
Systematic approach towards Analysis and

Mitigation of Advanced Evasion

Techniques

Master of Science in Technology thesis
University of Turku
Department of Future Technologies
Security of Networked Systems
December 2019
Jaspreet Singh Pannu

Supervisors:
Seppo Virtanen
Antti Hakkala

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Future Technologies

JASPREET SINGH PANNU: Systematic approach towards Analysis and Mitigation of Ad-
vanced Evasion Techniques

Type of thesis, 59 p., 0 app. p.
Security of Networked Systems
December 2019

Advanced Evasion Techniques (AETs) can successfully evade most network security
devices and execute attack on target system. This is still an occurring problem, even after
20 years since the disclosure of evasion techniques and how they can be used to bypass
network security. Network security solutions, such as Intrusion Detection and Prevention
Systems (IDPS) still struggle and are vulnerable to most of the evasions techniques
mentioned identified in 1998.

In this thesis, a systematic analysis of advanced evasion techniques (AETs) is presented
in the first two phases. Based on the results of the analysis, new mitigation methods
against AETs are proposed in the third phase. Four experiments were executed in each of
three different phases using advanced evasion techniques to masquerade the attack. The
target of this analysis was to first recognize which combinations of evasions are most
effective and which individual/ single evasion techniques are effective by itself. The final
phase was to implement proposed mitigation methods and test the results.

The results from the analysis showed that 4-6 % of AETs, can successfully masquerade
attacks and bypass one of the most modern and updated network security solution. Pro-
posed mitigation methods are capable of normalizing traffic much better while improving
the results significantly. In many cases 100 % attack techniques were mitigated and some
particular techniques exploiting headers of protocol were also mitigated completely.
Nonetheless, when evasion techniques are used in complex combinations, results become
concerning and it is important to note that the danger from AETs may still persist.

Keywords: Network Security, AET, Advanced Evasion Techniques, Evasions, IPS, In-

trusion Prevention System, IDPS, Intrusion Detection and Prevention Sys-

tem, Snort, Segmentation

Abbreviations and Acronyms

AET Advanced Evasion Techniques

CNSS Committee on National Security Systems of United States of America

CVE Common Vulnerabilities and Exposures

(D)DoS (Distributed) Denial of Service

DUT Device Under Test

GDP Gross Domestic Product

HTTP Hyper Text Transfer Protocol

IDES Intrusion Detection Expert System

IETF Internet Engineering Task Force

IP Internal Protocol

LTS Long Term Support

MSRPC Microsoft Remote Procedure Call

(N)IDPS (Network) Intrusion Detection and Prevention System

(N)IDS (Network) Intrusion Detection System

(N)IPS (Network) Intrusion Prevention System

OSI Open Systems Interconnection

phpBB PHP Bulletin Board

RFC Request For Comments

SMB Server Message Block protocol

TCP Transmission Control Protocol

TTL Time To Live

TLS Transport Layer Security

Contents

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Statement of problem . 3

1.2 Aim of Thesis . 3

1.3 Thesis structure . 3

2 Intrusion Detection and Prevention System - IDPS 5

2.1 Intrusion Detection and Prevention System 6

2.1.1 Intrusion Detection System (IDS) 6

2.1.2 Intrusion Prevention System (IPS) 7

2.2 Components of IDPS . 9

2.3 Different Types of IDPS . 9

2.4 Methodologies used by IDPS . 10

2.4.1 Signature based Detection . 10

2.4.2 Anomaly Based Detection . 11

2.4.3 Stateful Protocol Analysis . 12

3 Advanced Evasion Techniques 14

3.1 Advanced Evasion Techniques (AET) 14

3.2 Evasions techniques . 15

3.2.1 Packet splitting . 15

3.2.2 Denial of Service (DoS) . 16

3.2.3 Encryption . 17

3.2.4 Time to Live Manipulation . 18

3.2.5 Duplicate Insertion . 19

3.2.6 Timing attack . 19

3.2.7 Protocol violation . 20

3.2.8 Obfuscation . 21

3.3 Evasion Tools . 22

4 Environment for Experiment 24

4.1 Environment Configuration . 24

4.1.1 Hardware . 24

4.1.2 Software . 25

4.1.3 Device under Test (DUT) . 27

4.1.4 Selection of Target . 27

4.2 Network Topology . 28

5 Methodologies for Experiment 30

5.1 Methodologies . 30

5.1.1 Fuzzing . 30

5.1.2 Segregation to Single evasions 31

5.1.3 Configuration change . 31

5.1.4 Multiple verification . 32

5.1.5 Obfuscation . 32

6 Implementation 33

6.1 Experiment Phase 1 . 34

6.1.1 Setup and Execution . 34

6.1.2 Problems and Solutions during the experiment phase 1 36

6.2 Experiment Phase 2 . 37

6.3 Experiment Phase 3 - Attempt to Mitigate 39

6.3.1 Modification of snort to attempt mitigation 39

7 Evaluation of results 41

7.1 Successful combinations of evasions . 41

7.2 Gaining successful single evasions . 44

7.3 Testing single evasions . 46

7.3.1 Important observations . 47

7.4 Mitigation Phase . 48

7.4.1 Further test result . 50

8 Conclusion 51

References 53

Appendices

List of Figures

3.1 Attacking the target system with TTL Manipulation and Duplicate Insertion 20

4.1 Network Topology used in Experiments 29

List of Tables

7.1 Successful evasions and their success rate 42

7.2 Single evasions and Unique single evasions 45

7.3 Successful single unique evasions . 47

7.4 Result after Mitigation attempt . 49

Chapter 1

Introduction

The network of systems on the internet is increasing exponentially and so are the threats.

On a global estimate, there are 4.48 billion active internet users [1]. According to the

Symantec report, the overall endpoint attacks was observed to increase by 56 % from

2017 in 2018. Moreover, 1 in 10 URLs was found to be malicious in the year 2018. They

further emphasized that the malicious attacks on small companies increased significantly

in contrast to bigger organizations [2]. These malicious cyber attacks create huge loses

to the global economy, from which organizations and bodies involved may not be able to

recover from easily. According to the study from the Center for Strategic and International

Studies (CSIS) with McAfee, an estimated $600 billion is lost to Cybercrime on a yearly

basis. These estimated losses are calculated to be about 1 % of global GDP [2].

Cyber attacks are not only limited to active internet users, smartphones or computers.

They can be targeted to any device that is connectable to the internet. According to statica,

the number of IoT devices connected to the internet is around 26 billion and is estimated

to increase by up to 75.4 billion by 2025 [3]. One of the major examples of how IoT

devices can be used as a platform to execute the attack is by malware, such as Mirai.

Mirai malware used IoT devices as a platform to execute a big DDoS attack [2].

All devices have unpredictable and various system configurations. The varying con-

figurations make it impractical to searching and identifying one point of defense against

CHAPTER 1. INTRODUCTION 2

every threat. This makes devices vulnerable to cyber attacks. The vulnerabilities of these

devices to new attacks are making them prime targets to cyber crimes ranging from iden-

tity theft to cyber extortion, monetization of these threats. Several thousands of new

variants of malware are developed on a daily basis which are capable of exploiting the

vulnerabilities of devices. These new variants are still challenges for cyber security [4].

Various methods to tackle cyber attacks are being deployed to protect various OSI

layer levels. One of the methods that is used to protect the network from potential threats

and exploits is Network Intrusion Detection and Prevention System (NIDPS) along with

Firewall. A firewall is used to limit the network access to traffic on both sides by restrict-

ing various IPs according to defined rules. Whereas the NIDPS detects threats and attacks

by matching signatures or by analyzing anomaly activity over the network. When the

Network Intrusion Detection System (NIDS) detects a threat, it logs it and sends an alarm

to admin. Network Intrusion Prevention System (NIPS) along with all capabilities of the

Intrusion Detection System is also capable of taking countermeasures against the threat.

It is capable of dropping the threat packets and reports to the admin or firewall to block a

particular IP or IP group. [5]

NIPS works on the analysis of live real-time in-line traffic by comprehensively in-

specting live data. This comprehensive inspection is resource exhaustive and proves to

be the network performance bottleneck. This exhaustion makes NIPS directly suscepti-

ble to DDoS attacks. Another issue that NIPS/NIDS faces is the interpretation of data

which may appear differently than the target. This might result in bypassing the signature

matching of NIPS and anomaly detection. [6]

Evasion techniques according to Newsham and Ptacek are "techniques that involve

exploiting inconsistencies between the analyzer and an end system in order to slip pack-

ets past the analyzer" [6]. Evasion techniques can be customized to exploit any particular

vulnerability or limitations of the NIPS, including its protocol analysis and segmentation.

These techniques can be utilized to execute serious attacks against various targets by de-

CHAPTER 1. INTRODUCTION 3

livering malicious payload beyond the Intrusion Prevention System. Complex evasion or

a combination of various evasion techniques can be described as advanced evasion tech-

niques (AETs) which can be used as countless different combinations; hence, resulting in

very serious implications for the security of the network. The major problem the NIPS

encounters is the defense against these evasion techniques.

1.1 Statement of problem

Over the past 20 years from the first disclosure of evasion techniques, several studies have

proven the effectiveness of AETs; however, these efforts are to no avail because the AETs

are still capable of penetrating the modern and updated IDPS. This creates a need to create

a method to counter the vulnerability of IDPS against AETs.

1.2 Aim of Thesis

The aim of my thesis project is to systematically analyze the AETs and propose mitigation

methods against the AETs based on the results of the analysis from experiments carried

out.

First, the analysis of AETs with several evasion attacks would be performed with the

purpose of recognizing the kind of evasions that are more successful in evading IDPS,

as well as protocols that are more prone to evasion attacks. The information obtained

from the result analyzed would serve as the basis for the next stage of this thesis. Further,

mitigation methods would be performed to prevent the success of AET based attacks.

1.3 Thesis structure

This thesis is divided into 8 chapters. After the introduction of the thesis, chapter 2 and

3 explains details of Intrusion detection and prevention system and Advanced evasions

CHAPTER 1. INTRODUCTION 4

techniques. Further, the environment of the experiment and methodologies used for the

experiment are explained in chapters 4 and 5.

Implementation of the experiment and evaluation of results are described in chapters

6 and 7. In these two chapters, implementation in different phases of the experiment is

explained and how results retrieved from every stage are evaluated. All observations and

results retrieved from the mitigation methods are explained in chapter 7.

Finally, we conclude with results from analysis about the effectiveness of Intrusion de-

tection and prevention system against advanced evasion techniques. Also understanding

the implications and possibilities of the mitigation methods proposed for the experiment.

Chapter 2

Intrusion Detection and Prevention

System - IDPS

Network intrusion detection and prevention system is fundamental and a very crucial part

of the network. It monitors and analyzes traffic to find and defend against any malicious

attack. An Attack as defined by RFC4949 is “An intentional act by which an entity at-

tempts to evade security services and violate the security policy of a system. That is, an

actual assault on system security that derives from an intelligent threat.” [7]. Committee

on National Security Systems (CNSS) of the United States of America defines attack as

“Any kind of malicious activity that attempts to collect, disrupt, deny, degrade, or destroy

information system resources or the information itself” [8].

Intrusion detection is the process of monitoring the events occurring in a computer

system or network and analyzing them for signs of possibles incident in which an intruder

gains or attempts to gain access to a system or system resource without having authoriza-

tion [9].

In a computer security technology planning study, a United States Air Force paper

written by James P Anderson published in October 1972 mentioned that “Air force has be-

come increasingly aware of the problems of computer security. This problem has intruded

CHAPTER 2. INTRUSION DETECTION AND PREVENTION SYSTEM - IDPS 6

upon virtually every aspect of US Air Force operation and administration.” He highlighted

that major problems of shared use of computer systems with different classification “ the

fact that there is growing requirement to provide shared use of computer systems contain-

ing information of different classification levels and need-to-know requirements in a user

population not uniformly cleared or access-approved.” [10].

In 1980 James P. Anderson published another study “Computer Security threat mon-

itoring and surveillance”. In this study, he disc “How to use accounting audit files to

detect unauthorized access” is considered as the original idea behind automated Intrusion

Detection. [11].

2.1 Intrusion Detection and Prevention System

2.1.1 Intrusion Detection System (IDS)

Intrusion Detection System is the software/system that automates the process of Intru-

sion Detection. In 1986, Dorothy Denning and Peter Neumann developed the first model

of real-time intrusion detection systems. They developed a rule-based prototype system

trained to detect already known activities. This prototype was named the Intrusion Detec-

tion Expert System (IDES) [12].

IDS sits on the side of the network or host system and receives a copy of the inline

traffic stream to detect and report malicious activities.

It creates real-time alarms and reports them to the administrator. All types of IDS typically

perform some particular functions that are enumerated below:

1. It produces regular reports about monitoring any particular malicious or suspicious

event

2. It records the information either on the local system or centralized logging remote

server

CHAPTER 2. INTRUSION DETECTION AND PREVENTION SYSTEM - IDPS 7

3. It provides information to system administration in form of alerts regarding any

malicious or important events

2.1.2 Intrusion Prevention System (IPS)

IPS has all the capabilities of IDS and can also attempt to stop the incidents of intrusion

[9]. IPS can be made to work as IDS with options for preventing and dropping or normal-

izing traffic disabled. It is also referred to as Intrusion Detection and Prevention System

(IDPS) [9].

IPS works inline on the network, so all network traffic flows directly through this sys-

tem. Due to the inline traffic flow, the system has capabilities to block or stop intrusions.

IPS and IDS provides many similar capabilities whereby the network administrator is able

to turn off prevention functionality in IPS making it function as IDS.1

IPS can prevent intrusion with several response techniques which are highlighted below;

• IPS stops attacks by terminating or blocking connection to target or host or vise

versa

• IPS can change the security environment by altering the configuration of network

devices like firewall, router or switches

• IPS can change the content of the attack file or packet by removing or replacing

malicious content and forwarding remaining content to the destination

Along with the above-mentioned techniques, there is also another characteristic of IDPS

that suggests it is impossible to provide completely accurate detection information. This

characteristic may result in false positive or false negatives. False-positive occurs when

IDS detects a normal or non-malicious abnormal activity and identify it as malicious. On

1From now on IDPS and IPS term would be used interchangeably to represent IDS/ IPS, since Intrusion

Prevention System can be configured to work like Intrusion Detection System by disabling it and stopping

it from taking action against events

CHAPTER 2. INTRUSION DETECTION AND PREVENTION SYSTEM - IDPS 8

the other hand, false negative occurs when IPS fails to detect real malicious activity or

threat and passes it as normal traffic [9].

If the situation occurs that there are too many false-positive reports by the IDPS, there

would consequently be false alarms and long reports generated without any real attack

or malicious event. This can be problematic by making result analysis difficult, false

assumption of a system fault which might result in allowance of undetected malicious

events [13]. In 1990s, one of the major reasons IPS was less adapted as a network security

solution is because it was believed that entire network traffic would become slow, the clean

network traffic would be marked malicious and dropped due to excessive false positive.

It is important to note that adversaries can take advantage of the situation by pushing

extensive non-malicious data to create false positives and send malicious data also which

might not be noticed [14].

Unlike false positives, false negatives signify bad detection policy or configuration

issue. Moreover, if IDPS can not detect malicious events or attacks then there is no point

in having the system on the network. Furthermore, false negatives generally happen due

to the presence of outdated signatures, rules, or lack of adequate resources to perform the

detection task. The number of false negatives can be reduced significantly by updating

system, signature database and resolving IDPS configuration [15].

From the early year 2000, the market take on IPS was really low due to the fear of

false positive. Organizations were ready to let anomalous activity into their networks

rather than taking the chance of dropping a harmless network connection. In the year

2003, research vice president for Gartner stated that "Intrusion detection systems are a

market failure, and vendors are now hyping intrusion prevention systems, which have

also stalled," [14].

Over the period, evolution in the technology of IPS has taken the huge leap and its

adoption has increased due to researches to improvement in the detection policies of IPS,

as well as the reduction in false positives. Even though the concern of false-positive and

CHAPTER 2. INTRUSION DETECTION AND PREVENTION SYSTEM - IDPS 9

alerts remains. In the year 2018, the Gartner Magic quadrant reported that IDS/ IPS offers

the best detection, central prevention and response solution on a network [16].

2.2 Components of IDPS

The typical components of IDPS are the sensor, console, database server and management

server as explained below [9].

• Sensor: This component monitors and analyzes the traffic of the network for any

malicious activity.

• Console: This is a program or software that provides an interface of IDPS, its

sensor, database for updating system or configuring the system. The console is

typically installed on a system to provide an interface to the user or administrator.

• Database server: This component is a database that stores information of events

produced by sensor or management server.

• Management server: This is a centralized device. This processes the information

received from all the different sensor and analyze or manage them. The manage-

ment server can analyze the traffic from consolidated data received from the various

sensor. This analysis can recognize activity by correlation which might not be pos-

sible by a single sensor alone.

2.3 Different Types of IDPS

IDPS technologies exist in various types, depending on the kind of data and process they

monitor. The four most common types of IDPS are enumerated below.

1. Network-Based Intrusion Prevention System: This is a type of IDPS that moni-

tors network traffic entering or exiting a particular network or network segment [9].

CHAPTER 2. INTRUSION DETECTION AND PREVENTION SYSTEM - IDPS 10

It is usually deployed at the border of the network either along with or near to Fire-

wall. This type of IDPS monitors and analyzes network, transport, and application

layer data to identify and prevent any malicious activity [9].

2. Host Based Intrusion Prevention system: This type is deployed on a particular

host, mostly critical systems. It monitors and analyzes network traffic, as well as

processes, logs, and application activities for any abnormal and malicious activity

[9].

3. Wireless Intrusion Prevention System: This is the type that monitors and analyze

wireless traffic and networking protocol. This is deployed either in a particular

organization’s wireless range to monitor and detect any malicious activity within

the network or it could also be used to monitor unauthorized wireless activity [9].

4. Network Behavior Analysis (NBA): This is a type that monitors and examines

network traffic to identify threats like certain malware flow, policy violation and

unusual traffic that can cause DDoS attack [9].

2.4 Methodologies used by IDPS

IDPS uses many different event detection methods. IDPS uses more than one method

for broad and more precise detection and prevention depending upon the requirements.

Explained below are the most common IDPS methodologies.

2.4.1 Signature based Detection

Signature is a specific pattern, used to represent a textual or binary string that uniquely

corresponds to the known vulnerabilities, exploits, threats and implementation of attacks.

Signature-based detection is the process of comparing these patterns against data to iden-

tify possible attacks or known threats. An example of signature-based detection is a telnet

CHAPTER 2. INTRUSION DETECTION AND PREVENTION SYSTEM - IDPS 11

attempt to login with username “root”, which is not a normal event; however, is a violation

of security policy [9].

The signature-based detection system is vulnerable to many obfuscations or simple

manipulation of payload or content attack to dodge the detection system. It has been rec-

ommended that signatures based on vulnerability are much more effective than signatures

based on exploits [17]. The moment any new vulnerability is found then signature based

on that would be much more effective in detecting any attack. These would be exploited

generic, so any exploit trying to exploit specific vulnerability can be detected [17, 18].

IDPS maintains a separate database for all varieties of signatures. These IDPS com-

pares network traffic against these various signatures to detect any possible attack. The

success of detection depends on the capability of the processing of network traffic by

IDPS. Moreover, it is recommended that IDPS shall be equipped with pre-processor to

normalize the encoded strings and restore the original semantics of the attack. This is

essential as otherwise, a simple mutation in data can evade detection [19].

Effectiveness of Signature-based detection by IDPS depends majorly on updated sig-

natures. The signature database must be updated for any new vulnerabilities. This de-

tection methodology is not effective on new vulnerabilities, new attack vectors and more

especially zero-day attacks [20].

2.4.2 Anomaly Based Detection

The Anomaly-based detection method is based on monitoring and classifying system ac-

tivity or behavior as normal or anomalous. It is the process of comparing system activity

to the predefined behavior which is accepted as normal behavior to detect any abrupt de-

viation [9, 21]. An IDPS that uses anomaly-based detection has details of the network

including users, connections, host and everything related, known as profiles. These pro-

files are generated over the period called the training period. Furthermore, the profiles can

either be static or dynamic [9, 21]. Static profiles remain unchanged unless explicitly di-

CHAPTER 2. INTRUSION DETECTION AND PREVENTION SYSTEM - IDPS 12

rected to generate a new profile by the administrator. On the other hand, dynamic profiles

are updated regularly, hence changes according to the use of the system. This process

defining profiles is very important as the efficiency of IDPS depends on how well normal

behavior is defined. The IDPS engine must be able to cut through all the various proto-

cols at all levels. The process of protocol analysis is expensive in terms of computational

complexity. Nonetheless, it helps in understanding the traffic in detail and produces less

false positives [9, 20, 21].

Another major benefit of this detection technique is that it can detect unknown threats,

in contrast to signature-based technique [9, 21]. In the process of comparing the prede-

fined normal behavior with the current behavior of the system. If any malicious activity is

consuming system’s processing or internet resources an alarm is raised, as this is unusual

behavior and can be detected as an anomalous behavior [9, 21, 22].

The major drawback of this detection technique is that while still in the training period,

it is susceptible to evasion attacks. If this malicious activity comes under normal behavior

then the IDPS will be unable to raise any flag or alarm because the IDPS begins to consider

the malicious event as normal behavior [23].

2.4.3 Stateful Protocol Analysis

According to Karen Scarfone “The ’stateful’ in stateful protocol analysis insinuates the

IDPS is capable of understanding and tracking the state of the network, transport, and

application protocols that have a notion of state.” [9]. The stateful protocol analysis is

the process of comparing current system activity or event against a predefined profile that

defines how a particular protocol shall work under normal scenario [9]. Unlike Anomaly-

based detection where profiles are network or host-based, stateful protocol analysis relies

on universal profiles prepared by specific vendors or standard bodies like Internet Engi-

neering Task Force (IETF) Request for Comments (RFC) that specifies all details of how

the protocol should be utilized in communication [9].

CHAPTER 2. INTRUSION DETECTION AND PREVENTION SYSTEM - IDPS 13

In stateful protocol analysis, protocols are checked in-details for individual commands

and sometimes even there responses. Checks are made to track if data is more or less than

what is defined in the protocol profile, if someone trying to send issue command out of

order, or if the command is accessing resources without authentication and authorization

[9]

Stateful protocol analysis very resources intensive because it maintains the state of

(what sessions?) sessions for many concurrent sessions, and also the complexity of doing

in-depth protocol analysis. Some vendors do not specify details of their protocols, which

makes it difficult for analysis. Many conflicts arise on the implementation of various

versions of a protocol and this implementation varies depending on the host operating

system [23].

Although stateful protocol analysis performs in-depth analysis, it might be unable to

detect new attacks that do not violate protocols, or does not perform any benign activity

like that of Denial of Service attack (DoS) [23].

Chapter 3

Advanced Evasion Techniques

3.1 Advanced Evasion Techniques (AET)

Advanced evasion techniques refer to individuals or combination of many individual eva-

sion techniques that can successfully execute an attack on a target system while avoiding

any detection and dodging network security devices likes IDPS.

In 2010, the term AET was coined by Stonesoft Corporation which is now known as

Forcepoint. AETs can be broadly defined as any technique or combination of techniques

that increase the complexity of evasion and effectiveness to evade detection while exploit-

ing the IDPS resources and increasing computational demand to detect attacks. Accord-

ing to Mark in whitepaper with International Computer Security Association (ICSA) Labs

“These AETs prey upon protocol weaknesses and the permissive nature of network-based

communication, exponentially increasing the number of evasions that can bypass even the

most up-to-date IPS technologies” [24].

Ptacek and Newsham discussed evasion techniques in their paper of 1998. Evasion

techniques are still effective against the modern network defense system even after 20

years. Moreover, tools have been developed over some time to exploit various layers of

TCP/IP protocol and evade the detection of IDPS. Although, it is not possible to explain

when or what level of complexity or sophistication of any evasion technique can be stated

CHAPTER 3. ADVANCED EVASION TECHNIQUES 15

as an advanced evasion technique [25].

Forcepoint (formerly known as Stonesoft Corporation) developed a testing tool that

uses AETs known as Evader in 2010. Evader is a deep inspection tool to test detection

capabilities with AETs of a new combination of evasions. The Forcepoint’s team success-

fully evaded all network industry’s IDPS. Their research results in Finnish Transport and

Communication Agency, National Cyber Security Centre (NCSC-FI’s CERT) disclosing

the first 23 new evasions and later another batch of 124 evasion techniques [24].

3.2 Evasions techniques

Evasion techniques are categorized according to the way they are used to evade the de-

tection system. These techniques are not only limited to categories but emphasized due

to extensive research is done and current systems still being vulnerable to the same tech-

niques [19]. Below, the categorization is done according to different researches done on

evasion techniques and evaluation of these techniques on IDPS by [19, 26, 27].

3.2.1 Packet splitting

IP fragmentation and TCP segmentation are forms of packet splitting. Fragmentation is

an integral part of IP Protocol RFC791. It allows dividing bigger information to smaller

Maximum Transmission Unit (MTU) to make it compatible with different network media

size limitations. One message or the whole file can be fragmented into many smaller sized

non-overlapping fragments [19, 28]. Similarly, TCP being a connection-oriented protocol

uses segmentation to divide the big size packet to smaller ones and include a TCP header

to maintain the connection. Furthermore, both IP and TCP protocols allow the fragments

or packets to arrive in any random order instead of a proper order [6, 19, 26].

The fragmented data packets can arrive in any sequence, as it is the responsibility

of the end machine to reassemble them [6]. For any network monitor like IDPS, this

CHAPTER 3. ADVANCED EVASION TECHNIQUES 16

can be a complex and challenging task. Newsham and Ptacek mentioned in their 1998

paper, “an IDS that does not properly handle out-of-order fragments is vulnerable; an

attacker can intentionally scramble fragment streams to elude the IDS” [6]. The system

has to reassemble all the fragments to understand original content or detect the attack.

An example of possible evasion in the scenario of fragmented data packet could be, if

the signature of attack for detection is “/attack/exploit.php” and message is divided in

fragments of “/atta”, another one “ck/exp”, as well as “loit.php” and detection system

losses track on one of these packets [6, 19]. Another example of possible evasion could

be if overlapping segments or fragment is sent, which is malicious and overwrite the last

packet [6, 19]. It is important to note that if IDPS does not assemble the fragmented

packet properly and misses one, or unable to replace it with a new packet, which target

system is capable of handling. This will result in miss matching of signature, hence attack

evades detection [26].

IDPS has to maintain a “per-connection state queue” to keep track of every connection

in a large network. This is a resource exhaustive task, although IDPS system nowadays

has ample memory to handle many states simultaneously; however, the system can run

out of resources due to extensive network traffic [6, 29].

3.2.2 Denial of Service (DoS)

DoS attack occurs when an attack exhausts the computing resources of any system and

makes it completely ineffective. The purpose of DoS attacks is to starve the system com-

pletely of its available resources by consuming more than it can provide [30]. The most

common DoS attacks are “Ping to the death” that send oversized ICMP ping which can

crash a system and other attacks like “Chargen” and “teardrop” that results in the same

condition of target system [6, 31].

DoS attacks can disable IDPS by exhausting resources. When IDPS crashes or is

disabled, it is designed to switch to a default mode. In the default mode, system switches

CHAPTER 3. ADVANCED EVASION TECHNIQUES 17

to either “fail open mode” which completely opens the unchecked network traffic, or “fail

closed mode” which completely closes network traffic for internal network or system

[32, 33]. DoS attacks are not easy to defend. Researches to handle this DoS attacks has

given many solutions. These solutions include rate-based IPS that has proven to handle

traffic up to a very high rate, using data mining to detect DoS attack and also connection

rate limiting solution [34].

DoS attacks are mostly classified as flood attacks or crafted packet attacks. The DoS

attacks that originate simultaneously from several sources and locations are distinguished

as Distributed Denial of Service (DDoS) attack [35, 36, 37]. These attacks create severe

damages and are difficult to handle. DDoS again exploits the fundamentals of IP Protocol

by using the fake source address to send attacks on the destination address which results

in very high traffic [6, 19]. The sudden high traffic can result in complete resource ex-

haustion and shutting down of the system. Moreover, this DDoS traffic can reach more

than 500Mbps and is capable of defeating almost all solutions. These attacks are executed

by devices affected by different malware. The recent attack by devices infected by Mirai

malware, traffic of DDoS attack was reported to be about one terabyte on French web host

called OVH [31, 38].

3.2.3 Encryption

When payload or data stream is encrypted using complex algorithms, the data is trans-

ferred securely and decryption is done at the end system [39]. This is a very secure

approach and protects data from any adversaries on the network. The adversaries could

be MATE (Man At The End) or MITM (Man In The Middle) attack. Encryption makes

data completely unrelated and unreadable. If complex encryption methods are used, then

the security of data is significantly high. [39]

Similar techniques of protecting data can easily be used by an attacker to mask or

encrypt the attack data. IDPS can not understand and interpret this data, making it nearly

CHAPTER 3. ADVANCED EVASION TECHNIQUES 18

impossible for IDPS to detect if any malicious attempt is made. Encrypted tunnels are

used for end to end encryption security [26]. IDPS has certain resources just to decrypt

basic encrypted stream using XOR operations [6, 40]. It is important to note that too

complex encryption makes IDPS unable to interpret data. The only way IDPS can inter-

pret data is when encryption keys are shared with the system. Nonetheless, encryption

and decryption operations are very resource exhaustive and can affect the performance

of IDPS. An adversary can also use complex encryption algorithm to deprive IDPS of its

resources and attempt possible DoS attack [6, 39, 40]

3.2.4 Time to Live Manipulation

In IP Protocol, Time-To-Live (TTL) is designed to prevent ever roaming packets over

the internet. TTL is used as the number of hops that a packet can pass. The number of

hops represents how many routers a packet can pass before reaching destination or being

dropped [6, 19].

An attacker can exploit this value and can evade IDPS by manipulating hop counts or

TTL of the packet. This can be achieved by either inserting segments or fragments with

short TTL value into the stream. These short value segments will be part of the stream

while being inspected by IDPS, although is expected to drop before the end of the system

[6, 19]. The target system will get a malicious package as it gets different information

than what was processed by IDPS. If the internal network information is known to the ad-

versary, then it is easier to achieve success in the attack, as many hop count or TTL values

are manipulated accordingly [6, 19]. The feasible solution for this technique could be that

IDPS have a complete understanding of internal network topology and check TTL values

in all packets. This information quite resources exhaustive; nonetheless, can protect the

network from possible attack. [6, 40, 41]

CHAPTER 3. ADVANCED EVASION TECHNIQUES 19

3.2.5 Duplicate Insertion

Duplicate or overlapping segmentation occurs when the IP header offset value of the seg-

ment is similar to earlier segments. This new segment may overwrite already received

segment or get completely ignored [19]. Duplicate segments can create confusion, hence

can be utilized by malicious attackers. Different operating systems reassemble the seg-

ments of data is not very common ways and can handle the duplicate segments differently.

If IDPS does not have information on network topology or end system details, then IDPS

and victim might handle the duplicate segments inconsistently [6, 19].

As shown in figure 3.1, when duplicate segments used along with the TTL manipu-

lation technique, attackers can leverage the ambiguity, which can evade IDPS detection.

This can be done when an attacker intentionally fragments an attack and insert duplicate

segments with different TTL values [26, 40]. Segments with smaller TTL values will

never reach the end system. Meanwhile, IDPS would not know that the segment would

not reach the end system without network topology information; however, would it will

interpret all segments. This ambiguity can be resolved by configuring every system in

the internal network about how to reassemble the segments and how to handle duplicate

segments. Furthermore, configuring IDPS with internal network information includes

complete network topology and configuration of all systems [19, 40].

3.2.6 Timing attack

Timing attack occurs when a source is sending packets very slowly without exceeding

the threshold of the time window to correlate signatures [26]. This attack can be used to

evade detection by IDPS. This evasion technique is effective against the detection system

that uses a fixed time window to classify packets as one message and also loses the track

of detection after the time window. This results in IDPS forwarding packets as non-

malicious to the target, on the other hand, the target system all the packets together results

in a malicious attack. [42]

CHAPTER 3. ADVANCED EVASION TECHNIQUES 20

I
D
P
S

Router 1 Router 2 Router 3 Router 4 Router 5
A

Seg-1 TTL-8

T
Seg-2 TTL-10

M
Seg-3 TTL-4

T
Seg-3 TTL-8

A
Seg-4 TTL-7

D
Seg-5 TTL-4

C
Seg-5 TTL-11

K
Seg-6 TTL-8

A

T

T

A

C

K

Attacker Target

Figure 3.1: Attacking the target system with TTL Manipulation and Duplicate Insertion

This technique is used in many scanning tools like Nmap that delays the packets for

scanning. It is capable of sending scanning pings so slowly and with such delay, most of

IDPS might not consider its attack. Although, this is not a malicious attack against the

target system, but can be made malicious after knowing the details of configuration [43].

3.2.7 Protocol violation

The concept of proper use of the protocol field is very understood, however, most proto-

cols play a major role in defining how their fields will be utilized. IDPS needs to have a

deep understanding of all the protocols [26, 33]. If it lacks understanding and semantic of

protocol, then it becomes much more vulnerable to evasion, as IDPS would not be able to

interpret the data. Some protocols are configured only on the end systems, and this kind of

uncommon protocol produces inconsistencies between the system and IDPS. [6, 26, 33]

Even in case of extensively used protocols like TCP and IP, some fields are rarely

or very inconsistently used and are called uncommon protocol fields [6, 26]. Due to the

rare use of uncommon protocol fields, they are not implemented consistently on various

devices. This inconsistency in implementation may result in a different interpretation

of data streams, thus making them prone to be exploited in evading detection of IDPS

CHAPTER 3. ADVANCED EVASION TECHNIQUES 21

systems [26, 35]. Many protocols are very complex in detail, and more complex the

protocol, the more complex the processing is. An example of a complex protocol is

Server Message Block (SMB), which is a transport layer protocol used for remote file

access. In addition, SMB has been used in evasion by manipulating various fields of this

protocol [26, 27, 41, 44].

3.2.8 Obfuscation

Obfuscation is the technique that transforms the content or data stream to completely

different looking content, but the data still functions in the same way as to when it has

not been transformed [6, 26]. This technique makes signature or fingerprint matching

obsolete, as the transformed content will have totally different fingerprints. This technique

can be used to transform any kind of content [26, 27].

IDPS needs to have the capability to somehow undo the obfuscation of data, or use

a different approach to handle this evasion technique. An example of an application of

obfuscation is to mutate program codes or shell-code [6, 26, 27].

Polymorphic techniques are used to generate dynamically changing signatures for at-

tack instances in order to evade signature-based IDPS. Each time the code is executed, it

mutates into a completely different code, hence results in a completely different signature

[6, 45, 46]. Anomaly-based detection can detect abnormal content and attacks, even after

the signature of the muted code has been changed. Furthermore, this makes it difficult to

make the content normal for IDPS. An example of the advanced technique is the poly-

morphic bleeding attack, which has been performed to show the possibility of evading

particularly the anomaly-based detection system [45, 46]. It is worthy of mention that the

most used technique for shell-code mutation is polymorphic technique [6, 27].

CHAPTER 3. ADVANCED EVASION TECHNIQUES 22

3.3 Evasion Tools

The different types of evasion tools are enumerated in the following paragraphs.

1. Fragroute is a network packet fragmentation and firewall testing tool developed

by Dug Song. It is the implementation of the attacks of “Insertion, evasion, and

denial of service: Eluding network intrusion detection” paper of 1998. Fragroute

can exploit TCP/IP protocols by implementing packet fragmentation and duplicate

insertion to help evade detection by IDPS. It also has the capability to customize

the attack by user arranged packets and automatically transform it into attack traffic

to evade detection [6].

2. Nikto is a web scanning tool, that is capable of generating malicious URI requests

and can be used to test web servers for potential security issues, such as programs

and vulnerabilities. Nikto utilizes the support of LibWhisker to evade IDPS detec-

tion. Moreover, LibWhisker is part of Whisker, which is another automated web

checking testing tool. It was written by Chris Sullo as proof of concept for HTTP

specific evasion techniques. Whisker was one of the first web server testing tool

built-in 1999 [47].

3. ADMutate was a shell-code mutation engine. ADMutate is an API designed to

change the code structure and obfuscate the shell-code of attacks. Attacks remain

effective even after being obfuscated. ADMutate used the polymorphic technique

for the first time to generate different forms of signature of attack virtually evading

any signature-based IDPS [48].

4. Sploit is another testing framework. It was developed from a sophisticated muta-

tion framework published by Vigna et al. It allows tester and possibly attackers

to develop advanced attacks and evasion techniques. Sploit was capable of using

most techniques of Fragroute, Nikto, and ADMutate, as well as using different mu-

CHAPTER 3. ADVANCED EVASION TECHNIQUES 23

tation techniques at different layers. These different techniques are used to create

variations of exploits capable of evading detection of IDPS [19, 49, 50].

5. Metasploit by Rapid7 is the most popular tool used for penetration testing, ex-

ploit testing, searching security vulnerabilities and IDPS signature development. Its

framework is emerging as an exploit development framework against target hosts.

It also has variants of polymorphic shell-code encoders.

6. Mendax is a TCP de-synchronizer which is capable of injecting overlapping seg-

ments in a pseudo-random order. A modified version of Mendeax was used by

Gorton and Champion to successfully evade IDPS [51].

7. TWWWscan was a vulnerability scanner that utilizes anti IDS url encoding. It was

used to check up to 186 cgi vulnerabilities.

8. Havij is an automated evasion tool that can launch SQL injection attacks with attack

strings. It can exploit SQL injection vulnerabilities of web pages while evading

detection by mutating strings. Havij can manipulate white spaces with comment

and encoding using hexadecimal and several other techniques.

9. Forcepoint Evader Contrary to general interpretation, forcepoint evader is not a

penetration testing tool. It is however explained by Olli-Pekka Niemi and Antti

Levomaki to be a deep inspection tool developed to test capabilities of IDPS [52].

Evader is the primary tool used in this thesis experiments.

Chapter 4

Environment for Experiment

In this chapter, technical environment established and used for the research experiment

is explained. Details about the test environment including Hardware, Software, Device

under Test (DUT) and Targets for the experiment are described in first section. In second

section, network topology of experiment is described as how attacker and target machines

are connected with DUT.

4.1 Environment Configuration

The environment for this experiment was to be kept secure from external network and

especially from university network to avoid any chance of security compromise, and also

to be configured according to certain criteria to evaluate results.

4.1.1 Hardware

The experiment was executed in a complete virtual environment. Oracle VM Virtual Box

was used for this experiment. Due to nature of experiment, host system with ample re-

sources was used to avoid any resource crunches.

CHAPTER 4. ENVIRONMENT FOR EXPERIMENT 25

System Configuration:

Operating System: Ubuntu 18.04.3 LTS 64-bit

Virtual environment: Oracle Virtual Box Ver 6.0.4 r128413

Processor: Intel R© CoreTM i7-3770 CPU @ 3.4 GHz x 8

Memory: 32 GB RAM

4.1.2 Software

Forcepoint Evader

Forcepoint Evader is primary tool for this IDPS evasion experiment. Forcepoint Evader

was publicly released with the name “Stonesoft Evader” in June 2012 in Black Hat se-

curity conference. Stonesoft is now Forcepoint so, name of the tool has been changed to

“Forcepoint Evader”. This tool was testing tool and never claimed to be penetration tool.

The main purpose of this tool is to prove that even advanced and modern IDPS can be

evaded by exploiting techniques mentioned in a paper of 1998 [6].

Evader can be used as standalone command line application to send customized eva-

sions or it can be used for fuzz testing against target by sending batch of evasions when

used along with mongbat, which is another tool supplied in same package of evader. Inter-

pretation of the results from evader is easy and self explanatory. Successful attacks using

evasions results in stable shell of target or password or crashing target system. Logs of

mongbat explains connection error or some other error that is encountered while attacking

target system. Evader also provides option to obfuscated the payload of attack. Evader

uses shell code encoder for obfuscation and it can create random shell code encoder to

keep the obfuscations different for every attack. This feature has been used in this experi-

ment, two cases of Obfuscated payload and two cases of payload without obfuscation has

been used.

Current version of Evader from Forcepoint is not publicly available and was provided

CHAPTER 4. ENVIRONMENT FOR EXPERIMENT 26

under strict conditions and only for this thesis research by Forcepoint. This version con-

tained three exploits exploiting three well known vulnerabilities, CVE-2004-1315, CVE-

2008-4250 and CVE-2012-0002. Evader contains 41 different atomic evasions to exploit

these 3 vulnerabilities. Out of these 41 evasions, 29 atomic evasions can be used to exploit

CVE-2008-4250, 30 evasions can be used to exploit CVE-2004-1315 and 18 evasions that

can used to exploit CVE-2012-0002.

In this experiment, Conflicker and HTTP phpbb Highlight exploits are used. This

selection of exploits is done on the bases to find evasions those works at multiple OSI lay-

ers. Conflicker exploits CVE-2008-4250 vulnerability, for this exploit evader can use 29

atomic evasions for IPv4, MSRPC, SMB, NETBIOS and TCP protocols to evade detec-

tion by DUT and attack target system. HTTP phpbb highlight exploits CVE-2004-1315

vulnerability. For this exploit, evader can use around 30 atomic evasions for IPv4, TCP,

TLS and HTTP protocols to evade detection and attack target system. Conflicker exploit

is used against Windows XP and HTTP phpbb highlight against Ubuntu (phpBB) targets.

Mongbat

Mongbat is a testing automation tool, this is impeccably part of this experiment. Mongbat

comes as a part of Evader package. It is designed to randomize different evasion instances

and evasion techniques and constantly create new combinations of evasions. Mongbat can

run various parallel instances of Evader. Mongbat is capable of picking random IP address

from the subnet mask and randomize ports to send command. This randomization is done

to avoid any detection and blacklisting from IDPS. It can also be used to combine many

evasions with specified parameters as individual attack. The primary use of the tool is to

search the techniques that can exploit and also normalize traffic.

Mongbat can perform multiple attacks with chosen parameters, it control the traffic,

sniff for any error while sending evasions commands and print the result of working eva-

sion that have successfully evaded DUT and affected the target. It produces a report after

CHAPTER 4. ENVIRONMENT FOR EXPERIMENT 27

every test, this report contains all the successful evasions. These evasions were later used

further in this experiment to analyse the results.

4.1.3 Device under Test (DUT)

In this experiment, Snort (by Sourcefire now CISCO) was selected as only Device Under

Test (DUT). The decision of testing only snort was based on the facts that Snort is most

deployed IDPS worldwide. After first released in 1998 to till date, Snort is also considered

as “the de-facto standard for IDPS”. Details of Snort IDPS used:

Snort ver: 2.9.13 GRE

Rule Package: snortrules-snapshot-29130.tar.gz

4.1.4 Selection of Target

Selection of targets was based on well integrated implementation of exploits by the tool

used in this experiment. These vulnerabilities and exploits are well known and consider-

ing the time of release of these vulnerabilities, they shall be properly detected by any of

the available IDPS.

PhpBB 2.x

In 2004, it was found that “viewtopic.php” was vulnerable to arbitrary code execution.

In this vulnerability, viewtopic.php was improperly decoding URL to extract words and

phrases. Remote attacker was able to insert special character into the result which was

processed by PHP exec, this was possible by double encoding the highlight value. All the

version of phpBB before 2.0.11 where vulnerable to it [53]. CVE-2004-1315 explains the

details of the vulnerability and about its exploits.

In this experiment, Ubuntu Linux is used as target to test the evasions. Configuration of

target machine:

CHAPTER 4. ENVIRONMENT FOR EXPERIMENT 28

Ubuntu 14.04.1 LTS

Apache HTTP Server version 2.0.64

MySQL 4.1.22

PHP 4.2.2

phpBB 2.0.10 (CVE-2004-1315)

Microsoft Windows RPC (Remote Code Execution)

Server Service was found to be vulnerable to arbitrary code execution by sending crafted

RPC request packets. This vulnerability was found in Server service of Microsoft Win-

dows 2000 SP4, XP SP2 and SP3, Server 2003 SP1 and SP2, Vista Gold and SP1, Server

2008, and 7 Pre-Beta. Server service of these operating system did not properly handled

RPC request, this allowed remote attacker to exploit this vulnerability by sending crafted

RPC request that can trigger overflow during path canonicalization and execute the exploit

without any authentication [54]. CVE-2008-4250 explains details of this vulnerability and

its exploits.

In this experiment Windows XP is used with following configuration:

Windows XP Professional Service Pack 2 (Unpatched)

4.2 Network Topology

The Network topology of this experiment is completely based on virtual environment

using Virtual Machines on Oracle VM Virtual Box. Attacker, targets (Both Linux with

phpBB and Windows XP SP2) and IDPS DUT are configured accordingly for this virtual

environment. Attacker and target machines are connected with IDPS as DUT with local

connection with promiscuous mode enabled. IDPS is configured as inline mode, hence all

the traffic between attacker and target will be passing through it. Inline configuration is

CHAPTER 4. ENVIRONMENT FOR EXPERIMENT 29

Snort
IDPS

11.0.0.1/810.0.0.1/8

11.0.0.10/810.0.0.10/8

Attacker Target
Linux and

Windows XP

Figure 4.1: Network Topology used in Experiments

utmost important for this experiment as only then IDPS can decide to prevent any attack

by dropping the packets from live traffic. Two Intel PRO/1000 MT Desktop (82540EM)

network adapters were configured in snort IDPS to connect attacker and target machines

and act as bridge for traffic.

Chapter 5

Methodologies for Experiment

5.1 Methodologies

5.1.1 Fuzzing

To recognize and find working AETs that can evade detection by IDPS DUT, a single test

was done using both selected exploits. This experiment was done with huge number of

attacks to gain significant amounts of advanced evasions.

To get broader information and significant number of successful evasions techniques,

experiments using both of the exploits were performed separately. Both obfuscated pay-

load and payload without obfuscation separately with each exploit experiment. Each

exploit works on various protocols at different OSI layers. Due to working on many

different protocols, it is possible to get better attacks sample against Windows XP and

Ubuntu Linux target systems.

Attacks in first round of experiment were all randomized attacks, with combination of

evasions created by Mongbat. This combination had evasions up to 5 different evasions

in single attack. In total 41 evasions were used with different parameters, out of these

26 evasions were used against Linux (Ubuntu 14.04.1) and 30 evasions were used against

Windows XP Service Pack 2. TCP and IPv4 protocol attack were common in both exploits

CHAPTER 5. METHODOLOGIES FOR EXPERIMENT 31

but their implementation differed for each target system.

5.1.2 Segregation to Single evasions

Not all the evasions can evades the detection. In-fact very less evasions were able to

evade detection of IDPS. These successful evasions were not single evasions but has many

combinations of many evasions together. These combinations can be used in uncountable

way by joining with each other endlessly. To analyze the successful evasion further we

need to narrow down the scope of experiment, it was decided to divide these evasions to

single evasions. This division to single evasions was attempted to recognize the single

evasions those were able to evade the detection. These could be only evasions required in

combination or could be part of necessary combination to evade the detection. If certain

single evasion can evade detection by itself, then these single evasions is assumed to be

the one that consistently evade detection of DUT.

After segregation of combinations, these single evasions were separated into 4 sets of

evasions for each exploit and further separately for obfuscated payload and payload with-

out obfuscation. These sets were later tested by creating special script to execute these

single evasions using Evader, random IP addresses were again to avoid black listing. Re-

sults from this test provides another set of successful evasion which if capable of evading

DUT once, is assumed to evade it every time, unless configuration of IDPS is changed

and made more restricted.

5.1.3 Configuration change

In attempts to find possible solution to mitigate the problem, the configuration of DUT,

Snort IDPS was changed. These changes were supposed to be using the options available

in Snort and not any customization to normalization engine.

Details of the changes done on the Snort - DUT is provided in next chapter of imple-

mentation.

CHAPTER 5. METHODOLOGIES FOR EXPERIMENT 32

5.1.4 Multiple verification

The successful sets were verified multiple times before and after the change in configura-

tion of IDPS. This was again in attempt to get error-less results as much possible. Multiple

number of tests provided better result by removing any ambiguity and uncertainty from

the outcome of the experiment.

5.1.5 Obfuscation

Quality of detection depends on how well IDPS can detect the attack. IDPS shall not

depend on just simply matching of shell code using signature based detection. In reality,

attackers seldom uses clear attacks and mostly uses various kind of techniques to hide the

real attack to evade any detection. Attacker can use techniques like from encryption to

NOP injection and various other techniques to masquerade real data behind attack. Even a

decent IDPS in market ideally does not depend on only signature based detection, ideally

they should be capable enough to detect which vulnerability is being exploited by the

attack instead of just checking payload and matching signatures.

In this research experiment, we are obfuscating the payload that is used to attack

the target machine. This is done to observe how well IDPS perform in detecting the

attack when payload is obfuscated. We are using default obfuscation capability of Evader

tool to obfuscate payload. Independent shell-code encoders are generated by Evader in

its obfuscation techniques for each attack. This test is also important to recognize the

evasions that can evade detection when payload is obfuscated and when it is without

obfuscated payload. All the tests are done using both obfuscated payload and payload

without obfuscation.

Chapter 6

Implementation

This Chapter explains different implementation phases of the experiment. All these tests

were performed with Snort as DUT to highlight the vulnerabilities of network security

devices. Even though many technologies are coming up everyday and systems are made

more secure and more sensitive to any malicious intrusion attempt, nevertheless network

security devices are yet vulnerable to attacks using the techniques revealed back in 1998.

Proof of vulnerability to these old techniques was first presented by Stonesoft(Now For-

cepoint) in 2012 that almost all IDPS were vulnerable to AETs. After more than 20 years

of revelation of the techniques and 7 years after the proof of same, in 2019, world’s most

deployed IDPS is still vulnerable to these AETs and incapable in preventing from same

attack techniques.

All the test cases and evasions involved in this experiment exploits well known and old

vulnerabilities i.e CVE-2004-1315 and CVE-2008-4250 using Conflicker and Http phpbb

highlight, which every IDPS available in the market is expected to recognize and prevent.

These tests were performed against Windows and Linux target systems. Another reason of

using these exploits was their default availability in Evader tool. Also underlying network

stack that is used in these attacks are more complex and broader which is good for the

experiment results of testing AETs, as multiple OSI layers can be used together to evade

the detection.

CHAPTER 6. IMPLEMENTATION 34

Target of this experiment is more than just proving that AET can evade IDPS, but

also which exact protocol based evasions are capable enough and most likely to do so.

Moreover, attempt to mitigate same AETs. Tests for this experiment were performed

systematically step by step to analyse the evasions for deeper understanding.

6.1 Experiment Phase 1

6.1.1 Setup and Execution

All the connections between machines were tested and checked before the experiment

begins. Basic ping test and creation of bridge connection between target and attacker

machine by inline DUT was configured and verified properly. To test if IDPS and target

system are accepting and performing correctly, smaller tests with approximately 4000-

5000 attacks were performed.

Evader was used to send individual attacks to test the connection and detection capa-

bility of DUT-Snort. Clean commands or commands without any malicious packets were

sent to test the connectivity and response of target systems. Attacks with exploit towards

both Ubuntu and Windows XP and also with and without obfuscated payload but without

any evasions were tested. Attacks without evasions were performed to check the detec-

tion and prevention capability of Snort towards the well known exploits exploiting system

vulnerabilities.

As the attacker, DUT and target machine all were configured and tested, next step was

to perform the first phase of experiment. These tests were done in June 2019, with latest

version of Snort available at that time. Target for first phase of this research experiment

was to find as many working evasions as possible those were able to evade detection by

IDPS.

Evader’s web interface was used to execute this phase of experiment. Mongbat was

used in back-end to send batch commands, randomize the evasions and their parameters.

CHAPTER 6. IMPLEMENTATION 35

Mongbat was responsible in creating randomized combinations of individual evasions to

advanced evasions. 16 parallel threads were used, different random IP address were used

for individual attack commands from the IP pool created for the experiment. Combination

of minimum 1 and maximum 5 evasions was used to keep observations readable for next

phase.

The number of attacks were not controlled but the execution time of experiment

per operating system was fixed. On Windows XP and Ubuntu 14.04.1 LTS, the attack

was executed with obfuscated payload and also without obfuscated payload. This was

done to observe the effectiveness of detection by IDPS even when payload is obfuscated.

Conflicker exploit was used to attack Windows XP SP2 and http_phpbb_highlight

exploit was used to attack Ubuntu running vulnerable version of phpbb application. Sam-

ple of commands to attack these target systems:

Without Obfuscation

Mongbat command to attack Ubuntu 14.04.1 LTS Linux machine

ruby mongbat.rb -uid=webgui_8888

-attack=http_phpbb_highlight -if=enp0s8 -src_ip=12.0.0.10/8

-dst_ip=13.0.0.10 -gw=12.0.0.1 -mode=random -mask=8

-time=200000 -worker=16 -autoclose -payload=shell

-min_evasions=1 -max_evasions=5

-disable_payload_obfuscation -check_victim=true

-passthrough -verifydelay=1000

Monbat command to attack Windows XP SP2

ruby mongbat.rb -uid=webgui_8888 -attack=conflicker

-if=enp0s8 -src_ip=10.6.0.10/8 -dst_ip=11.0.0.10

-gw=10.0.0.1 -mode=random -mask=8 -time=200000 -worker=16

CHAPTER 6. IMPLEMENTATION 36

-autoclose -payload=calc -min_evasions=1 -max_evasions=5

-disable_payload_obfuscation -check_victim=true

-passthrough -verifydelay=1000

With Obfuscation

Mongbat command to attack Ubuntu 14.04.1 LTS Linux machine

ruby mongbat.rb -uid=webgui_8888

-attack=http_phpbb_highlight -if=enp0s8 -src_ip=12.0.0.10/8

-dst_ip=13.0.0.10 -gw=12.0.0.1 -mode=random -mask=8

-time=200000 -worker=16 -autoclose -payload=shell

-min_evasions=1 -max_evasions=5 -check_victim=true

-passthrough -verifydelay=1000

Monbat command to attack Windows XP SP2

ruby mongbat.rb -uid=webgui_8888 -attack=conflicker

-if=enp0s8 -src_ip=10.6.0.10/8 -dst_ip=11.0.0.10

-gw=10.0.0.1 -mode=random -mask=8 -time=200000 -worker=16

-autoclose -payload=calc -min_evasions=1 -max_evasions=5

-check_victim=true -passthrough -verifydelay=1000

6.1.2 Problems and Solutions during the experiment phase 1

While testing the Conflicker attacks against Windows XP SP2, one problem was found

to be affecting whole experiment in a very critical manner. This same issue has been

mentioned in research previously done on AET using conflicker. It was observed that after

continuously attacking Windows XP target machine, it tends to stop accepting commands

after a while. This behavior of operating system appears after many successful attacks.

When an attack was successful, an instance of calculator application on target system was

CHAPTER 6. IMPLEMENTATION 37

opened. When many of the instances were open, this problematic behavior was observed.

This problem was to be resolved to continue the experiment.

The problem of not accepting further attack commands was persistent, hence a CMD

script was written to kill any instance of calculator to keep system free and available for

further attack commands. Nonetheless, the problem was yet reappearing again but this

time only after significant amount of time. Another solution to resolve this issue was to

schedule the operating system to reboot after a particular amount of time. So system was

scheduled to reboot every 2 hours. Hence the attacks those were failed were not just due

to performance of IDPS but also due to system rebooting. For the duration when system

was rebooting, attacks failed with error “300: TCP connection failed”

6.2 Experiment Phase 2

After Phase 1 of experiment, we got many batches of the successful evasions. These

evasions were logged in Mongbat log. Phase 1 of experiment had four tests with two

case each against both target systems, hence 4 different log files were retrieved. We

continued our experiment with those Mongbat logs of successful evasions. From this

phase on, experiment phases were carried out using only Evader standalone application.

Customized scripts were used to execute the attack commands in this phase of experiment

and for analyzing the results.

Mongbat produced combination of evasions in previous phase using batch attack.

Most of the successful evasions were combination of two to five evasions to evade de-

tection by DUT. To analyze further, these successful evasions were segregated into the

corresponding individual evasions. This segregation was done to test if all those single

evasions can evade detection individually and which all gets detected and dropped by

IDPS.

After segregating evasions into individual evasions, we got huge number of single

CHAPTER 6. IMPLEMENTATION 38

evasions. These single evasions are subset of atomic evasions. 4 different lists of the

individual evasions were created for both Windows XP and Ubuntu Linux target system.

In each case of target systems, evasions were also separated accordingly if the payload

used was with obfuscation or without obfuscation.

Experiment was continued by creating python script to create attack commands ac-

cording to predefined syntax of evader and adding the single evasions. Separate scripts

were written for different operating systems as the parameters like exploits, actions and

others were different. It was also easier to execute this phase of the experiment with sep-

arate scripts to avoid any accidental or unwanted error. The script was made to log every

evasion and the result, this was different from Mongbat log as here even failed evasions

were logged.

One of the important point of this and further phases was, when customized scripts

were used all the attacks were sent one by one and not multiple simultaneous attacks at

same time. This attack with single thread was decided to test IDPS without any excessive

load. In this condition, system shall work with its full efficiency as all the resources are

free from any other processing.

Many evasions were same after being broken down into individual evasions and the

script executed all evasions multiple times. Single evasions were executed multiple times

to get better idea of which evasions are consistently evading detection by DUT and which

evasions are inconsistent in doing same. The log from all 4 cases were processed and an-

alyzed using another customized python script. This analysing script was capable of find-

ing and separating successful and unsuccessful evasion from logs. It was also designed to

create a statistical summary and description of successful and unsuccessful attempt.

CHAPTER 6. IMPLEMENTATION 39

6.3 Experiment Phase 3 - Attempt to Mitigate

The target of the experiment after detecting advanced evasions was to attempt to mitigate

the issues. Mitigation was attempted while exploring available options in the IDPS DUT

instead of creating whole new normalization engine or any other complex option.

First aim for this phase of experiment was to recognize most commonly exploited

protocols by attacks. One of the solution to mitigate the issue of AETs was to make IDPS

handle these protocols and check data more rigorously. This process of handling data rig-

orously can affect the overall performance of IDPS if not configured properly. In quit to

find optimal mitigation solution, default options of Snort where explored.Many normal-

ization preprocessor options where check and changed accordingly to handle AETs.

After optimizing and modifying the normalization options available in Snort, another

test was done with all the successful individual evasions under the new configuration.

Old scripts were used again to execute this phase of experiment. This test was performed

multiple times to see the affect of changes on these individual evasions and their evading

capabilities.

Tests of this phase of experiment included attacks against both Windows XP and

Ubuntu Linux operating system. Also payload with obfuscation and without obfuscation

were used against each target operating system. Nevertheless, this time top most unsuc-

cessful evasions were also tested to confirm their failure again and evaluate any effect of

changes done in Snort. Test were done multiple times to recheck results and outcome to

get as better and error free results as possible.

6.3.1 Modification of snort to attempt mitigation

Snort includes normalization engine to drop the malicious data and is only used and in-

stalled if the snort is configured accordingly in the initial state of installation. This normal-

ization is mostly utilized to normalize traffic by dropping unwanted traffic. Unwanted traf-

CHAPTER 6. IMPLEMENTATION 40

fic can be extra data on header, flags or pointers depending upon requirements of user and

hence configuration is selected by user. Snort package include “README.normalize”

file in the bundle. This file explains all the options available in Snort to normalize the

traffic. As DUT of this experiment only provides option to normalize TCP, IPv4, ICMP

and IPv6 in this configuration file, and Evader exploits only IPv4 and TCP protocols di-

rectly out of all the options available. Due to this limited similarity of configuration, in

this thesis research we will only change configuration related to these common protocol

values.

Following are configuration change that was performed in DUT, Snort. We added these

values in configuration file of Snort:

preprocessor normalize_ipv4: trim

preprocessor normalize_tcp: trim, urp

Change in configuration of Snort were supposed to target any extra data attached to

the message in protocol header. “trim” in IPv4 remove any data attacked to the data-

gram and specially in IP header. The file mention this as “trim - truncate packets with

excess payload to the datagram length specified in the IP header. The layer 2 header (e.g.

ethernet), but don’t truncate below minimum frame length.”

Changed TCP options handled following:

• trim: trims the data on SYN, from RST packet, to window

and trim data to MSS

• urp: set the urgent pointer to the payload length if it

is greater than the payload length.

Chapter 7

Evaluation of results

In this chapter, we will evaluate the results obtained from the implementation of different

phases of the experiment. Implementation of these phases are explained in Chapter 6.

In every phase of this experiment, four tests were performed on the selected target

operating systems with well known vulnerabilities. Two tests were performed on each of

the target operating systems, with direct payload and with obfuscated payload. The DUT

was configured in the way to allow clean data and to drop the connection and packets

containing malicious payload. All the experiments were performed with the latest version

of DUT snort available at the time of commencing the experiment.

Interpretation of the results will be discussed along with observations from the ex-

periments performed on the target system. Later limits and reliability of the experiment

results are also discussed.

7.1 Successful combinations of evasions

Since test cases were performed using only one DUT, keeping the record of all the eva-

sions used against the target systems was not necessary. According to the implementa-

tion explained in Section 6.1 of Chapter 6, only 2 exploits namely Conflicker and HTTP

phpbb highlight were used foe this experiment. Conflicker exploits CVE-2008-4250 vul-

CHAPTER 7. EVALUATION OF RESULTS 42

Obfuscation Attempted Attacks Evaded Evasion’s Success rate

Windows XP SP2 Enabled 718093 45384 6.32%

Disabled 922548 49586 5.37%

Ubuntu 14.04.1 Enabled 887839 40058 4.51%

Disabled 1209301 54946 4.54%

Table 7.1: Successful evasions and their success rate

nerability of Windows XP SP2 whereas HTTP phpbb highlight exploits CVE-2004-1315

vulnerability of phpbb application running in Ubuntu 14.04.1 LTS operating system.

Mongbat along with Forcepoint evader were used in this first phase of experiment

to produce and run different evasions. These evasions exploits different layer protocols.

Single or variety of evasion combinations were used to attack the target system with ma-

licious payload. Every test of this phase was performed for just 200000 seconds. Number

of attacks varies according to the response of target systems or DUT systems. In this ex-

periment the delay of IDPS was not taken into account. So overall delay of target system

and DUT together were responsible for variation in number of attacks.

The set of evasions or combination of evasions created by mongbat and forcepoint

evader to exploit protocols were similar when the payload was obfuscated or not obfus-

cated. Different evasions were created for different operating system depending on the

protocols available to be exploited. Also mongbat did not created thousands of new eva-

sions but they are same particular atomic evasions for particular protocols but with differ-

ent parameters and their values. Even when payload is obfuscated, the evasions are same

along with parameters those were used for payload without obfuscation. These variation

in parameters makes the real difference if certain evasions or combination of evasions

would be able to evade IDPS or not.

Table 7.1 shows the results from the first phase of experiment. Under "Evaded" in

fourth column are the combination of evasions those successfully evaded DUT. These

CHAPTER 7. EVALUATION OF RESULTS 43

were successful in performing attack against the target system and retrieving the shell and

opening an application on target system as proof of success. Mongbat was configured to

use 16 threads to attack target machine simultaneously. The number of attacks attempted

on target machines had big difference when obfuscation was enabled for attacks than

when obfuscation was disabled.

In the case of target being Windows XP SP2, the number of attacks attempted without

obfuscation were nearly more than 28% higher as compared to the test when obfuscation

was used to masquerade the attack. Similarly in case of target being Ubuntu 14.04.1, the

number of attacks attempted without obfuscation were more than 36% higher as compared

to the test when payload was obfuscated. The reason behind the higher number of attacks

in case of unobfuscated attack and lower number in case of obfuscated attacks were not

checked in details. The reason might be due to more processing needed by IDPS to

check for any malicious payload or due to greater use of fragmentation. Moreover, when

fragmentation technique is combined with obfuscation technique, it exhaust processing

resources of IDPS at higher rate.

The performance of IDPS also varied depending upon the target operating systems.

Number of evasion combinations those were able to successfully evade detection were

quite higher when the experiment was done on Windows XP SP2 operating system as

compared to when similar experiment with Linux/Ubuntu 14.04.1 LTS was performed.

From third column of Table 7.1, we can observe the overall number of attempted

attacks on Linux/Ubuntu 14.04.1 were much higher than when test was performed against

Windows XP. The reason behind this possibly could be faster processing of packets by

IDPS due to the absence of the issue that was interrupting in the case of Windows XP.

This issues against windows XP was solved by rebooting the target but rebooting might

have caused delay in the response.

One big difference in the results from cases between Ubuntu and windows XP targets

is of evasion’s success rate. From fifth column of Table 7.1, it can be noticed that success

CHAPTER 7. EVALUATION OF RESULTS 44

rate in test cases against ubuntu 14.04.1 much lower as compared to the similar cases

but against windows XP. The difference in success rate is not only in test cases without

obfuscation but also in test cases when obfuscation was enabled. The reason for this

observation could be due to the fact that number of protocols and layers that could be

exploited were higher in case of windows XP as compared to the case against Ubuntu. So

the probability of new evasions combinations is much higher in case of windows target as

compared to linux target.

7.2 Gaining successful single evasions

The results from first phase of experiment provided with enough evasions to test in this

phase. These AETs were not in any particular order or any specific pattern. These were

randomly selected evasions combined by mongbat for purpose of testing if they are able

to evade the detection of IDPS.

To know if the success of these AETs depends on the precise combinations or just

on individual evasion, we need to test all the unique single evasion found in the first

experiment phase. If one particular evasion is able to evade the detection of IDPS then

does the use of rest of the evasions in combinations becomes more of redundant? Unique

advanced evasions discovered in last phase of experiment were formed from 26 or 30

atomic evasions with varying just the the parameters of each evasion. These variations

might be quite small but still are capable of evading high end detection of IDPS. Changes

of just the parameter of any particular atomic evasion can produce a new evasion, these

parameters depends on the protocol being exploited by the evasion. Hence these variation

themselves can create hundreds and thousands of different single evasions from one single

variety or type of atomic evasion.

The AETs from previous experiment were in form of combinations of up-to 5 evasions

in a single attack. Studying evasions with combination of each and every parameter is not

CHAPTER 7. EVALUATION OF RESULTS 45

Obfuscation
Successful

Advanced Evasion
Single Evasions Unique Evasions

Windows XP SP2 Enabled 45384 110748 37280

Disabled 49586 121070 39150

Ubuntu14.04.1 Enabled 40058 97721 17039

Disabled 54946 134541 21686

Table 7.2: Single evasions and Unique single evasions

only difficult but not feasible. Due to the fact that number of combinations can reach

much more than just millions. Hence, testing only evasions with parameter chosen by

Mongbat for the experiment in previous phase instead of trying evasions with new and

every possible parameter.

It is assumed in this research that not all of the evasions are necessary in combination

for any particular attack to be successful in evading IDPS. There are chances that only

one evasion was enough to evade the detection and rest were more of redundant. It maybe

possible that two or even all the evasions were necessary together.

Scope of this research experiment was kept limited to test single evasions from the

AETs that we retrieved from first phase. This was decided due to fact that trying the com-

binations of two or more with all the evasions that got from experiment will go in many

millions as the number of combinations are limitless. Due to the said fact, parameters of

each evasion can be changed to make a new evasion and trying all the combinations with

every single evasion is unrealistic.

Table 7.2 represents the number of these single evasions that was obtained from the

first phase of experiment. Third column of the table represents the number of evasions

those successfully evaded detection. Separate Python script was used to divide all the

AETs to single evasions. Fourth column under "Single Evasion" represent the number of

single evasions used to make combinations and evade IDPS. Some times some evasions

CHAPTER 7. EVALUATION OF RESULTS 46

are used to support other evasion as combination and they themselves does not evade any

detection.

Out of all single evasions, fifth column represent the number of unique single evasions

used in the experiment in each test cases. All duplicate evasions were removed. It can be

noticed from the numbers that in case of Windows XP SP2 operating system, as protocols

exploited by evader are higher and atomic evasions are higher. Therefore, number of

unique evasions are found to be higher as compared to Ubuntu.

7.3 Testing single evasions

All the unique evasions from second phase of experiment were put on test using cus-

tomized python script. This was done with target to observe which all evasions can actu-

ally evade detection even when those evasions are used alone.

Table 7.3 is representation of unique evasions those successfully evaded IDPS. Fifth

column of table 7.3 lists the number of unique evasion those were successful individual

evasions. These successful evasions were verified multiple times before attempting any

mitigation solution to make sure that these were successful over multiple executions. We

can observe that number of these evasions are much lower than overall single unique

evasions used to perform this test. Furthermore, successful single evasions in case of

Linux target system are much lower as compared to Windows XP target.

Lower number of successful unique evasions might be due to the fact that evasions

targeting linux needs more complexity and also the fact that linux had limited exploitable

protocols. Whereas, in case of windows target system, it had many more options of pro-

tocols to exploit and therefore number of single successful evasions are much higher. In

case of linux target system, protocols exploited are limited to only TCP, IPv4 and HTTP.

These are well known protocols and exploiting then needs higher level of manipulation

of packets. In case of Windows target system, in addition to TCP and IPv4 protocols

CHAPTER 7. EVALUATION OF RESULTS 47

Obfuscation
Single

Evasion

Unique

Evasions

Successful single evasions out

of unique evasions

Windows XP SP2 Enabled 110748 37280 945

Disabled 121070 39150 790

Ubuntu14.04.1 Enabled 97721 17039 137

Disabled 134541 21686 10

Table 7.3: Successful single unique evasions

MSRPC, Netbios and SMB adds complexity. This complexity is used by evader to pro-

duce more complex evasions against Windows XP target system.

7.3.1 Important observations

Most of the evasions those work against Windows XP using Conflicker are using segmen-

tation. Segmentation is mostly successful against Windows only as the option to exploit

other layers in same attack are more. In case of Linux the segmentation attack is not

as successful as against Windows. Even the segmentation attacks which are successful

against Linux are only fraction when compared to attacks against Windows. Most of the

segmentation single attacks against Windows XP were same if payload is obfuscated or

not. So segmentation clearly evades detection of malicious payload by DUT. Attacks

where payload is sent over re transmitted sync packets were both successful and unsuc-

cessful in both conditions when payload is obfuscated and not obfuscated. So, it is not

certain that this technique of sending payload with Sync can be always successful.

DUT produced high amount of logs showing high level of segmentation being used

and incapability of DUT to take any decision on them. These logs if processed using any

machine learning algorithm or some data analysing tool might reveal presence of some

malicious data. This solution is very important as most of the new IDPS solution uses

these techniques. Still using these techniques in live traffic and detecting malicious traffic

CHAPTER 7. EVALUATION OF RESULTS 48

in real time is not easy but possible with much better results.

In case of attacks against Linux, most of the attacks were successful are only when

payload is obfuscated. In attempts when obfuscation is not used, majority of cases where

detected and dropped by DUT.

7.4 Mitigation Phase

Next target of the experiment after analysing the evasions was to mitigate the problem of

evasions. We used default option available in DUT to make traffic filtering better by IDPS.

No other modifications were done to default functionalities of DUT other than using it as

inline Intrusion prevention system instead of just Intrusion detection system functionality.

To find mitigation solution, we needed to observe many characteristics from success-

ful single evasions. Which protocols were exploited most frequently. How many success-

ful evasions exploited those protocols, are there any options available in DUT by default to

customize the settings accordingly to avoid or handle these attacks. Exploitation of proto-

cols was being done by using basic and well known evasion techniques. These techniques

includes techniques of adding data to sync, using extensively smaller fragmentation, Time

to Live manipulation, and other techniques discussed already in above Chapters.

This attempt of mitigation of evasion was focused on the fact that the normalization

of traffic is done by IDPS, overlooking certain parameters they are being exploited make

it easy for evasion to evade IDPS.

We can not discuss the nitty-gritty of techniques that we found successfully evading

detection. This is done as the target of this thesis and research of AETs is to show the

vulnerabilities of world’s most widely deployed or "de facto" IDPS with possibility of

mitigating many of the issues. And not to make this as guide for intruders and also due to

the restriction imposed by Forcepoint to use evader for this research related experiment

purpose only. All the data presented is derived only from the experimental observations

CHAPTER 7. EVALUATION OF RESULTS 49

Obfuscation
Successful Single evasions out

of found Evasions

After Mitigation

attempt

Windows XP SP2 Enabled 945 918

Disabled 790 754

Ubuntu14.04.1 Enabled 137 123

Disabled 10 0

Table 7.4: Result after Mitigation attempt

and non of the data is modified or self designed.

There might be millions of more advanced evasion and combinations those might be

successful if attempted and might even evade detection even after any countermeasures.

Any assumed data and capability of AETs other than data from this thesis experiment and

proved practically are just assumptions. The scope of these assumptions is so huge that it

is impractical in-terms of its viability.

Most of the successful single evasions were found to be exploiting not just one pro-

tocol but at multiple OSI layers in same evasion while manipulating certain aspects of

each protocol. Different parameter values of protocols were manipulated in attempted

evasions. This manipulation of multiple protocols made it tricky for mitigation attempt

to detect or prevent attack. Very small number of successful evasions were found to be

exploiting just one protocol. It was also assumed that any of evasions that used single

protocol to attempt attack can be mitigated by changing configuration settings of IDPS.

AET which were exploiting one protocol using another protocol at same time in single

evasion, any solution targeted to normalize single protocol might or might not mitigate the

issue and hence will not necessarily stop every evasion. Still the mitigation attempt that

was performed in this research found to be reducing the number of successful evasions in

many cases and did not affected many others.

In test cases against Windows XP, 27 attacks with obfuscated payload and 36 without

CHAPTER 7. EVALUATION OF RESULTS 50

obfuscated payload were dropped. Here the most important thing observed is that with use

of trim, any attack with payload on Sync packets were dropped. No warning or detection

log was generated by DUT. This is important case as in normal scenario, no one shall use

sync packets for data transfer unless with malicious intentions.

In test cases against Ubuntu Linux, 14 attacks with obfuscated payload and all the

attacks without obfuscated payload were contained by DUT. This is a very important

point as no attack was successful while using only single evasions. Even the attacks

whose were successful with obfuscated payload, these attacks were mostly same atomic

evasion using HTTP protocol with very less variation of parameter values. Most of the

attacks were exploiting HTTP protocol based evasions were only successful with obfus-

cated payload. When same evasions were used as attack with unobfuscated payload, they

failed to evade DUT. Good deobfuscation algorithm for normalization can easily counter

these attacks.No attempt of mitigation against this protocol was performed in this thesis.

7.4.1 Further test result

To be sure of the results, just the case of attacks against Ubuntu Linux was studied with

combination of attacks. It was observed that more than one or preferably even more

than two evasions are needed to evade detection. When all the old evasions those were

successful in phase one were test again with modified configuration of Snort, only 2329

evasions were successful out of 21686 unique evasions.

This represent that even if IDPS can detect and drop malicious data using single tech-

nique of evasion. Still if combination of techniques are used then it is possible to evade

the detection and attack the target even when mitigation methods are adopted.

Chapter 8

Conclusion

In this thesis, the effectiveness of advanced evasion techniques (AETs) based attacks in

evading security on an updated IDPS was analysed, and based on the analysis, mitigation

methods were proposed. It was observed that advanced and updated critical network secu-

rity devices, such as IDPS are still quite vulnerable to threats based on evasion techniques

that has been disclosed over two decades ago.

The results from the first phase of analysis showed that a low 4-6% of AETs were

successful in evading the IDPS. Considering importance of security and complexity of

networks, this percentage of successful evasions is very high. It is important to note that

one evasion attack is enough to compromise the integrity of the whole network and make

every system vulnerable.

In depth analysis from the second phase of analysis illustrated that IDPS are most

vulnerable to segmentation/ fragmentation attacks. Furthermore, it was observed that

evasion attacks proved to be more potent when protocols of various OSI layers were

exploited together in the same evasion attack.

We proposed the methods to mitigate the problem by hardening the normalization pa-

rameters of our test device, which was Snort. Analysis results were tested multiple times

during the second phase of experiment to assure reliability of results, and same was done

after applying mitigation methods in third phase. The results obtained after adopting the

CHAPTER 8. CONCLUSION 52

mitigation methods highlighted that many evasions techniques exploiting some particular

protocols were dropped completely; however, in other case evasion attacks for example,

against linux were mitigated 100%. The adoption of mitigation methods removed many

attack instances;however, it was found that the system was still vulnerable to segmen-

tation/ fragmentation and obfuscation attacks. Details of the parameters of successful

evasions are intentionally excluded due to security reasons.

The analysis of AETs was performed with target to recognize which particular eva-

sion techniques are more efficient in evading updated network security devices and adopt

mitigation methodologies based on the results of analysis to counter AETs. Any counter

consequences of the mitigation methods were not tested further. The reliability of the

mitigation methods were limited to particular evasions used in this experiment. Further

research of the same set of advanced evasion techniques on commercial Intrusion detec-

tion and prevention systems can be performed to compare the performance of open-source

verses commercial solutions.

References

[1] Statista. Global digital population as of October 2019. Retrieved on

2019-10-20 from https://www.statista.com/statistics/617136/

digital-population-worldwide/.

[2] Symantec. Internet Security Threat Report. Network Security, 21, February 2019.

Retrieved on 2019-10-20 from https://www.symantec.com/content/

dam/symantec/docs/reports/istr-24-2019-en.pdf.

[3] Statista. Number of connected devices worldwide from 2015 to 2025. 2019.

Retrieved on 2019-10-20 from http://www.statista.com/statistics/

471264/iot-number-of-connected-devices-worldwide/.

[4] McAfee. Report: Economic Impact of Cybercrime – No Slowing Down.

pages 1–28, February 2018. Retrieved on 2019-10-20 from https:

//www.mcafee.com/enterprise/en-us/assets/executive-

summaries/es-economic-impact-cybercrime.pdf.

[5] A. Fuchsberger. Intrusion detection systems and intrusion prevention systems. In In-

formation Security Technical Report, volume 10, pages 134–139. Elsevier J., 2005.

[6] T. Ptacek and T. Newsham. Insertion, Evasion, and Denial of Service: Eluding

Network Intrusion Detection. Technical report, Secure Networks, Inc, Calgary, AB,

Canada, January 1998. Retrieved on 2019-10-20 from https://apps.dtic.

mil/docs/citations/ADA391565.

REFERENCES 54

[7] R. Shirey. Internet security glossary, version 2. RFC 4949, August 2007.

[8] Committee on National Security Systems. Committee on National Security Systems

(CNSS) Glossary. April 2015.

[9] K. Scarfone and P. Mell. Guide to intrusion detection and prevention systems (idps).

NIST Special Publication 800-94 IDS, February 2007. Retrieved on 2019-10-20

from https://csrc.nist.gov/publications/detail/sp/800-94/

final.

[10] J. P. Anderson. Computer Security Technology Planning Study. Technical report,

James P. Anderson Co., Fort Washington, PA, October 1972.

[11] J. P. Anderson. Computer Security threat monitoring and surveillance. Technical

report, James P. Anderson Co., Fort Washington, PA, April 1980.

[12] G. Bruneau. The History and Evolution of Intrusion Detection. Technical report,

Sans Institute, October 2001. Retrieved on 2019-10-20 from https://www.

sans.org/reading-room/whitepapers/detection/paper/344.

[13] R. Meyer. Challenges of Managing an Intrusion Detection System (IDS) in the

Enterprise. Technical report, Sans Institute, March 2008. Retrieved on 2019-

10-20 from https://www.sans.org/reading-room/whitepapers/

detection/paper/2128.

[14] Gartner. Gartner Information Security Hype Cycle Declares Intrusion De-

tection Systems a Market Failure: Money Slated for Intrusion Detection

Should Be Invested in Firewalls, June 2003. Retrieved on 2019-10-20 from

https://www.businesswire.com/news/home/20030611005056/

en/Gartner-Information-Security-Hype-Cycle-Declares-

Intrusion,2003.

REFERENCES 55

[15] B. Subba, S. Biswas, and S. Karmakar. False alarm reduction in signature-based ids:

game theory approach. Security and Communication Networks, 9(18):4863–4881,

November 2016.

[16] H. Adam, L. Craig, and N. Claudio. Magic Quadrant for Intrusion De-

tection and Prevention Systems, January 2017. Retrieved on 2019-10-20

from https://www.gartner.com/doc/3571417/magic-quadrant-

intrusion-detection-prevention.

[17] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards automatic gen-

eration of vulnerability-based signatures. Proceedings - 2006 IEEE Symposium on

Security and Privacy, pages 2–16, 2006.

[18] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield: Vulnerability-driven

network filters for preventing known vulnerability exploits. Computer Communica-

tion Review, 34(4):193–204, October 2004.

[19] T. H. Cheng, Y. D. Lin, Y. C. Lai, and P. C. Lin. Evasion techniques: Sneaking

through your intrusion detection/prevention systems. IEEE Communications Sur-

veys and Tutorials, 14(4):1011–1020, October 2011.

[20] N. M. Jacob and M. Y. Wanjala. A Review of Intrusion Detection Systems. Global

Journal of Computer Science and Technology, 17:1–5, January 2018.

[21] V. Jyothsna, V. V. Rama Prasad, and K. Munivara Prasad. A Review of Anomaly

based Intrusion Detection Systems. International Journal of Computer Applications,

28(7):26–35, August 2011.

[22] H. J. Liao, R. Lin, H. Chun, Y. C. Lin, and K. Y. Tung. Intrusion detection system: A

comprehensive review. Journal of Network and Computer Applications, 36(1):16–

24, January 2013.

REFERENCES 56

[23] Guide to Intrusion Detection and Prevention Systems (IDPS) (Draft). Nist Special

Publication, 800-94:127, July 2012. Retrieved on 2019-10-20 from https://

csrc.nist.gov/publications/detail/sp/800-94/rev-1/draft.

[24] M. Boltz, M. Jalava, J. Walsh, and I. Labs. New Methods and Combinatorics for By-

passing Intrusion Prevention Technologies. Technical report, Stonesoft Corporation,

Helsinki, Finland, 2010.

[25] S. Gold. Advanced evasion techniques. Network Security, (1):16–19, January 2011.

[26] M. Särelä, T. Kyöstilä, T. Kiravuo, and J. Manner. Evaluating intrusion prevention

systems with evasions. International Journal of Communication Systems, 30(16):1–

15, June 2017.

[27] M. Dyrmose. Beating the IPS. Technical report, Sans Institute, March 2003.

Retrieved on 2019-10-20 from https://www.sans.org/reading-room/

whitepapers/intrusion/paper/34137.

[28] J. Postel. Internet Protocol. RFC 791, September 1981.

[29] S. Dharmapurikar and V. Paxson. Robust TCP Stream Reassembly in the Presence of

Adversaries. In Proceedings of the 14th Conference on USENIX Security Symposium

- Volume 14, pages 5–5. USENIX Association, August 2005.

[30] M. Ibrahim Salim and T. A. Razak. A study on IDS for preventing denial of service

attack using outliers techniques. In Proceedings of 2nd IEEE International Con-

ference on Engineering and Technology, ICETECH 2016, pages 768–775. IEEE,

March 2016.

[31] A. Brindley. Denial of Service attacks and the emergence of Intrusion Pre-

vention Systems. Technical report, Sans Institute, November 2002. Re-

trieved on 2019-10-20 from https://www.sans.org/reading-room/

whitepapers/firewalls/paper/818.

REFERENCES 57

[32] T. Kyöstilä. The effectiveness of evasion techniques against intrusion prevention

systems. Master’s thesis, Aalto University, Finland, May 2014.

[33] J. Marpaung, M. Sain, and H. Lee. Survey on malware evasion techniques: State

of the art and challenges. International Conference on Advanced Communication

Technology, ICACT, pages 744–749, February 2012.

[34] W. Buchanan, F. Flandrin, R. Macfarlane, and J. Graves. A methodology to evaluate

rate-based intrusion prevention system against distributed denial-of-service (DDoS).

In Cyberforensics 2011. University of Strathclyde, Glasgow, 2010.

[35] B. Hernacki, J. Bennett, and J. Hoagland. An overview of network evasion methods.

Information Security Technical Report, 10(3):140–149, 2005.

[36] M. Alenezi and M. J. Reed. Methodologies for detecting DoS / DDoS attacks against

network servers. The Seventh International Conference on Systems and Networks

Communications (ICSNC), pages 92–98, 2012.

[37] T. Rowan. Intrusion prevention systems: superior security. Network Security,

2007(9):11–15, September 2007.

[38] D. Bonderud. Leaked Mirai Malware Boosts IoT Insecurity Threat Level. Website:

Retrieved on 2019-10-20 from https://securityintelligence.com/

news/leaked-mirai-malware-boosts-iot-insecurity-threat-

level/.

[39] S. Banescu and A. Pretschner. A Tutorial on Software Obfuscation. Advances in

Computers, 108:283–353, 2018.

[40] P. Gibbs. Intrusion Detection Evasion Techniques and Case Studies. Technical re-

port, Sans Institute, January 2017. Retrieved on 2019-10-20 from https://www.

sans.org/reading-room/whitepapers/detection/paper/37527.

REFERENCES 58

[41] V. Paxson. Bro: A System for Detecting Network Intruders in Real-time. In Pro-

ceedings of the 7th USENIX Security Symposium, volume 31, pages 2435–2463.

Elsevier North-Holland, Inc., January 1999.

[42] D. Burns and O. Adesina . Network IPS Traffic Analysis Methods, Evasion Possi-

bilities, and Anti-evasive Countermeasures. In CCNP security IPS 642-627 official

cert guide. CISCO, July 2011.

[43] NMAP.ORG. Timing and Performance | Nmap Network Scanning, 2016.

Retrieved on 2019-10-20 from https://nmap.org/book/man-

performance.html.

[44] B. Caswell and H. D. Moore. Thermoptic camouflage: Total IDS evasion. Black

Hat USA, pages 1–61, October 2006.

[45] P. Fogla and W. Lee. Evading Network Anomaly Detection Systems:Formal Reason-

ing and Practical Techniques. Proceedings of the 13th ACM conference on Computer

and communications security, pages 59–68, 2006.

[46] P Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. Polymorphic Blending

Attacks. 15th USENIX Security Symposium, pages 241–256, August 2006.

[47] C. Sullo. Nikto, 2001. Retrieved on 2019-09-20 from https://cirt.net/

Nikto2.

[48] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Von Underduk. Polymorphic shell-

code engine using spectrum analysis. In Phrack Magazine Issue 0x3d, Phile 0x09,

2003.

[49] G. Vigna, W. Robertson, and D. Balzarotti. Testing network-based intrusion detec-

tion signatures using mutant exploits. Proceedings of the 11th ACM conference on

Computer and communications security, pages 21–30, October 2004.

REFERENCES 59

[50] D. Balzarotti. Testing network intrusion detection systems. PhD thesis, Politecnico

di Milano, Italy, October 2006.

[51] A. Gorton and T. Champion. Combining evasion techniques to avoid network in-

trusion detection systems. Technical report, Skaion.inc, North Chelmsford, Mas-

sachusetts, USA, 2003.

[52] O. P. Niemi and A. Levomaki. Evading Deep Inspection for Fun and Shell. Black

Hat USA 2013, pages 1–5, 2013.

[53] CVE-2004-1315. Available from MITRE, CVE-ID CVE-2004-1315, December 12

2004. Retrieved on 2019-09-20 from http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2004-1315.

[54] CVE-2008-4250. Available from MITRE, CVE-ID CVE-2008-4250, September 25

2008. Retrieved on 2019-09-21 from http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2008-4250.

