
Turku Centre for Computer Science

TUCS Dissertations
No 244, October 2019

Amin Majd

Distributed and Lightweight
Meta-heuristic Optimization
Method for Complex Problems

Distributed and Lightweight Meta-

heuristic Optimization method for

Complex Problems

Amin Majd

To be presented, with the permission of the Faculty of Science and

Engineering, for public criticism in the Auditorium of Agora XXII in

October 5th, 2019 at 12:00.

University of Turku

Department of Future Technologies

20014 TURUN YLIOPISTO

2019

Supervised by

Professor Hannu Tenhunen

Department of Future Technologies

University of Turku

Finland

Professor Juha Plosila

Department of Future Technologies

University of Turku

Finland

Associated Professor Masoud Daneshtalab

Department of Embedded Systems, division of Intelligent Future Technology

Mälardalen University

Sweden

Reviewed by

Professor Amir Hossein Gandomi

Faculty of Engineering & Information Technology

University of Technology Sydney

Ultimo, NSW, Australia

Professor Ning Xiong

School of Innovation, Design and Engineering

Mälardalen University

Västerås, Sweden

Opponent

Senior Lecturer Amir Pourabdollah

Department School of Science and Technology

Nottingham Trent University

Nottingham, England

Painosalama Oy, Turku

ISBN 978-952-12-3864-2
ISSN 1239-1883

ii

Abstract

The world is becoming more prominent and more complex every day.

The resources are limited and efficiently use them is one of the most

requirement. Finding an Efficient and optimal solution in complex

problems needs to practical methods. During the last decades, several

optimization approaches have been presented that they can apply to

different optimization problems, and they can achieve different

performance on various problems. Different parameters can have a

significant effect on the results, such as the type of search spaces. Between

the main categories of optimization methods (deterministic and stochastic

methods), stochastic optimization methods work more efficient on big

complex problems than deterministic methods. But in highly complex

problems, stochastic optimization methods also have some issues, such as

execution time, convergence to local optimum, incompatible with

distributed systems, and dependence on the type of search spaces.

Therefore this thesis presents a distributed and lightweight meta-

heuristic optimization method (MICGA) for complex problems focusing

on four main tracks. 1) The primary goal is to improve the execution time

by MICGA. 2) The proposed method increases the stability and reliability

of the results by using the multi-population strategy in the second track. 3)

MICGA is compatible with distributed systems. 4) Finally, MICGA is

applied to the different type of optimization problems with other kinds of

search spaces (continuous, discrete and order based optimization

problems).

MICGA has been compared with other efficient optimization

approaches. The results show the proposed work has been achieved enough

improvement on the main issues of the stochastic methods that are

mentioned before.

iii

iv

Tiivistelmä

Maailmasta on päivä päivältä tulossa yhä monimutkaisempi. Resurssit

ovat rajalliset, ja siksi niiden tehokas käyttö on erittäin tärkeää. Tehokkaan

ja optimaalisen ratkaisun löytäminen monimutkaisiin ongelmiin vaatii

tehokkaita käytännön menetelmiä. Viime vuosikymmenien aikana on

ehdotettu useita optimointimenetelmiä, joilla jokaisella on vahvuutensa ja

heikkoutensa suorituskyvyn ja tarkkuuden suhteen erityyppisten

ongelmien ratkaisemisessa. Parametreilla, kuten hakuavaruuden tyypillä,

voi olla merkittävä vaikutus tuloksiin. Optimointimenetelmien pääryhmistä

(deterministiset ja stokastiset menetelmät) stokastinen optimointi toimii

suurissa monimutkaisissa ongelmissa tehokkaammin kuin deterministinen

optimointi. Erittäin monimutkaisissa ongelmissa stokastisilla

optimointimenetelmillä on kuitenkin myös joitain ongelmia, kuten korkeat

suoritusajat, päätyminen paikallisiin optimipisteisiin,

yhteensopimattomuus hajautetun toteutuksen kanssa ja riippuvuus

hakuavaruuden tyypistä.

Tämä opinnäytetyö esittelee hajautetun ja kevyen metaheuristisen

optimointimenetelmän (MICGA) monimutkaisille ongelmille keskittyen

neljään päätavoitteeseen: 1) Ensisijaisena tavoitteena on pienentää

suoritusaikaa MICGA:n avulla. 2) Lisäksi ehdotettu menetelmä lisää

tulosten vakautta ja luotettavuutta käyttämällä monipopulaatiostrategiaa. 3)

MICGA tukee hajautettua toteutusta. 4) Lopuksi MICGA-menetelmää

sovelletaan erilaisiin optimointiongelmiin, jotka edustavat erityyppisiä

hakuavaruuksia (jatkuvat, diskreetit ja järjestykseen perustuvat

optimointiongelmat).

Työssä MICGA-menetelmää verrataan muihin tehokkaisiin

optimointimenetelmiin. Tulokset osoittavat, että ehdotetulla menetelmällä

saavutetaan selkeitä parannuksia yllä mainittuihin stokastisten

menetelmien pääongelmiin liittyen.

v

vi

Acknowledgements

I would like to express my special appreciation and thanks to my

supervisors: Associated Professor Masoud Daneshtalab, Professor Juha

Plosila, and Professor Hannu Tenhunen that without their supervision, and

scientific support this doctoral thesis would not have been possible. I want

to especially thank Associated Professor Masoud Daneshtalab for his

comprehensive support when I entered the University of Turku and during

my studies.

I am thankful for the Nokia Foundation, and CIMO Fellowships

programme for financial support.

I would like to thank my colleagues and co-authors: Associate Professor

Elena Troubitsyna, Golnaz Sahebi, Dr Shahriar Lotfi, Dr Nima Khalilzad,

Mahdi Abdollahi, Mohammad Loni, and Maghsoud Salimi.

I would also like to thank Professor Amir Hossein Gandomi and

Professor Ning Xiong for accepting to be the reviewer of my thesis. I also

thank Senior Lecturer Amir Pourabdollah for accepting to be the opponent

of my thesis.

I would like to especially thank my mother, Sorour, and my father,

Hossein, for all the supports that they provided during my life.

Also, I would like to thank my daughter, Diana, because I have spent

some of her time to complete my studies.

Finally, I would like to express my deepest appreciation to my brilliant

wife, Golnaz Sahebi, that without her support and inspiration this journey

would not have been started. She was my best friend, colleague, and

supporter over the last 15 years.

vii

viii

List of original publications

The work discussed in this dissertation is based on the publications listed below:

Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

A. Majd, Sh. Lofti, G. Sahebi, M. Daneshtalab and J. Plosila,
“PICA: Multi-Population Implementation of Parallel
Imperialist Competitive Algorithms,” 24th Euromicro
International Conferences on Parallel, Distributed and
Network-Based Processing, PDP 2016.

A. Majd, G. Sahebi, M. Daneshtalab, J. Plosila, Sh. Lotfi, H.
Tenhunen, “Parallel Imperialist Competitive Algorithms”
Concurrency and Computation Practice and Experience,
WILEY, 2018.

A. Majd, M. Abdollahi, G. Sahebi, D. Abdollahi, M.
Daneshtalab, J. Plosila and H.Tenhunen, “Parallel Imperialist
Competitive Algorithm Based on Multi-Population Technique
for Solving Systems of Nonlinear Equation,” The 2016
International Conference on High Performance Computing &
Simulation (HPCS), 2016.

M. Salimi, A. Majd, M. Loni, C. Seceleanu, T. Seceleanu, M.
Sirjani, M. Daneshtalab, and E. Troubitsyna, “Finding

Near-Optimal Task Scheduling for Distributed Real-Time

Environments” 6th Conference on the Engineering of

Computer Based Systems (ECBS19), 2019.

A. Majd, G. Sahebi, M. Daneshtalab, J. Plosila and H.
Tenhunen, “ Placement of Smart Mobile Access Points in
Wireless Sensor Networks and Cyber-Physical Systems using
Fog Computing,” The 16th IEEE International Conference on
Scalable Computing and Communications (Smart World
2016).

A. Majd, G. Sahebi, M. Daneshtalab, J. Plosila and H.
Tenhunen, “ Hierarchal Placement of Smart Mobile Access
Points in Wireless Sensor Networks using Fog Computing, ”
25th Euromicro International Conferences on Parallel,
Distributed and Network-Based Processing, PDP 2017.

ix

Paper VII

Paper VIII

A. Majd, G. Sahebi, M. Daneshtalab, E. Troubitsyna,
“Optimizing Scheduling for Heterogeneous Computing
Systems using Combinatorial Meta-heuristic Solution” The
17th IEEE International Conference on Scalable Computing
and Communications (Smart World 2017), 2017.

A. Majd, M. Daneshtalab, J. Plosila, N. Khalilzad, G. Sahebi,
and E. Troubitsyna, “NOMeS: Near-Optimal

Metaheuristic Scheduling for MPSoCs”, 19th International

Symposium on Computer Architecture and Digital Systems

(CADS’17), 2017.

https://ieeexplore.ieee.org/author/37075731000
https://ieeexplore.ieee.org/author/37075731000
https://ieeexplore.ieee.org/author/37273569200
https://research.abo.fi/converis/portal/Publication/7200640?auxfun=&lang=en_GB
https://research.abo.fi/converis/portal/Publication/7200640?auxfun=&lang=en_GB

x

Contents

I Research Summary 1

1 Introduction 3

1.1 Contributions of Thesis 4

2 Related Works 7

2.1 Genetic Algorithm (GA) 7

2.2 Imperialist Competitive Algorithm (ICA) 8

2.3 Parallel Evolutionary Algorithms 9

2.3.1 Parallel Genetic Algorithm 9

2.3.2 Parallel Ant Colonies 10

2.3.3 Parallel ABC 10

2.3.4 Parallel PSO 11

2.3.5 Parallel Memetic Algorithm 11

3 Thesis Contributions and Case Studies 13

3.1 Thesis Contributions and the Hybrid Evolutionary

Algorithm

13

3.2 list of case studies 15

3.2.1 Synthetic benchmarks 15

3.2.2 Nonlinear equations 15

3.2.3 Task Scheduling 17

3.2.3.1 Task graph scheduling 18

3.2.3.1.1 Order-based country

(OBC)

19

3.2.3.2 Scheduling a pack of application 20

3.2.3.3 Task scheduling with more

constraints on industrial application

20

3.2.4 Placement of Swarm of drones 22

3.2.4.1 Placement of SMAPs 25

3.2.4.2 Hierarchical Placement of SMAPs 25

4 Experimental Results 27

4.1 Synthetic benchmarks 27

4.2 Nonlinear equations 29

4.3 Task Graph Scheduling 31

4.3.1 Single Objective Optimization 35

4.3.2 Multi-Objective Optimization 36

4.4 Placement of Swarm of drones 38

4.4.1 Single SMAP 39

4.4.2 Multiple SMAPs 41

xi

5 Discussion and Conclusion 45

6 Overview of Original Publications 47

6.1 Paper I PICA: Multi-Population Implementation of

Parallel Imperialist Competitive Algorithms

47

6.2 Paper II Parallel Imperialist Competitive Algorithms 47

6.3 Paper

III

Parallel Imperialist Competitive Algorithm

Based on Multi-Population Technique for

Solving Systems of Nonlinear Equation

47

6.4 Paper

IV

Finding Near-Optimal Task Scheduling for

Distributed Real-Time Environments

48

6.5 Paper V Placement of Smart Mobile Access Points in

Wireless Sensor Networks and Cyber-

Physical Systems using Fog Computing

48

6.6 Paper

VI

Hierarchical Placement of Smart Mobile

Access Points in Wireless Sensor Networks

using Fog Computing

48

6.7 Paper

VII

Optimizing Scheduling for Heterogeneous

Computing Systems using Combinatorial

Meta-heuristic Solution

49

6.8 Paper

VIII

NOMeS: Near-Optimal Metaheuristic

Scheduling for MPSoCs

49

II Original Publications

xii

Symbols and Abbreviations

2-D Two dimensional

3-D Three Dimensional

ACO Ant colony optimization

C-PPSO Course-grained PSO

CD Conjugate direction method

COA Cuckoo optimization algorithm

CP Critical path of task graph

CPS Cyber physical systems

DAG Directed acyclic graph

DSC Dominant sequence clustering algorithm

EA Evolutionary algorithm

EC Evolutionary computing

GA Genetic algorithm

GWO Grey wolf optimization

HSMAP Hierarchical smart mobile access point

ICA Imperialist competitive algorithm

IoT Internet of Things

ISA Interior search algorithm

KH Krill herd

MA Memetic algorithm

MD Mobility directed algorithm

MICGA Multi-population ICA and GA

MOP Multi-objective Problem

MPGA Multi-population GA

MPI Message passing interface

MPICH2 An implementation of MPI

MPQGA Multiple priority queues GA

MPSO Multi-population PSO

MPSoCs Multiprocessor System-on-Chips

MRPSO Multi-population Repulsive PSO

MSEOA Social-emotional optimization algorithm

NoC Network on a chip

NP Nondeterministic polynomial time

OBC Order-based country

PABC Parallel artificial bee colony

PACO Parallel ant colony optimization

PACO-CGD Parallel ant colony-coarse grained

PARME Parallel memetic algorithm

xiii

PICA Multi-population ICA

PMC Priority-based multi-chromosome

Pp Number of parts in each pack

PSO Particle swarm optimization

SA Simulated annealing

SD Standard division

SMAP Smart mobile access point

UAV Unmanned aerial vehicles

WSN Wireless sensor network

1

Part I

Research Summary

2

3

Chapter 1

Introduction

As the level of computing complexity become larger, artificial intelligence

has shown enormous power in decreasing this complexity.

Generally, improving one parameter in a complex problem (e.g.

accuracy in the machine learning problem), might have some side effects

on other parameters. Therefore, optimization techniques in solving

complex problems are the best solution to reduce such side effects.

Therefore, evolutionary algorithms are selected as a meta-heuristic

approach to optimization problems.

Evolutionary algorithms (EAs) are population-based search

optimization methods that mimic the processes of natural selection and

evaluation. They work based on the combination of some random

operations with guided ideas. The guided ideas Inspired from

understandable samples in natural competitions. They do not need

particular assumptions like differentiability or continuity. They are really

suitable for dealing with multi-objective-problems (MOP). In the past few

decades, plenty of evolutionary algorithms have been proposed by

researchers.

The main aim of an EA is to find the nearest optimal solution for some

real-world problems [1]. The algorithm keeps on producing multiple

generations of solutions until a generation achieves the most optimal

solution. EA's first step is to establish a convertible link between the real

world and a computational world of EA. This step relies on two

fundamental concepts: phenotype and genotype.

A candidate solution (called an individual) is phenotype in the real world

and the corresponding sample in the algorithm is a genotype that is called

a chromosome in the genetic algorithm (GA). If the algorithm wants to

optimize an equation integer variable, the algorithm can make a binary code

of integer digits as a genotype. Also, a representation of a phenotype by a

genotype is called encoding, while mapping of a genotype to a phenotype

is called decoding.

In fact, the performance of EAs highly depends on multiple factors like

a search space area, the number of optimization objects, the behaviour of

4

the problem (dynamic and static), and the complexity to evaluate a solution.

So such factors are the origin of emerging new EAs.

The majority of EA starts from the stochastic generation of the initial

population of genotypes in the overall search space according to a specific

probability distribution. We can evaluate the fitness function for each

genotype, which describes the requirements to which the population should

adopt. A fitness function allocates quality measures to the genotypes and

forces the population improvement. An evaluation of a fitness function

typically requires decoding of a genotype into the corresponding phenotype

and computing a certain quality measure.

An EA estimates the fitness function for all genotypes of a given

population. The genotypes with the greater values of the fitness function

take the higher probability to be accepted as the parents of the next

generation. The chosen parents undergo variation to create offsprings. A

variation consists of mutation and recombination [2]. The mutation is a

unary operator applied to a genome to create a mutated mutant – a child

(offspring). The mutation is stochastic, for instance, the child depends on

the outcomes of random choices. EAs usually follow the same structures

but they make a change by the ability of the operations and competition

idea between populations.

In this thesis, different EAs have been reviewed while the behaviour of

each EA is explored within the different context of problems.

1.1 Contributions of the Thesis

This thesis has dealt with the following open problems:

 EAs are not enough fast to apply for extremely complex problems

and real-time applications. How can we reduce their execution

time?

 EAs can converge to local optimum in complex problems. How can

we improve the reliability of their results?

 Usually, EAs work based on the main population. How can we

make them fit for distributed systems?

 EAs have different performance on different problems. How can we

introduce an EA to apply to different applications?

To tackle these problems, the following solutions have been presented

in this thesis:

 To reduce the execution time, we have implemented the parallel

implementations of ICA and GA on Paper I and II.

5

 To improve the accuracy of our parallel method, we have

introduced Paper II and tested our methods in two different areas.

 To make it fit for distributed systems we have selected multi-

population method and tested it on different application domains on

papers III, IV, V and VI.

 Finally, we have introduced a hybrid method, an efficient

combination of multi-population ICA (PICA) and Multi-population

GA (MPGA), to reduce the execution time, improve the accuracy

of results, and make the ability to apply on different application

domains and have tested on Paper VII and VIII.

Figure 1.1 illustrates the general overview of the works accomplished in

this thesis and the cohesion of the publications.

Distributed Evolutionary Algorithms

Improve the Accuracy

Multi-population ICA
Paper I

Efficient Parallelization Methods
Paper II

Different Application
Domains

Non-linear & MICA
Paper III

Placement of SMAP
Paper V & VI

Task Scheduling for Distributed
Real-Time Environments

Paper IV

Reducing the Execution Time

NoMeS
Paper VIII

MICGA
Paper VII

Figure 1.1 Illustration of papers cohesion. Each category is labelled with

different colors.

6

7

Chapter 2

Related Works

Optimization problems have different levels of complexity and various

search spaces. To optimize NP problems, the execution time is the primary

objective. By growing the size of NP problems, optimization takes lots of

time, so generally, ECs are more popular than other optimization problems

because they are faster than other methods. In the last decades, many

different ECs have been presented such as genetic algorithm (GA) [4],

particle swarm optimization (PSO) [79], ant colony optimization (ACO)

[18], simulated annealing (SA) [80], and grey wolf optimization (GWO)

[81]. Also, krill herd (KH) [82] is proposed for solving optimization tasks.

The KH algorithm is based on the simulation of the herding behaviour of

krill individuals. The minimum distances of each individual krill from food

and from the highest density of the herd are considered as the objective

function for the krill movement [82]. The interior search algorithm (ISA)

[83] as a novel method for solving optimization tasks achieves high accurate

results.

Among them, GA is selected as an efficient and straightforward method

for discrete problems, and imperialist competitive algorithm (ICA) [6] is

chosen as a highly accurate method for continuous problems. Also, the

parallel implementation of different EC methods has been studied to

analyze how the execution time and accuracy of an EC method can be

improved. This chapter introduces GA, ICA and some of the well-known

parallel EA methods.

2.1 Genetic Algorithm (GA)

Genetic algorithms are population-based search methods that mimic the

process of natural selection and evolution, which some of their

characteristics can help researchers for optimization [3]. Each serial GA has

an initial population (several random chromosomes that each one is an

individual) and executes routine operations, such as selection, crossover,

mutation, and replacement [3]. All operations are repeated until leading to

a proper result or ending in a specific generation.

The simple model of GA was presented in 1970 by Goldberg and Holand

[4]. In the last 40 years, plenty of research studies have been carried out to

improve GA. These improvements make the GA more applicable to

complex problems. The standard GA works with binary coding [5], which

is suitable for discrete problems [3]. However, the performance on

continuous data and convergence to local optimums are the key bottlenecks

of GA.

8

2.2 Imperialist Competitive Algorithm (ICA)

In 2008, the Imperialist Competitive Algorithm (ICA) was introduced by E.

Atashpaz and C. Lucas [6], inspired by imperialistic competition. ICA is an

EA to optimize the linear and nonlinear NP-complete problems. It is a

population-based method in which each possible solution is a country,

corresponding to the chromosome concept in the genetic algorithm [6]. The

algorithm starts by generating a set of countries, as the initial population.

Then all countries are separated into two classes: imperialist and colonies.

Imperialistic competition is the main operation of this algorithm, and the

expectation is that the colonies converge to the global optimum of the cost

function, or at least very close to this optimum.

The primary sorting of the countries is based on their fitness function

values. The best countries are elected to be the imperialists, and the rest of

the countries will be the colonies of these imperialists (Figure 2.1, step 1)

and they (imperialist and colonies) make different empires.

After distributing all colonies among the imperialists, colonies move

toward their relevant imperialist countries. This movement operated by

assimilation and revolution operations (Figure 2.1, step 2). In the

assimilation, colonies change their positions in the search space to some

places that are closer to their imperialist. This operation is similar to

recombination operation in EAs and crossover in GA. Ordinarily,

assimilation does exploitation in the search space and helps to have a more

accurate search around the solutions. Using the assimilation (exploitation)

alone as the recombination operation in the EAs can push our solution to

the local optimum. As the best solution for this problem, the revolution

operation as an exploration method can force the algorithm to try another

part of the search area and avoid converging to a local optimum.

T.C.n=Cost(Imperialistn)+ mean{Cost(colonies of empiren)}

START
Is there a colony that is

dominating its relevant

imperialist?

Is there a colony that is

dominating its relevant

imperialist?

Are Stop

Conditions

satisfied?

Are Stop

Conditions

satisfied?

1.Initialize the Empires1.Initialize the Empires 2.Assimilation

3.Exchange Imperialist

and the best Colony

4.Compute Total Cost
5.Imperialistic Competitive

END

2

N
O

YES

N
O

YES

Imperialist 1

Imperialist 2

Imperialist 3

Empire 1
Empire 2

Empire 3

The Weakest Empire

Figure 2.1 ICA Flowchart

For each colony in each iteration, two random real numbers ranging

between zero and one are generated. Then these values are compared with

the probabilities of assimilation and revolution (i.e. revolution rate). If the

generated numbers are lower than these probabilities, the procedure of

assimilation or revolution is performed. In the next step, ICA calculates the

total power of each empire and the imperialistic competition begins. The

weakest empire loses its weakest colony and randomly one imperialist

9

capture this colony. These steps are repeated until the termination condition

is satisfied.

The ICA is a suitable method for a variety of optimization problems, but

there exist certain challenges concerning the evolutionary algorithms in

general such as convergence to local optimum or long execution time.

2.3 Parallel Evolutionary Algorithms

EAs can help to solve various problems, but there are some disadvantages

associated with them. For instance, if the search space is very large, it is

possible that an EA does not converge towards the global optimum or even

to near-optimal solutions. To improve the result in such cases, the initial

population should be expanded. The execution time of EAs is another

challenge which can be intolerably high in complex cases. Parallelization

can enhance the quality of decisions and reduce the time of obtaining

results.

Several parallel EA methods have been proposed to achieve better results

(e.g., parallel genetic algorithm [3][7][8][9], parallel ant colony

optimization (PACO) [10][11][12], parallel memetic algorithm [13],

parallel ABC (PABC) [14][15], and parallel PSO [16][17]). Parallel EAs

are categorized into four main groups [3], master-slaves, multi-population,

fine-grain and hierarchical methods. They have different usage based on

different problems, goals, and computational resources. The master-slave

method applies to problems that have a complex fitness function [18] to

improve computation time (execution time). The execution time of EAs is

not the only concern, but the reliability of the results and avoiding to

converge to local optimums are two important challenges in EAs which can

be enhanced by Multi-population (Coarse-grain) method. The fine-grain

parallel method is similar to multi-population, but require huge

computational resources [3]. The hierarchical method can be designed as a

combination of the other three methods (e.g. using the multi-population

strategy on the top layer and master-slaves on the lower level). Both the

fine-grain and hierarchical methods are resources hungry.

2.3.1 Parallel Genetic Algorithm

Here we will explore different types of parallel GA [3]. In coarse-grain

methods, several processors are available and each of which has

independent initial populations; and each processor runs a serial GA. After

a definite number of iterations, all processors will stop and transfer some

chromosomes (the migration operation) with a predefined strategy, e.g.,

worse or best. By this operation, the processors share the results of solutions

among each other. In the coarse-grain, the most three important parameters

are migration gap (the number of iterations between two migration),

migration rate (the number of chromosomes that migrate at each the

migration time), and interconnection topologies such as the ring or fully

connected topology.

Another parallel GA method is master-slave. In this method, one

processor is specified as a “master” to do the more complex computations

of GA, such as replacement, and selection, whereas the other processors

(slaves) evaluate the fitness function and transfer the results to the master

10

processor. The fitness function defines the quality of each individual

(chromosome). Master-slave nodes can be implemented either

synchronously or asynchronously. In the asynchronous method, the master

processor proceeds with its work without waiting for the transferred data of

slave nodes. In the synchronous method, the master node holds until it

receives the results of all tasks from slaves.

Fine-grain methods are suitable for parallel computing with a massive

number of processors where each processor is able to communicate with the

neighboring processors where each chromosome can recombine with each

chromosome on the neighborhood of processors. This method is faster than

the master-slave method but the required resource (such as the number of

processors and communication rate) is too high.

The hybrid method is composed of 2 levels: the upper level uses the

coarse-grain method while the lower level utilizes either the master-slave,

the multi-population, or the fine-grain method. This is more efficient and

faster than other methods because it can utilize the advantages of two

methods at the different levels of hierarchy.

2.3.2 Parallel Ant Colonies

Ant colony optimization (ACO) [19] is a technique for approximate

optimization. The inspiring source of ACO algorithm is real ant colonies.

More specifically, ACO is inspired by the ants’ foraging behaviour. At the

core of this behaviour is the indirect communication between the ants by

means of chemical pheromone trails, which enables them to find short paths

between their nest and food sources. This characteristic of real ant colonies

is exploited in ACO algorithms in order to solve, e.g., discrete optimization

problems. Two main parallel implementations of ACO are PACO [11] and

PACO-CGD [10].

PACO is applied to different optimization problems and is based on the

multi-population method, where each processor has an independent

population and runs the standard ACO independently. After a specified

number of generations, a processor transfers some useful information to

other processors. In PACO-CGD, the constructor graph decomposes into

smaller pieces and each part is assigned to a processor, and then each

processor runs the ACO method by itself; this method is faster than the

PACO.

2.3.3 Parallel ABC

Artificial Bee Colony (ABC) [20] is inspired by honeybees. The ABC, as

an optimization mechanism, provides a population-based search function in

which the artificial bees modify individuals called food positions as time

passes. The bees aim to explore the places of good quality and food sources

with high nectar amounts and finally the one with the highest nectar

amount. ABC can be parallelised in three ways: based on either the coarse-

grain, master-slave, or hybrid method. Similar to the master-slave method

for GA, one processor is selected as the master and others as the slaves.

There is also the same similarity between multi-population and hybrid

method of ABC with GA.

11

2.3.4 Parallel PSO

Many applications have taken advantage of particle swarm optimization

(PSO) [21]. The PSO emulates the behaviour of animal societies that do not

have any unique leader in their swarm, such as fish schooling and bird

flocking. The PSO is used efficiently for continuous search space problems.

Parallel PSO is an efficient method for optimal task scheduling in

distributed systems [16], which has been implemented with two different

multi-population techniques: Multi-population PSO (MPSO) and Multi-

population Repulsive PSO (MRPSO).

MPSO runs like other coarse-grain methods where each processor has an

independent population, and the simple PSO runs on its population

independently [16]. The migration operation is also similar to GA.

The MRPSO is the enhanced MPSO method that combines an extra

component to MPSO called "repulsive component". Trying to make a

diverse population in each processor is the primary rule of this component.

This causes a high degree of diversity in PSO which helps obtain better

results.

2.3.5 Parallel Memetic Algorithm

Memetic algorithms (MAs) [22] are population-based and heuristic search

approaches for optimization problems similar to GAs. GAs, however, rely

on the concept of biological evolution but MAs mimic cultural evolution.

Parallel MA [13] is implemented as a coarse-grain approach called

PARME. It is used on optimization problems in the work of Vanneschi.

Typically, parallel MA is implemented as a coarse-grain method called

PARME [13].

The PARME is a coarse-grain method that uses a different population in

each processor that runs a serial MA independently. One of the processors

is selected as the master processor. This is the main difference between

PARME and the other methods as mentioned earlier in parallel GAs. The

master processor controls the tasks of other processors and generates a task

table in each iteration and shared it with other processors. This task table

has the information of significant parameters such as the fitness value of the

best and the worst populations while the table will update in each iteration.

12

13

Chapter 3

Thesis Contributions and Case Studies

It is clear that different problems should be solved by different optimization

methods. Here, we have improved our optimization method and use

different types of coding, encoding, fitness functions and other needed

operations based on the requirement of problems.

3.1 Thesis Contributions and the Hybrid Evolutionary

Algorithm

As mentioned before, there are several open questions about the EAs that

this thesis has addressed some of them. Today, due to the complexity of

modern applications in IoT (internet of things) and CPS (cyber physical

systems) domains, optimization methods have emerged as a vital solution.

Generally, EAs are time-demanding computational models for complex

problems, particularly when search spaces, and the number of objectives are

increased. So, in the first effort, we did some research to select a fast

evolutionary method, and we selected ICA due to its performance and

accuracy.

ICA is an optimization method based on imperialistic competition. In

this method, all countries (same as chromosomes in the GA) are divided

into two categories: colonies and imperialist states. The main part of this

method is imperialistic competition which causes the colonies to converge

to the global minimum.

ICA can converge to the global optimum in the smaller iteration

compared to other EA methods but was not fast enough for our use-cases.

To improve the execution time of ICA, we decided to find a parallel solution

where we have presented two different parallel implementations of ICA. In

the first try (Paper I), we have proposed a multi-population implementation

of ICA. We have connected the processors with the ring topology and tested

our method on some well-known benchmarks. The results of these

implementations show that we got considerable improvement in the

execution time and accuracy in which super-linear performance [23] and

system of nonlinear equations (in Paper III) achieved the best results. This

improvement indicates that the migration operation has enough effect on

getting the algorithm out from the local optimum and help the algorithm to

have more exploration and exploitation in the search space.

Next, we implemented the multi-population and master-slave models of

ICA in Paper II and evaluated it with different benchmarks. The results

show that the master-slave can only improve the performance, while the

multi-population can increase the accuracy at the same time.

We evaluated this method with another case study as a multi-objective

problem. We introduced the concept of smart mobile access points

14

(SMAPs) to enhance node placement in wireless sensor networks (WSN).

Finding the best placement of SMAPs is a multi-objective problem, and our

algorithm should obtain the most coverage and connectivity of the network

at the same time. The search space simulated as a 3-D mesh and each SMAP

can select one point in the mesh. We used PICA to solve this problem (Paper

V). However, as this problem requires a discrete-based EA, we presented

an MPGA (Paper VI). With this, the execution time has been improved by

using fast and straightforward exploration and exploitation operations

(crossover and mutation) but could not guarantee the convergence to global

optimum as PICA is able to do. This motivated us to discover why GA-

based solutions cannot converge easily and accurately to the global

optimum.

The GA operations are fundamentally suitable for discrete problems

therefore not suitable for the convergence strategy in continuous problems

is not useful [24], because the selection operation in GA misses some

chromosomes that have a probability to become potential genes for

obtaining the best results. However, In the ICA, we use countries as the

population, all the countries will be available in all iterations; they may only

move to other places in the search space. However, the selection operation

highly depends on random functions which can easily converge to a local

optimum. Therefore, we use an efficient convergence strategy in order to

improve the reliability of results.

T.C.n=Cost(Imperialistn)+ mean{Cost(colonies of empiren)}

START

Is there a colony that is

dominating its relevant

imperialist?

Is there a colony that is

dominating its relevant

imperialist?

Are Stop

Conditions

satisfied?

Are Stop

Conditions

satisfied?

1.Initialize the Empires1.Initialize the Empires

2.Exploitation Operation

3.Exploration Operation

4.Exchange Imperialist

and the best Colony

5.Compute Total Cost

6.Imperialistic Competitive

END

2

N
O

YES

NO

Y
E

S

Imperialist 1

Imperialist 2

Imperialist 3

1

1

3

2

2

2

7

1

4

2

5

1

6

2

8

2

9

1

X

Y

1

1

3

2

6

2

7

1

4

2

5

1

2

2

8

2

9

1

X

Y

1

1

3

2

2

2

7

1

4

2

5

1

6

2

8

2

9

1

X

Y

1

1

2

1

4

2

3

2

6

2

5

1

8

1

7

2

9

1

X

Y

7

1

9

2

4

2

3

1

6

2

5

1

1

2

2

2

8

1

X

Y

8

1

9

1

2

2

7

2

4

2

5

1

1

1

3

2

6

1

X

Y

Empire 1
Empire 2

Empire 3

The Weakest Empire

Figure 3.1 Flowchart MICGA

To make this combination, we have selected and combined the best parts

of each method (ICA and GA) and proposed MICGA (PICA & GA).

MICGA uses the following steps from ICA: generates countries and creates

15

empires and imperialistic competition. Then the crossover and mutation will

be executed from GA. With this combination, we take advantage of ICA’s

efficiency in the convergence of global-optimum along with the fast

exploration and exploitation operation of GA. We have tested the proposed

method on task graph scheduling problem as another multi-objective

optimization problem (in Paper VII and IV). The results show that we have

a considerable improvement in accuracy and performance. Finally, we

adopted the proposed hybrid method on task scheduling for real and

complex applications [Paper VIII].

3.2 list of case studies

In this thesis, different types of case studies with various level of complexity

have been used.

3.2.1 Synthetic benchmarks

Generally, several well-known benchmarks have been used to assess EC

methods. In the Paper I and II, eight test functions (mathematical benchmark

functions) along with three case studies have been used and presented in

Table 2.1, in order to analyse and compare the proposed method with the

sequential ICA and some other parallel EC methods.

Table 3.1 MATHEMATICAL BENCHMARKS
 Name Equation Min.

Value

Bounds

𝒇𝟏 𝐺1 𝑥. sin(𝑥) + 1.1𝑦. sin(2𝑦) -18.5547 0 < x, y <10

𝒇𝟐 𝐺2
0.5 +

sin√𝑥2 + 𝑦2 − 0.5

1 + 0.1(𝑥2 + 𝑦2)

-0.5231 -∞ < 𝑥, 𝑦 < ∞

𝒇𝟑 Sphere
∑ 𝑥𝑖

2
𝐷

𝑖=1

0 -∞ < 𝑥𝑖 < ∞

𝒇𝟒 Rosenbrock
∑100(𝑥𝑖+1 − 𝑥𝑖

2)2
𝑛−1

𝑖=1

+ (𝑥𝑖 − 1)2
0 𝑥𝑖 ∈ [-50, 50]

𝒇𝟓 Rastrigin
∑ 𝑥𝑖

2
𝑛

𝑖=1
− 10 cos(2𝜋𝑥𝑖) + 10

0 𝑥𝑖 ∈ [-5. 2, 5.2]

𝒇𝟔 Akley

20 + 𝑒 − 20exp⁡(−0.2√
1

𝐷
∑ 𝑥𝑖

2
𝐷

𝑖=1
− exp(

1

𝐷
∑ cos(2𝜋𝑥

𝐷

𝑖=1
)

0 𝑥𝑖 ∈ [-32, 32]

𝒇𝟕 Ellipse
∑104

𝑖−1
𝐷−1

𝐷

𝑖=1

𝑥𝑖
2

0 𝑥𝑖 ∈ [-5, 5]

𝒇𝟖 Griewank 1

4000
∑ 𝑥𝑖

2
𝑛

𝑖=1
−∏cos(

𝑥𝑖

√𝑖
)

𝑛

𝑖=1

+ 1
0 𝑥𝑖 ∈[-600, 600]

 3.2.2 Nonlinear equations

Solving nonlinear equations are one of the NP-Hard problems [25], which

match the categories of multi-objective optimization problems. Systems of

nonlinear equations are used in a large range of engineering applications,

such as petroleum geological prospecting, weather forecast, control fields

and computational mechanics. In the classic methods, the quality of answers

depends on the initial guess of the solution. The Newton-type methods are

an example of classic methods. However, choosing suitable initial solutions

for the systems of nonlinear equations is extremely complex and takes a lot

of time and computations.

Therefore, to improve the performance several methods have been

introduced for optimization problems. These methods can be categorized

into two major categories: mathematical methods and evolutionary

16

computing (EC) methods where a large group of them are implemented in

a serial mode and some of them are in a parallel mode.

Serial methods are more popular than other mathematical methods in

nonlinear equations. However, the serial implementation does not always

provide sufficient accuracy while parallel implementation can improve

accuracy.

First, we explore some of the serial implementations of EAs. El-Emary

and El-Kareem used Gauss-Legendre integration as a serial method to the

system of nonlinear equations and used GA to find the results without

turning the nonlinear equations to linear equations [26]. Mastorakis applied

GA to solve a nonlinear equation as well as systems of nonlinear equations

[27].

For solving a set of nonlinear equations, Li and Zeng [28] trained a

neural-network algorithm. A simple gradient descent rule with variable

step-size levels used to carry out the computation [28].

Huan-Tong et al. introduced an improved evolution strategy based on a

probability ranking system to solve difficult nonlinear systems of equations

problems [29]. ICA was implemented for solving nonlinear systems of

equations by M. Abdollahi et al. [30]. The PSO method focuses more

on”exploration”, but the Nelder-Mead simplex system adjusts on

“exploitation” [31]. Wu et al. used a new turn of the social-emotional

optimisation method called MSEOA, principally inspired by the Metropolis

Rule [32]. In another try, M. Abdollahi et al. used a cuckoo optimization for

solving nonlinear systems equations [33] [34].

Luo et al. introduced an efficient combination of the Newton-type

method and Chaos search [35]. Grosan and Abraham used a new

perspective of the EA [36], Mo et al. introduced a simple combination of

the conjugate direction method (CD) [37], and M. Jaberipour used the

standard implementation of PSO [38]. Pourjafari et al. [39], and Henderson

at al. [40] proposed a methodology based on a polarization and novel

optimization methods using Invasive Weed Optimization for finding all

roots of a system of nonlinear equations.

Wu and Kang applied a parallel elite subspace EA for solving systems of

nonlinear equations [12]. The initial guess can have an undeniable effect on

the results of mathematical methods. On the other hand, a large and enough

well-distributed population of the EAs can improve the convergence of

them to the global optimum, which makes them slow. The EAs are

ineffective for large-scale problems, like systems of nonlinear equations

because of massive memory requirements and their high linear algebra

costs. Based on all issues presented above, finding an efficient method for

solving systems of nonlinear equations is necessary.

To solve nonlinear equations (in Paper III), we have utilized a coarse-

grained method to parallelize ICA (PICA). Among parallelized techniques

of EAs, the multi-population method has faster convergence and more

reliable results than other parallel methods.

In the multi-population method, each processor has an independent

population, each exploring its area of the search space. Their area can be

separated or merged, and the ICA is run in each processor independently.

17

Each processor can use different values for parameters. Different rates of

exploration and exploitation can help avoid converging to local optimums.

The migration operation in the multi-population method can significantly

increase the performance of solving nonlinear equations so that it is the most

critical parallel operation in the coarse-grain implementation. The

processors share the best results together to discover better results in a

shorter number of iterations. The proposed method selects the best

imperialist to be migrated between processors, and the migrated imperialist

replaces the worst colonies.

In this problem, each colony or imperialist is a possible solution for the

nonlinear equation. Therefore, the proposed method creates the initial

populations in each processor randomly, which are the possible solutions.

Some of the countries are selected to be processed by our proposed method

to converge them towards better results at each iteration.

The multi-population architecture has been made by connecting the

processors as ring topology by message passing based communication. The

low-cost communication and simplicity of the ring topology are the main

reason that it has used in our implementation. The initial population happens

for each processor independently. The initial population size is the same,

and the serial ICA runs independently on them. After some iterations, the

best imperialist migrates from each processor Pi to the next processor Pi+1

in the ring and replaces the worst colony in Pi+1.

In the proposed method, growing the initial population size increases the

selection pressure to converge to the global optimum faster. Therefore it is

advantageous to increase the number of countries.

3.2.3 Task Scheduling

Over the last two decades, parallel processing in contemporary

Multiprocessor System-on-Chips, or MPSoCs, in a wide variety of

applications, is the result of many breakthroughs. Based on this

development of embedded MPSoCs, many application domains such as

video and audio processing, health monitoring, and autonomous vehicles

developed to use in real-time environments. To improve the response time

of these applications, the data and the computational tasks of these

applications are distributed on all computational resources such as available

multiple cores. By using an efficient task partitioning and scheduling

strategies, the performance of such parallel systems can be improved.

In [41], the modified critical path algorithm is introduced, based on the

latest possible start time of a task. A task’s latest possible starting time is

defined through the as-late-as-possible binding by crossing the task graph

upward from the final tasks to the entry tasks while pulling the tasks’ start

times downwards as much as possible. The delayed possible start time of

the task itself is followed by decreasing order of the latest possible start

times of its follower tasks.

Moreover, the dominant sequence clustering algorithm (DSC) is

performed in [41] that it works based on the dominant sequence, and at each

step computation of the critical path of the partially scheduled task graph is

necessary. At every track, DSC checks whether the greatest the critical path

of task graph (CP) node that is a ready node. DSC assigned it to a processor

18

allowing the smallest start time. Such a smallest start time may be obtained

by rescheduling some of the node’s predecessors to the same processor. If

the greatest CP task is not an immediate task, DSC does not choose it for

scheduling. Instead, it keeps the highest task which lies on a path reaching

the CP for scheduling. Furthermore, the mobility directed algorithm (MD)

is presented in [41]. MD selects a task at each iteration based on relative

movement which is determined as the difference between a task’s earliest

start time and latest start time. The earliest possible start time is allocated to

each task through the as-soon-as-possible (ASAP) binding that is similar to

the ALAP binding. This is executed by traversing the task graph downward

from the entry nodes to the exit nodes while pulling the nodes upward as

much as possible. Furthermore, relative mobility is achieved by distributing

mobility with the task’s computation cost. A coarse-grain implementation

of the genetic algorithm method (MPGA) is introduced in [42] which

outperforms nondeterministic and deterministic methods reported in [43],

[44].

A new encoding method with a multi-functional chromosome is

performed that uses a priority representation of chromosomes. This priority

method is called priority-based multi-chromosome (PMC) [45]. In this

method, GA uses to obtain near-optimal scheduling. Lei et al. proposed a

GA mapping algorithm to minimize application execution time [46]. The

target architecture is network on a chip (NoC) and graphs represent

applications. Wu et al. also used genetic algorithms [47]. They combined a

dynamic voltage scaling method with mapping and obtained 51% savings

in energy consumption. Murali et al. used the tabu search (TS) algorithm to

task mappings for several applications in NoC design [48]. Manolache et al.

tried to guarantee packet latency by using task mapping in NoCs [49]. Hu

et al. introduced a branch-and-bound algorithm to map a set of IP cores (IPs)

onto a NoC with bandwidth reservation [50]. Their energy savings in the

communication architecture is 51.7%. Marcon et al. compared several

methods, using an architecture that characterizes applications by their inter-

task communication volume. Xu et al. [51] used a multiple priority queues

GA (MPQGA) for task scheduling problem on heterogeneous systems.

3.2.3.1 Task graph scheduling

In Paper VIII, we used MICGA (the combination of the GA and ICA) and

customised this hybrid method for the scheduling problem. Operations of

The GA primarily fit for scheduling, but as mentioned before, GA’s

convergence strategy to obtain more accurate and reliable results is not

efficient enough [52]. Based on our previous knowledge in the ICA, The

population contains countries as the chromosome.

The ICA improves the convergence operation quality by keeping all the

countries available in all iterations. They may only relocate to other

positions in the search space. On the other hand, the selection operation in

the GA extremely depends on random functions which can quickly

converge to a local optimum. Therefore, MICGA uses a more efficient

convergence strategy (the convergence idea of ICA) to improve the

reliability of results.

19

All the scheduled tasks in a directed acyclic graph (DAG) should satisfy

the priority relations so that we applied an order based coding mechanism

fitted for multiprocessor task scheduling. Therefore we had to fulfil the

following rules:

Before starting the execution of the task, all the predecessors of the task

must have completed their execution. Based on a DAG, all the tasks must

be executed at least once.

T1

T2 T3 T4

T5

T7

T8

T6

T9

Figure 3.2 DAG Task graph

3.2.3.1.1 Order-based country (OBC)

The multiprocessor scheduling problem was solved by several methods

[53], [54], [55] that they have used GA. Encoding a solution to the problem

into a chromosome is a fundamental issue here.

Two critical angles that should be satisfied are 1) converting the problem

from the genotype space to the phenotype space when chromosomes

(countries) are decoded into solutions [56], and 2) metamorphosis

properties when chromosomes are manipulated by GA operators [57].

Typically, the two common difficulties with respect to the encoding

problem are the following:

1) Needs for storing a huge number of chromosomes (countries)

corresponding to different suggested schedule.

2) Very complex operations (exploration and exploitation) in the case of

a large number of tasks.

To succeed these difficulties we use the concept of an order based

country (OBC) that strings the present task nodes in the DAG order of task

nodes with the corresponding processors simultaneously. Figure 3.4 is a

simple example that shows an OBC that represents nine tasks along with

two processors for the DAG shown in Figure 3.3.

20

1

1

3

2 2 1 2 1

6

3

8

2

9

1

3 4 5 6 7 8 9
Priority 1 2 3 4 5 6 7 8 9

2 7 4 5X1

Y1

1

2

2

2 3 1 3 2

5

1

8

3

9

1

3 4 6 7X2

Y2

P1-Chain 1 7 5 9

X1

4 5 9

X2

P2-Chain 3 2 4 8 1 2 7

X1 X2

P3-Chain 6 3 6 8

X1 X2
Figure 3.3 Chain of tasks based on the presented country

3.2.3.2 Scheduling a pack of application

In Paper VII, we have improved the previous work in task scheduling for a

pack (more than one) of jobs instead of only one job.

In normal task scheduling, some computational resources are useless and

with the pack of applications, the maximum capacity of resources can be

utilized.

Finding an encoding which can explain the priority constraint efficiently

among the jobs is a significant step. The suggested encoding order is based

on the priority of tasks, i.e. the pipelined execution representation of

applications at the same time. Generally, in the pipeline model, there is a

large data as input. This large data are divided into several small parts then

these parts are then one by one used as inputs to an application. We make a

pack of the parts and find the best schedule for this pack of data. Each part

is an application such as Sobel Application (Figure 4.11), and the number

of parts (applications) in each pack is. A proposed schedule of six Sobel

applications (pp=6) on four processors is illustrated in Figure 3.5.

gx

getPixel

gy

abs

getPixel

getPixel gy gy

getPixel

gx

gx

abs

gx

abs

gy

abs

P3

P2

P1

Sobel-1

Sobel-2

Sobel-3

Sobel-4

P4 getPixel gy gx

abs

Sobel-5

getPixel

gy

gx abs

Sobel-6

Figure 3.4 A proposed schedule of six Sobel application on four processors

(pp=6)

3.2.3.3 Task scheduling with more constraints on industrial

application

In Paper IV, an industrial application has been chosen to improve by a

heuristic task graph scheduling. Industrial applications often require

guaranteeing real-time execution, fault-tolerant implementations and

providing reliable functionality. In general, it is impossible for a single

machine architecture to satisfy all these needs. However, a distributed

processing environment provides a variety of computational capabilities,

which can be utilized to perform an application that has diverse execution

requirements. An application job can be decomposed into subtasks. Subtask

may have different computational requirements, where existing data

21

dependences is possible among these subtasks. For distributing subtasks,

the following decisions should be made respectively:

1) Subtask matching, i.e. assigning subtasks to processing machines, and

2) subtasks scheduling, i.e. defining subtask execution order and the order

of data transfers among machines.

The general goal of using distributed environments is to minimize the

end-to-end cost of computation, i.e. minimizing the overall response time

of the application, minimizing the number of processing machines, or both.

Performance of such parallel systems can be optimized by employing an

efficient task matching and scheduling approach, however, the matching

and scheduling problem is an NP-Complete [58]. Using exhaustive

approaches for finding an optimal solution is time-consuming and is

impossible in practice. Many heuristic task scheduling strategies have been

proposed [56], [59] to find a near-optimal solution in a reasonable amount

of time.

To only focus on the matching and scheduling problem, we made the

following assumptions. First of all, we assumed that each subtask is written

in a machine-independent language. Moreover, it is assumed that an

application job is decomposed into multiple subtasks and we know all the

data dependencies among subtasks before the execution. The load

complexity of all the subtasks and their execution time on each machine is

known a priori. It is assumed that for each subtask, there is a couple of input

nodes that produce raw input data (sensors) and there are some output nodes

which consume subtasks processing results (Actuator). Obviously the input

of subtask is coming from sensors or the output of other subtasks and

similarly, the output results of each subtask will be consumed by actuators

or other subtasks. The distributed processing platform is non-uniform that

consists of multiple homogeneous machines with various processing

potential. All the processes on machines are non-primitive meaning each

machine completes the current task before calling of the next task.

Figure 3.5 Representing the use case including jobs, intra-task dependencies,

tasks load complexity, real-time deadlines and processing unit specifications

22

Also, all input data items of a subtask must be received before its

execution can begin, and none of its output data items is available until the

execution of this subtask is finished. A data conditional is based on input

data, it is assumed to be contained inside a subtask. A loop that uses an input

data item to determine one or both of its bounds is also assumed to be

contained inside a subtask. When two communicating tasks are mapped

onto the same processor we assume that the communication delay is zero.

However, when they are mapped onto different processors a finite

communication delay is assumed and modelled. The task is represented by

a DAG, where each edge goes from a producer to a consumer. Figure 3.7

shows a DAG of an application job, seventh job, from the industrial use case

(Figure 3.6).

Figure 3.6 Dataflow of Job #7

3.2.4 Placement of Swarm of drones

Wireless sensor networks (WSN) and cyber-physical systems (CPS) are two

critical current fields of technology that are tightly intertwined [60], [61].

The combination of WSNs and other modern technologies, such as

unmanned aerial vehicles (UAV) and mobile robots, has created a novel

revolution in this area. An efficient combination of WSNs with mobile

nodes can obtain better performance by using mobile access points

embedded in UAVs or mobile robots [62], [63].

Smart mobile access points (SMAPs) can make a cluster together for

distributed computing and make decisions for improving the quality of the

network. SMAPs change their positions their decisions based on the current

situation in the environment. Therefore, placement of SMAPs is a critical

problem in this concept.

The Placement problem is a multi-objective optimization

problem. There are different kinds of methods such as static or dynamic

methods used to solve this problem [64]. The general method to solve the

initial placement, a static placement problem, is the evolutionary algorithm

[9], [65] such as PSO.

SMAPs are mobile access points that are able to create a dynamic and

smart sensor network. The main task of SMAPs is to monitor and predict

the behaviour of the network and decide the best method to maintain the

network at any given time. SMAPs collect and broadcast signals such as

battery levels, and help requests, from and to the other network nodes.

Based on the collected information, SMAPs predict the next actions based

on this information and run these actions.

23

Normally, a SMAP uses previous information and operations or

generates a new solution by learning or evolving through machine learning

algorithms. The most major tasks of SMAPs are the following:

1) Compute new (near-optimal) locations for access points to obtain

greater coverage of sensors.

2) Making decisions about how the access point must move to new areas

[66]

3) Participating in distributed communication and computation tasks (fog

computing [67]) other than the processing carried out as an inherent part of

the decision making in 1) and 2).

A SMAP can move to a new position based on different situations, such

as reconfiguration of the network, supporting specific tasks (e.g. tolerating

faults by replacing a faulty access point with a functioning one) or covering

a missed area of sensors that are not covered currently by any other access

point. SMAPs increase quality and flexibility of WSNs with the following

advantages:

 Improving the system by increasing the coverage in large scale networks.

 Solving hotspot problems in the network.

 Handling dynamic reconfiguration of WSNs.

 Replacing faulty access points.

 Forming a grid network to run real-time tasks in parallel.

Therefore, an optimised placement of SMAPs has a significant effect on

the ability and performance of the network. Therefore, we focused on the

initial placement to illustrate the efficiency of our method. Also, SMAPs

should have the best initial placement and clustering [68], [69].

Additionally, they should have the ability to move dynamically to new

locations, because the behaviour of the network can be changed at run-time.

This network reconfiguration method is a response to the current status of

the network, and SMAPs should update their locations for the new

configuration. Our method is based on the following:

Each access point or cluster centre always has a distinct weight. These

weights are equal to the probability of the request for reconfiguration. The

Weights can be calculated based on various effective parameters, such as

the current traffic of network at these access points, properties of the

covered area or the lifetime of their batteries.

In a dynamic WSN, mobile nodes can be repositioned to new positions

e.g. a sensor can change its location to the new location to collect extra

information from the environment, or it can be replaced with another sensor

that has a different performance on sensing physical phenomena.

Dynamic replacement of nodes during network operation is very

complex. It is clear that there is a significant difference between static and

dynamic placement. In the dynamic replacement, more complex parameters

such as the environment base, mobile targets, and lifetime of sensors can

have an effect on the placement problem. Furthermore, the dynamic

placement of a node needs very accurate handling because it can probably

cause a disruption in data connectivity and delivery.

24

Also, sensors can migrate to new locations to obtain better readings or to

sense extra information. Therefore, dynamic placement is a really

challenging problem particularly when the following two aspects are also

taking into consideration:

1) The ability of nodes to migrate and reposition to an infinitive number

of positions.

2) The responsibility of the network to keep full connectivity of covering

all sensors.

Placement in WSNs can be categorised to two main groups: placement

of sensors and placement of access points that in this case study, we only

focused on the placement of access points.

The Placement problem of access points is a complex multi-objective

optimization problem that all goals must be satisfied. The two more critical

goals are:

1) To guarantee continuous network connectivity. In fact, at least each

sensor and a node should have a connection to one access point that is

connected to the network at any given time.

2) Implementing a new reliable communication in the case of access

point failures, meaning that other nodes in the network should find a new

configuration to keep their communication.

The best solution to achieve this goal is to use extra (redundant) access

points which increases the number of feasible access points for sensors in

the network.

Heterogeneous WSNs are more popular and they have three different

kinds of nodes: sensors, access points, and gateways.

Sensors communicate with their corresponding access points. Access

points can communicate with all other types of nodes. Additionally, access

points have extra memory and computing capacity than sensors.

Finding a near-optimal placement to improve reliability, connectivity,

and energy consumption is an NP-hard problem [70]. Different heuristic

methods used to solve this problem, which these methods are presented in

[66], [71], [72].

Resolving the problem of failing access points is necessary for real large-

scale WSNs. Also, it is apparent that using regular methods to achieve more

redundancy (i.e. adding fixed/stationary access points) is very costly.

SMAP can be used to solve this problem at a lower cost and with more

flexibility.

As mentioned before, the placement of SMAPs is a complex problem.

During our research, we have worked in this area and test our methods to

find a near optimal placement for SMAPs. At first in Paper V, we have

proposed an efficient optimization method to solve the placement problem.

Then in the next publication (Paper VI), we introduced a hierarchical

structure to improve the scalability of SMAPs. To address the scalability of

SMAPs, we proposed a complex coding to have the ability to optimize a

multi-layers placement.

25

3.2.4.1 Placement of SMAPs

In the first method [Paper V], a multi-population implementation of ICA is

performed to improve the efficiency of solving the initial placement

problem in SMAP based systems. e We have categorized our method into

two critical layers: an architectural layer and an algorithmic layer. The

architectural layer is more related to the structure of SMAPs and there is not

any relation to the optimization concept and only describing the algorithm

part.

In the proposed method, all access points are categorized into two main

categories, SMAPs and normal access points, to have the best placement of

SMAPs. Normal access points are static and they only transfer data and

control connectivity in the network.

SMAPs have an extra ability compared to normal access points. They

can move around the network area to improve the total performance of the

network. Normal access points (static access points) have been selected as

objects that should be covered by SMAPs. Each static access point has its

weight and this weight indicates the probability of requiring support from

SMAPs. The weight can be derived from various parameters such as

battery lifetime and communication traffic. To simplify the work, the rate

of communication traffic is picked for this purpose. More details about the

modelling of the problem are available on Paper V. The PICA has been used

to solve this problem.

Like PICA, processors are connected in a ring topology and we use

message passing to implement this idea.

First, independent populations are generated in each processor by

running the sequential ICA independently. After each migration gap

(chapter 1.3.1) (some certain iterations) the best imperialist moves

(migrates) from the processor 𝑃𝑖 to 𝑃𝑖+1 in the ring topology and replaces

the worse colony in the weakest empire in 𝑃𝑖+1. This operation has been

run synchronously. Different migration strategies can provide different

results.

When a sparse connection topology, like a ring topology, is used low

migration rates and short migration gap can work better. In turn, in a fully

connected topology such as the star topology, the best optimal solution are

obtained when the migration rates are higher. A processor does not execute

any other operations during the migration operation.

 MICA is an efficient parallel method which improves the execution

time, stability, and reliability of results (Paper I). This is sufficient

motivation to apply PICA to the placement of SMAPs. In order to

appropriately modify the method, each SMAP is considered a processor,

and a ring topology is assumed.

3.2.4.2 Hierarchical Placement of SMAPs

In Paper VI, we have presented a hierarchical placement structure for

SMAPs to satisfy the scalability condition of them. In the proposed method,

a parallel implementation of GA (MPGA) is implemented to improve an

efficient method for solving the initial placement problem in hierarchical

SMAPs based systems.

26

Here again, the focus is on the algorithmic layer rather than the

architectural layer. To simplify the placement problem, all access points are

divided into two types which are normal access points and SMAPs. Normal

access points and SMAPs are the same as a previous case study in terms of

their ability (static and dynamic), but both of them transfer data and

maintain connectivity in the network (Paper V).

Normal access points have been chosen as objective points to cover by

SMAPs in the lowest layer. In each layer in the hierarchical method, SMAPs

are distributed into several clusters, and each cluster is chosen as objective

points (same as normal access points for the first layer) for other SMAPs in

the higher level.

We let that SMAPs works on a 3-D mesh and they can select a position

from this mesh. Also, our method should work on a discrete space;

therefore, a GA is a fit option to solve the placement problem [9], (Paper I),

(Paper V). ُ Since, The multi-population GA is more efficient than a serial

GA for a complex problem, we have utilized it to achieve the best possible

results for choosing the best positions.

The critical points of MPGAs, regarding their practical usage in this

problem, are 1) Making the better diversity of the initial population, 2)

Increasing the selection pressure and 3) Migration operator [9], (Paper V).

27

Chapter 4

Experimental Results

In this chapter, the results of thesis contributions are presented. Only some

of the results from the original papers have been selected, and they are

presented based on the order of the published papers. The results are based

on convergence stability diagrams (show the convergence and reliability of

our methods), the statistical results (shows the accuracy of our methods)

and performance.

We used the multi-population approach to parallelise our methods via the

message passing interface (MPI) [73] using MPICH2 [74] which allows

distributing the algorithm on several processors which are connected in a

ring topology. The proposed methods have been tested on an Intel Core i5-

45705 desktop computer clocked at 2.90 GHz (64-bit) with 24GB of

memory. The implementation parameters are presented in Table 4.1.

Table 4.1: parameters of implementation
Parameters Values

Number of Countries 100

Number of Empires 5

Termination Condition 20 Iterations

Number of Processors 5

Exploitation Rate 0.8

Exploration Rate 0.3

Migration Rate 1 Chromosome

In the rest of this chapter, the results of benchmarks and case studies are

presented.

4.1 Synthetic benchmarks

In Papers I and II, we introduced two parallel methods of ICA (PICA and

Master-Slave ICA) implemented by MPI. We assessed them on eight

mathematical benchmarks presented in Table 2.1. The obtained results are

compared with relevant state-of-the-art methods such as the sequential ICA,

PABC, Coarse Grain parallel PSO, Multi-Population Genetic Algorithm,

Dynamic Neighborhood Structures in Parallel Evolution Strategies

(Neighborhood GA), cuckoo optimization algorithm (COA), course-

grained PSO (C-PPSO) [30] and PSO-TM.

The results have been assessed based on our four principal parameters

which are speed up, stability, accuracy and ability to apply on different

areas. Regarding the performance (execution time) the results shown in

Figures 4.1, 4.2, 4.3 and Table 4.2, reflect that both of our methods are faster

28

but PICA is superior to others. Table 4.2 shows the speedup and efficiency

of PICA and C-PPSO. C-PPSO has been selected as the best-related works,

and the results illustrate that PICA is three times faster and more efficient

than C-PPSO.

Figure 4.1 Speed up diagram and parallel Efficiency diagram for 𝑓3

Figure 4.2 Speed up diagram and parallel Efficiency diagram for 𝑓4

Figure 4.3 Speed up diagram and parallel Efficiency diagram for 𝑓5

Table 4.2 Values of Speedup and Efficiency on Some Benchmarks by PICAs and C-PPSO
 Multi-Population PICA C-PPSO

 CPU=4 CPU=6 CPU=8 CPU=4 CPU=6 CPU=8

 Speed

up

Efficiency Speed

up

Efficiency Speed

up

Efficiency Speed

up

Efficiency Speed

up

Efficiency Speed

up

Efficiency

Sphere 12.2 3.05 18.6 3.10 25.12 3.14 3.9029 0.9757 5.7555 0.9593 6.7519 0.8440

Rosenbrock 11.6 2.90 17.88 2.98 24.4 3.05 3.9572 0.9893 5.7793 0.9632 5.9724 0.7465

Rastrigin 18.1 4.52 28.26 4.71 37.84 4.73 3.9580 0.9895 5.7774 0.9629 7.7703 0.9713

Griewank 16.3 4.07 25.32 4.22 34.08 4.26 3.9114 0.9778 5.9128 0.9855 7.3851 0.9231

The stability diagrams and statistical results confirm more reliable results

are obtained from different runs. The stability diagram shows the results of

a method in different runs and the method is more accurate if the results

have a lower standard deviation. As an example, the stability diagram of

PICA on Akley as a most complex benchmark in Table 2.1 is illustrated in

Figure 4.4, and statistical results are presented in Table 4.3 and Table 4.4.

PABC has been selected as the most reliable method among others. Table

4.4 presents values of different statistical results. Values of standard

division (SD) shows the variation or dispersion of final results in different

runs. Based on the presented values, the SD values of PABC are at least two

times larger than the SD values of PICA, which shows that PICA is more

reliable than other related methods.

29

Figure 4.4 Stability diagrams of f8 with PICA

Table 4.3 Statistical table of multi-population PICA on 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7⁡𝑎𝑛𝑑⁡𝑓8

with PICA with 30 runs
 Mean SD STE Median Worse Bes

t
𝒇𝟑 0.001810433333333 0.002970555267766 5.423467094903584e-004 0 0.001810433333333 0
𝒇𝟒 0.007084433333333 0.009400134634705 0.001716221927671 0.00158750 0.028145000000000 0
𝒇𝟓 0.001589366666667 0.002425782099026 428851917428874e-004 0 0.007724000000000 0
𝒇𝟔 8.014333333333334e-004 0.001179387178196 2.153256538433475e-004 0 0.003326000000000 0
𝒇𝟕 0.006058700000000 0.008992364052446 0.001641773545608 0 0.028145000000000 0
𝒇𝟖 4.893666666666666e-004 8.566241876403997e-004 1.563974636250617e-004 0 0.002942000000000 0

Table 4.4 Results obtained for the PICA and PABC algorithms on some benchmark functions.

𝐟

D

MCN

PICA

Master-slave Multi-Population

P=4 P=4 P=16

Mean SD Mean SD Mean SD

PICA

𝐟𝟑 30 2000 2.51354E-
16

3.66295E-
17

1.64297E-
16

2.28976E-
17

1.52341E-
16

2.18497E-
17

𝐟𝟒 30 2000 2.322891E-

02

3.462278E-

02

1.876391E-

02

2.964761E-

02

4.823789E-

03

5.213874E-

03

𝐟𝟓 30 2000 1.993628E-

16

4.736478E-

17

1.862283E-

16

4.732892E-

17

1.722862E-

16

4.378971E-

17

𝐟𝟖 30 2000 4.728617E-

18

6.598321E-

19

3.927344E-

18

5.668102E-

19

3.367451E-

18

4.962713E-

19

PABC

[15]

𝐟𝟑 30 2000 - - 2.49479E-

16

4.043068E-

17

2.467389E-

16

4.100729E-

17

𝐟𝟒 30 2000 - - 2.182352E-
02

3.250047E-
02

2.282869E-
02

2.585128E-
02

𝐟𝟓 30 2000 - - 1.946071E-
16

4.615336E-
17

1.931904E-
16

5.386725E-
17

𝐟𝟖 30 2000 - - 4.896980E-

18

7.036649E-

19

4.756034E-

18

6.995602E-

19

4.2 Nonlinear equations

To examine the accuracy of PICA, we utilized three nonlinear equations.

The results show that PICA obtained the most accurate results in the

continuous search spaces problems.

In the first case study (nonlinear equation), the results compared with

[38] and [75] have been obtained with 120 generations with an unknown

number of population sizes. In [30], the parameters of ICA have been set to

50 iterations with 250 countries. As shown in Table 4.5, PICA achieved

better and more accurate results than the previous works. The accuracy of

PICA is more than 𝑒−32 instead of 𝑒−30 that obtained by serial ICA and C-

30

PPSO. The related convergence and stability diagram have been presented

in Figures 4.5, and 4.6, respectively; and statistical results are presented in

Table 4.6.

Figure 4.5 The convergence history

of case 1 with PICA

Figure 4.6 The stability chart of case

1 with PIC

Table 4.5 Comparison Results of PICA for Case 1 with [38], [75], [33] and [30]
Methods 𝒙𝟏 𝒙𝟐 𝒇(𝒙)
PPSO [38] and

Gyurhan [75]

-0.29051455550725 1.08421508149135 4.686326815078573e-029

PPSO [38] and

Gyurhan [75]

-0.793700525984100 -0.793700525984100 1.577721810442024e-030

COA [33] 1.08421508149135 -0.29051455550725 4.686326815078573e-029

COA [33] -0.29051455550725 1.08421508149135 4.686326815078573e-029

ICA [30] 1.084215081491351 -0.290514555507251 3.562200025138631e-030

ICA [30] -0.793700525984100 -0.793700525984100 1.577721810442024e-030

ICA [30] -0.290514555507251 1.084215081491351 3.562200025138631e-030

PICA (present

study)

1.0842150814913511 -0.2905145555072514 4.9303806576313238e-032

PICA (present

study)

-0.79370052598409995582 -0.79370052598409995582 3.9443045261050590e-031

PICA (present

study)

-0.2905145555072514 1.0842150814913511 4.9303806576313238e-032

Table 4.6 Statistical results of PICA
Problem N Mean Std. Deviation Std. Error Mean Worst Best

Case 1 30 1.988586000000001e-031 1.739458967563944e-031 3.175803047964731e-032 3.944300000000000e-031 4.930400000000000e-032

Case 2 30 1.046312443884771e-026 1.511543708264576e-026 2.759688618905053e-027 4.414500000000001e-026 0.0

Case 3 30 6.898049999999997e-037 1.150107106181705e-037 2.099798685342363e-038 9.039099999999999e-037 5.800000000000000e-037

In case 2, the best results in [77], [76], [30], and [33] with 50 iterations and 250

population sizes were compared with PICA (Paper III). PICA obtained these

results with 250 countries and 35 decades. Also, the convergence and stability

diagram are illustrated in Figures 4.7 and 4.8.

Figure 4.7 The convergence history of case 2 with PICA

Figure 4.8 The stability chart of case 2 with PICA

31

Case 3 has been solved by the filled function method in [77] and has been

proposed as a problem in [76] and [30]. The presented methods in [77], [76], and

[30] have been tested for 1000 iterations, and their population size has been set to

300. The results of the PICA are illustrated in Table 4.6.

The convergence diagram of PICA has been presented in Figures 4.9. Figure

4.10 shows the stability diagram of PICA for Case 3. The speedup and efficiency

results of all three cases have been listed in Table 4.7. Achieving the super-linear

performance demonstrates that PICA has an excellent performance gain for

continuous problems.

Figure 4.9 The convergence history

of case 3 with PICA

Figure 4.10 The stability chart of

case 3 with PICA

Table 4.7 The Comparison Statistical Results of Serial ICA, and PICA
Problem Speed

Up

Efficiency Serial ICA

time

PICA

time

#processors Super linear

performance?

Case 1 2.82 1.41 0.0341 0.012 2 Yes

Case 2 5.1 2.55 2.1 0.411 2 Yes

Case 3 6.24 3.12 6.78 1.08 2 Yes

4.3 Task Graph Scheduling

In Paper VII and VIII, four well-known real applications, Sobel, SUSAN, RASTA-

PLP and JPEG encoder [78] (Figure 4.11) have been used to exhibit the

performance of MICGA. The collected results have been compared with those of

the other EC methods that have used these applications in their evaluations such

as MPGA [42], PMC [45] and MPQGA [51].

getPixel

abs

gygx direction

usan

thin

getImage

putImage

1
3

2

powspec

rasta

compJah

rastaFilter

backEnd

2

audspec

frontEnd

2

CS

readImg

writeImg

Huffman_0 Huffman_1 Huffman_2 Huffman_3 Huffman_4 Huffman_5

1

DCT_5DCT_0 DCT_1 DCT_2 DCT_3 DCT_4

CC_0

1

 Sobel SUSAN RATA-PLP JPEG encoder
Figure 4.11 Task graph scheduling benchmarks

32

First, we present the results of MICGA reported in the paper VIII (NoMeS).

MICGA is named NoMeS in the paper. Figure 4.12, Figure 4.13, Figure 4.14 and

Figure 4.15 show the end to end execution times of the benchmarks for all

optimization methods with various numbers of processors. Based on the results,

MICGA decreases end to end execution time more than 29.5%, 68.1%, 47.4%, and

10.1% for the Sobel, SUSAN, RASTA-PLP, and JPEG encoder applications,

respectively.

×2

Figure 4.12 The Execution Time of

Sobel filter with different numbers of

processors

×2

Figure 4.13 The Execution Time of

Susan filter with different numbers of

processors

×2

Figure 4.14 The Execution Time of

RASTA-PLP filter with different

numbers of processors

×2

Figure 4.15 The Execution Time of

JPEG-encoder with different

numbers of processors

Another critical factor to select the best method is the stability and reliability of

the experimental results. The heuristic and metaheuristic methods cannot converge

to the best results in all execution runs. Therefore, each method is executed several

times and their results in all iterations show the stability. Figure 4.16 illustrate the

stability diagram of each method. The results confirm that our method is more

reliable with fewer errors values than the others. Figure 4.17 illustrate the

convergence diagrams of MICGA on all applications. Based on the quality and

accuracy of the results, MICGA is a prominent candidate for task graph scheduling

problems.

33

Figure 4.16 The stability diagram of MICGA, MPGA, PMC and MPQGA on Sobel,

SUSAN, RASTA-PLP and JPEG encoder with 2 processors

Figure 4.17 The convergence diagram of MICGA on Sobel, SUSAN, RASTA-PLP and

JPEG encoder with 2 processors.

Figure 4.18 The stability diagram of MICGA, MPGA, PMC and MPQGA on Sobel,

SUSAN, RASTA-PLP and JPEG encoder with 4 processors

34

Figure 4.19 The execution time of MICGA on all benchmarks with different number of

pp on six processors

Here, we report the results of the paper VII related to the idea of a pack of tasks.

The results obtained using the same applications to show the stability of each

method in Figure 4.18. MICGA is compared with MPGA [42], PMC [45] and

MPQGA [51] in the same conditions and other methods.

Figure 4.20, Figure 4.21, Figure 4.22 and Figure 4.23 illustrate the end to end

execution time of all method on the applications on six processors. MICGA

decreases the execution time by more than 46%, 8%, 15%, and 18% for the Sobel,

SUSAN, RASTA-PLP, and JPEG encoder applications, respectively. It seems that

the used packing method decreases the execution time.

×6

Figure 4.20 The execution time of all methods on 100 of Sobel application (pp=100)

One of the main limitations of evolutionary algorithms is that they decrease the

convergence speed by increasing the number of iterations leading to non-

convergent results in low iterations. In the Paper IV, Figure 4.24 and Figure 4.27

represent the convergence of fitness functions for both single and multi-objective

optimization, respectively. It can be easily observed from the convergence figures

that both strategies are highly convergent toward the optimal results by a

contentious reduction in fitness functions (see Equation (1) and Equation (2)).

35

×6

Figure 4.21 The execution time of all methods on 100 of SUSAN application

(pp=100)

×6

Figure 4.22 The execution time of all methods on 100 of RASTA-PLP application

(pp=100)

×6

Figure 4.23 The execution time of all methods on 100 of JPEG-encoder application

(pp=100)

4.3.1 Single Objective Optimization

Figure 4.25 illustrates the variation trend of the total number of utilized processing

units by increasing the number of iterations. As mentioned before, the aim of single

objective optimization is to decrease the number of processing units used in jobs

scheduling. Figure 4.26 shows considerable improvement in finding scheduling

with lower required processing units. According to the results of Figure 4.25, we

need 22 processing units for scheduling in the first iteration, while by proceeding

36

the exploration algorithm; we found a solution with only seven required processing

units. Although there exist some breaks in continuous improvement, the overall

trend moves toward improvement.

4.3.2 Multi-Objective Optimization

As mentioned earlier, the total number of processing units and end-to-end run-time

for all the jobs are the two main objectives of MPGA. Figure 4.27 and Figure 4.28

illustrate the convergence figures of required processing units for scheduling and

end-to-end run-time for all the scheduled jobs, respectively. We can conclude from

the figures that both the objectives are approaching toward optimized results.

Although there are some failures or stops in achieving better results in each

iteration, the overall progression of MPGA always approaches toward superior

outcomes.

Table II shows three different solutions on the Pareto frontier of the last

Population. We have a variety of options based on user needs. Solution 1 is

scheduling with a minimized number of processing units (7 processing units) while

takes more time, 210tu, for running. On the other hand, Solution 3 provides the

minimum elapsed end-to-end run-time (160tu), while needs 9 processing units for

running.

Figure 4.24 Convergence diagram of single objective optimization (# Processing

units).

Figure 4.25 Convergence diagram of MPGA (# processing units, end-to-end runtime).

37

Figure 4.26 Convergence diagram of the variations # processing units based on in single

objective optimization.

Figure 4.27 Convergence diagram of # processing units in multi-objective optimization

by using MPGA approach.

Figure 4.28 Convergence diagram of end-to-end run-time in multi-objective optimization

by using MPGA approach.

38

Figure 4.9 presents the allocation and scheduling results of the use case (Figure

3.6) described in Subchapter 3.2.3.3. The results of optimizing the use-case with

MPGA are shown in Figure 4.9 valid scheduling for all jobs and their related tasks

with the minimum number of processing units (Solution1).

Figure 4.29 The best solution for multi-objective optimization with a minimum number

of processing units (solution1)

4.4 Placement of Swarm of drones

Placement of SMAPs, described in Subchapter 3.2.4 has been implemented in two

different works (Paper V and Paper VI). Paper V presents an efficient placement

of SMAPs while Paper VI proposed a hierarchical placement of SMAPs.

In Paper V, we used PICA for finding the optimal placement using four well-

known 2-D benchmarks and all the collected results are compared with the serial

ICA, deterministic and random method [70], for the placement problem.

39

4.4.1 Single SMAP

The initial placement in the first three benchmarks is coordinated at (0, 0). The first

three benchmarks are used to find the best placement for only one SMAP. But, the

fourth benchmark is considered for more than one SMAP. All the methods have

been run for 40 times on each benchmark,

In the first benchmark, eight static access points have been placed around the

SMAP in a circular manner. The radius of the circle is 500 meters. The second

benchmark has eight static access points that are symmetric based on the center

point.

In the third benchmark, there are 50 access points that are randomly placed

around the SMAP. The weights of all static access points are equal in all

benchmarks. PICA and ICA have been run in 100 iterations and their population

size are equal to 500. The placements that has been selected by PICA is shown in

Figure 4.30, Figure 4.32, Figure 4.34. The results show that our placements are

very close to the optimal point based on the best and the worst distance in Table

4.8.

Table 4.8 Statistical Results

B
e
n

c
h

m
a
r
k

s The Best

Distance

The Worst

Distance

C
o

r
re

c
t

P
la

c
em

e
n

t

C
o

u
n

t
PICA 3 0 2.8635 35

Random 13.2549 78.1004 0

Serial ICA 0 11.5873 7

Mathematical 0 0 40

PICA 2 0 61.4191 36

Serial ICA 0 127.3185 4

Random 52.9906 1.0572e+03 0

Mathematical 0 0 40

PICA 1 0 475.0343 21

Serial ICA 0 4.6043e+03 2

Random 846.77 1.0447e+04 0

Mathematical 0 0 40

Figure 4.30 The placement of PICA on benchmark 1.

40

Figure 4.31 The placement of ICA on benchmark 1.

Figure 4.32 The placement of PICA on benchmark 2

Figure 4.33 The placement of ICA on benchmark 2

Figure 4.34 The placement of PICA on benchmark 3.

41

Figure 4.35 The placement of ICA on benchmark 3.

Figure 4.36 The placement of PICA on benchmark 4.

Figure 4.37 The placement of ICA on benchmark 4

4.4.2 Multiple SMAPs

The fourth benchmark considers 5 SMAPs and 16 standard access points.

To check the reliability of the results of the PICA and serial ICA, for each

method we run 40 times each with 100 iterations. The initial country is equal to

500. Figures 4.36 show the placement of the proposed method on the fourth

benchmark.

The overall results confirm that the proposed fitness function is extremely

efficient, letting PICA and ICA obtain the best placement also in the complex

placement cases. The results also demonstrate that PICA performs much better

than ICA.

In the hierarchal placement (Paper VI), three well-known 2-D benchmarks have

been utilized. The static-access points have different weights in the second and the

third benchmarks; hence, benchmarks 2 and 3 are more complex than the first

one. The results of MPGA have been compared with sequential GA and standard

mathematical method.

42

In these benchmarks, the proposed method should choose the best placement

for several SMAPs in two layers. In the first benchmark, twenty-four normal

access points and nine SMAPs have been divided into two layers (six SMAPs in

the first layer and three SMAPs in the second layer). SMAPs should have different

positions. The results also show that MPGA performs much better than GA.

The main aim is to obtain the best placement for multiple SMAPs in two

different layers. The first benchmark includes twenty-four static access points,

which have a regular arrangement. All normal access points have the same

weights.

The second benchmark has thirty-two static access points and divided into two

subsets (i.e., A and B).

The third benchmark has sixty static access points, stayed on two hyperbolic

curves (a horizontal curve and a vertical one). They also indicate that the proposed

MPGA method is successful in both simple and complex case studies.

TABLE 4.9 The stability diagram of all methods on case study 3. Statistical Results
 Case The Best Distance Correct Placement Count The Worst Distance

PGA

3

0 27 17.436

Serial GA 0 11 43.261

Mathematical - 0 -

PGA

2

0 26 11.814

Serial GA 0 7 34.899

Mathematical - 0 -

PGA

1

0 28 9.465

Serial GA 0 13 18.927

Mathematical - 0 -

Figure 4.38 The placement of MPGA on

case study 1.

Figure 4.39 The placement of serial GA

on case study 1.

Figure 4.40 The placement of MPGA on

case study 2.

Figure 4.41 The placement of serial GA

on case study 2.

43

Figure 4.42 The placement of serial

MPGA on case study 3

Figure 4.43 The placement of serial GA

on case study 3.

44

45

Chapter 5

Discussion and Conclusion

In conclusion, this thesis improved the execution time and accuracy of meta-

heuristic methods for optimization problems. Commonly, in really complex

optimization problems, Evolutionary Computing (ECs) are popular ones. Although

ECs show a better performance in comparison with other optimization methods,

convergence to local optimums and large execution time motivated us to improve

them.

The thesis contribution is threefold as follows:

Reducing the execution time of ECs to apply for extremely complex problems

and real-time applications.

Changing the exploration and exploitation to prevent convergence to local

optimum in complex problems, and raise the reliability of results. Developed a

framework to adapt ECs running in a distributed manner.

Therefore, the main conclusions of this study are summarized as follows:

1) We have selected the GA and ICA as two popular optimization methods for

discrete and continuous problems. To improve the execution time of ECs methods

we have parallelized GA and ICA, and our experimental results show that not only

we have achieved an improvement on the execution time, but the reliability of the

results have also been improved by the multi-population technique. The statistical

results and stability diagrams show these successes. In Paper I, multi-population

ICA (PICA) has been presented, and its results compare with some other methods

based on the synthetic benchmarks.

The results show a faster convergence, more reliability and super-linear

performance. The improvement of convergence after each migration indicates that

the migration operation has a significant effect of converging method to the global

optimum.

In Paper II, master-slave ICA and PICA have been presented. Improving the

convergence and reliability of results were the primary concern in this paper. These

methods and some other related methods have been compared together on more

synthetic benchmarks. The results explain that multi-population improves the

execution time and reliability of the results, but master-slave only reduces the

execution time.

After improving the convergence in Paper I and II, the PICA applied on non-

linear equations to test the accuracy of results. The proposed method was compared

with other related methods. More accurate results obtained by multi-population

ICA.

All the benchmarks and non-linear equations have continuous search spaces

based on the behaviour of serial ICA.

In Paper IV, a task scheduling problem has been selected as an order based

problem (a type of discrete problems), and MPGA was chosen to apply on it. GA

works efficiently on discrete problems. The results confirm the obtained results are

reliable, but the convergence does not have enough improvement. Then, in

Paper V, PICA applied on complex placement problems (a discrete problem) and

46

the convergence and reliability of results were improved, but the execution time

was not changed.

2) Missing convergence improvement in MPGA (Paper IV) and execution time

in PICA (Paper V) have motivated us to find the main reason for these problems.

Therefore, MICGA has been proposed from the combination of PICA and MPGA.

In MICGA the convergence strategies of PICA and exploration (mutation) and

exploitation (crossover) operations of MPGA work together as an efficient

optimization method.

In Paper VI, MICGA has been applied on more complex placement problem

(Hierarchical placement of smart mobile access points). The results of Paper VI

show that we have achieved a faster convergence, less execution time and more

reliability. The results show that MICGA has achieved most of our goals in this

thesis. In Paper VII and VIII, MICGA is applied on two more complex scheduling

problems and their results illustrate that MICGA can satisfy all mentioned objects.

We combined ICA and GA, named MICGA, which takes advantage of the

distributed, and convergence strategies of ICA, along with the crossover and

mutation operations of GA. With this combination, MICGA not only increases the

execution of PICA and GA but also has a great potential to be used for both

continuous and discrete problems.

3) We adapted PICA, MPGA and MICGA to be executed in a distributed

manner using a ring topology (minimum connection) with a low rate of migration

(low communication cost) using message passing systems. The experimental

results show that we achieved considerable efficiency in comparison with central

computation systems.

47

Chapter 6

Overview of Original Publications

Articles published including the results and analysis from the thesis are

summarized below.

6.1 Paper I: PICA: Multi-Population Implementation of Parallel

Imperialist Competitive Algorithms

In this paper, a multi-population implementation of ICA is proposed to improve

the execution time of ICA. The processors are connected as a ring topology to

communicate together. The proposed work starts its process by initializing some

independent populations. This helps avoid converging to a local optimum in

different populations at the same time.

The key contribution of this paper is the migration operation. By the migration

operation, some chromosomes from each processor migrate to another processor

to share their genome.

The migration operation helps different populations to change their position

from local optimums. The evaluation shows our solution improves the execution

time and the stability.

6.2 Paper II: Parallel Imperialist Competitive Algorithms

In this paper, two different types of parallel ICA are introduced, multi-population

and master-slave. One processor is selected as a master processor and manages the

tasks of other processors. Slaves run some tasks such as chromosome evaluation

and return the corresponding values to the master processor.

In this work, our proposed works are evaluated in eight well-known

benchmarks, and their outcomes compare with some other parallel EC methods.

The results show that the master-slave ICA improves only the execution time,

but PICA promotes reliability and execution time.

6.3 Paper III: Parallel Imperialist Competitive Algorithm Based

on Multi-Population Technique for Solving Systems of Nonlinear

Equation

In this paper, we have used PICA to solve nonlinear equation systems. Vast uses

of non-linear equations are undeniable. Some of their applications are in chemistry,

economics, mechanics, engineering, medicine, and robotics.

The complexity of nonlinear equations proves the performance of our method.

To qualify our method, we applied PICA on three well-known nonlinear equations.

The presented results, such as stability diagram, convergence diagram, statistical

results and table of speed up, illustrate that our method has a significant

achievement. The accuracy of our results confirms the reliability of PICA. Also,

we obtain the super-linear performance and shows the efficiency of our method on

continuous problems.

48

6.4 Paper IV: Finding Near-Optimal Task Scheduling for

Distributed Real-Time Environments

In this paper, we proposed an MPGA approach for near-optimal scheduling

optimization that guarantees end-to-end deadlines of tasks in distributed

processing environments. We analyse two different exploration scenarios,

including single and multi-objective explorations.

The principal goal of the single objective exploration algorithm is to achieve a

minimal number of processing units for all tasks, whereas a multi-objective

optimization tries to optimize two conflicting objectives simultaneously

considering the total number of processing units and end-to-end finishing time for

all the jobs. The potential of the proposed approach is demonstrated by

experiments based on a use case for mapping a number of jobs covering industrial

automation systems, where each of the jobs consists of several tasks in a distributed

environment.

6.5 Paper V: Placement of Smart Mobile Access Points in Wireless

Sensor Networks and Cyber-Physical Systems using Fog

Computing

In this paper, a PICA is applied to develop an efficient method for planning the

initial placement problem in SMAP based systems. In PICA, we have divided our

method into two layers: an algorithmic layer and an architectural layer. To have

the optimal placement of SMAPs, all access points are divided into two major

groups that are SMAPs and static access points. Static access points only transfer

data and maintains the connectivity in the network. SMAPs can work like static

access points, but they also can accomplish other tasks, like maintaining other

access points when required. To clarify the problem, static access points have been

elected as target points for SMAPs, as we are considering the initial placement

only. Also, each static access point has an independent weight. The weight of each

access point shows the probability of requiring support from SMAPs.

PICA has been tested on four Well-known 2-D benchmarks. The achieved

results have been compared with the ICA, and other similar placement methods.

6.6 Paper VI: Hierarchical Placement of Smart Mobile Access

Points in Wireless Sensor Networks using Fog Computing

In this paper, the idea of a hierarchical smart mobile access point (HSMAP), which

is a significant building block for an intelligent network, has been proposed. The

placement of SMAPs is a fundamental factor in the dynamic network. Since the

placement of HSMAPs is an NP problem, we solve the initial placement of them

using an MPGA with an efficient evaluation.

Also, since SMAPs can be used in a large scale WSN, scalability of SMAPs

placement is considerably important. Therefore, we have presented a hierarchical

implementation of SMAPs to solve the scalability problem. The proposed method

has been tested on four Well-known 2-D benchmarks. The achieved results have

been compared with the serial ICA, and other similar placement methods.

49

6.7 Paper VII: Optimizing Scheduling for Heterogeneous

Computing Systems using Combinatorial Meta-heuristic Solution

In this paper, a new task graph scheduling approach is presented. To perform our

work more complicated, NoC is assumed as a heterogeneous multiprocessor

system. We tackle this task scheduling problem by MICGA. In this paper, the main

goal is to improve execution time and reliability. The presented encoding method

is based on task priority, and our work focuses on the pipelined execution model

of applications. In the pipeline model, input data is divided into several parts, and

these parts are then one by one used as inputs to an application. We make a pack

of the parts and find the best schedule for this pack of data. To test and compare

our method, four commonly explored real applications have been utilized to

demonstrate the performance of the MICGA.

6.8 Paper VIII: NOMeS: Near-Optimal Metaheuristic Scheduling

for MPSoCs

In this work, we use a stochastic model for the task-scheduling problem, where the

data communication times between tasks and the execution times of tasks are

known. The task scheduling problem based on a directed acyclic task graph (DAG)

that specifies the preference relations of the tasks is known to be an NP-hard

problem. In general, priority constraints between tasks can be non-uniform, but we

consider here, for simplicity, that the MPSoC platform is uniform (a homogeneous

multiprocessor system) and non-primitive (each processor completes the current

task before starting the execution of the next task).

In this paper, we tackle this problem by introducing a perfect combination of a

GA and the PICA. Moreover, we explicitly estimate the communication delays

between processors. When two communicating tasks are mapped onto the same

processor, we assume that the communication delay is zero. However, when they

are mapped onto different processors, a finite communication delay is assumed and

modelled.

We have used the concept of an order-based country (OBC) as an extension of

the order-based coding method. This coding defines the order of tasks and the

selected processor to run each task. To improve the outcome of the optimization

process, we used MICGA which takes advantage of both ICA and GA. This

combination improves the convergence policy and selection pressure, by keeping

all countries in all iterations and avoiding the use of a general selection operation

such as tournament schemes and roulette wheel.

50

51

Bibliography

[1] A. Majd, E. Troubitsyna, and M. Daneshtalab, “Safety-Aware Control of

Swarms of Drones,” 12th ERCIM/EWICS/ARTEMIS Workshop on

Dependable Smart Embedded Cyber-physical Systems and Systems-of-

Systems at SAFECOMP 2017, (DECSoS ’17), 2017

[2] A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing. Springer,

2003

[3] E. Cantú-Paz, “A Survey of Parallel Genetic Algorithms,” Department of

Computer Science and Illinois Genetic Algorithms Laboratory University of

Illinois at Urbana-Champaign, 1997.

[4] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning.

Machine Learning” , 1988

[5] Gen M, Cheng R. Genetic algorithm and engineering optimization.

NewYork:Wiley; 2000

[6] E. A. Gargari, and C. Lucas, “Imperialist Competitive Algorithm: An

Algorithm for Optimization Inspired by Imperialistic Competition,” Congress

on Evolutionary Computation, IEEE, 2007

[7] H. Lotfi, A. Boroumandnia and Sh. Lotfi, “Task Graph Scheduling in

Multiprocessor Systems Using a Coarse Grained Genetic Algorithm,” 2nd

International Conference on Computer Technology and Development, IEEE,

2010.

[8] H. Lotfi, Sh. Lotfi and A.Boroumandnia, “Task Graph Scheduling in

Multiprocessor Systems Using a Two Population Genetic Algorithm,”

International Conference on Software and Computing Technology, IEEE, 2010.

[9] A. Majd, Sh. Lotfi and G. Sahebi, “Review on Parallel Evolutionary Computing

and Introduce Three General Framework to Parallelize All EC Algorithms,”

The 5th Conference on Information and Knowledge Technology, IEEE, pp. 61-

66, 2013

[10] H. Liu, P. Li and Y. Wen, “Parallel Ant Colony Optimization Algorithm,”

World Congress on Intelligent Control and Automation. China, 2006.

[11] Z. Yang and B. Yu, “A Parallel Ant Colony Algorithm for Bus Network

Optimization,” Computer-Aided Civil and Infrastructure Engineering, vol. 22,

pp. 44–55, 2007.

[12] A. Mousa, W. Wahed and R. Allah, “A Hybrid Ant Colony Optimization

Approach Based Local Search Scheme for Multi Objective Design

Optimizations,” Electric Power Systems Research, vol. 81, pp. 1014–1023,

ELSEVIER, 2011.

52

[13] J. Digalakis and K. Margaritis, “A Parallel Memetic Algorithm for Solving

Optimization Problems,” 4th Metaheuristics International Conference. Parallel

Distributed Processing Laboratory, Greece, 2001.

[14] R. Parpinelli, C. Benitez and S. Lopes, “Parallel Approaches for the Artificial

Bee Colony Algorithm,” Handbook of Swarm Intelligence, vol. 8, pp. 329-345,

2010.

[15] H. Narasimhan, “Parallel Artificial Bee Colony (PABC) Algorithm,” World

Congress on Nature & Biologically Inspired Computing, pp. 306-311. IEEE,

2009.

[16] L. Vanneschi, D. Codecasa and G. Mauri, “A Comparative Study of Four

Parallel and Distributed PSO Methods,” New Generation Computing. vol. 29,

pp. 129-161, 2011.

[17] P. Y. Yin, S. S. Yu, P. P. Wang and Y. T. Wang, “A Hybrid Particle Swarm

Optimization Algorithm for Optimal Task Assignment in Distributed Systems,”

Computer Standards & Interfaces, vol. 28, pp. 441–450, ELSEVIER, 2006.

[18] E. Alba, F. Luna, A. J. Nebro and J. M. Troya, “Parallel Heterogeneous Genetic

Algorithms for Continuous Optimization,” Parallel Computing, vol. 30, pp.

699–719, ELSEVIER, 2004.

[19] M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-heuristic”

The IEEE Congress on Evolutionary Computation-CEC99, 1999.

[20] D. Karaboga, and B. Basturk, “A powerful and efficient algorithm for

numerical function optimization: artificial bee colony (ABC) algorithm,”

Journal of Global Optimization, Vol. 39-3, pp. 459–471, 2007.

[21] R. Eberhart ; J. Kennedy, “A new optimizer using particle swarm theory,” The

Sixth IEEE International Symposium on Micro Machine and Human Science,

1995.

[22] C. Cotta, L. Mathieson and P. Moscato, “Memetic Algorithms,” Handbook of

Heuristics, pp 1-32, 2017.

[23] E. Alba, “Parallel Evolutionary Algorithms Can Achieve Super-Linear

Performance,” Information Processing Letters, vol. 82, pp. 7–13, ELSEVIER,

2002.

[24] E. Alba, F. Luna, A. J. Nebro and J. M. Troya, “Parallel Heterogeneous Genetic

Algorithms for Continuous Optimization,” Parallel Computing, vol. 30, pp.

699–719, ELSEVIER, 2004.

[25] M. Abdollahi, A. Isazadeh, and D. Abdollahi, “Imperialist competitive

algorithm for solving systems of nonlinear equations,” Comput. Math. Appl.,

vol. 65, pp. 1894-1908, 2013.

https://ieeexplore.ieee.org/author/37299120300
https://ieeexplore.ieee.org/author/37621014100
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6342
https://link.springer.com/journal/10898
https://ieeexplore.ieee.org/author/37276148000
https://ieeexplore.ieee.org/author/37276103200
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3570
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3570
https://link.springer.com/referencework/10.1007/978-3-319-07153-4
https://link.springer.com/referencework/10.1007/978-3-319-07153-4

53

[26] Ibrahiem M. M. El-Emary and Mona M. Abd El-Kareem, Toward Using

Genetic Algorithm for Solving Nonlinear Eqution Systems, World Appl. Sci. J.

5 (2008) 282-289.

[27] Nikos E. Mastorakis, Solving Non-linear Equations via Genetic Algorithms,

Proceedings of the 6th WSEAS Int. Conf. on EvolutionaryComputing, Lisbon,

Portugal, June 16-18 (2005) 24-28

[28] G. Li, Zh. Zeng, A neural-network algorithm for solving nonlinear equation

systems, IEEE International Conference on Computational Intelligence and

Security, CIS08 (2008) 20-23.

[29] G. Huan-Tong, S. Yi-Jie, S. Qing-Xi, W. Ting-Ting, Research of Ranking

Method in Evolution Strategy for Solving Nonlinear System of Equations,

IEEE International Conference on Information Science and Engineering,

ICISE09 (2009) 348-351.

[30] M. Abdollahi, A. Isazadeh, D. Abdollahi, Solving systems of nonlinear

equations using imperialist competitive algorithm, The 8th International

Industrial Engineering Conference, 8 (2012) 1-6.

[31] A. Ouyang, Y. Zhou, Q. Luo, Hybrid Particle Swarm Optimization Algorithm

for Solving Systems of Nonlinear Equations, IEEE International Conference on

Granular Computing, GRC09 (2009) 460- 465.

[32] J. Wu, Zh. Cui, J. Liu, Using Hybrid Social Emotional Optimization Algorithm

with Metropolis Rule to Solve Nonlinear equations, IEEE International

Conference on Cognitive Informatics & Cognitive Computing, ICCI*CC’11

(2011) 405-411

[33] M. Abdollahi, Sh. Lotfi, D. Abdollahi, Solving systems of nonlinear equations

using cuckoo optimization algorithm, The 3rd International conference on The

Contemporary Issues in Computer Sciences and Information Technology

(CICIS), 3 (2012) 191-194.

[34] M. Abdollahi, A. Bouyer, D. Abdollahi, Improved cuckoo optimization

algorithm fo solving systems of nonlinear equations, J. Supercomput. 72 (2016)

1246-1269.

[35] Y.Z. Luo, G.J. Tang, L.N. Zhou, Hybrid approach for solving systems of

nonlinear equations using chaos optimization and quasi-Newton method, Appl.

Soft. Comput. 8 (2008) 1068-1073.J. Clerk Maxwell, A Treatise on Electricity

and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[36] C. Grosan, A. Abraham, A New Approach for Solving Nonlinear Equations

Systems, IEEE Trans. Syst. Man Cybern. A 38 (3) (2008) Senior Member,

IEEE.

54

[37] Y. Mo, H. Liu, Q. Wang, Conjugate direction particle swarm optimization

solving systems of nonlinear equations, Comput. Math. Appl. 57 (2009) 1877-

1882.

[38] M. Jaberipour, E. Khorram, B. Karimi, Particle swarm algorithm for solving

systems of nonlinear equations, Comput. Math. Appl. 62 (2011) 566-576.

[39] E. Pourjafari, H. Mojallali, Solving nonlinear equations systems with a new

approach based on invasive weed optimization algorithm and clustering, Swarm

Evol. Comput. 4 (2012) 3343.

[40] N. Henderson, W. F. Sacco, G. Mendes Platt, Finding more than one root of

nonlinear equations via a polarization technique: An application to double

retrograde vaporization, Chem. Eng. Res. Des. 88 (2010) 551-561

[41] Adam TL, Chandy KM, Dicksoni JR. A comparison of list schedules for

parallel processing systems. Communications of the ACM 1974;17(12):685–

90.

[42] R. Moradi and D. Dal, A Multi-Population Based Parallel Genetic Algorithm

for Multiprocessor Task Scheduling with Communication Costs, 2016 IEEE

Symposium on Computers and Communication (ISCC).

[43] Wu MY, Gajski DD. Hypertool: a programming aid for message-passing

systems. IEEE Transactions on Parallel and Distributed Systems

1990;1(3):330–43.

[44] Hou ESH, Ansari N, Hong R. A genetic algorithm for multiprocessor

scheduling. IEEE Transactions on Parallel and Distributed Systems

1994;5(2):113–20.

[45] R. Hwang, M. Gen and H. Katayama, “ A comparison of multiprocessor task

scheduling algorithms with communication costs” Computers & Operations

Research, Vol. 35, pp. 976 – 993, ELSEVIER, 2008.

[46] T. Lei and S. Kumar, ‘‘A Two-Step Genetic Algorithm for Mapping Task

Graphs to a Network on Chip Architecture,’’ Proc. Euromicro Symp. Digital

System Design (DSD 03), IEEE Press, 2003, pp. 180-187.

[47] D. Wu, B. Al-Hashimi, and P. Eles, ‘‘Scheduling and Mapping of Conditional

Task Graphs for the Synthesis of Low Power Embedded Systems,’’ Proc.

Design, Automation and Test in Europe (DATE 03), IEEE CS Press, 2003, pp.

90-95.

[48] S. Murali and G. De Micheli, ‘‘Bandwidth-Constrained Mapping of Cores onto

NoC Architectures,’’ Proc. Design, Automation and Test in Europe (DATE 04),

IEEE CS Press, 2004, pp. 896-901.

[49] S. Manolache, P. Eles, and Z. Peng, ‘‘Fault and Energy-Aware Communication

Mapping with Guaranteed Latency for Applications Implemented on NoC,’’

55

Proc. 42nd Annual Design Automation Conf. (DAC 05), ACM Press, 2005, pp.

266-269.

[50] J. Hu and R. Marculescu, ‘‘Energy- and Performance- Aware Mapping for

Regular NoC Architectures,’’ IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, vol. 24, no. 4, 2005, pp. 551-562.

[51] Y. Xu, K. Li, J. Hu and K. li, “A genetic algorithm for task scheduling on

heterogeneous computing systems using multiple priority queues,” Information

Sciences, Vol.270, pp. 255-287,Elsevier,2014.

[52] Wu AS, Yu H, Jin S, Lin K-C, Schiavone G. An incremental genetic algorithm

approach to multiprocessor scheduling. IEEE Transactions on Parallel and

Distributed Systems 2004;15(9):824–34.

[53] Yang T, Gerasoulis A. DSC: scheduling parallel tasks on an unbounded number

of processors. IEEE Transactions on Parallel and Distributed Systems

1994;5(9).

[54] T hanalapati T, Dandamudi S. An efficient adaptive scheduling scheme for

distributed memory multicomputers. IEEE Transactions on Parallel and

Distributed Systems 2001;12(7):758–68

[55] Corbalan J, Martorell X, Labarta J. Performance-driven processor allocation.

IEEE Transactions on Parallel and Distributed Systems 2005;16(7):599–611.

[56] Adam TL, Chandy KM, Dicksoni JR. A comparison of list schedules for

parallel processing systems. Communications of the ACM 1974;17(12):685–

90.

[57] Hwang RK, Gen M. Multiprocessor scheduling using genetic algorithm with

priority-based coding. Proceedings of IEEJ conference on electronics,

information and systems; 2004.

[58] R. F. Freund, “Optimal selection theory for superconcurrency,” Proc.

Supercomputing 89. IEEE Computer Society, Reno, NV, pp. 699703. 1989.

[59] M. Wu, and DD. Gajski, “Hypertool: a programming aid for messagepassing

systems,” IEEE Transactions on Parallel and Distributed Systems, pp. :33043,

1990.

[60] Fang-Jing Wua , Yu-Fen Kao b , Yu-Chee Tseng a, “From wireless sensor

networks towards cyber physical systems,” Pervasive and Mobile Computing,

Elsevier, Vol. 7, pp. 397–413, 2011.

[61] Priyanka Pandit1 , Swarupa Kamble2, “A Survey on Knowledge Extraction

from WSN,” International Journal of Science and Research (IJSR), Vol. 6, pp.

384-387, 2016.

56

[62] N. Heo and P. K. Varshney, “Energy-Efficient Deployment of Intelligent

Mobile Sensor Networks,” IEEE Transactions on Systems, Man, Cybernetics,

Part A, Vol. 35, No. 1, pp. 78-92, January 2005.

[63] A. Kansal et al., “Controlled Mobility for Sustainable Wireless Sensor

Networks,” in the Proceedings of IEEE Sensor and Ad Hoc Communications

and Networks (SECON’04), Santa Clara, CA, October 2004.

[64] Y. J. Cha, A. Raich, “Optimal placement of active control devices and sensors

in frame structures using multi-objective genetic algorithms,” Structural

Control and Health Monitoring,Vol. 20, pp. 16–44, 2013

[65] A.Majd and G.Sahebi, “A Survey on Parallel Evolutionary Computing and

Introduce Four General Frameworks to Parallelize all EC Algorithms and

Create New Operation for Migration,” Journal of Information and Computing

Science, vol. 9, pp.97-105,2014.

[66] Y. T. Hou, Yi Shi, and Ha. D. Sherali, “On Energy Provisioning and Relay

Node Placement for Wireless Sensor Networks,” In IEEE Trans. on Wireless

Comm., (4)5:2579–2590, Sep. 2005.

[67] J. Zhu, D. S. Chan, M. S. Prabhu, P. Natarajan, H. Hu and F. Bonomi,

“Improving Web Sites Performance Using Edge Servers in Fog Computing

Architecture,” IEEE Seventh International Symposium on Service-Oriented

System Engineering, pp. 320-323, 2013.

[68] ed. J. Wu. Auerhach, “Handbook on Theoretical and Algorithmic Aspects of

Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks” Publications, 2006.

[69] G. Karypis, E. H. Han, and V. K. Chameleon, “Hierarchical Clustering Using

Dynamic Modeling,” IEEE Computer, Aug 1999.

[70] J. Suomela, “Computational Complexity of Relay Placement in Sensor

Networks” In SOFSEM 2006, LNCS 3831, pp. 521–529. Springer-Verlag,

2006.

[71] S. Toumpis and G. A. Gupta, “Optimal Placement of Nodes in Large Sensor

Networks Under a General Physical Layer Model,” In Proc of IEEE SECON,

September 2005.

[72] N. Heo and P. K. Varshney, “Energy-Efficient Deployment of Intelligent

Mobile Sensor Networks,” IEEE Transactions on Systems, Man, Cybernetics,

Part A, Vol. 35, No. 1, pp. 78-92, January 2005.

[73] https://www.open-mpi.org/

[74] https://www.mpich.org/

http://onlinelibrary.wiley.com/doi/10.1002/stc.v20.1/issuetoc
https://www.open-mpi.org/
https://www.mpich.org/

57

[75] H. Gyurhan and A. Nedzhibov, “family of multi-point iterative methods for

solving systems of nonlinear equations”, Journal of Computational and Applied

Mathematics, Vol. 222, pp. 244-250, 2008.

[76] C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H. Gumus,

S. T. Harding, J. L. Klepeis, C. A. Meyer, and C. A. Schweiger, “Handbook of

Test Problems in Local and Global Optimization,” Kluwer Academic

Publishers, Dordrecht, the Netherlands, 1999.

[77] C. Wang, R. Luo, k. Wu, and B. Han, “A new filled function method for an

unconstrained nonlinear equation,” Journal of Computational and Applied

Mathematics, Vol. 235, pp. 1689-1699, 2011.

[78] N. Khalilzad, K. Rosvall and I. Sander, A Modular Design Space Exploration

Framework for Multiprocessor Real-Time Systems, Forum on specification and

Design Languages (FDL'16), 2016.

[79] James Kennedy, “Particle Swarm Optimization,” Encyclopedia of Machine

Learning, Springer, 2010.

[80] P. J. M. Laarhoven, and E. H. L. Aarts, “Simulated annealing,” Journal of

Simulated Annealing: Theory and Applications, Springer, pp.7-15, 1987.

[81] S. A. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Journal

of Advances in Engineering Software, Vol. 69, Pages 46-61, 2014.

[82] A. H. Gandomi, and A. H. Alavi, “Krill herd: A new bio-inspired optimization

algorithm,” Journal of Communications in Nonlinear Science and Numerical

Simulation, Vol. 17, p.p 4831-4845, 2012.

[83] A. H. Gandomi, “Interior search algorithm (ISA): A novel approach for global

optimization,” ISA Transactions, Vol. 53, Issue 4, p.p 1168-1183, 2014.

https://www.sciencedirect.com/science/journal/03770427
https://www.sciencedirect.com/science/journal/03770427
https://www.sciencedirect.com/science/journal/03770427/222/2
https://link.springer.com/referencework/10.1007/978-0-387-30164-8
https://link.springer.com/referencework/10.1007/978-0-387-30164-8
https://www.sciencedirect.com/science/article/pii/S0965997813001853#!
https://www.sciencedirect.com/science/article/pii/S0965997813001853#!
https://www.sciencedirect.com/science/article/pii/S0965997813001853#!
https://www.sciencedirect.com/science/journal/09659978
https://www.sciencedirect.com/science/journal/09659978/69/supp/C
https://www.sciencedirect.com/science/article/pii/S1007570412002171#!
https://www.sciencedirect.com/science/journal/10075704
https://www.sciencedirect.com/science/journal/10075704
https://www.sciencedirect.com/science/journal/10075704/17/12
https://www.sciencedirect.com/science/journal/00190578
https://www.sciencedirect.com/science/journal/00190578/53/4

Part II

Original Publications

Paper I

PICA: Multi-Population Implementation of Parallel

Imperialist Competitive Algorithms

A. Majd, Sh. Lofti, G. Sahebi, M. Daneshtalab and J. Plosila

PICA: Multi-Population Implementation of Parallel Imperialist Competitive
Algorithms

Amin Majd
Department of

Information Technology
University of Turku

Turku, Finland
amin.majd@utu.fi

Shahriar Lotfi
Department of

Computer Sciences
University of Tabri

Tabriz, Iran
shahriar_lotfi@tabrizu.ac.ir

Golnaz Sahebi
Department of

Information Technology
University of Turku

Turku, Finland
golnaz.sahebi@utu.fi

Masoud Daneshtalab
Royal Institute of

Technology (KTH),
Stockholm, Sweden,

masdan@kth.se

Juha Plosila
Department of

Information Technology
University of Turku

Turku, Finland
juplos@utu.fi

Abstract—The importance of optimization and NP-
problems solving cannot be over emphasized. The
usefulness and popularity of evolutionary computing
methods are also well established. There are various
types of evolutionary methods that are mostly sequential,
and some others have parallel implementation. We
propose a method to parallelize Imperialist Competitive
Algorithm (Multi-Population). The algorithm has been
implemented with MPI on two platforms and have tested
our algorithms on a shared- memory and message
passing architecture. An outstanding performance is
obtained, which indicates that the method is efficient
concern to speed and accuracy. In the second step, the
proposed algorithm is compared with a set of existing
well known parallel algorithms and is indicated that it
obtains more accurate solutions in a lower time.

Keywords- optimization; evolutionary computing;
parallel approaches; ICA; parallel programing; multi-
population; super linear performance.

I. INTRODUCTION

Optimization algorithms can be categorized into
two categories: heuristic and meta heuristic. In the
class of heuristic algorithms, there are some
constructions and improvement algorithms such as the
meta heuristic algorithms manage a chain or flow of
executions of classical heuristics, e.g. tabu search,
simulated annealing, genetic or memetic algorithms.

Computability is a significant problem for many
researchers especially in NP-hard problems, which do
not have suitable solutions, which are able to find the
best answers in a limited time. There are several
techniques to solve some NP-hard Problems, but
Evolutionary Computing (EC) are the better and more
popular ones. Different types of EC methods are useful
for various kinds of problems, for instance, genetic
algorithms are an old method that is suitable for
discrete problems. Genetic algorithms are population-
based search methods that mimic the process of natural
selection and evolution, which some characteristics of
them help researchers to optimize their problems.
Particle Swarm Optimization (PSO) is another

evolutionary method that mimics behavior of birds
when they migrate to other places.

EC methods enhance to solve different problems,
but there are some disadvantages associated with
them. For example, it is impossible for some
algorithms, which have a large search space, to
converge to optimum solutions. Hence, the initial
population should be increased to improve the results.
Speed of algorithms is the other challenge in this area.
Sometimes, answers are found taking a long time.
Parallel algorithms are the proper solutions that
enhance to improve the quality and time of obtaining
results.

Previously, researchers have utilized several
parallel EC techniques to achieve better results (e.g.
parallel ant colony optimization (PACO) [4], parallel
genetic algorithms [3], parallel ABC (PABC) [5],
parallel memetic [7], and parallel PSO [6]). We know
from [15] that some parallel EC methods can achieve
super-linear performance. Super-linear performance is
an expression for some scarce parallel algorithms that
their efficiency is more than one (efficiency value
normally is between zero and one.

Recently, several EC methods have been created,
but some of them have not been yet parallelized. For
example, Imperialist Competitive Algorithm (ICA) is
an efficient method that is outstanding for continuous
problems. In this paper, a parallel implementation of
ICA (PICA) is proposed. The PICA is implemented in
multi-population (coarse-grain) strategy. We have
implemented PICA and tested it on four mathematical
benchmarks; meanwhile it has obtained a super-linear
performance. They have been implemented on two
different platforms and have been utilized the Message
Passing Interface (MPI) instructions on the ring
connection topology.

In Section 2, a parallel multi-population
implementation of ICA will be introduced. In Section
4, PICA will be compared with ICA then some
algorithms, such as PICA, PABC, GPU Based PSO-
TM, and C-PPSO will be compared.

2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

978-1-4673-8776-7/16 $31.00 © 2016 IEEE

DOI 10.1109/PDP.2016.93

248

II. PARALLEL ICA

A. Imperialist Competetive Algorithm (ICA)

ICA is an optimization method based on
imperialistic competition. ICA is a new EC algorithm
and optimizes results of problems. In this algorithm,
all countries are divided into two categories: colonies
and imperialist states. The major part of this algorithm
is imperialistic, and hopefully causes the colonies to
converge to the global minimum. In the first step, the
algorithm creates some countries and sorts them, then
selects the best countries to be imperialists, and the
remaining countries form the colonies of these
imperialists. These colonies start moving toward their
relevant imperialist after dividing all colonies among
imperialists [10]. The next step computes the power of
each imperialist and the imperialistic competitive step
follows. The weakest imperialist loses its weakest
colony and the selected imperialist obtains this colony
and these steps are repeated until reaching a
termination condition. The termination condition can
be different, for example, the ICA stops when we have
one imperialist with all colonies as members of this
imperialist. This algorithm starts by creating colonies
in initial population and in the next step it sorts all
colonies and divides them among imperialists with the
best evaluation; in the next step, imperialistic
competition will start. In this step, some operations
will be repeated until arriving at the termination
condition.

ICA is a suitable method to optimization problems,
but there would be similar problems in ICA as in the
other EC algorithms; in case we confront with a big
problem with a far-reaching search area, we need a big
initial population to obtain a more accurate and
reliable result, but with a processor we cannot realize
this requirement. In another case, when we are
confronted with a complex problem that needs
complex computation, the run time will increase.
Therefore, we need to utilize some new methods to
improve speed and efficiency. A parallel computing
method for ICA presented here to improve its speed
and efficiency. The proposed method is a multi-
population implementation of the ICA.

Sequential ICA algorithm has a parallel structure,
but there is no parallel implementation for the ICA. In
the ICA, each imperialist and colonies work
independently and after a decade a colony moves to
another imperialist; so this algorithm works like a
multi-population method that executes on a processor.
In the following, we implement a multi-population
method for the ICA.

B. Multi-population PICA
In our work, we utilize a multi-population model to

implement the PICA using selective local search
strategy. In our implementation, we have several
processors that are connected together on a ring

topology in the message passing method, but in the
shared- memory method there is not any topology. In
each processor, we first initiate independent countries
and run the ICA independently, and after some
decades (which is different on different runs) the best
country is migrated from processor to +1 and
replaces it on the worse country. We utilize the ring
topology to connect processors together. The numbers
of whole countries in all processors are equal even
when countries migrate to other processors. All
migrations between processors are done
synchronously. We know the migration strategy can be
different leading to different results. For example,
when we use a sparse connection topology, it is better
that a migration strategy is utilized with low rates, and
the distance of migration should be short. The
important problem is the time of routing. In a fully
connection topology, the best results are obtained
when the migration rates are high. Therefore, we know
that a migration operation is useful with suitable rates;
we have a sparse connection topology (ring topology),
so we use the migration operation with low rates. In
figure 1, the pseudo code for the multi-population ICA
is presented.

In the multi-population ICA, we increase the
number of all countries and increase the selecting
pressure; therefore, it helps us to obtain more accurate
results in the shortest time, and convergence to results
is faster than in the sequential ICA.

Processor :
1. Create independent initial countries.
2. Run ICA algorithm independently.
3. If now is time of migration do

3.1 Wait when all processors arrive to this point.
3.2 Send the best country to processor () mod
(number of processors).
3.3 Receive a country from () mod (number of
processors) and replace it with the worst country.

4. If termination condition is obtained then terminate
algorithm Else go to 2.

5. Show the best country.
6. End.

Figure 1. Pseudo code of Multi-Population ICA.

III. TEST FUNCTIONS AND BENCHMARKS
In this paper, we use four test functions or

mathematical benchmark functions to compare our
algorithm (PICA) with sequential ICA and some other
parallel EC methods. All these problems are
minimization problems. We can show mathematical
benchmarks on table 1.

IV. EVALOUATION AND EXPRIMENTAL RESULTS

We use all four test functions with different
conditions and different kinds of platforms. The
algorithms are implemented on the share memory and
massage passing structure. First, we compare our

249

algorithms with sequential ICA and follow our
comparison with some other parallel EC methods.

We implement parallel ICA on share memory and
massage passing model. Also we utilize MPI to
parallelize our algorithms and MPICH2 to run the
algorithms. In the multi-population ICA, we connect
processors in a ring topology with different processors
on different tests. We test our algorithms on two
platforms; the first platform’s specification is on table
2 and the second platform is an Intel core i3-330M,
processors 2.13 GHz(64-bit), memory 4 GB.

TABLE I. MATHEMATICAL BENCHMARKS

 Name Bounds Equation m
i
n

Rosen
brock

[-50,50]

0

Rastrigin [-5.12,5.12]
 0

Akley [-32,32]

0

Griewank [-600,600]

0

TABLE II. SPECIFICATION OF 8 PROCESSORS PC

CLUSTER SYSTEM.
CPU Intel Core i7 2.67 GHz
Mother Board Gigabyte EX-58 EXTREME

RAM 6 GB DDR3
HDD 500 GB
NIC Gigabyte
Network Switch Cisco Catalyst 3750
Operating System WINDOWS XP 64-bit
MPI Library MPICH2 1.4
Compiler Visual C++ 6.0
GPU NVIDIA GeForce 9600 GT

A. Convergence

In this section, we show convergence diagrams of
benchmarks and we can compare our results and
diagrams with the results and diagrams of [8], [10],
[23], [24], [25] and [26]. These results obtained with
different number of processors and different numbers
of population size on multi-population PICA.

After the comparison between our algorithm
convergence diagram and those of [8], [10], [23], [24],
[25] and [26], we can claim that our algorithm
convergence obtain results faster than other methods in
lower iteration. Convergence diagrams are shown in
figures 2, 3, 4 and 5.

B. Stability

In this section we want to show that our algorithms
are stable; so we test it on benchmarks and drawing
stability diagrams of them. Stability diagrams shown
in figures 6, 7, 8 and 9 and the results claim that our

algorithms are stable and accurate. Our results show
that our algorithms are more stable and more accurate
than that of other methods.

Figure 2. Convergence diagrams of

Figure 3. Convergence diagrams of

Figure 4. Convergence diagrams of

Figure 5. Convergence diagrams of

Figure 6. Stability diagrams of

250

Figure 7. Stability diagrams of

Figure 8. Stability diagrams of

Figure 9. Stability diagrams of

C. Speedup and Efficiency

Speedup value is an important parameter to check
quality of parallelization that is obtained from this
function and m is the numbers of processors:

(1)

And the efficiency (normalized speedup) was
calculated using:

 (2)

These are suitable parameters for deciding whether
parallel algorithms are suitable or not. We could use
these parameters to compare the speed of our
algorithms with that of other parallel EC methods
without similar platforms. In this method, we know
from [18], [19] and [20] that serial ICA is faster than
GA, ES, ABC and PSO. Therefore, if our speed up and
efficiency values are bigger than the parallel
implementation of these EC algorithms, then our
algorithm is faster than those of parallel EC methods.
The reason for this decrease is the behavior of the
benchmark; in the ICA, the best results are obtained

after 10 iterations and in the PICA after 3 iterations; so
this benchmark is very simple and when we find
results with 6 processors after 3 iterations, it is not
useful to use more processors.

In figures 10, 11, 12 and 13 we show the efficiency
and speed up with an increase in the number of
processors, and they show that the parallel
implementations are useful.

Super linear performance is the main Achievement
of our algorithms. In all benchmark diagrams, we can
show that we obtain the super linear performance. So
we can claim that our implementation and our
algorithms are efficient, and the parallel ICA is a better
choice for solving problems.

D. Comparation between ICA and Parallel ICA

In this section, we compare them with each other;
we use two different type kinds of comparisons: we
use the convergence diagram, decades of convergence,
and the table of speed up to compare the multi-
population PICA and the ICA; and we use the speed
up diagram to compare between PICA and ICA. We
use two important benchmarks that are used in [10]
and we can illustrate the results of them with our
algorithm.

In this experiment, we use two platforms; when we
use 2 processors we implement our algorithm on Plat1
platform and when we use 6 processors we implement
our algorithm on Plat2 platform, and we use message
passing architecture. In our algorithms we have 100
countries and 8 imperialists in each processor.
Revolution’s rate is 0.4 and zeta parameter is 0.1; we
know that we can obtain different result by changing
these parameters, but we test our algorithms using a
constant value. Our connection strategy is the ring
topology that is a spars connection strategy.

We can reveal some good points for our
algorithms. It is clear that the multi-population method
of PICA converge faster than ICA. The speed of the
convergence of PICA is better than that of sequential
method and our algorithms converge to the best result
faster than those of the sequential methods. Other good
points of our algorithms are the stability of them that
are illustrated in figures 6, 7, 8 and 9 and the assurance
of the PICA results. We illustrate that the results and
the convergence, when used by 6 processors, are better
than when we use 2 processors; of course, both of them
are better than that of sequential methods. There are
two other criteria: speed up and efficiency. The speed
up values are shown in tables 3, 4 and 7. We can
conclude that when we use more processors we can
obtain better results, but it is essential to illustrate how
many processors are useful? This answer is obtained
from the efficiency values. We have illustrated that the
speed up of PICA is better than that of ICA and it has
a very good advantage, but now we need to discuss
another view of parallelization, which is the efficiency
diagram. The results of this diagram are very fantastic

251

and illustrate that PICA is suitable and can be used to
solve and optimize the complex and big problems that
have a widespread search space area. We know that the
speed up of 6-processor PICA is higher than that of 2-
processors, and the efficiency of 6-processor PICA is
higher than that of 2-processor, so the 6-processor
method is more efficient than the 2-processor one, but
both of them are very efficient because their efficiency
is bigger than 1, and this illustrates that PICA is an
extremely good and efficient method.

We have used a different gap of migration and
found good results. When we increase the migration
gap we obtain better results because it is a fact that
migration is useful, but in different papers of other
parallel EC methods the communication time of
migration is an important parameter that has important
influence on the run time of algorithm, and it has side
effects in the other methods as a balance between the
migration rate and communication time should be
created. But in our algorithm, the communication time
is very low because, in each migration time, only one
country (imperialist) moves to another processor; so,
the communication time is little.
As a result, we have illustrated that the Multi-
population PICA is a suitable method and we can
obtain better results by increasing the number of
processors.

E. Comperasion between PICA and Parallel ABC

The proposed parallel algorithm was evaluated on
three well-known benchmark functions [8]. In Multi-
Population PICA we have created 160 independent
countries in all processor and each processor has 8
imperialists. We tested it on Plat2 and the migration
interval was done every 100 decades. The connection
topology was the ring.

We have implemented our algorithms and their
parameters like PABC and run them in similar
conditions and compared them in table 3 and 6. We
have illustrated that the results of Multi-Population
PICA are better than that of PABC. A has a better SD
value.

TABLE III. SPEEDUP AND EFFICENCY VALUES ON BY
MULTY-POPULATION ICA AND PABC

Number
of

threads

Multi-Population
PICA

PABC[8]

Speed
up

Efficiency Speed
up

Efficiency

2 11.8 5.9 1.990 0.995
3 14.3 4.7 2.965 0.988
4 16.1 4.0 3.934 0.983

Multi-Population PICA has the best mean value

and SD value. The Main factors for this success are
migration in a small gap and the parallel characteristic
of ICA that works like a parallel method and we have

succeeded to create a coarse grain parallel method
while using all the parallelized potential of the ICA.

We have shown that PICA is more successful than
PABC and it obtains better results. We can’t compare
the number of evaluation fitness function because
there is not any information about it in [8].

The results of tables 3, 4, 5, 6 and 7 illustrate that
our algorithms are efficient and suitable and can be
used to solve different complex problems. We have
shown that the increase of processors’ number is
efficient and obtains better speedup and efficiency
values.
Now, we need to compare the speed of PICAs and
PABC, but our platform is different from PABC
platform; so, we cannot compare them in a normal way
and we should use the speed up for comparison. We
know from [20][21][22] that ICA is faster than ABC
and if our algorithms have higher speed up values then
we can claim that our algorithms are faster than that of
PABC. We have tested our algorithms on Griewank on
different numbers of processors, 2, 3 and 4 [8]. Our
algorithms are faster than PABC. Therefore, we can
claim that PICAs are faster than PABC.

F. Comperasion between PICA and GPU based on
PSO-TM

In this section, we want to compare the PICA and
a parallel PSO-TM based on GPU. Our algorithms
implemented on platform 1. We ran our algorithm on
two different population sizes: 1024 and 8192 on four
processors.

We know from [20][21][22] that the sequential
ICA is faster than the sequential PSO and we can
compare the speed of the PICA and the GPU PSO-TM
with a comparison between their speed up. We ran
algorithms on Akley, Rastrigin and Rosenbrock. In
table 4, we have illustrated that the speed ups of our
algorithm are higher than that of GPU PSO-TM and
we can claim that our algorithm is faster than the GPU
PSO-TM.

TABLE IV. VALUES OF SPEEDUPAND EFFICENCY ON SOME
BECHMARKS BY PICAS AND GPU PSO-TM

 Multi-population
PICA

GPU PSO-TM[25]

N=1024 N=8192 N=1024 N=8192
Speedup Speedup Speedup Speedup

Akley 12.2 16.4 8.2 14.6
Rastrigin 18.1 28.9 16.6 25.5

Rosenbrock 11.6 15.2 8.2 16.9

G. Comperasion between PICA and C-PPSO

In this section, we want to compare the PICA and
a Corse grain Parallel PSO-TM (C-PPSO). We have
tested our algorithms on a similar state and each
experiment was repeated 30 times and the maximum
iteration number was 10000 for all functions. In the C-
PPSO, we investigated the coarse-grain models with

252

different numbers of subpopulations and the entire
population consisted of 100 individuals. The results of
the C-PPSO model were compared with a standard
PSO.
It is shown, in table 7 that our algorithms have higher
speed up and efficiency values and we can claim that
our algorithms are faster and more efficient than that
of C-PPSO.

V. CONCLUSION

In this paper, we introduced a parallel methods of
ICA and implemented it with MPI instructions (Multi-
Population PICA). We also tested them on two
different platforms, on four mathematical benchmarks,
and compared them with the sequential ICA, PABC,
Coarse Grain parallel PSO, and GPU-Based PSO-TM.
We have found some considerable results that show
PICAs are very efficient in solving different kinds of
complex problems and they are faster and more
efficient than other methods. We have illustrated in
figures 6, 7, 8 and 9 that our algorithms are stable and
the speedup illustrated in figures 2, 3, 4 and 5 showed
that our algorithms convergence to the best results,

that is they are faster than the other methods in the
lower iteration.

This fact is derived from the characteristic of the
ICA and the ability of the migration operation. It also
evaluated less fitness; and obtained suitable run times.
In figures 6, 7, 8 and 9, we have illustrated the stability
diagrams of Multi-Population ICA; their results have
proven to show that our parallel methods truly work.
In addition, we compared the PICA with the PABC,
GPU Based PSO-TM and C-PPSO and utilized four
mathematical benchmarks. We illustrated table 6 and
compared the accuracy of the results, it is illustrated
that the results of the Multi-Population PICA are more
accurate than that of the PABC.

We have compared the speed and efficiency of
PICAs, GPU-Based PSO-TM and C-PPSO in tables 4
and 7 illustrating that PICAs are faster than the others
and they converge faster than the other methods in the
lower iteration.

As a result, we claim that the PICA methods are so
fast and accurate that they can be used to solve and
improve complex problems, and they try to obtain the
best results to the problems. In this article, we have
illustrated that our algorithms achieve a super-linear
performance.

Figure 10. Speed up diagram and Efficiency diagram for

Figure 11. Speed up diagram and Efficiency diagram for

253

Figure 12. Speed up diagram and Efficiency diagram for

Figure 13. Speed up diagram and Efficiency diagram for

TABLE V. STATISTICAL TABLE OF MULTI-POPULATION PICA ON

 N Mean SD STE Median Worst Best
 30 0.007084433333333 0.009400134634705 0.001716221927671 0.001587500000000 0.028145000000000 0
 30 0.001589366666667 0.002425782099026 428851917428874e-004 0 0.007724000000000 0
 30 8.014333333333334e-004 0.001179387178196 2.153256538433475e-004 0 0.003326000000000 0
 30 4.893666666666666e-004 8.566241876403997e-004 1.563974636250617e-004 0 0.002942000000000 0

TABLE VI. RESULTS OBTAINED FOR THE PICA AND PABC ALGORITHMS ON SOME BENCHMARKS FUNCTION

D

MCN

PICA PABC[8]
Multi-Population P=4 P=16 P=4 P=16

Mean SD Mean SD Mean SD Mean SD
 30 2000 1.876391E-02 2.964761E-02 4.823789E-03 5.213874E-03 2.182352E-02 3.250047E-02 2.282869E-02 2.585128E-02

 30 2000 1.862283E-16 4.732892E-17 1.722862E-16 4.378971E-17 1.946071E-16 4.615336E-17 1.931904E-16 5.386725E-17

 30 2000 3.927344E-18 5.668102E-19 3.367451E-18 4.962713E-19 4.896980E-18 7.036649E-19 4.756034E-18 6.995602E-19

TABLE VII. VALUES OF SPEEDUP AND EFFICENCY ON SOME BENCHMARKS BY PICAS AND C-PPSO

 Multi-Population PICA C-PPSO[26]
 CPU=4 CPU=6 CPU=8 CPU=4 CPU=6 CPU=8
 Speed

up
Efficiency Speed

up
Efficiency Speed

up
Efficiency Speed

up
Efficiency Speed

up
Efficiency Speed

up
Efficiency

Rosenbrock 11.6 2.90 17.88 2.98 24.4 3.05 3.9572 0.9893 5.7793 0.9632 5.9724 0.7465
Rastrigin 18.1 4.52 28.26 4.71 37.84 4.73 3.9580 0.9895 5.7774 0.9629 7.7703 0.9713
Griewank 16.3 4.07 25.32 4.22 34.08 4.26 3.9114 0.9778 5.9128 0.9855 7.3851 0.9231

254

REFERENCES
[1] H. Lotfi, A. Boroumandnia and Sh. Lotfi, “Task Graph Scheduling in

Multiprocessor Systems Using a Coarse Grained Genetic Algorithm,”
2nd International Conference on Computer Technology and
Development, IEEE, 2010.

[2] H. Lotfi, Sh. Lotfi and A.Boroumandnia, “Task Graph Scheduling in
Multiprocessor Systems Using a Two Population Genetic Algorithm,”
International Conference on Software and Computing Technology,
IEEE, 2010.

[3] E. Cantú-Paz, “A Survey of Parallel Genetic Algorithms,” Department
of Computer Science and Illinois Genetic Algorithms Laboratory
University of Illinois at Urbana-Champaign, 1997.

[4] H. Liu, P. Li and Y. Wen, “Parallel Ant Colony Optimization
Algorithm,” World Congress on Intelligent Control and Automation.
China, 2006.

[5] R. Parpinelli, C. Benitez and S. Lopes, “Parallel Approaches for the
Artificial Bee Colony Algorithm,” Handbook of Swarm Intelligence,
vol. 8, pp. 329-345, 2010.

[6] L. Vanneschi, D. Codecasa and G. Mauri, “A Comparative Study of
Four Parallel and Distributed PSO Methods,” New Generation
Computing. vol. 29, pp. 129-161, 2011.

[7] J. Digalakis and K. Margaritis, “A Parallel Memetic Algorithm for
Solving Optimization Problems,” 4th Metaheuristics International
Conference. Parallel Distributed Processing Laboratory, Greece, 2001.

[8] H. Narasimhan, “Parallel Artificial Bee Colony (PABC) Algorithm,”
World Congress on Nature & Biologically Inspired Computing, pp.
306-311. IEEE, 2009.

[9] A. Majd, Sh. Lotfi and G. Sahebi, “Review on Parallel Evolutionary
Computing and Introduce Three General Framework to Parallelize All
EC Algorithms,” The 5th Conference on Information and Knowledge
Technology, IEEE, pp. 61-66, 2013.

[10] E. A. Gargari, and C. Lucas, “Imperialist Competitive Algorithm: An
Algorithm for Optimization Inspired by Imperialistic Competition,”
Congress on Evolutionary Computation, IEEE, 2007.

[11] H. Narasimhan, “Parallel Artificial Bee Colony (PABC) Algorithm,”
World Congress on Nature & Biologically Inspired Computing
(NaBIC), IEEE, 2009.

[12] Z. Yang and B. Yu, “A Parallel Ant Colony Algorithm for Bus Network
Optimization,” Computer-Aided Civil and Infrastructure Engineering,
vol. 22, pp. 44–55, 2007.

[13] E. Alba, “Parallel Evolutionary Algorithms Can Achieve Super-Linear
Performance,” Information Processing Letters, vol. 82, pp. 7–13,
ELSEVIER, 2002.

[14] L. Vanneschi, D. Codecasa and G. Mauri, “A Comparative Study of
Four Parallel and Distributed PSO Methods,” New Generation
Computing, vol. 29, pp. 129-161, Ohmsha Ltd. and Springer, 2011.

[15] J. Digalakis and K. Margaritis, “A Parallel Memetic Algorithm for
Solving Optimization Problems,” 4th Metaheuristics International
Conference, MIC, 2001.

[16] Z. Yang and B. Yu, “A Parallel Ant Colony Algorithm for Bus Network
Optimization,” Computer-Aided Civil and Infrastructure Engineering,
vol. 22, pp. 44–55, 2007.

[17] E. C. G. Wille and E. Y. H. S Lopes, “Discrete Capacity Assignment
in IP networks using Particle Swarm Optimization,” Applied
Mathematics and Computation, vol. 217, pp. 5338–5346,
ELSEVIER,2011.

[18] A. Mousa, W. Wahed and R. Allah, “A Hybrid Ant Colony
Optimization Approach Based Local Search Scheme for Multi
Objective Design Optimizations,” Electric Power Systems Research,
vol. 81, pp. 1014–1023, ELSEVIER, 2011.

[19] P. Y. Yin, S. S. Yu, P. P. Wang and Y. T. Wang, “A Hybrid Particle
Swarm Optimization Algorithm for Optimal Task Assignment in
Distributed Systems,” Computer Standards & Interfaces, vol. 28, pp.
441–450, ELSEVIER, 2006.

[20] H. Bahrami, K. Faez and M. Abdechiri, “Imperialist Competitive
Algorithm using Chaos Theory for Optimization (CICA),” 12th
International Conference on Computer Modeling and Simulation,
2012.

[21] M. Abdechiri, K. Faez and H. Bahrami, “Adaptive Imperialist
Competitive Algorithm (AICA),” 9th IEEE International Conference on
Cognitive Informatics (ICCI), 2010.

[22] H. Bahrami, M. Abdechiri and M. Meybodi, “Imperialist Competitive
Algorithm with Adaptive Colonies Movement,” I.J. Intelligent Systems
and Applications, vol. 2, pp. 49-57, 2012.

[23] E. Alba, F. Luna, A. J. Nebro and J. M. Troya, “Parallel
Heterogeneous Genetic Algorithms for Continuous Optimization,”
Parallel Computing, vol. 30, pp. 699–719, ELSEVIER, 2004.

[24] K. Weinert, J. Mehnen and G. Rudolph, “Dynamic Neighborhood
Structures in Parallel Evolution Strategies,” Complex Systems
Publications, vol. 13, pp. 227–243, 2002.

[25] Y. Zhou and Y. Tan, “Particle Swarm Optimization with Triggered
Mutation and its Implementation Based on GPU,” Proceedings of the
12th annual conference on Genetic and evolutionary computation,
ACM, pp. 1-8, 2011.

[26] A. Basturk, R. Akay and A. Kalinli, “Comparison of fine-grained and
coarse-grained parallel models in particle swarm optimization
algorithm” 2nd World Conference on Information Technology
(WCIT), 2011.

[27] A.Majd and G.Sahebi, “A Survey on Parallel Evolutionary Computing
and Introduce Four General Frameworks to Parallelize all EC
Algorithms and Create New Operation for Migration,” Journal of
Information and Computing Science, vol. 9, pp.97-105,2014.

255

Paper II

Parallel Imperialist Competitive Algorithms

A. Majd, G. Sahebi, M. Daneshtalab, J. Plosila, Sh. Lotfi, H. Tenhunen

Received: 14 July 2016 Revised: 31 October 2017 Accepted: 7 November 2017

DOI: 10.1002/cpe.4393

S P E C I A L I S S U E P A P E R

Parallel imperialist competitive algorithms

Amin Majd1 Golnaz Sahebi4 Masoud Daneshtalab2 Juha Plosila4

Shahriar Lotfi3 Hannu Tenhunen4

1Åbo Akademi University, 20500 Turku, Finland
2Mälardalen University, 721 23 Västerås,

Sweden
3University of Tabriz, Tabriz 51666 16471, Iran
4University of Turku, 20500 Turku, Finland

Correspondence

Amin Majd, Åbo Akademi University, 20500

Turku, Finland.

Email: amin.majd@abo.fi

Summary

The importance of optimization and NP-problem solving cannot be overemphasized. The use-

fulness and popularity of evolutionary computing methods are also well established. There are

various types of evolutionary methods; they are mostly sequential but some of them have paral-

lel implementations as well. We propose a multi-population method to parallelize the Imperialist

Competitive Algorithm. The algorithm has been implemented with the Message Passing Interface

on 2 computer platforms, and we have tested our method based on shared memory and mes-

sage passing architectural models. An outstanding performance is obtained, demonstrating that

the proposed method is very efficient concerning both speed and accuracy. In addition, compared

with a set of existing well-known parallel algorithms, our approach obtains more accurate results

within a shorter time period.

KEYWORDS

evolutionary computing, ICA, multi-population, parallel approaches, parallel programming,

optimization, super-linear performance

1 INTRODUCTION

Optimization algorithms can be divided into 2 categories: heuristic and metaheuristic methods. Heuristic algorithms are problem dependent and

are often greedy and prone to get stuck in local optima, failing to obtain the global optimum or even a near-optimal solution. Metaheuristic methods

such as tabu search, simulated annealing, and genetic or memetic algorithms are problem-independent techniques or frameworks that improve

performance of a heuristic search by allowing more thorough exploration of the search space and avoiding local optimum traps.

Computability is a significant challenge especially in NP-hard problems; there are no guarantees that such problems can be solved in a satisfactory

manner in a limited time. Several techniques have been proposed to improve solving of NP-hard problems. Among these, evolutionary comput-

ing (EC) methods are the most prominent and popular. The EC methods are useful for solving various kinds of problems. For instance, well-known

genetic algorithms (GA) are very suitable for discrete problems.1 They are population-based search methods that mimic the process of natural selec-

tion and evolution, as some characteristics of this process can be utilized in optimization problems. Particle swarm optimization (PSO) is another

population-based evolutionary method that mimics the flocking behavior of birds when they migrate from a place to another.2

EC methods can enhance solving of different problems but there are some disadvantages associated with them. For example, if the search space is

very large, it is possible that an evolutionary algorithm does not converge towards the global optimum or even to near-optimal solutions. To improve

the outcome in such cases, the initial population should be increased. The execution time of algorithms is another challenge in this area; it can be

intolerably high in some cases. Parallel approaches provide a viable means to enhance the quality of results and reduce time of obtaining results.

Previously, several parallel EC techniques have been proposed to achieve better results (eg, parallel ant colony optimization (PACO),3 parallel

genetic algorithm,1 parallel ABC (PABC),4 parallel memetic algorithm,5 and parallel PSO6). According to the works of Digalakis and Margaritis and

Alba,7,8 some parallel EC methods can even achieve super-linear performance. Super-linear performance means that parallel efficiency, ie, speedup

per processor, is higher than one. Normally, it is between zero and one.

Among the EC methods, the Imperialist Competitive Algorithm (ICA)9 is an efficient approach for continuous problems. In this paper, a parallel

implementation of the ICA (PICA – Parallel ICA) is proposed. We extend our previous works (see the works of Majd et al9,10) by presenting two differ-

ent parallel implementations of PICA (multi-population and master-slave) to improve the speed and accuracy. The results are extensively analyzed

Concurrency Computat Pract Exper. 2018;e4393. wileyonlinelibrary.com/journal/cpe Copyright © 2018 John Wiley & Sons, Ltd. 1 of 26
https://doi.org/10.1002/cpe.4393

https://doi.org/10.1002/cpe.4393
http://orcid.org/0000-0001-7256-6618

2 of 26 MAJD ET AL.

with eight benchmarks and three case studies. The PICA is based on a multi-population (coarse-grain) strategy, and to the best of our knowledge,

this is the first attempt towards parallelizing the ICA. We evaluate the PICA under eight mathematical benchmarks, showing that a super-linear

performance is achieved. The experimental results are obtained through simulations on two different computer platforms, using Message Passing

Interface (MPI) instructions and a ring connected system model.

The remainder of this paper is organized as follows. In Section 2, a review of different parallel evolutionary algorithms is presented, and in

Section 3, parallel master-slave and multi-population implementations of the ICA are introduced. The experimental results are provided in

Section 4, and concluding remarks are given in Section 5.

2 REVIEW OF PARALLEL EVOLUTIONARY ALGORITHMS

In this section, some of the parallel EC methods and their common features, which have been utilized in our work, will be explored.

2.1 Parallel genetic algorithms

Genetic algorithms are population-based search methods that mimic the processes of natural selection and evolution, as some characteristics of

these processes can be utilized in solving optimization problems. Each GA has an initial population (several random chromosomes each of which is

an individual) and executes frequent operations such as selection, crossover, mutation, and replacement. All operations are repeated until reach-

ing a suitable result or ending in a certain generation. In multi-population methods,1 there are several processors each of which has independent

populations, and each processor runs a simple GA. After a certain number of generations, all processors will stop and send some chromosomes

(migration operation) with a certain strategy, eg, best or worse, and share the results of solutions among each other. In this method, some of the

important parameters are: migration rate (number of countries that migrate at each migration time), migration gap (number of iterations between

two migration events), and interconnection topologies.

Master-slave is another approach used for different problems, eg, solving a task graph scheduling with coarse-grain GA like in the works of

Lotfi et al.11,12 In this method, one processor is assigned as a “master” to do the important operations of GA, such as crossover, mutation, replacement,

and selection, whereas the other processors that are called “slaves” evaluate the fitness function and send back the results to the master proces-

sor. The fitness function is an equation that defines the quality of each chromosome. These methods can be implemented either synchronously or

asynchronously. In the synchronous method, the master processor sends tasks to slave processors and waits until it receives results of all tasks from

slave processors. In the asynchronous method, the master processor continues its work without waiting for results of slave processors.13

Fine-grain methods are suitable for parallel computing with a massive number of processors where each processor is able to communicate with

the adjacent processors and each individual can recombine with each individual on the neighborhood of processors. The execution time of this

method is considerable but the resource (such as number of processors and communication rate) footprint is too high.

Hybrid GAs are compound methods composed of 2 levels: the upper level uses a multi-population method and the lower level utilizes either

a multi-population, master-slave, or fine-grain method. This approach is more efficient and faster than other methods because it can exploit the

strengths of different methods at the different levels of hierarchy.

2.2 Parallel ant colony optimization

Ant colony optimization (ACO) is a technique for approximate optimization.14 The inspiring source of ACO algorithms are real ant colonies. More

specifically, ACO is inspired by the ants’ foraging behavior. At the core of this behavior is the indirect communication between the ants by means

of chemical pheromone trails, which enables them to find short paths between their nest and food sources. This characteristic of real ant colonies

is exploited in ACO algorithms in order to solve, eg, discrete optimization problems.3,15 There are two parallel implementations of ACO: PACO and

PACO-CGD.

PACO is used on different optimization problems and is based on multi-population method, where each processor has an independent population

and runs the sequential ACO independently. After a certain number of iterations, a processor sends some useful information to other processors,

which is called “migration.” In PACO-CGD, the constructor graph decomposes into smaller parts and each part is sent to a processor, and then each

processor can run the ACO method by itself; the execution time of this approach is better than that of PACO.13

2.3 Parallel artificial bee colony algorithm

Artificial Bee Colony (ABC) is motivated by the intelligent behavior of honey bees. It is as simple as particle swarm optimization (PSO) and differen-

tial evolution (DE) algorithms and uses only common control parameters such as colony size and maximum cycle number.16 ABC, as an optimization

MAJD ET AL. 3 of 26

tool, provides a population-based search procedure in which individuals called food positions are modified by the artificial bees as time passes, and

the bees' aim is to discover the places of food sources with high nectar amounts and finally the one with the highest nectar amount. In the ABC sys-

tem, artificial bees fly around in a multidimensional search space and some (employed and onlooker bees) choose food sources depending on the

experience of themselves and their nest mates and adjust their positions accordingly. Some (scouts) fly and choose the food sources randomly with-

out using experience. If the nectar amount of a new source is higher than that of the previous one in their memory, they memorize the new position

and forget the previous one. Thus, the ABC system combines local search methods carried out by employed and onlooker bees with global search

methods, managed by onlookers and scouts, attempting to balance exploration and exploitation processes. Artificial bee colony can be parallelized

in three ways: based on either a master-slave, multi-population, or hybrid method. In the master-slave method for ABC, similar to the master-slave

method for GA, one processor is assigned as a master in order to run the repetitive operations like an evaluation operation.

In multi-population ABC, each processor has an independent population and runs the sequential ABC method on its population with parameters

such as migration gap, migration rate, and network topology.

Hybrid ABC is a mixed method that, in the high level, uses the multi-population method, and in the low level, exploits the master-slave method,

which works similarly to the hybrid GA.13

2.4 Parallel particle swarm optimization

Theory of particle swarm optimization (PSO) has been advancing rapidly. PSO has been used by many applications on several problems. The algorithm

of PSO emulates the behavior of animal societies that do not have any leader in their group or swarm, such as bird flocking and fish schooling.

Typically, a flock of animals that has no leaders will find food randomly, following one of the members of the group that has the closest position with

respect to a food source (potential solution). The flocks achieve their best condition simultaneously through communication among members who

already have a better situation. PSO is used for continuous problems, whereas parallel PSO is an efficient solution for optimal task assignment in

distributed systems,17 which can be implemented with two parallel techniques: MPSO and MRPSO.

Multi-population PSO works like other multi-population methods where each processor has a different population and runs a simple PSO on its

population independently; a migration operation is also available.

MRPSO is an improved version of MPSO that adds an extra component to MPSO, called a repulsive component. This component in each processor

tries to make a diverse population. Particles that migrate between the swarms should be as different as possible from the particles already contained

in these swarms. The high degree of diversity in EC methods is very useful and helps obtaining better results.13

2.5 Parallel memetic algorithms

Memetic algorithms (MAs) are population-based and heuristic search approaches for optimization problems similar to GAs. GAs, however, rely on

the concept of biological evolution but MAs mimic cultural evolution. Parallel MAs are implemented as a coarse-grain approach called PARME. It is

used on optimization problems in the work of Vanneschi.18

PARME is a multi-population method that uses an independent population in each processor that runs MA independently. There is a big difference

between PARME and the other aforementioned methods like parallel GAs. The master processor controls the behavior of other processors and

creates an operation table in each iteration and sends it to other processor nodes. This operation table has the values of critical parameters such as

values of the best and the worst populations. The table will change in each iteration.13

3 PROPOSED METHODS

The Imperialist Competitive Algorithm (ICA), introduced by Gargari and Lucas,19 was inspired by imperialistic competition as its name suggests.

The ICA belongs to the class of evolutionary algorithms and is meant for solving linear and nonlinear NP-complete optimization problems. It is

a population-based method in which each possible solution is a country, corresponding to the chromosome concept in a genetic algorithm. The

algorithm first generates a set of countries, ie, the initial population. Then, all countries are divided into two types: imperialist states and colonies.

Imperialistic competition is the main instrument of this algorithm, and the expectation is that the colonies converge to the global minimum of the cost

function, or at least very close to this minimum. The initial sorting of the countries is based on their fitness function values. The best countries are

selected to be the imperialists, and the rest of the countries form the colonies of these imperialists (Figure 1, step 1). After dividing all colonies among

the imperialists, these colonies start moving toward their relevant imperialist countries. This takes place by revolution and assimilation operations

(Figure 1, step 2). In each iteration, two random real numbers varying between zero and one are generated for every colony. Then, these values

are compared with the predetermined assimilation (ie, Zeta19) and revolution probabilities (rates). If the random numbers are lower than these

probabilities, the procedure of assimilation or revolution is performed. In the next step, the ICA computes the power of each imperialist and the

imperialistic competition begins. The weakest imperialist loses its weakest colony and the selected imperialist captures this colony (Figure 1, step 5).

4 of 26 MAJD ET AL.

FIGURE 1 Imperialist competitive algorithm

These steps are then repeated until the termination condition is satisfied. The termination condition can be defined in different ways. For example,

the ICA could be set to stop after a certain number of iterations, or when all countries have become colonies of one imperialist, ie, when there is only

one empire left (see Figure 1).

The ICA is a suitable approach for a variety of optimization problems but there exist certain challenges concerning the evolutionary algorithms in

general. For example, when we are dealing with a large search space, we need a large initial population to obtain acceptable accuracy of results; but

in a resource constrained processing environment, we may not be able to satisfy this requirement. Also, in the case of a complex problem that needs

complex computations, the run time of the algorithm will increase and may become intolerable. Therefore, we need to find an efficient approach to

improve the speed, stability, and accuracy of the method.

The ICA has an inherent parallel structure, and, consequently, parallel implementation provides a viable path to enhance the performance of

the algorithm. In the ICA, each imperialist and its colonies work independently, and after a decade (iteration), a colony moves to another imperial-

ist. The behavior is similar to that of a multi-population method running on a single processor. We will look at two different approaches for PICA

implementation.

3.1 Master-slave PICA

In this method, we have several processors that are connected in a star topology using message passing but in a shared memory setup. One of the

processors (P0) is the master and the others are slaves. The master processor is the manager of the algorithm coordinating all involved operations

and dividing tasks among slave processors. The slave processors perform the tasks given to them, assisting the master processor. The master pro-

cessor initiates the algorithm and determines how many countries should be created by the processor Pi (0 < i< number of processors), and which

fitness function evaluations Pi is to execute. It also divides the imperialists among the slave processors to assimilate colonies to imperialists and car-

ries out a revolution operation on all colonies, enabling them to obtain new positions. The assimilation and revolution operations are, respectively,

exploitation and exploration operations from the EC perspective. Moreover, the master processor divides the imperialists among all slave proces-

sors to calculate the total cost of each empire. It performs imperialistic competition, selects the weakest imperialist and its weakest colony, and then

moves this weakest colony to the strongest (winner) imperialist. The master processor repeats the aforementioned operations until it reaches the

set termination condition.

The master-slave method is especially useful for complex problems or problems that have a complex fitness function. It can provably speed up

the optimization process. The implementation of the method is based on the synchronous paradigm, and its operation is in essence similar to that

of the sequential ICA with improved performance due to the parallel-operating slave processors. For this method, the shared memory setup is more

efficient than the message passing approach because the communication costs between the master and slave processors would be too high with

the message passing scheme. The pseudocode for the master-slave PICA is presented in Figure 2.

3.2 Multi-population PICA

The multi-population approach enables us to implement the PICA with a selective local search strategy. Our underlying system model consists of

a number of processors that are connected in a ring topology and use a message passing scheme for communication. In each processor, we first

MAJD ET AL. 5 of 26

FIGURE 2 Pseudocode of master-slave PICA

initiate an independent set of countries and run the ICA independently of the other processors. Then, after some decades (iterations), the best

country migrates from the processor Pi to the processor Pi+1 (for all i) and replaces the worse country in Pi +1. The migration interval varies from

a run to another. All migrations between the processors take place synchronously (simultaneously), and, therefore, the numbers of the countries

in all processors are equal after each migration event.9 The behavior of the multi-population PICA is illustrated in Figure 3, and the pseudocode is

presented in Figure 4. The sparse connected ring topology enables a low migration rate due to the simple routing scheme and the short (single-hop)

migration distance.

FIGURE 3 Multi-population migration operation10

FIGURE 4 Pseudocode of multi-population PICA9

6 of 26 MAJD ET AL.

TABLE 1 Mathematical benchmarks

Name Equation Min. Value Name Equation Min. Value

f1 G1 x. sin (x) + 1.1y. sin (2y) −18.5547 f5 Rastrigin
∑n

i=1 x2
i
− 10 cos(2πxi) + 10 0

f2 G2 0.5 + sin
√

x2+𝑦2−0.5

1+0.1(x2+𝑦2)
−0.5231 f6 Akley 20 + e − 20 exp(−0.2

√
1
D

∑D
i=1 x2

i
0

− exp(1
D

∑D
i=1 cos(2π𝑥) 0

f3 Sphere
∑D

i=1 x2
i

0 f7 Ellipse
D∑

i=1
104 i−1

D−1 x2
i

0

f4 Rosenbrock
n−1∑
i=1

100
(

xi+1 − x2
i

)2 + (xi − 1)2 0 f8 Griewank 1
4000

∑n
i=1 x2

i
−

n∏
i=1

cos
(

xi√
i

)
+ 1 0

TABLE 2 Specification of platforms.

Platform 1 Platform 2

CPU 4 ×Intel Core i7 2.67 GHz Intel Core i3-330M, 2.13 GHz

Mother board Gigabyte EX-58 EXTREME -

RAM 6 GB DDR3 4 GB

HDD 500 GB 300 GB

NIC Gigabyte -

Network switch Cisco catalyst 3750 -

Operating system WINDOWS XP 64-bit WINDOWS XP 64-bit

MPI library MPICH2 1.4 MPICH2 1.4

Compiler Visual C++ 6.0 Visual C++ 6.0

GPU NVIDIA GeForce 9600 GT -

By using the multi-population PICA, we increase both the size of the overall population, ie, the total number of countries and the selection pres-

sure, which helps obtaining more accurate results within a fewer number of iterations. Indeed, convergence to results takes place much faster than

in the case of the sequential ICA, as will be demonstrated in Section 4.

4 EVALUATION AND EXPERIMENTAL RESULTS

We use eight test functions, ie, mathematical benchmarks, presented in TABLE 1, to compare our algorithms, ie, the two implementations of PICA

presented in Section 3, with the sequential ICA and some other parallel EC methods. All the considered problems are minimization problems.

In addition to the eight mathematical benchmarks, we will also have three case studies in the field of nonlinear equations. The algorithms are

implemented based on both shared memory and message passing communication models. First, we compare our algorithms with the sequential ICA,

followed by a comparison with a set of other well-known parallel EC methods. We utilize the MPI to parallelize our algorithms and MPICH220 to run

the algorithms. In the multi-population PICA, we connect processors in a ring topology with different numbers of processors on different tests. We

test our algorithms on two computer platforms, named Platform 1 (higher-end platform) and Platform 2 (lower-end platform), that are specified in

Table 2.

4.1 Comparision between multi-population parallel ICA and ICA

In this section, we compare the multi-population version of the PICA and the serial ICA. The comparison of these algorithms is based on their conver-

gence diagram and potential speedup (Tables 3, 4, 5, 10, 11, 13, and 18). We employ 2 important benchmarks from the work of Gargari and Lucas19

in our tests, ie, f1 and f2, as presented in Table 1.

In the experiment, we use two system models and two platforms (Table 2); in the case of a two-processor system model, we implement our

algorithm on Platform 2, and in the case of a six-processor system model, we implement it on Platform 1. Message passing based communication is

utilized in both cases. We have 100 countries and 8 imperialists in each processor. The revolution rate is set to 0.4 and the Zeta parameter to 0.1, cor-

responding to the exploration and exploitation rates in any EC method, respectively. We would obtain different results by varying these parameters

but we choose to test our algorithms using the mentioned constant values for simplicity. The architecture is based on the ring topology.

Gil Millan (gmillan@wiley.com)
Cross-Out

MAJD ET AL. 7 of 26

TABLE 3 Speedup and efficiency values on f8 by multi-population ICA
and PABC

Number of threads Multi-population PICA PABC16

Speedup Efficiency Speedup Efficiency

2 11.8 5.9 1.990 0.995

3 14.3 4.7 2.965 0.988

4 16.1 4.0 3.934 0.983

TABLE 4 Values of speedup and efficiency on some
benchmarks by PICAs and GPU PSO-TM

Multi-population PICA GPU PSO-TM2

N=1024 N=8192 N=1024 N=8192

Speedup Speedup Speedup Speedup

Akley 12.2 16.4 8.2 14.6

Rastrigin 18.1 28.9 16.6 25.5

Ellipse 11.2 14.8 7.2 12.8

Rosenbrock 11.6 15.2 8.2 16.9

TABLE 5 Values of speedup and efficiency on problems f1 and f2

PICA

Master slave Multi-population

P=2 P=6 P=2 P=6

Speedup Efficiency Speedup Efficiency Speedup Efficiency Speedup Efficiency

G1 1.72 0.86 4.98 0.83 12.2 6.1 67.7 9.45

G2 1.82 0.91 5.52 0.92 14.9 7.45 73.6 12.26

TABLE 6 Statistical table of multi-population PICA on problem f1

#P N Mean SD STE Median Worse Best

2 100 −18.5350 0.0466 0.0047 −18.5544 −18.2159 −18.5547

6 100 −18.5473 0.0149 0.0015 −18.5543 −18.4892 −18.5547

The aforementioned analysis seems to indicate that the more processors we use, the better results we get. Closely related to this, let us now look

into another aspect of parallelization, ie, the parallel efficiency diagram (Figures 31 to 38).

The results demonstrate that the multi-population PICA is very suitable for solving and optimizing complex problems that have a large search

space. Based on the analysis, we know that the speedup of the six-processor PICA is higher than that of the two-processor PICA, and that the parallel

efficiency of the six-processor PICA is higher than that of the two-processor one, so the six-processor implementation clearly outperforms the

two-processor implementation. However, both of these implementations are actually very efficient because their parallel efficiency values are larger

than 1. This highlights the observation that the PICA is an extremely competitive and capable method, independently of the number of processors

used. With two processors, the parallel efficiency values are 6.1 and 7.45 for f1 and f2, respectively, and with six processors, they are 9.45 and 12.26

for f1 and f2, respectively. In other words, the results are relatively very close to each other. How many processors should be used in a real-life

application depends on the application-specific requirements and constraints.

We have also examined different migration gaps (intervals) and found interesting results. Having the migration operation as part of our method

is, in general, very beneficial; it improves the performance and outcome of the algorithm. However, in other parallel EC methods, the communication

time of migration is an important factor that has a significant influence on the run time of the algorithm, and therefore it has negative side effects in

these methods. This means in practice that a balance between the migration rate and communication time has to be found. In our algorithm, in turn,

the communication time is very small because in each migration event, every processor sends a single country (the best one) to the next (adjacent)

processor, as a single synchronous step.

As an overall result, we have demonstrated that the multi-population PICA is a prominent method and that we can improve the performance and

the quality of results by increasing the number of processors.

8 of 26 MAJD ET AL.

TABLE 7 Statistical table of multi-population PICA on f3, f4, f5, f6, f7 , and f8

N Mean SD STE Median Worse Best

f3 30 0.001810433333333 0.002970555267766 5.423467094903584e-004 0 0.001810433333333 0

f4 30 0.007084433333333 0.009400134634705 0.001716221927671 0.00158750 0.028145000000000 0

f5 30 0.001589366666667 0.002425782099026 428851917428874e-004 0 0.007724000000000 0

f6 30 8.014333333333334e-004 0.001179387178196 2.153256538433475e-004 0 0.003326000000000 0

f7 30 0.006058700000000 0.008992364052446 0.001641773545608 0 0.028145000000000 0

f8 30 4.893666666666666e-004 8.566241876403997e-004 1.563974636250617e-004 0 0.002942000000000 0

4.2 Comparison between master-slave PICA and ICA

In this section, we compare the master-slave PICA with the serial ICA. Like in the previous experiment, we use two platforms (Table 2). In the case

of a two-processor system model, we implement our algorithm on Platform 2, and when the model has more than two processors, we implement

it on Platform 1. We utilize both message passing and shared memory architectures and use the MPI instructions with MPICH2-1.4. Furthermore,

we have 100 countries and 8 imperialists in each processor. The revolution rate and the Zeta parameter are set to the constant values of 0.4 and

0.1, respectively, like in the previous experiment. In our system model, we have a master processor whose rank is 0, and the other processors are

slaves. The master processor runs all the important tasks and manages the algorithm. The slave processors run all the tasks that are determined by

the master processor. The architecture is based on a fully topology in which the master processor is the central node.

In the master-slave setup, the parallel implementation of an EC algorithm, when implemented synchronously, is essentially similar to the sequen-

tial implementation on a single processor from the behavioral perspective. So, the convergence speeds of the serial ICA and the master-slave PICA

are the same. However, as illustrated in Table 5, the speedup of the master-slave PICA is significant (ie, clearly higher than 1) because the slave pro-

cessors are computing tasks in parallel. Moreover, the speedup gets actually higher when the complexity of the problem increases, ie, the benchmark

f2 is more complex than f1.

We can also see that increasing the number of processors leads to better results, as well as higher speedup and parallel efficiency. However, even

though the master-slave PICA is an efficient method, the multi-population PICA clearly outperforms it in this respect.

4.3 Comparison between PICA and parallel ABC

The proposed parallel algorithms are next evaluated on a set of well-known benchmark functions that were used in the work of Narasimhan16 to

analyze the PABC method. In the case of the multi-population PICA, we create 160 independent countries in every processor, and each processor

has 8 imperialists. We test it on Platform 1 with a migration operation taking place every 100 decades (iterations). The connection topology is the

ring. In the case of the master-slave PICA, we create 160 countries in the master processor and have 7 slave processors that run parallel operations

controlled by the master processor.

In the PABC experiments presented in the work of Narasimhan,16 the size of the bee colony was chosen to be 160 with 50% employed bees

and 50% onlooker bees (SN = 80). A maximum of one scout bee is produced per cycle. The PABC algorithm was run for 2000 iterations on a set

of benchmark functions. The algorithm was simulated for a different number of processors. The best mean values and the standard deviation (SD)

were recorded over 30 runs for 4, 8, and 16 processors.

In our experiments on the PICA, we mimic the test conditions used in the work of Narasimhan16 to enable fair comparison between the PICA

and the PABC method. The results are listed in Tables 8, 9, and 12. They indicate that the multi-population PICA performs better than PABC and

the master-slave PICA but the results of PABC and the master-slave PICA are almost the same. The PABC method has a better mean value but the

master-slave PICA has a better SD value (in Table 8).

The multi-population PICA has the best mean and SD values, and can therefore be considered the most prominent method of the three. The main

factors for this success are the efficient migration strategy and process and the inherent parallel characteristics of the ICA that seamlessly facilitate

efficient parallel implementation of the algorithm. We cannot compare the numbers of fitness function evaluations because there is no information

about it in the work of Narasimhan.16

We also need to compare the execution speeds of the PICA and PABC but our platform is different from the platform used in the work of

Narasimhan16 for analyzing PABC. Therefore, we cannot compare the speeds directly but we need to use speedup values for indirect comparison.

We know from other works21-23 that the sequential ICA is faster than the sequential ABC method; so, if our parallel algorithms have higher speedup

values, then we can claim that our proposed algorithms are faster than PABC. We have tested our algorithms on the Griewank benchmark (Table 1)

with 2, 3, and 4 processors, like what was done in the work of Narasimhan16 for PABC. The speedup values are shown in Table 9. Comparing these,

we can see that our methods have better speedup values. In the case of the multi-population PICA, the difference is very clear, whereas in the case

MAJD ET AL. 9 of 26

TA
B

LE
8

R
es

u
lt

s
o

b
ta

in
ed

fo
r

th
e

P
IC

A
an

d
PA

B
C

al
go

ri
th

m
s

o
n

so
m

e
b

en
ch

m
ar

k
fu

n
ct

io
n

s

f
D

M
C

N
P

IC
A

PA
B

C
1

6

M
as

te
r-

sl
av

e
M

u
lt

i-
p

o
p

u
la

ti
o

n
P
=

4
P
=

1
6

P
=

4
P
=

4
P
=

1
6

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

f 3
3

0
2

0
0

0
2

.5
1

3
5

4
E

-1
6

3
.6

6
2

9
5

E
-1

7
1

.6
4

2
9

7
E

-1
6

2
.2

8
9

7
6

E
-1

7
1

.5
2

3
4

1
E

-1
6

2
.1

8
4

9
7

E
-1

7
2

.4
9

4
7

9
E

-1
6

4
.0

4
3

0
6

8
E

-1
7

2
.4

6
7

3
8

9
E

-1
6

4
.1

0
0

7
2

9
E

-1
7

f 4
3

0
2

0
0

0
2

.3
2

2
8

9
1

E
-0

2
3

.4
6

2
2

7
8

E
-0

2
1

.8
7

6
3

9
1

E
-0

2
2

.9
6

4
7

6
1

E
-0

2
4

.8
2

3
7

8
9

E
-0

3
5

.2
1

3
8

7
4

E
-0

3
2

.1
8

2
3

5
2

E
-0

2
3

.2
5

0
0

4
7

E
-0

2
2

.2
8

2
8

6
9

E
-0

2
2

.5
8

5
1

2
8

E
-0

2

f 5
3

0
2

0
0

0
1

.9
9

3
6

2
8

E
-1

6
4

.7
3

6
4

7
8

E
-1

7
1

.8
6

2
2

8
3

E
-1

6
4

.7
3

2
8

9
2

E
-1

7
1

.7
2

2
8

6
2

E
-1

6
4

.3
7

8
9

7
1

E
-1

7
1

.9
4

6
0

7
1

E
-1

6
4

.6
1

5
3

3
6

E
-1

7
1

.9
3

1
9

0
4

E
-1

6
5

.3
8

6
7

2
5

E
-1

7

f 8
3

0
2

0
0

0
4

.7
2

8
6

1
7

E
-1

8
6

.5
9

8
3

2
1

E
-1

9
3

.9
2

7
3

4
4

E
-1

8
5

.6
6

8
1

0
2

E
-1

9
3

.3
6

7
4

5
1

E
-1

8
4

.9
6

2
7

1
3

E
-1

9
4

.8
9

6
9

8
0

E
-1

8
7

.0
3

6
6

4
9

E
-1

9
4

.7
5

6
0

3
4

E
-1

8
6

.9
9

5
6

0
2

E
-1

9

10 of 26 MAJD ET AL.

TABLE 9 Speedup and efficiency values on f8 for PICA and PABC

Number of threads Master-slave PICA Multi-population PICA PABC16

Speedup Efficiency Speedup Efficiency Speedup Efficiency

2 1.936 0.968 11.8 5.9 1.990 0.995

3 2.967 0.989 14.3 4.7 2.965 0.988

4 3.964 0.991 16.1 4.0 3.934 0.983

TABLE 10 Values of speedup and efficiency on problem f3 by PICAs, multi-population GA and
Neighborhood GA

Problem Master-slave PICA Multi-population ICA Multi-population GA24 Neighborhood GA25

P=8 P=8 P=8 P=8

G3 Speedup Efficiency Speedup Efficiency Speedup Efficiency Speedup Efficiency

7.52 0.94 23.44 2.93 3.28 0.41 4.7 0.58

of the master-slave PICA, the difference is very small. We can therefore conclude that the multi-population PICA is the champion among the three

methods by a clear margin.

4.4 Comparison between PICA and multi-population parallel genetic algorithm

In this section, we compare both PICA versions with the multi-population PGA. The comparison is based on the benchmark Sphere (Table 1,

function f3). We focus on the speed of these algorithms. To compare the speeds straightforwardly, we would need to run the PICA and PGA on the

same platform. To compare these algorithms without actually implementing the PGA (ie, by using the results from an earlier publication instead), we

utilize another approach that is based on the speedup and parallel efficiency, like the aforementioned statements where we compared the speeds of

the PICA and the PABC method. In other words, we divide the task into two steps. In the first step, we compare the sequential ICA and the sequen-

tial GA on the same platform and on the same benchmark. In the second step, we compute the speedups of the PICA and the PGA to find out which

algorithm is faster. First, we know from other works21-23 that the sequential ICA is faster than the sequential GA on the Sphere benchmark but let

us assume here that their speed is the same just to be on the safe side. Second, we compute the speedup and parallel efficiency of the PICA on the

Sphere benchmark; the results are given in Table 10. Then, we take the PGA’s speedup and parallel efficiency values from the work of Alba et al24

and insert them in Table 10. Now, we can compare the ICA and the PGA; the one that has a higher speedup and parallel efficiency is the winner. We

have run our 2 PICA versions 100 times under the same conditions to obtain the results shown in Table 10.

Based on the results (Table 10), we can conclude that both PICA versions outperform the multi-population PGA by a clear margin, the

multi-population PICA being superior among the 3 candidates.

4.5 Comparison between PICA and dynamic neighborhood structures in parallel evolution strategies

(Neighborhood GA)

In this section, we compare our 2 PICA versions with an approach known as the Dynamic Neighborhood Structures in parallel ES (ie, the Neighbor-

hood GA). We use the Sphere benchmark (Table 1) and the same speedup and parallel efficiency based comparison method, as aforementioned. We

run our algorithms 100 times under the same conditions.

We know that the sequential ICA converges to the best result faster than the sequential GA does19 but let us assume modestly that their speeds

are equal. In Tables 10 and 11, we show the simulation results for our multi-population and master-slave PICAs and the results for the Neighborhood

TABLE 11 Values of speedup and efficiency on problem f3 by PICAs and
Neighborhood GA

Problem Master-slave PICA Multi-population ICA Neighborhood GA25

P=4 P=4 P=4

G3 Speedup Efficiency Speedup Efficiency Speedup Efficiency

3.84 0.96 11.6 2.9 3.1 0.75

MAJD ET AL. 11 of 26

GA that are obtained from the work of Weinert et al.25 By comparing the results (Tables 10 and 11), we can conclude that both PICA versions clearly

outperform the Neighborhood GA from both speedup and parallel efficiency perspectives.

4.6 Comparison between multi-population PICA and GPU-based PSO-TM

In this section, we compare the multi-population PICA with the parallel PSO-TM method implemented on a GPU.2 The GPU-PSO-TM was deployed

in the work of Zhou and Tan2 on the CUDA platform based on an Intel Core 2 Duo 2.20 GHz CPU, 3.0 GB RAM, with the NVIDIA GeForce 9800GT

display adapter and the Windows XP operating system. Our multi-population PICA is implemented on Platform 1 (Table 2). We run our algorithm

on two different population sizes, ie, 1024 and 8192, using a four-processor system model with the ring topology.

Based on other works,21-23 we know that the sequential ICA is faster than the sequential PSO, and therefore we can compare the speeds

of the PICA and the GPU-PSO-TM method by comparing their speedup values like we did with some other methods in the previous subsec-

tions. We run the multi-population PICA on the Akley, Rastrigin, Ellipse, and Rosenbrock benchmarks (Table 1). The results are shown in Table 4.

We can see that the speedup of the PICA is generally higher than that of the GPU-PSO-TM approach, especially with the smaller population

size. From the speedup perspective, our algorithm outperforms the GPU-PSO-TM method in all tests except for 1 case. With the larger popula-

tion size, the GPU-optimized PSO-TM solution becomes relatively stronger, even surpassing our multi-population PICA’s speedup value in one of

the tests.

4.7 Comparison between multi-population PICA and C-PPSO

In this section, we compare the multi-population PICA with the coarse-grain parallel PSO-TM method (C-PPSO).26 We have tested our PICA on the

Sphere, Rosenbrock, Rastrigin, and Griewank benchmarks (Table 1) using four-, six-, and eight-processor system models (with the ring topology).

Each experiment was repeated 30 times, and the maximum iteration number was 10 000 for all benchmarks. In the case of the C-PPSO approach,

based on the work of Basturk et al,26 we investigated the coarse-grain models with different numbers of subpopulations, and the entire population

consisted of 100 individuals. The results of the C-PPSO model were compared with the results of a standard PSO to determine the speedup and

parallel efficiency values.26

The results shown in Table 13 demonstrate that our algorithm has higher speedup and parallel efficiency values, and therefore we can conclude

that our multi-population PICA is faster and more efficient than the C-PPSO method. The difference is clear and becomes even clearer when the

number of processors increases.

4.8 Convergence

In this section, we show the convergence diagrams of the benchmarks in order to compare our results and diagrams with the results and diagrams

presented in other works.2,16,19,24-26 These results have been obtained with different numbers of processors and different population sizes on the

multi-population PICA method. The convergence diagrams for our approach are shown in Figures 5 to 12, 23, 26, and 29. After the comparison

between our algorithm's convergence diagrams and those of the mentioned other works, we can claim that our algorithm converges faster than the

other methods within a lower number of iterations.

4.9 Stability

In this section, we demonstrate that our multi-population PICA is stable (producing similar results in different runs) and accurate (producing results

that are near to the global optimum) by testing it on the different benchmarks and drawing the corresponding stability diagrams for it. Each stability

diagram shows the behavior of the method in different runs for a given benchmark. These diagrams are illustrated in Figures 13 to 20, Figure 24,

Figure 27, and Figure 30. The minor fluctuation of the graphs indicates that our algorithm is indeed stable and accurate. Moreover, the statistical

results listed in Tables 6, 7, 8, 12, and 16 also indicate that the multi-population PICA is more stable and accurate than the other considered methods.

In these tables, there are five important parameters. The standard deviation (STD) is a measure that is utilized to quantify the amount of variation or

dispersion of a set of data values. A method cN runs. The best and the worst are the best and the worst values of all N. The mean is the average value

of all the best results in all N runs. A method can be considered the most accurate one when it has the lowest values of STD and the mean and the

lowest values of the best and the worst. We can conclude that our algorithm indeed is more accurate, with fewer errors, than the other considered

methods.

12 of 26 MAJD ET AL.

TA
B

LE
1

2
R

es
u

lt
s

o
b

ta
in

ed
fo

r
th

e
P

IC
A

an
d

PA
B

C
al

go
ri

th
m

s
o

n
so

m
e

b
en

ch
m

ar
ks

fu
n

ct
io

n

f
D

M
C

N
P

IC
A

PA
B

C
1

6

M
u

lt
i-

p
o

p
u

la
ti

o
n

P
=

4
P
=

1
6

P
=

4
P
=

1
6

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

f 4
3

0
2

0
0

0
1

.8
7

6
3

9
1

E
-0

2
2

.9
6

4
7

6
1

E
-0

2
4

.8
2

3
7

8
9

E
-0

3
5

.2
1

3
8

7
4

E
-0

3
2

.1
8

2
3

5
2

E
-0

2
3

.2
5

0
0

4
7

E
-0

2
2

.2
8

2
8

6
9

E
-0

2
2

.5
8

5
1

2
8

E
-0

2

f 5
3

0
2

0
0

0
1

.8
6

2
2

8
3

E
-1

6
4

.7
3

2
8

9
2

E
-1

7
1

.7
2

2
8

6
2

E
-1

6
4

.3
7

8
9

7
1

E
-1

7
1

.9
4

6
0

7
1

E
-1

6
4

.6
1

5
3

3
6

E
-1

7
1

.9
3

1
9

0
4

E
-1

6
5

.3
8

6
7

2
5

E
-1

7

f 8
3

0
2

0
0

0
3

.9
2

7
3

4
4

E
-1

8
5

.6
6

8
1

0
2

E
-1

9
3

.3
6

7
4

5
1

E
-1

8
4

.9
6

2
7

1
3

E
-1

9
4

.8
9

6
9

8
0

E
-1

8
7

.0
3

6
6

4
9

E
-1

9
4

.7
5

6
0

3
4

E
-1

8
6

.9
9

5
6

0
2

E
-1

9

TA
B

LE
1

3
V

al
u

es
o

fs
p

ee
d

u
p

an
d

ef
fi

ci
en

cy
o

n
so

m
e

b
en

ch
m

ar
ks

by
P

IC
A

s
an

d
C

-P
P

SO

M
u

lt
i-

p
o

p
u

la
ti

o
n

P
IC

A
C

-P
P

SO
2

6

C
P

U
=

4
C

P
U
=

6
C

P
U
=

8
C

P
U
=

4
C

P
U
=

6
C

P
U
=

8
Sp

ee
d

u
p

E
ff

ic
ie

n
cy

Sp
ee

d
u

p
E

ff
ic

ie
n

cy
Sp

ee
d

u
p

E
ff

ic
ie

n
cy

Sp
ee

d
u

p
E

ff
ic

ie
n

cy
Sp

ee
d

u
p

E
ff

ic
ie

n
cy

Sp
ee

d
u

p
E

ff
ic

ie
n

cy

Sp
h

er
e

1
2

.2
3

.0
5

1
8

.6
3

.1
0

2
5

.1
2

3
.1

4
3

.9
0

2
9

0
.9

7
5

7
5

.7
5

5
5

0
.9

5
9

3
6

.7
5

1
9

0
.8

4
4

0

R
o

se
n

b
ro

ck
1

1
.6

2
.9

0
1

7
.8

8
2

.9
8

2
4

.4
3

.0
5

3
.9

5
7

2
0

.9
8

9
3

5
.7

7
9

3
0

.9
6

3
2

5
.9

7
2

4
0

.7
4

6
5

R
as

tr
ig

in
1

8
.1

4
.5

2
2

8
.2

6
4

.7
1

3
7

.8
4

4
.7

3
3

.9
5

8
0

0
.9

8
9

5
5

.7
7

7
4

0
.9

6
2

9
7

.7
7

0
3

0
.9

7
1

3

G
ri

ew
an

k
1

6
.3

4
.0

7
2

5
.3

2
4

.2
2

3
4

.0
8

4
.2

6
3

.9
1

1
4

0
.9

7
7

8
5

.9
1

2
8

0
.9

8
5

5
7

.3
8

5
1

0
.9

2
3

1

MAJD ET AL. 13 of 26

TABLE 14 Comparison results of PICA for Case 1 with other works25,27,28,30

Methods x1 x2 f(x)

PPSO 27 and Gyurhan 28 −0.29051455550725 1.08421508149135 4.686326815078573e-029

PPSO 27 and Gyurhan 28 −0.793700525984100 −0.793700525984100 1.577721810442024e-030

COA 30 1.08421508149135 −0.29051455550725 4.686326815078573e-029

COA 30 −0.29051455550725 1.08421508149135 4.686326815078573e-029

Ica 29 1.084215081491351 −0.290514555507251 3.562200025138631e-030

Ica 29 −0.793700525984100 −0.793700525984100 1.577721810442024e-030

Ica 29 −0.290514555507251 1.084215081491351 3.562200025138631e-030

PICA (present study) 1.0842150814913511 −0.2905145555072514 4.9303806576313238e-032

PICA (present study) −0.79370052598409995582 −0.79370052598409995582 3.9443045261050590e-031

PICA (present study) −0.2905145555072514 1.0842150814913511 4.9303806576313238e-032

FIGURE 5 Convergence diagram of multi-population PICA with 2 processors in problem f1

FIGURE 6 Convergence diagram of multi-population PICA with 6 processors in problem f1

FIGURE 7 Convergence diagrams of f3

14 of 26 MAJD ET AL.

FIGURE 8 Convergence diagrams of f4

FIGURE 9 Convergence diagrams of f5

100 101 102 103

Iteration

0

10

20

30

40

f(
x)

Mean
Best

FIGURE 10 Convergence diagrams of f6

FIGURE 11 Convergence diagrams of f7

MAJD ET AL. 15 of 26

FIGURE 12 Convergence diagrams of f8

FIGURE 13 Stability diagram for 100 runs by multi-population PICA with 2 processors in problem f1

FIGURE 14 Stability diagram for 100 runs by multi-population PICA with 6 processors in problem f1

FIGURE 15 Stability diagrams of f3

FIGURE 16 Stability diagrams of f4

16 of 26 MAJD ET AL.

FIGURE 17 Stability diagrams of f5

FIGURE 18 Stability diagrams of f6

FIGURE 19 Stability diagrams of f7

FIGURE 20 Stability diagrams of f8

MAJD ET AL. 17 of 26

FIGURE 21 The convergence history of case 1 (from the work of Jaberipour et al27)

0 5 10 15 20 25 30 35 40 45
10−35

10−30

10−25

10−20

10−15

10−10

10−5

100

Iteration

f(x
)

Best Cost
Mean Cost

FIGURE 22 The convergence history of case 1 (from the work of Abdollahi et al29)

FIGURE 23 The convergence history of case 1 with PICA

FIGURE 24 The stability chart of case 1 with PICA

18 of 26 MAJD ET AL.

TABLE 15 Comparison results of Case 2

Methods X Variable values f Functions values F(x)

The best in the work of Wang et al31 x1 0.500432850000000 f1 −0.000238520000000 7.693745216994211e-008

x2 3.141863170000000 f2 0.000141590000000

The best in the work of Floudas et al32 x1 0.299450000000000 f1 6.139739265609290e-007 1.014347133848949e-012

x2 2.836930000000000 f2 −7.983627943186633e-007

x1 0.500000000000000 f1 2.111655261760603e-007 5.316365008296489e-012

x2 3.141590000000000 f2 −2.296034435467220e-006

The best in COA30 x1 0.299300000000000 f1 −7.128922385554737e-005 5.792081721117691e-009

x2 2.836600000000000 f2 2.664447941302939e-005

The best in ICA29 x1 0.299448692495720 f1 1.305289210051797e-012 5.631272867601562e-024

x2 2.836927770471037 f2 2.284838984678572e-013

x1 0.500000000000000 f1 0 0

x2 3.141592653589794 f2 0

The best of PICA x1 0.29944869249092598 f1 −1.387778780781446e-016 6.856310602018560e-032

x2 2.8369277704589400 f2 2.220446049250313e-016

x1 0.500000000000000 f1 0 0

x2 3.141592653589794 f2 0

0 10 20 30 40 50 60
10−35

10−30

10−25

10−20

10−15

10−10

10−5

100

Iteration

f(x
)

Best Cost
Mean Cost

FIGURE 25 The convergence history of case 2 (from the work of Abdollahi et al29)

FIGURE 26 The convergence history of case 2 with PICA

MAJD ET AL. 19 of 26

FIGURE 27 The stability chart of case 2 with PICA

0 100 200 300 400 500 600 700 800 900 1000
10−35

10−30

10−25

10−20

10−15

10−10

10−5

100

Iteration

f(x
)

Best Cost
Mean Cost

FIGURE 28 The convergence history of case 3 (from the work of Abdollahi et al29)

FIGURE 29 The convergence history of case 3 with PICA

FIGURE 30 The stability chart of case 3 with PICA

20 of 26 MAJD ET AL.

TA
B

LE
1

6
St

at
is

ti
ca

lr
es

u
lt

s
o

fm
u

lt
i-

p
o

p
u

la
ti

o
n

IC
A

P
ro

b
le

m
N

M
ea

n
St

d
.d

ev
ia

ti
o

n
St

d
.e

rr
o

r
m

ea
n

W
o

rs
t

B
es

t

Te
st

1
3

0
0

.0
0

.0
0

.0
0

.0
0

.0

Te
st

2
3

0
−

1
.2

1
5

9
8

1
9

9
9

9
9

9
9

9
9

e+
0

0
2

7
.2

2
6

8
9

6
4

5
3

2
2

7
1

3
8

e-
0

1
4

1
.3

1
9

4
4

4
7

3
6

0
6

2
1

9
4

e-
0

1
4

−
1

.2
1

5
9

8
2

0
0

0
0

0
0

0
0

0
e+

0
0

2
−

1
.2

1
5

9
8

2
0

0
0

0
0

0
0

0
0

e+
0

0
2

C
as

e
1

3
0

1
.9

8
8

5
8

6
0

0
0

0
0

0
0

0
1

e-
0

3
1

1
.7

3
9

4
5

8
9

6
7

5
6

3
9

4
4

e-
0

3
1

3
.1

7
5

8
0

3
0

4
7

9
6

4
7

3
1

e-
0

3
2

3
.9

4
4

3
0

0
0

0
0

0
0

0
0

0
0

e-
0

3
1

4
.9

3
0

4
0

0
0

0
0

0
0

0
0

0
0

e-
0

3
2

C
as

e
2

3
0

1
.0

4
6

3
1

2
4

4
3

8
8

4
7

7
1

e-
0

2
6

1
.5

1
1

5
4

3
7

0
8

2
6

4
5

7
6

e-
0

2
6

2
.7

5
9

6
8

8
6

1
8

9
0

5
0

5
3

e-
0

2
7

4
.4

1
4

5
0

0
0

0
0

0
0

0
0

0
1

e-
0

2
6

0
.0

C
as

e
3

3
0

6
.8

9
8

0
4

9
9

9
9

9
9

9
9

9
7

e-
0

3
7

1
.1

5
0

1
0

7
1

0
6

1
8

1
7

0
5

e-
0

3
7

2
.0

9
9

7
9

8
6

8
5

3
4

2
3

6
3

e-
0

3
8

9
.0

3
9

0
9

9
9

9
9

9
9

9
9

9
9

e-
0

3
7

5
.8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

e-
0

3
7

MAJD ET AL. 21 of 26

TABLE 17 Comparison results of Case 3

Methods X Variables values f Functions values

The best in the work of Wang et al 31 x1 0.67154465 f1 −0.00000375

x2 0.74097111 f2 0.00001537

x3 0.95189459 f3 0.00000899

x4 −0.30643725 f4 0.00001084

x5 0.96381470 f5 0.00001039

x6 −0.26657405 f6 0.00000709

x7 0.40463693 f7 0.00000049

x8 0.91447470 f8 −0.00000498

The best in the work of Floudas et al 32 x1 0.1644 f1 −8.8531e-005

x2 −0.9864 f2 3.5894e-005

x3 −0.9471 f3 6.6216e-006

x4 −0.3210 f4 2.1560e-005

x5 −0.9982 f5 1.2320e-005

x6 −0.0594 f6 3.9410e-005

x7 0.4110 f7 −6.8400e-005

x8 0.9116 f8 −6.4440e-005

The best of ICA 29 x1 0.164431665854327 f1 2.775557561562891e-016

x2 −0.986388476850967 f2 −1.110223024625157e-016

x3 0.718452601027603 f3 −1.110223024625157e-016

x4 0.718452601027603 f4 1.734723475976807e-018

x5 0.997964383970433 f5 0

x6 0.063773727557003 f6 0

x7 −0.527809105283546 f7 0

x8 −0.849363025083964 f8 0

The best of PICA x1 0.164431665854327405 f1 5.368529659036217811e-019

x2 −0.986388476850967110 f2 2.548307417523678423e-019

x3 0.718452601027603350 f3 −3.378192205891815512e-019

x4 −0.695575919707310931 f4 3.389211820587187123e-019

x5 0.997964383970432520 f5 0

x6 0.063773727557002571 f6 0

x7 −0.527809105283546241 f7 0

x8 −0.849363025083964123 f8 0

TABLE 18 The comparison statistical results of serial ICA25 and PICA

Problem Speedup Efficiency Serial ICA time PICA time #processors Super linear performance?

Case 1 2.82 1.41 0.0341 0.012 2 Yes

Case 2 5.1 2.55 2.1 0.411 2 Yes

Case 3 6.24 3.12 6.78 1.08 2 Yes

FIGURE 31 Speedup diagram and parallel efficiency diagram for f1

4.10 Case studies

In this section, three commonly explored systems of nonlinear equations have been used to demonstrate the performance of the proposed method,

and the obtained results have been compared with the other known methods.

22 of 26 MAJD ET AL.

FIGURE 32 Speedup diagram and parallel efficiency diagram for f2

FIGURE 33 Speedup diagram and parallel efficiency diagram for f3

FIGURE 34 Speedup diagram and parallel efficiency diagram for f4

FIGURE 35 Speedup diagram and parallel efficiency diagram for f5

Case 1. This example has been given in other works27-30

⎧⎪⎨⎪⎩
x1 − 3x1x2

2
− 1 = 0

3x2
1

x2 − x3
2
+ 1 = 0.

(1)

MAJD ET AL. 23 of 26

FIGURE 36 Speedup diagram and parallel efficiency diagram for f6

FIGURE 37 Speedup diagram and parallel efficiency diagram for f7

FIGURE 38 Speedup diagram and parallel efficiency diagram for f8

The solutions in the works of Jaberipour et al27 and Gyurhan and Nedzhibov28 have been obtained with 120 iterations with unknown population

sizes. The parameters of the sequential ICA method29 have been set to 50 iterations with 250 countries. The results of case 1 are compared with

the PICA in Table 14. The obtained solutions by the PICA are better and more accurate than those of the previous works. Figures 21 to 23 indicate

the convergence history of Case 1. Figure 24 shows the stability diagram of this case.

Case 2. (Problem 2 in the work of Wang et al,31 Test Problem 14.1.4 in the work of Floudas et al,32 and Case Study in the works of

Abdollahi et al29,30)

𝑓1 (x1, x2) = 0.5 sin (x1x1) − 0.25x2∕π − 0.5x1 = 0

𝑓2 (x1, x2) = (1 − 0.25∕π) ((exp(2x1) − e) + ex2∕π − 2ex1 = 0. (2)

The results of case 2 in other works29-32 with 50 iterations and the population size of 250 are compared with the PICA in Table 15. The obtained

solutions show that PICA outperforms the mentioned methods with 250 countries and 35 iterations. The results are illustrated in Figures 25 to 27.

24 of 26 MAJD ET AL.

Case 3. (Problem 6 in the work of Wang et al31 and Test Problem 14.1.6 in the work of Floudas et al32)

Case 3 has been solved by the filled function method in the work of Wang et al31 and has been proposed as a problem in the work of

Abdollahi et al.29,32

4.731 × 10−3x1x3 − 0.357x2x3 − 0.1238x1 + x7 − 1.637 × 10−3x2 − 0.9338x4 − 0.3 = 0

0.2338x1x3 + 0.7623x2x3 + 0.2638x1 − x7 − 0.07745x2 − 0.6734x4 − 0.6022 = 0

x6x8 + 0.3578x1 + 4.731 × 10−3x2 = 0

−0.7623x1 + 0.2238x20.3461
= 0

x2
1 + x2

2 − 1 = 0

x2
3 + x2

4 − 1 = 0

x2
5 + x2

6 − 1 = 0

x2
7 + x2

8 − 1 = 0

−1 ≤ xi ≤ 1, i = 1,2, … ,8.

(3)

The number of iterations for this problem in other works29,31,32 is 1000 and the population size is 300. Our results with the same numbers of

iterations and countries have been compared in Table 17. The convergence history of ICA 29 and PICA is shown in Figures 28 and 29, respectively.

Figure 30 shows the stability diagram of PICA for Case 3. The statistical results of the tests and cases are illustrated in Table 16. The comparison

between the statistical results of the serial ICA and the parallel ICA is given in Table 18.

4.11 Speedup and parallel efficiency

As already discussed above, speedup and parallel efficiency, defined in Equations 4 and 5, are important parameters, indicating the quality of paral-

lelization. They reveal whether parallel algorithms are suitable or not for given problems. As already demonstrated by the above analyses, we can

also use these parameters to compare the speed of our algorithms with that of another parallel EC method. For example, we know based on other

works15,21,33 that the serial ICA is faster than the GA, ES, ABC, and PSO. Therefore, if our speedup and parallel efficiency values for the PICA are

higher than those of the parallel implementations of the other mentioned EC algorithms, then our parallel algorithm is provably faster than the

others.

Speedup = Execution time on one processor core
Execution time on m processor cores

= T (1)
T (m)

(4)

Parallel Efficiency = Speedup
m

(5)

For the benchmark f1 (Table 1), the sequential ICA obtains the best results after 10 iterations, while the multi-population PICA obtains them

after three iterations. So, this benchmark is very simple, and when we find the results with six processors after three iterations, there is clearly no

need for a larger number of processors. In Figures 31 to 38, we show the parallel efficiency and speedup as a function of the number of processors

on all the benchmarks; they convincingly demonstrate efficiency and usefulness of the parallel implementations. Super-linear speedup means that

using M processors leads to an algorithm that runs more than M times faster than the sequential version. However, reporting super-linear speedup

is somewhat controversial, especially for the “traditional” research community, since some non-orthodox practices could be thought of being the

cause for this result.8 Super-linear performance is nevertheless the main achievement of our algorithms. Indeed, in all benchmark diagrams, we can

see that we obtain super-linear performance. Based on our extensive experiments, the PICA is the best choice for solving the considered problems.

5 CONCLUSION

We have introduced two parallel versions of the ICA, ie, the multi-population PICA and the master-slave PICA, utilizing MPI instructions in their

implementations. We tested them on two different computer platforms, on eight mathematical benchmarks and three nonlinear case studies, and

compared them with the sequential ICA and a large set of other parallel evolutionary computing methods. Our extensive experiments show that

both PICA implementations are very efficient in solving different kinds of complex problems and they are in general faster and more efficient and

stable than the other parallel methods considered. The multi-population PICA has been proven to be especially prominent approach. In fact, both

approaches have been shown to achieve a super-linear performance. Figures 13 to 20, Figure 23, Figure 27, and Figure 30 highlight the stability of

the proposed multi-population PICA, and Figures 21 to 23, Figure 25, Figure 26, Figure 28, Figure 29, and Figures 31 to 38 demonstrate that our

multi-population algorithm converges fast to the best results and has very high speedup and parallel efficiency values. Overall, compared with the

MAJD ET AL. 25 of 26

competing parallel methods, its run time is significantly lower (there is a smaller number of fitness function evaluations) and its accuracy is better.

Indeed, the proposed multi-population PICA is the champion among the analyzed evolutionary methods by a clear margin.

ORCID

Amin Majd http://orcid.org/0000-0001-7256-6618

REFERENCES

1. Cantú-Paz E. A Survey of Parallel Genetic Algorithms. Urbana, IL: Department of Computer Science and Illinois Genetic Algorithms Laboratory University
of Illinois; 1997.

2. Zhou Y, Tan Y. Particle swarm optimization with triggered mutation and its implementation based on GPU. Paper presented at: Proceedings of the 12th
Annual Conference on Genetic and Evolutionary Computation; 2011; Portland, OR.

3. Liu H, Li P, Wen Y. Parallel ant colony optimization algorithm. Paper presented at: The 6th World Congress on Intelligent Control and Automation; 2006;
Dalian, China.

4. Parpinelli R, Benitez C, Lopes S. Parallel approaches for the artificial bee colony algorithm. Handbook of Swarm Intelligence. Vol 8. Berlin, Germany: Springer;
2010: 329-345.

5. Digalakis J, Margaritis K. A parallel memetic algorithm for solving optimization problems. Paper presented at: 4th Metaheuristics International Confer-
ence. Parallel Distributed Processing Laboratory; 2001; Athens, Greece.

6. Vanneschi L, Codecasa D, Mauri G. Comparative study a of four parallel and distributed PSO methods. N Gener Comput. 2011;29:129-161.

7. Digalakis J, Margaritis K. A parallel memetic algorithm for solving optimization problems. Paper presented at: 4th Metaheuristics International Confer-
ence, MIC; 2001; Thessaloniki, Greece.

8. Alba E. Parallel evolutionary algorithms can achieve super-linear performance. Inf Process Lett. 2002;82:7-13.

9. Majd A, Lotfi Sh, Sahebi G, Daneshtalab M, Plosila J. PICA: Multi-population implementation of parallel imperialist competitive algorithms. Paper
presented at: 24th Euromicro International Conferences on Parallel, Distributed and Network-Based Processing PDP; 2016; Heraklion, Greece.

10. Majd A, Abdollahi M, Sahebi G, et al. Parallel imperialist competitive algorithm based on multi-population technique for solving systems of nonlinear
equation. Paper presented at: The 2016 International Conference on High Performance Computing & Simulation (HPCS); 2016; Innsbruck, Austria.

11. Lotfi H, Boroumandnia A, Lotfi Sh. Task graph scheduling in multiprocessor systems using a coarse grained genetic algorithm. Paper presented at: 2nd
International Conference on Computer Technology and Development; 2010; Cairo, Egypt.

12. Lotfi H, Lotfi Sh, Boroumandnia A. Task graph scheduling in multiprocessor systems using a two population genetic algorithm. Paper presented at:
International Conference on Software and Computing Technology; 2010; Kunming, China.

13. Majd A, Lotfi Sh, Sahebi G. Review on parallel evolutionary computing and introduce three general framework to parallelize all EC algorithms. Paper
presented at: 5th Conference on Information and Knowledge Technology; IEEE; 2013; Shiraz, Iran.

14. Majd A, Sahebi G. A survey on parallel evolutionary computing and introduce four general frameworks to parallelize all EC algorithms and create new
operation for migration. J Inf Comput Sci. 2014;9:97-105.

15. Mousa A, Wahed W, Allah R. A hybrid ant colony optimization approach based local search scheme for multi objective design optimizations. Electr Power
Syst Res. 2011;81(4):1014-1023.

16. Narasimhan H. Parallel artificial bee colony (PABC) algorithm. Paper presented at: World Congress on Nature & Biologically Inspired Computing; IEEE;
2009; Coimbatore, India.

17. Willie ECG, Lopes EYHS. Discrete capacity assignment in IP networks using particle swarm optimization. Appl Math Comput. 2011;217(12):5338-5346.

18. Vanneschi L, Codecasa D, Mauri G. A comparative study of four parallel and distributed PSO methods. New Generation Computing. Vol 29. Tokyo, Japan:
Ohmsha Ltd. and Springer; 2011:129-161.

19. Gargari EA, Lucas C. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. Paper presented at: IEEE
Congress on Evolutionary Computation; 2007; Singapore, Singapore.

20. https://www.mpich.org/

21. Bahrami H, Faez K, Abdechiri M. Imperialist competitive algorithm using chaos theory for optimization (CICA). Paper presented at: 12th International
Conference on Computer Modeling and Simulation; 2012; Cambridge, UK.

22. Abdechiri M, Faez K, Bahrami H. Adaptive imperialist competitive algorithm (AICA). Paper presented at: 9th IEEE International Conference on Cognitive
Informatics (ICCI); 2010; Beijing, China.

23. Bahrami H, Abdechiri M, Meybodi M. Imperialist competitive algorithm with adaptive colonies movement. I J Intell Syst Appl. 2012;2:49-57.

24. Alba E, Luna F, Nebro AJ, Troya JM. Parallel heterogeneous genetic algorithms for continuous optimization. Parallel Comput. 2004;30:699-719.

25. Weinert K, Mehnen J, Rudolph G. Dynamic neighborhood structures in parallel evolution strategies. Complex Syst Publ. 2002;13:227-243.

26. Basturk A, Akay R, Kalinli A. Comparison of fine-grained and coarse-grained parallel models in particle swarm optimization algorithm. Paper presented
at: 2nd World Conference on Information Technology (WCIT); 2011; Antalya, Turkey.

27. Jaberipour M, Khorram E, Karimi B. Particle swarm algorithm for solving systems of nonlinear equations. Comput Math Appl. 2011;62:566-576.

28. Gyurhan H, Nedzhibov A. A family of multi-point iterative methods for solving systems of nonlinear equations. J Comput Appl Math. 2008;222(2):244-250.

29. Abdollahi M, Isazadeh A, Abdollahi D. Imperialist competitive algorithm for solving systems of nonlinear equations. Comput Math Appl.
2013;65:1894-1908.

http://orcid.org/0000-0001-7256-6618
http://orcid.org/0000-0001-7256-6618
https://www.mpich.org/

26 of 26 MAJD ET AL.

30. Abdollahi M, Lotfi SH, Abdollahi D. Solving systems of nonlinear equations using cuckoo optimization algorithm. Paper presented at: Proceedings of the
3rd International Conference on Contemporary Issues in Computer and Information Sciences (CICIS), Vol 3; 2012; Zanjan, Iran.

31. Wang C, Luo R, Wu K, Han B. A new filled function method for an unconstrained nonlinear equation. Comput Appl Math. 2011;235:1689-1699.

32. Floudas CA, Pardalos PM, Adjiman CS, et al. Handbook of Test Problems in Local and Global Optimization. Dordrecht, The Netherlands: Kluwer Academic
Publishers; 1999.

33. Yin PY, Yu SS, Wang PP, Wang YT. A hybrid particle swarm optimization algorithm for optimal task assignment in distributed systems. Comput Stand
Interface. 2006;28:441-450.

How to cite this article: Majd A, Sahebi G, Daneshtalab M, Plosila J, Lotfi S, Tenhunen H. Parallel imperialist competitive algorithms.

Concurrency Computat Pract Exper. 2018;e4393. https://doi.org/10.1002/cpe.4393

https://doi.org/10.1002/cpe.4393

Paper III

Parallel Imperialist Competitive Algorithm Based on Multi-

Population Technique for Solving Systems of Nonlinear Equation

A. Majd, M. Abdollahi, G. Sahebi, D. Abdollahi, M. Daneshtalab, J. Plosila and H.Tenhunen

978-1-5090-2088-1/16/$31.00 ©2016 IEEE 767

768

Best

Worst

P1

Best

Worst

P2

Best

Worst

P3

Best

Worst

P4

Best

Be
st

Best

Best

769

770

771

772

773

774

775

Paper IV

Finding Near-Optimal Task Scheduling for Distributed Real-Time

Environments

M. Salimi, A. Majd, M. Loni, C. Seceleanu, T. Seceleanu, M. Sirjani, M. Daneshtalab, and E.
Troubitsyna

Multi-objective Optimization of Real-Time Task Scheduling
Problem for Distributed Environments

Maghsood Salimi
msalimi@khayam.ut.ac.ir

Tehran University
Tehran, Iran

Amin Majd
amajd@abo.fi

Department of Information
Technology, Åbo Akademi University

Turku, Finland

Mohammad Loni
mohammad.loni@mdh.se

School of Innovation, Design and
Engineering, Mälardalen University

Västerås, Sweden

Tiberiu Seceleanu
tiberiu.seceleanu@mdh.se

School of Innovation, Design and
Engineering, Mälardalen University

Västerås, Sweden

Cristina Seceleanu
cristina.seceleanu@mdh.se

School of Innovation, Design and
Engineering, Mälardalen University

Västerås, Sweden

Marjan Sirjani
marjan.sirjani@mdh.se

School of Innovation, Design and
Engineering, Mälardalen University

Västerås, Sweden

Masoud Daneshtalab
masoud.daneshtalab@mdh.se

School of Innovation, Design and
Engineering, Mälardalen University

Västerås, Sweden

Elena Troubitsyna
elena.troubitsyna@abo.fi

KTH Royal Institute of Technology
Stockholm, Sweden

ABSTRACT
Real-world applications are composed of multiple tasks which usu-
ally have intricate data dependencies. To exploit distributed pro-
cessing platforms, task allocation and scheduling, that is assigning
tasks to processing units and ordering inter-processing unit data
transfers, plays a vital role. However, optimally scheduling tasks
on processing units and finding an optimized network topology is
an NP-complete problem. The problem becomes more complicated
when the tasks have real-time deadlines for termination. Exploring
the whole search space in order to find the optimal solution is not
feasible in a reasonable amount of time, therefore meta-heuristics
are often used to find a near-optimal solution.

We propose here a multi-population evolutionary approach for
near-optimal scheduling optimization, that guarantees end-to-end
deadlines of tasks in distributed processing environments. We ana-
lyze two different exploration scenarios including single and multi-
objective exploration. The main goal of the single objective explo-
ration algorithm is to achieve the minimal number of processing
units for all the tasks, whereas a multi-objective optimization tries
to optimize two conflicting objectives simultaneously considering
the total number of processing units and end-to-end finishing time
for all the jobs. The potential of the proposed approach is demon-
strated by experiments based on a use case for mapping a number
of jobs covering industrial automation systems, where each of the
jobs consists of a number of tasks in a distributed environment.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ECBS ’19, September 02 - 03, 2019, Bucharest, Romania
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7636-5.
https://doi.org/10.1145/3352700.3352713

CCS CONCEPTS
•Computer systems organization→Embedded systems; Sched-
uling; Sensor; • Computer Science → Optimization.

KEYWORDS
Distributed Task Scheduling, Real-Time Processing, Evolutionary
Computing, Multi-Objective Optimization

ACM Reference Format:
Maghsood Salimi, Amin Majd, Mohammad Loni, Tiberiu Seceleanu, Cristina
Seceleanu, Marjan Sirjani, Masoud Daneshtalab, and Elena Troubitsyna.
2019. Multi-objective Optimization of Real-Time Task Scheduling Problem
for Distributed Environments. In Proceedings of ECBS ’19. ACM, September
02 - 03, 2019, Bucharest, Romania , 9 pages. https://doi.org/10.1145/3352700.
3352713

1 INTRODUCTION
Industrial applications often require guaranteeing real-time execu-
tion, fault tolerant implementations and providing reliable func-
tionality. In general, it is impossible for a single processing unit to
satisfy all these needs. However, a distributed processing environ-
ment provides a variety of computational capabilities, which can
be utilized to perform an application that has diverse execution re-
quirements. An application job can be decomposed into tasks. Tasks
may have data dependencies and it is possible that each task needs
a certain computational throughput. For distributing tasks, the fol-
lowing decisions should be made respectively: 1○ task allocation,
i.e. assigning tasks to processing units, and 2○ tasks scheduling,
i.e. defining task execution order and the order of data transfers
among processing units. The general goal of task allocation and
scheduling is to minimize the end-to-end cost of computation, i.e.
minimizing overall response time of the application, minimizing
the number of processing units, or both.

https://doi.org/10.1145/3352700.3352713
https://doi.org/10.1145/3352700.3352713
https://doi.org/10.1145/3352700.3352713

ECBS ’19, September 02 - 03, 2019, Bucharest, Romania Salimi et al.

Performance of such parallel systems can be optimized by em-
ploying an efficient task allocation and scheduling approach, how-
ever, the allocation and scheduling problem is an NP-complete
problem [1]. Using exhaustive approaches for finding optimal solu-
tion is time-consuming and is impossible in practice. Many heuris-
tic task scheduling strategies have been proposed [2, 3] to find a
near-optimal solution in a reasonable amount of time. Evolutionary
Computing (EC) is a set of methods proposed to solve the allocation
and scheduling problem. Genetic Algorithm (GA) is a popular EC
method which can better locate a near-optimal solution than other
similar approaches in most cases [4–7]. Although GA is a powerful
solution, defining a proper fitness function is always challenging
and requiring expertise especially when the size of design space
is huge. Plus, GA is relatively slow and may be trapped in local
optima [8].

To overcome aforementioned challenges, a Multi-Population
Genetic Algorithm (MPGA) [9] is leveraged in this research for
task allocation and scheduling over a collection of nonuniform
processing units. MPGA is a static scheduling strategy, where the
execution times of tasks and the data transfer times between tasks
are known. MPGA is the parallel version of GA that provides better
convergence rate and more speedup compared to single population
GA [8]. In addition, MPGA highly reduces the probability of falling
into local optima trap. Two different MPGA strategies have been
considered to solve the allocation and scheduling problem including:
1○ Single objective optimization and 2○ Multi-objective optimization.
While the single objective optimization minimizes the number of
processing units, the multi-objective optimization considers the
second conflicting metric, jobs end-to-end finishing time, to find
solutions satisfying multiple user needs.

Contribution. In a nutshell our main contributions are:

• In this paper, we solved task allocation and scheduling prob-
lem in a distributed environment. To attain this purpose,
we leveraged a MPGA optimization method with different
optimization scenarios.

• Defining novel fitness functions to efficiently explore the
design space in both single and multi-objective optimization
scenarios.

• The evaluation results based on an industrially inspired use
case show the impact of the proposed fitness function while
converging to better solutions.

Paper Organization. The paper is organized as follows. Sec-
tion II defines the allocation and scheduling problem and our use
case. Section III explains the MPGA and the specifications of fitness
functions for both single objective and multi-objective optimization
scenarios. Section IV presents the experimental results and demon-
strates the efficiency and convergence of the proposed algorithm.
Some related work reviewed in Section V. We end with concluding
remarks and future work in Section VI.

2 PROBLEM DEFINITION
We start here by describing a generic distributed process control
system. In such systems, a series of computing devices operate on
data collected from sensors placed close to a physical process, and
update control signals to other devices - actuators - able to control
the evolution of the process. A process may be exemplified by a

simple tank-filling operation or by more complex systems, such
as ore separation, water purification, etc. The process parameters
(such as liquid levels, temperatures, etc.) are usually required to
be maintained within a certain range of values, even when the
environment is disturbed. Whenever new values are presented
via sensors to the processing devices, certain procedures hosted
within these devices are launched, and potential new values are
sent to the process-responsible actuators. In large systems, there
are potentially thousands or more such procedures, installed in tens
to hundreds of control devices.

The main problem that we raise here is how to allocate the
number of processing operations on an as small as possible set of
processing devices, such that planned operations are not affected
with respect to their timing and duration, and the processing devices
are operating within their nominal characteristics.

In order to cover most of the aspects of interest when solving
this, in the following we employ a synthetic example of a system
as use case, with elements presented in Fig. 1. Here, we have a
control system composed of 8 jobs, their characteristics and further
decomposition being detailed below.

2.1 System Model Elements
The systemwe consider is composed of a number of complex control
processes, referred from now on as jobs. The system reads data from
a set of input elements - the sensors S1,...,S11 and processes the data
on a number of available processing units (P1,..., P24). The processed
data is sent further in the system to other elements - the actuators
A1,...A11 - notice that having a similar number of sensors and
actuators is a coincidence of no relevance in the analysis to come.
A job refers to the data trip from sensors to actuators.

A job can be further described as a collection of tasks, acting
mostly sequentially, but not excluding parallel processing - espe-
cially if tasks belong to different jobs. To illustrate a more crit-
ical situation, we assume that all the considered tasks are non-
interruptible. A task is a unitary, andwith the assumed non-interruptible
characteristic, an atomic system element, to be executed on one of
the available processing units. Each task has input either a sensor,
or the output of a precedent task. At the output of a task stays
either an actuator, or the input of a follower task. Multiple inputs to
a task are possible (see task T13 in Job8 on actuator A10), in which
case all of them must be present for the task to start its operation.
Differently, if a task has more than one output (see task T21 in Job7),
all of them are presented at the same moment.

Fig. 1 describes additional information pertaining to task and job
execution, as well as some characteristics of interest for the pro-
cessing units. Thus, a task is also defined with a potential maximal
load that it presents to the processing unit, and with a maximal
execution time. For instance, task T1 in Fig. 1 produces a maximal
load of 10, and it executes in maximum 10tu ("time units": µ-seconds
to seconds, for instance. However, an actual specification of these
units is not of interest in our work here). At the same time, the
available processing unit P1 can withhold a maximum load of 100,
and possess 5 connection interfaces.

In their turn, the jobs have an execution time (the sum of the
execution times of the composing tasks), and a frequency: how

Multi-objective Optimization of Real-Time Task Scheduling Problem for Distributed Environments ECBS ’19, September 02 - 03, 2019, Bucharest, Romania

Figure 1: Representing The use case including jobs, intra-task dependencies, tasks load complexity, real-time deadlines and
processing unit specifications.

often data is read from sensors, and it has to be sent to the actu-
ators. For instance, Job1 - a sequence of T1, T14 and T18 - has a
maximal execution time of 60tu, and it is recurring every 70tu. A
more complex situation is presented by jobs 3, 7 and 8, where two
actuators are related to each job. The times for processing the data
corresponding to each actuator may be different, but what holds
them together is the execution frequency (200tu, 400tu and 500tu,
per job, respectively). Fig. 2 shows the dependency graph between
tasks of a job example from the use case (see Section II.A).

Figure 2: Dataflow of Job #7.

2.2 Problem Assumption
To only focus on the allocation and scheduling problem, we made
the following additional assumptions. First of all, we assumed that
each task is written in a machine-independent language. Moreover,

it is assumed that we know all the data dependencies among tasks
before execution (as described by Fig. 1 and partially by Fig. 2).
The distributed processing platform is nonuniform, consisting of
multiple homogeneous processing units with various processing
potential.

If a data conditional is based on input data, it is assumed to be
contained inside a task. A loop that uses an input data item to
determine one or both of its bounds is also assumed to be contained
inside a task. When two communicating tasks are mapped onto the
same processing units we assume that the communication delay is
zero. However, when they are mapped onto different processors a
finite communication delay is assumed and modeled by 1tu.

Moreover, we do not (yet) consider here aspects related to relia-
bility, fault tolerance, safety, etc. These aspects may (such as in the
case of fault tolerance) require a duplication of allocation and syn-
chronization of data across duplicated locations. These additional
objectives are subject of further work analysis.

3 MPGA DESCRIPTION
GA is an iterative population-based exploration solution mimicking
the process of natural selection and evolution where the characteris-
tics of the process can be utilized in solving optimization problems.
All GA-based methods have an initial population where selection,
crossover, mutation operators are applied to initial population for
producing improved population. The operations will be repeated
until satisfying user criteria (reaching suitable results) or stopping
after a predefined number of iterations. The following subsections
explain the basic components of GA.
Step 1. Generating Initial Population. The initial population
includes random solutions in the design space, where each solution

ECBS ’19, September 02 - 03, 2019, Bucharest, Romania Salimi et al.

Figure 3: Representing a valid allocation and scheduling by
GA/MPGA chromosome type.

represented by chromosome is a schedule for all the jobs. The size
of initial population depends on the size of design space. To check
the validity of solutions in the initial population, each solution is
examined by using the objective function represented in Equation
(1). Invalid solutions will be removed from the population.
Step 2. Fitness Evaluation. Objective function (fitness function)
is a metric for comparing different scheduling that satisfy problem
constraints. Equation (1) and Equation (2) represent the fitness
functions for single-objective and multi-objective optimization,
respectively.

Fitness_1 = #Processors + (γ × (α + β + θ)) (1)

Fitness_2 =
#Processors

γ
+ (2)

Run − time

BiддestDeadline
+ 3 × (α + β + θ)

where α is the total extra loads of the all assigned tasks that exceed
the load of processing units, β is the total extra deadline of all
assigned tasks that exceed the real-time deadlines, θ is the total
extra ports of all job assignments that exceed the total number
ports per processing units, and γ is equal to 23, the total number of
processing units. BiддestDeadline is the maximum possible time for
finishing the slowest job. The scale of extra load (α), extra deadline
(β), and extra ports (γ) could be very different, thus all theα , β , andγ
parameters should be normalized. However, we did not normalized
them since the range of these parameters are deterministic and the
fitness functions are customized for the studied use case.

In (1), minimizing the number of processors (#Processor) is the
exploration objective. Whereas in (2), minimizing both the end-to-
end finishing time of all the jobs (Run − time) and #Processor are
the exploration objectives.
Step 3. Selection. Obviously the schedules with better fitness func-
tion are selected as the next generation and the others will be
removed from population set. The goal is to find a solution in de-
sign space with lowest fitness function in both Equations (1) and
(2).
Step 4.Crossover Operator. Is the most important operator of GA.
GA randomly selects two genomes from the population set based on
a certain crossover rate. Then two genome strings exchange parts
of their corresponding chromosomes to create two new genomes.
In our use case, the chosen scheduling are exchanged with the
other scheduling for producing two new schedules with most likely
better schedules. Fig. 3 illustrates the representation of the all jobs
scheduling by a genome type. Each genome consists of 42 portions
since the use case has 42 different tasks. All possible assignments

to processing units for each task is γ=23. This representation also
indicate the task scheduling by prioritizing the assigned tasks to
the same processor. Such that the processor operates on the tasks
from left to right i.e, if Task #4 (T4), Task #7 (T7)and Task #11 (T11)
are assigned to Processor #2 (P2), the processor first runs T4, then
T7 and T11 respectively.
Step 5. Mutation Operator. The main goal of mutation operator
is to increase genetic diversity. Mutation alters one gene value
(assigned processor to task) in a chromosome string from its initial
state. The solution may be better or even worst solution by using
mutation. Mutation forces GA to get rid of local optima. For doing
mutation, we need to randomly select one gene in chromosome
and modify its assigned value to a new valid number.

After each cycle of selection, crossover and mutation, the newly
generated set of solutions (schedules) is called as new generation.
All the generations are evaluated based on the fitness function to
determine if they represent a good enough solution to satisfy the
fitness function. This determines if the GA can stop searching, or if
otherwise, for the GA to continue searching until the predefined
stopping criteria is met. The stopping criteria could be the number
of generations, or evolution time, or fitness threshold, or fitness
convergence, or population convergence. In our case, the number
of generations was set as the stopping criteria. The schedule ob-
tained after the stopping criteria will be the optimal or near optimal
schedule.

3.1 MPGA Algorithm
Although ECmethods can improve the quality of results, using them
have some difficulties. First of all, an evolutionary algorithm may
not converge towards the optimal solutions or even to near-optimal
solutions in the case of very huge exploration space. One possible
solution is to increase the initial population size, but leading to
increase the execution time of evolutionary algorithms. Paralleliz-
ing these algorithms can remarkably diminish their execution time
and improve the quality of results. In the parallelized GA, multiple
processors work together where each one runs a simple GA and
has an independent populations.
Step 6. After a predefined number of iterations, all processors share
their best chromosomes among each other (migration operation).

Step 6 above is specific to the parallel procedure, which, including
the previous 5 steps is called MPGA. Sharing the best individuals
aids the MPGA to get avoid of local optima. This procedure comes
to be utilized in the algorithm that we propose in further.

Fig. 4 represents the behavior of the MPGA and the flowchart
of consequent operations is shown in Fig. 5. The pseudo-code of
MPGA is presented in Algorithm 1. The inputs of proposed meta-
heuristic optimization approach include: 1○ the specification of
processing units including maximum processing potential, the total
number of input/output ports, and 2○ the specifications of jobs
and tasks including load complexity, run-time deadlines, and task
dependencies.

4 EVALUATIONS
This section presents the results of experiments that have been
fulfilled to evaluate the impact of the proposed MPGA on the use

Multi-objective Optimization of Real-Time Task Scheduling Problem for Distributed Environments ECBS ’19, September 02 - 03, 2019, Bucharest, Romania

Figure 4: Multi-population migration operation.

Figure 5: Flowchart of MPGA.

case. The evaluations have been done based on two different opti-
mization scenarios including single objective and multi-objective
optimization. It is necessary to mention that the single objective opti-
mization has been solved with simple GA, while we leveraged MPGA
to solve the multi-objective optimization.

4.1 Implementation Details
MPGA is implemented in C++ and MPI library has been utilized
for parallelization. Ring topology is used for connections between
processors for running MPGA. For the implementations, an Intel
Core i7-4770 CPU 3.40 GHz with 16.0 GB RAM running on 64-bit
Windows 10 has been used. Seven cores have been leveraged in the
parallel implementation. The specification of MPGA parameters is
shown in Table 1.

Algorithm 1: Pseudo Code of MPGA
Input: • Processor Pi: 1 ≤ i ≤ # Processors
• Distributed processing units Specifications
• Jobs and related tasks Specifications
• N : Population Size
• T : Maximum Number of Iterations
Output: A Set of Near-Optimal Solutions
Function MPGA(N , T):

(Step 1):U i,0= Random_Population (N); //Creating
initial random population and assign to each Pi
(Step 2): Fitness_Function (U i,0); //Evaluating the
objectives of each solution in the all populations
t = 1;
while t ≤ T | Satis f yinдUserNeeds do

(Step 3):U ′
i,t = Select (U i,t); //Select some

chromosomes from the U i,t randomly.
(Step 4):U ′′

i,t = Crossover (U ′
i,t)

(Step 5): Y i,t+1 = Mutation (U ′′
i,t)

(Step 2): Fitness_Function (Y i,t+1);
(Step 6): if #Iterations%MiдrationRate == 0 then

Select the best chromosome from Y i,t+1
Send the best chromosome to Pi+1
Receive the best chromosome from Pi-1

t = t + 1;
return Y i,t+1

Table 1: MPGA Algorithm Parameters.

Parameter Value
N: Initial Population Size (Each Processor) 100

Populations 15
Maximum # Iterations 750

Crossover Rate {0.1, 0.5, 0.9}
per each 5 populations

Mutation One-Point Mutation
Migration Rate 3
Migration Gap 25
Mutation Rate 1 - Crossover Rate

Table 2: Experimental Results Compared to [11].

Exploration Approach End-to-end finishing time # Processing units
Our Single Objective

Equation(1) 250 7
(Solved by simple GA)
Our Multi-Objective Solution 1○: 210 7

Equation(2) Solution 2○: 250 8
(Solved by MPGA) Solution 3○: 160 9

Single Objective [11] 210 9
Multi-Objective [11] 180 11

4.2 Experimental Results Convergence
One of the main limitations of evolutionary algorithms is decreas-
ing the convergence speed by increasing the number of iterations
leading to make non-convergent results in low iterations for diffi-
cult problems. Fig. 6 and Fig. 7 represent the convergence of fitness

ECBS ’19, September 02 - 03, 2019, Bucharest, Romania Salimi et al.

Figure 6: Convergence diagram of the fitness function for
the single objective optimization ((1)).

Figure 7:MPGA convergence diagramof the fitness function
for the eight different populations ((2)).

functions for both single and multi-objective optimization, respec-
tively. It can be easily observed from the convergence figures that
both strategies are highly convergent toward the improved results
by contentious reduction in fitness functions as the system cost
(see Equation (1) and Equation (2)).
a) Single Objective Optimization. Fig. 8 illustrates the variation
trend of total number of utilized processing units over the number
of iterations. As mentioned before, the aim of single objective op-
timization is to decrease the number of processing units used in
jobs scheduling. Fig. 8 shows considerable improvement in find-
ing scheduling with less required processing units. According the
results of Table 2, we need 22 processing units for scheduling in
the first iteration, while by proceeding the exploration algorithm,
we found a solution with only seven required processing units.

Figure 8: Convergence diagram of the variations # process-
ing units in single objective optimization solved by simple
GA.

Although there exist some breaks in continuous improvement, the
overall trend moves toward improvement.
b) Multi-Objective Optimization.As mentioned before, the total
number of processing units and end-to-end finishing time (rep-
resented as Run − time in (2)) for all the jobs are the two main
objectives of MPGA. Fig. 9 and Fig. 10 illustrate the convergence
figures of required processing units for scheduling and end-to-end
finishing time for all the scheduled jobs, respectively. We can con-
clude from the figures that both the objectives are approaching
toward optimized results. Although there are some failures or stops
in achieving better results in each iteration, the overall Progression
of MPGA always approaches toward superior outcomes (Fig. 11).

Table 2 shows three different solutions on the Pareto frontier
of the last Population. We have a variety of options based on the
user needs. Solution 1○ is a schedule with minimized number of
processing units (7 processing units) while takes more time, 210tu,
for running. On the other hand, Solution 3○ provide the minimum
elapsed end-to-end finishing time (160tu), while needs 9 processing
units for running.

4.3 Comparison between MPGA and simple GA
For evaluating the impact of multi-population optimization on the
allocation and scheduling problem, the results of single objective
optimization has been achieved by leveraging single population
GA (simple GA). On the other hand, the results of multi-objective
optimization has been achieved by using MPGA. We compared
MPGA and simple GA schemes in terms of exploration time and
quality of results in the following sections.
a) Exploration Time and Speedup. Fig. 8 and Fig. 9 represent
the convergence of processing units for single population GA and

Multi-objective Optimization of Real-Time Task Scheduling Problem for Distributed Environments ECBS ’19, September 02 - 03, 2019, Bucharest, Romania

Figure 9: Convergence diagram of the # processing units in
the multi-objective optimization by using MPGA approach.

Figure 10: Convergence diagram of the end-to-end run-
time in the multi-objective optimization by using MPGA ap-
proach.

MPGA, respectively. MPGA achieve the best result after 400 itera-
tions, while single population GA needs 750 iterations for finding
the best solution. Obviously converging to the best result needs in
less number of iterations by using MPGA which is the best proof
to show the benefits of applying the MPGA, especially when the
design space is large.
b) Quality of Results. According to the results of Table 2, MPGA
found a solution with 7 required processing units and 210tu for
the end-to-end finishing time, while single population GA found a
solution with the same required processing units but takes 250tu
for the end-to-end finishing time. MPGA provides more quality
of results compared to single population GA even when single
population GA tries to optimize only one objective.

Figure 11: Improvement proceeding of exploration objec-
tives including the number of processing units and end-to-
end use case run-time.

4.4 Comparison Between MPGA and Morady et
al. [11]

We compare the proposed MPGA solution with a similar evolution-
ary approach [11]. However, we customize the fitness functions
for the studied use case. Table 2 represents the evaluation results
after applying [11] on the industrial use case. As seen in Table 2,
our method in single objective scenario found a schedule with 7
required processing unit, while [11] proposed a solution with 9 re-
quired processing units. In addition, inmulti-objective scenario, [11]
needs 180tu to finishe all the jobs, while compared to Solution 3○,
our proposed method needs 160tu. Therefore, we can conclude our
customized MPGA overcomes a similar EC method represented in
[11].

4.5 Allocation and Scheduling Results
We have considered here the use case described in section 2, and
illustrated entirely by Fig. 1. After applying MPGA to the use case
tasks, the near-optimal scheduling result is shown in Fig. 12, a
valid scheduling for all jobs and their related tasks with minimum
number of processing units (Solution 1○).

5 RELATEDWORK
Here, we first explore more traditional list scheduling heuristics
that have considered communication costs.

The basic idea is to make an ordered list of nodes by assigning
them orders, and then to repeatedly execute the following two
steps until a valid schedule is obtained: 1○ Select from the list the
node with the highest order for scheduling. 2○ Select a processor
to accommodate this node. In realistic cases, scheduling needs to
exploit parallelism by identifying the task graph structure and take
into consideration task granularity, arbitrary computation, and
communication costs.

In [10], the modified critical path algorithm (MCP) is proposed,
based on the latest possible start time of a node. A node’s latest
possible start time is determined via the as-late-as-possible (ALAP)

ECBS ’19, September 02 - 03, 2019, Bucharest, Romania Salimi et al.

Figure 12: The best solution for multi-objective opti-
mization with minimum number of processing units
(solution 1○).

binding by traversing the task graph upward from the exit nodes
to the entry nodes while pulling the node’s start times downwards
as much as possible. The latest possible start time of the node
itself is followed by a decreasing order of the latest possible start
times of its successor nodes. Furthermore, in [10], the dominant
sequence clustering algorithm (DSC) is presented. It is based on
the dominant sequence, which is essentially the critical path of the
partially scheduled task. CP (the critical path of task graph) node is

a ready node. If so, DSC schedules it to a processor allowing the
minimum start time. Such a minimum start timemay be achieved by
rescheduling some of the node’s predecessors to the same processor.
If the highest CP node is not a ready node, DSC does not select it for
scheduling. Instead, it chooses the highest node which lies on a path
reaching the CP for scheduling. Moreover, also in [10], the mobility
directed algorithm (MD) is presented. MD selects a node at each
step based on relative mobility which is defined as the difference
between a node’s earliest start time and latest start time. Similar
to the ALAP binding, the earliest possible start time is assigned
to each node via the as-soon-as-possible (ASAP) binding. This is
performed by traversing the task graph downward from the entry
nodes to the exit nodes while pulling the nodes upward as much
as possible. Moreover, relative mobility is obtained by dividing the
mobility with the nodeâĂŹs computation cost. Basically, a node
with zero mobility is a node on the CP. At each step, MD schedules
the node with the smallest mobility to the first processor having a
large enough time to accommodate the node without considering
the minimization of the nodeâĂŹs start time. After a node has been
scheduled, the relative mobility values of the remaining nodes are
updated.

In [11], a MPGA is presented which outperforms deterministic
and non-deterministic methods described in [12, 13]. In [14], a
new encoding mechanism with a multi-functional chromosome is
presented, using a priority representation that is called priority-
based multi-chromosome (PMC). PMC can efficiently represent a
task schedule and assign tasks to processors. It is another meta-
heuristic method that uses a GA to achieve near-optimal scheduling
of tasks.

Research on static mapping methods includes the work of Lei
et al., who proposed a genetic mapping algorithm to optimize ap-
plication execution time [15]. In their work, graphs represent ap-
plications and the target architecture is a NoC. Wu, et al. also
investigated genetic mapping algorithms [16]. By combining dy-
namic voltage scaling techniques with mapping, they achieved 51%
savings in energy consumption. Murali et al. explored mappings
for more than one application in NoC design, using the tabu search
(TS) algorithm [17]. Manolache, et al. investigated task mapping
in NoCs, trying to guarantee packet latency [18]. For this purpose,
both the task-mapping algorithm (TS) and the routing algorithm
are defined at design time. Hu et al. presented a branch-and-bound
algorithm to map a set of IP cores (IPs) onto a NoC with bandwidth
reservation [19]. Their results show energy savings of 51.7% in
the communication architecture. In [20] presented a task schedul-
ing scheme on heterogeneous computing systems using a multiple
priority queues genetic algorithm (MPQGA). Their experimental
results for large-sized problems for a large set of randomly gener-
ated graphs as well as graphs of real-world problems with various
characteristics showed that the proposed MPQGA algorithm out-
performed two non-evolutionary heuristics and a random search
method.

6 CONCLUSIONS AND FUTUREWORK
Leveraging a distributed environment for task scheduling can en-
hance reliably and provide a specification compliant processing
scheme. The inherent difficulties in distributing application jobs

Multi-objective Optimization of Real-Time Task Scheduling Problem for Distributed Environments ECBS ’19, September 02 - 03, 2019, Bucharest, Romania

and scheduling them among processing units may lead applica-
tions to expose low performance, or the system may require extra
(unnecessary) resource costs. Here, a parallel Multi-Population
Genetic Algorithm is developed to overcome complexity barriers,
towards optimizing both operation time and resource numbers,
while preserving application requirements. For the evaluations,
a synthetic use case has been studied, grouping many aspects of
actual industrial systems. The final results offer a better resource
efficiency (requiring less number of processing unit) while guar-
anteeing real-time execution. In addition, MPGA provides better
efficiency compared to other similar evolutionary approaches. We
expect more complex problems to appear when we need to deal
with duplication of tasks and synchronization activities, related to
reliability and fault tolerance aspects, in future research actions.

ACKNOWLEDGMENTS
Thiswork is supported by the Knowledge Foundation (KKS) through
the DPAC project.

REFERENCES
[1] Freund, R. F. Optimal selection theory for superconcurrency. Proc. Supercomput-

ing âĂŹ89. IEEE Computer Society, Reno, NV, 1989, pp. 699âĂŞ703.
[2] Adam TL, Chandy KM, Dicksoni JR. A comparison of list schedules for parallel

processing systems. Communications of the ACM 1974;17(12):685âĂŞ90.
[3] Wu MY, Gajski DD. Hypertool: a programming aid for message-passing systems.

IEEE Transactions on Parallel and Distributed Systems 1990;1(3):330âĂŞ43.
[4] Hou ESH, Ansari N, Hong R. A genetic algorithm for multiprocessor scheduling.

IEEE Transactions on Parallel and Distributed Systems 1994;5(2):113âĂŞ20.
[5] Hwang RK, Gen M. Multiprocessor scheduling using genetic algorithm with

priority-based coding. Proceedings of IEEE conference on electronics, information
and systems; 2004.

[6] Wu AS, Yu H, Jin S, Lin K-C, Schiavone G. An incremental genetic algorithm
approach to multiprocessor scheduling. IEEE Transactions on Parallel and Dis-
tributed Systems 2004;15(9):824âĂŞ34.

[7] Majd, Amin, et al. "NOMeS: Near-optimal meta-heuristic scheduling for MPSoCs."
Computer Architecture and Digital Systems (CADS), 2017 19th International
Symposium on. IEEE, 2017.

[8] Majd, Amin, Golnaz Sahebi, Masoud Daneshtalab, Juha Plosila, Shahriar Lotfi,
and Hannu Tenhunen. "Parallel imperialist competitive algorithms." Concurrency
and Computation: Practice and Experience 30, no. 7 (2018): e4393.

[9] Y. Chen, Y. Zhong, âĂİ Automatic Path-oriented Test Data Generation Using a
Multi-population GeneticâĂİ, Proc. Fourth International Conference on Natural
Computation, pp. 566 âĂŞ 570, Oct 2008.

[10] Adam TL, Chandy KM, Dicksoni JR. A comparison of list schedules for parallel
processing systems. Communications of the ACM 1974;17(12):685âĂŞ90.

[11] R. Morady and D. Dal, A Multi-Population Based Parallel Genetic Algorithm for
Multiprocessor Task Scheduling with Communication Costs, 2016 IEEE Sympo-
sium on Computers and Communication (ISCC).

[12] Wu MY, Gajski DD. Hypertool: a programming aid for message-passing systems.
IEEE Transactions on Parallel and Distributed Systems 1990;1(3):330âĂŞ43.

[13] Hou ESH, Ansari N, Hong R. A genetic algorithm for multiprocessor scheduling.
IEEE Transactions on Parallel and Distributed Systems 1994;5(2):113âĂŞ20.

[14] R. Hwang, M. Gen and H. Katayama, âĂĲ A comparison of multiprocessor task
scheduling algorithms with communication costsâĂİ Computers & Operations
Research, Vol. 35, pp. 976 âĂŞ 993, ELSEVIER, 2008.

[15] T. Lei and S. Kumar, âĂŸâĂŸA Two-Step Genetic Algorithm for Mapping Task
Graphs to a Network on Chip Architecture,âĂŹâĂŹ Proc. Euromicro Symp.
Digital System Design (DSD 03), IEEE Press, 2003, pp. 180-187.

[16] D. Wu, B. Al-Hashimi, and P. Eles, âĂŸâĂŸScheduling and Mapping of Condi-
tional Task Graphs for the Synthesis of Low Power Embedded Systems,âĂŹâĂŹ
Proc. Design, Automation and Test in Europe (DATE 03), IEEE CS Press, 2003,
pp. 90-95.

[17] S. Murali and G. De Micheli, âĂŸâĂŸBandwidth-Constrained Mapping of Cores
onto NoC Architectures,âĂŹâĂŹ Proc. Design, Automation and Test in Europe
(DATE 04), IEEE CS Press, 2004, pp. 896-901.

[18] S. Manolache, P. Eles, and Z. Peng, âĂŸâĂŸFault and Energy-Aware Commu-
nication Mapping with Guaranteed Latency for Applications Implemented on
NoC, Proc. 42nd Annual Design Automation Conf. (DAC 05), ACM Press, 2005,
pp. 266-269.

[19] J. Hu and R. Marculescu, âĂŸâĂŸEnergy- and Performance- Aware Mapping
for Regular NoC Architectures,âĂŹâĂŹ IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, no. 4, 2005, pp. 551-562.

[20] Y. Xu, K. Li, J. Hu and K. li, âĂĲA genetic algorithm for task scheduling on het-
erogeneous computing systems using multiple priority queues,âĂİ Information
Sciences, Vol.270, pp. 255-287,Elsevier,2014.

Paper V

Placement of Smart Mobile Access Points in Wireless Sensor

Networks and Cyber-Physical Systems using Fog Computing

A. Majd, G. Sahebi, M. Daneshtalab, J. Plosila and H. Tenhunen

Placement of Smart Mobile Access Points in Wireless Sensor Networks and
Cyber-Physical Systems using Fog Computing

Amin Majd
Department of Information

Technology
University of Turku

Turku, Finland
Amin.Majd@utu.fi

Golnaz Sahebi
Department of Information

Technology
University of Turku

Turku, Finland
Golnaz.Sahebi@utu.fi

Masoud Daneshtalab
Royal Institute of Technology

(KTH)
Stockholm, Sweden,

masdan@kth.se

Juha Plosila
Department of Information Technology

University of Turku
Turku, Finland
juplos@utu.fi

Hannu Tenhunen
Royal Institute of Technology

Stockholm,Sweden
University of Turku, Finland

Hannu@kth.se

Abstract — Increasingly sophisticated, complex, and
energy-efficient cyber-physical systems and wireless sensor
networks are emerging, facilitated by recent advances in
computing and sensor technologies. Integration of cyber-
physical systems and wireless sensor networks with other
contemporary technologies, such as unmanned aerial
vehicles and fog or edge computing, enable creation of
completely new smart solutions. We present the concept of
a Smart Mobile Access Point (SMAP), which is a key
building block for a smart network, and propose an
efficient placement approach for such SMAPs. SMAPs
predict the behavior of the network, based on information
collected from the network, and select the best approach to
support the network at any given time. When needed, they
autonomously change their positions to obtain a better
configuration from the network performance perspective.
Therefore, placement of SMAPs is an important issue in
such a system. Initial placement of SMAPs is an NP
problem, and evolutionary algorithms provide an efficient
means to solve it. Specifically, we present a parallel
implementation of the imperialistic competitive algorithm
and an efficient evaluation or fitness function to solve the
initial placement of SMAPs in the fog computing context.

Keywords- smart mobile access point; fog computing;
wireless sensor networks; cyber-physical systems; multi-
objective optimization; evolutionary computing; parallel
approaches; ICA; parallel programming; multi-population;
placement.

I. INTRODUCTION

Wireless sensor networks (WSN) and cyber-physical
systems (CPS) are two current important fields of
technology that are tightly intertwined [1], [2]. There are
different kinds of real WSN applications implemented
for cyber-physical systems. The combination of wireless
sensor networks and the other new technologies, such as
unmanned aerial vehicles (UAV) and mobile robots, has
created a new revolution in this area. WSNs with mobile
nodes can obtain better performance by using mobile
access points embedded in UAVs or mobile robots [25],
[26]. In this paper, we aim at improving the resource

utilization and power-performance (energy efficiency
[27], [3]) by selecting the positions for SMAPs of such a
CPS using Smart Mobile Access Points (SMAPs).

SMAPs can make a cluster for computing together
and make decisions for improving quality of the network.
SMAPs can change their positions based on their
decisions. Therefore, placement of SMAPs is a critical
problem in this concept.

Placement is a multi-objective optimization problem.
Different kinds of approaches, such as static or dynamic
methods, can be used to solve this problem [6]. For
initial placement, which is a static placement problem,
we can utilize an Evolutionary Computing (EC) method
[7], [10] such as Particle Swarm Optimization (PSO) [9]
and the Imperialist Competitive Algorithm (ICA) [8]. Of
these, we introduce a multi-population version of ICA
(PICA) [11] with an efficient fitness function for solving
the initial placement problem in SMAP. This is based on
the fog computing context in order to improve the speed
and accuracy of our approach.

In Section 2, SMAPs such as new concept is
presented. In section 3, a review of related works is
presented. In Section 4, a parallel multi-population
implementation of ICA based on fog computing to solve
the placement of SMAPs is introduced. In Section 5,
PICA is compared with ICA, random method, and
mathematical method.

II. SMART MOBILE ACCESS POINTS

SMAPs are mobile access points that enable creation
of a smart sensor network. The task of SMAPs is to
predict the behaviour of the network and select the best
approach to support the network at any given time.
SMAPs receive and send signals (e.g. battery levels, the
number and IDs of sensors that have been covered, and
help requests) from and to the other network nodes,
collect the received information, predict the next
operations based on this data, and run these operations.
An SMAP sometimes utilizes previous knowledge and
operations, or creates new operations by learning or

2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing

and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress

978-1-5090-2771-2/16 $31.00 © 2016 IEEE

DOI 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.122

680

evolving through machine learning techniques. The most
important operations of SMAPs are the following: 1)
Finding new (optimal) positions for access points to
obtain a better coverage of sensors; 2) Making decisions
about moving the access points to new areas [17]; 3)
Participating in distributed communication and
computation tasks (fog computing [18]) other than the
processing carried out as an inherent part of the decision
making in 1) and 2).

Decision-making on moving an SMAP to a new
position can lead to different approaches, such as
creation of a new network configuration, supporting e.g.
fault tolerance by replacing a faulty access point with a
functioning one, or covering a missed area of sensors that
is not currently supported or covered by any other access
point. This scenario is illustrated in Figure 1. The
network has missed the red static access point (in Figure
1 (a)), then SMAPs move to new positions (��and ��) to
support the connectivity of the network (in Figure 1 (b)).
SMAPs make a cluster connection for essential
computing together by fog connection that is illustrated
in Figure 1.

SMAPs improve quality and flexibility of WSNs.
Their advantages can be summarized as follows:

� SMAPs enhance the system by improving coverage
in large scale networks.

� SMAPs enable dynamic reconfiguration of WSNs.
� SMAPs facilitate solving hotspot problems in the

network.
� SMAPs can together make a grid network to run real-

time computing tasks in parallel, facilitating near-
sensor processing and fog computing.

� SMAPs can be used to replace faulty access points.

It is clear that placement of SMAPs has a significant
effect on the performance of the network. This motivates
us to concentrate on the placement problem in this paper.
For simplicity, we will focus especially on the initial
placement to demonstrate efficiency of our approach.

SMAPs should have an initial placement and initial
clustering [18] (a cluster is a set of sensors that has been
covered by an access point). Also, they should be able to
dynamically move to new positions, because the
behaviour of the network can change at run-time. This
reconfiguration process is a reaction to the status of the
network, and SMAPs can update their positions for each
new configuration.

Such a placement and clustering problem can be
solved by utilizing either cloud computing or fog
computing [19], [20]. Our approach is based on the latter.

Each cluster center, access point, or area always has
a distinct weight. This weight is equal to the probability
of requesting for reconfiguration at the access point in
question. Weights can be computed based on different
effective parameters, such as the network traffic at these
access points, the lifetime of their batteries, or properties
of the covered area. This phase can be handled using a
reinforcement learning approach [28], where certain
features defined by users (e.g. battery life time) along
with some essential characteristics of the network (e.g.
connectivity) are utilized. The model for SMAPs is
illustrated in Figure 2.

(a) (b)

Normal
Connection

SensorStatic Access
Point

Fog Connection SMAP

Fig. 1. SMAP model that using Fog network.

681

 Embedded Systems
 and Sensors
 Smart and less smart
 things, Vehicles, Machines
 Wired or Wireless

 Multi-Service
 Edge
 3G/4G/LTE/WIFI/
 Ethernet/PLC

 Data Center Cloud
 Application Hosting,
 Management

 Core Networking
 and Services
 IP/MPLS, QoS, Multicast,
 Security, Network Services,
 Mobile Packet Core

Distributed
Intelligence: End-
Point Computing

Distributed Intelligence:
 FOG Computing

Centralized
Intelligence:

CLOUD
Computing

Smart Things
Networks

Field Area
Networks

IP/MPLS Core

Fig. 2. SMAP model that using Fog network.

III. BACKGROUND

In this section, brief reviews on sensor and access
point placement methods and on Evolutionary
Algorithms (EA), especially Imperialistic Competitive
Algorithms (ICA), are presented.

A. Different Methods for Placement
In a dynamic WSN, some nodes can be repositioned

to new places. For example, sensors could be moved to
new locations to get more useful information, or they
could be replaced with different types of sensors to sense
other physical phenomena or to get more accurate
readings

Real-time replacement of nodes during network
operation is in general very complex. Indeed, there is a
considerable difference between static initial placement
and dynamic run-time placement. In dynamic placement,
there are more complex parameters such as the
environment base, mobile targets, and lifetime of
sensors. Furthermore, replacement of a node requires
very careful handling since it can potentially cause a
disruption in data connectivity and delivery. In some
cases, sensors can also move to new positions to obtain
better readings or to sense other information. In this kind
of scenarios, dynamic placement is very challenging.
Two major factors contribute to this complexity. The
first one is the ability of nodes to move and reposition to
an infinitive number of locations. The second factor is
the obligation of the network to maintain full
connectivity and to cover all sensors, i.e., to reliably
collect data from all static and dynamic sensors in the
network.

There are two main types of placement in WSNs:
placement of sensors and placement of access points. In
this paper, we only focus on placement of access points.

Placement of access points is a multi-objective
optimization problem in which most of the set goals
should be satisfied. There are different goals, but two of

them are more critical. The first key objective is to
guarantee continuous network connectivity. This means
in practice that each sensor node should have a
connection to at least one access point at any given time.
The second key objective is about providing reliable
communication in the case of access point failures. In
other words, all other nodes in the network should
maintain their communication if an access point runs out
of power. Using extra (redundant) access points is the
best solution to obtain this goal. With this approach, the
number of possible access points for sensors is increased.

In the real world, there are heterogeneous sensor
networks with three different kinds of nodes: sensors,
access points, and gateways. Sensors can only
communicate with access points. Access points are
utilized for routing and can communicate with all other
types of nodes. Also, access points have more memory
and computing capacity than sensors. Access point nodes
can only communicate with access points. The following
three main conditions must be respected to obtain
efficient WSNs;

� Full connectivity: All access points and sensors must
have at least one connection (direct or indirect) to a
gateway.

� Configurable redundancy robustness [20]: It is
necessary to have more than one different route
between each sensor and gateways.

� Placement constraints: In practice, an access point
cannot be placed in every possible location, i.e., there
can be some obstacle to this placement.

Finding an optimal placement to improve
connectivity, reliability, and energy consumption is an
NP-hard problem [23]. There are different heuristic
methods to solve this problem, which are presented in
[24], [19].

Solving the problem of missing access points is
essential for real large-scale WSNs. Also, it is evident
that using ordinary methods to implement more
redundancy (i.e. adding fixed/stationary access points) is
very expensive. SMAPs can be used to solve this
problem at a lower cost and with more flexibility.

B. Evolutionary Algorithms
The multi-objective placement problem is an NP-

hard problem. Evolutionary Algorithms (EAs) are the
best choice to solve it. There are different kinds of EAs
that have been utilized for discrete and continues
problems. For example, Genetic Algorithms (GAs) [15]
are very popular to solve discrete problems. Also,
Particle Swarm Optimization (PSO) [16], [17] and Bee
Colony Optimization (BCO) [14] have been used for
continuous problems. The Imperialistic Competitive
Algorithm (ICA), in turn, is an efficient EA that has been
utilized for continuous problems [8], [12], [13].

682

Fig. 3. Imperialist Competetive Algorithm [8].

C. Imperialistic Competitive Algorithm
ICA is an optimization method, an efficient

evolutionary algorithm, based on imperialistic
competition. In this algorithm, all countries are divided
into two categories: colonies and imperialist states. The
main part of this algorithm is imperialistic competition,
which is expected to cause the colonies to converge to
the global minimum. ICA is a suitable method for
optimization [12], [13], but there are similar problems in
ICA as in other evolutionary algorithms. For example, in
the case of a large search space, a considerable initial
population is required to obtain a more accurate and
reliable result. However, we cannot realize this
requirement with a single processor. The computing
capacity would not be sufficient. When we face a
complex problem that needs complex computations, the
run time will increase, and therefore we need to utilize a
new method to improve speed and efficiency. A parallel
computing method for ICA, called PICA, which we have
previously proposed [11], is employed here to improve
performance. The method is a multi-population
implementation of ICA.

IV. PROPOSED APPROACH

In this section, a parallel implementation of ICA
(multi-population PICA) is applied to develop an
efficient method for solving the initial placement
problem in SMAP based systems. For this, we have
divided our approach into two layers: an architectural
layer and an algorithmic layer.

A. Architectural Layer
In the proposed distributed system, a set of SMAPs

form a computing network. Each SMAP consists of two
node types; application nodes (AN) and a manager node
(MN). The nodes are organized in a federated manner as
shown in Figure 5, that is, each autonomous subnetwork
of ANs is managed by a single manager node, and a

group of subnetworks form a larger network. The larger
network is controlled by a single main manager node
elected from the subnetwork managers with the support
of a cloud service. Since all manager nodes are connected
to the cloud, the communication between manager nodes
can take through the cloud. Optionally, near managers
can communicate directly without the need to pass
through the cloud.

Following the node types, there are different levels of
uptime. An application node is in a sleep state most of
the time and initiates communication whenever it wakes
up. Application nodes run algorithmic layer tasks. They
receive a manager advertisement, which contains the
address of the manager. Manager nodes manage
communication between their application nodes and
other SMAPs. For ease of discussion, Figure 5 presents
five subnetworks each having a single manager (blue
nodes in Figure 5) and communicating using an
appropriate protocol (such as 6LoWPAN or Bluetooth
Low Energy). The local manager is known as the home
manager for the application nodes in its subnetwork.

Best

Worst

SMAP-1

Best

Worst

SMAP-2

Best

Worst

SMAP-4

Best

Worst

SMAP-3

Best

Be
st

Best

Best

Fig. 4. Multi-population PICA based on Fog computing by SMAPs

683

MN

ANAN AN

MN MN

AN

MN

AN AN

MN

AN AN AN

SMAP SMAP SMAP

SMAP SMAP

Fig. 5. Federated architecture of SMAPs

B. Algorithmic Layer
To have the best placement of SMAPs, in our work,

all access points are divided into two main groups that
are SMAPs and normal access points. Normal access
points are static access point and only transfer data and
maintain connectivity in the network. SMAPs can work
like normal access points, but they also can perform other
tasks, like supporting other access points when needed.
In this paper, however, to simplify the problem, normal
access points have been selected as target points for
SMAPs, as we are considering the static initial placement
only. Also, each normal access point has an independent
weight. The weight of each access point indicates the
probability of needing support from SMAPs (i.e. the
need for network reconfiguration). This probability is a
value that can be derived from different parameters such
as communication traffic and battery lifetime. In our
approach, the rate of communication traffic is selected
for this purpose.
1. Modeling of the problem

We assign a set, denoted by A, for normal access
points that have specific coordinates (��, ��). This set
consists of the coordinates of all (normal) access points
in the system (static access point). Also, each access
point has a certain weight, denoted by ��, and the set of
all weights is denoted by W. �� can be a value that
represents connectivity, reliability, energy or any other
important parameter in the network. The objective of our
work is to discover the best locations for SMAPs in their
search space so that SMAPs are placed closer to points
that have higher values of ��. These distances, which are
proportional, should be dependent on all ��. The set
which consists of the points or coordinates where
SMAPs are to be placed is denoted by P .

In order to solve the placement problem, we consider
a set S of 	
 points ��� ℝ�. Each �� can represent either
an SMAP, a point whose position is not known, or a
normal access point whose position is known. Thus, S

can be partitioned into the normal access point set A, and
the SMAP set P, with cardinalities |A| = 	
 and |P| =	�.

A = {(��, ��), (��, ��), … , (��, ��)}
W = {��, ��, … , ��}
P = {(��, ��), (��, ��), … , (��, ��)}

Given a pair of points (��, ��) S S, or (i , j) for
short, their Euclidean distance ‖�� − ���� is denoted by
��� .

The whole distance set can be represented by a
Euclidean distance matrix (EDM in short) EDM
ℝ��×��. For m points, the set of all possible Euclidean
distance matrices, denoted as ����, is a rich algebraic
structure: the ���� is a convex cone contained in the
subspace of all symmetric hollow matrices, that is
closely related with the semi definite matrix cone.

To solve this problem, i.e., to find an optimal solution
for EDM, we use the multi-population PICA which is
described next-
2. Multi-Population PICA

In [11], we have utilized a multi-population model to
implement the PICA by applying a selective local search
strategy. In this implementation, several processors are
connected in a ring topology on the message passing
architecture, and they are illustrated in Figure 4. This
approach can run on both share-memory and message
passing architectures; although, shared-memory methods
actually do not have any specific topology.

As the first step, independent countries are initiated
in each processor, and then ICA is independently run in
each processor. After some decades (the time is different
on different runs) the best country migrates from the
processor �� to ��+1 in the ring and replaces the worse
country in ��+1. The migration takes place
synchronously (simultaneously) in all processors in the
ring, There can be different migration strategies leading
to different results. In the case of a sparse connection
topology, such as a ring which we have utilized, it is
better to use low migration rates and as short migration
distances as possible. In a fully connected topology, in
turn, the best results are obtained when the migration
rates are high. The pseudo-code for PICA is presented
in Figure 6. A system-wide migration operation is
executed at each designated migration time point. During
the migration, the processors do not execute any other
tasks. The algorithm terminates either after a fixed
number of iterations or when some other termination
condition is reached.

PICA is a highly efficient parallel method which
improves the speed, stability, and accuracy of results
[11]. This motivates us to apply it to the SMAP
placement problem. In order to appropriately adapt the
method, each SMAP is considered a processor, and a ring
topology is assumed. A ring is a simple structure,
facilitating efficient short-distance migrations.

684

Processor ����:
1. Create independent initial countries.
2. Run ICA algorithm independently.
3. If now is the time of migration do

3.1 Wait until all processors arrive to this point.
3.2 Send the best country to processor (��+1) mod (number of
processors).
3.3 Receive a country from (��−1) mod (number of
processors) and replace the worst country with the received
one.

4. If the termination condition is reached then terminate the
algorithm
Else go to 2.
5. Show the best country.
6. End.

Fig. 6. Pseudo-code of Multi-Population ICA.

2.1. Creation of countries
First, a matrix, in which each cell is a data structure

of the form (��, ��), is created. Each row of the matrix is
a country, which is a set of points, and also, it can be the
best solution. These points are a possible placement of
the SMAPs in the proposed search space. Values of �� and �� are real values (��, �� ∈ �) and are randomly
generated. Each column corresponds to the location of
each placement of a SMAP. Hence, the number of rows
is equal to the size of the initial population (�!"!) and
the number of columns is equal to the number of SMAPs.
2.2. Evaluation function

In all problems that are solved by EAs, the essential
task is to find a suitable fitness function to evaluate the
whole population. In our approach, the evaluation
function receives a country as its input and returns a real
value as its output. The output is computed based on the
distance between the SMAPs and all normal access
points and on the weight of each normal access point. A
country with the lowest value of the evaluation or fitness
function is the best country (solution). In other words,
this problem is a minimization optimization problem.

One common fitness function for solving the
placement of a single SMAP, which has been utilized in
most related work, is illustrated in Equation 1.

Fitness Function = ∑ ∑ $(�� − ��)� + (�� − ��)���%���%�
(1)

Indeed, this function is suitable for selecting the
best place for a single SMAP, but when the number of
SMAPs is increased, the placement problem becomes
more complex, and the function presented in Equation 1
does not provide correct results anymore and cannot
therefore be applied. Here we propose a new and
efficient fitness function DM, presented in Equation 2,
which provides accurate results for any number of
SMAPs.

DM=∑ &(�_���) + '*-/001
2 34 ��567	89:0
�%�

D=;√	=
(2)

Here n equals the number of normal access points and
NA equals the number of SMAPs. The �_��� equals the
Euclidean distance between SMAP number i and D

nearest normal access points. The Distance variable
equals the sum of distances between all SMAPs that is
presented in Equation 3.

Distance = ∑ ∑ $(�� − ��)� + (�� − ��)���%��>�
��%�

(3)

2.3. Selecting imperialists and making colonies
In the next step, the most powerful countries (���!)

are selected (the number of ���! is equal to five percent
of the number of all contraries). In addition, each of them
becomes an imperialist and every imperialist selects
some other countries based on its power. After this, each
country in colonies starts moving towards its relevant
imperialist; this operation corresponds to the exploitation
operation in any other EAs and is illustrated in Figure 2.

Then some countries are randomly selected and their
positions are randomly changed. This operation explores
the search space and is well-known in all EAs. The most
significant advantage of this operation is that it prevents
the algorithm from dropping in local optimums.
2.4. Exchanging the position of an imperialist and a

colony
In every iteration, if the situation of a colony

improves and it becomes better than its imperialist, their
positions are exchanged. This operation is presented in
Figure 2.
2.5. Imperialist Competition

In this step, imperialists start a competition to obtain
new countries from other imperialists. In this phase,
power of all imperialists and their colonies are computed
to determine the probability of winning the computation.
Finally, the weakest imperialist is detected, and its
colonies are granted to the other imperialists. The
receiver imperialist is selected by a tournament operation
based on the probability of winning. The competition
operation is shown in Figure 2. All the above steps are
repeated until the next time of migration arrives.
2.6. Migration Operator

At a migration time point, processors stop their
current tasks and discover their best imperialists and the
worsts colonies. Then the processors synchronously send
their best imperialists to the next processors and receive
the best imperialists from the previous processors, and
replace their worst colonies with the received ones.

Finally, the algorithm stops after some certain
number of iterations, and the best imperialist is
determined. This represents the best solution for the
SAMP placement. This operation is presented in Figure
3.

V. EXPERIMENTAL RESULTS

The proposed work has been implemented on Intel®
Core™ i5, CPU @ 2.9GHz, RAM 8 GB at Department
of Information Technology, University of Turku,
Finland. VC++ 2015 has been utilized for the

685

implementation and MPI instructions for parallelization.
Furthermore, MPICH2.3.2 has been applied for parallel
execution of the algorithms. The proposed PICA based
approach has been tested on four processors in all tests
for four benchmarks. Well-known 2-D benchmarks have
been utilized. The obtained results have been compared
with the serial ICA, mathematical, and random
placement methods.

A. SINGLE SMAP
In the first three benchmarks, the best place is in the

coordinate (0, 0). The aim in these cases is to find the
best place for a single SMAP on their search spaces. In
the fourth benchmark, the goal is to place more than one
SMAP to different positions. All the methods have been
run on these benchmarks, 40 times for each benchmark,
and the results have been compared with each other.

The first benchmark contains eight normal access
points (static access points) that have a circular
arrangement. The radius of this circle is equal to 500
meters. The second benchmark has eight normal access
points that are concurrent based on the center point. The
coordinate of the center point is (0, 0). The third
benchmark has 50 simultaneous access points that are
randomly created. In all these benchmarks, the weights
of the normal access points are equal. The results of
PICA and serial ICA have been obtained in 100 iterations
with 500 countries as an initial population.

Figure 7 shows the placements that have been
discovered by PICA. It clearly indicates that the results
are very close to the optimal point, and the best results
are obtained 35 times in the series of 40 runs. The results
of the random placement and serial ICA placement
methods are illustrated in Figures 8 and 9, respectively.
It can be clearly seen that the results of PICA are
significantly better than the results of the random and
serial ICA methods. Figures 10, 11 and 12 indicate the
results of the PICA, random, and serial ICA placement
methods, respectively, for the second benchmark.
Finally, for the third benchmark, Figures 13, 14 and 15
present results of all three placement methods. The
statistical results of the three methods and a
mathematical approach for all the benchmarks are
illustrated in Table 1. These results demonstrate that
PICA is more accurate and efficient than the other
methods. They also indicate that the proposed PICA
method is successful on both simple and complex
benchmarks. Figures 16, 17 and 18 present the stability
diagrams of all the methods for the first three
benchmarks. The migration operation in PICA is the
primary factor for the accuracy of results in our
approach. Also, this factor can be a strong motivation for
using PICA.

In Table 1, there are three important columns
described as follows: The best distance shows the
minimum distance between the results of each method
and the best position (center point) of each benchmark.

The worst distance presents the maximum distance
between the results of each method and the best position
of each benchmark. The correct placement count column
shows that how many times each method finds the best
position for each benchmark in the set of 40 consecutive
test runs.

B. MULTIPLE SMAPS

Unlike in the three benchmarks considered above, in
the fourth benchmark the algorithms should choose the
best locations for several SMAPs instead of just for one.
In this benchmark, there are 16 normal access points and
5 SMAPs. The SMAPs should have different positions.
Such complex placement problems are relevant for real-
world wireless sensor networks and cyber-physical
systems. In a single SMAP placement discussed above,
a mathematical method could find the best place, but
when dealing with several SMAPs, mathematical
methods are not applicable in practice, as they cannot
determine the best positions for the SMAPs in a finite
time.

In this paper, the PICA and serial ICA methods are
run on all the four benchmarks for 40 times with 100
iterations in each round. The number of initial countries
is 500. The results of these tests for the fourth benchmark
are indicated in Figures 19 and 20. In this placement
problem, the DM function (Equation 2) is utilized as the
fitness function for both PICA and ICA to obtain the best
results. The overall results show that the proposed fitness
function is very efficient, enabling PICA and ICA to find
the best positions also in the complex placement cases.
The results also demonstrate that PICA performs much
better than ICA.

Finally, the runtimes of all methods in all benchmarks
are illustrated in Table 2. The results for PICA in this
table is based on four cores. The results show that PICA
in all benchmarks finds the best place in a short time, but
mathematical methods cannot determine the best
positions for the SMAPs in the fourth benchmark.

TABLE I. STATISTICAL RESULTS

B
en

ch
m

ar
ks

The Best
Distance

The Worst
Distance

C
or

re
ct

Pl

ac
em

en
t

C
ou

nt

PICA 3 0 2.8635 35
Random 13.2549 78.1004 0
Serial ICA 0 11.5873 7
Mathematical 0 0 40
PICA 2 0 61.4191 36
Serial ICA 0 127.3185 4
Random 52.9906 1.0572e+03 0
Mathematical 0 0 40
PICA 1 0 475.0343 21
Serial ICA 0 4.6043e+03 2
Random 846.77 1.0447e+04 0
Mathematical 0 0 40

686

Fig. 7. The placement of PICA on benchmark 1.

Fig. 8. The placement of random method on benchmark 1.

Fig. 9. The placement of ICA on benchmark 1.

Fig. 10. The placement of PICA on benchmark 2.

Fig. 11. The placement of Random method on benchmark 2.

Fig. 12. The placement of ICA on benchmark 2.

Fig. 13. The placement of PICA on benchmark 3.

Fig. 14. The placement of Random method on benchmark 3.

687

Fig. 15. The placement of ICA on benchmark 3.

Fig. 16. The stability diagram of all methods on benchmark 1.

Fig. 17. The stability diagram of all methods on benchmark 2.

Fig. 18. The stability diagram of all methods on benchmark 3.

Fig. 19. The placement of PICA on benchmark 4.

Fig. 20. The placement of ICA on benchmark 4.

TABLE II. RUN TIME TABLE FOR ALL BENCHMARKS.

Benchmarks

Methods

Run Time (Sec)

1 2 3 4

PICA 11.26 10.67 16.02 40.81

ICA 43.23 41.71 63.34 159.97

Random 3.01 3.00 3.61 3.40

Mathematical 4.21 4.20 4.65 -----

VI. CONCLUSION

In this paper, the concept of a smart mobile access
point (SMAP) was introduced, utilization of SMAPs in
wireless sensor networks and cyber-physical systems
was briefly discussed. The main focus of this study was
on the placement of SMAPs, especially on finding the
optimal initial placement. For this, we applied PICA as a
heuristic method for solving the placement problem and
proposed a new efficient fitness function tailored
especially for the complex placement of SMAPs. It was
demonstrated that this new fitness function improved the
results of PICA in placement of several SMAPs. In our
approach, SMAPs were utilized as a fog computing
platform to run our optimization algorithm in a
distributed manner. The proposed PICA method was
tested on four different benchmarks and was compared
with serial ICA, random placement and mathematical
methods. The obtained results demonstrated that PICA is

688

an outstanding method and capable of solving efficiently
complex placement problems that are highly relevant for
real-world wireless sensor networks and cyber-physical
systems.

As a future research topic, we will focus on dynamic
runtime placement of SMAPs, which is a significantly
more challenging problem than the initial placement
problem discussed in this paper.

REFRENCES
[1] Fang-Jing Wua , Yu-Fen Kao b , Yu-Chee Tseng a, “From

wireless sensor networks towards cyber physical systems,”
Pervasive and Mobile Computing, Elsevier, Vol. 7, pp. 397–413,
2011.

[2] Priyanka Pandit1 , Swarupa Kamble2, “A Survey on Knowledge
Extraction from WSN,” International Journal of Science and
Research (IJSR), Vol. 6, pp. 384-387, 2016.

[3] Roselin,J and Latha, P, “Energy Efficient Coverage Using
Artificial Bee Colony Optimization in Wireless Sensor
Networks,” International Journal of Scientific and Industrial
Research, Vol. 75, pp. 19-27, 2016.

[4] M. Bhuiyan, J. Wu, G. Wang and J. Cao, “Sensing and Decision-
Making in Cyber-Physical Systems: The Case of Structural Event
Monitoring,” IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, 2016.

[5] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, “Fog Computing
and Its Role in the Internet of Things,” Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, pp.
13-16, 2011

[6] Y. J. Cha, A. Raich, “Optimal placement of active control devices
and sensors in frame structures using multi-objective genetic
algorithms,” Structural Control and Health Monitoring,Vol.
20, pp. 16–44, 2013

[7] A. Majd, Sh. Lotfi and G. Sahebi, “Review on Parallel
Evolutionary Computing and Introduce Three General
Framework to Parallelize All EC Algorithms,” The 5th
Conference on Information and Knowledge Technology, IEEE,
pp. 61-66, 2013.

[8] E. A. Gargari, and C. Lucas, “Imperialist Competitive Algorithm:
An Algorithm for Optimization Inspired by Imperialistic
Competition,” Congress on Evolutionary Computation, IEEE,
2007.

[9] H. Narasimhan, “Parallel Artificial Bee Colony (PABC)
Algorithm,” World Congress on Nature & Biologically Inspired
Computing (NaBIC), IEEE, 2009.

[10] A.Majd and G.Sahebi, “A Survey on Parallel Evolutionary
Computing and Introduce Four General Frameworks to
Parallelize all EC Algorithms and Create New Operation for
Migration,” Journal of Information and Computing Science, vol.
9, pp.97-105,2014.

[11] A. Majd, Sh. Lotfi, G. Sahebi, M. Daneshtalab and J. Plosila,
“PICA: Multi-Population Implementation of Parallel Imperialist
Competitive Algorithms,” 24th Euromicro International
Conferences on Parallel, Distributed and Network-Based
Processing, PDP 2016.

[12] M. Abdechiri, K. Faez and H. Bahrami, “Adaptive Imperialist
Competitive Algorithm (AICA),” 9th IEEE International
Conference on Cognitive Informatics (ICCI), 2010.

[13] H. Bahrami, M. Abdechiri and M. Meybodi, “Imperialist
Competitive Algorithm with Adaptive Colonies Movement,” I.J.
Intelligent Systems and Applications, vol. 2, pp. 49-57, 2012.

[14] H. Narasimhan, “Parallel Artificial Bee Colony (PABC)
Algorithm,” World Congress on Nature & Biologically Inspired
Computing (NaBIC), IEEE, 2009.

[15] E. Alba, F. Luna, A. J. Nebro and J. M. Troya, “Parallel
Heterogeneous Genetic Algorithms for Continuous

Optimization,” Parallel Computing, vol. 30, pp. 699–719,
ELSEVIER, 2004.

[16] Y. Zhou and Y. Tan, “Particle Swarm Optimization with
Triggered Mutation and its Implementation Based on GPU,”
Proceedings of the 12th annual conference on Genetic and
evolutionary computation, ACM, pp. 1-8, 2011

[17] A. Basturk, R. Akay and A. Kalinli, “Comparison of fine-grained
and coarse-grained parallel models in particle swarm
optimization algorithm” 2nd World Conference on Information
Technology (WCIT), 2011.

[18] J. Zhu, D. S. Chan, M. S. Prabhu, P. Natarajan, H. Hu and F.
Bonomi, “Improving Web Sites Performance Using Edge Servers
in Fog Computing Architecture,” IEEE Seventh International
Symposium on Service-Oriented System Engineering, pp. 320-
323, 2013.

[19] Y. T. Hou, Yi Shi, and Ha. D. Sherali, “On Energy Provisioning
and Relay Node Placement for Wireless Sensor Networks,” In
IEEE Trans. on Wireless Comm., (4)5:2579–2590, Sep. 2005.

[20] ed. J. Wu. Auerhach, “Handbook on Theoretical and Algorithmic
Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks”
Publications, 2006.

[21] G. Karypis, E. H. Han, and V. K. Chameleon, “Hierarchical
Clustering Using Dynamic Modeling,” IEEE Computer, Aug
1999.

[22] M. M´edard, S. G. Finn, R. A. Barry, and R. G. Gallager,
“Redundant Trees for Preplanned Recovery in Arbitary Vertex-
Redundant or Edge-Redundant Graphs,” IEE/ACM Trans on
Networking, 7(5):641–652, Oct 1999.

[23] J. Suomela, “Computational Complexity of Relay Placement in
Sensor Networks” In SOFSEM 2006, LNCS 3831, pp. 521–529.
Springer-Verlag, 2006.

[24] S. Toumpis and G. A. Gupta, “Optimal Placement of Nodes in
Large Sensor Networks Under a General Physical Layer Model,”
In Proc of IEEE SECON, September 2005.

[25] N. Heo and P. K. Varshney, “Energy-Efficient Deployment of
Intelligent Mobile Sensor Networks,” IEEE Transactions on
Systems, Man, Cybernetics, Part A, Vol. 35, No. 1, pp. 78-92,
January 2005.

[26] A. Kansal et al., “Controlled Mobility for Sustainable Wireless
Sensor Networks,” in the Proceedings of IEEE Sensor and Ad
Hoc Communications and Networks (SECON’04), Santa Clara,
CA, October 2004.

[27] G. Wang, G. Cao, and T. La Porta, “Movement-Assisted Sensor
Deployment,” in the Proceedings of the 23

rd
International Annual

Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM’04), Hong Kong, March 2004.

689

Paper VI

Hierarchal Placement of Smart Mobile Access Points in Wireless

Sensor Networks using Fog Computing

A. Majd, G. Sahebi, M. Daneshtalab, J. Plosila and H. Tenhunen

Hierarchal Placement of Smart Mobile Access Points in Wireless Sensor
Networks using Fog Computing

Amin Majd*, Golnaz Sahebi*, Masoud Daneshtalab†, Juha Plosila* and Hannu Tenhunen*

* University of Turku, Finland
Email: {amin.majd, golnaz.sahebi, juplos, hannu.tenhunen@utu.fi}

†Mälardalen University and Royal Institute of Technology, Sweden
Email: masdan@kth.se

Abstract — Recent advances in computing and sensor
technologies have facilitated the emergence of increasingly
sophisticated and complex cyber-physical systems and
wireless sensor networks. Moreover, integration of cyber-
physical systems and wireless sensor networks with other
contemporary technologies, such as unmanned aerial vehicles
(i.e. drones) and fog computing, enables the creation of
completely new smart solutions. By building upon the concept
of a Smart Mobile Access Point (SMAP), which is a key
element for a smart network, we propose a novel hierarchical
placement strategy for SMAPs to improve scalability of
SMAP based monitoring systems. SMAPs predict
communication behavior based on information collected from
the network, and select the best approach to support the
network at any given time. In order to improve the network
performance, they can autonomously change their positions.
Therefore, placement of SMAPs has an important role in such
systems. Initial placement of SMAPs is an NP problem. We
solve it using a parallel implementation of the genetic
algorithm with an efficient evaluation phase. The adopted
hierarchical placement approach is scalable; it enables
construction of arbitrarily large SMAP based systems.

Keywords- smart mobile access point; fog computing;
wireless sensor networks; cyber-physical systems; multi-
objective optimization; evolutionary computing; parallel
approaches; genetic algorithms; parallel programming; multi-
population; placement.

I. INTRODUCTION

The combination of Wireless Sensor Networks (WSN)
and other new technologies, such as unmanned aerial
vehicles (UAV) and mobile robots in general, has created a
new revolution in the field of Cyber Physical Systems
(CPS). Performance of a WSN can be significantly
improved by using unmanned mobile nodes (either aerial or
ground vehicles) as access points and even as sensor or
monitoring nodes [10], [11].

The concept of a Smart Mobile Access Point (SMAP)
provides a novel way to use UAVs or mobile robots to build
an intelligent dynamic network. Such a network can consist
of several clusters of SMAPs. By optimizing the positions
of the SMAPs within each cluster, the quality of the network
can be improved [14]. As SMAPs can adaptively change
their positions, placement of SMAPs becomes a crucial
issue in this approach. Adopting a hierarchal model for
SMAP placement helps in expanding the network without
an additional network reconfiguration cost. In the hierarchal
model, there are two or more layers where an upper layer
manages behavior and positioning of its respective lower
layer. This hierarchical structure allows expansion of the
network by adding new layers when needed.

Placement is a multi-objective optimization problem
which can be solved using static or dynamic methods [1].
For a static problem, such as initial placement of SMAPs,
Evolutionary Computing (EC) methods are the most well-
known approaches [2], [3]; and a Genetic Algorithm (GA)
is a powerful EC method [2]. There are several
improvements for GAs. Among them, in this paper, a multi-
population version of a GA (MPGA) [5] with an efficient
fitness function for solving the initial placement problem in
a hierarchical SMAP based system is proposed. The
proposed method is based on the distributed fog computing
model to enhance speed, accuracy, and scalability of the
approach. The aim of this work is to improve resource
utilization and energy-efficiency by the adopted
hierarchical system architecture and optimal positioning of
SMAPs.

The rest of the paper is organized as follows. Section II
provides the background of this work. Section III reviews
literature study in the area. Section IV proposes a parallel
multi-population implementation of a GA, based on fog
computing, to solve the initial hierarchical placement of
SMAPs. In Section V, the proposed MPGA is evaluated by
comparing with a traditional GA [17] and a mathematical
method [19]. Finally, Section VI concludes the paper.

II. BACKGROUND

In this section, brief reviews on Smart Mobile Access
Points (SMAP), access point placement methods and
Evolutionary Algorithms (EA) are presented.

Smart Mobile Access Points
SMAPs are mobile access points that enable the creation

of a smart sensor network [14]. The SMAPs predict the
behaviour of the network. Also, they select and make the
best strategy to support the network at any given time. A
SMAP has authority to utilize previous knowledge and
operations or creates new operations by evolving or
learning through machine learning techniques [14]. A
SMAP carries out the following three key operations: 1)
Finding new (optimal) positions for access points to obtain
a better coverage of sensors; 2) Making decisions about
moving the access points to new areas [5]; 3) Participating
in distributed communication and computation tasks (fog
computing [6]) other than the processing carried out as an
inherent part of the decision making in 1) and 2), illustrated
in Figure 1.

Finding an optimal placement to improve energy
consumption, reliability, and connectivity is an NP-hard
problem [8]. Metaheuristic methods are the best approaches
to solve such a problem. Different metaheuristic methods
are presented for example in [9], [7].

2017 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing

1066-6192/17 $31.00 © 2017 IEEE

DOI 10.1109/PDP.2017.27

176

2017 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing

2377-5750/17 $31.00 © 2017 IEEE

DOI 10.1109/PDP.2017.27

176

III. RELATED WORK

Finding optimal placement to improve connectivity,
reliability and energy consumption is an NP-hard problem
[16]. There are different heuristic methods to solve it that
presented in [15], [14]. In this section, router placement
methods are divided into three main group: a) non-
redundant placement, b) redundant and c) non-trivial
redundant router placement. Y. Thomas et al. [14] have
developed a heuristic algorithm to increase the network
lifetime by iteratively moving an RN to a better location. In
[18], its authors have presented several trajectory control
algorithms with different assumptions on locating
capabilities to achieve the objectives of reducing hop count
and reducing overhead. W. Youssef et al. [17] have
employed genetic algorithms for selecting the best spot for
placing each gateway so that sensors’ data can be delivered
to a gateway with the least latency (GAHO). A. Krause et
al. [19] have presented a data-driven approach (pSPIEL)
that addresses the three central aspects of this problem:
measuring the predictive quality of a set of sensor locations,
predicting the communication cost involved with these
placements, and designing an algorithm with provable
quality guarantees that optimizes the NP-hard tradeoff.
These methods have been utilized in the different problem,
but there are several gaps that the proposed work covers
them such as hierarchal architecture to solve the scalability
problem and weighted sensitive to increase the focus of
placement method to the more critical area for covering.
The proposed method has several critical properties that
motivate us to utilize it in these kinds of placement
problems. These properties are the hierarchal architecture,
the weighted sensitive fitness function, and the multi-
population implementation to increase the reliability of
results.

IV. PROPOSED APPROACH

In this section, a parallel implementation of a multi-
population GA (MPGA) is proposed to establish an efficient
method for solving the initial placement problem in
hierarchal SMAP-based systems.

A. Algorithmic Layer
To have the best placement of SMAPs on different

layers, all access points are categorized in our work into two
main groups that are normal access points and SMAPs.
Normal access points are static nodes and only transfer data
and maintain connectivity in the network [14]. SMAPs can
emulate all functionalities of normal access points, but they
also can perform other tasks, like dynamically supporting
other access points when needed. In this paper, however, to
simplify the problem, normal static access points have been
selected as target points for SMAPs on the lowest layer.
Also, all SMAPs on each layer are divided into several
clusters, and each cluster represents target points for other
SMAPs on a higher level, as we are considering the static
initial placement only. Moreover, each normal access point
has an individual and independent weight which indicates
the probability of needing support from SMAPs (i.e. the
need for network reconfiguration) [14]. This probability is
equal to a value that can be derived from different

parameters such as communication traffic and battery
lifetime. In our approach, the rate of communication traffic
is selected for this purpose.

B. Multi-Population Genetic Algorithm
SMAPs work on a discrete space; therefore, a Genetic

Algorithm (GA) is a suitable choice to solve the placement
problem [2], [4], [14]. Furthermore, a multi-population GA
is more efficient than a sequential GA for these problems
since the multi-population method increases the selection
pressure and improves the diversity. Thus, we have utilized
a parallel multi-population genetic algorithm to achieve the
best results for selecting the best positions according to
Section II.

In this work, there are some important aspects
concerning the multi-population strategy that have been
efficiently matched with the problem of hierarchical
placement of SMAPs and enhanced to obtain more accurate
solutions. The key benefits of multi-population GAs,
regarding their efficient utilization in this problem, are: 1)
Increasing the diversity of initial population, 2) Increasing
the selection pressure, and 3) Migration operator [2], [14].

Fig. 1. SMAP model the using Fog network

The multi-population strategy leads to a better diversity
of population which improves the search space of the best
positions. This diversity also enhances the selection
pressure to obtain the most accurate placement.
Furthermore, the migration operator enables processors to
exchange their best genetic material, thereby improving
their genetic populations.

The proposed multi-population method uses a ring
topology because of its simplicity and efficiency in near-
neighbor communication because communication cost is
the critical parameter, and the proposed work obtains the
lowest connections to communication in the ring topology.
Our approach can run on both the shared memory and the
message passing architectures. The algorithm obtains a
result which satisfies all conditions of an efficient

177177

placement. The main phases of our algorithm are shown as
follows:

1) Initialization
First, a matrix, in which each cell is a data structure of

the form (��, ��), is created. Each row of the matrix is a
chromosome, which is a set of points, and also, it can be the
best solution. All of these points are a possible placement of
the SMAPs in the proposed search space on different layers.
Values of �� and �� are real values (��, �� ∈ �) and are
randomly generated. Let us assume that the number of
SMAPs on the first layer (the lowest layer) is equal to ��,
on the second layer is equal to �	, and, correspondingly, on
the
�� layer (the highest layer) is equal to �
, where �� ≤�	 ≤ ⋯ ≤ �
 . Each column in this matrix corresponds to
the location of each placement of a SMAP. Hence, the
number of rows is equal to the size of the initial population
(����) and the number of columns is equal to the number
of all SMAPs on all layers. A sample chromosome for two
layers of SMAPs is illustrated in Figure 2.���, ��� �	�, �	� … ���� , ���� ��	, ��	 �		, �		 … ���	 , ���	

Fig. 2. Structure of the chromosome for two layers SMAPs

2) Chromosome Evaluation
In all problems that are solved by GAs, finding a

suitable fitness function to evaluate all chromosomes is the
essential task. In our approach, the evaluation function
receives a chromosome as its input and returns a real value
as its output. The output is computed based on the distance
between the SMAPs and all normal access points. A
chromosome for which the fitness function evaluates to the
lowest value is the best chromosome (solution). In other
words, this problem is a minimization optimization
problem.

There are some simple equations that are suitable for
selecting the best place for a single SMAP, but when the
number of SMAPs is increased, and SMAPs should be
placed in different layers, the placement problem becomes
more complex, and the simple functions do not provide
correct results anymore and cannot therefore be applied. We
propose a new and efficient fitness function DM2 in
Equation 4. It is a scalable fitness function, providing
accurate results for any number of SMAPs on different
hierarchy levels. This equation is compatible with the
scalability problem. To construct our fitness function, we
first define:

�=
∑ ���_��� ×��_���!"#��_���$ ×���_���%&'��(�

��*�+-./�
D=0√23

(1)

where n is the number of normal access points, and 4_��� is the Euclidean distance between the SMAP
number i and D nearest normal access points on the first
layer. The 5�_���is the total weights of all normal access
points in 4_���. 467892:;� is the sum of distances
between all SMAPs in the 8�� layer and is defined in
Equation 2. 5�_<=> is the total weight of all SMAPs on the ?�� layer. So Ө is the fitness value for the first layer.

Equation 3 is used for the layers other than the first layer: ɣl
is the fitness value for
�� layer. By combining Equations 1
and 3, we then obtain the fitness function DM2 presented in
Equation 4 that is total fitness value of all layers.
467892:;�= ∑ ∑ @(�� − �B)	 + (�� − �B)	�DBE��FB

�D�E� (2)

G
 = I J�4_KLB × 5�_<=>! + �4	_KLB4 × 5��_<=>&N 467892:;
O�P

BE�
(3)

4L2 = � + I G

�E�

(4)

3) Selection operator
The basic idea of the selection operator is that it gives

preference to better chromosomes and allows them to pass
on their genes to the next generation. The proposed
algorithm adopts the tournament method with three
members to select the best chromosome. First, three
chromosomes are randomly selected, and then the best one
is selected for the next generation in every cycle.

4) Crossover operator
A GA has two main operators: crossover and mutation.

Since a GA is a semi-random optimization method, its
operators do not occur with 100% certainty. In other words,
they happen with less than 100% probability. The crossover
operator selects genes from chromosomes, that are the
parents, and creates a new offspring. This means that the
operator exploits the search space to find more accurate
solutions. The crossover chromosomes are chosen
randomly from the population according to a probability
called a crossover rate (R.). The crossover rate determines
the frequency with which the crossover operator is applied
[12].

5) Mutation operator
The mutation operator is an exploration operation and

occurs with a probability called a mutation rate (R�) [28]. If
this operator happens on a chromosome, it randomly
changes the new offspring according to the mutation rate.
In other words, this operator explores the search space to
discover a new search area and prevents all solutions in a
population from falling into a local optimum. The mutation
rate is a measure for determining when mutations occur
over time [13].

6) Replacement operator
The current generation of chromosomes is replaced by

the recently generated offspring based on a particular
replacement approach. In our algorithm, the steady-state
strategy is utilized for the replacement operator. The
operation compares each chromosome of the current
population with the last generation. If a chromosome in the
current generation is better than its corresponding
chromosome in the last generation, the new chromosome
replaces the old one.

7) Migration operator
During the migration process, some of the best

chromosomes, in each processor, are chosen and sent to the

178178

next processor in the ring at each migration time point.
Concurrently, each processor receives the chromosomes
sent by the previous processor and replaces its worst
chromosomes with the received ones.

8) Stopping strategy
Finally, the algorithm stops after some certain number

of iterations, and the best chromosome is determined. This
represents the best solution for the SMAP placement.

V. EXPERIMENTAL RESULTS

The proposed work has been implemented on Intel®
Core™ i5, CPU @ 2.9GHz, RAM 8 GB. VC++ 2015 has
been utilized for the implementation and MPI instructions
for parallelization. Furthermore, MPICH2.3.2 has been
applied for parallel execution of the algorithms. The
proposed MPGA based approach has been tested on four
processors in all tests for two case studies. Normal access
points have different weights. The results have been
compared with the GAHO (GAHO) [17] and a
mathematical method (pSPIEL) [19].

In the considered two case studies, presented as follows,
the algorithms should select the best locations for several
SMAPs in two layers. In a single SMAP placement, a
pSPIEL can find the best place, but when dealing with
several SMAPs, pSPIEL are not applicable in practice, as
they cannot determine the best positions for the SMAPs in
a finite time.

In this paper, the MPGA and GAHO methods are run on
all the two case studies for 30 times with 100 iterations in
each round. The size of the initial population is 500. The
results for the two case studies are shown in Figures 3-6;
and Tables 1. In these placement problems, the DM2
function (Equation 4) is utilized as the fitness function for
both MPGA and GA to obtain the best results. The overall
results indicate that the proposed fitness function is very
efficient, enabling MPGA and GA to find the best positions
also in the complex placement cases. The results also
demonstrate that MPGA performs much better than GA.

 The first case study has 32 normal access points that are
concurrent based on the center point. They are divided into
two subsets, i.e., A and B, as shown below. The weight of
each normal access points in A and B is equal to 2 and 1,
respectively. The best places on the first layer are in the
coordinates (-10, 0), (0, -10), (10, 0), and (0, 10); and the
best places on the second layer are in the coordinates (5, 0)
and (-5, 0). The results of MPGA and GAHO have been
obtained in 100 iterations with 500 chromosomes as an
initial population.

A=S (−13,3), (−10,3), (−7,3), (−7,0), (−7, −3), (−10, −3), (−13. −3),(−13,0), (13,3), (13,0), (13, −3), (10,3), (10, −3), (7,3), (7,0), (7, −3)Y
B=Z(−3, −7), (−3, −10), (−3, −13), (0, −7), (0, −13), (3. −7), (3, −10), (3, −13), (−3,7), (−3,10), (−3,13), (0,7), (0,13), (3,7), (3,10),(3,13) [

The second case study has sixty normal access points,
residing on two hyperbolic curves (a horizontal curve and a
vertical one). The mathematical definitions of these curves
are presented in Equations 5 and 6. The weights of the
normal access points in Equation 5 (the horizontal curve)
and Equation 6 (the vertical curve) are equal to 2 and 1,

respectively. According to the theory of hyperbolic curves,
parameters a, b, and c (in Equations 5, 6, and 7) are very
effective. In addition, the points (0, c) and (0, -c) in the
horizontal hyperbolic curve, and (c, 0) and (-c, 0) in the
vertical hyperbolic curve, have the minimum distances to
any points on these hyperbolic curves. These points are the
best places for placement of SMAPs on the first layer. \	9	 −]	^	 = 1, 9 = 3, ^ = 4 (5)

]	^	 − \	9	 = 1, 9 = 3, ^ = 4 (6)

b = √:	 − 9	 (7)

Figure 3 shows the placements that have been
discovered by MPGA in the first case study. It clearly
indicates that the results are very close to the optimal points,
and the best results are obtained 35 times in the series of 40
runs. The corresponding results of the GAHO placement
method are illustrated in Figure 4. It can be clearly seen that
the results of MPGA are 47% in the first case study and 38%
in the second case study more reliable than the GAHO
method. Figures 5 and 6 indicate the results of the MPGA
and GAHO placement methods, respectively, for the second
case study. The statistical results of both considered
methods and pSPIEL, for all two case studies, are illustrated
in Table 1. These results demonstrate that MPGA is more
accurate and efficient than the other methods. They also
indicate that the proposed MPGA method is successful in
both simple and complex case studies. The migration
operation in MPGA is the primary factor for the accuracy
of the results in our approach. Therefore, the accuracy is a
strong motivation for using the MPGA method.

TABLE I. STATISTICAL RESULTS

Case The Best
Distance

Correct
Placement Count

The Worst
Distance

PGA

1

0 26 11.814

GAHO 0 7 34.899

pSPIEL - 0 -

PGA

2

0 28 9.465

GAHO 0 13 18.927

pSPIEL - 0 -

Fig. 3. Placement with MPGA in the case study 1.

179179

Fig. 4. Placement with GAHO in the case study 1.

Fig. 5. Placement with MPGA in the case study 2.

Fig. 6. Placement with GAHO in the case study 2.

REFRENCES
[1] Y. J. Cha, A. Raich, “Optimal placement of active control devices

and sensors in frame structures using multi-objective genetic
algorithms,” Structural Control and Health Monitoring,Vol. 20, pp.
16–44, 2013

[2] A. Majd, Sh. Lotfi and G. Sahebi, “Review on Parallel Evolutionary
Computing and Introduce Three General Framework to Parallelize
All EC Algorithms,” The 5th Conference on Information and
Knowledge Technology, IEEE, pp. 61-66, 2013.

[3] A.Majd and G.Sahebi, “A Survey on Parallel Evolutionary
Computing and Introduce Four General Frameworks to Parallelize
all EC Algorithms and Create New Operation for Migration,”
Journal of Information and Computing Science, vol. 9, pp.97-
105,2014.

[4] A. Majd, Sh. Lotfi, G. Sahebi, M. Daneshtalab and J. Plosila,
“PICA: Multi-Population Implementation of Parallel Imperialist
Competitive Algorithms,” 24th Euromicro International
Conferences on Parallel, Distributed and Network-Based
Processing, PDP 2016.

[5] A. Basturk, R. Akay and A. Kalinli, “Comparison of fine-grained
and coarse-grained parallel models in particle swarm optimization
algorithm” 2nd World Conference on Information Technology
(WCIT), 2011.

[6] J. Zhu, D. S. Chan, M. S. Prabhu, P. Natarajan, H. Hu and F.
Bonomi, “Improving Web Sites Performance Using Edge Servers in
Fog Computing Architecture,” IEEE Seventh International
Symposium on Service-Oriented System Engineering, pp. 320-323,
2013.

[7] Y. T. Hou, Yi Shi, and Ha. D. Sherali, “On Energy Provisioning and
Relay Node Placement for Wireless Sensor Networks,” In IEEE
Trans. on Wireless Comm., (4)5:2579–2590, Sep. 2005.

[8] J. Suomela, “Computational Complexity of Relay Placement in
Sensor Networks” In SOFSEM 2006, LNCS 3831, pp. 521–529.
Springer-Verlag, 2006.

[9] S. Toumpis and G. A. Gupta, “Optimal Placement of Nodes in Large
Sensor Networks Under a General Physical Layer Model,” In Proc
of IEEE SECON, September 2005.

[10] N. Heo and P. K. Varshney, “Energy-Efficient Deployment of
Intelligent Mobile Sensor Networks,” IEEE Transactions on
Systems, Man, Cybernetics, Part A, Vol. 35, No. 1, pp. 78-92,
January 2005.

[11] A. Kansal et al., “Controlled Mobility for Sustainable Wireless
Sensor Networks,” in the Proceedings of IEEE Sensor and Ad Hoc
Communications and Networks (SECON’04), Santa Clara, CA,
October 2004.

[12] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning. Machine Learning” , 1988.

[13] T. Back, “Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms”, Oxford
University Press Oxford, 1996.

[14] A. Majd, G.Sahebi, M. Daneshtalab, J. Plosila and H. Tenhunen,
“Placement of Smart Mobile Access Points in Wireless Sensor
Networks and Cyber-Physical Systems using Fog Computing”
The 16th IEEE International Conference on Scalable Computing
and Communications(Scalcom 2016), 2016.

[15] S. Toumpis and G. A. Gupta. Optimal Placement of Nodes in Large
Sensor Networks Under a General Physical Layer Model. In Proc of
IEEE SECON, September 2005

[16] J. Suomela. Computational Complexity of Relay Placement in
Sensor Networks. In SOFSEM 2006, LNCS 3831, pp. 521–529.
Springer-Verlag, 2006.

[17] W. Youssef and M. Younis, “Intelligent Gateways Placement for
Reduced Data Latency in Wireless Sensor Networks”
In Proceedings of the 32nd IEEE International Conference on
Communications (ICC 2007), Glasgow, Scotland, UK, June 2007

[18] Ch. Shen, O. Koc, Ch. Jaikaeo and Z. Huang, “Trajectory control of
mobile access points in MANET” the IEEE GLOBECOM, 2005.

[19] A. Karause, C. Guestrin, A. Gupta and J. Kleinberg “Near-optimal
Sensor Placements: Maximizing Information while Minimizing
Communication Cost, ” the 5th international conference on
Information processing in sensor networks, pp. 2-10, 2006.

180180

Paper VII

Optimizing Scheduling for Heterogeneous Computing Systems

using Combinatorial Meta-heuristic Solution

A. Majd, G. Sahebi, M. Daneshtalab, E. Troubitsyna

https://research.abo.fi/converis/portal/Publication/7200640?auxfun=&lang=en_GB
https://research.abo.fi/converis/portal/Publication/7200640?auxfun=&lang=en_GB
https://ieeexplore.ieee.org/author/37075731000
https://ieeexplore.ieee.org/author/37075731000
https://ieeexplore.ieee.org/author/37273569200

Optimizing Scheduling for Heterogeneous Computing Systems using
Combinatorial Meta-heuristic Solution

Amin Majd
Department of Information Technology

Åbo Akademi University
Turku, Finland

amin.majd@abo.fi

Golnaz Sahebi
Department of Information Technology

University of Turku
Turku, Finland

golnaz.sahebi@utu.fi
Masoud Daneshtalab

Mälardalen University,
Västerås, Sweden,

Masoud.daneshtalab@mdh.se

Elena Troubitsyna
Department of Information Technology

Åbo Akademi University
Turku, Finland

elena.troubitsyna@abo.fi

Abstract — Today, based on fast development especially in
Network-on-Chip (NoC)-based many-core systems, the task
scheduling problem plays a critical role in high-performance
computing. It is an NP-hard problem. The complexity increases
further when the scheduling problem is applied to
heterogeneous platforms. Exploring the whole search space in
order to find the optimal solution is not time efficient, thus
metaheuristics are mostly used to find a near-optimal solution in
a reasonable amount of time. We propose a compound method
to select the best near-optimal task schedule in the
heterogeneous platform in order to minimize the execution time.
For this, we combine a new parallel meta-heuristic method with
a greedy scheme. We introduce a novel metaheuristic method
for near-optimal scheduling that can provide performance
guarantees for multiple applications implemented on a shared
platform. Applications are modeled as directed acyclic task
graphs (DAG) for execution on a heterogeneous NoC-based
many-core platform with given communication costs. We
introduce an order-based encoding especially for pipelined
operation that improves (decreases) execution time by more
than 46%. Moreover, we present a novel multi-population
method inspired by both genetic and imperialist competitive
algorithms specialized for the scheduling problem, improving
the convergence policy and selection pressure. The potential of
the approach is demonstrated by experiments using a Sobel
filter, SUSAN filter, RASTA-PLP, and JPEG encoder as real-
world case studies.

Keywords- parallel imperialist competitive algorithm (PICA);
multi-population technique; evolutionary computing (EC); task
graph scheduling; heterogeneous platform.

I. INTRODUCTION
Contemporary multiprocessor system-on-chip (MPSoC)

based parallel processing, in a vast variety of applications, is
the result of many breakthroughs over the last two decades.
The development of embedded MPSoCs has led to their use
in many applications like health monitoring, video and audio
processing, and autonomous vehicles to mention just a few.
The data and program code for these applications can be
distributed among the available multiple cores, and thus
maximal benefits from these parallel systems can be obtained
by employing efficient task partitioning and scheduling
strategies. A homogeneous MPSoC contains a set of identical

processing elements (PEs), typically programmable
processors. The usage of homogeneous MPSoCs simplifies
task migration, while heterogeneous MPSoCs support a wider
variety of applications, because they integrate different PEs
[26].

In this work, we consider the deterministic model for the
task scheduling problem, where the execution time of tasks
and the data communication time between tasks are assigned.
The directed acyclic task graph (DAG) that represents the
precedence relations of the tasks is well known as an NP-
complete problem. Task mapping, which consists of finding
a placement for a set of tasks that meets a specific requirement
such as energy consumption savings is an important issue.
Static mapping defines task placement at design time;
dynamic mapping defines task placement at runtime [27].
Many heuristic methods for the task scheduling dilemma have
been proposed [1]-[7] because the precedence constraints
between tasks can be non-uniform therefore rendering the
requirement for a uniformity solution. We assume that a NoC
is a heterogeneous multiprocessor system and non-
preemptive (each processor completes the current task before
the new one starts its execution).

Recently, evolutionary approaches have been developed
to solve this problem. For example, a genetic algorithm (GA)
based approach can better locate a near optimal solution than
a list schedule in most cases [8], [9], and [10]. For
multiprocessor scheduling problem, several GA methods
have been applied, but none of them have considered the
communication cost. On the other hand, a number of parallel
GA methods have been proposed to solve the task graph
scheduling problem in [13]. However, in all of them, there is
a fundamental problem that derives from the convergence
idea of a GA and our paper resolve this problem. In this paper,
we tackle this problem by a combination of a GA and the
Imperialist Competitive Algorithm (ICA) [14]. Moreover, we
explicitly consider the communication delays between
processors. When two communicating tasks are mapped onto
the same processor we assume that the communication delay
is zero, and if they are mapped on different processors, there
will be a communication cost. For this problem, we propose
an extension of the priority-order-based coding method as the
priority-order-based country (OBC) for the pipelined
execution of the tasks. This coding shows the priority and

978-1-5386-0435-9/17/$31.00 ©2017 IEEE

selected processor to run each task. The priority-based
encoding [11] is the knowledge of how to handle the problem
of producing the encoding that can treat the precedence
constraints efficiently. To obtain the best result, we present a
new multi-population method, a combination of ICA and GA.
This combination helps our approach to match the scheduling
problem and addresses some problems of GA, such as the
convergence policy and selection pressure, by keeping all
countries (possible solutions) in all iterations and removing
the general selection operation such as roulette wheel and
tournament methods. In this paper, we propose a novel multi-
population implementation of the ICGA, a hybrid approach
using both ICA and GA, for solving the task scheduling
problem. The goal is to improve the execution time and
reliability (proximity of the achieved result and the best
result) of the task scheduling.

The rest of the paper is organized as follows. Section 2
discusses the related work. In Section 3, definitions and
important parameters in the task scheduling problem are
presented. In Section 4, the proposed parallel algorithm for
the scheduling problem (MICGA) is presented. Section 5
presents the experimental results and demonstrates the
efficiency of the proposed algorithm. We end with
concluding remarks in Section 6.

II. RELATED WORKS
The basic idea is to make an ordered list of nodes by

assigning them priorities, and then to repeatedly execute the
following two steps until a valid schedule is obtained: (1)
Select from the list the node with the highest priority for
scheduling. (2) Select a processor to accommodate this node.

In realistic cases, scheduling needs to exploit the
parallelism by identifying the task graph structure and take
into consideration task granularity, arbitrary computation,
and communication costs.

The modified critical path algorithm (MCP) [29] is
proposed based on the latest possible start time of a node. A
node’s latest possible start time is determined via the as-late-
as-possible (ALAP) binding by traversing the task graph
upward from the exit nodes to the entry nodes while pulling
the nodes start times downwards as much as possible. The
latest possible start time of the node itself is followed by a
decreasing order of the latest possible start time of its
successor nodes. In addition, the dominant sequence
clustering algorithm (DSC) [29] is based on the dominant
sequence, which is essentially the critical path of the partially
scheduled task graph at each step. At each step, DSC checks
whether the highest CP (the critical path of task graph) node
is a ready node. If so, DSC schedules it to a processor
allowing the minimum start time. Such a minimum start time
may be achieved by rescheduling some of the node’s
predecessors to the same processor. If the highest CP node is
not a ready node, DSC does not select it for scheduling.
Instead, it chooses the highest node which lies on a path
reaching the CP for scheduling. The mobility directed
algorithm (MD) [29] selects a node at each step based on
relative mobility which is defined as the difference between a
node’s earliest start time and latest start time. Similar to the
ALAP binding, the earliest possible start time is assigned to
each node via the as-soon-as-possible (ASAP) binding. This
is performed by traversing the task graph downward from the
entry nodes to the exit nodes while pulling the nodes upward
as much as possible. Moreover, relative mobility is obtained
by dividing the mobility with the node’s computation cost.
Basically, a node with zero mobility is a node on the CP. At
each step, MD schedules the node with the smallest mobility

to the first processor having a large enough time to
accommodate the node without considering the minimization
of the node’s start time. After a node is scheduled, all the
relative mobility is updated.

In [13], a multi-population implementation of GA
(MPGA) is presented which outperforms deterministic and
nondeterministic methods [2]-[8]. In [29], a new encoding
mechanism with a multi-functional chromosome is presented
and it uses the priority representation that called priority-
based multi-chromosome (PMC). PMC can efficiently
represent a task schedule and assign tasks to processors. PMC
is another metaheuristic method that is presented in [29] that
uses a priority model for encoding the chromosomes and use
a GA to achieve the results.

Research on static mapping method includes the work of
Lei et al., who proposed a genetic mapping algorithm to
optimize application execution time [20]. In their work,
graphs represent applications and the target architecture is a
NoC. Wu, et al. also investigated genetic mapping algorithms
[21]. By combining dynamic voltage scaling techniques with
mapping, they achieved 51% savings in energy consumption.
Murali et al. explored mappings for more than one application
in NoC design, using the tabu search (TS) algorithm [22].
Manolache, et al. investigated task mapping in NoCs, trying
to guarantee packet latency [23]. For this purpose, both the
task-mapping algorithm (TS) and the routing algorithm are
defined at design time. Hu et al. presented a branch-and-
bound algorithm to map a set of IP cores (IPs) onto a NoC
with bandwidth reservation [24]. Their results show energy
savings of 51.7% in the communication architecture. Marcon
et al. investigated how to map modules into a NoC, targeting
low energy consumption [25]. They compared several
algorithms, using a model that characterizes applications by
their inter-task communication volume. Y. Xu, K. Li, J. Hu
and K. li in [26] presented a task scheduling scheme on
heterogeneous computing systems using a multiple priority
queues genetic algorithm (MPQGA). Their experimental
results for large-sized problems for a large set of randomly
generated graphs as well as graphs of real-world problems
with various characteristics showed that the proposed
MPQGA algorithm outperformed two non-evolutionary
heuristics and a random search method in terms of schedule
quality.

III. BACKGROUND
In the following we present the considered system model.

A. Hardware platform model
A heterogeneous MPSoC is a set of different PEs

interacting through a communication network. For our work,
a NoC-based heterogeneous MPSoC model is selected, in
which each PE manages execution of one task at a time. PEs
can support either software or hardware task execution.
Software tasks execute in instruction set processors (ISPs),
and hardware tasks in reconfigurable logic (RL) or dedicated
IPs [27]. Among the available PEs, one of the processors is
selected as a manager processor (MP). The MP is responsible
for resource control, configuration control, and four task
manipulation operations, namely: binding, scheduling,
migration, and mapping [27]. The MP runs each application’s
initial task. When a running task needs to communicate with
another task not yet mapped, the latter is loaded into a PE
from the task memory. A DAG, in which vertices represent
software or hardware tasks and edges define communicating
PE pairs, models each application. Each edge of a DAG
defines a master-slave communication channel. The edge

source vertex is the master of the communication, and the
edge destination vertex is the slave.

B. Application Model
We assume a weighted DAG. In such a DAG, each node

represents a task that has a finite execution time, and each
edge illustrates the communication cost between two
connected tasks. Also, the DAG can define the priority of all
tasks.

We assume that each application ܶܩ௔ is modeled as a
weighted DAG. In this DAG, each node represents a task that
has a finite execution time, and each edge illustrates the
communication cost between two connected tasks. The edges
also represent the precedence relations. Let ܶܩ௔ be a
weighted DAG defined as a 4-tuple ܶܩ௔ =
(௔ܸ, ,௔ܧ ௔ܹ, ௔), where ௔ܸܥ = { ଵܶ

௔, ଶܶ
௔, … , ௡ܶ

௔} is the set of
vertices (tasks), ܧ௔ = ൛݁௜௝

௔ = (௜ܶ
௔, ௝ܶ

௔)ൟ is the set of
communication (dependency) edges, ௔ܹ is the set of task
weights (execution times), ܥ௔ is the set of edge weights
(communication times), ݓ௜

௔ ∈ ୟܹ is the execution time of
task ௜ܶ

௔ ∈ ௔ܸ, ܿ௜,௝
௔ ∈ ௔ is the communication cost (delay) onܥ

the edge of ݁௜,௝
௔ ∈ ௔, that is assumed to be zero if ௜ܶܧ

௔ and
௝ܶ
௔ are bound to the same processor. We assume a simple

linear model between the execution times and PE frequencies,
e.g., if ܲܧଵruns two times faster thanܲܧଶ, then task ௜ܶ

௔also
runs two times faster on ܲܧଵthanܲܧଶ.

The execution time of an application ܶܩ௔ is defined as the
completion time of its last task. When constructing a schedule
for execution of the applications, it is of great importance to
consider both task execution times and the communication
times. Since considering the communication times
significantly increases the number of schedules to be
explored, most of the previous work only consider the task
execution times. However, when running tasks with
precedence relation on different processing elements, the
communication overhead is not negligible and it has to be
considered in the model. To this end, we explicitly model the
communication delays.

T1

T2 T3 T4

T5

T7

T8

T6

T9

Figure 1. DAG Task Graph

C. Problem Statement
Our task scheduling method, MICGA, takes a set of task

graphs {ܶܩଵ, … , ே} and a set of processing elementsܩܶ
,ଵܧܲ} … , ௠} as its inputs. The output of MICGA is the taskܧܲ
bindings, i.e. task to processor mappings and static schedules,

i.e. the order of task executions. The overall goal of the
scheduling is to minimize the execution times (also known as
the schedule length, latency or makespan) of all applications
while preserving the precedence constraints. Let ௔݂represent
the execution time of application ܶܩ௔. We present the
following mathematical formulation as our optimization
problem:

min ଵ݂, … ே݂,
s. t. ݐ௜

௔ − ௜ݓ
௔ − ௝݁௜

௔ ≥ ௝ݐ
௔, ܽ ∈ [1, … N] , ∀ ݁௜௝

௔ ∈ ,௔ܧ
where ݐ௜

௔is the completion time of ௜ܶ
௔. Note that the above

formulation is a multi-objective optimization problem as we
want to minimize the execution times of all applications. The
optimization is subject to the precedence relations imposed
by the application graphs.

IV. PROPOSED METHOD
In this work, we combine the GA and ICA methods and

customize the resulting hybrid method for the scheduling
problem in heterogeneous systems. The operations of GA are
suitable for scheduling but its convergence strategy to find
more reliable and accurate results is not efficient [15], [16],
[17], because the selection operation in GA misses some
chromosomes that have a probability to become potential
genes for obtaining the best results. In ICA (where we use
countries as the population), all the countries will be available
in all iterations and they may move to other places in the
search space. However, in GA, the selection operation highly
depends on random functions which can easily converge to a
local optimum. To solve this, we use an efficient convergence
strategy in order to improve the reliability of results.

All the scheduled tasks in a DAG should satisfy the
precedence relations, and therefore we use the order based
coding mechanism suited for multiprocessor scheduling. It
should fulfill the following rules:

1. All the predecessors of a task must have completed their
execution before initiating the task execution.

2. In a DAG, all the tasks must be executed at least once.
This representation eliminates the need to consider the
precedence relations between the computational tasks. The
precedence relation is encoded in the rule 1.

A. Order-based country (OBC)
There are several approaches [8], [10], and [12][12] that

have used GA for the multiprocessor scheduling problem, but
they suffer from inefficient coding methods. So, how to
encode a solution of the problem into a chromosome is a key
issue here. This has been investigated from two different
angles which are: mapping characters from the genotype
space to the phenotype space when countries are encoded into
a solution [29]; and metamorphosis properties when countries
are manipulated by genetic operators [14].

There are two main challenges involved with the encoding
problem: 1) there is a need for storing a huge number of
chromosomes for each schedule; 2) in the case of a large
number of tasks, the exploration and exploitation operators
will have difficulties in working on the precedence relations
among tasks.

To overcome these challenges, we introduce an extension
of OBC that strings a present task priority of task nodes with
the corresponding processor simultaneously. For example,
Figure 3 shows an OBC that represents nine tasks along with
three processors with mentioned DAG in Figure 1.

gx

getPixel

gy
abs

getPixel
getPixel gy gy

getPixel

gx
gx

abs

gx
abs

gy

abs
P3

P2

P1
Sobel-1
Sobel-2
Sobel-3
Sobel-4

P4 getPixel gy gx

abs

Sobel-5

getPixel
gy

gx abs

Sobel-6

Figure 2. A proposed schedule of six Sobel application on four processors (pp=6)

B. Priority-based encoding/decoding
Finding an encoding which can treat the precedence

constraint efficiently is a critical step. The proposed encoding
method is based on the task priority, and our work focuses on
the pipelined execution model of applications. In the pipeline
model, input data is divided into several parts, and these parts
are then one by one used as inputs to an application. We make
a pack of the parts and find the best schedule for this pack of
data. Each part is an application such as Sobel Application
(Figure 7), and the number of parts (applications) in each pack
is ݌݌. A proposed schedule of six Sobel applications (pp=6) on
four processors is illustrated on Figure 2. The following
procedure explains the generation of the initial OBC:

First, we input the order-based task numbers ௝ܺ[݅] (1 ≤
௝ܺ[݅] ≤ # Task, 1 ≤ ݆ ≤ 1 ݀݊ܽ ݌݌ ≤ ݅ ≤ randomly (݇ݏܽܶ#

independent from the processor number in the X rows. Then,
the algorithm fills the Y rows with random numbers ௝ܻ[݅] (1 ≤

௝ܻ[݅] ≤ 1 ݀݊ܽ ݎ݋ݏݏ݁ܿ݋ݎܲ# ≤ ݆ ≤ .(݌݌

C. ICGA Operation
Now, a fast review of ICGA is presented in this subsection

then in the next sections all operations with more detail are
presented. In the first ICGA generates k countries
,ଵܥ}) . . . , ௞}), i.e., k is the the number of countries, (see Figureܥ
4.1), then ICGA sorts the countries, so that:

 if (i ≤ (௜ܥ)݂) ℎ݁݊ݐ (݆ ≤ where f is the fitness , ((௝ܥ)݂
function.

 Then, the best countries, whose fitness values are the
lowest (because this problem is a minimizing problem)
,ଵܥ}) ,ଶܥ … , ݉݁ ݁ݎℎ݁ݓ {௘௠ܥ = will (ݏ݁ݎ݅݌݉݁ ݂݋ ݎܾ݁݉ݑ݊#
be selected to become imperialists, and the remaining countries
,௘௠ାଵܥ}) . . . , ௞}) form the colonies of these imperialists. Theseܥ
colonies start moving toward their respective imperialists, after
all colonies have been divided among the imperialists [14].

 The next step computes the power of each imperialist and
the imperialistic competitive step follows. The weakest
imperialist loses its weakest colony and the selected imperialist
obtains this colony. These steps are repeated until reaching a
termination condition. There can be different types of
termination conditions. For example, ICGA could be set to
stop when we have one imperialist with all colonies as its
members.

Similarly to other ECs, when solving a large problem with
a far-reaching search area, we need a large initial population to
obtain a more accurate and reliable result. We can also prevent
convergence to local optima by using a multi-population
method, where each processor runs ICGA independently. If
one processor converges to a local optimum, all the other
processors can continue their work on other parts of the search
space.

D. Multi-Population ICGA (MICGA)
To implement MICGA, we use a selective local search

strategy which runs on MICGA, with several processors
connected together based on a ring topology and using a
message passing method for communication between the
processors. In each processor, we first initiate independent

countries and run the ICGA independently. Occasionally, the
best country is copied from a processor ௜ܲ to ௜ܲାଵ, replacing
the worse country in ௜ܲାଵ. This operation takes place
synchronously (simultaneously) in all processors. The number
of countries in each processor remains the same even when
countries migrate to other processors. In Figure 5, the pseudo
code for the multi-population ICGA is presented.

In the multi-population ICGA, we increase the number of
all countries along with the selection pressure [16], [17] which
helps in obtaining more accurate results in a short time period.
Also, the convergence to results is much faster than in the
sequential ICGA. In EC methods, when the diversity of
countries are high enough, the rate of convergence rises. The
following steps run until MICGA obtains the best results.

1

1

3

2 2 1 2 1

6

3

8

2

9

1

3 4 5 6 7 8 9Priority 1 2 3 4 5 6 7 8 9

2 7 4 5X1

Y1

1

2

2

2 3 1 3 2

5

1

8

3

9

1

3 4 6 7X2

Y2

P1-Chain 1 7 5 9
X1

4 5 9
X2

P2-Chain 3 2 4 8 1 2 7
X1 X2

P3-Chain 6 3 6 8
X1 X2

Figure 3. Chain of tasks based on the presented country

1) Make Countries.
As previously mentioned, each processor generates k

countries (such as Figure 3), having its own world (ܹ݈݀ݎ݋ఉ =
,ଵܥ} ,ଶܥ … , ఉ݈݀ݎ݋ܹ) ݀݊ܽ {௞ܥ = ఉ݈݀ݎ݋ܹ ݎ݋ ఊ݈݀ݎ݋ܹ ≠
 .ఊ)), where all worlds are independent݈݀ݎ݋ܹ

2) Evaluation of Countries.
In all problems that are solved by meta-heuristic methods

such as GAs and ICA, the essential task is to find a suitable
fitness function to evaluate the whole population. In the
proposed approach, the evaluation function receives a country
as its input and returns a real value as its output. The output is
computed based on the execution time of the application task
graph by each country. A country with the lowest fitness
function value is the best country (solution). In other words,
this is a minimization optimization problem. The evaluation
operation is composed of several steps that are introduced
below. Note that these steps run in all countries. The
Evaluation operation in ICGA run three step that presented as
follow:

a) Making Tasks Chains on each Processor.
It is clear that each country represents an arbitrary schedule

of tasks. For each processor, the algorithm makes a chain of
tasks based on Equation 1, the chain of tasks define that which
tasks should run on the same processor, then computes the total
execution time of each chain based on Equation 2. Chains of
tasks are presented in Figure 3.

ܿℎܽ݅݊௉೔ = (⋃ ⋃ ௜ܺ[݆] ௜ୀ௡
 ௜ୀଵ

௝ୀ௣௣
௝ୀଵ | ௜ܻ[݆] = ௜ܲ) (1)

CCost = ෍ ௝݌

|௖௛௔௜௡ು೔|

௜ୀଵ
 (2)

b) Assigning Probabilities to Processors.
Since this algorithm is proposed for heterogeneous

systems, the greedy algorithm (Knapsack’s algorithm [28]) is
utilized to compute the mapping probability of chains to
processors. Based on the Knapsack idea, each chain with a
higher computation time has a higher probability to be
assigned to faster processors. Also, the algorithm computes the
probability of chains based on their total computation time and
then runs a Roulette wheel algorithm [12] to assign chains to
processors. In this phase, there is a competition among chains
to obtain faster processors.

ܥܲ = ,ଵܥܲ} ,ଶܥܲ … , ௠} is the set of the processor’sܥܲ
chains, ܶܲܥ = ,ଵܥܲܶ} ,ଶܥܲܶ … , ௠} is the correspondingܥܲܶ
set of the chain execution times, ܲܲܥ =
,ଵܥܲܲ} ,ଶܥܲܲ … , ௠} is the corresponding set of the chainܥܲܲ
probabilities, and

௜ܥܲܶ) ≤ (௝ܥܲܶ ⟶ ௜ܥܲܲ ≤ ௝ (3)ܥܲܲ
c) Compute Fitness Values.

In this step, the fitness value of each country, which has
been generated randomly based on OBC, will be computed
according to its power metric corresponding to the execution
time of the country’s scheduling.

3) Initialize the Empire.
The algorithm selects the best set of countries as the

imperialists, and divides the remaining countries as colonies
among them. Each imperialist with its colonies form an
empire.

T.C.n=Cost(Imperialistn)+גmean{Cost(colonies of empiren)}

START

Is there a colony that is
dominating its relevant

imperialist?

Is there a colony that is
dominating its relevant

imperialist?

Are Stop
Conditions
satisfied?

Are Stop
Conditions
satisfied?

1.Initialize the Empires1.Initialize the Empires

2.Exploitation Operation

3.Exploration Operation

4.Exchange Imperialist
and the best Colony

5.Compute Total Cost

6.Imperialistic Competitive

END

2

N
O

YES

NO

Y
ES

Imperialist 1

Imperialist 2

Imperialist 3
1

1

3

2

2

2

7

1

4

2

5

1

6

2

8

2

9

1

X

Y

1

1

3

2

6

2

7

1

4

2

5

1

2

2

8

2

9

1

X

Y

1

1

3

2

2

2

7

1

4

2

5

1

6

2

8

2

9

1

X

Y
1

1

2

1

4

2

3

2

6

2

5

1

8

1

7

2

9

1

X

Y

7

1

9

2

4

2

3

1

6

2

5

1

1

2

2

2

8

1

X

Y
8

1

9

1

2

2

7

2

4

2

5

1

1

1

3

2

6

1

X

Y

Empire 1 Empire 2 Empire 3

The Weakest Empire

Figure 4. The ICGA flowchart

4) Exploitation and Exploration Operation.
In the exploitation phase, each colony can randomly pair

with its imperialist or another colony in its empire, but cannot
pair with any colonies from other empires. We use the order-
based crossover (OX) function [14] to replace the task numbers
between the paired colonies. As shown in Figure 4.2
(exploitation operation), OX selects two indices (e.g. 3 and 6
in their OBCs) of paired colonies and exchanges all the tasks
between two indexes of paired colonies. Then the remaining
tasks will be exchanged sequentially. Afterwards, the
exploration operation selects several colonies randomly in

order to exchange two tasks of each colony. The indices of two
tasks will be generated randomly.

5) Exchange Position and Compute the Total Cost.
After the exploitation and exploration, if a colony obtains

a better fitness function value than its imperialist, the algorithm
exchanges the colony’s and its imperialist’s positions. After
the exchange operation, the algorithm computes the total cost
of the empire based on Equation 4.

Total Cost௡
= Cost (ݐݏ݈݅ܽ݅ݎ݁݌݉ܫ௡)
+ .ߦ {(௡݁ݎ݅݌݉ܧ ݂݋ ݏ݁݅݊݋݈݋ܥ)ݐݏ݋ܥ} ݊ܽ݁ܯ

(4)

6) Imperialist Competition.
In this phase, all the imperialists try to achieve one

(randomly selected) colony from the weakest imperialist. The
algorithm searches among the empires and selects the weakest
empire based on their total cost. The taken colony will be
dedicated to the strongest empire.

Processor࢏ࡼ:
Begin
Creating independent initial countries
Running ICGA algorithm independently
If (migration time) then
Begin
 Wait until all processors arrive to this point
 Send the best country to (࢏ࡼା૚) MOD (#processors))
 Receive a country from (ି࢏ࡼ૚) MOD (#processors) and
replace the weakest country with the received one
End
If (termination condition) then Show the best
country
End

Figure 5. The Pseudocode of the Multi-Population ICGA

7) Migration Operation.
The migration operation is the key aspect of our method,

where several processors are connected together using a ring
topology and employing message passing protocol for
communication. The ring topology has been selected because
of its low communication cost and simplicity. Each processor
is first initialized with a set of independent countries (the
number of countries in each processor is the same) and running
ICGA independently in each processor. Occasionally, the best
country (colony) migrates from a processor ௜ܲ to the next
processor ܲ ௜ାଵand replaces the worst country in ௜ܲାଵ. Since we
utilize the ring topology to connect processors together, and
because the migration takes place in all processors
synchronously, the number of countries in each processor
remains the same through the migration operation. The
migration strategy can affect the result as well. Generally, it is
better to establish a balance between the migration rate and
data communication. The chosen ring topology is utilized to
reduce the migration rate and to decrease the distance of the
migrations.

In MICGA, the pressure of selection increases when the
number of countries gets higher, which helps to obtain more
accurate results in a short time and converge to the results
faster than the sequential ICGA. Therefore, it is highly
beneficial to increase the number of countries.

V. EXPERIMENTAL RESULTS
In this section, four commonly explored real applications

have been utilized to demonstrate the performance of the
MICGA. The obtained results have been compared with the

other well-known methods that have been used for the same
problems. The parallel ICGA has been implemented using both
shared memory and message passing models. The message
passing interface (MPI) has been utilized to parallelize and
MPICH2 to run our algorithm.

In the multi-population ICGA, processors have been
connected in a ring topology with different parameters. The
proposed algorithm has been tested on an Intel Core i5-45705,
processor clocked at 2.90 GHz (64-bit) and with 24GB of
memory. The best results of benchmarks have been obtained
by 15 independent runs. The used parameters for solving the
problems have been illustrated in TABLE I.

The proposed approach is tested on real applications such
as Sobel filter, SUSAN filter, RASTA-PLP and JPEG encoder
[18], [19] that are illustrated in Figure 7. Also, MICGA is
compared with MPGA [13], PMC [29] and MPQGA [26] in
the same conditions (e.g. the same platform and initial
population) on all benchmarks. These methods are re-
implemented accurately, and they have been tested by their
results to obtain the best results.

TABLE I. THE PARAMETERS OF MICGA
Parameters Values

Number of Countries 100
Number of Empire 5

Terminate Condition 20 Iterations
Number of Processors 5

Exploitation Rate 0.8
Exploration Rate 0.3
Migration Rate 1 Chromosome

Figure 8, and show the execution time of all methods on
the benchmarks on six processors. MICGA improves
(decreases) execution time by more than 46%, 8%, 15%, and
18% for the Sobel, SUSAN, RASTA-PLP, and JPEG encoder
applications, respectively. Figure 6 shows the execution time
values of the MICGA with different values of pp (the number
of applications in each pack is ݌݌) on the benchmarks for 100
applications on six processors. It can be seen that the adopted
packing method improves the execution time.

Figure 6. The execution time of MICGA on all benchmarks with

different number of pp on six processors

Figure 10, Figure 11, Figure 12, and Figure 13 show the
execution time of all methods on the benchmarks with different
processors. The best and the worst possible case of execution
time for 100 application on 60 processors on Sobel are 7006
and 14112, Susan are 11846 and 20236, RASTA-PLP are 5412
and 11082; and JPEG encoder are 79608 and 147362. Also,
MICGA improves (decreases) execution time by more than
62.74%, 32.86%, 51.51%, and 37.13 % for the Sobel, SUSAN,
RASTA-PLP, and JPEG encoder applications, respectively.
These results show that MICGA has better effect in more
complex applications.

TABLE II. THE STATISTICAL RESULTS WITH 6 PROCESSORS
 MICGA MPGA PMC MPQGA

Sobel
(ms)

Mean 7458.4 1217.0 1314.1 1415.5
Best 7006 11465 12065 13510

Worst 8456 13510 14865 14962
STD 665.7 874.4 1144.7 714.7

Median 7006 12065 13510 13510
SUSAN

(ms)
Mean 12491 15478 17610 17740
Best 12103 14860 17224 17465

Worst 13246 17224 18245 18245
STD 4982 833.7 437.5 351.1

Median 12103 14860 17465 17465
RASTA-PLP

(ms)
Mean 12510 15409 17384 17617
Best 12103 14860 17224 17465

Worst 13442 15986 17584 18012
STD 537.0 479.2 161.5 195.66

Median 12103 15670 17465 17584
JPEG-
encoder

(ms)

Mean 87597 112491 115573 115146
Best 83440 108600 111006 111006

Worst 108600 119688 119688 122865
STD 8631.5 4473.1 3290.6 4765.6

Median 83440 108600 115820 111006

TABLE III. THE SPEEDUP AND EFFICIECY OF NOMES ON 6 PROCESSORS
 Serial

MICGA
Time (s)

MICGA
Time (s)

Speedup Efficiency

Sobel 45.32 11 4.12 0.824
SUSAN 75.6 18 4.20 0.840

RASTA-PLP 89.67 21 4.27 0.854
JPEG encoder 133.12 32 4.16 0.832

The stability and reliability of experimental results are
other important factors for selecting the best method. It is a fact
that heuristic and metaheuristic methods cannot achieve the
best results in all runs, so the stability diagram is the best
criteria to show the reliability of results. We run each real
application 15 times to demonstrate how many times each
method can find the best results. The stability diagrams of all
mentioned methods are illustrated in Figure 14. The statistical
results have been listed in TABLE II. TABLE II.
demonstrates that our algorithm is more accurate with fewer
errors than the existing other methods. Also, TABLE II. shows
that MICGA has obtained the optimal result for Sobel. In
TABLE III. , two critical parameters, speedup, and efficiency
are also compared to both serial and parallel approaches. The
speedup values show that the parallel method how many times
is faster than serial method, and the efficiency values achieve
from the portion of the speedup and the number of processors.
The table shows that the efficiency of the proposed parallel
implementation is outstanding, and it clearly outperforms the
existing serial methods.

݌ݑ݀݁݁݌ܵ = ݉݅ܶ ݊݋݅ݐݑܿ݁ݔܧ ௌ݁௘௥௜௔௟ ⁄௉௔௥௔௟௟௘௟݁݉݅ܶ ݊݋݅ݐݑܿ݁ݔܧ (5)
ݕ݂݂ܿ݊݁݅ܿ݅ܧ = ݌ݑ݀݁݁݌ܵ ⁄ݏݎ݋ݏݏ݁ܿ݋ݎܲ# (6)

Finally, based on the quality and reliability of MICGA
results, and the efficiency of this method, as well as its
usability to real applications, MICGA is truly an outstanding
candidate for task graph scheduling.

VI. CONCLUSION
In this paper, we first introduced the new evolutionary

computing method, named ICGA, a combination of the
imperialist competitive algorithm (ICA) and the genetic
algorithm (GA). Then, we presented a multi-population
implementation of ICGA (MICGA) in order to improve the
performance (execution time) and reliability (proximity of
archived the best result) for task graph scheduling on
heterogeneous platforms using the pipelined execution model.
Experimental results revealed that MICGA is the best
candidate for solving the task graph scheduling problem. It is
faster and more reliable than the other state-of-the-art methods.

getPixel

abs

gygx direction

usan

thin

getImage

putImage

1
3

2

powspec

rasta

compJah

rastaFilter

backEnd

2

audspec

frontEnd

2

CS

readImg

writeImg

Huffman_0 Huffman_1 Huffman_2 Huffman_3 Huffman_4 Huffman_5

1

DCT_5DCT_0 DCT_1 DCT_2 DCT_3 DCT_4

CC_0

1

 Sobel SUSAN RATA-PLP JPEG encoder
Figure 7. The benchmarks

×10 ×10

(a) (b)
Figure 8. The execution time of all methods on different number of (a) Sobel and (b) Susan application on six processors

(a) (b)

×10 ×10

Figure 9. The execution time of all methods on different number of (a) Rasta and (b) JPEG encoder application on six processors

Figure 10. The execution time of all methods on 100 of Sobel
application (pp=100)

Figure 11. The execution time of all methods on 100 of SUSAN
application (pp=100)

Figure 12. The execution time of all methods on 100 of RASTA-
PLP application (pp=100)

Figure 13. The execution time of all methods on 100 of JPEG-
encoder application (pp=100)

Figure 14. The stability diagram of MICGA, MPGA, PMC and
MPQGA on Sobel, SUSAN, RASTA-PLP and JPEG encoder with 4

processors

REFRENCES
[1] Adam TL, Chandy KM, Dicksoni JR. A comparison of list schedules

for parallel processing systems. Communications of the ACM
1974;17(12):685–90.

[2] Wu MY, Gajski DD. Hypertool: a programming aid for message-
passing systems. IEEE Transactions on Parallel and Distributed
Systems 1990;1(3):330–43.

[3] Yang T, Gerasoulis A. DSC: scheduling parallel tasks on an unbounded
number of processors. IEEE Transactions on Parallel and Distributed
Systems 1994;5(9).

[4] Correa RC, Ferreira A, Rebreyend P. Scheduling multiprocessor tasks
with genetic algorithms. IEEE Transactions on Parallel and Distributed
Systems 1999;10(8):825–37.

[5] T hanalapati T, Dandamudi S. An efficient adaptive scheduling scheme
for distributed memory multicomputers. IEEE Transactions on Parallel
and Distributed Systems 2001;12(7):758–68

[6] Nissanke N, Leulseged A, Chillara S. Probabilistic performance
analysis in multiprocessor scheduling. Journal of Computing and
Control Engineering 2002;13(4):171–9.

[7] Corbalan J, Martorell X, Labarta J. Performance-driven processor
allocation. IEEE Transactions on Parallel and Distributed Systems
2005;16(7):599–611.

[8] Hou ESH, Ansari N, Hong R. A genetic algorithm for multiprocessor
scheduling. IEEE Transactions on Parallel and Distributed Systems
1994;5(2):113–20.

[9] Hwang RK, Gen M. Multiprocessor scheduling using genetic algorithm
with priority-based coding. Proceedings of IEEJ conference on
electronics, information and systems; 2004.

[10] Wu AS, Yu H, Jin S, Lin K-C, Schiavone G. An incremental genetic
algorithm approach to multiprocessor scheduling. IEEE Transactions
on Parallel and Distributed Systems 2004;15(9):824–34.

[11] Gen M, Cheng R. Genetic algorithm and engineering optimization.
NewYork:Wiley; 2000.

[12] Tsujimura Y, Gen M. Genetic algorithms for solving multiprocessor
scheduling problems. In: Simulated evolution and learning.
Heidelberg: Springer; 1995. p. 106–115.

[13] R. Moradi and D. Dal, A Multi-Population Based Parallel Genetic
Algorithm for Multiprocessor Task Scheduling with Communication
Costs, 2016 IEEE Symposium on Computers and Communication
(ISCC).

[14] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an
algorithm for optimization inspired by imperialistic competition,
in:IEEE Congress on Evolutionary Computation, 2007, pp. 46614667.

[15] A. Majd, Sh. Lotfi and G. Sahebi, “Review on Parallel Evolutionary
Computing and Introduce Three General Framework to Parallelize All
EC Algorithms,” 5th Conference on Information and Knowledge
Technology (IKT), 2013.

[16] A. Majd, Sh. Lotfi, G. Sahebi, M. Daneshtalab and J. Plosila, “PICA:
Multi-Population Implementation of Parallel Imperialist Competitive
Algorithms,” 24th Euromicro International Conferences on Parallel,
Distributed and Network-Based Processing, PDP 2016.

[17] A. Majd, M. Abdollahi, G. Sahebi, D. Abdollahi, M. Daneshtalab, J.
Plosila and H. Tenhunen, Multi-Population Parallel Imperialist
Competitive Algorithm for Solving Systems of Nonlinear Equations,
The 2016 International Conference on High Performance Computing
& Simulation (HPCS 2016).

[18] K. Rosvall and I. Sander, A constraint-based design space exploration
framework for real-time applications on MPSoCs, Proceedings of the
conference on Design, Automation & Test in Europe (DATE ’14),
2014.

[19] N. Khalilzad, K. Rosvall and I. Sander, A Modular Design Space
Exploration Framework for Multiprocessor Real-Time Systems, Forum
on specification and Design Languages (FDL'16), 2016.

[20] T. Lei and S. Kumar, ‘‘A Two-Step Genetic Algorithm for Mapping
Task Graphs to a Network on Chip Architecture,’’ Proc. Euromicro
Symp. Digital System Design (DSD 03), IEEE Press, 2003, pp. 180-
187.

[21] D. Wu, B. Al-Hashimi, and P. Eles, ‘‘Scheduling and Mapping of
Conditional Task Graphs for the Synthesis of Low Power Embedded
Systems,’’ Proc. Design, Automation and Test in Europe (DATE 03),
IEEE CS Press, 2003, pp. 90-95.

[22] S. Murali and G. De Micheli, ‘‘Bandwidth-Constrained Mapping of
Cores onto NoC Architectures,’’ Proc. Design, Automation and Test in
Europe (DATE 04), IEEE CS Press, 2004, pp. 896-901.

[23] S. Manolache, P. Eles, and Z. Peng, ‘‘Fault and Energy-Aware
Communication Mapping with Guaranteed Latency for Applications
Implemented on NoC,’’ Proc. 42nd Annual Design Automation Conf.
(DAC 05), ACM Press, 2005, pp. 266-269.

[24] J. Hu and R. Marculescu, ‘‘Energy- and Performance- Aware Mapping
for Regular NoC Architectures,’’ IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, vol. 24, no. 4, 2005, pp.
551-562.

[25] C. Marcon et al., ‘‘Comparison of NoC Mapping Algorithms Targeting
Low Energy Consumption,’’ IET Computers & Digital Techniques,
vol. 2, no. 6, 2008, pp. 471-482.

[26] Y. Xu, K. Li, J. Hu and K. li, “A genetic algorithm for task scheduling
on heterogeneous computing systems using multiple priority queues,”
Information Sciences, Vol.270, pp. 255-287,Elsevier,2014.

[27] E. L. s. Carvalho, N. L. V. Calazans and F. G. Moraes, “Dynamic Task
Mapping for MPSoCs,” IEEE Design and Test of Computers, 2010.

[28] H. Ishibuchi, N. Akedo and Y. Nojima, “Behavior of Multiobjective
Evolutionary Algorithms on Many-Objective Knapsack
Problems,” IEEE Transactions on Evolutionary Computation, Vol. 19,
pp. 264 – 283,2015

[29] R. Hwang, M. Gen and H. Katayama, “ A comparison of
multiprocessor task scheduling algorithms with communication costs”
Computers & Operations Research, Vol. 35, pp. 976 – 993,
ELSEVIER, 2008.

Paper VIII

NOMeS: Near-Optimal Metaheuristic Scheduling for MPSoCs

A. Majd, M. Daneshtalab, J. Plosila, N. Khalilzad, G. Sahebi, and E. Troubitsyna

NOMeS: Near-Optimal Metaheuristic Scheduling for MPSoCs
Amin Majd1, Masoud Daneshtalab2, Juha Plosila4, Nima Khalilzad3, Golnaz Sahebi4, and Elena Troubitsyna1

 1Åbo Akademi University, Finland,
2 Mälardalen University, Sweden

3KTH Royal Institute of Technology
4University of Turku

{amajd, etroubit}@abo.fi, masoudd@mdh.se, nima.khalilzad@kth.se, {golsah, juplos}@utu.fi

Abstract — The task scheduling problem for Multiprocessor
System-on-Chips (MPSoC), which plays a vital role in
performance, is an NP-hard problem. Exploring the whole search
space in order to find the optimal solution is not time efficient, thus
metaheuristics are mostly used to find a near-optimal solution in a
reasonable amount of time. We propose a novel metaheuristic
method for near-optimal scheduling that can provide performance
guarantees for multiple applications implemented on a shared
platform. Applications are represented as directed acyclic task
graphs (DAG) and are executed on an MPSoC platform with given
communication costs. We introduce a novel multi-population
method inspired by both genetic and imperialist competitive
algorithms. It is specialized for the scheduling problem with the
goal to improve the convergence policy and selection pressure. The
potential of the approach is demonstrated by experiments using a
Sobel filter, a SUSAN filter, RASTA-PLP and JPEG encoder as
real-world case studies.

Keywords— parallel imperialist competitive algorithm
(PICA); multi-population technique; evolutionary computing
(EC), task graph scheduling, multi-objective optimization;

I. INTRODUCTION
Parallel processing in contemporary Multiprocessor System-

on-Chips, or MPSoCs, in a vast variety of applications, is the
result of many breakthroughs over the last two decades. The
development of embedded MPSoCs has led to their use in many
application domains such as health monitoring, video and audio
processing, and autonomous vehicles to mention just a few. The
data and the processing tasks of these applications are
distributed on the available multiple cores. Performance of such
parallel systems can be optimized by employing efficient task
partitioning and scheduling strategies.

In this work, we consider a deterministic model for the task
scheduling problem, where the execution times of tasks and the
data communication times between tasks are known. The
scheduling problem based on a directed acyclic task graph
(DAG) that represents the precedence relations of the tasks is
known to be an NP-hard problem. Many heuristic methods for
task scheduling have been proposed [1], and [2]. In general,
precedence constraints between tasks can be non-uniform, but
we assume here, for simplicity, that the MPSoC platform is
uniform (a homogeneous multiprocessor system) and non-
preemptive (each processor completes the current task before
starting the execution of the next task).

Recently, evolutionary approaches have been developed to
solve the scheduling problem. For example, a genetic algorithm
(GA) based approach can better locate a near optimal solution
than a list schedule in most cases [3-5]. Only a few of these
approaches have considered a task graph with a communication
cost. A number of parallel GA based methods have been
proposed for solving the task graph scheduling problem in [8].
However, in all of them, there is a fundamental problem that
stems from the relatively inefficient and unreliable convergence
strategy of a GA, originating from the selection operation of a
GA. In this paper, we tackle this problem by proposing a
combination of a GA and the Imperialist Competitive Algorithm

(ICA) [9]. Moreover, we explicitly consider the communication
delays between processors. When two communicating tasks are
mapped onto the same processor we assume that the
communication delay is zero. However, when they are mapped
onto different processors a finite communication delay is
assumed and modeled.

We propose the concept of an order-based country (OBC) as
an extension of the order-based coding method. This coding
specifies the order of tasks and the selected processor to run each
task. The order-based encoding [6] provides means to efficiently
deal with precedence constraints. To improve the outcome of the
optimization process, we present a new multi-population
method, called NoMeS, which takes advantage of both ICA and
GA. This combination enhances the convergence policy and
selection pressure, by keeping all countries in all iterations and
avoiding the use of a general selection operation such as roulette
wheel and tournament schemes. To the best of our knowledge,
this is the first effort using a combined multi-population method
to reach an optimal scheduling in MPSoCs.

The paper is organized as follows. In Section II, definitions
and important parameters in the task scheduling problem are
presented. Section III discusses the related work. In Section IV,
the proposed parallel algorithm for the scheduling problem
(NoMeS) is presented. Section V presents the experimental
results and demonstrates the efficiency of the proposed
algorithm. We end with concluding remarks in Section VI.

II. BACKGROUND
We assume that a set of N applications consists of n tasks

running on a multiprocessor with m processors. In the following,
we present the details of the assumed system model.
1) Hardware platform model:

We assume a homogeneous MPSoC is a set of processing
elements (PEs) {ܲܧଵ, … , ௠} interacting through aܧܲ
communication network. For our work, a Network-on-Chip
(NoC) based homogeneous MPSoC model is selected, in which
each PE manages execution of one task at a time. PEs can
support either software or hardware task execution. Software
tasks execute in instruction set processors (ISPs), and hardware
tasks in reconfigurable logic (RL) or dedicated IP blocks [19].
Among the available PEs, one of the processors is selected as a
manager processor (MP). The MP is responsible for resource
control, configuration control, and task manipulation operations,
namely: binding, scheduling, and migration [19]. The MP runs
each application’s initial task. When a running task needs to
communicate with another task not yet mapped, the latter is
loaded into a PE from the task memory.
2) Application model:

We assume that each application ܶܩ௔ is modeled as a
weighted DAG. In this DAG, each node represents a task that
has a finite execution time, and each edge illustrates the
communication cost between two connected tasks. The edges
also represent the precedence relations. Let ܶܩ௔ be a weighted
DAG defined as a 4-tuple ܶܩ௔ = (௔ܸ, ,௔ܧ ௔ܹ, ௔), where ௔ܸܥ =

2017 19th International Symposium on Computer Architecture and Digital Systems (CADS)

978-1-5386-4379-2/17/$31.00©2017 European Union

{ ଵܶ
௔, ଶܶ

௔, … , ௡ܶ
௔} is the set of vertices (tasks), ܧ௔ = ൛݁௜௝

௔ =
(௜ܶ

௔, ௝ܶ
௔)ൟ is the set of communication (dependency) edges, ௔ܹ

is the set of task weights (execution times), ܥ௔ is the set of edge
weights (communication times), ݓ௜

௔ ∈ ୟܹ is the execution time
of task ௜ܶ

௔ ∈ ௔ܸ, ܿ௜,௝
௔ ∈ ௔ is the communication cost (delay) onܥ

the edge of ݁௜,௝
௔ ∈ ௔ܧ , that is assumed to be zero if ௜ܶ

௔ and ௝ܶ
௔ are

bound to the same processor. We assume a simple linear model
between the execution times and PE frequencies, e.g., if
ଶ, then task ௜ܶܧܲ ଵ runs two times faster thanܧܲ

௔also runs two
times faster on ܲܧଵ than on ܲܧଶ.

The execution time of an application ܶܩ௔ is defined as the
difference between the completion time of its last task and the
start time of its first task. When constructing a schedule for
execution of the applications, it is of great importance to
consider both task execution times and the communication
times. Since considering the communication times significantly
increases the number of schedules to be explored, most of the
previous work only consider the task execution times. However,
when running tasks with precedence relations on different
processing elements, the communication overhead is not
negligible and it has to be considered in the model. To this end,
we explicitly model the communication delays.
3) Problem statement:

Our task scheduling method, NoMeS, takes a set of task
graphs {ܶܩଵ, … , ே} and a set of processing elementsܩܶ
,ଵܧܲ} … , ௠} as its inputs. The output of NoMeS is a set ofܧܲ
task bindings, i.e. task to processor mappings and static
schedules, i.e. the order and timing of task executions for each
application task graph. The overall goal of the scheduling is to
minimize the execution times (also known as the schedule
length, latency or makespan) of all applications while preserving
the precedence constraints. Let ௔݂ represent the execution time
of an application ܶܩ௔. We present the following mathematical
formulation as our optimization problem:

min ଵ݂, … ே݂,

s. t. ݐ௜
௔ − ௜ݓ

௔ − ௝݁௜
௔ ≥ ௝ݐ

௔, ܽ ∈ [1, … N] , ∀ ݁௜௝
௔ ∈ ,௔ܧ

where ݐ௜
௔is the completion time of ௜ܶ

௔. Note that the above
formulation is a multi-objective optimization problem as we
want to minimize the execution times of all applications. The
optimization is subject to the precedence relations imposed by
the application graphs.

III. RELATED WORK
Here, we first explore more traditional list scheduling

heuristics that have considered communication costs.
The basic idea is to make an ordered list of nodes by

assigning them orders, and then to repeatedly execute the
following two steps until a valid schedule is obtained: (1) Select
from the list the node with the highest order for scheduling. (2)
Select a processor to accommodate this node.

In realistic cases, scheduling needs to exploit parallelism by
identifying the task graph structure and take into consideration
task granularity, arbitrary computation, and communication
costs.

In [1], the modified critical path algorithm (MCP) is
proposed, based on the latest possible start time of a node. A
node’s latest possible start time is determined via the as-late-as-
possible (ALAP) binding by traversing the task graph upward
from the exit nodes to the entry nodes while pulling the nodes’
start times downwards as much as possible. The latest possible
start time of the node itself is followed by a decreasing order of
the latest possible start times of its successor nodes.
Furthermore, in [1], the dominant sequence clustering algorithm
(DSC) is presented. It is based on the dominant sequence, which
is essentially the critical path of the partially scheduled task

graph at each step. At each step, DSC checks whether the highest
CP (the critical path of task graph) node is a ready node. If so,
DSC schedules it to a processor allowing the minimum start
time. Such a minimum start time may be achieved by
rescheduling some of the node’s predecessors to the same
processor. If the highest CP node is not a ready node, DSC does
not select it for scheduling. Instead, it chooses the highest node
which lies on a path reaching the CP for scheduling. Moreover,
also in [1], the mobility directed algorithm (MD) is presented.
MD selects a node at each step based on relative mobility which
is defined as the difference between a node’s earliest start time
and latest start time. Similar to the ALAP binding, the earliest
possible start time is assigned to each node via the as-soon-as-
possible (ASAP) binding. This is performed by traversing the
task graph downward from the entry nodes to the exit nodes
while pulling the nodes upward as much as possible. Moreover,
relative mobility is obtained by dividing the mobility with the
node’s computation cost. Basically, a node with zero mobility is
a node on the CP. At each step, MD schedules the node with the
smallest mobility to the first processor having a large enough
time to accommodate the node without considering the
minimization of the node’s start time. After a node has been
scheduled, the relative mobility values of the remaining nodes
are updated.

In [8], a multi-population implementation of the GA method
(MPGA) is presented which outperforms deterministic and
nondeterministic methods described in [2-3]. In [20], a new
encoding mechanism with a multi-functional chromosome is
presented, using a priority representation that is called priority-
based multi-chromosome (PMC). PMC can efficiently represent
a task schedule and assign tasks to processors. It is another
metaheuristic method that uses a GA to achieve near-optimal
scheduling of tasks.

Research on static mapping methods includes the work of
Lei et al., who proposed a genetic mapping algorithm to
optimize application execution time [12]. In their work, graphs
represent applications and the target architecture is a NoC. Wu,
et al. also investigated genetic mapping algorithms [13]. By
combining dynamic voltage scaling techniques with mapping,
they achieved 51% savings in energy consumption. Murali et al.
explored mappings for more than one application in NoC design,
using the tabu search (TS) algorithm [14]. Manolache, et al.
investigated task mapping in NoCs, trying to guarantee packet
latency [15]. For this purpose, both the task-mapping algorithm
(TS) and the routing algorithm are defined at design time. Hu et
al. presented a branch-and-bound algorithm to map a set of IP
cores (IPs) onto a NoC with bandwidth reservation [16]. Their
results show energy savings of 51.7% in the communication
architecture. Marcon et al. investigated how to map modules into
a NoC, targeting low energy consumption [17]. They compared
several algorithms, using a model that characterizes applications
by their inter-task communication volume. Xu et al. In [18]
presented a task scheduling scheme on heterogeneous
computing systems using a multiple priority queues genetic
algorithm (MPQGA). Their experimental results for large-sized
problems for a large set of randomly generated graphs as well as
graphs of real-world problems with various characteristics
showed that the proposed MPQGA algorithm outperformed two
non-evolutionary heuristics and a random search method in
terms of schedule quality.

IV. NOMES
In this work, we combine the GA and ICA methods and

customize this combined approach for the scheduling problem.
The GA operations are basically suitable for scheduling but a
GA’s convergence strategy to find more reliable and accurate
results is not efficient [10], because the selection operation in a
GA misses some chromosomes that have a probability to

become potential genes for obtaining the best results. In the
ICA, where we use countries as the population, all the countries
will be available in all iterations; they may only move to other
places in the search space. However, the selection operation
highly depends on random functions which can easily converge
to a local optimum. Therefore, we will use an efficient
convergence strategy (the ICA approach) in order to improve the
reliability of results.

All the scheduled tasks in a DAG should satisfy the
precedence relations so that we use an order based coding
mechanism suited for multiprocessor scheduling, which should
fulfill the following rules:

1. All the predecessors of a task must have completed their
execution before initiating the execution of the task.

2. In a DAG, all the tasks must be executed at least once.
Such a representation eliminates the need to consider the
precedence relations between the computational tasks.

T1

T2 T3 T4

T5

T7

T8

T6

T9

Figure 1. DAG Task graph

A. Order-based country (OBC)
There are several approaches [3, 5, 7] using GA for the

multiprocessor scheduling problem, but they are suffering from
inefficient coding methods. How to encode a solution of the
problem into a chromosome is a key issue here. It has been
investigated from two different angles which are: 1) mapping
characters from the genotype space to the phenotype space when
countries are decoded into solutions [1]; and 2) metamorphosis
properties when countries are manipulated by genetic operators
[9].

The two main challenges with respect to the encoding
problem are the following: 1) there is a need for storing a huge
number of chromosomes for each schedule; and 2) in the case of
a large number of tasks, the exploration and exploitation
operations will become very complex due to the precedence
relations among tasks.

To overcome these difficulties we introduce the concept of
an order based country (OBC) that strings the present task order
of task nodes with the corresponding processors simultaneously.
For example, Figure 2 shows an OBC that represents nine tasks
along with two processors for the DAG shown in Figure 1. For
example, the third column shows that the third scheduling is for
the task number 2 which should be run on the processor 2.

B. Order-based encoding/decoding
Establishing an encoding which can treat the task precedence

constraints efficiently is a critical step. The proposed encoding
method is based on the task order and is therefore a viable
solution. The following procedure explains the generation of the
initial OBC:

First, we input the order-based task numbers (1 ≤ ܺ[݅] ≤
Task) randomly in the second row, independently of the

processor number. Then, the algorithm fills in the third row with
random numbers Y[i] (1 ≤ ܻ[݅] ≤ .(݌#

1

1

3

2 2 1 2 1

6

2

8

2

9

1

3 4 5 6 7 8 9Priority 1 2 3 4 5 6 7 8 9

2 7 4 5X (Task Number)

Y (Processor Index)

Figure 2. An order based country (OBC)

C. NoMeS Operation:
In the initial population, the algorithm generates several

countries such as the one presented in Figure 4.1. The major part
of this algorithm is imperialistic, and it causes the colonies to
converge to the global minimum. After the initial step, algorithm
sorts the countries. Then, the best countries (whose fitness
values are better than those of the others) will be selected to
become imperialists, and the remaining countries form the
colonies of these imperialists. These colonies start moving
toward their relevant imperialists after all colonies have been
divided among the imperialists [9]. The next step computes the
power of each imperialist and the imperialistic competition step
follows. The weakest imperialist loses its weakest colony, and
the selected imperialist obtains this colony. The above steps are
then repeated until reaching a termination condition. The
termination condition can be defined in different ways. For
example, the NoMeS could be set to stop when one imperialist
has all colonies as its members.

Like with other ECs, when solving a problem with a large
search space, we need a large initial population to obtain a more
accurate and reliable result. We can also prevent convergence to
local optima by using a multi-population method, where each
processor runs serial NoMeS independently. If one processor
converges to a local optimum, all the other processors can
continue their work on other parts of the search space.

D. Multi-population NoMeS
To implement the NoMeS algorithm, we use a selective local

search strategy which runs NoMeS on several processors
connected in a ring topology, using the message passing method
for communication. In each processor, we first initiate
independent countries and run the serial NoMeS independently.
Regularly, the best country is migrated from processor ܲ݅ to
ܲ݅+1 replacing the worse country in P݅+1. The number of
countries in each processor remains equal even when countries
migrate to other processors, because all migrations between
processors are done synchronously.

In the multi-population NoMeS, we increase the number of
countries to get a higher selection pressure [10]; this facilitates
obtaining more accurate results in a short time and much faster
convergence to results, compared with the sequential NoMeS
algorithm. Indeed, in EC methods, when the diversity of
population is high enough, the rate of convergence improves.

1) Initialize the Empires
In this step, the fitness value of each country (OBC), which

has been generated randomly, is computed based on its power
metric which corresponds to the execution time of the country’s
schedule. Then the algorithm selects the best set of countries as
the imperialists, and divides the remaining countries as colonies
among them. Each imperialist with its colonies constitute an
empire.

2) Exploitation and Exploration Operation
In the exploitation phase, each colony can randomly pair

with its imperialist or another colony in its empire, but cannot
pair with any colonies from other empires. We use the order-
based crossover (OCX) function [9] to replace the task numbers
between the paired colonies. As shown in Figure 3 (exploitation
operation), OCX selects two indices (e.g. 3 and 6 in their OBCs)

of paired colonies and exchanges all the tasks between two
indexes of paired colonies. Then the remaining tasks are
exchanged sequentially. Afterwards, the exploration operation
selects several colonies randomly in order to exchange two tasks
of each colony. The indices of the two tasks are randomly
determined.

1

1

3

2

2

2

7

1

4

2

5

1

6

2

8

2

9

1

3 4 5 6 7 8 9

X

Y

Priority 1 2 3 4 5 6 7 8 9

1

1

2

1

4

2

3

2

6

2

5

1

8

1

7

2

9

1

3 4 5 6 7 8 9

X

Y

Priority 1 2 3 4 5 6 7 8 9

7

1

9

2

4

2

3

1

6

2

5

1

1

2

2

2

8

1

3 4 5 6 7 8 9

X

Y

Priority 1 2 3 4 5 6 7 8 9

8

1

9

1

2

2

7

2

4

2

5

1

1

1

3

2

6

1

3 4 5 6 7 8 9

X

Y

Priority 1 2 3 4 5 6 7 8 9

Figure 3. The exploitation operation

T.C.n=Cost(Imperialistn)+גmean{Cost(colonies of empiren)}

START

Is there a colony that is
dominating its relevant

imperialist?

Is there a colony that is
dominating its relevant

imperialist?

Are Stop
Conditions
satisfied?

Are Stop
Conditions
satisfied?

1.Initialize the Empires1.Initialize the Empires

2.Exploitation Operation

3.Exploration Operation

4.Exchange Imperialist
and the best Colony

5.Compute Total Cost

6.Imperialistic Competitive

END

2

N
O

YES

NO

Y
ES

Imperialist 1

Imperialist 2

Imperialist 3
1

1

3

2

2

2

7

1

4

2

5

1

6

2

8

2

9

1

X

Y

1

1

3

2

6

2

7

1

4

2

5

1

2

2

8

2

9

1

X

Y

1

1

3

2

2

2

7

1

4

2

5

1

6

2

8

2

9

1

X

Y
1

1

2

1

4

2

3

2

6

2

5

1

8

1

7

2

9

1

X

Y

7

1

9

2

4

2

3

1

6

2

5

1

1

2

2

2

8

1

X

Y
8

1

9

1

2

2

7

2

4

2

5

1

1

1

3

2

6

1

X

Y

Empire 1 Empire 2 Empire 3

The Weakest Empire

Figure 4. The NoMeS flowchart

3) Exchange Position and Compute the Total Cost
After the exploitation and exploration, if a colony obtains a

better fitness value than its imperialist, the algorithm exchanges
the positions of this colony and the imperialist, i.e. the colony
becomes an imperialist and the imperialist becomes a colony.
After the exchange operation, the algorithm computes the total
cost (power) of the empire based on Equation 1.

Total Cost௡ = Cost (ݐݏ݈݅ܽ݅ݎ݁݌݉ܫ௡)
+ .ߦ {(௡݁ݎ݅݌݉ܧ ݂݋ ݏ݁݅݊݋݈݋ܥ)ݐݏ݋ܥ} ݊ܽ݁ܯ

(1)

4) Imperialistic Competition
In this phase, all the imperialists try to achieve one

(randomly selected) colony from the weakest imperialist. The
algorithm searches among the empires and selects the weakest
empire based on their total cost. The taken colony will be given
to the strongest empire.

5) Migration Operation
The migration operation is the key aspect of our method. We

consider a system, where several processors are connected in a
ring topology using message passing protocol for
communication. The ring topology has been selected because of
its low communication cost and simplicity. Each processor is
first initialized with a set of independent countries (the number
of countries in each processor is the same) and running serial
NoMeS independently on each processor. Now and then, in
some time intervals, the best country (colony) migrates from
processor Pi to the next processor Pi+1 and replaces the worst

country in Pi+1. Since we utilize the ring topology to connect
processors together, and because the migration takes place in all
processors synchronously, the numbers of countries in any two
processors are equal at any given time. The migration strategy
can affect the result as well. Generally, it is better to establish a
balance between the migration rate and data communication
between processors in multi-population implementations. The
chosen simple ring topology is utilized to reduce the migration
rate and to decrease the distance of the migrations.

V. EXPERIMENTAL RESULTS
In this section, four well-known real applications have been

employed to demonstrate the performance of the proposed
NoMeS algorithm. The obtained results have been compared
with those of the other optimization methods that have used the
same applications. The parallel NoMeS has been implemented
based on both shared memory and message passing platforms.
The message passing interface (MPI) has been utilized to
parallelize our algorithm and MPICH2 to run the algorithm.

In the multi-population NoMeS model, five processors (the
processors that are used to run the NoMeS optimization
algorithm) have been connected in a ring topology, considering
different numbers of processors for executing the selected four
applications on a NoC based MPSoC platform. The proposed
algorithm has been tested on an Intel Core i5-45705 desktop
computer clocked at 2.90 GHz (64-bit) with 24GB of memory.
The results of the considered benchmark applications have been
obtained by 20 independent runs. The involved parameters for
solving the problems are specified in TABLE I.

The four real applications, used to test the proposed
approach, are: Sobel filter, SUSAN filter, RASTA-PLP and
JPEG encoder [11]. They are illustrated in Figure 9. The
benchmarksFigure 9. Also, NoMeS is compared with MPGA
[8], PMC [20] and MPQGA [18] in the same conditions (e.g. the
same platform and initial population) on all benchmarks.

Figure 5, Figure 6, Figure 7 and Figure 8 show the execution
times of the benchmarks for all the considered optimization
methods with different numbers of processors (the processors
that run the scheduled tasks on a NoC based MPSoC platform).
NoMeS improves (decreases) execution time by more than
29.5%, 68.1%, 47.4%, and 10.1% for the Sobel, SUSAN,
RASTA-PLP, and JPEG encoder applications, respectively.
These results show that NoMeS is more effective in more
complex applications. TABLE II. shows the execution times of
the benchmarks for all the methods. The execution time of each
predicted scheduling clearly demonstrates that NoMeS is more
fit and efficient than the other methods for the DAG scheduling
problem.

The stability and reliability of the experimental results are
the other important factors for selecting the best method. It is a
fact that heuristic and metaheuristic methods cannot achieve the
best results in all runs, so the stability diagram is the best
criterion to show the reliability of the results. We run each
optimization method for each benchmark application 20 times
to demonstrate how many times each method can find the best
results. The stability diagrams of the considered methods are
illustrated in Figure 10. The statistical results are listed in
TABLE III. The table demonstrates that our algorithm is more
accurate with fewer errors than the existing other methods. Also,
this table shows that NoMeS has obtained the best results for
Susan, RASTA-PLP and JPEG encoder. In TABLE IV. , two
critical parameters, namely speedup and efficiency (Equations 2
and 3), are also compared, considering both serial and parallel
(multi-population) NoMeS approaches. The speedup values
show how many times faster the parallel method is compared
with the serial method, and the efficiency values indicate the
average speedup per processor. The table shows that the

efficiency of the proposed parallel implementation is
outstanding, and it clearly outperforms the serial version of the
NoMeS method.

݌ݑ݀݁݁݌ܵ = ݉݅ܶ ݊݋݅ݐݑܿ݁ݔܧ ௌ݁௘௥௜௔௟ ⁄௉௔௥௔௟௟௘௟݁݉݅ܶ ݊݋݅ݐݑܿ݁ݔܧ (2)
ݕ݂݂ܿ݊݁݅ܿ݅ܧ = ݌ݑ݀݁݁݌ܵ ⁄ݏݎ݋ݏݏ݁ܿ݋ݎܲ# (3)

 The convergence diagrams of the NoMeS method on all
benchmarks are presented in Figure 11. Based on the quality and
reliability of the results, the efficiency of this method, as well as
its usability for real applications, NoMeS is truly a prominent
candidate for task graph scheduling.

VI. CONCLUSION
In this paper, we first introduced a new evolutionary

computing method, called NoMeS, a combination of the
imperialist competitive algorithm (ICA) and a genetic algorithm
(GA). Then, we presented a multi-population implementation of
NoMeS, in order to improve its performance (execution time)
and reliability (proximity of achieved results), for task graph
scheduling which is a multi-objective optimization problem.
Experimental results revealed that NoMeS is the best candidate
for solving the task graph scheduling problem, being more
reliable and providing significantly better solutions than the
other considered state-of-the-art methods.

TABLE I. THE PARAMETERS OF NOMES
Parameters Values

Number of Countries 100
Number of Empires 5

Termination Condition 20 Iterations
Number of Processors 5

Exploitation Rate 0.8
Exploration Rate 0.3
Migration Rate 1 Chromosome

TABLE II. EXECUTION TIMES OF THE BENCHMARKS FOR THE
CONSIDERED OPTIMIZATION METHODS

 #p NoMeS
(ns)

MPGA
(ns)

PMC
(ns)

MPQGA
(ns)

Sobel 2 10520 11440 11440 10946
SUSAN 2 41540 49120 49120 47218
RASTA 2 20240 27040 28320 24126
JPEG 2 109400 120200 117280 116320
JPEG 4 108680 120200 117280 114806
JPEG 6 95240 108680 108680 106354
JPEG 8 95240 104630 105624 104658
JPEG 10 95240 101460 101460 99468

TABLE III. THE STATISTICAL RESULTS WITH 2 PROCESSORS
 NoMeS MPGA PMC MPQGA

Sobel
(Cycle)

Mean 530.6 577.8 583 571
Best 526 572 572 556

Worst 572 612 612 598
STD 14.1585 12.4799 15.728 17.281

Median 526 572 572 572
SUSAN
(Cycle)

Mean 2134.9 2484.3 2484.9 2372.8
Best 2077 2456 2456 2246

Worst 2478 2532 2532 2532
STD 141.5953 33.29 29.4974 131.502

Median 2077 2478 2478 2362
RASTA-

PLP
(Cycle)

Mean 1012 1414.8 1470.2 1343.4
Best 1012 1352 1416 1246

Worst 1012 1612 1612 1564
STD 0 82.8960 66..6488 128.5565

Median 1012 1384 1464 1246
JPEG-

encoder
(Cycle)

Mean 5475.8 6233.3 6153 5948.8
Best 5370 6010 5864 5812

Worst 5840 6580 6580 6328
STD 203.6293 259.4247 294.7416 186.3369

Median 5370 6010 6010 5812

TABLE IV. THE SPEEDUP AND EFFICIECY OF NOMES ON 5 PROCESSORS
 Serial

NoMeS Time
(s)

NoMeS Time
(s)

Speedup Efficiency

Sobel 45.32 11 4.12 0.824
SUSAN 75.6 18 4.20 0.840

RASTA-PLP 89.67 21 4.27 0.854
JPEG encoder 133.12 32 4.16 0.832

×2

Figure 5. The Execution Time of Sobel filter with different numbers

of processors

×2

Figure 6. The Execution Time of Susan filter with different numbers

of processors

×2

Figure 7. The Execution Time of RASTA-PLP filter with different

numbers of processors

×2

Figure 8. The Execution Time of JPEG-encoder with different

numbers of processors

getPixel

abs

gygx direction

usan

thin

getImage

putImage

1
3

2

powspec

rasta

compJah

rastaFilter

backEnd

2

audspec

frontEnd

2

CS

readImg

writeImg

Huffman_0 Huffman_1 Huffman_2 Huffman_3 Huffman_4 Huffman_5

1

DCT_5DCT_0 DCT_1 DCT_2 DCT_3 DCT_4

CC_0

1

 Sobel SUSAN RATA-PLP JPEG encoder

Figure 9. The benchmarks

Figure 10. The stability diagram of NoMeS, MPGA, PMC and

MPQGA on Sobel, SUSAN, RASTA-PLP and JPEG encoder with 2
processors.

Figure 11. The convergence diagram of NoMeS on Sobel, SUSAN,

RASTA-PLP and JPEG encoder with 2 processors.

REFERENCES
[1] Adam TL, Chandy KM, Dicksoni JR. A comparison of list schedules for

parallel processing systems. Communications of the ACM
1974;17(12):685–90.

[2] Wu MY, Gajski DD. Hypertool: a programming aid for message-passing
systems. IEEE Transactions on Parallel and Distributed Systems
1990;1(3):330–43.

[3] Hou ESH, Ansari N, Hong R. A genetic algorithm for multiprocessor
scheduling. IEEE Transactions on Parallel and Distributed Systems
1994;5(2):113–20.

[4] Hwang RK, Gen M. Multiprocessor scheduling using genetic algorithm
with priority-based coding. Proceedings of IEEJ conference on
electronics, information and systems; 2004.

[5] Wu AS, Yu H, Jin S, Lin K-C, Schiavone G. An incremental genetic
algorithm approach to multiprocessor scheduling. IEEE Transactions on
Parallel and Distributed Systems 2004;15(9):824–34.

[6] Gen M, Cheng R. Genetic algorithm and engineering optimization.
NewYork:Wiley; 2000.

[7] Tsujimura Y, Gen M. Genetic algorithms for solving multiprocessor
scheduling problems. In: Simulated evolution and learning. Heidelberg:
Springer; 1995. p. 106–115.

[8] R. Moradi and D. Dal, A Multi-Population Based Parallel Genetic
Algorithm for Multiprocessor Task Scheduling with Communication
Costs, 2016 IEEE Symposium on Computers and Communication
(ISCC).

[9] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an
algorithm for optimization inspired by imperialistic competition, in:IEEE
Congress on Evolutionary Computation, 2007, pp. 46614667.

[10] A. Majd, M. Abdollahi, G. Sahebi, D. Abdollahi, M. Daneshtalab, J.
Plosila and H. Tenhunen, Multi-Population Parallel Imperialist
Competitive Algorithm for Solving Systems of Nonlinear Equations, The
2016 International Conference on High Performance Computing &
Simulation (HPCS 2016).

[11] N. Khalilzad, K. Rosvall and I. Sander, A Modular Design Space
Exploration Framework for Multiprocessor Real-Time Systems, Forum
on specification and Design Languages (FDL'16), 2016.

[12] T. Lei and S. Kumar, ‘‘A Two-Step Genetic Algorithm for Mapping Task
Graphs to a Network on Chip Architecture,’’ Proc. Euromicro Symp.
Digital System Design (DSD 03), IEEE Press, 2003, pp. 180-187.

[13] D. Wu, B. Al-Hashimi, and P. Eles, ‘‘Scheduling and Mapping of
Conditional Task Graphs for the Synthesis of Low Power Embedded
Systems,’’ Proc. Design, Automation and Test in Europe (DATE 03),
IEEE CS Press, 2003, pp. 90-95.

[14] S. Murali and G. De Micheli, ‘‘Bandwidth-Constrained Mapping of Cores
onto NoC Architectures,’’ Proc. Design, Automation and Test in Europe
(DATE 04), IEEE CS Press, 2004, pp. 896-901.

[15] S. Manolache, P. Eles, and Z. Peng, ‘‘Fault and Energy-Aware
Communication Mapping with Guaranteed Latency for Applications
Implemented on NoC,’’ Proc. 42nd Annual Design Automation Conf.
(DAC 05), ACM Press, 2005, pp. 266-269.

[16] J. Hu and R. Marculescu, ‘‘Energy- and Performance- Aware Mapping
for Regular NoC Architectures,’’ IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, vol. 24, no. 4, 2005, pp. 551-562.

[17] C. Marcon et al., ‘‘Comparison of NoC Mapping Algorithms Targeting
Low Energy Consumption,’’ IET Computers & Digital Techniques, vol.
2, no. 6, 2008, pp. 471-482.

[18] Y. Xu, K. Li, J. Hu and K. li, “A genetic algorithm for task scheduling on
heterogeneous computing systems using multiple priority queues,”
Information Sciences, Vol.270, pp. 255-287,Elsevier,2014.

[19] E. L. s. Carvalho, N. L. V. Calazans and F. G. Moraes, “ Dynamic Task
Mapping for MPSoCs,” IEEE Design and Test of Computers, 2010.

[20] R. Hwang, M. Gen and H. Katayama, “ A comparison of multiprocessor
task scheduling algorithms with communication costs” Computers &
Operations Research, Vol. 35, pp. 976 – 993, ELSEVIER, 2008.

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures
192. Toni Ernvall, On Distributed Storage Codes
193. Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems
194. Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing – Analysis and

Applications
195. Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market

Segmentation
196. Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:

Rigorous Design and Efficient Implementation
197. Espen Suenson, How Computer Programmers Work – Understanding Software

Development in Practise
198. Tuomas Poikela, Readout Architectures for Hybrid Pixel Detector Readout Chips
199. Bogdan Iancu, Quantitative Refinement of Reaction-Based Biomodels
200. Ilkka Törmä, Structural and Computational Existence Results for Multidimensional

Subshifts
201. Sebastian Okser, Scalable Feature Selection Applications for Genome-Wide

Association Studies of Complex Diseases
202. Fredrik Abbors, Model-Based Testing of Software Systems: Functionality and

Performance
203. Inna Pereverzeva, Formal Development of Resilient Distributed Systems
204. Mikhail Barash, Defining Contexts in Context-Free Grammars
205. Sepinoud Azimi, Computational Models for and from Biology: Simple Gene

Assembly and Reaction Systems
206. Petter Sandvik, Formal Modelling for Digital Media Distribution

207. Jongyun Moon, Hydrogen Sensor Application of Anodic Titanium Oxide
Nanostructures

208. Simon Holmbacka, Energy Aware Software for Many-Core Systems
209. Charalampos Zinoviadis, Hierarchy and Expansiveness in Two-Dimensional

Subshifts of Finite Type
210. Mika Murtojärvi, Efficient Algorithms for Coastal Geographic Problems
211. Sami Mäkelä, Cohesion Metrics for Improving Software Quality
212. Eyal Eshet, Examining Human-Centered Design Practice in the Mobile Apps Era
213. Jetro Vesti, Rich Words and Balanced Words
214. Jarkko Peltomäki, Privileged Words and Sturmian Words
215. Fahimeh Farahnakian, Energy and Performance Management of Virtual

Machines: Provisioning, Placement and Consolidation
216. Diana-Elena Gratie, Refinement of Biomodels Using Petri Nets
217. Harri Merisaari, Algorithmic Analysis Techniques for Molecular Imaging
218. Stefan Grönroos, Efficient and Low-Cost Software Defined Radio on Commodity
 Hardware
219. Noora Nieminen, Garbling Schemes and Applications
220. Ville Taajamaa, O-CDIO: Engineering Education Framework with Embedded
 Design Thinking Methods
221. Johannes Holvitie, Technical Debt in Software Development – Examining
 Premises and Overcoming Implementation for Efficient Management
222. Tewodros Deneke, Proactive Management of Video Transcoding Services
223. Kashif Javed, Model-Driven Development and Verification of Fault Tolerant
 Systems
224. Pekka Naula, Sparse Predictive Modeling – A Cost-Effective Perspective
225. Antti Hakkala, On Security and Privacy for Networked Information Society –
 Observations and Solutions for Security Engineering and Trust Building in
 Advanced Societal Processes
226. Anne-Maarit Majanoja, Selective Outsourcing in Global IT Services – Operational
 Level Challenges and Opportunities
227. Samuel Rönnqvist, Knowledge-Lean Text Mining
228. Mohammad-Hashem Hahgbayan, Energy-Efficient and Reliable Computing in

Dark Silicon Era
229. Charmi Panchal, Qualitative Methods for Modeling Biochemical Systems and

Datasets: The Logicome and the Reaction Systems Approaches
230. Erkki Kaila, Utilizing Educational Technology in Computer Science and

Programming Courses: Theory and Practice
231. Fredrik Robertsén, The Lattice Boltzmann Method, a Petaflop and Beyond
232. Jonne Pohjankukka, Machine Learning Approaches for Natural Resource Data
233. Paavo Nevalainen, Geometric Data Understanding: Deriving Case-Specific

Features
234. Michal Szabados, An Algebraic Approach to Nivat’s Conjecture
235. Tuan Nguyen Gia, Design for Energy-Efficient and Reliable Fog-Assisted

Healthcare IoT Systems
236. Anil Kanduri, Adaptive Knobs for Resource Efficient Computing
237. Veronika Suni, Computational Methods and Tools for Protein Phosphorylation

Analysis
238. Behailu Negash, Interoperating Networked Embedded Systems to Compose the

Web of Things
239. Kalle Rindell, Development of Secure Software: Rationale, Standards and

Practices
240. Jurka Rahikkala, On Top Management Support for Software Cost Estimation
241. Markus A. Whiteland, On the k-Abelian Equivalence Relation of Finite Words
242. Mojgan Kamali, Formal Analysis of Network Routing Protocols
243. Jesús Carabaño Bravo, A Compiler Approach to Map Algebra for Raster Spatial

Modeling
244. Amin Majd, Distributed and Lightweight Meta-heuristic Optimization Method for

Complex Problems

Turku
Centre for
Computer
Science

University of Turku
Faculty of Science and Engineering
 • Department of Future Technologies
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Faculty of Science and Engineering
 • Computer Engineering
 • Computer Science
Faculty of Social Sciences, Business and Economics
 • Information Systems

ISBN 978-952-12-3864-2
ISSN 1239-1883

http://www. tucs.fi

tucs@abo.fi

A
m

in M
ajd

A
m

in M
ajd

A
m

in M
ajd

D
istributed and Lightw

eight M
eta-heuristic O

ptim
ization M

ethod for C
om

plex Problem
s

D
istributed and Lightw

eight M
eta-heuristic O

ptim
ization M

ethod for C
om

plex Problem
s

D
istributed and Lightw

eight M
eta-heuristic O

ptim
ization M

ethod for C
om

plex Problem
s

	1 (1)
	2p
	2 (2)
	Parallel imperialist competitive algorithms
	Abstract
	INTRODUCTION
	REVIEW OF PARALLEL EVOLUTIONARY ALGORITHMS
	Parallel genetic algorithms
	Parallel ant colony optimization
	Parallel artificial bee colony algorithm
	Parallel particle swarm optimization
	Parallel memetic algorithms

	Proposed methods
	Master-slave PICA
	Multi-population PICA

	EVALUATION AND EXPERIMENTAL RESULTS
	Comparision between multi-population parallel ICA and ICA
	Comparison between master-slave PICA and ICA
	Comparison between PICA and parallel ABC
	Comparison between PICA and multi-population parallel genetic algorithm
	Comparison between PICA and dynamic neighborhood structures in parallel evolution strategies (Neighborhood GA)
	Comparison between multi-population PICA and GPU-based PSO-TM
	Comparison between multi-population PICA and C-PPSO
	Convergence
	Stability
	Case studies
	Speedup and parallel efficiency

	CONCLUSION
	References

	3p.docx
	3
	4p
	4
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 System Model Elements
	2.2 Problem Assumption

	3 MPGA Description
	3.1 MPGA Algorithm

	4 Evaluations
	4.1 Implementation Details
	4.2 Experimental Results Convergence
	4.3 Comparison between MPGA and simple GA
	4.4 Comparison Between MPGA and Morady et al. [7]
	4.5 Allocation and Scheduling Results

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

	5p
	5
	6p
	6
	7p
	7
	8p
	8.5P
	8
	Blank Page

