Structure-based and evolutionary analyses of alternative splicing patterns in carbonic anhydrases

Ramesh Karki Master's Thesis MDP Programme in Digital Health and Life Sciences Department of Future Technologies University of Turku October 2019

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system suing the Turnitin OriginalityCheck service

UNIVERSITY OF TURKU

Department of Future Technologies/Faculty of Science and Engineering Ramesh Karki: Structure-based and evolutionary analyses of alternative splicing patterns in carbonic anhydrases Pro gradu –thesis, 73 p., 23 p. appendices Bioinformatics October 2019

Abstract

Alternative splicing is a biological process which generates multiple distinct mature mRNAs from a single primary transcript. Several isoforms of alpha carbonic anhydrase exist due to this phenomenon which are categorized into subgroups (cytoplasmic, mitochondrial, secreted, membraneseveral associated/extracellular, CA-related proteins). The research investigates and analyzes the missing/extra exon pattern in these isoforms. The transcript information of each CA gene of human and mouse was extracted using ensemble database. Protein-coding isoforms were then classified based on the presence of signal peptide, complete catalytic domain, active site, metal-ion binding site and TM helix. Ensembl database flags (such as APPRIS, GENCODE basic, TSL) and catalytic domain structure was observed to find out principle isoforms for each CAs. EST and cDNA evidence for missing/extra exon was examined for each principle isoforms using ensemble and Genomic browser. Structural feasibility of the isoforms with missing/extra exons was studied. The result shows that human and mouse extracellular and secretory CAs have extra/missing exons in various exon positions. Some of these exons are within catalytic domain and some in the linker region after the catalytic domain and before the transmembrane helix. Transcripts like human CAXII and mouse Car XIV have missing 9th exon between catalytic and transmembrane domains which implies the possibility of function-altering variant. The CA XII transcript with missing 9th exon (11aa) seems to be common in astrocytomas (type of cancer that forms in brain or spinal cord). There are no evidence of missing/extra exons in cytoplasmic and mitochondrial CAs. Ensembl shows no evidence of missing/extra exons in extracellular and secreted CAs of zebrafish and cow (not enough data for these species). Homologous missing/extra exons in human and mouse in specific groups of CAs (i.e. extracellular and secreted) confirm the biological relevance of the pattern to some extent. Further studies are needed to fully understand and confirm evolutionary significance of this pattern.

Keywords

Alternative Splicing, Principle Isoform, Carbonic Anhydrase, Exon, Catalytic Domain, Membrane-associated CAs, Secreted CA, Protein-coding

Acknowledgements

This research has been possible because of continuous support and guidance from my thesis supervisor Dr. Martti Tolvanen. I am very thankful to Martti for his critical insights and effective supervision during the project.

I would like to thank my fellow students for their feedback and co-operation. I would also like to expess my gratitude to Dr. Juho Heimonen for reviewing my thesis. Last but not the least, I am deeply indebted to my parents for providing me good atmosphere for my growth and progress. Thank you for supporting and believing in me at all times.

Abbreviations

CA	Carbonic anhydrase
PDB	Protein Data Bank
Zn	Zinc
His	Histidine
ОН	Hydroxide
ORF	Open Reading Frame
RNA	Ribonucleic Acid
DNA	Deoxyribonucleic Acid
cDNA	Complimentary DNA
mRNA	messenger RNA
aa	Amino Acid
bp	Base Pair
hCA	Human Carbonic Anhydrase
TSL	Transcript Support Level
ncRNA	Non-Coding RNA
CCDS	Consensus Coding Sequence Project
EST	Expressed Sequence Tag

Table of Contents

1	Intr	oduction
2	Lite	erature Review
2.	1	Types of human carbonic anhydrases
2	2.1.1	CA I
2	2.1.2	CA II
2	2.1.3	CA III
2	2.1.4	CA IV
2	2.1.5	CA V
2	2.1.6	CA VI
2	2.1.7	CA VII
2	2.1.8	CA VIII
2	2.1.9	CA IX
2	2.1.10	CA X11
2	2.1.11	CA XI
2	2.1.12	CA XII
2	2.1.13	CA XIII
2	2.1.14	CA XIV
2.	2	Alternative Splicing14
3	Ma	terials and Methods17
3.	1	Human Carbonic Anhydrase Isoforms17
3.	2	Mouse Carbonic Anhydrase Isoforms23
3.	3	Classification of human protein-coding CA transcript variants 28
4	Res	sults
4.	1	Exon-oriented protein visualization of CA II (human)
4.	2	Missing/extra exons in Human Extracellular Carbonic anhydrases 32
Z	4.2.1	CA IV
Z	1.2.2	CA IX
Z	1.2.3	CA XII

4.2.4	CA XIV
4.3	Missing/extra exons in Human Secretory Carbonic Anhydrase 32
4.3.1	CA VI
4.4	Missing/extra exons in Mouse Extracellular Carbonic Anhydrase32
4.4.1	Car IV
4.4.2	Car IX
4.4.3	Car XII
4.4.4	Car XIV
4.5	Missing/extra exons in Mouse Secretory Carbonic Anhydrase 34
4.5.1	Car VI
4.6 in Zebra	Missing/extra exons in Extracellular/Secreted Carbonic anhydrase afish and Cow
4.7	Structural feasibility of Human carbonic anhydrase isoforms34
4.7.1	CA IV
4.7.2	CA VI
4.7.3	CA IX
4.7.4	CA XII
4.7.5	CA XIV
4.8	Structural feasibility of Mouse carbonic anhydrase isoforms41
4.8.1	Car IV
4.8.2	Car IX (PDB structure missing)42
4.8.3	Car XIV (9 th exon outside of PDB structure)43
5 Dis	cussion
6 Co	nclusions
Referenc	ces
Appendi	x

1 Introduction

Carbonic Anhydrase

Carbonic anhydrase enzymes are metalloproteins that contain zinc and plays a major role in reversible conversion of carbon dioxide to bicarbonate and release proton. They are essential for several physiological and pathophysiological function (Imtaiyaz Hassan et al., 2013).

 $CO2 + H2O \rightleftharpoons HCO3 - + H+$

16 different CA isozymes exists in mammals based on their sequence, bio- chemical properties and subcellular location (A. J. J. Esbaugh and Tufts, 2006).

The α -CA gene family contains 3 subfamilies. The cytoplasmic CAs are found in the cytoplasm of various tissues which includes CA I, II, III, VII and XIII. Another group of isozymes consists of CA IV, IX, XII, XIV and XV which are membrane-associated CAs. The secreted CAs contains CA VI and mitochondrial CAs contain CAVA and CA VB (A. J. Esbaugh and Tufts, 2006). Large cone-shaped cavity forms the active site of CA where Zn2+ ion resides at the bottom.

Structural analysis of CA isozymes I, II, III, IV,V, XII, XIII, and XIV shows a high degree of structural similarity (Imtaiyaz Hassan et al., 2013).

Table 1 CO2 hydration activity and organ/tissue distribution of the 12 human catalytically active alpha CA isozymes (Supuran and Simone, 2015)

Enzyme	Catalytic activity	Organ/tissue distribution
CA I	Low	Erythrocytes, gastrointestinal tract, eye
CA II	High	Erythrocytes, eye, gastrointestinal tract, bone osteoclasts, kidney, lung, testis, brain
CA III	Very low	Skeletal muscle, adipocytes
CA IV	Medium	Kidney, lung, pancreas, brain
		capillaries, colon, heart muscle, eye
CAVA	Low	Liver
CAVB	High	Heart and skeletal muscle, pancreas, kidney, spinal cord, gastrointestinal tract
CAVI	Low	Salivary and mammary glands
CAVII	High	Central nervous system
CA IX	High	Tumors, gastrointestinal mucosa
CA XII	Low	Renal, intestinal, reproductive epithelia, eye, tumors
CA XIII	Low	Kidney, brain, lung, gut, reproductive tract
CA XIV	Low	Brain, liver, eye, skeletal muscle

Human CAs' Catalytic Features

Carbonic anhydrase catalyzes reaction in two-steps. Bicarbonate ion coordinated to zinc is formed in first step due to nucleophilic attack of hydroxide ion on carbon dioxide molecule. Catalytically active form of enzyme is formed through a proton transfer reaction from zinc-coordinated water molecule to the external buffer in second step (Supuran and Simone, 2015).

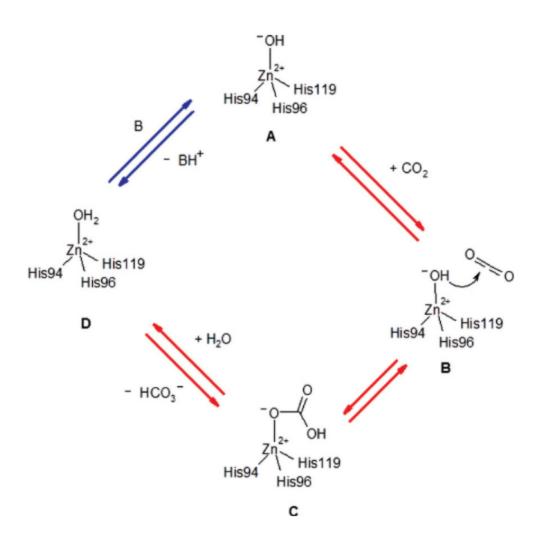


Figure 1 Catalytic mechanism of a-CAs. Light gray arrows indicate reactions defining the first step of the catalytic mechanism, while the black arrows specify the reaction of the second step (Supuran and Simone, 2015).

2 Literature Review

2.1 Types of human carbonic anhydrases

2.1.1 CA I

CA I has 260 residues where its principal transcript contains 261 residues. To date, there are 31 crystallographic structures available of CA I. It is mostly located in erythrocytes including kidneys, gastrointestinal tract, lungs, brain and eyes. It is less active than CA II isoform (KANNAN et al., 1984; Kumar and Kannan, 1994).

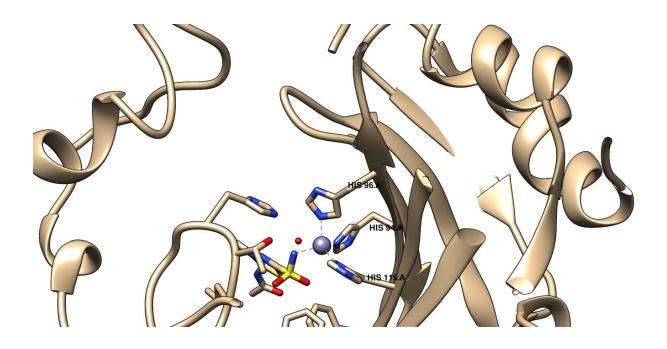


Figure 2 CA I catalytic active site (PDB ID: 1BZM) depiction using chimera. Histidine residues (94, 96 and 119) and water molecule (small red sphere) coordinates with zinc cofactor (big sphere)

Histine64 is conserved in highly active isoforms of human carbonic anhydrases which acts as proton shuttle thereby increasing deprotonation rate of zinc-bound water molecule. CA I is closely identical with other cytosolic isoforms II, III, VII, and XIII due to its high number of conserved residues and 3D structure (Chakravarty and Kannan, 1994; Ferraroni et al., 2002).

2.1.2 CA II

Human CA II contains 259 amino acid residues where its principal transcript contains 260aa. This enzyme helps in bone resorption and osteoclast differentiation (Kim et al., 2002). It regulates fluid secretion into the anterior chamber of the eye and also balances pH in duodenal upper villous epithelium (Briganti et al., 1999; Eriksson et al., 1988).

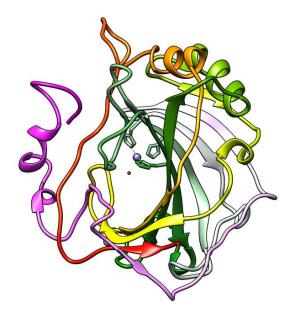


Figure 3 Structure of CA II (PDB ID: 12CA) as viewed in chimera

This isoform of carbonic anhydrase is most studied and forms a basis for better understanding of other CAs. CA II has high catalytic activity and has highest expression level in colonic mucosa (Alvarez et al., 2005; Kim et al., 2002).

2.1.3 CA III

CAIII is a monomeric cytosolic protein that is most abundant in red fibers of skeletal muscle, liver, and adipose tissue (Di Fiore et al., 2009). It is comparatively very weak in catalysis nearly 300 fold less than that of CA II.

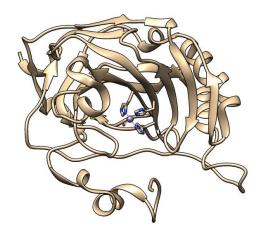


Figure 4 Structure of carbonic anhydrase III (PDB ID: 1Z93) as viewed in Chimera

Principal isoform of this enzyme in human has catalytic domain residues starting from position 3-259 with residues 127 acting as active site. Mutagenesis of residue F to L enhances activity by at least 10 fold (Crocetti et al., 2009a).

Peptide sequence of principal isoform of CAIII (black and blue color represents alternating exons with red representing splice site):

MAKEWGYASHNGPDHWHELFPNAKGENQSPVELHTKDIRHDPSLQPWSVSYDGGSAKTIL NNGKTCRVVFDDTYDRSMLRGGPLPGPYRLRQFHLHWGSSDDHGSEHTVDGVKYAAELHL VHWNPKYNTFKEALKQRDGIAVIGIFLKIGHENGEFQIFLDALDKIKTKGKEAPFTKFDP SCLFPACRDYWTYQGSFTTPPCEECIVWLLLKEPMTVSSDQMAKLRSLLSSAENEPPVPL VSNWRPPQPINNRVVRASFK

2.1.4 CA IV

CA IV has 10 PDB entries derived from x-ray crystallography. The gene for this enzyme is located in chromosome 17q23 (Temperini et al., 2006, 2007c). The mutagenesis of residue R to S at position 219 leads to impaired SLC4A4 cotransporter activity stimulation with no catalytic activity (Köhler et al., 2007b; Stams et al., 1996). It is mostly expressed in colon, fat cells, lung, thyroid and other tissues (Yang et al., 2005).

Peptide structure of principal isoform of CA IV (ensembl ID: ENST00000300900.9) where black and blue color represents alternating exons with red representing splice site):

MRMLLALLALSAARPSASAESHWCYEVQAESSNYPCLVPVKWGGNCQKDRQSPINIVTTK AKVDKKLGRFFFSGYDKKQTWTVQNNGHSVMMLLENKASISGGGLPAPYQAKQLHLHWSD LPYKGSEHSLDGEHFAMEMHIVHEKEKGTSRNVKEAQDPEDEIAVLAFLVEAGTQVNEGF QPLVEALSNIPKPEMSTTMAESSLLDLLPKEEKLRHYFRYLGSLTTPTCDEKVVWTVFRE PIQLHREQILAFSQKLYYDKEQTVSMKDNVRPLQQLGQRTVIKSGAPGRPLPWALPALLG PMLACLLAGFLR

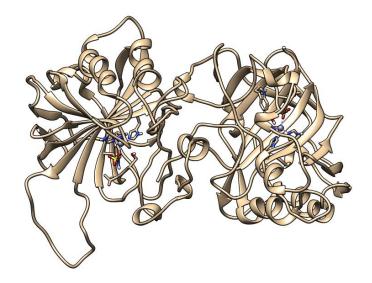


Figure 5 Structure of human CA IV (PDB ID: 1ZNC) with chain A and B as viewed in chimera

2.1.5 CA V

Human carbonic anhydrase consist of two isozymes, CA VA and CA VB. They are both located in mitochondria (Nagao et al., 1993). CA VA is located in the liver, kidney and skeletal muscle whereas CA VB is located in pancreas, kidneys, salivary glands, skeletal muscle, heart and spinal cord (Maresca et al., 2009; Van Karnebeek et al., 2014).

Peptide structure of principal isoform of CA VA (ensembl ID: ENST00000649794.2) where black and blue color represents alternating exons with red representing splice site):

MLGRNTWKTSAFSFLVEQMWAPLWSRSMRPGRWCSQRS</mark>CAWQTSNNTLHPLWTVPVSVPG

GTRQSPINIQWRDSVYDPQLKPLRVSYEAASCLYIWNTGYLFQVEFDDATEASGISGGPL ENHYRLKQFHFHWGAVNEGGSEHTVDGHAYPAELHLVHWNSVKYQNYKEAVVGENGLAVI GVFLKLGAHHQTLQRLVDILPEIKHKDARAAMRPFDPSTLLPTCWDYWTYAGSLTTPPLT ESVTWIIQKEPVEVAPSQLSAFRTLLFSALGEEEKMMVNNYRPLQPLMNRKVWASFQATN

EGTRS

Yellow highlighted region is a transit peptide (residue 1-38). Mutagenesis of residue 'S' to 'P' at position 233 results in reduced enzymatic activity (Yang et al., 2005).

Peptide structure of principal isoform of CA VB (ensembl ID: ENST00000318636.8) where black and blue color represents alternating exons with red representing splice site):

MVVMNSLRVILQASPGKLLWRKFQIPRFMPARPCSLYTCTYKTRNRALHPLWESVDLVPG GDRQSPINIRWRDSVYDPGLKPLTISYDPATCLHVWNNGYSFLVEFEDSTDKSVIKGGPL EHNYRLKQFHFHWGAIDAWGSEHTVDSKCFPAELHLVHWNAVRFENFEDAALEENGLAVI GVFLKLGKHHKELQKLVDTLPSIKHKDALVEFGSFDPSCLMPTCPDYWTYSGSLTTPPLS ESVTWIIKKQPVEVDHDQLEQFRTLLFTSEGEKEKRMVDNFRPLQPLMNRTVRSSFRHDY VLNVQAKPKPATSQATP

Yellow highlighted region is a transit peptide (1-33).

2.1.6 CA VI

CA VI is the only secretory carbonic anhydrase in mammals which is localized in serous acinar cells, ductal cells of excretory glands and various non-glandular cells (Crocetti et al., 2009b; Maresca et al., 2009). It has only one PDB structure modelled by x-ray crystallography.

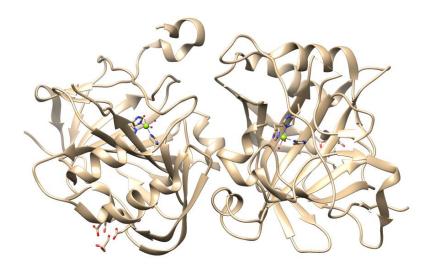


Figure 6 Structure of human carbonic anhydrase 6 (PDB ID: 3FE4) as viewed in chimera

The principal isoform (ensemble ID: ENST00000377443.7) has a signal peptide in the region 1-17. The length of CA VI (3FE4) is 278 amino acids whereas length of principal isoform (ENST00000377443.7) is 308 amino acids (Kannan et al., 1972; Temperini et al., 2007a).

2.1.7 CA VII

CA VII is located in chromosome 16q22 and encodes a protein of 263 residues (Yang et al., 2005). It is located in some brain tissues in mammals and in the stomach, colon, duodenum, liver, and skeletal muscle of mice (Montgomery et al., 1991).

Peptide structure of principal isoform of CA VII (ensembl ID: ENST00000338437.7) where black and blue color represents alternating exons with red representing splice site):

MTGHHGWGYGQDDGPSHWHKLYPIAQGDRQSPINIISSQAVYSPSLQPLELSYEACMSLS ITNNGHSVQVDFNDSDDRTVVTGGPLEGPYRLKQFHFHWGKKHDVGSEHTVDGKSFPSEL HLVHWNAKKYSTFGEAASAPDGLAVVGVFLETGDEHPSMNRLTDALYMVRFKGTKAQFSC FNPKCLLPASRHYWTYPGSLTTPPLSESVTWIVLREPICISERQMGKFRSLLFTSEDDER IHMVNNFRPPQPLKGRVVKASFRA

The principal isoform (ensemble ID: ENST00000338437.7) has 264 amino acid residues whereas PDB structure(6H38) has 270 amino acids. There are 6 PDB entries for this isozyme.

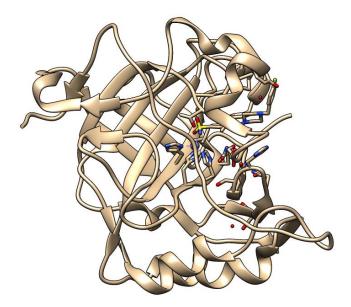


Figure 7 Ribbon diagram of CA VII structure (PDB ID: 6H38) as viewed in chimera

2.1.8 CA VIII

CA VIII has a protein coding transcript (ensemble ID: ENST00000317995.5) with 290 amino acids. It has one x-ray structure PDB entry(2W2J). It has Arg-116 instead of the conserved histidine due to which it lacks carbonic anhydrase activity (Yang et al., 2005).

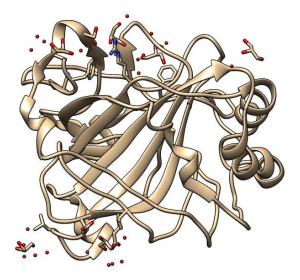


Figure 8 Ribbon diagram of CA VIII structure (PDB ID: 2W2J) as viewed in chimera.

2.1.9 CA IX

CA IX consists of extracellular domain, transmembrane region, and an intracellular tail which can exist is monomer and dimer. It is expressed in basolateral membranes of alimentary tract, testis, ovary, skeletal system, lining cells of body cavity, etc. (Supuran and Simone, 2015). It is inhibited by sulfonamide derivatives such as acetazolamide (AZA), saccharin, coumarins and Foscarnet (phosphonoformate trisodium salt) (Temperini et al., 2007b). Its optimum pH is 6.5 (Alterio et al., 2009). The signal peptide position is 1-37 (Alterio et al., 2009)

It has 11 PDB structure entries. The PDB structure 2HKF has 3 chains (L, H, and P).

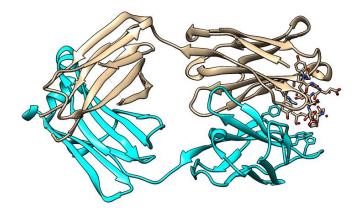


Figure 9 Ribbon diagram of CA IX structure (2HKF) with chain L highlighted in cyan and chain H in grey as viewed in chimera.

2.1.10 CA X

CA X is located in chromosome 17 and does not have catalytic activity. It is expressed in 111 organs with highest expression in brain and central nervous system (Alterio et al., 2009). It is not expressed in fetal brain. It has no PDB structure as of now.

Peptide structure of principal isoform of CA X (ensembl ID: ENST00000442502.6) where black and blue color represents alternating exons with red representing splice site):

MEIVWEVLFLLQANFIVCISAQQNSPKIHEGWWAYKEVVQGSFVPVPSFWGLVNSAWNLC SVGKRQSPVNIETSHMIFDPFLTPLRINTGGRKVSGTMYNTGRHVSLRLDKEHLVNISGG PMTYSHRLEEIRLHFGSEDSQGSEHLLNGQAFSGEVQLIHYNHELYTNVTEAAKSPNGLV VVSIFIKVSDSSNPFLNRMLNRDTITRITYKNDAYLLQGLNIEELYPETSSFITYDGSMT IPPCYETASWIIMNKPVYITRMQMHSLRLLSQNQPSQIFLSMSDNFRPVQPLNNRCIRTN INFSLQGKDCPNNRAQKLQYRVNEWLLK

2.1.11 CA XI

This isoform is located in chromosome19 and does not have a catalytic activity. Its signal peptide is located in position 1-23. It has N-linked glycosylation site at positions 118, 170 and 260 (Alterio et al., 2009). It is expressed mainly in the brain with weak expression in spinal cord and thyroid.

Peptide structure of principal isoform of CA XI (ensembl ID: ENST00000084798.9) where black and blue color represents alternating exons with red representing splice site):

MGAAARLSAPRALVLWAALGAAAHIGPAPDPEDWWSYKDNLQGNFVPGPPFWGLVNAAWS LCAVGKRQSPVDVELKRVLYDPFLPPLRLSTGGEKLRGTLYNTGRHVSFLPAPRPVVNVS GGPLLYSHRLSELRLLFGARDGAGSEHQINHQGFSAEVQLIHFNQELYGNFSAASRGPNG LAILSLFVNVASTSNPFLSRLLNRDTITRISYKNDAYFLQDLSLELLFPESFGFITYQGS LSTPPCSETVTWILIDRALNITSLQMHSLRLLSQNPPSQIFQSLSGNSRPLQPLAHRALR GNRDPRHPERRCRGPNYRLHVDGVPHGR

Yellow highlighted region is a signal peptide.

2.1.12 CA XII

It is located in chromosome 15 and its activity is inhibited by saccharin, sulfonamide derivatives such as acetazolamide (AZA), benzenesulfonamide and derivatives, coumarins, etc. (Alterio et al., 2009) (Crocetti et al., 2009a) (Whittington et al., 2001) (Köhler et al., 2007a). Its zinc metal binding site is located in residue positions 119, 121, 145 (Di Fiore et al., 2009). It is highly expressed in kidney, prostate, colon, activated lymphocytes and intestine with moderate expression in pancreas, testis and ovary (Di Fiore et al., 2009).

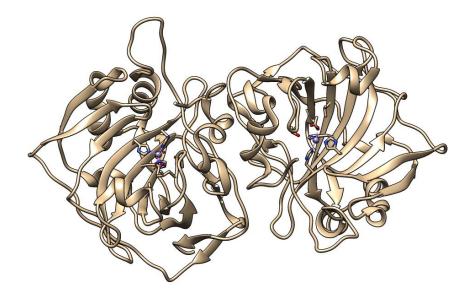


Figure 10 Ribbon diagram of CA XII structure (PDB ID: 1JCZ) as viewed in chimera.

2.1.13 CA XIII

CA XIII consists of 262 amino acids and closely related to CAs I, II, and III. It is generally expressed in the small intestine, thymus, testis, prostate, spleen, ovary, and colon with the exception in leucocytes (Di Fiore et al., 2009; Lehtonen et al., 2004). It is located in chromosome 8.

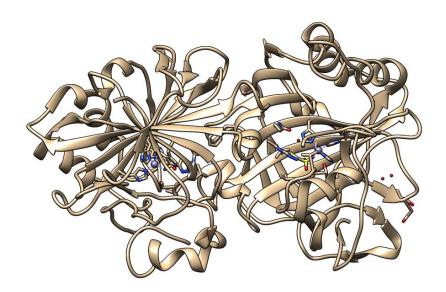


Figure 11 Ribbon diagram of CA XIII structure (PDB ID: 3CZV) as viewed in chimera.

Peptide structure of principal isoform of CA XIII (ensembl ID: ENST00000321764.4) where black and blue color represents alternating exons with red representing splice site):

MSRLSWGYREHNGPIHWKEFFPIADGDQQSPIEIKTKEVKYDSSLRPLSIKYDPSSAKII SNSGHSFNVDFDDTENKSVLRGGPLTGSYRLRQVHLHWGSADDHGSEHIVDGVSYAAELH VVHWNSDKYPSFVEAAHEPDGLAVLGVFLQIGEPNSQLQKITDTLDSIKEKGKQTRFTNF DLLSLLPPSWDYWTYPGSLTVPPLLESVTWIVLKQPINISSQQLAKFRSLLCTAEGEAAA FLVSNHRPPQPLKGRKVRASFH

2.1.14 CA XIV

This isoform along with CA XIII is most recently discovered. It is located in chromosome 1 with zinc metal binding residue at positions 109, 111 and 135 (Alterio et al., 2014). It is highly expressed in central nervous system and low expression in heart, liver, colon, small intestine, kidney, urinary bladder and skeletal muscle (Alterio et al., 2014; Temperini et al., 2006). It has two PDB structures derived from x-ray crystallography.

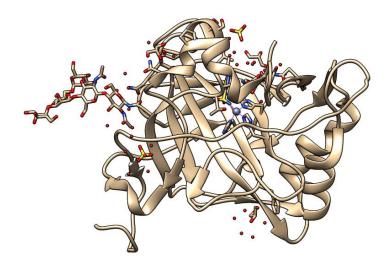


Figure 12 Ribbon diagram of CA XIV structure (PDB ID: 4LU3) as viewed in chimera.

2.2 Alternative Splicing

Alternative splicing is a process in which single primary transcript generates multiple distinct mature mRNAs with different structural and functional properties (Ghigna et al., 2008). Alternative splicing involves interaction of various cis-acting elements and trans-acting factors guided by coupling between transcription and splicing (WANG et al., 2015). There are about 25,000 protein coding genes in humans which codes for more than 90,000 different proteins. This is the result of alternative splicing process (WANG et al., 2015). Most prevalent alternative splicing pattern in vertebrates and invertebrates is the cassette-type alternative exon(exon skipping) whereas intron retention is prevalent in lower metazoans (WANG et al., 2015). Neurofibromatosis type 1(NF1) is caused by one frameshift, two nonsense and two missense mutations in RNA splicing of NF1 gene(Ars et al., 2000). Mutually exclusive splicing of 95

variable exons results in the encode of 38,016 distinct axon guidance receptors in insect Dscam (Graveley, 2005).

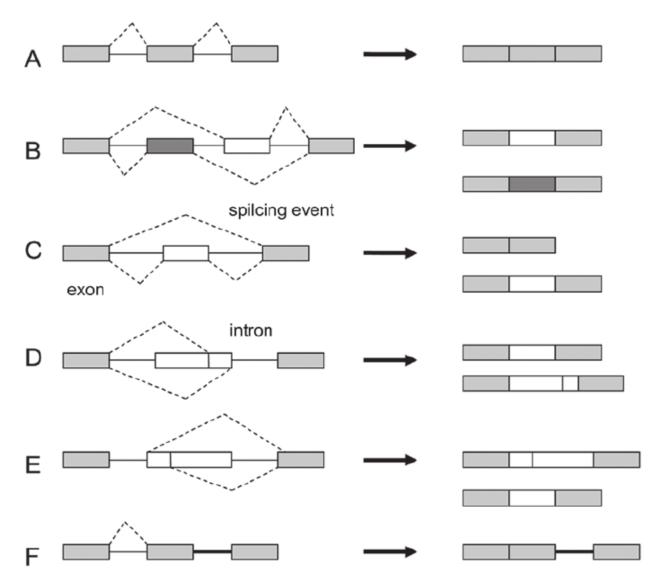


Figure 13 Five main types of alternative splicing events are depicted. (A) Constitutive splicing; (B) mutually exclusive exons; (C) cassette alternative exon; (D) alternative 3' splice site; (E) alternative 5' splice site; and (F) intron retention (WANG et al., 2015)

It has been observed that rate of alternative splicing in mammals is greater than in invertebrates. Ars et al. have predicted this observation using two data sets , first being mRNA sequences and second EST contig sequences(Kim et al., 2004).

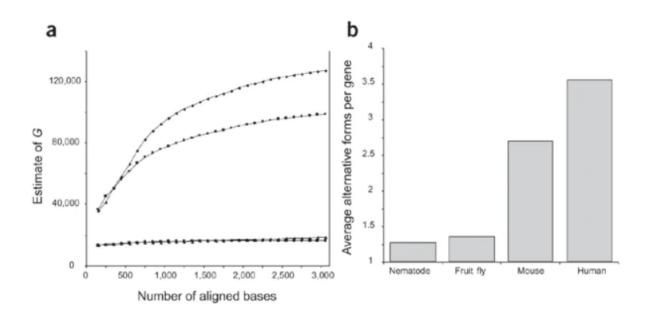


Figure 14 (a) Estimate of the gene count G with varying minimum number of aligned bases for H. sapiens (diamonds), M. musculus (squares), D. melanogaster (triangles) and C. elegans (circles). (b) Average number of alternative splice forms per gene for each organism (Kim et al., 2004).

Alternative splicing of CAIX isoform generates a transcript lacking exons 8-9 which is detected in cancer cells. The resulting protein lacks transmembrane region, the intracellular tail and the C-terminal of the catalytic domain (Malentacchi et al., 2009).

The CAXII transcript with missing 9th exon (11aa) seems to be common in astrocytomas (type of cancer that forms in brain or spinal cord) (Malentacchi et al., 2009).

3 Materials and Methods

3.1 Human Carbonic Anhydrase Isoforms

Carbonic Anhydrase 1

This gene has 25 transcripts as shown in the transcript table below:

CA1-222	ENST00000523953.5	2785	<u>261aa</u>	Protein coding
CA1-224	ENST00000542576.5	1236	<u>261aa</u>	Protein coding
CA1-201	ENST00000431316.3	1232	<u>261aa</u>	Protein coding
CA1-219	ENST00000523022.5	1208	<u>261aa</u>	Protein coding
CA1-225	ENST0000626824.1	2405	<u>127aa</u>	Protein coding
CA1-204	ENST00000517618.5	832	<u>251aa</u>	Protein coding
CA1-203	ENST00000517590.5	696	<u>175aa</u>	Protein coding
CA1-223	ENST00000524324.5	675	<u>194aa</u>	Protein coding
CA1-214	ENST00000521846.5	666	<u>149aa</u>	Protein coding
CA1-218	ENST00000522814.5	618	<u>148aa</u>	Protein coding
CA1-216	ENST00000522579.5	614	<u>149aa</u>	Protein coding
CA1-213	ENST00000521679.5	606	<u>178aa</u>	Protein coding
CA1-215	ENST00000522389.5	551	<u>127aa</u>	Protein coding
CA1-208	ENST00000519991.5	527	<u>137aa</u>	Protein coding
CA1-221	ENST00000523858.5	518	<u>99aa</u>	Protein coding
CA1-217	ENST00000522662.5	501	<u>118aa</u>	Protein coding
CA1-207	ENST00000519129.5	491	<u>22aa</u>	Protein coding
CA1-210	ENST00000520663.5	454	<u>87aa</u>	Protein coding
CA1-202	ENST00000517429.5	652	<u>81aa</u>	Nonsense mediated decay
CA1-206	ENST00000518341.5	655	No protein	Processed transcript
CA1-209	ENST00000520093.5	594	No protein	Retained intron
CA1-220	ENST00000523712.5	574	No protein	Retained intron
CA1-212	ENST00000520990.5	525	No protein	Retained intron
CA1-205	ENST00000518233.5	355	No protein	Retained intron
CA1-211	ENST00000520692.1	297	No protein	Retained intron

Among them 18 transcripts are protein coding.

This gene has 5 transcripts out of which only one is protein-coding as shown in the transcript table below:

Name 🍦	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype
CA2-201	ENST00000285379.10	1562	<u>260aa</u>	Protein coding
CA2-203	ENST00000520127.5	875	<u>97aa</u>	Nonsense mediated decay
CA2-205	ENST00000522742.1	691	<u>101aa</u>	Nonsense mediated decay
CA2-204	ENST00000520996.5	684	No protein	Retained intron
CA2-202	ENST00000518231.1	587	No protein	Retained intron

Carbonic Anhydrase 3

This gene has 3 transcripts:

Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype
CA3-201	ENST0000285381.3	1721	<u>260aa</u>	Protein coding
CA3-202	ENST00000520921.1	571	<u>19aa</u>	Protein coding
CA3-203	ENST00000522207.1	645	No protein	Retained intron

Two of them are protein coding.

Carbonic Anhydrase 4

This gene has 6 transcripts out of which 4 are protein coding.

Name 🍦	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype 🍦
CA4-201	ENST0000300900.9	1123	<u>312aa</u>	Protein coding
CA4-204	ENST0000587265.1	702	<u>99aa</u>	Protein coding
CA4-205	ENST00000590203.1	677	<u>184aa</u>	Protein coding
CA4-206	ENST00000591725.1	565	<u>38aa</u>	Protein coding
CA4-203	ENST00000586876.1	941	<u>106aa</u>	Nonsense mediated decay
CA4-202	ENST00000585705.5	598	No protein	Retained intron

This gene has 3 transcripts out of which 1 is protein coding.

Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype
CA5A-201	ENST0000309893.3	7567	<u>305aa</u>	Protein coding
CA5A-207	ENST0000649794.2	1113	<u>305aa</u>	Protein coding
CA5A-206	ENST0000649158.1	1298	<u>300aa</u>	Protein coding
CA5A-205	ENST0000648177.1	1113	<u>191aa</u>	Protein coding
CA5A-204	ENST0000648022.1	1248	<u>222aa</u>	Nonsense mediated decay
CA5A-203	ENST00000568801.1	506	No protein	Processed transcript
CA5A-202	ENST00000566402.2	725	No protein	Retained intron

Carbonic Anhydrase 5B

This gene has 10 transcripts out of which 4 are protein coding.

Name 🍦	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype 🖕
CA5B-201	ENST0000318636.8	6837	<u>317aa</u>	Protein coding
CA5B-204	ENST00000454127.2	2205	<u>317aa</u>	Protein coding
CA5B-208	ENST00000479740.5	529	<u>136aa</u>	Protein coding
CA5B-210	ENST00000498004.5	488	<u>76aa</u>	Protein coding
CA5B-206	ENST00000478341.1	517	<u>70aa</u>	Nonsense mediated decay
CA5B-202	ENST0000380313.1	510	No protein	Processed transcript
CA5B-203	ENST0000380319.2	652	No protein	Retained intron
CA5B-207	ENST00000478923.1	578	No protein	Retained intron
CA5B-205	ENST00000474624.5	565	No protein	Retained intron
CA5B-209	ENST00000496188.1	515	No protein	Retained intron

This gene has 6 transcripts out of which 5 are protein coding.

Name 🖕	Transcript ID	bp 🖕	Protein 🖕	Biotype
CA6-203	ENST0000377443.7	1334	<u>308aa</u>	Protein coding
CA6-201	ENST0000377436.6	942	<u>313aa</u>	Protein coding
CA6-202	ENST0000377442.3	747	<u>248aa</u>	Protein coding
CA6-205	ENST00000480186.7	1493	<u>179aa</u>	Protein coding
CA6-206	ENST00000549778.5	582	<u>187aa</u>	Protein coding
CA6-204	ENST00000476083.1	787	No protein	Processed transcript

Carbonic Anhydrase 7

This gene has 3 transcripts. Two of them are protein coding.

Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype
CA7-201	ENST0000338437.7	1518	<u>264aa</u>	Protein coding
CA7-202	ENST0000394069.3	1713	<u>208aa</u>	Protein coding
CA7-203	ENST00000548332.6	1161	<u>44aa</u>	Nonsense mediated decay

Carbonic Anhydrase 8

This gene has 4 transcripts. Only 1 of them is protein coding.

Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype
CA8-201	ENST0000317995.5	5735	<u>290aa</u>	Protein coding
CA8-203	ENST00000528666.1	510	No protein	Processed transcript
CA8-202	ENST00000524872.5	1825	No protein	Retained intron
CA8-204	ENST00000529918.1	1697	No protein	Retained intron

This gene has 4 transcripts. Two of them are protein coding.

Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype
CA9-201	ENST0000378357.9	1546	<u>459aa</u>	Protein coding
CA9-204	ENST0000617161.1	1374	<u>356aa</u>	Protein coding
CA9-203	ENST00000493245.1	697	No protein	Processed transcript
CA9-202	ENST00000485665.1	329	No protein	Processed transcript

Carbonic Anhydrase 10

This gene has 9 transcripts. Six of them are protein coding.

Name 🖕	Transcript ID	bp 🖕	Protein 🖕	Biotype 🎍
CA10-203	ENST00000451037.7	3179	<u>328aa</u>	Protein coding
CA10-202	ENST00000442502.6	2935	<u>328aa</u>	Protein coding
CA10-201	ENST00000285273.8	2914	<u>328aa</u>	Protein coding
CA10-204	ENST00000570565.5	2276	<u>253aa</u>	Protein coding
CA10-209	ENST00000575181.1	1474	<u>276aa</u>	Protein coding
CA10-208	ENST00000575097.1	410	<u>56aa</u>	Protein coding
CA10-205	ENST00000571371.5	2699	<u>42aa</u>	Nonsense mediated decay
CA10-206	ENST00000571918.1	628	No protein	Processed transcript
CA10-207	ENST00000573294.1	567	No protein	Processed transcript

Carbonic Anhydrase 11

This gene has 4 transcripts. Two of them are protein coding.

Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype 🍦	CCDS 🔻	UniProt 🖕	RefSeq 🖕	Flags 🖕
CA11-201	ENST0000084798.8	1844	<u>328aa</u>	Protein coding	<u>CCDS12729</u> &	<u>075493</u> &	<u>NM_001217</u> ស <u>NP_001208</u> ស <u>NR_136241</u> ស	TSL:1 GENCODE basic APPRIS P1
CA11-203	ENST00000596080.1	498	<u>113aa</u>	Protein coding	-	<u>M0QXK8</u> &	-	CDS 5' incomplete TSL:3
CA11-204	ENST00000599267.1	381	No protein	Retained intron	-	-	-	TSL:2
CA11-202	ENST00000594088.1	275	No protein	Retained intron	-	-	-	TSL:2

Carbonic Anhydrase 12

This gene has 6 transcripts. Three of them are protein coding.

Name 🍦	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype	CCDS v	UniProt 🖕	RefSeq 🍦	Flags 🍦
CA12-203	ENST00000422263.2	2556	<u>283aa</u>	Protein coding	<u>CCDS76767</u> &	<u>B3KUB4</u> ₽	<u>NM_001293642</u> 교 NP_001280571교	TSL:2 GENCODE basic
CA12-202	ENST00000344366.7	2744	<u>343aa</u>	Protein coding	<u>CCDS10186</u> &	<u>043570</u> &	<u>NM_206925</u> മ NP_996808 മ	TSL:1 GENCODE basic APPRIS ALT1
CA12-201	ENST00000178638.7	6413	<u>354aa</u>	Protein coding	<u>CCDS10185</u> @	<u>043570</u> &	<u>NM_001218</u> മ NP_001209 മ NR_135511 മ	TSL:1 GENCODE basic APPRIS P4
CA12-206	ENST00000560666.1	580	No protein	Processed transcript	-	-	-	TSL:3
CA12-204	ENST00000558287.1	561	No protein	Retained intron	-	-	-	TSL:3
CA12-205	ENST00000560293.1	538	No protein	Retained intron	-	-	-	TSL:4

This gene has 5 transcripts. Only 1 of them is protein coding.

Name 🍦	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype
CA13-201	ENST0000321764.4	3884	<u>262aa</u>	Protein coding
CA13-202	ENST00000517298.5	1400	No protein	Processed transcript
CA13-203	ENST00000517831.5	865	No protein	Processed transcript
CA13-205	ENST00000522631.1	700	No protein	Processed transcript
CA13-204	ENST00000518392.1	461	No protein	Retained intron

Carbonic Anhydrase 14

This gene has 5 transcripts. Three of them are protein coding.

Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype
CA14-201	ENST0000369111.9	1788	<u>337aa</u>	Protein coding
CA14-206	ENST0000647854.1	1531	<u>337aa</u>	Protein coding
CA14-204	ENST0000607082.1	594	<u>130aa</u>	Protein coding
CA14-202	ENST00000483993.3	938	<u>42aa</u>	Nonsense mediated decay
CA14-203	ENST00000582010.3	1514	No protein	Retained intron
CA14-205	ENST0000607652.5	1382	No protein	Retained intron

3.2 Mouse Carbonic Anhydrase Isoforms

Carbonic Anhydrase 1

Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype	CCDS	UniProt 🖕	RefSeq 🖕	Flags 🖕
Car1-203	ENSMUST00000181860.7	1194	<u>261aa</u>	Protein coding	<u>CCDS17248</u> ഭ	<u>P13634</u> 교	<u>NM_009799</u> & <u>NP_033929</u> &	TSL:1 GENCODE basic APPRIS P1
Car1-201	ENSMUST0000094365.10	1180	<u>261aa</u>	Protein coding	<u>CCDS17248</u> &	<u>P13634</u> 교	<u>NM_001083957</u> & NP_001077426 &	TSL:1 GENCODE basic APPRIS P1
Car1-202	ENSMUST00000144327.2	367	<u>92aa</u>	Protein coding	-	<u>D3YYQ4</u> @	-	CDS 3' incomplete TSL:3

Number of transcrips:3

Protein coding:3

Carbonic Anhydrase 2

Name 🍦	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype	CCDS	UniProt 💧	RefSeq 🍦	Flags 🍦
Car2-201	ENSMUST0000029078.8	1788	<u>260aa</u>	Protein coding	<u>CCDS17251</u> &	<u>P00920</u> 교	<u>NM_001357334</u> 교 <u>NM_009801</u> 교 <u>NP_001344263</u> 교 <u>NP_033931</u> 교	TSL:1 GENCODE basic APPRIS P1
Car2-202	ENSMUST00000192609.5	587	<u>115aa</u>	Protein coding	-	A0A0A6YX78	-	CDS 3' incomplete TSL:3
Car2-203	ENSMUST00000195520.1	881	No protein	Retained intron	-	-	-	TSL:2

Number of transcripts: 3

Protein coding: 2

Carbonic Anhydrase 3

Name 🍦	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype	CCDS	UniProt 🖕	RefSeq 🍦	Flags 🍦
Car3-201	ENSMUST0000029076.5	1679	<u>260aa</u>	Protein coding	<u>CCDS17250</u> ഭ	<u>P16015</u> @	<u>NM_007606</u> ₽ <u>NP_031632</u> ₽	TSL:1 GENCODE basic APPRIS P1
Car3-202	ENSMUST00000195575.1	1395	No protein	Retained intron	-	-	-	TSL:1
Car3-203	ENSMUST0000195834.1	804	No protein	Retained intron	-	-	-	TSL:2

Number of transcripts: 3

Protein Coding: 1

Name 🍦	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype 🍦	CCDS	UniProt 🖕	RefSeq 🖕	Flags 🖕
Car4-201	ENSMUST00000103194.9	1256	<u>305aa</u>	Protein coding	<u>CCDS25190</u> @	<u>Q64444</u> &	<u>NM_007607</u> <u>NP_031633</u> ₽	TSL:1 GENCODE basic APPRIS P1
Car4-202	ENSMUST0000108076.2	732	<u>164aa</u>	Protein coding	-	<u>F6ST32</u> ₽	-	CDS 5' incomplete TSL:3
Car4-206	ENSMUST00000150596.7	692	<u>38aa</u>	Nonsense mediated decay	-	<u>D6RCZ3</u> ₽	-	TSL:5
Car4-203	ENSMUST00000127827.1	516	<u>38aa</u>	Nonsense mediated decay	-	<u>D6RCZ3</u> ₽	-	TSL:2
Car4-204	ENSMUST00000138331.1	443	No protein	Processed transcript	-	-	-	TSL:3
Car4-205	ENSMUST00000139416.1	435	No protein	Retained intron	-	-	-	TSL:3

Number of transcripts: 6

Protein coding: 2

Carbonic anhydrase 5a

Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype 🍦	CCDS	UniProt 🖕	RefSeq 🍦	Flags 🍦
Car5a-201	ENSMUST0000057653.7	1249	<u>299aa</u>	Protein coding	<u>CCDS22731</u> &	<u>P23589</u> ₽	<u>NM_007608</u> <u>NP_031634</u> ₽	TSL:1 GENCODE basic APPRIS P1
Car5a-202	ENSMUST00000151462.1	458	No protein	Processed transcript	-	-	-	TSL:3

Number of transcripts: 2

Protein coding: 1

Carbonic anhydrase 5b

Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype	CCDS	UniProt 🖕	RefSeq 🍦	Flags 🖕
Car5b-201	ENSMUST0000033739.4	3436	<u>317aa</u>	Protein coding	<u>CCDS30515</u> @	<u>Q9QZA0</u> &	<u>NM_181315</u> <u>NP_851832</u> ₪	TSL:1 GENCODE basic APPRIS P1
Car5b-202	ENSMUST00000126650.1	3157	No protein	Retained intron	-	-	-	TSL:2

Number of transcripts: 2

Protein coding: 1

Carbonic anhydrase 6

Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype	CCDS	UniProt 🖕	RefSeq 🖕	Flags 🝦
Car6-201	ENSMUST0000030817.4	1567	<u>317aa</u>	Protein coding	<u>CCDS51386</u> ഭ	<u>P18761</u> ₽	<u>NM_009802</u> <u>NP_033932</u> ⊮	TSL:1 GENCODE basic APPRIS P1
Car6-202	ENSMUST00000105683.8	1460	<u>261aa</u>	Protein coding	-	<u>B1ARR4</u> ₽	-	TSL:1 GENCODE basic
Car6-204	ENSMUST00000134648.7	749	No protein	Processed transcript	-	-	-	TSL:3
Car6-203	ENSMUST00000126449.1	727	No protein	Processed transcript	-	-	-	TSL:5

Number of transcripts: 4

Protein coding: 2

Name 🍦	Transcript ID 🖕	bp 🖕	Protein 🖕	Biotype	CCDS	UniProt 🖕	RefSeq 🍦	Flags 🔶
Car7-202	ENSMUST00000159416.7	1943	<u>208aa</u>	Protein coding	<u>CCDS80920</u> &	<u>G3XA26</u> ₽	<u>NM_001301164</u> <u>NP_001288093</u> ₪	TSL:1 GENCODE basic
Car7-201	ENSMUST0000056051.10	1538	<u>264aa</u>	Protein coding	<u>CCDS22581</u> &	<u>Q9ERQ8</u> മ	<u>NM_053070</u> & NP_444300 &	TSL:1 GENCODE basic APPRIS P1
Car7-204	ENSMUST00000162761.1	1505	<u>208aa</u>	Protein coding	<u>CCDS80920</u> @	<u>G3XA26</u> ₽	<u>NM_001301165</u> ₪ <u>NP_001288094</u> ₪	TSL:1
Car7-205	ENSMUST00000212942.1	1702	No protein	Retained intron	-	-	-	TSL:NA
Car7-203	ENSMUST00000162399.1	592	No protein	Retained intron	-	-	-	TSL:3

Number of transcripts: 5

Protein coding: 3

Carbonic anhydrase 8

Name 🍦	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype	CCDS	UniProt 🖕	RefSeq 🍦		Flags	
Car8-201	ENSMUST0000066674.7	3853	<u>291aa</u>	Protein coding	<u>CCDS17954</u> ജ	<u>P28651</u> ₽	<u>NM_007592</u> <u>NP_031618</u> ₪	TSL:1	GENCODE basic	APPRIS P1

Number of transcripts: 1

Protein coding: 1

Carbonic anhydrase 9

Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype	CCDS	UniProt 🖕	RefSeq 🖕	Flags 🖕
Car9-201	ENSMUST0000030183.9	2023	<u>437aa</u>	Protein coding	<u>CCDS18099</u> ജ	Q3UUZ9& Q8VHB5&	<u>NM_139305</u> & NP_647466 &	TSL:1 GENCODE basic APPRIS P1
Car9-206	ENSMUST00000138073.1	712	<u>237aa</u>	Protein coding	-	F6XXU0 @	-	CDS 5' and 3' incomplete TSL:1
Car9-202	ENSMUST00000124114.7	1667	No protein	Processed transcript	-	-	-	TSL:5
Car9-205	ENSMUST00000129996.1	480	No protein	Processed transcript	-	-	-	TSL:5
Car9-207	ENSMUST00000154251.1	398	No protein	Processed transcript	-	-	-	TSL:5
Car9-203	ENSMUST00000126750.1	374	No protein	Processed transcript	-	-	-	TSL:3
Car9-204	ENSMUST00000128232.1	334	No protein	Processed transcript	-	-	-	TSL:3

Number of transcripts: 7

Protein coding:2

Name 🍦	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype	CCDS	UniProt 💧	RefSeq 💧	Flags 🍦
Car10-206	ENSMUST00000107863.3	3334	<u>328aa</u>	Protein coding	<u>CCDS25244</u> &	P61215& Q3V1V7&	<u>NM_028296</u> & NP_082572 &	TSL:1 GENCODE basic APPRIS P1
Car10-201	ENSMUST00000042943.12	3293	<u>328aa</u>	Protein coding	<u>CCDS25244</u> &	<u>P61215</u> & <u>Q3V1V7</u> &	NM_001361707 & NM_001361708 & NP_001348636 & NP_001348637 &	TSL:1 GENCODE basic APPRIS P1
Car10-203	ENSMUST00000107858.8	2742	<u>304aa</u>	Protein coding	-	E9Q2V1	-	TSL:1 GENCODE basic
Car10-205	ENSMUST00000107861.7	2613	<u>169aa</u>	Protein coding	-	<u>Q3TRQ4</u> @	-	TSL:1 GENCODE basic
Car10-204	ENSMUST00000107859.7	1738	<u>103aa</u>	Protein coding	-	Q9CZQ3	-	TSL:1
Car10-207	ENSMUST00000149611.1	303	No protein	Processed transcript	-	-	-	TSL:2
Car10-202	ENSMUST0000092780.8	1885	No protein	Retained intron	-	-	-	TSL:1

Number of transcripts: 7

Protein coding: 5

Carbonic anhydrase 11

Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype 🍦	CCDS	UniProt 💧	RefSeq 💧	Flags 🍦
Car11-201	ENSMUST0000003360.9	1585	<u>328aa</u>	Protein coding	<u>CCDS21259</u> ഭ	<u>070354</u> @ <u>Q541E9</u> @	<u>NM_009800</u> & <u>NP_033930</u> &	TSL:1 GENCODE basic APPRIS P1
Car11-202	ENSMUST0000209796.1	599	<u>82aa</u>	Nonsense mediated decay	-	A0A1B0GRJ7	-	CDS 5' incomplete TSL:5
Car11-203	ENSMUST00000210027.1	252	<u>26aa</u>	Nonsense mediated decay	-	<u>A0A1B0GT65</u> മ	-	CDS 5' incomplete TSL:5
Car11-204	ENSMUST00000210872.1	858	No protein	Retained intron	-	-	-	TSL:3
Car11-205	ENSMUST0000211259.1	706	No protein	Retained intron	-	-	-	TSL:1

Number of transcripts: 5

Protein coding: 1

Carbonic anhydrase 12

Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype	CCDS	UniProt 🖕	RefSeq 🖕	Flags 🍦
Car12-201	ENSMUST0000071889.12	3716	<u>354aa</u>	Protein coding	<u>CCDS23306</u> ജ	A0A0R4J0W4	<u>NM_178396</u> <u>NP_848483</u>	TSL:1 GENCODE basic APPRIS P3
Car12-202	ENSMUST0000085420.11	3639	<u>344aa</u>	Protein coding	<u>CCDS81026</u> ജ	<u>Q8K2J1</u> ₽	<u>NM_001306148</u> 교 <u>NP_001293077</u> 교	TSL:1 GENCODE basic APPRIS ALT2
Car12-204	ENSMUST0000134829.1	614	<u>204aa</u>	Protein coding	-	<u>F6W018</u> @	-	CDS 5' and 3' incomplete TSL:5
Car12-206	ENSMUST00000217394.1	3263	No protein	Retained intron	-	-	-	TSL:NA
Car12-205	ENSMUST00000152011.7	1652	No protein	Retained intron	-	-	-	TSL:2
Car12-203	ENSMUST00000123195.1	710	No protein	Retained intron	-	-	-	TSL:2

Number of transcripts: 6

Protein coding:3

Carbonic anhydrase 13

Name 🍦	Transcript ID 🖕	bp 🖕	Protein 🖕	Biotype	CCDS	UniProt 🖕	RefSeq 🍦		Flags	\$
Car13-201	ENSMUST0000029071.8	2299	<u>262aa</u>	Protein coding	<u>CCDS17247</u> &	<u>Q9D6N1</u> ₽	<u>NM_024495</u> ₪ NP_078771 ₪	TSL:1	GENCODE basic	APPRIS P1

Number of transcripts: 1

Protein coding: 1

Carbonic anhydrase 14

Name 🍦	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype	CCDS	UniProt 🖕	RefSeq 🍦	Flags 🍦
Car14-201	ENSMUST00000036181.14	1709	<u>337aa</u>	Protein coding	<u>CCDS17625</u> ജ	<u>Q9WVT6</u> &	NM_001355750 @ NM_001355751 @ NM_011797 @ NP_001342679 @ NP_001342680 @ NP_035927 @	TSL:1 GENCODE basic APPRIS P1
Car14-203	ENSMUST00000147962.2	895	<u>171aa</u>	Protein coding	-	D3Z4J8	-	CDS 3' incomplete TSL:3
Car14-204	ENSMUST00000149202.1	984	No protein	Retained intron	-	-	-	TSL:1
Car14-202	ENSMUST00000126722.1	452	No protein	Retained intron	-	-	-	TSL:2

Number of transcripts:4

Protein coding: 2

Carbonic anhydrase 15

Name 🍦	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype	CCDS	UniProt 🖕	RefSeq 🖕	Flags 🖕
Car15-201	ENSMUST00000118960.1	1283	<u>324aa</u>	Protein coding	<u>CCDS49784</u> &	<u>Q99N23</u> ₪	<u>NM_030558</u> <u>NP_085035</u> ₪	TSL:1 GENCODE basic APPRIS P1
Car15-204	ENSMUST0000232529.1	789	No protein	Retained intron	-	-	-	
Car15-202	ENSMUST0000231865.1	595	No protein	Retained intron	-	-	-	
Car15-203	ENSMUST0000232516.1	520	No protein	Retained intron	-	-	-	

Number of transcripts: 4

Protein coding: 1

3.3 Classification of human protein-coding CA transcript variants

Table 2 Classification of human protein-coding CAs transcript variants based on various properties. Transcripts highlighted in yellow represent principal isoform based on ensemble Flags (APPRIS, GENCODE basic and TSL) and complete catalytic domain.

Name	Transcript ID	Protein	Biotype	Signal Peptide	Catalytic Domain	Active Site	Metal-ion Binding Site	TM Helix
CA I- 222	ENST00000523953.5	261aa	Protein coding	Missing	Complete	Yes	Yes	Missing
CA I- 219	ENST00000523022.5	261aa	Protein coding	Missing	Complete	Yes	Yes	Missing
CA I- 215	ENST00000522389.5	127aa	Protein coding	Missing	Incomplete	No	No	Missing
CA I- 225	ENST00000626824.1	127aa	Protein coding	Missing	Incomplete	No	No	Missing
CA I- 224	ENST00000431316.3	261aa	Protein coding	Missing	Complete	Yes	Yes	Missing
CA I-					•			
201 CA I-	ENST00000431316.3	261aa	Protein coding	Missing	Complete	Yes	Yes	Missing
204	ENST00000517618.5	251aa	Protein coding	Missing	Incomplete	Yes	Yes	Missing
CA I- 223	ENST00000524324.5	194aa	Protein coding	Missing	Incomplete	No	No	Missing
CA I- 208	ENST00000519991.5	137aa	Protein coding	Missing	Incomplete	No	No	Missing
CA I- 217	ENST00000522662.5	118aa	Protein coding	Missing	Incomplete	No	No	Missing
CA I- 214	ENST00000521846.5	149aa	Protein coding	Missing	Incomplete	Yes	No	Missing
CA I- 218	ENST00000522814.5	148aa	Protein coding	Missing	Incomplete	Yes	No	Missing
CA I- 216	ENST00000522579.5	149aa	Protein coding	Missing	Incomplete	Yes	No	Missing
CA I-		99aa		0		No	No	
221 CA I-	ENST00000523858.5	9988	Protein coding	Missing	Incomplete	INO	INO	Missing
210 CA I-	ENST00000520663.5	87aa	Protein coding	Missing	Incomplete	No	No	Missing
203	ENST00000517590.5	175aa	Protein coding	Missing	Incomplete	Yes	No	Missing
CA I- 207	ENST00000519129.5	22aa	Protein coding	Missing	Incomplete	No	No	Missing
CA I- 213	ENST00000521679.5	178aa	Protein coding	Missing	Incomplete	No	No	Missing
CA II- 201	ENST00000285379.10	260aa	Protein coding	Missing	Complete	Yes	Yes	Missing
CA III- 201	ENST0000285381.3	260aa	Protein coding	Missing	Complete	Yes	Yes	Missing
CA III-	ENST00000520921.1				•			
202		19aa	Protein coding	Missing	Incomplete	No	No	Missing
IV-201 CA IV-	ENST00000300900.9	312aa	Protein coding	Present	Complete	Yes	Yes	Present
206 CA IV-	ENST00000591725.1	38aa	Protein coding	Missing	Incomplete	No	No	Missing
204	ENST00000587265.1	99aa	Protein coding	Missing	Incomplete	No	No	Missing
CA IV- 205	ENST00000590203.1	184aa	Protein coding	Missing	Incomplete	Yes	No	Present

CA								
VA-								
206 CA	ENST00000649794.2	305aa	Protein coding	Missing	Complete	Yes	Yes	Missing
VA-								
205 CA	ENST00000649158.1	300aa	Protein coding	Missing	Incomplete	Yes	Yes	Missing
VA- 204	ENST00000648177.1	191aa	Protoin adding	Missing	Incomplete	No	No	Missing
CA			Protein coding	U	· ·	INU	INO	0
VB-201 CA	ENST00000318636.8	317	Protein coding	Missing	Complete	Yes	Yes	Missing
VB-204	ENST00000454127.2	317aa	Protein coding	Missing	Complete	Yes	Yes	Missing
CA VB-208	ENST00000479740.5	136aa	Protein coding	Missing	Incomplete	No	No	Missing
CA VB-210	ENST00000498004.5	76aa	Protein coding	Missing	Incomplete	No	No	Missing
CA VI- 202	ENST00000377442.3	248aa	Protein coding	Present	Incomplete	No	No	Missing
CA VI-								
203 CA VI-	ENST00000377436.6	313aa	Protein coding	Present	complete	Yes	Yes	Missing
201 CA VI-	ENST00000377443.7	308aa	Protein coding	Present	Complete	Yes	Yes	Missing
205	ENST00000480186.7	179aa	Protein coding	Present	Incomplete	No	No	Missing
CA VII-201	ENST00000338437.7	264aa	Protein coding	Missing	Complete	Yes	Yes	Missing
CA VII-202	ENST00000394069.3	208aa	Protein coding	Missing	Incomplete	Yes	Yes	Missing
CA VIII-					· · ·			
<mark>201</mark>	ENST00000317995.5	290aa	Protein coding	Missing	Complete	Yes	Yes	Missing
CA IX- 201	ENST00000378357.9	459aa	Protein coding	Present	Complete	Yes	Yes	Present
CA IX- 204	ENST00000617161.1	356aa	Protein coding					
CA X-		550aa		Present	Incomplete	Yes	Yes	Missing
				Present	Incomplete	Yes	Yes	Missing
202 CA X-	ENST00000571371.5	328aa	Protein coding	Present	Complete	Yes -	Yes -	Missing
202						Yes - -	Yes - -	0
202 CA X- 201 CA X- 203	ENST00000571371.5	328aa	Protein coding	Present	Complete	Yes - -	Yes - -	Missing
202 CA X- 201 CA X- 203 CA X- 209	ENST00000571371.5 ENST00000285273.8	328aa 328aa	Protein coding Protein coding	Present Present	Complete Complete	Yes - - -	Yes - - -	Missing
202 CA X- 201 CA X- 203 CA X-	ENST00000571371.5 ENST00000285273.8 ENST00000451037.7	328aa 328aa 328aa	Protein coding Protein coding Protein coding	Present Present Present	Complete Complete Complete	Yes - - -	Yes 	Missing Missing Missing
202 CA X- 201 CA X- 203 CA X- 209 CA X- 204 CA X-	ENST00000571371.5 ENST00000285273.8 ENST00000451037.7 ENST00000575181.1 ENST00000570565.5	328aa 328aa 328aa 276aa 253aa	Protein coding Protein coding Protein coding Protein coding Protein coding	Present Present Present Present Present	Complete Complete Complete Incomplete Incomplete	Yes - - - -	Yes 	Missing Missing Missing Missing Missing
202 CA X- 201 CA X- 203 CA X- 209 CA X- 204 CA X- 208 CA X-	ENST00000571371.5 ENST00000285273.8 ENST00000451037.7 ENST00000575181.1 ENST00000570565.5 ENST00000575097.1	328aa 328aa 328aa 276aa 253aa 56aa	Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding	Present Present Present Present Present Absent	Complete Complete Complete Incomplete Incomplete Incomplete	Yes - - - -	Yes - - - - -	Missing Missing Missing Missing Missing Missing
202 CA X- 201 CA X- 203 CA X- 209 CA X- 204 CA X- 208 CA X- 208 CA X- 205 CA XI-	ENST00000571371.5 ENST00000285273.8 ENST00000451037.7 ENST00000575181.1 ENST00000570565.5 ENST00000575097.1 ENST00000571371.5	328aa 328aa 328aa 276aa 253aa 56aa 42aa	Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding	Present Present Present Present Absent Absent	Complete Complete Complete Incomplete Incomplete Incomplete	Yes - - - - -	Yes - - - - - -	Missing Missing Missing Missing Missing Missing Missing
202 CA X- 201 CA X- 203 CA X- 209 CA X- 204 CA X- 208 CA X- 205 CA XI- 201	ENST00000571371.5 ENST00000285273.8 ENST00000451037.7 ENST00000575181.1 ENST00000570565.5 ENST00000575097.1	328aa 328aa 328aa 276aa 253aa 56aa	Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding	Present Present Present Present Present Absent	Complete Complete Complete Incomplete Incomplete Incomplete	Yes 	Yes 	Missing Missing Missing Missing Missing Missing
202 CA X- 201 CA X- 203 CA X- 209 CA X- 204 CA X- 208 CA X- 205 CA XI- 201 CA XI- 201	ENST00000571371.5 ENST00000285273.8 ENST00000451037.7 ENST00000575181.1 ENST00000570565.5 ENST00000575097.1 ENST00000571371.5	328aa 328aa 328aa 276aa 253aa 56aa 42aa	Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding	Present Present Present Present Absent Absent	Complete Complete Complete Incomplete Incomplete Incomplete	Yes 	Yes 	Missing Missing Missing Missing Missing Missing Missing
202 CA X- 201 CA X- 203 CA X- 209 CA X- 204 CA X- 204 CA X- 205 CA XI- 201 CA XI- 201 CA XI- 201 CA XI- 203	ENST00000571371.5 ENST00000285273.8 ENST00000451037.7 ENST00000575181.1 ENST00000570565.5 ENST00000575097.1 ENST00000571371.5 ENST00000084798.9	328aa 328aa 328aa 276aa 253aa 56aa 42aa 328aa	Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding	Present Present Present Present Absent Absent Present	Complete Complete Complete Incomplete Incomplete Incomplete Complete	Yes - - - - - - - - - -	Yes - - - - - - - - - - -	Missing Missing Missing Missing Missing Missing Missing Missing
202 CA X- 201 CA X- 203 CA X- 209 CA X- 204 CA X- 208 CA X- 205 CA XI- 201 CA XI- 201 CA XI- 201 CA XI-	ENST00000571371.5 ENST00000285273.8 ENST00000451037.7 ENST00000575181.1 ENST00000570565.5 ENST00000575097.1 ENST00000571371.5 ENST0000084798.9 ENST0000084798.9	328aa 328aa 328aa 276aa 253aa 56aa 42aa 328aa 328aa 328aa 113aa	Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding	Present Present Present Present Absent Absent Present Present	Complete Complete Complete Incomplete Incomplete Incomplete Complete Complete	Yes - - - - - - - - - - - - -	Yes 	Missing Missing Missing Missing Missing Missing Missing Missing Missing
202 CA X- 201 CA X- 203 CA X- 209 CA X- 204 CA X- 208 CA X- 205 CA XI- 201 CA XI- 201 CA XI- 201 CA XI- 203 CA XI- 203 CA X-	ENST00000571371.5 ENST00000285273.8 ENST00000451037.7 ENST00000575181.1 ENST00000570565.5 ENST00000575097.1 ENST00000571371.5 ENST00000084798.9 ENST00000084798.9	328aa 328aa 328aa 276aa 253aa 56aa 42aa 328aa 328aa	Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding Protein coding	Present Present Present Present Absent Absent Present Present Present Present Present Present Present	Complete Complete Complete Incomplete Incomplete Incomplete Complete Complete	- - - - - -	- - - - - -	Missing Missing Missing Missing Missing Missing Missing Missing Missing Missing

CA								
XII-203	ENST00000422263.2	283aa	Protein coding	Present	Incomplete	No	Yes	Yes
CA								
XIII-								
201	ENST00000321764.4	262aa	Protein coding	No	Complete	Yes	Yes	No
CA_								
XIV-								
<mark>201</mark>	ENST00000369111.9	337aa	Protein coding	Yes	Complete	Yes	Yes	Yes
CA								
XIV-								
206	ENST00000647854.1	337aa	Protein coding	Yes	Complete	Yes	Yes	Yes
CA								
XIV-								
204	ENST00000607082.1	130aa	Protein coding	No	Incomplete	No	No	No

CA VA-206 and CA VA-205 and CA VA-204 transcripts have transit peptide (in position 1-38). CA VB-201, CA VB-208, CA VB-208 and CA VB-210 transcripts have transit peptide (in position 1-33)

4 Results

4.1 Exon-oriented protein visualization of CA II (human)

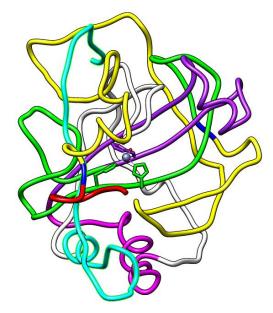
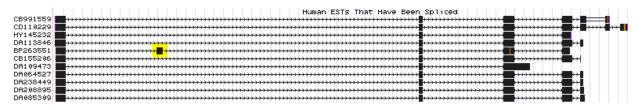
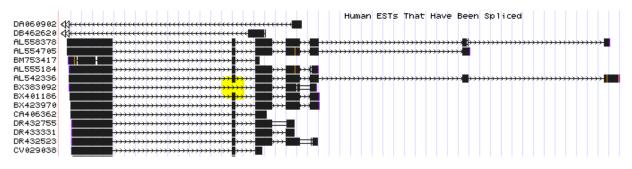



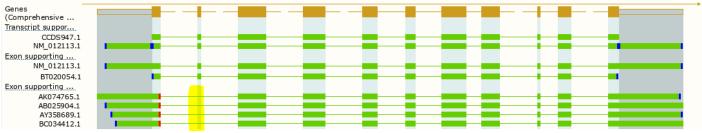
Figure 15 Exon-oriented protein visualization of human CA II using chimera. Exon 1 is color-coded with red, exon 2yellow, exon 3- green, exon 4- purple, exon-5- magenta, exon 6- white, exon 7- cyan. Spliced codon is color coded blue. 1CA II is used as the PDB identifier. 4.2 Missing/extra exons in Human Extracellular Carbonic anhydrases


4.2.1 CA IV

Extra second-exon in spliced EST view in UCSC. Ensembl has no transcripts with extra-exon.

4.2.2 CA IX

Second short exon in human CA IX is missing as shown in the UCSC spliced-Est track. Ensembl does not show any transcripts with second exon skipped.



Ensembl transcript/supporting evidence shows second and ninth exon missing as highlighted in the image. There is even Refseq transcript with missing ninth exon.

4.2.4 CA XIV

Ensembl supporting evidence shows second exon missing in some cDNAs as highlighted in the image.

CA 15 has no protein-coding transcripts in ensemble.

4.3 Missing/extra exons in Human Secretory Carbonic Anhydrase

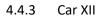
4.3.1 CA VI

For CA VI, there is even a RefSeq entries NM_001270501.1 and NM_001270502.1 in which the second and third exons are skipped.

Genes (Comprehensive	
Transcript suppor CCDS 30578.1 NM_001215.3	
Exon supporting P23280.3 NM_001215.3	
M57892.1 NM_001270501.1 NM_001270502.1	

4.4 Missing/extra exons in Mouse Extracellular Carbonic Anhydrase

4.4.1 Car IV

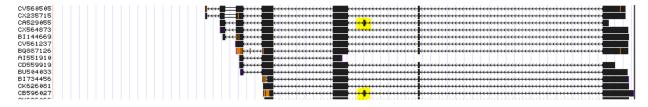

Ensembl shows one EST evidence with missing second exon.

Genes (Comprehensive	
Transcript suppor CCDS25190.1 NM_007607	
Exon supporting NM_007607 NM_007607.2	
BC012704 AK154754	
Exon supporting AK154754.1 AK165399.1	
BC012704.1 S68245.1	

4.4.2 Car IX

Ensembl shows missing 7th and 8th exons in EST evidence.

Genes (Comprehensive		-							
Transcript suppor									
CCDS18099.1 NM_139305									
Exon supporting NM_139305		_	_	_	_		_		
AK136579.1 NM_139305.2									
EF122497		_	-				-		


Ensembl and genome browser shows no missing exons.

4.4.4 Car XIV

Ensembl shows missing 9th exon in EST evidence track.

Genes (Comprehensive	
Transcript suppor	
CCDS17625.1	
AB005450	
Exon supporting	
NM_011797	
AB005450	
NM_011797.2	
Exon supporting	
AK157764.1	
BC046995.1	
AB005450.1	

UCSC genome browser shows extra 3rd exon in spliced EST.

4.5 Missing/extra exons in Mouse Secretory Carbonic Anhydrase

4.5.1 Car VI

Ensembl as well as UCSC genome browser have no transcripts/ESTs with missing/extra exon.

4.6 Missing/extra exons in Extracellular/Secreted Carbonic anhydrase in Zebrafish and Cow

Ensembl shows no evidence of missing or extra exons for these species.

4.7 Structural feasibility of Human carbonic anhydrase isoforms

4.7.1 CA IV

>Peptide sequence of Human_CaIV principal isoform with catalytic domain highlighted in gray MRMLLALLALSAARPSASAE

SHWCYEVQAESSNYPCLV -2nd exon

PVKWGGNCQKDRQSPINIVTTKAKVDKKLGRFFFSGYDKKQTWTVQNNGHS<mark>V</mark>

MMLLENKASISGGGLPAPYQAKQLHLHWSDLPYKGSEHSLDGEHFAME

MHIVHEKEKGTSRNVKEAQDPEDEIAVLAFLVE

AGTQVNEGFQPLVEALSNIPKPE

MSTTMAESSLLDLLPKEEKLRHYFRYLGSLTTPTCDEKVVWTVFREPIQLHREQ

ILAFSQKLYYDKEQTVSMKDNVRPLQQLGQRTVIKSGAPGRPLPWALPALLGPMLACLL AGFLR

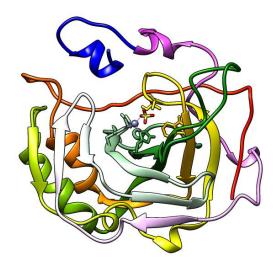


Figure 16 PDB structure of Human_CaIV (1ZNC) with 2nd exon highlighted in blue as viewed in Chimera. Residue 'S' and 'H' is missing in the highlighted area.

Second exon is the part of catalytic domain of the principal isoform so the addition of extra 2nd exon affects the structure of protein.

4.7.2 CA VI

Comparing the Carbonic anhydrase 6 principle isoform with its EST (supporting evidence with missing second exon/NM_001270501.1)

>peptide sequence of Human_CAVI with catalytic domain highlighted in gray

MRALVLLLSLFLLGGQAQHVSDWTYSE

GALDEAHWPQHYPACGGQRQSPINLQRTKVRYNPSLKGLNMTGYETQAGEFPMVNNG HT<mark>V</mark>

QISLPSTMRMTVADGTVYIAQQMHFHWGGASSEISGSEHTVDGIRHVIE

IHIVHYNSKYKSYDIAQDAPDGLAVLAAFVE

VKNYPENTYYSNFISHLANIKYP<mark>G</mark>

QRTTLTGLDVQDMLPRNLQHYYTYHGSLTTPPCTENVHWFVLADFVKLSRTQ

VWKLENSLLDHRNKTIHNDYRRTQPLNHRVVESNFPNQE

YTLGSEFQFYLHKIEEILDYLRRALN

Aligning the protein sequences of two isoforms shows that EST form is devoid of some catalytic residues

(EGALDEAHWPQHYPACGGQRQSPINLQRTKVRYNPSLKGLNMTGYETQAGEFPMVNN GHT/27-86) which is important catalytic domain in principle isoform. It also has missing catalytic site residues QSP (47,48,49), H(85))

P23280MRALVLLLSLFLLGGQAQHVSDWTYS<mark>EGALDEAHWPQHYPACGGQRQSPI</mark> P23280<mark>NLQRTKVRYNPSLKGLNMTGYETQAGEFPMVNNGHT</mark>VQISLPSTMRMTVA P23280DGTVYIAQQMHFHWGGASSEISGSEHTVDGIRHVIEIHIVHYNSKYKSYD P23280IAQDAPDGLAVLAAFVEVKNYPENTYYSNFISHLANIKYPGQRTTLTGLD P23280VQDMLPRNLQHYYTYHGSLTTPPCTENVHWFVLADFVKLSRTQVWKLENS P23280LLDHRNKTIHNDYRRTQPLNHRVVESNFPNQEYTLGSEFQFYLHKIEEIL P23280DYLRRALN

Figure 17 Highlighted area showing splice variant/ missing second exon in EST/isoform NM_001270501.1. (source: Chimera)

It lacks a sequence in position 26/C i.e. Cysteine which plays role in disulfide bond formation.

Also, it lacks Glycine in sequence position 67 which acts as a glycosylation site.

CA VI missing 2nd exon visualization:

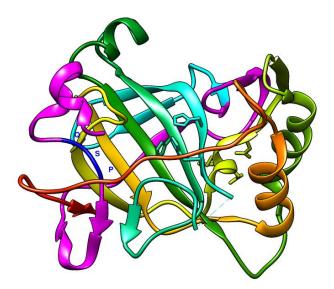


Figure 18 PDB structure of CA VI (PDB id: 3FE4/chain A) with missing second exon highlighted in purple. QSP catalytic residue is the part of 2nd exon highlighted in blue.

The missing 2^{nd} exon forms the major part of catalytic domain as seen clearly in fig. Hence, absence of 2^{nd} exon in alternative transcript affects the structure of protein.

4.7.3 CA IX

Human CAIX exon structure with gray highlighted area representing catalytic domain:

>peptide sequence of human CA_IX principle isoform(ENST00000378357.9) with catalytic domain highlighted in gray

MAPLCPSPWLPLLIPAPAPGLTVQLLLSLLLLVPVHPQRLPRMQEDSPLGGGSSGEDDPL GEEDLPSEEDSPREEDPPGEEDLPGEEDLPGEEDLPEVKPKSEEEGSLKLEDLPTVEAPG DPQEPQNNAHRDKEG DDQSHWRYGG DPPWPRVSPACAGRFQSPVDIRPQLAAFCPALRPLELLGFQLPPLPELRLRNNGHSV QLTLPPGLEMALGPGREYRALQLHLHWGAAGRPGSEHTVEGHRFPAE HVVHLSTAFARVDEALGRPGGLAVLAAFLEE GPEENSAYEQLLSRLEEIAEEG SETQVPGLDISALLPSDFSRYFQYEGSLTTPPCAQGVIWTVFNQTVMLSAKQ LHTLSDTLWGPGDSRLQLNFRATQPLNGRVIEASFPAGVDSSPRAAEPV QLNSCLAAG DILALVFGLLFAVTSVAFLVQMRRQHR RGTKGGVSYRPAEVAETGA

Second exon is missing in alternative transcript(<u>BX383092</u>). Second exon is the part of catalytic domain in principle isoform as shown in the image below.

A0A0S2Z3D0 MAPLCPSPWLPLLIPAPAPGLTVQLLLSLLLVPVHPQRLPRMQEDSPLG A0A0S2Z3D0 GGSSGEDDPLGEEDLPSEEDSPREEDPPGEEDLPGEEDLPGEEDLPGVKP A0A0S2Z3D0 KSEEEGSLKLEDLPTVEAPGDPQEPQNNAHRDKEGDDQSHWRYGGDPPWP A0A0S2Z3D0 SVQLTLPPGLEMALGPGREYRALQLHLHWGAAGRPGSEHTVEGHREPAEI A0A0S2Z3D0 SVQLTLPPGLEMALGPGREYRALQLHLHWGAAGRPGSEHTVEGHREPAEI A0A0S2Z3D0 HVVHLSTAFARVDEALGRPGGLAVLAAFLEEGPEENSAYEQLLSRLEEIA A0A0S2Z3D0 EGSETQVPGLDISALLPSDFSRYFQYEGSLTTPPCAQGVIWTVFNQTVM A0A0S2Z3D0 LSAKQLHTLSDTLWGPGDSRLQLNFRATQPLNGRVIEASF PAGVDSSPRA A0A0S2Z3D0 AEPVQLNSCLAAGDILALVFGLLFAVTSVAFLVQMRRQHRRGTKGGVSYR A0A0S2Z3D0 PAEVAETGA

Figure 19 Protein sequence of principle isoform of CA IX. Red-box outline is second exon, green highlighted area is the catalytic domain. (source: chimera)

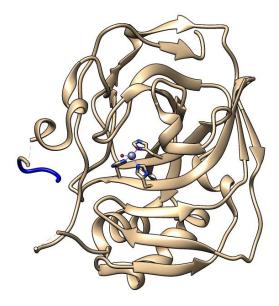


Figure 20 PDB structure of CA IX/chain A(6FE2) with second exon highlighted in blue as viewed in chimera.

PDB structure(6FE2) has no 5aa sequence (DDQSH) in second exon.

The second exon with 10aa is missing in alternative transcript. Major portion of catalytic domain is still intact along with QSP (catalytic site residue).

4.7.4 CA XII

>Peptide sequence of Human_CAXII principal isoform(ENST00000178638.8) with catalytic domain highlighted in gray

MPRRSLHAAAVLLLVILKEQPSSPAPVNG SKWTYFG PDGENSWSKKYPSCGGLLQSPIDLHSDILQYDASLTPLEFQGYNLSANKQFLLTNNGHSV KLNLPSDMHIQGLQSRYSATQLHLHWGNPNDPHGSEHTVSGQHFAAE LHIVHYNSDLYPDASTASNKSEGLAVLAVLIE MGSFNPSYDKIFSHLQHVKYKG QEAFVPGFNIEELLPERTAEYYRYRGSLTTPPCNPTVLWTVFRNPVQISQEQ LLALETALYCTHMDDPSPREMINNFRQVQKFDERLVYTSFSQV QVCTAAGLSLG- 9th exon IILSLALAGILGICIVVVVSIWLFRRKS IKKGDNKGVIYKPATKMETEAHA 043570 MPRRSLHAAAVLLLVILKEQPSSPAPVNG<mark>SKWTYFGPDGENSWSKKYPSC</mark> 043570 GGLLQSPIDLHSDILQYDASLTPLEFQGYNLSANKQFLLTNNGHSVKLNL 043570 PSDMHIQGLQSRYSATQLHLHWGNPNDPHGSEHTVSGQHFAAELHIVHYN 043570 SDLYPDASTASNKSEGLAVLAVLIEMGSFNPSYDKIFSHLQHVKYKGQEA 043570 FVPGFNIEELPERTAEYYRYRGSLTTPPCNPTVLWTVFRNPVQISQEQL 043570 LALETALYCTHMDDPSPREMINNFRQVQKFDERLVYTSFSQVQVCTAAGL 043570 SLGIILSLALAGILGICIVVVVSIWLFRRKSIKKGDNKGVIYKPATKMET 043570 EAHA

Figure 21 Peptide sequence of principle isoform viewed in chimera (ENST00000178638.8) with catalytic domain highlighted in green and ninth exon highlighted in yellow.

CA XII has Refseq cDNA transcript NM_206925.1 with missing ninth exon. The missing ninth exon in Refseq cDNA transcript NM_206925.1 is outside of catalytic domain. The peptide sequence is exactly same as ensemble transcript CA XII-202 with 343aa. Therefore, the functional protein structure is feasible for this alternate transcript.

Supporting evidence also shows cDNA record(CR618639) with missing 2nd exon for carbonic anhydrase 12.

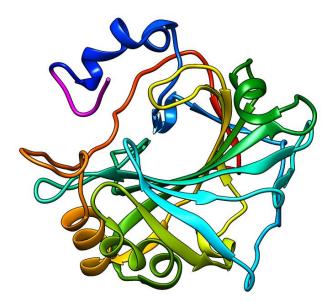


Figure 22 PDB structure of CA XII/chain A(4HT2) with second exon highlighted in magenta as viewed in chimera. Residue 'S' in 2nd exon is missing in the highlighted region.

The missing 2nd exon is the part of catalytic domain of principal isoform. The 2nd exon contains 'WTY' motif so absence of this exon affects the structural feasibility.

4.7.5 CA XIV

>Peptide sequence of Human_CAXIV principal isoform (ENST00000369111.9) with catalytic domain highlighted in gray

MLFSALLLEVIWILAADG<mark>G</mark>

QHWTYEG - 2nd exon

PHGQDHWPASYPECGNNAQSPIDIQTDSVTFDPDLPALQPHGYDQPGTEPLDLHNNGHTV

QLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGGSEHQINSEATFAE

LHIVHYDSDSYDSLSEAAERPQGLAVLGILIE

VGETKNIAYEHILSHLHEVRHK<mark>D</mark>

QKTSVPPFNLRELLPKQLGQYFRYNGSLTTPPCYQSVLWTVFYRRSQISMEQ

LEKLQGTLFSTEEEPSKLLVQNYRALQPLNQRMVFASFIQA

GSSYTT<mark>G</mark>

EMLSLGVGILVGCLCLLLAVYFIARKI<mark>R</mark>

KKRLENRKSVVFTSAQATTEA

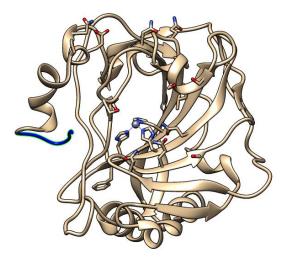


Figure 23 PDB structure of CA XIV(4LU3) with second exon highlighted in blue as viewed in chimera

Second exon with 'WTY' motif belongs to catalytic domain in principal isoform so absence of this exon leads to instability in protein structure.

4.8 Structural feasibility of Mouse carbonic anhydrase isoforms

4.8.1 Car IV

>Peptide sequence of Mouse_CarIV principal isoform (ENSMUST00000103194.9)

MQLLLALLALAYVAPSTED

SGWCYEIQTKDPRSSCLG -2nd exon

PEKWPGACKENQQSPINIVTART

KVNPRLTPFILVGYDQKQQWPIKNNQHT<mark>V</mark>

EMTLGGGACIIGGDLPARYEAVQLHLHWSNGNDNGSEHSIDGRHFAME

MHIVHKKLTSSKEDSKDKFAVLAFMIE

VGDKVNKGFQPLVEALPSISKP<mark>H</mark>

STSTVRESSLQDMLPPSTKMYTYFRYNGSLTTPNCDETVIWTVYKQPIKIHKNQ

FLEFSKNLYYDEDQKLNMKDNVRPLQPLGKRQVFKSHAPGQLLSLPLPTLLVPTLTCLV ANFLQ

Supporting evidence in ensemble shows cDNA(S68245.1) with missing 2nd exon.

Q64444 MQLLLALALAYVAPSTED<mark>SGWCYEIQTKDPRSSCLGPEKWPGACKENQQ</mark> Q64444<mark>SPINIVTARTKVNPRLTPFILVGYDQKQQWPIKNNQHTVEMTLGGGACII</mark> Q64444<mark>GGDLPARYEAVQLHLHWSNGNDNGSEHSIDGRHFAMEMHIVHKKLTSSKE</mark> Q64444<u>DSKDKFAVLAFMIEVGDKVNKGFQPLVEALPSTSKPHSTSTVRESSLQDM</u> Q64444<u>LPPSTKMYTYFRYNGSLTTPNCDETVIWTVYKQPIKIHKNQFLEFSKNLY</u> Q64444<u>YDEDQKLNMKDNVRPLQPLGKRQVFKSH</u>APGQLLSLPLPTLLVPTLTCLV Q64444ANFLQ

Figure 24 Catalytic domain of Mouse_CarIV principle isoform highlighted in orange with 2nd exon inside red-box viewed in chimera.

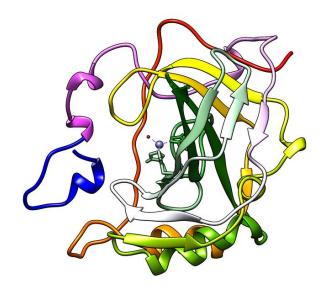


Figure 25 PDB structure of Mouse_CarIV (2ZNC) with 2nd exon highlighted in blue as viewed in chimera. Residue 'S' and 'G' is missing in the highlighted region.

The 2nd exon is the part of catalytic domain in principle isoform and contains residue that forms disulfide bond (residue 'C' in position 23 and residue 'C' in position 35). Thus missing of this exon affects the structure of protein.

4.8.2 Car IX (PDB structure missing)

>Peptide sequence of Mouse_CarIX principal isoform with catalytic domain highlighted in gray

 $\label{eq:maslgpspwaplstpaptaqlllflllqvsaqpqglsgMqgepslgDsssgedelgvdvll$

PSEEDAPEEADPPDGEDPPEVNSEDRMEESLGLEDLSTPEAPEHSQGSHGDEKG

GGH<mark>SHWSYGG</mark>

TLLWPQVSPACAGRFQSPVDIRLERTAFCRTLQPLELLGYELQPLPELSLSNNGHT**V**

QLTLPPGLKMALGPGQEYRALQLHLHWGTSDHPGSEHTVNGHRFPAE

IHVVHLSTAFSELHEALGRPGGLAVLAAFLQ

ESPEENSAYEQLLSHLEEISEEG

SKIEIPGLDVSALLPSDLSRYYRYEGSLTTPPCSQGVIWTVFNETVKLSAKQ-7th exon

LHTLSVSLWGPRDSRLQLNFRATQPLNGRTIEASFPAAEDSSPEPV-8th exon

HVNSCFTAG

DILALVFGLLFAVTSIAFLLQLRRQHR

HRSGTKDRVSYSPAEMTETGA

Q3UUZ9 MASLGPSPWAPLSTPAPTAQLLLFLLLQVSAQPQGLSGMQGEPSLGDSSS Q3UUZ9 GEDELGVDVLPSEEDAPEEADPPDGEDPPEVNSEDRMEESLGLEDLSTPE Q3UUZ9 APEHSQGSHGDEKGGGH<mark>SHWSYGGTLLWPQVSPACAGRFQSPVDIRLERT</mark> Q3UUZ9 AFCRTLQPLELLGYELQPLPELSLSNNGHTVQLTLPPGLKMALGPGQEYR Q3UUZ9 ALQLHLHWGTSDHPGSEHTVNGHRFPAEIHVVHLSTAFSELHEALGRPGG Q3UUZ9 LAVLAAFLQESPEENSAYEQLLSHLEEISEEGSKTEIPGLDVSALLPSDL Q3UUZ9 SRYYRYEGSLTTPPCSQGVIWTVFNETVKLSAKQLHTLSVSLWGPRDSRL Q3UUZ9 QLNFRATQPLNGRTIEASFPAAEDSSPEPVHVNSCFTAGDILALVFGLLF Q3UUZ9 AVTSIAFLLQLRRQHRHRSGTKDRVSYSPAEMTETGA

Figure 26 Peptide sequence of principal isoform of Mouse_CarIX with catalytic domain highlighted in orange as viewed in Chimera. Blue rectangular box represents 7th exon and red-box represents 8th exon.

The missing 7th and 8th exon in cDNA (EF122497) constitutes the major part of catalytic domain of principal isoform. The absence of these exons affect the structure of protein.

4.8.3 Car XIV (9th exon outside of PDB structure)

>Peptide sequence of Mouse_CarXIV principal isoform with catalytic domain highlighted in gray

MLFFALLLKVTWILAADGG

HHWTYEG

PHGQDHWPTSYPECGGDAQSPINIQTDSVIFDPDLPAVQPHGYDQLGTEPLDLHNNGHT V

QLSLPPTLHLGGLPRKYTAAQLHLHWGQRGSLEGSEHQINSEATAAE

LHVVHYDSQSYSSLSEAAQKPQGLAVLGILIE

VGETENPAYDHILSRLHEIRYKD

QKTSVPPFSVRELFPQQLEQFFRYNGSLTTPPCYQSVLWTVFNRRAQISMGQ

LEKLQETLSSTEEDPSEPLVQNYRVPQPLNQRTIFASF<mark>IQA</mark>

GPLYTTG-9th exon

EMLGLGVGILAGCLCLLLAVYFIAQKIR

KKRLGNRKSVVFTSARATTEA

Q9WVT6 MLFFALLLKVTWILAADGGHHWTYEGPHGQDHWPTSYPECGGDAQSPINI Q9WVT6 QTDSVIFDPDLPAVQPHGYDQLGTEPLDLHNNGHTVQLSLPPTLHLGGLP Q9WVT6 RKYTAAQLHLHWGQRGSLEGSEHQINSEATAAELHVVHYDSQSYSSLSEA Q9WVT6 AQKPQGLAVLGILIEVGETENPAYDHILSRLHEIRYKDQKTSVPPFSVRE Q9WVT6 LFPQQLEQFFRYNGSLTTPPCYQSVLWTVFNRRAQISMGQLEKLQETLSS Q9WVT6 TEEDPSEPLVQNYRVPQPLNQRTIFASFIQAGPLYTTGEMLGLGVGILAG Q9WVT6 CLCLLLAVYFIAQKIRKKRLGNRKSVVFTSARATTEA

Figure 27 Peptide sequence of Mouse_CarXIV with orange highlighted area showing catalytic domain as viewed in Chimera. The yellow highlighted area represents 9th exon of principal isoform.

AK157764.1, BC046995.1 and AB005450.1 cDNAs has 9th exon missing. The 9th exon is outside main catalytic domain which signifies the feasibility of functional protein structure.

5 Discussion

EST/cDNA evidence in ensembl and genomic browser shows missing/extra exons in extracellular and secretory carbonic anhydrases. Some of these exons are within catalytic domain and some in the linker region after the catalytic domain and before the transmembrane helix. The homologous missing/extra exons is observed in human and mouse CAs to confirm its biological relevance. The lack of enough information relating this matter on other animals like Zebra-fish and cow hinders the efficacy of the study.

CA IV

CA IV EST shows extra second-exon in human. This exon is the part of catalytic domain of principal isoform so addition of extra exon in this region affects the structure and function of the protein.

Car IV

EST evidence shows missing second exon which is the part of catalytic domain in principal isoform and contains residue that forms disulfide bond (residue 'C' in position 23 and residue 'C' in position 35). Therefore, absence of this exon affects the protein structure.

CA VI

RefSeq entries NM_001270501.1 and NM_001270502.1 shows second and third exons missing respectively. Second and third exon forms the major portion of catalytic domain so absence of these exons affect the structure of protein product.

Car VI

This isoform has no missing exons.

CA IX

UCSC spliced-EST track shows missing second exon(10aa) in this transcript. The PDB structure (6FE2) shows 5aa (DDQSH) missing as compared with the second exon of principal isoform. Since the major portion of catalytic domain is intact along with QSP catalytic site residue, protein is structurally feasible.

Car IX

7th and 8th exons are missing according to EST evidence. These exons constitute the major part of catalytic domain which in turn affects the structure of protein. In human, CAIX alternative splicing isoform with missing exon 8-9 was detected in cancer cells (Malentacchi et al., 2009).

CA XII

Ensemble transcript evidence shows second and ninth exon missing. This isoform has alternative Refseq transcript NM_206925.1 with missing ninth exon. This exon is outside the catalytic domain and its peptide sequence is identical to transcript CA XII-202. Thus functional protein structure is possible.

The CA XII transcript with missing 9th exon (11aa) seems to be common in astrocytomas (type of cancer that forms in brain or spinal cord) (Malentacchi et al., 2009).

Another transcript evidence shows missing second exon which is the part of catalytic domain in principal isoform and contains 'WTY' motif. Absence of 'WTY' motif affects the structure of the final protein product.

Car XII

Ensembl and Genome Brower shows no missing exons.

CA XIV

Ensembl EST shows second exon missing in some cDNAs. This second exon contains 'WTY' motif and forms a part of catalytic domain therefore absence of this exon destabilizes the functionality of protein.

Car XIV

EST evidence shows 9th exon missing which is outside of the main catalytic domain therefore the structural feasibility is possible without this exon.

6 Conclusion

Many membrane-associated isoforms in human and mouse have EST/cDNA evidence that shows missing/extra exon in various exon positions unlike cytoplasmic and mitochondrial CAs. Membrane-associated transcripts like human CAXII and mouse Car XIV have missing 9th exon between catalytic and transmembrane domains which implies the possibility of function-altering variant. Homologous missing/extra exons in human and mouse confirm the biological relevance of the findings to some extent. Further study is needed to fully understand and confirm the evolutionary significance.

References

- Alterio, V., Hilvo, M., Di Fiore, A., Supuran, C.T., Pan, P., Parkkila, S., Scaloni, A., Pastorek, J., Pastorekova, S., Pedone, C., Scozzafava, A., Monti, S.M., De Simone, G., 2009. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc. Natl. Acad. Sci. 106, 16233–16238. https://doi.org/10.1073/pnas.0908301106
- Alterio, V., Pan, P., Parkkila, S., Buonanno, M., Supuran, C.T., Monti, S.M., De Simone, G., 2014. The structural comparison between membrane-associated human carbonic anhydrases provides insights into drug design of selective inhibitors. Biopolymers 101, 769–778. https://doi.org/10.1002/bip.22456
- Alvarez, B. V., Vilas, G.L., Casey, J.R., 2005. Metabolon disruption: A mechanism that regulates bicarbonate transport. EMBO J. 24, 2499–2511. https://doi.org/10.1038/sj.emboj.7600736
- Ars, E., Serra, E., García, J., Kruyer, H., Gaona, A., Lázaro, C., Estivill, X., 2000. Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1. Hum. Mol. Genet. 9, 237–247. https://doi.org/10.1093/hmg/9.2.237
- Briganti, F., Mangani, S., Scozzafava, A., Vernaglione, G., Supuran, C.T., 1999. Carbonic anhydrase catalyzes cyanamide hydration to urea: Is it mimicking the physiological reaction? J. Biol. Inorg. Chem. 4, 528–536. https://doi.org/10.1007/s007750050375
- Chakravarty, S., Kannan, K.K., 1994. Drug-protein interactions. Refined structures of three sulfonamide drug complexes of human carbonic anhydrase I enzyme. J. Mol. Biol. 243, 298–309. https://doi.org/10.1006/jmbi.1994.1655
- Crocetti, L., Maresca, A., Temperini, C., Hall, R.A., Scozzafava, A., Mühlschlegel, F.A., Supuran, C.T., 2009a. A thiabendazole sulfonamide shows potent inhibitory activity against mammalian and nematode α-carbonic anhydrases. Bioorg. Med. Chem. Lett. 19, 1371– 1375. https://doi.org/10.1016/j.bmcl.2009.01.038
- Crocetti, L., Maresca, A., Temperini, C., Hall, R.A., Scozzafava, A., Mühlschlegel, F.A., Supuran, C.T., 2009b. A thiabendazole sulfonamide shows potent inhibitory activity against mammalian and nematode α-carbonic anhydrases. Bioorganic Med. Chem. Lett. 19, 1371– 1375. https://doi.org/10.1016/j.bmcl.2009.01.038
- Di Fiore, A., Monti, S.M., Hilvo, M., Parkkila, S., Romano, V., Scaloni, A., Pedone, C., Scozzafava, A., Supuran, C.T., De Simone, G., 2009. Crystal structure of human carbonic anhydrase XIII and its complex with the inhibitor acetazolamide 74, 164–175. https://doi.org/10.1002/prot.22144
- Eriksson, A.E., Jones, T.A., Liljas, A., 1988. Refined structure of human carbonic anhydrase II at 2.0 Å resolution. Proteins Struct. Funct. Bioinforma. 4, 274–282. https://doi.org/10.1002/prot.340040406

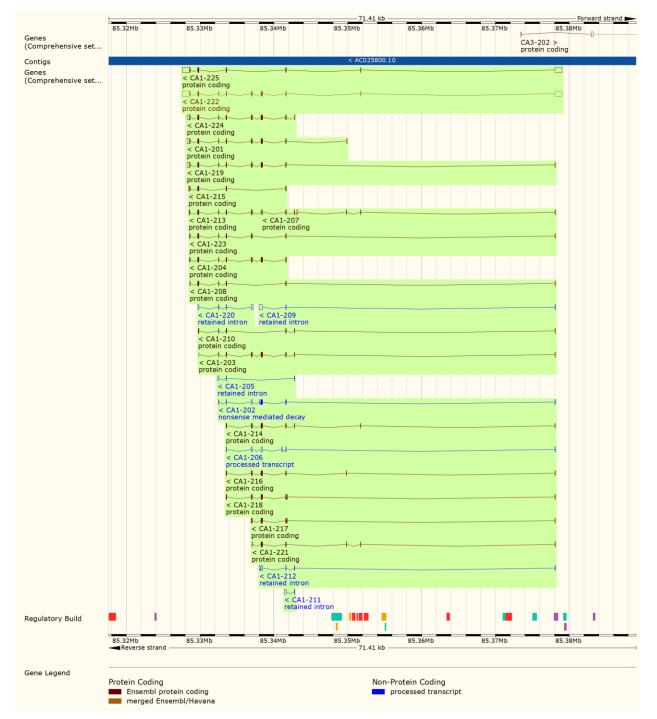
Esbaugh, A.J., Tufts, B.L., 2006. The structure and function of carbonic anhydrase isozymes in

the respiratory system of vertebrates. Respir. Physiol. Neurobiol. 154, 185–198. https://doi.org/10.1016/J.RESP.2006.03.007

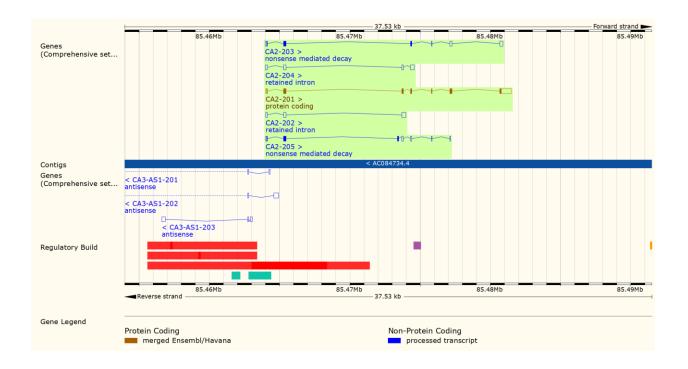
- Esbaugh, A.J.J., Tufts, B.L.L., 2006. The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates. Respir. Physiol. Neurobiol. 154, 185–198. https://doi.org/10.1016/J.RESP.2006.03.007
- Ferraroni, M., Tilli, S., Briganti, F., Chegwidden, W.R., Supuran, C.T., Wiebauer, K.E., Tashian, R.E., Scozzafava, A., 2002. Crystal structure of a zinc-activated variant of human carbonic anhydrase I, CA I Michigan 1: Evidence for a second zinc binding site involving arginine coordination. Biochemistry 41, 6237–6244. https://doi.org/10.1021/bi0120446
- Ghigna, C., Valacca, C., Biamonti, G., 2008. Alternative splicing and tumor progression. Curr. Genomics 9, 556–70. https://doi.org/10.2174/138920208786847971
- Graveley, B.R., 2005. Mutually Exclusive Splicing of the Insect Dscam Pre-mRNA Directed by Competing Intronic RNA Secondary Structures. Cell 123, 65–73. https://doi.org/10.1016/j.cell.2005.07.028
- Imtaiyaz Hassan, M., Shajee, B., Waheed, A., Ahmad, F., Sly, W.S., 2013. Structure, function and applications of carbonic anhydrase isozymes. Bioorganic Med. Chem. 21, 1570–1582. https://doi.org/10.1016/j.bmc.2012.04.044
- Kannan, K.K., Liljas, A., Waara, I., Bergstén, P.C., Lövgren, S., Strandberg, B., Bengtsson, U., Carlbom, U., Fridborg, K., Järup, L., Petef, M., 1972. Crystal structure of human erythrocyte carbonic anhydrase C. VI. The three-dimensional structure at high resolution in relation to other mammalian carbonic anhydrases. Cold Spring Harb. Symp. Quant. Biol. 36, 221–231. https://doi.org/10.1101/SQB.1972.036.01.030
- KANNAN, K.K., RAMANADHAM, M., JONES, T.A., 1984. Structure, Refinement, and Function of Carbonic Anhydrase Isozymes: Refinement of Human Carbonic Anhydrase I. Ann. N. Y. Acad. Sci. 429, 49–60. https://doi.org/10.1111/j.1749-6632.1984.tb12314.x
- Kim, C.Y., Whittington, D.A., Chang, J.S., Liao, J., May, J.A., Christianson, D.W., 2002. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J. Med. Chem. 45, 888–893. https://doi.org/10.1021/jm010163d
- Kim, H., Klein, R., Majewski, J., Ott, J., 2004. Estimating rates of alternative splicing in mammals and invertebrates. Nat. Genet. 36, 915–916. https://doi.org/10.1038/ng0904-915
- Köhler, K., Hillebrecht, A., Schulze Wischeler, J., Innocenti, A., Heine, A., Supuran, C.T., Klebe, G., 2007a. Saccharin Inhibits Carbonic Anhydrases: Possible Explanation for its Unpleasant Metallic Aftertaste. Angew. Chemie Int. Ed. 46, 7697–7699. https://doi.org/10.1002/anie.200701189
- Köhler, K., Hillebrecht, A., Schulze Wischeler, J., Innocenti, A., Heine, A., Supuran, C.T., Klebe, G., 2007b. Saccharin inhibits carbonic anhydrases: Possible explanation for its unpleasant metallic aftertaste. Angew. Chemie - Int. Ed. 46, 7697–7699. https://doi.org/10.1002/anie.200701189
- Kumar, V., Kannan, K.K., 1994. Enzyme-substrate interactions structure of human carbonic anhydrase I complexed with bicarbonate. J. Mol. Biol. 241, 226–232.

https://doi.org/10.1006/jmbi.1994.1491

- Lehtonen, J., Shen, B., Vihinen, M., Casini, A., Scozzafava, A., Supuran, C.T., Parkkila, A.K., Saarnio, J., Kivelä, A.J., Waheed, A., Sly, W.S., Parkkila, S., 2004. Characterization of CA XIII, a Novel Member of the Carbonic Anhydrase Isozyme Family. J. Biol. Chem. 279, 2719–2727. https://doi.org/10.1074/jbc.M308984200
- Malentacchi, F., Simi, L., Nannelli, C., Andreani, M., Janni, A., Pastorekova, S., Orlando, C., 2009. Alternative splicing variants of carbonic anhydrase IX in human non-small cell lung cancer. Lung Cancer 64, 271–276. https://doi.org/10.1016/j.lungcan.2008.10.001
- Maresca, A., Temperini, C., Vu, H., Pham, N.B., Poulsen, S.A., Scozzafava, A., Quinn, R.J., Supuran, C.T., 2009. Non-zinc mediated inhibition of carbonic anhydrases: Coumarins are a new class of suicide inhibitors. J. Am. Chem. Soc. 131, 3057–3062. https://doi.org/10.1021/ja809683v
- Montgomery, J.C., Venta, P.J., Eddy, R.L., Fukushima, Y.S., Shows, T.B., Tashian, R.E., 1991. Characterization of the human gene for a newly discovered carbonic anhydrase, CA VII, and its localization to chromosome 16. Genomics 11, 835–848. https://doi.org/10.1016/0888-7543(91)90006-Z
- Nagao, Y., Platero, J.S., Waheed, A., Sly, W.S., 1993. Human mitochondrial carbonic anhydrase: cDNA cloning, expression, subcellular localization, and mapping to chromosome 16. Proc. Natl. Acad. Sci. U. S. A. 90, 7623–7627. https://doi.org/10.1073/pnas.90.16.7623
- Stams, T., Nair, S.K., Okuyama, T., Waheed, A., Sly, W.S., Christianson, D.W., 1996. Crystal structure of the secretory form of membrane-associated human carbonic anhydrase IV at 2.8-Å resolution. Proc. Natl. Acad. Sci. U. S. A. 93, 13589–13594. https://doi.org/10.1073/pnas.93.24.13589
- Supuran, C.T., Simone, G. De, 2015. Carbonic Anhydrases as Biocatalysts From Theory to Medical and Industrial Applications. https://doi.org/10.1016/B978-0-444-63258-6/00022-6
- Temperini, C., Innocenti, A., Guerri, A., Scozzafava, A., Rusconi, S., Supuran, C.T., 2007a. Phosph(on)ate as a zinc-binding group in metalloenzyme inhibitors: X-ray crystal structure of the antiviral drug foscarnet complexed to human carbonic anhydrase I. Bioorganic Med. Chem. Lett. 17, 2210–2215. https://doi.org/10.1016/j.bmcl.2007.01.113
- Temperini, C., Innocenti, A., Guerri, A., Scozzafava, A., Rusconi, S., Supuran, C.T., 2007b. Phosph(on)ate as a zinc-binding group in metalloenzyme inhibitors: X-ray crystal structure of the antiviral drug foscarnet complexed to human carbonic anhydrase I. Bioorg. Med. Chem. Lett. 17, 2210–2215. https://doi.org/10.1016/j.bmcl.2007.01.113
- Temperini, C., Innocenti, A., Scozzafava, A., Mastrolorenzo, A., Supuran, C.T., 2007c. Carbonic anhydrase activators: l-Adrenaline plugs the active site entrance of isozyme II, activating better isoforms I, IV, VA, VII, and XIV. Bioorganic Med. Chem. Lett. 17, 628–635. https://doi.org/10.1016/j.bmcl.2006.11.027
- Temperini, C., Scozzafava, A., Vullo, D., Supuran, C.T., 2006. Carbonic anhydrase activators. Activation of isozymes I, II, IV, VA, VII, and XIV with L- and D-histidine and

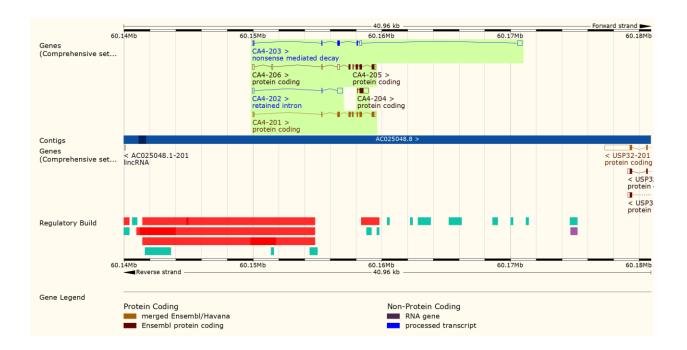

crystallographic analysis of their adducts with isoform II: Engineering proton-transfer processes within the active site of an enzyme. Chem. - A Eur. J. 12, 7057–7066. https://doi.org/10.1002/chem.200600159

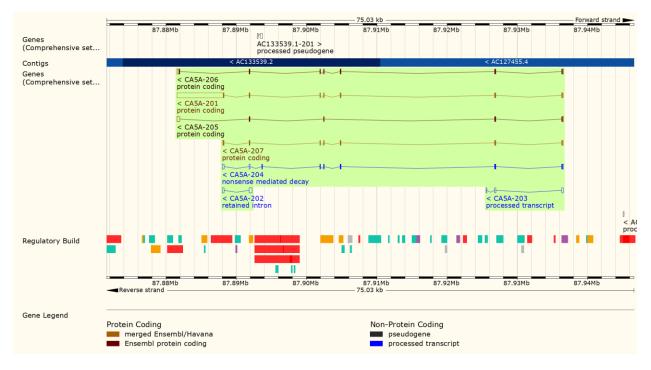
- Van Karnebeek, C.D., Sly, W.S., Ross, C.J., Salvarinova, R., Yaplito-Lee, J., Santra, S., Shyr, C., Horvath, G.A., Eydoux, P., Lehman, A.M., Bernard, V., Newlove, T., Ukpeh, H., Chakrapani, A., Preece, M.A., Ball, S., Pitt, J., Vallance, H.D., Coulter-Mackie, M., Nguyen, H., Zhang, L.H., Bhavsar, A.P., Sinclair, G., Waheed, A., Wasserman, W.W., Stockler-Ipsiroglu, S., 2014. Mitochondrial carbonic anhydrase VA deficiency resulting from CA5A alterations presents with hyperammonemia in early childhood. Am. J. Hum. Genet. 94, 453–461. https://doi.org/10.1016/j.ajhg.2014.01.006
- WANG, Y., LIU, J., HUANG, B., XU, Y.-M., LI, J., HUANG, L.-F., LIN, J., ZHANG, J., MIN, Q.-H., YANG, W.-M., WANG, X.-Z., 2015. Mechanism of alternative splicing and its regulation. Biomed. Reports 3, 152–158. https://doi.org/10.3892/br.2014.407
- Whittington, D.A., Waheed, A., Ulmasov, B., Shah, G.N., Grubb, J.H., Sly, W.S., Christianson, D.W., 2001. Crystal structure of the dimeric extracellular domain of human carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain cancer tumor cells. Proc. Natl. Acad. Sci. 98, 9545–9550. https://doi.org/10.1073/pnas.161301298
- Yang, Z., Alvarez, B. V., Chakarova, C., Jiang, L., Karan, G., Frederick, J.M., Zhao, Y., Sauvé, Y., Li, X., Zrenner, E., Wissinger, B., Den Hollander, A.I., Katz, B., Baehr, W., Cremers, F.P., Casey, J.R., Bhattacharya, S.S., Zhang, K., 2005. Mutant carbonic anhydrase 4 impairs pH regulation and causes retinal photoreceptor degeneration. Hum. Mol. Genet. 14, 255– 265. https://doi.org/10.1093/hmg/ddi023


Appendix

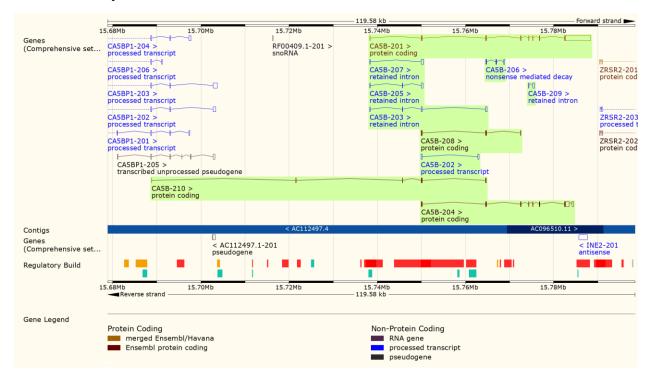
Transcript Graphics of Human Carbonic Anhydrase Isoforms

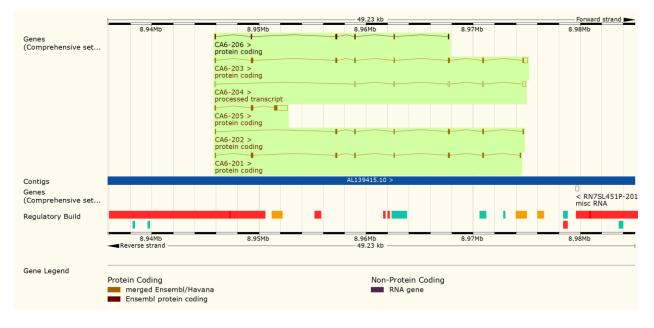
Carbonic anhydrase I

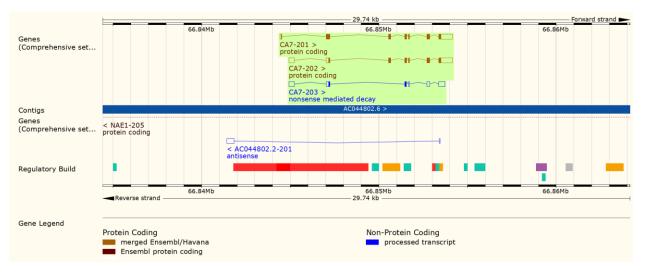

Carbonic Anhydrase II

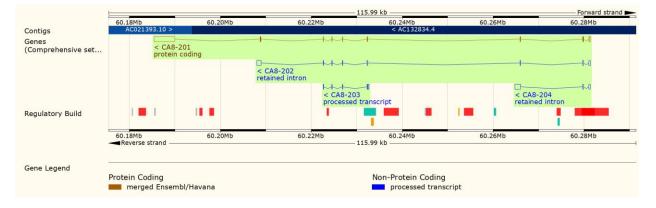

Carbonic Anhydrase III

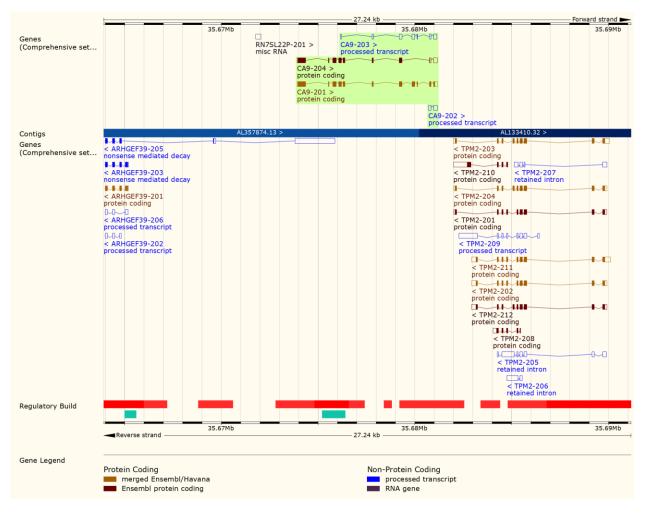
	95.61 kb									
Genes	85.3	BMb	85.4	омь		85.42Mb		85.44Mb		
Genes (Comprehensive set	CA3-202 > protein co									
	protein co	ung						n-0		
								CA3-203 > retained intron		
								CA3-201 > protein coding		
Contigs	<	AC025800.10					< AC084734.4			
Genes								D		
(Comprehensive set	< CA1-225 protein coding							< CA3-AS1-2 antisense	01	
	< CA1-222							< CA3-AS1-2		
	protein coding							antisense		
	< CA1-219								[···· <	
	protein coding								ar	
	< CA1-223									
	protein coding									
	< CA1-208									
	protein coding									
	< CA1-210									
	protein coding									
	< CA1-203									
	protein coding									
	< CA1-202									
	nonsense mediated decay									
	< CA1-214 protein coding									
	< CA1-206 processed transcript									
	< CA1-216 protein coding									
	< CA1-218 protein coding									
	< CA1-217									
	protein coding									
	< CA1-221									
	protein coding									
	< CA1-209									
	retained intron									
	< CA1-212									
	retained intron									
	< CA1-207									
	protein coding		1.1	11	1.0				-	
Regulatory Build										
	85.3	8Mb	85.4	OMb		85.42Mb		85.44Mb	_	
	Reverse strand				– 95.61 kb –––					
Gene Legend	Protein Coding Non-Protein Coding									
	County Non-Protein County County Co									
	merged Ensembl/Ha									

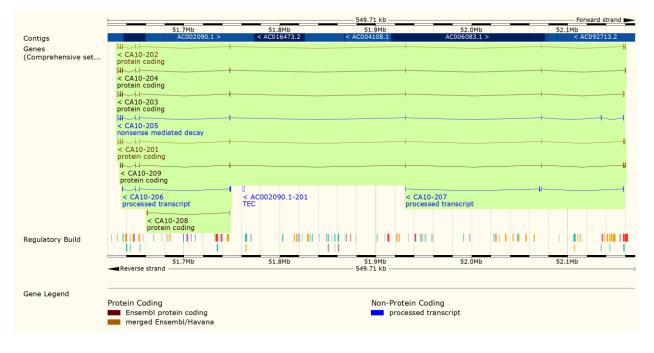

Carbonic anhydrase IV

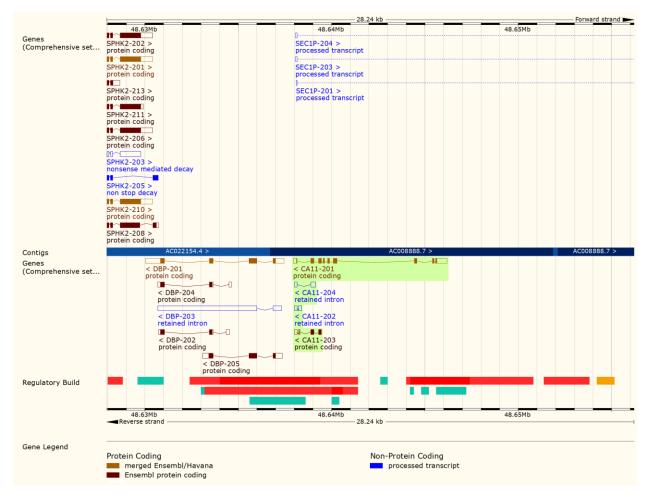

Carbonic Anhydrase VA

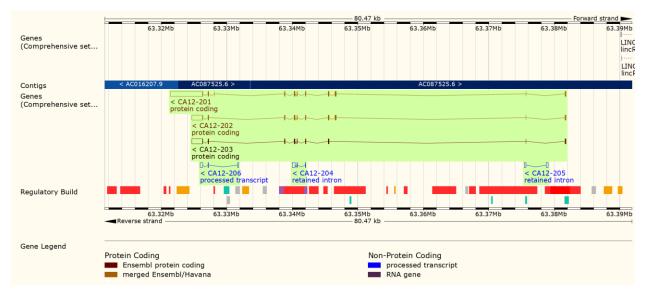

Carbonic Anhydrase VB


Carbonic Anhydrase VI

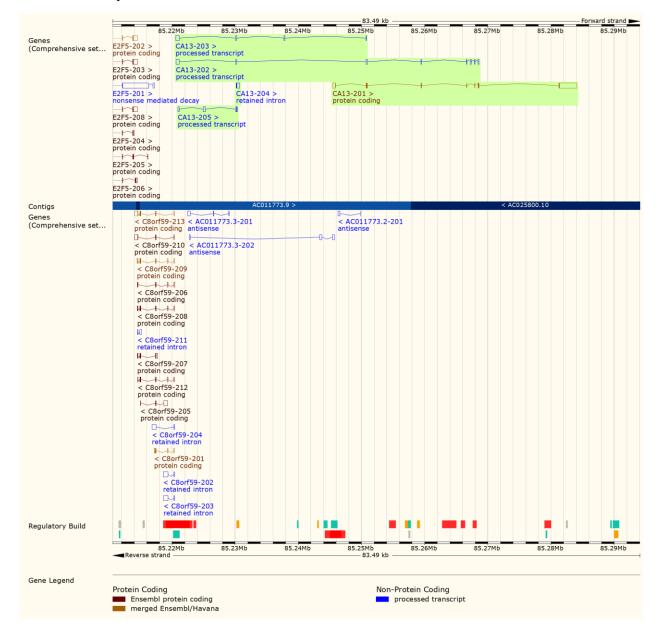

Carbonic Anhydrase VII


Carbonic Anhydrase VIII

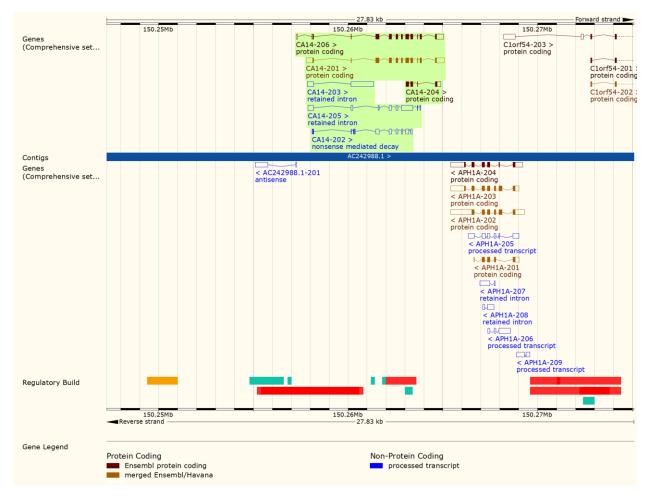

Carbonic Anhydrase IX


Carbonic Anhydrase X

Carbonic Anhydrase XI

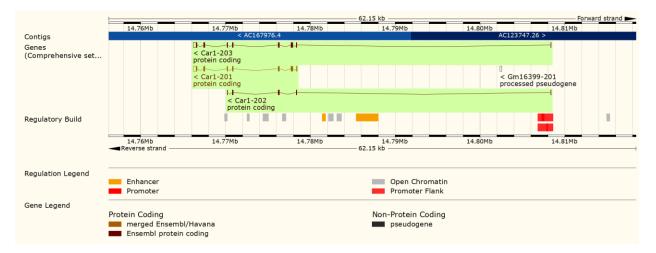


Carbonic Anhydrase XII

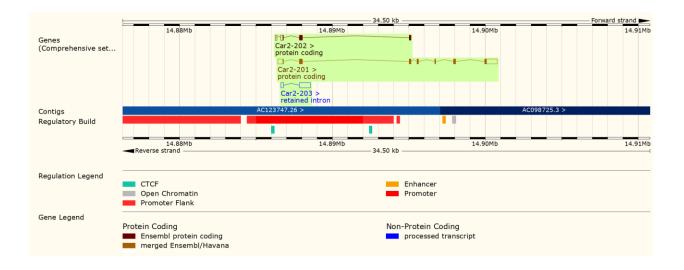


59

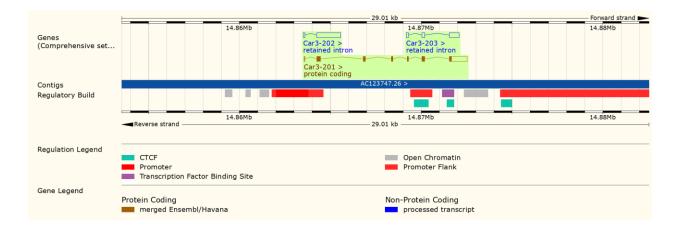
Carbonic Anhydrase XIII

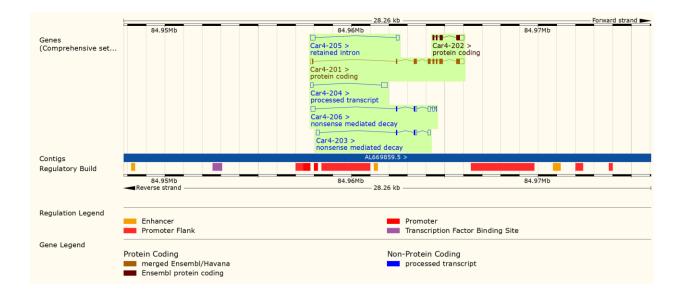


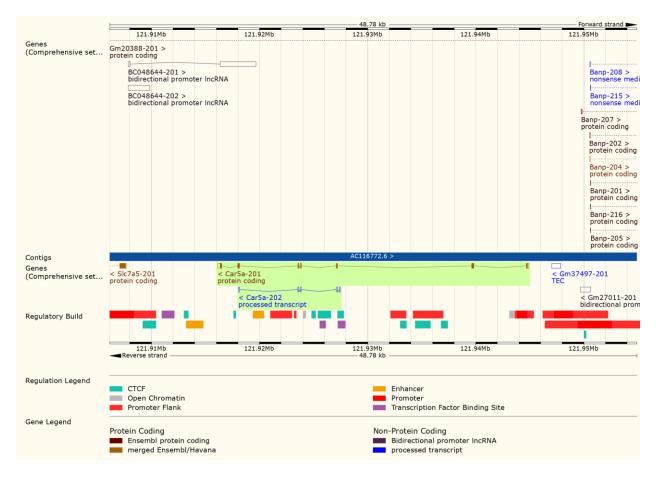
Carbonic Anhydrase XIV

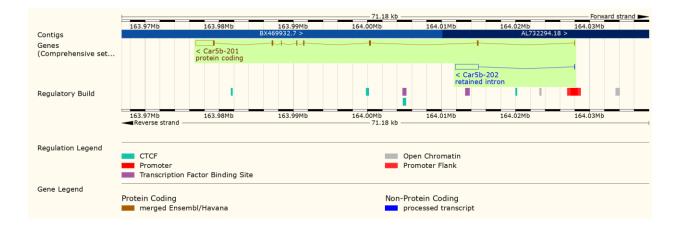


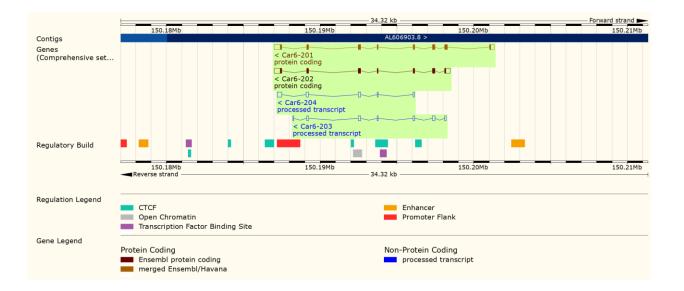
Transcript Graphics of Mouse Carbonic Anhydrase Isoforms

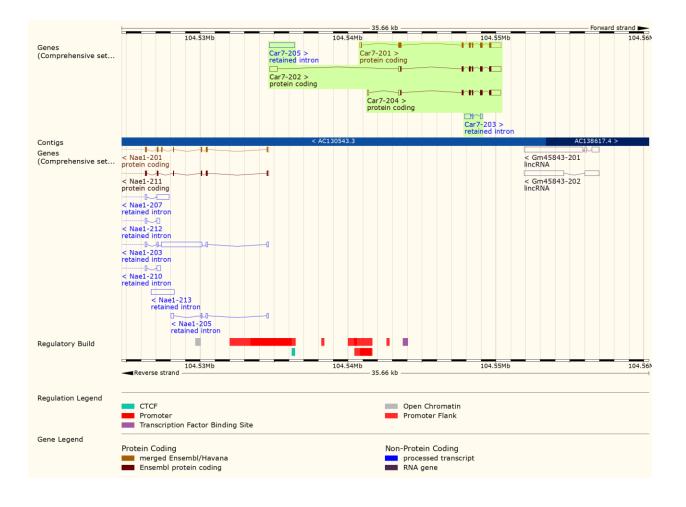

Car I

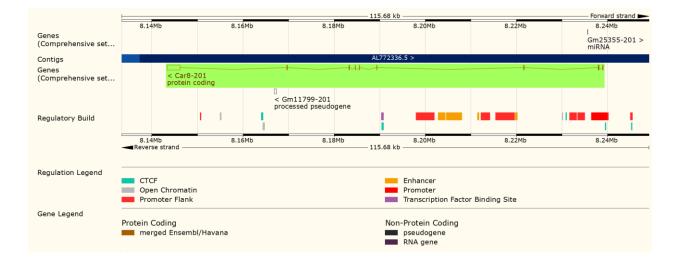

Car II

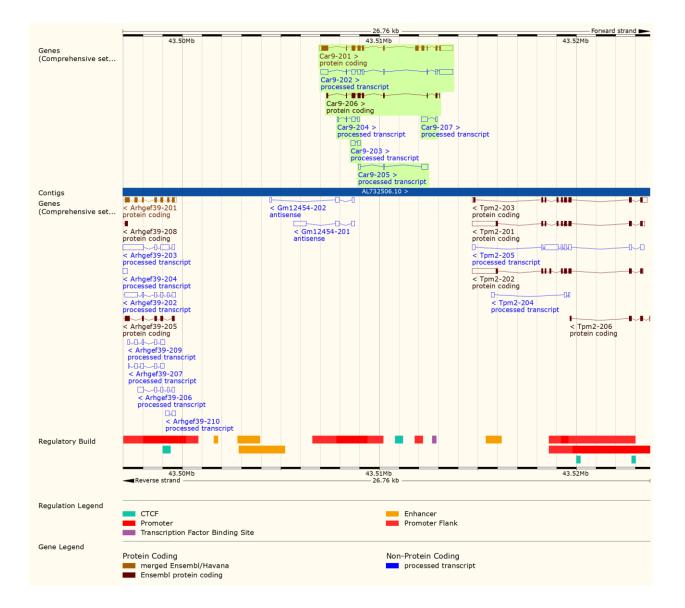

Car III

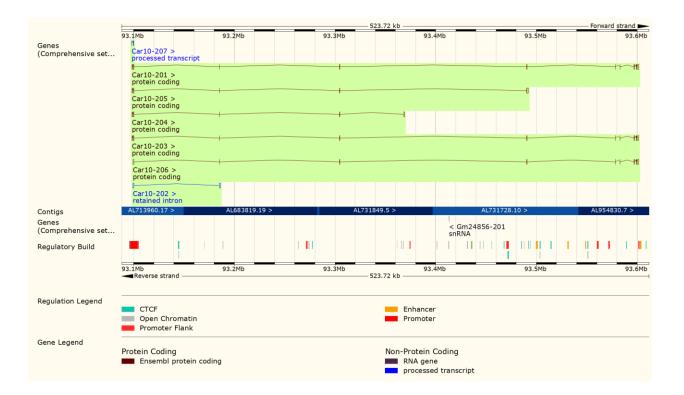

Car IV


Car VA

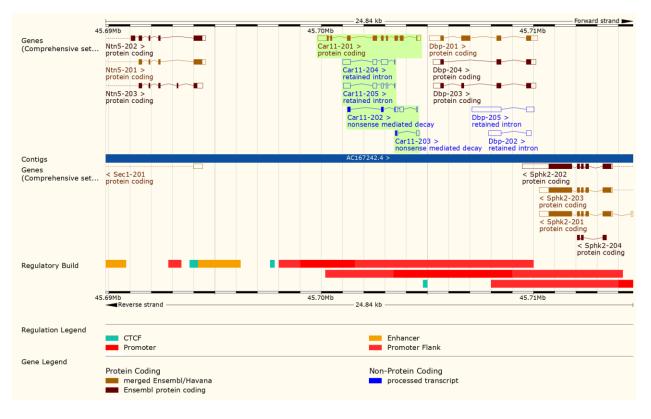

Car VB

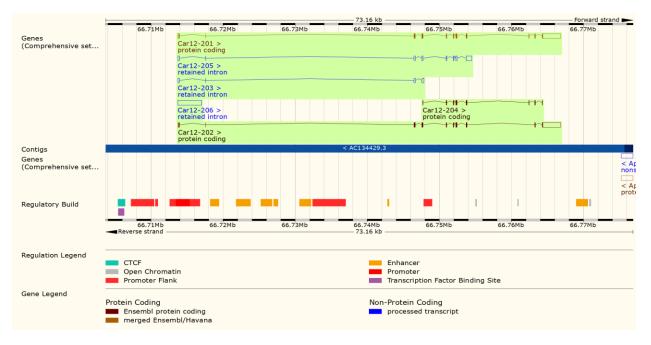

Car VI

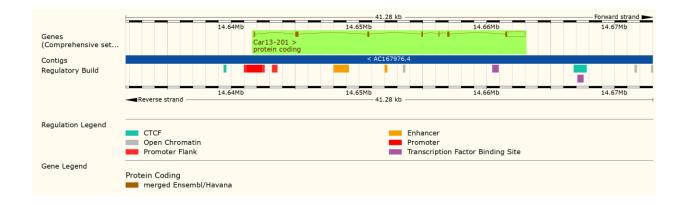

Car VII

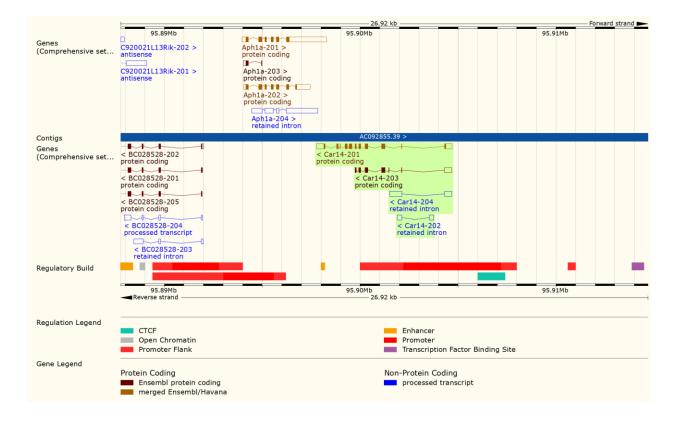


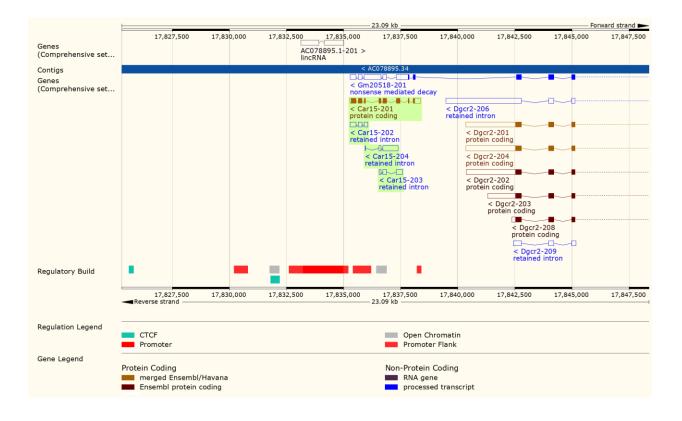
Car VIII




Car IX




Car XI



Car XIII

