinear equations [12]. The initial guess can have an undeniable effect on 

the results of mathematical methods. On the other hand, a large and enough 

well-distributed population of the EAs can improve the convergence of 

them to the global optimum, which makes them slow. The EAs are 

ineffective for large-scale problems, like systems of nonlinear equations 

because of massive memory requirements and their high linear algebra 

costs. Based on all issues presented above, finding an efficient method for 

solving systems of nonlinear equations is necessary. 

To solve nonlinear equations (in Paper III), we have utilized a coarse-

grained method to parallelize ICA (PICA). Among parallelized techniques 

of EAs, the multi-population method has faster convergence and more 

reliable results than other parallel methods. 

In the multi-population method, each processor has an independent 

population, each exploring its area of the search space. Their area can be 

separated or merged, and the ICA is run in each processor independently. 
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Each processor can use different values for parameters.  Different rates of 

exploration and exploitation can help avoid converging to local optimums. 

The migration operation in the multi-population method can significantly 

increase the performance of solving nonlinear equations so that it is the most 

critical parallel operation in the coarse-grain implementation. The 

processors share the best results together to discover better results in a 

shorter number of iterations. The proposed method selects the best 

imperialist to be migrated between processors, and the migrated imperialist 

replaces the worst colonies.  

In this problem, each colony or imperialist is a possible solution for the 

nonlinear equation. Therefore, the proposed method creates the initial 

populations in each processor randomly, which are the possible solutions. 

Some of the countries are selected to be processed by our proposed method 

to converge them towards better results at each iteration. 

The multi-population architecture has been made by connecting the 

processors as ring topology by message passing based communication. The 

low-cost communication and simplicity of the ring topology are the main 

reason that it has used in our implementation. The initial population happens 

for each processor independently. The initial population size is the same, 

and the serial ICA runs independently on them. After some iterations, the 

best imperialist migrates from each processor Pi to the next processor Pi+1 

in the ring and replaces the worst colony in Pi+1.  

In the proposed method, growing the initial population size increases the 

selection pressure to converge to the global optimum faster. Therefore it is 

advantageous to increase the number of countries. 

3.2.3 Task Scheduling  

Over the last two decades, parallel processing in contemporary 

Multiprocessor System-on-Chips, or MPSoCs, in a wide variety of 

applications, is the result of many breakthroughs. Based on this 

development of embedded MPSoCs, many application domains such as 

video and audio processing, health monitoring, and autonomous vehicles 

developed to use in real-time environments. To improve the response time 

of these applications, the data and the computational tasks of these 

applications are distributed on all computational resources such as available 

multiple cores. By using an efficient task partitioning and scheduling 

strategies, the performance of such parallel systems can be improved. 

In [41], the modified critical path algorithm is introduced, based on the 

latest possible start time of a task. A task’s latest possible starting time is 

defined through the as-late-as-possible binding by crossing the task graph 

upward from the final tasks to the entry tasks while pulling the tasks’ start 

times downwards as much as possible. The delayed possible start time of 

the task itself is followed by decreasing order of the latest possible start 

times of its follower tasks.  

Moreover, the dominant sequence clustering algorithm (DSC) is 

performed in [41] that it works based on the dominant sequence, and at each 

step computation of the critical path of the partially scheduled task graph is 

necessary. At every track, DSC checks whether the greatest the critical path 

of task graph (CP) node that is a ready node. DSC assigned it to a processor 
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allowing the smallest start time. Such a smallest start time may be obtained 

by rescheduling some of the node’s predecessors to the same processor. If 

the greatest CP task is not an immediate task, DSC does not choose it for 

scheduling. Instead, it keeps the highest task which lies on a path reaching 

the CP for scheduling. Furthermore, the mobility directed algorithm (MD) 

is presented in [41]. MD selects a task at each iteration based on relative 

movement which is determined as the difference between a task’s earliest 

start time and latest start time. The earliest possible start time is allocated to 

each task through the as-soon-as-possible (ASAP) binding that is similar to 

the ALAP binding. This is executed by traversing the task graph downward 

from the entry nodes to the exit nodes while pulling the nodes upward as 

much as possible. Furthermore, relative mobility is achieved by distributing 

mobility with the task’s computation cost. A coarse-grain implementation 

of the genetic algorithm method (MPGA) is introduced in [42] which 

outperforms nondeterministic and deterministic methods reported in [43], 

[44].  

A new encoding method with a multi-functional chromosome is 

performed that uses a priority representation of chromosomes. This priority 

method is called priority-based multi-chromosome (PMC) [45]. In this 

method, GA uses to obtain near-optimal scheduling. Lei et al. proposed a 

GA mapping algorithm to minimize application execution time [46]. The 

target architecture is network on a chip (NoC) and graphs represent 

applications. Wu et al. also used genetic algorithms [47]. They combined a 

dynamic voltage scaling method with mapping and obtained 51% savings 

in energy consumption. Murali et al. used the tabu search (TS) algorithm to 

task mappings for several applications in NoC design [48]. Manolache et al. 

tried to guarantee packet latency by using task mapping in NoCs [49]. Hu 

et al. introduced a branch-and-bound algorithm to map a set of IP cores (IPs) 

onto a NoC with bandwidth reservation [50]. Their energy savings in the 

communication architecture is 51.7%. Marcon et al. compared several 

methods, using an architecture that characterizes applications by their inter-

task communication volume.  Xu et al. [51] used a multiple priority queues 

GA (MPQGA) for task scheduling problem on heterogeneous systems. 

3.2.3.1 Task graph scheduling  

In Paper VIII, we used MICGA (the combination of the GA and ICA) and 

customised this hybrid method for the scheduling problem. Operations of 

The GA primarily fit for scheduling, but as mentioned before, GA’s 

convergence strategy to obtain more accurate and reliable results is not 

efficient enough [52]. Based on our previous knowledge in the ICA, The 

population contains countries as the chromosome. 

The ICA improves the convergence operation quality by keeping all the 

countries available in all iterations. They may only relocate to other 

positions in the search space. On the other hand, the selection operation in 

the GA extremely depends on random functions which can quickly 

converge to a local optimum. Therefore, MICGA uses a more efficient 

convergence strategy (the convergence idea of ICA) to improve the 

reliability of results. 
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All the scheduled tasks in a directed acyclic graph (DAG) should satisfy 

the priority relations so that we applied an order based coding mechanism 

fitted for multiprocessor task scheduling. Therefore we had to fulfil the 

following rules:  

Before starting the execution of the task, all the predecessors of the task 

must have completed their execution. Based on a DAG, all the tasks must 

be executed at least once. 

  

T1

T2 T3 T4

T5

T7

T8

T6

T9

 
Figure 3.2 DAG Task graph 

3.2.3.1.1 Order-based country (OBC) 

The multiprocessor scheduling problem was solved by several methods 

[53], [54], [55] that they have used GA. Encoding a solution to the problem 

into a chromosome is a fundamental issue here.  

Two critical angles that should be satisfied are 1) converting the problem 

from the genotype space to the phenotype space when chromosomes 

(countries) are decoded into solutions [56], and 2) metamorphosis 

properties when chromosomes are manipulated by GA operators [57]. 

Typically, the two common difficulties with respect to the encoding 

problem are the following:  

1) Needs for storing a huge number of chromosomes (countries) 

corresponding to different suggested schedule. 

2) Very complex operations (exploration and exploitation) in the case of 

a large number of tasks. 

To succeed these difficulties we use the concept of an order based 

country (OBC) that strings the present task nodes in the DAG order of task 

nodes with the corresponding processors simultaneously. Figure 3.4 is a 

simple example that shows an OBC that represents nine tasks along with 

two processors for the DAG shown in Figure 3.3.   
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Figure 3.3 Chain of tasks based on the presented country 

3.2.3.2 Scheduling a pack of application 

In Paper VII, we have improved the previous work in task scheduling for a 

pack (more than one) of jobs instead of only one job. 

In normal task scheduling, some computational resources are useless and 

with the pack of applications, the maximum capacity of resources can be 

utilized. 

Finding an encoding which can explain the priority constraint efficiently 

among the jobs is a significant step. The suggested encoding order is based 

on the priority of tasks, i.e. the pipelined execution representation of 

applications at the same time. Generally, in the pipeline model, there is a 

large data as input. This large data are divided into several small parts then 

these parts are then one by one used as inputs to an application. We make a 

pack of the parts and find the best schedule for this pack of data.  Each part 

is an application such as Sobel Application (Figure 4.11), and the number 

of parts (applications) in each pack is. A proposed schedule of six Sobel 

applications (pp=6) on four processors is illustrated in Figure 3.5.  
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Figure 3.4 A proposed schedule of six Sobel application on four processors 

(pp=6) 

3.2.3.3 Task scheduling with more constraints on industrial 

application 

In Paper IV, an industrial application has been chosen to improve by a 

heuristic task graph scheduling. Industrial applications often require 

guaranteeing real-time execution, fault-tolerant implementations and 

providing reliable functionality. In general, it is impossible for a single 

machine architecture to satisfy all these needs. However, a distributed 

processing environment provides a variety of computational capabilities, 

which can be utilized to perform an application that has diverse execution 

requirements. An application job can be decomposed into subtasks. Subtask 

may have different computational requirements, where existing data 
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dependences is possible among these subtasks. For distributing subtasks, 

the following decisions should be made respectively: 

1) Subtask matching, i.e. assigning subtasks to processing machines, and 

2) subtasks scheduling, i.e. defining subtask execution order and the order 

of data transfers among machines. 

The general goal of using distributed environments is to minimize the 

end-to-end cost of computation, i.e. minimizing the overall response time 

of the application, minimizing the number of processing machines, or both. 

Performance of such parallel systems can be optimized by employing an 

efficient task matching and scheduling approach, however, the matching 

and scheduling problem is an NP-Complete [58]. Using exhaustive 

approaches for finding an optimal solution is time-consuming and is 

impossible in practice. Many heuristic task scheduling strategies have been 

proposed [56], [59] to find a near-optimal solution in a reasonable amount 

of time. 

To only focus on the matching and scheduling problem, we made the 

following assumptions. First of all, we assumed that each subtask is written 

in a machine-independent language. Moreover, it is assumed that an 

application job is decomposed into multiple subtasks and we know all the 

data dependencies among subtasks before the execution. The load 

complexity of all the subtasks and their execution time on each machine is 

known a priori. It is assumed that for each subtask, there is a couple of input 

nodes that produce raw input data (sensors) and there are some output nodes 

which consume subtasks processing results (Actuator). Obviously the input 

of subtask is coming from sensors or the output of other subtasks and 

similarly, the output results of each subtask will be consumed by actuators 

or other subtasks. The distributed processing platform is non-uniform that 

consists of multiple homogeneous machines with various processing 

potential. All the processes on machines are non-primitive meaning each 

machine completes the current task before calling of the next task. 

 
Figure 3.5 Representing the use case including jobs, intra-task dependencies, 

tasks load complexity, real-time deadlines and processing unit specifications 
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Also, all input data items of a subtask must be received before its 

execution can begin, and none of its output data items is available until the 

execution of this subtask is finished. A data conditional is based on input 

data, it is assumed to be contained inside a subtask. A loop that uses an input 

data item to determine one or both of its bounds is also assumed to be 

contained inside a subtask. When two communicating tasks are mapped 

onto the same processor we assume that the communication delay is zero. 

However, when they are mapped onto different processors a finite 

communication delay is assumed and modelled. The task is represented by 

a DAG, where each edge goes from a producer to a consumer. Figure 3.7 

shows a DAG of an application job, seventh job, from the industrial use case 

(Figure 3.6). 

  
Figure 3.6 Dataflow of Job #7 

3.2.4 Placement of Swarm of drones 

Wireless sensor networks (WSN) and cyber-physical systems (CPS) are two 

critical current fields of technology that are tightly intertwined [60], [61]. 

The combination of WSNs and other modern technologies, such as 

unmanned aerial vehicles (UAV) and mobile robots, has created a novel 

revolution in this area. An efficient combination of WSNs with mobile 

nodes can obtain better performance by using mobile access points 

embedded in UAVs or mobile robots [62], [63].  

Smart mobile access points (SMAPs) can make a cluster together for 

distributed computing and make decisions for improving the quality of the 

network. SMAPs change their positions their decisions based on the current 

situation in the environment. Therefore, placement of SMAPs is a critical 

problem in this concept.   

The Placement problem is a multi-objective optimization 

problem.  There are different kinds of methods such as static or dynamic 

methods used to solve this problem [64].  The general method to solve the 

initial placement, a static placement problem, is the evolutionary algorithm 

[9], [65] such as PSO. 

SMAPs are mobile access points that are able to create a dynamic and 

smart sensor network. The main task of SMAPs is to monitor and predict 

the behaviour of the network and decide the best method to maintain the 

network at any given time. SMAPs collect and broadcast signals such as 

battery levels, and help requests, from and to the other network nodes. 

Based on the collected information, SMAPs predict the next actions based 

on this information and run these actions. 
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Normally, a SMAP uses previous information and operations or 

generates a new solution by learning or evolving through machine learning 

algorithms. The most major tasks of SMAPs are the following:  

1) Compute new (near-optimal) locations for access points to obtain 

greater coverage of sensors. 

2) Making decisions about how the access point must move to new areas 

[66] 

3) Participating in distributed communication and computation tasks (fog 

computing [67]) other than the processing carried out as an inherent part of 

the decision making in 1) and 2). 

A SMAP can move to a new position based on different situations, such 

as reconfiguration of the network, supporting specific tasks (e.g. tolerating 

faults by replacing a faulty access point with a functioning one) or covering 

a missed area of sensors that are not covered currently by any other access 

point. SMAPs increase quality and flexibility of WSNs with the following 

advantages: 

 Improving the system by increasing the coverage in large scale networks. 

 Solving hotspot problems in the network. 

 Handling dynamic reconfiguration of WSNs. 

 Replacing faulty access points. 

 Forming a grid network to run real-time tasks in parallel. 

Therefore, an optimised placement of SMAPs has a significant effect on 

the ability and performance of the network. Therefore, we focused on the 

initial placement to illustrate the efficiency of our method. Also, SMAPs 

should have the best initial placement and clustering [68], [69]. 

Additionally, they should have the ability to move dynamically to new 

locations, because the behaviour of the network can be changed at run-time. 

This network reconfiguration method is a response to the current status of 

the network, and SMAPs should update their locations for the new 

configuration. Our method is based on the following: 

Each access point or cluster centre always has a distinct weight. These 

weights are equal to the probability of the request for reconfiguration. The 

Weights can be calculated based on various effective parameters, such as 

the current traffic of network at these access points, properties of the 

covered area or the lifetime of their batteries. 

In a dynamic WSN, mobile nodes can be repositioned to new positions 

e.g. a sensor can change its location to the new location to collect extra 

information from the environment, or it can be replaced with another sensor 

that has a different performance on sensing physical phenomena. 

Dynamic replacement of nodes during network operation is very 

complex. It is clear that there is a significant difference between static and 

dynamic placement. In the dynamic replacement, more complex parameters 

such as the environment base, mobile targets, and lifetime of sensors can 

have an effect on the placement problem. Furthermore, the dynamic 

placement of a node needs very accurate handling because it can probably 

cause a disruption in data connectivity and delivery.  
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Also, sensors can migrate to new locations to obtain better readings or to 

sense extra information. Therefore, dynamic placement is a really 

challenging problem particularly when the following two aspects are also 

taking into consideration:  

1) The ability of nodes to migrate and reposition to an infinitive number 

of positions.  

2) The responsibility of the network to keep full connectivity of covering 

all sensors. 

Placement in WSNs can be categorised to two main groups: placement 

of sensors and placement of access points that in this case study, we only 

focused on the placement of access points. 

The Placement problem of access points is a complex multi-objective 

optimization problem that all goals must be satisfied. The two more critical 

goals are: 

1) To guarantee continuous network connectivity. In fact, at least each 

sensor and a node should have a connection to one access point that is 

connected to the network at any given time. 

2) Implementing a new reliable communication in the case of access 

point failures, meaning that other nodes in the network should find a new 

configuration to keep their communication.  

The best solution to achieve this goal is to use extra (redundant) access 

points which increases the number of feasible access points for sensors in 

the network. 

Heterogeneous WSNs are more popular and they have three different 

kinds of nodes: sensors, access points, and gateways.  

Sensors communicate with their corresponding access points. Access 

points can communicate with all other types of nodes. Additionally, access 

points have extra memory and computing capacity than sensors.  

Finding a near-optimal placement to improve reliability, connectivity, 

and energy consumption is an NP-hard problem [70]. Different heuristic 

methods used to solve this problem, which these methods are presented in 

[66], [71], [72].  

Resolving the problem of failing access points is necessary for real large-

scale WSNs. Also, it is apparent that using regular methods to achieve more 

redundancy (i.e. adding fixed/stationary access points) is very costly. 

SMAP can be used to solve this problem at a lower cost and with more 

flexibility.   

As mentioned before, the placement of SMAPs is a complex problem. 

During our research, we have worked in this area and test our methods to 

find a near optimal placement for SMAPs. At first in Paper V, we have 

proposed an efficient optimization method to solve the placement problem. 

Then in the next publication (Paper VI), we introduced a hierarchical 

structure to improve the scalability of SMAPs. To address the scalability of 

SMAPs, we proposed a complex coding to have the ability to optimize a 

multi-layers placement.  
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3.2.4.1 Placement of SMAPs 

In the first method [Paper V], a multi-population implementation of ICA is 

performed to improve the efficiency of solving the initial placement 

problem in SMAP based systems. e We have categorized our method into 

two critical layers: an architectural layer and an algorithmic layer. The 

architectural layer is more related to the structure of SMAPs and there is not 

any relation to the optimization concept and only describing the algorithm 

part.  

In the proposed method, all access points are categorized into two main 

categories, SMAPs and normal access points, to have the best placement of 

SMAPs. Normal access points are static and they only transfer data and 

control connectivity in the network.  

SMAPs have an extra ability compared to normal access points. They 

can move around the network area to improve the total performance of the 

network. Normal access points (static access points) have been selected as 

objects that should be covered by SMAPs. Each static access point has its 

weight and this weight indicates the probability of requiring support from 

SMAPs.   The weight can be derived from various parameters such as 

battery lifetime and communication traffic. To simplify the work, the rate 

of communication traffic is picked for this purpose. More details about the 

modelling of the problem are available on Paper V. The PICA has been used 

to solve this problem. 

Like PICA, processors are connected in a ring topology and we use 

message passing to implement this idea.   

First, independent populations are generated in each processor by 

running the sequential ICA independently. After each migration gap 

(chapter 1.3.1) (some certain iterations) the best imperialist moves 

(migrates) from the processor 𝑃𝑖 to 𝑃𝑖+1 in the ring topology and replaces 

the worse colony in the weakest empire in 𝑃𝑖+1. This operation has been 

run synchronously. Different migration strategies can provide different 

results.  

When a sparse connection topology, like a ring topology, is used low 

migration rates and short migration gap can work better. In turn, in a fully 

connected topology such as the star topology, the best optimal solution are 

obtained when the migration rates are higher. A processor does not execute 

any other operations during the migration operation.  

 MICA is an efficient parallel method which improves the execution 

time, stability, and reliability of results (Paper I). This is sufficient 

motivation to apply PICA to the placement of SMAPs. In order to 

appropriately modify the method, each SMAP is considered a processor, 

and a ring topology is assumed. 

3.2.4.2 Hierarchical Placement of SMAPs 

In Paper VI, we have presented a hierarchical placement structure for 

SMAPs to satisfy the scalability condition of them. In the proposed method, 

a parallel implementation of GA (MPGA) is implemented to improve an 

efficient method for solving the initial placement problem in hierarchical 

SMAPs based systems.  
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Here again, the focus is on the algorithmic layer rather than the 

architectural layer. To simplify the placement problem, all access points are 

divided into two types which are normal access points and SMAPs. Normal 

access points and SMAPs are the same as a previous case study in terms of 

their ability (static and dynamic), but both of them transfer data and 

maintain connectivity in the network (Paper V).  

Normal access points have been chosen as objective points to cover by 

SMAPs in the lowest layer. In each layer in the hierarchical method, SMAPs 

are distributed into several clusters, and each cluster is chosen as objective 

points (same as normal access points for the first layer) for other SMAPs in 

the higher level. 

We let that SMAPs works on a 3-D mesh and they can select a position 

from this mesh.  Also, our method should work on a discrete space; 

therefore, a GA is a fit option to solve the placement problem [9], (Paper I), 

(Paper V). ُ  Since, The multi-population GA is more efficient than a serial 

GA for a complex problem, we have utilized it to achieve the best possible 

results for choosing the best positions. 

The critical points of MPGAs, regarding their practical usage in this 

problem, are 1) Making the better diversity of the initial population, 2) 

Increasing the selection pressure and 3) Migration operator [9], (Paper V). 
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Chapter 4 

Experimental Results 

In this chapter, the results of thesis contributions are presented. Only some 

of the results from the original papers have been selected, and they are 

presented based on the order of the published papers. The results are based 

on convergence stability diagrams (show the convergence and reliability of 

our methods), the statistical results (shows the accuracy of our methods) 

and performance. 

We used the multi-population approach to parallelise our methods via the 

message passing interface (MPI) [73] using MPICH2 [74] which allows 

distributing the algorithm on several processors which are connected in a 

ring topology. The proposed methods have been tested on an Intel Core i5-

45705 desktop computer clocked at 2.90 GHz (64-bit) with 24GB of 

memory.  The implementation parameters are presented in Table 4.1. 

Table 4.1: parameters of implementation 
Parameters Values 

Number of Countries 100 

Number of Empires 5 

Termination Condition 20 Iterations 

Number of Processors 5 

Exploitation Rate 0.8 

Exploration Rate 0.3 

Migration Rate 1 Chromosome 

In the rest of this chapter, the results of benchmarks and case studies are 

presented.  

4.1 Synthetic benchmarks 

In Papers I and II, we introduced two parallel methods of ICA (PICA and 

Master-Slave ICA) implemented by MPI. We assessed them on eight 

mathematical benchmarks presented in Table 2.1. The obtained results are 

compared with relevant state-of-the-art methods such as the sequential ICA, 

PABC, Coarse Grain parallel PSO, Multi-Population Genetic Algorithm, 

Dynamic Neighborhood Structures in Parallel Evolution Strategies 

(Neighborhood GA), cuckoo  optimization algorithm (COA),  course-

grained PSO (C-PPSO) [30] and PSO-TM. 

The results have been assessed based on our four principal parameters 

which are speed up, stability, accuracy and ability to apply on different 

areas. Regarding the performance (execution time) the results shown in 

Figures 4.1, 4.2, 4.3 and Table 4.2, reflect that both of our methods are faster 
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but PICA is superior to others. Table 4.2 shows the speedup and efficiency 

of PICA and C-PPSO. C-PPSO has been selected as the best-related works, 

and the results illustrate that PICA is three times faster and more efficient 

than C-PPSO. 

 

 
Figure 4.1 Speed up diagram and parallel Efficiency diagram for 𝑓3 

 
Figure 4.2 Speed up diagram and parallel Efficiency diagram for 𝑓4 

 

 
Figure 4.3 Speed up diagram and parallel Efficiency diagram for 𝑓5 

Table 4.2   Values of Speedup and Efficiency on Some Benchmarks by PICAs and C-PPSO 
 Multi-Population PICA C-PPSO  

 CPU=4 CPU=6 CPU=8 CPU=4 CPU=6 CPU=8 

 Speed 

up 

Efficiency Speed 

up 

Efficiency Speed 

up 

Efficiency Speed 

up 

Efficiency Speed 

up 

Efficiency Speed 

up 

Efficiency 

Sphere 12.2 3.05 18.6 3.10 25.12 3.14 3.9029 0.9757 5.7555 0.9593 6.7519 0.8440 

Rosenbrock 11.6 2.90 17.88 2.98 24.4 3.05 3.9572 0.9893 5.7793 0.9632 5.9724 0.7465 

Rastrigin 18.1 4.52 28.26 4.71 37.84 4.73 3.9580 0.9895 5.7774 0.9629 7.7703 0.9713 

Griewank 16.3 4.07 25.32 4.22 34.08 4.26 3.9114 0.9778 5.9128 0.9855 7.3851 0.9231 

The stability diagrams and statistical results confirm more reliable results 

are obtained from different runs. The stability diagram shows the results of 

a method in different runs and the method is more accurate if the results 

have a lower standard deviation. As an example, the stability diagram of 

PICA on Akley as a most complex benchmark in Table 2.1 is illustrated in 

Figure 4.4, and statistical results are presented in Table 4.3 and Table 4.4. 

PABC has been selected as the most reliable method among others. Table 

4.4 presents values of different statistical results. Values of standard 

division (SD) shows the variation or dispersion of final results in different 

runs. Based on the presented values, the SD values of PABC are at least two 

times larger than the SD values of PICA, which shows that PICA is more 

reliable than other related methods.    
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Figure 4.4 Stability diagrams of f8 with PICA 

Table 4.3  Statistical table of multi-population PICA on 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7⁡𝑎𝑛𝑑⁡𝑓8 

with PICA with 30 runs 
 Mean SD STE Median Worse Bes

t 
𝒇𝟑 0.001810433333333 0.002970555267766 5.423467094903584e-004 0 0.001810433333333 0 
𝒇𝟒 0.007084433333333 0.009400134634705 0.001716221927671 0.00158750 0.028145000000000 0 
𝒇𝟓 0.001589366666667 0.002425782099026 428851917428874e-004 0 0.007724000000000 0 
𝒇𝟔 8.014333333333334e-004 0.001179387178196 2.153256538433475e-004 0 0.003326000000000 0 
𝒇𝟕 0.006058700000000 0.008992364052446 0.001641773545608 0 0.028145000000000 0 
𝒇𝟖 4.893666666666666e-004 8.566241876403997e-004 1.563974636250617e-004 0 0.002942000000000 0 

Table 4.4 Results obtained for the PICA and PABC algorithms on some benchmark functions.  
  

𝐟 
 

D 

 

MCN 

PICA 

Master-slave Multi-Population 

P=4 P=4 P=16 

Mean SD Mean SD Mean SD 

 

 

 

 

 

PICA 

𝐟𝟑 30 2000 2.51354E-
16 

3.66295E-
17 

1.64297E-
16 

2.28976E-
17 

1.52341E-
16 

2.18497E-
17 

𝐟𝟒 30 2000 2.322891E-

02 

3.462278E-

02 

1.876391E-

02 

2.964761E-

02 

4.823789E-

03 

5.213874E-

03 

𝐟𝟓 30 2000 1.993628E-

16 

4.736478E-

17 

1.862283E-

16 

4.732892E-

17 

1.722862E-

16 

4.378971E-

17 

𝐟𝟖 30 2000 4.728617E-

18 

6.598321E-

19 

3.927344E-

18 

5.668102E-

19 

3.367451E-

18 

4.962713E-

19 

 

 

 

 

 

PABC 

[15] 

𝐟𝟑 30 2000 - - 2.49479E-

16 

4.043068E-

17 

2.467389E-

16 

4.100729E-

17 

𝐟𝟒 30 2000 - - 2.182352E-
02 

3.250047E-
02 

2.282869E-
02 

2.585128E-
02 

𝐟𝟓 30 2000 - - 1.946071E-
16 

4.615336E-
17 

1.931904E-
16 

5.386725E-
17 

𝐟𝟖 30 2000 - - 4.896980E-

18 

7.036649E-

19 

4.756034E-

18 

6.995602E-

19 

4.2 Nonlinear equations 

To examine the accuracy of PICA, we utilized three nonlinear equations. 

The results show that PICA obtained the most accurate results in the 

continuous search spaces problems. 

In the first case study (nonlinear equation), the results compared with 

[38] and [75] have been obtained with 120 generations with an unknown 

number of population sizes. In [30], the parameters of ICA have been set to 

50 iterations with 250 countries.  As shown in Table 4.5, PICA achieved 

better and more accurate results than the previous works.  The accuracy of 

PICA is more than 𝑒−32 instead of  𝑒−30 that obtained by serial ICA and C-
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PPSO. The related convergence and stability diagram have been presented 

in Figures 4.5, and 4.6, respectively; and statistical results are presented in 

Table 4.6. 

 
Figure 4.5 The convergence history 

of case 1 with PICA 

 
Figure 4.6 The stability chart of case 

1 with PIC 

Table 4.5 Comparison Results of PICA for Case 1 with [38], [75], [33] and [30] 
Methods 𝒙𝟏 𝒙𝟐 𝒇(𝒙) 
PPSO [38] and 

Gyurhan [75] 

-0.29051455550725 1.08421508149135 4.686326815078573e-029 

PPSO [38] and 

Gyurhan [75] 

-0.793700525984100 -0.793700525984100 1.577721810442024e-030 

COA [33] 1.08421508149135 -0.29051455550725 4.686326815078573e-029 

COA [33] -0.29051455550725 1.08421508149135 4.686326815078573e-029 

ICA [30] 1.084215081491351 -0.290514555507251 3.562200025138631e-030 

ICA [30] -0.793700525984100 -0.793700525984100 1.577721810442024e-030 

ICA [30] -0.290514555507251 1.084215081491351 3.562200025138631e-030 

PICA (present 

study) 

1.0842150814913511 -0.2905145555072514 4.9303806576313238e-032 

PICA (present 

study) 

-0.79370052598409995582 -0.79370052598409995582 3.9443045261050590e-031 

PICA (present 

study) 

-0.2905145555072514 1.0842150814913511 4.9303806576313238e-032 

Table 4.6 Statistical results of PICA 
Problem N Mean Std. Deviation Std. Error Mean Worst Best 

Case 1 30 1.988586000000001e-031 1.739458967563944e-031 3.175803047964731e-032 3.944300000000000e-031 4.930400000000000e-032 

Case 2 30 1.046312443884771e-026 1.511543708264576e-026 2.759688618905053e-027 4.414500000000001e-026 0.0 

Case 3 30 6.898049999999997e-037 1.150107106181705e-037 2.099798685342363e-038 9.039099999999999e-037 5.800000000000000e-037 

In case 2, the best results in [77], [76], [30], and [33] with 50 iterations and 250 

population sizes were compared with PICA (Paper III). PICA obtained these 

results with 250 countries and 35 decades. Also, the convergence and stability 

diagram are illustrated in Figures 4.7 and 4.8. 

 
Figure 4.7 The convergence history of case 2 with PICA 

 
Figure 4.8 The stability chart of case 2 with PICA 
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Case 3 has been solved by the filled function method in [77] and has been 

proposed as a problem in [76] and [30]. The presented methods in [77], [76], and 

[30] have been tested for 1000 iterations, and their population size has been set to 

300. The results of the PICA are illustrated in Table 4.6.     

The convergence diagram of PICA has been presented in Figures 4.9. Figure 

4.10 shows the stability diagram of PICA for Case 3. The speedup and efficiency 

results of all three cases have been listed in Table 4.7.  Achieving the super-linear 

performance demonstrates that PICA has an excellent performance gain for 

continuous problems. 

 

Figure 4.9 The convergence history 

of case 3 with PICA 

 
Figure 4.10 The stability chart of 

case 3 with PICA 

Table 4.7 The Comparison Statistical Results of Serial ICA, and PICA 
Problem Speed 

Up 

Efficiency Serial ICA 

time 

PICA 

time 

#processors Super linear 

performance? 

Case 1 2.82 1.41 0.0341 0.012 2 Yes 

Case 2 5.1 2.55 2.1 0.411 2 Yes 

Case 3 6.24 3.12 6.78 1.08 2 Yes 

4.3 Task Graph Scheduling 

In Paper VII and VIII, four well-known real applications, Sobel, SUSAN, RASTA-

PLP and JPEG encoder [78] (Figure 4.11) have been used to exhibit the 

performance of MICGA. The collected results have been compared with those of 

the other EC methods that have used these applications in their evaluations such 

as MPGA [42], PMC [45] and MPQGA [51]. 
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Figure 4.11 Task graph scheduling benchmarks 
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First, we present the results of MICGA reported in the paper VIII (NoMeS). 

MICGA is named NoMeS in the paper. Figure 4.12, Figure 4.13, Figure 4.14 and 

Figure 4.15 show the end to end execution times of the benchmarks for all 

optimization methods with various numbers of processors. Based on the results, 

MICGA decreases end to end execution time more than 29.5%, 68.1%, 47.4%, and 

10.1% for the Sobel, SUSAN, RASTA-PLP, and JPEG encoder applications, 

respectively.  

×2

 
Figure 4.12 The Execution Time of 

Sobel filter with different numbers of 

processors 

×2

 
Figure 4.13 The Execution Time of 

Susan filter with different numbers of 

processors 

×2

 
Figure 4.14 The Execution Time of 

RASTA-PLP filter with different 

numbers of processors 

×2

 
Figure 4.15 The Execution Time of 

JPEG-encoder with different 

numbers of processors

Another critical factor to select the best method is the stability and reliability of 

the experimental results. The heuristic and metaheuristic methods cannot converge 

to the best results in all execution runs. Therefore, each method is executed several 

times and their results in all iterations show the stability. Figure 4.16 illustrate the 

stability diagram of each method. The results confirm that our method is more 

reliable with fewer errors values than the others. Figure 4.17 illustrate the 

convergence diagrams of MICGA on all applications. Based on the quality and 

accuracy of the results, MICGA is a prominent candidate for task graph scheduling 

problems. 
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Figure 4.16 The stability diagram of MICGA, MPGA, PMC and MPQGA on Sobel, 

SUSAN, RASTA-PLP and JPEG encoder with 2 processors 

 

 
Figure 4.17 The convergence diagram of MICGA on Sobel, SUSAN, RASTA-PLP and 

JPEG encoder with 2 processors. 

 
Figure 4.18 The stability diagram of MICGA, MPGA, PMC and MPQGA on Sobel, 

SUSAN, RASTA-PLP and JPEG encoder with 4 processors 
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Figure 4.19 The execution time of MICGA on all benchmarks with different number of 

pp on six processors 

Here, we report the results of the paper VII related to the idea of a pack of tasks. 

The results obtained using the same applications to show the stability of each 

method in Figure 4.18. MICGA is compared with MPGA [42], PMC [45] and 

MPQGA [51] in the same conditions and other methods. 

Figure 4.20, Figure 4.21, Figure 4.22 and Figure 4.23 illustrate the end to end 

execution time of all method on the applications on six processors. MICGA 

decreases the execution time by more than 46%, 8%, 15%, and 18% for the Sobel, 

SUSAN, RASTA-PLP, and JPEG encoder applications, respectively. It seems that 

the used packing method decreases the execution time.  

×6

 
Figure 4.20 The execution time of all methods on 100 of Sobel application (pp=100) 

One of the main limitations of evolutionary algorithms is that they decrease the 

convergence speed by increasing the number of iterations leading to non-

convergent results in low iterations.  In the Paper IV, Figure 4.24 and Figure 4.27 

represent the convergence of fitness functions for both single and multi-objective 

optimization, respectively. It can be easily observed from the convergence figures 

that both strategies are highly convergent toward the optimal results by a 

contentious reduction in fitness functions (see Equation (1) and Equation (2)). 
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×6

 
Figure 4.21 The execution time of all methods on 100 of SUSAN application 

(pp=100) 

×6

 
Figure 4.22 The execution time of all methods on 100 of RASTA-PLP application 

(pp=100) 

×6

 
Figure 4.23 The execution time of all methods on 100 of JPEG-encoder application 

(pp=100) 

4.3.1 Single Objective Optimization 

Figure 4.25 illustrates the variation trend of the total number of utilized processing 

units by increasing the number of iterations. As mentioned before, the aim of single 

objective optimization is to decrease the number of processing units used in jobs 

scheduling. Figure 4.26 shows considerable improvement in finding scheduling 

with lower required processing units. According to the results of Figure 4.25, we 

need 22 processing units for scheduling in the first iteration, while by proceeding 
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the exploration algorithm; we found a solution with only seven required processing 

units. Although there exist some breaks in continuous improvement, the overall 

trend moves toward improvement.  

4.3.2 Multi-Objective Optimization 

As mentioned earlier, the total number of processing units and end-to-end run-time 

for all the jobs are the two main objectives of MPGA. Figure 4.27 and Figure 4.28 

illustrate the convergence figures of required processing units for scheduling and 

end-to-end run-time for all the scheduled jobs, respectively. We can conclude from 

the figures that both the objectives are approaching toward optimized results. 

Although there are some failures or stops in achieving better results in each 

iteration, the overall progression of MPGA always approaches toward superior 

outcomes. 

Table II shows three different solutions on the Pareto frontier of the last 

Population. We have a variety of options based on user needs. Solution 1 is 

scheduling with a minimized number of processing units (7 processing units) while 

takes more time, 210tu, for running. On the other hand, Solution 3 provides the 

minimum elapsed end-to-end run-time (160tu), while needs 9 processing units for 

running. 

  
Figure 4.24 Convergence diagram of single objective optimization (# Processing 

units). 

  
Figure 4.25 Convergence diagram of MPGA (# processing units, end-to-end runtime). 
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Figure 4.26 Convergence diagram of the variations # processing units based on in single 

objective optimization. 

  
Figure 4.27 Convergence diagram of # processing units in multi-objective optimization 

by using MPGA approach. 

  
Figure 4.28 Convergence diagram of end-to-end run-time in multi-objective optimization 

by using MPGA approach.
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Figure 4.9 presents the allocation and scheduling results of the use case (Figure 

3.6) described in Subchapter 3.2.3.3.  The results of optimizing the use-case with 

MPGA are shown in Figure 4.9 valid scheduling for all jobs and their related tasks 

with the minimum number of processing units (Solution1). 

  
Figure 4.29 The best solution for multi-objective optimization with a minimum number 

of processing units (solution1) 

4.4 Placement of Swarm of drones 

Placement of SMAPs, described in Subchapter 3.2.4 has been implemented in two 

different works (Paper V and Paper VI). Paper V presents an efficient placement 

of SMAPs while Paper VI proposed a hierarchical placement of SMAPs. 

In Paper V, we used PICA for finding the optimal placement using four well-

known 2-D benchmarks and all the collected results are compared with the serial 

ICA, deterministic and random method [70], for the placement problem. 
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4.4.1 Single SMAP 

The initial placement in the first three benchmarks is coordinated at (0, 0). The first 

three benchmarks are used to find the best placement for only one SMAP. But, the 

fourth benchmark is considered for more than one SMAP. All the methods have 

been run for 40 times on each benchmark,   

In the first benchmark, eight static access points have been placed around the 

SMAP in a circular manner. The radius of the circle is 500 meters. The second 

benchmark has eight static access points that are symmetric based on the center 

point. 

In the third benchmark, there are 50 access points that are randomly placed 

around the SMAP. The weights of all static access points are equal in all 

benchmarks. PICA and ICA have been run in 100 iterations and their population 

size are equal to 500. The placements that has been selected by PICA is shown in 

Figure 4.30, Figure 4.32, Figure 4.34. The results show that our placements are 

very close to the optimal point based on the best and the worst distance in Table 

4.8.  

Table 4.8 Statistical Results  
 

B
e
n

c
h

m
a
r
k

s The Best 

Distance 

The Worst 

Distance 

C
o

r
re

c
t 

P
la

c
em

e
n

t 

C
o

u
n

t 
PICA 3 0 2.8635 35 

Random 13.2549 78.1004 0 

Serial ICA 0 11.5873 7 

Mathematical  0 0 40 

PICA 2 0 61.4191 36 

Serial ICA 0 127.3185 4 

Random 52.9906 1.0572e+03 0 

Mathematical 0 0 40 

PICA 1 0 475.0343 21 

Serial ICA 0 4.6043e+03 2 

Random 846.77 1.0447e+04 0 

Mathematical 0 0 40 

 

 
Figure 4.30 The placement of PICA on benchmark 1. 
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Figure 4.31 The placement of ICA on benchmark 1. 

 
Figure 4.32 The placement of PICA on benchmark 2 

 
Figure 4.33 The placement of ICA on benchmark 2 

 
Figure 4.34 The placement of PICA on benchmark 3. 
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Figure 4.35 The placement of ICA on benchmark 3. 

 
Figure 4.36 The placement of PICA on benchmark 4. 

 
Figure 4.37 The placement of ICA on benchmark 4 

4.4.2 Multiple SMAPs 

The fourth benchmark considers 5 SMAPs and 16 standard access points.  

To check the reliability of the results of the PICA and serial ICA, for each 

method we run 40 times each with 100 iterations.  The initial country is equal to 

500. Figures 4.36 show the placement of the proposed method on the fourth 

benchmark. 

The overall results confirm that the proposed fitness function is extremely 

efficient, letting PICA and ICA obtain the best placement also in the complex 

placement cases. The results also demonstrate that PICA performs much better 

than ICA. 

In the hierarchal placement (Paper VI), three well-known 2-D benchmarks have 

been utilized. The static-access points have different weights in the second and the 

third benchmarks; hence, benchmarks 2 and 3 are more complex than the first 

one.  The results of MPGA have been compared with sequential GA and standard 

mathematical method. 
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In these benchmarks, the proposed method should choose the best placement 

for several SMAPs in two layers. In the first benchmark, twenty-four normal 

access points and nine SMAPs have been divided into two layers (six SMAPs in 

the first layer and three SMAPs in the second layer). SMAPs should have different 

positions. The results also show that MPGA performs much better than GA. 

The main aim is to obtain the best placement for multiple SMAPs in two 

different layers. The first benchmark includes twenty-four static access points, 

which have a regular arrangement. All normal access points have the same 

weights. 

The second benchmark has thirty-two static access points and divided into two 

subsets (i.e., A and B).  

The third benchmark has sixty static access points, stayed on two hyperbolic 

curves (a horizontal curve and a vertical one). They also indicate that the proposed 

MPGA method is successful in both simple and complex case studies.  

TABLE 4.9 The stability diagram of all methods on case study 3. Statistical Results  
 Case The Best Distance Correct Placement Count The Worst Distance 

PGA 

3 

0 27 17.436 

Serial GA 0 11 43.261 

Mathematical  - 0 - 

PGA 

2 

0 26 11.814 

Serial GA 0 7 34.899 

Mathematical - 0 - 

PGA 

1 

0 28 9.465 

Serial GA 0 13 18.927 

Mathematical - 0 - 

 

 
Figure 4.38 The placement of MPGA on 

case study 1. 

 
Figure 4.39 The placement of serial GA 

on case study 1.  

 
Figure 4.40 The placement of MPGA on 

case study 2.  

 
Figure 4.41 The placement of serial GA 

on case study 2.  
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Figure 4.42 The placement of serial 

MPGA on case study 3 

 
Figure 4.43 The placement of serial GA 

on case study 3.  
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Chapter 5 

Discussion and Conclusion  

In conclusion, this thesis improved the execution time and accuracy of meta-

heuristic methods for optimization problems. Commonly, in really complex 

optimization problems, Evolutionary Computing (ECs) are popular ones. Although 

ECs show a better performance in comparison with other optimization methods, 

convergence to local optimums and large execution time motivated us to improve 

them. 

The thesis contribution is threefold as follows: 

Reducing the execution time of ECs to apply for extremely complex problems 

and real-time applications. 

Changing the exploration and exploitation to prevent convergence to local 

optimum in complex problems, and raise the reliability of results. Developed a 

framework to adapt ECs running in a distributed manner. 

Therefore, the main conclusions of this study are summarized as follows: 

1) We have selected the GA and ICA as two popular optimization methods for 

discrete and continuous problems. To improve the execution time of ECs methods 

we have parallelized GA and ICA, and our experimental results show that not only 

we have achieved an improvement on the execution time, but the reliability of the 

results have also been improved by the multi-population technique. The statistical 

results and stability diagrams show these successes. In Paper I, multi-population 

ICA (PICA) has been presented, and its results compare with some other methods 

based on the synthetic benchmarks. 

The results show a faster convergence, more reliability and super-linear 

performance. The improvement of convergence after each migration indicates that 

the migration operation has a significant effect of converging method to the global 

optimum. 

In Paper II, master-slave ICA and PICA have been presented. Improving the 

convergence and reliability of results were the primary concern in this paper. These 

methods and some other related methods have been compared together on more 

synthetic benchmarks. The results explain that multi-population improves the 

execution time and reliability of the results, but master-slave only reduces the 

execution time. 

After improving the convergence in Paper I and II, the PICA applied on non-

linear equations to test the accuracy of results. The proposed method was compared 

with other related methods. More accurate results obtained by multi-population 

ICA. 

All the benchmarks and non-linear equations have continuous search spaces 

based on the behaviour of serial ICA. 

In Paper IV, a task scheduling problem has been selected as an order based 

problem (a type of discrete problems), and MPGA was chosen to apply on it. GA 

works efficiently on discrete problems. The results confirm the obtained results are 

reliable, but the convergence does not have enough improvement. Then, in  

Paper V, PICA applied on complex placement problems (a discrete problem) and 
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the convergence and reliability of results were improved, but the execution time 

was not changed. 

2) Missing convergence improvement in MPGA (Paper IV) and execution time 

in PICA (Paper V) have motivated us to find the main reason for these problems. 

Therefore, MICGA has been proposed from the combination of PICA and MPGA. 

In MICGA the convergence strategies of PICA and exploration (mutation) and 

exploitation (crossover) operations of MPGA work together as an efficient 

optimization method. 

In Paper VI, MICGA has been applied on more complex placement problem 

(Hierarchical placement of smart mobile access points). The results of Paper VI 

show that we have achieved a faster convergence, less execution time and more 

reliability. The results show that MICGA has achieved most of our goals in this 

thesis. In Paper VII and VIII, MICGA is applied on two more complex scheduling 

problems and their results illustrate that MICGA can satisfy all mentioned objects. 

We combined ICA and GA, named MICGA, which takes advantage of the 

distributed, and convergence strategies of ICA, along with the crossover and 

mutation operations of GA. With this combination, MICGA not only increases the 

execution of PICA and GA but also has a great potential to be used for both 

continuous and discrete problems. 

  

3) We adapted PICA, MPGA and MICGA to be executed in a distributed 

manner using a ring topology (minimum connection) with a low rate of migration 

(low communication cost) using message passing systems. The experimental 

results show that we achieved considerable efficiency in comparison with central 

computation systems. 
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Chapter 6 

Overview of Original Publications   

Articles published including the results and analysis from the thesis are 

summarized below. 

6.1 Paper I: PICA: Multi-Population Implementation of Parallel 

Imperialist Competitive Algorithms 

In this paper, a multi-population implementation of ICA is proposed to improve 

the execution time of ICA. The processors are connected as a ring topology to 

communicate together.  The proposed work starts its process by initializing some 

independent populations. This helps avoid converging to a local optimum in 

different populations at the same time.  

The key contribution of this paper is the migration operation. By the migration 

operation, some chromosomes from each processor migrate to another processor 

to share their genome. 

The migration operation helps different populations to change their position 

from local optimums. The evaluation shows our solution improves the execution 

time and the stability.  

6.2 Paper II: Parallel Imperialist Competitive Algorithms 

In this paper, two different types of parallel ICA are introduced, multi-population 

and master-slave. One processor is selected as a master processor and manages the 

tasks of other processors. Slaves run some tasks such as chromosome evaluation 

and return the corresponding values to the master processor.  

In this work, our proposed works are evaluated in eight well-known 

benchmarks, and their outcomes compare with some other parallel EC methods.  

The results show that the master-slave ICA improves only the execution time, 

but PICA promotes reliability and execution time. 

6.3 Paper III: Parallel Imperialist Competitive Algorithm Based 

on Multi-Population Technique for Solving Systems of Nonlinear 

Equation 

In this paper, we have used PICA to solve nonlinear equation systems. Vast uses 

of non-linear equations are undeniable. Some of their applications are in chemistry, 

economics, mechanics, engineering, medicine, and robotics.  

The complexity of nonlinear equations proves the performance of our method. 

To qualify our method, we applied PICA on three well-known nonlinear equations. 

The presented results, such as stability diagram, convergence diagram, statistical 

results and table of speed up, illustrate that our method has a significant 

achievement. The accuracy of our results confirms the reliability of PICA. Also, 

we obtain the super-linear performance and shows the efficiency of our method on 

continuous problems. 



 

48 

6.4 Paper IV: Finding Near-Optimal Task Scheduling for 

Distributed Real-Time Environments 

In this paper, we proposed an MPGA approach for near-optimal scheduling 

optimization that guarantees end-to-end deadlines of tasks in distributed 

processing environments. We analyse two different exploration scenarios, 

including single and multi-objective explorations. 

The principal goal of the single objective exploration algorithm is to achieve a 

minimal number of processing units for all tasks, whereas a multi-objective 

optimization tries to optimize two conflicting objectives simultaneously 

considering the total number of processing units and end-to-end finishing time for 

all the jobs. The potential of the proposed approach is demonstrated by 

experiments based on a use case for mapping a number of jobs covering industrial 

automation systems, where each of the jobs consists of several tasks in a distributed 

environment. 

6.5 Paper V: Placement of Smart Mobile Access Points in Wireless 

Sensor Networks and Cyber-Physical Systems using Fog 

Computing 

In this paper, a PICA is applied to develop an efficient method for planning the 

initial placement problem in SMAP based systems. In PICA, we have divided our 

method into two layers: an algorithmic layer and an architectural layer. To have 

the optimal placement of SMAPs, all access points are divided into two major 

groups that are SMAPs and static access points. Static access points only transfer 

data and maintains the connectivity in the network. SMAPs can work like static 

access points, but they also can accomplish other tasks, like maintaining other 

access points when required. To clarify the problem, static access points have been 

elected as target points for SMAPs, as we are considering the initial placement 

only. Also, each static access point has an independent weight. The weight of each 

access point shows the probability of requiring support from SMAPs. 

PICA has been tested on four Well-known 2-D benchmarks.  The achieved 

results have been compared with the ICA, and other similar placement methods. 

6.6 Paper VI: Hierarchical Placement of Smart Mobile Access 

Points in Wireless Sensor Networks using Fog Computing 

In this paper, the idea of a hierarchical smart mobile access point (HSMAP), which 

is a significant building block for an intelligent network, has been proposed.  The 

placement of SMAPs is a fundamental factor in the dynamic network. Since the 

placement of HSMAPs is an NP problem, we solve the initial placement of them 

using an MPGA with an efficient evaluation.  

Also, since SMAPs can be used in a large scale WSN, scalability of SMAPs 

placement is considerably important. Therefore, we have presented a hierarchical 

implementation of SMAPs to solve the scalability problem. The proposed method 

has been tested on four Well-known 2-D benchmarks.  The achieved results have 

been compared with the serial ICA, and other similar placement methods. 
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6.7 Paper VII: Optimizing Scheduling for Heterogeneous 

Computing Systems using Combinatorial Meta-heuristic Solution 

In this paper, a new task graph scheduling approach is presented. To perform our 

work more complicated, NoC is assumed as a heterogeneous multiprocessor 

system. We tackle this task scheduling problem by MICGA. In this paper, the main 

goal is to improve execution time and reliability. The presented encoding method 

is based on task priority, and our work focuses on the pipelined execution model 

of applications. In the pipeline model, input data is divided into several parts, and 

these parts are then one by one used as inputs to an application. We make a pack 

of the parts and find the best schedule for this pack of data. To test and compare 

our method, four commonly explored real applications have been utilized to 

demonstrate the performance of the MICGA. 

6.8 Paper VIII: NOMeS: Near-Optimal Metaheuristic Scheduling 

for MPSoCs 

In this work, we use a stochastic model for the task-scheduling problem, where the 

data communication times between tasks and the execution times of tasks are 

known. The task scheduling problem based on a directed acyclic task graph (DAG) 

that specifies the preference relations of the tasks is known to be an NP-hard 

problem. In general, priority constraints between tasks can be non-uniform, but we 

consider here, for simplicity, that the MPSoC platform is uniform (a homogeneous 

multiprocessor system) and non-primitive (each processor completes the current 

task before starting the execution of the next task). 

In this paper, we tackle this problem by introducing a perfect combination of a 

GA and the PICA. Moreover, we explicitly estimate the communication delays 

between processors. When two communicating tasks are mapped onto the same 

processor, we assume that the communication delay is zero. However, when they 

are mapped onto different processors, a finite communication delay is assumed and 

modelled. 

We have used the concept of an order-based country (OBC) as an extension of 

the order-based coding method. This coding defines the order of tasks and the 

selected processor to run each task.  To improve the outcome of the optimization 

process, we used MICGA which takes advantage of both ICA and GA. This 

combination improves the convergence policy and selection pressure, by keeping 

all countries in all iterations and avoiding the use of a general selection operation 

such as tournament schemes and roulette wheel. 
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Abstract—The importance of optimization and NP- 
problems solving cannot be over emphasized. The 
usefulness and popularity of evolutionary computing 
methods are also well established. There are various 
types of evolutionary methods that are mostly sequential, 
and some others have parallel implementation. We 
propose a method to parallelize Imperialist Competitive 
Algorithm (Multi-Population). The algorithm has been 
implemented with MPI on two platforms and have tested 
our algorithms on a shared- memory and message 
passing architecture. An outstanding performance is 
obtained, which indicates that the method is efficient 
concern to speed and accuracy. In the second step, the 
proposed algorithm is compared with a set of existing 
well known parallel algorithms and is indicated that it 
obtains more accurate solutions in a lower time. 

Keywords- optimization; evolutionary computing; 
parallel approaches; ICA; parallel programing; multi-
population; super linear performance.  

I.  INTRODUCTION  

Optimization algorithms can be categorized into 
two categories: heuristic and meta heuristic. In the 
class of heuristic algorithms, there are some 
constructions and improvement algorithms such as the 
meta heuristic algorithms manage a chain or flow of 
executions of classical heuristics, e.g. tabu search, 
simulated annealing, genetic or memetic algorithms.  

Computability is a significant problem for many 
researchers especially in NP-hard problems, which do 
not have suitable solutions, which are able to find the 
best answers in a limited time. There are several 
techniques to solve some NP-hard Problems, but 
Evolutionary Computing (EC) are the better and more 
popular ones. Different types of EC methods are useful 
for various kinds of problems, for instance, genetic 
algorithms are an old method that is suitable for 
discrete problems. Genetic algorithms are population-
based search methods that mimic the process of natural 
selection and evolution, which some characteristics of 
them help researchers to optimize their problems. 
Particle Swarm Optimization (PSO) is another 

evolutionary method that mimics behavior of birds 
when they migrate to other places.  

EC methods enhance to solve different problems, 
but there are some disadvantages associated with 
them. For example, it is impossible for some 
algorithms, which have a large search space, to 
converge to optimum solutions. Hence, the initial 
population should be increased to improve the results. 
Speed of algorithms is the other challenge in this area. 
Sometimes, answers are found taking a long time. 
Parallel algorithms are the proper solutions that 
enhance to improve the quality and time of obtaining 
results.  

Previously, researchers have utilized several 
parallel EC techniques to achieve better results (e.g. 
parallel ant colony optimization (PACO) [4], parallel 
genetic algorithms [3], parallel ABC (PABC) [5], 
parallel memetic [7], and parallel PSO [6]). We know 
from [15] that some parallel EC methods can achieve 
super-linear performance. Super-linear performance is 
an expression for some scarce parallel algorithms that 
their efficiency is more than one (efficiency value 
normally is between zero and one.  

Recently, several EC methods have been created, 
but some of them have not been yet parallelized. For 
example, Imperialist Competitive Algorithm (ICA) is 
an efficient method that is outstanding for continuous 
problems. In this paper, a parallel implementation of 
ICA (PICA) is proposed. The PICA is implemented in 
multi-population (coarse-grain) strategy. We have 
implemented PICA and tested it on four mathematical 
benchmarks; meanwhile it has obtained a super-linear 
performance. They have been implemented on two 
different platforms and have been utilized the Message 
Passing Interface (MPI) instructions on the ring 
connection topology. 

In Section 2, a parallel multi-population 
implementation of ICA will be introduced. In Section 
4, PICA will be compared with ICA then some 
algorithms, such as PICA, PABC, GPU Based PSO-
TM, and C-PPSO will be compared. 
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II. PARALLEL ICA 

A. Imperialist Competetive Algorithm (ICA)  

ICA is an optimization method based on 
imperialistic competition. ICA is a new EC algorithm 
and optimizes results of problems. In this algorithm, 
all countries are divided into two categories: colonies 
and imperialist states. The major part of this algorithm 
is imperialistic, and hopefully causes the colonies to 
converge to the global minimum. In the first step, the 
algorithm creates some countries and sorts them, then 
selects the best countries to be imperialists, and the 
remaining countries form the colonies of these 
imperialists. These colonies start moving toward their 
relevant imperialist after dividing all colonies among 
imperialists [10]. The next step computes the power of 
each imperialist and the imperialistic competitive step 
follows. The weakest imperialist loses its weakest 
colony and the selected imperialist obtains this colony 
and these steps are repeated until reaching a 
termination condition. The termination condition can 
be different, for example, the ICA stops when we have 
one imperialist with all colonies as members of this 
imperialist. This algorithm starts by creating colonies 
in initial population and in the next step it sorts all 
colonies and divides them among imperialists with the 
best evaluation; in the next step, imperialistic 
competition will start. In this step, some operations 
will be repeated until arriving at the termination 
condition.  

ICA is a suitable method to optimization problems, 
but there would be similar problems in ICA as in the 
other EC algorithms; in case we confront with a big 
problem with a far-reaching search area, we need a big 
initial population to obtain a more accurate and 
reliable result, but with a processor we cannot realize 
this requirement. In another case, when we are 
confronted with a complex problem that needs 
complex computation, the run time will increase. 
Therefore, we need to utilize some new methods to 
improve speed and efficiency. A parallel computing 
method for ICA presented here to improve its speed 
and efficiency. The proposed method is a multi-
population implementation of the ICA.  

Sequential ICA algorithm has a parallel structure, 
but there is no parallel implementation for the ICA. In 
the ICA, each imperialist and colonies work 
independently and after a decade a colony moves to 
another imperialist; so this algorithm works like a 
multi-population method that executes on a processor. 
In the following, we implement a multi-population 
method for the ICA. 

B. Multi-population PICA 
In our work, we utilize a multi-population model to 

implement the PICA using selective local search 
strategy. In our implementation, we have several 
processors that are connected together on a ring 

topology in the message passing method, but in the 
shared- memory method there is not any topology. In 
each processor, we first initiate independent countries 
and run the ICA independently, and after some 
decades (which is different on different runs) the best 
country is migrated from processor  to +1 and 
replaces it on the worse country. We utilize the ring 
topology to connect processors together. The numbers 
of whole countries in all processors are equal even 
when countries migrate to other processors. All 
migrations between processors are done 
synchronously. We know the migration strategy can be 
different leading to different results. For example, 
when we use a sparse connection topology, it is better 
that a migration strategy is utilized with low rates, and 
the distance of migration should be short. The 
important problem is the time of routing. In a fully 
connection topology, the best results are obtained 
when the migration rates are high. Therefore, we know 
that a migration operation is useful with suitable rates; 
we have a sparse connection topology (ring topology), 
so we use the migration operation with low rates. In 
figure 1, the pseudo code for the multi-population ICA 
is presented.  

In the multi-population ICA, we increase the 
number of all countries and increase the selecting 
pressure; therefore, it helps us to obtain more accurate 
results in the shortest time, and convergence to results 
is faster than in the sequential ICA. 
 

Processor :  
1. Create independent initial countries.  
2. Run ICA algorithm independently.  
3. If now is time of migration do  

3.1 Wait when all processors arrive to this point.  
3.2 Send the best country to processor ( ) mod 
(number of processors). 
3.3 Receive a country from ( ) mod (number of 
processors) and replace it with the worst country.  

4. If termination condition is obtained then terminate 
algorithm Else go to 2.  

5. Show the best country.  
6. End.  

Figure 1.  Pseudo code of Multi-Population ICA. 

III. TEST FUNCTIONS AND BENCHMARKS 
In this paper, we use four test functions or 

mathematical benchmark functions to compare our 
algorithm (PICA) with sequential ICA and some other 
parallel EC methods. All these problems are 
minimization problems. We can show mathematical 
benchmarks on table 1. 

IV. EVALOUATION AND EXPRIMENTAL RESULTS 

We use all four test functions with different 
conditions and different kinds of platforms. The 
algorithms are implemented on the share memory and 
massage passing structure. First, we compare our 

249



algorithms with sequential ICA and follow our 
comparison with some other parallel EC methods.  

We implement parallel ICA on share memory and 
massage passing model. Also we utilize MPI to 
parallelize our algorithms and MPICH2 to run the 
algorithms. In the multi-population ICA, we connect 
processors in a ring topology with different processors 
on different tests. We test our algorithms on two 
platforms; the first platform’s specification is on table 
2 and the second platform is an Intel core i3-330M, 
processors 2.13 GHz(64-bit), memory 4 GB. 

TABLE I.  MATHEMATICAL BENCHMARKS  

 Name Bounds Equation m
i
n 

Rosen 
brock 

[-50,50] 
 

0 

Rastrigin [-5.12,5.12] 
 0 

Akley [-32,32] 

 

0 
 
 

Griewank [-600,600] 

 

0 

TABLE II.  SPECIFICATION OF 8 PROCESSORS PC 

CLUSTER SYSTEM. 
CPU Intel Core i7 2.67 GHz 
Mother Board Gigabyte EX-58 EXTREME 

RAM 6 GB DDR3 
HDD 500 GB 
NIC Gigabyte 
Network Switch Cisco Catalyst 3750 
Operating System WINDOWS XP 64-bit 
MPI Library MPICH2 1.4 
Compiler Visual C++ 6.0 
GPU NVIDIA GeForce 9600 GT 

A. Convergence 

In this section, we show convergence diagrams of 
benchmarks and we can compare our results and 
diagrams with the results and diagrams of [8], [10], 
[23], [24], [25] and [26]. These results obtained with 
different number of processors and different numbers 
of population size on multi-population PICA. 

After the comparison between our algorithm 
convergence diagram and those of [8], [10], [23], [24], 
[25] and [26], we can claim that our algorithm 
convergence obtain results faster than other methods in 
lower iteration. Convergence diagrams are shown in 
figures 2, 3, 4 and 5. 

B. Stability 

In this section we want to show that our algorithms 
are stable; so we test it on benchmarks and drawing 
stability diagrams of them. Stability diagrams shown 
in figures 6, 7, 8 and 9 and the results claim that our 

algorithms are stable and accurate. Our results show 
that our algorithms are more stable and more accurate 
than that of other methods. 

 
Figure 2.  Convergence diagrams of  

 
Figure 3.  Convergence diagrams of  

 
Figure 4.  Convergence diagrams of  

 
Figure 5.  Convergence diagrams of  

 
Figure 6.  Stability diagrams of  
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Figure 7.  Stability diagrams of  

 
Figure 8.  Stability diagrams of  

 
Figure 9.  Stability diagrams of  

C. Speedup and Efficiency 

Speedup value is an important parameter to check 
quality of parallelization that is obtained from this 
function and m is the numbers of processors:  

 

(1) 

 

And the efficiency (normalized speedup) was 
calculated using:  

 (2) 

These are suitable parameters for deciding whether 
parallel algorithms are suitable or not. We could use 
these parameters to compare the speed of our 
algorithms with that of other parallel EC methods 
without similar platforms. In this method, we know 
from [18], [19] and [20] that serial ICA is faster than 
GA, ES, ABC and PSO. Therefore, if our speed up and 
efficiency values are bigger than the parallel 
implementation of these EC algorithms, then our 
algorithm is faster than those of parallel EC methods. 
The reason for this decrease is the behavior of the 
benchmark; in the ICA, the best results are obtained 

after 10 iterations and in the PICA after 3 iterations; so 
this benchmark is very simple and when we find 
results with 6 processors after 3 iterations, it is not 
useful to use more processors.  

In figures 10, 11, 12 and 13 we show the efficiency 
and speed up with an increase in the number of 
processors, and they show that the parallel 
implementations are useful. 

Super linear performance is the main Achievement 
of our algorithms. In all benchmark diagrams, we can 
show that we obtain the super linear performance. So 
we can claim that our implementation and our 
algorithms are efficient, and the parallel ICA is a better 
choice for solving problems.  

D. Comparation between ICA and Parallel ICA 

In this section, we compare them with each other; 
we use two different type kinds of comparisons: we 
use the convergence diagram, decades of convergence, 
and the table of speed up to compare the multi-
population PICA and the ICA; and we use the speed 
up diagram to compare between PICA and ICA. We 
use two important benchmarks that are used in [10] 
and we can illustrate the results of them with our 
algorithm.   

In this experiment, we use two platforms; when we 
use 2 processors we implement our algorithm on Plat1 
platform and when we use 6 processors we implement 
our algorithm on Plat2 platform, and we use message 
passing architecture. In our algorithms we have 100 
countries and 8 imperialists in each processor. 
Revolution’s rate is 0.4 and zeta parameter is 0.1; we 
know that we can obtain different result by changing 
these parameters, but we test our algorithms using a 
constant value. Our connection strategy is the ring 
topology that is a spars connection strategy. 

We can reveal some good points for our 
algorithms. It is clear that the multi-population method 
of PICA converge faster than ICA. The speed of the 
convergence of PICA is better than that of sequential 
method and our algorithms converge to the best result 
faster than those of the sequential methods. Other good 
points of our algorithms are the stability of them that 
are illustrated in figures 6, 7, 8 and 9 and the assurance 
of the PICA results. We illustrate that the results and 
the convergence, when used by 6 processors, are better 
than when we use 2 processors; of course, both of them 
are better than that of sequential methods. There are 
two other criteria: speed up and efficiency. The speed 
up values are shown in tables 3, 4 and 7. We can 
conclude that when we use more processors we can 
obtain better results, but it is essential to illustrate how 
many processors are useful? This answer is obtained 
from the efficiency values. We have illustrated that the 
speed up of PICA is better than that of ICA and it has 
a very good advantage, but now we need to discuss 
another view of parallelization, which is the efficiency 
diagram. The results of this diagram are very fantastic 
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and illustrate that PICA is suitable and can be used to 
solve and optimize the complex and big problems that 
have a widespread search space area. We know that the 
speed up of 6-processor PICA is higher than that of 2-
processors, and the efficiency of 6-processor PICA is 
higher than that of 2-processor, so the 6-processor 
method is more efficient than the 2-processor one, but 
both of them are very efficient because their efficiency 
is bigger than 1, and this illustrates that PICA is an 
extremely good and efficient method.  

We have used a different gap of migration and 
found good results. When we increase the migration 
gap we obtain better results because it is a fact that 
migration is useful, but in different papers of other 
parallel EC methods the communication time of 
migration is an important parameter that has important 
influence on the run time of algorithm, and it has side 
effects in the other methods as a balance between the 
migration rate and communication time should be 
created. But in our algorithm, the communication time 
is very low because, in each migration time, only one 
country (imperialist) moves to another processor; so, 
the communication time is little. 
As a result, we have illustrated that the Multi-
population PICA is a suitable method and we can 
obtain better results by increasing the number of 
processors. 
 

E. Comperasion between PICA and Parallel ABC 

The proposed parallel algorithm was evaluated on 
three well-known benchmark functions [8]. In Multi-
Population PICA we have created 160 independent 
countries in all processor and each processor has 8 
imperialists. We tested it on Plat2 and the migration 
interval was done every 100 decades. The connection 
topology was the ring.  

We have implemented our algorithms and their 
parameters like PABC and run them in similar 
conditions and compared them in table 3 and 6. We 
have illustrated that the results of Multi-Population 
PICA are better than that of PABC. A has a better SD 
value. 

TABLE III.  SPEEDUP AND EFFICENCY VALUES ON  BY 
MULTY-POPULATION ICA AND PABC 

Number 
of 

threads 

Multi-Population 
PICA 

PABC[8] 

Speed 
up 

Efficiency Speed 
up 

Efficiency 

2 11.8 5.9 1.990 0.995 
3 14.3 4.7 2.965 0.988 
4 16.1 4.0 3.934 0.983 

 
Multi-Population PICA has the best mean value 

and SD value. The Main factors for this success are 
migration in a small gap and the parallel characteristic 
of ICA that works like a parallel method and we have 

succeeded to create a coarse grain parallel method 
while using all the parallelized potential of the ICA. 

We have shown that PICA is more successful than 
PABC and it obtains better results. We can’t compare 
the number of evaluation fitness function because 
there is not any information about it in [8].  

The results of tables 3, 4, 5, 6 and 7 illustrate that 
our algorithms are efficient and suitable and can be 
used to solve different complex problems. We have 
shown that the increase of processors’ number is 
efficient and obtains better speedup and efficiency 
values.  
Now, we need to compare the speed of PICAs and 
PABC, but our platform is different from PABC 
platform; so, we cannot compare them in a normal way 
and we should use the speed up for comparison. We 
know from [20][21][22] that ICA is faster than ABC 
and if our algorithms have higher speed up values then 
we can claim that our algorithms are faster than that of 
PABC. We have tested our algorithms on Griewank on 
different numbers of processors, 2, 3 and 4 [8]. Our 
algorithms are faster than PABC. Therefore, we can 
claim that PICAs are faster than PABC. 
 

F. Comperasion between PICA and GPU based on 
PSO-TM 

In this section, we want to compare the PICA and 
a parallel PSO-TM based on GPU. Our algorithms 
implemented on platform 1. We ran our algorithm on 
two different population sizes: 1024 and 8192 on four 
processors.  

We know from [20][21][22] that the sequential 
ICA is faster than the sequential PSO and we can 
compare the speed of the PICA and the GPU PSO-TM 
with a comparison between their speed up. We ran 
algorithms on Akley, Rastrigin and Rosenbrock. In 
table 4, we have illustrated that the speed ups of our 
algorithm are higher than that of GPU PSO-TM and 
we can claim that our algorithm is faster than the GPU 
PSO-TM. 

TABLE IV.  VALUES OF SPEEDUPAND EFFICENCY ON SOME 
BECHMARKS BY PICAS AND GPU PSO-TM 

 Multi-population 
PICA 

GPU PSO-TM[25] 

N=1024 N=8192 N=1024 N=8192 
Speedup Speedup Speedup Speedup 

Akley 12.2 16.4 8.2 14.6 
Rastrigin 18.1 28.9 16.6 25.5 

Rosenbrock 11.6 15.2 8.2 16.9 

G. Comperasion between PICA and C-PPSO 

In this section, we want to compare the PICA and 
a Corse grain Parallel PSO-TM (C-PPSO). We have 
tested our algorithms on a similar state and each 
experiment was repeated 30 times and the maximum 
iteration number was 10000 for all functions. In the C-
PPSO, we investigated the coarse-grain models with 
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different numbers of subpopulations and the entire 
population consisted of 100 individuals. The results of 
the C-PPSO model were compared with a standard 
PSO. 
It is shown, in table 7 that our algorithms have higher 
speed up and efficiency values and we can claim that 
our algorithms are faster and more efficient than that 
of C-PPSO. 

V. CONCLUSION 

In this paper, we introduced a parallel methods of 
ICA and implemented it with MPI instructions (Multi-
Population PICA). We also tested them on two 
different platforms, on four mathematical benchmarks, 
and compared them with the sequential ICA, PABC, 
Coarse Grain parallel PSO, and GPU-Based PSO-TM. 
We have found some considerable results that show 
PICAs are very efficient in solving different kinds of 
complex problems and they are faster and more 
efficient than other methods. We have illustrated in 
figures 6, 7, 8 and 9 that our algorithms are stable and 
the speedup illustrated in figures 2, 3, 4 and 5 showed 
that our algorithms convergence to the best results, 

that is they are faster than the other methods in the 
lower iteration.  

This fact is derived from the characteristic of the 
ICA and the ability of the migration operation. It also 
evaluated less fitness; and obtained suitable run times. 
In figures 6, 7, 8 and 9, we have illustrated the stability 
diagrams of Multi-Population ICA; their results have 
proven to show that our parallel methods truly work. 
In addition, we compared the PICA with the PABC, 
GPU Based PSO-TM and C-PPSO and utilized four 
mathematical benchmarks. We illustrated table 6 and 
compared the accuracy of the results, it is illustrated 
that the results of the Multi-Population PICA are more 
accurate than that of the PABC. 

We have compared the speed and efficiency of 
PICAs, GPU-Based PSO-TM and C-PPSO in tables 4 
and 7 illustrating that PICAs are faster than the others 
and they converge faster than the other methods in the 
lower iteration.  

As a result, we claim that the PICA methods are so 
fast and accurate that they can be used to solve and 
improve complex problems, and they try to obtain the 
best results to the problems. In this article, we have 
illustrated that our algorithms achieve a super-linear 
performance. 

 

 
Figure 10.  Speed up diagram and Efficiency diagram for  

 
Figure 11.  Speed up diagram and Efficiency diagram for  
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Figure 12.  Speed up diagram and Efficiency diagram for  

 
Figure 13.  Speed up diagram and Efficiency diagram for  

 

TABLE V.  STATISTICAL TABLE OF MULTI-POPULATION PICA ON  

 N Mean SD STE Median Worst Best 
 30 0.007084433333333 0.009400134634705 0.001716221927671 0.001587500000000 0.028145000000000 0 
 30 0.001589366666667 0.002425782099026 428851917428874e-004 0 0.007724000000000 0 
 30 8.014333333333334e-004 0.001179387178196 2.153256538433475e-004 0 0.003326000000000 0 
 30 4.893666666666666e-004 8.566241876403997e-004 1.563974636250617e-004 0 0.002942000000000 0 

TABLE VI.  RESULTS OBTAINED FOR THE PICA AND PABC ALGORITHMS ON SOME BENCHMARKS FUNCTION 

 
 

 
D 

 
MCN 

PICA PABC[8] 
Multi-Population P=4 P=16 P=4 P=16 

Mean SD Mean SD Mean SD Mean SD 
 30 2000 1.876391E-02 2.964761E-02 4.823789E-03 5.213874E-03 2.182352E-02 3.250047E-02 2.282869E-02 2.585128E-02 

 30 2000 1.862283E-16 4.732892E-17 1.722862E-16 4.378971E-17 1.946071E-16 4.615336E-17 1.931904E-16 5.386725E-17 

 30 2000 3.927344E-18 5.668102E-19 3.367451E-18 4.962713E-19 4.896980E-18 7.036649E-19 4.756034E-18 6.995602E-19 

 

TABLE VII.  VALUES OF SPEEDUP AND EFFICENCY ON SOME BENCHMARKS BY PICAS AND C-PPSO 

 Multi-Population PICA C-PPSO[26] 
 CPU=4 CPU=6 CPU=8 CPU=4 CPU=6 CPU=8 
 Speed 

up 
Efficiency Speed 

up 
Efficiency Speed 

up 
Efficiency Speed 

up 
Efficiency Speed 

up 
Efficiency Speed 

up 
Efficiency 

Rosenbrock 11.6 2.90 17.88 2.98 24.4 3.05 3.9572 0.9893 5.7793 0.9632 5.9724 0.7465 
Rastrigin 18.1 4.52 28.26 4.71 37.84 4.73 3.9580 0.9895 5.7774 0.9629 7.7703 0.9713 
Griewank 16.3 4.07 25.32 4.22 34.08 4.26 3.9114 0.9778 5.9128 0.9855 7.3851 0.9231 
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Summary

The importance of optimization and NP-problem solving cannot be overemphasized. The use-

fulness and popularity of evolutionary computing methods are also well established. There are

various types of evolutionary methods; they are mostly sequential but some of them have paral-

lel implementations as well. We propose a multi-population method to parallelize the Imperialist

Competitive Algorithm. The algorithm has been implemented with the Message Passing Interface

on 2 computer platforms, and we have tested our method based on shared memory and mes-

sage passing architectural models. An outstanding performance is obtained, demonstrating that

the proposed method is very efficient concerning both speed and accuracy. In addition, compared

with a set of existing well-known parallel algorithms, our approach obtains more accurate results

within a shorter time period.

KEYWORDS

evolutionary computing, ICA, multi-population, parallel approaches, parallel programming,

optimization, super-linear performance

1 INTRODUCTION

Optimization algorithms can be divided into 2 categories: heuristic and metaheuristic methods. Heuristic algorithms are problem dependent and

are often greedy and prone to get stuck in local optima, failing to obtain the global optimum or even a near-optimal solution. Metaheuristic methods

such as tabu search, simulated annealing, and genetic or memetic algorithms are problem-independent techniques or frameworks that improve

performance of a heuristic search by allowing more thorough exploration of the search space and avoiding local optimum traps.

Computability is a significant challenge especially in NP-hard problems; there are no guarantees that such problems can be solved in a satisfactory

manner in a limited time. Several techniques have been proposed to improve solving of NP-hard problems. Among these, evolutionary comput-

ing (EC) methods are the most prominent and popular. The EC methods are useful for solving various kinds of problems. For instance, well-known

genetic algorithms (GA) are very suitable for discrete problems.1 They are population-based search methods that mimic the process of natural selec-

tion and evolution, as some characteristics of this process can be utilized in optimization problems. Particle swarm optimization (PSO) is another

population-based evolutionary method that mimics the flocking behavior of birds when they migrate from a place to another.2

EC methods can enhance solving of different problems but there are some disadvantages associated with them. For example, if the search space is

very large, it is possible that an evolutionary algorithm does not converge towards the global optimum or even to near-optimal solutions. To improve

the outcome in such cases, the initial population should be increased. The execution time of algorithms is another challenge in this area; it can be

intolerably high in some cases. Parallel approaches provide a viable means to enhance the quality of results and reduce time of obtaining results.

Previously, several parallel EC techniques have been proposed to achieve better results (eg, parallel ant colony optimization (PACO),3 parallel

genetic algorithm,1 parallel ABC (PABC),4 parallel memetic algorithm,5 and parallel PSO6). According to the works of Digalakis and Margaritis and

Alba,7,8 some parallel EC methods can even achieve super-linear performance. Super-linear performance means that parallel efficiency, ie, speedup

per processor, is higher than one. Normally, it is between zero and one.

Among the EC methods, the Imperialist Competitive Algorithm (ICA)9 is an efficient approach for continuous problems. In this paper, a parallel

implementation of the ICA (PICA – Parallel ICA) is proposed. We extend our previous works (see the works of Majd et al9,10) by presenting two differ-

ent parallel implementations of PICA (multi-population and master-slave) to improve the speed and accuracy. The results are extensively analyzed

Concurrency Computat Pract Exper. 2018;e4393. wileyonlinelibrary.com/journal/cpe Copyright © 2018 John Wiley & Sons, Ltd. 1 of 26
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with eight benchmarks and three case studies. The PICA is based on a multi-population (coarse-grain) strategy, and to the best of our knowledge,

this is the first attempt towards parallelizing the ICA. We evaluate the PICA under eight mathematical benchmarks, showing that a super-linear

performance is achieved. The experimental results are obtained through simulations on two different computer platforms, using Message Passing

Interface (MPI) instructions and a ring connected system model.

The remainder of this paper is organized as follows. In Section 2, a review of different parallel evolutionary algorithms is presented, and in

Section 3, parallel master-slave and multi-population implementations of the ICA are introduced. The experimental results are provided in

Section 4, and concluding remarks are given in Section 5.

2 REVIEW OF PARALLEL EVOLUTIONARY ALGORITHMS

In this section, some of the parallel EC methods and their common features, which have been utilized in our work, will be explored.

2.1 Parallel genetic algorithms

Genetic algorithms are population-based search methods that mimic the processes of natural selection and evolution, as some characteristics of

these processes can be utilized in solving optimization problems. Each GA has an initial population (several random chromosomes each of which is

an individual) and executes frequent operations such as selection, crossover, mutation, and replacement. All operations are repeated until reach-

ing a suitable result or ending in a certain generation. In multi-population methods,1 there are several processors each of which has independent

populations, and each processor runs a simple GA. After a certain number of generations, all processors will stop and send some chromosomes

(migration operation) with a certain strategy, eg, best or worse, and share the results of solutions among each other. In this method, some of the

important parameters are: migration rate (number of countries that migrate at each migration time), migration gap (number of iterations between

two migration events), and interconnection topologies.

Master-slave is another approach used for different problems, eg, solving a task graph scheduling with coarse-grain GA like in the works of

Lotfi et al.11,12 In this method, one processor is assigned as a “master” to do the important operations of GA, such as crossover, mutation, replacement,

and selection, whereas the other processors that are called “slaves” evaluate the fitness function and send back the results to the master proces-

sor. The fitness function is an equation that defines the quality of each chromosome. These methods can be implemented either synchronously or

asynchronously. In the synchronous method, the master processor sends tasks to slave processors and waits until it receives results of all tasks from

slave processors. In the asynchronous method, the master processor continues its work without waiting for results of slave processors.13

Fine-grain methods are suitable for parallel computing with a massive number of processors where each processor is able to communicate with

the adjacent processors and each individual can recombine with each individual on the neighborhood of processors. The execution time of this

method is considerable but the resource (such as number of processors and communication rate) footprint is too high.

Hybrid GAs are compound methods composed of 2 levels: the upper level uses a multi-population method and the lower level utilizes either

a multi-population, master-slave, or fine-grain method. This approach is more efficient and faster than other methods because it can exploit the

strengths of different methods at the different levels of hierarchy.

2.2 Parallel ant colony optimization

Ant colony optimization (ACO) is a technique for approximate optimization.14 The inspiring source of ACO algorithms are real ant colonies. More

specifically, ACO is inspired by the ants’ foraging behavior. At the core of this behavior is the indirect communication between the ants by means

of chemical pheromone trails, which enables them to find short paths between their nest and food sources. This characteristic of real ant colonies

is exploited in ACO algorithms in order to solve, eg, discrete optimization problems.3,15 There are two parallel implementations of ACO: PACO and

PACO-CGD.

PACO is used on different optimization problems and is based on multi-population method, where each processor has an independent population

and runs the sequential ACO independently. After a certain number of iterations, a processor sends some useful information to other processors,

which is called “migration.” In PACO-CGD, the constructor graph decomposes into smaller parts and each part is sent to a processor, and then each

processor can run the ACO method by itself; the execution time of this approach is better than that of PACO.13

2.3 Parallel artificial bee colony algorithm

Artificial Bee Colony (ABC) is motivated by the intelligent behavior of honey bees. It is as simple as particle swarm optimization (PSO) and differen-

tial evolution (DE) algorithms and uses only common control parameters such as colony size and maximum cycle number.16 ABC, as an optimization
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tool, provides a population-based search procedure in which individuals called food positions are modified by the artificial bees as time passes, and

the bees' aim is to discover the places of food sources with high nectar amounts and finally the one with the highest nectar amount. In the ABC sys-

tem, artificial bees fly around in a multidimensional search space and some (employed and onlooker bees) choose food sources depending on the

experience of themselves and their nest mates and adjust their positions accordingly. Some (scouts) fly and choose the food sources randomly with-

out using experience. If the nectar amount of a new source is higher than that of the previous one in their memory, they memorize the new position

and forget the previous one. Thus, the ABC system combines local search methods carried out by employed and onlooker bees with global search

methods, managed by onlookers and scouts, attempting to balance exploration and exploitation processes. Artificial bee colony can be parallelized

in three ways: based on either a master-slave, multi-population, or hybrid method. In the master-slave method for ABC, similar to the master-slave

method for GA, one processor is assigned as a master in order to run the repetitive operations like an evaluation operation.

In multi-population ABC, each processor has an independent population and runs the sequential ABC method on its population with parameters

such as migration gap, migration rate, and network topology.

Hybrid ABC is a mixed method that, in the high level, uses the multi-population method, and in the low level, exploits the master-slave method,

which works similarly to the hybrid GA.13

2.4 Parallel particle swarm optimization

Theory of particle swarm optimization (PSO) has been advancing rapidly. PSO has been used by many applications on several problems. The algorithm

of PSO emulates the behavior of animal societies that do not have any leader in their group or swarm, such as bird flocking and fish schooling.

Typically, a flock of animals that has no leaders will find food randomly, following one of the members of the group that has the closest position with

respect to a food source (potential solution). The flocks achieve their best condition simultaneously through communication among members who

already have a better situation. PSO is used for continuous problems, whereas parallel PSO is an efficient solution for optimal task assignment in

distributed systems,17 which can be implemented with two parallel techniques: MPSO and MRPSO.

Multi-population PSO works like other multi-population methods where each processor has a different population and runs a simple PSO on its

population independently; a migration operation is also available.

MRPSO is an improved version of MPSO that adds an extra component to MPSO, called a repulsive component. This component in each processor

tries to make a diverse population. Particles that migrate between the swarms should be as different as possible from the particles already contained

in these swarms. The high degree of diversity in EC methods is very useful and helps obtaining better results.13

2.5 Parallel memetic algorithms

Memetic algorithms (MAs) are population-based and heuristic search approaches for optimization problems similar to GAs. GAs, however, rely on

the concept of biological evolution but MAs mimic cultural evolution. Parallel MAs are implemented as a coarse-grain approach called PARME. It is

used on optimization problems in the work of Vanneschi.18

PARME is a multi-population method that uses an independent population in each processor that runs MA independently. There is a big difference

between PARME and the other aforementioned methods like parallel GAs. The master processor controls the behavior of other processors and

creates an operation table in each iteration and sends it to other processor nodes. This operation table has the values of critical parameters such as

values of the best and the worst populations. The table will change in each iteration.13

3 PROPOSED METHODS

The Imperialist Competitive Algorithm (ICA), introduced by Gargari and Lucas,19 was inspired by imperialistic competition as its name suggests.

The ICA belongs to the class of evolutionary algorithms and is meant for solving linear and nonlinear NP-complete optimization problems. It is

a population-based method in which each possible solution is a country, corresponding to the chromosome concept in a genetic algorithm. The

algorithm first generates a set of countries, ie, the initial population. Then, all countries are divided into two types: imperialist states and colonies.

Imperialistic competition is the main instrument of this algorithm, and the expectation is that the colonies converge to the global minimum of the cost

function, or at least very close to this minimum. The initial sorting of the countries is based on their fitness function values. The best countries are

selected to be the imperialists, and the rest of the countries form the colonies of these imperialists (Figure 1, step 1). After dividing all colonies among

the imperialists, these colonies start moving toward their relevant imperialist countries. This takes place by revolution and assimilation operations

(Figure 1, step 2). In each iteration, two random real numbers varying between zero and one are generated for every colony. Then, these values

are compared with the predetermined assimilation (ie, Zeta19) and revolution probabilities (rates). If the random numbers are lower than these

probabilities, the procedure of assimilation or revolution is performed. In the next step, the ICA computes the power of each imperialist and the

imperialistic competition begins. The weakest imperialist loses its weakest colony and the selected imperialist captures this colony (Figure 1, step 5).
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FIGURE 1 Imperialist competitive algorithm

These steps are then repeated until the termination condition is satisfied. The termination condition can be defined in different ways. For example,

the ICA could be set to stop after a certain number of iterations, or when all countries have become colonies of one imperialist, ie, when there is only

one empire left (see Figure 1).

The ICA is a suitable approach for a variety of optimization problems but there exist certain challenges concerning the evolutionary algorithms in

general. For example, when we are dealing with a large search space, we need a large initial population to obtain acceptable accuracy of results; but

in a resource constrained processing environment, we may not be able to satisfy this requirement. Also, in the case of a complex problem that needs

complex computations, the run time of the algorithm will increase and may become intolerable. Therefore, we need to find an efficient approach to

improve the speed, stability, and accuracy of the method.

The ICA has an inherent parallel structure, and, consequently, parallel implementation provides a viable path to enhance the performance of

the algorithm. In the ICA, each imperialist and its colonies work independently, and after a decade (iteration), a colony moves to another imperial-

ist. The behavior is similar to that of a multi-population method running on a single processor. We will look at two different approaches for PICA

implementation.

3.1 Master-slave PICA

In this method, we have several processors that are connected in a star topology using message passing but in a shared memory setup. One of the

processors (P0) is the master and the others are slaves. The master processor is the manager of the algorithm coordinating all involved operations

and dividing tasks among slave processors. The slave processors perform the tasks given to them, assisting the master processor. The master pro-

cessor initiates the algorithm and determines how many countries should be created by the processor Pi (0 < i< number of processors), and which

fitness function evaluations Pi is to execute. It also divides the imperialists among the slave processors to assimilate colonies to imperialists and car-

ries out a revolution operation on all colonies, enabling them to obtain new positions. The assimilation and revolution operations are, respectively,

exploitation and exploration operations from the EC perspective. Moreover, the master processor divides the imperialists among all slave proces-

sors to calculate the total cost of each empire. It performs imperialistic competition, selects the weakest imperialist and its weakest colony, and then

moves this weakest colony to the strongest (winner) imperialist. The master processor repeats the aforementioned operations until it reaches the

set termination condition.

The master-slave method is especially useful for complex problems or problems that have a complex fitness function. It can provably speed up

the optimization process. The implementation of the method is based on the synchronous paradigm, and its operation is in essence similar to that

of the sequential ICA with improved performance due to the parallel-operating slave processors. For this method, the shared memory setup is more

efficient than the message passing approach because the communication costs between the master and slave processors would be too high with

the message passing scheme. The pseudocode for the master-slave PICA is presented in Figure 2.

3.2 Multi-population PICA

The multi-population approach enables us to implement the PICA with a selective local search strategy. Our underlying system model consists of

a number of processors that are connected in a ring topology and use a message passing scheme for communication. In each processor, we first
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FIGURE 2 Pseudocode of master-slave PICA

initiate an independent set of countries and run the ICA independently of the other processors. Then, after some decades (iterations), the best

country migrates from the processor Pi to the processor Pi+1 (for all i) and replaces the worse country in Pi +1. The migration interval varies from

a run to another. All migrations between the processors take place synchronously (simultaneously), and, therefore, the numbers of the countries

in all processors are equal after each migration event.9 The behavior of the multi-population PICA is illustrated in Figure 3, and the pseudocode is

presented in Figure 4. The sparse connected ring topology enables a low migration rate due to the simple routing scheme and the short (single-hop)

migration distance.

FIGURE 3 Multi-population migration operation10

FIGURE 4 Pseudocode of multi-population PICA9
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TABLE 1 Mathematical benchmarks

Name Equation Min. Value Name Equation Min. Value

f1 G1 x. sin (x) + 1.1y. sin (2y) −18.5547 f5 Rastrigin
∑n

i=1 x2
i
− 10 cos(2πxi) + 10 0

f2 G2 0.5 + sin
√

x2+𝑦2−0.5

1+0.1(x2+𝑦2)
−0.5231 f6 Akley 20 + e − 20 exp(−0.2

√
1
D

∑D
i=1 x2

i
0

− exp( 1
D

∑D
i=1 cos(2π𝑥) 0

f3 Sphere
∑D

i=1 x2
i

0 f7 Ellipse
D∑

i=1
104 i−1

D−1 x2
i

0

f4 Rosenbrock
n−1∑
i=1

100
(

xi+1 − x2
i

)2 + (xi − 1)2 0 f8 Griewank 1
4000

∑n
i=1 x2

i
−

n∏
i=1

cos
(

xi√
i

)
+ 1 0

TABLE 2 Specification of platforms.

Platform 1 Platform 2

CPU 4 ×Intel Core i7 2.67 GHz Intel Core i3-330M, 2.13 GHz

Mother board Gigabyte EX-58 EXTREME -

RAM 6 GB DDR3 4 GB

HDD 500 GB 300 GB

NIC Gigabyte -

Network switch Cisco catalyst 3750 -

Operating system WINDOWS XP 64-bit WINDOWS XP 64-bit

MPI library MPICH2 1.4 MPICH2 1.4

Compiler Visual C++ 6.0 Visual C++ 6.0

GPU NVIDIA GeForce 9600 GT -

By using the multi-population PICA, we increase both the size of the overall population, ie, the total number of countries and the selection pres-

sure, which helps obtaining more accurate results within a fewer number of iterations. Indeed, convergence to results takes place much faster than

in the case of the sequential ICA, as will be demonstrated in Section 4.

4 EVALUATION AND EXPERIMENTAL RESULTS

We use eight test functions, ie, mathematical benchmarks, presented in TABLE 1, to compare our algorithms, ie, the two implementations of PICA

presented in Section 3, with the sequential ICA and some other parallel EC methods. All the considered problems are minimization problems.

In addition to the eight mathematical benchmarks, we will also have three case studies in the field of nonlinear equations. The algorithms are

implemented based on both shared memory and message passing communication models. First, we compare our algorithms with the sequential ICA,

followed by a comparison with a set of other well-known parallel EC methods. We utilize the MPI to parallelize our algorithms and MPICH220 to run

the algorithms. In the multi-population PICA, we connect processors in a ring topology with different numbers of processors on different tests. We

test our algorithms on two computer platforms, named Platform 1 (higher-end platform) and Platform 2 (lower-end platform), that are specified in

Table 2.

4.1 Comparision between multi-population parallel ICA and ICA

In this section, we compare the multi-population version of the PICA and the serial ICA. The comparison of these algorithms is based on their conver-

gence diagram and potential speedup (Tables 3, 4, 5, 10, 11, 13, and 18). We employ 2 important benchmarks from the work of Gargari and Lucas19

in our tests, ie, f1 and f2, as presented in Table 1.

In the experiment, we use two system models and two platforms (Table 2); in the case of a two-processor system model, we implement our

algorithm on Platform 2, and in the case of a six-processor system model, we implement it on Platform 1. Message passing based communication is

utilized in both cases. We have 100 countries and 8 imperialists in each processor. The revolution rate is set to 0.4 and the Zeta parameter to 0.1, cor-

responding to the exploration and exploitation rates in any EC method, respectively. We would obtain different results by varying these parameters

but we choose to test our algorithms using the mentioned constant values for simplicity. The architecture is based on the ring topology.

Gil Millan (gmillan@wiley.com)
Cross-Out
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TABLE 3 Speedup and efficiency values on f8 by multi-population ICA
and PABC

Number of threads Multi-population PICA PABC16

Speedup Efficiency Speedup Efficiency

2 11.8 5.9 1.990 0.995

3 14.3 4.7 2.965 0.988

4 16.1 4.0 3.934 0.983

TABLE 4 Values of speedup and efficiency on some
benchmarks by PICAs and GPU PSO-TM

Multi-population PICA GPU PSO-TM2

N=1024 N=8192 N=1024 N=8192

Speedup Speedup Speedup Speedup

Akley 12.2 16.4 8.2 14.6

Rastrigin 18.1 28.9 16.6 25.5

Ellipse 11.2 14.8 7.2 12.8

Rosenbrock 11.6 15.2 8.2 16.9

TABLE 5 Values of speedup and efficiency on problems f1 and f2

PICA

Master slave Multi-population

P=2 P=6 P=2 P=6

Speedup Efficiency Speedup Efficiency Speedup Efficiency Speedup Efficiency

G1 1.72 0.86 4.98 0.83 12.2 6.1 67.7 9.45

G2 1.82 0.91 5.52 0.92 14.9 7.45 73.6 12.26

TABLE 6 Statistical table of multi-population PICA on problem f1

#P N Mean SD STE Median Worse Best

2 100 −18.5350 0.0466 0.0047 −18.5544 −18.2159 −18.5547

6 100 −18.5473 0.0149 0.0015 −18.5543 −18.4892 −18.5547

The aforementioned analysis seems to indicate that the more processors we use, the better results we get. Closely related to this, let us now look

into another aspect of parallelization, ie, the parallel efficiency diagram (Figures 31 to 38).

The results demonstrate that the multi-population PICA is very suitable for solving and optimizing complex problems that have a large search

space. Based on the analysis, we know that the speedup of the six-processor PICA is higher than that of the two-processor PICA, and that the parallel

efficiency of the six-processor PICA is higher than that of the two-processor one, so the six-processor implementation clearly outperforms the

two-processor implementation. However, both of these implementations are actually very efficient because their parallel efficiency values are larger

than 1. This highlights the observation that the PICA is an extremely competitive and capable method, independently of the number of processors

used. With two processors, the parallel efficiency values are 6.1 and 7.45 for f1 and f2, respectively, and with six processors, they are 9.45 and 12.26

for f1 and f2, respectively. In other words, the results are relatively very close to each other. How many processors should be used in a real-life

application depends on the application-specific requirements and constraints.

We have also examined different migration gaps (intervals) and found interesting results. Having the migration operation as part of our method

is, in general, very beneficial; it improves the performance and outcome of the algorithm. However, in other parallel EC methods, the communication

time of migration is an important factor that has a significant influence on the run time of the algorithm, and therefore it has negative side effects in

these methods. This means in practice that a balance between the migration rate and communication time has to be found. In our algorithm, in turn,

the communication time is very small because in each migration event, every processor sends a single country (the best one) to the next (adjacent)

processor, as a single synchronous step.

As an overall result, we have demonstrated that the multi-population PICA is a prominent method and that we can improve the performance and

the quality of results by increasing the number of processors.
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TABLE 7 Statistical table of multi-population PICA on f3, f4, f5, f6, f7 , and f8

N Mean SD STE Median Worse Best

f3 30 0.001810433333333 0.002970555267766 5.423467094903584e-004 0 0.001810433333333 0

f4 30 0.007084433333333 0.009400134634705 0.001716221927671 0.00158750 0.028145000000000 0

f5 30 0.001589366666667 0.002425782099026 428851917428874e-004 0 0.007724000000000 0

f6 30 8.014333333333334e-004 0.001179387178196 2.153256538433475e-004 0 0.003326000000000 0

f7 30 0.006058700000000 0.008992364052446 0.001641773545608 0 0.028145000000000 0

f8 30 4.893666666666666e-004 8.566241876403997e-004 1.563974636250617e-004 0 0.002942000000000 0

4.2 Comparison between master-slave PICA and ICA

In this section, we compare the master-slave PICA with the serial ICA. Like in the previous experiment, we use two platforms (Table 2). In the case

of a two-processor system model, we implement our algorithm on Platform 2, and when the model has more than two processors, we implement

it on Platform 1. We utilize both message passing and shared memory architectures and use the MPI instructions with MPICH2-1.4. Furthermore,

we have 100 countries and 8 imperialists in each processor. The revolution rate and the Zeta parameter are set to the constant values of 0.4 and

0.1, respectively, like in the previous experiment. In our system model, we have a master processor whose rank is 0, and the other processors are

slaves. The master processor runs all the important tasks and manages the algorithm. The slave processors run all the tasks that are determined by

the master processor. The architecture is based on a fully topology in which the master processor is the central node.

In the master-slave setup, the parallel implementation of an EC algorithm, when implemented synchronously, is essentially similar to the sequen-

tial implementation on a single processor from the behavioral perspective. So, the convergence speeds of the serial ICA and the master-slave PICA

are the same. However, as illustrated in Table 5, the speedup of the master-slave PICA is significant (ie, clearly higher than 1) because the slave pro-

cessors are computing tasks in parallel. Moreover, the speedup gets actually higher when the complexity of the problem increases, ie, the benchmark

f2 is more complex than f1.

We can also see that increasing the number of processors leads to better results, as well as higher speedup and parallel efficiency. However, even

though the master-slave PICA is an efficient method, the multi-population PICA clearly outperforms it in this respect.

4.3 Comparison between PICA and parallel ABC

The proposed parallel algorithms are next evaluated on a set of well-known benchmark functions that were used in the work of Narasimhan16 to

analyze the PABC method. In the case of the multi-population PICA, we create 160 independent countries in every processor, and each processor

has 8 imperialists. We test it on Platform 1 with a migration operation taking place every 100 decades (iterations). The connection topology is the

ring. In the case of the master-slave PICA, we create 160 countries in the master processor and have 7 slave processors that run parallel operations

controlled by the master processor.

In the PABC experiments presented in the work of Narasimhan,16 the size of the bee colony was chosen to be 160 with 50% employed bees

and 50% onlooker bees (SN = 80). A maximum of one scout bee is produced per cycle. The PABC algorithm was run for 2000 iterations on a set

of benchmark functions. The algorithm was simulated for a different number of processors. The best mean values and the standard deviation (SD)

were recorded over 30 runs for 4, 8, and 16 processors.

In our experiments on the PICA, we mimic the test conditions used in the work of Narasimhan16 to enable fair comparison between the PICA

and the PABC method. The results are listed in Tables 8, 9, and 12. They indicate that the multi-population PICA performs better than PABC and

the master-slave PICA but the results of PABC and the master-slave PICA are almost the same. The PABC method has a better mean value but the

master-slave PICA has a better SD value (in Table 8).

The multi-population PICA has the best mean and SD values, and can therefore be considered the most prominent method of the three. The main

factors for this success are the efficient migration strategy and process and the inherent parallel characteristics of the ICA that seamlessly facilitate

efficient parallel implementation of the algorithm. We cannot compare the numbers of fitness function evaluations because there is no information

about it in the work of Narasimhan.16

We also need to compare the execution speeds of the PICA and PABC but our platform is different from the platform used in the work of

Narasimhan16 for analyzing PABC. Therefore, we cannot compare the speeds directly but we need to use speedup values for indirect comparison.

We know from other works21-23 that the sequential ICA is faster than the sequential ABC method; so, if our parallel algorithms have higher speedup

values, then we can claim that our proposed algorithms are faster than PABC. We have tested our algorithms on the Griewank benchmark (Table 1)

with 2, 3, and 4 processors, like what was done in the work of Narasimhan16 for PABC. The speedup values are shown in Table 9. Comparing these,

we can see that our methods have better speedup values. In the case of the multi-population PICA, the difference is very clear, whereas in the case
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TABLE 9 Speedup and efficiency values on f8 for PICA and PABC

Number of threads Master-slave PICA Multi-population PICA PABC16

Speedup Efficiency Speedup Efficiency Speedup Efficiency

2 1.936 0.968 11.8 5.9 1.990 0.995

3 2.967 0.989 14.3 4.7 2.965 0.988

4 3.964 0.991 16.1 4.0 3.934 0.983

TABLE 10 Values of speedup and efficiency on problem f3 by PICAs, multi-population GA and
Neighborhood GA

Problem Master-slave PICA Multi-population ICA Multi-population GA24 Neighborhood GA25

P=8 P=8 P=8 P=8

G3 Speedup Efficiency Speedup Efficiency Speedup Efficiency Speedup Efficiency

7.52 0.94 23.44 2.93 3.28 0.41 4.7 0.58

of the master-slave PICA, the difference is very small. We can therefore conclude that the multi-population PICA is the champion among the three

methods by a clear margin.

4.4 Comparison between PICA and multi-population parallel genetic algorithm

In this section, we compare both PICA versions with the multi-population PGA. The comparison is based on the benchmark Sphere (Table 1,

function f3). We focus on the speed of these algorithms. To compare the speeds straightforwardly, we would need to run the PICA and PGA on the

same platform. To compare these algorithms without actually implementing the PGA (ie, by using the results from an earlier publication instead), we

utilize another approach that is based on the speedup and parallel efficiency, like the aforementioned statements where we compared the speeds of

the PICA and the PABC method. In other words, we divide the task into two steps. In the first step, we compare the sequential ICA and the sequen-

tial GA on the same platform and on the same benchmark. In the second step, we compute the speedups of the PICA and the PGA to find out which

algorithm is faster. First, we know from other works21-23 that the sequential ICA is faster than the sequential GA on the Sphere benchmark but let

us assume here that their speed is the same just to be on the safe side. Second, we compute the speedup and parallel efficiency of the PICA on the

Sphere benchmark; the results are given in Table 10. Then, we take the PGA’s speedup and parallel efficiency values from the work of Alba et al24

and insert them in Table 10. Now, we can compare the ICA and the PGA; the one that has a higher speedup and parallel efficiency is the winner. We

have run our 2 PICA versions 100 times under the same conditions to obtain the results shown in Table 10.

Based on the results (Table 10), we can conclude that both PICA versions outperform the multi-population PGA by a clear margin, the

multi-population PICA being superior among the 3 candidates.

4.5 Comparison between PICA and dynamic neighborhood structures in parallel evolution strategies

(Neighborhood GA)

In this section, we compare our 2 PICA versions with an approach known as the Dynamic Neighborhood Structures in parallel ES (ie, the Neighbor-

hood GA). We use the Sphere benchmark (Table 1) and the same speedup and parallel efficiency based comparison method, as aforementioned. We

run our algorithms 100 times under the same conditions.

We know that the sequential ICA converges to the best result faster than the sequential GA does19 but let us assume modestly that their speeds

are equal. In Tables 10 and 11, we show the simulation results for our multi-population and master-slave PICAs and the results for the Neighborhood

TABLE 11 Values of speedup and efficiency on problem f3 by PICAs and
Neighborhood GA

Problem Master-slave PICA Multi-population ICA Neighborhood GA25

P=4 P=4 P=4

G3 Speedup Efficiency Speedup Efficiency Speedup Efficiency

3.84 0.96 11.6 2.9 3.1 0.75
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GA that are obtained from the work of Weinert et al.25 By comparing the results (Tables 10 and 11), we can conclude that both PICA versions clearly

outperform the Neighborhood GA from both speedup and parallel efficiency perspectives.

4.6 Comparison between multi-population PICA and GPU-based PSO-TM

In this section, we compare the multi-population PICA with the parallel PSO-TM method implemented on a GPU.2 The GPU-PSO-TM was deployed

in the work of Zhou and Tan2 on the CUDA platform based on an Intel Core 2 Duo 2.20 GHz CPU, 3.0 GB RAM, with the NVIDIA GeForce 9800GT

display adapter and the Windows XP operating system. Our multi-population PICA is implemented on Platform 1 (Table 2). We run our algorithm

on two different population sizes, ie, 1024 and 8192, using a four-processor system model with the ring topology.

Based on other works,21-23 we know that the sequential ICA is faster than the sequential PSO, and therefore we can compare the speeds

of the PICA and the GPU-PSO-TM method by comparing their speedup values like we did with some other methods in the previous subsec-

tions. We run the multi-population PICA on the Akley, Rastrigin, Ellipse, and Rosenbrock benchmarks (Table 1). The results are shown in Table 4.

We can see that the speedup of the PICA is generally higher than that of the GPU-PSO-TM approach, especially with the smaller population

size. From the speedup perspective, our algorithm outperforms the GPU-PSO-TM method in all tests except for 1 case. With the larger popula-

tion size, the GPU-optimized PSO-TM solution becomes relatively stronger, even surpassing our multi-population PICA’s speedup value in one of

the tests.

4.7 Comparison between multi-population PICA and C-PPSO

In this section, we compare the multi-population PICA with the coarse-grain parallel PSO-TM method (C-PPSO).26 We have tested our PICA on the

Sphere, Rosenbrock, Rastrigin, and Griewank benchmarks (Table 1) using four-, six-, and eight-processor system models (with the ring topology).

Each experiment was repeated 30 times, and the maximum iteration number was 10 000 for all benchmarks. In the case of the C-PPSO approach,

based on the work of Basturk et al,26 we investigated the coarse-grain models with different numbers of subpopulations, and the entire population

consisted of 100 individuals. The results of the C-PPSO model were compared with the results of a standard PSO to determine the speedup and

parallel efficiency values.26

The results shown in Table 13 demonstrate that our algorithm has higher speedup and parallel efficiency values, and therefore we can conclude

that our multi-population PICA is faster and more efficient than the C-PPSO method. The difference is clear and becomes even clearer when the

number of processors increases.

4.8 Convergence

In this section, we show the convergence diagrams of the benchmarks in order to compare our results and diagrams with the results and diagrams

presented in other works.2,16,19,24-26 These results have been obtained with different numbers of processors and different population sizes on the

multi-population PICA method. The convergence diagrams for our approach are shown in Figures 5 to 12, 23, 26, and 29. After the comparison

between our algorithm's convergence diagrams and those of the mentioned other works, we can claim that our algorithm converges faster than the

other methods within a lower number of iterations.

4.9 Stability

In this section, we demonstrate that our multi-population PICA is stable (producing similar results in different runs) and accurate (producing results

that are near to the global optimum) by testing it on the different benchmarks and drawing the corresponding stability diagrams for it. Each stability

diagram shows the behavior of the method in different runs for a given benchmark. These diagrams are illustrated in Figures 13 to 20, Figure 24,

Figure 27, and Figure 30. The minor fluctuation of the graphs indicates that our algorithm is indeed stable and accurate. Moreover, the statistical

results listed in Tables 6, 7, 8, 12, and 16 also indicate that the multi-population PICA is more stable and accurate than the other considered methods.

In these tables, there are five important parameters. The standard deviation (STD) is a measure that is utilized to quantify the amount of variation or

dispersion of a set of data values. A method cN runs. The best and the worst are the best and the worst values of all N. The mean is the average value

of all the best results in all N runs. A method can be considered the most accurate one when it has the lowest values of STD and the mean and the

lowest values of the best and the worst. We can conclude that our algorithm indeed is more accurate, with fewer errors, than the other considered

methods.
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TABLE 14 Comparison results of PICA for Case 1 with other works25,27,28,30

Methods x1 x2 f(x)

PPSO 27 and Gyurhan 28 −0.29051455550725 1.08421508149135 4.686326815078573e-029

PPSO 27 and Gyurhan 28 −0.793700525984100 −0.793700525984100 1.577721810442024e-030

COA 30 1.08421508149135 −0.29051455550725 4.686326815078573e-029

COA 30 −0.29051455550725 1.08421508149135 4.686326815078573e-029

Ica 29 1.084215081491351 −0.290514555507251 3.562200025138631e-030

Ica 29 −0.793700525984100 −0.793700525984100 1.577721810442024e-030

Ica 29 −0.290514555507251 1.084215081491351 3.562200025138631e-030

PICA (present study) 1.0842150814913511 −0.2905145555072514 4.9303806576313238e-032

PICA (present study) −0.79370052598409995582 −0.79370052598409995582 3.9443045261050590e-031

PICA (present study) −0.2905145555072514 1.0842150814913511 4.9303806576313238e-032

FIGURE 5 Convergence diagram of multi-population PICA with 2 processors in problem f1

FIGURE 6 Convergence diagram of multi-population PICA with 6 processors in problem f1

FIGURE 7 Convergence diagrams of f3
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FIGURE 8 Convergence diagrams of f4

FIGURE 9 Convergence diagrams of f5
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FIGURE 10 Convergence diagrams of f6

FIGURE 11 Convergence diagrams of f7
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FIGURE 12 Convergence diagrams of f8

FIGURE 13 Stability diagram for 100 runs by multi-population PICA with 2 processors in problem f1

FIGURE 14 Stability diagram for 100 runs by multi-population PICA with 6 processors in problem f1

FIGURE 15 Stability diagrams of f3

FIGURE 16 Stability diagrams of f4
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FIGURE 17 Stability diagrams of f5

FIGURE 18 Stability diagrams of f6

FIGURE 19 Stability diagrams of f7

FIGURE 20 Stability diagrams of f8
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FIGURE 21 The convergence history of case 1 (from the work of Jaberipour et al27)
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FIGURE 22 The convergence history of case 1 (from the work of Abdollahi et al29)

FIGURE 23 The convergence history of case 1 with PICA

FIGURE 24 The stability chart of case 1 with PICA



18 of 26 MAJD ET AL.

TABLE 15 Comparison results of Case 2

Methods X Variable values f Functions values F(x)

The best in the work of Wang et al31 x1 0.500432850000000 f1 −0.000238520000000 7.693745216994211e-008

x2 3.141863170000000 f2 0.000141590000000

The best in the work of Floudas et al32 x1 0.299450000000000 f1 6.139739265609290e-007 1.014347133848949e-012

x2 2.836930000000000 f2 −7.983627943186633e-007

x1 0.500000000000000 f1 2.111655261760603e-007 5.316365008296489e-012

x2 3.141590000000000 f2 −2.296034435467220e-006

The best in COA30 x1 0.299300000000000 f1 −7.128922385554737e-005 5.792081721117691e-009

x2 2.836600000000000 f2 2.664447941302939e-005

The best in ICA29 x1 0.299448692495720 f1 1.305289210051797e-012 5.631272867601562e-024

x2 2.836927770471037 f2 2.284838984678572e-013

x1 0.500000000000000 f1 0 0

x2 3.141592653589794 f2 0

The best of PICA x1 0.29944869249092598 f1 −1.387778780781446e-016 6.856310602018560e-032

x2 2.8369277704589400 f2 2.220446049250313e-016

x1 0.500000000000000 f1 0 0

x2 3.141592653589794 f2 0

0 10 20 30 40 50 60
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FIGURE 25 The convergence history of case 2 (from the work of Abdollahi et al29)

FIGURE 26 The convergence history of case 2 with PICA
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FIGURE 27 The stability chart of case 2 with PICA
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FIGURE 28 The convergence history of case 3 (from the work of Abdollahi et al29)

FIGURE 29 The convergence history of case 3 with PICA

FIGURE 30 The stability chart of case 3 with PICA
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TABLE 17 Comparison results of Case 3

Methods X Variables values f Functions values

The best in the work of Wang et al 31 x1 0.67154465 f1 −0.00000375

x2 0.74097111 f2 0.00001537

x3 0.95189459 f3 0.00000899

x4 −0.30643725 f4 0.00001084

x5 0.96381470 f5 0.00001039

x6 −0.26657405 f6 0.00000709

x7 0.40463693 f7 0.00000049

x8 0.91447470 f8 −0.00000498

The best in the work of Floudas et al 32 x1 0.1644 f1 −8.8531e-005

x2 −0.9864 f2 3.5894e-005

x3 −0.9471 f3 6.6216e-006

x4 −0.3210 f4 2.1560e-005

x5 −0.9982 f5 1.2320e-005

x6 −0.0594 f6 3.9410e-005

x7 0.4110 f7 −6.8400e-005

x8 0.9116 f8 −6.4440e-005

The best of ICA 29 x1 0.164431665854327 f1 2.775557561562891e-016

x2 −0.986388476850967 f2 −1.110223024625157e-016

x3 0.718452601027603 f3 −1.110223024625157e-016

x4 0.718452601027603 f4 1.734723475976807e-018

x5 0.997964383970433 f5 0

x6 0.063773727557003 f6 0

x7 −0.527809105283546 f7 0

x8 −0.849363025083964 f8 0

The best of PICA x1 0.164431665854327405 f1 5.368529659036217811e-019

x2 −0.986388476850967110 f2 2.548307417523678423e-019

x3 0.718452601027603350 f3 −3.378192205891815512e-019

x4 −0.695575919707310931 f4 3.389211820587187123e-019

x5 0.997964383970432520 f5 0

x6 0.063773727557002571 f6 0

x7 −0.527809105283546241 f7 0

x8 −0.849363025083964123 f8 0

TABLE 18 The comparison statistical results of serial ICA25 and PICA

Problem Speedup Efficiency Serial ICA time PICA time #processors Super linear performance?

Case 1 2.82 1.41 0.0341 0.012 2 Yes

Case 2 5.1 2.55 2.1 0.411 2 Yes

Case 3 6.24 3.12 6.78 1.08 2 Yes

FIGURE 31 Speedup diagram and parallel efficiency diagram for f1

4.10 Case studies

In this section, three commonly explored systems of nonlinear equations have been used to demonstrate the performance of the proposed method,

and the obtained results have been compared with the other known methods.
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FIGURE 32 Speedup diagram and parallel efficiency diagram for f2

FIGURE 33 Speedup diagram and parallel efficiency diagram for f3

FIGURE 34 Speedup diagram and parallel efficiency diagram for f4

FIGURE 35 Speedup diagram and parallel efficiency diagram for f5

Case 1. This example has been given in other works27-30

⎧⎪⎨⎪⎩
x1 − 3x1x2

2
− 1 = 0

3x2
1

x2 − x3
2
+ 1 = 0.

(1)
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FIGURE 36 Speedup diagram and parallel efficiency diagram for f6

FIGURE 37 Speedup diagram and parallel efficiency diagram for f7

FIGURE 38 Speedup diagram and parallel efficiency diagram for f8

The solutions in the works of Jaberipour et al27 and Gyurhan and Nedzhibov28 have been obtained with 120 iterations with unknown population

sizes. The parameters of the sequential ICA method29 have been set to 50 iterations with 250 countries. The results of case 1 are compared with

the PICA in Table 14. The obtained solutions by the PICA are better and more accurate than those of the previous works. Figures 21 to 23 indicate

the convergence history of Case 1. Figure 24 shows the stability diagram of this case.

Case 2. (Problem 2 in the work of Wang et al,31 Test Problem 14.1.4 in the work of Floudas et al,32 and Case Study in the works of

Abdollahi et al29,30)

𝑓1 (x1, x2) = 0.5 sin (x1x1) − 0.25x2∕π − 0.5x1 = 0

𝑓2 (x1, x2) = (1 − 0.25∕π) ((exp(2x1) − e) + ex2∕π − 2ex1 = 0. (2)

The results of case 2 in other works29-32 with 50 iterations and the population size of 250 are compared with the PICA in Table 15. The obtained

solutions show that PICA outperforms the mentioned methods with 250 countries and 35 iterations. The results are illustrated in Figures 25 to 27.
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Case 3. (Problem 6 in the work of Wang et al31 and Test Problem 14.1.6 in the work of Floudas et al32)

Case 3 has been solved by the filled function method in the work of Wang et al31 and has been proposed as a problem in the work of

Abdollahi et al.29,32

4.731 × 10−3x1x3 − 0.357x2x3 − 0.1238x1 + x7 − 1.637 × 10−3x2 − 0.9338x4 − 0.3 = 0

0.2338x1x3 + 0.7623x2x3 + 0.2638x1 − x7 − 0.07745x2 − 0.6734x4 − 0.6022 = 0

x6x8 + 0.3578x1 + 4.731 × 10−3x2 = 0

−0.7623x1 + 0.2238x20.3461
= 0

x2
1 + x2

2 − 1 = 0

x2
3 + x2

4 − 1 = 0

x2
5 + x2

6 − 1 = 0

x2
7 + x2

8 − 1 = 0

−1 ≤ xi ≤ 1, i = 1,2, … ,8.

(3)

The number of iterations for this problem in other works29,31,32 is 1000 and the population size is 300. Our results with the same numbers of

iterations and countries have been compared in Table 17. The convergence history of ICA 29 and PICA is shown in Figures 28 and 29, respectively.

Figure 30 shows the stability diagram of PICA for Case 3. The statistical results of the tests and cases are illustrated in Table 16. The comparison

between the statistical results of the serial ICA and the parallel ICA is given in Table 18.

4.11 Speedup and parallel efficiency

As already discussed above, speedup and parallel efficiency, defined in Equations 4 and 5, are important parameters, indicating the quality of paral-

lelization. They reveal whether parallel algorithms are suitable or not for given problems. As already demonstrated by the above analyses, we can

also use these parameters to compare the speed of our algorithms with that of another parallel EC method. For example, we know based on other

works15,21,33 that the serial ICA is faster than the GA, ES, ABC, and PSO. Therefore, if our speedup and parallel efficiency values for the PICA are

higher than those of the parallel implementations of the other mentioned EC algorithms, then our parallel algorithm is provably faster than the

others.

Speedup = Execution time on one processor core
Execution time on m processor cores

= T (1)
T (m)

(4)

Parallel Efficiency = Speedup
m

(5)

For the benchmark f1 (Table 1), the sequential ICA obtains the best results after 10 iterations, while the multi-population PICA obtains them

after three iterations. So, this benchmark is very simple, and when we find the results with six processors after three iterations, there is clearly no

need for a larger number of processors. In Figures 31 to 38, we show the parallel efficiency and speedup as a function of the number of processors

on all the benchmarks; they convincingly demonstrate efficiency and usefulness of the parallel implementations. Super-linear speedup means that

using M processors leads to an algorithm that runs more than M times faster than the sequential version. However, reporting super-linear speedup

is somewhat controversial, especially for the “traditional” research community, since some non-orthodox practices could be thought of being the

cause for this result.8 Super-linear performance is nevertheless the main achievement of our algorithms. Indeed, in all benchmark diagrams, we can

see that we obtain super-linear performance. Based on our extensive experiments, the PICA is the best choice for solving the considered problems.

5 CONCLUSION

We have introduced two parallel versions of the ICA, ie, the multi-population PICA and the master-slave PICA, utilizing MPI instructions in their

implementations. We tested them on two different computer platforms, on eight mathematical benchmarks and three nonlinear case studies, and

compared them with the sequential ICA and a large set of other parallel evolutionary computing methods. Our extensive experiments show that

both PICA implementations are very efficient in solving different kinds of complex problems and they are in general faster and more efficient and

stable than the other parallel methods considered. The multi-population PICA has been proven to be especially prominent approach. In fact, both

approaches have been shown to achieve a super-linear performance. Figures 13 to 20, Figure 23, Figure 27, and Figure 30 highlight the stability of

the proposed multi-population PICA, and Figures 21 to 23, Figure 25, Figure 26, Figure 28, Figure 29, and Figures 31 to 38 demonstrate that our

multi-population algorithm converges fast to the best results and has very high speedup and parallel efficiency values. Overall, compared with the
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competing parallel methods, its run time is significantly lower (there is a smaller number of fitness function evaluations) and its accuracy is better.

Indeed, the proposed multi-population PICA is the champion among the analyzed evolutionary methods by a clear margin.
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ABSTRACT
Real-world applications are composed of multiple tasks which usu-
ally have intricate data dependencies. To exploit distributed pro-
cessing platforms, task allocation and scheduling, that is assigning
tasks to processing units and ordering inter-processing unit data
transfers, plays a vital role. However, optimally scheduling tasks
on processing units and finding an optimized network topology is
an NP-complete problem. The problem becomes more complicated
when the tasks have real-time deadlines for termination. Exploring
the whole search space in order to find the optimal solution is not
feasible in a reasonable amount of time, therefore meta-heuristics
are often used to find a near-optimal solution.

We propose here a multi-population evolutionary approach for
near-optimal scheduling optimization, that guarantees end-to-end
deadlines of tasks in distributed processing environments. We ana-
lyze two different exploration scenarios including single and multi-
objective exploration. The main goal of the single objective explo-
ration algorithm is to achieve the minimal number of processing
units for all the tasks, whereas a multi-objective optimization tries
to optimize two conflicting objectives simultaneously considering
the total number of processing units and end-to-end finishing time
for all the jobs. The potential of the proposed approach is demon-
strated by experiments based on a use case for mapping a number
of jobs covering industrial automation systems, where each of the
jobs consists of a number of tasks in a distributed environment.
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1 INTRODUCTION
Industrial applications often require guaranteeing real-time execu-
tion, fault tolerant implementations and providing reliable func-
tionality. In general, it is impossible for a single processing unit to
satisfy all these needs. However, a distributed processing environ-
ment provides a variety of computational capabilities, which can
be utilized to perform an application that has diverse execution re-
quirements. An application job can be decomposed into tasks. Tasks
may have data dependencies and it is possible that each task needs
a certain computational throughput. For distributing tasks, the fol-
lowing decisions should be made respectively: 1○ task allocation,
i.e. assigning tasks to processing units, and 2○ tasks scheduling,
i.e. defining task execution order and the order of data transfers
among processing units. The general goal of task allocation and
scheduling is to minimize the end-to-end cost of computation, i.e.
minimizing overall response time of the application, minimizing
the number of processing units, or both.
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Performance of such parallel systems can be optimized by em-
ploying an efficient task allocation and scheduling approach, how-
ever, the allocation and scheduling problem is an NP-complete
problem [1]. Using exhaustive approaches for finding optimal solu-
tion is time-consuming and is impossible in practice. Many heuris-
tic task scheduling strategies have been proposed [2, 3] to find a
near-optimal solution in a reasonable amount of time. Evolutionary
Computing (EC) is a set of methods proposed to solve the allocation
and scheduling problem. Genetic Algorithm (GA) is a popular EC
method which can better locate a near-optimal solution than other
similar approaches in most cases [4–7]. Although GA is a powerful
solution, defining a proper fitness function is always challenging
and requiring expertise especially when the size of design space
is huge. Plus, GA is relatively slow and may be trapped in local
optima [8].

To overcome aforementioned challenges, a Multi-Population
Genetic Algorithm (MPGA) [9] is leveraged in this research for
task allocation and scheduling over a collection of nonuniform
processing units. MPGA is a static scheduling strategy, where the
execution times of tasks and the data transfer times between tasks
are known. MPGA is the parallel version of GA that provides better
convergence rate and more speedup compared to single population
GA [8]. In addition, MPGA highly reduces the probability of falling
into local optima trap. Two different MPGA strategies have been
considered to solve the allocation and scheduling problem including:
1○ Single objective optimization and 2○ Multi-objective optimization.
While the single objective optimization minimizes the number of
processing units, the multi-objective optimization considers the
second conflicting metric, jobs end-to-end finishing time, to find
solutions satisfying multiple user needs.

Contribution. In a nutshell our main contributions are:

• In this paper, we solved task allocation and scheduling prob-
lem in a distributed environment. To attain this purpose,
we leveraged a MPGA optimization method with different
optimization scenarios.

• Defining novel fitness functions to efficiently explore the
design space in both single and multi-objective optimization
scenarios.

• The evaluation results based on an industrially inspired use
case show the impact of the proposed fitness function while
converging to better solutions.

Paper Organization. The paper is organized as follows. Sec-
tion II defines the allocation and scheduling problem and our use
case. Section III explains the MPGA and the specifications of fitness
functions for both single objective and multi-objective optimization
scenarios. Section IV presents the experimental results and demon-
strates the efficiency and convergence of the proposed algorithm.
Some related work reviewed in Section V. We end with concluding
remarks and future work in Section VI.

2 PROBLEM DEFINITION
We start here by describing a generic distributed process control
system. In such systems, a series of computing devices operate on
data collected from sensors placed close to a physical process, and
update control signals to other devices - actuators - able to control
the evolution of the process. A process may be exemplified by a

simple tank-filling operation or by more complex systems, such
as ore separation, water purification, etc. The process parameters
(such as liquid levels, temperatures, etc.) are usually required to
be maintained within a certain range of values, even when the
environment is disturbed. Whenever new values are presented
via sensors to the processing devices, certain procedures hosted
within these devices are launched, and potential new values are
sent to the process-responsible actuators. In large systems, there
are potentially thousands or more such procedures, installed in tens
to hundreds of control devices.

The main problem that we raise here is how to allocate the
number of processing operations on an as small as possible set of
processing devices, such that planned operations are not affected
with respect to their timing and duration, and the processing devices
are operating within their nominal characteristics.

In order to cover most of the aspects of interest when solving
this, in the following we employ a synthetic example of a system
as use case, with elements presented in Fig. 1. Here, we have a
control system composed of 8 jobs, their characteristics and further
decomposition being detailed below.

2.1 System Model Elements
The systemwe consider is composed of a number of complex control
processes, referred from now on as jobs. The system reads data from
a set of input elements - the sensors S1,...,S11 and processes the data
on a number of available processing units (P1,..., P24). The processed
data is sent further in the system to other elements - the actuators
A1,...A11 - notice that having a similar number of sensors and
actuators is a coincidence of no relevance in the analysis to come.
A job refers to the data trip from sensors to actuators.

A job can be further described as a collection of tasks, acting
mostly sequentially, but not excluding parallel processing - espe-
cially if tasks belong to different jobs. To illustrate a more crit-
ical situation, we assume that all the considered tasks are non-
interruptible. A task is a unitary, andwith the assumed non-interruptible
characteristic, an atomic system element, to be executed on one of
the available processing units. Each task has input either a sensor,
or the output of a precedent task. At the output of a task stays
either an actuator, or the input of a follower task. Multiple inputs to
a task are possible (see task T13 in Job8 on actuator A10), in which
case all of them must be present for the task to start its operation.
Differently, if a task has more than one output (see task T21 in Job7),
all of them are presented at the same moment.

Fig. 1 describes additional information pertaining to task and job
execution, as well as some characteristics of interest for the pro-
cessing units. Thus, a task is also defined with a potential maximal
load that it presents to the processing unit, and with a maximal
execution time. For instance, task T1 in Fig. 1 produces a maximal
load of 10, and it executes in maximum 10tu ("time units": µ-seconds
to seconds, for instance. However, an actual specification of these
units is not of interest in our work here). At the same time, the
available processing unit P1 can withhold a maximum load of 100,
and possess 5 connection interfaces.

In their turn, the jobs have an execution time (the sum of the
execution times of the composing tasks), and a frequency: how
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Figure 1: Representing The use case including jobs, intra-task dependencies, tasks load complexity, real-time deadlines and
processing unit specifications.

often data is read from sensors, and it has to be sent to the actu-
ators. For instance, Job1 - a sequence of T1, T14 and T18 - has a
maximal execution time of 60tu, and it is recurring every 70tu. A
more complex situation is presented by jobs 3, 7 and 8, where two
actuators are related to each job. The times for processing the data
corresponding to each actuator may be different, but what holds
them together is the execution frequency (200tu, 400tu and 500tu,
per job, respectively). Fig. 2 shows the dependency graph between
tasks of a job example from the use case (see Section II.A).

Figure 2: Dataflow of Job #7.

2.2 Problem Assumption
To only focus on the allocation and scheduling problem, we made
the following additional assumptions. First of all, we assumed that
each task is written in a machine-independent language. Moreover,

it is assumed that we know all the data dependencies among tasks
before execution (as described by Fig. 1 and partially by Fig. 2).
The distributed processing platform is nonuniform, consisting of
multiple homogeneous processing units with various processing
potential.

If a data conditional is based on input data, it is assumed to be
contained inside a task. A loop that uses an input data item to
determine one or both of its bounds is also assumed to be contained
inside a task. When two communicating tasks are mapped onto the
same processing units we assume that the communication delay is
zero. However, when they are mapped onto different processors a
finite communication delay is assumed and modeled by 1tu.

Moreover, we do not (yet) consider here aspects related to relia-
bility, fault tolerance, safety, etc. These aspects may (such as in the
case of fault tolerance) require a duplication of allocation and syn-
chronization of data across duplicated locations. These additional
objectives are subject of further work analysis.

3 MPGA DESCRIPTION
GA is an iterative population-based exploration solution mimicking
the process of natural selection and evolution where the characteris-
tics of the process can be utilized in solving optimization problems.
All GA-based methods have an initial population where selection,
crossover, mutation operators are applied to initial population for
producing improved population. The operations will be repeated
until satisfying user criteria (reaching suitable results) or stopping
after a predefined number of iterations. The following subsections
explain the basic components of GA.
Step 1. Generating Initial Population. The initial population
includes random solutions in the design space, where each solution
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Figure 3: Representing a valid allocation and scheduling by
GA/MPGA chromosome type.

represented by chromosome is a schedule for all the jobs. The size
of initial population depends on the size of design space. To check
the validity of solutions in the initial population, each solution is
examined by using the objective function represented in Equation
(1). Invalid solutions will be removed from the population.
Step 2. Fitness Evaluation. Objective function (fitness function)
is a metric for comparing different scheduling that satisfy problem
constraints. Equation (1) and Equation (2) represent the fitness
functions for single-objective and multi-objective optimization,
respectively.

Fitness_1 = #Processors + (γ × (α + β + θ )) (1)

Fitness_2 =
#Processors

γ
+ (2)

Run − time

BiддestDeadline
+ 3 × (α + β + θ )

where α is the total extra loads of the all assigned tasks that exceed
the load of processing units, β is the total extra deadline of all
assigned tasks that exceed the real-time deadlines, θ is the total
extra ports of all job assignments that exceed the total number
ports per processing units, and γ is equal to 23, the total number of
processing units. BiддestDeadline is the maximum possible time for
finishing the slowest job. The scale of extra load (α ), extra deadline
(β), and extra ports (γ ) could be very different, thus all theα , β , andγ
parameters should be normalized. However, we did not normalized
them since the range of these parameters are deterministic and the
fitness functions are customized for the studied use case.

In (1), minimizing the number of processors (#Processor ) is the
exploration objective. Whereas in (2), minimizing both the end-to-
end finishing time of all the jobs (Run − time) and #Processor are
the exploration objectives.
Step 3. Selection. Obviously the schedules with better fitness func-
tion are selected as the next generation and the others will be
removed from population set. The goal is to find a solution in de-
sign space with lowest fitness function in both Equations (1) and
(2).
Step 4.Crossover Operator. Is the most important operator of GA.
GA randomly selects two genomes from the population set based on
a certain crossover rate. Then two genome strings exchange parts
of their corresponding chromosomes to create two new genomes.
In our use case, the chosen scheduling are exchanged with the
other scheduling for producing two new schedules with most likely
better schedules. Fig. 3 illustrates the representation of the all jobs
scheduling by a genome type. Each genome consists of 42 portions
since the use case has 42 different tasks. All possible assignments

to processing units for each task is γ=23. This representation also
indicate the task scheduling by prioritizing the assigned tasks to
the same processor. Such that the processor operates on the tasks
from left to right i.e, if Task #4 (T4), Task #7 (T7)and Task #11 (T11)
are assigned to Processor #2 (P2), the processor first runs T4, then
T7 and T11 respectively.
Step 5. Mutation Operator. The main goal of mutation operator
is to increase genetic diversity. Mutation alters one gene value
(assigned processor to task) in a chromosome string from its initial
state. The solution may be better or even worst solution by using
mutation. Mutation forces GA to get rid of local optima. For doing
mutation, we need to randomly select one gene in chromosome
and modify its assigned value to a new valid number.

After each cycle of selection, crossover and mutation, the newly
generated set of solutions (schedules) is called as new generation.
All the generations are evaluated based on the fitness function to
determine if they represent a good enough solution to satisfy the
fitness function. This determines if the GA can stop searching, or if
otherwise, for the GA to continue searching until the predefined
stopping criteria is met. The stopping criteria could be the number
of generations, or evolution time, or fitness threshold, or fitness
convergence, or population convergence. In our case, the number
of generations was set as the stopping criteria. The schedule ob-
tained after the stopping criteria will be the optimal or near optimal
schedule.

3.1 MPGA Algorithm
Although ECmethods can improve the quality of results, using them
have some difficulties. First of all, an evolutionary algorithm may
not converge towards the optimal solutions or even to near-optimal
solutions in the case of very huge exploration space. One possible
solution is to increase the initial population size, but leading to
increase the execution time of evolutionary algorithms. Paralleliz-
ing these algorithms can remarkably diminish their execution time
and improve the quality of results. In the parallelized GA, multiple
processors work together where each one runs a simple GA and
has an independent populations.
Step 6. After a predefined number of iterations, all processors share
their best chromosomes among each other (migration operation).

Step 6 above is specific to the parallel procedure, which, including
the previous 5 steps is called MPGA. Sharing the best individuals
aids the MPGA to get avoid of local optima. This procedure comes
to be utilized in the algorithm that we propose in further.

Fig. 4 represents the behavior of the MPGA and the flowchart
of consequent operations is shown in Fig. 5. The pseudo-code of
MPGA is presented in Algorithm 1. The inputs of proposed meta-
heuristic optimization approach include: 1○ the specification of
processing units including maximum processing potential, the total
number of input/output ports, and 2○ the specifications of jobs
and tasks including load complexity, run-time deadlines, and task
dependencies.

4 EVALUATIONS
This section presents the results of experiments that have been
fulfilled to evaluate the impact of the proposed MPGA on the use
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Figure 4: Multi-population migration operation.

Figure 5: Flowchart of MPGA.

case. The evaluations have been done based on two different opti-
mization scenarios including single objective and multi-objective
optimization. It is necessary to mention that the single objective opti-
mization has been solved with simple GA, while we leveraged MPGA
to solve the multi-objective optimization.

4.1 Implementation Details
MPGA is implemented in C++ and MPI library has been utilized
for parallelization. Ring topology is used for connections between
processors for running MPGA. For the implementations, an Intel
Core i7-4770 CPU 3.40 GHz with 16.0 GB RAM running on 64-bit
Windows 10 has been used. Seven cores have been leveraged in the
parallel implementation. The specification of MPGA parameters is
shown in Table 1.

Algorithm 1: Pseudo Code of MPGA
Input: • Processor Pi: 1 ≤ i ≤ # Processors
• Distributed processing units Specifications
• Jobs and related tasks Specifications
• N : Population Size
• T : Maximum Number of Iterations
Output: A Set of Near-Optimal Solutions
Function MPGA(N , T):

(Step 1):U i,0= Random_Population (N); //Creating
initial random population and assign to each Pi
(Step 2): Fitness_Function (U i,0); //Evaluating the
objectives of each solution in the all populations
t = 1;
while t ≤ T | Satis f yinдUserNeeds do

(Step 3):U ′
i,t = Select (U i,t); //Select some

chromosomes from the U i,t randomly.
(Step 4):U ′′

i,t = Crossover (U ′
i,t)

(Step 5): Y i,t+1 = Mutation (U ′′
i,t)

(Step 2): Fitness_Function (Y i,t+1);
(Step 6): if #Iterations%MiдrationRate == 0 then

Select the best chromosome from Y i,t+1
Send the best chromosome to Pi+1
Receive the best chromosome from Pi-1

t = t + 1;
return Y i,t+1

Table 1: MPGA Algorithm Parameters.

Parameter Value
N: Initial Population Size (Each Processor) 100

# Populations 15
Maximum # Iterations 750

Crossover Rate {0.1, 0.5, 0.9}
per each 5 populations

Mutation One-Point Mutation
Migration Rate 3
Migration Gap 25
Mutation Rate 1 - Crossover Rate

Table 2: Experimental Results Compared to [11].

Exploration Approach End-to-end finishing time # Processing units
Our Single Objective

Equation(1) 250 7
(Solved by simple GA)
Our Multi-Objective Solution 1○: 210 7

Equation(2) Solution 2○: 250 8
(Solved by MPGA) Solution 3○: 160 9

Single Objective [11] 210 9
Multi-Objective [11] 180 11

4.2 Experimental Results Convergence
One of the main limitations of evolutionary algorithms is decreas-
ing the convergence speed by increasing the number of iterations
leading to make non-convergent results in low iterations for diffi-
cult problems. Fig. 6 and Fig. 7 represent the convergence of fitness
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Figure 6: Convergence diagram of the fitness function for
the single objective optimization ((1)).

Figure 7:MPGA convergence diagramof the fitness function
for the eight different populations ((2)).

functions for both single and multi-objective optimization, respec-
tively. It can be easily observed from the convergence figures that
both strategies are highly convergent toward the improved results
by contentious reduction in fitness functions as the system cost
(see Equation (1) and Equation (2)).
a) Single Objective Optimization. Fig. 8 illustrates the variation
trend of total number of utilized processing units over the number
of iterations. As mentioned before, the aim of single objective op-
timization is to decrease the number of processing units used in
jobs scheduling. Fig. 8 shows considerable improvement in find-
ing scheduling with less required processing units. According the
results of Table 2, we need 22 processing units for scheduling in
the first iteration, while by proceeding the exploration algorithm,
we found a solution with only seven required processing units.

Figure 8: Convergence diagram of the variations # process-
ing units in single objective optimization solved by simple
GA.

Although there exist some breaks in continuous improvement, the
overall trend moves toward improvement.
b) Multi-Objective Optimization.As mentioned before, the total
number of processing units and end-to-end finishing time (rep-
resented as Run − time in (2)) for all the jobs are the two main
objectives of MPGA. Fig. 9 and Fig. 10 illustrate the convergence
figures of required processing units for scheduling and end-to-end
finishing time for all the scheduled jobs, respectively. We can con-
clude from the figures that both the objectives are approaching
toward optimized results. Although there are some failures or stops
in achieving better results in each iteration, the overall Progression
of MPGA always approaches toward superior outcomes (Fig. 11).

Table 2 shows three different solutions on the Pareto frontier
of the last Population. We have a variety of options based on the
user needs. Solution 1○ is a schedule with minimized number of
processing units (7 processing units) while takes more time, 210tu,
for running. On the other hand, Solution 3○ provide the minimum
elapsed end-to-end finishing time (160tu), while needs 9 processing
units for running.

4.3 Comparison between MPGA and simple GA
For evaluating the impact of multi-population optimization on the
allocation and scheduling problem, the results of single objective
optimization has been achieved by leveraging single population
GA (simple GA). On the other hand, the results of multi-objective
optimization has been achieved by using MPGA. We compared
MPGA and simple GA schemes in terms of exploration time and
quality of results in the following sections.
a) Exploration Time and Speedup. Fig. 8 and Fig. 9 represent
the convergence of processing units for single population GA and
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Figure 9: Convergence diagram of the # processing units in
the multi-objective optimization by using MPGA approach.

Figure 10: Convergence diagram of the end-to-end run-
time in the multi-objective optimization by using MPGA ap-
proach.

MPGA, respectively. MPGA achieve the best result after 400 itera-
tions, while single population GA needs 750 iterations for finding
the best solution. Obviously converging to the best result needs in
less number of iterations by using MPGA which is the best proof
to show the benefits of applying the MPGA, especially when the
design space is large.
b) Quality of Results. According to the results of Table 2, MPGA
found a solution with 7 required processing units and 210tu for
the end-to-end finishing time, while single population GA found a
solution with the same required processing units but takes 250tu
for the end-to-end finishing time. MPGA provides more quality
of results compared to single population GA even when single
population GA tries to optimize only one objective.

Figure 11: Improvement proceeding of exploration objec-
tives including the number of processing units and end-to-
end use case run-time.

4.4 Comparison Between MPGA and Morady et
al. [11]

We compare the proposed MPGA solution with a similar evolution-
ary approach [11]. However, we customize the fitness functions
for the studied use case. Table 2 represents the evaluation results
after applying [11] on the industrial use case. As seen in Table 2,
our method in single objective scenario found a schedule with 7
required processing unit, while [11] proposed a solution with 9 re-
quired processing units. In addition, inmulti-objective scenario, [11]
needs 180tu to finishe all the jobs, while compared to Solution 3○,
our proposed method needs 160tu. Therefore, we can conclude our
customized MPGA overcomes a similar EC method represented in
[11].

4.5 Allocation and Scheduling Results
We have considered here the use case described in section 2, and
illustrated entirely by Fig. 1. After applying MPGA to the use case
tasks, the near-optimal scheduling result is shown in Fig. 12, a
valid scheduling for all jobs and their related tasks with minimum
number of processing units (Solution 1○).

5 RELATEDWORK
Here, we first explore more traditional list scheduling heuristics
that have considered communication costs.

The basic idea is to make an ordered list of nodes by assigning
them orders, and then to repeatedly execute the following two
steps until a valid schedule is obtained: 1○ Select from the list the
node with the highest order for scheduling. 2○ Select a processor
to accommodate this node. In realistic cases, scheduling needs to
exploit parallelism by identifying the task graph structure and take
into consideration task granularity, arbitrary computation, and
communication costs.

In [10], the modified critical path algorithm (MCP) is proposed,
based on the latest possible start time of a node. A node’s latest
possible start time is determined via the as-late-as-possible (ALAP)
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Figure 12: The best solution for multi-objective opti-
mization with minimum number of processing units
(solution 1○).

binding by traversing the task graph upward from the exit nodes
to the entry nodes while pulling the node’s start times downwards
as much as possible. The latest possible start time of the node
itself is followed by a decreasing order of the latest possible start
times of its successor nodes. Furthermore, in [10], the dominant
sequence clustering algorithm (DSC) is presented. It is based on
the dominant sequence, which is essentially the critical path of the
partially scheduled task. CP (the critical path of task graph) node is

a ready node. If so, DSC schedules it to a processor allowing the
minimum start time. Such a minimum start timemay be achieved by
rescheduling some of the node’s predecessors to the same processor.
If the highest CP node is not a ready node, DSC does not select it for
scheduling. Instead, it chooses the highest node which lies on a path
reaching the CP for scheduling. Moreover, also in [10], the mobility
directed algorithm (MD) is presented. MD selects a node at each
step based on relative mobility which is defined as the difference
between a node’s earliest start time and latest start time. Similar
to the ALAP binding, the earliest possible start time is assigned
to each node via the as-soon-as-possible (ASAP) binding. This is
performed by traversing the task graph downward from the entry
nodes to the exit nodes while pulling the nodes upward as much
as possible. Moreover, relative mobility is obtained by dividing the
mobility with the nodeâĂŹs computation cost. Basically, a node
with zero mobility is a node on the CP. At each step, MD schedules
the node with the smallest mobility to the first processor having a
large enough time to accommodate the node without considering
the minimization of the nodeâĂŹs start time. After a node has been
scheduled, the relative mobility values of the remaining nodes are
updated.

In [11], a MPGA is presented which outperforms deterministic
and non-deterministic methods described in [12, 13]. In [14], a
new encoding mechanism with a multi-functional chromosome is
presented, using a priority representation that is called priority-
based multi-chromosome (PMC). PMC can efficiently represent a
task schedule and assign tasks to processors. It is another meta-
heuristic method that uses a GA to achieve near-optimal scheduling
of tasks.

Research on static mapping methods includes the work of Lei
et al., who proposed a genetic mapping algorithm to optimize ap-
plication execution time [15]. In their work, graphs represent ap-
plications and the target architecture is a NoC. Wu, et al. also
investigated genetic mapping algorithms [16]. By combining dy-
namic voltage scaling techniques with mapping, they achieved 51%
savings in energy consumption. Murali et al. explored mappings
for more than one application in NoC design, using the tabu search
(TS) algorithm [17]. Manolache, et al. investigated task mapping
in NoCs, trying to guarantee packet latency [18]. For this purpose,
both the task-mapping algorithm (TS) and the routing algorithm
are defined at design time. Hu et al. presented a branch-and-bound
algorithm to map a set of IP cores (IPs) onto a NoC with bandwidth
reservation [19]. Their results show energy savings of 51.7% in
the communication architecture. In [20] presented a task schedul-
ing scheme on heterogeneous computing systems using a multiple
priority queues genetic algorithm (MPQGA). Their experimental
results for large-sized problems for a large set of randomly gener-
ated graphs as well as graphs of real-world problems with various
characteristics showed that the proposed MPQGA algorithm out-
performed two non-evolutionary heuristics and a random search
method.

6 CONCLUSIONS AND FUTUREWORK
Leveraging a distributed environment for task scheduling can en-
hance reliably and provide a specification compliant processing
scheme. The inherent difficulties in distributing application jobs
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and scheduling them among processing units may lead applica-
tions to expose low performance, or the system may require extra
(unnecessary) resource costs. Here, a parallel Multi-Population
Genetic Algorithm is developed to overcome complexity barriers,
towards optimizing both operation time and resource numbers,
while preserving application requirements. For the evaluations,
a synthetic use case has been studied, grouping many aspects of
actual industrial systems. The final results offer a better resource
efficiency (requiring less number of processing unit) while guar-
anteeing real-time execution. In addition, MPGA provides better
efficiency compared to other similar evolutionary approaches. We
expect more complex problems to appear when we need to deal
with duplication of tasks and synchronization activities, related to
reliability and fault tolerance aspects, in future research actions.
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Abstract — Increasingly sophisticated, complex, and 
energy-efficient cyber-physical systems and wireless sensor 
networks are emerging, facilitated by recent advances in 
computing and sensor technologies.  Integration of cyber-
physical systems and wireless sensor networks with other 
contemporary technologies, such as unmanned aerial 
vehicles and fog or edge computing, enable creation of 
completely new smart solutions. We present the concept of 
a Smart Mobile Access Point (SMAP), which is a key 
building block for a smart network, and propose an 
efficient placement approach for such SMAPs.  SMAPs 
predict the behavior of the network, based on information 
collected from the network, and select the best approach to 
support the network at any given time.  When needed, they 
autonomously change their positions to obtain a better 
configuration from the network performance perspective. 
Therefore, placement of SMAPs is an important issue in 
such a system.  Initial placement of SMAPs is an NP 
problem, and evolutionary algorithms provide an efficient 
means to solve it. Specifically, we present a parallel 
implementation of the imperialistic competitive algorithm 
and an efficient evaluation or fitness function to solve the 
initial placement of SMAPs in the fog computing context.

Keywords- smart mobile access point; fog computing; 
wireless sensor networks; cyber-physical systems; multi-
objective optimization; evolutionary computing; parallel 
approaches; ICA; parallel programming; multi-population; 
placement. 

I. INTRODUCTION 

Wireless sensor networks (WSN) and cyber-physical 
systems (CPS) are two current important fields of 
technology that are tightly intertwined [1], [2]. There are 
different kinds of real WSN applications implemented 
for cyber-physical systems. The combination of wireless 
sensor networks and the other new technologies, such as 
unmanned aerial vehicles (UAV) and mobile robots, has 
created a new revolution in this area. WSNs with mobile 
nodes can obtain better performance by using mobile 
access points embedded in UAVs or mobile robots [25], 
[26]. In this paper, we aim at improving the resource 

utilization and power-performance (energy efficiency 
[27], [3]) by selecting the positions for SMAPs of such a 
CPS using Smart Mobile Access Points (SMAPs). 

SMAPs can make a cluster for computing together 
and make decisions for improving quality of the network. 
SMAPs can change their positions based on their 
decisions. Therefore, placement of SMAPs is a critical 
problem in this concept.

Placement is a multi-objective optimization problem.  
Different kinds of approaches, such as static or dynamic 
methods, can be used to solve this problem [6].  For 
initial placement, which is a static placement problem, 
we can utilize an Evolutionary Computing (EC) method 
[7], [10] such as Particle Swarm Optimization (PSO) [9] 
and the Imperialist Competitive Algorithm (ICA) [8]. Of 
these, we introduce a multi-population version of ICA 
(PICA) [11] with an efficient fitness function for solving 
the initial placement problem in SMAP. This is based on 
the fog computing context in order to improve the speed 
and accuracy of our approach.  

In Section 2, SMAPs such as new concept is 
presented. In section 3, a review of related works is 
presented. In Section 4, a parallel multi-population 
implementation of ICA based on fog computing to solve 
the placement of SMAPs is introduced. In Section 5,
PICA is compared with ICA, random method, and 
mathematical method. 

II. SMART MOBILE ACCESS POINTS 

SMAPs are mobile access points that enable creation 
of a smart sensor network. The task of SMAPs is to 
predict the behaviour of the network and select the best 
approach to support the network at any given time. 
SMAPs receive and send signals (e.g. battery levels, the 
number and IDs of sensors that have been covered, and 
help requests) from and to the other network nodes, 
collect the received information, predict the next 
operations based on this data, and run these operations. 
An SMAP sometimes utilizes previous knowledge and 
operations, or creates new operations by learning or 
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evolving through machine learning techniques. The most 
important operations of SMAPs are the following: 1) 
Finding new (optimal) positions for access points to 
obtain a better coverage of sensors; 2) Making decisions 
about moving the access points to new areas [17]; 3) 
Participating in distributed communication and 
computation tasks (fog computing [18]) other than the 
processing carried out as an inherent part of the decision 
making in 1) and 2). 

Decision-making on moving an SMAP to a new 
position can lead to different approaches, such as 
creation of a new network configuration, supporting e.g. 
fault tolerance by replacing a faulty access point with a 
functioning one, or covering a missed area of sensors that 
is not currently supported or covered by any other access 
point. This scenario is illustrated in Figure 1. The 
network has missed the red static access point (in Figure 
1 (a)), then SMAPs move to new positions (��and ��) to 
support the connectivity of the network (in Figure 1 (b)). 
SMAPs make a cluster connection for essential 
computing together by fog connection that is illustrated 
in Figure 1.  

SMAPs improve quality and flexibility of WSNs.
Their advantages can be summarized as follows:  

� SMAPs enhance the system by improving coverage 
in large scale networks. 

� SMAPs enable dynamic reconfiguration of WSNs. 
� SMAPs facilitate solving hotspot problems in the 

network. 
� SMAPs can together make a grid network to run real-

time computing tasks in parallel, facilitating near-
sensor processing and fog computing. 

� SMAPs can be used to replace faulty access points. 

It is clear that placement of SMAPs has a significant 
effect on the performance of the network. This motivates 
us to concentrate on the placement problem in this paper.
For simplicity, we will focus especially on the initial 
placement to demonstrate efficiency of our approach.  

SMAPs should have an initial placement and initial 
clustering [18] (a cluster is a set of sensors that has been 
covered by an access point). Also, they should be able to 
dynamically move to new positions, because the 
behaviour of the network can change at run-time. This 
reconfiguration process is a reaction to the status of the 
network, and SMAPs can update their positions for each 
new configuration. 

Such a placement and clustering problem can be 
solved by utilizing either cloud computing or fog 
computing [19], [20]. Our approach is based on the latter. 

Each cluster center, access point, or area always has 
a distinct weight. This weight is equal to the probability 
of requesting for reconfiguration at the access point in 
question. Weights can be computed based on different 
effective parameters, such as the network traffic at these 
access points, the lifetime of their batteries, or properties
of the covered area. This phase can be handled using a 
reinforcement learning approach [28], where certain 
features defined by users (e.g. battery life time) along 
with some essential characteristics of the network (e.g.
connectivity) are utilized. The model for SMAPs is
illustrated in Figure 2.

 
(a)                                                                                 (b) 

Normal 
Connection

SensorStatic Access 
Point

Fog Connection SMAP

 
Fig. 1. SMAP model that using Fog network.
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Fig. 2. SMAP model that using Fog network. 

III. BACKGROUND 

In this section, brief reviews on sensor and access 
point placement methods and on Evolutionary 
Algorithms (EA), especially Imperialistic Competitive 
Algorithms (ICA), are presented. 

A. Different Methods for Placement 
In a dynamic WSN, some nodes can be repositioned

to new places. For example, sensors could be moved to
new locations to get more useful information, or they 
could be replaced with different types of sensors to sense
other physical phenomena or to get more accurate 
readings

Real-time replacement of nodes during network 
operation is in general very complex. Indeed, there is a
considerable difference between static initial placement 
and dynamic run-time placement. In dynamic placement, 
there are more complex parameters such as the 
environment base, mobile targets, and lifetime of 
sensors. Furthermore, replacement of a node requires 
very careful handling since it can potentially cause a
disruption in data connectivity and delivery. In some 
cases, sensors can also move to new positions to obtain 
better readings or to sense other information. In this kind 
of scenarios, dynamic placement is very challenging. 
Two major factors contribute to this complexity. The 
first one is the ability of nodes to move and reposition to 
an infinitive number of locations. The second factor is 
the obligation of the network to maintain full 
connectivity and to cover all sensors, i.e., to reliably 
collect data from all static and dynamic sensors in the 
network. 

There are two main types of placement in WSNs:
placement of sensors and placement of access points. In 
this paper, we only focus on placement of access points.

Placement of access points is a multi-objective 
optimization problem in which most of the set goals 
should be satisfied. There are different goals, but two of 

them are more critical. The first key objective is to 
guarantee continuous network connectivity. This means 
in practice that each sensor node should have a 
connection to at least one access point at any given time.
The second key objective is about providing reliable
communication in the case of access point failures. In 
other words, all other nodes in the network should 
maintain their communication if an access point runs out 
of power. Using extra (redundant) access points is the 
best solution to obtain this goal. With this approach, the 
number of possible access points for sensors is increased.

In the real world, there are heterogeneous sensor 
networks with three different kinds of nodes: sensors, 
access points, and gateways. Sensors can only 
communicate with access points. Access points are 
utilized for routing and can communicate with all other 
types of nodes. Also, access points have more memory 
and computing capacity than sensors. Access point nodes 
can only communicate with access points. The following 
three main conditions must be respected to obtain 
efficient WSNs; 

� Full connectivity: All access points and sensors must 
have at least one connection (direct or indirect) to a 
gateway. 

� Configurable redundancy robustness [20]: It is
necessary to have more than one different route 
between each sensor and gateways.

� Placement constraints: In practice, an access point 
cannot be placed in every possible location, i.e., there 
can be some obstacle to this placement. 

Finding an optimal placement to improve 
connectivity, reliability, and energy consumption is an 
NP-hard problem [23]. There are different heuristic 
methods to solve this problem, which are presented in 
[24], [19].  

Solving the problem of missing access points is 
essential for real large-scale WSNs. Also, it is evident 
that using ordinary methods to implement more 
redundancy (i.e. adding fixed/stationary access points) is 
very expensive. SMAPs can be used to solve this 
problem at a lower cost and with more flexibility.   

B. Evolutionary Algorithms 
The multi-objective placement problem is an NP-

hard problem. Evolutionary Algorithms (EAs) are the 
best choice to solve it. There are different kinds of EAs 
that have been utilized for discrete and continues 
problems. For example, Genetic Algorithms (GAs) [15] 
are very popular to solve discrete problems. Also, 
Particle Swarm Optimization (PSO) [16], [17] and Bee 
Colony Optimization (BCO) [14] have been used for 
continuous problems. The Imperialistic Competitive 
Algorithm (ICA), in turn, is an efficient EA that has been 
utilized for continuous problems [8], [12], [13].  
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Fig. 3. Imperialist Competetive Algorithm [8].

C. Imperialistic Competitive Algorithm  
ICA is an optimization method, an efficient 

evolutionary algorithm, based on imperialistic 
competition.  In this algorithm, all countries are divided 
into two categories: colonies and imperialist states. The 
main part of this algorithm is imperialistic competition,
which is expected to cause the colonies to converge to 
the global minimum. ICA is a suitable method for 
optimization [12], [13], but there are similar problems in 
ICA as in other evolutionary algorithms. For example, in 
the case of a large search space, a considerable initial 
population is required to obtain a more accurate and 
reliable result. However, we cannot realize this 
requirement with a single processor. The computing 
capacity would not be sufficient. When we face a
complex problem that needs complex computations, the 
run time will increase, and therefore we need to utilize a 
new method to improve speed and efficiency. A parallel 
computing method for ICA, called PICA, which we have 
previously proposed [11], is employed here to improve 
performance. The method is a multi-population 
implementation of ICA. 

IV. PROPOSED APPROACH

In this section, a parallel implementation of ICA 
(multi-population PICA) is applied to develop an 
efficient method for solving the initial placement 
problem in SMAP based systems. For this, we have 
divided our approach into two layers: an architectural 
layer and an algorithmic layer. 

A. Architectural Layer 
In the proposed distributed system, a set of SMAPs 

form a computing network. Each SMAP consists of two 
node types; application nodes (AN) and a manager node 
(MN). The nodes are organized in a federated manner as 
shown in Figure 5, that is, each autonomous subnetwork 
of ANs is managed by a single manager node, and a 

group of subnetworks form a larger network. The larger 
network is controlled by a single main manager node 
elected from the subnetwork managers with the support 
of a cloud service. Since all manager nodes are connected 
to the cloud, the communication between manager nodes 
can take through the cloud. Optionally, near managers 
can communicate directly without the need to pass 
through the cloud.  

Following the node types, there are different levels of 
uptime. An application node is in a sleep state most of 
the time and initiates communication whenever it wakes 
up. Application nodes run algorithmic layer tasks. They 
receive a manager advertisement, which contains the 
address of the manager. Manager nodes manage 
communication between their application nodes and 
other SMAPs. For ease of discussion, Figure 5 presents 
five subnetworks each having a single manager (blue 
nodes in Figure 5) and communicating using an 
appropriate protocol (such as 6LoWPAN or Bluetooth 
Low Energy). The local manager is known as the home 
manager for the application nodes in its subnetwork.

Best

Worst

SMAP-1

Best

Worst

SMAP-2

Best

Worst

SMAP-4

Best

Worst

SMAP-3

Best

Be
st

Best

Best

Fig. 4. Multi-population PICA based on Fog computing by SMAPs 
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SMAP SMAP

Fig. 5. Federated architecture of SMAPs

B. Algorithmic Layer 
To have the best placement of SMAPs, in our work, 

all access points are divided into two main groups that 
are SMAPs and normal access points. Normal access 
points are static access point and only transfer data and 
maintain connectivity in the network. SMAPs can work 
like normal access points, but they also can perform other 
tasks, like supporting other access points when needed.
In this paper, however, to simplify the problem, normal 
access points have been selected as target points for 
SMAPs, as we are considering the static initial placement 
only. Also, each normal access point has an independent 
weight. The weight of each access point indicates the 
probability of needing support from SMAPs (i.e. the 
need for network reconfiguration).   This probability is a 
value that can be derived from different parameters such 
as communication traffic and battery lifetime. In our 
approach, the rate of communication traffic is selected 
for this purpose.
1. Modeling of the problem 

We assign a set, denoted by A, for normal access 
points that have specific coordinates (��, ��). This set 
consists of the coordinates of all (normal) access points 
in the system (static access point). Also, each access 
point has a certain weight, denoted by ��, and the set of 
all weights is denoted by W. �� can be a value that 
represents connectivity, reliability, energy or any other 
important parameter in the network. The objective of our 
work is to discover the best locations for SMAPs in their 
search space so that SMAPs are placed closer to points 
that have higher values of ��. These distances, which are 
proportional, should be dependent on all ��. The set 
which consists of the points or coordinates where 
SMAPs are to be placed is denoted by P . 

In order to solve the placement problem, we consider 
a set S of 	
 points ���  ℝ�. Each �� can represent either 
an SMAP, a point whose position is not known, or a 
normal access point whose position is known. Thus, S

can be partitioned into the normal access point set A, and 
the SMAP set P, with cardinalities |A| = 	
 and |P| =	�. 

A = {(��, ��), (��, ��), … , (��, ��)}
W = {��, ��, … , ��}
P = {(��, ��), (��, ��), … , (��, ��)}

Given a pair of points (��, ��) S S, or (i , j) for 
short, their Euclidean distance ‖�� − ���� is denoted by 
��� . 

The whole distance set can be represented by a 
Euclidean distance matrix (EDM in short) EDM 
ℝ��×��. For m points, the set of all possible Euclidean 
distance matrices, denoted as ����, is a rich algebraic 
structure: the ���� is a convex cone contained in the 
subspace of all symmetric hollow matrices, that is 
closely related with the semi definite matrix cone.  

To solve this problem, i.e., to find an optimal solution 
for EDM, we use the multi-population PICA which is 
described next- 
2. Multi-Population PICA 

In [11], we have utilized a multi-population model to 
implement the PICA by applying a selective local search 
strategy. In this implementation, several processors are 
connected in a ring topology on the message passing 
architecture, and they are illustrated in Figure 4. This 
approach can run on both share-memory and message 
passing architectures; although, shared-memory methods 
actually do not have any specific topology.  

As the first step, independent countries are initiated 
in each processor, and then ICA is independently run in 
each processor. After some decades (the time is different 
on different runs) the best country migrates from the 
processor �� to ��+1 in the ring and replaces the worse 
country in ��+1. The migration takes place 
synchronously (simultaneously) in all processors in the 
ring, There can be different migration strategies leading 
to different results. In the case of a sparse connection
topology, such as a ring which we have utilized, it is 
better to use low migration rates and as short migration 
distances as possible. In a fully connected topology, in 
turn, the best results are obtained when the migration 
rates are high.  The pseudo-code for PICA is presented 
in Figure 6. A system-wide migration operation is 
executed at each designated migration time point. During 
the migration, the processors do not execute any other 
tasks. The algorithm terminates either after a fixed 
number of iterations or when some other termination 
condition is reached.   

PICA is a highly efficient parallel method which 
improves the speed, stability, and accuracy of results 
[11]. This motivates us to apply it to the SMAP 
placement problem. In order to appropriately adapt the 
method, each SMAP is considered a processor, and a ring 
topology is assumed. A ring is a simple structure, 
facilitating efficient short-distance migrations.
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Processor ����:
1. Create independent initial countries. 
2. Run ICA algorithm independently. 
3. If now is the time of migration do 

3.1 Wait until all processors arrive to this point. 
3.2 Send the best country to processor (��+1) mod (number of 
processors). 
3.3 Receive a country from (��−1) mod (number of 
processors) and replace the worst country with the received 
one.

4. If the termination condition is reached then terminate the 
algorithm 
Else go to 2. 
5. Show the best country. 
6. End.

Fig. 6. Pseudo-code of Multi-Population ICA.

2.1. Creation of countries 
First, a matrix, in which each cell is a data structure 

of the form (��, ��), is created. Each row of the matrix is 
a country, which is a set of points, and also, it can be the 
best solution. These points are a possible placement of 
the SMAPs in the proposed search space. Values of �� and ��  are real values (��, �� ∈ �) and are randomly 
generated. Each column corresponds to the location of 
each placement of a SMAP. Hence, the number of rows 
is equal to the size of the initial population (�!"!) and 
the number of columns is equal to the number of SMAPs. 
2.2. Evaluation function 

In all problems that are solved by EAs, the essential 
task is to find a suitable fitness function to evaluate the 
whole population. In our approach, the evaluation 
function receives a country as its input and returns a real 
value as its output. The output is computed based on the 
distance between the SMAPs and all normal access 
points and on the weight of each normal access point. A 
country with the lowest value of the evaluation or fitness 
function is the best country (solution). In other words, 
this problem is a minimization optimization problem. 

One common fitness function for solving the 
placement of a single SMAP, which has been utilized in 
most related work, is illustrated in Equation 1.  

Fitness Function = ∑ ∑ $(�� − ��)� + (�� − ��)���%���%�
(1)

Indeed, this function is suitable for selecting the 
best place for a single SMAP, but when the number of 
SMAPs is increased, the placement problem becomes 
more complex, and the function presented in Equation 1 
does not provide correct results anymore and cannot 
therefore be applied. Here we propose a new and 
efficient fitness function DM, presented in Equation 2, 
which provides accurate results for any number of 
SMAPs.   

DM=∑ &(�_���) + '*-/001
2 34 ��567	89:0
�%�

D=;√	=
(2)

Here n equals the number of normal access points and 
NA equals the number of SMAPs. The �_��� equals the 
Euclidean distance between SMAP number i and D 

nearest normal access points. The Distance variable 
equals the sum of distances between all SMAPs that is 
presented in Equation 3. 

Distance = ∑ ∑ $(�� − ��)� + (�� − ��)���%��>�
��%�

(3)

2.3. Selecting imperialists and making colonies 
In the next step, the most powerful countries (���!)

are selected (the number of ���! is equal to five percent 
of the number of all contraries). In addition, each of them 
becomes an imperialist and every imperialist selects 
some other countries based on its power.  After this, each 
country in colonies starts moving towards its relevant 
imperialist; this operation corresponds to the exploitation 
operation in any other EAs and is illustrated in Figure 2. 

Then some countries are randomly selected and their 
positions are randomly changed. This operation explores 
the search space and is well-known in all EAs. The most 
significant advantage of this operation is that it prevents 
the algorithm from dropping in local optimums. 
2.4. Exchanging the position of an imperialist and a 

colony 
In every iteration, if the situation of a colony 

improves and it becomes better than its imperialist, their 
positions are exchanged. This operation is presented in 
Figure 2. 
2.5. Imperialist Competition 

In this step, imperialists start a competition to obtain 
new countries from other imperialists. In this phase, 
power of all imperialists and their colonies are computed 
to determine the probability of winning the computation. 
Finally, the weakest imperialist is detected, and its 
colonies are granted to the other imperialists. The 
receiver imperialist is selected by a tournament operation 
based on the probability of winning. The competition 
operation is shown in Figure 2. All the above steps are 
repeated until the next time of migration arrives. 
2.6. Migration Operator 

At a migration time point, processors stop their 
current tasks and discover their best imperialists and the 
worsts colonies. Then the processors synchronously send 
their best imperialists to the next processors and receive 
the best imperialists from the previous processors, and 
replace their worst colonies with the received ones.

Finally, the algorithm stops after some certain 
number of iterations, and the best imperialist is 
determined. This represents the best solution for the 
SAMP placement. This operation is presented in Figure 
3.  

V. EXPERIMENTAL RESULTS 

The proposed work has been implemented on Intel® 
Core™ i5, CPU @ 2.9GHz, RAM 8 GB at Department 
of Information Technology, University of Turku,
Finland. VC++ 2015 has been utilized for the 
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implementation and MPI instructions for parallelization. 
Furthermore, MPICH2.3.2 has been applied for parallel
execution of the algorithms. The proposed PICA based 
approach has been tested on four processors in all tests 
for four benchmarks. Well-known 2-D benchmarks have 
been utilized. The obtained results have been compared 
with the serial ICA, mathematical, and random 
placement methods. 

A. SINGLE SMAP
In the first three benchmarks, the best place is in the 

coordinate (0, 0). The aim in these cases is to find the 
best place for a single SMAP on their search spaces. In 
the fourth benchmark, the goal is to place more than one 
SMAP to different positions. All the methods have been 
run on these benchmarks, 40 times for each benchmark, 
and the results have been compared with each other.   

The first benchmark contains eight normal access 
points (static access points) that have a circular 
arrangement. The radius of this circle is equal to 500 
meters. The second benchmark has eight normal access 
points that are concurrent based on the center point. The 
coordinate of the center point is (0, 0). The third 
benchmark has 50 simultaneous access points that are 
randomly created. In all these benchmarks, the weights 
of the normal access points are equal. The results of 
PICA and serial ICA have been obtained in 100 iterations 
with 500 countries as an initial population.    

Figure 7 shows the placements that have been 
discovered by PICA. It clearly indicates that the results 
are very close to the optimal point, and the best results 
are obtained 35 times in the series of 40 runs. The results 
of the random placement and serial ICA placement 
methods are illustrated in Figures 8 and 9, respectively.
It can be clearly seen that the results of PICA are 
significantly better than the results of the random and 
serial ICA methods. Figures 10, 11 and 12 indicate the 
results of the PICA, random, and serial ICA placement 
methods, respectively, for the second benchmark. 
Finally, for the third benchmark, Figures 13, 14 and 15 
present results of all three placement methods. The 
statistical results of the three methods and a 
mathematical approach for all the benchmarks are 
illustrated in Table 1. These results demonstrate that 
PICA is more accurate and efficient than the other 
methods. They also indicate that the proposed PICA 
method is successful on both simple and complex 
benchmarks. Figures 16, 17 and 18 present the stability 
diagrams of all the methods for the first three 
benchmarks. The migration operation in PICA is the 
primary factor for the accuracy of results in our 
approach. Also, this factor can be a strong motivation for 
using PICA. 

In Table 1, there are three important columns 
described as follows: The best distance shows the 
minimum distance between the results of each method 
and the best position (center point) of each benchmark. 

The worst distance presents the maximum distance 
between the results of each method and the best position 
of each benchmark. The correct placement count column 
shows that how many times each method finds the best 
position for each benchmark in the set of 40 consecutive 
test runs. 

B. MULTIPLE SMAPS

Unlike in the three benchmarks considered above, in 
the fourth benchmark the algorithms should choose the 
best locations for several SMAPs instead of just for one.
In this benchmark, there are 16 normal access points and 
5 SMAPs. The SMAPs should have different positions. 
Such complex placement problems are relevant for real-
world wireless sensor networks and cyber-physical 
systems. In a single SMAP placement discussed above, 
a mathematical method could find the best place, but 
when dealing with several SMAPs, mathematical 
methods are not applicable in practice, as they cannot 
determine the best positions for the SMAPs in a finite 
time.  

In this paper, the PICA and serial ICA methods are 
run on all the four benchmarks for 40 times with 100 
iterations in each round. The number of initial countries 
is 500. The results of these tests for the fourth benchmark 
are indicated in Figures 19 and 20. In this placement 
problem, the DM function (Equation 2) is utilized as the 
fitness function for both PICA and ICA to obtain the best 
results. The overall results show that the proposed fitness 
function is very efficient, enabling PICA and ICA to find 
the best positions also in the complex placement cases. 
The results also demonstrate that PICA performs much 
better than ICA. 

Finally, the runtimes of all methods in all benchmarks 
are illustrated in Table 2. The results for PICA in this 
table is based on four cores. The results show that PICA 
in all benchmarks finds the best place in a short time, but 
mathematical methods cannot determine the best 
positions for the SMAPs in the fourth benchmark.  

TABLE I. STATISTICAL RESULTS 

B
en

ch
m

ar
ks

The Best 
Distance

The Worst 
Distance

C
or

re
ct

 
Pl

ac
em

en
t 

C
ou

nt

PICA 3 0 2.8635 35
Random 13.2549 78.1004 0
Serial ICA 0 11.5873 7
Mathematical 0 0 40
PICA 2 0 61.4191 36
Serial ICA 0 127.3185 4
Random 52.9906 1.0572e+03 0
Mathematical 0 0 40
PICA 1 0 475.0343 21
Serial ICA 0 4.6043e+03 2
Random 846.77 1.0447e+04 0
Mathematical 0 0 40
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Fig. 7. The placement of PICA on benchmark 1. 

Fig. 8. The placement of random method on benchmark 1.

Fig. 9. The placement of ICA on benchmark 1.

Fig. 10. The placement of PICA on benchmark 2.  

Fig. 11. The placement of Random method on benchmark 2.  

Fig. 12. The placement of ICA on benchmark 2.  

Fig. 13. The placement of PICA on benchmark 3.  

Fig. 14. The placement of Random method on benchmark 3.  
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Fig. 15. The placement of ICA on benchmark 3.  

Fig. 16. The stability diagram of all methods on benchmark 1.  

Fig. 17. The stability diagram of all methods on benchmark 2.  

Fig. 18. The stability diagram of all methods on benchmark 3.

Fig. 19. The placement of PICA on benchmark 4.  

Fig. 20. The placement of ICA on benchmark 4.  

TABLE II. RUN TIME TABLE FOR ALL BENCHMARKS. 

Benchmarks

Methods

Run Time (Sec)

1 2 3 4

PICA 11.26 10.67 16.02 40.81

ICA 43.23 41.71 63.34 159.97

Random 3.01 3.00 3.61 3.40

Mathematical 4.21 4.20 4.65 -----

VI. CONCLUSION 

In this paper, the concept of a smart mobile access 
point (SMAP) was introduced, utilization of SMAPs in 
wireless sensor networks and cyber-physical systems 
was briefly discussed. The main focus of this study was 
on the placement of SMAPs, especially on finding the 
optimal initial placement. For this, we applied PICA as a 
heuristic method for solving the placement problem and 
proposed a new efficient fitness function tailored 
especially for the complex placement of SMAPs. It was 
demonstrated that this new fitness function improved the 
results of PICA in placement of several SMAPs. In our 
approach, SMAPs were utilized as a fog computing 
platform to run our optimization algorithm in a 
distributed manner. The proposed PICA method was 
tested on four different benchmarks and was compared 
with serial ICA, random placement and mathematical 
methods. The obtained results demonstrated that PICA is 
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an outstanding method and capable of solving efficiently 
complex placement problems that are highly relevant for 
real-world wireless sensor networks and cyber-physical 
systems.  

As a future research topic, we will focus on dynamic 
runtime placement of SMAPs, which is a significantly 
more challenging problem than the initial placement 
problem discussed in this paper.   
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Abstract — Recent advances in computing and sensor 
technologies have facilitated the emergence of increasingly 
sophisticated and complex cyber-physical systems and 
wireless sensor networks. Moreover, integration of cyber-
physical systems and wireless sensor networks with other 
contemporary technologies, such as unmanned aerial vehicles 
(i.e. drones) and fog computing, enables the creation of 
completely new smart solutions. By building upon the concept 
of a Smart Mobile Access Point (SMAP), which is a key 
element for a smart network, we propose a novel hierarchical 
placement strategy for SMAPs to improve scalability of 
SMAP based monitoring systems.  SMAPs predict 
communication behavior based on information collected from 
the network, and select the best approach to support the 
network at any given time. In order to improve the network 
performance, they can autonomously change their positions. 
Therefore, placement of SMAPs has an important role in such 
systems. Initial placement of SMAPs is an NP problem. We 
solve it using a parallel implementation of the genetic 
algorithm with an efficient evaluation phase. The adopted 
hierarchical placement approach is scalable; it enables 
construction of arbitrarily large SMAP based systems. 

Keywords- smart mobile access point; fog computing; 
wireless sensor networks; cyber-physical systems; multi-
objective optimization; evolutionary computing; parallel 
approaches; genetic algorithms; parallel programming; multi-
population; placement. 

I. INTRODUCTION 

The combination of Wireless Sensor Networks (WSN) 
and other new technologies, such as unmanned aerial 
vehicles (UAV) and mobile robots in general, has created a 
new revolution in the field of Cyber Physical Systems 
(CPS). Performance of a WSN can be significantly 
improved by using unmanned mobile nodes (either aerial or 
ground vehicles) as access points and even as sensor or 
monitoring nodes [10], [11].  

The concept of a Smart Mobile Access Point (SMAP) 
provides a novel way to use UAVs or mobile robots to build 
an intelligent dynamic network. Such a network can consist 
of several clusters of SMAPs. By optimizing the positions 
of the SMAPs within each cluster, the quality of the network 
can be improved [14]. As SMAPs can adaptively change 
their positions, placement of SMAPs becomes a crucial 
issue in this approach. Adopting a hierarchal model for 
SMAP placement helps in expanding the network without 
an additional network reconfiguration cost. In the hierarchal 
model, there are two or more layers where an upper layer 
manages behavior and positioning of its respective lower 
layer. This hierarchical structure allows expansion of the 
network by adding new layers when needed.  

Placement is a multi-objective optimization problem 
which can be solved using static or dynamic methods [1].  
For a static problem, such as initial placement of SMAPs, 
Evolutionary Computing (EC) methods are the most well-
known approaches [2], [3]; and a Genetic Algorithm (GA) 
is a powerful EC method [2]. There are several 
improvements for GAs. Among them, in this paper, a multi-
population version of a GA (MPGA) [5] with an efficient 
fitness function for solving the initial placement problem in 
a hierarchical SMAP based system is proposed. The 
proposed method is based on the distributed fog computing 
model to enhance speed, accuracy, and scalability of the 
approach. The aim of this work is to improve resource 
utilization and energy-efficiency by the adopted 
hierarchical system architecture and optimal positioning of 
SMAPs. 

The rest of the paper is organized as follows. Section II 
provides the background of this work. Section III reviews 
literature study in the area. Section IV proposes a parallel 
multi-population implementation of a GA, based on fog 
computing, to solve the initial hierarchical placement of 
SMAPs. In Section V, the proposed MPGA is evaluated by 
comparing with a traditional GA [17] and a mathematical 
method [19]. Finally, Section VI concludes the paper.

II. BACKGROUND 

In this section, brief reviews on Smart Mobile Access 
Points (SMAP), access point placement methods and 
Evolutionary Algorithms (EA) are presented. 

Smart Mobile Access Points  
SMAPs are mobile access points that enable the creation 

of a smart sensor network [14]. The SMAPs predict the 
behaviour of the network. Also, they select and make the 
best strategy to support the network at any given time. A 
SMAP has authority to utilize previous knowledge and 
operations or creates new operations by evolving or 
learning through machine learning techniques [14]. A 
SMAP carries out the following three key operations: 1) 
Finding new (optimal) positions for access points to obtain 
a better coverage of sensors; 2) Making decisions about 
moving the access points to new areas [5]; 3) Participating 
in distributed communication and computation tasks (fog 
computing [6]) other than the processing carried out as an 
inherent part of the decision making in 1) and 2), illustrated 
in Figure 1. 

Finding an optimal placement to improve energy 
consumption, reliability, and connectivity is an NP-hard 
problem [8]. Metaheuristic methods are the best approaches 
to solve such a problem. Different metaheuristic methods 
are presented for example in [9], [7].  
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III. RELATED WORK

Finding optimal placement to improve connectivity, 
reliability and energy consumption is an NP-hard problem 
[16]. There are different heuristic methods to solve it that 
presented in [15], [14]. In this section, router placement 
methods are divided into three main group: a) non-
redundant placement, b) redundant and c) non-trivial 
redundant router placement. Y. Thomas et al. [14] have 
developed a heuristic algorithm to increase the network 
lifetime by iteratively moving an RN to a better location. In 
[18], its authors have presented several trajectory control 
algorithms with different assumptions on locating 
capabilities to achieve the objectives of reducing hop count 
and reducing overhead. W. Youssef et al. [17] have 
employed genetic algorithms for selecting the best spot for 
placing each gateway so that sensors’ data can be delivered 
to a gateway with the least latency (GAHO). A. Krause et 
al. [19] have presented a data-driven approach (pSPIEL) 
that addresses the three central aspects of this problem: 
measuring the predictive quality of a set of sensor locations, 
predicting the communication cost involved with these 
placements, and designing an algorithm with provable 
quality guarantees that optimizes the NP-hard tradeoff.  
These methods have been utilized in the different problem, 
but there are several gaps that the proposed work covers 
them such as hierarchal architecture to solve the scalability 
problem and weighted sensitive to increase the focus of 
placement method to the more critical area for covering. 
The proposed method has several critical properties that 
motivate us to utilize it in these kinds of placement 
problems. These properties are the hierarchal architecture, 
the weighted sensitive fitness function, and the multi-
population implementation to increase the reliability of 
results. 

IV. PROPOSED APPROACH

In this section, a parallel implementation of a multi-
population GA (MPGA) is proposed to establish an efficient 
method for solving the initial placement problem in 
hierarchal SMAP-based systems. 

A. Algorithmic Layer 
To have the best placement of SMAPs on different 

layers, all access points are categorized in our work into two 
main groups that are normal access points and SMAPs. 
Normal access points are static nodes and only transfer data 
and maintain connectivity in the network [14]. SMAPs can 
emulate all functionalities of normal access points, but they 
also can perform other tasks, like dynamically supporting 
other access points when needed. In this paper, however, to 
simplify the problem, normal static access points have been 
selected as target points for SMAPs on the lowest layer. 
Also, all SMAPs on each layer are divided into several 
clusters, and each cluster represents target points for other 
SMAPs on a higher level, as we are considering the static 
initial placement only. Moreover, each normal access point 
has an individual and independent weight which indicates 
the probability of needing support from SMAPs (i.e. the 
need for network reconfiguration) [14].   This probability is 
equal to a value that can be derived from different 

parameters such as communication traffic and battery 
lifetime. In our approach, the rate of communication traffic 
is selected for this purpose. 

B. Multi-Population Genetic Algorithm 
SMAPs work on a discrete space; therefore, a Genetic 

Algorithm (GA) is a suitable choice to solve the placement 
problem [2], [4], [14]. Furthermore, a multi-population GA 
is more efficient than a sequential GA for these problems 
since the multi-population method increases the selection 
pressure and improves the diversity.  Thus, we have utilized 
a parallel multi-population genetic algorithm to achieve the 
best results for selecting the best positions according to 
Section II. 

In this work, there are some important aspects 
concerning the multi-population strategy that have been 
efficiently matched with the problem of hierarchical
placement of SMAPs and enhanced to obtain more accurate 
solutions.  The key benefits of multi-population GAs, 
regarding their efficient utilization in this problem, are: 1) 
Increasing the diversity of initial population, 2) Increasing 
the selection pressure, and 3) Migration operator [2], [14].

 
Fig. 1. SMAP model the using Fog network 

The multi-population strategy leads to a better diversity 
of population which improves the search space of the best 
positions. This diversity also enhances the selection 
pressure to obtain the most accurate placement. 
Furthermore, the migration operator enables processors to 
exchange their best genetic material, thereby improving 
their genetic populations. 

The proposed multi-population method uses a ring 
topology because of its simplicity and efficiency in near-
neighbor communication because communication cost is 
the critical parameter, and the proposed work obtains the 
lowest connections to communication in the ring topology. 
Our approach can run on both the shared memory and the 
message passing architectures. The algorithm obtains a 
result which satisfies all conditions of an efficient 
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placement. The main phases of our algorithm are shown as 
follows:

1) Initialization  
First, a matrix, in which each cell is a data structure of 

the form (��, ��), is created. Each row of the matrix is a 
chromosome, which is a set of points, and also, it can be the 
best solution. All of these points are a possible placement of 
the SMAPs in the proposed search space on different layers. 
Values of �� and ��  are real values (��, �� ∈ �) and are 
randomly generated. Let us assume that the number of 
SMAPs on the first layer (the lowest layer) is equal to ��,
on the second layer is equal to �	, and, correspondingly, on 
the 
�� layer (the highest layer) is equal to �
, where �� ≤�	 ≤ ⋯ ≤ �
 . Each column in this matrix corresponds to 
the location of each placement of a SMAP. Hence, the 
number of rows is equal to the size of the initial population 
(����) and the number of columns is equal to the number 
of all SMAPs on all layers. A sample chromosome for two 
layers of SMAPs is illustrated in Figure 2.���, ��� �	�, �	� … ���� , ���� ��	, ��	 �		, �		 … ���	 , ���	

Fig. 2. Structure of the chromosome for two layers SMAPs 

2) Chromosome Evaluation 
In all problems that are solved by GAs, finding a 

suitable fitness function to evaluate all chromosomes is the 
essential task. In our approach, the evaluation function 
receives a chromosome as its input and returns a real value 
as its output. The output is computed based on the distance 
between the SMAPs and all normal access points. A 
chromosome for which the fitness function evaluates to the 
lowest value is the best chromosome (solution). In other 
words, this problem is a minimization optimization 
problem.

There are some simple equations that are suitable for 
selecting the best place for a single SMAP, but when the 
number of SMAPs is increased, and SMAPs should be 
placed in different layers, the placement problem becomes 
more complex, and the simple functions do not provide 
correct results anymore and cannot therefore be applied. We 
propose a new and efficient fitness function DM2 in 
Equation 4. It is a scalable fitness function, providing 
accurate results for any number of SMAPs on different 
hierarchy levels. This equation is compatible with the 
scalability problem. To construct our fitness function, we 
first define: 

�=
∑ ���_��� ×��_���!"#��_���$ ×���_���%&'��(�

��*�+-./�
D=0√23

(1)

where n is the number of normal access points, and 4_��� is the Euclidean distance between the SMAP 
number i and D nearest normal access points on the first 
layer. The 5�_���is the total weights of all normal access 
points in 4_���. 467892:;�  is the sum of distances 
between all SMAPs in the 8�� layer and is defined in 
Equation 2. 5�_<=>  is the total weight of all SMAPs on the ?�� layer. So Ө is the fitness value for the first layer.  

Equation 3 is used for the layers other than the first layer: ɣl
is the fitness value for 
�� layer. By combining Equations 1 
and 3, we then obtain the fitness function DM2 presented in 
Equation 4 that is total fitness value of all layers.
467892:;�= ∑ ∑ @(�� − �B)	 + (�� − �B)	�DBE��FB

�D�E� (2)

G
 = I J�4_KLB × 5�_<=>! + �4	_KLB4 × 5��_<=>&N 467892:;
O�P

BE�
(3)

4L2 = � + I G
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3) Selection operator 
The basic idea of the selection operator is that it gives 

preference to better chromosomes and allows them to pass 
on their genes to the next generation. The proposed 
algorithm adopts the tournament method with three 
members to select the best chromosome. First, three 
chromosomes are randomly selected, and then the best one 
is selected for the next generation in every cycle.

4) Crossover operator 
A GA has two main operators: crossover and mutation. 

Since a GA is a semi-random optimization method, its 
operators do not occur with 100% certainty. In other words, 
they happen with less than 100% probability. The crossover 
operator selects genes from chromosomes, that are the 
parents, and creates a new offspring. This means that the 
operator exploits the search space to find more accurate 
solutions. The crossover chromosomes are chosen 
randomly from the population according to a probability 
called a crossover rate (R.). The crossover rate determines 
the frequency with which the crossover operator is applied 
[12].

5) Mutation operator 
The mutation operator is an exploration operation and 

occurs with a probability called a mutation rate (R�) [28]. If 
this operator happens on a chromosome, it randomly 
changes the new offspring according to the mutation rate. 
In other words, this operator explores the search space to 
discover a new search area and prevents all solutions in a 
population from falling into a local optimum. The mutation 
rate is a measure for determining when mutations occur 
over time [13].  

6) Replacement operator 
The current generation of chromosomes is replaced by 

the recently generated offspring based on a particular 
replacement approach. In our algorithm, the steady-state 
strategy is utilized for the replacement operator. The 
operation compares each chromosome of the current 
population with the last generation. If a chromosome in the 
current generation is better than its corresponding 
chromosome in the last generation, the new chromosome 
replaces the old one.   

7) Migration operator 
During the migration process, some of the best 

chromosomes, in each processor, are chosen and sent to the 
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next processor in the ring at each migration time point. 
Concurrently, each processor receives the chromosomes 
sent by the previous processor and replaces its worst 
chromosomes with the received ones. 

8) Stopping strategy 
Finally, the algorithm stops after some certain number 

of iterations, and the best chromosome is determined. This 
represents the best solution for the SMAP placement.  

V. EXPERIMENTAL RESULTS 

The proposed work has been implemented on Intel® 
Core™ i5, CPU @ 2.9GHz, RAM 8 GB. VC++ 2015 has 
been utilized for the implementation and MPI instructions 
for parallelization. Furthermore, MPICH2.3.2 has been 
applied for parallel execution of the algorithms. The 
proposed MPGA based approach has been tested on four 
processors in all tests for two case studies. Normal access 
points have different weights. The results have been 
compared with the GAHO (GAHO) [17] and a 
mathematical method (pSPIEL) [19].  

In the considered two case studies, presented as follows, 
the algorithms should select the best locations for several 
SMAPs in two layers. In a single SMAP placement, a 
pSPIEL can find the best place, but when dealing with 
several SMAPs, pSPIEL are not applicable in practice, as 
they cannot determine the best positions for the SMAPs in 
a finite time.  

In this paper, the MPGA and GAHO methods are run on 
all the two case studies for 30 times with 100 iterations in 
each round. The size of the initial population is 500. The 
results for the two case studies are shown in Figures 3-6;
and Tables 1. In these placement problems, the DM2 
function (Equation 4) is utilized as the fitness function for 
both MPGA and GA to obtain the best results. The overall 
results indicate that the proposed fitness function is very 
efficient, enabling MPGA and GA to find the best positions 
also in the complex placement cases. The results also 
demonstrate that MPGA performs much better than GA. 

 The first case study has 32 normal access points that are 
concurrent based on the center point. They are divided into 
two subsets, i.e., A and B, as shown below. The weight of 
each normal access points in A and B is equal to 2 and 1, 
respectively. The best places on the first layer are in the 
coordinates (-10, 0), (0, -10), (10, 0), and (0, 10); and the 
best places on the second layer are in the coordinates (5, 0) 
and (-5, 0). The results of MPGA and GAHO have been 
obtained in 100 iterations with 500 chromosomes as an 
initial population.

A=S (−13,3), (−10,3), (−7,3), (−7,0), (−7, −3), (−10, −3), (−13. −3),(−13,0), (13,3), (13,0), (13, −3), (10,3), (10, −3), (7,3), (7,0), (7, −3)Y
B=Z(−3, −7), (−3, −10), (−3, −13), (0, −7), (0, −13), (3. −7), (3, −10), (3, −13),   (−3,7), (−3,10), (−3,13), (0,7), (0,13), (3,7), (3,10),(3,13) [

The second case study has sixty normal access points, 
residing on two hyperbolic curves (a horizontal curve and a 
vertical one). The mathematical definitions of these curves 
are presented in Equations 5 and 6. The weights of the 
normal access points in Equation 5 (the horizontal curve) 
and Equation 6 (the vertical curve) are equal to 2 and 1, 

respectively. According to the theory of hyperbolic curves, 
parameters a, b, and c (in Equations 5, 6, and 7) are very 
effective. In addition, the points (0, c) and (0, -c) in the 
horizontal hyperbolic curve, and (c, 0) and (-c, 0) in the 
vertical hyperbolic curve, have the minimum distances to 
any points on these hyperbolic curves. These points are the 
best places for placement of SMAPs on the first layer. \	9	 − ]	^	 = 1, 9 = 3, ^ = 4 (5)

]	^	 − \	9	 = 1, 9 = 3, ^ = 4 (6)

b = √:	 − 9	 (7)

Figure 3 shows the placements that have been 
discovered by MPGA in the first case study. It clearly 
indicates that the results are very close to the optimal points, 
and the best results are obtained 35 times in the series of 40 
runs. The corresponding results of the GAHO placement 
method are illustrated in Figure 4. It can be clearly seen that 
the results of MPGA are 47% in the first case study and 38% 
in the second case study more reliable than the GAHO 
method. Figures 5 and 6 indicate the results of the MPGA 
and GAHO placement methods, respectively, for the second 
case study. The statistical results of both considered 
methods and pSPIEL, for all two case studies, are illustrated 
in Table 1. These results demonstrate that MPGA is more 
accurate and efficient than the other methods. They also 
indicate that the proposed MPGA method is successful in 
both simple and complex case studies. The migration 
operation in MPGA is the primary factor for the accuracy 
of the results in our approach. Therefore, the accuracy is a 
strong motivation for using the MPGA method. 

TABLE I. STATISTICAL RESULTS 

Case The Best 
Distance

Correct 
Placement Count

The Worst 
Distance

PGA

1

0 26 11.814

GAHO 0 7 34.899

pSPIEL - 0 -

PGA

2

0 28 9.465

GAHO 0 13 18.927

pSPIEL - 0 -

Fig. 3. Placement with MPGA in the case study 1.
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Fig. 4. Placement with GAHO in the case study 1.  

Fig. 5. Placement with MPGA in the case study 2.  

Fig. 6. Placement with GAHO in the case study 2.
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Abstract — Today, based on fast development especially in 
Network-on-Chip (NoC)-based many-core systems, the task 
scheduling problem plays a critical role in high-performance 
computing. It is an NP-hard problem. The complexity increases 
further when the scheduling problem is applied to 
heterogeneous platforms. Exploring the whole search space in 
order to find the optimal solution is not time efficient, thus 
metaheuristics are mostly used to find a near-optimal solution in 
a reasonable amount of time. We propose a compound method 
to select the best near-optimal task schedule in the 
heterogeneous platform in order to minimize the execution time. 
For this, we combine a new parallel meta-heuristic method with 
a greedy scheme. We introduce a novel metaheuristic method 
for near-optimal scheduling that can provide performance 
guarantees for multiple applications implemented on a shared 
platform. Applications are modeled as directed acyclic task 
graphs (DAG) for execution on a heterogeneous NoC-based 
many-core platform with given communication costs. We 
introduce an order-based encoding especially for pipelined 
operation that improves (decreases) execution time by more 
than 46%. Moreover, we present a novel multi-population 
method inspired by both genetic and imperialist competitive 
algorithms specialized for the scheduling problem, improving 
the convergence policy and selection pressure. The potential of 
the approach is demonstrated by experiments using a Sobel 
filter, SUSAN filter, RASTA-PLP, and JPEG encoder as real-
world case studies.  

Keywords- parallel imperialist competitive algorithm (PICA); 
multi-population technique; evolutionary computing (EC); task 
graph scheduling; heterogeneous platform. 

I. INTRODUCTION  
Contemporary multiprocessor system-on-chip (MPSoC) 

based parallel processing, in a vast variety of applications, is 
the result of many breakthroughs over the last two decades. 
The development of embedded MPSoCs has led to their use 
in many applications like health monitoring, video and audio 
processing, and autonomous vehicles to mention just a few. 
The data and program code for these applications can be 
distributed among the available multiple cores, and thus 
maximal benefits from these parallel systems can be obtained 
by employing efficient task partitioning and scheduling 
strategies. A homogeneous MPSoC contains a set of identical 

processing elements (PEs), typically programmable 
processors. The usage of homogeneous MPSoCs simplifies 
task migration, while heterogeneous MPSoCs support a wider 
variety of applications, because they integrate different PEs 
[26]. 

In this work, we consider the deterministic model for the 
task scheduling problem, where the execution time of tasks 
and the data communication time between tasks are assigned. 
The directed acyclic task graph (DAG) that represents the 
precedence relations of the tasks is well known as an NP-
complete problem. Task mapping, which consists of finding 
a placement for a set of tasks that meets a specific requirement 
such as energy consumption savings is an important issue. 
Static mapping defines task placement at design time; 
dynamic mapping defines task placement at runtime [27]. 
Many heuristic methods for the task scheduling dilemma have 
been proposed [1]-[7] because the precedence constraints 
between tasks can be non-uniform therefore rendering the 
requirement for a uniformity solution. We assume that a NoC 
is a heterogeneous multiprocessor system and non-
preemptive (each processor completes the current task before 
the new one starts its execution). 

Recently, evolutionary approaches have been developed 
to solve this problem. For example, a genetic algorithm (GA) 
based approach can better locate a near optimal solution than 
a list schedule in most cases [8], [9], and [10]. For 
multiprocessor scheduling problem, several GA methods 
have been applied, but none of them have considered the 
communication cost. On the other hand, a number of parallel 
GA methods have been proposed to solve the task graph 
scheduling problem in [13]. However, in all of them, there is 
a fundamental problem that derives from the convergence 
idea of a GA and our paper resolve this problem. In this paper, 
we tackle this problem by a combination of a GA and the 
Imperialist Competitive Algorithm (ICA) [14]. Moreover, we 
explicitly consider the communication delays between 
processors. When two communicating tasks are mapped onto 
the same processor we assume that the communication delay 
is zero, and if they are mapped on different processors, there 
will be a communication cost. For this problem, we propose 
an extension of the priority-order-based coding method as the 
priority-order-based country (OBC) for the pipelined 
execution of the tasks. This coding shows the priority and 
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selected processor to run each task. The priority-based 
encoding [11] is the knowledge of how to handle the problem 
of producing the encoding that can treat the precedence 
constraints efficiently. To obtain the best result, we present a 
new multi-population method, a combination of ICA and GA. 
This combination helps our approach to match the scheduling 
problem and addresses some problems of GA, such as the 
convergence policy and selection pressure, by keeping all 
countries (possible solutions) in all iterations and removing 
the general selection operation such as roulette wheel and 
tournament methods. In this paper, we propose a novel multi-
population implementation of the ICGA, a hybrid approach 
using both ICA and GA, for solving the task scheduling 
problem. The goal is to improve the execution time and 
reliability (proximity of the achieved result and the best 
result) of the task scheduling. 

The rest of the paper is organized as follows. Section 2 
discusses the related work. In Section 3, definitions and 
important parameters in the task scheduling problem are 
presented. In Section 4, the proposed parallel algorithm for 
the scheduling problem (MICGA) is presented. Section 5 
presents the experimental results and demonstrates the 
efficiency of the proposed algorithm. We end with 
concluding remarks in Section 6. 

II. RELATED WORKS 
The basic idea is to make an ordered list of nodes by 

assigning them priorities, and then to repeatedly execute the 
following two steps until a valid schedule is obtained: (1) 
Select from the list the node with the highest priority for 
scheduling. (2) Select a processor to accommodate this node. 

In realistic cases, scheduling needs to exploit the 
parallelism by identifying the task graph structure and take 
into consideration task granularity, arbitrary computation, 
and communication costs. 

The modified critical path algorithm (MCP) [29] is 
proposed based on the latest possible start time of a node. A 
node’s latest possible start time is determined via the as-late-
as-possible (ALAP) binding by traversing the task graph 
upward from the exit nodes to the entry nodes while pulling 
the nodes start times downwards as much as possible. The 
latest possible start time of the node itself is followed by a 
decreasing order of the latest possible start time of its 
successor nodes. In addition, the dominant sequence 
clustering algorithm (DSC) [29] is based on the dominant 
sequence, which is essentially the critical path of the partially 
scheduled task graph at each step. At each step, DSC checks 
whether the highest CP (the critical path of task graph) node 
is a ready node. If so, DSC schedules it to a processor 
allowing the minimum start time. Such a minimum start time 
may be achieved by rescheduling some of the node’s 
predecessors to the same processor. If the highest CP node is 
not a ready node, DSC does not select it for scheduling. 
Instead, it chooses the highest node which lies on a path 
reaching the CP for scheduling. The mobility directed 
algorithm (MD) [29] selects a node at each step based on 
relative mobility which is defined as the difference between a 
node’s earliest start time and latest start time. Similar to the 
ALAP binding, the earliest possible start time is assigned to 
each node via the as-soon-as-possible (ASAP) binding. This 
is performed by traversing the task graph downward from the 
entry nodes to the exit nodes while pulling the nodes upward 
as much as possible. Moreover, relative mobility is obtained 
by dividing the mobility with the node’s computation cost. 
Basically, a node with zero mobility is a node on the CP. At 
each step, MD schedules the node with the smallest mobility 

to the first processor having a large enough time to 
accommodate the node without considering the minimization 
of the node’s start time. After a node is scheduled, all the 
relative mobility is updated. 

In [13], a multi-population implementation of GA 
(MPGA) is presented which outperforms deterministic and 
nondeterministic methods [2]-[8]. In [29], a new encoding 
mechanism with a multi-functional chromosome is presented 
and it uses the priority representation that called priority-
based multi-chromosome (PMC). PMC can efficiently 
represent a task schedule and assign tasks to processors. PMC 
is another metaheuristic method that is presented in [29] that 
uses a priority model for encoding the chromosomes and use 
a GA to achieve the results. 

Research on static mapping method includes the work of 
Lei et al., who proposed a genetic mapping algorithm to 
optimize application execution time [20]. In their work, 
graphs represent applications and the target architecture is a 
NoC. Wu, et al. also investigated genetic mapping algorithms 
[21]. By combining dynamic voltage scaling techniques with 
mapping, they achieved 51% savings in energy consumption. 
Murali et al. explored mappings for more than one application 
in NoC design, using the tabu search (TS) algorithm [22]. 
Manolache, et al. investigated task mapping in NoCs, trying 
to guarantee packet latency [23]. For this purpose, both the 
task-mapping algorithm (TS) and the routing algorithm are 
defined at design time. Hu et al. presented a branch-and-
bound algorithm to map a set of IP cores (IPs) onto a NoC 
with bandwidth reservation [24]. Their results show energy 
savings of 51.7% in the communication architecture. Marcon 
et al. investigated how to map modules into a NoC, targeting 
low energy consumption [25]. They compared several 
algorithms, using a model that characterizes applications by 
their inter-task communication volume. Y. Xu, K. Li, J. Hu 
and K. li in [26] presented a task scheduling scheme on 
heterogeneous computing systems using a multiple priority 
queues genetic algorithm (MPQGA). Their experimental 
results for large-sized problems for a large set of randomly 
generated graphs as well as graphs of real-world problems 
with various characteristics showed that the proposed 
MPQGA algorithm outperformed two non-evolutionary 
heuristics and a random search method in terms of schedule 
quality. 

III. BACKGROUND 
In the following we present the considered system model. 

A. Hardware platform model 
A heterogeneous MPSoC is a set of different PEs 

interacting through a communication network. For our work, 
a NoC-based heterogeneous MPSoC model is selected, in 
which each PE manages execution of one task at a time. PEs 
can support either software or hardware task execution. 
Software tasks execute in instruction set processors (ISPs), 
and hardware tasks in reconfigurable logic (RL) or dedicated 
IPs [27].  Among the available PEs, one of the processors is 
selected as a manager processor (MP). The MP is responsible 
for resource control, configuration control, and four task 
manipulation operations, namely: binding, scheduling, 
migration, and mapping [27]. The MP runs each application’s 
initial task. When a running task needs to communicate with 
another task not yet mapped, the latter is loaded into a PE 
from the task memory. A DAG, in which vertices represent 
software or hardware tasks and edges define communicating 
PE pairs, models each application. Each edge of a DAG 
defines a master-slave communication channel. The edge 



source vertex is the master of the communication, and the 
edge destination vertex is the slave. 

B. Application Model 
We assume a weighted DAG. In such a DAG, each node 

represents a task that has a finite execution time, and each 
edge illustrates the communication cost between two 
connected tasks. Also, the DAG can define the priority of all 
tasks. 

We assume that each application ܶܩ௔ is modeled as a 
weighted DAG. In this DAG, each node represents a task that 
has a finite execution time, and each edge illustrates the 
communication cost between two connected tasks. The edges 
also represent the precedence relations. Let ܶܩ௔ be a 
weighted DAG defined as a 4-tuple ܶܩ௔ =
( ௔ܸ, ,௔ܧ ௔ܹ, ௔), where ௔ܸܥ = { ଵܶ

௔, ଶܶ
௔, … , ௡ܶ

௔} is the set of 
vertices (tasks), ܧ௔ = ൛݁௜௝

௔ = ( ௜ܶ
௔, ௝ܶ

௔)ൟ is the set of 
communication (dependency) edges, ௔ܹ is the set of task 
weights (execution times), ܥ௔ is the set of edge weights 
(communication times), ݓ௜

௔  ∈ ୟܹ is the execution time of 
task ௜ܶ

௔ ∈ ௔ܸ, ܿ௜,௝
௔ ∈  ௔ is the communication cost (delay) onܥ

the edge of ݁௜,௝
௔ ∈ ௔, that is assumed to be zero if ௜ܶܧ

௔ and 
௝ܶ
௔ are bound to the same processor. We assume a simple 

linear model between the execution times and PE frequencies, 
e.g., if ܲܧଵruns two times faster thanܲܧଶ, then task ௜ܶ

௔also 
runs two times faster on ܲܧଵthanܲܧଶ.  

The execution time of an application ܶܩ௔ is defined as the 
completion time of its last task. When constructing a schedule 
for execution of the applications, it is of great importance to 
consider both task execution times and the communication 
times. Since considering the communication times 
significantly increases the number of schedules to be 
explored, most of the previous work only consider the task 
execution times. However, when running tasks with 
precedence relation on different processing elements, the 
communication overhead is not negligible and it has to be 
considered in the model. To this end, we explicitly model the 
communication delays. 

T1

T2 T3 T4

T5

T7

T8

T6

T9

 

Figure 1.  DAG Task Graph 

C. Problem Statement 
Our task scheduling method, MICGA, takes a set of task 

graphs {ܶܩଵ, … ,  ே} and a set of processing elementsܩܶ
,ଵܧܲ} … ,  ௠} as its inputs. The output of MICGA is the taskܧܲ
bindings, i.e. task to processor mappings and static schedules, 

i.e. the order of task executions. The overall goal of the 
scheduling is to minimize the execution times (also known as 
the schedule length, latency or makespan) of all applications 
while preserving the precedence constraints. Let ௔݂represent 
the execution time of application ܶܩ௔. We present the 
following mathematical formulation as our optimization 
problem: 

min ଵ݂, … ே݂, 
s. t.   ݐ௜

௔ − ௜ݓ
௔ − ௝݁௜

௔ ≥ ௝ݐ
௔, ܽ ∈ [1, … N] , ∀ ݁௜௝

௔ ∈  ,௔ܧ
where ݐ௜

௔is the completion time of ௜ܶ
௔. Note that the above 

formulation is a multi-objective optimization problem as we 
want to minimize the execution times of all applications. The 
optimization is subject to the precedence relations imposed 
by the application graphs. 

IV. PROPOSED METHOD 
In this work, we combine the GA and ICA methods and 

customize the resulting hybrid method for the scheduling 
problem in heterogeneous systems. The operations of GA are 
suitable for scheduling but its convergence strategy to find 
more reliable and accurate results is not efficient [15], [16], 
[17], because the selection operation in GA misses some 
chromosomes that have a probability to become potential 
genes for obtaining the best results. In ICA (where we use 
countries as the population), all the countries will be available 
in all iterations and they may move to other places in the 
search space. However, in GA, the selection operation highly 
depends on random functions which can easily converge to a 
local optimum. To solve this, we use an efficient convergence 
strategy in order to improve the reliability of results. 

All the scheduled tasks in a DAG should satisfy the 
precedence relations, and therefore we use the order based 
coding mechanism suited for multiprocessor scheduling. It 
should fulfill the following rules:  

1. All the predecessors of a task must have completed their 
execution before initiating the task execution. 

2. In a DAG, all the tasks must be executed at least once. 
This representation eliminates the need to consider the 
precedence relations between the computational tasks. The 
precedence relation is encoded in the rule 1. 

A. Order-based country (OBC) 
There are several approaches [8], [10], and [12][12] that 

have used GA for the multiprocessor scheduling problem, but 
they suffer from inefficient coding methods. So, how to 
encode a solution of the problem into a chromosome is a key 
issue here. This has been investigated from two different 
angles which are: mapping characters from the genotype 
space to the phenotype space when countries are encoded into 
a solution [29]; and metamorphosis properties when countries 
are manipulated by genetic operators [14]. 

There are two main challenges involved with the encoding 
problem: 1) there is a need for storing a huge number of 
chromosomes for each schedule; 2) in the case of a large 
number of tasks, the exploration and exploitation operators 
will have difficulties in working on the precedence relations 
among tasks. 

To overcome these challenges, we introduce an extension 
of OBC that strings a present task priority of task nodes with 
the corresponding processor simultaneously. For example, 
Figure 3 shows an OBC that represents nine tasks along with 
three processors with mentioned DAG in Figure 1.
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Figure 2.  A proposed schedule of six Sobel application on four processors (pp=6) 

B. Priority-based encoding/decoding 
Finding an encoding which can treat the precedence 

constraint efficiently is a critical step. The proposed encoding 
method is based on the task priority, and our work focuses on 
the pipelined execution model of applications. In the pipeline 
model, input data is divided into several parts, and these parts 
are then one by one used as inputs to an application. We make 
a pack of the parts and find the best schedule for this pack of 
data.  Each part is an application such as Sobel Application 
(Figure 7), and the number of parts (applications) in each pack 
is ݌݌. A proposed schedule of six Sobel applications (pp=6) on 
four processors is illustrated on Figure 2. The following 
procedure explains the generation of the initial OBC: 

First, we input the order-based task numbers ௝ܺ[݅] (1 ≤
௝ܺ[݅] ≤ # Task, 1 ≤ ݆ ≤ 1 ݀݊ܽ ݌݌ ≤ ݅ ≤  randomly (݇ݏܽܶ#

independent from the processor number in the X rows. Then, 
the algorithm fills the Y rows with random numbers ௝ܻ[݅] (1 ≤

௝ܻ[݅] ≤ 1 ݀݊ܽ ݎ݋ݏݏ݁ܿ݋ݎܲ# ≤ ݆ ≤  .(݌݌

C. ICGA Operation 
Now, a fast review of ICGA is presented in this subsection 

then in the next sections all operations with more detail are 
presented. In the first ICGA generates k countries 
,ଵܥ}) . . . ,  ௞}), i.e., k is the the number of countries, (see Figureܥ
4.1), then ICGA sorts the countries, so that: 

 if (i ≤ (௜ܥ)݂) ℎ݁݊ݐ (݆ ≤  where f is the fitness , ((௝ܥ)݂
function. 

 Then, the best countries, whose fitness values are the 
lowest (because this problem is a minimizing problem) 
,ଵܥ}) ,ଶܥ … , ݉݁  ݁ݎℎ݁ݓ {௘௠ܥ =  will (ݏ݁ݎ݅݌݉݁ ݂݋ ݎܾ݁݉ݑ݊#
be selected to become imperialists, and the remaining countries 
,௘௠ାଵܥ}) . . . ,  ௞}) form the colonies of these imperialists. Theseܥ
colonies start moving toward their respective imperialists, after 
all colonies have been divided among the imperialists [14]. 

 The next step computes the power of each imperialist and 
the imperialistic competitive step follows. The weakest 
imperialist loses its weakest colony and the selected imperialist 
obtains this colony. These steps are repeated until reaching a 
termination condition. There can be different types of 
termination conditions. For example, ICGA could be set to 
stop when we have one imperialist with all colonies as its 
members.  

Similarly to other ECs, when solving a large problem with 
a far-reaching search area, we need a large initial population to 
obtain a more accurate and reliable result. We can also prevent 
convergence to local optima by using a multi-population 
method, where each processor runs ICGA independently. If 
one processor converges to a local optimum, all the other 
processors can continue their work on other parts of the search 
space. 

D. Multi-Population ICGA (MICGA) 
To implement MICGA, we use a selective local search 

strategy which runs on MICGA, with several processors 
connected together based on a ring topology and using a 
message passing method for communication between the 
processors. In each processor, we first initiate independent 

countries and run the ICGA independently. Occasionally, the 
best country is copied from a processor ௜ܲ  to ௜ܲାଵ, replacing 
the worse country in ௜ܲାଵ. This operation takes place 
synchronously (simultaneously) in all processors. The number 
of countries in each processor remains the same even when 
countries migrate to other processors. In Figure 5, the pseudo 
code for the multi-population ICGA is presented.  

In the multi-population ICGA, we increase the number of 
all countries along with the selection pressure [16], [17] which 
helps in obtaining more accurate results in a short time period. 
Also, the convergence to results is much faster than in the 
sequential ICGA. In EC methods, when the diversity of 
countries are high enough, the rate of convergence rises. The 
following steps run until MICGA obtains the best results. 
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Figure 3.  Chain of tasks based on the presented country 

1) Make Countries.  
As previously mentioned, each processor generates k 

countries (such as Figure 3), having its own world (ܹ݈݀ݎ݋ఉ =
,ଵܥ} ,ଶܥ … , ఉ݈݀ݎ݋ܹ) ݀݊ܽ {௞ܥ = ఉ݈݀ݎ݋ܹ ݎ݋ ఊ݈݀ݎ݋ܹ ≠
 .ఊ)), where all worlds are independent݈݀ݎ݋ܹ

2) Evaluation of Countries.  
In all problems that are solved by meta-heuristic methods 

such as GAs and ICA, the essential task is to find a suitable 
fitness function to evaluate the whole population. In the 
proposed approach, the evaluation function receives a country 
as its input and returns a real value as its output. The output is 
computed based on the execution time of the application task 
graph by each country. A country with the lowest fitness 
function value is the best country (solution). In other words, 
this is a minimization optimization problem. The evaluation 
operation is composed of several steps that are introduced 
below. Note that these steps run in all countries. The 
Evaluation operation in ICGA run three step that presented as 
follow: 

a) Making Tasks Chains on each Processor.  
It is clear that each country represents an arbitrary schedule 

of tasks. For each processor, the algorithm makes a chain of 
tasks based on Equation 1, the chain of tasks define that which 
tasks should run on the same processor, then computes the total 
execution time of each chain based on Equation 2. Chains of 
tasks are presented in Figure 3. 

ܿℎܽ݅݊௉೔ = (⋃ ⋃ ௜ܺ[݆] ௜ୀ௡
 ௜ୀଵ

௝ୀ௣௣
௝ୀଵ   |  ௜ܻ[݆] = ௜ܲ) (1) 



CCost = ෍ ௝݌

|௖௛௔௜௡ು೔|

௜ୀଵ
 (2) 

b)  Assigning Probabilities to Processors.  
Since this algorithm is proposed for heterogeneous 

systems, the greedy algorithm (Knapsack’s algorithm [28]) is 
utilized to compute the mapping probability of chains to 
processors. Based on the Knapsack idea, each chain with a 
higher computation time has a higher probability to be 
assigned to faster processors. Also, the algorithm computes the 
probability of chains based on their total computation time and 
then runs a Roulette wheel algorithm [12] to assign chains to 
processors. In this phase, there is a competition among chains 
to obtain faster processors. 

ܥܲ = ,ଵܥܲ} ,ଶܥܲ … ,  ௠}  is the set of the processor’sܥܲ
chains, ܶܲܥ = ,ଵܥܲܶ} ,ଶܥܲܶ … ,  ௠} is the correspondingܥܲܶ
set of the chain execution times, ܲܲܥ =
,ଵܥܲܲ} ,ଶܥܲܲ … ,  ௠} is the corresponding set of the chainܥܲܲ
probabilities, and 

௜ܥܲܶ) ≤ (௝ܥܲܶ ⟶ ௜ܥܲܲ ≤  ௝ (3)ܥܲܲ
c) Compute Fitness Values.  

In this step, the fitness value of each country, which has 
been generated randomly based on OBC, will be computed 
according to its power metric corresponding to the execution 
time of the country’s scheduling. 

3) Initialize the Empire.  
The algorithm selects the best set of countries as the 

imperialists, and divides the remaining countries as colonies 
among them. Each imperialist with its colonies form an 
empire. 

T.C.n=Cost(Imperialistn)+גmean{Cost(colonies of empiren)} 
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Figure 4. The ICGA flowchart 

4) Exploitation and Exploration Operation.  
In the exploitation phase, each colony can randomly pair 

with its imperialist or another colony in its empire, but cannot 
pair with any colonies from other empires. We use the order-
based crossover (OX) function [14] to replace the task numbers 
between the paired colonies. As shown in Figure 4.2 
(exploitation operation), OX selects two indices (e.g. 3 and 6 
in their OBCs) of paired colonies and exchanges all the tasks 
between two indexes of paired colonies. Then the remaining 
tasks will be exchanged sequentially. Afterwards, the 
exploration operation selects several colonies randomly in 

order to exchange two tasks of each colony. The indices of two 
tasks will be generated randomly. 

5) Exchange Position and Compute the Total Cost.  
After the exploitation and exploration, if a colony obtains 

a better fitness function value than its imperialist, the algorithm 
exchanges the colony’s and its imperialist’s positions. After 
the exchange operation, the algorithm computes the total cost 
of the empire based on Equation 4. 

Total Cost௡
=   Cost (ݐݏ݈݅ܽ݅ݎ݁݌݉ܫ௡)
+ .ߦ  {(௡݁ݎ݅݌݉ܧ ݂݋ ݏ݁݅݊݋݈݋ܥ)ݐݏ݋ܥ} ݊ܽ݁ܯ

(4) 

6) Imperialist Competition.  
In this phase, all the imperialists try to achieve one 

(randomly selected) colony from the weakest imperialist. The 
algorithm searches among the empires and selects the weakest 
empire based on their total cost.  The taken colony will be 
dedicated to the strongest empire. 

 
Processor࢏ࡼ: 
Begin 
Creating independent initial countries 
Running ICGA algorithm independently 
If  (migration time) then 
Begin 
 Wait until all processors arrive to this point 
 Send the best country to (࢏ࡼା૚) MOD (#processors)) 
 Receive a country from (ି࢏ࡼ૚) MOD (#processors) and 
replace the weakest country with the received one  
End 
If  (termination condition) then Show the best 
country 
End 

Figure 5. The Pseudocode of the Multi-Population ICGA 

7) Migration Operation.  
The migration operation is the key aspect of our method, 

where several processors are connected together using a ring 
topology and employing message passing protocol for 
communication. The ring topology has been selected because 
of its low communication cost and simplicity.  Each processor 
is first initialized with a set of independent countries (the 
number of countries in each processor is the same) and running 
ICGA independently in each processor. Occasionally, the best 
country (colony) migrates from a processor ௜ܲ  to the next 
processor ܲ ௜ାଵand replaces the worst country in ௜ܲାଵ. Since we 
utilize the ring topology to connect processors together, and 
because the migration takes place in all processors 
synchronously, the number of countries in each processor 
remains the same through the migration operation. The 
migration strategy can affect the result as well. Generally, it is 
better to establish a balance between the migration rate and 
data communication. The chosen ring topology is utilized to 
reduce the migration rate and to decrease the distance of the 
migrations. 

In MICGA, the pressure of selection increases when the 
number of countries gets higher, which helps to obtain more 
accurate results in a short time and converge to the results 
faster than the sequential ICGA. Therefore, it is highly 
beneficial to increase the number of countries. 

V. EXPERIMENTAL RESULTS 
In this section, four commonly explored real applications 

have been utilized to demonstrate the performance of the 
MICGA. The obtained results have been compared with the 



other well-known methods that have been used for the same 
problems. The parallel ICGA has been implemented using both 
shared memory and message passing models. The message 
passing interface (MPI) has been utilized to parallelize and 
MPICH2 to run our algorithm.  

In the multi-population ICGA, processors have been 
connected in a ring topology with different parameters. The 
proposed algorithm has been tested on an Intel Core i5-45705, 
processor clocked at 2.90 GHz (64-bit) and with 24GB of 
memory. The best results of benchmarks have been obtained 
by 15 independent runs. The used parameters for solving the 
problems have been illustrated in TABLE I.  

The proposed approach is tested on real applications such 
as Sobel filter, SUSAN filter, RASTA-PLP and JPEG encoder 
[18], [19] that are illustrated in Figure 7. Also, MICGA is 
compared with MPGA [13], PMC [29] and MPQGA [26] in 
the same conditions (e.g. the same platform and initial 
population) on all benchmarks. These methods are re-
implemented accurately, and they have been tested by their 
results to obtain the best results. 

TABLE I.  THE PARAMETERS OF MICGA 
Parameters Values 

Number of Countries 100 
Number of Empire 5 

Terminate Condition 20 Iterations 
Number of Processors 5 

Exploitation Rate 0.8 
Exploration Rate 0.3 
Migration Rate 1 Chromosome 

Figure 8, and  show the execution time of all methods on 
the benchmarks on six processors. MICGA improves 
(decreases) execution time by more than 46%, 8%, 15%, and 
18% for the Sobel, SUSAN, RASTA-PLP, and JPEG encoder 
applications, respectively. Figure 6 shows the execution time 
values of the MICGA with different values of pp (the number 
of applications in each pack is ݌݌) on the benchmarks for 100 
applications on six processors. It can be seen that the adopted 
packing method improves the execution time.  

 
Figure 6.  The execution time of MICGA on all benchmarks with 

different number of pp on six processors 

Figure 10, Figure 11, Figure 12, and Figure 13 show the 
execution time of all methods on the benchmarks with different 
processors. The best and the worst possible case of execution 
time for 100 application on 60 processors on Sobel are 7006 
and 14112, Susan are 11846 and 20236, RASTA-PLP are 5412 
and 11082; and JPEG encoder are 79608 and 147362. Also, 
MICGA improves (decreases) execution time by more than 
62.74%, 32.86%, 51.51%, and 37.13 % for the Sobel, SUSAN, 
RASTA-PLP, and JPEG encoder applications, respectively. 
These results show that MICGA has better effect in more 
complex applications.  

TABLE II.  THE STATISTICAL RESULTS WITH 6 PROCESSORS 
  MICGA MPGA PMC MPQGA 

Sobel 
(ms) 

Mean 7458.4 1217.0 1314.1 1415.5 
Best 7006 11465 12065 13510 

Worst 8456 13510 14865 14962 
STD 665.7 874.4 1144.7 714.7 

Median 7006 12065 13510 13510 
SUSAN 

(ms) 
Mean 12491 15478 17610 17740 
Best 12103 14860 17224 17465 

Worst 13246 17224 18245 18245 
STD 4982 833.7 437.5 351.1 

Median 12103 14860 17465 17465 
RASTA-PLP 

(ms) 
Mean 12510 15409 17384 17617 
Best 12103 14860 17224 17465 

Worst 13442 15986 17584 18012 
STD 537.0 479.2 161.5 195.66 

Median 12103 15670 17465 17584 
JPEG-
encoder 

(ms) 

Mean 87597 112491 115573 115146 
Best 83440 108600 111006 111006 

Worst 108600 119688 119688 122865 
STD 8631.5 4473.1 3290.6 4765.6 

Median 83440 108600 115820 111006 

TABLE III.  THE SPEEDUP AND EFFICIECY OF NOMES ON 6 PROCESSORS 
 Serial 

MICGA 
Time (s) 

MICGA 
Time (s) 

Speedup Efficiency 

Sobel 45.32 11 4.12 0.824 
SUSAN 75.6 18 4.20 0.840 

RASTA-PLP 89.67 21 4.27 0.854 
JPEG encoder 133.12 32 4.16 0.832 

The stability and reliability of experimental results are 
other important factors for selecting the best method. It is a fact 
that heuristic and metaheuristic methods cannot achieve the 
best results in all runs, so the stability diagram is the best 
criteria to show the reliability of results. We run each real 
application 15 times to demonstrate how many times each 
method can find the best results. The stability diagrams of all 
mentioned methods are illustrated in Figure 14. The statistical 
results have been listed in TABLE II.  TABLE II.  
demonstrates that our algorithm is more accurate with fewer 
errors than the existing other methods. Also, TABLE II. shows 
that MICGA has obtained the optimal result for Sobel. In 
TABLE III. , two critical parameters, speedup, and efficiency 
are also compared to both serial and parallel approaches. The 
speedup values show that the parallel method how many times 
is faster than serial method, and the efficiency values achieve 
from the portion of the speedup and the number of processors. 
The table shows that the efficiency of the proposed parallel 
implementation is outstanding, and it clearly outperforms the 
existing serial methods. 

݌ݑ݀݁݁݌ܵ = ݉݅ܶ ݊݋݅ݐݑܿ݁ݔܧ ௌ݁௘௥௜௔௟ ⁄௉௔௥௔௟௟௘௟݁݉݅ܶ ݊݋݅ݐݑܿ݁ݔܧ  (5) 
ݕ݂݂ܿ݊݁݅ܿ݅ܧ = ݌ݑ݀݁݁݌ܵ ⁄ݏݎ݋ݏݏ݁ܿ݋ݎܲ#  (6) 

Finally, based on the quality and reliability of MICGA 
results, and the efficiency of this method, as well as its 
usability to real applications, MICGA is truly an outstanding 
candidate for task graph scheduling. 

VI. CONCLUSION  
In this paper, we first introduced the new evolutionary 

computing method, named ICGA, a combination of the 
imperialist competitive algorithm (ICA) and the genetic 
algorithm (GA). Then, we presented a multi-population 
implementation of ICGA (MICGA) in order to improve the 
performance (execution time) and reliability (proximity of 
archived the best result) for task graph scheduling on 
heterogeneous platforms using the pipelined execution model. 
Experimental results revealed that MICGA is the best 
candidate for solving the task graph scheduling problem. It is 
faster and more reliable than the other state-of-the-art methods. 



getPixel

abs

gygx direction

usan

thin

getImage

putImage

1
3

2

powspec

rasta

compJah

rastaFilter

backEnd

2

audspec

frontEnd

2

CS

readImg

writeImg

Huffman_0 Huffman_1 Huffman_2 Huffman_3 Huffman_4 Huffman_5

1

DCT_5DCT_0 DCT_1 DCT_2 DCT_3 DCT_4

CC_0

1

  Sobel         SUSAN          RATA-PLP                                                          JPEG encoder  
Figure 7.  The benchmarks 

×10 ×10

(a) (b)  
Figure 8.  The execution time of all methods on different number of (a) Sobel and (b) Susan application on six processors 

(a) (b)

×10 ×10

 
Figure 9.  The execution time of all methods on different number of (a) Rasta and (b) JPEG encoder application on six processors 

 

Figure 10.  The execution time of all methods on 100 of Sobel 
application (pp=100) 

 

Figure 11.  The execution time of all methods on 100 of SUSAN 
application (pp=100) 



 

Figure 12.   The execution time of all methods on 100 of RASTA-
PLP application (pp=100) 

 

Figure 13.  The execution time of all methods on 100 of JPEG-
encoder application (pp=100) 

 

Figure 14.  The stability diagram of MICGA, MPGA, PMC and 
MPQGA on Sobel, SUSAN, RASTA-PLP and JPEG encoder with 4 

processors 
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Abstract — The task scheduling problem for Multiprocessor 
System-on-Chips (MPSoC), which plays a vital role in 
performance, is an NP-hard problem. Exploring the whole search 
space in order to find the optimal solution is not time efficient, thus 
metaheuristics are mostly used to find a near-optimal solution in a 
reasonable amount of time. We propose a novel metaheuristic 
method for near-optimal scheduling that can provide performance 
guarantees for multiple applications implemented on a shared 
platform. Applications are represented as directed acyclic task 
graphs (DAG) and are executed on an MPSoC platform with given 
communication costs. We introduce a novel multi-population 
method inspired by both genetic and imperialist competitive 
algorithms. It is specialized for the scheduling problem with the 
goal to improve the convergence policy and selection pressure. The 
potential of the approach is demonstrated by experiments using a 
Sobel filter, a SUSAN filter, RASTA-PLP and JPEG encoder as 
real-world case studies.   

Keywords— parallel imperialist competitive algorithm 
(PICA); multi-population technique; evolutionary computing 
(EC), task graph scheduling, multi-objective optimization;  

I.  INTRODUCTION  
Parallel processing in contemporary Multiprocessor System-

on-Chips, or MPSoCs, in a vast variety of applications, is the 
result of many breakthroughs over the last two decades. The 
development of embedded MPSoCs has led to their use in many 
application domains such as health monitoring, video and audio 
processing, and autonomous vehicles to mention just a few. The 
data and the processing tasks of these applications are 
distributed on the available multiple cores. Performance of such 
parallel systems can be optimized by employing efficient task 
partitioning and scheduling strategies. 

In this work, we consider a deterministic model for the task 
scheduling problem, where the execution times of tasks and the 
data communication times between tasks are known. The 
scheduling problem based on a directed acyclic task graph 
(DAG) that represents the precedence relations of the tasks is 
known to be an NP-hard problem. Many heuristic methods for 
task scheduling have been proposed [1], and [2]. In general, 
precedence constraints between tasks can be non-uniform, but 
we assume here, for simplicity, that the MPSoC platform is 
uniform (a homogeneous multiprocessor system) and non-
preemptive (each processor completes the current task before 
starting the execution of the next task). 

Recently, evolutionary approaches have been developed to 
solve the scheduling problem. For example, a genetic algorithm 
(GA) based approach can better locate a near optimal solution 
than a list schedule in most cases [3-5]. Only a few of these 
approaches have considered a task graph with a communication 
cost. A number of parallel GA based methods have been 
proposed for solving the task graph scheduling problem in [8]. 
However, in all of them, there is a fundamental problem that 
stems from the relatively inefficient and unreliable convergence 
strategy of a GA, originating from the selection operation of a 
GA. In this paper, we tackle this problem by proposing a 
combination of a GA and the Imperialist Competitive Algorithm 

(ICA) [9]. Moreover, we explicitly consider the communication 
delays between processors. When two communicating tasks are 
mapped onto the same processor we assume that the 
communication delay is zero. However, when they are mapped 
onto different processors a finite communication delay is 
assumed and modeled.  

We propose the concept of an order-based country (OBC) as 
an extension of the order-based coding method. This coding 
specifies the order of tasks and the selected processor to run each 
task. The order-based encoding [6] provides means to efficiently 
deal with precedence constraints. To improve the outcome of the 
optimization process, we present a new multi-population 
method, called NoMeS, which takes advantage of both ICA and 
GA. This combination enhances the convergence policy and 
selection pressure, by keeping all countries in all iterations and 
avoiding the use of a general selection operation such as roulette 
wheel and tournament schemes. To the best of our knowledge, 
this is the first effort using a combined multi-population method 
to reach an optimal scheduling in MPSoCs.  

The paper is organized as follows. In Section II, definitions 
and important parameters in the task scheduling problem are 
presented. Section III discusses the related work. In Section IV, 
the proposed parallel algorithm for the scheduling problem 
(NoMeS) is presented. Section V presents the experimental 
results and demonstrates the efficiency of the proposed 
algorithm. We end with concluding remarks in Section VI. 

II. BACKGROUND 
We assume that a set of N applications consists of n tasks 

running on a multiprocessor with m processors. In the following, 
we present the details of the assumed system model. 
1) Hardware platform model: 

We assume a homogeneous MPSoC is a set of processing 
elements (PEs) {ܲܧଵ, … ,  ௠} interacting through aܧܲ
communication network. For our work, a Network-on-Chip 
(NoC) based homogeneous MPSoC model is selected, in which 
each PE manages execution of one task at a time. PEs can 
support either software or hardware task execution. Software 
tasks execute in instruction set processors (ISPs), and hardware 
tasks in reconfigurable logic (RL) or dedicated IP blocks [19].  
Among the available PEs, one of the processors is selected as a 
manager processor (MP). The MP is responsible for resource 
control, configuration control, and task manipulation operations, 
namely: binding, scheduling, and migration [19]. The MP runs 
each application’s initial task. When a running task needs to 
communicate with another task not yet mapped, the latter is 
loaded into a PE from the task memory.  
2) Application model: 

We assume that each application ܶܩ௔ is modeled as a 
weighted DAG. In this DAG, each node represents a task that 
has a finite execution time, and each edge illustrates the 
communication cost between two connected tasks. The edges 
also represent the precedence relations. Let ܶܩ௔ be a weighted 
DAG defined as a 4-tuple ܶܩ௔ = ( ௔ܸ, ,௔ܧ ௔ܹ, ௔), where ௔ܸܥ =
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{ ଵܶ
௔, ଶܶ

௔, … , ௡ܶ
௔} is the set of vertices (tasks), ܧ௔ = ൛݁௜௝

௔ =
( ௜ܶ

௔, ௝ܶ
௔)ൟ is the set of communication (dependency) edges, ௔ܹ 

is the set of task weights (execution times), ܥ௔ is the set of edge 
weights (communication times), ݓ௜

௔  ∈ ୟܹ is the execution time 
of task ௜ܶ

௔ ∈ ௔ܸ, ܿ௜,௝
௔ ∈  ௔ is the communication cost (delay) onܥ

the edge of ݁௜,௝
௔ ∈ ௔ܧ , that is assumed to be zero if ௜ܶ

௔ and ௝ܶ
௔ are 

bound to the same processor. We assume a simple linear model 
between the execution times and PE frequencies, e.g., if 
ଶ, then task ௜ܶܧܲ ଵ runs two times faster thanܧܲ

௔also runs two 
times faster on ܲܧଵ than on ܲܧଶ.  

The execution time of an application ܶܩ௔ is defined as the 
difference between the completion time of its last task and the 
start time of its first task. When constructing a schedule for 
execution of the applications, it is of great importance to 
consider both task execution times and the communication 
times. Since considering the communication times significantly 
increases the number of schedules to be explored, most of the 
previous work only consider the task execution times. However, 
when running tasks with precedence relations on different 
processing elements, the communication overhead is not 
negligible and it has to be considered in the model. To this end, 
we explicitly model the communication delays. 
3) Problem statement:  

Our task scheduling method, NoMeS, takes a set of task 
graphs {ܶܩଵ, … ,  ே} and a set of processing elementsܩܶ
,ଵܧܲ} … ,  ௠} as its inputs. The output of NoMeS is a set ofܧܲ
task bindings, i.e. task to processor mappings and static 
schedules, i.e. the order and timing of task executions for each 
application task graph. The overall goal of the scheduling is to 
minimize the execution times (also known as the schedule 
length, latency or makespan) of all applications while preserving 
the precedence constraints. Let ௔݂ represent the execution time 
of an application ܶܩ௔. We present the following mathematical 
formulation as our optimization problem: 

min ଵ݂, … ே݂, 

s. t.   ݐ௜
௔ − ௜ݓ

௔ − ௝݁௜
௔ ≥ ௝ݐ

௔, ܽ ∈ [1, … N] , ∀ ݁௜௝
௔ ∈  ,௔ܧ

where ݐ௜
௔is the completion time of ௜ܶ

௔. Note that the above 
formulation is a multi-objective optimization problem as we 
want to minimize the execution times of all applications. The 
optimization is subject to the precedence relations imposed by 
the application graphs. 

III. RELATED WORK 
Here, we first explore more traditional list scheduling 

heuristics that have considered communication costs. 
The basic idea is to make an ordered list of nodes by 

assigning them orders, and then to repeatedly execute the 
following two steps until a valid schedule is obtained: (1) Select 
from the list the node with the highest order for scheduling. (2) 
Select a processor to accommodate this node. 

In realistic cases, scheduling needs to exploit parallelism by 
identifying the task graph structure and take into consideration 
task granularity, arbitrary computation, and communication 
costs. 

In [1], the modified critical path algorithm (MCP) is 
proposed, based on the latest possible start time of a node. A 
node’s latest possible start time is determined via the as-late-as-
possible (ALAP) binding by traversing the task graph upward 
from the exit nodes to the entry nodes while pulling the nodes’ 
start times downwards as much as possible. The latest possible 
start time of the node itself is followed by a decreasing order of 
the latest possible start times of its successor nodes. 
Furthermore, in [1], the dominant sequence clustering algorithm 
(DSC) is presented. It is based on the dominant sequence, which 
is essentially the critical path of the partially scheduled task 

graph at each step. At each step, DSC checks whether the highest 
CP (the critical path of task graph) node is a ready node. If so, 
DSC schedules it to a processor allowing the minimum start 
time. Such a minimum start time may be achieved by 
rescheduling some of the node’s predecessors to the same 
processor. If the highest CP node is not a ready node, DSC does 
not select it for scheduling. Instead, it chooses the highest node 
which lies on a path reaching the CP for scheduling. Moreover, 
also in [1], the mobility directed algorithm (MD) is presented. 
MD selects a node at each step based on relative mobility which 
is defined as the difference between a node’s earliest start time 
and latest start time. Similar to the ALAP binding, the earliest 
possible start time is assigned to each node via the as-soon-as-
possible (ASAP) binding. This is performed by traversing the 
task graph downward from the entry nodes to the exit nodes 
while pulling the nodes upward as much as possible. Moreover, 
relative mobility is obtained by dividing the mobility with the 
node’s computation cost. Basically, a node with zero mobility is 
a node on the CP. At each step, MD schedules the node with the 
smallest mobility to the first processor having a large enough 
time to accommodate the node without considering the 
minimization of the node’s start time. After a node has been 
scheduled, the relative mobility values of the remaining nodes  
are updated. 

In [8], a multi-population implementation of the GA method 
(MPGA) is presented which outperforms deterministic and 
nondeterministic methods described in [2-3]. In [20], a new 
encoding mechanism with a multi-functional chromosome is 
presented, using a priority representation that is called priority-
based multi-chromosome (PMC). PMC can efficiently represent 
a task schedule and assign tasks to processors. It is another 
metaheuristic method that uses a GA to achieve near-optimal 
scheduling of tasks. 

Research on static mapping methods includes the work of 
Lei et al., who proposed a genetic mapping algorithm to 
optimize application execution time [12]. In their work, graphs 
represent applications and the target architecture is a NoC. Wu, 
et al. also investigated genetic mapping algorithms [13]. By 
combining dynamic voltage scaling techniques with mapping, 
they achieved 51% savings in energy consumption. Murali et al. 
explored mappings for more than one application in NoC design, 
using the tabu search (TS) algorithm [14]. Manolache, et al. 
investigated task mapping in NoCs, trying to guarantee packet 
latency [15]. For this purpose, both the task-mapping algorithm 
(TS) and the routing algorithm are defined at design time. Hu et 
al. presented a branch-and-bound algorithm to map a set of IP 
cores (IPs) onto a NoC with bandwidth reservation [16]. Their 
results show energy savings of 51.7% in the communication 
architecture. Marcon et al. investigated how to map modules into 
a NoC, targeting low energy consumption [17]. They compared 
several algorithms, using a model that characterizes applications 
by their inter-task communication volume. Xu et al. In [18] 
presented a task scheduling scheme on heterogeneous 
computing systems using a multiple priority queues genetic 
algorithm (MPQGA). Their experimental results for large-sized 
problems for a large set of randomly generated graphs as well as 
graphs of real-world problems with various characteristics 
showed that the proposed MPQGA algorithm outperformed two 
non-evolutionary heuristics and a random search method in 
terms of schedule quality. 

IV. NOMES 
In this work, we combine the GA and ICA methods and 

customize this combined approach for the scheduling problem. 
The GA operations are basically suitable for scheduling but a 
GA’s convergence strategy to find more reliable and accurate 
results is not efficient [10], because the selection operation in a 
GA misses some chromosomes that have a probability to 



become potential genes for obtaining the best results.  In the 
ICA, where we use countries as the population, all the countries 
will be available in all iterations; they may only move to other 
places in the search space. However, the selection operation 
highly depends on random functions which can easily converge 
to a local optimum. Therefore, we will use an efficient 
convergence strategy (the ICA approach) in order to improve the 
reliability of results. 

All the scheduled tasks in a DAG should satisfy the 
precedence relations so that we use an order based coding 
mechanism suited for multiprocessor scheduling, which should 
fulfill the following rules:  

1. All the predecessors of a task must have completed their 
execution before initiating the execution of the task. 

2. In a DAG, all the tasks must be executed at least once. 
Such a representation eliminates the need to consider the 
precedence relations between the computational tasks. 

T1

T2 T3 T4

T5

T7

T8

T6

T9

 
Figure 1.  DAG Task graph 

A. Order-based country (OBC) 
There are several approaches [3, 5, 7] using GA for the 

multiprocessor scheduling problem, but they are suffering from 
inefficient coding methods. How to encode a solution of the 
problem into a chromosome is a key issue here. It has been 
investigated from two different angles which are: 1) mapping 
characters from the genotype space to the phenotype space when 
countries are decoded into solutions [1]; and 2) metamorphosis 
properties when countries are manipulated by genetic operators 
[9].  

The two main challenges with respect to the encoding 
problem are the following: 1) there is a need for storing a huge 
number of chromosomes for each schedule; and 2) in the case of 
a large number of tasks, the exploration and exploitation 
operations will become very complex due to the precedence 
relations among tasks. 

To overcome these difficulties we introduce the concept of 
an order based country (OBC) that strings the present task order 
of task nodes with the corresponding processors simultaneously. 
For example, Figure 2 shows an OBC that represents nine tasks 
along with two processors for the DAG shown in Figure 1. For 
example, the third column shows that the third scheduling is for 
the task number 2 which should be run on the processor 2.  

B. Order-based encoding/decoding 
Establishing an encoding which can treat the task precedence 

constraints efficiently is a critical step. The proposed encoding 
method is based on the task order and is therefore a viable 
solution. The following procedure explains the generation of the 
initial OBC:  

First, we input the order-based task numbers (1 ≤ ܺ[݅] ≤
# Task) randomly in the second row, independently of the 

processor number. Then, the algorithm fills in the third row with 
random numbers Y[i] (1 ≤ ܻ[݅] ≤   .(݌#
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Figure 2.  An order based country (OBC) 

C. NoMeS Operation: 
In the initial population, the algorithm generates several 

countries such as the one presented in Figure 4.1. The major part 
of this algorithm is imperialistic, and it causes the colonies to 
converge to the global minimum. After the initial step, algorithm 
sorts the countries. Then, the best countries (whose fitness 
values are better than those of the others) will be selected to 
become imperialists, and the remaining countries form the 
colonies of these imperialists. These colonies start moving 
toward their relevant imperialists after all colonies have been 
divided among the imperialists [9]. The next step computes the 
power of each imperialist and the imperialistic competition step 
follows. The weakest imperialist loses its weakest colony, and 
the selected imperialist obtains this colony.  The above steps are 
then repeated until reaching a termination condition. The 
termination condition can be defined in different ways. For 
example, the NoMeS could be set to stop when one imperialist 
has all colonies as its members.  

Like with other ECs, when solving a problem with a large 
search space, we need a large initial population to obtain a more 
accurate and reliable result. We can also prevent convergence to 
local optima by using a multi-population method, where each 
processor runs serial NoMeS independently. If one processor 
converges to a local optimum, all the other processors can 
continue their work on other parts of the search space.   

D. Multi-population NoMeS 
To implement the NoMeS algorithm, we use a selective local 

search strategy which runs NoMeS on several processors 
connected in a ring topology, using the message passing method 
for communication. In each processor, we first initiate 
independent countries and run the serial NoMeS independently. 
Regularly, the best country is migrated from processor ܲ݅ to 
ܲ݅+1 replacing the worse country in P݅+1. The number of 
countries in each processor remains equal even when countries 
migrate to other processors, because all migrations between 
processors are done synchronously.  

In the multi-population NoMeS, we increase the number of 
countries to get a higher selection pressure [10]; this facilitates 
obtaining more accurate results in a short time and much faster 
convergence to results, compared with the sequential NoMeS 
algorithm. Indeed, in EC methods, when the diversity of 
population is high enough, the rate of convergence improves. 

1) Initialize the Empires 
In this step, the fitness value of each country (OBC), which 

has been generated randomly, is computed based on its power 
metric which corresponds to the execution time of the country’s 
schedule. Then the algorithm selects the best set of countries as 
the imperialists, and divides the remaining countries as colonies 
among them. Each imperialist with its colonies constitute an 
empire. 

2) Exploitation and Exploration Operation 
In the exploitation phase, each colony can randomly pair 

with its imperialist or another colony in its empire, but cannot 
pair with any colonies from other empires. We use the order-
based crossover (OCX) function [9] to replace the task numbers 
between the paired colonies. As shown in Figure 3 (exploitation 
operation), OCX selects two indices (e.g. 3 and 6 in their OBCs) 



of paired colonies and exchanges all the tasks between two 
indexes of paired colonies. Then the remaining tasks are 
exchanged sequentially. Afterwards, the exploration operation 
selects several colonies randomly in order to exchange two tasks 
of each colony. The indices of the two tasks are randomly 
determined. 

1

1

3

2

2

2

7

1

4

2

5

1

6

2

8

2

9

1

3 4 5 6 7 8 9

X

Y

Priority 1 2 3 4 5 6 7 8 9

1

1

2

1

4

2

3

2

6

2

5

1

8

1

7

2

9

1

3 4 5 6 7 8 9

X

Y

Priority 1 2 3 4 5 6 7 8 9

7

1

9

2

4

2

3

1

6

2

5

1

1

2

2

2

8

1

3 4 5 6 7 8 9

X

Y

Priority 1 2 3 4 5 6 7 8 9

8

1

9

1

2

2

7

2

4

2

5

1

1

1

3

2

6

1

3 4 5 6 7 8 9

X

Y

Priority 1 2 3 4 5 6 7 8 9

 
Figure 3.  The exploitation operation 
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Figure 4.  The NoMeS flowchart 

3) Exchange Position and Compute the Total Cost 
After the exploitation and exploration, if a colony obtains a 

better fitness value than its imperialist, the algorithm exchanges 
the positions of this colony and the imperialist, i.e. the colony 
becomes an imperialist and the imperialist becomes a colony. 
After the exchange operation, the algorithm computes the total 
cost (power) of the empire based on Equation 1. 

Total Cost௡ =  Cost (ݐݏ݈݅ܽ݅ݎ݁݌݉ܫ௡)
+ .ߦ  {(௡݁ݎ݅݌݉ܧ ݂݋ ݏ݁݅݊݋݈݋ܥ)ݐݏ݋ܥ} ݊ܽ݁ܯ

(1) 

4) Imperialistic Competition 
In this phase, all the imperialists try to achieve one 

(randomly selected) colony from the weakest imperialist. The 
algorithm searches among the empires and selects the weakest 
empire based on their total cost.  The taken colony will be given 
to the strongest empire. 

5) Migration Operation 
The migration operation is the key aspect of our method. We 

consider a system, where several processors are connected in a 
ring topology using message passing protocol for 
communication. The ring topology has been selected because of 
its low communication cost and simplicity.  Each processor is 
first initialized with a set of independent countries (the number 
of countries in each processor is the same) and running serial 
NoMeS independently on each processor. Now and then, in 
some time intervals, the best country (colony) migrates from 
processor Pi to the next processor Pi+1 and replaces the worst 

country in Pi+1. Since we utilize the ring topology to connect 
processors together, and because the migration takes place in all 
processors synchronously, the numbers of countries in any two 
processors are equal at any given time. The migration strategy 
can affect the result as well. Generally, it is better to establish a 
balance between the migration rate and data communication 
between processors in multi-population implementations. The 
chosen simple ring topology is utilized to reduce the migration 
rate and to decrease the distance of the migrations. 

V. EXPERIMENTAL RESULTS 
In this section, four well-known real applications have been 

employed to demonstrate the performance of the proposed 
NoMeS algorithm. The obtained results have been compared 
with those of the other optimization methods that have used the 
same applications. The parallel NoMeS has been implemented 
based on both shared memory and message passing platforms. 
The message passing interface (MPI) has been utilized to 
parallelize our algorithm and MPICH2 to run the algorithm.  

In the multi-population NoMeS model, five processors (the 
processors that are used to run the NoMeS optimization 
algorithm) have been connected in a ring topology, considering 
different numbers of processors for executing the selected four 
applications on a NoC based MPSoC platform. The proposed 
algorithm has been tested on an Intel Core i5-45705 desktop 
computer clocked at 2.90 GHz (64-bit) with 24GB of memory. 
The results of the considered benchmark applications have been 
obtained by 20 independent runs. The involved parameters for 
solving the problems are specified in TABLE I.  

The four real applications, used to test the proposed 
approach, are: Sobel filter, SUSAN filter, RASTA-PLP and 
JPEG encoder [11]. They are illustrated in Figure 9.  The 
benchmarksFigure 9. Also, NoMeS is compared with MPGA 
[8], PMC [20] and MPQGA [18] in the same conditions (e.g. the 
same platform and initial population) on all benchmarks. 

Figure 5, Figure 6, Figure 7 and Figure 8 show the execution 
times of the benchmarks for all the considered optimization 
methods with different numbers of processors (the processors 
that run the scheduled tasks on a NoC based MPSoC platform).  
NoMeS improves (decreases) execution time by more than 
29.5%, 68.1%, 47.4%, and 10.1% for the Sobel, SUSAN, 
RASTA-PLP, and JPEG encoder applications, respectively. 
These results show that NoMeS is more effective in more 
complex applications. TABLE II.  shows the execution times of 
the benchmarks for all the methods. The execution time of each 
predicted scheduling clearly demonstrates that NoMeS is more 
fit and efficient than the other methods for the DAG scheduling 
problem. 

The stability and reliability of the experimental results are 
the other important factors for selecting the best method. It is a 
fact that heuristic and metaheuristic methods cannot achieve the 
best results in all runs, so the stability diagram is the best 
criterion to show the reliability of the results. We run each 
optimization method for each benchmark application 20 times 
to demonstrate how many times each method can find the best 
results. The stability diagrams of the considered methods are 
illustrated in Figure 10. The statistical results are listed in 
TABLE III. The table demonstrates that our algorithm is more 
accurate with fewer errors than the existing other methods. Also, 
this table shows that NoMeS has obtained the best results for 
Susan, RASTA-PLP and JPEG encoder. In TABLE IV. , two 
critical parameters, namely speedup and efficiency (Equations 2 
and 3), are also compared, considering both serial and parallel 
(multi-population) NoMeS approaches. The speedup values 
show how many times faster the parallel method is compared 
with the serial method, and the efficiency values indicate the 
average speedup per processor. The table shows that the 



efficiency of the proposed parallel implementation is 
outstanding, and it clearly outperforms the serial version of the 
NoMeS method. 

݌ݑ݀݁݁݌ܵ = ݉݅ܶ ݊݋݅ݐݑܿ݁ݔܧ ௌ݁௘௥௜௔௟ ⁄௉௔௥௔௟௟௘௟݁݉݅ܶ ݊݋݅ݐݑܿ݁ݔܧ  (2) 
ݕ݂݂ܿ݊݁݅ܿ݅ܧ = ݌ݑ݀݁݁݌ܵ ⁄ݏݎ݋ݏݏ݁ܿ݋ݎܲ#  (3) 

 The convergence diagrams of the NoMeS method on all 
benchmarks are presented in Figure 11. Based on the quality and 
reliability of the results, the efficiency of this method, as well as 
its usability for real applications, NoMeS is truly a prominent 
candidate for task graph scheduling. 

VI. CONCLUSION 
In this paper, we first introduced a new evolutionary 

computing method, called NoMeS, a combination of the 
imperialist competitive algorithm (ICA) and a genetic algorithm 
(GA). Then, we presented a multi-population implementation of 
NoMeS, in order to improve its performance (execution time) 
and reliability (proximity of achieved results), for task graph 
scheduling which is a multi-objective optimization problem. 
Experimental results revealed that NoMeS is the best candidate 
for solving the task graph scheduling problem, being more 
reliable and providing significantly better solutions than the 
other considered state-of-the-art methods.  

TABLE I.  THE PARAMETERS OF NOMES  
Parameters Values 

Number of Countries 100 
Number of Empires 5 

Termination Condition 20 Iterations 
Number of Processors 5 

Exploitation Rate 0.8 
Exploration Rate 0.3 
Migration Rate 1 Chromosome 

TABLE II.  EXECUTION TIMES OF THE BENCHMARKS FOR THE 
CONSIDERED OPTIMIZATION METHODS 

 #p NoMeS 
(ns) 

MPGA 
(ns) 

PMC 
(ns) 

MPQGA 
(ns) 

Sobel 2 10520 11440 11440 10946 
SUSAN 2 41540 49120 49120 47218 
RASTA 2 20240 27040 28320 24126 
JPEG 2 109400 120200 117280 116320 
JPEG 4 108680 120200 117280 114806 
JPEG 6 95240 108680 108680 106354 
JPEG 8 95240 104630 105624 104658 
JPEG 10 95240 101460 101460 99468 

TABLE III.  THE STATISTICAL RESULTS WITH 2 PROCESSORS 
  NoMeS MPGA PMC MPQGA 

Sobel 
(Cycle) 

Mean 530.6 577.8 583 571 
Best 526 572 572 556 

Worst 572 612 612 598 
STD 14.1585 12.4799 15.728 17.281 

Median 526 572 572 572 
SUSAN 
(Cycle) 

Mean 2134.9 2484.3 2484.9 2372.8 
Best 2077 2456 2456 2246 

Worst 2478 2532 2532 2532 
STD 141.5953 33.29 29.4974 131.502 

Median 2077 2478 2478 2362 
RASTA-

PLP 
(Cycle) 

Mean 1012 1414.8 1470.2 1343.4 
Best 1012 1352 1416 1246 

Worst 1012 1612 1612 1564 
STD 0 82.8960 66..6488 128.5565 

Median 1012 1384 1464 1246 
JPEG-

encoder 
(Cycle) 

Mean 5475.8 6233.3 6153 5948.8 
Best 5370 6010 5864 5812 

Worst 5840 6580 6580 6328 
STD 203.6293 259.4247 294.7416 186.3369 

Median 5370 6010 6010 5812 

TABLE IV.  THE SPEEDUP AND EFFICIECY OF NOMES ON 5 PROCESSORS 
 Serial 

NoMeS Time 
(s) 

NoMeS Time 
(s) 

Speedup Efficiency 

Sobel 45.32 11 4.12 0.824 
SUSAN 75.6 18 4.20 0.840 

RASTA-PLP 89.67 21 4.27 0.854 
JPEG encoder 133.12 32 4.16 0.832 

×2

 
Figure 5. The Execution Time of Sobel filter with different numbers 

of processors 

×2

 
Figure 6.  The Execution Time of Susan filter with different numbers 

of processors 

×2

 
Figure 7. The Execution Time of RASTA-PLP filter with different 

numbers of processors 

×2

 
Figure 8.  The Execution Time of JPEG-encoder with different 

numbers of processors 
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Figure 10.  The stability diagram of NoMeS, MPGA, PMC and 

MPQGA on Sobel, SUSAN, RASTA-PLP and JPEG encoder with 2 
processors. 

 
Figure 11. The convergence diagram of NoMeS on Sobel, SUSAN, 

RASTA-PLP and JPEG encoder with 2 processors. 
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